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Preface

In this book we cover all basic concepts of computer engineering and science, from digital
logic circuits to the design of a complete microcomputer system in a systematic and sim-
plified manner. We have endeavored to present a clear understanding of the principles and
basic tools required to design typical digital systems such as microcomputers.

To accomplish this goal, the computer is first defined as consisting of three
blocks: central processing unit (CPU), memory, and I/O. We point out that the CPU is
analogous to the brain of a human being. Computer memory is similar to human memory.
A question asked of a human being is analogous to entering a program into a computer us-
ing an input device such as a keyboard, and answering the question by the human is simi-
lar in concept to outputting the result required by the program to a computer output device
such as a printer. The main difference is that human beings can think independently
whereas computers can only answer questions for which they are programmed. Due to ad-
vances in semiconductor technology, it is possible to fabricate the CPU on a single chip.
The result is the microprocessor. Intel’s Pentium and Motorola’s Power PC are typical ex-
amples of microprocessors. Memory and 1/O chips must be connected to the microproces-
sor chip to implement a microcomputer so that these microprocessors will be able to per-
form meaningful operations.

We clearly point out that computers understand only 0’s and 1’s. It is therefore
important that students be familiar with binary numbers. Furthermore, we focus on the
fact that computers can normally only add. Hence, all other operations such as subtraction
are performed via addition. This can be accomplished via two’s-complement arithmetic
for binary numbers. This topic is therefore also included, along with a clear explanation of
signed and unsigned binary numbers.

As far as computer programming is concerned, assembly language programming
is covered in this book for typical Intel and Motorola microprocessors. An overview of C,
C++, and Java high-level languages is also included. These are the only high-level lan-
guages that can perform /O operations. We point out the advantages and disadvantages of
programming typical microprocessors in C and assembly languages.

Three design levels are covered in this book: device level, logic level, and system
level. Device-level design, which designs logic gates such as AND, OR, and NOT using
transistors, is included from a basic point of view. Logic-level design is the design tech-
nique in which logic gates are used to design a digital component such as an adder. Final-
ly, system-level design is covered for typical Intel and Motorola microprocessors. Micro-

XV
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computers have been designed by interfacing memory and /O chips to these micro-
Processors.

Digital systems at the logic level are classified into two types of circuits, combi-
national and sequential. Combinational circuits have no memory whereas sequential cir-
cuits contain memory. Microprocessors are designed using both combinational and se-
quential circuits. Therefore, these topics are covered in detail. The fifth edition of this
book contains an introduction to synthesizing digital logic circuits using popular hard-
ware description languages such as Verilog and VHDL. These two languages are included
in Appendices 1 and J, independently of each other in such a way that either Verilog or
VHDL can be covered in a course without confusion.

The material included in this book is divided into three sections. The first section
contains Chapters 1 through 5. In these chapters we describe digital circuits at the gate
and flip-flop levels and describe the analysis and design of combinational and sequential
circuits. The second section contains Chapters 6 through 8. Here we describe microcom-
puter organization/architecture, programming, design of computer instruction sets, CPU,
memory, and 1/O. The third section contains Chapters 9 through 11. These chapters con-
tain typical 16-, 32-, and 64-bit microprocessors manufactured by Intel and Motorola. Fu-
ture plans of Intel and Motorola are also included. Details of the topics covered in the 11
chapters of this book follow.

« Chapter 1 presents an explanation of basic terminologies, fundamental concepts of
digital integrated circuits using transistors; a comparison of LSTTL, HC, and HCT IC
characteristics, the evolution of computers, and technological forecasts.

» Chapter 2 provides various number systems and codes suitable for representing infor-
mation in microprocessors.

+ Chapter 3 covers Boolean algebra along with map simplification of Boolean functions.
The basic characteristics of digital logic gates are also presented.

+ Chapter 4 presents the analysis and design of combinational circuits. Typical combina-
tional circuits such as adders, decoders, encoders, multiplexers, demultiplexers and,
ROMs/PLDs are included.

* Chapter 5 covers various types of flip-flops. Analysis and design of sequential circuits
such as counters are provided.

» Chapter 6 presents typical microcomputer architecture, internal microprocessor orga-
nization, memory, [/O, and programming concepts.

+ Chapter 7 covers the fundamentals of instruction set design. The design of registers
and ALU is presented. Furthermore, control unit design using both hardwired control
and microprogrammed approaches is included. Nanomemory concepts are covered.

» Chapter 8 explains the basics of memory, I/O, and parallel processing. Topics such as
main memory array design, memory management concepts, cache memory organiza-
tion, and pipelining are included.

» Chapters 9 and 10 contain detailed descriptions of the architectures, addressing
modes, instruction sets, /O, and system design concepts associated with the Intel 8086
and Motorola MC68000.

* Chapter 11 provides a summary of the basic features of Intel and Motorola 32- and 64-

bit microprocessors. Overviews of the Intel 80486/Pentium/Pentium Pro/Pentium
II/Celeron/Pentium ITI, Pentium 4, and the Motorola 68030/68040/68060/PowerPC
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(32- and 64-bit) microprocessors are included. Finally, future plans by both Intel and
Motorola are discussed.

The book can be used in a number of ways. Because the materials presented are
basic and do not require an advanced mathematical background, the book can easily be
adopted as a text for three quarter or two semester courses. These courses can be taught at
the undergraduate level in engineering and computer science. The recommended course
sequence can be digital logic design in the first course, with topics that include selected
portions from Chapters | through 5; followed by a second course on computer architec-
ture/organization (Chapters 6 through 8). The third course may include selected topics
from Chapters 9 through 11, covering Intel and/or Motorola microprocessors.

The audience for this book can also be graduate students or practicing micro-
processor system designers in the industry. Portions of Chapters 9 through 11 can be used
as an introductory graduate text in electrical/computer engineering or computer science.
Practitioners of microprocessor system design in the industry will find more simplified
explanations, together with examples and comparison considerations, than are found in
manufacturers’ manuals.

Because of increased costs of college textbooks, this book covers several topics
including digital logic, computer architecture, assembly language programming, and mi-
croprocessor-based system design in a single book. Adequate details are provided. Cover-
age of certain topics listed below makes the book very unique:

i) A clear explanation of signed and unsigned numbers using computation of
(X2%/255) as an example (Section 2.2). The same concepts are illustrated using as-
sembly language programming with Intel 8086 microprocessor (Example 9.2), and
Motorola 68000 microprocessor (Example 10.2).

il) Clarification of packed vs. unpacked BCD (Section 2.3.2). Also, clear explanation
of ASCII vs. EBCDIC using an ASCII keyboard and an EBCDIC printer inter-
faced to a computer as an example (Section 2.3.2); illustration of the same con-
cepts via Intel 8086 assembly language programming using the XLAT instruction
(Section 9.5.1).

iii) Simplified explanation of Digital Logic Design along with numerous examples
(Chapters 2 through 5). A clear explanation of the BCD adder (Section 4.5.1). An
introduction to basic features of Verilog (Appendix 1) and VHDL (Appendix J)
along with descriptions of several examples of Chapters 3 through 5. Verilog and
VHDL descriptions and syntheses of an ALU and a typical CPU. Coverage of Ver-
ilog and VHDL independent of each other in separate appendices without any con-
fusion.

iv)  CD containing a step by step procedure for installing and using Altera Quartus 11
software for synthesizing Verilog and VHDL descriptions of several combinational
and sequential logic design. Screen shots included in CD providing the waveforms
and tabular forms illustrating the simulation results.

v) Application of C language vs. assembly language along with advantages and dis-
advantages of each (Section 6.6.4).

vi) Numerous examples of assembly language programming for both Intel 8086

(Chapter 9) and Motorola 68000 (Chapter 10).

vii)) A CD containing a step by step procedure for installing and using MASM 6.11
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(8086) and 68asmsim (68000). Screen shots are provided on CD verifying the cor-
rect operation of several assembly language programs (both 8086 and 68000) via
simulations using test data. The screen shots are obtained by simulating the assem-
bly language programs using DEBUG (8086) and SIM (68000).

viii) A concise and simplified explanation of system design concepts including pro-
grammed [/O and interrupts with the Intel 8086 (Chapter 9) and Motorola 68000
(Chapter 10). Hardware aspects including design of reset circuitry and a simple
microcomputer with these microprocessors from the chip level.

ix) A simplified comparison of RISC vs. CISC relating to Pentium architecture which
is comprised of both RISC and CISC (Section 7.3.5). Unique feature of the Power-
PC (Section 11.7.4).

The author wishes to express his sincere appreciation to his students, Rami Yas-
sine, Teren Abear, Vireak Ly, Henry Zhong, Roel Delos Reyes, Vu Tran, Henry Ongkopu-
tro, Rega Setiawan, Xibin Wu, Ryan DeGuzman, Angelo Terracina, Javier Ruiz, Yi Ting
Huang, Eric Fang, Cindy Yeh, King Lam, Luis Galdamez, Elias Younes, Beniamin Petrea-
ca, and to all others for making constructive suggestions. The author is indebted to his col-
leagues Dr. R. Chandra, Dr. M. Davarpanah, Dr. T. Sacco, Dr. S. Monemi, and Dr. H. El
Naga of California State Poly University, Pomona for their valuable comments. The au-
thor is also grateful to Dr. W. C. Miller of University of Windsor, Canada and to his good
friends U.S. Congressman Duke Cunningham (TOPGUN, Vietnam) and U.S. Congress-
man Jerry Weller for their inspiration during the writing effort. Finally, the author would
like to thank CJ Media of California for preparing the final version of the manuscript.

M. RAFIQUZZAMAN
Pomona, California
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INTRODUCTION
TO DIGITAL SYSTEMS

Digital systems are designed to store, process, and communicate information in digital form.
They are found in a wide range of applications, including process control, communication
systems, digital instruments, and consumer products. The digital computer, more commonly
called the “computer,” is an example of a typical digital system.

A computer manipulates information in digital, or more precisely, binary form. A
binary number has only two discrete values — zero or one. Each of these discrete values
is represented by the OFF and ON status of an electronic switch called a “transistor.” All
computers, therefore, only understand binary numbers. Any decimal number (base 10,
with ten digits from 0 to 9) can be represented by a binary number (base 2, with digits 0
and 1).

The basic blocks of a computer are the central processing unit (CPU), the memory,
and the input/output (I/0). The CPU of the computer is basically the same as the brains of
a human being. Computer memory is conceptually similar to human memory. A question
asked to a human being is analogous to entering a program into the computer using an
input device such as the keyboard, and answering the question by the human is similar
in concept to outputting the result required by the program to a computer output device
such as the printer. The main difference is that human beings can think independently,
whereas computers can only answer questions that they are programmed for. Computer
hardware refers to components of a computer such as memory, CPU, transistors, nuts,
bolts, and so on. Programs can perform a specific task such as addition if the computer has
an electronic circuit capable of adding two numbers. Programmers cannot change these
electronic circuits but can perform tasks on them using instructions.

Computer software, on the other hand, consists of a collection of programs.
Programs contain instructions and data for performing a specific task. These programs,
written using any programming language such as C++, must be translated into binary
prior to execution by the computer. This is because the computer only understands binary
numbers. Therefore, a translator for converting such a program into binary is necessary.
Hence, a translator program called the compiler is used for translating programs written
in a programming language such as C-++ into binary. These programs in binary form are
then stored in the computer memory for execution because computers only understand 1’s
and 0’s. Furthermore, computers can only add. ‘This means that all operations such as
subtraction, multiplication, and division are performed by addition.

Due to advances in semiconductor technology, it is possible to fabricate the
CPU in a single chip. The resuit is the microprocessor. Both Metal Oxide Semiconductor
(MOS) and Bipolar technologies were used in the fabrication process. The CPU can

I
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be placed on a single chip when MOS technology is used. However, several chips are
required with the bipolar technology. HCMOS (High Speed Complementary MOS) or
BICMOS (Combination of Bipolar and HCMOS) technology (to be discussed later in
this chapter) is normally used these days to fabricate the microprocessor in a single chip.
Along with the microprocessor chip, appropriate memory and I/O chips can be used to
design a microcomputer. The pins on each one of these chips can be connected to the
proper lines on the system bus, which consists of address, data, and control lines. In the
past, some manufacturers have designed a complete microcomputer on a single chip with
limited capabilities. Single-chip microcomputers were used in a wide range of industrial
and home applications.

“Microcontrollers” evolved from single-chip microcomputers. The micro-
controllers are typically used for dedicated applications such as automotive systems, home
appliances, and home entertainment systems. Typical microcontrollers, therefore, include
a microcomputer, timers, and A/D (analog to digital) and D/A (digital to analog) converters
— all in a single chip. Examples of typical microcontrollers are Intel 8751 (8-bit) / 8096
(16-bit) and Motorola HC11 (8-bit) / HC16 (16-bit).

In this chapter, we first define some basic terms associated with the computers.
We then describe briefly the evolution of the computers and the microprocessors. Finally,
a typical practical application,, and technological forecasts are included.

1.1 Explanation of Terms

Before we go on, it is necessary to understand some basic terms.

* A bit is the abbreviation for the term binary digit. A binary digit can have only two
values, which are represented by the symbols 0 and 1, whereas a decimal digit can
have 10 values, represented by the symbols 0 through 9. The bit values are easily
implemented in electronic and magnetic media by two-state devices whose states
portray either of the binary digits, 0 or 1. Examples of such two-state devices are a
transistor that is conducting or not conducting, a capacitor that is charged or discharged,
and a magnetic material that is magnetized North-to-South or South-to-North.

» The bit size of a computer refers to the number of bits that can be processed
simultaneously by the basic arithmetic circuits of the computer. A number of bits
taken as a group in this manner is called a word. For example, a 32-bit computer can
process a 32-bit word. An 8-bit word is referred to as a byte, and a 4-bit word is known
as a nibble.

*  Anarithmetic logic unit (ALU) is a digital circuit which performs arithmetic and logic
operations on two n-bit digital words. The value of n can be 4, 8, 16, 32, or 64.
Typical operations performed by the ALU are addition, subtraction, ANDing, ORing,
and comparison of two n-bit digital words. The size of the ALU defines the size of the
computer. For example, a 32-bit computer contains a 32-bit ALU.

* A microprocessor is the CPU of a microcomputer contained in a single chip and
must be interfaced with peripheral support chips in order to function. In general, the
CPU contains several registers (memory elements), the ALU, and the control unit.
Note that the control unit translates instructions and performs the desired task. The
number of peripheral devices depends upon the particular application involved and
even varies within one application. As the microprocessor industry matures, more of
these functions are being integrated onto chips in order to reduce the system package
count. In general, a microcomputer typically consists of a microprocessor (CPU) chip,
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input and output chips, and memory chips in which programs (instructions and data)
are stored. Note that a microcontroller, on the other hand, is implemented in a single
chip containing typically a CPU, memory, /O, timer, A/D and D/A converter circuits.
Throughout this book the terms “computer” and “CPU” will be used interchangeably
with “Microcomputer” and “Microprocessor” respectively.

*  An address is a pattern of 0’s and 1’s that represents a specific location of memory
or a particular I/O device. Typical 8-bit microprocessors have 16 address lines, and,
these 16 lines can produce 2'¢ unique 16-bit patterns from 0000000000000000 to
1111111111111111, representing 65,536 different address combinations.

*  Read-only memory (ROM) is a storage medium for the groups of bits called words,
and its contents cannot normally be altered once programmed. A typical ROM is
fabricated on a chip and can store, for example, 2048 eight-bit words, which can be
individually accessed by presenting one of 2048 addresses to it. This ROM is referred
to as a 2K by 8-bit ROM. 10110111 is an example of an 8-bit word that might be
stored in one location in this memory. A ROM is also a nonvolatile storage device,
which means that its contents are retained in the event of power failure to the ROM
chip. Because of this characteristic, ROMs are used to store programs (instructions
and data) that must always be available to the microprocessor.

*  Random access memory (RAM) is also a storage medium for groups of bits or words
whose contents can not only be read but also altered at specific addresses. Furthermore,
a RAM normally provides volatile storage, which means that its contents are lost in
the event of a power failure. RAMs are fabricated on chips and have typical densities
of 4096 bits to one megabit per chip. These bits can be organized in many ways, for
example, as 4096-by-1-bit words, or as 2048-by-8-bit words. RAM:s are normally used
for the storage of temporary data and intermediate results as well as programs that can
be reloaded from a back-up nonvolatile source. RAMs are capable of providing large
storage capacity in the range of Megabits.

» A register can be considered as volatile storage for a number of bits. These bits may
be entered into the register simultaneously (in parallel), or sequentially (serially) from
right to left or from left to right, 1 bit at a time. An 8-bit register storing the bits
11110000 is represented as follows:

(1T [l Jofo] o] o]

«  The term bus refers to a number of conductors (wires) organized to provide a means of
communication among different elements in a microcomputer system. The conductors
in the bus can be grouped in terms of their functions. A microprocessor normally has
an address bus, a data bus, and a control bus. The address bits to memory or to an
external device are sent out on the address bus. Instructions from memory, and data
to/from memory or external devices normally travel on the data bus. Control signals
for the other buses and among system elements are transmitted on the control bus.
Buses are sometimes bidirectional; that is, information can be transmitted in either
direction on the bus, but normally only in one direction at a time.

»  The instruction set of a microprocessor is the list of commands that the microprocessor
is designed to execute. Typical instructions are ADD, SUBTRACT, and STORE.
Individual instructions are coded as unique bit patterns, which are recognized and
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executed by the microprocessor. If a microprocessor has 3 bits allocated to the
representation of instructions, then the microprocessor will recognize a maximum of
23 or eight different instructions. The microprocessor will then have a maximum of
eight instructions in its instruction set. It is obvious that some instructions will be more
suitable to a particular application than others. For example, if a microprocessoristo be
used in a calculating mode, instructions such as ADD, SUBTRACT, MULTIPLY, and
DIVIDE would be desirable. In a control application, instructions inputting digitized
signals into the processor and outputting digital control variables to external circuits
are essential. The number of instructions necessary in an application will directly
influence the amount of hardware in the chip set and the number and organization of
the interconnecting bus lines.

A microcomputer requires synchronization among its components, and this is provided
by the clock or timing circuits. A clock is analogous to the heart beats of a human
body.

The chip is an integrated circuit (IC) package containing digital circuits.

The term gate refers to digital circuits which perform logic operations such as AND,OR,
and NOT. In an AND operation, the output of the AND gate is one if all inputs are
one; the output is zero if one or more inputs are zero. The OR gate, on the other hand,
provides a zero output if all inputs are zero; the output is one if one or more inputs are
one. Finally, a NOT gate (also called an inverter) has one input and one output. The
NOT gate produces one if the input is zero; the output is zero if the input is one.
Transistors are basically electronic switching devices. There are two types of transistors.
These are bipolar junction transistors (BJTs) and metal-oxide semiconductor (MOS)
transistors. The operation of the BIT depends on the flow of two types of carriers:
electrons (n-channel) and holes (p-channel), whereas the MOS transistor is unipolar
and its operation depends on the flow of only one type of carrier, either electrons (-
channel) or holes (p-channel).

The speed power product (SPP) is a measure of performance of a logic gate. It is
expressed in picojoules (pJ). SPP is obtained by multiplying the speed (in ns) by the
power dissipation (in mW) of a gate.

Design Levels

Three design levels can be defined for digital systems: systems level, logic level, and
device level.

1.3

Systems level is the type of design in which CPU, memory, and I/O chips are interfaced
to build a computer.

Logic level, on the other hand, is the design technique in which chips containing logic
gates such as AND, OR, and NOT are used to design a digital component such as the
ALU.

Finally, device level utilizes transistors to design logic gates.

Combinational vs. Sequential Systems

Digital systems at the logic level can be classified into two types. These are combinational
and sequential.

Combinational systems contain no memory whereas sequential systems require
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memory to remember the present state in order to go to the next state. A binary adder
capable of providing the sum upon application of the numbers to be added is an example of
a combinational system. For example, consider a 4-bit adder. The inputs to this adder will
be two 4-bit numbers; the output will be the 4-bit sum. In this case, the adder will generate
the 4-bit sum output upon application of the two 4-bit inputs.

Sequential systems, on the other hand, require memory. The counter is an example
of a sequential system. For instance, suppose that the counter is required to count in the
sequence 0, 1, 2 and then repeat the sequence. In this case, the counter must have memory
to remember the present count in order to go to the next. The counter must remember that
it is at count 0 in order to go to the next count, 1. In order to count to 2, the counter must
remember that it is counting 1 at the present state. In order to repeat the sequence, the
counter must count back to 0 based on the present count, 2, and the process continues. A
chip containing sequential circuit such as the counter will have a clock input pin.

In general, all computers contain both combinational and sequential circuits.
However, most computers are regarded as clocked sequential systems. In these computers,
almost all activities pertaining to instruction execution are synchronized with clocks.

14 Digital Integrated Circuits

The transistor can be considered as an electronic switch. The on and off states of a
transistor are used to represent binary digits. Transistors, therefore, play an important
role in the design of digital systems. This section describes the basic characteristics of
digital devices and logic families. These include diodes, transistors, and a summary of
digital logic families. These topics are covered from a very basic point of view. This will
allow the readers with some background in digital devices to see how they are utilized in
designing digital systems.

1.4.1 Diodes
A diode 15 an electronic switch. It is a two-terminal device. Figure 1.1 shows the symbolic
representation.

The positive terminal (made with the p-type semiconductor material) is called
the anode; the negative terminal (made with the n-type semiconductor material) is called

1
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FIGURE 1.1 Symbolic representations of a diode
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a cathode. When a voltage, V= 0.6 volt is applied across the anode and the cathode, the
switch closes and a current / flows from anode to the cathode.

1.4.2  Transistors

A bipolar junction transistor (BJT) or commonly called the transistor is also an electronic
switch like the diode. Both electrons (n-channel) and holes (p-channel) are used for carrier
flow; hence, the name “bipolar” is used. The BJT is used in transistor logic circuits that
have several advantages over diode logic circuits. First of all, the transistor acts as a
logic device called an inverter. Note that an inverter provides a LOW output for a HIGH
input and a HIGH output for a LOW input. Secondly, the transistor is a current amplifier
(buffer). Transistors can, therefore, be used to amplify these currents to control external
devices such as a light emitting diode (LED) requiring high currents. Finally, transistor
logic gates operate faster than diode gates.

There are two types of transistors, namely npn and pnp. The classification depends
on the fabrication process. npn transistors are widely used in digital circuits.

Figure 1.2 shows the symbolic representation of an npn transistor. The transistor
is a three-terminal device. These are base, emitter, and collector. The transistor is a
current-controlled switch, which means that adequate current at the base will close the
switch allowing a current to flow from the collector to the emitter. This current direction
is identified on the npn transistor symbol in Figure 1.2(a) by a downward arrow on the
emitter. Note that a base resistance is normally required to generate the base current.

The transistor has three modes of operation: cutoff, saturation, and active. Indigital
circuits, a transistor is used as a switch, which is either ON (closed) or OFF (open). When
no base current flows, the emitter~collector switch is open and the transistor operates in
the cutoff (OFF) mode. On the other hand, when a base current flows such that the voltage
across the base and the emitter is at least 0.6 V, the switch closes. If the base current is
further increased, there will be a situation in which ¥, (voltage across the collector and the
emitter) attains a constant value of approximately 0.2 V. This is called the saturation (ON)
mode of the transistor. The “active” mode is between the cutoff and saturation modes. In
this mode, the base current (/) is amplified so that the collector current, /. = § I, where f
is called the gain, and is in the range of 10 to 100 for typical transistors. Note that when
the transistor reaches saturation, increasing /, does not drop ¥, below Vg (g, 0f 0.2 V.
On the other hand, ¥, varies from 0.8 V to 5 V in the active mode. Therefore, the cutoff
(OFF) and saturation (ON) modes of the transistor are used in designing digital circuits.
The active mode of the transistor in which the transistor acts as a current amplifier (also
called buffer) is used in digital output circuits.

+Vee

Vin

FIGURE 1.3 An inverter
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TABLE 1.1 Current and Voltage Requirements of LEDs

LEDs Red Yellow Green
Current 10 mA 10 mA 20 mA
Voltage 1.7V 22V 2.4V

Operation of the Transistor as an Inverter

Figure 1.3 shows how to use the transistor as an inverter. When V, = 0, the
transistor is in cutoff (OFF), and the collector-emitter switch is open. This means that no
current flows from +V . to ground. ¥V, ;is equal to +V .. Thus, ¥, is high.

On the other hand, when ¥}, is HIGH, the emitter-collector switch is closed. A
current flows from +V . to ground. The transistor operates in saturation, and V= Vg
say = 0.2 V = 0. Thus, ¥, is basically connected to ground.

Therefore, for ¥,y = LOW, V,,= HIGH, and for V,, = HIGH, V,; = LOW.
Hence, the npn transistor in Figure 1.3 acts as an inverter.

Note that V. is typically +5 V DC. The input voltage levels are normally in the
range of 0 to 0.8 volts for LOW and 2 volts to 5 volts for HIGH. The output voltage levels,
on the other hand, are normally 0.2 volts for LOW and 3.6 volts for HIGH.

Light Emitting Diodes (LEDs) and Seven Segment Displays
LEDs are extensively used as outputs in digital systems as status indicators. An LED is
typically driven by low voltage and low current. This makes the LED a very attractive
device for use with digital systems. Table 1.1 provides the current and voltage requirements
of red, yellow, and green LEDs.

Basically, an LED will be ON, generating light, when its cathode is sufficiently
negative with respect to its anode. A digital system such as a microcomputer can therefore

+5V

LED (Red)
1 =4000A
—>
Vi
Ry

Microcomputer

FIGURE 14 Microcomputer - LED interface

3300

LED

Inverter

Microcomputer

FIGURE 1.5 Microcomputer - LED interface via an inverter
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light an LED either by grounding the cathode (if the anode is tied to +5 V) or by applying
+5 V to the anode (if the cathode is grounded) through an appropriate resistor value. A
typical hardware interface between a microcomputer and an LED is depicted in Figure 1.4.

A microcomputer normally outputs 400 pA at a minimum voltage, V, = 2.4 volts
for a HIGH. The red LED requires 10 mA at 1.7 volts. A buffer such as a transistor is
required to turn the LED ON. Since the transistor is an inverter, a HIGH input to the
transistor will turn the LED ON. We now design the interface; that is, the values of R1,
R2, and the gain B for the transistor will be determined.

A HIGH at the microcomputer output will turn the transistor ON into active mode.
This will allow a path of current to flow from the +5 V source through R, and the LED to
the ground. The appropriate value of R, needs to be calculated to satisfy the voltage and
current requirements of the LED. Also, suppose that ¥, = 0.6 V when the transistor is in
active mode. This means that R, needs to be calculated with the specified values of V, =
2.4V and I =400 uA. The values of R, R,, and J are calculated as follows:

Therefore, the interface design is complete, and a transistor with a minimum g of
25, R, =4.5KQ, and R, = 330 Q are required.
An inverting buffer chip such as 7415368 can be used in place of a transistor in

FIGURE 1.6

Common Cathode Common Anode

FIGURE 1.7  Seven-segment display configurations
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Figure 1.4. A typical interface of an LED to a microcomputer via an inverter is shown in
Figure 1.5. Note that the transistor base resistance is inside the inverter. Therefore, R, is
not required to be connected to the output of the microcomputer. The symbol —o— s
used to represent an inverter. Inverters will be discussed in more detail later. In figure 1.5,
when the microcomputer outputs a HIGH, the transistor switch inside the inverter closes.
A current flows from the +5 V source, through the 330-ohm resistor and the LED, into the
ground inside the inverter. The LED is thus turned ON.

A seven-segment display can be used to display, for example, decimal numbers
from 0 to 9. The name “seven segment” is based on the fact that there are seven LEDs
— one in each segment of the display. Figure 1.6 shows a typical seven-segment display.

In Figure 1.6, each segment contains an LED. All decimal numbers from 0 to 9
can be displayed by turning the appropriate segment “ON” or “OFF”, For example, a zero
can be displayed by turning the LED in segment g “OFF” and turning the other six LEDs
in segments a through f“ON.” There are two types of seven segment displays. These are
common cathode and common anode. Figure 1.7 shows these display configurations.

In a common cathode arrangement, the microcomputer can send a HIGH to light
a segment and a LOW to turn it off. In a common anode configuration, on the other hand,
the microcomputer sends a LOW to light a segment and a HIGH to tumn it off. In both
configurations, R = 330 ohms can be used.

Transistor Transistor Logic (TTL) and its Variations

The transistor transistor logic (TTL) family of chips evolved from diodes and transistors.
This family used to be called DTL (diode transistor logic). The diodes were then replaced
by transistors, and thus the name “TTL” evolved. The power supply voltage (V) for TTL
is +5 V. The two logic levels are approximately 0 and 3.5 V.

There are several variations of the TTL family. These are based on the saturation
mode (saturated logic) and active mode (nonsaturated logic) operations of the transistor.
In the saturation mode, the transistor takes some time to come out of the saturation to
switch to the cutoff mode. On the other hand, some TTL families define the logic levels
in the active mode operation of the transistor and are called nonsaturated logic. Since
the transistors do not go into saturation, these families do not have any saturation delay
time for the switching operation. Therefore, the nonsaturated logic family is faster than
saturated logic.

The saturated TTL family includes standard TTL (TTL), high-speed TTL (H-
TTL), and low-power TTL (L-TTL). The nonsaturated TTL family includes Schottky TTL
(S-TTL), low-power Schottky TTL (LS-TTL), advanced Schottky TTL (AS-TTL), and
advanced low-power Schottky TTL (ALS-TTL). The development of LS-TTL made TTL,
H-TTL, and L-TTL obsolete. Another technology, called emitter-coupled logic (ECL),
utilizes nonsaturated logic. The ECL family provides the highest speed. ECL is used in
digital systems requiring ultrahigh speed, such as supercomputers.

The important parameters of the digital logic families are fan-out, power
dissipation, propagation delay, and noise margin.

Fan-out is defined as the maximum number of inputs that can be connected to the
output of a gate. It is expressed as a number. The output of a gate is normally connected
_ to the inputs of other similar gates. Typical fan-out for TTL is 10. On the other hand, fan-
outs for S-TTL, LS-TTL, and ECL, are 10, 20, and 25, respectively.

Power dissipation is the power (milliwatts) required to operate the gate. This
power must be supplied by the power supply and is consumed by the gate. Typical power
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consumed by TTL is 10 mW. On the other hand, S-TTL, LS-TTL, and ECL absorb 22
mW, 2 mW, and 25 mW respectively.

Propagation delay is the time required for a signal to travel from input to output
when the binary output changes its value. Typical propagation delay for TTL is 10
nanoseconds (ns). On the other hand, S-TTL, LS-TTL, and ECL have propagation delays
of 3 ns, 10 ns, and 2 ns, respectively.

Noise margin is defined as the maximum voltage due to noise that can be added
to the input of a digital circuit without causing any undesirable change in the circuit output.
Typical noise margin for TTL is 0.4 V. Noise margins for S-TTL, LS-TTL, and ECL are
0.4V,04V,and 0.2 V, respectively.

TTL Outputs
There are three types of output configurations for TTL. These are open-collector output,
totem-pole output, and tristate (three-state) output.

The open-collector output means that the TTL output is a transistor with nothing
connected to the collector. The collector voltage provides the output of the gate. For the
open-collector output to work properly, a resistor (called the pullup resistor), with a value
of typically 1 Kohm, should be connected between the open collector output and a +5 V
power supply.

If the outputs of several open-collector gates are tied together with an external
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resistor (typically 1 Kohm) to a +5 V source, a logical AND function is performed at the
connecting point. This is called wired-AND logic.

Figure 1.8 shows two open-collector outputs (4 and B) are connected together to
a common output point C via a 1 K€ resistor and a +5 V source.

The common-output point C is HIGH only when both transistors are in cutoff
(OFF) mode, providing 4 = HIGH and B = HIGH. If one or both of the two transistors is
turned ON, making one (or both open-collector outputs) LOW, this will drive the common
output C to LOW. Note that a LOW (Ground for example) signal when connected to a
HIGH (+5V for example) signal generates a LOW. Thus, C is obtained by performing a
logical AND operation of the open collector outputs 4 and B.

Let us briefly review the totem-pole output circuit shown in Figure 1.9. The circuit
operates as follows:

When transistor Q, is ON, transistor Q, is OFF. When Q, is OFF, Q, is ON. This
is how the totem-pole output is designed. The complete TTL gate connected to the bases
of transistors ; and Q, is not shown; only the output circuit is shown.

In the figure, Q, is turned ON when the logic gate circuit connected to its base
sends a HIGH output. The switches in transistor Q, and diode D close while the switch in
Q, is open. A current flows from the +5 V source through R, Q,, and D to the output. This
current is called /.. or output high current, I,,,,. This is typically represented by a negative
sign in front of the current value in the TTL data book, a notation indicating that the chip is
losing current. For a low output value of the logic gate, the switches in , and D are open
and the switch in Q, closes. A current flows from the output through Q, to ground. This
current is called 7, or Output Low current, I,,. This is represented by a positive sign in
front of the current value in the TTL data book, indicating that current is being added to
the chip. Either /.. or I, can be used to drive a typical output device such as an LED.
I e (o) 18 normally much smaller than I, (Z,,). Liouee (Lon) 18 typically —0.4 mA (or -400
HA) at a minimum voltage of 2.7 V at the output. /.. is normally used to drive devices
that require high currents. A current amplifier (buffer) such as a transistor or an inverting
buffer chip such as 7418368 needs to be connected at the output if [ is used to drive a
device such as an LED requiring high current (10 mA to 20 mA). I, is normally 8 mA

The totem-pole outputs must not be tied together. When two totem-pole outputs
are connected together with the output of one gate HIGH and the output of the second gate
LOW, the excessive amount of current drawn can produce enough heat to damage the
transistors in the circuit.

Tristate is a special totem-pole output that allows connecting the outputs together
like the open-collector outputs. When a totem-pole output TTL gate has this property, it is
called a tristate (three state) output. A tristate has three output states:

1. A LOW level state when the lower transistor in the totem-pole is ON and the upper
transistor is OFF.

2. A HIGH level state when the upper transistor in the totem-pole is ON and the lower
transistor is OFF.

3. A third state when both output transistors in the totem-pole are OFF. This third
state provides an open circuit or high-impedance state which allows a direct wire
connection of many outputs to a common line called the bus.

A Typical Switch Input Circuit for TTL
Figure 1.10 shows a switch circuit that can be used as a single bit into the input of a TTL
gate. When the DIP switch is open, Vy is HIGH. On the other hand, when the switch
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is closed, Vyy is low. ¥y, can be used as an input bit to a TTL logic gate for performing
laboratory experiments.

1.43  MOS Transistors

Metal-Oxide Semiconductor (MOS) transistors occupy less space in the circuit and consume
much less power than bipolar junction transistors. Therefore, MOS transistors are used in
highly integrated circuits. The MOS transistor is unipolar. This means that one type of
carrier flow, either electrons (n-type) or holes (p-type) are used. The MOS transistor works
as a voltage-controlled resistance. In digital circuits, a MOS transistor operates as a switch
such that its resistance is either very high (OFF) or very low (ON). The MOS transistor is
a three-terminal device: gate, source, and drain. There are two types of MOS transistors,
namely, nMOS and pMOS. The power supply (Vo) for pMOS is in the range of 17 V to
24 V, while V. for nMOS is lower than pMOS and can be from 5 V to 12 V. Figure 1.11
shows the symbolic representation of an nMOS transistor. When Vg = 0, the resistance
between drain and source (Rpg) is in the order of megaohms (Transistor OFF state). On
the other hand, as Vg is increased, Ry decreases to a few tens of ohms (Transistor ON
state). Note that in a MOS transistor, there is no connection between the gate and the other
two terminals (source and drain). The nMOS gate voltage (V) increases or decreases the
current flow from drain to source by changing R,;. Popular 8-bit microprocessors such as
the Intel 8085 and the Motorola 6809 were designed using nMOS.

Figure 1.12 depicts the symbol for a pMOS transistor. The operation of the pMOS
transistor is very similar to the nMOS transistor except that ¥ is typically zero or negative.
The resistance from drain to source (Rp,) becomes very high (OFF) for V;,=0. On the
other hand, R, decreases 10 a very low value (ON) if Vg, is decreased. pMOS was used
in fabricating the first 4-bit microprocessors (Intel 4004/4040) and 8-bit microprocessor
(Intel 8008). Basically, in a MOS transistor (nMOS or pMOS), ¥ creates an electric field
that increases or decreases the current flow between source and drain. From the symbols
of the MOS transistors, it can be seen that there is no connection between the gate and the
other two terminals (source and drain). This symbolic representation is used in order to

indicate that no current flows from the gate to the source, irrespective of the gate voltage.

Operation of the nMOS Transistor as an Inverter

Figure 1.13 shows an nMOS inverter. When Vp,, = LOW, the resistance between
the drain and the source (R,y) is very high, and no current flows from ¥V to the ground.
Vour is therefore high. On the otherhand, when ¥y = high, R, is very low, a current flows
from V. to the source, and V;; is LOW. Therefore, the circuit acts as an inverter.

+Vee

Qs (PMOS)

Voutput

Vinpu'*—"l_—l

Q, ("MOS)

FIGURE 1.14 A CMOS inverter
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TABLE 1.2 Comparison of output characteristics of LS-TTL, nMOS, HC, and HCT

VOH IOH VOL IOL
LS-TTL 27V -400 pA 05V 8 mA
nMOS 24V -400 uA 04V 2mA
HC 37V -4mA 04V 4mA
HCT 37V -4 mA 0.4V 4mA

Note that in the table, HC and HCT have the same source (1) and sink (I, ) currents. This
is because in a typical CMOS gate, the ON resistances of the pMOS and nMOS transistors
are approximately the same.

Complementary MOS (CMOS)
CMOS dissipates low power and offers high circuit density compared to TTL. CMOS
is fabricated by combining nMOS and pMOS transistors together. The nMOS transistor
transfers logic 0 well and logic 1 inefficiently. The pMOS transistor, on the other hand,
outputs logic 1 efficiently and logic 0 poorly. Therefore, connecting one pMOS and one
nMOS transistor in parallel provides a single switch called a transmission gate that offers
efficient output drive capability for CMOS logic gates. The transmission gate is controlled
by an input logic level.

Figure 1.14 shows a typical CMOS inverter. The CMOS inverter is very similar
to the TTL totem-pole output circuit. That is, when Q, is ON (low resistance), Q, is OFF
(high resistance), and vice versa. When 'V, =LOW, Q, is ON and Q, is OFF. This makes

input

Vouput HIGH. On the other hand, when V= HIGH, Q, is OFF (high resistance) and Q,
is ON (low resistance). This provides a low V. Thus, the circuit works as an inverter.

Digital circuits using CMOS consume less power than do MOS and bipolar
transistor circuits. In addition, CMOS provides high circuit density. That is, more circuits
can be placed in a chip using CMOS. Finally, CMOS offers high noise immunity. In
CMOS, unused inputs should not be left open. Because of the very high input resistance,
a floating input may change back and forth between a LOW and a HIGH, creating system
problems. All unused CMOS inputs should be tied to V., ground, or another high or low
signal source appropriate to the device’s function. CMOS can operate over a large range of
power supply voltages (3 V to 15 V). Two CMOS families, namely CD4000 and 54C/74C,
were first introduced. CD 4000A is in the declining stage.

There are four members in the CMOS family which are very popular these days:
the high-speed CMOS (HC), high-speed CMOS/TTL-input compatible (HCT), advanced
CMOS (AC), and advanced CMOS/TTL-input compatible (ACT). The HCT chips_have
a specifically designed input circuit that is compatible with LS-TTL logic levels (2V for
HIGH input and 0.8V for LOW input). LS-TTL outputs can directly drive HCT inputs

TABLE 1.3 Comparison of input characteristics of HC and HCT

Vi Iy, vV, I Fanout
HC 315V 1uA 09V luA 10
HCT 20V lpA 0.8V 1pA 10
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FIGURE 1.15 A typical switch for MOS input

while HCT outputs can directly drive HC inputs. Therefore, HCT buffers can be placed
between LS-TTL and HC chips to make the LS-TTL outputs compatible with the HC
inputs.

Several characteristics of 74HC and 74HCT are compared with 74LS-TTL and
nMOS technologies in Table 1.2. The input characteristics of HC and HCT are shown in
Table 1.3. The tables show that LS-TTL is not guaranteed to drive an HC input. The LS-
TTL output HIGH is grater than or equal to 2.7V while an HC input needs at least 3.15V.
Therefore, the HCT input requiring V, of 2.0V can be driven by the LS-TTL output,
providing at least 2.7V; 74HCT244 (unidirectional) and 74HCT245 (bidirectional) buffers
can be used.

MOS Outputs

Like TTL, the MOS logic offers three types of outputs. These are push-pull (totem-pole in
TTL), open drain (open collector in TTL), and tristate outputs. For example, the 74HC00
contains four independent 2-input NAND gates and includes push-pull output. The 74HC03
also contains four independent 2-input NAND gates, but has open drain outputs. The
74HCO03 requires a pull-up resistor for each gate. The 74HC125 contains four independent
tri-state buffers in a single chip.

A Typical Switch Input Circuit for MOS Chips

Figure 1.15 shows a switch circuit that can be used as a single bit into the input of a MOS
gate. When the DIP switch is open, ¥}, is HIGH. On the other hand, when the switch is
closed, ¥, is LOW. ¥}, can be used as an input bit for performing laboratory experiments.
Note that unlike TTL, a LK resistor is connected between the switch and the input of the
MOS gate. This provides for protection against static discharge. This 1-Kohm resistor
is not required if the MOS chip contains internal circuitry providing protection against
damage to inputs due to static discharge.

1.5 Integrated Circuits (I1Cs)

Device level design utilizes transistors to design circuits called gates, such as AND gates
and OR gates. One or more gates are fabricated on a single silicon chip by an integrated
circuit (IC) manufacturer in an IC package.

AnIC chipis packaged typically in a ceramic or plastic package. The commercially
available ICs can be classified as small-scale integration (SSI), medium-scale integration
(MSI), large-scale integration (LSI), and very large-scale integration (VLSI).

o A single SSI IC contains a maximum of approximately 10 gates. Typical logic



16 Fundamentals of Digital Logic and Microcomputer Design

functions such as AND, OR, and NOT are implemented in SSI IC chips. The MSI IC,
on the other hand, includes from 11 to up to 100 gates in a single chip. The MSI chips
normally perform specific functions such as add.

«  The LSIIC contains more than 100 to approximately 1000 gates. Digital systems such
as 8-bit microprocessors and memory chips are typical examples of LSI ICs.

+ The VLSI IC includes more than 1000 gates. More commonly, the VLSI ICs are
identified by the number of transistors (containing over 500,000 transistors) rather
than the gate count in a single chip. Typical examples of VLSI IC chips include 32-
bit microprocessors and one megabit memories. For example, the Intel Pentium is a
VLSI IC containing 3.1 million transistors in a single chip.

An IC chip is usually inserted in a printed-circuit board (PCB) that is connected
to other IC chips on the board via pins or electrical terminals. In laboratory experiments or
prototype systems, the IC chips are typically placed on breadboards or wire-wrap boards
and connected by wires. The breadboards normally have noise problems for frequencies
over 4 MHz. Wire-wrap boards are used above 4 MHz. The number of pins in an IC chip
varies from ten to several hundred, depending on the package type. Each IC chip must be
powered and grounded via its power and ground pins. The VLSI chips such as the Pentium
have several power and ground pins. This is done in order to reduce noise by distributing
power in the circuitry inside the chip.

The SSI and MSI chips normally use an IC package called dual in-line package
(DIP). The LSI and VLSI chips, on the other hand, are typically fabricated in surface-
mount or pin grid array (PGA) packages. The DIP is widely used because of its low price
and ease of installation into the circuit board. '

SSI chips are identified as 5400-series (these are for military applications with
stringent requirements on voltage and temperature and are expensive) or 7400 series (for
commercial applications). Both series have identical pin assignments on chips with the
same part numbers, although the first two numeric digits of the part name are different.
Typical commercial SSI ICs can be identified as follows:

748 Schottky TTL

74LS Low-power Schottky TTL

74AS Advanced Schottky TTL

74F Fast TTL (Similar to 74AS; manufactured by Fairchild)

T4ALS Advanced low-power Schottky TTL

Note that two digits appended at the end of each of these IC identifications define
the type of logic operation performed, the number of pins, and the total number of gates on
the chip. For example, 74500, 74LS00, 74AS00, 74F00, and 74ALS00 perform NAND
operation. All of them have 14 pins and contain four independent NAND gates in a single
chip.

The gates in the ECL family are identified by the part numbers 10XXX and
100XXX, where XXX indicates three digits. The 100XXX family is faster, requires
low power supply, but it consumes more power than the 10XXX. Note that 10XXX and
100XXX are also known as 10K and 100K families.

The commercially available CMOS family is identified in the same manner as the
TTL SSI'ICs. For example, 74L.S00 and 74HC00 (High-speed CMOS) are identical, with
14 pins and containing four independent NAND gates in a single chip. Note that 74HCXX
gates have operating speeds similar to 74L.S-TTL gates. For example, the 74HCO00 contains
four independent two-input NAND gates. Each NAND gate has a typical propagation
delay of 10 ns and a fanout of 10 LS-TTL.
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Unlike TTL inputs, CMOS inputs should never be held floating. The unused
input pins must be connected to V., ground, or an output. The TTL input contains an
internal resistor that makes it HIGH when unused or floating. The CMOS input does not
have any such resistor and therefore possesses high resistance. The unused CMOS inputs
must be tied to V¢, ground, or other gate outputs. In some CMOS chips, inputs have
internal pull-up or puil-down resistors. These inputs, when unused, should be connected
to V¢ or ground to make the inputs high or low.

The CMOS family has become popular compared to TTL due to better performance.
Some major IC manufacturers such as National Semiconductor do not make 7400 series
TTL anymore. Although some others, including Fairchild and Texas Instruments still offer
the 7400 TTL series, the use of the SSI TTL family (74S, 74LS, 74AS, 74F, and 74ALS)
is in the declining stage, and will be obsolete in the future. On the other hand, the use of
CMOS-based chips such as 74HC and 74HCT has increased significantly because of their
high performance. These chips will dominate the future market.

1.6 Evolution of Computers

The first electronic computer, called ENIAC, was invented in 1946 at the Moore School of
Engineering, University of Pennsylvania. ENIAC was designed using vacuum tubes and
relays. This computer performed addition, subtraction, and other operations via special
wiring rather than programming. The concept of executing operations by the computer via
storing programs in memory became feasible later.

John Von Neumann, a student at the Moore School, designed the first conceptual
architecture of a stored program computer, called the EDVAC. Soon afterward, M. V.
Wilkes of Cambridge University implemented the first operational stored memory computer
called the EDSAC. The Von Neumann architecture was the first computer that allowed
storing of instructions and data in the same memory. This resulted in the introduction of
other computers such as ILLIAC at the University of [llinois and JOHNIAC at the RAND
Corporation.

The computers discussed so far were used for scientific computations. With the
invention of transistors in the 1950s, the computer industry grew more rapidly. The entry
of IBM (International Business Machines) into the computer industry happened in 1953
with the development of a desk calculator called the IBM 701. In 1954, IBM announced its
first magnetic drum-based computer called the IBM 650. This computer allowed the use
of system-oriented programs such as compilers feasible. Note that compilers are programs
capable of translating high-level language programs into binary numbers that all computers
understand.

With the advent of integrated circuits, IBM introduced the 360 in 1965 and the 370
in 1970. Other computer manufacturers such as Digital Equipment Corporation (DEC),
RCA, NCR, and Honeywell followed IBM. For example, DEC introduced its popular
real-time computer PDP 11 in the late 1960s. Note that real-time computers are loosely
defined as the computers that provide fast responses to process requests. Typical real-time
applications include process control such as temperature control and aircraft simulation.

Intel Corporation is generally acknowledged as the company that introduced
the microprocessor successfully into the marketplace. Its first processor, the 4004, was
introduced in 1971 and evolved from a development effort while making a calculator chip
set. The 4004 microprocessor was the central component in the chip set, which was called
the MCS-4. The other components in the set were a 4001 ROM, a 4002 RAM, and a 4003
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Shift Register.

Shortly after the 4004 appeared in the commercial marketplace, three other general-
purpose microprocessors were introduced. These devices were the Rockwell International
4-bit PPS-4, the Intel 8-bit 8008, and the National Semiconductor 16-bit IMP-16. Other
companies such as General Electric, RCA, and Viatron had also made contributions to the
development of the microprocessor prior to 1971.

The microprocessors introduced between 1971 and 1972 were the first-generation
systems designed using PMOS technology. In 1973, second-generation microprocessors
such as the Motorola 6800 and the Intel 8080 (8-bit microprocessors) were introduced.
The second-generation microprocessors were designed using the NMOS technology. This
technology resulted in a significant increase in instruction execution speed and higher
chip densities compared to PMOS. Since then, microprocessors have been fabricated
using a variety of technologies and designs. NMOS microprocessors such as the Intel
8085, the Zilog Z80, and the Motorola 6800/6809 were introduced based on the second-
generation microprocessors. The third generation HMOS microprocessors, introduced in
1978, is typically represented by the Intel 8086 and the Motorola 68000, which are 16-bit
Microprocessors.

In 1980, fourth-generation HCMOS and BICMOS (combination of BIPOLAR
and HCMOS) 32-bit microprocessors evolved. Intel introduced the first commercial 32-
bit microprocessor, the problematic Intel 432. This processor was eventually discontinued
by Intel. Since 1985, more 32-bit microprocessors have been introduced. These include
Motorola’s MC 68020/68030/68040/PowerPC, Intel’s 80386/80486 and the Intel Pentium
MICrOprocessors.

The performance offered by the 32-bit microprocessor is more comparable to
that of superminicomputers such as Digital Equipment Corporation’s VAX11/750 and
VAX11/780. Intel and Motorola introduced RISC (Reduced Instruction Set Computer)
microprocessors, namely the Intel 80960 and Motorola MC88100/PowerPC, with simplified
instruction sets. Note that the purpose of RISC microprocessors is to maximize speed by
reducing clock cycles per instruction. Almost all computations can be obtained from a simple
instruction set. Some manufacturers are speeding up the processors for data crunching types
of applications. Compaq / Digital Equipment Corporation Alpha family includes 64-bit
RISC microprocessors. These processors run at speeds in excess of 300 MHz.

The 32-bit Pentium II microprocessor is Intel’s addition to the Pentium line of
microprocessors, which originated from the 80X86 line. The Pentium II can run at speeds
of 333 MHz, 300 MHz, 266 MHz, and 233 MHz. Intel implemented its MMX (Matrix
Math eXtensions) technology to enhance multimedia and communications operations. To
achieve this, Intel added 57 new instructions to manipulate video, audio, and graphical data
more efficiently. Pentium Il and Pentium 4 (Present speed up to 1.70GHz) are also added
to the Pentium family. Chapter 11 provides an overview of these processors. Intel released
anew 64-bit processor called “Merced” (also called “Itanium™) in 2001. The new processor
is a joint effort by Intel and Hewlett-Packard. Motorola’s PowerPC microprocessor is a
product of an alliance with IBM and Apple Computer. PowerPC is a RISC microprocessor,
and includes both 32-bit and 64-bit microprocessors. The newest versions of the PowerPC
include: PowerPC 603e (300 MHz maximum), PowerPC 750/740 (266 MHz maximum),
and PowerPC 604e (350 MHz maximum). The PowerPC 604¢ is intended for high-
end Macintosh and Mac-compatible systems. Motorola’s 64-bit microprocessor G5 is
implemented in Apple’s Mac G5 computer.

An overview of the latest microprocessors is provided in this section. Unfortu-
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FIGURE 1.16 Furnace Temperature Control

nately, this may be old news within a year. One can see, however, that both Intel and
Motorola offer (and will continue to offer) quality microprocessors to satisfy demanding
applications.

1.7 A Typical Microcomputer-Based Application

In order to put the microprocessor into perspective, it is important to explore a typical
application. For example, consider a microprocessor-based dedicated controller in Figure
1.16. Suppose that it is necessary to maintain the temperature of the furnace to a desired
level to maintain the quality of a product. Assume that the designer has decided to control
this temperature by adjusting the fuel. This can be accomplished using a microcomputer
along with the interfacing components as follows.

Temperature is an analog (continuous) signal. It can be measured by a temperature
sensing (measuring) device such as a thermocouple. The thermocouple provides the
measurement in millivolts (mV) equivalent to the temperature. Since microcomputers
only understand binary numbers (0’s and 1°s), each analog mV signal must be converted
to a binary number using an analog to digital (A/D) converter chip.

First, the millivolt signal is amplified by a mV/V amplifier to make the signal
compatible for A/D conversion. A microcomputer can be programmed to solve an
equation with the furnace temperature as an input. This equation compares the temperature
measured with the desired temperature which can be entered into the microcomputer via
the keyboard. The output of this equation will provide the appropriate opening and closing
of the fuel valve to maintain the appropriate temperature. Since this output is computed
by the microcomputer, it is a binary number. This binary output must be converted into an
analog current or voltage signal.

The D/A (digital to analog) converter chip inputs this binary number and converts
it into an analog current (/). This signal is then input into the current/pneumatic (//P)
transducer for opening or closing the fuel input valve by air pressure to adjust the fuel
to the furnace. The desired temperature of the furnace can thus be achieved. Note that a
transducer converts one form of energy (analog electrical current in this case) to another
form (air pressure in this example).

1.8 Trends and Perspectives in Digital Technology

This section provides a summary of technological forecasts. Topics include advancements
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in ICs, microprocessors, ASIC and DVD as follows:

1.) With the advent of IC technology, it is expected that it would be possible to place
750 million transistors on one chip by the year 2012. Furthermore, the replacement of
aluminum wire (high resistance) on ICs by copper wire (low resistance) will reduce power
consumption and improve reliability.

2.) Microprocessor designers have traditionally refined architectures by raising clock
speeds and adding ALUs that can process instructions simultaneously. Many modern
microprocessors can execute instructions out of order, so that one instruction waiting for
data does not stall the entire processor. These microprocessors can predict in advance
where a branch will be taken. The drawbacks of incorporating these types of capabilities
in the modern microprocessors are that the chip’s circuitry is devoted to overheads.

A new microprocessor architecture called EPIC (Explicitly Parallel Instruction

Computing), developed jointly by Intel and Hewlett-Packard, minimizes these overheads.
EPIC is introduced in 2001 with a new Intel chip called “Merced” (also called “Itanium™).
Motorola, on the other hand, announced its AltiVec technology (discussed in Chapter 11)
which is used as the foundation for Apple’s next generation computers such as Power Mac
G5.
3) Programmable Logic Devices (PLDs) are IC chips capable of being programmed
by the user after they are manufactured. These chips are programmable via electronic
switches. These programmable switches permit the designer to connect the circuitry inside
the PLDs in several ways. The users can thus program these chips and implement various
functions.

PLDsare extensively used these days in designing microcomputers and other digital
applications. The basics of PLDs are covered in Chapter 4. Computer-aided design (CAD)
software tools are used to program and simulate applications implemented in PLDs. This
allows the users to verify whether the desired requirements of the applications are satisfied.
Once the simulation is successfully completed, PLDs are interfaced to the prototype for the
application being implemented. Therefore, the designer must have appropriate hardware
background to test the prototype in order to ensure that the design specifications are satisfied
before going into production. Products can be developed using PLDs from conceptual
design via prototype to production in a very short time. However, the electronic switches
occupy valuable chip area and slow down the operation of the internal circuits. Therefore,
PLDs may not satisfy the desired specifications in some applications. Also, utilization of
PLDs in these applications may not be cost effective. In these situations, custom or semi-
custom design of chips is necessary. These chips are called ASICs (Application-Specific
ICs). Typical applications of ASIC include microprocessors, PC (Personal Computer) bus
interface and memory chips.

ASICs are chips designed for a specific application. The designer has complete
control over deciding on the chip design, including transistor count, physicat size, and chip
layout. ASICs can be custom or semi-custom chips. Custom ASIC chips are designed from
scratch. Therefore, manufacturing of these chips normally takes a lot of time and may
be expensive due to the initial design cost These chips are used when high sales volume
is expected. In order to reduce design efforts and cost, semi-custom ASIC chips can be
designed using Standard Cell technology or Gate Array technology.

Using the Standard cell technology, the IC manufacturers provide a library of
standard cells. Typical standard cells include frequently-used MSI functions, such as
decoders and counters, or LSI functions, such as microprocessors and memories. CAD
tools can be utilized to design the ASIC chip using these cells. With the standard cell
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technology, the designer interconnects logic functions in the same manner as in typical
logic circuit design using MSI/LSI chips. It is possible to provide efficient chip layout
since technology is available now to include metal wires in the ICs in multiple layers; two
wires can cross without creating any short circuit, which reduces the size of the chip.

To speed up the design process and reduce cost, semi-custom ASIC chips can
also be designed using Gate Array technology for rapid and low cost development of
applications. The gate array is a chip containing transistors and connections (called
structures) that are pre-designed. The semi-custom ASIC chip is then fabricated using
these structures and the connection information provided by the customers. This means
that portions of the semi-custom ASIC chips are predefined while some other parts are
custom fabricated based on the application.

ASIC chips designed using standard cell technology are normally smaller than

those manufactured using the Gate array technology. ASIC chips using gate arrays can
be manufactured faster at lower initial design cost than can ASIC chips that use standard
cells.
4) DVD (normally stands for “Digital Video Disc” or “Digital Versatile Disc™) is the
next generation of optical disc technology. It is basically a larger, fast CD (Compact Disc)
that can hold video as well as audio and computer information. The DVD-ROM like the
CD-ROM uses a laser to read data from a disc. However, the data in DVD-ROM is stored
in more compact form in more than one layer of the disc. Thus, DVD disc provides a higher
capacity of storage compared to CD.

DVD aims to encompass home entertainment, computers, and business
information with a single digital format. It will eventually replace audio CD, videotape,
laser disc, CD-ROM, and video game cartridges. There are basically three types of DVD.
These are DVD-Video, DVD-ROM and DVD-RAM. DVD-Video (simply called DVD)
holds information that can be played in a DVD player connected to a TV set; while DVD-
ROM holds computer programs and can be read by DVD-ROM drive interfaced to a
computer. The difference is similar to that between audio CD and CD-ROM. DVD drives
can also read CD-ROMs. Therefore, DVD drives rather than CD-ROM drives are included
in some Personal Computers (PCs). Most computers with DVD-ROM drives can also play
DVD-Videos.

DVD-RAM can be read from and written into many times. CD-RW (CD-
Rewriteable) and DVD-RAM are the read/write equivalents of CD-ROM and DVD-ROM
respectively. CD-RW uses infrared laser like the CD-ROM. Both DVD-ROM and DVD-
RAM, on the other hand, use a red laser, which has a shorter wavelength than infrared
laser. The shorter wavelength of the red laser provides DVD with a larger storage capacity
than that of a CD.
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NUMBER SYSTEMS
AND CODES

In this chapter we describe some of the fundamental concepts needed to implement and
use a computer effectively. Thus the basics of number systems, codes, and error detection/
correction are presented.

2.1 Number Systems

A computer, like all digital machines, utilizes two states to represent information. These
two states are given the symbols 0 and 1. It is important to remember that these (’s and
1’s are symbols for the two states and have no inherent numerical meanings of their own.
These two digits are called binary digits (bits) and can be used to represent numbers of any
magnitude. The microcomputer carries out all the arithmetic and logic operations internally
using binary numbers. Because binary numbers are long, a more compact form using some
other number system is preferable to represent them. The computer user finds it convenient
to work with this compact form. Hence, it is important to understand the various number
systems used with computers. These are described in the following sections.

2.1.1 General Number Representation

In general, a number N can be represented in the following form:

N=d, | Xbr'+d, , Xbr2+ .. +dy XbB°+d_ | Xb'+..+d_, Xb™9 2.1
where b is the base or radix of the number system, the d’s are the digits of the number
system, p is the number of integer digits, and ¢ is the number of fractional digits.

N can also be written as a string of digits whose integer and fractional portions are
separated by the radix or decimal point (*). In this format, the number N is represented as
N=d,_\d,,..ddy*d_, ..d_, 2.2

If a number has no fractional portion, (e.g., ¢ = 0 in the form of Equation 2.1),
then the number is called an integer number or an integer. Conversely, if the number has
no integer portion (e.g., p = 0 in the form of Equation 2.1), the number is called a fractional
number or a fraction. If both p and ¢ are not zero, then the number is called a mixed
number.

Decimal Number System

In the decimal number system (base 10), which is most familiar to us, the integer number

125, can be expressed as

125,=1 X 102+ 2 X 10'+ 5 X 10° 2.3
In this equation, the left-hand side corresponds to the form given by Equation

2.2. The right-hand side of Equation 2.3 is represented by the form of equation 2.1, where

b=10,d,=1,d,=2,dy=5,d_=...=d_,=0,p=3,and g = 0.

23
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Now, consider the fractional decimal number 0.532,,. This number can be
expressed as
0.532,,=5 X 107'+3 X 1072+ 2 X 1073 24
The left-hand side of Equation 2.4 corresponds to Equation 2.2. The right-hand
side of Equation 2.4 is in the form of Equation 2.1, where b=10,d_, =5,d_,=3,d_,;=2,
g=3,p=0,d,.,=...=d,=0.
Finally, consider the mixed number 125.532,,. This number is in the form of
Equation 2.2. Translating the number to the form of Equation 2.1 yields
125.532,,=1 X 102+2 X 10'+ 5 X 10°+ 5 X 107'+3 X 1072+ 2 X 1073 2.5
Comparing the right-hand side of Equation 2.5 with equation 2.1 yields 5=10,p =3,
g=3,d,=1,d,=2,dy=5,d_=5,d_,=3,andd_,=2.

Binary Number System

In terms of Equation 2.1, the binary number system has a base or radix of 2 and has two
allowable digits, 0 and 1. From Equation 2.1, a 4-bit binary number 1110, can be interpreted
as

1110, =1 X 234+ 1 X 22+ 1 X 21+ 0 X 2%= 14,

This conversion from binary to decimal can be obtained by inspecting the binary number
as follows:

2 10

2 2 Weighting

3
2
111
Bit3 4 A Bit 0 or Least significant bit

[0
Most significant bit Bit1
Bit2

Note that bits 0, 1, 2, and 3 have corresponding weighting values of 1, 2, 4, and
8. Because a binary number only contains 1°s and 0’s, adding the weighting values of only
the bits of the binary number containing 1’s will provide its decimal value. The decimal
value of 1110, is 14, (2 + 4 + B), because bits 1, 2, and 3 have binary digit 1, whereas bit
0 contains 0.

Therefore, the decimal value of any binary number can be readily obtained by just
adding the weighting values for the bit positions containing 1’s. Furthermore, the value of
the least significant bit (bit 0) determines whether the number is odd or even. For example,
if the least significant bit is 1, the number is odd; otherwise, the number is even.

Next, consider a mixed number 101.01, as follows:
101.01,=1 X 2240 X 2!+ 1 X 2040 X 271+ 1 X 272 2.6

The decimal or base 10 value of 101.01, is found from the right-hand side of
Equation2.6as4+0+ 1+ 0+ 1/4=5.25,),.

Octal Number System

The radix or base of the octal number system is 8. There are eight digits, O through 7,
allowed in this number system.

Consider the octal number 25.32,, which can be interpreted as:
2X8'+5X8+3X81+2X 82
The decimal value of this number is found by completing the summation of
16+5+3 X 1/8+2 X 1/64=16+5+0.375+0.03125 =21.40625,,
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One can convert a number from binary to octal representation easily by taking the
binary digits in groups of 3 bits.

The octal digit is obtained by considering each group of 3 bits as a separate binary
number capable of representing the octal digits 0 through 7. The radix point remains in its
original position. The following example illustrates the procedure.

Suppose that it is desired to convert 1001.11, into octal form. First take the groups
of 3 bits starting at the radix point. Where there are not enough leading or trailing bits
to complete the triplet, 0’s are appended. Now each group of 3 bits is converted to its
corresponding octal digit.

001 001 . 110, =11.65
R B

The conversion back to binary from octal is simply the reverse of the binary-to-
octal process. For example, conversion from 11.6; to binary is accomplished by expanding
each octal digit to its equivalent binary values as shown:

1 1 6
A A ——
001 001 110

Hexadecimal Number System

The hexadecimal or base-16 number system has 16 individual digits. Each of these digits,
as in all number systems, must be represented by a single unique symbol. The digits
in the hexadecimal number system are 0 through 9 and the letters A through F. Letters
were chosen to represent the hexadecimal digits greater than 9 because a single symbol is
required for each digit. Table 2.1 lists the 16 digits of the hexadecimal number system and
their corresponding binary and decimal values.

TABLE 2.1 Number Systems

Hexadecimal Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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2.1.2  Converting Numbers from One Base to Another

Binary-to-Decimal Conversion and Vice Versa
Consider converting 1100.01, to its decimal equivalent. As before,
1100.01,=1 X 23+ 1 X 2240 X 21+ 0 X 2040 X 271+ 1 X 22
=8+4+0+0+0+.25
=12.25,
Continuous division by 2, keeping track of the remainders, provides a simple method of
converting a decimal number to its binary equivalent. As an example, to convert decimal
12,, to its binary equivalent 1100,, proceed as follows:

quotient + remainder

12 _ -

5 = 6 + 0

121 = 3 + 0—

-% = 1 + 1

‘% = 0 + 14
l \ A7
1100,

Fractions
One can convert 0.0101, to its decimal equivalent as follows:
0.0101,=0 X271+ 1 X224+ 0 X 273+1 X 2
=0+0.25+0+0.0625
=0.3125,,
A decimal fractional number can be converted to its binary equivalent as follows:

0.8125  0.6250  0.2500  0.5000
X2 X 2 X 2 X 2
@.6250 @.2500 @.5000 @.0000

1 1 0 1

Therefore 0.8125,,=0.1101,.
Unfortunately, binary-to-decimal fractional conversions are not always exact.
Suppose that it is desired to convert 0.3615 into its binary equivalent:

03615  0.7230  0.4460  0.8920  0.7840
X2 X2 X2 X 2 X2
@.7230 @.4460 @.8920 @.7840 @.5680

0 1 0 1 1

The answer is 0.01011...,. As a check, let us convert back:
0.01011, =0 X271+ 1 X272+0 X 273+ 1 X274+ 1 X 275
=0+0.25+0+0.0625+0.03125
=0.34375
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The difference is 0.3615 — 0.34375 = 0.01775. This difference is caused by the neglected
remainder 0.5680. The neglected remainder (0.5680) multiplied by the smallest computed
term (0.03125) gives the total error:

0.5680 X 0.03125=0.01775
Mixed Numbers
Finally, convert 13.25,, to its binary equivalent. It is convenient to carry out separate
conversions for the integer and fractional parts. Consider first the integer number 13 as
before:

quotient + remainder
13 = +
3 6 1
6 _ + 0
5 3
3 _
> = | + 1
1 - 0 + 1
2 v

13,, = 1101,

Now convert the fractionl part 0.25,, as follows:

0.25 0.50
X2 X2
5 00

o<
S
A

Thus 0.25,, = 0.01,. Therefore 13.25,,=1101.01,.

Note that the same procedure applies for converting a decimal integer number to other
number systems such as octal or hexadecimal; Continuous division by the appropriate base
( 8 or 16) and keeping track of remainders converts a decimal number from decimal to the
selected number system.

Binary-to-Hexadecimal Conversion and Vice Versa

The conversions between hexadecimal and binary numbers are done in exactly the same
manner as the conversions between octal and binary, except that groups of 4 are used. The
following examples illustrate this:

1011011, =0101  1011=5By¢
S B
Note that the binary integer number is grouped in 4-bit units, starting from the
least significant bit. Zeros are added with the most significant 4 bits if necessary. As with
octal numbers, for fractional numbers this grouping into 4 bits is started from the radix
point. Now consider converting 2AB,, into its binary equivalent as follows:
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2AB,, = 2 A B

v
0010 1010 1011
=001010101011,

Hexadecimal-to-Decimal Conversion and Vice Versa
Consider converting the hexadecimal number 23A ¢ into its decimal equivalent and vice
versa. This can be accomplished as follows:

23A,,=2 X 162+3 X 16'+ 10 X 16°
=512+48+10=570,,

Note that in the equation, the value 10 is substituted for A.
Now to convert 570,, back to 23A ¢

quotient + remamder
%: 35 + A
% - 2 + 3
T26‘ = 0 + 2 A—l

Thus, 570,, = 23A4

Example 2.1
Determine by inspecting the binary equivalent of the following hexadecimal numbers

whether they are odd or even. Then verify the result by their decimal equivalents.
(@)2B,  (b) A2
Solution

(@) 128 64 32 16 8 4 2 1<— Weighting
B,= 001010 1,1,

The number is odd, since the least significant bit is 1.
Decimal value = 32 + 8 + 2 + 1 = 43,,, which is odd.

(b) 128 64 32 16 8 4 2 | <— Weighting
A2y = 1 0 1 0 0 O 0,

The number is even, since the least significant bit is 0.
Decimal value = 128 + 32 + 2 = 1624, which is even.

2.2 Unsigned and Signed Binary Numbers

An unsigned binary number has no arithmetic sign. Unsigned binary numbers are therefore
always positive. Typical examples are your age or a memory address which are always
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positive numbers. An 8-bit unsigned binary integer represents all numbers from 00,,
through FF, (0,, through 255,,).

The techniques used to represent the signed integers are:

+ Sign-magnitude approach

*  Ones complement approach

*  Twos complement approach

Because the sign of a number can be either positive or negative, only one bit, referred to
as the sign bit, is needed to represent the sign. The widely used sign convention is that if
the sign bit is zero, the number is positive; otherwise it is negative. (The rationale behind
this convention is that the quantity (—1)* is positive when s = 0 and is negative when s =
1). Also, in all three approaches, the most significant bit of the number is considered to be
the sign bit.

In sign-magnitude representation, the most significant bit of the given n-bit binary
number holds the sign, and the remaining n — 1 bits directly give the magnitude of the
negative number. For example, the sign-magnitude representation of +7 is 0111 and that
of —4 is 1100. Table 2.2 represents all possible 4-bit patterns and their meanings in sign-
magnitude form.

In Table 2.2, the sign-magnitude approach represents a signed number in a natural
manner. With 4 bits we can only represent numbers in the range ~7 < x < +7. In general,
if there are n bits, then we can cover all numbers in the range (2! — 1). Note that with
n — 1 bits, any value from 0 to 2! — 1 can be represented. However, this approach leads
to a confusion because there are two representations for the number zero (0000 means +0;
1000 means —0).

In the complement approach, positive numbers have the same representation as
they do in the sign-magnitude representation. However, in this technique negative numbers
are represented in a different manner. Before we proceed, let us define the term complement
of a number. The complement of a number A4, written as 4 (or A’ ) is obtained by taking
bit-by-bit complement of 4. In other words, each 0 in A is replaced with 1 and vice versa.
For example, the complement of the number 0100, is 1011, and that of 1111, is 0000,. In
the ones complement approach, a negative number, —x, is the complement of its positive

TABLE 2.2 All Possible 4-Bit Integers Represented in Sign-Magnitude Form
Interpretation as a Sign-

Bit Pattern Magnitude Integer
0000 +0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 —0
1001 -1
1010 —2
1011 -3
1100 —4
1101 =5
1110 —6

111 -7
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TABLE 2.3  All Possible 4-Bit Integers Represented in Ones Complement Form

Interpretation as a Ones Complement

Bit Pattern Number
0000 +Q
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 -7
1001 -6
1010 -5
1011 —4
1100 -3
1101 -2
1110 -1
1111 —0

representation. For example let us find the ones complement representation of 0100, (+4,,).
The complement of 0100 is 1011, and this denotes the negative number —4,,. Table 2.3
summarizes all possible 4-bit binary patterns and their interpretations as ones complement
numbers.

From Table 2.3, the ones complement approach does not handle negative
numbers naturally. In other words, if the number is negative (when the sign bit is 1), its
magnitude is not obvious from its ones complement. To determine its magnitude, one
needs to take its ones complement. For example, consider the number 110110. The most
significant bit indicates that this is a negative number. Because the number is negative, its
magnitude cannot be obtained by directly looking at 110110. Instead, one needs to take the
ones complement of 110110 to obtain 001001. The value of 001001 as a sign-magnitude
number is +9. On the other hand, 110110 represents —9 in ones complement form. Like
the sign-magnitude representation, the ones complement approach does not increase the
range of numbers covered by a fixed number of bit patterns. For example, 4 bits cover
the range —7 to +7. The same range is obtained with sign-magnitude representation. Note
that the confusion of two distinct representations for zero exists in the ones complement
approach. -
Now, let us discuss the two’s complement approach. In this method, positive
integers are represented in the same manner as they are in the sign-magnitude method. In
other words, if the sign bit is zero, the number is positive and its magnitude can be directly
obtained by looking at the remaining » — 1 bits. However, a negative number —x can be
represented in twos complement form as follows:

*  Represent +x in sign magnitude form and call this result y
+  Take the ones complement of y to get y (or ')
» y+1 is the twos complement representation of —x.

The following example illustrates this:
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Table 2.4 lists all possible 4-bit patterns along with their twos complement forms. From
Table 2.4, it can be concluded that:

s The twos complement form does not provide two representations for zero.

s The twos complement form covers up to —8 in the negative side, and this is more
than can be achieved with the other two methods. In general, with » bits, and using twos
complement approach, one can cover all the numbers in the range —(2"7') to +(2~! — 1).

It should be pointed out that 11111111, is +255,, when interpreted as an unsigned
number. On the other hand, 11111111, is —1,, when interpreted as a signed number. Note
that typical 16-bit microprocessors have separate unsigned and signed multiplication and
division instructions. Suppose that a microprocessor has the following multiplication and
division instructions: MULU (Multiply two unsigned numbers), MULS (Multiply two
signed numbers), DIVU (Divide two unsigned numbers), and DIVS (Divide two signed
numbers). It is important for the programmer to clearly understand how to use these
instructions.

For example, suppose that it is desired to compute (X?)/255. Now, if X is a signed
8-bit number, the programmer should use the MULS instruction to compute X * X which
is always unsigned (square of a number is always positive), and then use DIVU to compute
(X2)/255 (16-bit by 8-bit unsigned divide) since 255,, is positive. But, if the programmer
uses DIVS, then both X * X and 255, (FF,; ) will be interpreted as signed numbers. FF
will be interpreted as -1,,, using two’s complement. and the result will be wrong. On the
other hand, if X is an unsigned number, the programmer needs to use MULU and DIVU to
compute (X?)/255.

Example 2.2
Represent the following decimal numbers in twos complement form. Use 7 bits to represent
the numbers:

(a) +39

(b) —43

Solution

(a) Because the number +39 is positive, its twos complement representation is the

same as its sign-magnitude representation as shown here:

25 24 23 22 g1 20
»=0100111
+ 39

(b) In this case, the given number —43 is negative. The twos complement form of
the'number can be obtained as follows:
Step 1: Represent +43 in sign magnitude form

25 24 23 22 21 20
y=0101011
Y

[N
43

Step 2: Take the ones complement of y:
5=1010100
Step 3: Add one to y to get the final answer.

1010100
+ 1

1010101
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TABLE 2.4 All Possible 4-Bit Integers Represented in Twos Complement Form

. Interpretation as a Twos
Bit Pattern

Complement Number
0000 0
0001 +1
0010 +2
0011 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 -8
1001 -7
1010 -6
1011 -5
1100 —4
1101 -3
1110 -2
1111 —1

23 Codes
Codes are used extensively with computers to define alphanumeric characters and other

information. Some of the codes used with computers are described in the following
sections.

2.3.1 Binary-Coded-Decimal Code (8421 Code)
The 10 decimal digits 0 through 9 can be represented by their corresponding 4-bit binary
numbers. The digits coded in this fashion are called binary-coded-decimal (BCD) digits in
8421 code, or BCD digits. Two unpacked BCD bytes are usually packed into a byte to form
“packed BCD.” For example, two unpacked BCD bytes 02, and 05, can be combined as
a packed BCD byte 25,,. The concept of packed and unpacked BCD numbers are explained
later in this section. Table 2.5 provides the bit encodings of the 10 decimal numbers.

The six possible remaining 4-bit codes as shown in Table 2.5 are not used and
represent invalid BCD codes if they occur.
Consider obtaining the BCD bit enc%ding of 5the deciénal number 356 as follows:

} U !
0011 0101 0110

2.3.2  Alphanumeric Codes

A computer must be capable of handling nonnumeric information if it is to be very useful.
In other words, a computer must be able to recognize codes that represent numbers, letters,
and special characters. These codes are classified as alphanumeric or character codes. A
complete and adequate set of necessary characters includes these:

1. 26 lowercase letters
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TABLE 2.5 BCD Bit encodings of the 10 decimal numbers

Decimal Numbers BCD Bit

encoding
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 I [ 1010
11 1011
9 . Iovalid o
14 BCD Code 1110
15 ) L 1111

2. 26 uppercase letters
3. 10 numeric digits (0—9)
4. About 25 special characters, which include +/ # % , and so on.

This totals 87 characters. To represent 87 characters with some type of binary
code would require at least 7 bits. With 7 bits there are 27 = 128 possible binary numbers;
87 of these combinations of 0 and 1 bits serve as the code groups representing the 87
different characters.

The 8-bit byte has been universally accepted as the data unit for representing
character codes. The two most common alphanumeric codes are known as the American
Standard Code for Information Interchange (ASCII) and the Extended Binary-Coded
Decimal Interchange Code (EBCDIC). ASCII is typically used with microprocessors. IBM
uses EBCDIC code. Eight bits are used to represent characters, although 7 bits suffice,
because the eighth bit is frequently used to test for errors and is referred to as a parity bit.
It can be set to 1 or 0, so that the number of 1 bits in the byte is always odd or even.

Table 2.6 shows a list of ASCII and EBCDIC codes. Some EBCDIC codes do not
have corresponding ASCII codes. Note that decimal digits O through 9 are represented by
30, through 39, in ASCII. On the other hand, these decimal digits are represented by FO,¢
though F9,, in EBCDIC.

A computer program is usually written for code conversion when input/output
devices of different codes are connected to the computer. For example, suppose it is
desired to enter a number 5 into a computer via an ASCII keyboard and print this data
on an EBCDIC printer. The ASCII keyboard will generate 35,, when the number 5 is
pushed. The ASCII code 35, for the decimal digit 5 enters into the computer and resides
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TABLE 2.6 ASCII and EBCDIC Codes in Hex.

Character ASCII EBCDIC |Character ASCIHI EBCDIC |Character ASCII EBCDIC |Character ASCII EBCDIC
@ 40 60 blank 20 40 NUL 00

A 41 CI1 a 61 81 ! 21 SA SOH 01

B 2 2 b 62 82 « 22 TF STX 02

C 43 C3 ¢ 63 83 # 23 7B ETX 03

D 4 C4 d 64 84 $ 24 5B EOT 04 37
E 45 C5 e 65 85 % 25 6C ENQ 05

F 46  Cé6 f 66 86 & 26 50 ACK 06

G 47 C7 g 67 87 ‘ 27 7D BEL 07

H 48 8 h 68 88 ( 28 4D BS 08 16
I 49 9 i 69 89 ) 29 5D HT 09 05
J 4A DI j 6A 91 * 2A 5C LF . 0A 25
K 4B D2 k 6B 92 + 2B 4E VT 0B

L 4C D3 1 6C 93 , 2C 6B FF 0C

M 4D D4 m 6D 94 . 2D 60 CR oD 15
N 4E D5 n 6E 95 . 2E 4B SO OE

0 4F D6 0 6F 96 / 2F 61 SI OF

P 50 D7 P 70 97 0 30 FO DLE 10

Q 51 D8 q 71 98 1 31 Fl DCI 1

R 52 D9 r 72 99 2 32 R DC2 12

S 53 E2 5 73 A2 3 33  F3 DC3 13

T 54 E3 t 74 A3 4 34 F4 DC4 14

U 55 E4 u 75 A4 5 35  F5 NAK 15

v 56  E5 v 76 AS 6 36 Fé SYN 16

w 57  E6 w 77 A6 7 37 F7 ETB 17

X 58 E7 X 78 A7 8 38 F8 CAN 18

Y 59 ES8 y 79 A8 9 39 F9 EM 19

z 5A E9 z TA A9 : 3A SUB 1A

[ 5B { 7B ; 3B SE ESC 1B

\ 5C | 7C  4F < 3¢ 4C FS 1C

] 5D } 7D = 3D 7E GS 1D

A SE ~ 7E > 3B 6E RS 1E

B SF 6D DEL 7F 07 ? 3F  6F Us  IF

in the computer’s memory. To print the digit 5 on the EBCDIC printer, a program must be
written that will convert the ASCII code 35, for 5 to its EBCDIC code F5,4. The output
of this program is F5 . This will be input to the EBCDIC printer. Because the printer only
understands EBCDIC codes, it inputs the EBCDIC code F5,, and prints the digit 5.

Let us now discuss packed and unpacked BCD codes in more detail. For example,
in order to enter 24 in decimal into a computer, the two keys ( 2 and 4) will be pushed
on the ASCII keyboard. This will generate 32 and 34 (32 and 34 are ASCII codes in
hexadecimal for 2 and 4 respectively) inside the computer. A program can be written to
convert these ASCII codes into unpacked BCD 02 and 04, and then convert to packed BCD
24 or to binary inside the computer to perform the desired operation.

233  Excess-3 Code

The excess-3 representation of a decimal digit d can be obtained by adding 3 to its value.
All decimal digits and their excess-3 representations are listed in Table 2.7.

The excess-3 code is an unweighted code because its value is obtained by adding three to
the corresponding binary value. The excess-3 code is self-complementing. For example,
decimal digit 0 in excess-3 (001 1) is ones complement of 9 in excess three (1100). Similarly,
decimal digit 1 is ones complement of 8, and so on. This is why some older computers used
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TABLE 2.7 Excess-3 Representation of Decimal Digits

Decimal Excess-3
Digits Representation
0 0011
1 0100
2 0101
3 0110
4 0111
5 1000
6 1001
7 1010
8 1011
9 1100

excess three code. Conversion between excess-3 and decimal numbers is illustrated below:
Decimal number

1 9 8 3
~ ~ ~ D
I I ¢ 3

. —A —A— —r— Ay

Excess-3 Representation 0100 1100 1011 0110

234 Gray Code

Sometimes codes can also be constructed using a property called reflected symmetry.
One such code is known as the Gray code. The Gray code is used in Karnaugh maps for
simplifying combinational logic design. This topic is covered in Chapter 4. Before we
proceed, we briefly explain the concept of reflected symmetry. Consider the two bits 0 and
1, and stack these two bits. Assume that there is a plane mirror in front of this stack and
produce the reflected image of the stack as shown in the following:

0

1
mirrore— —

0
Appending a zero to all elements of the stack above the plane mirror and appending
a one to all elements of the stack that lies below the mirror will provide the following
result:

Appended 00
Zeros 01

Appended 11
ones 10
000 000
001 M 001
011 Hror 011
010" 010
} % (1) ;ﬁResult ] i i(l)
101 e miror® 101
100 100
FIGURE 2.1 The process of obtaining 3-bit reflected binary code
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GroyCote 25

0000 0000 0
0001 0001 1
0011 0011 2
0010 0010 3
0110 0110 4
0111 0111 5
Il\r:ilergj:;a:y 0101 Result after 0101 6
X 0100 femovingthe 0100 7
1100 1100 8
1101 1101 9

1111 1111 10

1110 1110 11

1010 1010 12

1011 1011 13

1001 1001 14

1000 1000 15

FIGURE 2.2 The process of obtaining a 4-bit Gray code from a 3-bit Gray code.

Now, removal of the plane mirror will result in a stack of 2-bit Gray Code as
follows:
00
01
il
10

Here, any two adjacent bit patterns differ only in one bit. For example, the patterns
11 and 10 differ only in the least significant bit.

Repeating the reflection operation on the stack of 2-bit binary patterns, a 3-bit
Gray code can be obtained. Two adjacent binary numbers differ in only one bit. The result
is shown in Figure 2.1.

Applying the reflection process to the 3-bit Gray code, 4-bit Gray Code can be
obtained. This is shown in Figure 2.2.

The Gray code is useful in instrumentation systems to digitally represent the
position of a mechanical shaft. In these applications, one bit change between characters
is required. For example, suppose that a shaft is divided into eight segments and each
shaft is assigned a number. If binary numbers are used, an error may occur while changing
segment 7 (0111,) to segment 8 (1000,). In this case, all 4 bits need to be changed. If the
sensor representing the most significant bit takes longer to change, the result will be 0000,,
representing segment 0. This can be avoided by using Gray code, in which only one bit
changes when going from one number to the next.

23.5 Unicode
Basically, computers work with numbers. Note that letters and other characters are stored
in computers as numbers; a number is assigned to each one of them.

Before the invention of unicode, there were numerous encoding systems for
assigning these numbers. It is not possible for a single encoding system to cover all the
languages in the world. For example, a single encoding system was not able to assign all
the letters, punctuation, and common technical symbols. Typical encoding systems can
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conflict with each other. For example, two different characters can be assigned with the
same number in two different encoding systems. Also, different numbers can be assigned
the same character in two different encodings. These types of assignments of numbers
can create problems for certain computers such as servers which need to support several
different encodings. Hence, when data is transferred between different encodings or
platforms, the data may be corrupted.

Unicode avoids this by assigning a unique number to each character regardless of
the platform, the program, or the language. More information on Unicode can be obtained
at the Web site at www.unicode.org.

24 Fixed-Point and Floating-Point Representations

A number representation assuming a fixed location of the radix point is called fixed-point
representation. The range of numbers that can be represented in fixed-point notation is
severely limited. The following numbers are examples of fixed-point numbers:
0110.1100,, 51.12,,, DE.2A,

In typical scientific computations, the range of numbers is very large. Floating-point
representation is used to handle such ranges. A floating-point number is represented as
N X r?, where N is the mantissa or significand, # is the base or radix of the number system,
and p is the exponent or power to which r is raised.

Some examples of numbers in floating-point notation and their fixed-point
decimal equivalents are:

fixed-point_numbers floating-point representation
0.0167,, 0.167X 107!

1101.10,, 0.1101101 x 2¢

BE.2A9,, 0.BE2A9 X 162

In converting from fixed-point to floating-point number representation, we
normalize the resulting mantissas; that is, the digits of the fixed-point numbers are
shifted so that the highest-order nonzero digit appears to the right of the decimal point,
and consequently a 0 always appears to the left of the decimal point. This convention is
normally adopted in floating-point number representation. Because all numbers will be
assumed to be in normalized form, the binary point is not required to be represented in
computers.

Typical 32-bit microprocessors such as the Intel 80486/Pentium and the Motorola
68040 and PowerPC contain on-chip floating-point hardware. This means that these
microprocessors can be programmed using instructions to perform operations such as
addition, subtraction, multiplication, and division using floating-point numbers.

2.5 Arithmetic Operations

As mentioned before, computers can only add. Therefore, all other arithmetic operations are
typically accomplished via addition. All numbers inside the computer are in binary form.
These numbers are usually treated internally as integers, and any fractional arithmetic must
be implemented by the programmer in the program. The arithmetic and logic unit (ALU) in
the computer’s CPU performs typical arithmetic and logic operations. The ALUs perform
function such as addition, subtraction, magnitude comparison, ANDing, and ORing of two
binary or packed BCD numbers. The procedures involved in executing these functions are
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discussed next to provide an understanding of the basic arithmetic operations performed in
a typical microprocessor. The logic operations are covered in Chapter 3

2.5.1 Binary Arithmetic

Addition

The addition of two binary numbers is carried out in the same way as the addition
of decimal numbers. However, only four possible combinations can occur when adding
two binary digits (bits):

augend + addend = carry sum  decimal value
0 + 0 = 0 0 0
1 + 0 = 0 1 1
0 + 1 = 0 1 1
1 + 1 = 1 0 2

The following are some examples of binary addition. The corresponding decimal
additions are also included.

111 < carry
010 (2) 101.11  (5.75)
+011 (3) +011.10 (3.50)
101 (5) 1 001.01 (9.25)
final carry

Addition is the most important arithmetic operation in microprocessors because
the operations of subtraction, multiplication, and division as they are performed in most
modern digital computers use only addition as their basic operation.

The addition of two unsigned numbers is performed in the same way as illustrated
above. Also, the addition of two numbers in the sign-magnitude form is performed in the
same manner as ordinary arithmetic. For example, if both numbers have the same signs,
the two numbers are added and the common sign is assigned to the resuit. On the other
hand, if the numbers have opposite signs, the number with smaller magnitude is subtracted
from the number with larger magnitude and the result is assigned with the sign of the
number with larger magnitude. For example, (-14) + (+18) = + (18 - 14) = +4. This 1s
performed by subtracting the smaller magnitude 14 from the higher magnitude 18 and the
sign of the larger magnitude 18 (+ in this case) is assigned to the result. The same rules
apply to binary numbers in sign-magnitude form.

Subtraction
As mentioned before, computers can usually only add binary digits; they cannot
directly subtract. Therefore, the operation of subtraction in microprocessors
is performed using the operation of addition using complement arithmetic. In
general, the &’s complement of an m-digit number, M is defined as & —M for
M # 0 and 0 for M =0. Note that for base 10, 6 =10 and 10~ is a decimal number with
a 1 followed by m 0’s. For example, 10* is 10000; 1 followed by four 0’s. On the other
hand, b =2 for binary and 2" indicates 1 followed by m 0’s. For example, 2* means 1000
in binary.

The (b —1)’s complement of an m-digit number, M is defined as (b" ~1)—M.
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Therefore, the b’s complement of an m-digit number, M can be obtained by adding 1 to
its (b —1)’s complement. Next, let us illustrate the concept of complement arithmetic by
means of some examples. Consider a 4-digit decimal number, 5786. In this case, 5 =10 for
base 10 and m =4 since there are four digits.

10’s complement of 5786 =10* —5786 =10000 —5786 =4214

Now, let us obtain 10’s complement of 5786 using (10 —1)’s or 9’s complement
arithmetic as follows: 9’s complement of 5786 = (10* —1)—5786 =9999 —5786 =4213

Hence, 10’s complement of 5786 = 9°s complement of 5786 + 1 =4213 + 1 =
4214,

Next, let us determine the 2°s complement of a 3-bit binary number, 010. In this
case, b = 2 for binary and m = 3 since there are three bits in the number.

2’s complement of 010 =23 ~010=1000 —010.

Using paper and pencil method, the result of subtraction can be obtained as follows:

1000,
-010,
110,

Note that in the above, 110, is -2 in decimal when interpreted as a signed number.
Therefore, 2°s complement of a number negates the number being complemented. This
will be explained later in this section.

The 2’s complement of 010 can be obtained using its 1’s complement arithmetic
as follows:

1I’s complement of 010 = (2* —1)—010 =111 —010 =101
2’s complement of 101 =101 +1 =110

From the above procedure for obtaining the 1’s complement of 010, it can be
concluded that the 1’s complement of a binary number can be achieved by subtracting each
bit of the binary number from 1. This means that when subtracting a bit (0 or 1) from 1,
one can have either I —0 =1 or 1 —1 =0; that is, the 1’s complement of 0 is 1 and the 1’s
complement of 1 is 0. In general, the 1’s complement of a binary number can be obtained
by changing 0’s to 1’s and 1’s to 0’s.

The procedure for performing X-Y ( both X and Y are in base 2) using 1’s
complement can be performed as follows:

Step 1. Add the minuend X to the 1’s complement of the subtrahend Y.

Step 2. Check the result in step 1 for a carry. If there is a carry, add 1 to the least
significant bit to obtain the result. If there is no carry, take the 1’s complement of the
number obtained in step 1 and place a negative sign in front of the result.

For example, consider two 6-bit numbers ( arbitrarily chosen), X = 010011, = 19,,
and Y = 110001, = 49,,. X-Y=19 - 49 = -30 in decimal. The operation X-Y using 1’s
complement can be performed as follows:

X =010011
Add 1’s complement of Y =001110

100001

Since there is no carry, Result = - (1’s Complement of 100001) = -011110,=
-30y,. Next consider, X = 101100, =44,; and Y = 011000, = 24,,. In decimal, X-Y =
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44-24 =20,
Using 1’s complement, X-Y can be obtained as follows:
X=101100
Add 1’s Complement of Y =100111

Carry —1 010011

Since there is a carry, Result = 010011 + 1 =+010100, =+ 20,,

Next, let us describe the procedure of subtracting decimal numbers using addition.
This process requires the use of the 10’s complement form. The 10’s complement of a
number can be obtained by subtracting the number from 10.

Consider the decimal subtraction 7 — 4 = 3. The 10’s complement of 4 is
10 — 4 = 6. The decimal subtraction can be performed using the 10’s complement addition
as follows:

minuend 7
10's complement of subtrahend + 6

13
ignore final carry of 1 to obtain
the subtraction result of 3.

When a larger number is subtracted from a smaller number, there is no carry to
be discarded. Consider the decimal subtraction 4 —7 =—3. The 10’s complement of 7 is
10 -7=3.

Therefore,
minuend 4
10's complement of subtrahend + 3

> 1T
no final carry

When there is no final carry, the final answer is the negative of the 10’s complement
of 7. Therefore, the correct result of subtraction is —(10—7) = —3.

The same procedures can be applied for performing binary subtraction. In the case
of binary subtraction, the twos complement of the subtrahend is used.

As mentioned before, the twos complement of a binary number is obtained by
replacing each 0 with a 1 and each 1 with a 0 and adding 1 to the resulting number. The
first step generates a ones complement or simply the complement of a binary number. For
example, the ones complement of 10010101 is 01101010. Note that the ones complement
of a binary number can be obtained by using inverters; eight inverters are required for
generating ones complement of an 8-bit number.

The twos complement of a binary number is formed by adding 1 to the ones
complement of the number. For example, the twos complement of 10010101 is found as
follows:

binary number 10010101
1’s complement 01101010
add 1 +1

2’s complement 01101011

Now, using the twos complement, binary subtraction can be carried out. Consider the
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following subtraction using the normal (pencil and paper) procedure:

minuend 0101 (5)
subtrahend —0011 (=3)
result 0010, =2,

Using the twos complement subtraction,

minuend 0101
2's complement of subtrahend 1101
___—> 10010

discard final carry

The final answer is 0010 (decimal 2).

Consider another example. Using pencil and paper method:

minuend 0101 (5)
subtrahend — 1001 (-9)

result — 0100 (-4)
Using the twos complement,

minuend 0101
2's complement of subtrahend 0111

%71100

no final carry

Therefore, the final answer is —(twos complement of 1100) = —-0100, which is
—4 in decimal.

Computers typically handle signed numbers by using the most significant bit of
a number as the sign bit. If this bit is zero, the number is positive; if this bit is one, the
number is negative. Computers use twos complement of the number to represent negative
binary numbers and obtain the sign of the result from the most significant bit. However,
computers perform ones complement operation on the final carry in order to reflect the
true borrow. This is useful for multiprecision subtraction. Also, in the paper and pencil
method, the sign of the result of binary subtraction using twos complement can be obtained
by utilizing either the most significant bit of the result or the ones complement of the finai
carry.

For example, the number +22,, can be represented using 8 bits as:
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+2210

A

0 0010110,
—
sign bit
(positive)

Hence,

twos complement of +22o

A

—224p = RS 1101010
sign bit
(negative)

We now show the procedures for carrying out the addition and subtraction in
computers using twos complement arithmetic.

Examples of arithmetic operations of the signed binary numbers are give below.
Assume 5 bits to represent each number.

1. Both augend and addend are positive:

0101 +5 augend
0011 3 addend
1000 +8

sign bits are all positive

2. Augend is positive, addend is negative:

0} 0101 +5 augend
1} 1101 =3 addend
1 [ 0] 0010 +2
sign bits

ignore final carry

Note that the twos complement of 3 is 11101.
Consider another example:

0] 0011 +3 augend
1} 1011 =5 addend
11 1110 -2
/ sign bits

no final carry

The result is the twos complement of 11110, which is 00010, and therefore, the
final answer is —2,,.

3. Both augend and addend are negative:
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‘2's complement of3 | 1| 1101 2—3 augend
2's complement of 5| 1| 1011 (=5) addend

1[1] 1000 (-8

/ sign bits

ignore final carry

Therefore, the result in binary is 11000. Since the most significant bit is 1, the
result is negative. Hence, the result in decimal will be —(twos complement of 11000),
which is —8,,.

4. The augend and addend are equal with opposite signs:

2's complementof 3=| 1| 1101 -3 augend
3=10]| 0011 (+3)  addend
1 |10]| 0000 0
sign bits
ignore final carry

The final answer is zero.

In all these cases, the sign bit of each of the numbers is conceptually isolated from
the number itself. The subtraction operation performed here is similar to twos complement
subtraction. For example, when subtracting the subtrahend from the minuend using twos
complement, the subtrahend is converted into its twos complement along with the sign
bit. If the sign bit of the subtrahend is 1 (for negative subtrahend), its twos complement
converts the sign bit from 1 to 0. To perform the subtraction, the twos complement of the
subtrahend is added to the minuend. The sign bit of the result indicates whether the answer
is positive or negative.

However, an error (indicated by overflow in a microprocessor) may occur while
performing twos complement arithmetic, The overflow arises from the representation of
the sign flag by the most significant bit of a binary number in signed binary operation. The
computer automatically sets an overflow bit to 1 if the result of an arithmetic operation
is too big for the computer’s maximum word size; otherwise it is reset to 0. To clearly
understand the concept of overflow, consider the following examples for 8-bit numbers.
Let C, be the carry out of the most significant bit (sign bit) and C, be the carry out of the
previous (bit 6) data bit (seventh bit). We will show by means of numerical examples that
as long as C; and C, are the same, the result is always correct. If, however, C, and C, are
different, the result is incorrect and sets the overflow bit to 1. Now consider the following
cases.

Case 1. C, and C are the same.
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00000110 0616
00010100 +1416
000011010 1Aas
=0 A
A

Ce=0

01101000 68 16
11111010 0616

1 01100010 6216
C=/17 AY
A

Cs=1

Therefore when C, and C, are either both 0 or both 1, a correct answer is
obtained.

Case 2. C, and C, are different.

01011001 596
01000101 45
_»010011110  -6216?

C7=0 AK
Ce=1

C, = 1 and C, = 0 give an incorrect answer because the result shows that the
addition of two positive numbers is negative.

10110110 -4A16
10000001 =1F16

100110111  +371s?
P :
Ci=1 /\*

Cs=0

C,=0and C, = 1 provide an incorrect answer because the result indicates that the
addition of two negative numbers is positive. Hence, the overflow bit will be set to zero if
the carries C, and C, are the same, that is, if both C, and C, are either O or 1. On the other
hand, the overflow flag will be set to 1 if the carries C, and C, are different. The answer is
incorrect when the overflow bit is set to 1. Thus,

Overflow = C, ® C,.

Note that the symbol @ represents exclusive-OR logic operation. Exclusive-OR
means that when two inputs are the same (both one or both zero), the output is zero. On the
other hand, if two inputs are different, the output is one. The overflow can be considered
as the output while C, and C, are the two inputs. The exclusive-OR operation is covered in
Chapter 3.

When performing signed arithmetic using pencil and paper, one must consider the
overflow bit to ensure that the result is correct. An overflow of one after a signed operation
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indicates that the result is too large to be accommodated in the number of bits assigned.
One must increase the number of bits for the correct result.

Example 2.3
Perform the following signed operations and comment on the results. Assume twos
complement numbers.

(a) A =1010,, B=0100,. Find A — B.
(b) Perform ( —3,,) — (—2,,) using twos complement and 4 bits.

Solution

(a) The most significant bit of A is 1, so A is a negative number whereas B is a
positive number.

A= 1 O 1 0 —610
Add 2's complement of B=+1100 —(+4o

_1(/2/110=6 ~10,,
B G =0

Cs

Because C, and C, are different, there is an overflow and the result is incorrect.
Four bits are too small to hold the correct answer. If we increase the number of
bits for A and B to 5, the correct result can be obtained as follows:

A=—6,0= 11010,
B = +410= 001002

A= 11010,
Add 2's complement of B=+11100,

0110
G-1<A 1D
C3=1

The result is correct because C, and C, are the same. The most significant bit of the result
is 1. This means that the result is negative. Therefore, to express the result in base-10, one
must take the twos complement and convert the binary number to decimal and place a
negative sign in front of it. Thus, twos complement of 10110, = —01010, = —10,,,
(b)
—310 =2’s complement of+ 3,
=1101,
—219=2’s complement of +2g
=1110;

3= 1101 (~310)
Add 2's complement of-2;0 =+00102  —(=2y)

111 ~1
G =0<" N
C2=0

C, and C, are the same, so the result is correct. The most significant bit of the
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result is 1. This means that the result is negative. To find the result in decimal, one
must take the twos complement of the result and place a negative sign in front of
it. Twos complement of 1111, = —1,,

Multiplication of Unsigned Binary Numbers
Multiplication of two binary numbers can be carried out in the same way as is done with
the decimal numbers using pencil and paper. Consider the following example:

Multiplicand —> 0110 (6,)
Multiplier ——> 0101 X (5,0)

0110
0000
0110

0000

0011110 (30,9)

partial products

Final product

Several multiplication algorithms are available. Multiplication of two unsigned
numbers can be accomplished via repeated addition. For example, to multiply 4,, by 3,,,
the number 4,, can be added twice to itself to obtain the result, 12,,.

Division of Unsigned Binary Numbers
Binary division is carried out in the same way as the division of decimal numbers. As an
example, consider the following division:
110 <— Quotient = 6,
ott ) 40100<——Dividend = 20,

Divisor =3, (1) (3(1)<\ Partial Remainders

010
9%84/ Remainder =2,

6 <— quotient
3 )? <—dividend
5 «—Temainder

Division between unsigned numbers can be accomplished via repeated subtraction.
For example, consider dividing 7,, by 3,, as follows:

Dividend Divisor Subtraction Counter
Result
T 310 7-3=4 1
4-3=1 1+1=2

Quotient = Counter value = 2
Remainder = subtraction result = 1

Here, one is added to a counter whenever the subtraction result is greater than the
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divisor. The result is obtained as soon as the subtraction result is smaller than the divisor.

2.5.2  BCD Arithmetic
Many computers have instructions to perform arithmetic operations using packed BCD
numbers. Next, we consider some examples of packed BCD addition and subtraction.

BCD Addition

The two cases that may occur while adding two packed BCD numbers are considered next.
Consider adding packed BCD numbers 25 and 33:

25 0010 0101
+33 0011 0011
58 0101 1000

In this example, none of the sums of the pairs of decimal digits exceeded 9; therefore,
no decimal carries were produced. For these reasons, the BCD addition process is
straightforward and is actually the same as binary addition.

Now consider the addition of 8 and 4 in BCD:

8 0000 1000
+4 0000 0100
12 0000 1100 « invalid code group for BCD

The sum 1100 does not exist in BCD code. It is one of the six forbidden or invalid
4-bit code groups. This has occurred because the sum of two digits exceeds 9. Whenever
this occurs, the sum has to be corrected by the addition of 6 (0110) to skip over the six
invalid code groups. For example,

8 0000 1000
+4 0000 0100
12 0000 1100 invalid sum
+0000 0110 add 6 for correction
0001 0010 BCD for 12
R B

As another example, add packed BCD numbers 56 and 81:

56 0101 0110 BCD for 56
+81 1000 ‘ 0001 BCD for 81
137 1101 0111 invalid sum in 2nd digit
+0110 add 6 for correction
0001 0011 0111
—— —— ——
1 3 7 <« correct answer 137

Therefore, it can be concluded that addition of two BCD digits is correct if the
binary sum is less than or equal to 1001 (9 in decimal). A binary sum greater than 1001,
results into an invalid BCD sum; adding 0110, to an invalid BCD sum provides the correct
sum with an output carry of 1. Furthermore, addition of two BCD digits (each digit having
a maximum value of 9) along with carry will require correction if the sum is in the range
16 decimal through 19 decimal. It can be concluded that a correction is necessary for the
foliowing:
i) If the binary sum is greater than or equal to decimal 16 (This will generate a carry of
one)
ii) If the binary sum is 1010, through 1111,.
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For example, consider adding packed BCD numbers 97 and 39:

111«Intermediate Carries

97 1001 0111 BCD for 97
+39 0011 1001 BCD for 39
136 1101 0000 invalid sum
+0110 +0110 add 6 for correction
0001 0011 0110
e — -
1 3 6 « correct answer 136

BCD Subtraction

Subtraction of packed BCD numbers can be accomplished in a number of different ways.
One method is to add the 10’s complement of the subtrahend to the minuend using packed
BCD addition rules, as described earlier.

One means of finding the 10’s complement of a d-digit packed BCD number N
is to take the twos complement of each digit individually, producing a number N,. Then,
ignoring any carries, add the d-digit factor M to N,, where the least significant digit of M is
1010 and all remaining digits of M are 1001.

As an example, consider subtracting 26,, from 84,, using BCD subtraction. This
can be accomplished as follows:

2610 0010 0110
T/ \_é_/

Now, the 10’s complement of 26,, can be found according to the rules by
individually determining the twos complement of 2 and 6, adding the 10’s complement
factor, and discarding any carries. The twos complement of 2 is 1110, and the twos
complement of 6 is 1010. Therefore,

2’s complement of each digit of 26, 1110 1010
addition factor to find 10’s complement +1001 1010

10’s complement of 26,, ) 0111 (1) 0100
7 'f 4

ignore these carries

10’s complement of 26,, 0111 0100
' 84,, +1000 0100
1111 1000
BCD correction factor +0110
) 0101 1000
—_—— —
5 8
ignore carry

Therefore, the final answer is 58,

2.5.3 Multiword Binary Addition and Subtraction

In many cases, the word length of a particular microprocessor may not be large enough
to represent the desired magnitude of a number. Suppose, for example, that numbers in
the range from 0 to 65,535 are to be used in an 8-bit microprocessor in binary addition
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and subtraction operations using the twos complement number representation. This can be
accomplished by storing the 16-bit numbers each in two 8-bit memory locations. Addition
or subtraction of the two 16-bit numbers is implemented by adding or subtracting the
lower 8 bits of each number, storing the result in 8-bit memory location or register, and
then adding the two high-order parts of the number with any carry or borrow generated
from the first addition or subtraction. The latter partial sum or difference will be the high-
order portion of the result. Therefore, the two 8-bit operations together comprise the 16-bit
result.
Here are some examples of 16-bit addition and subtraction.

16-Bit Addition
upper halfof the  lower half of the
16-bit number 16-bit number
AT AT
01001011 01111010

g F00101110 00101101
Intermediate 5 111 1111
0111100 0100111

high byte of the low byte of the
answer answer

The low-order 8-bit addition can be computed by using the microprocessor’s ADD
instruction and the high-order 8-bit sum can be obtained by using the ADC (ADD with
carry) instruction in the program.

16-Bit Subtraction
Consider 23A616 — 124A,6 = 115Cs.

high byte 23 low byte A6

AN AT
00100011 10100110

1's complement 1 101 10110101
of 124A16 1101 1 add 1 to find

T~ 2 complement

~>100010001 11
ignore this v o/ 010 \,YO\(/) of 124A16
carry 1 1 5 C

The low-order 8-bit subtraction can be obtained by using SUB instruction of
the microprocessor, and the high-order 8-bit subtraction can be obtained by using SBB
(SUBTRACT with borrow) instruction in the program.

2.6 Error Correction and Detection

In digital systems, it is possible that the transmitted information is not received correctly.
Note that a computer is a digital system in which information transfer can take place in
many ways. For example, data may be moved from a CPU register to another device or
vice versa. When the transmitted data is not received correctly at the receiving end, an
error occurs. One possible cause for such errors is noise problems during transmission. To
avoid these problems, error detection and correction may be necessary. In a digital system,
an error occurs when a 0 is changed to a | and vice versa. Correction of this error means
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replacement of a 1 with 0 and vice versa. The reliability of digital data depends on the
methods employed for error detection and correction.

The simplest way to detect the presence of an error is by adding a single bit, called
the “parity” bit, to the message bits and then transmitting the message along with the parity
bit. The parity bit is usually computed in two ways: even parity and odd parity. In the even
parity method, the parity bit is added in such a way that after its inclusion, the number of
1’s in the message together with the parity bit is an even number. On the other hand, in
an odd parity scheme, the parity bit is added in such a way that the number of 1’s in the
message and the parity bit is an odd number. For example, suppose that the message to be
transmitted is 0110. If even parity is used by the transmitting computer, the transmitted data
along with the parity bit will be 00110. On the other hand, if odd parity is used, the data
to be transmitted will be 10110. The parity computation can be implemented in hardware
by using exclusive-OR gates (to be discussed in Chapter 3). Usually for a given message,
the parity bit is generated using either an even or odd parity scheme by the transmitting
computer. The message is then transmitted along with the parity bit. At the receiving end,
the parity is checked by the receiving computer. If there is a discrepancy, the data received
will obviously be incorrect. For example, suppose that the message bits are 1101. The even
parity bit for this message is 1. The transmitted data wili be

P m, m, m; mg,

1 1 1 0 1

Even Message
Parity
Bit

Suppose that an error occurs in the least significant bit; that is m0 is changed from
1 to 0 during transmission. The received data will be:

Ll 1 110 0

The receiving computer performs a parity check on this data by counting the
number of ones and finds it to be an odd number, three. Therefore, an error is detected.

With a single parity bit, an error due to a single bit change can be detected. Errors
due to 2-bit changes during transmission will go undetected. In such situations, multiple
parity bits are used. One such technique is the “Hamming code,” which uses 3 parity bits
for a 4-bit message.

QUESTIONS AND PROBLEMS

2.1 Convert the following unsigned binary numbers into their decimal equivalents:
(a) 01110101, (b) 1101.101, (c) 1000.111,

2.2 Convert the following numbers into binary:

(a) 152, (b) 343,

23 Convert the following numbers into octal:
(a) 1843,, (b) 1766,
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24
2.5

2.6

2.7

2.8
29

2.10
2.11

2.12

2.13

2.14

2.15

2.16

2.17

Convert the following numbers into hexadecimal
(a) 1987,, (b) 3072,,

Convert the following binary numbers into octal and hexadecimal numbers:

(a) 1101011100101 (b) 11000011100110000011
Using 8 bits, represent the integers —48 and 52 in

(a) sign magnitude form

(b) ones complement form

(c) twos complement form

Identify the following unsigned binary numbers as odd or even without
converting them to decimal: 11001100,; 00100100,; 01111001,.

Convert 532.372,, into its binary equivalent.
Convert the following hex numbers to binary: 15FD¢; 26EA ;.

Provide the BCD bit encodings for the following decimal numbers:
(a) 11264 (b) 8192

Represent the following numbers in excess-3:
(@ 678 (b) 32874 (©) 61440

What is the excess-3 equivalent of octal 1543?

Represent the following binary numbers in BCD:
(a) 0001 1001 0101 0001
(b) 0110 0001 0100 0100 0000

Express the following binary numbers into excess-3:
(@) 0101 1001 0111
(b) 0110 1001 0000

Perform the following unsigned binary addition. Include the answer in decimal.
101101
+0110011

Perform the indicated arithmetic operations in binary. Assume that the numbers
are in decimal and represented using 8 bits. Express the results in decimal. Use the
twos complement approach for carrying out all subtractions.

(a) 14 (c) 32
£17 -14
() 34 (@) 34
+28 —42

Using twos complement, perform the following subtraction: 3AFA - 2F1E .
Include the answer in hex.
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2.18

2.19

220

221

222

223

224

2.25

2.26
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Using 9’s and 10’s complement arithmetic, perform the following arithmetic
operations:
(a) 254,,—132,, b) 783,,—807,,

Perform the following arithmetic operations in binary using 6 bits. Assume that
all numbers are signed decimal. Use twos complement arithmetic. Indicate if
there is any overflow.

(2) 14 (® 7 (©) 27
+8 +H=7 +=19

(d) (-24) (© 19 ® 17

+=19) =(=12) =(=16)

Perform the following unsigned multiplication in binary using a minimum number
of bits required for each decimal number using the pencil and paper method:
12 x 52

Perform the following unsigned division in binary using a minimum number of
bits required for each decimal number:

3/14
Obtain the bit encodings of the following numbers and then perform the indicated
arithmetic operations using BCD:

(a) 54 (b 782 © 82
+48 +219 -58

Find the odd parity bit for the following binary message to be transmitted:
10110000.

Repeat Problem 2.20 using repeated addition.

Repeat Problem 2.21 using repeated subtraction.

If a transmitting computer sends the 8-bit binary message 11000111 using an even
parity bit. Write the 9-bit data with the parity bit in the most significant bit. If the

receiving computer receives the 9-bit data as 110000111, is the 8-bit message
received correctly? Comment.
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BOOLEAN ALGEBRA
AND DIGITAL LOGIC GATES

This chapter describes fundamentals of logic operations, Boolean algebra, minimization
techniques, and implementation of basic digital circuits.

Digital circuits contain hardware elements called “gates” that perform logic
operations on binary numbers. Devices such as transistors can be used to perform the logic
operations. Boolean algebra is a mathematical system that provides the basis for these
logic operations. George Boole, an English mathematician, introduced this theory of digital
logic. The term Boolean variable is used to mean the two-valued binary digit 1 or 0.

3.1 Basic Logic Operations

Boolean algebra uses three basic logic operations namely, NOT, OR, and AND. These
operations are described next.

3.1.1 NOT Operation
The NOT operation inverts or provides the ones complement of a binary digit. This
operation takes a single input and generates one output. The NOT operation of a binary
digit provides the following result:

NOT1=0

NOT0=1

Therefore, NOT of a Boolean variable 4, written as 4 (or 4’)is 1 if and only if 4
is 0. Similarly, 4 is 0 if and only if 4 is 1. This definition may also be specified in the form
of a truth table:

Input Output
A A
0 1
1 0

Note that a truth table contains the inputs and outputs of digital logic circuits. The
symbolic representation of an electronic circuit that implements a NOT operation is shown

A J>o i

FIGURE 3.1 Symbol for a NOT gate

53
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FIGURE 3.2  Pin diagram for the 74HCO04 or 74L.S04

in Figure 3.1.

A NOT gate is also referred to as an “inverter” because it inverts the voltage
levels. As discussed in Chapter 1, a transistor acts as an inverter. A (-volt at the input
generates a 5-volt output; a 5-volt input provides a 0-volt output.

As an example, the 74HC04 (or 74L.S04) is a hex inverter 14-pin chip containing
six independent inverters in the same chip as shown in Figure 3.2.

Computers normally include a NOT instruction to perform the ones complement
of a binary number on a bit-by-bit basis. An 8-bit computer can perform NOT operation
on an 8-bit binary number. For example, the computer can execute a NOT instruction on
an 8-bit binary number 01101111 to provide the result 10010000. The computer utilizes an
internal electronic circuit consisting of eight inverters to invert the 8-bit data in parallel.

3.1.2 OR operation
The OR operation for two variables 4 and B generates a result of 1 if 4 or B, or both, are 1.
However, if both 4 and B are zero, then the result is 0.

A plus sign + (logical sum) or V symbol is normally used to represent OR. The
four possible combinations of ORing two binary digits are

0+0=0
0+1=1
1+0=1
1+1=1

A truth table is usually used with logic operations to represent all possible
combinations of inputs and the corresponding outputs. The truth table for the OR operation
is

Inputs

Output =4 + B
0

—_ = o o
_0 — oW

1
1
1
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A -
) >——c-ans

FIGURE 3.3 Symbol for an OR gate

Figure 3.3 shows the symbolic representation of an OR gate.

Logic gates using diodes provide good examples to understand how semiconductor devices
are utilized in logic operations. Note that diodes are hardly used in designing logic gates.
Figure 3.4 shows a two-input-diode OR gate. The diode (see Chapter 1) is a switch, and it
closes when there is a voltage drop of 0.6 V between the anode and the cathode. Suppose
that a voltage range of 0 to 2 V is considered as logic 0 and a voltage of 3 to 5 V is logic
1. If both 4 and B are at logic 0 (say 1.5 V) with a voltage drop across the diodes of 0.6 V
to close the diode switches, a current flows from the inputs through R to ground, and the
output C willbe at 1.5V -0.6 V=10.9 V (logic 0). On the other hand, if one or both inputs
are at logic 1 (say 4.5 V) the output C will be at 4.5 - 0.6 V = 3.9 V (logic 1). Therefore,
the circuit acts as an OR gate.

The 74HC32 (or 74L.S32) is a commercially available quad 2-input 14-pin OR
gate chip. This chip contains four 2-input/I1-output independent OR gates as shown in
Figure 3.5.

To understand the logic OR operation, consider Figure 3.6. V' is a voltage source,
A and B are switches, and L is an electrical lamp. L will be turned ON if either switch 4 or B
or both are closed; otherwise, the lamp will be OFF. Hence, L = 4 + B. Computers normally
contain an OR instruction to perform the OR operation between two binary numbers. For
example, the computer can execute an OR instruction to OR 3A , with 21, on a bit by bit
basis:

3A,=0011 1010
21,,=0010 0001

001 191

3 B

The computer typically utilizes eight two-input OR gates to accomplish this.

3.1.3  AND operation
The AND operation for two variables 4 and B generates a result of 1 if both 4 and B are 1.
Input {A > Output
nputs utpu
B D2 {>‘1

C=A+B

R

V//(

FIGURE 34 Diode OR gate
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Vee B4 M Y4 B3 A3 Y3

14 l13 iz |1 o o |8
L

vz [z s 5 |8 |7

A Bl Yt A B2 Y2 GND

FIGURE 3.5  Pin diagram for 74HC32 or 74LS32

—_/__
B L=4+B

4

T =

FIGURE 3.6  An example of the OR operation

A—] 4.
—D— -

FIGURE 3.7 AND gate symbol

=1

However, if either 4 or B, or both, are zero, then the result is 0.
The dot - and A symbol are both used to represent the AND operation.

The AND operation between two binary digits is

0-0=0
0-1=0
1-0=

1-1=1

The truth table for the AND operation is

Inputs
A B Output =A- B =AB
0 0 0
0 1 0
1 0 0
1 1 1

Figure 3.7 shows the symbolic representation of an AND gate. Figure 3.8 shows a two-
input diode AND gate.
As we did for the OR gate, let us assume that the range 0 to +2 V represents logic
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+5V

% R
y D1 % Output c
D2
B —K}—

FIGURE 3.8  Diode AND gate

=AB

Inputs

0 and the range 3 to 5 V is logic 1. Now, if 4 and B are both HIGH (say 3.3 V) and the
anode of both diodes at 3.9 V, the switches in D, and D, close. A current flows from +5 V
through resistor R to +3.3 V input to ground. The output C will be HIGH (3.9 V). On the
other hand, if a low voltage (say 0.5 V) is applied at 4 and a high voltage (3.3V) is applied
at B. The value of R is selected in such a way that 1.1 V appears at the anode side of D,;
at the same time 3.9 V appears at the anode side of D,. The switches in both diodes will
close because each has a voltage drop of 0.6 V between the anode and cathode. A current
flows from the +5 V input through R and the diodes to ground. Output C will be low (1.1
V) because the output will be lower of the two voltages. Thus, it can be shown that when
either one or both inputs are low, the output is low, so the circuit works as an AND gate.
As mentioned before, diode logic gates are easier to understand, but they are not normally
used these days.

Transistors are utilized in designing logic gates. Diode logic gates are provided as
examples in order to illustrate how semiconductor devices are utilized in designing them.

The 74HCO08 (or 74LS08) is a commercially available quad 2-input 14-pin AND
gate chip. This chip contains four 2-input/1-output independent AND gates as shown in
Figure 3.9. To illustrate the logic AND operation consider Figure 3.10. The lamp L will
be on when both switches 4 and B are closed; otherwise, the lamp L will be turned OFF.
Hence,

L=4'B

Computers normally have an instruction to perform the AND operation between two binary
numbers. For example, the computer can execute an AND instruction to perform ANDing

Ve¢ B4 M va B3 A3 Y3
| 14 13 12 11 10

[{=]
«©

Bt
—D D

1 2 3 4 5 6 1 7
A1l B1 Y1 A2 B2 Y2 GND

FIGURE 3.9 Pin Diagram for 74HCO08 or 74L.S08
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Lamp

FIGURE 3.10  An example of the AND operation

31,, with Al as follows:

31,,=0011 0001
Al, =1010 0001

0919 000

2 1
The computer utilizes eight two-input AND gates to accomplish this.

3.2 Other Logic Operations

The four other important logic operations are NOR, NAND, Exclusive-OR (XOR) and
Exclusive-NOR (XNOR).

3.2.1 NOR operation

The NOR output is produced by inverting the output of an OR operation. Figure 3.11
shows a NOR gate along with its truth table. Figure 3.12 shows the symbolic representation
of a NOR gate. In the figure, the small circle at the output of the NOR gate is called the
inversion bubble. The 74HCO02 (or 74L.S02) is a commercially available quad 2-input 14-
pin NOR gate chip. This chip contains four 2-input/1-output independent NOR gates as
shown in Figure 3.13.

3.2.2 NAND operation
The NAND output is generated by inverting the output of an AND operation. Figure 3.14
shows a NAND gate and its truth table. Figure 3.15 shows the symbolic representation of
a NAND gate.

The 74HCO0 (or 741.S00) is a commercially available quad 2-input/1-output 14-
pin NAND gate chip. This chip contains four 2-input/1-output independent NAND gates
as shown in Figure 3.16.

NOR gate Truth Table
4 B C=A4+B
A C=A+8B 0 0 1
B 0 1 0
1 0 0
1 1 0

FIGURE 3.11 A NOR gate with its truth table
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A —
B C=A+B

FIGURE 3.12 NOR gate symbol

Ve¢ Y4 B4 A4 Y3 B3 A3

Y1 Al B1 Yz A2 B2 GND

FIGURE 3.13  Pin diagram for 74HCO02 or 741502
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NAND gate Truth Table
4 C=48 4 B C=4B
B 0 0 1
0 1 1
1 0 1
1 1 0

FIGURE 3.14 A NAND gate and its truth table

A._._ ___
i

FIGURE 3.15 NAND gate symbol

Vec B4 A4 YA B3 A3 Y3
[« 13 12 |11 fw s 8

D

1 2 3 4 5 6 |7
A1 BT YT A2 B2 Y2 GND

FIGURE 3.16  Pin diagram for 74HCO00 or 74LS00
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3.2.3  Exclusive-OR operation (XOR)

The Exclusive-OR operation (XOR) generates an output of 1 if the inputs are different and
0 if the inputs are the same. The @ or V symbol is used to represent the XOR operation.
The XOR operation between binary digits is

0®0=0
0@1=1
1®0=1
1®1=0

Most computers have an instruction to perform the XOR operation. Consider

XORing 3A,, with 21 ,,.
3A,=0011 1010
21,,=0010 0001

0903 101
1 B
It is interesting to note that XORing any number with another number of the

same length but with all 1’s will generate the ones complement of the original number. For

example, consider XORing 31,, with FF,;:
31, 0011 0001
I's complement of 31 |, Uyo\g UVI\OJ
C E ¢

3,0 FF,, 0011 000)
1111 11114

129 1110
C E

The truth table for Exclusive-OR operation is

16

Inputs OQutput
A B C=4®B
0 0 0
0 1 1
1 0 1
1 1 0

From the truth table, 4 ® Bis 1 only when4=0and B=1or4=1and B=0.
Therefore,
C=A®B=AB + 4B
Figure 3.17 shows an implementation of an XOR gate using AND and OR gates.
Figure 3.18 shows the symbolic representation of the Exclusive-OR gate assuming that
both true and complemented values of 4 and B are available.

4 4B
B
®—C=A§+ZB=A€BB
4 4B
B

FIGURE 3.17 AND-OR Implementation of the Exclusive-OR gate
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Aj -
4 D—.c ADB

FIGURE 3.18 XOR symbol

V¢ B4 M ya B3 A3 V3

e 13 12 11 e [s s
L‘D -
:le = e
1 e 4 5 6 |7
A Bl Y1 A B2 Y2 OGND

FIGURE 3.19  Pin diagram for 74HC86 or 74L.S86

XNOR gate Truth Table

"j c-Aes o

FIGURE 3.20  Exclusive-NOR symbol along with its truth table

-]
_—0 = O
—_—o o ~0

Ve B4 A4 YA Y3 B3 A3
[ 14 13 12 11 10 9 8

A1 R1 Y1 Yo A2 R2 GND

FIGURE 3.21 Pin Diagram for 74HC266 or 74L.S266

The 74HCB6 (or 74LS86) is a commercially available quad 2-input 14-pin
Exclusive-OR gate chip. This chip contains four 2-input/1-output independent exclusive-
OR gates as shown in Figure 3.19.

3.24  Exclusive-NOR Operation (XNOR)
The one’s complement of the Exclusive-OR operation is known as the Exclusive-NOR
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operation. Figure 3.20 shows its symbolic representation along with the truth table. The
XNOR operation is represented by the symbol ©. Therefore, C=4 ®@ B=4 ® B. The
XNOR operation is also called equivalence. From the truth table, output C is 1 if both A
and B are 0’s or both A and B are 1’s; otherwise, C is 0. Thatis, C=1,for4=0and B=
QordA=1and B=1. Hence, C=AOB=AB+A4B

The 74HC266 (or 741.S266) is a quad 2-input/1-output 14-pin Exclusive-NOR
gate chip. This chip contains four 2-input/1-output independent Exclusive-NOR gates
shown in Figure 3.21.

Note that the symbol C is chosen arbitrarily in all the above logic operations to
represent the output of each logic gate. Also, note that all logic gates ( except NOT) can
have at least two inputs with only one output. The NOT gate, on the other hand, has one
input and one output.

33 IEEE Symbols for Logic Gates

The institute of Electrical and Electronics Engineers (IEEE) recommends rectangular shape
symbols for logic gates: The original logic symbols have been utilized for years and will be
retained in the rest of this book. IEEE symbols for gates are listed below:

Gate Common Symbol IEEE Symbol

AND z——)——f=AB g: & |—r=48
OR gi—:—>f=A+B g: 21 —f=4+B

NOT A >()
NAND g }f=ﬁ g - & p—r=4B
NOR gi>%f=A+B ’; 21 p—y/=4+B

. 4— A—

Exclusive-OR B ' f=A®B B =1 —f=4®B
] A -\ _— A—

Exclusive-NOR B ' f=A®B B = 1 O—/f=4®B
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34 Positive and Negative Logic

The inputs and outputs of logic gates are represented by either logic 1 or logic 0. There
are two ways of assigning voltage levels to the logic levels, positive logic and negative
logic. The positive logic convention assigns a HIGH (H) voltage for logic 1 and LOW (L)
voltage for logic 0. On the other hand, in the negative logic convention, a logic 1 = LOW
(L) voltage and logic 0 = HIGH (H) voltage.

The IC data sheets typically define these levels in terms of voltage levels rather
than logic levels. The designer decides on whether to use positive or negative logic. As an
example, consider a gate with the following truth table:

SUEESE N
SeJ SRS C R R
SIS SIS JRSol

Using positive logic, (H = 1 and L = 0) the following table is obtained:

A B 2
0 0 1
0 1 1
1 0 1
1 1 0

This is the truth table for a NAND gate. However, negative logic, (H=0and L =
1) provides the following table:

A4 B
1 1
1 -0
0 1
0 0

—_ O O O

This is the truth table for a NOR gate. Note that converting from positive to
negative logic and vice versa for logic gates basically provides the dual (discussed later in
this chapter) of a function. This means that changing 0’s to 1’s and 1°s to 0’s for both inputs
and outputs of a logic gate, the logic gate is converted from a NOR gate to a NAND gate
as shown in the example. In this book, the positive logic convention will be used.

Note that positive logic and active high logic are equivalent (HIGH = 1, LOW =
0). On the other hand, negative logic and active low logic are equivalent (HIGH = 0, LOW
= 1). A signal is “active high” if it performs the required function when HIGH (H = 1). An
“active low” signal, on the other hand, performs the required function when LOW (L = 0).
A signal is said to be asserted when it is active. A signal is disasserted when it is not at its
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active level.

Active levels may be associated with inputs and outputs of logic gates. For
example, an AND gate performs a logical AND operation on two active HIGH inputs and
provides an active HIGH output. This also means that if both the inputs of the AND gate
are asserted, the output is asserted.

3.5 Boolean Algebra

Boolean algebra provides basis for logic operations using binary variables. Alphabetic
characters are used to represent the binary variables. A binary variable can have either
true or complement value. For example, the binary variable 4 can be either 4 and/or 4 in
a Boolean function.

A Boolean function is an operation expressing logical operations between binary
variables. The Boolean function can have a value of 0 or 1. As an example of a Boolean
function, consider the following:

f=AB +C

Here, the Boolean function f'is 1 if both 4 and B are 1 or C is 1; otherwise, fis 0.
Note that 4 means that if 4 = 1, then 4 = 0. Thus, when B =1, then B = 0. It can therefore
be concluded that fis one when 4 =0and B=0or C= 1.

A truth table can be used to represent a Boolean function. The truth table contains
a combination of 1’s and 0’s for the binary variables. Furthermore, the truth table provides
the value of the Boolean function as 1 or 0 for each combination of the input binary
variables. Table 3.1 provides the truth table for the Boolean function f=4 B + C. In the
table,ifA=1,B=1,and C=0,f =0.0 + 0 = 0. Note that table 3.1 contains three input
variables (4, B, C) and one output variable (f). Also, by ORing ones in the truth table,

TABLE 3.1 Truth Table forf=4 B + C

A B C f

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1
4———Po—
B——o— __
c f=AB+C

FIGURE 3.22 Logic diagram forf=4 B + C
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the function f contains several terms; however, the function can be simplified using the
techniques to be discussed later.

A Boolean function can also be represented in terms of a logic diagram. Figure
3.22 shows the logic diagram for f=4 B + C. The Boolean expression f=A B + C contains
two terms, 4 B and C, which are inputs to logic gates. Each term may include a single or
multiple variables, called “literals,” which may or may not be complemented. For example,
f=A4B + C contains three literals, 4, B, and C. Note that a variable and its complement are
both called literals. For two variables, the literals are A, B, A, and B.

Boolean functions can be simplified by using the rules (identities) of Boolean
algebra. This allows one to minimize the number of gates in a logic diagram, which reduces
the cost of implementing a logic circuit.

3.5.1 Boolean Identities
Here is a list of Boolean identities that are useful in simplifying Boolean expressions:

1. a)A+0=4 b)yd-1=4
2. ayd+1=1 by4-0=0
3. aA)A+A=A4 b)Ad-4=4
4. a)4+A=1 b)A-4=0
5. a)(4)=4
6. Commutative Law:
a)A+B=B+A4 byA-B=B-4
7. Associative Law:
A A+B+O)=A+B)+C b)d-(B-C)y=(A4-B):-C
8. Distributive Law:
a)A-(B+(CO)=A-B+4-C b)A+B-C=A+B)-(4+ ()
9. DeMorgan’s Theorem:
a)A+B=A4-B b)A-B=4+B

In the list, each identity identified by b) on the right is the dual of the corresponding identity
a) on the left. Note that the dual of a Boolean expression is obtained by changing 1’s to
0’s and 0’s to 1’s if they appear in the equation, and AND to OR and OR to AND on both
sides of the equal sign.

For example, consider identity 4. Relation 4a is the dual of relation 4b because the
AND in the expression is replaced by an OR and then, 0 by 1.

The Duality Principle of Boolean algebra states that a Boolean expression is
unchanged if the dual of both sides of the equal sign is taken. Consider, for example, the
Boolean function,
f=B+AB Therefore, f =B-(1+4)

=B
The dual of £,
fo =B-(A+B)
f,=B-A+B-B=BA+B
=B(A+1)=B

Hence, f=f,. In order to verify some of the identities, consider the following examples:
i) Identity2a) A+1=1

Ford4=0, A+1=0+1=1

Ford=1, A+1=1+1=1

ii) Identity 4b)4-A=0. If A4=1,then4=0. Hence,4-4=1-0=0
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iii) Identity 8b) 4 + B - C = (4 + B) - (4 + C) is very useful in manipulating Boolean
expressions. This identity can be verified by means of a truth table as follows:

4 B C B-C A+B A+C | A+B-C | 4+B)-U+0O
0 0 0 0 0 0 0 0
0 0 ] 0 0 1 0 0
0 1 0 0 1 0 0 0
0 ] 1 I 1 1 1 1
I 0 0 0 1 1 1 I
1 0 1 0 ] ] 1 1
] 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

iv) Identities 9a) and 9b) (DeMorgan’s Theorem) are useful in determining the one’s
complement of a Boolean expression. DeMorgan’s theorem can be verified by means
of a truth table as follows:

A | B | 4| B |4 B|4+B| a5B | 4B | 7B | 7+B |
0 0 1 1 1 0 1 0 1 1
0 1 1 0 0 1 0 0 1 1
1 0 0 1 0 1 0 0 1 1
i 1 0 0 0 1 0 I 0 0

De Morgan’s Theorem can be expressed in a general form for n variables as follows:
A+B+C+D+..=4-B-C-D-..
AB-C-D-..=A+B+C+D+..

The logic gates except for the inverter can have more than two inputs if the
logic operation performed by the gate is commutative and associative (identities 6a and
7a). For example, the OR operation has these two properties as follows:A + B=B + A
(commutative) and (A + B)+ C= A+ (B+.C)=A + B + C (associative). This means

ABCD

L

;

(1oL

L

ABCD —D ;

(a) Implementation of f = ABCD + ABCD + BC

B—] BC
C—

f
D

(b) implementation of the simplified function f = BC + D

FIGURE 3.23  Implementation of Boolean function using logic gates
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that the OR gate inputs can be interchanged. Thus, the OR gate can have more than two
inputs . Similarly, using the identities 6b and 7b, it can be shown that the AND gate can
also have more than two inputs. Note that the NOR and NAND operations, on the other
hand, are commutative, but not associative, Therefore, it is not possible to have NOR and
NAND gates with more than two inputs. However, NOR and NAND gates with more
than two inputs can be obtained by using inverted OR and inverted AND respectively.
The Exclusive-OR and Exclusive-NOR operations are both commutative and associative.
Thus, these gates can have more than two inputs. However, Exclusive-OR and Exclusive-
NOR gates with more than two inputs are uncommon from a hardware point of view.

3.52  Simplification Using Boolean Identities
Although there are no defined set of rules for minimizing a Boolean expression, appropriate
identities can be used to accomplish this. Consider the Boolean function
f=ABCD + ABCD + BC
This equation can be implemented using logic gates as shown in Figure 3.23(a).
The expression can be simplified by using identities as follows:

f =BCD(4 +4)+BC By identity 4a)
=BCD «1BC By identity 1b)
= BCD + BC

Assume BC = E, then BC = E and,

f =ED+E,
= (E + B)(E+D) By identity 8b)
=E+D By identity 4a)

Substituting E=BC, f=BC+D

The simplified form is implemented using logic gates in Figure 3.23(b). The
logic diagram in Figure 3.23(b) requires only one NAND gate and an OR gate. This
implementation is inexpensive compared to the circuit of Figure 3.23(a). Both logic circuits
perform the same function. The following truth table can be used to show that the outputs
produced by both circuits are equivalent:

A B c D f=ABCD + ABCD + BC f=BC+D
0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 1 1
0 1 0 0 1 1
0 1 0 1 1 1
0 1 1 0 0 0
0 1 1 1 1 1
1 0 0 0 1 1
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1
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1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 1

The following are some more examples for simplifying Boolean expressions using
identities:

D SR AT = DAz =g A= (142 =

i) f= abcd + acd + bed + (1® ab) cd = abed + cd (a+b) + abed = abced + abed + abed
= abcd

INVF=XY+XZ+XZ=X(Y+Z+Z)=X(Y+1)=X+1=X

iv)F=ABC+AB+AC=A(B+C)+AB+AC=AB+AC+AB+AC
=A(B+B)+C(4+A4) =A+C

v f=xtxytxty=xtxyty=@x+x)xty) ty=x+tyty=x+1=1I
vi) f=A(B®1)(A+B)=AB (A+B)=ABA+ABB=0

Vi) F=B(4+B)+AB +B=AB+BB+AB +B=AB+B+AB +B
=]+AB+AB =1

viii) = (x+y +2) (xy +yz) = Xyx +Xxyy + xpz +yzx +yz y+yz z
= xy+txyztyzvtyz = xy(l+z)+yz(x+1) = xy+yz

ix) f=xy+txyzrxy=xy(l+tz)+xy=xy+ xy=x®y
x) F= ABC +ABC + BC=BC(A+A4)+BC=BC +BC=B(C+C)=B+1=B

xi) Show that f= (a+b)(a+b) can be implemented using one Exclusive -OR gate.
Solution: f= (a+b)(a+b) using DeMorgan’s theorem,

=(a+h) + (a+h) =(a+b)+ (@a*b)=ab+ab =a®b
xii) Show that f=(4+B)(E~+F) can be implemented using two AND and one OR gates.
Solution: f =(4+B)(E+F) = AB + EF using DeMorgan’s theorem.

xiii) Express f=(X+XZ) (X + Z) using only one two-input OR gate.
Selution: /=(X+X) (X+Z)(X + Z) using the distributive law. Hence, f=X+Z

xiv) Express f for f=(4 + B + C) + ABC using only one three input AND gate.
Solution: Using DeMorgan’s theorem, f= f=(4 + B + C) + ABC
= (ABC)~(ABC) = ABC

3.5.3 Consensus Theorem
The Consensus Theorem is expressed as AB + AC + BC = AB + AC
The theorem states that the AND term BC can be eliminated from the expression
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if one of the literals such as B is ANDed with the true value of another literal (4) and the
other term C is ANDed with its complement (4). This theorem can sometimes be applied
to simplify Boolean equations. The Consensus Theorem can be proved as follows:

AB+AC+BC=AB+AC+BC(4+4)
= AB+AC+ABC+ABC
=AB+ABC+AC+ABC
=4B(1+C)+AC(1+B)
=AB+AC
The dual of the Consensus Theorem can be expressed as
(A+B)(A+C)B+C)=(A+B)A+C)
To illustrate how a Boolean expression can be manipulated by applying the Consensus

Theorem, consider the following:
f=B+D)B+C)

=BB+BC+BD+CD

=BC+BD+CD, since BB=0
Because C is ANDed with B, and D is ANDed with its complement B, by using the
Consensus Theorem, CD can be eliminated. Thus, f=BC + B D.

The Consensus Theorem can be used in logic circuits for avoiding undesirable
behavior. To illustrate this, consider the logic circuits in Figure 3.24. In Figure 3.24(a), the

4 4B
2 2
_ f=AB+AC
A _
ot Ac
P eian I
(a) Logic circuit for f = 4B + AC
4 AB
B
_Do—z AC
c - = ABYAC+BC
BC

(b) Logic circuit for f = AB + AC + BC
FIGURE 3.24  Logic circuit for the Consensus Theorem
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outputisone i)ifBand CarelandA4=0or ii)ifBand Carel and 4= 1.

Suppose that in Figure 3.24(a), B=1,C=1, and 4 =0. Assume that the propagation
delay time of each gate is 10 ns (nanoseconds). The circuit output £ will be 1 after 30 ns
(3 gate delays). Now, if input 4 changes from O to 1, the outputs of NOT gate 1 and AND
gate 2 will be 0 and 1 respectively after 10 ns. This will make output f= 1 after 20 ns. The
output of AND gate 3 will be low after 20 ns, which will not affect the output of 1.

Now, assume that B and C stay at 1 while A4 changes from 1 to 0. The outputs of
NOT gate 1 and AND gate 2 will be 1 and 0 respectively after 10 ns. Because the output
of AND gate 3 is 0 from the previous case, this will change output of OR gate 4 to O for a
brief period of time. After 10 ns, the output of AND gate 3 changes to 1, making the output
of fHIGH (desired value). Note that, for B=1, C =1, and 4 = 0, the output f'should have
stayed at 1 from the equation f = AB + AC. However, f changed to zero for a short period
of time. This change is called a “glitch” or “hazard” and occurs from the gate delays in a
circuit. Glitches can cause circuit malfunction and should be eliminated. Application of the
Consensus theorem gets rid of the glitch. By adding the redundant term BC, the modified
logic circuit for fis obtained. Figure 3.24(b) shows the logic circuit. Now, consider the
case in which the glitch occurs in Figure 3.24(a) when B and C stay at 1 while 4 changes
from 1 to 0. For the circuit in Figure 3.24(b) the glitch will disappear, because BC = 1
throughout any changes in values of 4 and A. Thus, minimization of logic gates might not
always be desirable; rather, a circuit without any hazards would bé the main objective of
the designer.

There are two types of hazards: static and dynamic. Static hazard occurs when a
signal should remain at one value, but instead it oscillates a few times before settling back
to its original value. Dynamic hazard occurs, when a signal should make a clean transition
to a new logic value, but instead it oscillates between the two logic values before
making the transition to its final value. Both types of hazards occur because of races in
the various paths of a circuit. A race is a situation in which signals traveling through two
or more paths compete with each other to affect a common signal. It is, therefore, possible
for the final signal value to be determined by the winner of the race. One way to eliminate
races is by applying the Consensus theorem as illustrated in the preceding example.

3.54 Complement of a Boolean Function

The complement of a function f can be obtained algebraically by applying DeMorgan’s
Theorem. It follows from this theorem that the complement of a function can also be
derived by taking the dual of the function and complementing each literal.

Example 3.1
Find the complement of the function f = C(4B + A BD + ABD)
1) Using DeMorgan’s Theorem it) By taking the dual and complementing each literal
Solution

Using DeMorgan’s Theorem as many times as required, the complement of the
function can be obtained:
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f=C(4B+A4BD +4BD)

= E‘+(AB+Z§D+ZBI_))

=C+(E-Z§D-ZBB)

=C+(A+B)A+B+D)A+B+D)
By taking the dual and complementing each literal, we have:
The dual of £ C+(A+B)(A+B+D)A+B+D)
Complementing each literal: C+(@A+B(A+B+D)A+B+D)=f

3.6 Standard Representations

The standard representations of a Boolean function typically contain either logical
product (AND) terms called “minterms” or logical sum (OR) terms called “maxterms.”
These standard representations make the minimization procedures easier. The standard
representations are also called “Canonical forms.”

A minterm is a product term of all variables in which each variable can be
either complemented or uncomplemented. For example, there are four minterms for two
variables, 4 and B. These minterms are 4 B, AB, AB, and AB. On the other hand, there are
ABC, AB C, ABC, ABC, and ABC. These product terms represent numeric values from 0
through 7. In general, there are 2" minterms for n variables.

A minterm is represented by the symbol m,, where the subscript j is the decimal
equivalent of the binary number of the minterm. For example, the decimal equivalents
(/) of the binary numbers represented by the four minterms of two variables, 4 and B, are
0 (A B), 1(4 B), 2(4 B), and 3 (4B). Therefore, the symbolic representations of the four
minterms of two variables are m,, m,, m,, and m, as follows:

A B Minterm Symbol
0 0 AB my
0 1 ZB m
i 0 AB m;
1 1 AB m
In general, the » minterms of p (n = 2°) variables are: mg, m,, m,, ..., M, .

It has been shown that a Boolean function can be defined by a truth table. A
Boolean function can be exressed in terms of minterms. For example, consider the
following truth table:

B f
0 0 1
0 1 0
1 0 1
1 1 1

One can determine the function f by logically summing (ORing) the product
terms for which fis 1. Therefore, _
f=AB+AB + AB
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This is called the Sum-of-Products expression. A logic diagram of a sum-of-products
expression contains several AND gates followed by a single OR gate. In terms of minterms,
f can be represented as:

f=Zm,?2,3)
The symbol £ denotes the logical sum (OR) of the minterms.

A maxterm, on the other hand, can be defined as a logical sum (OR) term that
contains all variables in complemented or uncomplemented form. The four maxterms of
two variablesare 4 + B, 4 + B, A + B, and 4 + B. A maxterm is obtained from the logical
sum of all the variables by complementing each variable. Each maxterm is represented by
the symbol M,, where the subscript j is the decimal equivalent of the binary number of the
maxterm. Therefore, the four maxterms of the two variables, 4 and B, can be represented
as follows:

A B Maxterm Symbol
0 0 A+B Mo
0 1 A+B M
! 0 A+B M,
1 1 Z +B M;

In the preceding, consider maxterm M, as an example. Since 4 = 1 and B=0, the
maxterm M, is found as 4 + B by taking the logical sum of the complement of 4 (since 4
= 1) and true value of B (since B = (). In general, there are n maxterms (M, M|, ... , M)
for p variables, where n = 2.

The relationship between minterm and maxterm can be established by using
DeMorgan’s theorem. Consider, for example, minterm m, and maxterm M, for two
variables:

m=A4AB M, =A+B

Taking the complement of m,,
mi =AB
=A+B by DeMorgan’s Theorem
=A+B
=M,
Therefore m;, =M,, or m,=M,. This implies that m,=M, or m,=M, That is, a minterm
is the complement of its corresponding maxterm and vice versa.
In order to represent a Boolean function in terms of maxterms, consider the

following truth table:
A B f

—_ e O S

[ R e

1

0
1
1 0
1
Taking the logical sum of minterms of f;



Boolean Algebra and Digital Logic Gates 73

H )

T |/

4 )

T |/

7)) i
c |/

A

T |/

—1 )}

c |/

FIGURE 3.25 (a) Logic diagram of a sum of minterms
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FIGURE 3.25 (b) Logic diagram of a product of maxterms

f=AB+AB+AB
=my+my+m;

=2 m(1,2,3)

By taking complement of £,

f=f=m Fm;¥ms=mi-m;-m3
=M - M, -M; (sinceM,-:rTj)
=(4+B)A+B)4+B)

This is called the product-of-sums expression. The logic diagram of a product-
of-sums expression contains several OR gates followed by a single AND gate. Hence,
S=IIM(1, 2, 3) where the symbol IT represents the logical product (AND) of maxterms M,
M,, and M, in this case. Note that one can express a Boolean function in terms of maxterms
by inspecting a truth table and then logically ANDing the maxterms for which the Boolean
function has a value of 0.

A Boolean function that is not expressed in terms of sums of minterms or product
of maxterms can be represented by a truth table. The function can then be expressed in
terms of minterms or maxterms. For example, consider f = 4 + BC. The function fis not
in a sum of minterms or product of maxterms form, since each term does not include all
three variables 4, B, and C. The truth table for f'can be determined as follows:
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4 B C  f=A+BC
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
| 1 0 1

1 1 1 1

From the truth table, the sum of minterm form (f= 1) is:
f=2=m(2,4,5,6,7)=ABC + AB C + ABC + ABC + ABC
From the truth table, the product of maxterm form (/= 0) is:
f=TIM(0,1,3)=(A+B+C)(4+B+C)(A+B+7C)

The complement of £, f = SM(0, 1, 3), is obtained by the logical sum of
minterms for f=0. Also, note that a function containing all minterms is 1. This means
that in the above truth table, if f=1 for all eight combinations of A, B, and C, then
f=Zm(0,1,2,3,4,5,6,7) = 1. As mentioned before, the logic diagram of a sum of
minterm form contains several AND gates and a single OR gate. This is illustrated by the
logic diagram for f = Tm(2, 4, 5, 6, 7) = ABC + AB C + ABC + ABC + ABC as shown
in figure 3.25(a). Similarly, the logic diagram of a product of maxterm expression form
contains several OR gates and a single AND gate. This is illustrated by the logic diagram
for f=IIM(0, 1,3) = (4 + B + C)(4 + B + C)(A + B + C) as shown in figure 3.25(b).

Example 3.2
Using the following truth table, express the Boolean function fin terms of sum-of-products
(minterms) and product-of-sums (maxterms):

A B c f
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 0

Solution

From the truth table, /=1 for minterms m,, m,, m,, and m,. Therefore, the Boolean function

S can be expressed by taking the logical sum (OR) of these minterms as follows:
f=32m(1,2,3,6,)=A BC + ABC + ABC + ABC

Now, let us express fin terms of maxterms. By inspecting the truth table, /= 0 for maxterms
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M,, M,, M, and M,. Therefore, the function f'can be obtained by logically ANDing these
maxterms as follows:

f=TIM(0,4,5,7)=(A+B+C)(A+B+C)(A+B+C)A+B+C)

3.7 Karnaugh Maps

A Karnaugh map or simply a K-map is a diagram showing the graphical form of a truth
table. Since there is no specific set of rules for minimizing a Boolean function using
identities, it is difficult to know whether the minimum expression is obtained. The K-map
provides a systematic procedure for simplifying Boolean functions of typically up to five
variables. K-maps for more than five variables are difficult to use. However, a computer
program using a tabular method such as the Quine-McCluskey algorithm can be used to
minimize Boolean functions.

The K-map is a diagram containing squares with each square representing one
of the minterms of the Boolean function. For example, the K-map of two variables (A,B)
contains four squares. The four minterms 4 B, AB, AB, and AB are represented by each
square. Similarly, there are 8 squares for three variables, 16 squares for four variables, and
32 squares for five variables. Since any Boolean function can be expressed in terms of
minterms, the K-map can be used to visually represent a Boolean function.

The K-map is drawn in such a way that there is only a 1-bit change from one square
to the next (Gray code). Squares can be combined in groups of 2" where #=0,1,2,3,4,5,
and the Boolean function can be minimized by following certain rules. This minimum

AN o 1
AB | 4B of My | my
AB | 4B | Mmm
(2) (b)
FIGURE 3.26 Two-variable K-map
AN o 1
ol 0 [ 1 _
F=4
1
FIGURE 3.27 K-Map for F=2m(0,1)
N o 1
ATl o) _
=T F=A4+B
" m | D

FIGURE 3.28 K-Map for F=3m(0,2,3)
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expression will reduce the total number of gates for implementation. Thus, the cost of
building the logic circuit is reduced.

3.7.1 Two-Variable K-map

Figure 3.26 shows the K-map for two variables. Since there are four minterms with two
variables, four squares are required to represent them. This is depicted in the map of
Figure 3.26(a). Each square represents a minterm. Figure 3.26(b) shows the K-map for
two variables. Since each variable has a value of 0 or 1, in the K-map of Figure 3.26(b),
the 0 and 1 shown on the left of the map corresponds to A while the 0 and 1 on the top are
assigned to the variable B. The squares containing minterms with one variable change are
called “adjacent” squares. A square is adjacent of another square placed horizontally or
vertically next to it. For example, consider the minterms m, and m,. Since m,= 4 B and
m,= AB, there is a one variable change (B in m, and B in m,, 4 is same in both squares).
Therefore, m, and m, are adjacent squares. Similarly, other adjacent squares in the map
include m, and m,, or m, and m;. m,(4 B) and m,(AB) are not adjacent squares since both
variables change from 0’s to 1’s. The adjacent squares can be combined to eliminate one
of the variables. This is based on the Boolean identities A + 4 =1 0or B+ B = 1.

The adjacent squares can also be identified by considering the map as a book. By
closing the book at the middle vertical line, m, and m, will respectively be placed on m;,
and m,. Thus, m, and m, are adjacent; squares m, and m, are also adjacent. Similarly, by
closing the map at the middle horizontal line, m, will fall on m, while m, will be placed on
my. Thus, m, and m, or m, and m, are adjacent squares.

Now, let us consider a Boolean function, £ = £m(0,1). Figure 3.27 shows that
the function F containing two minterms m, and m, are identified by placing 1’s in the
corresponding squares of the map. In order to minimize the function F, the two squares
can be combined as shown since they are adjacent. The map is then inspected for common
variables looking at the squares vertically and horizontally. Since 4 =0 is common to both
squares, F' = 4. This can be proven analytically by using Boolean identities as follows:

F=3m(0,1)=A4B + AB
=AB+B)=A4(sinceB+B=1)
In a two-variable K-map, adjacent squares can be combined in groups of 2 or 4.

Next, consider F=3m(0,2,3). The K-map is shown in Figure 3.28. Where 1’s are
placed in the squares defined by the minterms m,, m,, and m,. By combining the adjacent
squares m, with m, and m, with m,, the common terms can be determined to simplify the
function F. For example, by inspecting m, and m, vertically and horizontally, the term B is
the common term. On the other hand, by looking at m, and m; horizontally and vertically,
variable 4 is the common term. The minimized form of the function F can be obtained by
logically ORing these common terms. Therefore,

F=4+B.
Note that the function F =1 for F =2m(0,1, 2, 3) in which all squares in the K-map are 1.

3.7.2  Three-Variable K-map
Figure 3.29 shows the K-map for three variables. Figure 3.29(a) shows a map with three
literals in each square. There are eight minterms (m,, m,, ... , m,) for three variables. Figure
3.29(b) shows these minterms — one for each square in the K-map.

Like the two-variable K-map, a square in a three-variable K-map is adjacent to
the squares placed horizontally or vertically next to it. Consider the minterms m, m,, m,,
and m,. For example, m, is adjacent to m,, m,, and m,; m, is adjacent to m,; m, is adjacent
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BC
A\ 00 01 11 10
ABC|ABCl4BC|4BC o My | M| M m
ABC|ABC|4ABC|4BT M | S| ™
(@ (b)

FIGURE 3.29 Three-variable K-map

to my; m, is adjacent to m,. But, m, is adjacent neither to m, nor to m,; m, is not adjacent to
m, and vice versa.

Like the two-variable map, the K-map can be considered as a book. The adjacent
squares can also be determined by closing the book at the middle horizontal and vertical
lines. For example, closing the book at the middle horizontal line, the adjacent pair of
squares are m, and m,, m, and ms, m, and m,, m, and m,. On the other hand, closing the
book at the middle vertical line, the adjacent pair of squares are m, and m,, m, and m,, m,
and mg, ms and m,.

For a three variable K-map, adjacent squares can be combined in powers of 2: 1
(29, 2 (21, 4 (2%) and 8 (2%). The Boolean function is 1 when all eight squares are 1. It is
desirable to combine as many squares as possible. For example, grouping two (2') adjacent
squares will provide a product term of two literals and combining four (2?) adjacent squares
will provide a product term of one literal for a three-variable K-map. The following
examples illustrate this.

Example 3.3
Simplify the Boolean function

fid,B,C)=2m(0,2,3,4,6,7)
using a K-map.

BC
A 00 01 11 10

2 A 3 R T I T
my, | mg m, mg 1 (u}?J t 1 LLJ)]
L

FIGURE 3.30  K-map for f{4, B, C) = = m(0, 2, 3, 4, 6, 7)

AN_00 01 1

10
my | my | My | m, 0 Cim»l) (q P —
f=AB+BC

8

my | ms | my | mg

FIGURE 3.31 K-map for 4, B, C)=2m(0, 1, 2, 6)
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Solution

Figure 3.30 shows the K-map along with the grouping of adjacent squares. First, a 1 is

placed in the K-map for each minterm that represents the function. Next, the adjacent

squares are identified by squares next to each other. Therefore, m,, m,, m,, and m; can be

combined as a group of adjacent squares. The common term for this grouping is B. Note

that combining four (22) squares provides the result with only one literal, B. Next, by

folding the K-map at the middle vertical line, adjacent squares my, m,, m,, and m, can be

identified. Combining them together will provide the single common term C. Therefore,
f=B+C

This result can be verified analytically by using the identities as follows:

f =3m(0,2,3,4,6,7)
=ABC+ABC+ABC+ABC+ABC+ ABC
=BC(4+A)+BC(A+A4)+BC(A+A4)
=BC+ BC +BC
=C(B +B) +BC
=C +BC
=B+C)(C+C)=B+C (using the Distributive Law)

Example 3.4
Simplify the Boolean function

AA4,B,C)y=Zm(0,1,2,6)
using a K-map.
Solution
Figure 3.31 shows the K-map along with the grouping of adjacent squares. From the K-
map, grouping adjacent squares and logically ORing common product terms,

f=AB+BC
BC
A 00 01 11 10
myl my my | m, 0 (1 1\S _
- : F=B
my | ms mq | mg ll\\l IJ

FIGURE 3.32 K-mapfor F=ABC+ABC+ BC

ABCDOO 01 11 10 ABCDOO 01 1] 10
00 |2ECD|aBCD|aBCD|4BCD oof m | m | m | m
01|48CD|a8CnlaBCD|4BCD o] M| ms | my | mg
11|48cDlasCDlaBCDlaBCD ul mz| ms| ms | my
10 |4BCD|4BCD|ABCD|ABCD Wl ™ | M| my| my

(@) (b)

FIGURE 3.33  Four-variable K-map
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FIGURE 3.3 K-map forf{4, B, C, D) == m(0, 1,2,3, 8,9, 10, 11, 12, 13, 14, 15)

Example 3.5
Simplify the Boolean function
F(4, B C)=ABC+ABC+ BC
using a K-map.
Solution
The function contains three variables, 4, B, and C, and is not expressed in minterm form.
The first step is to express the function in terms of minterms as follows:
F =4ABC+ABC+ BC(A+4)
=4ABC+ABC+ABC+A4ABC
=2 m(0, 1, 4, 5)
Figure 3.32 shows the K-map. Note that the four (22) adjacent squares are grouped to
provide a single literal B by eliminating the other literals. Therefore, F = B. Although F
is not expressed in minterm form, one can usually identify the squares with 1°s in the K-
map for the function F = A B C + A B C + BC by inspection. This will avoid the lengthy
process of converting such functions into minterm form.

3.7.3 Four-Variable K-map
A four-variable K-map, depicted in Figure 3.33, contains 16 squares because there are 16
minterms. Figure 3.33(a) includes four literals in each square. Figure 3.33(b) lists each
minterm in its respective square. As before, a square is adjacent to the squares placed
horizontally or vertically next to it. For example, m, is adjacent to ms, ms, mg, and m,;. Also,
by closing the K-map at the middle vertical line, the adjacent pairs of squares are m, and
m,, m, and mg, m, and mg, m,, and m,,, mg and m,, and so on. On the other hand, closing it
at the middle horizontal line will provide the following adjacent squares: m, and mg, m, and
ms, my and m,,, m, and m,,, and so on.

For a four-variable K-map, adjacent squares can be grouped in powers of 2: 1 (2°),
2 (2Y, 4 (29, 8 (2%), and 16 (2%). The Boolean function is 1 when all 16 minterms are 1.
Combining two adjacent squares will provide a product term of three literals; four adjacent
squares will provide a product term of two literals; eight adjacent squares will yield a
product term of one literal.

Example 3.6
Simplify the Boolean function
f(A4, B, C,D)=2m(0,1,2,3,8,9,10, 11,12, 13, 14, 15)
using a K-map.
Solution
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FIGURE 3.35 K-map for F(4, B, C, D) = = m(0, 2, 4, 5, 6, 8, 10)
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FIGURE 336 K-mapfor F=ABC+ABC+ ABD+ABCD

my | ms | my | MW . IEI

Essential Prime Implicants AB AB

FIGURE 3.37 K-map for Example 3.9

Figure 3.34 shows the K-map. The 8 adjacent squares combined in the bottom two rows
yield the common product term of one literal, 4. Because the top row is adjacent to the
bottom row, combining the minterms in these two rows will provide a common product
term of a single literal, B. Therefore, by ORing these two terms, the minimized form of the
function, F = 4 + B is obtained.

Example 3.7

Simplify the Boolean function f{4, B, C, D) =X m(0, 2, 4, 5, 6, 8, 10) using a K-map.
Solution

Figure 3.35 shows the K-map. The common product term obtained by grouping the
adjacent squares m,, m,, m,, and m¢ will contain 4 D. The common product term obtained
by grouping the adjacent squares m,, m,, mg, and m,, will be B D. Combining the adjacent
squares m, and ms will provide the common term A B C. ORing these common product
terms will yield the minimum function, F(4, B, C, D)=AD + BD + A B C.

Example 3.8
Simplify the Boolean Function, F=4 BC+ABC+ ABD + ABCD using a K-map.
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FIGURE 3.38 K-map for Example 3.10

Solution
Figure 3.36 shows the K-map. In the figure, the function F can be expressed in terms of
minterms as follows:

F=ABC(D+D)+ABCMD+D)+ ABD(C+C)+4ABCD
=ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
=m tm,tmst+mtmgtmatm,
=m tmytmstm+mgtm,

because m, +m,=m,
Rearranging the terms: F' = m, + m, + m, + m,+ ms+ mg
Therefore, F=2m(0,1,2,4,5, 6)
These minterms are marked as 1 in the K-map. The adjacent squares are grouped as shown.
The minimum form of the function, F=4 C + 4 D.

3.74  Prime Implicants

A prime implicant is the product term obtained as a result of grouping the maximum number

of allowable adjacent squares in a K-map. The prime implicant is called “essential” if it is

the only term covering the minterms. A prime implicant is called “nonessential” if another

prime implicant covers the same minterms. The simplified expression for a function can be

determined using the K-map as follows:

i) Determine all the essential prime implicants.

i) Express the minimum form of the function by logically ORing the essential prime
implicants obtained in i) along with other prime implicants that may be required to
cover any remaining minterms not covered by the essential prime implicants.

CD
AB 00 01 11 10
my | m | my|m 00 {D

my | s | 1y | Mg ol E‘—ﬂ

myy| my3f Myl My

11 1

o[ D

FIGURE 3.39 K-map for f=3 m(2, 4, 5, 8,9, 13)
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Example 3.9
Find the prime implicants from the K-map of Figure 3.37 and then determine the simplified

expression for the function.
Solution
The essential prime implicants are 4B, 4 B because minterms m, and m, can only be
covered by the term A B and minterms m, and m, can only be covered by the term AB.
The terms AC and BC are nonessential prime implicants because minterm ms can

be combined with either m, or m,. The term AC can be obtained by combining m; with m,
whereas the term BC is obtained by combining ms with m,. The function can be expressed
in two simplified forms as follows:

f=AB+AB + AC

' or

f=AB+AB +BC

Example 3.10
Find the essential prime implicants from the K-map of Figure 3.38 and then find the

simplified expression for the function.

Solution

The prime implicants can be obtained as follows:

1. By combining minterms ms, m,, m,,, and m,;,, the prime implicant BD is obtained.
2. By combining minterms mg, m,,, m,,, and m,,, the prime implicant AD is obtained.
3. By combining minterms m,,, m,,, m,,, and m,s, the prime implicant 4B is obtained.

The terms BD and AD are essential prime implicants whereas 4B is a nonessential
prime implicant because minterms ms and m, can only be covered by the term BD and
minterms mg and m,, can only be covered by the term 4D. However, minterms m,,, m,, m,,,
and m, ; can be covered by these two prime implicants (BD and 4AD). Therefore, the term AB
is not an essential prime implicant. Because all minterms are covered by the essential prime
implicants, BD and 4D, the term 4B is not required to simplify the function. Therefore,

f=BD+A4D.

Example 3.11
Find the prime implicants and then simplify the function using a K-map.

f=Em2,4,5,8.9,13)
Solution
Figure 3.39 shows the K-map. The essential prime implicants are 4 B C D, 4 B C, and
A B C because minterms m, and m; can only be covered by the term 4 B C, minterms m,

ABCDOO 01 111 10|

gl I el I o 1| 1|l oJ*

my | ms | oy | mg

| Mhs| Mys| My

T

01 1 1 1 1
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10] 1 1 {[o 0}
|
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FIGURE 3.40  K-map for fid, B, C, D) =% m(0, 1,4, 5,6,7, 8,9, 14, 15)
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and mj can only be covered by the term 4 B C, and minterm m, can only be covered by the
term A B C D.

Minterm m,; can be combined with either m; or m,. Combining m,; with m, will
yield the term BCD; combining m,, with m, will provide the term ACD . Therefore, minterm
m,; can be covered by either BCD or ACD. Therefore, BCD and ACD are nonessential
prime implicants. Hence, the function has two simplified forms:

f-ABCD+ABC+ABC +BCD
or
f=ABCD+ABC+ABC+ACD

3.7.5  Expressing a Function in Product-of-sums Form Using a K-Map

So far, the simplified Boolean functions derived from the K-map were expressed in sum-
of-products form. This section will describe the procedure for obtaining the simplified
Boolean function in product-of-sums form.

In the K-map, the minterms of a function are represented by 1°s. If the empty
squares in the K-map are identified as 0’s, combining the appropriate adjacent squares
will provide the simplified expression of the complement of the function (f). By taking the
complement of £, the simplified expression for the function, £, can be obtained.

Example 3.12
Simplify the Boolean function f{4, B, C, D) = m(0, 1,4,5,6,7, 8,9, 14, 15) in product-
of-sums form using a K-map.
Solution
Figure 3.40 shows the K-map. Combining the 0’s, a simplified expression for the
complement of the function can be obtained as follows:

f=BC+ ABC

By DeMorgan’s Theorem,
f=f=(BC+ABC)=(BC)*(ABC) + B+ C)+(A+B +C)

The example illustrates the procedure for simplifying a function in product-
of-sums form from its expression as a sum of minterms. The procedure is similar for
simplifying a function expressed in product-of-sums (maxterms).

To represent a function expressed in product-of-sums in the K-map, the
complement of the function must first be taken. The squares will then be identified as 1’s
for the minterms of the complement of the function. For example, consider the following
function expressed in maxterm form:

f=(A+B+C)A+B+C)(A+B+C)
This function can be represented in the K-map by taking its complement and representing
in terms of minterms as follows:
f =ABC+ABC+A4BC
=3m(0,3,4)

Placing 1’s in the K-map for m,, m,, and m, will provide the minterms for . The
simplified expression for the sum-of-products form of the function, f can be obtained by
grouping 1’s. Finally, the product-of-sums form of the function, f; can be obtained by
complementing the function, f.

3.7.6  Don’t Care Conditions
The squares of a K-map are marked with 1’s for the minterms of a function. The other
squares are assumed to be 0’s. This is not always true, because there may be situations
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in which the function is not defined for all combinations of the variables. Such functions
having undefined outputs for certain combinations of literals are called “incompletely
specified functions.” One does not normally care about the value of the function for
undefined minterms. Therefore, the undefined minterms of a function are called “don’t
care conditions.” Simply put, the don’t care conditions are situations in which one or more
literals in a minterm can never happen, resulting in nonoccurence of the minterm.

As an example, BCD numbers include ten digits (0 through 9) and are defined by
four bits (0000, through 1001,). However, one can represent binary numbers from 0000,
through 1111, using four bits. This means that the binary combinations 1010, through
1111, (10,4 through 15,,) can never occur in BCD. Therefore, these six combinations (1010,
through 1111,) are don’t care conditions in BCD. The functions for these six combinations
of the four literals are unspecified. The don’t care condition is represented by the symbol
X. This means that the symbol X will be placed inside a square in the K-map for which the
function is unspecified. The don’t care minterms can be used to simplify a function. The
function can be minimized by assigning 1°s or 0’s for X’s in the K-map while determining
adjacent squares. These assigned values of X’s can then be grouped with 1’s or 0’s in the
K-map, depending on the combination that provides the minimum expression. Note that
a don’t care condition may not be required if it does not help in minimizing the function.
To help in understanding the concept of don’t care conditions, the following example is
provided.

Example 3.13
Simplify the function f{4, B, C, D) = = m(0, 2, 5, 8, 10, 12) using a K-map. Assume that
the minterms m,, m,, m, m,, and m,; can never occur.
Solution
The don’t care conditions are
d4,B, C,D)=2m(l,4,6,7,15)
Figure 3.41 shows the K-map. By assigning X = 1 and combining 1’s as shown, f can be
expressed in sum-of-products form as follows:
f=CD+4B+BD
On the other hand, by assigning X = 0 and combining 0’s as shown in Figure 3.42, fcan
be obtained as a product-of-sums. Thus,
f =CD+ 4D + BC
f =f=CD+4D + BC
= (CD)(4D)(BC)
=({C+D)A+D)B+7C)

3.7.7  Five-Variable K-map

Figure 3.43 shows a five-variable K-map. The five-variable K-map contains 32 squares. It
contains two four-variable maps for BCDE with 4 = 0 in one of the two maps and 4 =1 in
the other. The value of a minterm in each map can be determined by the decimal value of
the five literals. For example, minterm m,, from Figure 3.43(a) can be expressed in terms
of the five literals as ABCDE. On the other hand, minterm m, can be expressed in terms of
the five literals from Figure 3.43(b) as ABCDE.

When simplifying a function, each K-map can first be considered as an individual
four-variable map with 4 = 0 or 4 = 1. Combining of adjacent squares will be identical
to typical four-variable maps. Next, the adjacent squares between the two K-maps can
be determined by placing the map in Figure 3.43(a) on top of the map in Figure 3.43(b).
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Two squares are adjacent when a square in Figure 3.43(a) falls on the square in Figure
3.43(b) and vice versa. For example, minterm m, is adjacent to minterm m,q, minterm m, is
adjacent to minterm m;,,, and so on.

Example 3.14
Simplify the function
fi4, B,C, D, E)=2m(3,7,10, 11, 14, 15, 19, 23)

using a K-map.
Solution
Figure 3.44 shows the K-map.

f=A4BD + BDE
To find the adjacent squares, the K-maps are first considered individually. From Figure
3.44(a), combining minterms m,q, m,,, m,,, and m; will yield the product term ABD.

Minterms m,, and m,, are in the K-map of Figure 3.44(b). However, they are

adjacent to minterms m- and m, in Figure 3.44(a). Combining m;, m;, m,,, and m., together,
the product term BDE can be obtained. Literals 4 or A are not included here because
adjacent squares belong to both 4 = 0 and 4 = 1. Therefore, the minimum form of f'is

f=A4BD + BDE

3.8 Quine-McCluskey Method

When the number of variables in a K-map is more than five, it becomes impractical to use
K-maps in order to minimize a function. A tabular method known as Quine-McCluskey
can be used. A computer program is usually written for the Quine-McCluskey method.
One uses this program to simplify a function with more than five variables.

Like the K-map, the Quine—-McCluskey method first finds all prime implicants
of the function. A minimum number of prime implicants is then selected that defines
the function. In order to understand the Quine-McCluskey method, an example will be
provided using tables and manual check-off procedures. Although a computer program
rather than manual approach is normally used by logic designers, a simple manual example
is presented here so that the method can be easily understood.

The Quine-McCluskey method first tabulates the minterms that define the
function. The following example illustrates how a Boolean function is minimized using
the Quine—McCluskey method.

TABLE 3.2 Simplifying F = 2 m(0, 2, 4, 5, 6, 8, 10) Using the Quine—McCluskey
Method

(@) (i) (i)

Minterm 4 B C D A4 B C D 4 B C D
0 0 0 0 0 vi{02 0 0 - 0 /10246 0 - - 0
2 o 0 1 0 v|04 0 - 0 0 7102810 - 0 - 0
4 o 1 0 0 v]08 - 0 0 0 /10426 0 - - 0
8 1 0 0 0 v]26 0 - 1 0 V108210 - 0 - 0
5 0t 0 1 vi}210 0 1 0 v
6 0 1 1 0 v]45 o 1 0 -
10 1 0 1 0 v|46 0 1 - 0 v

g1 1 0 - 0 v
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Example 3.15

In Example 3.7, F(4, B, C, D) = 2 m(0, 2, 4, 5, 6, 8, 10) is simplified using a K-map. The
minimum form is F = 4 D + B D + ABC. Verify this result using the Quine-McCluskey
method.

Solution

First arrange the binary representation of the minterms as shown in Table 3.2. In the
table, the minterms are grouped according to the number of 1’s contained in their binary
representations. For example, consider column (i). Because minterms m,, m,, and m,
contain one 1, they are grouped together. On the other hand, minterms ms, m,, and m,,
contain two 1’s, so they are grouped together.

Next, consider column (ii). Any two minterms that vary by one bit in column (i)
are grouped together in column (ii). Starting from the top row, proceeding to the bottom
row, and comparing the binary representation of each minterm in column (i), pairs of
minterms having only a one-variable change are grouped together in column (ii) with the
variable bit replaced by the symbol ~. For example, comparing m, = 0000 with m, = 0010,
there is a one-variable change in bit position 1. This is shown in column (ii) by placing
- in bit position 1 with the other three bits unchanged. Therefore, the top row of column
(ii) contains 00-0. The procedure is repeated until all minterms are compared from top to
bottom for one unmatched bit and are represented by replacing this bit position with — and
other bits unchanged. A v is placed on the right-hand side to indicate that this minterm is
compared with all others and its pair with one bit change is found. If a minterm does not
have another minterm with one bit change, no check mark is placed on its right. This means
that the prime implicant will contain four literals and will be included in the simplified of
the function F. In column (i), for each minterm, a corresponding pair with one bit change
is identified. These pairs are listed in column (ii).

Finally, consider column (iii). Each minterm pair in column (ii) is compared to
the next, starting from the top, to find another pair with one bit change; for example m,, m,
= 00-0 and m,, ms = 01-0. For this case, bit position 2 does not match. This bit position is
replaced by — in the top row of column (iii). Therefore, in column (iii), the top row groups
these four minterms 0, 2, 4, 6 with ABCD as 0 — - 0. Similarly, all other pairs in column (ii)
are compared from top to bottom for one bit change and are listed accordingly in column
(iii) if an unmatched bit is found. A check mark is placed in the right of column (ii) if an
unmatched bit is found between two pairs. Note that minterms 4 and 5 do not have any
other pair in the list of column (ii) having one unmatched bit. Therefore, this pair is not
checked on the right and must be included in the simplified form of F as a prime implicant
containing three variables. The two rows of column (iii) (0,2,4,6 and 0,4,2,6) are the same
and contain 0 - — 0. Therefore, this term should be considered once. Similarly, the groups
0,2,8,10 and 0,8,2,10 containing -0-0 should be considered once. In column (iii), there are
no more groups that exist with one unmatched bit.

The comparison process stops. The prime implicants will be the unchecked terms
ABC (from column (ii)) along with, 4 D and B D [from column (iii)]. Thus, the simplified
form for F is

F=AD+BD+ABC

This agrees with the result of Example 3.7.
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Gate Symbol Equivalent Logic Diagram using NAND
Gates
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FIGURE 3.45 Logic equivalents using NAND gates

39 Implementation_of Digital Circuits with NAND, NOR, and Exclusive-OR/
Exclusive-NOR Gates

This section first covers implementation of logic circuits using NAND and NOR gates.
These gates are extensively used for designing digital circuits. The NAND and NOR
gates are called “universal gates” because any digital circuit can be implemented with
them. These gates are, therefore, more commonly used than AND and OR gates. Finally,
Exclusive-NOR gates are used to design parity generation and checking circuits.

3.9.1 NAND Gate Implementation

Any logic operation can be implemented by NAND gates. Figure 3.45 shows how NOT,
AND, OR, and AND-invert operations can be implemented with NAND gates. A Boolean
function can be implemented using NAND gates by first obtaining the simplified expression
of the function in terms of AND-OR- NOT logic operations. The function can then be
converted to NAND logic. A function expressed in sum-of-products form can be readily
implemented using NAND gates.

Example 3.16

Implement the simplified function ' = XY + XZ using NAND gates.
Solution

First implement the function using AND, OR, and NOT gates as follows:

X _—
Y F=XT+XZ

—

Now convert the AND, OR, and NOT gates to NAND gates as follows:
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/AND Gate

X F=XY+XZ
Y
z

«—— AND Gate

I

The NOT gates can be represented as bubbles at the inputs of the OR gate as follows:

¥ o
Y
D St Bog D
"\ NAND Gate
from Figure 3.45

Therefore, the function F = XY + XZ can be implemented using only NAND gates as

follows:
DD

This is a three-level implementation since 3 gate delays are required to obtain the output F.

X

7 —

Y

Example 3.17
Implement the following Boolean function using NAND gates:

f4, B.C,D) =3 m(0,3,4,8,11, 12, 15)
Assume both true and complemented inputs are available.
Solution
From the K-map of Figure 3.46,
f{A, B.C, D) =CD + BCD + ACD

Figure 3.47 shows the logic diagram using AND and OR gates. Note that the logic
circuit of Figure 3.48 (c) has four gate delays. Figure 3.48 shows the various steps for
implementing this circuit using NAND gates. In Figure 3.48(a), each AND gate of Figure
3.47 is represented by an AND gate with two inverters at the output. For example, consider
AND gate 1 of Figure 3.47. The AND gate and an inverter are used to form the NAND
gate shown in the top row of Figure 3.48(b) with an inverter (indicated by a bubble at the
OR gate input). AND gates 3 and 4 are represented in the same way as AND gate 1 in
Figure 3.48(b).

Finally, in Figure 3.48(c), the OR gate with the bubbles at the input in Figure
3.48(b) is replaced by a NAND gate. Thus, the NAND gate implementation in Figure
3.48(c) is obtained.

Example 3.18
Implement the following functions with NAND gates:

f=(CD + D)(4B)
Assume both true and complemented inputs are available.
Solution
Figure 3.49 showsthe AND-OR implementation ofthe function. The AND-OR implementation
in the figure can be converted to the NAND implementation as shown in Figure 3.50.
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FIGURE 3.49 AND-OR implementation of Example 3.18
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FIGURE 3.50 NAND gate implementation of Figure 3.49

3.9.2 NOR Gate Implementation

Figure 3.51 shows the NOR gate equivalent logic diagrams for NOT, OR, AND, and OR-
invert logic operations. A Boolean function can be implemented using NOR gates by first
obtaining the simplified expression of the function in terms of AND and OR gates. The
function can then be converted to NOR logic. A function expressed in product-of-sums can
be implemented using NOR gates.

Example 3.19
Implement the following function using NOR gates:
f=wh+y)+2
Assume both true and complemented inputs are available.
Solution
Figure 3.52 shows the AND-OR implementation of the logic equation. Figure 3.53 shows
the NOR implementation.

Example 3.20
Implement the following function using NOR gates:
f=a(btc)(a+d)
Note that both true and complemented inputs are not available.
Solution
Figure 3.54 shows the AND-OR implementation of the logic equation. Figure 3.55 shows
the NOR implementation.

3.9.3 XOR/XNOR Implementations
As mentioned before, the Exclusive-OR operation between two variables 4 and B can be
expressed as
A®B=4B + 4B.
The Exclusive-NOR or equivalence operation between A and B can be expressed as
AOB=A®B=AB+A4B.

The following identities are applicable to the Exclusive-OR operation:

i) A®0=A+1+4:0=4

i) A®1=4+0+41=4

i) ADA=A+A+A+4=0

iv) A@A=AsA+A*A=4+4=1
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Gate Symbol Equivalent Logic Diagram using NOR
Gates
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FIGURE 3.55 NOR implementation of Example 3.20

Finally, Exclusive-OR is commutative and associative:

A®B =B® 4
(ABA)DC =ADBDC)
=A®B®C

The Exclusive-NOR operation among three or more variables is called an “even
function” because the Exclusive-NOR operation among three or more variables includes
product terms in which each term contains an even number of 1’s. For example, consider
Exclusive-NORing three variables as follows:

f=A@B®C=(AB+A4AB)®C
Let D = AB + AB. ThenD = AB + AB = AB + A B. Hence,
f=D®C

=DC+DC

= (AB + AB)C + (AB + AB)C

= (AB + AB)C + (AB + A B)C
Hence,

f =ABC+ABC+ABC+4BC

Note that in this equation, /= 1 when one or more product terms in the equation
are 1. However, by inspection, the binary equivalents of the right-hand side of the equation
are 101, 011, 110, and 000. That is, the function is expressed as the logical sum (OR) of
product terms containing even numbers of ones. Therefore, the function is called an even
function. Similarly, it can be shown that Exclusive-OR operation among three or more
variables is an odd function.

Exclusive-OR or Exclusive-NOR operation can be used for error detection and
correction using parity during data transmission. Note that parity can be classified as either
odd or even. The parity is defined by the number of 1’s contained in a string of data bits.
When the data contains an odd number of 1’s, the data is said to have “odd parity”; On the
other hand, the data has “even parity” when the number of 1’s is even. To illustrate how
parity is used as an error check bit during data transmission, consider Figure 3.56.

Suppose that Computer X is required to transmit a 3-bit message to Computer
Y. To ensure that data is transmitted properly, an extra bit called the parity bit can be
added by the transmitting Computer X before sending the data. In other words, Computer
X generates the parity bit depending on whether odd or even parity is used during the
transmission. Suppose that odd parity is used. The odd parity bit for the three-bit message
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FIGURE 3.57 Implementation of parity generation and checking using XOR / XNOR
gates

will be as follows:

Message Odd Parity Bit
A B C P
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 | 0

Here P = | when the 3-bit message 4BC contains an even number of 1’s. Thus, the parity
bit will ensure that the 3-bit message contains an odd number of 1’s before transmission.
P =1 when the message contains an even number of 1°s. Therefore, P is an even function.
Thus,
P=4®B®C

The transmitting Computer X generates this parity bit. Computer X then transmits
4-bit information (a 3-bit message along with the parity bit) to Computer Y. Computer ¥
receives this 4-bit information and checks to see whether each 4-bit data item contains an
odd number of 1’s (odd parity). If the parity is odd, Computer Y accepts the 3-bit message;
otherwise the computer sends the 4-bit information back to Computer X for retransmission.
Note that Computer Y checks the parity of the transmitted data using the equation

E=PoA4®B®C

Here the error E = 1 if the four bits have an even number of ones (even parity). That is, at
least one of the four bits is changed during transmission. On the other hand, the error bit, £
= 0 if the 4-bit data has an odd number of ones. Figure 3.57 shows the implementation of
the parity bit, P =4 ® B ® C, and the error bit, E=PD®ADB® C.
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QUESTIONS AND PROBLEMS

3.1  Perform the following operations. Include your answers in hexadecimal.
A6,, OR 31, F7A, AND D80,; 36,, ® 2A,

32  Given4=1001,,B=1101,,find: AORB; BAA; 4; A D A.

3.3 Perform the following operation: A7,, @ FF,,. What is the relationship of the result

to A7,?
3.4 Prove the following identities algebraically and by means of truth tables:
(a) (A+B)(A+B)=0
(b) A+A4B=A4+B
(c) XY +XY+XT+XY=1
(d) (A+A4AB)=4B
(e) X+)X+7)=X®Y
() BC+ABC=A4C=C® (4B)
3.5 Simplify each of the following Boolean expressions as much as possible using
identities:
(a) XY+(1®X) +XZ+XY+XZ
(b) ABC + ABCD + ABD
(c) BC + ABCD + ABCD + ABCD
(d) (X + Y)(XY) + ZXY + XZY
3.6 Using DeMorgan’s theorem, draw logic diagrams for F = ABC + 4 B + BC
(a) Using only AND gates and inverters.
(b) Using only OR gates and inverters.

You may use two-input and three-input AND and OR gates for (a) and (b).

3.7  Using truth tables, express each one of the following functions and their complements
in terms of sum of minterms and product of maxterms:

(a) F=ABC +ABD + ABC + ACD
(b) F=(W+X+Y)WX+7Y)
3.8 Express each of the following expressions in terms of minterms and maxterms.
(a) F=BC+4B+B(A+C)
(b) F=(A+B+C)(A+B)
3.9 Minimize each of the following functions using a K-map:
(a) K(4,B,0)=Zm(0,1,4,5)
(b) FA4,B,0)=2m(0,1,2,3,6)
(c) FX, Y, 2)=2Zm(0,2,4,6)
3.10 Minimize each of the following expressions for F using a K-map.
(a) F(4, B, C) = E 'C__‘_+ ABC + ABC
(b) F(4, B, C) =ABC + BC

(©) F(4,B,C)=AC+ABTC + BC)



96
3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

Fundamentals of Digital Logic and Microcomputer Design

Simplify each of the following functions for " using a K-map.
(@) Fw X, Y,Z)=2m(0,1,4,5,8,9)

(b) F(4,B, C, D)=2m(0,2,8,10,12,14)

(c) F(4, B, C, D) =2m(2,4,5,6,7, 10, 14)

d Fw, X Y, 2) =2m(2,3,6,7,8,9,12,13)

(e) FOW, X, Y, Z) =2m(0,2,4,6,8, 10, 12, 14)

® FWw X, Y,Z)=£m(1,3,5,7,9,11, 13, 15)

Minimize each of the following expressions for F using a K-map in sums-of-product
form:

(a) FW, X, Y,2)=WXYZ+ WYZ
(b) F=A4ABCD +4CD + ABCD _ 3 _
() F=(A+B+C+D)(A+B+C+D)A+B+C+D)

Find essential prime implicants and then minimize each of the following functions
for F using a K-map:

(a) F(4,B,C,D)=3m(3,4,5,7, 11,12, 15)

(b) FW,X,Y,2)=2m(2,3,6,7,8,9,12,13,15)

Minimize each of the following functions for f using a K-map and don’t care
conditions, d.
(a fi4,B,0)=2m(1,2,4,7)
d(4, B, C) =2 m(5, 6)
b X Y,Z2y=Zm(2,6)
X, Y,2)=2m(0, 1,3,4,5,7)
() Afi4,B,C,D)=32m(0,2,3,11)
d(4,B,C,D)=2m(1, 8,9, 10)
(d) fi4,B,C,D)y=Zm#4,5,10,11)
d(4, B, C, D)y=2m(12, 13, 14, 15)

Minimize the following expression using the Quine-McCluskey method. Verify the
results using a K-map. Draw logic diagrams using NAND gates. Assume true and
complemented inputs. F(4, B, C,D)=Zm(0, 1,4, 5, 8, 12)

Minimize the following expression using a K-map:
F=AB+ABCD+CD+ABCD

and then draw schematics using:

(a) NAND gates.

®) NOR gates.

Minimize the following function F(4, B, C, D) = X m(6, 7, 8, 9) assuming that the
condition 4B = 11, can never occur. Draw schematics using:

(a) NAND gates.

(b) NOR gates.

It is desired to compare two 4-bit numbers for equality. If the two numbers are
equal, the circuit will generate an output of 1. Draw a logic circuit using a minimum
number of gates of your choice.
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3.19

3.20

3.21

3.22

3.23

Show analytically that 4 ® {4 ® B) = B.

Show that the Boolean function, f=4 @ B ® AB between two variables, 4 and B,
can be implemented using a single two-input gate.

Design a parity generation circuit for a 5-bit data (4-bit message with an even parity
bit) to be transmitted by computer X. The receiving computer Y will generate an
error bit, £ = 1, if the 5-bit data received has an odd parity; otherwise, £=0. Draw
logic diagrams for both parity generation and checking using XOR gates.

Draw a logic diagram for a two-input (A,B) Exclusive-OR operation using only four
two-input (A,B) NAND gates. Assume that complemented inputs A and B are not
available.

Determine by inspection whether the function, F in each of the following is odd or
even, and comment on the result:
(a) F=A®B®C (b) F= A®B&C
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COMBINATIONAL
LOGIC DESIGN

This chapter describes analysis and design of combinational logic circuits. Topics include
BCD to seven-segment code converters, adders, subtractors, comparators, decoders, and
multiplexers. An overview of ROMs, PLDs and hardware description languages is also
included.

4.1 Basic Concepts

Digital logic circuits can be classified into two types: combinational and sequential. A
combinational circuit is designed using logic gates in which application of inputs generates
the outputs at any time. An example of a combinational circuit is an adder, which produces
the result of addition as output upon application of the two numbers to be added as inputs.

A sequential circuit, on the other hand, is designed using logic gates and memory
elements known as “flip-flops. " Note that the flip-flop is a one-bit memory. A sequential
circuit generates the circuit outputs based on the present inputs and the outputs (states)
of the memory elements. The sequential circuit is basically a combinational circuit with
memory. Note that a combinational circuit does not require any memory (flip-flops),
whereas sequential circuits require flip-flops to remember the present states. A counter is
a typical example of a sequential circuit. To illustrate the sequential circuit, suppose that
it is desired to count in the sequence 0, 1, 2, 3, 0, 1,... and repeat. In binary, the sequence
is 00, 01, 10, 11, 00, 01, ..., and so on. This means that a two-bit memory using two flip-
flops is required for storing the two bits of the counter because each flip-flop stores one bit.
Let us call these flip-flops with outputs 4 and B. Note that initially 4 = 0 and B = 0. The
flip-flop changes outputs upon application of a clock pulse. With appropriate inputs to the
flip-flops and then applying the clock pulse, the flip-flops change the states (outputs) to 4
=0, B= 1. Thus, the count to 1 can be obtained. The flip-flops store (remember) this count.
Upon application of appropriate inputs along with the clock, the flip-flops will change the
status to 4 = 1, B = 0; thus, the count to 2 is obtained. The flip-flops remember (store) this
count at the outputs until a common clock pulse is applied to the flip-flops. The inputs to
the flip-flops are manipulated by a combinational circuit based on 4 and B as inputs. For

Z2=1

: S
Y 2
Fy
F
' D—er—zz

FIGURE 4.1 Analysis of a combinational logic circuit
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example, consider 4 = 1, B = 0. The inputs to the flip-flops are determined in such a way
that the flip-flops change the states at the clock pulse to 4 = 1, B=1; thus, the count to 3 is
obtained. The process is repeated.

4.2 Analysis of a Combinational Logic Circuit

A combinational logic circuit can be analyzed by (i) first, identifying the number of inputs
and outputs, (ii) expressing the output functions in terms of the inputs, and (iii) determining
the truth table for the logic diagram. As an example, consider the combinational circuit in
Figure 4.1 There are three inputs (X, ¥, and Z) and two outputs (Z, and Z,) in the circuit.
Let us now express the outputs F, and F, in terms of the inputs. The output F;
of the AND gate #1 is F, = XY. The output F, of NOR gate #2 can be expressed as
F,=X+7. The output of the XOR gate #3 is
F,=X®F=(X®XY)
Because one of the inputs of the XOR gate #4 is 1, its output is inverted. Therefore,
Z,=F,=X+Y.
Finally,
Z,=X®F=X®X®XY)
Therefore,
Z,=X®X XY +XXY)
=X®X-(X+7))
=X®(XY)
=X(XY)+X(XY)
=X(X+Y)
=XY

TABLE 4.1 Truth Table for Figure 4.1 with Input, Z = 1

Inputs Outputs
X Y Z, Z,
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

TABLE 4.2 Truth Table for F

N

[ e = I =)
—_— O O = = O O|W
—_ o — o = o — ol
O — o = e = O™y
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ABCOO 01 11 10

0 ”1\! U_““"D' F=AB+BC+4B +BC
= 7 | —uen+ee

T L) &

(a) K-map for F

A -
B
F
C
(b) Logic Diagram for the output, F

FIGURE 4.2 K-map and the logic diagram for £

Another way of determinig Z, is provided below:
Z=XOF=X®@XPXY)=XOXDXY=0 ®XY)=XY

The Z, truth table shown in Table 4.1 can be obtained by using the logic equations for Z,

and Z,.

4.3 Design of a Combinational Circuit

A combinational circuit can be designed using three steps as follows:
1) Determine the inputs and the outputs from problem definition and then derive the truth
table.
2) Use K-maps to minimize the number of inputs (literals) in order to express the outputs.
This reduces the number of gates and thus the implementation cost.
3) Draw the logic diagram
In order to illustrate the design procedure, consider the following example.
Suppose that it is desired to design a combinational circuit with three inputs (4, B, and
C) and one output F. The output F'is one if 4, B, and C arenotequal 4 #B#C); F =0
otherwise.First, the number of inputs and outputs are identified. There are three inputs (4,
B, and C) and one output, F. Next the truth table is obtained as shown in Table 4.2. F in the
truth table of Table 4.2 is simplified using a K-map and implemented as shown in Figure
4.2. Note that this is one of the solutions. There are more than one implementation for this
problem.

a
W—-— BCD b —
X— to c IU []b
Seven-Segment d —i
Y ' Code € . .
S d
Z ————— Converter < >
Common Cathode
Display

FIGURE 4.3 BCD to seven-segment code converter
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4.4 Multiple-Output Combinational Circuits

A combinational circuit may have more than one output. In such a situation, each output
must be expressed as a function of the inputs. A digital circuit called the “code converter”
is an example of multiple-output circuits. A code converter transforms information from
one binary code to another. As an example, consider the BCD to seven-segment code
converter shown in Figure 4.3. The code converter in the figure can be designed to translate
the BCD inputs (W, X, Y, and Z) to seven-segment code for displaying decimal digits.
The inputs W, X, ¥, and Z can be entered into the code converter via four switches as was
discussed in Chapter 1. A combinational circuit can be designed for the code converter
that will translate each digit entered using four bits into seven output bits (one bit for each
segment) of the display.

In this case, the code converter has four inputs and seven outputs. This code
converter is commonly known as a “BCD to seven-segment decoder.” With four bits (W,
X, Y, and Z), there are sixteen combinations (0000 through 1111) of 1’s and 0’s. BCD
allows only 10 (0000 through 1001) of these 16 combinations, so the invalid numbers
(1010 through 1111) will never occur for BCD and can be considered as don’t cares in K-
maps because it does not matter what the seven outputs (a through g) are for these invalid
combinations.

The 7447 (TTL) is a commercially available BCD to 7-segment decoder/driver
chip. Itis designed for driving a common-anode display. A LOW output will lighta segment
while a HIGH output will turn it OFF. For normal operation, the LT (Lamp test) and BI/
RBO (Blanking Input / Ripple Blanking Input) must be open or conntected to HIGH. The
7448 chip, on the other hand, is designed for driving a common-cathode display.

TABLE 4.3 Truth Table for Converting Decimal Digits (Since common-cathode, a 1
will turn a segment ON and a 0 will turn it OFF)

Decimal BCD Input Bits Seven-Segment Output Bits
Digit to be
Displayed
w X Y Z a b c d e f g
2 0 0 1 0 1 1 0 1 1 0 1
4 0 1 0 0 0 1 1 0 0 1 1
9 1 0 0 1 1 1 1 0 0 1 1
W}goo 01 11 104 w001 11 ‘10}
00 : Ll 00 1\ 1}
o wif 1]

11| X fX X\] X ni\i‘JF.—?} X
o [ o L[]

i) K-map fora: a=WZ+XYZ i) K-map forb: b=XTVZ+WZ+XYZ

=Z(XY+XN+WZ
=ZX®Y)+WZ



Combinational Logic Design

W(}KZ 00 01

11 ,10;

00 E,_lJ
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i) K-map fora: a=WZ+XYZ

% 00 11 10
00
01 1 l
i -
nli X X I X
10 X X
iii) K-map for ¢: XYZ+WZ
78 00 11 110
00 1
01
n| X X [ X
10 X |[x
"
v) K-map fore: e=XYZ
WX 00 11110
00 1
01

vii) K-map for g
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%8 00 o1 ' :
00 1

n

i) K-map forb: b=XYZ+WZ+XYZ
=Z(XY+XV)+ WZ
=ZX®YV)+WZ

WX 00 01 11 110

00 L1

01

10 X [‘3?\

+

iv) K-map ford: d=XYZ

00

|

N A
11 §ij (X i X
1| x]

X

vi) K-map for f: f=XYZ+WZ

g=XYZ+WZ+XYZ

=Z(XY+XY)+ WZ
=ZX®N+WZ
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D—
DD

Nf o~ o~ NI o~ &I Ng

borg

:

corf

viii) Logic diagram assuming both true and complemented values of the inputs are
available.

FIGURE 4.4 BCD to seven-segment decoder for decimal digits 2, 4, and 9

To illustrate the design of a BCD to seven-segment decoder, consider designing
a code converter for displaying the decimal digits 2, 4, and 9, using the diagram shown in
Figure 4.3. First, it is obvious that the BCD to seven-segment decoder has four inputs and
seven outputs. Table 4.3 shows the truth table.

For the valid BCD digits that are not displayed (0, 1, 3, 5, 6, 7, 8) in this example,
the combinational circuit for the code converter will generate 0’s for the seven output bits
(a through g). However, these seven bits will be don’t-cares in the K-map for the invalid
BCD digits 10 through 15. Figure 4.4 shows the K-maps and the logic diagram.

TABLE 4.4 Truth Table for Example 4.1

Decimal Digit Input BCD Code Output Gray Code
w X Y 4 S5 S A S
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 0 0 0 1 1
3 0 0 1 1 0 0 1 0
4 0 1 0 0 0 1 1 0
5 0 1 0 1 0 1 1 1
6 0 1 1 0 0 1 0 1
7 0 1 1 1 0 1 0 0
8 1 0 0 0 1 1 0 0
9 1 0 0 1 1 1 0 1
WRN- 00 01 1110 W00 01 11 10
00 00
- T
01 01 ]’ 1 1 1 1 z
xIx T x [ x) & Tx x| %)
gl i “¥ %
of 1| 1 X | X ol | 1| x | x/
a) K-map for f; b) K-map for

=W fL=W+X
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00
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YZ
N 00 01 10
00 1 ﬂ
01 1 1

11| X X X X

ol | x |lx)

¢) K-map for f; d) K-map for f;
fi=XY+XY fo=YZ+YZ
=X®Y =Y®Z
w » Sy
—— ;
: D> 5

e) Logic diagram for Example 4.1

FIGURE 4.5 K-maps and Logic Circuit for Example 4.1

Example 4.1

Design a digital circuit that will convert the BCD codes for the decimal digits (0 through

9) to their Gray codes.
Solution

Because both Gray code and BCD code are represented by four bits for each decimal digit,
there are four inputs and four outputs. Table 4.4 shows the truth table. Note that 4-bit binary

Bits
to be
added

FIGURE 4.6  Block Diagram of a Half-Adder

x =

y ——————

Half
Adder
(HA)

F—————> S (Sum)

f———>» C(Carry)

TABLE 4.5 Truth Table of the Half-Adder

Inputs Qutputs Decimal
Value
X y C S
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 0 2
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D
y 7

FIGURE 4.7 Logic diagram of the half-adder

combination will provide 16 (2) combinations of 1’s and 0’s. Because only ten of these
combinations (0000 through 1001) are allowed in BCD, the invalid combinations 1010
through 1111 can never occur in BCD. Therefore, these six binary inputs are considered
as don’t cares. This means that it does not matter what binary values are assumed by
fi o fi 1o for WXYZ = 1010 through 1111. Figure 4.5 shows the K-maps and the logic
circuit.

4.5 Typical Combinational Circuits

This section describes typical combinational circuits. Topics include binary adders,
subtractors, comparators, decoders, encoders, multiplexers, and demultiplexers. These
digital components are implemented in MSI chips.

4.5.1 Binary/BCD Adders and Binary Subtractors

When two bits x and y are added, a sum and a carry are generated. A combinational circuit
that adds two bits is called a “half-adder.” Figure 4.6 shows a block diagram of the half-
adder. Table 4.5 shows the truth table of the half-adder. From Table 4.5, S =xy +xy = x
®y,C=xy

Figure 4.7 shows the logic diagram of the half-adder.
Next, consider addition of two 4-bit numbers as follows (next page):

———> ——

x Full $ (Sum)
—_—>

r—— 5 Ader L ¢ (Output Carry)

FIGURE 4.8  Block diagram of a full adder

TABLE 4.6 Truth Table of a Full Adder

Inputs Outputs Decimal
Value

_—m e e OO O Of%
—_— et DO = = O O
_— D e O = O = ON
—_ = O = OO OO0
—_ 0 O~ O = = Ol
W NN =N = =0
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0 1 0 < <—— Carries
0O |0 |1 |0
+0 {0 {1 {0
1 0 O

Sum= (
Final Carry = 0 <
This addition of two bits will generate a sum and a carry. The carry may be 0 or 1. Also,
there will be no previous carry while adding the least significant bits (bit 0) of the two
numbers. This means that two bits need to be added for bit 0 of the two numbers. On the
other hand, addition of three bits (two bits of the two numbers and a previous carry, which
may be 0 or 1) is required for all the subsequent bits. Note that two half-adders are required
to add three bits. A combinational circuit that adds three bits, generating a sum and a carry
(which may be 0 or 1), is called a “full adder.” Figure 4.8 shows the block diagram of a full
adder. The full adder adds three bits, x, y, and z, and generates a sum and a carry. Table 4.6
shows the truth table of a full adder.
From the truth table, S=xyz+xyz+xyz+xyz=(xy+xy)z+(xy +xy) z
Letw=Xxy+xythenw=xy+xy Hence, S=wz+wz=w@z=x®y Dz
Also, from the truth table, C = xyz + xyz + xyz + xpz = (xy + xp)z + xy(z + 2)
=wz t+xy
where w = (xy + xy) = x @ y. Hence, C = (x ® y)z + xy.

Another form of Carry can be written as follows:

C=xyz+xyz + xyz + xpz = xyz + xyz + xyz + xpz + xyz+ xyz (Adding redundant terms xyz)
=yz (X+xX)rxz(+y)txy@+z)=yz+xz+xy

Figure 4.9 shows the logic diagram of a full adder.

Note that the names half-adder and full adder are based on the fact that two half-
adders are required to obtain a full adder. This can be obtained as follows. One of the two
half-adders with inputs, x and y will generate the sum, S;=x ® y and the carry, C, = xy. The
sum (S,) output can be connected to one of the inputs of the second half-adder with z as

x—————JF—1 w=x@y
y 7 ——j S=x@y®z
z 7

.:D"y _DiﬁD—c

FIGURE 4.9  Logic diagram of a full adder

Yy X, Y: X% Yy %

LD

FA FA FA HA

*o

— =

Cn G Cin
6o l
= Final
Carry v )
Outpt 5 5 5 G 5 G 5

FIGURE 4.10  4-bit binary adder using one half-adder and three full adders
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Yy X3 Y X2 Yiroox Yo %o

FA FA FA FAc

= Final
Carry v
Ovtput 55 G 5 G S5 G S

FIGURE 4.11  Four-bit binary adder using full adders

the other input. Thus, the sum output (S) and the carry output (C, ) of the second half-adder
willbe S=x ®y ® z and C, = (x @ y)z. The carry outputs of the two half-adders can be
logically ORed to provide the carry (C) of the full adder as C = (x @ y)z + xy. Therefore,
two half-adders and a two-input OR gate can be used to obtain a full adder.

A 4-bit binary adder (also called “Ripple Carry Adder”) for adding two 4-bit
numbers x, x, x, X, and y; v, ¥, y, can be implemented using one half-adder and three full
adders as shown in Figure 4.10. A full adder adds two bits if one of its inputs C,, = 0.
This means that the half-adder in Figure 4.10 can be replaced by a full adder with its C,,
connected to ground. Figure 4.11 shows implementation of a 4-bit binary adder using four
full adders.

From Chapter 2, addition of two BCD digits is correct if the binary sum is less
than or equal to 1001, (9 in decimal). A binary sum greater than 1001, results into an
invalid BCD sum; adding 0110, to an invalid BCD sum provides the correct sum with an
output carry of 1. Furthermore, addition of two BCD digits (each digit having a maximum
value of 9) along with carry will require correction if the sum is in the range 16 decimal
through 19 decimal. A BCD adder can be designed by implementing required corrections
in the result for decimal numbers from 10 through 19 (1010, through 10011,). Therefore,
a correction is necessary for the following:

i) If the binary sum is greater than or equal to decimal 16 (This will generate a carry of
one)
i1) If the binary sum is 1010, through 1111,. For example, consider adding packed BCD

numbers 99 and 38:
111+«Intermediate Carries

99 1001 1001 BCD for 99
+38 0011 1000 BCD for 38
137 1101 0001 invalid sum
+0110 +0110 add 6 for correction
0001 0011 0111
e e —
1 3 7 « correct answer 137

This means that a carry (C,,) is generated: i) when the binary sum, S,S,S,S,=
1010, through 1111, or ii) when the binary sum is greater than or equal to decimal 16. For
case 1), using a K-map, C,,= §;S,+ S, S; as follows (next page):
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0
S e\ 01 11 10

3 2
00

01

" Ll i

10 1 1

Hence, C;,=8§,8;+ 8,8, = S; (§,+8S,). Combining cases i) and ii), C, = C,+ S,
(S,+8,). This is implemented in the Figure 4.12.

Note that C, is the output carry of the BCD adder while C, is the carry output
from the first binary adder. When C, = 0, zeros are added to S,S,S,S,. This situation
occurs when 88,85, is less than or equal to 1001,. However, when C,= 1, the binary
number 0110 is added to S,S,S,S,using the second 4-bit adder. This situation occurs when
S,S,8,8, is greater than or equal to binary 1010 or when S,S,S,S, is greater than or equal to
16 decimal. The carry output from the second 4-bit adder can be discarded. Note that BCD
parallel adder for adding n BCD digits can be obtained using n BCD adders by connecting
the output carry ( C, ) of each low BCD adder to C,, of the next BCD adder.

Next, half-subtractor and full-subtractor will be discussed. Similar to half-adder
and full-adder, there are half-subtractor and full-subtractor. Using half- and full-subtractors,
subtraction operation can be implemented with logic circuits in a direct manner. A half-
subtractor is a combinational circuit that subtracts two bits generating a result (R) bit and
a borrow (B) bit. The truth table for the half-subtractor is provided below:

X (minuend) y (subtrahend) B (borrow) R (result)
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

The borrow (B) is 0 if x is greater than or equal to y; B =1 if x is less than y.

From the truth table, R=xy+xy=x®y andB=Xxy.

A full -subtractor is a combinational circuit that performs the operation among three bits
X -y - z generating a result bit (R) and a borrow bit (B). The truth table for the full-

B
te Lo
C  4-BITADDER

S, S, S8 S

L

4-BIT ADDER

V' SUM (BCD)

FIGURE 4.12 BCD Adder
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subtractor is provided below:

X y z B (Borrow) R (Result)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

From the above truth table, the following equations can be obtained:
R=x@®y®zand B=xy+xz+yz

It is advantageous to implement addition and subtraction with full-adders since both
operations can be obtained using a single logic circuit.

4.5.2 Comparators
The digital comparator is a widely used combinational system. Figure 4.13 shows a 2-bit

4 Zl Two-bit G 4>B
0 —» -
by » Comparator E A=8

By b, Lb——> 4<B

FIGURE 4.13  Block diagram of a two-bit comparator

TABLE 4.7 Truth Table for the 2-Bit Comparator

Inputs Outputs
a, a, b, b, G E L
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0
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b) Logic Diagram of the 2-bit comparator

FIGURE 4.14  Design of a 2-bit comparator
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digital comparator, which provides the result of comparing two 2-bit unsigned numbers as
follows:

Input Comparison Qutputs
G E L
A>B 1 0 0
A<B 0 0 1
A=B 0 1 0

Table 4.7 provides the truth table for the 2-bit comparator.
Figure 4.14 shows the K-map and the logic diagram:

4.5.3  Decoders

An n-bit binary number provides 2° minterms or maxterms. For example, a 2-bit binary

number will generate 4 (22) minterms or maxterms. A decoder is a combinational circuit

, when enabled, selects one of 2" minterms or maxterms at the output based on the input

combinations. However, a decoder sometimes may have less than 2 outputs. For example,

the BCD to seven-segment decoder has 4 inputs and 7 outputs rather than 16 (2*) outputs.
The block diagram of a 2-to-4 decoder is shown in Figure 4.15. Table 4.8 provides

x >4,
! 2404 L— > d,

—>
ng Decoder ——> 4,
(Enable) s

FIGURE 4.15  Block diagram of the 2-to-4 decoder

TABLE 4.8 Truth Table of the 2-to-4 Decoder

Inputs Qutputs
E X X dy d, d, d,
0 X X 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1
X1 X

ot ),

o w—

0—} d,

E _\ 4

FIGURE 4.16 Logic diagram of the 2-to-4 decoder
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0 dO
2-to-4 1 >d,
Decoder 2 >d,
X3 0 E 3 > d,
xz 1
x, 2-to-4
Decoder 2
Xo s >0t Y —>d,
-1o 1 > d
Enable >
e E ] Decoder 2 > d:
E 3 >d,
0 > d,
2-to-4 4 > dg
Decoder 2 >d,
E 3 >d,,
0 >d,
2-to-4 4 >d,;
Decoder 2 >d,,
E 3 >d;

FIGURE 4.17 Implementation of a 4-to-16 Decoder Using 2-to-4 decoders

the truth table. In the truth table, the symbol X is the don’t care condition, which can be 0 or
1. Also, E = 0 disables the decoder. On the other hand, the decoder is enabled when £ = 1.
For example, when E = 1, x, = 0, x, =0, and the output d, is HIGH while the other outputs
d,, d,, and d, are zero. Note that d, = Ex, X,, d, = Ex,x,, d, = Ex,X,, and d; = Ex, x,.

Therefore, the 2-to-4 line decoder outputs one of the four minterms of the two input
variables x, and x, when E = 1. In general, for n inputs, the n-to 2" decoder when enabled
selects one of 2" minterms or maxterms at the output based on the input combinations. The
decoder actually provides binary to decimal conversion operation. Using the truth table
of Table 4.8, a logic diagram of the 2-to-4 decoder can be obtained as shown in Figure
4.16. Large decoders can be designed using small decoders as the building blocks. For
example, a 4-to-16 line decoder can be designed using five 2-to-4 decoders as shown in

Figure 4.17.
) SUM
) CARRY

FIGURE 4.18  Implementation of a Full-adder Using a 74138 Decoder and Two 4-input
AND Gates

Y—3 g 3-to-8
Z— A decoder
\ 74138

+5V—MG

R R T
?QQ VjTQ

Note that the bubble,@ at the decoder
output indicates LOW when selected.
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Commercially available decoders are normally built using NAND gates rather
than AND gates because it is less expensive to produce the selected decoder output in its
complement form. Also, most commercial decoders contain one or more enable inputs to
control the circuit operation. An example of the commercial decoder is the 74HC138 or
the 74LS138. This is a 3-to-8 decoder with three enable lines G,, G,,, and G,;. When
G, = H, G,, = L and G5 = L, the decoder is enabled. The decoder has three inputs, C, B,
and A4, and eight outputs Y, ¥, Y5, ..., ¥;. With CBA = 001 and the decoder enabled, the
selected output line Y; (line 1) goes to LOW while the other output lines stay HIGH.

Because any Boolean function can be expressed as a logical sum of minterms, a
decoder can be used to produce the minterms. A Boolean function can then be obtained
by logical operation of the appropriate minterms. However, since the 74138 generates a
LOW on the selected output line, a Boolean function can be obtained by logically ANDing
the appropriate minterms. For example, consider the truth table of the full adder listed in
Table 4.6. The inverted sum and the inverted carry can be expressed in terms of minterms
as follows:

SUM=% m(0,3,5,6), SUM=my*m;mse*m,

CARRY =3 m(0,1,2,4), CARRY=m,*m,*m,*m,
Figure 4.18 shows the implementation of a full adder using a 74138 decoder (C=X,

B=Y, A=Z7) and two 4-input AND gates. Note that the 74138 in the Manufacturer’s data
book uses the symbols C, B, 4 as three inputs to the decoder with C as the most significant

d, ——> 4-t0-2 > X,

d,— Encoder }—> & N

FIGURE 4.19  Block diagram of a 4-to-2 encoder
TABLE 4.9 Truth Table of the 4-to-2 Encoder

Inputs Outputs
dy d, d, d, x Xy
1 0 0
0 1 0 0 1
0 0 1 0 1 0
0 0 1 1 1

TABLE 4.10  Truth Table of the 4-to-2 Priority Encoder

Inputs Outputs
d, d, d, d, x X
1 0 0 0 0
X 1 0 0 0 1
X X 1 0 1 0
X X X 1 1 1

X means don’t care
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FIGURE 4.20 K-maps and logic diagram of a 4-to-2 priority encoder

bit and A as the least significant bit.

454 Encoders

An encoder is a combinational circuit that performs the reverse operation of a decoder. An

encoder has a maximum of 2" inputs and » outputs. Figure

4.19 shows the block diagram

of a 4-to-2 encoder. Table 4.9 provides the truth table of the 4-to-2 encoder.
From the truth table, it can be concluded that an encoder actually performs

d, 0
d— N1 MUX }—>Z

s— T
FIGURE 4.21 Block diagram of a 2-to-1 multiplexer

TABLE 4.11  Truth Table of the 2-to-1 Multiplexer

N

_—_— e —, 0 O o O wn
—_—_ 0 O = - o O
— o - O = o — © a

—_— O e O = = O O
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FIGURE 4.22 (a) K-map for the 2-to-1 MUX
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FIGURE 4.22 (b) Logic diagram of the 2-to-1 MUX

decimal-to-binary conversion. In the encoder defined by Table 4.9, it is assumed that only
one of the four inputs can be HIGH at any time. If more than one input is 1 at the same time,
an undefined output is generated. For example, if 4, and d, are 1 at the same time, both x,
and x, are 1. This represents binary 3 rather than 1 or 2. Therefore, in an encoder in which
more than one input can be active simultaneously, a priority scheme must be implemented
in the inputs to ensure that only one input will be encoded at the output.

A 4-to-2 priority encoder will be designed next. Suppose that it is assumed that
inputs with higher subscripts have higher priorities. This means that d; has the highest
priority and d,, has the lowest priority. Therefore, if d, and d, become one simultancously,
the output will be 01 for 4,. Table 4.10 shows the truth table of the 4-to-2 priority encoder.
Figure 4.20 shows the K-maps and the logic diagram of the 4-to-2 priority encoder.

4.5.5  Multiplexers
A multiplexer (abbreviated as MUX) is a combinational circuit that selects one of n input
lines and provides it on the output. Thus, the multiplexer has several inputs and only one
output. The select lines identify or address one of several inputs and provides it on the
output line. Figure 4.21 shows the block diagram of a 2-to-1 multiplexer. The two inputs
can be selected by one select line, S. When S = 0, input line 0 (d,) will be presented as the
output. On the other hand, when S = 1, input line 1 (d;) will be produced at the output.

Table 4.11 shows the truth table of the 2-to-1 multiplexer. From the truth table,
using the K-map of Figure 4.22 (a), it can be shown that Z = Sd, + Sd,. Figure 4.22 (b)
shows the logic diagram. In general, a multiplexer with » select lines can select one of 27
data inputs. Hence, multiplexers are sometimes referred to as “data selectors.”

A large multiplexer can be implemented using a small multiplexer as the building
block. For example, consider the block diagram and the truth table of a 4-to-1 multiplexer
shown in Figure 4.23 and Table 4.12 respectively. The 4-input multiplexer can be

0

1

MUX | 5
d,—>2 z
13

s— T

So

FIGURE 4.23  Block-diagram Representation of a Four-input Multiplexer
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TABLE 4.12  Truth Table of the 4-to-1 Input Multiplexer

S So Z
0 1 d,
1 0 d,
.
[} Zy
Z? MUX 0 ——‘
1 ?MUXZ >z
0 Z,
‘;z MUX 1
5, T
S i

FIGURE 4.24 Implementation of a Four-Input Multiplexer Using Only Two-input
Multiplexers
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FIGURE 4.25 Implementation of a Boolean equation using a 4-to-1 multiplexer

implemented using three 2-to-1 multiplexers as shown in Figure 4.24.

In Figure 4.24, the select line S, is applied as input to the multiplexers MUX 0 and
MUX 1. This means that Z, = d, or d, and Z, = d, or d,, depending on whether S, =0 or 1.
The select line S, is given as input to the multiplexer MUX 2. This implies that Z= Z; if S,
= 0; otherwise Z = Z,. In this arrangement if S,S, = 11, then Z = d; because S, = 1 implies
that Z, = d, and Z, = d, because S, = 1, the MUX 2 selects the data input Z,, and thus Z =
d;. The other entries of the truth table of Table 4.12 can be verified in a similar manner.

Multiplexers can be used to implement Boolean equations. For example, consider
realizing f(x,y,z)= xz+ yz using a 4-to-1 multiplexer. First, the Boolean equation for f(x,y,z)
is expressed in minterm form as follows: f(x,y,z)=xz(y+y) + yz (x + X)= Xyz + Xy z+ xyz +
X yz. The next step is to use two of the three variables (x,y,z) as select inputs. Suppose y
and z are arbitrarily chosen as select inputs. The four combinations ( y z, yz,yz, yz) of the
select inputs, y and z are then required to be factored out of minterm form for f(x,y,z) to
determine the inputs to the 4-to-1 multiplexer as follows: f (x,y,z)= y z(x) +yz (0) +yz(x)
+yz (X +X) =y z(x) + yz (0) +yz(x) +yz (1). Hence, the above equation for f(x,y,z) can be
implemented using the 4-to-1 multiplexer of Figure 4.23 as follows: S=y, S;=z, d,=x,
d;=0, d,=x, dy=1. Figure 4.25 shows the implementation.

Next, consider implementing f(a,b,c) = 2.m (0, 2, 3, 7) using the 4-to-1 multiplexer
of Figure 4.23. The first step is to obtain a table as follows:
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abc f
000 1 N
001 f=c
010 1
111 =1
100 O
101 0 =0
1100
1111 f=c

Hence, the 4-to-1 multiplexer of Figure 4.23 can be connected as follows: S,=a,
Sy="b, di=c, d\=1, d,=0, d;=c. Note that the inputs to the multiplexer are selected from the
above table. For example, when ab=00, output = ¢ because f=1 when ¢=0 and =0 when
c=1.

4.5.6 Demultiplexers

The demultiplexer is a combinational circuit that performs the reverse operation of a
multiplexer. The demultiplexer has only one input and several outputs. One of the outputs is
selected by the combination of 1’s and 0’s of the select inputs. These inputs determine one
of the output lines to be selected; data from the input line is then transferred to the selected
output line. Figure 4.26 shows the block diagram of a 1-to-8 demultiplexer. Suppose that
=1 and S,$,S, = 010; output line d, will be selected and a 1 will be output on d,.

4.6 IEEE Standard Symbols

IEEE has developed standard graphic symbols for commonly used digital components
such as adders, decoders, and multiplexers. These are depicted in Figure 4.27.

Example 4.2
Design a combinational circuit using a decoder and OR gates to implement the function
depicted in Figure 4.28.

Solution
The truth table is shown in Table 4.13.
From the truth table,
Z,=¥m(2,3,5,6,7)
Z,=2m(1,2,3,7)
The logic diagram is shown in Figure 4.29.

i 1-to-8 —>d,
Input |Demultiplexer —»d,

SZ____T”_J
S,
So

FIGURE 4.26  1-t0-8 demultiplexer
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FIGURE 4.27 IEEE Symbols

4 IfC=0,Z follows Band Z,= 4 + B.
B Combinational —>Z
Circuit ZZ
IfC=1,Z,=4+Band Z,= AB.
c ¥ Assume that the decoder output is HIGH when

enabled by E = 1.
FIGURE 4.28 Figure for Example 4.2

Example 4.3

Design combinational circuits using full adders and multiplexers as building blocks to
implement (a) a 4-bit adder/subtractor; add when S =0 and subtract when S =1. (b) multiply
a 4-bit unsigned number by 2 when S=0 and transfer zero to output when S=1.

Solution

(a) The subtraction x — y of two binary numbers can be performed using twos complement
arithmetic. As discussed before, x — y = x + (ones complement of y) + 1.

Using this concept, parallel subtractors can be implemented. A 4-bit adder/subtractor is
shown in Figure 4.30(a). Note that XOR gates (S and y, as inputs) can be used in place of
multiplexers.

The adder/subtractor in Figure 4.30(a) utilizes four MUX’s. Each MUX has one
select line (S) and is capable of selecting one of two lines, y,or y,.

The 4-bit adder/subtractor of Figure 4.30(a) either adds two 4-bit numbers and
performs (x; x, x, x;) ADD (3, ¥, ¥,) when S = 0 or performs the subtraction operation
(x5 %, x, xo) MINUS (y, y, 3, ¥o) for § = 1. The select bit S can be implemented by a
switch. When S = 0, each MUX outputs the true value of y, (n = 0 through 3) to the
corresponding input of the full adder FA, (n = 0 through 3). Because S = 0 (C,, for FA,
= (), the four full adders perform the desired 4-bit addition. When S = 1 (Cj, for FA,
= 1), each MUX generates the ones complement of y, at the corresponding input of the
full adder FA,. Because S = C,, = 1, the four full adders provide the following operation:
(x32,%1 %) = (V31201 ¥0) = (K362, %) + (V3 V2 11 V0 ) T 1
(b) Assume 4-bit output S, S, S, S,. Figure 4.30(b) shows the implementation.
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TABLE 4.13  Truth Table for Example 4.2
Inputs Qutputs
C B A Z Z,
0 0 0 0 0
0 0 1 0 1
0 1 0 1 1
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Cc— ? B
B—
e 3-to-8 2 — z,
decoder 4}
JE— 5
E=1 2
= >—-
FIGURE 4.29 Implementation of Example 4.2 using a decoder and OR gates
?:‘T' 3 X ﬁz X2 ﬁ X Yo %o
10 10 10 (_l 10
MUX MUX MUX MUX
] R P A 3 I
FA3 G FA2 G FA1 G FAO Ga[ oo s
(5 =0, add)
(S = 1, subtract)
A ! ! !
S, G S, ¢ s, G 5
inal Carry (for addition) or Borrow (for subtraction)
FIGURE 4.30 (a) 4-bit Adder / Subtractor
1o ) 10 10
MUX MUX MUX MUX ]
v 3 3 3
FA3 G[¢ } FA2 ij FA1 G FAQ G Selectbi, §
{S = 0, multiply by 2))
ol ! | LJ | Saveme,
Sy G S, < Sy G S,

Figure 4.30 (b) Solution to Part (b)
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FIGURE 4.31 Block-diagram Representation of a ROM

4.7 Read-Only Memories (ROMs)

Read-only memory, commonly called “ROM,” is a nonvolatile memory (meaning that it
retains information in case of power failure) that provides read-only access to the stored
data. A block-diagram representation of a ROM is shown in Figure 4.31. The total capacity
of this ROM is 2" x m bits. Whenever an n-bit address 1is placed on the address line, the
m-bit information stored in this address will appear on the data lines. The m-bit output
generated by the ROM is also called a “word.”

For example, a 1K x 8 (1024 x 8)-bit ROM chip contains 10 address pins (2!° =
1024 = 1K) and 8 data pins. Therefore, n = 10 and m = 8. On the other hand, an 8K x 8
(8192 x 8)-bit ROM chip includes 13 address pins (2> = 8192 = 8K) and 8 data pins. Thus,
n=13andm=8.

A ROM is an LSI chip that can be designed using an array of semiconductor
devices such as diodes, transistors, or MOS transistors. A ROM is a combinational circuit.
Internally, a ROM contains a decoder and OR gates; this is illustrated in Figure 4.32. The
OR gate of the ROM may be built using diodes. A typical 3-input diode OR gate is shown
in Figure 4.33. Resistor R pulls the output down to a LOW level as long as all the inputs
are LOW. However, if either input is connected to a high voltage source (3 to 5 volts), the
output is pulled HIGH to within one diode drop of the input. Thus, the circuit operates as
an OR gate. To illustrate the operation of a ROM, consider the 2 x 4-bit ROM of Figure
4.34. In this system , when 4, A= 00, the decoder output line 0 will be HIGH. This causes
the diodes Dy, and Dy, to conduct, and thus the output Z = Z, Z, Z, Z, = 0011. Similarly,
when 4,4, = 01, the decoder output line 1 goes to high, diode D,, conducts, and the output
will be Z = Z,Z, Z, Z, = 0100. Table 4.14 shows the truth table. ROM implementation
offers a cost-effective solution for building circuits to perform useful tasks such as square
root and transcendental function computations. Although diodes are not normally used for
fabricating ROMs, the above diode-based ROM is shown for illustrative purposes.

Figure 4.35 shows the subcategories of ROMs and their associated technologies.
The various types of ROMs will be discussed next.

A ROM must be programmed before it can be used. This involves placing the
switching devices such as transistors (rather than diodes) at the appropriate intersection
points of the row and column lines. For example, in a mask ROM the contents of the
ROM are initialized by the manufacturer at the time of its production. This means that



122 Fundamentals of Digital Logic and Microcomputer Design

A _, 2" lines
% NP SN
A3y nto 2" Array of
: decoder OR gates
Ay

1]

Zm— 1 va 2 Z] ZO
FIGURE 4.32 Internal Structure of a ROM

C— P4 fa s rC
§,R

FIGURE 4.33  Diode-OR Gate

A

A+ 2-to4 1

1‘);}
Al decoder ‘D;J ].)}J' Dz #

N

vy

«<
<
<

FIGURE 4.34 Hardware Organization of a Typical 2 x 4 ROM

TABLE 4.14 Truth Table implemented by the ROM of Figure 4.34

A4, A, Z, Z Z, Z,
0 0 0 0 1 1
0 1 0 1 0 0
1 0 0 1 1 1
1 1 1 1 0 0
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FIGURE 4.35  Subcategories of ROMs

this approach is well suited for producing a standard circuit such as a bar-code generator.
Because these types of ROMs are mass-produced, their costs are also very low. However,
a mask ROM cannot be reconfigured by a user. That is, a user cannot alter its contents.

Occasionally, a user may wish to develop a specific ROM-based circuit as
demanded by the application area. In this case, a ROM that allows a user to initialize its
contents is required. A ROM with such a flexibility is known as a PROM (programmable
ROM). In this device, the manufacturer places a switching element along with a fusible
link at each intersection. This implies that all ROM cells are initialized with a 1. If a user
desires to store a zero in a particular cell, the fuse is blown at that point. This activity
is called “programming,” and it may be accomplished by passing electrical impulses. It
should be pointed out that in such a ROM a user can program the ROM only once. That is,
it is not possible to reprogram a PROM once the fuse is blown.

When a new product is developed, it may be necessary for the designer to modify
the contents of the ROM. A ROM with this capability is referred to as an EPROM (erasable
programmable ROM). Usually, the contents of this memory are completely erased by
taking the EPROM chip out of the board and exposing the ROM chip to ultraviolet light.
Typical erase times vary between 10 and 30 minutes. After erasure the ROM may be
reprogrammed by passing voltage pulses at the special inputs. The 2764 chip is a typical
example of an EPROM. It is a 28-pin 8K x 8 chip contained in a dual in-line package
(DIP). It has 13 address input pins and 8 data output pins. Note that the 2764 needs 13 (23
= 8192) pins to address 8192 (8K) locations.

The growth in IC technology allowed the production of another type of ROM whose
contents may be erased using electrical impulses. These memory devices are customarily
referred to as “electrically alterable ROMs” (EAROMSs) or “electrically erasable PROMs”
(EEPROMs or E2PROMs). The main advantage of an EEPROM is that its contents (one
or more locations) can be changed without removing the chip from the circuit board. Note
that EPROMs and EAROM s are designed using only MOS transistors.

4.8 Programmable Logic Devices (PLDs)

A programmable logic device (PLD) is a generic name for an IC chip capable of being
programmed by the user after it is manufactured. It is programmed by blowing fuses. A
PLD chip contains an array of AND gates and OR ' gates. There are three types of PLDs.
They are identified by the location of fuses on the AND-OR array. Figure 4.36 shows the
block diagrams of these PLDs.

The PROM was discussed in the last section. A PROM contains a number of fixed
AND gates and programmable OR gates. The PROM can be programmed to represent
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FIGURE 4.36  Types of PLDs
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FIGURE 4.37 Multiple input AND and OR Gate Symbols for PLA

Boolean functions in sum of products (minterms) form. The PAL, on the other hand,
includes programmable AND gates and fixed OR gates. The PAL can be programmed
to implement Boolean functions as a logical sum (OR) of product terms. Finally, the
PLA (programmable logic array) includes several AND and OR gates, both of which are
programmable. The PLA is very flexible in the sense that the necessary AND terms can
be logically ORed to provide the desired Boolean functions. Let us explain the basics of
PLAs. In order to illustrate a PLA, a special AND gate or OR gate symbol with multiple
inputs will be utilized as shown in Figure 4.37. The internal structure of a typical PLA is
shown in Figure 4.38. The AND array of this system generates the required product terms,
and the OR array is used to OR the product terms generated by the array. As in the case of
the ROM, these gate arrays can be realized using diodes, transistors, or MOS devices. The
significance of a PLA is explained in the following example.

Consider the PLA shown in Figure 4.39. This PLA has three inputs, 4, B, and
C. The AND generates from product terms 4 B, 4 C, BC, and AC. These product terms
are logically summed up in the OR array, and the outputs Z,, Z,, and Z, are generated.
Note that the dot in the figure indicates the presence of a switching element such as a
diode or transistor. The use of PLAs is very cost-effective when the number of inputs in a
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FIGURE 4.40 A PLA with Nine Inputs, Six Product Terms, and Three Outputs
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FIGURE 4.41 PLA Implementation of Example 4.3

combinational circuit realized by a ROM is very high and all input combinations are not
used. For example, consider the following multiple output functions:

W+ AE + BC
X=CD+FE
Y=FG+HI

To implement these Boolean functions in a ROM, a 512 x 3 array is needed
because there are nine inputs (4 through I) (2° = 512) and three outputs (W, X, ), but the
same functions can be realized in a PLA using six product terms, nine inputs, and three
outputs, as shown in Figure 4.40. Therefore, a considerable savings in hardware can be
achieved with PLAs.

Example 4.4
Implement Example 4.2 using PLAs.
Solution
From Example 4.2,
Z(A4,B,C) =¥Xm?2,3,56,7)
= CBA + CBA + CBA + CBA + CBA

Z4,B,C} =¥ m(1,2,3,7)
= CBA + CBA + CBA + CBA
Figure 4.41 shows the PLA implementation.

4.9 Commercially Available Field Programmable Devices (FPDs)

Both mask programmable and field programmable PLAs are available. Mask programmable
PLAs are similar to mask ROMs in the sense that they are programmed at the time of
manufacture. Field programmable PLAs (FPLAs) on the other hand, can be programmed
by the user with a computer-aided design (CAD) program to select a minimum number of
product terms to express the Boolean functions.

There are three types of commercially available Field Programmable Devices
(FPDs). These are Simple PLD (SPLD), Complex PLD (CPLD), and Field Programmable
Gate Array (FPGA). Among all SPLDs, PALs are widely used. SPLD uses EPROM
technology to implement the switches. Note that PAL is aregistered trademark of Advanced
Micro Devices, Inc. (AMD). PALs were introduced by Monolithic Memories (a division
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of AMD) in 1970. The PAL chips are usually identified by a two-digit number followed
by a letter and then one or two digits. The first two-digit number specifies the number of
inputs whereas the last one or two digits define the number of outputs. The fixed number
of AND gates are connected to either an OR or a NOR gate. The letter H indicates that the
output gates are OR gates; the letter L is used when the outputs are NOR gates; the letter C
is used when the outputs include both OR and NOR gates. Note that OR outputs generate
active HIGH whereas NORs provide active LOW outputs. On the other hand, OR-NOR
gates include both active HIGH and active LOW outputs.

For example, the PAL16L8 is a 20-pin chip with a maximum of 16 inputs, up to
8 outputs, one power pin, and one ground pin. The 16L8 contains 10 nonshared inputs, six
inputs that are shared by six outputs, and two nonshared outputs. Figure 4.42 shows the pin
diagram of the PAL16L8. Note that PEEL ( Programmable Electrically Erasable Logic)
devices or Erasable PLDs such as 18CV8 or 16V8 are available for instant reprogramming
just like an EEPROM. These devices utilize CMOS EEPROM technology. These erasable
PLDs use electronic switches rather than fuses so that they are erasable and reprogrammable
like EEPROMs.

Due to advent in IC technology, larger PLDs (CPLDs) using SPLDs are designed.
The SPLDs cannot be used for larger digital-design applications. Therefore, CPLD (complex
PLD) chips are designed by the manufacturers such as Altera and Xlinix to accomplish this.
A typical CPLD contains several PLDs (each PLD containing AND and OR gates with
EEPROM or EPROM or Flash memory to implement the programmable switches) along
with all the interconnections in the same chip. The IC manufacturers such as Altera and
Xlinix also took a different approach for handling larger applications. They devised FPGA
(Field Programmable Gate Array) chips which can be programmed at the user’s location. A
typical FPGA chip contains several smaller individual logic blocks (SRAM, multiplexers,
gates, and flip-flops) along with all interconnections in a single chip. The FPGA does
not use EEPROM technology to implement the switches; the programming information
is stored in SRAM (discussed in chapter 5). The SRAM is normally programmed to store
a look-up table containing the combinational circuit functions (truth table) for the logic
block. The combinaional logic section and the programmed multipiexers provide the flip-
flop input equations and the output of the logic block. Application of either CPLD or
FPGA depends on the user’s choice. Typical examples of CPLD and FPGA chips include
Altera Corporation’s EPM7032LC44-6(36 user 1/O pins) and EPF10K10PLCC(84 user
/O pins) respectively. Products can be developed using either one from conceptual design
via prototype to production in a very short time. FPGAs are very popular these days.

4.10 Hardware Description Language (HDL)
Hardware Description Languages (HDLs) such as VHDL or Verilog along with CAD
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(Computer-aided design) tools, allow CPLDs and FPGAs to be programmed with millions
of gates in a short time. A CAD system contains a number of tools that are used to design
a logic circuit. These tools are used in the following sequence:

1. A “Schematic Capture” tool is the first step which is used to design the logic
circuit using truth tables. Truth tables are normally used for a small logic function that can
be part of a larger circuit. The word schematic means a logic diagram in which logic gates
along with their interconnections is shown. Alternatively, the logic circuit can also be
designed by a set of waveforms in a timing diagram. The CAD system uses a “Waveform
Editor” to draw the timing diagram. The CAD System can then automatically translate this
timing diagram to a logic diagram showing logic gates along with their interconnections.

2. The next step is called “Synthesis”. The “Synthesis” CAD tool generates a set
of logic expressions describing the functions required to obtain the circuit. These initial
logic expressions are not in an optimal form. Based upon the designer’s input of these
initial logic expressions, the CAD system utilizes logic optimization during “Synthesis” to
generate a minimum number of equations for obtaining a better circuit.

3. The third step is the “Functional Simulation”. A Functional Simulator” tool
is to verify the correct operation of the circuit being designed. A “Timing Simulator”
can be used for precise simulations that takes into consideration timing details of the
implementation technology of the final logic circuit.

Computer-aided design (CAD) software can be used to program CPLD and
FPGA chips. Typical PLD programming languages are PALASM (Advanced Micro
Devices, Inc.), ABEL (Data I/O Corporation, Inc.), VHDL (U.S. Department of Defense)
and Verilog (Cadence Design Systems). ABEL stands for Advanced Boolean Expression
Language while PAL Assembler is abbreviated as PALASM. ABEL is supported by a
PLD language translator. The purpose of the translator is to provide the fuse pattern from
the program written in ABEL in terms of the fuse pattern of a PLD. Note that most PLDs
can be programmed using the sum of minterms form. The ABEL translator can minimize
the equations in sum of minterms or in almost any other format. ABEL is basically a high-
level language for hardware design similar to software design language such as Pascal or C.

VHDL and Verilog are PLD programming languages like ABEL for designing
both Combinational and Sequential circuits. VHDL is an acronym for VHSIC Hardware
Description Language. VHSIC stands for Very High Speed Integrated Circuits. The design
of VHDL evolved from the United States Department of Defense (DOD) VHSIC program.
VHDL is based on Ada programming language. The design of VHDL started in 1983
and after going through several versions was formally accepted as an IEEE ( Institute of
Electrical and Electronics Engineers) standard in 1987.

Verilog ( developed by Design Automation in 1984 and later acquired by Cadence
Design Systems), another hardware design language, is also popular. Verilog is not an
acronym. Verilog (syntax based mostly on C and some Pascal) is easier to learn compared
to VHDL (syntax based on Ada). Verilog provides more features than VHDL to support
large project development. At present, both VHDL and Verilog have approximately equal
market share. Typical Compilers / Simulators for VHDL and Verilog can be downloaded
from the Internet.

In order to design systems using HDL, two levels of abstractions or their
combinations are used. These are Structural, and Behavioral. The structural level can be
used to describe a schematic or a logic diagram (gates and interconnections) of a system.
This level makes the designer’s task easy for hardware implementation. A “Hierarchical”
structural model can be used by the designer to decompose a large digital system into
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smaller blocks or modules. The designer can define a block that is used repeatedly. This
common block can be used by other blocks in the HDL program to accomplish the desired
task.

The Behavioral level, on the other hand, is used to describe a system in terms
of what it does and how it behaves rather than in terms of its components and their
interconnections. Boolean expressions are used to accomplish this. Behavioral level
is typically used to describe sequential circuits, although it can also be used to describe
combinational circuits. The flow of data in Behavioral model can be represented via
concurrent or sequential statements. Concurrent statements are executed in parallel as soon
as data is available at the inputs while sequential statements are executed in the order
that they are written. Behavioral model uses either sequential statements or concurrent
statements. The first method is useful in describing complex digital systems. When
behavioral model is described by concurrent statements, it is called Dataflow modeling.
The dataflow modeling describes a digital circuit in terms of its function and flow of data
through the circuit.

An HDL design program can be written and simulated using software tools
provided by manufacturers such as SynaptiCAD (Verilogger Pro), Xlinix (ModelSim
simulator / webpack 4.2), and Altera (Quartus II). These software packages are owned
and remain the property of the respective manufacturers as indicated. They are protected
by international copyrights, and the terms and conditions of the agreements set forth in the
web sites of the manufacturers.

Verilogger Pro 8.3 can be downloaded from the web site www.syncad.com. This
version allows the user to compile and simulate Verilog programs. However, some features
such as save, import, export, and equation-based waveform generation are disabled.
ModelSim simulator / webpack 4.2 can be downloaded from Xlinix’s web site. This Xlinix
software package can be used to compile and simulate VHDL programs. Simulation can
be performed on the HDL design program in order to test it. An HDL program called “test
bench” can be written to test an HDL design. A test bench program allows the designer to
monitor the output(s) based on application of appropriate inputs. These outputs can then
be verified for correctness. Test results can be represented in terms of both waveform and
tabular form. The waveform typically contains timing diagrams to graphically show the
relationship between time, inputs, and outputs.

Verilog and VHDL along with examples for synthesizing Combinational circuits
and Sequential circuits are discussed in Appendix I and Appendix J respectively.

QUESTIONS AND PROBLEMS
4.1 Find function F for the following circuit:

—

4.2 Express the following functions F, and F, in terms of the inputs 4, B, and C. What
is the relationship between F, and F,?
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Given the following circuit:
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(a) Derive the Boolean expression for F(4, B, C, D).
(b) Derive the truth table.
(c) Determine the simplified expression for F(4, B, C, D) using a K-map.
(d) Draw the logic diagram for the simplified expression using

NAND gates.

Determine the function F of the following logic diagram and then analyze the
function using Boolean identities to show that =4 + B.

— >

Draw a logic diagram to implement F' = ABCDE using only 3-iriput AND gates.

Draw a logic diagram using two-input AND and OR gates to implement
the following function F = P(P + Q)P + Q + R} (P + Q + R + §) without any
simplification; then analyze the logic circuit to verify that F= P.

Design a combinational circuit with three inputs (4, B, C) and one output (F).
The output is 1 when 4 + C =0 or AC = 1; otherwise the output is 0. Draw a logic
diagram using a single logic gate.

Design a combinational circuit that accepts a 3-bit unsigned number and
generates an output binary number equal to the input number plus 1. Draw a logic
diagram.

Design a combinational circuit with five input bits generating a 4-bit output that
is the ones complement of four of the five input bits. Draw a logic diagram. Do
not use NOT, NAND, or NOR gates.

Design a combinational circuit that converts a 4-bit BCD input to its nines
complement output. Draw a logic diagram.

Design a BCD to seven-segment decoder that will accept a decimal digit in BCD
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4.12

4.13

4.14

4.15

4.16

4.17

and generate the appropriate outputs for the segments to display a decimal digit
(0-9). Use a common anode display. Turn the seven segment OFF for non-BCD
digits. Draw a logic circuit. What will happen if a common cathode display is
used? Comment on the interface between the the decoder and the display.

Design a combinational circuit using a minimum number of full adders to decrement
a 6-bit signed number by 2. Assume 6-bit result. Draw a logic diagram using the
block diagram of a full adder as the building block.

Design a combinational circuit using full adders to multiply a 4-bit unsigned
number by 2. Draw a logic diagram using the block diagram of a full adder as the
building block.

Design a combinational circuit that adds two 4-bit signed numbers and generates
an output of 1 if the 4-bit result is zero; the output is 0 if the 4-bit result is nonzero.
Draw a logic circuit using the block diagram of a 4-bit binary adder as the building
block and a2 minimum number of logic gates.

Design a 4 x 16 decoder using a minimum number of 74138 and logic gates.

Design a combinational circuit using a minimum number of 74138s (3 x 8
decoders) to generate the minterms m,, m,, and m, based on four switch inputs
S3, 82, S1, S0. Then display the selected minterm number (1 or 5 or 9) on a seven-
segment display by generating a 4-bit input ( W, X, Y, Z) for a BCD to seven-
segment code converter. Ignore the display for all other minterms. Note that these
four inputs ( W, X, Y, Z) can be obtained from the selected output line (1 or 5
or 9) of the decoders that is generated by the four input switches (3, S2, S/,
S0). Use a minimum number of logic gates. Determine the truth table, and then
draw a block diagram of your implementation using the following building blocks
(Figure P4.16):

A ocb— W— ar—> —
— B 308 P BCD =
¢ decoder P x— o c > ! ’
——{C decoder 3f 5 Seven-Segment d |—> — I
& 74138 4p—> Y —> Codg el—>
i} ’_ sh—» Converter —>
NG 6 p—> 2 g —> E[lzd []c
—AGe b—

Figure P4.16

A combinational circuit is specified by the following equations:
FfA, B,Cy=4ABC+ABC + ABC Fy4, BC)==ABC+ ABC

F\(4, B,.C)=AB C + ABC Fy(4, B,C)==ABC + ABC + ABC

Draw a logic diagram using a decoder and external gates. Assume that the
decoder outputs a HIGH on the selected line.
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Draw a logic diagram using a 74138 decoder and external gates to implement the
following:

Fy(4,B,C) =¥m(1,3,4), Fi(4,B,C) = Xm(0, 2,4, 7),

F,(A4,B,C) =¥m(0, 1,3, 5, 6), F;(4,B,C) = Zm(2, 6)

Determine the truth table for a hexadecimal-to-binary priority encoder with line 0
having the highest priority and line 15 with the lowest.

Implement a digital circuit to increment (for C,, = 1) or decrement (for C,,=0) a 4-
bit signed number by 1 generating outputs in twos complement form. Note that C,,
is the input carry to the full adder for the least significant bit. Draw a schematic:
(a) Using only a minimum number of full adders and multiplexers.

(b) Using only a minimum number of fuil adders and inverters. Do not use any
multiplexers.

Implement each of the following using an 8-to-1 multiplexer:
(a) F(4, B, C, D)=ABC + ABD + AB C + ACD
bYFW, X, Y,2)=2m(2,3,6,7,8,9,12, 13, 15)

What are the main logic elements/gates in a ROM chip?

Design a combinational circuit using a 16 X 4 ROM that will increment a 4-bit
unsigned number by 1. Determine the truth table and then draw a block diagram
of your implementation showing the addresses and their contents in binary along
with one Output Enable (OE) input.

‘What are the basic differences among PROM, PLA, PAL and PEEL?
What is the technology used to fabricate EPROMs and EEPROMs?

Design a 4K x 8 EPROM ( with two enable lines, CE and OE ) based system to
display the squares of BCD digits on seven segment displays using a minimum
number of 74LS47 BCD to seven segment converters. Each BCD digit will be
input to the EPROM via switches. The square of a particular BCD number will
be displayed in BCD each time the 4-bit number is input to the EPROM via the
switches. Draw a block diagram of your implementation showing the contents of
memory along with addresses in hex.

Design a 4-bit adder/subtractor (Example 4.3) using only full adders and
EXCLUSIVE-OR gates. Do not use any multiplexers.

Design a combinational circuit using a minimum number of full adders, and logic
gates with one BCD to seven-segment converter and one seven-segment display,
and which will perform A plus B or A minus B ( A and B are signed numbers),
depending on a mode select input, M. If M = 0, addition is carried out; if
M = 1, subtraction is carried out. Assume A= A,A;A,A A, and B=B,B,B,
B, B, ( Two 5-bit numbers). The circuit will be able to carry out the subtraction
even if A <B. Use an LED to indicate the sign of the result (LED ON for negative
result and LED OFF for positive result). The result of the operation should always
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appear in BCD form on the single seven-segment display. Assume that the result
will be in the range of 0 through +9 in decimal and -1 through -9 in decimal. For
example, if five-bit addition or subtraction provides a result of 10111 in binary,
the circuit will take the two’s complement of the number, and will display minus
(Sign LED ON) 9 on the single seven-segment display. The Overflow bit (V)
should be indicated by another LED ( LED ON for V=1 and LED OFF for V=0).
Do not use any multiplexers.
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SEQUENTIAL
LOGIC DESIGN

This chapter describes analysis and design of synchronous sequential circuits. Topics
include flip-flops, Mealy and Moore circuits, counters, and registers. An overview of
RAMs, state machine design using ASM chart, and asynchronous sequential circuit is also
included.

5.1 Basic Concepts

So far, we have considered the design of combinational circuits. The main characteristic
of these circuits is that the outputs at a particular time ¢ are determined by the inputs at
the same time ¢. This means that combinational circuits require no memory. However, in
practice, most digital systems contain combinational circuits along with memory. These
circuits are called “sequential.”

In sequential circuits, the present outputs depend on the present inputs and the
previous states stored in the memory elements. These states must be fed back to the
inputs in order to generate the present outputs. There are two types of sequential circuits:
synchronous and asynchronous.

In a synchronous sequential circuit, a clock signal is used at discrete instants of
time to ensure that all desired operations are initiated only by a train of synchronizing
clock pulses. A timing device called the “clock generator” produces these clock pulses.
The desired outputs of the memory elements are obtained upon application of the clock
pulses and some other signal at their inputs. This type of sequential circuit is also called a
“clocked sequential circuit.” The memory elements used in clocked sequential circuits are
called “flip-flops.” The flip-flop stores only one bit. A clocked sequential circuit usually
utilizes several flip-flops to store a number of bits as required. Synchronous sequential
circuits are also called “state machines.” In an asynchronous sequential circuit, completion
of one operation starts the operation that is next in sequence. Synchronizing clock pulses
are not required. Instead, time-delay devices are used in asynchronous sequential circuits
as memory elements. Logic gates are typically used as time delay devices, because the
propagation delay time associated with a logic gate is adequate to provide the required
delay. A combinational circuit with feedback among logic gates can be considered as an
asynchronous sequential circuit. One must be careful while designing asynchronous systems
because feedback among logic gates may result in undesirable system operation. The logic
designer is normally faced with many problems related to the instability of asynchronous
system, so they are not commonly used. Most of the sequential circuits encountered in
practice are synchronous because it is easy to design and analyze such circuits.

135
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5.2 Flip-Flops

A flip-flop is a one-bit memory. As long as power is available, the flip-flop retains the bit.
However, its output (stored bit) can be changed by the clock input. Flip-flops are designed
using basic storage circuits called “latches.” The most common latch is the SR (Set-Reset)
latch. A flip-flop is a latch with a clock input. This convention will be used in this book.

52.1 SR Latch

Figure 5.1 shows a basic latch circuit using NOR gates along with its truth table. The SR latch
has two inputs, S (Set) and R (Reset), and two outputs Q (true output) and O (complement
of Q). To analyze the SR latch of Figure 5.1(a), note that a NOR gate generates an output
1 when all inputs are 0; on the other hand, the output of a NOR gate is 0 if any input is 1.
Now assume that S =1 and R = 0; the O output of NOR gate #2 will be 0. This places 0 at
both inputs of NOR gate #1. Therefore, output ) of NOR gate #1 will be 1. Thus, O stays at
1. This means that one of the inputs to NOR gate #2 will be 1, producing O at the Q output
regardless of the value of S. Thus, when the pulse at S becomes 0, the output O will still
be 0. This will apply 0 at the input of NOR #1. Thus, Q will continue to remain at 1. This
means that when the set input S = 1 and the reset (clear) input R = 0, the SR latch stores a
1 (Q =1, 0 = 0). This means that the SR latch is set to 1.

Consider S= 0, R = 1; the Q output of NOR gate #1 will be 0. This will apply 0 at
both inputs of NOR gate #2. Thus, output Q will be 1. When the reset pulse input R returns
to zero, the outputs continues to remain at Q = 0, and 0 = 1. This means that with set input
S =0 and reset input R = 1, the SR latch is cleared to 0 (0 = 0, 0 = 1).

Next, consider Q= 1, 0 =0. With S=0and R = 0, the NOR gate #1 will have both
inputs at 0. This will generate 1 at the Q output. The output O of NOR gate #2 will be zero.
Thus, the outputs Q and Q are unchanged when §=0 and R = 0.

When S =1 and R = 1, both Q and Q outputs are 0. This is an invalid condition
because for the SR latch Q and O must be complements of each other. Therefore, one must
ensure that the condition S =1 and R = 1 does not occur for the SR latch. This undesirable
situation is indicated by a question mark (?) in the truth table. An SR latch can be built
from NAND gates with active-low set and reset inputs. Figure 5.2 shows the NAND gate

, s R 1] 0
Logic 1
Logic 0 _J——]__ K & o] 0 0 [ [7)
jc 1 I—_l 0 1 0 1
:Zc 0 “ 1 0 ! 0
a - 1 1 0 0?7
s —Jrod— 3
{a) NOR gate implementation (b) Truth table
FIGURE 5.1 SR Latch using NOR gates
s R @ 0
Logic 1 R —
D 17} 0] 0 1 17
Logic 0 U ‘D, 0 | 1 1 0
Logic } U 1 0 0 1
f\ 1 1 7] 0
Logic 0 s E. 0
(a) NOR gate implementation (b) Truth table

FIGURE 5.2  NAND implementation of an SR latch
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implementation of an SR latch.

The SR latch with S and R inputs will store a 1 (Q = 1 and O = 0) when the S input
is activated by a low input (logic 0) and R = 1. On the other hand, the latch will be cleared
orreset to 0 (O =0, O = 1) when the R input is activated by a low input (logic 0) and S = 1.

Note that an active low signal can be defined as a signal that performs the desired
function when it is low or 0. In Figure 5.2, the SR latch stores a 1 when S = 0 = active low
and R = 1; on the other hand, the latch stores a 0 when R = 0 = active low and S= 1.

Note that the NAND gate produces a 0 if all inputs are 1; on the other hand, the
NAND gate generates a 1 if at least one input is 0. Now, suppose that =0 and R=1. This
implies that the output of NAND gate #2 is 1. Thus, Q =1. This will apply 1 to both inputs
of NAND gate #1. Thus, O = 0. Therefore, a 1 is stored in the latch. Similarly, with inputs
S=1and R =0, it can be shown that 0 = 0 and Q = 1. The latch stores a 0.

With §=1 and R = 1, both outputs of the latch will remain at the previous values.
There will be no change in the latch outputs. Finally, S= 0 and R = 0 will produce a invalid
condition (Q = 1 and O = 1). This is indicated by a question mark (?) in the truth table of
Figure 5.2(b).

An SR latch can be used for designing a switch debouncing circuit. Mechanical
switches are typically used in digital systems for inputting binary data manually. These
mechanical ON-OFF switches (e.g., the keys in a computer keyboard) vibrate or bounce
several times such that instead of changing state once when activated, a key opens and
closes several times before settling at its final values. These bounces last for several
milliseconds before settling down.

A debouncer circuit, shown in Figure 5.3, can be used with each key to get rid of
the bounces. The circuit consists of an SR latch (using NOR gates) and a pair of resistors.
In the figure, a single-pole double-throw switch is connected to an SR latch. The center
contact (Z) is tied to +5 V and outputs logic 1. On the other hand, contacts X or Y provide
logic 0 when not connected to contact Z. The values of the resistors are selected in such a
way that X is HIGH when connected to Z or Y is HIGH when connected to Z.

When the switch is connected to X, a HIGH is applied at the R input, and S =
0, then @ =10, @ = 1. Now, suppose that the switch is moved from X to Y. The switch is
disconnected from R and R = 0 because the ground at the R input pulls R to 0. The outputs O
and O of the SR latch are unchanged because both R and S inputs are at 0 during the switch
transition from X to Y. When the switch touches Y, the S input of the latch goes to HIGH
and thus Q = 1 and @ = 0. If the switch vibrates, temporarily breaking the connection, the S
input of the SR latch becomes 0, leaving the latch outputs unchanged. If the switch bounces
back connecting Z to ¥, the S input becomes 1, the latch is set again, and the outputs of the
SR latch do not change. Similarly, the switch transition from Y to X will get rid of switch
bounces and will provide smooth transition.

sV R Qo
z X Debounced

Switch
0% State

s

FIGURE 5.3 A debouncing circuit for a mechanical switch
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(a) NAND gate implementation (b) Truth Table
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FIGURE 54 RS Flip-Flop

5.2.2 RS Flip-Flop

An RS flip-flop is a clocked SR latch. This means that the RS flip-flop is same as the SR
latch with a clock input. The SR flip-flop is an important circuit because all other flip-flops
are built from it. Figure 5.4 shows an RS flip-flop.

The RS flip-flop contains an SR latch with two more NAND gates. It has three
inputs (S, CLK, R) and two outputs (Q and Q). When S = 0 and R = 0 and CLK = 1, the
outputs of both NAND gates #1 and #2 are 1. This means that the output of NAND gate
#3is0if O =1 and is 1 if Q = 0. This means that Q is unchanged as long as S =0 and R
= (0. On the other hand, the output of NAND gate #4 is 0 if Q = 1 and is 1 if Q = 0. Thus,
O is also unchanged. Suppose that S = 1, R = 0, and CLK = 1. This will produce 0 and 1

D —
}_ 0 D ak | o | o

0 i 0 1

Clk 1 1 1 0
X 0 0 0

(a) NAND gate implementation (b) Truth Table
—Clk
é I

(c) Logic Symbol
FIGURE5.5 D Flip-Flop
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(a) NAND gate implementation (b) Truth Table
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FIGURE 5.6  JK Flip-Flop

at the outputs of NAND gates #1 and #2 respectively. This in turn will generate 1 and O at
the outputs of NAND gates #3 and #4 respectively. Thus, the flip-flop is set to 1. When the
clock is zero, the outputs of both NAND gates #1 and #2 are 1. This in turn will make the
outputs of NAND gates #3 and #4 unchanged.

The other conditions in the function table can similarly be verified. Note that S =
1, R=1,and CLK = 1 is combination of invalid inputs because this will make both outputs,
Q and Q equal to 1. Also, Q and Q must be complements of each other in the RS flip-flop.
(" and Q" are outputs of the flip-flop after the clock (CLK) is applied.

5.2.3 D Flip-Flop
Figure 5.5 shows the logic diagram, truth table and the logic symbol of a D flip-flop (Delay
flip-flop). This type of flip-flop ensures that the invalid input combinations S=1and R=1
for the RS flip-flop can never occur. The D flip-flop has two inputs (D and CLK) and two
outputs (Q and Q). The D input is same as the S input and the complement of D is applied
to the R input. Thus, R and S can never be equal to 1 simultaneously.

The D flip-flop (called gated D flip-flop) transfers the D input to output Q when
CLK = 1. Note that if CLK = 0, one of the inputs to each of the last two NAND gates will
be 1; thus, outputs of the D flip-flop remain unchanged regardless of the values of the D
input.

The D flip-flop is also called a “transparent latch.” The term “transparent” is
based on the fact that the output Q follows the D input when CLK = 1. Therefore, transfer
of input to outputs is transparent, as if the flip-flop were not present.

5.2.4 JK Flip-Flop

The JK flip-flop is a modified version of the RS flip-flop such that the S and R inputs of the
RS flip-flop correspond to the J and K inputs of the JK flip-flop. Furthermore, the invalid
inputs S =1 and R = 1 are allowed in the JK flip-flop. When J =1, K=1, and Clk = 1, the
JK flip-flop complements its output. Otherwise, the meaning of the J and K inputs is the
same as that of the S and R inputs respectively. Figure 5.6 shows a logic diagram of JK flip-
flop along with its truth table. This is a NAND/NOR implementation, and is called a gated
JK flip-flop. The circuit operation of Figure 5.6(a) is discussed in the following:

i) Suppose @ =1, 0 =0, and CLK = 1. With J = 0 and K = 0, the outputs of inverters
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#2 and #5 are both 0. This means that the outputs of NOR gates #3 and #6 are 1 and 0
respectively. Therefore, the outputs of the flip-flop are unchanged

ii) Suppose 0 =0, 0= 1,and CLK = 1. With J=1 and K = 0, the outputs of inverters #2
and #5 are 0 and 1 respectively. This means that a 0 is produced at the output of NOR
gate #6 (Q = 0). Thus, apply a 0 at one of the inputs of NOR gate #3 generating a 1 at
its output (Q = 1). The JK flip-flop is therefore setto 1 (Q =1 and Q = 0).

iii) Suppose 0 =1, 0 =0and CLK = 1. WithJ=0 and X = 1, the outputs of the inverter #2
and #5 are 1 and 0 respectively. This means that the output of NOR gate #3 is 0. This
will produce a 1 at the output of NOR gate #6. Thus, the flip-flop is cleared to zero (Q
=0and 0=1).

iv) Suppose Q =1, 0 =0, and CLK = 1. With J =1 and K = 1, the outputs of inverters #2
and #5 are 1 and 0 respectively. This will produce a 0 at the output of NOR gate #3 (Q
= (). This in turn will apply O at one of the inputs of NOR gate #6, making its output
HIGH (Q = 1). Thus, the output of the JK flip-flop is complemented. The other rows in
the truth table of the JK flip-flop can similarly be verified.

JK flip-flops are never built using the schematic of figure 5.6(a). This is because the

schematic of Figure 5.6(a) will generate oscillations. For example, when J=1, K=1, and

Clk =1, the outputs (Q and Q) are complemented with the clock staying high after the first

transition of the outputs. Since the outputs are fed back, the outputs will change continuously

after being complemented once, causing oscillations. This undesirable behavior can be
avoided using master-slave (edge-triggered) flip-flops discussed in the next section.

5.2.5 T Fip-Flop

The T (Toggle) flip-flop complements its output when the clock input is applied with 7=
1; the output remains unchanged when 7 = 0. The name “toggle” is based on the fact that
the T flip-flop toggles or complements its output when the clock inputis 1 with 7=1. T
flip-flop is not available commercially. However, T flip-flop can be obtained from JK flip-
flop in two ways. In the first approach, the J and K inputs of the JK flip-flop can be tied
together to provide the 7 input; the output is complemented when 7'= 1 at the clock while
the output remains unchanged when T = 0 at the clock. In the second approach, the J and
K inputs can be tied to high; in this case, T is the clock input.

5.3 Master-Slave Flip-Flop

As mentioned before, sequential circuits contain combinational circuits with flip-flops in
the feedback loop. These flip-flops generate outputs at the clock based on the inputs from

Logic 1 Logic 1
A Y Y A
Logic 0 Logic 0
Positive Negative Negative Positive
or or or or
Leading Edge Trailing Edge Leading Edge Trailing Edge
(a) Positive Pulse (b) Negative Pulse

FIGURE 5.7 Clock Pulses
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FIGURE 5.8 Typical Master-Slave D Flip-Flop
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the combinational circuits. The feedback loop can create an undesirable situation if the
outputs from the combinational circuits that are connected to the flip-flop inputs change
values at the clock pulse simultaneously when flip-flops change outputs. This situation can
be avoided if the flip-flop outputs do not change until the clock pulse goes back to 0. One
way of accomplishing this is to ensure that the outputs of the flip-flops are affected by the
pulse transition rather than pulse duration of the clock input.To understand this concept,
consider the clock pulses shown in Figure 5.7. There are two types of clock pulses: positive
and negative. A positive pulse includes two transitions: logic 0 to logic 1 and logic 1 to
logic 0. A negative pulse also goes through two transitions: logic 1 to logic 0 and logic 0
to logic 1.

Assume that a positive pulse is used as the clock input of a D flip-flop. With the
D input = 1, the output of the flip-flop will become | when the clock pulse reaches logic 1.
Now, suppose that the D input changes to zero but the clock pulse is still 1. This means that
the flip-flop will have a new output, 0. In this situation, the output of one flip-flop cannot
be connected to the input of another when both flip-flops are enabled simultaneously by
the same clock input. This problem can be avoided if the flip-flop is clocked by either
the leading or the trailing edge rather than the signal level of the pulse. A master—slave
flip-flop is used to accomplish this. Figure 5.8 shows a typical master-slave D flip-flop. A
master-slave flip-flop contains two independent flip-flops. Flip-flop #1 (FF #1) works as
a master flip-flop, whereas the flip-flop (FF #2) is a slave. An inverter is used to invert the
clock input to the slave flip-flop.

Assume that the CLK is a positive pulse. Suppose that the D input of the master
flip-flop (FF #1) is | and the CLK input = 1 (leading edge). The output of the inverter will
apply a 0 at the CLK input of the slave flip-flop (FF #2). Thus, FF #2 is disabled. The
master flip-flop will transfer a [ to its Q output. Thus, X will be 1.

At the trailing edge of the CLK input, the CLK input of the master flip-flop is 0.
Thus, FF #1 is disabled. The inverter will apply a 1 at the CLK input of the FF #2. Thus,
1 at the X input (D input of FF #2) will be transferred to the O output of FF #2. When the
CLK goes back to 0, the master flip-flop is separated. This avoids any change in the other
inputs to affect the master flip-flop. The slave flip-flop will have the same output as the
master.

5.4 Preset and Clear Inputs

Commercially available flip-flops include separate inputs for setting the flip-flop to 1 or
clearing the flip-flop to 0. These inputs are calied “preset” and “clear” inputs respectively.
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These inputs are useful for initializing the flip-flops without the clock pulse. When the
power is turned ON, the output of the flip-flop is in undefined state. The preset and clear
inputs can directly set or clear the flip-flop as desired prior to its clocked operation.

Figure 5.9 shows a D flip-flop with clear inputs. The triangular symbol indicates
that the flip-flop is clocked at the positive edge of the clock pulse. In Figure 5.9, a circle
(inverter) is used with the triangular symbol. This means that the flip-flop is enabled at the
negative edge of the clock pulse. The circle at the clear input means that clear input must be
1 for normal operation. If the clear input is tied to ground (logic 0), the flip-flop is cleared
to 0 (Q =0, O = 1) irrespective of the clock pulse and the D input. The CLR input should
be connected to 1 for normal operation. Some flip-flops may have a preset input that sets
Qto 1 and O to 0 when the preset input is tied to ground. The preset input is connected to
1 for normal operation.

55 Summary of Flip-Flops

Figures 5.10 through 5.13 summarize operations of all four flip-flops along with the
symbolic representations, characteristic and excitation tables. In the figures, X represents
don’t care whereas Q+ indicates output Q after the clock pulse is applied.

The characteristic table of a flip-flop is similar to its truth table. It contains the
input combinations along with the output after the clock pulse. The characteristic table is
useful for analyzing a flip-flop.

The present state (present output), the next state (next output) after the clock
pulse, and the required inputs for the transition are included in the excitation table. This is
useful for designing a sequential circuit, in which one normally knows the transition from
the present to the next state and wants to determine the required flip-flop inputs for the
transition.

The D flip-flop is widely used in digital systems for transferring data. Several
D flip-flops can be combined to form a register in the CPU of a computer. The 74HC374
is a 20-pin chip containing eight independent D flip-flops. It is designed using CMOS.
The flip-flops are enabled at the leading edge of the clock. The 74LS374 is same as the
74HC374 except that it is designed using TTL.

The JK flip-flop is a universal flip-flop and is typically used for general applications.
Typical commercially available JK flip-flop includes the 74HC73 (or 74LS73A). The
74HC73 is a 14-pin chip. It contains two independent JK flip-flops in the same chip,
designed using CMOS. Each flip-flop is enabled at the trailing edge of the clock pulse.
Each flip-flop also contains a direct clear input. The 74HC73 is cleared to zero when
the clear input is LOW. The 74LS73A is same as the 74HC73 except that it is designed
using TTL. The T flip-flop is normally used for designing binary counters because binary
counters require complementation.The T flip-flop is not commercially available. One way
of obtaining a T Flip-flop is by connecting the J and K inputs of a JK flip-flop together
(Section 5.2.5).

An example of a commercially available level-triggered flip-flop is the 74HC373
(or 74LS373). The 373 (20-pin chip) contains eight independent D latches with one enable
input.

Sometimes the characteristic equation of a flip-flop is useful in analyzing the
flip-flo p’s operation. The characteristic equations for the flip-flops can be obtained from
the truth tables. Figure 5.14 through 5.16 show how these equations are obtained using K-
maps for RS, JK, T, and D flip-flops.
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Example 5.1
Given the following clock and the D inputs for a negative-edge-triggered D flip-flop, draw

the timing diagram for the Q output for the first five cycles shown. Assume Q is preset to
1 initially.

Solution:
Clock
D _—'
9]
5.6 Analysis of Synchronous Sequential Circuits

A synchronous sequential circuit can be analyzed by determining the relationships between
inputs, outputs, and flip-flop states. A state table or a state diagram iflustrates how the
inputs and the states of the flip-flops affect the circuit outputs. Boolean expressions can
be obtained for the inputs of the flip-flops in terms of present states of the flip-flops and
the circuit inputs. As an example consider analyzing the synchronous sequential circuit of
Figure 5.17.

The logic circuit contains two D flip-flops (outputs X, Y), one input 4 and one
output B. The equations for the next states of the flip-flops can be written as

X=(X+7Y)4
Y'=4+X

Here X+ and Y+ represent the next states of the flip-flops after the clock pulse.
The right side of each equation denotes the present states of the flip-flops (X, Y) and the
input (4) that will produce the next state of each flip-flop. The Boolean expressions for the
next state are obtained from the combinational circuit portion of the sequential circuit. The

Clk

(Y

_T_,?
_4> D 0 -l—y

Clk

Clk

L
Y

FIGURE 5.17  Analysis of a sequential circuit
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TABLE 5.1 State Table for Figure 5.17

Present State Input Next State Flip Flop Inputs Qutput
X Y A X+ Y+ D, D, B
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 I 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 1 0
1 1 0 1 0 1 0 0
1 1 i 0 1 0 1 1

outputs of the combinational circuit are connected to the D inputs of the flip-flops. These
D inputs provide the next states of the flip-flops after the clock pulse. The present state of
the output B can be derived from the figure as follows:

B=4®7Y

A state table listing the inputs, the outputs, and the states of the flip-flops along
with the required flip-flop inputs can be obtained for Figure 5.17. Table 5.1 depicts a typical
state table. The state table is formed by using the following equations (shown earlier):
X=(X+Y) 4

V'=4+X
To derive the state table, all combinations of the present states of the flip-flops and input 4
are tabulated. There are eight combinations for three variables from 000 to 111. The values
for the flip-flop inputs (next states of the flip-flops) are determined using the equations. For
example, consider the top row with X =0, ¥ =0, and 4 = 0. Substituting in the equations
for next states. '

X=(X+7)+A={0+0)0=1
Y'=A+X=0+0=1

Now, to find the flip-flop inputs, one should consider each flip-flop separately.
Two D flip-flops are used. Note that for a D flip-flop, the input at D is same as the next
state. The D input is transferred to the output Q at the clock pulse. Therefore, X+ = D_and
Y+=D,.

The characteristic table of a D flip-flop, discussed before, is used to determine
the flip-flop inputs that will change present states of the flip-flops to next state. The
characteristic table of D flip-flop is provided here for reference:

p | o
0 0
1 1

Therefore, for D flip-flops, the next states and the flip-flop inputs wiil be same in
the state table. By inspecting the top row of the state table, it can be concluded that D, = |
and D, = 1 because the next states X+ = | and Y+ = 1.

Finally, the output B can be obtained from the equation,

B=4A®Y
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TABLE 5.2 Another Form of the State Table

Present State Next State Flip Flop Inputs Qutputs
A=0 A=1 A=0 A=1 A=0 A=]
X Y X+ Y+ X+ Y+ Dy D, D, D, B B
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0 l 0 1
I 0 1 0 0 1 1 0 0 1 1 0
1 | 1 0 1 1 0 0 1 0 1

FIGURE 5.18  State diagram for Table 5.1

For example, consider the top row of the state table. 4 = 0 and ¥ = 0. Thus,
B=0®0=0®1=1

All other rows of the state table can similarly be verified. The state table of Table 5.1 can

be shown in a slightly different manner. Table 5.2 depicts another form of the state table

of Table 5.1.

A state table can be depicted in a graphical form. All information in the state table
can be represented in the state diagram. A circle is used to represent a state in the state
diagram. A straight line with an arrow indicator is used to show direction of transition from
one state to another. Figure 5.18 shows the state diagram for Table 5.1.

Because there are two flip-flops (X, Y) in Figure 5.17, there are four states: 00,
01, 10 and 11. These are shown in the circle of the state diagram. Also, transition from
one state to another is represented by a line with an arrow. Each line is assigned with a/b
where a is input and b is output. From the example in Figure 5.18, with present state 10
and an input of 1, the output is 0 and the next state is O1. If the input (and/or output) is not
defined in a problem, the input (and/or output) will be deleted in the state table and the state
diagram.

The inputs of the flip-flops (D, and D, ) in the state table are not necessary to
derive the state diagram. In analyzing a synchronous sequential circuit, the logic diagram
is given. The state equation, state table, and state diagram are obtained from the logic
diagram. However, in order to design a sequential circuit, the designer has to derive the
state table and the state diagram from the problem definition. The flip-flop inputs will
be useful in the design. One must express the flip-flop inputs and outputs in terms of the
present states of the flip-flops and the inputs. The minimum forms of these expressions can
be obtained using a K-map. From these expressions, the logic diagram can be drawn.
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5.7 Types of Synchronous Sequential Circuits

There are two types of Synchronous sequential circuits: the Mealy circuit and the Moore
circuit. A synchronous sequential circuit typically contains inputs, outputs, and flip-flops.
In the Mealy circuit, the outputs depend on both the inputs and the present states of the
flip-flops. In the Moore circuit, on the other hand, the outputs are obtained from the flip-
flops, and depend only on the present states of the flip-flops . Therefore, the only difference
between the two types of circuits is in how the outputs are produced.

The state table of a Mealy circuit must contain an output column. The state
table of a Moore circuit may contain an output column, which is dependent only on the
present states of the flip-flops. A Moore machine normally requires more states to generate
identical output sequence compared to a Mealy machine. This is because the transitions are
associated with the outputs in a Mealy machine.

5.8 Minimization of States

A simplified form of a synchronous sequential circuit can be obtained by minimizing the
number of states. This will reduce the number of flip-flops and simplify the complexity of the
circuit implementations. However, logic designers rarely use the minimization procedures.
Also, there are sometimes instances in which design of a synchronous sequential circuit is
simplified if the number of states is increased. The techniques for reducing the number of
states presented in this section are merely for illustrative purpose.

The number of states can be reduced by using the concept of equivalent states.
Two states are equivalent if both states provide the same outputs for identical inputs. One
of the states can be eliminated if two states are equivalent. Thus, the number of states can
be reduced.

For example, consider the state diagram of Figure 5.19. Each state is represented
by a circle with transition to the next state based on either an input of 0 or 1 generating an
output.

Next, consider that a string of input data bits (@) in the sequence 0100111101 is
applied at state ¥ of the synchronous sequential circuit. For the given input sequence, the
output and the state sequence can be obtained as follows:

State v 14 w Y VA w 14 w 14 v w
Input 0 1 0 0 1 1 1 1 0 1

Output 0 1 0 0 1 0 1 0 0 1
With the sequential circuit in initial state 7, a 0 input generates a 0 output and the

FIGURE 5.19  State diagram for minimization
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TABLE 5.3 State table for minimization of states
Present State Next State Output
d=0 d=1 d=0 d=1
vV 14 W 0 1
/4 Y vV 0 0
X Y 14 0 0
Y z v 0 0
VA 14 w 0 1
TABLE 5.4 Replacing states by their equivalents
Present State Next State Output
da=0 d=1 d=0 d=1
vV Vv w 0 1
w Y 14 0 0
X Y 14 0 0
Y ZV 14 0 0
7z V /4 0 1

circuit stays in state ¥, whereas in state ¥, an input of 1 produces an output 1 and the circuit
will move to the next state . In state /¥ and input = 0, the output is 0 and the next state is
Y. The process thus continues.

The state table shown in Table 5.3 can be obtained from the state diagram in
Figure 5.19. Next, the equivalent states will be determined to reduce the number of states.
V and Z are equivalent because they have the same next states of ¥ and W with identical
inputs d = 0 and d = 1. Similarly, W and X are equivalent states. Table 5.4 shows the
process of replacing of a state by its equivalent.

Because V and Z are equivalent, one of the states can be eliminated; Z is removed.
Also, Wand X are equivalent, so one of the states can be removed; X is thus eliminated
in the state table. The row with present states X and Z is also eliminated. If they appear in
the next state columns, they must be replaced by their equivalent states. In our case, the
row for state Y contains Z in the next column. This is replaced by its equivalent state V. By
inspecting the modified state table further, no more equivalent states are found. The state
table after elimination of equivalent states is shown in Table 5.5.

Note that the original state diagram in Figure 5.19 requires five states. Figure 5.20
shows the reduced form of the state diagram with only three states. Three flip-flops are

TABLE 5.5

Present State

State table after the elimination of equivalent states

Next State Output
d=0 d=1 d=0 d=1
0 1
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FIGURE 5.20 Reduced form of the state diagram

FIGURE 5.21  State diagram for Example 5.2

required to represent five states whereas two flip-flops will represent three states. Thus,
one flip-flop is eliminated and the complexity of implementation may be reduced. Note
that a synchronous sequential circuit can be minimized by determining the equivalent
states, provided the designer is only concerned with the output sequences due to input
sequences.

5.9 Design of Synchronous Sequential Circuits

The procedure for designing a synchronous sequential circuit is a three-step process as

follows:

1. Derive the state table and state diagram from the problem definition. If the state
diagram is given, determine the state table.

2. Obtain the minimum form of the Boolean equations for flip-flop inputs and outputs, if
any, using K-maps.

3. Draw the logic diagram. Note that a combinational circuit is designed using a truth
table whereas the synchronous sequential circuit design is based on the state table.

Example 5.2

Design a synchronous sequential circuit for the state diagram of Figure 5.21 using D flip-
flops.

Solution

Step 1: Derive the state table. The state table is derived from the state diagram (Figure
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TABLE 5.6 State Table for Example 5.2

Present State Input Next State Flip Flop Inputs Output
X Y A X+ Y+ Dy D, z
0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 0
0 1 0 1 1 1 1 0
0 1 1 1 0 1 0 0
1 0 0 0 0 0 0 1
1 0 1 1 1 1 1 1
1 1 0 0 1 0 1 1
1 1 1 0 0 0 0 1

5.21) and the excitation table [Figure 5.12(c)] of the D flip-flop. Table 5.6 shows
the state table.
The state table is obtained directly from the state diagram. In the state table, the
next states are same as the flip-flop inputs because D flip-flops are used. This is evident
from the excitation table of Figure 5.12(c).

YA YA
Aw o1 XN 00 0 110 XN 00 01 11 10

] e
]! 1UU1@11B

(a) K-map for D, (b) K-map for D, (c) K-map for Z
Dy=XY4 + XY Dy=YA+YA=Y ® 4 Z=YA+X

FIGURE 5.22 K-maps for Example 5.2
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FIGURE 5.23 Logic diagram for Example 5.2
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FIGURE 5.24  State diagram for Example 5.3

TABLE 5.7 State and Excitation Tables for Example 5.3
TABLE 5.7 (a) Excitation Table of JK flip-flop from Figure 5.11¢

Q o+ J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0
TABLE 5.7 (b) State Table for Example 5.2
Present State Input Next State Flip Flop Inputs
X Y A X+ Y+ Jy Ky Jy K,
0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X 1 X
0 1 0 0 1 0 X X 0
0 1 1 1 1 1 X X 0
1 0 0 1 0 X 0 0 X
1 0 1 0 0 X 1 0 X
1 1 0 0 0 X 1 X 1
i 1 1 1 0 X 0 X 1

Step 2: Obtain the minimum forms of the equations for the flip-flop inputs and the output.
Using K-maps and the output, the equations for flip-flop inputs are simplified as
shown in Figure 5.22.

Step 3: Draw the logic diagram. The logic diagram is shown in Figure 5.23.

Example 5.3
Design a synchronous sequential circuit for the state diagram of Figure 5.24 using JK flip-
flops.



Sequential Logic Design 153

Solution
Step 1: Derive the state table. The state table can be directly obtained from the state diagram

(Figure 5.24) and the excitation table [Figure 5.11(c)]. Table 5.7 shows the state

table. For convenience, the excitation table of the JK flip-flop of Figure 5.11(c)

1s also included.

Let us explain how the state table is obtained. The input 4 is 0 or 1 at each state, so
the left three columns show all eight combinations for X, Y, and 4. The next state column is
obtained from the state diagram. The flip-flop inputs are then obtained using the excitation
table for the JK flip-flop. For example, consider the top row. From the state diagram, the
present state (00) remains in the same state (00) when input 4 = (0 and the clock pulse is
applied. The output of flip-flop X goes from 0 to 0 and the output of flip-flop ¥ goes from
0 to 0. From the excitation table of the JK flip-flop, J, =0, K, = X, J, =0, and K, = X. The
other rows are obtained similarly.

Step 2: Obtain the minimum forms of the equations for the flip-flop inputs. Using K-maps,
the equations for flip-flop inputs are simplified as shown in Figure 5.25.
Step 3: Draw the logic diagram as shown in Figure 5.26.
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{0 YA
X 00 01 11 10

ox(ﬂxﬂ
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X | X (XX 1 w U

Jx=Y4 Ky=YA+YA=Y® A
(a) K-maps for Jyand Kx
YA YA
X 00 01 11 10 X 00 01 11 10

0 [ x| x o X | X

1 x | x & x| 1|1
Jy =X4 Ky=X

(b) K-maps for Jy and Ky
FIGURE 5.25 K-maps for Example 5.3
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FIGURE 5.26 Logic Diagram for Example 5.3
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1/0

FIGURE 5.27 State Diagram for Example 5.4

Example 5.4
Design a synchronous sequential circuit with one input X and an output Z. The input X is
a serial message and the system reads X one bit at a time. The output Z = 1 whenever the
pattern 101 is encountered in the serial message. For example,

If input: 00101011101000101

then output: 00001010001000001
Use T flip-flops.
Solution
Step 1: Derive the state diagram and the state table.

Figure 5.27 shows the state diagram. In this diagram each node represents a state.
The labeled arcs (lines joining two nodes) represent state transitions. For example, when the
system is in state C, if it receives an input 1, it produces an output 1 and makes a transition
to the state D after the clock. Similarly, when the system is in state C and receives a 0 input,
it generates a 0 output and moves to state 4 after the clock. This type of sequential circuit
is called a Mealy machine because the output generated depends on both the input X and
the present state of the system. It should be emphasized that each state in the state diagram
actually performs a bookkeeping operation; these operations are summarized as follows

State Interpretation

A Looking for a new pattern

B Received the first 1

C Received a | followed by a0
D Recognized the pattern 101

The state diagram can be translated into a state table, as shown in Table 5.8. Each
state can be represented by the binary assignment as follows:

Symbolic Binary State
State
N Yo
A 0 0
B 0 1
C 1 1
D 1 0
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TABLE 5.8 State Table for Example 5.4

Present State Next State Output Z
X=0 X=1 =0 X=1
A A B 0 0
B c B 0 0
C A D 0 1
D C B 0 0
TABLE 5.9 Modified State Table for Example 5.4
Present State Next State Output Z
N Yo Yity' yityt Input Input
X=0 X=1 X=0 X=1
0 0 00 01 0 0
0 1 11 01 0 0
1 1 00 10 0 1
1 0 11 01 0 0

The state table in Table 5.8 can be modified to reflect this state assignment,
as illustrated in Table 5.9. Note that the excitation table actually describes the required
excitation for a particular state transition to occur. For example, with respect to a T flip-
flop, for the transition 0 — 1 or 1 — 0, a 1 must be applied to the T input. Similarly, for
transitions 0 — 0 or 1 — [ (that is, no change of state), the T input must be made 0. Using
this excitation table, the flip-flop input equations can be derived as illustrated in Table 5.9.

In this figure, the entries corresponding to the flip-flop inputs 7,, and T, , are
directly derived using the T flip-flop excitation table. For example, consider the present
state y,, = 00. When the input X = 1, the next state is 01. This means that flip-flop y,
should not change its states and flip-flop y, must change its state to 1. It follows that 7, = 0
(because a 0 — O transition is required) and 7,,= 1 (because a 0 — 1 transition is required).
The other entries for 7, and 7, , may be obtained in a similar manner.

The state table of Table 5.9 is obtained using the excitation table for T flip-flop of
Figure 5.13(c) redrawn as follows:

Present State Input Next State Flip Flop Inputs Ouput
1 »0 X pa pan T, T, z

0 0 0 0 0 0 0

0 1 0 1 0 1 0

0 1 0 1 1 1 0 0

0 1 1 0 1 0 0 0

1 0 0 1 1 0 1 0

1 0 1 0 1 1 1 0

1 1 0 0 0 1 1 0

1 1 1 1 0 0 1 1

Step 2: Derive the minimum forms of the equations for the flip-flop inputs and the output.
Using K-maps, the simplified equations for the flip-flops inputs and the output can be
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FIGURE 5.29 Logic Diagram for Example 5.4

obtained as shown in Figure 5.28.
Step 3: Draw the logic diagram as shown in Figure 5.29.

5.10 Design of Counters

A counter is a synchronous sequential circuit that moves through a predefined sequence of
states upon application of clock pulses. A binary counter, which counts binary numbers in
sequence at each clock pulse, is the simplest example of a counter. An r-bit binary counter
contains n flip-flops and can count binary numbers from 0 to 2™'. Other binary counters
may count in an arbitrary manner in a nonbinary sequence. The following examples will
illustrate the straight binary sequence and nonbinary sequence counters.

Example 5.5
Design a two-bit counter to count in the sequence 00, 01, 10, 11, and repeat. Use T flip-
flops.
Solution
Step 1: Derive the state diagram and the state table.
Figure 5.30 shows the state diagram. Note that state transition occurs at the clock pulse. No
state transitions occurs if there is no clock pulse. Therefore, the clock pulse does not appear
as an input. Table 5.10 shows the state table.

The excitation table of the T flip-flop is used for deriving the state table. For
example, consider the top row. The state remains unchanged (a, = 0 and a,, = 0) requiring
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FIGURE 5.30  State Diagram for Example 5.5

TABLE 5.10 State table for Example 5.5

Present State Next State Flip Flop inputs
a ) a,+ a,t Ty Ty
0 0 0 1 0 1
0 1 1 0 1
1 0 1 1 0 1
1 1 0 0 1 1

a Tinput of 0 and thus 7,,= 0. g, is complemented from the present state to the next state,
and thus 7, = 0.

Step 2: Derive the minimum forms of the equations for the flip-flop inputs.

Using K-maps, the simplified equations for the flip-flop inputs can be obtained as shown
in Figure 5.31.

Step 3: Draw the logic diagram as shown in Figure 5.32.

.
1

10 D

(a) K-map for T4, (b) K-map for Ty,
TA] =4ay TAO = 1

FIGURE 531 K-maps for Example 5.5

dl ao
| 7
Q [
T, A Tay
Clk | J[

FIGURE 5.32 Logic Diagram for 2-bit Counter of Example 5.5
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FIGURE 5.33  State Diagram for Example 5.6

TABLE 5.11 JK ff excitation table and State Table for Example 5.6
TABLE 5.11(a) Excitation Table of JK Flip-flop

0 O+ J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0
TABLE 5.11(b) State Table for Example 5.6
Present State Next State Flip-Flop Inputs
a, a, a, at at at | Ja Ka, Ja, Ka, Ja, Ka,
0 0 0 0 0 1 0 X 0 X 1 X
0 0 1 0 | 0 0 X 1 X X 1
0 1 0 0 1 1 0 X X 0 1 X
0 1 1 1 0 0 1 X X 1 X 1
1 0 0 1 0 1 X 0 0 X 1 X
1 0 1 1 1 0 X 0 1 X X 1
1 1 0 1 1 1 X 0 X 0 1 X
1 1 1 0 0 0 X 1 X 1 X 1
Example $.6

Design a three-bit counter to count in the sequence 000 through 111, return to 000 after

111, and then repeat the count. Use JK flip-flops.

Solution

Step 1: Derive the state diagram and the state table.

Figure 5.33 shows the state diagram. Table 5.11 shows the JK ff excitation table, and the

state table. Consider the top row. The present state of a, changes from 0 to 0 at the clock,

a, changes from 0 to 0, and g, changes from 0 to 1. From the JK flip-flop excitation table,

for these transitions, Ja, = 0, Ka, = X, Ja, =0, Ka, = X, and Ja,= 1, Ka,= X.

Step 2: Derive the minimum forms of the equations for the flip-flop inputs. Using K-
maps, the simplified equations for the flip-flop inputs can be obtained as shown
in Figure 5.34.

Step 3: Draw the logic diagram as shown in Figure 5.35.

Example 5.7

Design a 3-bit counter that will count in the sequence 000, 010, 011, 101, 110, 111, and
repeat the sequence. The counter has two unused states. These are 001 and 100. Implement
the counter as a self-correcting such that if the counter happens to be in one of the unused
states (001 or 100) upon power-up or due to error, the next clock pulse puts it in one of
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(c) K-Maps for Ja, and Ka,

FIGURE 5.34 K-Maps for Example 5.6
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FIGURE 535 Logic Diagram for Example 5.6

the valid states and the counter provides the correct count. Use T Flip-flops. Note that the

initial states of the flip-flops are unpredictable when power is turned ON. Therefore, all

the unused (don’t care) states of the counter should be checked to ensure that the counter

eventually goes into the desirable counting sequence. This is called a self-correcting

counter.

Solution

Step 1: Derive the state diagram and the state table. Figure 5.36 shows the state diagram.
Note that in the state diagram it is shown that if the counter goes to an invalid state
such as 001 upon power-up, the counter will then go to the valid state 011 and will
count correctly. Similarly, for the invalid state 100, the counter will be in state 111
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FIGURE 5.36  State Diagram for Example 5.7
TABLE 5.12  T-ff excitation table and State Table for Example 5.7
TABLE 5.12(a) Excitation Table for T Flip-Flop

0 o+ )

0 0 0

0 1 1

1 0 1

1 1 0

TABLE 5.12 (b) State Table for Example 5.7
Present State Next State Flip Flop Inputs

az ! 9y a,+ a1 a,t Ta, Ta, Ta,
0 0 0 0 1 0 0 1 0
0 1 0 0 1 1 0 0 1
0 1 1 1 0 1 1 1 0
i 0 i 1 1 0 0 1 1
1 1 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1

and the correct count will continue. This self-correcting feature will be verified

from the counter’s state table using T flip-flops as shown in Table 5.12.
Step 2: Derive the minimum forms of the equations for the flip-flop inputs.
Using K-maps, the simplified equations for the flip-flop inputs can be obtained, as shown
in Figure 5.37. The unused states 001 and 100 are invalid and can never occur, so they are
don’t care conditions.
Now, let us verify the self-correcting feature of the counter. The flip-flop input equations
are

Ta,=a,aq,

Ta,=a, +a,
Tay=a, +aa,

Suppose that the counter is in the invalid state 001 upon power-up or due to error,
therefore, in this state, @, = 0, a4, = 0, and a, = 1. Substituting these values in the flip-flop
input equations, we get

Ta,=0+1=0

Ta,=0+1=1

Ta,=0+01=0
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a,ag a;ag a,ag
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FIGURE 5.37 K-maps for example 5.7
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FIGURE 5.38 Logic Diagram for Example 5.7

Note that with a,a,a, = 001 and Ta,7a,7a, = 010, the state changes from 001 to 011.
Therefore, the next state will be 011. The correct count will resume. Next, if the flip-flop
goes to the invalid state 100 due to error or when power is turned ON. Substituting a, = 1,
a, =0, and a, = 0 gives

Ta,=0+0=0

Tap=1+0+0=1

Note that with a,a,a,= 100 and Ta,Ta,Ta,= 011, the state changes from 100 to 111. Hence,
the next state for the counter will be 111. The correct count will continue. Therefore, the
counter is self-correcting.

Step 3: Draw the logic diagram as shown in Figure 5.38.

5.11 Examples of Synchronous Sequential Circuits

Typical examples include registers, modulo-n counters and RAMs (Random Access
Memories). They play an important role in the design of digital systems, especially
computers. Veriolog and VHDL descriptions along with simulation results of typical
synchronous. Sequential circuits are provided in Appendices I and J respectively.
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5.11.1 Registers

A register contains a number of flip-flops for storing binary information in a computer. The
register is an important part of any CPU. A CPU with many registers reduces the number of
accesses to the main memory, therefore simplifying the programming task and shortening
execution time. A general-purpose register (GPR) is designed in this section. The primary
task of the GPR is to store address or data for an indefinite amount of time, then to be able
to retrieve the data when needed. A GPR is also capable of manipulating the stored data by
shift left or right operations. Figure 5.39 contains a summary of typical shift operations. In
logical shift operation, a bit that is shifted out will be lost, and the vacant position will be
filled with a 0. For example, if we have the number (11),,, after right shift, the following
occurs:

(oo o[oTi[oliT1] L[] v l lo]oJojofo[1]o]1]
— lis;;t/:b

1110 5 10

It must be emphasized that a logical left or right shift of an unsigned number by
n positions implies multiplication or division of the number by 2", respectively, provided
that a 1 is not shifted out during the operation.

In the case of true arithmetic left or right shift operations, the sign bit of
the number to be shifted must be retained. However, in computers, this is true for
right shift and not for left shift operation. For example, if a register is shifted right
arithmetically, the most significant bit (MSB) of the register is preserved, thus
ensuring that the sign of the number will remain unchanged. This is illustrated next:

Before During After

lo11t00101] G)U' j|010110010]

1]t 10010 1] 1] ‘ )|1]1110010]
1 Lost

There is no difference between arithmetic and logical left shift operations. If

‘. f}};g Logical Arithmetic Rotate
]( 0
| Right >
| T >
| Dovst T MSB e t < Y
0 0
Left le [ ¢’ <
T -
b e |[t=—=—1

FIGURE 5.39  Summary of Typical Shift Operations
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FIGURE 5.40 A Basic Cell for Designing a GPR
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FIGURE 5.41 A 4-bit General Register

the most significant bit changes from 0 to 1, or vice versa, in an arithmetic left shift,
the result is incorrect and the computer sets the overflow flag to 1. For example, if the
original value of the register is (3),,, the results of two successive arithmetic left shift
operations are interpreted as follows:

Original After first shift After second shift
0011,=(3)y 0110, = (6),0 1100, = (-4)
3 x 2 =6, correct 6 x 2 =12, not -4. incorrect

To design a GPR, first let us propose a basic cell S. The internal organization of
the S cell is shown in Figure 5.40. A 4-input multiplexer selects one of the external inputs
as the D flip-flop input, and the selected input appears as the flip-flop output Q after the
clock pulse. The CLR input is an asynchronous clear input, and whenever this input is
asserted (held low), the flip-flop is cleared to zero. Using the basic cell S as the building
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TABLE 5.13 Truth Table for the General Register

Selection Input Clock input Clear Input Operation
K So Clk CLR
X X X 0 Clear
0 0 f 1 No Operation
0 1 J]’ 1 Shift Right
1 0 J]‘ 1 Shift Left
I 1 j 1 Parallel Load

X means “don’t care”

block, a 4-bit GPR can be designed. Its schematic representation is shown in Figure 5.41.

The truth table illustrating the operation of this register is shown in Table 5.13.
This table shows that manipulation of the selection inputs S, and S, = 11, the external inputs
x, through x, are selected as the D inputs for the flip-flop, the output ¢, will follow the input
x; after the clock. By choosing the correct values for the serial shift inputs R and L, logical,
arithmetic, or rotating shifts can be achieved.

This register can be loaded with any desired data in a serial fashion. For example,
after four successive right shift operations, data a; 4, a, a, will be loaded into the register if
the register is set in the right shift mode and the required data a, q, a, 4, is applied serially
to input R.

5.11.2 Modulo-n Counters

The modulo-n counter counts in a sequence and then repeats the count. Modulo-n counters
can be used to generate timing signals in a computer. The control unit inside the CPU of
a computer translates instructions. The control unit utilizes timing signals that determines

wacos — 4 | 4 g [a Tq [ 1

pulse > 1

Timing Signal — t
Q

Timing Signal — t
1

Timing Signal { l i
T 2

Timing Signal > 1

3

FIGURE 5.42 Timing Signals
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FIGURE 5.43  Four-bit Ring Counter

the time sequences in which the operations required by an instruction are executed. These
timing signals shown in Figure 5.42 can be generated by a special modulo-7 counter called
the ring counter. For proper operation, a ring counter must be initialized with one flip-flop
in the high state (Q=1) and all other flip-flops in the zero state (Q=0).

An n-bit ring counter transfers a single bit among the flip-flops to provide n
unique states. Figure 5.43 shows a 4-bit ring counter. Note that the ring counter requires
no decoding but contains n flip-flops for an n-bit ring counter. The circuit will count in the
sequence 1000, 0100, 0010, 0001, and repeat. Although the circuit does not count in the
usual binary counting sequence, it is still called a counter because each count corresponds
to a unique set of flip-flop states. The state table for the 4-bit ring counter is provided
below:

Present State Next State FF Inputs

WXY 2 W+ X+ Y+ Z+ Dw Dx Dy Dz
1000 0 1 0 O 0 1 0 O
0100 60 0 1 0O 0 0 1 O
001090 0 0 0 1 0 0 0 1
0001 1 0 0 0 1 0 0 0

From the above, using the present states along with the unused present states (not
shown above) as don’t cares, the following equations can be obtained using four K-maps
(one for each FF input): Dw=2Z, Dx=W, Dy=X, Dz = Y. This circuit is also known
as a circular shift register, because the least significant bit shifted is not lost. This is the
simplest shift-register counter. Thus, the schematic of Figure 5.43 can be obtained.

The main advantages of this circuit are design simplicity and the ability to
generate timing signals without a decoder. Nevertheless, » flip-flops are required to
generate n timing signals. This approach is not economically feasible for large values of
n. To generate timing signals economically, a new approach is used. A modulo-2* counter
is first designed using » flip-flops. The 7 outputs from this counter are then connected to a
n-to-2" decoder as inputs to generate 2" timing signals. The circuit depicted in Figure 5.44
shows how to generate four timing signals using a modulo-4 counter and a 2-to-4 decoder.
In the preceding circuit, the Boolean equation for each timing signal can be derived as

T,=4B
T,=4B
T,=AB
T,=AB

These equations show that four 2-input AND gates are needed to derive the timing
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FIGURE 545 Four-bit Johnson Counter

signals (assuming single-level decoding). The main advantage of this approach is that 2~
timing signals using only » flip-flops are generated. In this method, though, 27 (#-input)
AND gates are required to decode the n-bit output from the flip-flops into 2* different
timing signals. Yet the ring counter approach requires 2" flip-flops to accomplish the same
task.

Typical modulo-n counters provide trade-offs between the number of flip-flops
and the amount of decoding logic needed. The binary counter uses the minimum number
of flip-flops but requires a decoder. On the other hand, the ring counter uses the maximum
number of flip-flops but requires no decoding logic. The Johnson counter (also called the
Switch-tail counter or the Mobius counter) is very similar to a ring counter. Figure 5.45
shows a 4-bit Johnson counter using JK flip-flops. Note that the Q output of the right-hand
flip-flop is connected to the J input of the leftmost flip-flop while the Q output of the
rightmost flip-flop is connected to the K input of the leftmost flip-flop.

A Johnson counter requires the same hardware as a ring counter of the same size
but can represent twice as many states. Assume that the flip-flops are initialized at 1000.
The counter will count in the sequence 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000
and repeat.

5.11.3 Random-Access Memory (RAM)

As mentioned before, a RAM is read/write volatile memory. RAM can be classified into
two types: static RAM (SRAM) and dynamic RAM (DRAM). A static RAM stores each
bit in a flip-flop whereas the dynamic RAM stores each bit as charge in a capacitor. As
long as power is available, the static RAM retains information. Because the capacitor
can hold charge for a few milliseconds, the dynamic RAM must be refreshed every few
milliseconds. This means that a circuit must rewrite that stored bit in a dynamic RAM
every few milliseconds. Let us now discuss a typical SRAM implementation using D flip-
flops. Figure 5.46 shows a typical RAM cell.
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FIGURE 5.46 A typical SRAM cell

In Figure 5.46(a), R/W = | means READ whereas R/W = 0 indicates a WRITE
operation. Select = 1 indicates that the one-bit RAM is selected. In order to read the cell,
R/W is | and select = 1. A 1 appears at the input of AND gate 3. This will transfer Q to the
output. This is a READ operation. Note that the inverted R/W to the input of AND gate 2 is
0. This will apply a 0 at the input of the CLK input of the D flip-flop. The output of the D
flip-flop is unchanged. In order to write into the one-bit RAM, R/W must be zero. This will
apply a 1 at the input of AND gate 2. The output of AND gate 2 (CLK input) is 1. The D
input is connected to the value of the bit (1 or 0) to be written into the one-bit RAM. With
CLK =1, the input bit is transferred at the output. The one-bit RAM is, therefore, written
into with the input bit. Figure 5.47 shows a 4 x 2 RAM. It includes 8 RAM cells providing
2-bit output and 4 locations.

The RAM contains a 2 x 4 decoder and 8 RAM cells implemented with D flip-
flops and gates. In contrast, a ROM consists of a decoder and OR gates. The four locations
(00, 01, 10, 11) in the RAM are addressed by 2 bits (4,, 4,). In order to read from location
00, the address 4,4, = 00 and R/W = 1. The decoder selects O, high. R/W = 1 will apply 0
at the clock inputs of the two RAM cells of the top row and will apply 1 at the inputs of the
output AND gates, thus transferring the outputs of the two D flip-flops to the inputs of the
two OR gates. The other inputs of the OR gate will be 0. Thus, the outputs of the two RAM
cells of the top row will be transferred to DO, and DO,, performing a READ operation.
On the other hand, consider a WRITE operation: The 2-bit data to be written is presented

S5

_I
@1@3« Lh il

P

DO, 0

FIGURE 547 4 x2RAM
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at DI, DI,,. Suppose 4,4, = 00. The top row is selected (G, = 1). Input bits at DI, and DI,
will respectively be applied at the inputs of the D flip-flops of the top row. Because R/W
=0, the clock inputs of both the D flip-flops of the top row are 1; thus, the D inputs are
transferred to the outputs of the flip-flops. Therefore, data at DI, DI, will be written into
the RAM.

5.12 Algorithmic State Mach