
Fundamentals of

Digital Logic and
Microcomputer Design

Fundamentals of

Digital Logic and
Microcomputer Design

Fifth Edition

M. RAFIQUZZAMAN, Ph.D.
Professor

California State Polytechnic University
Pomona, California

and
President

Rafi Systems, Inc.

@ WILEY-INTERSCIENCE
A JOHN WlLEY & SONS, INC., PUBLICATION

Copyright 0 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a rctrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center.
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc.. I 1 1 River Street, Hoboken, NJ 07030, (201) 748-601 I , fax (201) 748-
6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however,
may not be available in electronic format.

Library of Congress Cataloging-in-Publation Data:

Rafiquzraman, Mohamed.
Fundamentals of digital logic and microcomputer design / M. Rafiquzzamm-5th ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-471-72784-9 (cloth)
1. Logic circuits. 2. Microcomputers-Design and construction. 3. Electronic digital
computers-Circuits. I. Title.

TK7888.4.R34 2005
62 I .39'5-dc22 2004065974

Printed in the United States of America

1 0 9 8 7 6 5 4 3 2 1

In memory of my beloved parents, who gave me
tremendous support, encouragement, and
guidance in achieving my career goals.

I will always miss them.

To my wife, Kusum, and brother; Elan

Contents

PREFACE xv

1. INTRODUCTION TO DIGITAL SYSTEMS
1.1 Explanation of Terms
1.2 Design Levels
1.3 Combinational vs. Sequential Systems
1.4 Digital Integrated Circuits

1.4.1 Diodes
1.4.2 Transistors
1.4.3 MOS Transistors

1.5 Integrated Circuits (ICs)
1.6 Evolution of Computers
1.7 A Typical Microcomputer-Based Application
1.8 Trends and Perspectives in Digital Technology

2. NUMBER SYSTEMS AND CODES
2.1 Number Systems

2.1.1 General Number Representation
2.1.2

2.2 Unsigned and Signed Binary Numbers
2.3 Codes

2.3.1
2.3.2 Alphanumeric Codes
2.3.3 Excess-3 Code
2.3.4 Gray Code
2.3.5 Unicode

2.4 Fixed-Point and Floating-Point Representations
2.5 Arithmetic Operations

Converting Numbers from One Base to Another

Binary-Coded-Decimal Code (842 1 Code)

2.5.1 Binary Arithmetic
2.5.2 BCD Arithmetic
2.5.3 Multiword Binary Addition and Subtraction

2.6 Error Correction and Detection
Questions and Problems

1
2
4
4
5
5
6

13
15
17
19
19

23
23
23
26
28
32
32
32
34
35
36
37
37
38
47
48
49
50

vii

... Contents V l l l

3. BOOLEAN ALGEBRA AND DIGITAL LOGIC GATES
3.1 Basic Logic Operations

3.1.1 NOT Operation
3.1.2 OR Operation
3.1.3 AND Operation

3.2 Other Logic Operations
3.2.1 NOR Operation
3.2.2 NAND Operation
3.2.3 Exclusive-OR Operation (XOR)
3.2.4 Exclusive-NOR Operation (XNOR)
IEEE Symbols for Logic Gates 3.3

3.4 Positive and Negative Logic
3.5 Boolean Algebra

3.5.1 Boolean Identities
3.5.2 Simplification Using Boolean Identities
3.5.3 Consensus Theorem
3.5.4 Complement of a Boolean Function

3.6 Standard Representations
3.7 Karnaugh Maps

3.7.1 Two-Variable K-Map
3.7.2 Three-Variable K-Map
3.7.3 Four-Variable K-Map
3.7.4 Prime Implicants
3.7.5
3.7.6 Don’t Care Conditions
3.7.7 Five-Variable K-Map

Implementation of Digital Circuits with NAND, NOR, and Exclusive-
OWExclusive-NOR Gates
3.9.1 NAND Gate Implementation
3.9.2 NOR Gate Implementation
3.9.3 XOR / XNOR Implementations

Expressing a Function in Product-of-Sums Form Using a K-Map

3.8 Quine-McCluskey Method
3.9

Questions and Problems

4. COMBINATIONAL LOGIC DESIGN
4.1 Basic Concepts
4.2 Analysis of a Combinational Logic Circuit
4.3 Design of a Combinational Circuit
4.4 Multiple-Output Combinational Circuits
4.5 Typical Combinational Circuits

4.5.1
4.5.2 Comparators
4.5.3 Decoders
4.5.4 Encoders
4.5.5 Multiplexers
4.5.6 Demultiplexers

4.6 IEEE Standard Symbols
4.7 Read-only Memories (ROMs)

Binary / BCD Adders and Binary Subtractors

53
53
53
54
55
58
58
58
60
61
62
63
64
65
67
68
70
71
75
76
76
79
81
83
83
85
86

88
88
91
91
95

99
99

100
101
102
106
106
110
112
115
116
118
118
121

Contents

4.8 Programmable Logic Devices (PLDs)
4.9 Commercially Available Field Programmable Devices (FPDs)
4.10 Hardware Description Language (HDL)
Questions and Problems

5. SEQUENTIAL LOGIC DESIGN
5.1 Basic Concepts
5.2 Flip-Flops

5.2.1 SR Latch
5.2.2 RS Flip-Flop
5.2.3 D Flip-Flop
5.2.4 JK Flip-Flop
5.2.5 T Flip-Flop

5.3 Master-Slave Flip-Flop
5.4 Preset and Clear Inputs
5.5 Summary of Flip-Flops
5.6 Analysis of Synchronous Sequential Circuits
5.7 Types of Synchronous Sequential Circuits
5.8 Minimization of States
5.9 Design of Synchronous Sequential Circuits
5.10 Design of Counters
5.1 1 Examples of Synchronous Sequential Circuits

5.1 1.1 Registers
5.1 1.2 Modulo-n Counters
5.1 1.3 Random-Access Memory (RAM)

5.12
5.13 Asynchronous Sequential Circuits
Questions and Problems

Algorithmic State Machines (ASM) Chart

6. MICROCOMPUTER ARCHITECTURE, PROGRAMMING,
AND SYSTEM DESIGN CONCEPTS
6.1 Basic Blocks of a Microcomputer
6.2 Typical Microcomputer Architecture

6.2.1 The Microcomputer Bus
6.2.2 Clock Signals

6.3.1 Register Section
6.3.2 Control Unit
6.3.3
6.3.4

6.3 The Single-Chip Microprocessor

Arithmetic and Logic Unit (ALU)
Functional Representations of a Simple and a
Typical Microprocessor

6.3.5 Microprogramming the Control Unit (A Simplified Explanation) 20 1
6.4 The Memory 204

6.4.1 Random-Access Memory (RAM) 205
6.4.2 Read-only Memory (ROM) 206
6.4.3 READ and WRITE Operations 207
6.4.4 Memory Organization 209

6.5 InputiOutput 209

ix

123
126
127
129

135
135
136
136
138
139
139
140
140
141
143
145
148
148
150
156
161
162
164
166
168
176
178

185
185
186
186
187
188
188
198
199

199

X Con tents

6.6 Microcomputer Programming Concepts
6.6.1 Microcomputer Programming Languages
6.6.2 Machine Language
6.6.3 Assembly Language
6.6.4 High-Level Languages

6.7 Monitors
6.8 Flowcharts
6.9
6.10 System Development Flowchart
Questions and Problems

Basic Features of Microcomputer Development Systems

7. DESIGN OF COMPUTER INSTRUCTION SET AND THE CPU
7.1 Design of the Computer Instructions
7.2 Reduced Instruction Set Computer (RISC)
7.3 Design of the CPU

7.3.1 Register Design
7.3.2 Adders
7.3.3

7.3.4 ALU Design
7.3.5
Design of a Microprogrammed CPU

Addition, Subtraction, Multiplication and Division of
Unsigned and Signed Numbers

Design of the Control Unit
7.4
Questions and Problems

8. MEMORY, I/O, AND PARALLEL PROCESSING
8.1 Memory Organization

8.1.1 Introduction
8.1.2 Main Memory Array Design
8.1.3
8.1.4 Cache Memory Organization

8.2.1 Programmed IiO
8.2.2 Interrupt IiO
8.2.3 Direct Memory Access (DMA)

Virtual Memory and Memory Management Concepts

8.2 InputiOutput

8.3 Summary of IiO
8.4 Fundamentals of Parallel Processing

8.4.1
8.4.2 Pipeline Processing

General Classifications of Computer Architectures

Questions and Problems

9. INTEL8086
9.1 Introduction
9.2 8086 Main Memory
9.3 8086 Registers
9.4 8086 Addressing Modes

9.4.1 Register and Immediate Modes
9.4.2 Memory Addressing Modes
9.4.3 Port Addressing

210
210
21 1
212
222
227
228
228
232
233

237
237
239
242
242
244

250
254
257
277
286

299
299
299
3 00
3 04
326
335
336
340
345
347
347
348
35 1
359

367
367
369
370
373
374
374
376

Con tents xi

9.4.4 Relative Addressing Mode
9.4.5 Implied Addressing Mode

9.5.1 Data Transfer Instructions
9.5.2 Arithmetic Instructions
9.5.3 Bit Manipulation Instructions
9.5.4 String Instructions
9.5.5 Unconditional Transfer Instructions
9.5.6 Conditional Branch Instructions
9.5.7 Iteration Control Instructions
9.5.8 Interrupt Instructions
9.5.9 Processor Control Instructions

Typical 8086 Assembler Pseudo-Instructions or Directives
9.7.1 SEGMENT and ENDS Directives
9.7.2 ASSUME Directive
9.7.3
9.7.4 8086 Stack

System Design Using the 8086
9.9.1 8086 Pins and Signals
9.9.2 Basic 8086 System Concepts
9.9.3 Interfacing with Memories
9.9.4 8086 110 Ports
9.9.5

9.5 8086 Instruction Set

9.6 8086 Assembler-Dependent Instructions
9.7

DUP, LABEL, and Other Directives

9.8 8086 Delay Routine
9.9

Important Points To Be Considered for 8086 Interface
to Memory and 110

9.10 8086-Based Microcomputer
9.1 1 8086 Interrupts

9.1 1.1 Predefined Interrupts
9.1 1.2 Internal Interrupts
9.1 1.3 External Maskable Interrupts
9.1 1.4 Interrupt Procedures
9.1 1.5 Interrupt Priorities
9.1 1.6 Interrupt Pointer Table

9.12 8086 DMA
9.13 Interfacing an 8086-Based Microcomputer to a Hexadecimal

Keyboard and Seven-Segment Displays
9.13.1
9.13.2

Basics of Keyboard and Display Interface to a Microcomputer
Hex Keyboard Interface to an 8086-Based Microcomputer

Questions and Problems

10. MOTOROLA MC68000
10.1 Introduction
10.2 68000 Registers
10.3 68000 Memory Addressing
10.4 68000 Addressing Modes

10.4.1 Register Direct Addressing
10.4.2 Address Register Indirect Addressing

376
376
376
377
379
3 84
3 86
388
39 1
393
3 94
3 95
395
3 97
397
397
398
3 99
3 99
414
414
42 1
425
428

430
434
436
436
437
437
43 8
43 8
439
439

445
445
447
45 1

457
45 7
460
46 1
46 1
463
463

xii Contents

10.4.3 Absolute Addressing
10.4.4 Program Counter Relative Addressing
10.4.5 Immediate Data Addressing
10.4.6 Implied Addressing
Functional Categories of 68000 Addressing Modes

10.6.1 Data Movement Instructions
10.6.2 Arithmetic Instructions
10.6.3 Logical Instructions
10.6.4 Shift and Rotate Instructions
10.6.5 Bit Manipulation Instructions
10.6.6 Binary-Coded-Decimal Instructions
10.6.7 Program Control Instructions
10.6.8 System Control Instructions
10.6.9 68000 Stack

10.7 68000 Delay Routine
10.8 68000 Pins And Signals

10.5
10.6 68000 Instruction Set

10.8.1
10.8.2 System Control Lines
10.8.3 Interrupt Control Lines
10.8.4 DMA Control Lines
10.8.5 Status Lines
68000 Clock and Reset Signals
10.9.1 68000 Clock Signals
10.9.2 68000 Reset Circuit

Synchronous and Asynchronous Control Lines

10.9

10.10 68000 Read and Write Cycle Timing Diagrams
10.1 1 68000 Memory Interface
10.12 68000 I/O

10.12.1 68000 Programmed I/O
10.12.2 68000 Interrupt System
10.12.3 68000 DMA

10.13 68000 Exception Handling
10.14 68000/2732/6116/682 1 -Based Microcomputer
10.15 Multiprocessing with the 68000 Using the TAS Instruction

and the AS Signal
Questions and Problems

11. INTEL AND MOTOROLA 32- & 64-BIT MICROPROCESSORS
1 1.1
1 1.2
1 1.3 Intel 80386

Typical Features of 32-Bit and 64-Bit Microprocessors
Intel 32-Bit and 64-Bit Microprocessors

11.3.1 Internal 80386 Architecture
1 1.3.2 Processing Modes
11.3.3 Basic 80386 Programming Model
11.3.4 80386 Addressing Modes
11.3.5 80386 Instruction Set
11.3.6 80386 Pins and Signals
11.3.7 80386 Modes

465
465
465
466
466
467
469
472
477
479
482
482
483
486
487
489
498
500
502
503
503
503
503
503
5 04
509
511
514
5 14
52 1
526
526
529

532
535

543
543
545
546
547
547
548
550
55 I
560
56 1

Contents
...

X l l l

11.3.8 80386 System Design
11.3.9 80386 I/O

1 1.4.1 Intel 80486180386 Comparison
1 1.4.2
1 1.4.3

1 1.5.1 Pentium Registers
1 1 S.2
11 S.3

1 1 S.4 Pentium InputiOutput
1 1 S.5
1 1.5.6
1 1 S.7

1 1.6 Merced/IA-64
1 1.7

1 1.4 Intel 80486 Microprocessor

Special Features of the 80486
80486 New Instructions Beyond Those of the 80386

1 1.5 Intel Pentium Microprocessor

Pentium Addressing Modes and Instructions
Pentium versus 80486: Basic Differences in Registers,
Paging, Stack Operations, and Exceptions

Applications with the Pentium
Pentium versus Pentium Pro
Pentium I1 / Celeron / Pentium I1 XeonTM/
Pentium 111 / Pentium 4

Overview of Motorola 32- and 64-Bit Microprocessors
1 1.7.1 Motorola MC68020
1 1.7.2 Motorola MC68030
1 1.7.3
1 1.7.4 PowerPC Microprocessor
1 1.7.5 Motorola’s State-of-the-Art Microprocessors

Motorola MC68040 / MC68060

Questions and Problems

APPENDIX A-ANSWERS TO SELECTED PROBLEMS

APPENDIX B-GLOSSARY

APPENDIX C-MOTOROLA 68000 and SUPPORT CHIPS

APPENDIX D-68000 EXECUTION TIMES

APPENDIX E-INTEL 8086 AND SUPPORT CHIPS

APPENDIX F-8086 INSTRUCTION SET REFERENCE DATA

APPENDIX G-68000 INSTRUCTION SET

APPENDIX H-8086 INSTRUCTION SET

APPENDIX I-VERILOG
I. 1 Introduction to Verilog

I. 1.1 Structural Modeling
I. 1.2 Dataflow Modeling
I. 1.3 Behavioral Modeling
Verilog Descriptions of Typical Combinational Logic Circuits
1.3

1.2
Verilog Descriptions of Typical Synchronous Sequential Circuits

562
5 64
565
565
565
567
568
570
570

57 1
57 1
572
572

573
575
576
5 76
610
610
61 1
619
620

627

633

649

661

67 1

677

695

701

713
713
717
719
719
72 1
728

xiv Con tents

1.4
1.5 CPU Design Using Verilog
Questions and Problems

Status Register Design Using Verilog

APPENDIX J-VHDL
J. 1 Introduction to VHDL

J. 1.1 Structural Modeling
J. 1.2 Behavioral Modeling
J. 1.3 Dataflow Modeling
J. 1.4 Mixed Modeling
VHDL Descriptions of Typical Combinational Logic Circuits
VHDL Descriptions of Typical Synchronous Sequential Circuits
Status Register Design Using VHDL

5.2
5.3
5.4
J.5 CPU Design Using VHDL
Questions and Problems

BIBLIOGRAPHY

74 1
743
753

757
757
759
761
763
765
766
769
777
778
805

807

CREDITS 811

INDEX 813

Preface

In this book we cover all basic concepts of computer engineering and science, from digital
logic circuits to the design of a complete microcomputer system in a systematic and sim-
plified manner. We have endeavored to present a clear understanding of the principles and
basic tools required to design typical digital systems such as microcomputers.

To accomplish this goal, the computer is first defined as consisting of three
blocks: central processing unit (CPU), memory, and I/O. We point out that the CPU is
analogous to the brain of a human being. Computer memory is similar to human memory.
A question asked of a human being is analogous to entering a program into a computer us-
ing an input device such as a keyboard, and answering the question by the human is simi-
lar in concept to outputting the result required by the program to a computer output device
such as a printer. The main difference is that human beings can think independently
whereas computers can only answer questions for which they are programmed. Due to ad-
vances in semiconductor technology, it is possible to fabricate the CPU on a single chip.
The result is the microprocessor. Intel’s Pentium and Motorola’s Power PC are typical ex-
amples of microprocessors. Memory and 110 chips must be connected to the microproces-
sor chip to implement a microcomputer so that these microprocessors will be able to per-
form meaningful operations.

We clearly point out that computers understand only 0’s and 1’s. It is therefore
important that students be familiar with binary numbers. Furthermore, we focus on the
fact that computers can normally only add. Hence, all other operations such as subtraction
are performed via addition. This can be accomplished via two’s-complement arithmetic
for binary numbers. This topic is therefore also included, along with a clear explanation of
signed and unsigned binary numbers.

As far as computer programming is concerned, assembly language programming
is covered in this book for typical Intel and Motorola microprocessors. An overview of C,
C++, and Java high-level languages is also included. These are the only high-level lan-
guages that can perform I/O operations. We point out the advantages and disadvantages of
programming typical microprocessors in C and assembly languages.

Three design levels are covered in this book: device level, logic level, and system
level. Device-level design, which designs logic gates such as AND, OR, and NOT using
transistors, is included from a basic point of view. Logic-level design is the design tech-
nique in which logic gates are used to design a digital component such as an adder. Final-
ly, system-level design is covered for typical Intel and Motorola microprocessors. Micro-

xv

xvi Preface

computers have been designed by interfacing memory and IiO chips to these micro-
processors.

Digital systems at the logic level are classified into two types of circuits, combi-
national and sequential. Combinational circuits have no memory whereas sequential cir-
cuits contain memory. Microprocessors are designed using both combinational and se-
quential circuits. Therefore, these topics are covered in detail. The fifth edition of this
book contains an introduction to synthesizing digital logic circuits using popular hard-
ware description languages such as Verilog and VHDL. These two languages are included
in Appendices 1 and J, independently of each other in such a way that either Verilog or
VHDL can be covered in a course without confusion.

The material included in this book is divided into three sections. The first section
contains Chapters 1 through 5. In these chapters we describe digital circuits at the gate
and flip-flop levels and describe the analysis and design of combinational and sequential
circuits. The second section contains Chapters 6 through 8. Here we describe microcom-
puter organizatiodarchitecture, programming, design of computer instruction sets, CPU,
memory, and IiO. The third section contains Chapters 9 through 11. These chapters con-
tain typical 16-, 32-, and 64-bit microprocessors manufactured by Intel and Motorola. Fu-
ture plans of Intel and Motorola are also included. Details of the topics covered in the l l
chapters of this book follow.

Chapter 1 presents an explanation of basic terminologies, fundamental concepts of
digital integrated circuits using transistors; a comparison of LSTTL, HC, and HCT IC
characteristics, the evolution of computers, and technological forecasts.
Chapter 2 provides various number systems and codes suitable for representing infor-
mation in microprocessors.
Chapter 3 covers Boolean algebra along with map simplification of Boolean functions.
The basic characteristics of digital logic gates are also presented.
Chapter 4 presents the analysis and design of combinational circuits. Typical combina-
tional circuits such as adders, decoders, encoders, multiplexers, demultiplexers and,
ROMsiPLDs are included.
Chapter 5 covers various types of flip-flops. Analysis and design of sequential circuits
such as counters are provided.
Chapter 6 presents typical microcomputer architecture, internal microprocessor orga-
nization, memory, 110, and programming concepts.
Chapter 7 covers the fundamentals of instruction set design. The design of registers
and ALU is presented. Furthermore, control unit design using both hardwired control
and microprogrammed approaches is included. Nanomemory concepts are covered.
Chapter 8 explains the basics of memory, IiO, and parallel processing. Topics such as
main memory array design, memory management concepts, cache memory organiza-
tion, and pipelining are included.
Chapters 9 and 10 contain detailed descriptions of the architectures, addressing
modes, instruction sets, I/O, and system design concepts associated with the Intel 8086
and Motorola MC68000.
Chapter 1 1 provides a summary of the basic features of Intel and Motorola 32- and 64-
bit microprocessors. Overviews of the Intel 80486/Pentium/Pentium ProiPentium
IIiCelerodPentium 111, Pentium 4, and the Motorola 68030168040/68060/PowerPC

Preface xvii

(32- and 64-bit) microprocessors are included. Finally, future plans by both Intel and
Motorola are discussed.

The book can be used in a number of ways. Because the materials presented are
basic and do not require an advanced mathematical background, the book can easily be
adopted as a text for three quarter or two semester courses. These courses can be taught at
the undergraduate level in engineering and computer science. The recommended course
sequence can be digital logic design in the, first course, with topics that include selected
portions from Chapters 1 through 5; followed by a second course on computer architec-
ture/organization (Chapters 6 through 8). The third course may include selected topics
from Chapters 9 through 1 1, covering Intel and/or Motorola microprocessors.

The audience for this book can also be graduate students or practicing micro-
processor system designers in the industry. Portions of Chapters 9 through 11 can be used
as an introductory graduate text in electricalicomputer engineering or computer science.
Practitioners of microprocessor system design in the industry will find more simplified
explanations, together with examples and comparison considerations, than are found in
manufacturers’ manuals.

Because of increased costs of college textbooks, this book covers several topics
including digital logic, computer architecture, assembly language programming, and mi-
croprocessor-based system design in a single book. Adequate details are provided. Cover-
age of certain topics listed below makes the book very unique:

i)

ii)

iii)

iv)

v)

vi)

vii)

A clear explanation of signed and unsigned numbers using computation of
(X2/255) as an example (Section 2.2). The same concepts are illustrated using as-
sembly language programming with Intel 8086 microprocessor (Example 9.2), and
Motorola 68000 microprocessor (Example 10.2).
Clarification of packed vs. unpacked BCD (Section 2.3.2). Also, clear explanation
of ASCII vs. EBCDIC using an ASCII keyboard and an EBCDIC printer inter-
faced to a computer as an example (Section 2.3.2); illustration of the same con-
cepts via Intel 8086 assembly language programming using the XLAT instruction
(Section 9.5.1).
Simplified explanation of Digital Logic Design along with numerous examples
(Chapters 2 through 5). A clcar explanation of the BCD adder (Section 4.5.1). An
introduction to basic features of Verilog (Appendix I) and VHDL (Appendix J)
along with descriptions of several examples of Chapters 3 through 5. Verilog and
VHDL descriptions and syntheses of an ALU and a typical CPU. Coverage of Ver-
ilog and VHDL independent of each other in separate appendices without any con-
fusion.
CD containing a step by step procedure for installing and using Altera Quartus I1
software for synthesizing Verilog and VHDL descriptions of several combinational
and sequential logic design. Screen shots included in CD providing the waveforms
and tabular forms illustrating the simulation results.
Application of C language vs. assembly language along with advantages and dis-
advantages of each (Section 6.6.4).
Numerous examples of assembly language programming for both Intel 8086
(Chapter 9) and Motorola 68000 (Chapter lo).
A CD containing a step by step procedure for installing and using MASM 6.1 1

xviii Preface

(8086) and 68asmsim (68000). Screen shots are provided on CD verifying the cor-
rect operation of several assembly language programs (both 8086 and 68000) via
simulations using test data. The screen shots are obtained by simulating the assem-
bly language programs using DEBUG (8086) and SIM (68000).
A concise and simplified explanation of system design concepts including pro-
grammed I/O and interrupts with the Intel 8086 (Chapter 9) and Motorola 68000
(Chapter 10). Hardware aspects including design of reset circuitry and a simple
microcomputer with these microprocessors from the chip level.
A simplified comparison of RISC vs. CISC relating to Pentium architecture which
is comprised of both RISC and CISC (Section 7.3.5). Unique feature of the Power-
PC (Section 1 1.7.4).

viii)

ix)

The author wishes to express his sincere appreciation to his students, Rami Yas-
sine, Teren Abear, Vireak Ly, Henry Zhong, Roe1 Delos Reyes, Vu Tran, Henry Ongkopu-
tro, Rega Setiawan, Xibin Wu, Ryan DeGuzman, Angelo Terracina, Javier Ruiz, Yi Ting
Huang, Eric Fang, Cindy Yeh, King Lam, Luis Galdamez, Elias Younes, Beniamin Petrea-
ca, and to all others for making constructive suggestions. The author is indebted to his col-
leagues Dr. R. Chandra, Dr. M. Davarpanah, Dr. T. Sacco, Dr. S. Monemi, and Dr. H. El
Naga of California State Poly University, Pomona for their valuable comments. The au-
thor is also grateful to Dr. W. C. Miller of University of Windsor, Canada and to his good
friends U.S. Congressman Duke Cunningham (TOPGUN, Vietnam) and U.S. Congress-
man Jerry Weller for their inspiration during the writing effort. Finally, the author would
like to thank CJ Media of California for preparing the final version of the manuscript.

M. RAFIQUZZAMAN
Pomona, California

1
INTRODUCTION

TO DIGITAL SYSTEMS
Digital systems are designed to store, process, and communicate information in digital form.
They are found in a wide range of applications, including process control, communication
systems, digital instruments, and consumer products. The digital computer, more commonly
called the “computer,” is an example of a typical digital system.

A computer manipulates information in digital, or more precisely, binary form. A
binary number has only two discrete values - zero or one. Each of these discrete values
is represented by the OFF and ON status of an electronic switch called a “transistor.” All
computers, therefore, only understand binary numbers. Any decimal number (base 10,
with ten digits from 0 to 9) can be represented by a binary number (base 2, with digits 0
and 1).

The basic blocks of a computer are the central processing unit (CPU), the memory,
and the input/output (I/O). The CPU of the computer is basically the same as the brains of
a human being. Computer memory is conceptually similar to human memory. A question
asked to a human being is analogous to entering a program into the computer using an
input device such as the keyboard, and answering the question by the human is similar
in concept to outputting the result required by the program to a computer output device
such as the printer. The main difference is that human beings can think independently,
whereas computers can only answer questions that they are programmed for. Computer
hardware refers to components of a computer such as memory, CPU, transistors, nuts,
bolts, and so on. Programs can perform a specific task such as addition if the computer has
an electronic circuit capable of adding two numbers. Programmers cannot change these
electronic circuits but can perform tasks on them using instructions.

Computer software, on the other hand, consists of a collection of programs.
Programs contain instructions and data for performing a specific task. These programs,
written using any programming language such as C++, must be translated into binary
prior to execution by the computer. This is because the computer only understands binary
numbers. Therefore, a translator for converting such a program into binary is necessary.
Hence, a translator program called the compiler is used for translating programs written
in a programming language such as C++ into binary. These programs in binary form are
then stored in the computer memory for execution because computers only understand 1’s
and 0’s. Furthermore, computers can only add. This means that all operations such as
subtraction, multiplication, and division are performed by addition.

Due to advances in semiconductor technology, it is possible to fabricate the
CPU in a single chip. The result is the microprocessor. Both Metal Oxide Semiconductor
(MOS) and Bipolar technologies were used in the fabrication process. The CPU can

1

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

2 Fundamentals of Digital Logic and Microcomputer Design

be placed on a single chip when MOS technology is used. However, several chips are
required with the bipolar technology. HCMOS (High Speed Complementary MOS) or
BICMOS (Combination of Bipolar and HCMOS) technology (to be discussed later in
this chapter) is normally used these days to fabricate the microprocessor in a single chip.
Along with the microprocessor chip, appropriate memory and I/O chips can be used to
design a microcomputer. The pins on each one of these chips can be connected to the
proper lines on the system bus, which consists of address, data, and control lines. In the
past, some manufacturers have designed a complete microcomputer on a single chip with
limited capabilities. Single-chip microcomputers were used in a wide range of industrial
and home applications.

“Microcontrollers” evolved from single-chip microcomputers. The micro-
controllers are typically used for dedicated applications such as automotive systems, home
appliances, and home entertainment systems. Typical microcontrollers, therefore, include
a microcomputer, timers, and A/D (analog to digital) and D/A (digital to analog) converters
- all in a single chip. Examples of typical microcontrollers are Intel 8751 (8-bit) / 8096
(16-bit) and Motorola HC11 (8-bit) / HC16 (16-bit).

In this chapter, we first define some basic terms associated with the computers.
We then describe briefly the evolution of the computers and the microprocessors. Finally,
a typical practical application,, and technological forecasts are included.

1.1 ExDlanation of Terms

Before we go on, it is necessary to understand some basic terms. . A bit is the abbreviation for the term binary digit. A binary digit can have only two
values, which are represented by the symbols 0 and 1, whereas a decimal digit can
have 10 values, represented by the symbols 0 through 9. The bit values are easily
implemented in electronic and magnetic media by two-state devices whose states
portray either of the binary digits, 0 or 1. Examples of such two-state devices are a
transistor that is conducting or not conducting, a capacitor that is charged or discharged,
and a magnetic material that is magnetized North-to-South or South-to-North.
The bit size of a computer refers to the number of bits that can be processed
simultaneously by the basic arithmetic circuits of the computer. A number of bits
taken as a group in this manner is called a word. For example, a 32-bit computer can
process a 32-bit word. An 8-bit word is referred to as a byte, and a 4-bit word is known
as a nibble.
An arithmetic logic unit (ALU) is a digital circuit which performs arithmetic and logic
operations on two n-bit digital words. The value of n can be 4, 8, 16, 32, or 64.
Typical operations performed by the ALU are addition, subtraction, ANDing, ORing,
and comparison of two n-bit digital words. The size of the ALU defines the size of the
computer. For example, a 32-bit computer contains a 32-bit ALU.
A microprocessor is the CPU of a microcomputer contained in a single chip and
must be interfaced with peripheral support chips in order to function. In general, the
CPU contains several registers (memory elements), the ALU, and the control unit.
Note that the control unit translates instructions and performs the desired task. The
number of peripheral devices depends upon the particular application involved and
even varies within one application. As the microprocessor industry matures, more of
these functions are being integrated onto chips in order to reduce the system package
count. In general, a microcomputer typically consists of a microprocessor (CPU) chip,

Introduction to Digital Systems 3

input and output chips, and memory chips in which programs (instructions and data)
are stored. Note that a microcontroller, on the other hand, is implemented in a single
chip containing typically a CPU, memory, VO, timer, A/D and D/A converter circuits.
Throughout this book the terms “computer” and “CPU” will be used interchangeably
with “Microcomputer” and “Microprocessor” respectively.
An address is a pattern of 0’s and 1’s that represents a specific location of memory
or a particular I/O device. Typical 8-bit microprocessors have 16 address lines, and,
these 16 lines can produce 216 unique 16-bit patterns from 0000000000000000 to
1 11 11 11 11 1 11 11 11, representing 65,536 different address combinations.
Read-only memory (ROW is a storage medium for the groups of bits called words,
and its contents cannot normally be altered once programmed. A typical ROM is
fabricated on a chip and can store, for example, 2048 eight-bit words, which can be
individually accessed by presenting one of 2048 addresses to it. This ROM is referred
to as a 2K by 8-bit ROM. 101 101 11 is an example of an 8-bit word that might be
stored in one location in this memory. A ROM is also a nonvolatile storage device,
which means that its contents are retained in the event of power failure to the ROM
chip. Because of this characteristic, ROMs are used to store programs (instructions
and data) that must always be available to the microprocessor.
Random access memory (RAM) is also a storage medium for groups of bits or words
whose contents can not only be read but also altered at specific addresses. Furthermore,
a RAM normally provides volatile storage, which means that its contents are lost in
the event of a power failure. RAMs are fabricated on chips and have typical densities
of 4096 bits to one megabit per chip. These bits can be organized in many ways, for
example, as 4096-by-1-bit words, or as 2048-by-8-bit words. RAMs are normally used
for the storage of temporary data and intermediate results as well as programs that can
be reloaded from a back-up nonvolatile source. RAMs are capable of providing large
storage capacity in the range of Megabits.
A register can be considered as volatile storage for a number of bits. These bits may
be entered into the register simultaneously (in parallel), or sequentially (serially) from
right to left or from left to right, 1 bit at a time. An 8-bit register storing the bits
1 1 110000 is represented as follows:

The term bus refers to a number of conductors (wires) organized to provide a means of
communication among different elements in a microcomputer system. The conductors
in the bus can be grouped in terms of their functions. A microprocessor normally has
an address bus, a data bus, and a control bus. The address bits to memory or to an
external device are sent out on the address bus. Instructions from memory, and data
to/from memory or external devices normally travel on the data bus. Control signals
for the other buses and among system elements are transmitted on the control bus.
Buses are sometimes bidirectional; that is, information can be transmitted in either
direction on the bus, but normally only in one direction at a time.
The instruction set of a microprocessor is the list of commands that the microprocessor
is designed to execute. Typical instructions are ADD, SUBTRACT, and STORE.
Individual instructions are coded as unique bit patterns, which are recognized and

4 Fundamentals of Digital Logic and Microcomputer Design

executed by the microprocessor. If a microprocessor has 3 bits allocated to the
representation of instructions, then the microprocessor will recognize a maximum of
23 or eight different instructions. The microprocessor will then have a maximum of
eight instructions in its instruction set. It is obvious that some instructions will be more
suitable to a particular application than others. For example, ifa microprocessor is to be
used in a calculating mode, instructions such as ADD, SUBTRACT, MULTIPLY, and
DIVIDE would be desirable. In a control application, instructions inputting digitized
signals into the processor and outputting digital control variables to external circuits
are essential. The number of instructions necessary in an application will directly
influence the amount of hardware in the chip set and the number and organization of
the interconnecting bus lines.
A microcomputer requires synchronization among its components, and this is provided
by the clock or timing circuits. A clock is analogous to the heart beats o f a human
body.
The chip is an integrated circuit (IC) package containing digital circuits.
The term gate refers to digital circuits which perform logic operations such as AND,OR,
and NOT. In an AND operation, the output of the AND gate is one if all inputs are
one; the output is zero if one or more inputs are zero. The OR gate, on the other hand,
provides a zero output if all inputs are zero; the output is one if one or more inputs are
one. Finally, a NOT gate (also called an inverter) has one input and one output. The
NOT gate produces one if the input is zero; the output is zero if the input is one.
Transistors are basically electronic switching devices. There are two types oftransistors.
These are bipolar junction transistors (BJTs) and metal-oxide semiconductor (MOS)
transistors. The operation of the BJT depends on the flow of two types of carriers:
electrons (n-channel) and holes (p-channel), whereas the MOS transistor is unipolar
and its operation depends on the flow of only one type of carrier, either electrons (n-
channel) or holes (p-channel).
The speed power product (SPP) is a measure of performance of a logic gate. It is
expressed in picojoules (pJ). SPP is obtained by multiplying the speed (in ns) by the
power dissipation (in mW) of a gate.

1.2 Design Levels

Three design levels can be defined for digital systems: systems level, logic level, and
device level.

Systems level is the type of design in which CPU, memory, and I/O chips are interfaced
to build a computer.
Logic level, on the other hand, is the design technique in which chips containing logic
gates such as AND, OR, and NOT are used to design a digital component such as the
ALU.
Finally, device level utilizes transistors to design logic gates.

1.3 Combinational vs. Seauential Svstems

Digital systems at the logic level can be classified into two types. These are combinational
and sequential.

Combinational systems contain no memory whereas sequential systems require

Introduction to Digital Systems 5

memory to remember the present state in order to go to the next state. A binary adder
capable of providing the sum upon application of the numbers to be added is an example of
a combinational system. For example, consider a 4-bit adder. The inputs to this adder will
be two 4-bit numbers; the output will be the 4-bit sum. In this case, the adder will generate
the 4-bit sum output upon application of the two 4-bit inputs.

Sequential systems, on the other hand, require memory. The counter is an example
of a sequential system. For instance, suppose that the counter is required to count in the
sequence 0, 1,2 and then repeat the sequence. In this case, the counter must have memory
to remember the present count in order to go to the next. The counter must remember that
it is at count 0 in order to go to the next count, 1. In order to count to 2, the counter must
remember that it is counting 1 at the present state. In order to repeat the sequence, the
counter must count back to 0 based on the present count, 2, and the process continues. A
chip containing sequential circuit such as the counter will have a clock input pin.

In general, all computers contain both combinational and sequential circuits.
However, most computers are regarded as clocked sequential systems. In these computers,
almost all activities pertaining to instruction execution are synchronized with clocks.

1.4 Dipital Integrated Circuits

The transistor can be considered as an electronic switch. The on and off states of a
transistor are used to represent binary digits. Transistors, therefore, play an important
role in the design of digital systems. This section describes the basic characteristics of
digital devices and logic families. These include diodes, transistors, and a summary of
digital logic families. These topics are covered from a very basic point of view. This will
allow the readers with some background in digital devices to see how they are utilized in
designing digital systems.

1.4.1 Diodes
A diode is an electronic switch. It is a two-terminal device. Figure 1.1 shows the symbolic
representation.

The positive terminal (made with the p-type semiconductor material) is called
the anode; the negative terminal (made with the n-type semiconductor material) is called

I
d

Anode Cathode
- + + v -

FIGURE 1.1

FIGURE 1.2

Symbolic representations of a diode

Emitter

I L l c I

I
Emitter

(a) npnTransistor symbol (b) Equivalent circuit

Symbolic representations of a npn transistor

6 Fundamentals of Digital Logic and Microcomputer Design

a cathode. When a voltage, V = 0.6 volt is applied across the anode and the cathode, the
switch closes and a current I flows from anode to the cathode.

1.4.2 Transistors
A bipolar junction transistor (BJT) or commonly called the transistor is also an electronic
switch like the diode. Both electrons (n-channel) and holes (p-channel) are used for camer
flow; hence, the name “bipolar” is used. The BJT is used in transistor logic circuits that
have several advantages over diode logic circuits. First of all, the transistor acts as a
logic device called an inverter. Note that an inverter provides a LOW output for a HIGH
input and a HIGH output for a LOW input. Secondly, the transistor is a current amplifier
(buffer). Transistors can, therefore, be used to amplify these currents to control external
devices such as a light emitting diode (LED) requiring high currents. Finally, transistor
logic gates operate faster than diode gates.

There are two types of transistors, namely npn andpnp. The classification depends
on the fabrication process. npn transistors are widely used in digital circuits.

Figure 1.2 shows the symbolic representation of an npn transistor. The transistor
is a three-terminal device. These are base, emitter, and collector. The transistor is a
current-controlled switch, which means that adequate current at the base will close the
switch allowing a current to flow from the collector to the emitter. This current direction
is identified on the npn transistor symbol in Figure 1.2(a) by a dawnward arrow on the
emitter. Note that a base resistance is normally required to generate the base current.

The transistor has three modes ofoperation: cutoff, saturation, and active. In digital
circuits, a transistor is used as a switch, which is either ON (closed) or OFF (open). When
no base current flows, the emitter-collector switch is open and the transistor operates in
the cutoff (OFF) mode. On the other hand, when a base current flows such that the voltage
across the base and the emitter is at least 0.6 V, the switch closes. If the base current is
hrther increased, there will be a situation in which VcE (voltage across the collector and the
emitter) attains a constant value of approximately 0.2 V. This is called the saturation (ON)
mode of the transistor. The “active” mode is between the cutoff and saturation modes. In
this mode, the base current (I,) is amplified so that the collector current, Zc = p Z,, where /3
is called the gain, and is in the range of 10 to 100 for typical transistors. Note that when
the transistor reaches saturation, increasing Z, does not drop VcE below VCE(Sa,.) of 0.2 V.
On the other hand, VcE varies from 0.8 V to 5 V in the active mode. Therefore, the cutoff
(OFF) and saturation (ON) modes of the transistor are used in designing digital circuits.
The active mode of the transistor in which the transistor acts as a current amplifier (also
called buffer) is used in digital output circuits.

“OUT

{I .
“IN dc

nhr
FIGURE 1.3 An inverter

Introduction to Digital Systems

TABLE 1.1 Current and Voltage Requirements of LEDs

I =40OnA

7

xz LED (Red)

Current 10 mA 10 mA 20 mA

Voltage 1.7 V 2.2v 2.4V

Operation of the Transistor as an Inverter
Figure 1.3 shows how to use the transistor as an inverter. When V, = 0, the

transistor is in cutoff (OFF), and the collector-emitter switch is open. This means that no
current flows from +Vcc to ground. V,, is equal to +Vcc Thus, VouT is high.

On the other hand, when VIN is HIGH, the emitter-collector switch is closed. A
current flows from +Vcc to ground. The transistor operates in saturation, and V,,,, = V,,

Therefore, for VIN = LOW, Vour= HIGH, and for V,N = HIGH, V,,, = LOW.

Hence, the npn transistor in Figure 1.3 acts as an inverter.
Note that V,, is typically +5 V DC. The input voltage levels are normally in the

range of 0 to 0.8 volts for LOW and 2 volts to 5 volts for HIGH. The output voltage levels,
on the other hand, are normally 0.2 volts for LOW and 3.6 volts for HIGH.

= 0.2 V - 0. Thus, V,,, is basically connected to ground.

Light Emitting Diodes (LEDs) and Seven Segment Displays
LEDs are extensively used as outputs in digital systems as status indicators. An LED is
typically driven by low voltage and low current. This makes the LED a very attractive
device for use with digital systems. Table 1.1 provides the current and voltage requirements
of red, yellow, and green LEDs.

Basically, an LED will be ON, generating light, when its cathode is sufficiently
negative with respect to its anode. A digital system such as a microcomputer can therefore

f"

FIGURE 1.4

FIGURE 1.5

Microcomputer - LED interface

f ' "

Microcomputer

Microcomputer - LED interface via an inverter

8 Fundamentals of Digital Logic and Microcomputer Design

light an LED either by grounding the cathode (if the anode is tied to +5 V) or by applying
+5 V to the anode (if the cathode is grounded) through an appropriate resistor value. A
typical hardware interface between a microcomputer and an LED is depicted in Figure 1.4.

A microcomputer normally outputs 400 pA at a minimum voltage, V, = 2.4 volts
for a HIGH. The red LED requires 10 mA at 1.7 volts. A buffer such as a transistor is
required to turn the LED ON. Since the transistor is an inverter, a HIGH input to the
transistor will turn the LED ON. We now design the interface; that is, the values of R1,
R2, and the gain p for the transistor will be determined.

A HIGH at the microcomputer output will turn the transistor ON into active mode.
This will allow a path of current to flow from the +5 V source through R, and the LED to
the ground. The appropriate value of R, needs to be calculated to satisfy the voltage and
current requirements of the LED. Also, suppose that V,, = 0.6 V when the transistor is in
active mode. This means that R, needs to be calculated with the specified values of VM =

2.4 V and I = 400 yA. The values of R,, R,, and /3 are calculated as follows:

Assuming VcE E 0,
5 - 1 . 7 - v ~ ~ 5 - 1 . 7

R 2 = l 0 m A - 330 10 rnA -

Therefore, the interface design is complete, and a transistor with a minimum p of

An inverting buffer chip such as 74LS368 can be used in place of a transistor in
25, R, = 4.5 KQ, and R, = 330 Q are required.

FIGURE 1.6 A seven-segment display

R

9

f

e

d

C

b

a

Common Cathode

+5 v

9

f

e

d

C

b

a

Common Anode

FIGURE 1.7 Seven-segment display configurations

Introduction to Digital Systems 9

Figure 1.4. A typical interface of an LED to a microcomputer via an inverter is shown in
Figure 1.5. Note that the transistor base resistance is inside the inverter. Therefore, R, is
not required to be connected to the output of the microcomputer. The symbol -i>- is
used to represent an inverter. Inverters will be discussed in more detail later. In figure 1.5,
when the microcomputer outputs a HIGH, the transistor switch inside the inverter closes.
A current flows from the +5 V source, through the 330-ohm resistor and the LED, into the
ground inside the inverter. The LED is thus turned ON.

A seven-segment display can be used to display, for example, decimal numbers
from 0 to 9. The name “seven segment” is based on the fact that there are seven LEDs
- one in each segment of the display. Figure 1.6 shows a typical seven-segment display.

In Figure 1.6, each segment contains an LED. All decimal numbers from 0 to 9
can be displayed by turning the appropriate segment “ON’ or “OFF”. For example, a zero
can be displayed by turning the LED in segment g “OFF” and turning the other six LEDs
in segments a throughf“0N.” There are two types of seven segment displays. These are
common cathode and common anode. Figure 1.7 shows these display configurations.

In a common cathode arrangement, the microcomputer can send a HIGH to light
a segment and a LOW to turn it off. In a common anode configuration, on the other hand,
the microcomputer sends a LOW to light a segment and a HIGH to turn it off. In both
configurations, R = 330 ohms can be used.

Transistor Transistor Logic (TTL) and its Variations
The transistor transistor logic (TTL) family of chips evolved from diodes and transistors.
This family used to be called DTL (diode transistor logic). The diodes were then replaced
by transistors, and thus the name “TTL” evolved. The power supply voltage (Vcc) for TTL
is +5 V. The two logic levels are approximately 0 and 3.5 V.

There are several variations of the TTL family. These are based on the saturation
mode (saturated logic) and active mode (nonsaturated logic) operations of the transistor.
In the saturation mode, the transistor takes some time to come out of the saturation to
switch to the cutoff mode. On the other hand, some TTL families define the logic levels
in the active mode operation of the transistor and are called nonsaturated logic. Since
the transistors do not go into saturation, these families do not have any saturation delay
time for the switching operation. Therefore, the nonsaturated logic family is faster than
saturated logic.

The saturated TTL family includes standard TTL (TTL), high-speed TTL (H-
TTL), and low-power TTL (L-TTL). The nonsaturated TTL family includes Schottky TTL
(S-TTL), low-power Schottky TTL (LS-TTL), advanced Schottky TTL (AS-TTL), and
advanced low-power Schottky TTL (ALS-TTL). The development of LS-TTL made TTL,
H-TTL, and L-TTL obsolete. Another technology, called emitter-coupled logic (ECL),
utilizes nonsaturated logic. The ECL family provides the highest speed. ECL is used in
digital systems requiring ultrahigh speed, such as supercomputers.

The important parameters of the digital logic families are fan-out, power
dissipation, propagation delay, and noise margin.

Fan-out is defined as the maximum number of inputs that can be connected to the
output of a gate. It is expressed as a number. The output of a gate is normally connected
to the inputs of other similar gates. Typical fan-out for TTL is 10. On the other hand, fan-
outs for S-TTL, LS-TTL, and ECL, are 10, 20, and 25, respectively.

Power dissipation is the power (milliwatts) required to operate the gate. This
power must be supplied by the power supply and is consumed by the gate. Typical power

10 Fundamentals of Digital Logic and Microcomputer Design

t +5v

Common
output

FIGURE 1.8 Two open-collector outputs A and B tied together

+- output

FIGURE 1.9 TTL Totem-pole output

consumed by TTL is 10 mW. On the other hand, S-TTL, LS-TTL, and ECL absorb 22
mW, 2 mW, and 25 mW respectively.

Propagation delay is the time required for a signal to travel from input to output
when the binary output changes its value. Typical propagation delay for TTL is 10
nanoseconds (ns). On the other hand, S-TTL, LS-TTL, and ECL have propagation delays
of 3 ns, 10 ns, and 2 ns, respectively.

Noise margin is defined as the maximum voltage due to noise that can be added
to the input of a digital circuit without causing any undesirable change in the circuit output.
Typical noise margin for TTL is 0.4 V. Noise margins for S-TTL, LS-TTL, and ECL are
0.4 V, 0.4 V, and 0.2 V , respectively.

TTL Outputs
There are three types of output configurations for TTL. These are open-collector output,
totem-pole output, and tristate (three-state) output.

The open-collector output means that the TTL output is a transistor with nothing
connected to the collector. The collector voltage provides the output of the gate. For the
open-collector output to work properly, a resistor (called the pullup resistor), with a value
of typically 1 Kohm, should be connected between the open collector output and a +5 V
power supply.

If the outputs of several open-collector gates are tied together with an external

Introduction to Digital Systems 11

resistor (typically 1 Kohm) to a +5 V source, a logical AND function is performed at the
connecting point. This is called wired-AND logic.

Figure 1.8 shows two open-collector outputs (A and B) are connected together to
a common output point C via a 1 KQ resistor and a +5 V source.

The common-output point C is HIGH only when both transistors are in cutoff
(OFF) mode, providing A = HIGH and B = HIGH. If one or both of the two transistors is
turned ON, making one (or both open-collector outputs) LOW, this will drive the common
output C to LOW. Note that a LOW (Ground for example) signal when connected to a
HIGH (+SV for example) signal generates a LOW. Thus, C is obtained by performing a
logical AND operation of the open collector outputs A and B.

Let us briefly review the totem-pole output circuit shown in Figure 1.9. The circuit
operates as follows:

When transistor Q1 is ON, transistor Q2 is OFF. When Q1 is OFF, Q2 is ON. This
is how the totem-pole output is designed. The complete TTL gate connected to the bases
of transistors Q1 and Q2 is not shown; only the output circuit is shown.

In the figure, QI is turned ON when the logic gate circuit connected to its base
sends a HIGH output. The switches in transistor Q, and diode D close while the switch in
Q2 is open. A current flows from the +5 V source through R, Q1, and D to the output. This
current is called Z,,,,, or output high current, ZOw This is typically represented by a negative
sign in front of the current value in the TTL data book, a notation indicating that the chip is
losing current. For a low output value of the logic gate, the switches in QI and D are open
and the switch in Q2 closes. A current flows from the output through Q2 to ground. This
current is called Zslnk or Output Low current, IoL. This is represented by a positive sign in
front of the current value in the TTL data book, indicating that current is being added to
the chip. Either Z,,,,, or Isink can be used to drive a typical output device such as an LED.
I,,,,, (IoH) is normally much smaller than Isi, (ZoL). Z,,,,, (ZoH) is typically -0.4 mA (or -400
PA) at a minimum voltage of 2.7 V at the output. I,,,,, is normally used to drive devices
that require high currents. A current amplifier (buffer) such as a transistor or an inverting
buffer chip such as 74LS368 needs to be connected at the output if Zs0,,, is used to drive a
device such as an LED requiring high current (1 0 mA to 20 mA). ZSlnk is normally 8 mA

The totem-pole outputs must not be tied together. When two totem-pole outputs
are connected together with the output of one gate HIGH and the output of the second gate
LOW, the excessive amount of current drawn can produce enough heat to damage the
transistors in the circuit.

Tristate is a special totem-pole output that allows connecting the outputs together
like the open-collector outputs. When a totem-pole output TTL gate has this property, it is
called a tristate (three state) output. A tristate has three output states:

1. A LOW level state when the lower transistor in the totem-pole is ON and the upper
transistor is OFF.

2. A HIGH level state when the upper transistor in the totem-pole is ON and the lower
transistor is OFF.

3. A third state when both output transistors in the totem-pole are OFF. This third
state provides an open circuit or high-impedance state which allows a direct wire
connection of many outputs to a common line called the bus.

A Typical Switch Input Circuit for TTL
Figure 1.10 shows a switch circuit that can be used as a single bit into the input of a TTL
gate. When the DIP switch is open, V,, is HIGH. On the other hand, when the switch

12 Fundamentals of Digital Logic and Microcomputer Design

+Y

Switch tP
FIGURE 1.10 A typical circuit for connecting an input to a TTL gate

I Drain

-I

FIGURE 1.11 nh4OS transistor symbol

- I

Gate

I Drain

FIGURE 1.12 PMOS transistor symbol

VO”,

v,, .--I k 1
FIGURE 1.13 A typical nMOS inverter

Introduction to Digital Systems 13

is closed, VN is low. V, can be used as an input bit to a TTL logic gate for performing
laboratory experiments.

1.4.3 MOS Transistors
Metal-Oxide Semiconductor (MOS) transistors occupy less space in the circuit and consume
much less power than bipolar junction transistors. Therefore, MOS transistors are used in
highly integrated circuits, The MOS transistor is unipolar. This means that one type of
carrier flow, either electrons (n-type) or holes (p-type) are used. The MOS transistor works
as a voltage-controlled resistance. In digital circuits, a MOS transistor operates as a switch
such that its resistance is either very high (OFF) or very low (ON). The MOS transistor is
a three-terminal device: gate, source, and drain. There are two types of MOS transistors,
namely, nMOS and PMOS. The power supply (V,,) for PMOS is in the range of 17 V to
24 V, while V,, for nMOS is lower than PMOS and can be from 5 V to 12 V. Figure 1.1 1
shows the symbolic representation of an nMOS transistor. When V,, = 0, the resistance
between drain and source (RDS) is in the order of megaohms (Transistor OFF state). On
the other hand, as V,, is increased, RDs decreases to a few tens of ohms (Transistor ON
state). Note that in a MOS transistor, there is no connection between the gate and the other
two terminals (source and drain). The nMOS gate voltage (V,,) increases or decreases the
current flow from drain to source by changing R,. Popular 8-bit microprocessors such as
the Intel 8085 and the Motorola 6809 were designed using nMOS.

Figure 1.12 depicts the symbol for a PMOS transistor. The operation of the PMOS
transistor is very similar to the nMOS transistor except that V,, is typically zero or negative.
The resistance from drain to source (R,,) becomes very high (OFF) for VGs = 0. On the
other hand, R,, decreases to a very low value (ON) if V,, is decreased. PMOS was used
in fabricating the first 4-bit microprocessors (Intel 4004/4040) and 8-bit microprocessor
(Intel 8008). Basically, in a MOS transistor (nMOS or PMOS), VGs creates an electric field
that increases or decreases the current flow between source and drain. From the symbols
of the MOS transistors, it can be seen that there is no connection between the gate and the
other two terminals (source and drain). This symbolic representation is used in order to

indicate that no current flows from the gate to the source, irrespective of the gate voltage.

Operation of the nMOS Transistor as an Inverter
Figure 1.13 shows an nMOS inverter. When V, = LOW, the resistance between

the drain and the source (R,,) is very high, and no current flows from Vc, to the ground.
VoUT is therefore high. On the otherhand, when V, = high, R,, is very low, a current flows
from Vcc to the source, and V,,, is LOW. Therefore, the circuit acts as an inverter.

FIGURE 1.14 A CMOS inverter

14

TABLE 1.2

Fundamentals of Digital Logic and Microcomputer Design

Comparison of output characteristics of LS-TTL, nMOS, HC, and HCT

IOH V O L IOL

LS-TTL 2.7 V -400 PA 0.5 V 8 mA

nMOS 2.4 V -400 PA 0.4 V 2 mA

HC 3.7 v -4 mA 0.4 V 4 m A

HCT 3.7 v -4 mA 0.4 V 4 m A

Note that in the table, HC and HCT have the same source (IOH) and sink (IoL) currents. This
is because in a typical CMOS gate, the ON resistances of the PMOS and nMOS transistors
are approximately the same.

Complementary MOS (CMOS)
CMOS dissipates low power and offers high circuit density compared to TTL. CMOS
is fabricated by combining nMOS and PMOS transistors together. The nMOS transistor
transfers logic 0 well and logic 1 inefficiently. The PMOS transistor, on the other hand,
outputs logic 1 efficiently and logic 0 poorly. Therefore, connecting one PMOS and one
nMOS transistor in parallel provides a single switch called a transmission gate that offers
efficient output drive capability for CMOS logic gates. The transmission gate is controlled
by an input logic level.

Figure 1.14 shows a typical CMOS inverter. The CMOS inverter is very similar
to the TTL totem-pole output circuit. That is, when Q, is ON (low resistance), Qz is OFF
(high resistance), and vice versa. When V,,,,, = LOW, Q, is ON and Q2 is OFF. This makes
VoutPu, HIGH. On the other hand, when Vlnpu, = HIGH, Q, is OFF (high resistance) and Q2
is ON (low resistance). This provides a low Voutpuf. Thus, the circuit works as an inverter.

Digital circuits using CMOS consume less power than do MOS and bipolar
transistor circuits. In addition, CMOS provides high circuit density. That is, more circuits
can be placed in a chip using CMOS. Finally, CMOS offers high noise immunity. In
CMOS, unused inputs should not be left open. Because of the very high input resistance,
a floating input may change back and forth between a LOW and a HIGH, creating system
problems. All unused CMOS inputs should be tied to Vcc, ground, or another high or low
signal source appropriate to the device's function. CMOS can operate over a large range of
power supply voltages (3 V to 15 V). Two CMOS families, namely CD4000 and 54C/74C,
were first introduced. CD 4000A is in the declining stage.

There are four members in the CMOS family which are very popular these days:
the high-speed CMOS (HC), high-speed CMOS/TTL-input compatible (HCT), advanced
CMOS (AC), and advanced CMOS/TTL-input compatible (ACT). The HCT chips .have
a specifically designed input circuit that is compatible with LS-TTL logic levels (2V for
HIGH input and 0.8V for LOW input). LS-TTL outputs can directly drive HCT inputs

TABLE 1.3 Comparison of input characteristics of HC and HCT

V,H I I H VIL "L Fanout

HC 3.15 v 1 PA 0.9 V 1PA 10

HCT 2.0 v 1 PA 0.8 V. 1 PA 10

Introduction to Digital Systems 15

+5 V

t

tp Switch

FIGURE 1.15

while HCT outputs can directly drive HC inputs. Therefore, HCT buffers can be placed
between LS-TTL and HC chips to make the LS-TTL outputs compatible with the HC
inputs.

Several characteristics of 74HC and 74HCT are compared with 74LS-TTL and
nMOS technologies in Table 1.2. The input characteristics of HC and HCT are shown in
Table 1.3. The tables show that LS-TTL is not guaranteed to drive an HC input. The LS-
TTL output HIGH is grater than or equal to 2.7V while an HC input needs at least 3.15V.
Therefore, the HCT input requiring V,, of 2.0V can be driven by the LS-TTL output,
providing at least 2.7V; 74HCT244 (unidirectional) and 74HCT245 (bidirectional) buffers
can be used.

A typical switch for MOS input

MOS Outputs
Like TTL, the MOS logic offers three types of outputs. These are push-pull (totem-pole in
TTL), open drain (open collector in TTL), and tristate outputs. For example, the 74HC00
contains four independent 2-input NAND gates and includes push-pull output. The 74HC03
also contains four independent 2-input NAND gates, but has open drain outputs. The
74HC03 requires a pull-up resistor for each gate. The 74HC125 contains four independent
tri-state buffers in a single chip.

A Typical Switch Input Circuit for MOS Chips
Figure 1.15 shows a switch circuit that can be used as a single bit into the input of a MOS
gate. When the DIP switch is open, V,, is HIGH. On the other hand, when the switch is
closed, V,, is LOW. VN can be used as an input bit for performing laboratory experiments.
Note that unlike TTL, a IK resistor is connected between the switch and the input of the
MOS gate. This provides for protection against static discharge. This 1 -Kohm resistor
is not required if the MOS chip contains internal circuitry providing protection against
damage to inputs due to static discharge.

1.5 Intemated Circuits UCs)

Device level design utilizes transistors to design circuits called gates, such as AND gates
and OR gates. One or more gates are fabricated on a single silicon chip by an integrated
circuit (IC) manufacturer in an IC package.

An IC chip is packaged typically in a ceramic or plastic package. The commercially
available ICs can be classified as small-scale integration (SSI), medium-scale integration
(MSI), large-scale integration (LSI), and very large-scale integration (VLSI).

A single SSI IC contains a maximum of approximately 10 gates. Typical logic

16 Fundamentals of Digital Logic and Microcomputer Design

functions such as AND, OR, and NOT are implemented in SSI IC chips. The MSI IC,
on the other hand, includes from 11 to up to 100 gates in a single chip. The MSI chips
normally perform specific functions such as add.
The LSI IC contains more than 100 to approximately 1000 gates. Digital systems such
as 8-bit microprocessors and memory chips are typical examples of LSI ICs.
The VLSI IC includes more than 1000 gates. More commonly, the VLSI ICs are
identified by the number of transistors (containing over 500,000 transistors) rather
than the gate count in a single chip. Typical examples of VLSI IC chips include 32-
bit microprocessors and one megabit memories. For example, the Intel Pentium is a
VLSI IC containing 3.1 million transistors in a single chip.

An IC chip is usually inserted in a printed-circuit board (PCB) that is connected
to other IC chips on the board via pins or electrical terminals. In laboratory experiments or
prototype systems, the IC chips are typically placed on breadboards or wire-wrap boards
and connected by wires. The breadboards normally have noise problems for frequencies
over 4 MHz. Wire-wrap boards are used above 4 MHz. The number of pins in an IC chip
varies from ten to several hundred, depending on the package type. Each IC chip must be
powered and grounded via its power and ground pins. The VLSI chips such as the Pentium
have several power and ground pins. This is done in order to reduce noise by distributing
power in the circuitry inside the chip.

The SSI and MSI chips normally use an IC package called dual in-line package
(DIP). The LSI and VLSI chips, on the other hand, are typically fabricated in surface-
mount or pin grid array (PGA) packages. The DIP is widely used because of its low price
and ease of installation into the circuit board.

SSI chips are identified as 5400-series (these are for military applications with
stringent requirements on voltage and temperature and are expensive) or 7400 series (for
commercial applications). Both series have identical pin assignments on chips with the
same part numbers, although the first two numeric digits of the part name are different.
Typical commercial SSI ICs can be identified as follows:

74s Schottky TTL
74LS Low-power Schottky TTL
74AS Advanced Schottky TTL
74F
74ALS Advanced low-power Schottky TTL

Fast TTL (Similar to 74AS; manufactured by Fairchild)

Note that two digits appended at the end of each of these IC identifications define
the type of logic operation performed, the number of pins, and the total number of gates on
the chip. For example, 74S00, 74LS00, 74AS00, 74F00, and 74ALS00 perform NAND
operation. All of them have 14 pins and contain four independent NAND gates in a single
chip.

The gates in the ECL family are identified by the part numbers lOXXX and
lOOXXX, where XXX indicates three digits. The lOOXXX family is faster, requires
low power supply, but it consumes more power than the IOXXX. Note that lOXXX and
1 O O X X X are also known as 1 OK and 1 OOK families.

The commercially available CMOS family is identified in the same manner as the
TTL SSI ICs. For example, 74LSOO and 74HC00 (High-speed CMOS) are identical, with
14 pins and containing four independent NAND gates in a single chip. Note that 74HCXX
gates have operating speeds similar to 74LS-TTL gates. For example, the 74HC00 contains
four independent two-input NAND gates. Each NAND gate has a typical propagation
delay of 10 ns and a fanout of 10 LS-TTL.

Introduction to Digital Systems 17

Unlike TTL inputs, CMOS inputs should never be held floating. The unused
input pins must be connected to Vcc, ground, or an output. The TTL input contains an
internal resistor that makes it HIGH when unused or floating. The CMOS input does not
have any such resistor and therefore possesses high resistance. The unused CMOS inputs
must be tied to V,,, ground, or other gate outputs. In some CMOS chips, inputs have
internal pull-up or pull-down resistors. These inputs, when unused, should be connected
to V,, or ground to make the inputs high or low.

The CMOS family has become popular compared to TTL due to betterperformance.
Some major IC manufacturers such as National Semiconductor do not make 7400 series
TTL anymore. Although some others, including Fairchild and Texas Instruments still offer
the 7400 TTL series, the use of the SSI TTL family (74S, 74LS, 74AS, 74F, and 74ALS)
is in the declining stage, and will be obsolete in the future. On the other hand, the use of
CMOS-based chips such as 74HC and 74HCT has increased significantly because of their
high performance. These chips will dominate the future market.

1.6 Evolution of ComDuters

The first electronic computer, called ENIAC, was invented in 1946 at the Moore School of
Engineering, University of Pennsylvania. ENIAC was designed using vacuum tubes and
relays. This computer performed addition, subtraction, and other operations via special
wiring rather than programming. The concept of executing operations by the computer via
storing programs in memory became feasible later.

John Von Neumann, a student at the Moore School, designed the first conceptual
architecture of a stored program computer, called the EDVAC. Soon afterward, M. V.
Wilkes of Cambridgeuniversity implemented the first operational stored memory computer
called the EDSAC. The Von Neumann architecture was the first computer that allowed
storing of instructions and data in the same memory. This resulted in the introduction of
other computers such as ILLIAC at the University of Illinois and JOHNIAC at the RAND
Corporation.

The computers discussed so far were used for scientific computations. With the
invention of transistors in the 1950s, the computer industry grew more rapidly. The entry
of IBM (International Business Machines) into the computer industry happened in 1953
with the development of a desk calculator called the IBM 701. In 1954, IBM announced its
first magnetic drum-based computer called the IBM 650. This computer allowed the use
of system-oriented programs such as compilers feasible. Note that compilers are programs
capable of translating high-level language programs into binary numbers that all computers
understand.

With the advent of integrated circuits, IBM introduced the 360 in 1965 and the 370
in 1970. Other computer manufacturers such as Digital Equipment Corporation (DEC),
RCA, NCR, and Honeywell followed IBM. For example, DEC introduced its popular
real-time computer PDP 11 in the late 1960s. Note that real-time computers are loosely
defined as the computers that provide fast responses to process requests. Typical real-time
applications include process control such as temperature control and aircraft simulation.

Intel Corporation is generally acknowledged as the company that introduced
the microprocessor successfully into the marketplace. Its first processor, the 4004, was
introduced in 1971 and evolved from a development effort while making a calculator chip
set. The 4004 microprocessor was the central component in the chip set, which was called
the MCS-4. The other components in the set were a 400 1 ROM, a 4002 RAM, and a 4003

18

Shift Register.
Shortly after the 4004 appeared in the commercial marketplace, three other general-

purpose microprocessors were introduced. These devices were the Rockwell International
4-bit PPS-4, the Intel 8-bit 8008, and the National Semiconductor 16-bit IMP-1 6. Other
companies such as General Electric, RCA, and Viatron had also made contributions to the
development of the microprocessor prior to 197 1.

The microprocessors introduced between 197 1 and 1972 were the first-generation
systems designed using PMOS technology. In 1973, second-generation microprocessors
such as the Motorola 6800 and the Intel 8080 (8-bit microprocessors) were introduced.
The second-generation microprocessors were designed using the NMOS technology. This
technology resulted in a significant increase in instruction execution speed and higher
chip densities compared to PMOS. Since then, microprocessors have been fabricated
using a variety of technologies and designs. NMOS microprocessors such as the Intel
8085, the Zilog 280, and the Motorola 6800/6809 were introduced based on the second-
generation microprocessors. The third generation HMOS microprocessors, introduced in
1978, is typically represented by the Intel 8086 and the Motorola 68000, which are 16-bit
microprocessors.

In 1980, fourth-generation HCMOS and BICMOS (combination of BIPOLAR
and HCMOS) 32-bit microprocessors evolved. Intel introduced the first commercial 32-
bit microprocessor, the problematic Intel 432. This processor was eventually discontinued
by Intel. Since 1985, more 32-bit microprocessors have been introduced. These include
Motorola’s MC 68020/68030/68040/PowerPC, Intel’s 80386/80486 and the Intel Pentium
microprocessors.

The performance offered by the 32-bit microprocessor is more comparable to
that of superminicomputers such as Digital Equipment Corporation’s VAXl1/750 and
VAXl1/780. Intel and Motorola introduced RISC (Reduced Instruction Set Computer)
microprocessors, namely the Intel 80960 and Motorola MC88 1 OOPowerPC, with simplified
instruction sets. Note that the purpose of RISC microprocessors is to maximize speed by
reducing clock cycles per instruction. Almost all computations can be obtained from a simple
instruction set. Some manufacturers are speeding up the processors for data crunching types
of applications. Compaq / Digital Equipment Corporation Alpha family includes 64-bit
RISC microprocessors. These processors run at speeds in excess of 300 MHz.

The 32-bit Pentium I1 microprocessor is Intel’s addition to the Pentium line of
microprocessors, which originated from the 80x86 line. The Pentium I1 can run at speeds
of 333 MHz, 300 MHz, 266 MHz, and 233 MHz. Intel implemented its MMX (Matrix
Math extensions) technology to enhance multimedia and communications operations. To
achieve this, Intel added 57 new instructions to manipulate video, audio, and graphical data
more efficiently. Pentium 111 and Pentium 4 (Present speed up to 1.70GHz) are also added
to the Pentium family. Chapter 11 provides an overview of these processors. Intel released
a new 64-bit processor called “Merced” (also called “Itanium”) in 2001. The new processor
is a joint effort by Intel and Hewlett-Packard. Motorola’s PowerPC microprocessor is a
product of an alliance with IBM and Apple Computer. PowerPC is a RISC microprocessor,
and includes both 32-bit and 64-bit microprocessors. The newest versions of the PowerPC
include: PowerPC 603e (300 MHz maximum), PowerPC 750/740 (266 MHz maximum),
and PowerPC 604e (350 MHz maximum). The PowerPC 604e is intended for high-
end Macintosh and Mac-compatible systems. Motorola’s 64-bit microprocessor G5 is
implemented in Apple’s Mac G5 computer.

An overview of the latest microprocessors is provided in this section. Unfortu-

Fundamentals of Digital Logic and Microcomputer Design

Introduction to Digital Systems

Furnace

Valve

FIGURE 1.16 Furnace Temperature Control

19

nately, this may be old news within a year. One can see, however, that both Intel and
Motorola offer (and will continue to offer) quality microprocessors to satisfy demanding
applications.

1.7 A TvDical Microcomputer-Based ARDlication

In order to put the microprocessor into perspective, it is important to explore a typical
application. For example, consider a microprocessor-based dedicated controller in Figure
1.16. Suppose that it is necessary to maintain the temperature of the furnace to a desired
level to maintain the quality of a product. Assume that the designer has decided to control
this temperature by adjusting the fuel. This can be accomplished using a microcomputer
along with the interfacing components as follows.

Temperature is an analog (continuous) signal. It can be measured by a temperature
sensing (measuring) device such as a thermocouple. The thermocouple provides the
measurement in millivolts (mV) equivalent to the temperature. Since microcomputers
only understand binary numbers (0’s and 1 ’s), each analog mV signal must be converted
to a binary number using an analog to digital (A/D) converter chip.

First, the millivolt signal is amplified by a m V N amplifier to make the signal
compatible for A/D conversion. A microcomputer can be programmed to solve an
equation with the furnace temperature as an input. This equation compares the temperature
measured with the desired temperature which can be entered into the microcomputer via
the keyboard. The output of this equation will provide the appropriate opening and closing
of the fuel valve to maintain the appropriate temperature. Since this output is computed
by the microcomputer, it is a binary number. This binary output must be converted into an
analog current or voltage signal.

The D/A (digital to analog) converter chip inputs this binary number and converts
it into an analog current (I). This signal is then input into the current/pneumatic (ZIP)
transducer for opening or closing the fuel input valve by air pressure to adjust the fuel
to the furnace. The desired temperature of the furnace can thus be achieved. Note that a
transducer converts one form of energy (analog electrical current in this case) to another
form (air pressure in this example).

1.8

This section provides a summary of technological forecasts. Topics include advancements

Trends and PersDectives in Dipital Technolopy

20 Fundamentals of Digital Logic and Microcomputer Design

in ICs, microprocessors, ASIC and DVD as follows:
1 .) With the advent of IC technology, it is expected that it would be possible to place
750 million transistors on one chip by the year 2012. Furthermore, the replacement of
aluminum wire (high resistance) on ICs by copper wire (low resistance) will reduce power
consumption and improve reliability.
2.) Microprocessor designers have traditionally refined architectures by raising clock
speeds and adding ALUs that can process instructions simultaneously. Many modern
microprocessors can execute instructions out of order, so that one instruction waiting for
data does not stall the entire processor. These microprocessors can predict in advance
where a branch will be taken. The drawbacks of incorporating these types of capabilities
in the modern microprocessors are that the chip’s circuitry is devoted to overheads.

A new microprocessor architecture called EPIC (Explicitly Parallel Instruction
Computing), developed jointly by Intel and Hewlett-Packard, minimizes these overheads.
EPIC is introduced in 2001 with a new Intel chip called “Merced” (also called “Itanium”).
Motorola, on the other hand, announced its AltiVec technology (discussed in Chapter 11)
which is used as the foundation for Apple’s next generation computers such as Power Mac
(3.5.
3 .) Programmable Logic Devices (PLDs) are IC chips capable of being programmed
by the user after they are manufactured. These chips are programmable via electronic
switches. These programmable switches permit the designer to connect the circuitry inside
the PLDs in several ways. The users can thus program these chips and implement various
functions.

PLDs are extensively used these days in designing microcomputers and other digital
applications. The basics of PLDs are covered in Chapter 4. Computer-aided design (CAD)
software tools are used to program and simulate applications implemented in PLDs. This
allows the users to verify whether the desired requirements of the applications are satisfied.
Once the simulation is successfully completed, PLDs are interfaced to the prototype for the
application being implemented. Therefore, the designer must have appropriate hardware
background to test the prototype in order to ensure that the design specifications are satisfied
before going into production. Products can be developed using PLDs from conceptual
design via prototype to production in a very short time. However, the electronic switches
occupy valuable chip area and slow down the operation of the internal circuits. Therefore,
PLDs may not satisfy the desired specifications in some applications. Also, utilization of
PLDs in these applications may not be cost effective. In these situations, custom or semi-
custom design of chips is necessary. These chips are called ASICs (Application-Specific
ICs). Typical applications of ASIC include microprocessors, PC (Personal Computer) bus
interface and memory chips.

ASICs are chips designed for a specific application. The designer has complete
control over deciding on the chip design, including transistor count, physical size, and chip
layout. ASICs can be custom or semi-custom chips. Custom ASIC chips are designed from
scratch. Therefore, manufacturing of these chips normally takes a lot of time and may
be expensive due to the initial design cost These chips are used when high sales volume
is expected. In order to reduce design efforts and cost, semi-custom ASIC chips can be
designed using Standard Cell technology or Gate Array technology.

Using the Standard cell technology, the IC manufacturers provide a library of
standard cells. Typical standard cells include frequently-used MSI functions, such as
decoders and counters, or LSI functions, such as microprocessors and memories. CAD
tools can be utilized to design the ASIC chip using these cells. With the standard cell

Introduction to Digital Systems 21

technology, the designer interconnects logic functions in the same manner as in typical
logic circuit design using MSI/LSI chips. It is possible to provide efficient chip layout
since technology is available now to include metal wires in the ICs in multiple layers; two
wires can cross without creating any short circuit, which reduces the size of the chip.

To speed up the design process and reduce cost, semi-custom ASIC chips can
also be designed using Gate Array technology for rapid and low cost development of
applications. The gate array is a chip containing transistors and connections (called
structures) that are pre-designed. The semi-custom ASIC chip is then fabricated using
these structures and the connection information provided by the customers. This means
that portions of the semi-custom ASIC chips are predefined while some other parts are
custom fabricated based on the application.

ASIC chips designed using standard cell technology are normally smaller than
those manufactured using the Gate array technology. ASIC chips using gate arrays can
be manufactured faster at lower initial design cost than can ASIC chips that use standard
cells.
4.) DVD (normally stands for “Digital Video Disc” or “Digital Versatile Disc”) is the
next generation of optical disc technology. It is basically a larger, fast CD (Compact Disc)
that can hold video as well as audio and computer information. The DVD-ROM like the
CD-ROM uses a laser to read data from a disc. However, the data in DVD-ROM is stored
in more compact form in more than one layer of the disc. Thus, DVD disc provides a higher
capacity of storage compared to CD.

DVD aims to encompass home entertainment, computers, and business
information with a single digital format. It will eventually replace audio CD, videotape,
laser disc, CD-ROM, and video game cartridges. There are basically three types of DVD.
These are DVD-Video, DVD-ROM and DVD-RAM. DVD-Video (simply called DVD)
holds information that can be played in a DVD player connected to a TV set; while DVD-
ROM holds computer programs and can be read by DVD-ROM drive interfaced to a
computer. The difference is similar to that between audio CD and CD-ROM. DVD drives
can also read CD-ROMs. Therefore, DVD drives rather than CD-ROM drives are included
in some Personal Computers (PCs). Most computers with DVD-ROM drives can also play
DVD-Videos.

CD-RW (CD-
Rewriteable) and DVD-RAM are the readwrite equivalents of CD-ROM and DVD-ROM
respectively. CD-RW uses infrared laser like the CD-ROM. Both DVD-ROM and DVD-
RAM, on the other hand, use a red laser, which has a shorter wavelength than infrared
laser. The shorter wavelength of the red laser provides DVD with a larger storage capacity
than that of a CD.

DVD-RAM can be read from and written into many times.

3
NUMBER SYSTEMS

AND CODES
In this chapter we describe some of the hndamental concepts needed to implement and
use a computer effectively. Thus the basics of number systems, codes, and error detection/
correction are presented.

2.1 Number Svstems

A computer, like all digital machines, utilizes two states to represent information. These
two states are given the symbols 0 and 1. It is important to remember that these 0's and
1 's are symbols for the two states and have no inherent numerical meanings of their own.
These two digits are called binary digits (bits) and can be used to represent numbers of any
magnitude. The microcomputer carries out all the arithmetic and logic operations internally
using binary numbers. Because binary numbers are long, a more compact form using some
other number system is preferable to represent them. The computer user finds it convenient
to work with this compact form. Hence, it is important to understand the various number
systems used with computers. These are described in the following sections.

2.1.1 General Number Representation
In general, a number N can be represented in the following form:

2.1
where b is the base or radix of the number system, the d's are the digits of the number
system, p is the number of integer digits, and q is the number of fractional digits.

N can also be written as a string of digits whose integer and fractional portions are
separated by the radix or decimal point (*). In this format, the number N is represented as

If a number has no fractional portion, (e.g., q = 0 in the form of Equation 2.1),
then the number is called an integer number or an integer. Conversely, if the number has
no integer portion (e.g.,p = 0 in the form of Equation 2.1), the number is called a fractional
number or a fraction. If both p and q are not zero, then the number is called a mixed
number.

N = d P - I XbP-l+dP-2 Xbp-2+.. .+d0 Xbo+d_, Xb-'+ ...+ d-, Xb-4

N=dP_,d,_, . . .d ,d0*d- , ... d-, 2.2

Decimal Number System
In the decimal number system (base lo), which is most familiar to us, the integer number
125,0 can be expressed as
125,, = 1 X lo2+ 2 X lo1+ 5 X loo 2.3

In this equation, the left-hand side corresponds to the form given by Equation
2.2. The right-hand side of Equation 2.3 is represented by the form of equation 2.1, where
b = 1 0 , d , = 1 , d , = 2 , d o = 5 , d - ,=. . .= d_,=O,p=3,andq=0.

23

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

24 Fundamentals of Digital Logic and Microcomputer Design

Now, consider the fractional decimal number 0.532,,. This number can be
expressed as
0.532,,= 5 X lo-’+ 3 X lo-,+ 2 X 2.4

The left-hand side of Equation 2.4 corresponds to Equation 2.2. The right-hand
side of Equation 2.4 is in the form of Equation 2.1, where b = 10, d-, = 5, d-, = 3, d-, = 2,
q = 3 , p = 0 , d p - , = ... =do=O.

Finally, consider the mixed number 125.532,,. This number is in the form of
Equation 2.2. Translating the number to the form of Equation 2.1 yields
125.532,, = 1 X lo2+ 2 X l o ’ + 5 X lo0+ 5 X lo-’+ 3 X lo-,+ 2 X 2.5

Comparing the right-hand side of Equation 2.5 with equation 2.1 yields b = 10,p = 3,
q = 3, d2 = 1, d, = 2, do = 5, d-, = 5, d-, = 3, and d-, = 2.

Binary Number System
In terms of Equation 2.1, the binary number system has a base or radix of 2 and has two
allowable digits, 0 and 1. From Equation 2.1, a 4-bit binary number 1 1 10, can be interpreted
as

This conversion from binary to decimal can be obtained by inspecting the binary number
as follows:

I I 10, = 1 x 23+ I x 22+ I x 21+ 0 x 20= i4,,

21 2’ 2‘ 20- Weighting
1 1 1 0
2 ?l Bit 0 or Least significant bit

Bit 1

Bit 2

Bit 3
Most sigruficant 01: bit

Note that bits 0, 1, 2, and 3 have corresponding weighting values of 1, 2,4, and
8. Because a binary number only contains 1’s and O’s, adding the weighting values of only
the bits of the binary number containing 1’s will provide its decimal value. The decimal
value of 11 10, is 14,, (2 + 4 + S), because bits 1 , 2, and 3 have binary digit 1, whereas bit
0 contains 0.

Therefore, the decimal value of any binary number can be readily obtained by just
adding the weighting values for the bit positions containing 1 ’s. Furthermore, the value of
the least significant bit (bit 0) determines whether the number is odd or even. For example,
if the least significant bit is 1, the number is odd; otherwise, the number is even.

Next, consider a mixed number 10 1 .O 1 as follows:
101.01,= 1 x 22+0 x 2 ’ + 1 x 20+0 x 2-’+ 1 x 2-2 2.6

The decimal or base 10 value of 101.01, is found from the right-hand side of
Equation 2.6 as 4 + 0 + 1 + 0 + 1/4 = 5.25,,.

Octal Number System
The radix or base of the octal number system is 8. There are eight digits, 0 through 7,
allowed in this number system.

Consider the octal number 25.32,, which can be interpreted as:

The decimal value of this number is found by completing the summation of
2 X 8 ’ + 5 X S 0 + 3 X 8-1+2 X 8-,

1 6 + 5 + 3 X 1 / 8 + 2 X 1/64= 16+5+0.375+0.03125=21.40625,0

Number Systems and Codes 25

One can convert a number from binary to octal representation easily by taking the
binary digits in groups of 3 bits.

The octal digit is obtained by considering each group of 3 bits as a separate binary
number capable of representing the octal digits 0 through 7. The radix point remains in its
original position. The following example illustrates the procedure.

Suppose that it is desired to convert 100 1.1 1 into octal form. First take the groups
of 3 bits starting at the radix point. Where there are not enough leading or trailing bits
to complete the triplet, 0’s are appended. Now each group of 3 bits is converted to its
corresponding octal digit.

001 001 . 1102 =11.6s -- +
1 1 6

The conversion back to binary from octal is simply the reverse of the binary-to-
octal process. For example, conversion from 1 1.6, to binary is accomplished by expanding
each octal digit to its equivalent binary values as shown:

1 1 . 6
A A h
001 001 110

Hexadecimal Number System
The hexadecimal or base- 16 number system has 16 individual digits. Each of these digits,
as in all number systems, must be represented by a single unique symbol. The digits
in the hexadecimal number system are 0 through 9 and the letters A through F. Letters
were chosen to represent the hexadecimal digits greater than 9 because a single symbol is
required for each digit. Table 2.1 lists the 16 digits of the hexadecimal number system and
their corresponding binary and decimal values.

TABLE 2.1 Number Systems
Hexadecimal Decimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 001 1
4 4 0100
5 5 0101
6 6 01 10
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 101 1
C 12 1100
D 13 1101
E 14 1110
F 15 1111

26

2.1.2

Fundamentals of Digital Logic and Microcomputer Design

Converting Numbers from One Base to Another

Binary-to-Decimal Conversion and Vice Versa
Consider converting 1100.01, to its decimal equivalent. As before,

i ioo.oi,= 1 x 23+ 1 x 22+0 x 21+0 x 20+0 x 2-1+ 1 x 2-2
= 8 + 4 + 0 + 0 + 0 + .25
= 12.25,,

Continuous division by 2, keeping track of the remainders, provides a simple method of
converting a decimal number to its binary equivalent. As an example, to convert decimal
12,, to its binary equivalent 1 loo2, proceed as follows:

quotient + remainder

= = 6 +
A = 3 +
2

2

1 1 0 0 ,

Fractions
One can convert 0.0101, to its decimal equivalent as follows:

o .o io i2= o x 2 - I + 1 x 2-2+ o x 2-3+ 1 x 2-4
= 0 + 0.25 + 0 + 0.0625
= 0.3125,,

A decimal fractional number can be converted to its binary equivalent as follows:

0.8125 0.6250 0.2500 0.5000
x 2 x 2 x 2 x 2
$625oq55%pF
1 1 0 1

Therefore 0.8125,, = 0.1 101,.

Suppose that it is desired to convert 0.3615 into its binary equivalent:
Unfortunately, binary-to-decimal fractional conversions are not always exact.

0.3615 0.7230 0.4460 0.8920 0.7840
x 2 x 2 x 2 x 2 x 2 gmpF$784oF

0 1 0 1 1

The answer is 0.0 10 1 1 . . . 2 . As a check, let us convert back:
0.0101 1, = o x 2-1+ 1 x 2-2+ 0 x 2-3+ 1 x 2-4+ 1 x 2-5

= 0 + 0.25 + 0 + 0.0625 + 0.03 125
= 0.34375

Number Systems and Codes 27

The difference is 0.3615 - 0.34375 = 0.01775. This difference is caused by the neglected
remainder 0.5680. The neglected remainder (0.5680) multiplied by the smallest computed
term (0.03125) gives the total error:

0.5680 X 0.03125 = 0.01775
Mixed Numbers
Finally, convert 13.25,, to its binary equivalent. It is convenient to carry out separate
conversions for the integer and fractional parts. Consider first the integer number 13 as
before:

quotient + remainder

l 7
u = 6 +
2
4 = 3
2
- - 3 - 1 2

+
+
+ '1.1 '3

13 , , = 1 1 0 1 ,

Now convert the fraction1 part 0.25,, as follows:

0.25 0.50
x 2 x 2

g.50 $00

0 1

- -

Thus 0.25,, = 0.01,. Therefore 13.25,, = 1101.01,.

Note that the same procedure applies for converting a decimal integer number to other
number systems such as octal or hexadecimal; Continuous division by the appropriate base
(8 or 16) and keeping track of remainders converts a decimal number from decimal to the
selected number system.

Binary-to-Hexadecimal Conversion and Vice Versa
The conversions between hexadecimal and binary numbers are done in exactly the same
manner as the conversions between octal and binary, except that groups of 4 are used. The
following examples illustrate this:

1 0 1 1 0 1 1 2 = w U = 5 B 1 6
5 B

Note that the binary integer number is grouped in 4-bit units, starting from the
least significant bit. Zeros are added with the most significant 4 bits if necessary. As with
octal numbers, for fractional numbers this grouping into 4 bits is started from the radix
point. Now consider converting 2AB,, into its binary equivalent as follows:

28 Fundamentals of Digital Logic and Microcomputer Design

2ABI6 = 2 B

. 1 L
0010 1010 1011

= 0010101010112

Hexadecimal-to-Decimal Conversion and Vice Versa
Consider converting the hexadecimal number 23A,, into its decimal equivalent and vice
versa. This can be accomplished as follows:

23A1,=2 X 162+3 X 16’+ 10 X 16’
= 512 + 48 + 10 = 570,,

Note that in the equation, the value 10 is substituted for A.
Now to convert 570,, back to 23AI6,

quotient + remamder

m= 35 +
16

2 3 A

Thus, 570,, = 23A,6

ExamDle 2.1
Determine by inspecting the binary equivalent of the following hexadecimal numbers
whether they are odd or even. Then verify the result by their decimal equivalents.

Solution
(4 128 64 32 16 8 4 2 i +Weighting

(a> 2B16 (b) A216

The number is odd, since the least significant bit is 1.

(b) A216 = J”_”J-’-””---” 6 +-Weighting
Decimal value = 32 + 8 + 2 + 1 = 4310, which is odd.

1 0 1 0 0 0 2

The number is even, since the least significant bit is 0.
Decimal value = 128 + 32 + 2 = l6ZlO, which is even.

2.2

An unsigned binary number has no arithmetic sign. Unsigned binary numbers are therefore
always positive. Typical examples are your age or a memory address which are always

Unsipned and Simed Binarv Numbers

Number Systems and Codes 29

positive numbers. An 8-bit unsigned binary integer represents all numbers from 00,,
through FF,, (Ole through 2SSlO).
The techniques used to represent the signed integers are:

Sign-magnitude approach
Ones complement approach
Twos complement approach

Because the sign of a number can be either positive or negative, only one bit, referred to
as the sign bit, is needed to represent the sign. The widely used sign convention is that if
the sign bit is zero, the number is positive; otherwise it is negative. (The rationale behind
this convention is that the quantity (- 1)” is positive when s = 0 and is negative when s =
1). Also, in all three approaches, the most significant bit of the number is considered to be
the sign bit.

In sign-magnitude representation, the most significant bit of the given n-bit binary
number holds the sign, and the remaining n - 1 bits directly give the magnitude of the
negative number. For example, the sign-magnitude representation of +7 is 01 11 and that
of -4 is 1100. Table 2.2 represents all possible 4-bit patterns and their meanings in sign-
magnitude form.

In Table 2.2, the sign-magnitude approach represents a signed number in a natural
manner. With 4 bits we can only represent numbers in the range -7 I x I +7. In general,
if there are n bits, then we can cover all numbers in the range +(2”-’ - 1). Note that with
n - 1 bits, any value from 0 to 2n-l - 1 can be represented. However, this approach leads
to a confusion because there are two representations for the number zero (0000 means +O;
1000 means -0).

In the complement approach, positive numbers have the same representation as
they do in the sign-magnitude representation. However, in this technique negative numbers
are represented in a different manner. Before we proceed, let us define the term complement
of a number. The complement of a number A , written as 2 (or A‘) is obtained by taking
bit-by-bit complement of A . In other words, each 0 in A is replaced with 1 and vice versa.
For example, the complement of the number 0100, is 101 1 and that of 1 1 1 1, is 0000,. In
the ones complement approach, a negative number, -x, is the complement of its positive

TABLE 2.2 All Possible 4-Bit Integers Represented in Sign-Magnitude Form
Interpretation as a Sign-

Bit Pattern Magnitude Integer
0000 +O
000 1 +1
0010 +2
001 1 +3
0100 +4
0101 +S
01 10 +6
0111 +7
1000 -0
1001 -1
1010 -2
101 1 -3
1100 -4
1101 -5
1110 -6
1111 -7

30

TABLE 2.3

Fundamentals of Digital Logic and Microcomputer Design

All Possible 4-Bit Integers Represented in Ones Complement Form

Interpretation as a Ones Complement
Number Bit Pattern

0000 +O
000 1 +1
0010 +2
001 1 +3
0100 +4
0101 +5
01 10 +6
0111 +7
1000 -7
1001 -6
1010 -5
101 1 -4
1100 -3
1101 -2
1110 -1

representation. For example let us find the ones complement representation of 01 00, (+4,,).
The complement of 0100 is 1011, and this denotes the negative number -4,0. Table 2.3
summarizes all possible 4-bit binary patterns and their interpretations as ones complement
numbers.

From Table 2.3, the ones complement approach does not handle negative
numbers naturally. In other words, if the number is negative (when the sign bit is l), its
magnitude is not obvious from its ones complement. To determine its magnitude, one
needs to take its ones complement. For example, consider the number 1101 10. The most
significant bit indicates that this is a negative number. Because the number is negative, its
magnitude cannot be obtained by directly looking at 1101 10. Instead, one needs to take the
ones complement of 1 101 10 to obtain 001001. The value of 001001 as a sign-magnitude
number is +9. On the other hand, 1101 10 represents -9 in ones complement form. Like
the sign-magnitude representation, the ones complement approach does not increase the
range of numbers covered by a fixed number of bit patterns. For example, 4 bits cover
the range -7 to +7. The same range is obtained with sign-magnitude representation. Note
that the confusion of two distinct representations for zero exists in the ones complement
approach.

Now, let us discuss the two’s complement approach. In this method, positive
integers are represented in the same manner as they are in the sign-magnitude method. In
other words, if the sign bit is zero, the number is positive and its magnitude can be directly
obtained by looking at the remaining n - 1 bits. However, a negative number -x can be
represented in twos complement form as follows:

Represent +x in sign magnitude form and call this result y
Take the ones complement ofy to get 5 (or y ’)
y + 1 is the twos complement representation of -x.
The following example illustrates this:

-

Number Systems and Codes 31

Table 2.4 lists all possible 4-bit patterns along with their twos complement forms. From
Table 2.4, it can be concluded that:

The twos complement form does not provide two representations for zero.
The twos complement form covers up to -8 in the negative side, and this is more

than can be achieved with the other two methods. In general, with n bits, and using twos
complement approach, one can cover all the numbers in the range -(2"-') to + (2 " - I - 1).

It should be pointed out that 1 1 I 1 11 1 1 is +255,, when interpreted as an unsigned
number. On the other hand, 11 11 1 11 1, is - 1 ,, when interpreted as a signed number. Note
that typical 16-bit microprocessors have separate unsigned and signed multiplication and
division instructions. Suppose that a microprocessor has the following multiplication and
division instructions: MULU (Multiply two unsigned numbers), MULS (Multiply two
signed numbers), DIVU (Divide two unsigned numbers), and DIVS (Divide two signed
numbers). It is important for the programmer to clearly understand how to use these
instructions.

For example, suppose that it is desired to compute (X2)/255. Now, if X is a signed
8-bit number, the programmer should use the MULS instruction to compute X * X which
is always unsigned (square of a number is always positive), and then use DIVU to compute
(X2)/255 (16-bit by 8-bit unsigned divide) since 255,, is positive. But, if the programmer
uses DIVS, then both X * X and 255,, (FF,,) will be interpreted as signed numbers. FF,,
will be interpreted as -1 ,,, using two's complement. and the result will be wrong. On the
other hand, if X is an unsigned number, the programmer needs to use MULU and D I W to
compute (X2)/255.

Examde 2.2
Represent the following decimal numbers in twos complement form. Use 7 bits to represent
the numbers:
(a) +39
(b) -43
Solution
(a) Because the number +39 is positive, its twos complement representation is the

same as its sign-magnitude representation as shown here:

25 24 23 22 2 ' 20
y=$J 0 0 1 1 1,

+ , 39

(b) In this case, the given number -43 is negative. The twos complement form of
the'number can be obtained as follows:

Step 1 : Represent +43 in sign magnitude form

25 24 23 22 21 20
y=$l 0 1 0 1 1

+ 43

Step 2: Take the ones complement of y:

Step 3: Add one to to get the final answer.

1010100
+___ 1

1010101

v = 1 0 1 0 1 0 0

32

TABLE 2.4

Fundamentals of Digital Logic and Microcomputer Design

All Possible 4-Bit Integers Represented in Twos Complement Form

Interpretation as a Twos
Bit Complement Number

0000 0
000 1 +1
0010 +2
001 1 +3
0100 +4
0101 +5
01 10 +6
0111 +7
1000 -8
1001 -7
1010 -6
101 1 -5
1100 -4
1101 -3
1110 -2
1111 -1

2.3 Codes
Codes are used extensively with computers to define alphanumeric characters and other
information. Some of the codes used with computers are described in the following
sections.

2.3.1 Binary-Coded-Decimal Code (8421 Code)
The 10 decimal digits 0 through 9 can be represented by their corresponding 4-bit binary
numbers. The digits coded in this fashion are called binary-coded-decimal (BCD) digits in
8421 code, or BCD digits. Two unpacked BCD bytes are usually packed into a byte to form
“packed BCD.” For example, two unpacked BCD bytes 02,, and 05,, can be combined as
a packed BCD byte 25,,. The concept of packed and unpacked BCD numbers are explained
later in this section. Table 2.5 provides the bit encodings of the 10 decimal numbers.

The six possible remaining 4-bit codes as shown in Table 2.5 are not used and
represent invalid BCD codes if they occur.
Consider obtaining the BCD bit encoding of the decimal number 356 as follows:

3 5 6
v v w

1 1 1
0011 0101 0110

2.3.2 Alphanumeric Codes
A computer must be capable of handling nonnumeric information if it is to be very useful.
In other words, a computer must be able to recognize codes that represent numbers, letters,
and special characters. These codes are classified as alphanumeric or character codes. A
complete and adequate set of necessary characters includes these:
1. 26 lowercase letters

Number Systems and Codes 33

TABLE 2.5 BCD Bit encodings of the 10 decimal numbers

BCD Bit
encoding

Decimal Numbers

0 0000
1
2
3

4
5

6
7
8

9
10

11
12
13
14
15

1

0001
0010
001 1

0100
0101

01 10
0111
1000
1001
1010 [1011

J 1111

2. 26 uppercase letters
3. 10 numeric digits (0-9)
4. About 25 special characters, which include + 1 # % , and so on.

This totals 87 characters. To represent 87 characters with some type of binary
code would require at least 7 bits. With 7 bits there are 27 = 128 possible binary numbers;
87 of these combinations of 0 and 1 bits serve as the code groups representing the 87
different characters.

The 8-bit byte has been universally accepted as the data unit for representing
character codes. The two most common alphanumeric codes are known as the American
Standard Code for Information Interchange (ASCII) and the Extended Binary-Coded
Decimal Interchange Code (EBCDIC). ASCII is typically used with microprocessors. IBM
uses EBCDIC code. Eight bits are used to represent characters, although 7 bits suffice,
because the eighth bit is frequently used to test for errors and is referred to as a parity bit.
It can be set to 1 or 0, so that the number of 1 bits in the byte is always odd or even.

Table 2.6 shows a list of ASCII and EBCDIC codes. Some EBCDIC codes do not
have corresponding ASCII codes. Note that decimal digits 0 through 9 are represented by
30,, through 39,, in ASCII. On the other hand, these decimal digits are represented by FO,,
though F9,, in EBCDIC.

A computer program is usually written for code conversion when inputloutput
devices of different codes are connected to the computer. For example, suppose it is
desired to enter a number 5 into a computer via an ASCII keyboard and print this data
on an EBCDIC printer. The ASCII keyboard will generate 35,, when the number 5 is
pushed. The ASCII code 35,, for the decimal digit 5 enters into the computer and resides

34 Fundamentals of Digital Logic and Microcomputer Design

TABLE 2.6 ASCII and EBCDIC Codes in Hex.

Character ASCII EBCDIC

63
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
Z
[
\
1
A

-

40
41 c 1
42 C2
43 c 3
44 c 4
45 c 5
46 C6
47 c 7
48 C8
49 c 9
4A D1
4B D2
4C D3
4D D4
4E D5
4F D6
50 D7
51 D8
52 D9
53 E2
54 E3
55 E4
56 E5
57 E6
58 E7
59 E8
5A E9
5B
5 c
5D
5E
5F 6D

Jharacter ASCII EBCDIC

a
b

d
e
f
g
h

C

1

j
k
I
m
n

P
q
r
S
t
U

V

W

X

0

Y
2

{
I
1
I

DEL

60
61 81
62 82
63 83
64 84
65 85
66 86
67 87
68 88
69 89
6A 91
6B 92
6C 93
6D 94
6E 95
6F 96
70 97
71 98
72 99
73 A2
74 A3
75 A4
76 A5
77 A6
78 A7
79 A8
7A A9
7B
7C 4F
7D
7E
7F 07

:haracter ASCII EBCDI(

blank
!

$
Yo
&

(
) *
+

I
0
1
2
3
4
5
6
7
8
9

<
- -
>
?

20 40
21 5A
22 7F
23 7B
24 5B
25 6C
26 50
27 7D
28 4D
29 5D
2A 5C
2B 4E
2C 6B
2D 60
2E 4B
2F 61
30 FO
31 F1
32 F2
33 F3
34 F4
35 F5
36 F6
37 F7
38 F8
39 F9
3A
3B 5E
3 c 4 c
3D 7E
3E 6E
3F 6F

:haracter ASCII EBCDIC

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
so
SI
DLE
DC 1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

00
01
02
03
04 37
05
06
07
08 16
09 05
OA 25
OB
oc
OD 15
OE
OF
10
11
12
13
14
15
16

18
19
1A
1B
1 c
1D
1E
IF

17

in the computer’s memory. To print the digit 5 on the EBCDIC printer, a program must be
written that will convert the ASCII code 3516 for 5 to its EBCDIC code F5,,. The output
of this program is F5,,. This will be input to the EBCDIC printer. Because the printer only
understands EBCDIC codes, it inputs the EBCDIC code F5,6 and prints the digit 5.

Let us now discuss packed and unpacked BCD codes in more detail. For example,
in order to enter 24 in decimal into a computer, the two keys (2 and 4) will be pushed
on the ASCII keyboard. This will generate 32 and 34 (32 and 34 are ASCII codes in
hexadecimal for 2 and 4 respectively) inside the computer. A program can be written to
convert these ASCII codes into unpacked BCD 02 and 04, and then convert to packed BCD
24 or to binary inside the computer to perform the desired operation.

2.3.3 Excess-3 Code
The excess-3 representation of a decimal digit d can be obtained by adding 3 to its value.
All decimal digits and their excess-3 representations are listed in Table 2.7.
The excess-3 code is an unweighted code because its value is obtained by adding three to
the corresponding binary value. The excess-3 code is self-complementing. For example,
decimal digit 0 in excess-3 (00 1 1) is ones complement of 9 in excess three (1 100). Similarly,
decimal digit 1 is ones complement of 8, and so on. This is why some older computers used

Number Systems and Codes 35

TABLE 2.7 Excess-3 Representation of Decimal Digits
Decimal Excess-3

0 001 1
1 0100
2 0101
3 01 10
4 0111
5 1000
6 1001
7 1010
8 101 1

Digits Representation

9 1100

excess three code. Conversion between excess-3 and decimal numbers is illustrated below:

3 v
8
v

9 Decimal number
v v

t + t
A

5 3
Excess-3 Representation 0100 1100 101 1 0110

2.3.4 Gray Code
Sometimes codes can also be constructed using a property called reflected symmetry.
One such code is known as the Gray code. The Gray code is used in Karnaugh maps for
simplifying combinational logic design. This topic is covered in Chapter 4. Before we
proceed, we briefly explain the concept of reflected symmetry. Consider the two bits 0 and
I , and stack these two bits. Assume that there is a plane mirror in front of this stack and
produce the reflected image of the stack as shown in the following:

0
1

1
0

Appending a zero to all elements of the stack above the plane mirror and appending
a one to all elements of the stack that lies below the mirror will provide the following
result:

Appended zeros { : ;
Appended ones { : ;

0 0 0 0 0 0
0 0 1 0 0 1

mirror+ -

0 1 1 Mirror 0 1 1
O l O d 0 1 0

after moving
1 0 1 themirror 1 0 1
1 0 0 1 0 0

FIGURE 2.1 The process of obtaining 3-bit reflected binary code

36 Fundamentals of Digital Logic and Microcomputer Design

0000

Decimal
Gray =Ode Equivalent
/, 0000 0

0001 1
2
3
4

001 1
0010
01 10
01 11 5

1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

1101
1111
1110
1010
101 1
1001
1000

FIGURE 2.2 The process of obtaining a 4-bit Gray code from a 3-bit Gray code.

Now, removal of the plane mirror will result in a stack of 2-bit Gray Code as
follows:

0 0
0 1
1 1
1 0

Here, any two adjacent bit patterns differ only in one bit. For example, the patterns
1 1 and 10 differ only in the least significant bit.

Repeating the reflection operation on the stack of 2-bit binary patterns, a 3-bit
Gray code can be obtained. Two adjacent binary numbers differ in only one bit. The result
is shown in Figure 2.1.

Applying the reflection process to the 3-bit Gray code, 4-bit Gray Code can be
obtained. This is shown in Figure 2.2.

The Gray code is useful in instrumentation systems to digitally represent the
position of a mechanical shaft. In these applications, one bit change between characters
is required. For example, suppose that a shaft is divided into eight segments and each
shaft is assigned a number. If binary numbers are used, an error may occur while changing
segment 7 (01 1 1,) to segment 8 (1000,). In this case, all 4 bits need to be changed. If the
sensor representing the most significant bit takes longer to change, the result will be 0000,,
representing segment 0. This can be avoided by using Gray code, in which only one bit
changes when going from one number to the next.

2.3.5 Unicode
Basically, computers work with numbers. Note that letters and other characters are stored
in computers as numbers; a number is assigned to each one of them.

Before the invention of Unicode, there were numerous encoding systems for
assigning these numbers. It is not possible for a single encoding system to cover all the
languages in the world. For example, a single encoding system was not able to assign all
the letters, punctuation, and common technical symbols. Typical encoding systems can

Number Systems and Codes 37

conflict with each other. For example, two different characters can be assigned with the
same number in two different encoding systems. Also, different numbers can be assigned
the same character in two different encodings. These types of assignments of numbers
can create problems for certain computers such as servers which need to support several
different encodings. Hence, when data is transferred between different encodings or
platforms, the data may be corrupted.

Unicode avoids this by assigning a unique number to each character regardless of
the platform, the program, or the language. More information on Unicode can be obtained
at the Web site at www.unicode.org.

2.4 Fixed-Point and Floatinp-Point Remesentations

A number representation assuming a fixed location of the radix point is calledjxed-point
representation. The range of numbers that can be represented in fixed-point notation is
severely limited. The following numbers are examples of fixed-point numbers:

0110.1100,, 51.12,0, DE.2Al,
In typical scientific computations, the range of numbers is very large. Floating-point
representation is used to handle such ranges. A floating-point number is represented as
N X r P, where Nis the mantissa or significand, r is the base or radix of the number system,
and p is the exponent or power to which r is raised.

Some examples of numbers in floating-point notation and their fixed-point
decimal equivalents are:

fixed-point numbers floating-point representation
0.0167,, 0.167X 10-1

BE.2A9,, O.BE2A9 X 162
In converting from fixed-point to floating-point number representation, we

normalize the resulting mantissas; that is, the digits of the fixed-point numbers are
shifted so that the highest-order nonzero digit appears to the right of the decimal point,
and consequently a 0 always appears to the left of the decimal point. This convention is
normally adopted in floating-point number representation. Because all numbers will be
assumed to be in normalized form, the binary point is not required to be represented in
computers.

Typical 32-bit microprocessors such as the Intel 80486/Pentium and the Motorola
68040 and PowerPC contain on-chip floating-point hardware. This means that these
microprocessors can be programmed using instructions to perform operations such as
addition, subtraction, multiplication, and division using floating-point numbers.

1101.10,, o . i i o i i o i x 24

2.5 Arithmetic ODerations

As mentioned before, computers can only add. Therefore, all other arithmetic operations are
typically accomplished via addition. All numbers inside the computer are in binary form.
These numbers are usually treated internally as integers, and any fractional arithmetic must
be implemented by the programmer in the program. The arithmetic and logic unit (ALU) in
the computer’s CPU performs typical arithmetic and logic operations. The ALUs perform
fimction such as addition, subtraction, magnitude comparison, ANDing, and ORing of two
binary or packed BCD numbers. The procedures involved in executing these functions are

38 Fundamentals of Digital Logic and Microcomputer Design

discussed next to provide an understanding of the basic arithmetic operations performed in
a typical microprocessor. The logic operations are covered in Chapter 3

2.5.1 Binary Arithmetic

Addition
The addition of two binary numbers is carried out in the same way as the addition

of decimal numbers. However, only four possible combinations can occur when adding
two binary digits (bits):

augend + addend = carry sum decimal value
o + o = o 0 0
1 + 0 = 0 1 1
0 + 1 = 0 1 1
1 + 1 = 1 0 2

The following are some examples of binary addition. The corresponding decimal
additions are also included.

010 (2)
mfa

101 (5)

111 +-carry
101.11 (5,75)

+ 011.LO (3.50)
1 001.01 (9.25)

f

Addition is the most important arithmetic operation in microprocessors because
the operations of subtraction, multiplication, and division as they are performed in most
modern digital computers use only addition as their basic operation.

The addition of two unsigned numbers is performed in the same way as illustrated
above. Also, the addition of two numbers in the sign-magnitude form is performed in the
same manner as ordinary arithmetic. For example, if both numbers have the same signs,
the two numbers are added and the common sign is assigned to the result. On the other
hand, if the numbers have opposite signs, the number with smaller magnitude is subtracted
from the number with larger magnitude and the result is assigned with the sign of the
number with larger magnitude. For example, (-14) + (+18) = + (18 - 14) = +4. This is
performed by subtracting the smaller magnitude 14 from the higher magnitude 18 and the
sign of the larger magnitude 18 (+ in this case) is assigned to the result. The same rules
apply to binary numbers in sign-magnitude form.

Subtraction
As mentioned before, computers can usually only add binary digits; they cannot
directly subtract. Therefore, the operation of subtraction in microprocessors
is performed using the operation of addition using complement arithmetic. In
general, the b’s complement of an m-digit number, M is defined as bm -M for
M f 0 and 0 for M =O. Note that for base 10, b =10 and 10” is a decimal number with
a 1 followed by m 0’s. For example, lo4 is 10000; 1 followed by four 0’s. On the other
hand, b =2 for binary and 2m indicates 1 followed by m 0’s. For example, 2) means 1000
in binary.

The (b - 1)’s complement of an m-digit number, M is defined as (bm - 1)-M.

Number Systems and Codes 39

Therefore, the b’s complement of an rn-digit number, M can be obtained by adding 1 to
its (b - 1)’s complement. Next, let us illustrate the concept of complement arithmetic by
means of some examples. Consider a 4-digit decimal number, 5786. In this case, b =10 for
base 10 and rn =4 since there are four digits.

10’s complement of 5786 =lo4 -5786 =10000 -5786 =4214
Now, let us obtain 10’s complement of 5786 using (10 - 1)’s or 9’s complement

Hence, 10’s complement of 5786 = 9’s complement of 5786 + 1 = 4213 + 1 =

Next, let us determine the 2’s complement of a 3-bit binary number, 010. In this

2’s complement of 010 = 23 -010 =lo00 -010.
Using paper and pencil method, the result of subtraction can be obtained as follows:

arithmetic as follows: 9’s complement of 5786 = (lo4 - 1)-5786 =9999 -5786 =4213

4214.

case, b = 2 for binary and rn = 3 since there are three bits in the number.

1000,
-0 10,
110,
-

Note that in the above, 110, is -2 in decimal when interpreted as a signed number.
Therefore, 2’s complement of a number negates the number being complemented. This
will be explained later in this section.

The 2’s complement of 010 can be obtained using its 1’s complement arithmetic
as follows:

1’s complement of 010 = (23 - 1)-010 =111 -010 =lo1
2’s complement of 101 = 101 +l =110

From the above procedure for obtaining the 1’s complement of 010, it can be
concluded that the 1’s complement of a binary number can be achieved by subtracting each
bit of the binary number from 1. This means that when subtracting a bit (0 or 1) from 1,
one can have either 1 -0 =I or 1 - 1 =O; that is, the 1’s complement of 0 is 1 and the 1’s
complement of 1 is 0. In general, the 1 ’s complement of a binary number can be obtained
by changing 0’s to 1’s and 1 ’s to 0’s.

The procedure for performing X-Y (both X and Y are in base 2) using 1’s
complement can be performed as follows:

Step 1. Add the minuend X to the 1’s complement of the subtrahend Y.
Step 2. Check the result in step 1 for a carry. If there is a cam, add 1 to the least

significant bit to obtain the result. If there is no carry, take the 1’s complement of the
number obtained in step 1 and place a negative sign in front of the result.

For example, consider two 6-bit numbers (arbitrarily chosen), X = 0 100 1 1 , = 19,,
and Y = 110001, = 49,,. X-Y= 19 - 49 = -30 in decimal. The operation X-Y using 1’s
complement can be performed as follows:

x = 01001 1
Add 1’s complement of Y = 001 110

10000 1

Since there is no carry, Result = - (1’s Complement of 100001) = -011110,=
-30,,. Next consider, X = 101100, = 44,, and Y = 011000, = 24,,. In decimal, X-Y =

40 Fundamentals of Digital Logic and Microcomputer Design

44-24 = 20.
Using 1 ’s complement, X-Y can be obtained as follows:

x = 101 100
Add 1’s Complement of Y = 1001 1 1

Carry+l 010011
Since there is a carry, Result = 0 100 1 1 + 1 = +O 10 100, = + 20, .
Next, let us describe the procedure of subtracting decimal numbers using addition.

This process requires the use of the 10’s complement form. The 10’s complement of a
number can be obtained by subtracting the number from 10.

Consider the decimal subtraction 7 - 4 = 3. The 10’s complement of 4 is
10 - 4 = 6. The decimal subtraction can be performed using the lo’s complement addition
as follows:

minuend 7
10’s complement of subtrahend + - 6

/ I 3
ignore final carry of 1 to obtain
the subtraction result of 3.

When a larger number is subtracted from a smaller number, there is no carry to
be discarded. Consider the decimal subtraction 4 -7 =-3. The 10’s complement of 7 is
10 -7 = 3.
Therefore,

minuend 4
10’s complement of subtrahend - + 3

/ 7
no h a 1 carry

When there is no final carry, the final answer is the negative ofthe lo’s complement
of 7. Therefore, the correct result of subtraction is -(lo-7) = -3.

The same procedures can be applied for performing binary subtraction. In the case
of binary subtraction, the twos complement of the subtrahend is used.

As mentioned before, the twos complement of a binary number is obtained by
replacing each 0 with a 1 and each 1 with a 0 and adding 1 to the resulting number. The
first step generates a ones complement or simply the complement of a binary number. For
example, the ones complement of 100 10 10 1 is 0 1 10 101 0. Note that the ones complement
of a binary number can be obtained by using inverters; eight inverters are required for
generating ones complement of an %bit number.

The twos complement of a binary number is formed by adding 1 to the ones
complement of the number. For example, the twos complement of 10010101 is found as
follows:

binary number 10010101
1’s complement 01 101010

add 1 + 1
2’s complement 01 10101 1

Now, using the twos complement, binary subtraction can be camed out. Consider the

Number Systems and Codes

following subtraction using the normal (pencil and paper) procedure:

41

minuend 0101 (5)
subtrahend -0011 (-3)

result 0010, = 2, ,
Using the twos complement subtraction,

minuend 0101
1 10 1

/ 10010

2's complement of subtrahend

discard final carry

The final answer is 00 10 (decimal 2).

Consider another example. Using pencil and paper method:

minuend 0101 (5)
subtrahend - 1001 (-9)

result - 0100 (-4)
~-

Using the twos complement,

minuend 0101
01 1 1 2's complement of subtrahend

Y 1 l o o
no final carry

Therefore, the final answer is -(twos complement of 1 100) = -0100, which is
-4 in decimal.

Computers typically handle signed numbers by using the most significant bit of
a number as the sign bit. If this bit is zero, the number is positive; if this bit is one, the
number is negative. Computers use twos complement of the number to represent negative
binary numbers and obtain the sign of the result from the most significant bit. However,
computers perform ones complement operation on the final carry in order to reflect the
true borrow. This is useful for multiprecision subtraction. Also, in the paper and pencil
method, the sign of the result of binary subtraction using twos complement can be obtained
by utilizing either the most significant bit of the result or the ones complement of the final
carry.

For example, the number +22,, can be represented using 8 bits as:

42 Fundamentals of Digital Logic and Microcomputer Design

0 00101 102
w

sign bit
(positive)

Hence,
twos complement of + 22 10

-2210 = 1 1101010

sign bit
(negative)

v

We now show the procedures for carrying out the addition and subtraction in

Examples of arithmetic operations of the signed binary numbers are give below.

1. Both augend and addend are positive:

computers using twos complement arithmetic.

Assume 5 bits to represent each number.

0 0101 +5 augend
+3 addend 0 0011 - 1 - 1 -

0 1000 +8 u, sign bits are all positive

2 . Augend is positive, addend is negative:

+2
/11 w:gnbits

ignore final carry

Note that the twos complement of 3 is 1 1 101.
Consider another example:

+3 augend
-5 addend

/ sign bits
no final carry

The result is the twos complement of 11 110, which is 00010, and therefore, the

3. Both augend and addend are negative:
final answer is -2,0.

Number Systems and Codes 43

augend [I:] addend
2's complement of 3
2's complement of 5 -

(-8)
sign bits

ignore final carry

Therefore, the result in binary is 11000. Since the most significant bit is 1, the
result is negative. Hence, the result in decimal will be -(twos complement of llOOO),
which is -8,,,.

4. The augend and addend are equal with opposite signs:

2's complement of 3 = 1 1101 au end
3 = 0 0011 _. ad8end k sign bits 0

i ' l O O0O0
ignore final carry

The final answer is zero.
In all these cases, the sign bit of each of the numbers is conceptually isolated from

the number itself. The subtraction operation performed here is similar to twos complement
subtraction. For example, when subtracting the subtrahend from the minuend using twos
complement, the subtrahend is converted into its twos complement along with the sign
bit. If the sign bit of the subtrahend is 1 (for negative subtrahend), its twos complement
converts the sign bit from 1 to 0. To perform the subtraction, the twos complement of the
subtrahend is added to the minuend. The sign bit of the result indicates whether the answer
is positive or negative.

However, an error (indicated by overflow in a microprocessor) may occur while
performing twos complement arithmetic. The overflow arises from the representation of
the sign flag by the most significant bit of a binary number in signed binary operation. The
computer automatically sets an overflow bit to 1 if the result of an arithmetic operation
is too big for the computer's maximum word size; otherwise it is reset to 0. To clearly
understand the concept of overflow, consider the following examples for 8-bit numbers.
Let C, be the carry out of the most significant bit (sign bit) and C, be the carry out of the
previous (bit 6) data bit (seventh bit). We will show by means of numerical examples that
as long as C, and C, are the same, the result is always correct. If, however, C, and C, are
different, the result is incorrect and sets the overflow bit to 1. Now consider the following
cases.
Case 1. C, and C, are the same.

44 Fundamentals of Digital Logic and Microcomputer Design

0 0 0 0 0 1 1 0 0616
O O O l O l O Q -16

/ o 0 0 0 1 1 0 1 0 11416

c 7 = 0 AJ +
c6= 0

Therefore when C, and C, are either both 0 or both 1, a correct answer is
obtained.

Case 2. C, and C, are different.

C, = 1 and C, = 0 give an incorrect answer because the result shows that the
addition of two positive numbers is negative.

C, = 0 and C, = 1 provide an incorrect answer because the result indicates that the
addition of two negative numbers is positive. Hence, the overflow bit will be set to zero if
the carries C, and C, are the same, that is, if both C, and C, are either 0 or 1. On the other
hand, the overflow flag will be set to 1 if the carries C, and C, are different. The answer is
incorrect when the overflow bit is set to 1. Thus,

Overflow = C, 0 C,.
Note that the symbol 0 represents exclusive-OR logic operation. Exclusive-OR

means that when two inputs are the same (both one or both zero), the output is zero. On the
other hand, if two inputs are different, the output is one. The overflow can be considered
as the output while C, and C, are the two inputs. The exclusive-OR operation is covered in
Chapter 3.

When performing signed arithmetic using pencil and paper, one must consider the
overflow bit to ensure that the result is correct. An overflow of one after a signed operation

Number Systems and Codes 45

indicates that the result is too large to be accommodated in the number of bits assigned.
One must increase the number of bits for the correct result.

Examale 2.3
Perform the following signed operations and comment on the results. Assume twos
complement numbers.
(a)
(b)

A = 1010,, B = 0100,. Find A - B.
Perform (-3,0) - (-2,0) using twos complement and 4 bits.

Solution

(a) The most significant bit of A is 1, so A is a negative number whereas B is a
positive number.

A = 1 0 1 0
Add 2's complement of B = + 1 1 0 0 -

c3 = 1 aJ1 o = 6 --lolo

c2 = o

Because C, and C, are different, there is an overflow and the result is incorrect.
Four bits are too small to hold the correct answer. If we increase the number of
bits for A and B to 5, the correct result can be obtained as follows:

A = 1 1 0 1 0 2
Add 2's complement of B = + 1 1 1 0 O2

The result is correct because C, and C, are the same. The most significant bit of the result
is 1. This means that the result is negative. Therefore, to express the result in base- 10, one
must take the twos complement and convert the binary number to decimal and place a
negative sign in front of it. Thus, twos complement of 101 10, = -01010, = -

- 3 10 = 2's complement of+ 3 10
(b)

= 11012

- 2 10 = 2's complement of + 2 1 0

= 11102

+A1 -110
c3 = o

CZ = o

C, and C, are the same, so the result is correct. The most significant bit of the

46 Fundamentals of Digital Logic and Microcomputer Design

result is 1. This means that the result is negative. To find the result in decimal, one
must take the twos complement of the result and place a negative sign in front of
it. Twos complement of 1 11 1 = - 1 ,,

Dividend

7 10

Multiplication of Unsigned Binary Numbers
Multiplication of two binary numbers can be carried out in the same way as is done with
the decimal numbers using pencil and paper. Consider the following example:

Subtraction Divisor Counter
Result

310 1-3=4 1
4-3=1 1 + 1 = 2

Multiplicand + 01 10 (610)
Multiplier P 0101 X (510)

K O 7
Ooo0 [partial products

0110
0000)

3. Final product

Several multiplication algorithms are available. Multiplication of two unsigned
numbers can be accomplished via repeated addition. For example, to multiply 4,, by 3,0,
the number 4,, can be added twice to itself to obtain the result, 12,,.

Division of Unsigned Binary Numbers
Binary division is carried out in the same way as the division of decimal numbers. As an
example, consider the following division:

110 t- Quotient = 610

0 1 1) 1 0 1 o O L Dividend = 20 ,o
3 011

Divisor = 310 -
loo+---- Partial Remainders
0 1 1
010

Remainder = 2

6 +- quotient
3)20 dividend

18 - -remainder

Division between unsigned numbers can be accomplished via repeated subtraction.
For example, consider dividing 7,, by 3,, as follows:

Quotient = Counter value = 2
Remainder = subtraction result = 1

Here, one is added to a counter whenever the subtraction result is greater than the

Number Systems and Codes 47

divisor. The result is obtained as soon as the subtraction result is smaller than the divisor.

2.5.2 BCD Arithmetic
Many computers have instructions to perform arithmetic operations using packed BCD
numbers. Next, we consider some examples of packed BCD addition and subtraction.

BCD Addition
The two cases that may occur while adding two packed BCD numbers are considered next.
Consider adding packed BCD numbers 25 and 33:

25 0010 0101
+33 001 1 001 1

58 0101 1000
In this example, none of the sums of the pairs of decimal digits exceeded 9; therefore,
no decimal carries were produced. For these reasons, the BCD addition process is
straightforward and is actually the same as binary addition.

Now consider the addition of 8 and 4 in BCD:

8 0000 1000
+4 0000 0100
12 0000 1100 t invalid code group for BCD

The sum 1 100 does not exist in BCD code. It is one of the six forbidden or invalid
4-bit code groups. This has occurred because the sum of two digits exceeds 9. Whenever
this occurs, the sum has to be corrected by the addition of 6 (01 10) to skip over the six
invalid code groups. For example,

8 0000 1000
+4 0000 0100
12 0000 1100 invalid sum

+oooo 01 10 add 6 for correction
000 1 0010 BCD for 12 - -

1 2

As another example, add packed BCD numbers 56 and 81:

56 0101 01 10 BCD for 56
+81 1000 0001 BCD for 81
137 1101 01 11 invalid sum in 2nd digit

+0110 add 6 for correction
001 1 0111 - - 000 1 -

1 3 7 t correct answer 137

Therefore, it can be concluded that addition of two BCD digits is correct if the
binary sum is less than or equal to 1001 (9 in decimal). A binary sum greater than 1001,
results into an invalid BCD sum; adding 01 10, to an invalid BCD sum provides the correct
sum with an output carry of 1. Furthermore, addition of two BCD digits (each digit having
a maximum value of 9) along with carry will require correction if the sum is in the range
16 decimal through 19 decimal. It can be concluded that a correction is necessary for the
following:
i) If the binary sum is greater than or equal to decimal 16 (This will generate a carry of
one)
ii) If the binary sum is 10 10, through 1 1 1 1 ,.

48 Fundamentals of Digital Logic and Microcomputer Design

For example, consider adding packed BCD numbers 97 and 39:

1 1 1 +Intermediate Carries
97 1001 0111 BCD for 97

+39 001 1 1001 BCD for 39
136 1101 0000 invalid sum

+0110 +0110 add 6 for correction
001 1 01 10 u - 000 1

4-J
I 3 6 t correct answer 136

BCD Subtraction
Subtraction of packed BCD numbers can be accomplished in a number of different ways.
One method is to add the 10’s complement of the subtrahend to the minuend using packed
BCD addition rules, as described earlier.

One means of finding the 10’s complement of a d-digit packed BCD number N
is to take the twos complement of each digit individually, producing a number Nl. Then,
ignoring any carries, add the d-digit factor M to N,, where the least significant digit of M is
10 10 and all remaining digits of A4 are 1001 .

As an example, consider subtracting 26,, from 84,, using BCD subtraction. This
can be accomplished as follows:

Now, the 10’s complement of 26,, can be found according to the rules by
individually determining the twos complement of 2 and 6, adding the 10’s complement
factor, and discarding any carries. The twos complement of 2 is 11 10, and the twos
complement of 6 is 10 10. Therefore,

2’s complement of each digit of 2610 1110 1010
addition factor to find 10’s complement +loo1 1010

0100

4
+ 10’s complement of 2610

ignore these carries

10’s complement of 26,, 0111 0100
8410 + 1000 0100

1111 1000
BCD correction factor +0110

1000

8
+

\
ignore carry

Therefore, the final answer is 58,,.

2.5.3
In many cases, the word length of a particular microprocessor may not be large enough
to represent the desired magnitude of a number. Suppose, for example, that numbers in
the range from 0 to 65,535 are to be used in an 8-bit microprocessor in binary addition

Multiword Binary Addition and Subtraction

Number Systems and Codes 49

and subtraction operations using the twos complement number representation. This can be
accomplished by storing the 16-bit numbers each in two 8-bit memory locations. Addition
or subtraction of the two 16-bit numbers is implemented by adding or subtracting the
lower 8 bits of each number, storing the result in 8-bit memory location or register, and
then adding the two high-order parts of the number with any carry or borrow generated
from the first addition or subtraction. The latter partial sum or difference will be the high-
order portion of the result. Therefore, the two 8-bit operations together comprise the 16-bit
result.

Here are some examples of 16-bit addition and subtraction.

16-Bit Addition
upper half of the lower half of the

16-bit number 16-bit number - -
0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0

+ 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1
1 1 1 1 intermediate

carries- 1 1 1 m m
high byte ofthe low byte of the

answer answer

The low-order 8-bit addition can be computed by using the microprocessor's ADD
instruction and the high-order 8-bit sum can be obtained by using the ADC (ADD with
carry) instruction in the program.

16-Bit Subtraction
Consider 23A616 - 124.416 = 115c16.

hgh byte 23 --
0 0 1 0 0 0 1 1 1 0 1 0 0 1 l o

1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1's complement
Of 124A16

ignore this W W d W
c a w 1 1 5 C

low byte A6

add 1 to find
2's complement

2 1 0 0 0 1 0 0 0 1 O 0 of124A16

The low-order 8-bit subtraction can be obtained by using SUB instruction of
the microprocessor, and the high-order 8-bit subtraction can be obtained by using SBB
(SUBTRACT with borrow) instruction in the program.

2.6 Error Correction and Detection

In digital systems, it is possible that the transmitted information is not received correctly.
Note that a computer is a digital system in which information transfer can take place in
many ways. For example, data may be moved from a CPU register to another device or
vice versa. When the transmitted data is not received correctly at the receiving end, an
error occurs. One possible cause for such errors is noise problems during transmission. To
avoid these problems, error detection and correction may be necessary. In a digital system,
an error occurs when a 0 is changed to a 1 and vice versa. Correction of this error means

50 Fundamentals of Digital Logic and Microcomputer Design

1 1 1 0 0

replacement of a 1 with 0 and vice versa. The reliability of digital data depends on the
methods employed for error detection and correction.

The simplest way to detect the presence of an error is by adding a single bit, called
the “parity” bit, to the message bits and then transmitting the message along with the parity
bit. The parity bit is usually computed in two ways: even parity and odd parity. In the even
parity method, the parity bit is added in such a way that after its inclusion, the number of
1’s in the message together with the parity bit is an even number. On the other hand, in
an odd parity scheme, the parity bit is added in such a way that the number of 1’s in the
message and the parity bit is an odd number. For example, suppose that the message to be
transmitted is 0 1 10. If even parity is used by the transmitting computer, the transmitted data
along with the parity bit will be 001 10. On the other hand, if odd parity is used, the data
to be transmitted will be 101 10. The parity computation can be implemented in hardware
by using exclusive-OR gates (to be discussed in Chapter 3). Usually for a given message,
the parity bit is generated using either an even or odd parity scheme by the transmitting
computer. The message is then transmitted along with the parity bit. At the receiving end,
the parity is checked by the receiving computer. If there is a discrepancy, the data received
will obviously be incorrect. For example, suppose that the message bits are 1 101. The even
parity bit for this message is 1. The transmitted data will be

Even Message

Bit
Parity

Suppose that an error occurs in the least significant bit; that is mO is changed from
1 to 0 during transmission. The received data will be:

The receiving computer performs a parity check on this data by counting the
number of ones and finds it to be an odd number, three. Therefore, an error is detected.

With a single parity bit, an error due to a single bit change can be detected. Errors
due to 2-bit changes during transmission will go undetected. In such situations, multiple
parity bits are used. One such technique is the “Hamming code,” which uses 3 parity bits
for a 4-bit message.

OUESTIONS AND PROBLEMS

2.1 Convert the following unsigned binary numbers into their decimal equivalents:
(a) 01 110101, (b) 1101.101, (c) 1000.111,

2.2 Convert the following numbers into binary:
(a) 15210 (b) 34310

2.3 Convert the following numbers into octal:
(a) 18431, (b) 17661,

Number Systems and Codes 51

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.1 1

2.12

2.13

2.14

2.15

2.16

2.17

Convert the following numbers into hexadecimal
(a) 1987,, (b) 3072,,

Convert the following binary numbers into octal and hexadecimal numbers:
(a) 110101 1100101 (b) 1100001 11001 1000001 1

Using 8 bits, represent the integers -48 and 52 in
(a) sign magnitude form
(b) ones complement form
(c) twos complement form

Identify the following unsigned binary numbers as odd or even without
converting them to decimal: 1 1001 100,; 00 100 1 O02; 0 1 1 1 100 1 ,.

Convert 532.372,, into its binary equivalent.

Convert the following hex numbers to binary: 15FD,,; 26EA,,.

Provide the BCD bit encodings for the following decimal numbers:
(a) 11264 (b) 8192

Represent the following numbers in excess-3:
(a) 678 (b) 32874 (c) 61440

What is the excess-3 equivalent of octal 1543?

Represent the following binary numbers in BCD:
(a) 0001 1001 0101 0001
(b) 01 10 0001 0100 0100 0000

Express the following binary numbers into excess-3 :
(a) 0101 1001 0111
(b) 0110 1001 0000

Perform the following unsigned binary addition. Include the answer in decimal.
1 0 1 1.01

+o110.011

Perform the indicated arithmetic operations in binary. Assume that the numbers
are in decimal and represented using 8 bits. Express the results in decimal. Use the
twos complement approach for carrying out all subtractions.

@) 34 (4 34
+28 3

Using twos complement, perform the following subtraction: 3AFA,, - 2FlE,,.
Include the answer in hex.

52 Fundamentals of Digital Logic and Microcomputer Design

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

Using 9’s and 10’s complement arithmetic, perform the following arithmetic
operations:
(a) 254,,- 132,, (b) 783,,-807,,

Perform the following arithmetic operations in binary using 6 bits. Assume that
all numbers are signed decimal. Use twos complement arithmetic. Indicate if
there is any overflow.

(4 14
- + 8

(4 (-24) (el 19 (0 (-17)
+o -1-16)

Perform the following unsigned multiplication in binary using a minimum number
of bits required for each decimal number using the pencil and paper method:

12 x 52

Perform the following unsigned division in binary using a minimum number of
bits required for each decimal number:

3 / 1 4

Obtain the bit encodings of the following numbers and then perform the indicated
arithmetic operations using BCD:

(a) 54 (b) 782 (c) 82
+48 +219 -58

Find the odd parity bit for the following binary message to be transmitted:
101 10000.

Repeat Problem 2.20 using repeated addition.

Repeat Problem 2.2 1 using repeated subtraction.

If a transmitting computer sends the 8-bit binary message 1 10001 1 1 using an even
parity bit. Write the 9-bit data with the parity bit in the most significant bit. If the
receiving computer receives the 9-bit data as 1100001 11, is the 8-bit message
received correctly? Comment.

BOOLEAN ALGEBRA
AND DIGITAL LOGIC GATES

Input

A

0

1

This chapter describes fundamentals of logic operations, Boolean algebra, minimization
techniques, and implementation of basic digital circuits.

Digital circuits contain hardware elements called “gates” that perform logic
operations on binary numbers. Devices such as transistors can be used to perform the logic
operations. Boolean algebra is a mathematical system that provides the basis for these
logic operations. George Boole, an English mathematician, introduced this theory of digital
logic. The term Boolean variable is used to mean the two-valued binary digit 1 or 0.

output

2
1

0

3.1 Basic Lopic ODerations

Boolean algebra uses three basic logic operations namely, NOT, OR, and AND. These
operations are described next.

3.1.1 NOT Operation
The NOT operation inverts or provides the ones complement of a binary digit. This
operation takes a single input and generates one output. The NOT operation of a binary
digit provides the following result:

NOT1 = O
NOTO=I

Therefore, NOT of a Boolean variable A , written as 2 (or A’) is 1 if and only if A
is 0. Similarly, 2 is 0 if and only if A is 1. This definition may also be specified in the form
of a truth table:

Note that a truth table contains the inputs and outputs of digital logic circuits. The
symbolic representation of an electronic circuit that implements a NOT operation is shown

FIGURE 3.1 Symbol for a NOT gate

53

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

54

14 13 12 11 10 9 8

1 2 3 4 5 6 7

A1 Y1 A2 Y2 A3 Y3 GND

FIGURE 3.2 Pin diagram for the 74HC04 or 74LS04

in Figure 3.1.
A NOT gate is also referred to as an “inverter” because it inverts the voltage

levels. As discussed in Chapter 1, a transistor acts as an inverter. A 0-volt at the input
generates a 5-volt output; a 5-volt input provides a 0-volt output.

As an example, the 74HC04 (or 74LS04) is a hex inverter 14-pin chip containing
six independent inverters in the same chip as shown in Figure 3.2.

Computers normally include a NOT instruction to perform the ones complement
of a binary number on a bit-by-bit basis. An 8-bit computer can perfonn NOT operation
on an 8-bit binary number. For example, the computer can execute a NOT instruction on
an 8-bit binary number 01 101 11 1 to provide the result 10010000. The computer utilizes an
internal electronic circuit consisting of eight inverters to invert the 8-bit data in parallel.

3.1.2 OR operation
The OR operation for two variables A and B generates a result of 1 if A or B , or both, are 1.
However, if both A and B are zero, then the result is 0.

A plus sign + (logical sum) or v symbol is normally used to represent OR. The
four possible combinations of ORing two binary digits are

o + o = o
0 + 1 = 1

1 + o = 1

1 + 1 = 1

A truth table is usually used with logic operations to represent all possible
combinations of inputs and the corresponding outputs. The truth table for the OR operation
is

Inputs

A B Output = A + B

0 0 0

0 1 1

1 0 1

1 1 1

Boolean Algebra and Digital Logic Gates

A-D- B c = A + B

FIGURE 3.3 Symbol for an OR gate

55

Figure 3.3 shows the symbolic representation of an OR gate.
Logic gates using diodes provide good examples to understand how semiconductor devices
are utilized in logic operations. Note that diodes are hardly used in designing logic gates.
Figure 3.4 shows a two-input-diode OR gate. The diode (see Chapter 1) is a switch, and it
closes when there is a voltage drop of 0.6 V between the anode and the cathode. Suppose
that a voltage range of 0 to 2 V is considered as logic 0 and a voltage of 3 to 5 V is logic
1. If both A and B are at logic 0 (say 1.5 V) with a voltage drop across the diodes of 0.6 V
to close the diode switches, a current flows from the inputs through R to ground, and the
output C will be at 1.5 V - 0.6 V = 0.9 V (logic 0). On the other hand, if one or both inputs
are at logic 1 (say 4.5 V) the output C will be at 4.5 - 0.6 V = 3.9 V (logic 1). Therefore,
the circuit acts as an OR gate.

The 74HC32 (or 74LS32) is a commercially available quad 2-input 14-pin OR
gate chip. This chip contains four 2-inputll -output independent OR gates as shown in
Figure 3.5.

To understand the logic OR operation, consider Figure 3.6. V is a voltage source,
A and B are switches, and L is an electrical lamp. L will be turned ON if either switch A or B
or both are closed; otherwise, the lamp will be OFF. Hence, L = A + B. Computers normally
contain an OR instruction to perform the OR operation between two binary numbers. For
example, the computer can execute an OR instruction to OR 3A,, with 2 1 ,h on a bit by bit
basis:

3 A , , = 0 0 1 1 1 0 1 0
2 1 , 6 = 0 0 1 0 0 0 0 1 w w

3 16

The computer typically utilizes eight two-input OR gates to accomplish this.

3.1.3 AND operation
The AND operation for two variables A and B generates a result of 1 if both A and B are 1.

C=A+B
Inputs { +3-i Output

FIGURE 3.4 Diode OR gate

56 Fundamentals of Digital Logic and Microcomputer Design

A1 81 Y1 A2 82 Y2 GND

FIGURE 3.5 Pin diagram for 74HC32 or 74LS32

dl

FIGURE 3.6 An example of the OR operation

FIGURE 3.7 AND gate symbol

However, if either A or B, or both, are zero, then the result is 0.
The dot . and A symbol are both used to represent the AND operation.

The AND operation between two binary digits is
o . o = o
0 . 1 = o
1 . o = o
1 . 1 = 1

The truth table for the AND operation is

Inputs

A B O u t p u t = A , B = A B

0 0 0

0 1 0

1 0 0

1 1 1
Figure 3.7 shows the symbolic representation of an AND gate. Figure 3.8 shows a two-
input diode AND gate.

As we did for the OR gate, let us assume that the range 0 to +2 V represents logic

Boolean Algebra and Digital Logic Gates 57

FIGURE 3.8 Diode AND gate

0 and the range 3 to 5 V is logic 1. Now, if A and B are both HIGH (say 3.3 V) and the
anode of both diodes at 3.9 V, the switches in D , and D, close. A current flows from +5 V
through resistor R to +3.3 V input to ground. The output C will be HIGH (3.9 V). On the
other hand, if a low voltage (say 0.5 V) is applied at A and a high voltage (3.3V) is applied
at B. The value of R is selected in such a way that 1.1 V appears at the anode side of D,;
at the same time 3.9 V appears at the anode side of D,. The switches in both diodes will
close because each has a voltage drop of 0.6 V between the anode and cathode. A current
flows from the +5 V input through R and the diodes to ground. Output C will be low (1.1
V) because the output will be lower of the two voltages. Thus, it can be shown that when
either one or both inputs are low, the output is low, so the circuit works as an AND gate.
As mentioned before, diode logic gates are easier to understand, but they are not normally
used these days.

Transistors are utilized in designing logic gates. Diode logic gates are provided as
examples in order to illustrate how semiconductor devices are utilized in designing them.

The 74HC08 (or 74LS08) is a commercially available quad 2-input 14-pin AND
gate chip. This chip contains four 2-inputll-output independent AND gates as shown in
Figure 3.9. To illustrate the logic AND operation consider Figure 3.10. The lamp L will
be on when both switches A and B are closed; otherwise, the lamp L will be turned OFF.
Hence,

L = A * B
Computers normally have an instruction to perform the AND operation between two binary
numbers. For example, the computer can execute an AND instruction to perform ANDing

A1 B1 Y1 A2 8 2 Y2 GND

FIGURE 3.9 Pin Diagram for 74HC08 or 74LS08

5 8 Fundamentals of Digital Logic and Microcomputer Design

6- L = A . B

I
T

V

FIGURE 3.10 An example of the AND operation

3 1 ,6 with A1 ,6 as follows:

3 1 , , = 0 0 1 1 0 0 0 1
A l , , = 1 0 1 0 0 0 0 1

WpOJ
2 16

The computer utilizes eight two-input AND gates to accomplish this.

3.2 Other Lopic ODerations

The four other important logic operations are NOR, NAND, Exclusive-OR (XOR) and
Exclusive-NOR (XNOR).

3.2.1 NOR operation
The NOR output is produced by inverting the output of an OR operation. Figure 3.1 1
shows aNOR gate along with its truth table. Figure 3.12 shows the symbolic representation
of a NOR gate. In the figure, the small circle at the output of the NOR gate is called the
inversion bubble. The 74HC02 (or 74LS02) is a commercially available quad 2-input 14-
pin NOR gate chip. This chip contains four 2-input/l-output independent NOR gates as
shown in Figure 3.13.

3.2.2 NAND operation
The NAND output is generated by inverting the output of an AND operation. Figure 3.14
shows a NAND gate and its truth table. Figure 3.15 shows the symbolic representation of
a NAND gate.

The 74HC00 (or 74LSOO) is a commercially available quad 2-input/l-output 14-
pin NAND gate chip. This chip contains four 2-input/l-output independent NAND gates
as shown in Figure 3.16.

NOR gate Truth Table

C = A + B
C = A + B

B

0

FIGURE 3.11 A NOR gate with its truth table

Boolean Algebra and Digital Logic Gates

A B

FIGURE 3.12 NOR gate symbol

C=AB

59

0 0
0 1
1 0
1 1

FIGURE 3.13 Pin diagram for 74HC02 or 74LS02

1
1
1
0

B

FIGURE 3.14 A NAND gate and its truth table

FIGURE 3.15 NAND gate symbol

1 1 12 I 3 I 4 I 5 I 6 17
A1 61 Y1 A2 62 Y2 GND

FIGURE 3.16 Pin diagram for 74HC00 or 74LSOO

60 Fundamentals of Digital Logic and Microcomputer Design

3.2.3 Exclusive-OR operation (XOR)
The Exclusive-OR operation (XOR) generates an output of 1 if the inputs are different and
0 if the inputs are the same. The 0 or V symbol is used to represent the XOR operation.
The XOR operation between binary digits is

o o o = o
o o 1 = 1
1 o o = 1
1 o 1 = 0

Most computers have an instruction to perform the XOR operation. Consider
XORing 3A,, with 21 ,,.

3 A , , = 0 0 1 1 1 0 1 0
21,, = 0 0 1 0 0 0 0 1 w u

16

It is interesting to note that XORing any number with another number of the
same length but with all 1’s will generate the ones complement of the original number. For

31,6@ FF,, 0 0 1 1 0 0 0 1
1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 0 w Lo--,

The truth table for Exclusive-OR operation is

Inputs ou tpu t

A B C = A O B

0 0 0

0 1 1

1 0 1

1 1 0
From the truth table, A 0 B is 1 only when A = 0 and B = 1 or A = 1 and B = 0.

Therefore,
c = A o B = AB + AB

Figure 3.17 shows an implementation of an XOR gate using AND and OR gates.
Figure 3.18 shows the symbolic representation of the Exclusive-OR gate assuming that
both true and complemented values of A and B are available.

FIGURE

B W

3.17 AND-OR Implementation of the

A B + A B = A @ B

Exclusive-OR gate

Boolean Algebra and Digital Logic Gates

14

61

13 12 11 10 9 8

FIGURE 3.18 XOR symbol

1 2 3 4 5 6 7

14

A1 61 Y1 A2 82 Y2 GND

FIGURE 3.19 Pin diagram for 74HC86 or 74LS86

13 12 11 10 9 8

B * * D O - =

1 2 3 4 5 6 7

XNOR ate Truth Table 1
FIGURE 3.20 Exclusive-NOR symbol along with its truth table

A1 R1 V1 V7 A3 R7 GNn

FIGURE 3.21 Pin Diagram for 74HC266 or 74LS266

The 74HC86 (or 74LS86) is a commercially available quad 2-input 14-pin
Exclusive-OR gate chip. This chip contains four 2-inputA -output independent exclusive-
OR gates as shown in Figure 3.19.

3.2.4 Exclusive-NOR Operation (XNOR)
The one’s complement of the Exclusive-OR operation is known as the Exclusive-NOR

62 Fundamentals of Digital Logic and Microcomputer Design

operation. Figure 3.20 shows its symbolic representation along with -th table. The
XNOR operation is represented by the symbol 0. Therefore, C= A G3B = A 0 B. The
XNOR operation is also called equivalence. From the truth table, output C is 1 if both A
and B are 0's or both A and B are 1 's; otherwise, C is 0. That is, C = 1, for A = 0 and B =

O o r A = 1 a n d B = 1. H e n c e , C = A O B = A g + A B
The 74HC266 (or 74LS266) is a quad 2-inpuVl -output 14-pin Exclusive-NOR

gate chip. This chip contains four 2-inpuVl -output independent Exclusive-NOR gates
shown in Figure 3.2 1.

Note that the symbol C is chosen arbitrarily in all the above logic operations to
represent the output of each logic gate. Also, note that all logic gates (except NOT) can
have at least two inputs with only one output. The NOT gate, on the other hand, has one
input and one output.

3.3 IEEE Svmbols for Lopic Gates

The institute of Electrical and Electronics Engineers (IEEE) recommends rectangular shape
symbols for logic gates: The original logic symbols have been utilized for years and will be
retained in the rest of this book. IEEE symbols for gates are listed below:

Gate Common Symbol IEEE Symbol

OR " - P f = A + B B '4.1- f = A + B

Exclusive-OR B '$>f=A@B ' d T F f = A @ B

f = A @ B B A qTb f = K B
B

Exclusive-NOR

Boolean Algebra ’and Digital Logic Gates

3.4 Positive and Nepative Logic

A B

L L

L H

H L

H H

63

f
H

H

H

L

0 1

1 0

1 1

Using positive logic, (H = 1 and L = 0) the following table is obtained:

1

1

0

A

A B

1 1

1 0

0 1

0 0

B I f

f
0

0

0

1

0 O I 1

This is the truth table for a NAND gate. However, negative logic, (H = 0 and L =

1) provides the following table:

This is the truth table for a NOR gate. Note that converting from positive to
negative logic and vice versa for logic gates basically provides the dual (discussed later in
this chapter) of a function. This means that changing 0’s to 1 ’s and 1’s to 0’s for both inputs
and outputs of a logic gate, the logic gate is converted from a NOR gate to a NAND gate
as shown in the example. In this book, the positive logic convention will be used.

Note that positive logic and active high logic are equivalent (HIGH = 1, LOW =

0). On the other hand, negative logic and active low logic are equivalent (HIGH = 0, LOW
= 1). A signal is “active high” if it performs the required function when HIGH (H = 1). An
“active low” signal, on the other hand, performs the required function when LOW (L = 0).
A signal is said to be asserted when it is active. A signal is disasserted when it is not at its

64 Fundamentals of Digital Logic and Microcomputer Design

active level.
Active levels may be associated with inputs and outputs of logic gates. For

example, an AND gate performs a logical AND operation on two active HIGH inputs and
provides an active HIGH output. This also means that if both the inputs of the AND gate
are asserted, the output is asserted.

3.5 Boolean Algebra

Boolean algebra provides basis for logic operations using binary variables. Alphabetic
characters are used to represent the binary variables. A binary variable can have either
true or complement value. For example, the binary variable A can be either A andor 2 in
a Boolean function.

A Boolean function is an operation expressing logical operations between binary
variables. The Boolean function can have a value of 0 or 1. As an example of a Boolean
function, consider the following:

f = A B + c
Here, the Boolean functionfis 1 if both A and B are 1 or C is 1; othenvise,fis 0.

Note that means that if A = 1, then A = 0. Thus, when B = 1, then B = 0. It can therefore
be concluded that f is one when A = 0 and B = 0 or C = 1.

A truth table can be used to represent a Boolean function. The truth table contains
a combination of 1 ’s and 0’s for the binary variables. Furthermore, the truth table provides
the value of the Boolean function as 1 or 0 for each combination of the input binary
variables. Table 3.1 provides the truth table for the Boolean function f = 2 B + C. In the
table, if A = 1, B = 1, and C = 0, f = 0.0 + 0 = 0. Note that table 3.1 contains three input
variables (A, B, C) and one output variable v). Also, by ORing ones in the truth table,

TABLE 3.1 Truth Table forf= 2 B + C

A B C l f

O I : 1

0 0

0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

C :f =AB+
FIGURE 3.22 Logic diagram for f = 2 B + C

Boolean Algebra and Digital Logic Gates 65

the function f contains several terms; however, the function can be simplified using the
techniques to be discussed later.

A Boolean function can also be represented in terms of a logic diagram. Figure
3.22 shows the logic diagram for f = A B + C. The Boolean expression f = 2 B + C contains
two terms, A and C, which are inputs to logic gates. Each term may include a single or
multiple variables, called ‘‘literals,’’ which may or may not be complemented. For example,
f = A + C contains three literals, 2, B, and C. Note that a variable and its complement are
both called literals. For two variables, the literals are A, B, 2, and B.

Boolean functions can be simplified by using the rules (identities) o f Boolean
algebra. This allows one to minimize the number of gates in a logic diagram, which reduces
the cost of implementing a logic circuit.

3.5.1 Boolean Identities
Here is a list of Boolean identities that are useful in simplifying Boolean expressions:

1. a)A+O=A b)A* 1 = A
2. a) A + l = l b) A . O = 0
3. a)A+A=A b)A.A=A
4. a)A-+A= I b)A.A=O
5 . a) @) = A
6. Commutative Law:

a) A + B = B + A
7. Associative Law:

a) A + (B + C) = (A + B) + C
8. Distributive Law:

a) A . (B + C) = A . B + A . C
9. DeMorgan’s Theorem:

a) A+B = A . E b) = 2 + B

b) A . B = B . A

b) A . (B * C) = (A . B) . C

b)A + B e C = (A + B) . (A + C)

In the list, each identity identified by b) on the right is the dual of the corresponding identity
a) on the left. Note that the dual of a Boolean expression is obtained by changing 1’s to
0’s and 0’s to 1 ’s if they appear in the equation, and AND to OR and OR to AND on both
sides of the equal sign.

For example, consider identity 4. Relation 4a is the dual of relation 4b because the
AND in the expression is replaced by an OR and then, 0 by 1.

The Duality Principle of Boolean algebra states that a Boolean expression is
unchanged if the dual of both sides of the equal sign is taken. Consider, for example, the
Boolean function,
f = B + A B Therefore, f = B . (l + A)

= B
The dual o f 5

fD = B . (F f + B)
fD = B . A + B . B = j j A + B

= B (A + l) = B
Hence, f =fD. In order to verify some of the identities, consider the following examples:
i) Identity 2a) A + 1 = 1

ForA =0, A + 1 = 0 + 1 = 1
ForA = 1, A + 1 = 1 + 1 = 1

ii) Identity 4b) A . A = 0. If A = 1, then 2 = 0. Hence, A . A = 1 * 0 = 0

66 Fundamentals of Digital Logic and Microcomputer Design

iii) Identity 8b) A + B . C = (A + B) . (A + C) is very useful in manipulating Boolean
expressions. This identity can be verified by means of a truth table as follows:

A

0
0
1
1

iv) Identities 9a) and 9b) (DeMorgan’s Theorem) are useful in determining the one’s
complement of a Boolean expression. DeMorgan’s theorem can be verified by means
of a truth table as follows:

- -
B A B 3.B A + B A+B A . B A + B
0 1 1 1 0 1 0 1 1
1 1 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1 1
1 0 0 0 1 0 1 0 0

De Morgan’s Theorem can be expressed in a general form for n variables as follows: _ - _ _
A + B + C + D + ... = A . B , C . D
A . B . C . D - ... = 7 + B+ c + D + ...

The logic gates except for the inverter can have more than two inputs if the
logic operation performed by the gate is commutative and associative (identities 6a and
7a). For example, the OR operation has these two properties as fol1ows:A + B = B + A
(commutative) and (A + B) + C = A+ (B +C) = A + B + C (associative). This means

-f

(a) Implementation off = ABCD + ABCD + BC

B
C
D

f

(b) implementation of the simplified function f = BC + D

FIGURE 3.23 Implementation of Boolean hnction using logic gates

Boolean Algebra and Digital Logic Gates 67

that the OR gate inputs can be interchanged. Thus, the OR gate can have more than two
inputs . Similarly, using the identities 6b and 7b, it can be shown that the AND gate can
also have more than two inputs. Note that the NOR and NAND operations, on the other
hand, are commutative, but not associative. Therefore, it is not possible to have NOR and
NAND gates with more than two inputs. However, NOR and NAND gates with more
than two inputs can be obtained by using inverted OR and inverted AND respectively.
The Exclusive-OR and Exclusive-NOR operations are both commutative and associative.
Thus, these gates can have more than two inputs. However, Exclusive-OR and Exclusive-
NOR gates with more than two inputs are uncommon from a hardware point of view.

3.5.2 Simplification Using Boolean Identities
Although there are no defined set of rules for minimizing a Boolean expression, appropriate
identities can be used to accomplish this. Consider the Boolean function

f=ABCD + ABCD + BC
This equation can be implemented using logic gates as shown in Figure 3.23(a).

f =BCD(A+~,)+BC By identity 4a)
By identity 1 b)

The expression can be simplified by using identities as follows:

= B C D ~ 1 BC
= B C D + B C

Assume BC = E, then BC = E and,
f = E D + E ,

= - (E + E)(E+D) By identity 8b)
= E + D By identity 4a)

f = BC + D Substituting E = z,
The simplified form is implemented using logic gates in Figure 3.23(b). The

logic diagram in Figure 3.23(b) requires only one NAND gate and an OR gate. This
implementation is inexpensive compared to the circuit of Figure 3.23(a). Both logic circuits
perform the same function. The following truth table can be used to show that the outputs
produced by both circuits are equivalent:

A B C D
0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

1

I

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

f=ABCD i- 2BCD + BC
1

1

1

1

1

1

0

1

1

1

1

1

1

f = B C + D

1

1

1

1

1

1

0

1

1

1

1

1

1

68 Fundamentals of Digital Logic and Microcomputer Design

1 1 0 1

1 1 1 0

1 1 1 1

The following are some more examples for simplifying Boolean expressions using
identities:

_ _ _ _ - - - - - -
i) f = x + y + x y + x y z = xy+xy+xyz=xy+xyz=xy(I + z) = 5
ii) f = &cd + acd + Zcd + (10 ab) cd = &cd + cd 6 +g) + Z c d = &d +&d + &d -

= abcd

iv) F = A T + A B + A C = A (B + C)+AB +A C = A B + A C+ AB + A C
= A (B + B)+ C(A + 2) =A+C

- - _ -
v) f = x + xy + x + y = x + xy + y= (x + X)(x+ y) + j = x + y + j = x + 1 = 1

vi) f = A (B @ l) (x + B) = A B (x + B) = A B A + A B B = O

v i i) F = B (A + B) + A B + B = A B + B B + A B + B = A B + B + A B + B
= I + A B + A B = I

viii)f=(x+y+z) (X y + j z) = Xyx+Xyy+Xyz+jzx+jzy+jzz
= xy+xyz+jzx+jz = xy(1 +z)+jz(x+l) = i y+ j z

xi) Show that f= (a+b)&+b) can be implemented using one Exclusive -OR gate.
Solution: f= (a+z))(;;+b) using DeMorgan's theorem,

xii) Show that f=(A+B)(E+F) can be implemented using two AND and one OR gates.
Solution: f =(A+B)(E+F) = AB + EF using DeMorgan's theorem.

-~
=(a+@ +(;;+b) = (; ; * ~) + + * ~) = & + a ~ = a @ b _ _ _ _

- - _ _

xiii) Expressf=(X+zZ) (X + z) using only one two-input OR gate.
Solution:f=(X+X) (X+Z)(X + 2) using the distributive law. Hence, f = X+Z

xiv) Express f forl=(z + B + C) + T C usingonly one three input AND gate.
Solution: Using DeMorgan's theorem, f= f=(A + B + C) + E C

= (ABC)*(ABC) = ABC

3.5.3 Consensus Theorem
The Consensus Theorem is expressed as AB + AC + BC = AB + AC

The theorem states that the AND term BC can be eliminated from the expression

Boolean Algebra and Digital Logic Gates 69

if one of the literals such as B is ANDed with the true value of another literal (A) and the
other term C is ANDed with its complement (A). This theorem can sometimes be applied
to simplify Boolean equations. The Consensus Theorem can be proved as follows:

AB + AC + BC = AB + AC + BC(A + A)
= AB + Ac+ ABC+ABC
=AB+ABC+AC+ABC

=AB+AC
= AB(1+ C) +AC(1+ B)

The dual of the Consensus Theorem can be expressed as
(A + B)(I + C)(B +C) = (A + B)(I + C)

To illustrate how a Boolean expression can be manipulated by applying the Consensus
Theorem, consider the following: - -

f = (B +D)(B + C)

= B B + B C + B B + C D
=BC+BD+CB,sinceBB=O

Because C is ANDed with B, and D is ANDed with its complement 3, by using the
Consensus Theorem, Co can be eliminated. Thus, f = BC + 3 D.

The Consensus Theorem can be used in logic circuits for avoiding undesirable
behavior. To illustrate this, consider the logic circuits in Figure 3.24. In Figure 3.24(a), the

B

f = A B + k

C

(a) Logic circuit for f = AB + AC

A B

ZC
f=

BC

AB+Z C+BC

(b) Logic circuit forf= AB + AC + BC
FIGURE 3.24 Logic circuit for the Consensus Theorem

70 Fundamentals of Digital Logic and Microcomputer Design

output is one i) if B and C are 1 and A = 0 or ii) if B and C are 1 and A = 1.
Suppose that in Figure 3.24(a), B = 1, C= 1, and A = 0. Assume that the propagation

delay time of each gate is 10 ns (nanoseconds). The circuit outputfwill be 1 after 30 ns
(3 gate delays). Now, if input A changes from 0 to 1, the outputs of NOT gate 1 and AND
gate 2 will be 0 and 1 respectively after 10 ns. This will make outputf= 1 after 20 ns. The
output of AND gate 3 will be low after 20 ns, which will not affect the output o f f .

Now, assume that B and C stay at 1 while A changes from 1 to 0. The outputs of
NOT gate 1 and AND gate 2 will be 1 and 0 respectively after 10 ns. Because the output
of AND gate 3 is 0 from the previous case, this will change output of OR gate 4 to 0 for a
brief period of time. After 10 ns, the output of AND gate 3 changes to 1, making the output
offHIGH (desired value). Note that, for B = 1, C = 1, and A = 0, the outputfshould have
stayed at 1 from the equationf= AB + ZC. However,fchanged to zero for a short period
of time. This change is called a “glitch” or “hazard” and occurs from the gate delays in a
circuit. Glitches can cause circuit malfunction and should be eliminated. Application of the
Consensus theorem gets rid of the glitch. By adding the redundant term BC, the modified
logic circuit forfis obtained. Figure 3.24(b) shows the logic circuit. Now, consider the
case in which the glitch occurs in Figure 3.24(a) when B and C stay at 1 while A changes
from 1 to 0. For the circuit in Figure 3.24(b) the glitch will disappear, because BC = 1
throughout any changes in values of A and 2. Thus, minimization of logic gates might not
always be desirable; rather, a circuit without any hazards would bt: the main objective of
the designer.

There are two types of hazards: static and dynamic. Static hazard occurs when a
signal should remain at one value, but instead it oscillates a few times before settling back
to its original value. Dynamic hazard occurs, when a signal should make a clean transition
to a new logic value, but instead it oscillates between the two logic values before
making the transition to its final value. Both types of hazards occur because of races in
the various paths of a circuit. A race is a situation in which signals traveling through two
or more paths compete with each other to affect a common signal. It is, therefore, possible
for the final signal value to be determined by the winner of the race. One way to eliminate
races is by applying the Consensus theorem as illustrated in the preceding example.

3.5.4
The complement of a function f can be obtained algebraically by applying DeMorgan’s
Theorem. It follows from this theorem that the complement of a function can also be
derived by taking the dual of the function and complementing each literal.

Examde 3.1
Find the complement of the functionf= C(AB + 2 BD + ABD,
i) Using DeMorgan’s Theorem
Solution

function can be obtained:

Complement of a Boolean Function

ii) By taking the dual and complementing each literal

Using DeMorgan’s Theorem as many times as required, the complement of the

Boolean Algebra and Digital Logic Gates 71

7= <AB+~BD+ABB)
- -

= c+(AB+AED+~BE)

= C+[ZZ.ABD.ABE)

= c + (A + B)(A + B + O)(A + 3 + D)

--

By taking the dual and complementing each literal, we have: -
The dual of$
Complementing each literal:

C + (A + B)(x + B -!- D)@+ B +D)
C + (2 + B)(A + B + D)(A + B + D) =y

3.6 Standard ReDresentations

The standard representations of a Boolean function typically contain either logical
product (AND) terms called “minterms” or logical sum (OR) terms called “maxterms.”
These standard representations make the minimization procedures easier. The standard
representations are also called “Canonical forms.”

A minterm is a product term of all variables in which each variable can be
either complemented or uncomplemented. For example, there are four minterms for two
variables, A and B. These minterms are A B, AB, AB, and AB. On the other hand, there are
eight minterms for three variables, A, B, and C. These minterms are A B C, A BC, ABC,
ABC, AB c, ABC, ABC, and ABC. These product terms represent numeric values from 0
through 7. In general, there are 2“ minterms for n variables.

A minterm is represented by the symbol rnj, where the subscript j is the decimal
equivalent of the binary number of the minterm. For example, the decimal equivalents
(j) of the binary numbers represented by the four minterms of two variables, A and B, are
0 (2 B), 1(2 B), 2(A B), and 3 (AB). Therefore, the symbolic representations of the four
minterms of two variables are rn,, rn,, rn2, and rn, as follows:

-- -
- - - - - - -

Minterm Symbol _ _ A B
0 0 A B mo

0 1 AB m1

1 0 AB m2

1 1 AB m3

In general, the n minterms of p (n = 29 variables are: rn,, m,, rn2, ... , rnn-, .
It has been shown that a Boolean hnction can be defined by a truth table. A

Boolean function can be exressed in terms of minterms. For example, consider the
following truth table:

A B f
0 0 1
0 1 0
1 0 1
1 1 1

One can determine the function f by logically summing (ORing) the product
terms for which f is 1. Therefore,

f =AB + AB + AB

72 Fundamentals of Digital Logic and Microcomputer Design

This is called the Sum-of-Products expression. A logic diagram of a sum-of-products
expression contains several AND gates followed by a single OR gate. In terms of minterms,
f can be represented as:

f= C m(O,2,3)
The symbol Z denotes the logical sum (OR) of the minterms.

A maxterm, on the other hand, can be defined as a logical sum (OR) term that
contains all variables in complemented or uncomplemented form. The four maxterms of
two variables are A + B, 2 + B, A + B , and 2 + B. A maxterm is obtained from the logical
sum of all the variables by complementing each variable. Each maxterm is represented by
the symbol Mj, where the subscript j is the decimal equivalent of the binary number of the
maxterm. Therefore, the four maxterms of the two variables, A and B, can be represented
as follows:

A B Maxterm Symbol
0 0 A + B Mo
0 1 A + B MI

1 0 A + B M2
1 1 A+B M3

In the preceding, consider maxterm M2 as an example. Since A = 1 and B = 0, the
maxterm M, is found as 2 + B by taking the logical sum of the complement of A (since A
= 1) and true value of B (since B = 0). In general, there are n maxterms (M,,, MI, ... , M+,)
forp variables, where n = 2 p .

The relationship between minterm and maxterm can be established by using
DeMorgan’s theorem. Consider, for example, minterm m, and maxterm M, for two
variables:

m , = A B , M , = A + B

Taking the complement of m, , -

i6 =AB
-

= A + B by DeMorgan’s Theorem

= A + B

= M ,

Therefore m, = q, or & = M,. This implies that mj = q, or % = 4. That is, a minterm
is the complement of its corresponding maxterm and vice versa.

In order to represent a Boolean function in terms of maxterms, consider the

following truth table: -

s f A B

0 0 1 0
0 1 0 1
1 0 0 1
1 1 0 1

Taking the logical sum of minterms of j ;

Boolean Algebra and Digital Logic Gates 73
-
A
6
c
A
6
c
A
B
c
A
B
c
A
6
c

-
-
-

f -

-

FIGURE 3.25 (a) Logic diagram of a sum of minterms

A
B
c
A

c
A

c

- B f
- - B I

FIGURE 3.25 (b) Logic diagram of a product of maxterms

By taking complement ofx

= M I . M2 - A 4 3 (since Mj = mj)

= (A + @(A + B)(A + E)

This is called the product-ofsums expression. The logic diagram of a product-
ofsums expression contains several OR gates followed by a single AND gate. Hence,
f=IIM(1 , 2 , 3) where the symbol II represents the logical product (AND) of maxterms M,,
M2, and M3 in this case. Note that one can express a Boolean function in terms of maxterms
by inspecting a truth table and then logically ANDing the maxterms for which the Boolean
function has a value of 0.

A Boolean function that is not expressed in terms of sums of minterms or product
of maxterms can be represented by a truth table. The function can then be expressed in
terms of minterms or maxterms. For example, consider f = A + BC. The functionfis not
in a sum of minterms or product of maxterms form, since each term does not include all
three variables A , B, and C. The truth table for f can be determined as follows:

74 Fundamentals of Digital Logic and Microcomputer Design

A B C f = A + B c

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

From the truth table, the sum of minterm form cf= 1) is:

From the truth table, the product of maxterm form cf= 0) is:
f =Zm(2,4,5,6,7) = ABC + AB c + ABC + A B c + ABC

f=rIM(O, 1 , 3) = (A + B + C) (A + B + c) (A + Z + C)
The complement o f f , f = ZM(0, 1, 3), is obtained by the logical sum of

minterms for f=O. Also, note that a function containing all minterms is 1. This means
that in the above truth table, if f=l for all eight combinations of A, B, and C, then
.f = Zm(0, 1, 2, 3, 4, 5, 6, 7) = 1. As mentioned before, the logic diagram of a sum of
minterm form contains several AND gates and a single OR gate. This is illustrated by the
logic diagram forf = Zm(2, 4, 5, 6, 7) = JB?? + AB C + ABC + ABC + ABC as shown
in figure 3.25(a). Similarly, the logic diagram of a product of maxterm expression form
contains several OR gates and a single AND gate. This is illustrated by the logic diagram
for f =M(O, 1, 3) = (A + B + C)(A + B + c)(A + B + c) as shown in figure 3.25(b).

Example 3.2
Using the following truth table, express the Boolean hnctionfin terms of sum-of-products
(minterms) and product-of-sums (maxterms):

C f
0 0

1 1

0 1

1 1

0 0

1 0

0 1

1 0
Solution
From the truth table,f= 1 for minterms m,, m,, m,, and m6. Therefore, the Boolean function
f can be expressed by taking the logical sum (OR) of these minterms as follows:

f = Zm(l ,2 ,3 ,6 ,) = A BC + ABC + ABC + A B c
Now, let us expressfin terms of maxterms. By inspecting the truth table,.f= 0 for maxterms

Boolean Algebra and Digital Logic Gates 75

M,, M4, M,, and M,. Therefore, the function f can be obtained by logically ANDing these
maxterms as follows:

f =W(O, 4,5, 7) = (A + B + C)(2 + B + C)(2 + B + c)(z + 3 + c)

3.7 Karnaugh MaDs

A Karnaugh map or simply a K-map is a diagram showing the graphical form of a truth
table. Since there is no specific set of rules for minimizing a Boolean function using
identities, it is difficult to know whether the minimum expression is obtained. The K-map
provides a systematic procedure for simplifying Boolean functions of typically up to five
variables. K-maps for more than five variables are difficult to use. However, a computer
program using a tabular method such as the Quine-McCluskey algorithm can be used to
minimize Boolean functions.

The K-map is a diagram containing squares with each square representing one
of the minterms of the Boolean function. For example, the K-map of two variables (A,B)
contains four squares. The four minterms A B, AB, AB, and AB are represented by each
square. Similarly, there are 8 squares for three variables, 16 squares for four variables, and
32 squares for five variables. Since any Boolean function can be expressed in terms of
minterms, the K-map can be used to visually represent a Boolean function.

The K-map is drawn in such a way that there is only a 1 -bit change from one square
to the next (Gray code). Squares can be combined in groups of 2” where n=0,1,2,3,4,5,
and the Boolean function can be minimized by following certain rules. This minimum

_ - -

FIGURE 3.26 Two-variable K-map

FIGURE 3.27 K-Map for F = Zm(0,l)

FIGURE 3.28 K-Map for F = Zm(0,2,3)

76 Fundamentals of Digital Logic and Microcomputer Design

expression will reduce the total number of gates for implementation. Thus, the cost of
building the logic circuit is reduced.

3.7.1 Two-Variable K-map
Figure 3.26 shows the K-map for two variables. Since there are four minterms with two
variables, four squares are required to represent them. This is depicted in the map of
Figure 3.26(a). Each square represents a minterm. Figure 3.26(b) shows the K-map for
two variables. Since each variable has a value of 0 or 1, in the K-map of Figure 3.26(b),
the 0 and 1 shown on the left of the map corresponds to A while the 0 and 1 on the top are
assigned to the variable B. The squares containing minterms with one variable change are
called “adjacent” squares. A square is adjacent of another square placed horizontally or
vertically next to it. For example, consider the minterms m, and m,. Since mo= 2 B and
m, = AB, there is a one variable change (B in m, and B in m,, 2 is same in both squares).
Therefore, m, and m, are adjacent squares. Similarly, other adjacent squares in the map
include m, and m,, or m, and m3. m,(A B) and m,(AB) are not adjacent squares since both
variables change from 0’s to 1’s. The adjacent squares can be combined to eliminate one
of the variables. This is based on the Boolean identities A + 2 = 1 or B + B = 1.

The adjacent squares can also be identified by considering the map as a book. By
closing the book at the middle vertical line, m, and m, will respectively be placed on m,
and m,. Thus, m, and m, are adjacent; squares m, and m3 are also adjacent. Similarly, by
closing the map at the middle horizontal line, m, will fall on m2 while m, will be placed on
m,. Thus, m, and m, or m, and m, are adjacent squares.

Now, let us consider a Boolean function, F = Im(0,l). Figure 3.27 shows that
the function F containing two minterms m, and m, are identified by placing 1 ’s in the
corresponding squares of the map. In order to minimize the function F, the two squares
can be combined as shown since they are adjacent. The map is then inspected for common
variables looking at the squares vertically and horizontally. Since A = 0 is common to both
squares, F = 2. This can be proven analytically by using Boolean identities as follows:

F = Im(0,l) = 2 B + ZB

--

= A(B + B) = A (since B + B = 1)
In a two-variable K-map, adjacent squares can be combined in groups of 2 or 4.

Next, consider F=Zm(0,2,3). The K-map is shown in Figure 3.28. Where 1’s are
placed in the squares defined by the minterms m,, m,, and m,. By combining the adjacent
squares mo with m, and 172, with m,, the common terms can be determined to simplify the
function F. For example, by inspecting m, and m2 vertically and horizontally, the term B is
the common term. On the other hand, by looking at m2 and m, horizontally and vertically,
variable A is the common term. The minimized form of the hnction F can be obtained by
logically ORing these common terms. Therefore,

Note that the function F =1 for F =Zm(O,l ,2 ,3) in which all squares in the K-map are 1.
F = A + B .

3.7.2 Three-Variable K-map
Figure 3.29 shows the K-map for three variables. Figure 3.29(a) shows a map with three
literals in each square. There are eight minterms (m,,, m,, ... , m7) for three variables. Figure
3.29(b) shows these minterms - one for each square in the K-map.

Like the two-variable K-map, a square in a three-variable K-map is adjacent to
the squares placed horizontally or vertically next to it. Consider the minterms m,, m2, m3,
and m7. For example, m3 is adjacent to m,, m,, and m,; m, is adjacent to m,; m, is adjacent

Boolean Algebra and Digital Logic Gates 77

ABC 3
FIGURE 3.29 Three-variable K-map

to m,; ml is adjacent to m,. But, ml is adjacent neither to m, nor to m,; m, is not adjacent to
m, and vice versa.

Like the two-variable map, the K-map can be considered as a book. The adjacent
squares can also be determined by closing the book at the middle horizontal and vertical
lines. For example, closing the book at the middle horizontal line, the adjacent pair of
squares are m, and m4, m, and mS, m, and ml, m2 and m6. On the other hand, closing the
book at the middle vertical line, the adjacent pair of squares are m, and m2, m, and m,, m4
and m6, ms and m,.

For a three variable K-map, adjacent squares can be combined in powers of 2: 1
(2'3, 2 (2 ') , 4 (2*) and 8 (2,). The Boolean hnction is 1 when all eight squares are 1. It is
desirable to combine as many squares as possible. For example, grouping two (2l) adjacent
squares will provide a product term of two literals and combining four (22) adjacent squares
will provide a product term of one literal for a three-variable K-map. The following
examples illustrate this.

ExamDle 3.3
Simplify the Boolean function

using a K-map.
AA, B, C) = m(O,2,3,4,6,7)

FIGURE 3.30 K-map forAA, B, C) = Z m(O,2,3,4,6,7)

FIGURE 3.31 K-map forAA, B, C) = Z m(0, 1, 2, 6)

78 Fundamentals of Digital Logic and Microcomputer Design

Solution
Figure 3.30 shows the K-map along with the grouping of adjacent squares. First, a 1 is
placed in the K-map for each minterm that represents the function. Next, the adjacent
squares are identified by squares next to each other. Therefore, rn,, m3, M,, and m, can be
combined as a group of adjacent squares. The common term for this grouping is B. Note
that combining four (2,) squares provides the result with only one literal, B. Next, by
folding the K-map at the middle vertical line, adjacent squares rn,, rn,, rn,,-and m6 can be
identified. Combining them together will provide the single common term C. Therefore,

f = B + C
This result can be verified analytically by using the identities as follows:

f = Z rn(O,2,3,4,6, 7)
= A B C + ABC + A BC + A BC+ A B C + ABC

= B C + BC +BC

_ _
= B C (A + A)+ BC(2 + A) +BC(X + A)

= C(B +B) +BC
= C +BC
= (B +C)(C + C) = B + C

_ _
-

(using the Distributive Law)

ExamDle 3.4
Simplify the Boolean function

using a K-map.
Solution
Figure 3.3 1 shows the K-map along with the grouping of adjacent squares. From the K-
map, grouping adjacent squares and logically ORing common product terms,

f = A B + BC

f (A , B, C) = Z m(0, 1,2,6)

FIGURE 3.32 K-map for F = A B c + A BC + BC

F = E

(4
FIGURE 3.33 Four-variable K-map

Boolean Algebra and Digital Logic Gates

00

01

1 1

79

. I
j

'' 1 1 1 ~-7'1 j

!L__ 1 1 1,

-- -- . j ~ = A + B

1 1 lop-- ,--- -- I Id-'
- -

ExamDle 3.5
Simplify the Boolean function

using a K-map.
Solution
The function contains three variables, A, B, and C, and is not expressed in minterm form.
The first step is to express the function in terms of minterms as follows:

F = z B C + A B c + BC(Ai-2)

F(A, B, C) = 2 B c + A BC + BC

= A B C + A B C + ABC +2B c
= Z m(0, 1,4,5)

Figure 3.32 shows the K-map. Note that the four (2,) adjacent squares are grouped to
provide a single literal B by eliminating the other literals. Therefore, F = B. Although F
is not expressed in minterm form, one can usually identify the squares with 1's in the K-
map for the function F = A B C + A B + BC by inspection. This will avoid the lengthy
process of converting such functions into minterm form.

_ _ _

3.7.3 Four-Variable K-map
A four-variable K-map, depicted in Figure 3.33, contains 16 squares because there are 16
minterms. Figure 3.33(a) includes four literals in each square. Figure 3.33(b) lists each
minterm in its respective square. As before, a square is adjacent to the squares placed
horizontally or vertically next to it. For example, rn, is adjacent to m,, m,, m6, and mi,. Also,
by closing the K-map at the middle vertical line, the adjacent pairs of squares are m, and
m,, rn, and m,, In4 and m6, m,, and mI4, ma and m,,, and so on. On the other hand, closing it
at the middle horizontal line will provide the following adjacent squares: mo and ma, m, and
m,, m, and m,,, m, and m,,, and so on.

For a four-variable K-map, adjacent squares can be grouped in powers of 2: 1 (2O),
2 (2l), 4 (22), 8 (23), and 16 (24). The Boolean function is 1 when all 16 minterms are 1.
Combining two adjacent squares will provide a product term of three literals; four adjacent
squares will provide a product term of two literals; eight adjacent squares will yield a
product term of one literal.

ExamDle 3.6
Simplify the Boolean function

using a K-map.
Solution

f(A, B, C, 0) = Z m(0, 1,2,3, 8, 9, 10, 11, 12, 13, 14, 15)

80 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 3.35 K-map for F(A, B, C, D) = 2 m(O,2,4,5,6,8, 10)

-- --
F = A C + A D

FIGURE 3.36 K-map for F = 2 B ?? + 2 B c + 2 B + 2 B C D

BC
A 00 01 1 1 10

I I

Essential Prime Implicants 7 AB

FIGURE 3.37

Figure 3.34 shows the K-map. The 8 adjacent squares combined in the bottom two rows
yield the common product term of one literal, A . Because the top row is adjacent to the
bottom row, combining the minterms in these two rows will provide a common product
term of a single literal, B. Therefore, by ORing these two terms, the minimized form of the
function, F = A + B is obtained.

K-map for Example 3.9

ExamDle 3.7
Simplify the Boolean functionf(A, B, C, 0) = 2: m(O,2,4,5,6, 8 , 10) using a K-map.
Solution
Figure 3.35 shows the K-map. The common product term obtained by grouping the
adjacent squares ma, m,, m4, and m6 will contain 2 0. The common product term obtained
by grouping the adjacent squares ma, m2, m,, and m,, will be B 0. Combining the adjacent
squares m4 and m5 will provide the common term 2 B c. ORing these common product
terms will yield the minimum function, F(A, B, C, D) = A D + B + 2 B c.
ExamDle 3.8
Simplify the Boolean Function, F = 2 B c + 2 B c + 2 B D + 2 B C D using a K-map.

Boolean Algebra and Digital Logic Gates 81

Prime Implicants BD, 6 and AB

FIGURE 3.38 K-map for Example 3.10

Solution
Figure 3.36 shows the K-map. In the figure, the fimction F can be expressed in terms of
minterms as follows:

F = x B C (D + i i) + x B C (D + D) + A B D (C + Z) + + B C D
=ABCD + + B C D + A B C D + A B C D + A B C D + A B Z D + A B C D
= m, + m, f m, + m4 + m6 -?- m4 + m,
= m, f m, f m5 -?- m4 + m6 + m2

Rearranging the terms: F = m, + m, + m2 + m4 + rn, + m6
Therefore, F = Z m(0, 1,2,4,5,6)
These minterms are marked as 1 in the K-map. The adjacent squares are grouped as shown.
The minimum form of the function, F = A C + A D.

because m4 + m4 = m4

_ - _ -

3.7.4 Prime Implicants
A prime implicant is the product term obtained as a result of grouping the maximum number
of allowable adjacent squares in a K-map. The prime implicant is called “essential” if it is
the only term covering the minterms. A prime implicant is called “nonessential” if another
prime implicant covers the same minterms. The simplified expression for a function can be
determined using the K-map as follows:
i) Determine all the essential prime implicants.
ii) Express the minimum form of the function by logically ORing the essential prime

implicants obtained in i) along with other prime implicants that may be required to
cover any remaining minterms not covered by the essential prime implicants.

FIGURE 3.39 K-map forf= Z m(2,4, 5,8, 9, 13)

82 Fundamentals of Digital Logic and Microcomputer Design

Examde 3.9
Find the prime implicants from the K-map of Figure 3.37 and then determine the simplified
expression for the function.
Solution
The essential prime implicants are AB, 2 3 because minterms m, and m, can only be
covered by the term 2 B and minterms m6 and m7 can only be covered by the term AB.

The terms AC and BC are nonessential prime implicants because minterm m5 can
be combined with either m, or m7. The term AC can be obtained by combining m5 with m7
whereas the term BC is obtained by combining m5 with m,. The function can be expressed
in two simplified forms as follows:

f = A B + AB + AC
or

f = 2 B + AB + BC

ExamDle 3.10
Find the essential prime implicants from the K-map of Figure 3.38 and then find the
simplified expression for the function.
Solution
The prime implicants can be obtained as follows:
1. By combining minterms m5, m7, m,,, and mI5, the prime implicant BD is obtained.
2. By combining minterms m,, m,,, m,,, and mI4, the prime implicant A D is obtained.
3. By combining minterms mlz, m,,, mI4 , and mI5, the prime implicant AB is obtained.

The terms BD and AD are essential prime implicants whereas AB is a nonessential
prime implicant because minterms m5 and m, can only be covered by the term BD and
minterms m, and m,, can only be covered by the term AD. However, minterms mI2, mI3, mI4,
and mI5 can be covered by these two prime implicants (BD and AD). Therefore, the term AB
is not an essential prime implicant. Because all minterms are covered by the essential prime
implicants, BD and AD, the term AB is not required to simplify the function. Therefore,

f = BD + A D .

ExamDle 3.1 1
Find the prime implicants and then simplify the hnction using a K-map.

f = Z m(2,4, 5 , 8; 9, 13)
Solution
Figure 3.39 shows the K-map. The essential prime implicants are A B C D, A B ??, and
A B c because minterms m, and m5 can only be covered by the term 2 B c, minterms m,

_ _ _ _

1

FIGURE 3.40 K-map forf(rl, B, C, D) = 2 m(0, 1,4, 5 , 6 , 7 , 8,9, 14, 15)

Boolean Algebra and Digital Logic Gates 83

and m, can only be covered by the term A B C, and minterm m2 can only be covered by the
t e rmZB C D .

Minterm m,3 can be combined with either m, or mg. Combining m,3 with m, will
yield the term BCD; combining with m, will provide the term ACD . Therefore, minterm
m,3 can be covered by either BCD or A c D . Therefore, B c D and ACD are nonessential
prime implicants. Hence, the function has two simplified forms:

f A B C + BCD

+ A B f ACD

f = 2 B Co f 2 B

f = 2 B C o + 2 B
or

3.7.5
So far, the simplified Boolean functions derived from the K-map were expressed in sum-
of-products form. This section will describe the procedure for obtaining the simplified
Boolean function in product-of-sums form.

In the K-map, the minterms of a function are represented by 1 ’s. If the empty
squares in the K-map are identified as O’s, combining the appropriate adjacent squares
will provide the simplified expression of the complement of the function u>. By taking the
complement o f x the simplified expression for the function,f; can be obtained.

Expressing a Function in Product-of-sums Form Using a K-Map

Examole 3.12
Simplify the Boolean €unctionf(A, B, C, D) = Z m(0, 1,4, 5 ,6 ,7 , 8, 9, 14, 15) in product-
of-sums form using a K-map.
Solution
Figure 3.40 shows the K-map. Combining the O’s, a simplified expression for the
complement of the function can be obtained as follows:

f = BC + ABC
By DeMorgan’s Theorem, - _ _

f = f = (BC -I- AB?) = (BC) (ABC) + (B + C) 9 (2 + B + C)
The example illustrates the procedure for simplifying a function in product-

of-sums form from its expression as a sum of minterms. The procedure is similar for
simplifying a function expressed in product-of-sums (maxterms).

To represent a function expressed in product-of-sums in the K-map, the
complement of the function must first be taken. The squares will then be identified as 1 ’s
€or the minterms of the complement of the function. For example, consider the following
hnction expressed in maxterm form:

f = (2 f B + C)(A + B f C) (A + B + C)
This function can be represented in the K-map by taking its complement and representing
in terms of minterms as follows:

f = A B C + ~ B C + ~ B C
= Z m(O,3,4)

Placing 1’s in the K-map form,, m,, and m4 will provide the minterms fo r3 The
simplified expression for the sum-of-products form of the function, fcan be obtained by
grouping 1 ’s. Finally, the product-of-sums form of the function, f ; can be obtained by
complementing the function,?

3.7.6 Don’t Care Conditions
The squares of a K-map are marked with 1’s for the minterms of a function. The other
squares are assumed to be 0’s. This is not always true, because there may be situations

84

10

Fundamentals of Digital Logic and Microcomputer Design

1 ' 0 x 0

7.- 'a 0 0 1 1 1

m12 m l 3 m15 m14

FIGURE 3.41 K-map for Example 3.13

ti I: I

FIGURE 3.42 Determineyby combining 0's and don't care conditions for Example

FIGURE 3.43

(4

Five-Variable K-map

Five-Variable K-map

\c BC
00

01

11

10

FIGURE 3.44

A = 0
'00 01 11 10

K-map for Example 3.14

Boolean Algebra and Digital Logic Gates 85

in which the function is not defined for all combinations of the variables. Such functions
having undefined outputs for certain combinations of literals are called “incompletely
specified functions.” One does not normally care about the value of the function for
undefined minterms. Therefore, the undefined minterms of a function are called “don’t
care conditions.” Simply put, the don’t care conditions are situations in which one or more
literals in a minterm can never happen, resulting in nonoccurence of the minterm.

As an example, BCD numbers include ten digits (0 through 9) and are defined by
four bits (0000, through 1001,). However, one can represent binary numbers from 0000,
through 1 11 1, using four bits. This means that the binary combinations 10102 through
1 1 1 1, (1 O,, through 1 51,J can never occur in BCD. Therefore, these six Combinations (1 0 10,
through 11 1 12) are don’t care conditions in BCD. The functions for these six combinations
of the four literals are unspecified. The don’t care condition is represented by the symbol
X. This means that the symbol X will be placed inside a square in the K-map for which the
function is unspecified. The don’t care minterms can be used to simplify a function. The
function can be minimized by assigning 1 ’s or 0’s for X’s in the K-map while determining
adjacent squares. These assigned values of X’s can then be grouped with 1’s or 0’s in the
K-map, depending on the combination that provides the minimum expression. Note that
a don’t care condition may not be required if it does not help in minimizing the function.
To help in understanding the concept of don’t care conditions, the following example is
provided.

Examde 3.13
Simplify the functionf(A, B, C, D) = I: m(0, 2, 5, 8, 10, 12) using a K-map. Assume that
the minterms m,, m4, m6, m,, and m,5 can never occur.
Solution
The don’t care conditions are

d(A, B, C, 0) = I: m(l,4,6, 7, 15)
Figure 3.41 shows the K-map. By assigning X = 1 and combining 1’s as shown, f can be
expressed in sum-of-products form as follows:

On the other hand, by assigning X = 0 and combining 0’s as shown in Figure 3.42, ycan
be obtained as a product-of-sums. Thus,

f = c D + x B + B D

~ = _ C D + A D + B C
f = f = C D + A D + B C

= (Cii)(rn)(E)
= (C + D)(X + D)(Z + C)

3.7.7 Five-Variable K-map
Figure 3.43 shows a five-variable K-map. The five-variable K-map contains 32 squares. It
contains two four-variable maps for BCDE with A = 0 in one of the two maps and A = 1 in
the other. The value of a minterm in each map can be determined by the decimal value of
the five literals. For example, minterm mI4 from Figure 3.43(a) can be expressed in terms
of the five literals as ABCDE. On the other hand, minterm m26 can be expressed in terms of
the five literals from Figure 3.43(b) as ABCDE.

When simplifying a function, each K-map can first be considered as an individual
four-variable map with A = 0 or A = 1. Combining of adjacent squares will be identical
to typical four-variable maps. Next, the adjacent squares between the two K-maps can
be determined by placing the map in Figure 3.43(a) on top of the map in Figure 3.43(b).

_ _

86 Fundamentals of Digital Logic and Microcomputer Design

(i)
Minterm A B C D

0 0 0 0 0 J

2 0 0 1 0 J

4 0 1 0 0 J

8 1 0 0 0 J

5 0 1 0 1

6

~

10

Two squares are adjacent when a square in Figure 3.43(a) falls on the square in Figure
3.43(b) and vice versa. For example, minterm m, is adjacent to minterm mI6, minterm m1 is
adjacent to minterm mI7, and so on.

(ii) (iii)
A B C D A B C D

0,2 0 0 - 0 J 0,2,4,6 0 - - 0

0,4 0 - 0 0 J 0,2,8,10 - 0 - 0
0,8 - 0 0 0 J 0,4,2,6 0 - - 0
2,6 0 - 1 0 J 0,8,2,10 - 0 - 0

J 2 , l O - 0 1 0 J

1 0 1 0 J 4 , 6 0 1 - O J

8, lO 1 0 - 0 J

0 1 1 0 J 4 , 5 0 1 0 -

Examde 3.14
Simplify the function

using a K-map.
Solution
Figure 3.44 shows the K-map.

f = ZBD + BDE
To find the adjacent squares, the K-maps are first considered individually. From Figure
3.44(a), combining minterms m,,, m, , , mI4, and mI5 will yield the product term 2BD.

Minterms m,, and m13 are in the K-map of Figure 3.44(b). However, they are
adjacent to minterms m3 and m7 in Figure 3.44(a). Combining m3, m7, ~ 1 9 , and m2, together,
the product term BDE can be obtained. Literals A or 2 are not included here because
adjacent squares belong to both A = 0 and A = 1. Therefore, the minimum form off is

f = I B D t BDE

f(A, B, C, D, E) = Z m(3, 7, 10, 11, 14, 15, 19,23)

3.8 OuineMcCluskev Method

Boolean Algebra and Digital Logic Gates 87

ExamDle 3.15
In Example 3.7, F(A, B, C, D) = C m(O,2 ,4 ,5 ,6 , 8, 10) is simplified using a K-map. The
minimum form is F = A D + B D + ABC. Verify this result using the Quine-McCluskey
method.

_ _ _ _ _ _

Solution
First arrange the binary representation of the minterms as shown in Table 3.2. In the
table, the minterms are grouped according to the number of 1’s contained in their binary
representations. For example, consider column (i). Because minterms m2, m4, and m,
contain one 1, they are grouped together. On the other hand, minterms m5, m6, and m,,
contain two 1 ’s, so they are grouped together.

Next, consider column (ii). Any two minterms that vary by one bit in column (i)
are grouped together in column (ii). Starting from the top row, proceeding to the bottom
row, and comparing the binary representation of each minterm in column (i), pairs of
minterms having only a one-variable change are grouped together in column (ii) with the
variable bit replaced by the symbol -. For example, comparing m, = 0000 with m, = 0010,
there is a one-variable change in bit position 1. This is shown in column (ii) by placing
- in bit position 1 with the other three bits unchanged. Therefore, the top row of column
(ii) contains 00-0. The procedure is repeated until all minterms are compared from top to
bottom for one unmatched bit and are represented by replacing this bit position with - and
other bits unchanged. A J is placed on the right-hand side to indicate that this minterm is
compared with all others and its pair with one bit change is found. If a minterm does not
have another minterm with one bit change, no check mark is placed on its right. This means
that the prime implicant will contain four literals and will be included in the simplified of
the function F. In column (i), for each minterm, a corresponding pair with one bit change
is identified. These pairs are listed in column (ii).

Finally, consider column (iii). Each minterm pair in column (ii) is compared to
the next, starting from the top, to find another pair with one bit change; for example mo, m,
= 0 0 4 and m4, m6 = 0 1 4 . For this case, bit position 2 does not match. This bit position is
replaced by - in the top row of column (iii). Therefore, in column (iii), the top row groups
these four minterms 0 , 2 , 4 , 6 with ABCD as 0 - - 0. Similarly, all other pairs in column (ii)
are compared from top to bottom for one bit change and are listed accordingly in column
(iii) if an unmatched bit is found. A check mark is placed in the right of column (ii) if an
unmatched bit is found between two pairs. Note that minterms 4 and 5 do not have any
other pair in the list of column (ii) having one unmatched bit. Therefore, this pair is not
checked on the right and must be included in the simplified form of F as a prime implicant
containing three variables. The two rows of column (iii) (0,2,4,6 and 0,4,2,6) are the same
and contain 0 - - 0. Therefore, this term should be considered once. Similarly, the groups
0,2,8,10 and 0,8,2,10 containing -0-0 should be considered once. In column (iii), there are
no more groups that exist with one unmatched bit.

The comparison process stops. The prime implicants will be the unchecked terms
ABC (from column (ii)) along with, 2 D and [from column (iii)]. Thus, the simplified
form for F is

- _

F = 20 i- 80 i- ABC

This agrees with the result of Example 3.7

88 Fundamentals of Digital Logic and Microcomputer Design

Gate svmbol Equivalent Logic Diamam using NAND
Gates

A.A=A

NOT 3 A+-

A-D= :r* Two-input
OR B

A.B=A +B

B
Two-input

AND

B
Invert-OR

FIGURE 3.45 Logic equivalents using NAND gates

3.9 ImDlementation of Digital Circuits with NAND. NOR. and Exclusive-OW

Exclusive-NOR Gates

This section first covers implementation of logic circuits using NAND and NOR gates.
These gates are extensively used for designing digital circuits. The NAND and NOR
gates are called “universal gates” because any digital circuit can be implemented with
them. These gates are, therefore, more commonly used than AND and OR gates. Finally,
Exclusive-NOR gates are used to design parity generation and checking circuits.

3.9.1 NAND Gate Implementation
Any logic operation can be implemented by NAND gates. Figure 3.45 shows how NOT,
AND, OR, and AND-invert operations can be implemented with NAND gates. A Boolean
function can be implemented using NAND gates by first obtaining the simplified expression
of the function in terms of AND-OR- NOT logic operations. The function can then be
converted to NAND logic. A function expressed in sum-of-products form can be readily
implemented using NAND gates.

ExamDle 3.16
Implement the simplified function F = XY + XZ using NAND gates.
Solution
First implement the function using AND, OR, and NOT gates as follows:

Now convert the AND, OR, and NOT gates to NAND gates as follows:

Boolean Algebra and Digital Logic Gates 89

X. - -e
Y--

Z __
t AND Gate

The NOT gates can be represented as bubbles at the inputs of the OR gate as follows:

Y - -

Z-- F
-

f?omFigure 3.45

Therefore, the function F = XY + X Z can be implemented using only NAND gates as
follows:

This is a three-level implementation since 3 gate delays are required to obtain the output F.

Examole 3.17
Implement the following Boolean function using NAND gates:

Assume both true and complemented inputs are available.
Solution
From the K-map of Figure 3.46,

f(A, B,C, D) = cn f BCD f ACD
Figure 3.47 shows the logic diagram using AND and OR gates. Note that the logic
circuit of Figure 3.48 (c) has four gate delays. Figure 3.48 shows the various steps for
implementing this circuit using NAND gates. In Figure 3.48(a), each AND gate of Figure
3.47 is represented by an AND gate with two inverters at the output. For example, consider
AND gate 1 of Figure 3.47. The AND gate and an inverter are used to form the NAND
gate shown in the top row of Figure 3.48(b) with an inverter (indicated by a bubble at the
OR gate input). AND gates 3 and 4 are represented in the same way as AND gate 1 in
Figure 3.48(b).

Finally, in Figure 3.48(c), the OR gate with the bubbles at the input in Figure
3.48(b) is replaced by a NAND gate. Thus, the NAND gate implementation in Figure
3.48(c) is obtained.

f(A,B,C,D)=Zrn(O,3,4,8,11,12,15)

Examole 3.18
Implement the following functions with NAND gates:

f = (CD f D)(AB)
Assume both true and complemented inputs are available.
Solution
Figure 3.49 shows the AND-OR implementationofthe function. The AND-OR implementation
in the figure can be converted to the NAND implementation as shown in Figure 3.50.

90 Fundamentals of Digital Logic and Microcomputer Design

\
AB

01

11

10

FIGURE 3.46 K-map for Example 3.17

FIGURE 3.47 Logic diagram for f = D + BCD + ACD

AND Gate 2

- AND Gate 1

-f

3

C
D f
A

C
D f

' 4 7 I A

FIGURE 3.48 Steps for NAND gate implementation of Figure 3.47

Boolean Algebra and Digital Logic Gates 91

B I

FIGURE 3.49 AND-OR implementation of Example 3.18

f

FIGURE 3.50

3.9.2 NOR Gate Implementation
Figure 3.51 shows the NOR gate equivalent logic diagrams for NOT, OR, AND, and OR-
invert logic operations. A Boolean function can be implemented using NOR gates by first
obtaining the simplified expression of the function in terms of AND and OR gates. The
function can then be converted to NOR logic. A function expressed in product-of-sums can
be implemented using NOR gates.

NAND gate implementation of Figure 3.49

Examale 3.19
Implement the following function using NOR gates:

Assume both true and complemented inputs are available.
Solution
Figure 3.52 shows the AND-OR implementation of the logic equation. Figure 3.53 shows
the NOR implementation.

f = w(x +j)(x + z)

Examale 3.20
Implement the following function using NOR gates:

Note that both true and complemented inputs are not available.
Solution
Figure 3.54 shows the AND-OR implementation of the logic equation. Figure 3.55 shows
the NOR implementation.

f = a (b+c) (a + d)

3.9.3 XOR / XNOR Implementations
As mentioned before, the Exclusive-OR operation between two variables A and B can be
expressed as

A 0 B = AB -t AB.
The Exclusive-NOR or equivalence operation between A and B can be expressed as

The following identities are applicable to the Exclusive-OR operation:
A 0 B= AOB = AB + AB.

i) A @ o = A - I + A . o = A
ii) A O I = A . O + A * I = A
iii) A @ A = A * A + A * A = O
iv) A @ x = A * A + A * A = A + A = l

- -

92 Fundamentals of Digital Logic and Microcomputer Design

Equivalent Logic Diagram using NOR

FIGURE 3.51 Logic equivalents using NOR gates

FIGURE 3.52 AND-OR implementation of Example 3.19

X f -
Y

:=D--- NOR gate

FIGURE 3.53 NOR implementation of Example 3.19

d

FIGURE 3.54 AND-OR implementation of Example 3.20

Boolean Algebra and Digital Logic Gates 93

FIGURE 3.55

Finally, Exclusive-OR is commutative and associative:

NOR implementation of Example 3.20

A O B = B O A
(A 0 A) O C = A O (B 0 C)

= A O B O C
The Exclusive-NOR operation among three or more variables is called an “even

function” because the Exclusive-NOR operation among three or more variables includes
product terms in which each term contains an even number of 1 ’s. For example, consider
Exclusive-NORing three variables as follows:

f =_A 0- + B O C = (A B + A B) O C
Let D = AB + AB. ThenD = AB + AB = AB + Z E . Hence,

f = D o c

= (AB + zB)C i- (AB + 2 z)c
Hence,

f = ABC + 2 BC i- ABC + 2 B C
Note that in this equation, f = 1 when one or more product terms in the equation

are 1. However, by inspection, the binary equivalents of the right-hand side of the equation
are 101, 01 1, 1 10, and 000. That is, the function is expressed as the logical sum (OR) of
product terms containing even numbers of ones. Therefore, the function is called an even
function. Similarly, it can be shown that Exclusive-OR operation among three or more
variables is an odd function.

Exclusive-OR or Exclusive-NOR operation can be used for error detection and
correction using parity during data transmission. Note that parity can be classified as either
odd or even. The parity is defined by the number of 1 ’s contained in a string of data bits.
When the data contains an odd number of l’s, the data is said to have “odd parity”; On the
other hand, the data has “even parity” when the number of 1’s is even. To illustrate how
parity is used as an error check bit during data transmission, consider Figure 3.56.

Suppose that Computer X is required to transmit a 3-bit message to Computer
Y. To ensure that data is transmitted properly, an extra bit called the parity bit can be
added by the transmitting Computer X before sending the data. In other words, Computer
Xgenerates the parity bit depending on whether odd or even panty is used during the
transmission. Suppose that odd parity is used. The odd parity bit for the three-bit message

94

Message
A B C
0 0 0

Fundamentals of Digital Logic and Microcomputer Design

Odd Parity Bit
P
1

FIGURE 3.56 Parity generation and checking

(a) P = A @ B @ C

@) E = P @ A @ B e C

FIGURE 3.57 Implementation of parity generation and checking using XOR / XNOR
gates

will be as follows:

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

Here P = 1 when the 3-bit message ABC contains an even number of 1 's. Thus, the parity
bit will ensure that the 3-bit message contains an odd number of 1's before transmission.
P = 1 when the message contains an even number of 1 's. Therefore, P is an even function.
Thus,

P = A O B O C .
The transmitting Computer Xgenerates this parity bit. Computer Xthen transmits

4-bit information (a 3-bit message along with the parity bit) to Computer Y. Computer Y
receives this 4-bit information and checks to see whether each 4-bit data item conta-ins an
odd number of 1's (odd parity). If the parity is odd, Computer Y accepts the 3-bit message;
otherwise the computer sends the 4-bit information back to Computer Xfor retransmission.
Note that Computer Y checks the parity of the transmitted data using the equation

E = P @ A O B O C
Here the error E = 1 if the four bits have an even number of ones (even parity). That is, at
least one of the four bits is changed during transmission. On the other hand, the error bit, E
= 0 if the 4-bit data has an odd number of ones. Figure 3.57 shows the implementation of
the parity bit, P = A 0 B O C, and the error bit, E = P O A O B 0 C.

Boolean Algebra and Digital Logic Gates

OUESTIONS AND PROBLEMS

3.1 Perform the following operations. Include your answers in hexadecimal.
A616 O R 3 116; F7A,, AND D8O,,5; 361, O 2A,,

95

3.2 Given A = IOOl , , B = 1 1012, find: A O R B ; B A A; 2; A 0 A.

3.3 Perform the following operation: A7,, 0 FF,,. What is the relationship of the result
to A7,,?

3.4 Prove the following identities algebraically and by means of truth tables:
(a) (A + B) (m) = 0
(b)
(c) x Y + x y + x y + x y = 1

(e) (X + Y)(X + r, = X O Y
(0 BC + ABC =AC = co (AB)

A + AB = A + B

(4 (A +AB) = A B

3.5 Simplify each of the following Boolean expressions as much as possible using
identities:
(a) x Y + (l O x) + A 2 + X y + X Z
(b) ABC + ABZB + ABD

(4 (X+B(E) + r n + X z Y
(c) BC + ABCD + ABCD + ABCLI

3.6 Using DeMorgan’s theorem, draw logic diagrams for F = A B c + A B + BC
(a)
(b)
You may use two-input and three-input AND and OR gates for (a) and (b).

Using only AND gates and inverters.
Using only O R gates and inverters.

3.7 Using truth tables, express each one ofthe following functions and their complements
in terms of sum of minterms and product of maxterms:

(b) F = (W + X + Y) (W X + Y)
(4 F = ABC + ABD + A B C + ACD

3.8 Express each of the following expressions in terms of minterms and maxterms.

(b)
(a) F = BC +AB + B(A + C)

F = (A + B +C)(J + B)

3.9 Minimize each of the following functions using a K-map:
(4
(b)
(c)

F(A, B, C) = I: m(0, 1,4, 5)
F(A, B, C) = I: m(0, 1,2,3,6)
F(X, Y, 2) = I: m(O,2,4,6)

3.10 Minimize each of the following expressions for F using a K-map.
(a)
(b)
(c)

F(A, B, C) = B C f ABC + AB??
F(A, B, C) = AB?? f BC
F(A, B, C) = A C + A@ c + B?:)

96 Fundamentals of Digital Logic and Microcomputer Design

3.1 1

3.12

3.13

3.14

3.15

3.16

3.17

3.18

Simplify each of the following functions for F using a K-map.
(a)
(b)
(c)
(d)
(e)
(f)

F(W, X, Y, Z) = C m(0, 1,4, 5, 8, 9)
F(A, B, C, D) =Zm(O, 2, 8, 10, 12, 14)
F(A, B, C, D) = C m(2,4, 5,6, 7, 10, 14)
F(W,X, Y, Z) =Crn(2,3,6,7, 8,9, 12, 13)
F(W, X, Y, Z) = Z m(0,2,4,6, 8, 10, 12, 14)
F(W, X, Y, Z) = 2 m(l,3,5,7,9, 11, 13, 15)

Minimize each of the following expressions for Fusing a K-map in sums-of-product
form:
(a) F(W,X, Y,Z) = w x Y Z + WYZ
(b)
(c)

F = 2 E CZi + ~ C D + ABCD
F = (2 + B + c + D)(2 + B + c + @ (A + E + c + D)

Find essential prime implicants and then minimize each of the following fhctions
for Fusing a K-map:
(4
(b) F (W , X , Y , Z) = Z m (2 , 3 , 6 , 7 , 8 , 9 , 1 2 , 1 3 , 1 5)

F(A, B, C, D) = C m(3,4, 5,7, 11, 12, 15)

Minimize each of the following functions for f using a K-map and don't care
conditions, d.
(a)

(b)

f (A , B, C) = 2 m(l,2,4,7)

AX, y, z) = c m(2,6)
d(A, B, C) = I: m(5,6)

d(X, Y,.Z)=Zm(O, 1,3,4,5,7)
(c) f (A , B, C, D) = C m(0,2,3, 11)

d(A, B, C, D) =I: m(1, 8,9, 10)
(d) ,f(A,B,C,D)=I:m(4,5,10,11)

d(A, B, C, D) =2 4 1 2 , 13, 14, 15)

Minimize the following expression using the Quine-McCluskey method. Verify the
results using a K-map. Draw logic diagrams using NAND gates. Assume true and
complemented inputs. F(A, B, C, D) = I: m(0, 1,4, 5, 8, 12)

Minimize the following expression using a K-map:

and then draw schematics using:
(4 NAND gates.
(b) NOR gates.

F = A B + A B Z D + C D + A B C D

Minimize the following function F(A, B, C, D) = C m(6,7, 8,9) assuming that the
condition AB = 1 1 can never occur. Draw schematics using:
(a) NAND gates.
(b) NOR gates.

It is desired to compare two 4-bit numbers for equality. If the two numbers are
equal, the circuit will generate an output of 1. Draw a logic circuit using a minimum
number of gates of your choice.

Boolean Algebra and Digital Logic Gates 97

3.19

3.20

3.21

3.22

3.23

Show analytically that A 0 (A 0 B) = B.

Show that the Boolean function, f =A 0 B 0 AB between two variables, A and B,
can be implemented using a single two-input gate.
Design a parity generation circuit for a 5-bit data (4-bit message with an even parity
bit) to be transmitted by computer X. The receiving computer Y will generate an
error bit, E = 1, if the 5-bit data received has an odd parity; otherwise, E = 0. Draw
logic diagrams for both parity generation and checking using XOR gates.

Draw a logic diagram for a two-input (A,B) Exclusive-OR operation using only four
two-input (A,B) NAND gates. Assume that complemented inputs A and B are not
available.

Determine by inspection whether the function, F in each of the following is odd or
even, and comment on the result:
(a) F = A O B O C (b) F = A O B O C

-

4
COMBINATIONAL

LOGIC DESIGN
This chapter describes analysis and design of combinational logic circuits. Topics include
BCD to seven-segment code converters, adders, subtractors, comparators, decoders, and
multiplexers. An overview of ROMs, PLDs and hardware description languages is also
included.

4.1 Basic ConceDts

Digital logic circuits can be classified into two types: combinational and sequential. A
combinational circuit is designed using logic gates in which application of inputs generates
the outputs at any time. An example of a combinational circuit is an adder, which produces
the result of addition as output upon application of the two numbers to be added as inputs.

A sequential circuit, on the other hand, is designed using logic gates and memory
elements known as “flip-flops. ” Note that the flip-flop is a one-bit memory. A sequential
circuit generates the circuit outputs based on the present inputs and the outputs (states)
of the memory elements. The sequential circuit is basically a combinational circuit with
memory. Note that a combinational circuit does not require any memory (flip-flops),
whereas sequential circuits require flip-flops to remember the present states. A counter is
a typical example of a sequential circuit. To illustrate the sequential circuit, suppose that
it is desired to count in the sequence 0, 1,2, 3, 0, 1 ,. . . and repeat. In binary, the sequence
is 00, 01, 10, 1 1, 00, 01, . . ., and so on. This means that a two-bit memory using two flip-
flops is required for storing the two bits of the counter because each flip-flop stores one bit.
Let us call these flip-flops with outputs A and B. Note that initially A = 0 and B = 0. The
flip-flop changes outputs upon application of a clock pulse. With appropriate inputs to the
flip-flops and then applying the clock pulse, the flip-flops change the states (outputs) to A
= 0, B = 1. Thus, the count to 1 can be obtained. The flip-flops store (remember) this count.
Upon application of appropriate inputs along with the clock, the flip-flops will change the
status to A = 1, B = 0; thus, the count to 2 is obtained. The flip-flops remember (store) this
count at the outputs until a common clock pulse is applied to the flip-flops. The inputs to
the flip-flops are manipulated by a combinational circuit based on A and B as inputs. For

I

FIGURE 4.1 Analysis of a combinational logic circuit

99

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

100 Fundamentals of Digital Logic and Microcomputer Design

example, consider A = 1, B = 0. The inputs to the flip-flops are determined in such a way
that the flip-flops change the states at the clock pulse to A = 1, B = 1; thus, the count to 3 is
obtained. The process is repeated.

Inputs
X Y

0 0
0 1

1 0
1 1

4.2

A combinational logic circuit can be analyzed by (i) first, identifying the number of inputs
and outputs, (ii) expressing the output functions in terms of the inputs, and (iii) determining
the truth table for the logic diagram. As an example, consider the combinational circuit in
Figure 4.1 There are three inputs (X, Y, and Z) and two outputs (Z , and Z,) in the circuit.

Let us now express the outputs F, and F, in terms of the inputs. The output F,
of the AND gate #1 is F, = xY. The output F2 of NOR gate #2 can be expressed as
F2 = X + Y. The output of the XOR gate #3 is

Because one of the inputs of the XOR gate #4 is 1, its output is inverted. Therefore,

Finally,

Therefore,

Analvsis of a Combinational Lopic Circuit

-

F3 = X O F,= (X O H)

Z , = E = X + Y .

Z , = X O F 3 = X O (X O x Y)

z, = X O (X * x y + X - x Y)
= XO (X (X + r,,
=XO(XY)
=X(XY) + X (X r ,
= X (X + r ,
=xY

outputs

4 z2

0 0
1 0

1 0
1 1

TABLE 4.2 Truth Table for F

A B C I F
0 0 0
0 0 1

0 1 0
0 1 1

1 0 0
1 0 1

1 1 0

1 1 1 1 0

Combinational Logic Design

b W

b X

Y b

Z b

101

-
a B a BCD

to C

Seven-Segment d

Converter f

Code

g
Common Cathode

F = AB + BC + AB + BC
= (A $ B) + (B e C)

(a) K-map for F

(b) Logic Diagram for the output,F

FIGURE 4.2 K-map and the logic diagram for F

Another way of determinig Z, is provided below:
Z, = X O F,= X 0 (XO XY,) = XO XO X Y = 0 0 (X y)= XY

The Z, truth table shown in Table 4.1 can be obtained by using the logic equations for Z,
and Z,.

4.3

A combinational circuit can be designed using three steps as follows:
1) Determine the inputs and the outputs from problem definition and then derive the truth

table.
2) Use K-maps to minimize the number of inputs (literals) in order to express the outputs.

This reduces the number of gates and thus the implementation cost.
3) Draw the logic diagram

'In order to illustrate the design procedure, consider the following example.
Suppose that it is desired to design a combinational circuit with three inputs (A, B, and
C) and one output F. The output F is one if A , B, and C are not equal (A # B # C); F = 0
othenvise.First, the number of inputs and outputs are identified. There are three inputs (A ,
B, and C) and one output, F. Next the truth table is obtained as shown in Table 4.2. F i n the
truth table of Table 4.2 is simplified using a K-map and implemented as shown in Figure
4.2. Note that this is one of the solutions. There are more than one implementation for this
problem.

Design of a Combinational Circuit

FIGURE 4.3 BCD to seven-segment code converter

102 Fundamentals of Digital Logic and Microcomputer Design

Decimal
Digit to be
Displayed

2
4
9

4.4 MultiDle-Outout Combinational Circuits

A combinational circuit may have more than one output. In such a situation, each output
must be expressed as a function of the inputs. A digital circuit called the “code converter”
is an example of multiple-output circuits. A code converter transforms information from
one binary code to another. As an example, consider the BCD to seven-segment code
converter shown in Figure 4.3. The code converter in the figure can be designed to translate
the BCD inputs (W, X, Y, and Z) to seven-segment code for displaying decimal digits.
The inputs W, X, Y, and Z can be entered into the code converter via four switches as was
discussed in Chapter 1. A combinational circuit can be designed for the code converter
that will translate each digit entered using four bits into seven output bits (one bit for each
segment) of the display.

In this case, the code converter has four inputs and seven outputs. This code
converter is commonly known as a “BCD to seven-segment decoder.” With four bits (W,
X, Y, and Z), there are sixteen combinations (0000 through 11 11) of 1’s and 0’s. BCD
allows only 10 (0000 through 1001) of these 16 combinations, so the invalid numbers
(1010 through 11 1 1) will never occur for BCD and can be considered as don’t cares in K-
maps because it does not matter what the seven outputs (a through g) are for these invalid
combinations.

The 7447 (TTL) is a commercially available BCD to 7-segment decodeddriver
chip. It is designed for driving a common-anode display. A LOW output will light a segment
while a HIGH output will turn it OFF. For normal operation, the LT (Lamp test) and BI/
RBO (Blanking Input / Ripple Blanking Input) must be open or conntected to HIGH. The
7448 chip, on the other hand, is designed for driving a common-cathode display.

BCD Input Bits I Seven-Segment Output Bits

W X Y Z a b c d e f g
0 0 1 0 1 1 0 1 1 0 1
0 1 0 0 0 1 1 0 0 1 1
1 0 0 1 1 1 1 0 0 1 1

i) K-map for a: a = W Z + x ii) K-map forb : b = X k Z + W Z + f i Z

= Z(xT+xr> + wz
=Z(XO Y)+m

Combinational Logic Design 103

, I

i) K-map for a: a = WZ+m

iii) K, -map for c: c = X r Z + wz

_ _
v) K-map for e: e = X Y Z

ii) K-map forb : b =X?Z+ WZ+&'z

= Z(XY+xY) + wz
= Z (X S r)+ wz

_ _
iv) K-map for d: d =XYZ

vii) K-map for g

104

Decimal Digit

0
1
2
3
4
5
6
7
8
9

Fundamentals of Digital Logic and Microcomputer Design

Input BCD Code Outmt Grav Code
W x Y Z f3 h fi Al
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1

$3 or/
-
Z

viii) Logic diagram assuming both true and complemented values of the inputs are
available.

FIGURE 4.4 BCD to seven-segment decoder for decimal digits 2,4, and 9

To illustrate the design of a BCD to seven-segment decoder, consider designing
a code converter for displaying the decimal digits 2, 4, and 9, using the diagram shown in
Figure 4.3. First, it is obvious that the BCD to seven-segment decoder has four inputs and
seven outputs. Table 4.3 shows the truth table.

For the valid BCD digits that are not displayed (0, 1,3,5,6, 7, 8) in this example,
the combinational circuit for the code converter will generate 0’s for the seven output bits
(a through g). However, these seven bits will be don’t-cares in the K-map for the invalid
BCD digits 10 through 15. Figure 4.4 shows the K-maps and the logic diagram.

K-map forf3

h = W

b) K-map forb

f2= W + X

Combinational Logic Design 105

Inputs

X Y
0 0
0 1
1 0

c) K-map forfi d) K-mapforfo

f , =xy+xY f o = r z + r z
= X @ Y = Y @ Z

Outputs Decimal
Value

C S
0 0 0
0 1 1
0 1 1

Z fo

e) Logic diagram for Example 4.1

FIGURE 4.5

Examde 4.1
Design a digital circuit that will convert the BCD codes for the decimal digits (0 through
9) to their Gray codes.
Solution
Because both Gray code and BCD code are represented by four bits for each decimal digit,
there are four inputs and four outputs. Table 4.4 shows the truth table. Note that 4-bit binary

K-maps and Logic Circuit for Example 4.1

to Bits be { 1 -jzr, S (Sum)

added c (Carry)

Block Diagram of a Half-Adder FIGURE 4.6

TABLE 4.5 Truth Table of the Half-Adder

106

InDuts

Fundamentals of Digital Logic and Microcomputer Design

Outputs Decimal
Value

FIGURE 4.7 Logic diagram of the half-adder

X Y Z

0 0 0
0 0 1

combination will provide 16 (24) combinations of 1’s and 0’s. Because only ten of these
combinations (0000 through 1001) are allowed in BCD, the invalid combinations 1010
through 11 11 can never occur in BCD. Therefore, these six binary inputs are considered
as don’t cares. This means that it does not matter what binary values are assumed by
X f o for WXYZ = 1010 through 11 11. Figure 4.5 shows the K-maps and the logic

circuit.

C S
0 0 0
0 1 1

4.5 TvDical Combinational Circuits

0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

This section describes typical combinational circuits. Topics include binary adders,
subtractors, comparators, decoders, encoders, multiplexers, and demultiplexers. These
digital components are implemented in MSI chips.

4.5.1
When two bits x and y are added, a sum and a carry are generated. A combinational circuit
that adds two bits is called a “half-adder.’’ Figure 4.6 shows a block diagram of the half-
adder. Table 4.5 shows the truth table of the half-adder. From Table 4.5, S = + 6 = x

Binary / BCD Adders and Binary Subtractors

oy,c=xy

0 1 1
1 0 2
0 1 1
1 0 2
1 0 2

Figure 4.7 shows the logic diagram of the half-adder.
Next, consider addition of two 4-bit numbers as follows (next page):

FIGURE 4.8

TABLE4.6

s (S W ;=m=: Adder C(0utputCany)

Block diagram of a full adder

Combinational Logic Design 107

Final Carry = 0 4
This addition of two bits will generate a sum and a carry. The carry may be 0 or 1. Also,
there will be no previous carry while adding the least significant bits (bit 0) of the two
numbers. This means that two bits need to be added for bit 0 of the two numbers. On the
other hand, addition of three bits (two bits of the two numbers and a previous carry, which
may be 0 or 1) is required for all the subsequent bits. Note that two half-adders are required
to add three bits. A combinational circuit that adds three bits, generating a sum and a carry
(which may be 0 or l), is called a “full adder.” Figure 4.8 shows the block diagram of a full
adder. The full adder adds three bits, x, y , and 2, and generates a sum and a carry. Table 4.6
shows the truth table of a full adder. _ _ - - _ _

From the truth table, S = xyz+xyz+qz++yz = & +G) ;+ (xy + ;>) z
Letw=;y+x>thenw=xy+xy. Hence, S = w z + w z = w O z = x 0 y 0 z
Also, from the truth table, C = ?yz + .xiz + xys + xyz = $y + xy)z + xy(z + i)

where w =

- -

= wz +xy
+xp) = x B y . Hence, C = (x 0 y) z + xy.

Another form of Carry can be written as follows:
C = $22 G z + J$ + xyz = &z + Gz + xys + q z + xyz+ xyz (Adding redundant terms xyz)

=yz (x + x)+ xz 0, +?) + xy (2 + Z) =yz + xz + xy
Figure 4.9 shows the logic diagram of a full adder.
Note that the names half-adder and full adder are based on the fact that two half-

adders are required to obtain a full adder. This can be obtained as follows. One of the two
half-adders with inputs, x and y will generate the sum, So= x @ y and the carry, C,, = xy. The
sum (So) output can be connected to one of the inputs of the second half-adder with z as

FIGURE 4.9 Logic diagram of a

yl

c,
= Final

caw s.
s, Output

full adder

Y 2 X l Y , x i

1

FIGURE 4.10 4-bit binary adder using one half-adder and three full adders

108 Fundamentals of Digital Logic and Microcomputer Design

Y , x3 Y2 1 2 Y , X I Y o x o

G
= Flnal

FIGURE 4.11 Four-bit binary adder using full adders

the other input. Thus, the sum output (S) and the carry output (C,) of the second half-adder
will be S = x 0 y 0 z and C, = (x 0 y)z. The carry outputs of the two half-adders can be
logically ORed to provide the carry (C) of the full adder as C = (x 0 y)z + xy. Therefore,
two half-adders and a two-input OR gate can be used to obtain a full adder.

A 4-bit binary adder (also called “Ripple Carry Adder”) for adding two 4-bit
numbers x3 x, x1 x, and y , y2y1 yo can be implemented using one half-adder and three full
adders as shown in Figure 4.10. A full adder adds two bits if one of its inputs C, = 0.
This means that the half-adder in Figure 4.10 can be replaced by a full adder with its C,,
connected to ground. Figure 4.1 1 shows implementation of a 4-bit binary adder using four
full adders.

From Chapter 2, addition of two BCD digits is correct if the binary sum is less
than or equal to 1001,(9 in decimal). A binary sum greater than 1001, results into an
invalid BCD sum; adding 01 lo2 to an invalid BCD sum provides the correct sum with an
output carry of 1. Furthermore, addition of two BCD digits (each digit having a maximum
value of 9) along with carry will require correction if the sum is in the range 16 decimal
through 19 decimal. A BCD adder can be designed by implementing required corrections
in the result for decimal numbers from 10 through 19 (1010, through 1001 12). Therefore,
a correction is necessary for the following:
i) If the binary sum is greater than or equal to decimal 16 (This will generate a carry of

one)
ii) If the binary sum is 1010, through 1 1 11,. For example, consider adding packed BCD

numbers 99 and 38:
1 1 1 +Intermediate Carries

99 1001 1001 BCD for 99
+38 001 1 1000 BCD for 38
137 1101 000 1 invalid sum

+0110 +0110 add 6 for correction
0111 + 001 1 - 000 1

w
1 3 7 t correct answer 137

This means that a carry (C,J is generated: i) when the binary sum, S3S,S,So=
1010, through 11 1 1, or ii) when the binary sum is greater than or equal to decimal 16. For
case i), using a K-map, C, , = S,S,+ S, S, as follows (next page):

Combinational Logic Design 109

S

Hence, C,, = S,S,+ S2S3 = S, (S, + S,). Combining cases i) and ii), C, = C,+ S,
(S, + S,). This is implemented in the Figure 4.12.

Note that C, is the output carry of the BCD adder while C, is the carry output
from the first binary adder. When C, = 0, zeros are added to S3S,S,S,. This situation
occurs when S,S,S,S, is less than or equal to 1001,. However, when C,= 1, the binary
number 01 10 is added to S,S,S,S,using the second 4-bit adder. This situation occurs when
S,S,S,S, is greater than or equal to binary 1010 or when S,S,S,S, is greater than or equal to
16 decimal. The carry output from the second 4-bit adder can be discarded. Note that BCD
parallel adder for adding n BCD digits can be obtained using n BCD adders by connecting
the output carry (C,) of each low BCD adder to C, of the next BCD adder.

Next, half-subtractor and full-subtractor will be discussed. Similar to half-adder
and full-adder, there are half-subtractor and full-subtractor. Using half- and full-subtractors,
subtraction operation can be implemented with logic circuits in a direct manner. A half-
subtractor is a combinational circuit that subtracts two bits generating a result (R) bit and
a borrow (B) bit. The truth table for the half-subtractor is provided below:

x (minuend) y (subtrahend) B (borrow) R (result)
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

The borrow (B) is 0 if x is greater than or equal to y; B = 1 if x is less than y.
From the truth table,
A full -subtractor is a combinational circuit that performs the operation among three bits
x - y - z generating a result bit (R) and a borrow bit (B). The truth table for the full-

R = x y + x = x 0 y and B = x y.

A B
4 4

4-BiT ADDER

4 SUM(BCD)

FIGURE 4.12 BCD Adder

110 Fundamentals of Digital Logic and Microcomputer Design

subtractor is provided below:
X Y z B (Borrow)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

R (Result)
0
1
1
0
1
0
0
1

From the above truth table, the following equations can be obtained:
R = x 0 y 0 z and B = x y + x z + yz.
It is advantageous to implement addition and subtraction with full-adders since both
operations can be obtained using a single logic circuit.

4.5.2 Comparators
The digital comparator is a widely used combinational system. Figure 4.13 shows a 2-bit

Two-bit

Comparator

A > B

A = B

A < B

FIGURE 4.13 Block diagram of a two-bit comparator

TABLE 4.7 Truth Table for the 2-Bit Comi

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 I 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

-ator

Outputs
G E 1

0 1 0
0 0 1
0 0 1
0 0 1
1 0 0
0 1 0
0 0 1
0 0 1
1 0 0
1 0 0
0 1 0
0 0 1
1 0 0
1 0 0
1 0 0
0 1 0

Combinational Logic Design

K-map for G:

111

K-map for L:

a) K-maps for the 2-bit comparator

lk
I+- - G

n

b) Logic Diagram of the 2-bit comparator

FIGURE 4.14 Design of a 2-bit comparator

112 Fundamentals of Digital Logic and Microcomputer Design

digital comparator, which provides the result of comparing two 2-bit unsigned numbers as
follows:

hJx&

E XI XO

0 X X

1 0 0

1 0 1

1 1 0

Input Comparison Outputs I G E L

Outauts

d0 dl 4 d3

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

Table 4.7 provides the truth table for the 2-bit comparator.
Figure 4.14 shows the K-map and the logic diagram:

1 1 1

4.5.3 Decoders
An n-bit binary number provides 20 minterms or maxterms. For example, a 2-bit binary
number will generate 4 (22) minterms or maxterms. A decoder is a combinational circuit
, when enabled, selects one of 2" minterms or maxterms at the output based on the input
combinations. However, a decoder sometimes may have less than 2" outputs. For example,
the BCD to seven-segment decoder has 4 inputs and 7 outputs rather than 16 (24) outputs.

The block diagram of a 2-to-4 decoder is shown in Figure 4.15. Table 4.8 provides

0 0 0 1

Decoder
E

(Enable)

FIGURE 4.15 Block diagram of the 2-to-4 decoder

E G d 3

FIGURE 4.16 Logic diagram of the 2-to-4 decoder

Combinational Logic Design 113

x3 -

x 2 -

XI-

X0-

Enable-

2-to4 1
Decoder 2

I

FIGURE 4.17 Implementation of a 4-to-1 6 Decoder Using 2-to-4 decoders

the truth table. In the truth table, the symbol Xis the don’t care condition, which can be 0 or
1. Also, E = 0 disables the decoder. On the other hand, the decoder is enabled when E = 1.
For example, when E = 1, x, = 0, xo =0, and the output do is HIGH while the other outputs
d,, d2, and d, are zero. Note that do = EC 5, d, = E g x , , d2 = Ex, z, and d3 = Ex, xo.
Therefore, the 2-to-4 line decoder outputs one of the four minterms of the two input
variables x, and xo when E = 1. In general, for n inputs, the n-to 2“ decoder when enabled
selects one of 2” minterms or maxterms at the output based on :he input combinations. The
decoder actually provides binary to decimal conversion operation. Using the truth table
of Table 4.8, a logic diagram of the 2-to-4 decoder can be obtained as shown in Figure
4.16. Large decoders can be designed using small decoders as the building blocks. For
example, a 440- 16 line decoder can be designed using five 2-to-4 decoders as shown in
Figure 4.17.

SUM
3

CARRY
--+

Note that the bubble 0 at the decoder
output indicates LOW when selected.

-
FIGURE 4.18 Implementation of a Full-adder Using a 74138 Decoder and Two 4-input

AND Gates

114 Fundamentals of Digital Logic and Microcomputer Design

Commercially available decoders are normally built using NAND gates rather
than AND gates because it is less expensive to produce the selected decoder output in its
complement form. Also, most commercial decoders contain one or more enable inputs to
control the circuit operation. An example of the commercial decoder is the 74HC138 or
the 74LS138. This is a 3-to-8 decoder with three enable lines G, , G,, , and G. When
G, = H, G,, = L and G,, = L, the decoder is enabled. The decoder has three inputs, C, B ,
and A , and eight outputs Yo, Y,, Y,, ..., Y,. With CBA = 001 and the decoder enabled, the
selected output line Y, (line 1) goes to LOW while the other output lines stay HIGH.

Because any Boolean function can be expressed as a logical sum of minterms, a
decoder can be used to produce the minterms. A Boolean function can then be obtained
by logical operation of the appropriate minterms. However, since the 74138 generates a
LOW on the selected output line, a Boolean hnction can be obtained by logically ANDing
the appropriate minterms. For example, consider the truth table of the full adder listed in
Table 4.6. The inverted sum and the inverted carry can be expressed in terms of minterms
as follows:

SUM= m(O,3,5,6), SUM= mO* m3 m, m6
_ _ _ _

hg&

do d, d2 4
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

_ _ _ _
CARRY = m(0, 1,2,4), CARRY = m, m, m2 m4

Outputs

XI XO

0 0

0 1

1 0

1 1

Figure 4.18 shows the implementation of a full adder using a 74 138 decoder (C=X,
B=Y, A=Z) and two 4-input AND gates. Note that the 74138 in the Manufacturer’s data
book uses the symbols C, B, A as three inputs to the decoder with C as the most significant

hg&

d0 dl 4 4
1 0 0 0

X 1 0 0

X X 1 0

X X X 1

2 -4 Encoder px,,

Outputs

XI XO

0 0

0 1

1 0

1 1

FIGURE 4.19

TABLE 4.9

Block diagram of a 4-to-2 encoder

Truth Table of the 4-to-2 Encoder

TABLE 4.10

Combinational Logic Design 115

c) Logic diagram

FIGURE 4.20 K-maps and logic diagram of a 4-to-2 priority encoder

bit and A as the least significant bit.

4.5.4 Encoders
An encoder is a combinational circuit that performs the reverse operation of a decoder. An
encoder has a maximum of 2" inputs and n outputs. Figure 4.19 shows the block diagram
of a 4-to-2 encoder. Table 4.9 provides the truth table of the 4-to-2 encoder.

From the truth table, it can be concluded that an encoder actually performs

2 z b z S

FIGURE 4.21 Block diagram of a 2-to-1 multiplexer

TABLE 4.11 Truth Table of the 2-to-1 Multiplexer

do d, Z
0 0 0
0 1 0
1 0 1
1 1 1
0 0 0
0 1 1
1 0 0
1 1 1

116 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 4.22 (a) K-map for the 2-to- 1 MUX

d, doiz S

FIGURE 4.22 (b) Logic diagram of the 2-to-1 MUX

decimal-to-binary conversion. In the encoder defined by Table 4.9, it is assumed that only
one of the four inputs can be HIGH at any time. If more than one input is 1 at the same time,
an undefined output is generated. For example, if d, and d2 are 1 at the same time, both xo
and x, are 1. This represents binary 3 rather than 1 or 2. Therefore, in an encoder in which
more than one input can be active simultaneously, a priority scheme must be implemented
in the inputs to ensure that only one input will be encoded at the output.

A 4-to-2 priority encoder will be designed next. Suppose that it is assumed that
inputs with higher subscripts have higher priorities. This means that d3 has the highest
priority and do has the lowest priority. Therefore, if do and d, become one simultaneously,
the output will be 01 ford,. Table 4.10 shows the truth table of the 4-to-2 priority encoder.
Figure 4.20 shows the K-maps and the logic diagram of the 4-to-2 priority encoder.

4.5.5 Multiplexers
A multiplexer (abbreviated as MUX) is a combinational circuit that selects one of n input
lines and provides it on the output. Thus, the multiplexer has several inputs and only one
output. The select lines identify or address one of several inputs and provides it on the
output line. Figure 4.21 shows the block diagram of a 2-to-1 multiplexer. The two inputs
can be selected by one select line, S. When S = 0, input line 0 (do) will be presented as the
output. On the other hand, when S = 1, input line 1 (d,) will be produced at the output.

Table 4.1 1 shows the truth table of the 2-to-I multiplexer. From the truth table,
using the K-map of Figure 4.22 (a), it can be shown that Z = Sd, + Sd,. Figure 4.22 (b)
shows the logic diagram. In general, a multiplexer with n select lines can select one of 2“
data inputs. Hence, multiplexers are sometimes referred to as “data selectors.”

A large multiplexer can be implemented using a small multiplexer as the building
block. For example, consider the block diagram and the truth table of a 4-to-1 multiplexer
shown in Figure 4.23 and Table 4.12 respectively. The 4-input multiplexer can be

FIGURE 4.23 Block-diagram Representation of a Four-input Multiplexer

Combinational Logic Design

TABLE 4.12 Truth Table of the 4-to-1 Input Multiplexer

d2
d

117

FIGURE 4.24 Implementation of a Four-Input Multiplexer Using
Mu1 tiplexers

Only Two-input

FIGURE 4.25 Implementation of a Boolean equation using a 4-to-1 multiplexer

implemented using three 2-to-1 multiplexers as shown in Figure 4.24.
In Figure 4.24, the select line So is applied as input to the multiplexers MUX 0 and

MUX 1. This means that Zo = do or d, and Z, = d2 or d3, depending on whether So = 0 or 1.
The select line S, is given as input to the multiplexer MUX 2. This implies that Z = Zo if S,
= 0; otherwise Z = Z,. In this arrangement if S,So = 1 1, then Z = d3 because So = 1 implies
that Zo = d, and Z, = d3 because S, = 1, the MUX 2 selects the data input Z,, and thus Z =

d3. The other entries of the truth table of Table 4.12 can be verified in a similar manner.
Multiplexers can be used to implement Boolean equations. For example, consider

realizing f(x,y,z)= xz+ yz using a 4-to-1 multiplexer. First, the Boolean equation for f(x,y,z)
is expressed in minterm form as follows: f(x,y,z)=xz(y+S;) + yz (x + x)= xyz + x i ;+ xyz +
x yz. The next step is to use two of the three variables (x,y,z) as select inputs. Suppose y
and z are arbitrarily chosen as select inputs. The four combinations (y z, yz,yz, yz) of the
select inputs, y and z are then required to be factored out of minterm form for f(x,y,z) to
determine the inputs to the 4-to-1 multiplexer as follows: f (x,y,z)= y z(x) +yz (0) +yz(x)
+yz (x + x) = 5 z(x) + Tz (0) +y?(x) +yz (1). Hence, the above equation for f(x,y,z) can be
implemented using the 4-to-1 multiplexer of Figure 4.23 as follows: S,= y, So= z, do=x,
d,=O, d2=x, d3=l. Figure 4.25 shows the implementation.

Next, consider implementing f(a,b,c) = Em (0,2,3,7) using the 4-to-1 multiplexer
of Figure 4.23. The first step is to obtain a table as follows:

-
_ _ _ -

118 Fundamentals of Digital Logic and Microcomputer Design

a b c f
0 0 0 1
0 0 1 0 6:

0 1 0 1
0 1 1 1 f= 1

1 0 0 0
1 0 1 0 f=O

1 1 0 0
1 1 1 1 f=c

------------_

-------------__-
Hence, the 4-to-1 multiplexer of Figure 4.23 can be connected as follows: SI=a,

So= b, do=;, d,=l , d2=0, d3=c. Note that the inputs to the multiplexer are selected from the
above table. For example, when ab=OO, output f= c because f=l when c=O and f=O when
c=l.

4.5.6 Demultiplexers
The demultiplexer is a combinational circuit that performs the reverse operation of a
multiplexer. The demultiplexer has only one input and several outputs. One of the outputs is
selected by the combination of 1’s and 0’s of the select inputs. These inputs determine one
of the output lines to be selected; data from the input line is then transferred to the selected
output line. Figure 4.26 shows the block diagram of a 1-to-8 demultiplexer. Suppose that i
= 1 and S2S,S0 = 010; output line d2 will be selected and a I will be output on d2.

4.6 IEEE Standard Svmbols

IEEE has developed standard graphic symbols for commonly used digital components
such as adders, decoders, and multiplexers. These are depicted in Figure 4.27.

ExamDle 4.2
Design a combinational circuit using a decoder and OR gates to implement the function
depicted in Figure 4.28.

Solution
The truth table is shown in Table 4.13.
From the truth table,

Z, = Cm(2,3,5, 6,7)
z, = Zm(l,2,3,7)

The logic diagram is shown in Figure 4.29.

FIGURE 4.26 1-to-8 demultiplexer

Combinational Logic Design 119 1-1
2 Q

CI co

1-1
4
5

7

a) 4-bit Binary Adder a) 3-to-8 Decoder a) 8-to- 1 Multiplexer
(74LS283 or 74HC283) (74LS138 or 71HC138) (74LS151 or 74HC151)

(providing both true and
complemented outputs)

FIGURE 4.27 IEEE Symbols

If C = 0, Z, follows B and Z, = A + B.

If C = 1, Z, = A + BandZ, = AB.
Assume that the decoder output is HIGH when
enabled by E = 1.

Combinational
Clrcult "Tp

C

FIGURE 4.28 Figure for Example 4.2

ExamDle 4.3
Design combinational circuits using full adders and multiplexers as building blocks to
implement (a) a 4-bit adderhbtractor; add when S =O and subtract when S =l . (b) multiply
a 4-bit unsigned number by 2 when S=O and transfer zero to output when S=l .
Solution
(a) The subtraction x - y of two binary numbers can be performed using twos complement
arithmetic. As discussed before, x - y = x + (ones complement ofy) + 1.
Using this concept, parallel subtractors can be implemented. A 4-bit adderhubtractor is
shown in Figure 4.30(a). Note that XOR gates (S and y , as inputs) can be used in place of
multiplexers.

The addedsubtractor in Figure 4.30(a) utilizes four MUX's. Each MUX has one
select line (S) and is capable of selecting one of two lines, y,or x.

The 4-bit adderhubtractor of Figure 4.30(a) either adds two 4-bit numbers and
performs (x3 x2 x, x,) ADD Cy3y2 yI yo) when S = 0 or performs the subtraction operation
(x3 x, x, x,) MINUS Cy3 y , y , yo) for S = 1. The select bit S can be implemented by a
switch. When S = 0, each MUX outputs the true value of y , (n = 0 through 3) to the
corresponding input of the full adder FA, (n = 0 through 3). Because S = 0 (C, for FA,
= 0), the four full adders perform the desired 4-bit addition. When S = 1 (Gin for FA,
= l), each MUX generates the ones complement of y , at the corresponding input of the
full adder FAn, Because S = C,, = 1, the four full adders provide the following operation:

(b) Assume 4-bit output S, S, S, So. Figure 4.30(b) shows the implementation.

_ _ _ _
(x3x2x,x0) - b3y2yIyO) = (x3x2xIx0) + 0.'3Y2yI YO) +

120

TABLE 4.13

Fundamentals of Digital Logic and Microcomputer Design

Truth Table for Example 4.2
&l&s

C B A
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 u t p u t s

z, z,
0 0
0 1
1 1
1 1
0 0
1 0
1 0
1 1

FIGURE 4.29

z,

Implementation of Example 4.2 using a decoder and OR gates

c2 s2 ci s,
addition) or Borrow (for subtraction)

FA0 Cm

(S = 0, add)
(S = I , subtract)

co so

FIGURE 4.30 (a) 4-bit Adder / Subtractor

Figure 4.30 (b) Solution to Part (b)

Combinational Logic Design 121

n
address

lines

u
m datalines

FIGURE 4.31 Block-diagram Representation of a ROM

4.7 Read-Onlv Memories (ROMs)

Read-only memory, commonly called “ROM,” is a nonvolatile memory (meaning that it
retains information in case of power failure) that provides read-only access to the stored
data. A block-diagram representation of a ROM is shown in Figure 4.3 1. The total capacity
of this ROM is 2” x m bits. Whenever an n-bit address is placed on the address line, the
m-bit information stored in this address will appear on the data lines. The m-bit output
generated by the ROM is also called a “word.”

For example, a 1K x 8 (1024 x 8)-bit ROM chip contains 10 address pins (21° =

1024 = 1K) and 8 data pins. Therefore, n = 10 and m = 8. On the other hand, an 8K x 8
(8 192 x 8)-bit ROM chip includes 13 address pins (213 = 8 192 = 8K) and 8 data pins. Thus,
n = 13 and m = 8.

A ROM is an LSI chip that can be designed using an array of semiconductor
devices such as diodes, transistors, or MOS transistors. A ROM is a combinational circuit.
Internally, a ROM contains a decoder and OR gates; this is illustrated in Figure 4.32. The
OR gate of the ROM may be built using diodes. A typical 3-input diode OR gate is shown
in Figure 4.33. Resistor R pulls the output down to a LOW level as long as all the inputs
are LOW. However, if either input is connected to a high voltage source (3 to 5 volts), the
output is pulled HIGH to within one diode drop of the input. Thus, the circuit operates as
an OR gate. To illustrate the operation of a ROM, consider the 2 x 4-bit ROM of Figure
4.34. In this system , when A,Ao= 00, the decoder output line 0 will be HIGH. This causes
the diodes D, and Do, to conduct, and thus the output Z = Z, Z, Z , Z, = 001 1. Similarly,
when A,A, = 01, the decoder output line 1 goes to high, diode D,, conducts, and the output
will be Z = Z, Z,Z, Z, = 0100. Table 4.14 shows the truth table. ROM implementation
offers a cost-effective solution for building circuits to perform useful tasks such as square
root and transcendental function computations. Although diodes are not normally used for
fabricating ROMs, the above diode-based ROM is shown for illustrative purposes.

Figure 4.35 shows the subcategories of ROMs and their associated technologies.
The various types of ROMs will be discussed next.

A ROM must be programmed before it can be used. This involves placing the
switching devices such as transistors (rather than diodes) at the appropriate intersection
points of the row and column lines. For example, in a mask ROM the contents of the
ROM are initialized by the manufacturer at the time of its production. This means that

122

An - I +-- 2" lines

4 2 -

4 - 3 + n to 2"
: decoder

Al-

A0 -

Fundamentals of Digital Logic and Microcomputer Design

Array of
OR gates

FIGURE 4.32 Internal Structure of a ROM

'sf= C A + B + C

FIGURE 4.33 Diode-OR Gate

FIGURE 4.34 Hardware Organization of a Typical 2 x 4 ROM

TABLE 4.14 Truth Table implemented by the ROM of Figure 4.34

Combinational Logic Design 123

ROM

I

I I e PROM EPROM
Bipxlar

Mask ROM PROM Mask ROM
and

EAROM
(or EEPROM
or E~PROM)

FIGURE 4.35 Subcategories of ROMs

this approach is well suited for producing a standard circuit such as a bar-code generator.
Because these types of ROMs are mass-produced, their costs are also very low. However,
a mask ROM cannot be reconfigured by a user. That is, a user cannot alter its contents.

Occasionally, a user may wish to develop a specific ROM-based circuit as
demanded by the application area. In this case, a ROM that allows a user to initialize its
contents is required. A ROM with such a flexibility is known as a PROM (programmable
ROM). In this device, the manufacturer places a switching element along with a fusible
link at each intersection. This implies that all ROM cells are initialized with a 1. If a user
desires to store a zero in a particular cell, the fuse is blown at that point. This activity
is called “programming,” and it may be accomplished by passing electrical impulses. It
should be pointed out that in such a ROM a user can program the ROM only once. That is,
it is not possible to reprogram a PROM once the fuse is blown.

When a new product is developed, it may be necessary for the designer to modify
the contents of the ROM. A ROM with this capability is referred to as an EPROM (erasable
programmable ROM). Usually, the contents of this memory are completely erased by
taking the EPROM chip out of the board and exposing the ROM chip to ultraviolet light.
Typical erase times vary between 10 and 30 minutes. After erasure the ROM may be
reprogrammed by passing voltage pulses at the special inputs. The 2764 chip is a typical
example of an EPROM. It is a 28-pin 8K x 8 chip contained in a dual in-line package
(DIP). It has 13 address input pins and 8 data output pins. Note that the 2764 needs 13 (213
= 8 192) pins to address 8 I92 (8K) locations.

The growth in IC technology allowed the production of another type ofROM whose
contents may be erased using electrical impulses. These memory devices are customarily
referred to as “electrically alterable ROMs” (EAROMs) or “electrically erasable PROMS”
(EEPROMs or E2PROMs). The main advantage of an EEPROM is that its contents (one
or more locations) can be changed without removing the chip fi-om the circuit board. Note
that EPROMs and EAROMs are designed using only MOS transistors.

4.8 Prowammable Logic Devices (PLDs)

A programmable logic device (PLD) is a generic name for an IC chip capable of being
programmed by the user after it is manufactured. It is programmed by blowing fuses. A
PLD chip contains an array of AND gates and OR’gates. There are three types of PLDs.
They are identified by the location of fuses on the AND-OR array. Figure 4.36 shows the
block diagrams of these PLDs.

The PROM was discussed in the last section. A PROM contains a number of fixed
AND gates and programmable OR gates. The PROM can be programmed to represent

124 Fundamentals of Digital Logic and Microcomputer Design

PROM PAL PLA

FIGURE 4.36 Types of PLDs

Standard multiple-input OR gate symbol Multiple-input OR gate symbol used in PLA

+++D-
Standard =D-= multiple-input AND gate symbol Multiple-input AND gate symbol used in PLA

FIGURE 4.37 Multiple input AND and OR Gate Symbols for PLA

Boolean functions in sum of products (minterms) form. The PAL, on the other hand,
includes programmable AND gates and fixed OR gates. The PAL can be programmed
to implement Boolean hnctions as a logical sum (OR) of product terms. Finally, the
PLA (programmable logic array) includes several AND and OR gates, both of which are
programmable. The PLA is very flexible in the sense that the necessary AND terms can
be logically ORed to provide the desired Boolean functions. Let us explain the basics of
PLAs. In order to illustrate a PLA, a special AND gate or OR gate symbol with multiple
inputs will be utilized as shown in Figure 4.37. The internal structure of a typical PLA is
shown in Figure 4.38. The AND array of this system generates the required product terms,
and the OR array is used to OR the product terms generated by the array. As in the case of
the ROM, these gate arrays can be realized using diodes, transistors, or MOS devices. The
significance of a PLA is explained in the following example.

Consider the PLA shown in Figure 4.39. This PLA has three inputs, A , B, and
C. The AND generates from product terms A B, A C, BC, and AC. These product terms
are logically summed up in the OR array, and the outputs Z,,, Z , , and Z, are generated.
Note that the dot in the figure indicates the presence of a switching element such as a
diode or transistor. The use of PLAs is very cost-effective when the number of inputs in a

_ _ _ _

Combinational Logic Design 125

-
FIGURE 4.38 Internal Structure of a PLA

AND array

outputs

A

B

C

z, = AB+BC

Z, = AB+AC

Z,=AC+BC

FIGURE 4.39

Nine
inputs

-I

A PLA with Three Inputs, Four Product Terms, and Three Outputs

W = AE + BC

X = CD + FE

Y = FG f HI

FIGURE 4.40 A PLA with Nine Inputs, Six Product Terms, and Three Outputs

126 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 4.41 PLA Implementation of Example 4.3

combinational circuit realized by a ROM is very high and all input combinations are not
used. For example, consider the following multiple output functions:

W + A E + B C
X= CD + FE
Y = FG + H I

To implement these Boolean functions in a ROM, a 512 x 3 array is needed
because there are nine inputs (A through r) (29 = 5 12) and three outputs (W, X , Y), but the
same functions can be realized in a PLA using six product terms, nine inputs, and three
outputs, as shown in Figure 4.40. Therefore, a considerable savings in hardware can be
achieved with PLAs.

ExamDle 4.4
Implement Example 4.2 using PLAs.
Solution
From Example 4.2,
Z,(A, B, C) = - C m(2,3,5,6,7)

= CBZ + ZBA + CBA + CBX + CBA

ZdA, B, C) = _ _ C m (l , 2 , 3 , 7)
= c BA + CBA + CBA + CBA

Figure 4.41 shows the PLA implementation.

4.9

Both mask programmable and field programmable PLAs are available. Mask programmable
PLAs are similar to mask ROMs in the sense that they are programmed at the time of
manufacture. Field programmable PLAs (FPLAs) on the other hand, can be programmed
by the user with a computer-aided design (CAD) program to select a minimum number of
product terms to express the Boolean functions.

There are three types of commercially available Field Programmable Devices
(FPDs). These are Simple PLD (SPLD), Complex PLD (CPLD), and Field Programmable
Gate Array (FPGA). Among all SPLDs, PALs are widely used. SPLD uses EPROM
technology to implement the switches. Note that PAL is a registered trademark of Advanced
Micro Devices, Inc. (AMD). PALs were introduced by Monolithic Memories (a division

Commerciallv Available Field Promammable Devices (FPDsl

Combinational Logic Design 127

FIGURE 4.42 Pinout for PAL 16L8

of AMD) in 1970. The PAL chips are usually identified by a two-digit number followed
by a letter and then one or two digits. The first two-digit number specifies the number of
inputs whereas the last one or two digits define the number of outputs. The fixed number
of AND gates are connected to either an OR or a NOR gate. The letter H indicates that the
output gates are OR gates; the letter L is used when the outputs are NOR gates; the letter C
is used when the outputs include both OR and NOR gates. Note that OR outputs generate
active HIGH whereas NORs provide active LOW outputs. On the other hand, OR-NOR
gates include both active HIGH and active LOW outputs.

For example, the PAL1 6L8 is a 20-pin chip with a maximum of 16 inputs, up to
8 outputs, one power pin, and one ground pin. The 16L8 contains 10 nonshared inputs, six
inputs that are shared by six outputs, and two nonshared outputs. Figure 4.42 shows the pin
diagram of the PALl6L8. Note that PEEL (Programmable Electrically Erasable Logic)
devices or Erasable PLDs such as 18CV8 or 16V8 are available for instant reprogramming
just like an EEPROM. These devices utilize CMOS EEPROM technology. These erasable
PLDs use electronic switches rather than fuses so that they are erasable and reprogrammable
like EEPROMs.

Due to advent in IC technology, larger PLDs (CPLDs) using SPLDs are designed.
The SPLDs cannot be used for larger digital-design applications. Therefore, CPLD (complex
PLD) chips are designed by the manufacturers such as Altera and Xlinix to accomplish this.
A typical CPLD contains several PLDs (each PLD containing AND and OR gates with
EEPROM or EPROM or Flash memory to implement the programmable switches) along
with all the interconnections in the same chip. The IC manufacturers such as Altera and
Xlinix also took a different approach for handling larger applications. They devised FPGA
(Field Programmable Gate Array) chips which can be programmed at the user’s location. A
typical FPGA chip contains several smaller individual logic blocks (SRAM, multiplexers,
gates, and flip-flops) along with all interconnections in a single chip. The FPGA does
not use EEPROM technology to implement the switches; the programming information
is stored in SRAM (discussed in chapter 5). The SRAM is normally programmed to store
a look-up table containing the combinational circuit hnctions (truth table) for the logic
block. The combinaional logic section and the programmed multiplexers provide the flip-
flop input equations and the output of the logic block. Application of either CPLD or
FPGA depends on the user’s choice. Typical examples of CPLD and FPGA chips include
Altera Corporation’s EPM7032LC44-6(36 user 11’0 pins) and EPF 1 OK 1 OPLCC(84 user
I/O pins) respectively. Products can be developed using either one from conceptual design
via prototype to production in a very short time. FPGAs are very popular these days.

4.10 Hardware DescriDtion Lanmaee (HDL)

Hardware Description Languages (HDLs) such as VHDL or Verilog along with CAD

128 Fundamentals of Digital Logic and Microcomputer Design

(Computer-aided design) tools, allow CPLDs and FPGAs to be programmed with millions
of gates in a short time. A CAD system contains a number of tools that are used to design
a logic circuit. These tools are used in the following sequence:

1. A “Schematic Capture” tool is the first step which is used to design the logic
circuit using truth tables. Truth tables are normally used for a small logic function that can
be part of a larger circuit. The word schematic means a logic diagram in which logic gates
along with their interconnections is shown. Alternatively, the logic circuit can also be
designed by a set of waveforms in a timing diagram. The CAD system uses a “Waveform
Editor” to draw the timing diagram. The CAD System can then automatically translate this
timing diagram to a logic diagram showing logic gates along with their interconnections.

2. The next step is called “Synthesis”. The “Synthesis” CAD tool generates a set.
of logic expressions describing the functions required to obtain the circuit. These initial
logic expressions are not in an optimal form. Based upon the designer’s input of these
initial logic expressions, the CAD system utilizes logic optimization during “Synthesis” to
generate a minimum number of equations for obtaining a better circuit.

3. The third step is the “Functional Simulation”. A Functional Simulator” tool
is to verify the correct operation of the circuit being designed. A “Timing Simulator”
can be used for precise simulations that takes into consideration timing details of the
implementation technology of the final logic circuit.

Computer-aided design (CAD) software can be used to program CPLD and
FPGA chips. Typical PLD programming languages are PALASM (Advanced Micro
Devices, Inc.), ABEL (Data I/O Corporation, Inc.), VHDL (U.S. Department of Defense)
and Verilog (Cadence Design Systems). ABEL stands for Advanced Boolean Expression
Language while PAL Assembler is abbreviated as PALASM. ABEL is supported by a
PLD language translator. The purpose of the translator is to provide the fuse pattern from
the program written in ABEL in terms of the fuse pattern of a PLD. Note that most PLDs
can be programmed using the sum of minterms form. The ABEL translator can minimize
the equations in sum of minterms or in almost any other format. ABEL is basically a high-
level language for hardware design similar to software design language such as Pascal or C.

VHDL and Verilog are PLD programming languages like ABEL for designing
both Combinational and Sequential circuits. VHDL is an acronym for VHSIC Hardware
Description Language. VHSIC stands for Very High Speed Integrated Circuits. The design
of VHDL evolved from the United States Department of Defense (DOD) VHSIC program.
VHDL is based on Ada programming language. The design of VHDL started in 1983
and after going through several versions was formally accepted as an IEEE (Institute of
Electrical and Electronics Engineers) standard in 1987.

Verilog (developed by Design Automation in 1984 and later acquired by Cadence
Design Systems), another hardware design language, is also popular. Verilog is not an
acronym. Verilog (syntax based mostly on C and some Pascal) is easier to learn compared
to VHDL (syntax based on Ada). Verilog provides more features than VHDL to support
large project development. At present, both VHDL and Verilog have approximately equal
market share. Typical Compilers / Simulators for VHDL and Verilog can be downloaded
from the Internet.

In order to design systems using HDL, two levels of abstractions or their
combinations are used. These are Structural, and Behavioral. The structural level can be
used to describe a schematic or a logic diagram (gates and interconnections) of a system.
This level makes the designer’s task easy for hardware implementation. A “Hierarchical”
structural model can be used by the designer to decompose a large digital system into

Combinational Logic Design 129

smaller blocks or modules. The designer can define a block that is used repeatedly. This
common block can be used by other blocks in the HDL program to accomplish the desired
task.

The Behavioral level, on the other hand, is used to describe a system in terms
of what it does and how it behaves rather than in terms of its components and their
interconnections. Boolean expressions are used to accomplish this. Behavioral level
is typically used to describe sequential circuits, although it can also be used to describe
combinational circuits. The flow of data in Behavioral model can be represented via
concurrent or sequential statements. Concurrent statements are executed in parallel as soon
as data is available at the inputs while sequential statements are executed in the order
that they are written. Behavioral model uses either sequential statements or concurrent
statements. The first method is useful in describing complex digital systems. When
behavioral model is described by concurrent statements, it is called Dataflow modeling.
The dataflow modeling describes a digital circuit in terms of its function and flow of data
through the circuit.

An HDL design program can be written and simulated using software tools
provided by manufacturers such as SynaptiCAD (Verilogger Pro), Xlinix (ModelSim
simulator / webpack 4.2), and Altera (Quartus 11). These software packages are owned
and remain the property of the respective manufacturers as indicated. They are protected
by international copyrights, and the terms and conditions of the agreements set forth in the
web sites of the manufacturers.

Verilogger Pro 8.3 can be downloaded from the web site www.syncad.com. This
version allows the user to compile and simulate Verilog programs. However, some features
such as save, import, export, and equation-based waveform generation are disabled.
ModelSim simulator / webpack 4.2 can be downloaded from Xlinix’s web site. This Xlinix
software package can be used to compile and simulate VHDL programs. Simulation can
be performed on the HDL design program in order to test it. An HDL program called “test
bench” can be written to test an HDL design. A test bench program allows the designer to
monitor the output(s) based on application of appropriate inputs. These outputs can then
be verified for correctness. Test results can be represented in terms of both waveform and
tabular form. The waveform typically contains timing diagrams to graphically show the
relationship between time, inputs, and outputs.

Verilog and VHDL along with examples for synthesizing Combinational circuits
and Sequential circuits are discussed in Appendix I and Appendix J respectively.

OUESTIONS AND PROBLEMS

4.1 Find function F for the following circuit:

Y xhF
4.2 Express the following fhctions F, and F2 in terms of the inputs A , B, and C. What

is the relationship between F, and F,?

130

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Fundamentals of Digital Logic and Microcomputer Design

A =

B -
C-

Given the following circuit:

ED-
(a)
(b) Derive the truth table.
(c)
(d)

Determine the function F of the following logic diagram and then analyze the
function using Boolean identities to show that F = A + B.

Derive the Boolean expression for F(A, B, C, D).

Determine the simplified expression for F(A, B, C, D) using a K-map.
Draw the logic diagram for the simplified expression using
NAND gates.

Draw a logic diagram to implement F = ABCDE using only 3-input AND gates.

Draw a logic diagram using two-input AND and OR gates to implement
the following function F = P(P + Q)(P + Q + R)(P + Q + R + S) without any
simplification; then analyze the logic circuit to verify that F = P.

Design a combinational circuit with three inputs (A, B, C) and one output (F).
The output is 1 when A + C = 0 or AC = 1; otherwise the output is 0. Draw a logic
diagram using a single logic gate.

Design a combinational circuit that accepts a 3-bit unsigned number and
generates an output binary number equal to the input number plus 1. Draw a logic
diagram.

Design a combinational circuit with five input bits generating a 4-bit output that
is the ones complement of four of the five input bits. Draw a logic diagram. Do
not use NOT, NAND, or NOR gates.
Design a combinational circuit that converts a 4-bit BCD input to its nines
complement output. Draw a logic diagram.

Design a BCD to seven-segment decoder that will accept a decimal digit in BCD

Combinational Logic Design 131

4.12

4.13

4.14

4.15

4.16

4.17

and generate the appropriate outputs for the segments to display a decimal digit
(0-9). Use a common anode display. Turn the seven segment OFF for non-BCD
digits. Draw a logic circuit. What will happen if a common cathode display is
used? Comment on the interface between the the decoder and the display.

Design a combinational circuit using a minimum number of full adders to decrement
a 6-bit signed number by 2. Assume 6-bit result. Draw a logic diagram using the
block diagram of a full adder as the building block.

Design a combinational circuit using full adders to multiply a 4-bit unsigned
number by 2. Draw a logic diagram using the block diagram of a full adder as the
building block.

Design a combinational circuit that adds two 4-bit signed numbers and generates
an output of 1 if the 4-bit result is zero; the output is 0 if the 4-bit result is nonzero.
Draw a logic circuit using the block diagram of a 4-bit binary adder as the building
block and a minimum number of logic gates.

Design a 4 x 16 decoder using a minimum number of 74 138 and logic gates.

Design a combinational circuit using a minimum number of 74138s (3 x 8
decoders) to generate the minterms m,, m5, and m, based on four switch inputs
S3, S2, S1, SO. Then display the selected minterm number (1 or 5 or 9) on a seven-
segment display by generating a 4-bit input (W, X, K Z) for a BCD to seven-
segment code converter. Ignore the display for all other minterms. Note that these
four inputs (W, X, Y, Z) can be obtained from the selected output line (1 or 5
or 9) of the decoders that is generated by the four input switches (S3, S2, S I ,
SO). Use a minimum number of logic gates. Determine the truth table, and then
draw a block diagram of your implementation using the following building blocks
(Figure P4.16):

c decoder
74138 4

Converter
Z -

Figure P4.16

_ -
F , (A, B, C) = AB C + ABC F,(A, B,C) = = ABC + ABC + ABC

Draw a logic diagram using a decoder and external gates. Assume that the
decoder outputs a HIGH on the selected line.

132

4.18

4.19

4.20

4.21

4.22
4.23

4.24

4.25

4.26

4.27

4.28

Fundamentals of Digital Logic and Microcomputer Design

Draw a logic diagram using a 74138 decoder and external gates to implement the
following:
F,(A,B, C) = Cm(1, 3,4), F,(A,B, C) = h (O , 2 , 4 , 7) ,
F,(A,B,C) ='Cm(O, 1,3,5,6), F,(A,B,C) = Cm(2,6)

Determine the truth table for a hexadecimal-to-binary priority encoder with line 0
having the highest priority and line 15 with the lowest.

Implement a digital circuit to increment (for C,, = 1) or decrement (for C, = 0) a 4-
bit signed number by 1 generating outputs in twos complement form. Note that C,,
is the input carry to the full adder for the least significant bit. Draw a schematic:
(a) Using only a minimum number of full adders and multiplexers.
(b) Using only a minimum number of full adders and inverters. Do not use any
multiplexers.

Implement each of the following using an 8-to-1 multiplexer:
(a) F(A, B, C, 0) = ABC + JBD + A B c + ACD
(b) F(W,X, Y, Z) = Z m(2,3,6,7,8,9, 12, 13, 15)

What are the main logic elementdgates in a ROM chip?
Design a combinational circuit using a 16 X 4 ROM that will increment a 4-bit
unsigned number by 1. Determine the truth table and then draw a block diagram
of your implementation showing the addresses and their contents in binary along
with one Output Enable (OE) input.

What are the basic differences among PROM, PLA, PAL and PEEL?

What is the technology used to fabricate EPROMs and EEPROMs?

Design a 4K x 8 EPROM (with two enable lines, and @) based system to
display the squares of BCD digits on seven segment displays using a minimum
number of 74LS47 BCD to seven segment converters. Each BCD digit will be
input to the EPROM via switches. The square of a particular BCD number will
be displayed in BCD each time the 4-bit number is input to the EPROM via the
switches. Draw a block diagram of your implementation showing the contents of
memory along with addresses in hex.

Design a 4-bit adder/subtractor (Example 4.3) using only full adders and
EXCLUSIVE-OR gates. Do not use any multiplexers.

Design a combinational circuit using a minimum number of full adders, and logic
gates with one BCD to seven-segment converter and one seven-segment display,
and which will perform A plus B or A minus B (A and B are signed numbers),
depending on a mode select input, M. If M = 0, addition is carried out; if
M = 1, subtraction is carried out. Assume A = A, A, A, A, A, and B = B, B, B2
B, B, (Two 5-bit numbers). The circuit will be able to carry out the subtraction
even if A < B. Use an LED to indicate the sign of the result (LED ON for negative
result and LED OFF for positive result). The result of the operation should always

Combinational Logic Design 133

appear in BCD form on the single seven-segment display. Assume that the result
will be in the range of 0 through t 9 in decimal and - 1 through -9 in decimal. For
example, if five-bit addition or subtraction provides a result of 101 11 in binary,
the circuit will take the two’s complement of the number, and will display minus
(Sign LED ON) 9 on the single seven-segment display. The Overflow bit (V)
should be indicated by another LED (LED ON for V= 1 and LED OFF for V=O).
Do not use any multiplexers.

5
SEQUENTIAL

LOGIC DESIGN
This chapter describes analysis and design of synchronous sequential circuits. Topics
include flip-flops, Mealy and Moore circuits, counters, and registers. An overview of
RAMS, state machine design using ASM chart, and asynchronous sequential circuit is also
included.

5.1 Basic ConceDts

So far, we have considered the design of combinational circuits. The main characteristic
of these circuits is that the outputs at a particular time t are determined by the inputs at
the same time t. This means that combinational circuits require no memory. However, in
practice, most digital systems contain combinational circuits along with memory. These
circuits are called “sequential.”

In sequential circuits, the present outputs depend on the present inputs and the
previous states stored in the memory elements. These states must be fed back to the
inputs in order to generate the present outputs. There are two types of sequential circuits:
synchronous and asynchronous.

In a synchronous sequential circuit, a clock signal is used at discrete instants of
time to ensure that all desired operations are initiated only by a train of synchronizing
clock pulses. A timing device called the “clock generator” produces these clock pulses.
The desired outputs of the memory elements are obtained upon application of the clock
pulses and some other signal at their inputs. This type of sequential circuit is also called a
“clocked sequential circuit.” The memory elements used in clocked sequential circuits are
called “flip-flops.” The flip-flop stores only one bit. A clocked sequential circuit usually
utilizes several flip-flops to store a number of bits as required. Synchronous sequential
circuits are also called “state machines.” In an asynchronous sequential circuit, completion
of one operation starts the operation that is next in sequence. Synchronizing clock pulses
are not required. Instead, time-delay devices are used in asynchronous sequential circuits
as memory elements. Logic gates are typically used as time delay devices, because the
propagation delay time associated with a logic gate is adequate to provide the required
delay. A combinational circuit with feedback among logic gates can be considered as an
asynchronous sequential circuit. One must be carehl while designing asynchronous systems
because feedback among logic gates may result in undesirable system operation. The logic
designer is normally faced with many problems related to the instability of asynchronous
system, so they are not commonly used. Most of the sequential circuits encountered in
practice are synchronous because it is easy to design and analyze such circuits.

135

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

136

5.2 Fib-Flops

A flip-flop is a one-bit memory. As long as power is available, the flip-flop retains the bit.
However, its output (stored bit) can be changed by the clock input. Flip-flops are designed
using basic storage circuits called ''latches.'' The most common latch is the SR (Set-Reset)
latch. A flip-flop is a latch with a clock input. This convention will be used in this book.

5.2.1 SR Latch
Figure 5.1 shows a basic latch circuit using NOR gates along with its truth table. The SR latch
has two inputs, S (Set) and R (Reset), and two outputs Q (true output) and (complement
of Q). To analyze the SR latch of Figure 5.l(a), note that a NOR gate generates an output
1 when all inputs are 0; on the other hand, the output of a NOR gate is 0 if any input is 1.
Now assume that S = 1 and R = 0; the D output of NOR gate #2 will be 0. This places 0 at
both inputs of NOR gate # I . Therefore, output Q of NOR gate #1 will be 1. Thus, Q stays at
1. This means that one of the inputs to NOR gate #2 will be I , producing 0 at the D output
regardless of the value of S. Thus, when the pulse at S becomes 0, the output Q will still
be 0. This will apply 0 at the input of NOR #1. Thus, Q will continue to remain at 1. This
means that when the set input S = 1 and the reset (clear) input R = 0, the SR latch stores a
1 (Q = I ,

Consider S = 0, R = 1 ; the Q output of NOR gate #1 will be 0. This will apply 0 at
both inputs of NOR gate #2. Thus, output will be 1. When the reset pulse input R returns
to zero, the outputs continues to remain at Q = 0, and D = 1. This means that with set input
S = 0 and reset input R = I , the SR latch is cleared to 0 (Q = 0, D = 1).

Next, consider Q = 1, D = 0. With S = 0 and R = 0, the NOR gate #1 will have both
inputs at 0. This will generate 1 at the Q output. The output Q of NOR gate #2 will be zero.
Thus, the outputs Q and are unchanged when S = 0 and R = 0.

outputs are 0. This is an invalid condition
because for the SR latch Q and must be complements of each other. Therefore, one must
ensure that the condition S = 1 and R = 1 does not occur for the SR latch. This undesirable
situation is indicated by a question mark (?) in the truth table. An SR latch can be built
from NAND gates with active-low set and reset inputs. Figure 5.2 shows the NAND gate

Fundamentals of Digital Logic and Microcomputer Design

= 0). This means that the SR latch is set to 1.

When S = 1 and R = 1, both Q and

(a) NOR gate implementation

FIGURE 5.1 SR Latch using NOR gates

S

Logic I

Logic 0

Logic 1

Logic 0

(a) NOR gate implementation

FIGURE 5.2 NAND implementation of an SR latch

(b) Truth table

(b) Truth table

Sequential Logic Design 137

implementation of an SR latch.
The SR latch with Sand R inputs will store a 1 (Q = 1 and 0 = 0) when the S input

is activated by a low input (logic 0) and R = 1. On the other hand, the latch will be cleared
or reset to 0 (Q = 0, = 1) when the R input is activated by a low input (logic 0) and S = 1.

Note that an active low signal can be defined as a signal that performs the desired
hnction when it is low or 0. In Figure 5.2, the SR latch stores a 1 when S = 0 = active low
and R = 1 ; on the other hand, the latch stores a 0 when R = 0 = active low and S = 1.

Note that the NAND gate produces a 0 if all inputs are 1; on the other hand, the
NAND gate generates a 1 if at least one input is 0. Now, suppose that S = 0 and R = 1. This
implies that the output of NAND gate #2 is 1. Thus, Q =1. This will apply 1 to both inputs
of NAND gate #l. Thus, = 0. Therefore, a 1 is stored in the latch. Similarly, with inputs
S = 1 and R = 0, it can be shown that Q = 0 and 0 = 1. The latch stores a 0.

With S = 1 and R = 1, both outputs of the latch will remain at the previous values.
There will be no change in the latch outputs. Finally, S = 0 and R = 0 will produce a invalid
condition (Q = 1 and 0 = 1). This is indicated by a question mark (?) in the truth table of
Figure 5.2(b).

An SR latch can be used for designing a switch debouncing circuit. Mechanical
switches are typically used in digital systems for inputting binary data manually. These
mechanical ON-OFF switches (e.g., the keys in a computer keyboard) vibrate or bounce
several times such that instead of changing state once when activated, a key opens and
closes several times before settling at its final values: These bounces last for several
milliseconds before settling down.

A debouncer circuit, shown in Figure 5.3, can be used with each key to get rid of
the bounces. The circuit consists of an SR latch (using NOR gates) and a pair of resistors.
In the figure, a single-pole double-throw switch is connected to an SR latch. The center
contact (Z) is tied to +5 V and outputs logic 1. On the other hand, contacts X or Y provide
logic 0 when not connected to contact 2. The values of the resistors are selected in such a
way that X i s HIGH when connected to Z or Y is HIGH when connected to Z.

When the switch is connected to X, a HIGH is applied at the R input, and S =

0, then Q = 0, 0 = 1. Now, suppose that the switch is moved from X to Y. The switch is
disconnected from R and R = 0 because the ground at the R input pulls R to 0. The outputs Q
and of the SR latch are unchanged because both R and S inputs are at 0 during the switch
transition fiom X to Y. When the switch touches Y, the S input of the latch goes to HIGH
and thus Q = 1 and = 0. If the switch vibrates, temporarily breaking the connection, the S
input of the SR latch becomes 0, leaving the latch outputs unchanged. If the switch bounces
back connecting 2 to Y, the S input becomes 1, the latch is set again, and the outputs of the
SR latch do not change. Similarly, the switch transition from Y to X will get rid of switch
bounces and will provide smooth transition.

State

-rl
FIGURE 5.3 A debouncing circuit for a mechanical switch

138 Fundamentals of Digital Logic and Microcomputer Design

Q
S

CLK-

-
Q

R
~~

(a) NAND gate implementation (b) Truth Table

(c) Logic Symbol
FIGURE 5.4 RS Flip-Flop

5.2.2 RS Flip-Flop
An RS flip-flop is a clocked SR latch. This means that the RS flip-flop is same as the SR
latch with a clock input. The SR flip-flop is an important circuit because all other flip-flops
are built from it. Figure 5.4 shows an RS flip-flop.

The RS flip-flop contains an SR latch with two more NAND gates. It has three
inputs (S, CLK, R) and two outputs (Q and D). When S = 0 and R = 0 and CLK = 1, the
outputs of both NAND gates #1 and #2 are 1. This means that the output of NAND gate
#3 is 0 if = 1 and is 1 if D = 0. This means that Q is unchanged as long as S = 0 and R
= 0. On the other hand, the output of NAND gate #4 is 0 if Q = 1 and is 1 if Q = 0. Thus,
Q is also unchanged. Suppose that S = 1, R = 0, and CLK = 1. This will produce 0 and 1
-

(a) NAND gate implementation (b) Truth Table

(c) Logic Symbol

FIGURE 5.5 D Flip-Flop

Sequential Logic Design 139

Q

Ck

Q :=- us

(a) NAND gate implementation (b) Truth Table

(c) Logic Symbol

FIGURE 5.6 JK Flip-Flop

at the outputs of NAND gates #1 and #2 respectively. This in turn will generate 1 and 0 at
the outputs of NAND gates #3 and #4 respectively. Thus, the flip-flop is set to 1 . When the
clock is zero, the outputs of both NAND gates #I and #2 are 1. This in turn will make the
outputs of NAND gates #3 and #4 unchanged.

The other conditions in the function table can similarly be verified. Note that S =

1, R = 1, and CLK = 1 is combination of invalid inputs because this will make both outputs,
Q and equal to 1. Also, Q and D must be complements of each other in the RS flip-flop.
Q+ and

5.2.3 D Flip-Flop
Figure 5.5 shows the logic diagram, truth table and the logic symbol of a D flip-flop (Delay
flip-flop). This type of flip-flop ensures that the invalid input combinations S = 1 and R = 1
for the RS flip-flop can never occur. The D flip-flop has two inputs (D and CLK) and two
outputs (Q and Q). The D input is same as the S input and the complement of D is applied
to the R input. Thus, R and S can never be equal to 1 simultaneously.

The D flip-flop (called gated D flip-flop) transfers the D input to output Q when
CLK = 1. Note that if CLK = 0, one of the inputs to each of the last two NAND gates will
be 1 ; thus, outputs of the D flip-flop remain unchanged regardless of the values of the D
input.

The D flip-flop is also called a “transparent latch.” The term “transparent” is
based on the fact that the output Q follows the D input when CLK = 1. Therefore, transfer
of input to outputs is transparent, as if the flip-flop were not present.

are outputs of the flip-flop after the clock (CLK) is applied.

5.2.4 JK Flip-Flop
The JK flip-flop is a modified version of the RS flip-flop such that the Sand R inputs of the
RS flip-flop correspond to the J and K inputs of the JK flip-flop. Furthermore, the invalid
inputs S = 1 and R = 1 are allowed in the JK flip-flop. When J = 1, K = 1, and Clk = 1, the
JK flip-flop complements its output. Otherwise, the meaning of the J and K inputs is the
same as that of the S and R inputs respectively. Figure 5.6 shows a logic diagram of JK flip-
flop along with its truth table. This is a NANDNOR implementation, and is called a gated
JK flip-flop. The circuit operation of Figure 5.6(a) is discussed in the following:
i) Suppose Q = 1 , = 0, and CLK = 1. With J = 0 and K = 0, the outputs of inverters

140 Fundamentals of Digital Logic and Microcomputer Design

#2 and #5 are both 0. This means that the outputs of NOR gates #3 and #6 are 1 and 0
respectively. Therefore, the outputs of the flip-flop are unchanged

ii) Suppose Q = 0, e = 1, and CLK = 1. With J = 1 and K = 0, the outputs of inverters #2
and #5 are 0 and 1 respectively. This means that a 0 is produced at the output of NOR
gate #6 (e = 0). Thus, apply a 0 at one of the inputs of NOR gate #3 generating a 1 at
its output (Q = 1). The JK flip-flop is therefore set to 1 (Q = 1 and

= 0 and CLK = 1. With J = 0 and K = 1, the outputs of the inverter #2
and #5 are 1 and 0 respectively. This means that the output of NOR gate #3 is 0. This
will produce a 1 at the output of NOR gate #6. Thus, the flip-flop is cleared to zero (Q
= O a n d e = 1).

iv) Suppose Q = 1, = 0, and CLK = 1. With J = 1 and K = 1, the outputs of inverters #2
and #5 are 1 and 0 respectively. This will produce a 0 at the output of NOR gate #3 (Q
= 0). This in turn will apply 0 at one of the inputs of NOR gate #6, making its output
HIGH (e = 1). Thus, the output of the JK flip-flop is complemented. The other rows in
the truth table of the JK flip-flop can similarly be verified.

JK flip-flops are never built using the schematic of figure 5.6(a). This is because the
schematic of Figure 5.6(a) will generate oscillations. For example, when J=1, K=l, and
Clk =1, the outputs (Q and g) are complemented with the clock staying high after the first
transition ofthe outputs. Since the outputs are fed back, the outputs will change continuously
after being complemented once, causing oscillations. This undesirable behavior can be
avoided using master-slave (edge-triggered) flip-flops discussed in the next section.

= 0).
iii) Suppose Q = 1,

5.2.5 T Flip-Flop
The T (Toggle) flip-flop complements its output when the clock input is applied with T =

1 ; the output remains unchanged when T = 0. The name “toggle” is based on the fact that
the T flip-flop toggles or complements its output when the clock input is 1 with T = 1. T
flip-flop is not available commercially. However, T flip-flop can be obtained from JK flip-
flop in two ways. In the first approach, the J and K inputs of the JK flip-flop can be tied
together to provide the T input; the output is complemented when T = 1 at the clock while
the output remains unchanged when T = 0 at the clock. In the second approach, the J and
K inputs can be tied to high; in this case, T is the clock input.

5.3 Master-Slave Flia-Floa

As mentioned before, sequential circuits contain combinational circuits with flip-flops in
the feedback loop. These flip-flops generate outputs at the clock based on the inputs from

Logic

Logic

(a) Positive Pulse
FIGURE 5.7 Clock Pulses

(b) Negative Pulse

Sequential Logic Design 141

FIGURE 5.8 Typical Master-Slave D Flip-Flop

the combinational circuits. The feedback loop can create an undesirable situation if the
outputs from the combinational circuits that are connected to the flip-flop inputs change
values at the clock pulse simultaneously when flip-flops change outputs. This situation can
be avoided if the flip-flop outputs do not change until the clock pulse goes back to 0. One
way of accomplishing this is to ensure that the outputs of the flip-flops are affected by the
pulse transition rather than pulse duration of the clock input.To understand this concept,
consider the clock pulses shown in Figure 5.7. There are two types of clock pulses: positive
and negative. A positive pulse includes two transitions: logic 0 to logic 1 and logic 1 to
logic 0. A negative pulse also goes through two transitions: logic 1 to logic 0 and logic 0
to logic 1.

Assume that a positive pulse is used as the clock input of a D flip-flop. With the
D input = 1, the output of the flip-flop will become 1 when the clock pulse reaches logic 1.
Now, suppose that the D input changes to zero but the clock pulse is still 1. This means that
the flip-flop will have a new output, 0. In this situation, the output of one flip-flop cannot
be connected to the input of another when both flip-flops are enabled simultaneously by
the same clock input. This problem can be avoided if the flip-flop is clocked by either
the leading or the trailing edge rather than the signal level of the pulse. A master-slave
flip-flop is used to accomplish this. Figure 5.8 shows a typical master-slave D flip-flop. A
master-slave flip-flop contains two independent flip-flops. Flip-flop #1 (FF #1) works as
a master flip-flop, whereas the flip-flop (FF #2) is a slave. An inverter is used to invert the
clock input to the slave flip-flop.

Assume that the CLK is a positive pulse. Suppose that the D input of the master
flip-flop (FF # I) is 1 and the CLK input = 1 (leading edge). The output of the inverter will
apply a 0 at the CLK input of the slave flip-flop (FF #2). Thus, FF #2 is disabled. The
master flip-flop will transfer a 1 to its Q output. Thus, Xwill be 1.

At the trailing edge of the CLK input, the CLK input of the master flip-flop is 0.
Thus, FF #1 is disabled. The inverter will apply a 1 at the CLK input of the FF #2. Thus,
1 at the X input (D input of FF #2) will be transferred to the Q output of FF #2. When the
CLK goes back to 0, the master flip-flop is separated. This avoids any change in the other
inputs to affect the master flip-flop. The slave flip-flop will have the same output as the
master.

5.4 Preset and Clear Inputs

Commercially available flip-flops include separate inputs for setting the flip-flop to 1 or
clearing the flip-flop to 0. These inputs are called “preset” and “clear” inputs respectively.

142 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 5.9 D Flip-Flop with Clear Input

Reset
Set

(a) Symbolic Representation (b) Characterstic Table (c) Excitation Table

FIGURE 5.10 RS flip-flop

I I I I

(a) Symbolic Representation (b) Characterstic Table (c) Excitation Table

FIGURE 5.1 1 JK flip-flop

-1 mi
(c) Excitation Table (a) Symbolic Representation (b) Characterstic Table

FIGURE 5.12 D flip-flop

-
Complement

(a) Symbolic Representation (b) Characterstic Table

FIGURE 5.13 T flip-flop

(c) Excitation Table

Sequential Logic Design 143

These inputs are useful for initializing the flip-flops without the clock pulse. When the
power is turned ON, the output of the flip-flop is in undefined state. The preset and clear
inputs can directly set or clear the flip-flop as desired prior to its clocked operation.

Figure 5.9 shows a D flip-flop with clear inputs. The triangular symbol indicates
that the flip-flop is clocked at the positive edge of the clock pulse. In Figure 5.9, a circle
(inverter) is used with the triangular symbol. This means that the flip-flop is enabled at the
negative edge of the clock pulse. The circle at the clear input means that clear input must be
1 for normal operation. If the clear input is tied to ground (logic 0), the flip-flop is cleared
to 0 (Q = 0 , o = 1) irrespective of the clock pulse and the D input. The CLR input should
be connected to 1 for normal operation. Some flip-flops may have a preset input that sets
Q to 1 and to 0 when the preset input is tied to ground. The preset input is connected to
1 for normal operation.

5.5 Summarv of FliD-FloDs

Figures 5.10 through 5.13 summarize operations of all four flip-flops along with the
symbolic representations, characteristic and excitation tables. In the figures, X represents
don’t care whereas Q+ indicates output Q after the clock pulse is applied.

The characteristic table of a flip-flop is similar to its truth table. It contains the
input combinations along with the output after the clock pulse. The characteristic table is
useful for analyzing a flip-flop.

The present state (present output), the next state (next output) after the clock
pulse, and the required inputs for the transition are included in the excitation table. This is
useful for designing a sequential circuit, in which one normally knows the transition from
the present to the next state and wants to determine the required flip-flop inputs for the
transition.

The D flip-flop is widely used in digital systems for transferring data. Several
D flip-flops can be combined to form a register in the CPU of a computer. The 74HC374
is a 20-pin chip containing eight independent D flip-flops. It is designed using CMOS.
The flip-flops are enabled at the leading edge of the clock. The 74LS374 is same as the
74HC374 except that it is designed using TTL.

The JK flip-flop is a universal flip-flop and is typically used for general applications.
Typical commercially available JK flip-flop includes the 74HC73 (or 74LS73A). The
74HC73 is a 14-pin chip. It contains two independent JK flip-flops in the same chip,
designed using CMOS. Each flip-flop is enabled at the trailing edge of the clock pulse.
Each flip-flop also contains a direct clear input. The 74HC73 is cleared to zero when
the clear input is LOW. The 74LS73A is same as the 74HC73 except that it is designed
using TTL. The T flip-flop is normally used for designing binary counters because binary
counters require complementation.The T flip-flop is not commercially available. One way
of obtaining a T Flip-flop is by connecting the J and K inputs of a JK flip-flop together
(Section 5.2.5).

An example of a commercially available level-triggered flip-flop is the 74HC373
(or 74LS373). The 373 (20-pin chip) contains eight independent D latches with one enable
input.

Sometimes the characteristic equation of a flip-flop is useful in analyzing the
flip-flo p’s operation. The Characteristic equations for the flip-flops can be obtained from
the truth tables. Figure 5.14 through 5.16 show how these equations are obtained using K-
maps for RS, JK, T, and D flip-flops.

144 Fundamentals of Digital Logic and Microcomputer Design

1
1

1 0 1
1 1 Invalid Q+=s+EQ

Q
0
0

(a) Truth Table for RS-FF (b) K-map for characteristic
equation of RS-FF

FIGURE 5.14 Truth table and K-map for the Characteristic equation of RS flip-flop

D Q+
0 0
1 1

11
0

0

1

(a) Truth Table for JK-FF

0 0

TI ow
.-_ - -

- 1 ’ 1

Q+= JG + KQ
(b) K-map for characteristic

equation of JK-FF

1

(c) Truth Table for T-FF (d) K-map for characteristic
equation of T-FF.

1 1

FIGURE 5.15 Truth table and K-map for the characteristic equation of JK and T flip-
flops

(a) Truth Table for D-FF
Q+= D

(b) K-map for characteristic equation of D-FF.

FIGURE 5.16 Truth table and K-map for the characteristic equation of D flip-flop

Sequential Logic Design 145

Examde 5.1
Given the following clock and the D inputs for a negative-edge-triggered D flip-flop, draw
the timing diagram for the Q output for the first five cycles shown. Assume Q is preset to
1 initially.
Solution:

1 I

D

J

5.6 Analvsis of Svnchronous Seauential Circuits

A synchronous sequential circuit can be analyzed by determining the relationships between
inputs, outputs, and flip-flop states. A state table or a state diagram illustrates how the
inputs and the states of the flip-flops affect the circuit outputs. Boolean expressions can
be obtained for the inputs of the flip-flops in terms of present states of the flip-flops and
the circuit inputs. As an example consider analyzing the synchronous sequential circuit of
Figure 5.17.

The logic circuit contains two D flip-flops (outputs X, Y), one input A and one
output B. The equations for the next states of the flip-flops can be written as

X + = (X + Y) * A
Y + = A + X

Here X+ and Y+ represent the next states of the flip-flops after the clock pulse.
The right side of each equation denotes the present states of the flip-flops (X, Y) and the
input (A) that will produce the next state of each flip-flop. The Boolean expressions for the
next state are obtained from the combinational circuit portion of the sequential circuit. The

FIGURE 5.17 Analysis of a sequential circuit

146 Fundamentals of Digital Logic and Microcomputer Design

Input
A

0

1

0

1

0

1

0

1

TABLE 5.1 State Table for Figure 5.17

Next State Flip Flop Inputs Output

X+ Y+ Dx DY B

1 1 1 1 1

1 1 1 1 0

1 1 1 1 0

0 1 0 1 1

1 0 1 0 1

0 1 0 1 0

1 0 1 0 0

0 1 0 1 1

Present State

X Y

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

outputs of the combinational circuit are connected to the D inputs of the flip-flops. These
D inputs provide the next states of the flip-flops after the clock pulse. The present state of
the output B can be derived from the figure as follows:

B = A O Y
A state table listing the inputs, the outputs, and the states of the flip-flops along

with the required flip-flop inputs can be obtained for Figure 5.17. Table 5.1 depicts a typical
state table. The state table is formed by using the following equations (shown earlier):

x+ = (X + y) A
Y ' = A + X

To derive the state table, all combinations of the present states of the flip-flops and input A
are tabulated. There are eight combinations for three variables from 000 to 1 1 1. The values
for the flip-flop inputs (next states of the flip-flops) are determined using the equations. For
example, consider the top row with X = 0, Y = 0, and A = 0. Substituting in the equations
for next states.

X + = (X + y) * A = (O + O) - O = l
Y+ = A +x = 0 + 0 = I

Now, to find the flip-flop inputs, one should consider each flip-flop separately.
Two D flip-flops are used. Note that for a D flip-flop, the input at D is same as the next
state. The D input is transferred to the output Q at the clock pulse. Therefore, X+ = D, and
Y+ = D?.

The characteristic table of a D flip-flop, discussed before, is used to determine
the flip-flop inputs that will change present states of the flip-flops to next state. The
characteristic table of D flip-flop is provided here for reference:

D I Q

Therefore, for D flip-flops, the next states and the flip-flop inputs will be same in
the state table. By inspecting the top row of the state table, it can be concluded that D, = 1
and D, = 1 because the next states X+ = 1 and Y+ = 1.

Finally, the output B can be obtained from the equation,
B = A O 7

Sequential Logic Design 147

Present State

X Y

0 0

0 1

1 0

1 1

TABLE 5.2 Another Form of the State Table

Next State Flip Flop Inputs Outputs

A=O A = l A=O A=I A=O A = l

X+ Y+ X+ Y+ D, D, D, D, B B

1 1 1 1 1 1 1 1 1 0

1 1 0 1 1 1 0 1 0 1

1 0 0 1 I 0 0 1 1 0

1 0 0 1 1 0 0 1 0 1

FIGURE 5.18 State diagram for Table 5.1

For example, consider the top row of the state table. A = 0 and Y = 0. Thus,
B=0@0=0@1=1

All other rows of the state table can similarly be verified. The state table of Table 5.1 can
be shown in a slightly different manner. Table 5.2 depicts another form of the state table
of Table 5.1.

A state table can be depicted in a graphical form. All information in the state table
can be represented in the state diagram. A circle is used to represent a state in the state
diagram. A straight line with an arrow indicator is used to show direction of transition from
one state to another. Figure 5.18 shows the state diagram for Table 5.1.

Because there are two flip-flops (X, Y) in Figure 5.17, there are four states: 00,
01, 10 and 11. These are shown in the circle of the state diagram. Also, transition from
one state to another is represented by a line with an arrow. Each line is assigned with alb
where a is input and b is output. From the example in Figure 5.18, with present state 10
and an input of 1, the output is 0 and the next state is 01. If the input (and/or output) is not
defined in a problem, the input (andlor output) will be deleted in the state table and the state
diagram.

The inputs of the flip-flops (0, and 0,) in the state table are not necessary to
derive the state diagram. In analyzing a synchronous sequential circuit, the logic diagram
is given. The state equation, state table, and state diagram are obtained from the logic
diagram. However, in order to design a sequential circuit, the designer has to derive the
state table and the state diagram from the problem definition. The flip-flop inputs will
be useful in the design. One must express the flip-flop inputs and outputs in terms of the
present states of the flip-flops and the inputs. The minimum forms of these expressions can
be obtained using a K-map. From these expressions, the logic diagram can be drawn.

148

5.7

Fundamentals of Digital Logic and Microcomputer Design

TvDes of Svnchronous Sequential Circuits

There are two types of Synchronous sequential circuits: the Mealy circuit and the Moore
circuit. A synchronous sequential circuit typically contains inputs, outputs, and flip-flops.
In the Mealy circuit, the outputs depend on both the inputs and the present states of the
flip-flops. In the Moore circuit, on the other hand, the outputs are obtained from the flip-
flops, and depend only on the present states of the flip-flops . Therefore, the only difference
between the two types of circuits is in how the outputs are produced.

The state table of a Mealy circuit must contain an output column. The state
table of a Moore circuit may contain an output column, which is dependent only on the
present states of the flip-flops. A Moore machine normally requires more states to generate
identical output sequence compared to a Mealy machine. This is because the transitions are
associated with the outputs in a Mealy machine.

5.8 Minimization of States

A simplified form of a synchronous sequential circuit can be obtained by minimizing the
number ofstates. This will reduce the number of flip-flops and simplify the complexity ofthe
circuit implementations. However, logic designers rarely use the minimization procedures.
Also, there are sometimes instances in which design of a synchronous sequential circuit is
simplified if the number of states is increased. The techniques for reducing the number of
states presented in this section are merely for illustrative purpose.

The number of states can be reduced by using the concept of equivalent states.
Two states are equivalent if both states provide the same outputs for identical inputs. One
of the states can be eliminated if two states are equivalent. Thus, the number of states can
be reduced.

For example, consider the state diagram of Figure 5.19. Each state is represented
by a circle with transition to the next state based on either an input of 0 or 1 generating an
output.

Next, consider that a string of input data bits (d) in the sequence 01001 11 101 is
applied at state V of the synchronous sequential circuit. For the given input sequence, the
output and the state sequence can be obtained as follows:

State V V W Y Z W V W V V W
Input 0 1 0 0 1 1 1 1 0 1

output 0 1 0 0 1 0 1 0 0 1
With the sequential circuit in initial state V, a 0 input generates a 0 output and the

/-

010'

9- 1 I0

1

FIGURE 5.19 State diagram for minimization

Present State

____ ~~ ______

V W

Y V

Next State Output

d=O d=l d=O d=I

0 1

0 0

Present State

X I Y V I 0 0

Next State output

d=O d=l d=O d=l

1 : Y
z

V W

Y V

Y V

Z V V

V W

I : V

W

0 1

0 0

0 0

0 0

0 1

0

1

Present State Next State Output

d=O d= 1 d=O d= 1

V

W

7y

Y
z

Y V V 0 0

V

W

V W

Y V

0 1

0 0

150 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 5.20 Reduced form of the state diagram

R'

FIGURE 5.21 State diagram for Example 5.2

required to represent five states whereas two flip-flops will represent three states. Thus,
one flip-flop is eliminated and the complexity of implementation may be reduced. Note
that a synchronous sequential circuit can be minimized by determining the equivalent
states, provided the designer is only concerned with the output sequences due to input
sequences.

5.9 Desim of Svnchronous Seauential Circuits

The procedure for designing a synchronous sequential circuit is a three-step process as
follows:
1. Derive the state table and state diagram from the problem definition. If the state

diagram is given, determine the state table.
2. Obtain the minimum form of the Boolean equations for flip-flop inputs and outputs, if

any, using K-maps.
3. Draw the logic diagram. Note that a combinational circuit is designed using a truth

table whereas the synchronous sequential circuit design is based on the state table.

ExamDle 5.2
Design a synchronous sequential circuit for the state diagram of Figure 5.21 using D flip-

Solution
Step 1: Derive the state table. The state table is derived from the state diagram (Figure

flops.

Sequential Logic Design

TABLE 5.6 State Table for Example 5.2

151

~~

Present State

X Y

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

Next State

X+ Y+

0 0

0 1

1 1

1 0

0 0

1 1

0 1

0 0

Flip Flop Inputs

Dx D,
0 0

0 1

1 1

1 0

0 0

1 1

0 1

0 0

Output

z

5.21) and the excitation table [Figure 5.12(c)] of the D flip-flop. Table 5.6 shows
the state table.

The state table is obtained directly from the state diagram. In the state table, the
next states are same as the flip-flop inputs because D flip-flops are used. This is evident
from the excitation table of Figure 5.12(c).

(a) K-map for D, (b) K-map for D , (c) K-map for Z
D , ~ = X Y A +TY D , = y A + Y z = Y 0 A Z = Y A + X

FIGURE

I I

FIGURE 5.23 Logic diagram for Example 5.2

152 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 5.24 State diagram for Example 5.3

TABLE 5.7

TABLE 5.7 (a) Excitation Table of JK flip-flop from Figure 5.1 l c

State and Excitation Tables for Example 5.3

Q Q+ J K

0 0 0 X

0 1 1 X

1 0 X 1

1 1 X 0

TABLE 5.7 (b) State Table for Example 5.2

Present State

X Y

0 0

0 0

0 1

0 I

I 0

1 0

1 1

1 1

-
A

0

1

0

1

0

1

0

1 -

Next State

X+ Y+

0 0

0 1

0 1

1 1

1 0

0 0

0 0

1 0

Flip Flop InDuts

Jx Kx J Y KY

0 X 0 X

0 X 1 X

0 X X 0

1 X X 0

X 0 0 X

X 1 0 X

X 1 X 1

X 0 X 1

Step 2: Obtain the minimum forms of the equations for the flip-flop inputs and the output.
Using K-maps and the output, the equations for flip-flop inputs are simplified as
shown in Figure 5.22.

Step 3: Draw the logic diagram. The logic diagram is shown in Figure 5.23.

Examole 5.3
Design a synchronous sequential circuit for the state diagram of Figure 5.24 using JK flip-
flops.

Sequential Logic Design 153

Solution
Step 1: Derive the state table. The state table can be directly obtained from the state diagram

(Figure 5.24) and the excitation table [Figure 5.11(c)]. Table 5.7 shows the state
table. For convenience, the excitation table of the JK flip-flop of Figure 5.1 1 (c)
is also included.
Let us explain how the state table is obtained. The input A is 0 or 1 at each state, so

the left three columns show all eight combinations for X , Y, and A . The next state column is
obtained from the state diagram. The flip-flop inputs are then obtained using the excitation
table for the JK flip-flop. For example, consider the top row. From the state diagram, the
present state (00) remains in the same state (00) when input A = 0 and the clock pulse is
applied. The output of flip-flop X goes from 0 to 0 and the output of flip-flop Y goes from
0 to 0. From the excitation table of the JK flip-flop, J, = 0, K, = X, J, = 0, and K, = X. The
other rows are obtained similarly.

Step 2: Obtain the minimum forms of the equations for the flip-flop inputs. Using K-maps,
the equations for flip-flop inputs are simplified as shown in Figure 5.25.

Step 3: Draw the logic diagram as shown in Figure 5.26.

XkAOO 01 11 10

1

Jx= YA Kx = FA + YA = Y e A
(a) K-maps for JX and KX

1 I I l x l x l
Jy =xA

(b) K-maps for JY and Ky

FIGURE 5.25 K-maps for Example 5.3

CIk)I
FIGURE 5.26 Logic Diagram for Example 5.3

154

Symbolic
State

Fundamentals of Digital Logic and Microcomputer Design

Binary State

FIGURE 5.27 State Diagram for Example 5.4

A

ExamDle 5.4
Design a synchronous sequential circuit with one input X and an output Z. The input X is
a serial message and the system reads X one bit at a time. The output Z = 1 whenever the
pattern 101 is encountered in the serial message. For example,

If input: 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1
then output: 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1

Use T flip-flops.
Solution
Step I : Derive the state diagram and the state table.

Figure 5.27 shows the state diagram. In this diagram each node represents a state.
The labeled arcs (lines joining two nodes) represent state transitions. For example, when the
system is in state C, if it receives an input 1, it produces an output 1 and makes a transition
to the state D after the clock. Similarly, when the system is in state C and receives a 0 input,
it generates a 0 output and moves to state A after the clock. This type of sequential circuit
is called a Mealy machine because the output generated depends on both the input X and
the present state of the system. It should be emphasized that each state in the state diagram
actually performs a bookkeeping operation; these operations are summarized as follows

Yl Yo

0 0

State Interpretation

D

A

B Received the first 1

C

D

Looking for a new pattern

Received a 1 followed by a 0

Recognized the pattern 10 1

1 0

The state diagram can be translated into a state table, as shown in Table 5.8. Each
state can be represented by the binary assignment as follows:

1 I ; 1

B

C

Sequential Logic Design 155

Present State

A
B
C

Next State Output z
x=o x= 1 x=o X = l

A B 0 0
C B 0 0
A D 0 1

D C B 0 0

Present State

Y l YO

Present State

Yl Yo

0 0
0 1
1 1
1 0

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

Next State Output z
Yl +YO+ YI +YO+ Input Input
x=o x= 1 x=o x= 1

0 0 0 1 0 0
1 1 0 1 0 0
0 0 1 0 0 1
1 1 0 1 0 0

Input

X

~ ~~~ ~~

Next State

Y', Y+O

0 0

0 1

1 1

0 1

1 1

0 1

0 0

1 0

~~

Flip Flop Inputs

T.1 Tfl
0 0

0 1

1 0

0 0

0 1

1 1

1 1

0 1

Ouput

Z

Step 2: Derive the minimum forms of the equations for the flip-flop inputs and the output.
Using K-maps, the simplified equations for the flip-flops inputs and the output can be

156 Fundamentals of Digital Logic and Microcomputer Design

(a) K-map for Tyl (b) K-map for Tyo (c) K-map for 2

T,, =yoX+y1y7;X T,, =y1+ Fix z = y1yoX

FIGURE 5.28 K-maps for Example 5.4

FIGURE 5.29 Logic Diagram for Example 5.4

obtained as shown in Figure 5.28.
Step 3: Draw the logic diagram as shown in Figure 5.29.

5.10 DesiPn of Counters

A counter is a synchronous sequential circuit that moves through a predefined sequence of
states upon application of clock pulses. A binary counter, which counts binary numbers in
sequence at each clock pulse, is the simplest example of a counter. An n-bit binary counter
contains n flip-flops and can count binary numbers from 0 to 2"-'. Other binary counters
may count in an arbitrary manner in a nonbinary sequence. The following examples will
illustrate the straight binary sequence and nonbinary sequence counters.

ExamDle 5.5
Design a two-bit counter to count in the sequence 00, 0 1, 10, 1 1, and repeat. Use T flip-
flops.
Solution
Step I : Derive the state diagram and the state table.
Figure 5.30 shows the state diagram. Note that state transition occurs at the clock pulse. No
state transitions occurs if there is no clock pulse. Therefore, the clock pulse does not appear
as an input. Table 5.10 shows the state table.

The excitation table of the T flip-flop is used for deriving the state table. For
example, consider the top row. The state remains unchanged (a, = 0 and a,, = 0) requiring

Sequential Logic Design

Present State

0 0
0 1
1 0
1 1

01 a0

157

Next State Flip Flop inputs
a,+ a,+ TA 1 TAO

0 1 0 1
1 0 1 1
1 1 0 1
0 0 1 1

FIGURE 5.30
u

State Diagram for Example 5.5

TABLE 5.10 State table for Example 5.5

a T input of 0 and thus TAI = 0. a, is complemented from the present state to the next state,
and thus TAo = 0.
Step 2: Derive the minimum forms of the equations for the flip-flop inputs.
Using K-maps, the simplified equations for the flip-flop inputs can be obtained as shown
in Figure 5.3 1.
Step 3: Draw the logic diagram as shown in Figure 5.32.

3
0

1

(a) K-map for TA,
TA, =ao

FIGURE 5.31 K-maps for Example 5.5

fll
1 1)

K-map for T A ~
TA,, = 1

I ’

FIGURE 5.32 Logic Diagram for 2-bit Counter of Example 5.5

158

Present State

U, a, a()
0 0 0
0 0 1
0 1
0 1 1
1 0 0
1 0 1
1 1 0

Fundamentals of Digital Logic and Microcomputer Design

@-@-@-@J

Next State Flip-Flop Inputs

a,+ a,+ a,+ Ju, Ku, Ju, Ku, Jao Kao
0 0 1 0 x o x 1 x
0 1 0 0 X 1 x x 1

0 0 1 1 0 x x o 1 x
1 x 1 1 0 0 1 x x

1 x 1 0 1 X 0 o x
1 1 o x 0 1 x x 1
1 1 1 X O X 0 1 x

&+-@‘-@-b
FIGURE 5.33 State Diagram for Example 5.6

TABLE 5.11 JK ff excitation table and State Table for Example 5.6
TABLE 5.11(a) Excitation Table of JK Flip-flop

Q Q+ J K
0 0 0 X
0 1 1 X
1 0 X 1
1 1 X 0

1 1 1 1 0 0 o (x 1 X 1 x 1

Example 5.6
Design a three-bit counter to count in the sequence 000 through 11 1, return to 000 after
1 1 1, and then repeat the count. Use JK flip-flops.
Solution
Step 1: Derive the state diagram and the state table.
Figure 5.33 shows the state diagram. Table 5.1 1 shows the JK ff excitation table, and the
state table. Consider the top row. The present state of a, changes from 0 to 0 at the clock,
a, changes from 0 to 0, and a, changes from 0 to 1. From the JK flip-flop excitation table,
for these transitions, Ju, = 0, Ka, = X, Ja, = 0, Ka, = X, and Ju, = 1, Ka, = X.
Step 2: Derive the minimum forms of the equations for the flip-flop inputs. Using K-

maps, the simplified equations for the flip-flop inputs can be obtained as shown
in Figure 5.34.

Step 3: Draw the logic diagram as shown in Figure 5.35.

ExamDle 5.7
Design a 3-bit counter that will count in the sequence 000, 010, 01 1, 101, 110, 11 1, and
repeat the sequence. The counter has two unused states. These are 001 and 100. Implement
the counter as a self-correcting such that if the counter happens to be in one of the unused
states (001 or 100) upon power-up or due to error, the next clock pulse puts it in one of

Sequential Logic Design 159

o x r x

1 x

\ a1 a0

1

I (X 11
-.

FIGURE 5.35

the valid states and the counter provides the correct count. Use T Flip-flops. Note that the
initial states of the flip-flops are unpredictable when power is turned ON. Therefore, all
the unused (don’t care) states of the counter should be checked to ensure that the counter
eventually goes into the desirable counting sequence. This is called a self-correcting
counter.
Solution
Step I : Derive the state diagram and the state table. Figure 5.36 shows the state diagram.

Note that in the state diagram it is shown that if the counter goes to an invalid state
such as 001 upon power-up, the counter will then go to the valid state 01 1 and will
count correctly. Similarly, for the invalid state 100, the counter will be in state 1 1 1

Logic Diagram for Example 5.6

160

Present State

a, a1 a0

0 0 0
0 1 0
0 1 1
1 0 1
1 1 0
1 1 1

Fundamentals of Digital Logic and Microcomputer Design

Next State Fliu Flop Inputs
a,+ a,+ a,+ To, Ta, Ta,

0 1 0 0 1 0
0 1 1 0 0 1
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 0 0 1
0 0 0 1 1 1

and the correct count will continue. This self-correcting feature will be verified
from the counter’s state table using T flip-flops as shown in Table 5.12.

Step 2: Derive the minimum forms of the equations for the flip-flop inputs.
Using K-maps, the simplified equations for the flip-flop inputs can be obtained, as shown
in Figure 5.37. The unused states 001 and 100 are invalid and can never occur, so they are
don’t care conditions.
Now, let us verify the self-correcting feature of the counter. The flip-flop input equations
are

Ta, = a,a,,

-
Ta, = a , + a,

-
Ta, = a, + a,a,

Suppose that the counter is in the invalid state 001 upon power-up or due to error,
therefore, in this state, a2 = 0, a , = 0, and a, = 1. Substituting these values in the flip-flop
input equations, we get

Ta,=O- 1 = o

T u , = O + l = l

Ta, = 0 + 0 i = 0

Sequential Logic Design 161

(a) K-Map for Ta2 (b) K-Map for Ta 1

Ta2 =alaO T u ~ =Z+UO

FIGURE 5.37 K-maps for example 5.7

I

(c) K-Map for Tao
TUO = a2 +alG

FIGURE 5.38 Logic Diagram for Example 5.7

Note that with aza,aO = 001 and Ta,Ta,Ta, = 010, the state changes from 001 to 011.
Therefore, the next state will be 0 1 1. The correct count will resume. Next, if the flip-flop
goes to the invalid state 100 due to error or when power is turned ON. Substituting u2 = 1,
a, = 0, and a, = 0 gives

Tu, = 0 0 = 0

Ta,=is+O= 1

Tu,= 1 + 0 o = 1
-

Note that with u,u,ao = 100 and Ta,Ta,Tu, = 01 1 , the state changes from 100 to 11 1. Hence,
the next state for the counter will be 1 1 1. The correct count will continue. Therefore, the
counter is self-correcting.
Step 3: Draw the logic diagram as shown in Figure 5.38.

5.11

Typical examples include registers, modulo-n counters and RAMS (Random Access
Memories). They play an important role in the design of digital systems, especially
computers. Veriolog and VHDL desc,riptions along with simulation results of typical
synchronous. Sequential circuits are provided in Appendices I and J respectively.

ExamDles of Svnchronous Seauential Circuits

162

5.11.1 Registers
A register contains a number of flip-flops for storing binary information in a computer. The
register is an important part of any CPU. A CPU with many registers reduces the number of
accesses to the main memory, therefore simplifying the programming task and shortening
execution time. A general-purpose register (GPR) is designed in this section. The primary
task of the GPR is to store address or data for an indefinite amount of time, then to be able
to retrieve the data when needed. A GPR is also capable of manipulating the stored data by
shift left or right operations. Figure 5.39 contains a summary of typical shift operations. In
logical shift operation, a bit that is shifted out will be lost, and the vacant position will be
filled with a 0. For example, if we have the number (1 l),,, after right shift, the following
occurs:

Fundamentals of Digital Logic and Microcomputer Design

0 1 1 0 0 1 0 1

0

0 0 0 0 0 1 0 1

11,o 5 10

1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0

It must be emphasized that a logical left or right shift of an unsigned number by
n positions implies multiplication or division of the number by 2", respectively, provided
that a 1 is not shifted out during the operation.

In the case of true arithmetic left or right shift operations, the sign bit of
the number to be shifted must be retained. However, in computers, this. is true for
right shift and not for left shift operation. For example, if a register is shifted right
arithmetically, the most significant bit (MSB) of the register is preserved, thus
ensuring that the sign of the number will remain unchanged. This is illustrated next:

Before During Afer -

Shift 1 type

I
j Right

Logical Arithmetic Rotate

0 - There is no difference between arithmetic and logical left shift operations. If

FIGURE 5.39 Summary of Typical Shift Operations

Sequential Logic Design 163

-*: CLR

q i output

(a) Internal Organization of
the Basic Cell S

FIGURE 5.40 A Basic Cell for Designing a GPR

Clk

CL

External lnputs w
Clk

CLR

S

(b) Block Diagram of
the Basic Cell S

FIGURE 5.41 A 4-bit General Register

the most significant bit changes from 0 to 1, or vice versa, in an arithmetic left shift,
the result is incorrect and the computer sets the overflow flag to 1. For example, if the
original value of the register is (3)10, the results of two successive arithmetic left shift
operations are interpreted as follows:

Original AfferJirst shift Affer second shift

001 1, = (3)] 0 0 1 10, = (6)Io 1 100, = (-4)
3 x 2 = 6, correct 6 x 2 = 12, not -4. incorrect

To design a GPR, first let us propose a basic cell S. The internal organization of
the S cell is shown in Figure 5.40. A 4-input multiplexer selects one of the external inputs
as the D flip-flop input, and the selected input appears as the flip-flop output Q after the
clock pulse. The CLR input is an asynchronous clear input, and whenever this input is
asserted (held low), the flip-flop is cleared to zero. Using the basic cell S as the building

-

164 Fundamentals of Digital Logic and Microcomputer Design

4, Input Clock
pulse

TABLE 5.13 Truth Table for the General Register

f

1

X means “don’t care”

~

Timing Signal ___-
To

Timing Signal

block, a 4-bit GPR can be designed. Its schematic representation is shown in Figure 5.41.
The truth table illustrating the operation of this register is shown in Table 5.13.

This table shows that manipulation of the selection inputs S, and So = 1 1, the external inputs
x3 through x, are selected as the D inputs for the flip-flop, the output qi will follow the input
x, after the clock. By choosing the correct values for the serial shift inputs R and L, logical,
arithmetic, or rotating shifts can be achieved.

This register can be loaded with any desired data in a serial fashion. For example,
after four successive right shift operations, data a3 a, a, a, will be loaded into the register if
the register is set in the right shift mode and the required data u3 a, a, a, is applied serially
to input R.

5.11.2 Modulo-n Counters
The modulo-n counter counts in a sequence and then repeats the count. Modulo-n counters
can be used to generate timing signals in a computer. The control unit inside the CPU of
a computer translates instructions. The control unit utilizes timing signals that determines

L

+ t

__
’I

+ t
T ,

r

FIGURE 5.42 Timing Signals

Timing Signal ~

T ,
+ i

Sequential Logic Design 165

FIGURE 5.43 Four-bit Rmg Counter

the time sequences in which the operations required by an instruction are executed. These
timing signals shown in Figure 5.42 can be generated by a special modulo-n counter called
the ring counter. For proper operation, a ring counter must be initialized with one flip-flop
in the high state (Q=l) and all other flip-flops in the zero state (Q=O).

An n-bit ring counter transfers a single bit among the flip-flops to provide n
unique states. Figure 5.43 shows a 4-bit ring counter. Note that the ring counter requires
no decoding but contains n flip-flops for an n-bit ring counter. The circuit will count in the
sequence 1000, 01 00, 00 10, 0001, and repeat. Although the circuit does not count in the
usual binary counting sequence, it is still called a counter because each count corresponds
to a unique set of flip-flop states. The state table for the 4-bit ring counter is provided
below:

Present State Next State FF Inputs
W X Y Z w+ x t Y t Z f Dw D x D y D z
1 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0

From the above, using the present states along with the unused present states (not
shown above) as don’t cares, the following equations can be obtained using four K-maps
(one for each FF input): Dw=Z, Dx=W, D y = X , D z = Y . This circuit is also known
as a circular shift register, because the least significant bit shifted is not lost. This is the
simplest shift-register counter. Thus, the schematic of Figure 5.43 can be obtained.

The main advantages of this circuit are design simplicity and the ability to
generate timing signals without a decoder. Nevertheless, n flip-flops are required to
generate n timing signals. This approach is not economically feasible for large values of
n. To generate timing signals economically, a new approach is used. A modulo-2“ counter
is first designed using n flip-flops. The n outputs from this counter are then connected to a
n-to-2” decoder as inputs to generate 2” timing signals. The circuit depicted in Figure 5.44
shows how to generate four timing signals using a modulo-4 counter and a 2-to-4 decoder.
In the preceding circuit, the Boolean equation for each timing signal can be derived as

T,=AB
T , = A B
T , = A B
T , = A B

These equations show that four 2-input AND gates are needed to derive the timing

166

7 L J Q - J Q J Q- J Q-

-c> -c> --c> 4)
- - - -

Fundamentals of Digital Logic and Microcomputer Design

-K Q K Q ~K Q-- K Q--

Modulo 4
counter

FIGURE 5.45 Four-bit Johnson Counter
signals (assuming single-level decoding). The main advantage of this approach is that 2"
timing signals using only n flip-flops are generated. In this method, though, 2" (n-input)
AND gates are required to decode the n-bit output from the flip-flops into 2" different
timing signals. Yet the ring counter approach requires 2" flip-flops to accomplish the same
task.

Typical modulo-n counters provide trade-offs between the number of flip-flops
and the amount of decoding logic needed. The binary counter uses the minimum number
of flip-flops but requires a decoder. On the other hand, the ring counter uses the maximum
number of flip-flops but requires no decoding logic. The Johnson counter (also called the
Switch-tail counter or the Mobius counter) is very similar to a ring counter. Figure 5.45
shows a 4-bit Johnson counter using JK flip-flops. Note that the output of the right-hand
flip-flop is connected to the J input of the leftmost flip-flop while the Q output of the
rightmost flip-flop is connected to the K input of the leftmost flip-flop.

A Johnson counter requires the same hardware as a ring counter of the same size
but can represent twice as many states. Assume that the flip-flops are initialized at 1000.
The counter will count in the sequence 1000, 1 100, 1 1 10, 1 1 1 1, 0 1 1 1, 001 1,000 1, 0000
and repeat.

5.1 1.3 Random-Access Memory (RAM)
As mentioned before, a RAM is read/write volatile memory. RAM can be classified into
two types: static RAM (SRAM) and dynamic RAM (DRAM). A static RAM stores each
bit in a flip-flop whereas the dynamic RAM stores each bit as charge in a capacitor. As
long as power is available, the static RAM retains information. Because the capacitor
can hold charge for a few milliseconds, the dynamic RAM must be refreshed every few
milliseconds. This means that a circuit must rewrite that stored bit in a dynamic RAM
every few milliseconds. Let us now discuss a typical SRAM implementation using D flip-
flops. Figure 5.46 shows a typical RAM cell.

Sequential Logic Design 167

Read AND Gate

Input

Selecr Select
Clk

(a) A one-bit RAM (R) (b) Block diagram of the
one-bit RAM

FIGURE 5.46 A typical SRAM cell

In Figure 5.46(a), = 1 means READ whereas W- = 0 indicates a WRITE
operation. Select = 1 indicates that the one-bit RAM is selected. In order to read the cell,
W- is 1 and select = 1. A 1 appears at the input of AND gate 3. This will transfer Q to the
output. This is a READ operation. Note that the inverted W- to the input of AND gate 2 is
0. This will apply a 0 at the input of the CLK input of the D flip-flop. The output of the D
flip-flop is unchanged. In order to write into the one-bit RAM, W-must be zero. This will
apply a 1 at the input of AND gate 2. The output of AND gate 2 (CLK input) is 1. The D
input is connected to the value of the bit (1 or 0) to be written into the one-bit RAM. With
CLK = 1, the input bit is transferred at the output. The one-bit RAM is, therefore, written
into with the input bit. Figure 5.47 shows a 4 x 2 RAM. It includes 8 RAM cells providing
2-bit output and 4 locations.

The RAM contains a 2 x 4 decoder and 8 RAM cells implemented with D flip-
flops and gates. In contrast, a ROM consists of a decoder and OR gates. The four locations
(00, 01, 10, 1 1) in the RAM are addressed by 2 bits (A , , Ao). In order to read from location
00, the address A,Ao = 00 and W- = 1. The decoder selects 0, high. W- = 1 will apply 0
at the clock inputs of the two RAM cells of the top row and will apply 1 at the inputs of the
output AND gates, thus transferring the outputs of the two D flip-flops to the inputs of the
two OR gates. The other inputs of the OR gate will be 0. Thus, the outputs of the two RAM
cells of the top row will be transferred to DO, and DOo, performing a READ operation.
On the other hand, consider a WRITE operation: The 2-bit data to be written is presented

FIGURE 5.47 4 x 2 RAM

168 Fundamentals of Digital Logic and Microcomputer Design

at DI, DI,. Suppose A , A , = 00. The top row is selected (0, = 1). Input bits at DI, and DI,
will respectively be applied at the inputs of the D flip-flops of the top row. Because W-
= 0, the clock inputs of both the D flip-flops of the top row are 1; thus, the D inputs are
transferred to the outputs of the flip-flops. Therefore, data at DI, DI, will be written into
the RAM.

5.12 Aborithmic State Machines (ASM) Chart

The performance of a synchronous sequential circuit (also referred to as a state machine)
can be represented in a systematic way by using a flowchart called the Algorithmic State
Machines (ASM) chart. This is an alternative approach to the state diagram. In the previous

state name State Output binary code assignment & Condition

exit

(a) state symbol
exit if false exit if true

or

+
(3

@om exit of decision box)

Output Variables

exit exit if false exit if true
@) conditional

(c) decision symbol output symbol

FIGURE 5.48 Symbols for an ASM Chart

state = QZQlQO QZQlQO = 000
I

FIGURE 5.49 An ASM Chart for a 3-bit Counter with Enable Input

Sequential Logic Design 169

sections, it was shown how state diagrams could be used to design synchronous sequential
circuit. An ASM chart can sometimes be used along with the state diagram for designing
a synchronous sequential circuit. An ASM chart is similar to a flowchart for a computer
program. The main difference is that the flowchart for a computer program is translated into
software whereas an ASM chart is used to implement hardware. An ASM chart specifies
the sequence of operations of the state machine along with the conditions required for their
execution. Three symbols are utilized to develop the ASM chart: the state symbol, the
decision symbol, and the conditional output symbol (see Figure 5.48).

The ASM chart utilizes one state symbol for each state. The state symbol includes
the state name, binary code assignment, and outputs (if any) that are asserted during the
specified state. The decision symbol indicates testing of an input and then going to an
exit if the condition is true and to another exit if the condition is false. The entry of the
conditional output symbol is connected to the exit of the decision symbol.

The ASM chart and the state diagram are very similar. Each state in a state
diagram is basically similar to the state symbol. The decision symbol is similar to the
binary information written on the lines connecting two states in a state diagram. Figure
5.49 shows an example of an ASM chart for a modulo-7 counter (counting the sequence
000, 001, . .., 11 1 and repeat) with an enable input. Q2, Q,, and Qo at the top of the ASM
chart represent the three flip-flop states for the 3-bit counter.

Each state symbol is given a symbolic name at the upper left corner along with a
binary code assignment of the state at the upper right corner. For example, the state ‘a’ is
assigned with a binary value of 000. The enable input E can only be checked at state a, and
the counter can be stopped if E = 0; the counter continues if E = 1. This is illustrated by the
decision symbol. Figure 5.50 shows the equivalent state diagram of the ASM chart for the
3-bit counter.

The ASM chart describes the sequence of events and the timing relationship
between the states of a synchronous sequential circuit and the operations that occur for
transition from one state to the next. An arbitrary ASM chart depicted in Figure 5.51
illustrates this. The chart contains three ASM blocks. Note that an ASM block must contain
one state symbol and may include any number of decisions and conditional output symbols
connected to the exit. The three ASM blocks are the ASM block for To surrounded by the
dashed lines and the simple ASM block defined by T, and T2. Figure 5.52 shows the state
diagram.

From the ASM chart of Figure 5.51, there are three states: To, T, , and T,. A ring
counter can be used to generate these timing signals. During To, register X is cleared and
flip-flop A is checked. If A = 0, the next state will be T,. On the other hand, if A = 1,
the circuit increments register X by 1 and then moves to the next state, T2. Note that the
following operations are performed by the circuit during state To:

FIGURE 5.50 State Diagram for the 3-bit Counter

170 Fundamentals of Digital Logic and Microcomputer Design

X t O

FIGURE 5.51 ASM Chart illustrating timing relationships between states <
FIGURE 5.52 State Diagram for the ASM Chart of Figure 5.51

1. Clear register X.
2.
3.

Check flip-flop A for 1 or 0.
If A = 1, increment X by 1.

On the other hand, state machines do not perform any operations during T, and T,.
Note that in contrast, state diagrams do not provide any timing relationship between states.
ASM charts are utilized in designing the controller of digital systems such as the control
unit of a CPU. It is sometimes useful to convert an ASM chart to a state diagram and then
utilize the procedures of synchronous sequential circuits to design the control logic.

State Machine Design using ASM chart
As mentioned before, an ASM chart is used to define digital hardware algorithms which can
be utilized to design and implement state machines. This section describes a procedure for
designing state machines using the ASM chart. This is a three step process as follows:
1.
2.

3.

Draw the ASM chart from problem definition.
Derive the state transition table representing the sequence of operations to be
performed.
Derive the logic equations and draw the hardware schematic. The hardware can
be designed using either classical sequential design or PLAs as illustrated by the
examples provided below.

In the following, a digital system is designed using an ASM chart that will operate
as follows:

The system will contain a 2-bit binary counter. The binary counter will count in
the sequence 00,O 1, 10, and 1 1. The most significant bit of the binary count XY is X while
Y is the least significant bit. The system starts with an initial count of 3. A start signal I
(represented by a switch) initiates a sequence of operations. If I = 0, the system stays in the

Sequential Logic Design 171

Initial State

Z t z + I

FIGURE 5.53 ASM Chart showing the sequence of operations for the binary counter

TABLE 5.14 State Transition Table

COUNTER FLIP-FLOP W CONDITIONS STATE

X Y (Q)
0 0 1 X = O , Y = O TO

0 1 0 X = O , Y = l T*

1 0 0 X = l , Y = O TI

TO 1 1 1 X = l , Y = l

initial state To with count of 3. On the other hand, I = 1 starts the sequence.
When I = 1, counter Z (represented by XU) is first cleared to zero. The system

then moves to state TI. In this state, counter Z is incremented by 1 at the leading edge of
each clock pulse. When the counter reaches 3 , the system goes back to the initial stateT,,
and the process continues depending on the status of the start switch I. The counter output
will be displayed on a seven-segment display. An LED will be connected at the output of
flip-flop W. The system will turn the LED ON for the count sequence 1,2 by clearing flip-

The flip-flop W will be preset to 1 in the initial state to turn the LED OFF. This
can be accomplished by using input I as the PRESET input of flip-flop W. Use D flip-flops
for the system.
Step 1: Draw the ASM chart. Figure 5.53 shows the ASM chart. The symbol T, is used
without its binary value for the state boxes in all ASM charts in this section.

In the ASM chart of Figure 5.53, when the system is in initial state To, it waits for
the start signal (I) to become HIGH. When I=l, Counter Z is cleared to zero and the system
goes to stateT,. The counter is incremented at the leading edge of each clock pulse. In state
TI , one of the following possible operations occurs after the next clock pulse transition:

Either, if counter Z is 1 or 2, flip-flop W is cleared to zero and control stays in
stateT, ;

flop w to 0.

or
If the Counter Z counts to 3, the system goes back to initial stateT,.

172 Fundamentals of Digital Logic and Microcomputer Design

The ASM chart consists of two states and two blocks. The block associated with
To includes one state box, one decision box, and one conditional box. The block in TI
consists of one state box, two decision boxes and two conditional boxes.
Step 2: Derive the state transition table representing the sequence of operations.

One common clock pulse specifies the operations to be performed in every block
of an ASM chart. Table 5.14 shows the State Transition Table.

The binary values of the counter along with the corresponding outputs of flip-flop
W is shown in the transition table. In state To , if I = 1, Counter Z is cleared to zero (XU
= 00) and the system moves from state To to TI. In state TI, Counter Z is first incremented
to XY = 01 at the leading edge of the clock pulse; Counter Z then counts to XY = 10 at
the leading edge of the following clock pulse. Finally, when XY = 1 1, the system moves
to state To. The system stays in the initial state To as long as I = 0; otherwise the process
continues.

The operations that are performed in the digital hardware as specified by a block
in the ASM chart occur during the same clock period and not in a sequence of operations
following each other in time, as is usually interpreted in a conventional flowchart. For
example, consider state TI. The value of Y to be considered in the decision box is taken
from the value of the counter in the present state TI. This is because the decision boxes for
Flip-flop W belong to the same block as state TI. The digital hardware generates the signals
for all operations specified in the present block before arrival of the next clock pulse.
Step 3: Derive the logic equations and draw the hardware.

The system can be divided into two sections. These are data processor and
controller. The requirements for the design of the data processor are defined inside the
state and conditional boxes. The logic for the controller, on the other hand, is determined
from the decision boxes and the necessary state transitions.
The design of the data processor is typically implemented by using digital components
such as registers, counters, multiplexers; and adders. The system can be designed using
the theory of sequential logic already discussed. Figure 5.54 shows the hardware block
diagram. The Controller is shown with the required inputs and outputs. The data processor
includes a 2-bit counter, one flip-flop, and one AND gate. The counter is incremented by
one at the positive edge of every clock pulse when control is in stateT,. The counter is
assumed to be in count 3 initially. It is cleared to zero only when control is in stateT, and

FIGURE 5.54 Hardware Schematic for the two-bit counter along with associated
blocks

Present
State
(Con-
troller)

Present States InDuts Next States Next Output
[counter) [Controller) [counter) States

(controller)

1=1 . Therefore,T, and I are logically ANDed. The D-input of Flip-flop W is connected to
output X of the counter to clear Flip-flop W during stateT,. This is because if present count
is 00 (X=O), the counter will be 01 after the next clock. On the other hand, if the present
count is 01 (X=O), the count will be 10 after the next clock. Hence, X is connected to the
D-input of Flip-flop W to turn the LED ON for count sequence 1,2. A common clock is
used for all flip-flops in the system including the flip-flops in the counter and Flip-flop W.

This example illustrates a technique of designing digital systems using the ASM
chart. The two-bit counter can be designed using the concepts already described. In order
to design the Controller, a state table for the controller must be derived. Table 5.15 shows
the state table for the Controller. There is a row in the table for each possible transition
between states. Initial stateT, stays inT, or goes from To toT, depending on the status of the
switch input (I). The same procedure for designing a sequential circuit described in Chapter
5 can be utilized. Since there are two controller outputs (Tl,To) and three inputs (I, X, Y),
a three-variable K-map is required. The design of the final hardware schematic is left as an
exercise to the reader.The system will contain D flip-flops with the same common clock
and a combinational circuit. The design of the system using classical sequential design
method may be cumbersome. Hence, other simplified methods using PLAs can be used as
illustrated in the following.

A second example is provided below for designing a digital system using an
ASM chart. The system has three inputs (X, Y, Z) and a 2-bit MOD-4 counter (W) to count
from 0 to 3. The four counter states are To, TI, T,, and T,. The operation of the system is
initiated by the counter clear input, C. When C = 0, the system stays in initial state To. On
the other hand, when C = 1, state transitions to be handled by the system are as follows:

I
Tn
To
To
T,
T,

INPUTS STATE TRANSITIONS
X = 0
X= 1
Y = 0
Y = 1
Z = 0
Z = 1

The system moves fromT, to T,
The system stays in To
The system moves back from T, to To
The system goes from TI to T,
The system stays in T,
The system moves fromT, toT, and then stays inT,
indefinitely (for counter clear input C=l) until
counter W is reset to zero (state To) by activating the
counter clear input C to 0 to start a new sequence.

TI To 1 Y x+ y+ X Y I X
1 1 0 1 1 1 1 0 1
1 1 1 1 1 0 0 0 1
0 0 1 0 0 0 1 1 0
0 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1

174 Fundamentals of Digital Logic and Microcomputer Design

>m Enable (E)

MOD - 2
Counter

Clear (C) no operation

TTT Load (L) u External Data

FIGURE 5.55 Block diagram and truth table of the 2-bit counter

FIGURE 5.56 ASM Chart for the MOD-4 counter along with transitions

Use counter, decoder, and a PLA. Figure 5.55 shows the block diagram of the
MOD-4 counter to be used in the design.

Step I : Draw an ASM chart.
The ASM chart is shown in Figure 5.56
Step 2: Derive the inputs, outputs, and a sequence of operations.

The system will be designed using a PLA, a MOD-4 counter, and a 2 to 4 decoder.
The MOD-4 counter is loaded or initialized with the external data if the counter control
inputs C and L are both ones. The counter load control input L overrides the counter enable
control input E.

The counter counts up automatically in response to the next clock pulse when
the counter load control input L = 0 and the enable input E is tied to HIGH. Such normal
activity is desirable for the situation (obtained from the ASM chart) when the counter goes
through the sequenceT,,T,,T,,T, for the specified inputs.

However, if the following situations occur, the counter needs to be loaded with
data out of its normal sequence: If the counter is in initial state To (Counter W=O with C=
0) , it stays inT, for X = 1. This means that if the ccunter output is 00 and if X = 1, the

Sequential Logic Design
-

vcc -
+5v MOD-4 01 > 2 t o 4

Decoder
B Counter CLK->

IK
I T C d l do L

175

*TO

>T1
.T2

.T3

PLA

FIGURE 5.57 Hardware Schematic of the MOD-4 counter with PLA and decoder

I X = don't cares

p) Truth Table for out of normal Count sequence
C y Z To T, T, T3

(b) PLA implementation
FIGURE 5.58 PLA-based System

counter must be loaded with external data d,do = 00. Similarly, the other out of normal
sequence count includes transitions (C = 1) fromT, toT, (X= 0,Y = 0), T, to T, (X = 0, Y =

1,Z = 0) with count 2, and T, toT, (A' = 0, Y = 1, Z = 1); C is assumed to be HIGH during
these transitions. Finally, if C = 0, transition from T, to To occurs regardless of the values
of X, Y, Z and the process continues. The appropriate external data must be loaded into the
counter for out of normal count sequence by the PLA using the L input of the counter.
Step 3: Derive the logic equations and draw a hardware schematic.

Figure 5.57 depicts the logic diagram. Figure 5.58 shows the truth table and

176 Fundamentals of Digital Logic and Microcomputer Design

I I

FIGURE 5.59 Asynchronous Sequential Circuit

hardware schematic for PLA-based implementation.

n 2 C , P, =BZT,C , P4 = T,C, L =Po+P,+P2+P,+P,, d, =P, +P,, d o = P,
The equations for the product terms are: Po = X To C, PI = T,C, = x y

5.13 Asvnchronous Seauential Circuits

Asynchronous sequential circuits do not require any synchronizing clocks. As mentioned
before, a sequential circuit basically consists of a combinational circuit with memory.
In synchronous sequential circuits, memory elements are clocked flip-flops. In contrast,
memory in asynchronous sequential circuits includes either unclocked flip-flop or time-
delay devices. The propagation delay time of a logic gate (finite time for a signal to
propagate through a gate) provides its memory capability. Note that a sequential circuit
contains inputs, outputs, and states. In synchronous sequential circuits, changes in states
take place due to clock pulses. On the other hand, asynchronous sequential circuits typically
contain a combinational circuit with feedback. The timing problems in the feedback may
cause instability. Asynchronous sequential circuits are, therefore, more difficult to design
than synchronous sequential circuits.

Asynchronous sequential circuits are used in applications in which the system must
take appropriate actions to input changes rather than waiting for a clock to initiate actions.
For proper operation of an asynchronous sequential circuit, the inputs must change one at a
time when the circuit is in a stable condition (called the “fundamental mode of operation”).
The inputs to the asynchronous sequential circuits are called “primary variables” whereas
outputs are called “secondary variables.”

Figure 5.59 shows an asynchronous sequential circuit. In the feedback loops,
the uppercase letters are used to indicate next values of the secondary variables and the
lowercase letters indicate present values of the secondary variables. For example, Z,, and
Z2 are next values whereas z , and z2 are present values. The output equations can be derived
as follows:

z, = (a + z,)(Z + i;)
z*= (a + z,)(i + ZJ

The delays in the feedback loops can be obtained from the propagation delays between z ,
and Z, or z, and Z,. Let us now plot the functions Z, and Z, in a map, and a transition table
as shown in Figure 5.60.

The map for Z, in Figure 5.60(a) is obtained by substituting the values z, , z2, and
a for each square into the equation for Z1. For example, consider z,z2 = 1 1 and a = 0.

Sequential Logic Design

Present State

177

Next State
a=O a=l

F

0 0
0 1
1 0
1 1

G

0 0 1 0
0 0 0 1
1 1 1 0
1 1 0 1

(a) Map forZ, (b) MapforZ,

Map and Transition Table JRE 5.60

(c) Transition Table

z, = (a + z,)(Z + .,)
= (0 + i)(O + i)
= I

178

X

Fundamentals of Digital Logic and Microcomputer Design

Q
‘ A Q ~D D

FIGURE 5.61 Flow Table

) Clk

A flow table obtained from the transition table is normally used in designing an
asynchronous sequential circuit. A flow table resembles a transition table except that the
states are represented by letters instead of binary numbers. The transition’table of Figure
5.60(c) can be translated into a flow table as shown in Figure 5.61. Note that the states are
represented by binary numbers as follows: w = 00, x = 01, y = 11, z = 10. The flow table
in Figure 5.61 is called a “primitive flow table” because it has only one stable state in each
row.

An asynchronous sequential circuit can be designed using the primitive flow table
from the problem definition. The flow table is then simplified by combining squares to
a minimum number of states. The transition table is then obtained by assigning binary
numbers to the states. Finally, a logic diagram is obtained from the transition table. The
logic diagram includes a combinational circuit with feedback.

The design of an asynchronous sequential circuit is more difficult than the
synchronous sequential circuit because of the timing problems associated with the feedback
loop. This topic is beyond the scope of this book.

> Clk

OUESTIONS AND PROBLEMS

5.1 What is the basic difference between a combinational circuit and a sequential
circuit?

5.2 Identify the main characteristics of ‘a synchronous sequential circuit and an
asynchronous sequential circuit.

5.3

5.4

5.5

What is the basic difference between a latch and a flip-flop?

Draw the logic diagram of a D flip-flop using OR gates and inverters.

Assume that initially x = 1, A = 0, and B = 1 in figure P5.5. Determine the values of

B

Sequential Logic Design 179

- Q
A X

J

- Clk \

5.6 Draw the logic diagram of a JK flip-flop using AND gates and inverters.

B
J Q

Clk

5.7 Assume that initially X= 1, A = 0, and B = 1 in figure P5.7. Determine the values of
A and B after one Clk pulse. Note that the flip-flops are triggered at the clock level.

-
L

-
K Q .

FIGURE P5.8

K Q

Clk

5.10 Given the timing diagram for a negative-edge triggered T flip-flop in Figure P5.10,
draw the timing diagram for Q. Assume Q is preset to 1 initially.

!

T
FIGURE P5.10

I
Clk

5.11 Why would you use an edge-triggered flip-flop rather than a level-triggered flip-
flop?

180

5.12 What are the advantages of a master-slave flip-flop?

Fundamentals of Digital Logic and Microcomputer Design

Q
A

D Q D

- -
Clk Q > Clk Q

5.13 Draw the block diagram of a T flip-flop using (a) JK ff (b) D ff.

B -

Youtput

5.14 Draw a logic circuit of the switch debouncer circuit using NAND gates.

5.15 Analyze the clocked synchronous circuit shown in Figure P5.15. Express the next
state in terms of the present state and inputs, derive the state table, and draw the state
diagram.

-
FIGURE P5.15

5.16 A synchronous sequential circuit with two D flip-flops (a,b as outputs), one input
(x), and an output (y) is expressed by the following equations:

D, = a z x + a b, D, = x b + E x
y = b i + a

(a)
(b) Draw a logic diagram.

Derive the state table and state diagram for the circuit.

5.17 A synchronous sequential circuit is represented by the state diagram shown in Figure
PS. 17. Using JK flip-flops and undefined states as don’t-cares:
(a) Derive the state table.
(b) Minimize the equation for flip-flop inputs using K-maps.
(c) Draw a logi

FIGURE P5.17

5.18 A sequential circuit contains two D flip-flops (A , B), one input (x), and one output
(y), as shown in Figure PS. 18.
Derive the state table and the state diagram of the sequential circuit.

-B A

181

D Q

5.19

5.20

5.21

5.22

- D Q - 2

Design a synchronous sequential circuit using D flip-flops
shown in Figure P5.19.

FIGURE P5.19

for the state diagram

Design a 2-bit counter that will count in the following sequence: 00, 1 1 , 10,01, and
repeat. Using T flip-flops:
(a) Draw a state diagram.
(b) Derive a state table.
(c> Implement the circuit.

Design a synchronous sequential circuit with one input x and one output y . The input
x is a serial message, and the system reads x one bit at a time. The output y is 1
whenever the binary pattern 000 is encountered in the serial message. For example:
If the input is 01000000, then the output will be 00001010. Use T flip-flops.

Analyze the circuit shown in Figure P5.22 and show that it is equivalent to a T flip-
flop.

1

T
Clk

P5.22 FIGURE

K Qt

182 Fundamentals of Digital Logic and Microcomputer Design

s, SO
0 0

5.23 Design aBCD countertocount in the sequence0000,0001,0010,0011,0100,0101,
01 10,0111,1000, 1001, and repeat. Use T flip-flops.

Function

Load external data

5.24 Design the following nonbinary sequence counters using the type of flip-flop
specified. Assume the unused states as don’t cares. Is the counter self-correcting?
Justify your answer.
(a)
(b)
(c)

Counting sequence 0, 1 ,3 ,4 ,5 ,6 ,7 , and repeat. Use JK flip-flops.
Counting sequence 0, 2, 3 ,4 ,6 , 7, and repeat. Use D flip-flops.
Counting sequence 0, 1 ,2 ,4 , 5, 6,7, and repeat. Use T flip-flops.

D Q

- > Clk Q

5.25 Design a 4-bit general-purpose register as follows:

Rotate left; (A,, +A3 , A, +- A, ~ for i = 1,2,3)
Rotate right; (A3 +Ao, Ai - Ai + , for i = 0,1,2)

0
1

1 1 I Increment
Use Figure P5.25 as the building block:

FIGURE P5.25

5.26 Design a logic diagram that will generate 19 timing signals. Use a ring counter with
JK flip-flops.

5.27 Consider the 2-bit Johnson counter shown in Figure P5.27. Derive the state diagram.
Assume the D flip-flops are initialized to A = 0 and B = 0.

-
FIGURE P5.27

5.28 Assuming AB = 10, verify that the 2-bit counter shown in Figure P5.28 is a ring
counter. Derive the state diagram.

Sequential Logic Design 183

5.29

5.30

5.31

5.32

5.33

I
I 4

B
J Q l

FIGURE P5.28

What is the basic difference between SRAM and DRAM?

Given a memory with a 24-bit address and 8-bit word size,
(a) How many bytes can be stored in this memory?
(b) If this memory were constructed from 1K x 1-bit RAM chips, how many
memory chips would be required?

Draw an ASM chart for the following: Assume three states (a, b, c) in the system
with one input x and two registers R, and R,. The circuit is initially in state a. If x =

0, the control goes from state a to state b and, clears registers R, to 0 and sets R, to
1, and then moves to state c. On the other hand if x = 1, the control goes to state c. In
state c, R, is subtracted from R, and the result is stored in R,. The control then moves
back to state a and the process continues.

Draw an ASM chart for each of the following sequence of operations:
(a) The ASM chart will define a conditional operation to perform the operation
R,+R, - R, during State To and will transfer control to State T, if the control input
c is 1; if c=O, the system will stay in To. Assume that R, and R, are 8-bit registers.
(b) The ASM chart in which the system is initially in State To and then checks
a control input c. If c=l, control will move from State To to State T,; if c=O, the
system will increment an 8-bit register R by 1 and control will return to the initial
state.

Draw an ASM chart for the following state diagram of Figure P5.33:

x= G3; 1 x= 0

c = o T3 &
z= 0

FIGURE P5.33

184 Fundamentals of Digital Logic and Microcomputer Design

Assume that the system stays in initial state To when control input c = 0 and input X
= 1. The sequence of operations is started from To when X = 0 . When the system
reaches state T,, it stays in T, indefinitely as long as c = 1; the system returns to state
To when c = 0.

5.34 Derive the output equations for the asynchronous sequential circuit shown in Figure
P5.34. Also, determine the state table and flow table.

MICROCOMPUTER
ARCHITECTURE,
PROGRAMMING,

AND SYSTEM
DESIGN CONCEPTS

This chapter describes the fundamental material needed to understand thebasic characteristics
of microprocessors. It includes topics such as typical microcomputer architecture, timing
signals, internal microprocessor structure, and status flags. The architectural features are
then compared to the Intel 8086 architecture. Topics such as microcomputer programming
languages and system design concepts are also described.

6.1 Basic Blocks of a MicrocomDuter

A microcomputer has three basic blocks: a central processing unit (CPU), a memory unit,
and an inpuiioutput unit. The CPU executes all the instructions and performs arithmetic and
logic operations on data. The CPU of the microcomputer is called the “microprocessor.”
The microprocessor is typically a single VLSI (Very Large-Scale Integration) chip that
contains all the registers, control unit, and arithmetic/ logic circuits of the microcomputer.

A memory unit stores both data and instructions. The memory section typically
contains ROM and RAM chips. The ROM can only be read and is nonvolatile, that is,
it retains its contents when the power is turned off. A ROM is typically used to store
instructions and data that do not change. For example, it might store a table of codes for
outputting data to a display external to the microcomputer for turning on a digit from 0 to 9.

One can read from and write into a RAM. The RAM is volatile; that is, it does
not retain its contents when the power is turned off. A RAM is used to store programs and
data that are temporary and might change during the course of executing a program. An 110
(InpudOutput) unit transfers data between the microcomputer and the external devices via
I/O ports (registers). The transfer involves data, status, and control signals.

In a single-chip microcomputer, these three elements are on one chip, whereas
with a single-chip microprocessor, separate chips for memory and I/O are required.
Microcontrollers evolved from single-chip microcomputers. The microcontrollers are
typically used for dedicated applications such as automotive systems, home appliances,
and home entertainment systems. Typical microcontrollers, therefore, include on-chip
timers and A/D (analog to digital) and D/A (digital to analog) converters. Two popular

185

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

186 Fundamentals of Digital Logic and Microcomputer Design

Rirs
f f

Microprocessor Merwly Element I10 unit

FIGURE 6.1 Basic blocks of a microcomputer

FIGURE 6.2 Simplified version of a typical microcomputer

microcontrollers are the Intel 875 1 (8 bit)/8096 (16 bit) and the Motorola HC11 (8 bit)/
HC16 (16 bit). The 16-bit microcontrollers include more on-chip ROM, RAM, and I/O
than the %bit microcontrollers. Figure 6.1 shows the basic blocks of a microcomputer. The
System bus (comprised of several wires) connects these blocks.

6.2 TvDical MicrocomDuter Architecture

In this section, we describe the microcomputer architecture in more detail. The various
microcomputers available today are basically the same in principle. The main variations
are in the number of data and address bits and in the types of control signals they use.

To understand the basic principles of microcomputer architecture, it is necessary
to investigate a typical microcomputer in detail. Once such a clear understanding is
obtained, it will be easier to work with any specific microcomputer. Figure 6.2 illustrates
the most simplified version of a typical microcomputer. The figure shows the basic blocks
of a microcomputer system. The various buses that connect these blocks are also shown.
Although this figure looks very simple, it includes all the main elements of a typical
microcomputer system.

6.2.1 The Microcomputer Bus
The microcomputer’s system bus contains three buses, which carry all the address, data, and
control information involved in program execution. These buses connect the microprocessor
(CPU) to each of the ROM, RAM, and I/O chips so that information transfer between the
microprocessor and any of the other elements can take place.

In the microcomputer, typical information transfers are carried out with respect to
the memory or I/O. When a memory or an I/O chip receives data from the microprocessor
, it is called a WRITE operation, and data is written into a selected memory location or
an 110 port (register). When a memory or an I/O chip sends data to the microprocessor,

Microcomputer Architecture, Programming, and System Design Concepts 187

it is called a READ operation, and data is read from a selected memory location or an I/O
port.

In the address bus, information transfer takes place only in one direction, from the
microprocessor to the memory or 110 elements. Therefore, this is called a “unidirectional
bus.” This bus is typically 20 to 32 bits long. The size of the address bus determines the
total number of memory addresses available in which programs can be executed by the
microprocessor. The address bus is specified by the total number of address pins on the
microprocessor chip. This also determines the direct addressing capability or the size of the
main memory of the microprocessor. The microprocessor can only execute the programs
located in the main memory. For example, a microprocessor with 20 address pins can
generate 2” = 1,048,576 (one megabyte) different possible addresses (combinations of 1’s
and 0’s) on the address bus. The microprocessor includes addresses from 0 to 1,048,575
(OOOOO,, through FFFFF,,). A memory location can be represented by each one of these
addresses. For example, an 8-bit data item can be stored at address 00200,,.

When a microprocessor such as the 8086 wants to transfer information between
itself and a certain memory location, it generates the 20-bit address from an internal register
on its 20 address pins A,,-A,,, which then appears on the address bus. These 20 address
bits are decoded to determine the desired memory location. The decoding process normally
requires hardware (decoders) not shown in Figure 6.2.

In the data bus, data can flow in both directions, that is, to or from the
microprocessor. Therefore, this is a bidirectional bus. In some microprocessors, the data
pins are used to send other information such as address bits in addition to data. This means
that the data pins are time-shared or multiplexed. The Intel 8086 microprocessor is an
example where the 20 bits of the address are multiplexed with the 16-bit data bus and four
status lines.

The control bus consists of a number of signals that are used to synchronize the
operation of the individual microcomputer elements. The microprocessor sends some of
these control signals to the other elements to indicate the type of operation being performed.
Each microcomputer has a unique set of control signals. However, there are some control
signals that are common to most microprocessors. We describe some of these control
signals later in this section.

6.2.2 Clock Signals
The system clock signals are contained in the control bus. These signals generate the
appropriate clock periods during which instruction executions are carried out by the
microprocessor. The clock signals vary from one microprocessor to another. Some
microprocessors have an internal clock generator circuit to generate a clock signal.
These microprocessors require an external crystal or an RC network to be connected at
the appropriate microprocessor pins for setting the operating frequency. For example, the
Intel 801 86 (16-bit microprocessor) does not require an external clock generator circuit.
However, most microprocessors do not have the internal clock generator circuit and require
an external chip or circuit to generate the clock signal. Figure 6.3 shows a typical clock
signal.

I ““CFk 1
FIGURE 6.3 A typical clock signal

188 Fundamentals of Digital Logic and Microcomputer Design

Registers

ALU

FIGURE 6.4 A microprocessor chip with the main functional elements

6.3 The SinPle-ChiD Microwocessor

As mentioned before, the microprocessor is the CPU of the microcomputer. Therefore, the
power of the microcomputer is determined by the capabilities of the microprocessor. Its
clock frequency determines the speed of the microcomputer. The number of data and address
pins on the microprocessor chip make up the microcomputer’s word size and maximum
memory size. The microcomputer’s I/O and interfacing capabilities are determined by the
control pins on the microprocessor chip.

The logic inside the microprocessor chip can be divided into three main areas: the
register section, the control unit, and the arithmetic and logic unit (ALU). A microprocessor
chip with these three sections is shown in Figure 6.4. We now describe these sections.

6.3.1 Register Section
The number, size, and types of registers vary from one microprocessor to another.
However, the various registers in all microprocessors carry out similar operations. The
register structures of microprocessors play a major role in designing the microprocessor
architectures. Also, the register structures for a specific microprocessor determine how
convenient and easy it is to program this microprocessor.

We first describe the most basic types of microprocessor registers, their functions,
and how they are used. We then consider the other common types of registers.
Basic Microprocessor Registers
There are four basic microprocessor registers: instruction register, program counter,
memory address register, and accumulator.

Instruction Register (IR). The instruction register stores instructions. The contents
of an instruction register are always decoded by the microprocessor as an instruction.
After fetching an instruction code from memory, the microprocessor stores it in the
instruction register. The instruction is decoded internally by the microprocessor, which
then performs the required operation. The word size of the microprocessor determines
the size of the instruction register. For example, a 16-bit microprocessor has a 16-bit
instruction register.
Program Counter (PC). The program counter contains the address of the instruction
or operation code (op-code). The program counter normally contains the address of the
next instruction to be executed. Note the following features of the program counter:
1. Upon activating the microprocessor’s RESET input, the address of the first

instruction to be executed is loaded into the program counter.
2. To execute an instruction, the microprocessor typically places the contents of

the program counter on the address bus and reads (“fetches”) the contents of
this address, that is, instruction, from memory. The program counter contents
are automatically incremented by the microprocessor’s internal logic. The
microprocessor thus executes a program sequentially, unless the program contains
an instruction such as a J U M P instruction, which changes the sequence.
The size of the program counter is determined by the size of the address bus. 3.

Microcomputer- Architecture, Programming, and System Design Concepts 1 89

Many instructions, such as JUMP and conditional JUMP, change the contents
of the program counter from its normal sequential address value. The program
counter is loaded with the address specified in these instructions.

Memory Address Register (MAR). The memory address register contains the
address of data. The microprocessor uses the address, which is stored in the memory
address register, as a direct pointer to memory. The contents of the address consists of
the actual data that is being transferred.
Accumulator (A). For an %bit microprocessor, the accumulator is typically an %bit
register. It is used to store the result after most ALU operations. These microprocessors
have instructions to shift or rotate the accumulator 1 bit to the right or left through the
carry flag. The accumulator is typically used for inputting a byte into the accumulator
from an external device or outputting a byte to an external device from the accumulator.
Some microprocessors, such as the Motorola 6809, have more than one accumulator.
In these microprocessors, the accumulator to be used by the instruction is specified in
the op-code.

Depending on the register section, the microprocessor can be classified either as an
accumulator-based or a general-purpose register-based machine. In an accumulator-based
microprocessor such as the Intel 8085 and Motorola 6809, the data is assumed to be held
in a register called the “accumulator.” All arithmetic and logic operations are performed
using this register as one of the data sources. The result after the operation is stored in the
accumulator. Eight-bit microprocessors are usually accumulator based.

The general-purpose register-based microprocessor is usually popular with 16-
, 32-, and 64-bit microprocessors, such as the Intel 8086180386180486lPentium and the
Motorola 68000 I68020 /68030 /68040 /PowerPC. The term “general-purpose” comes from
the fact that these registers can hold data, memory addresses, or the results of arithmetic or
logic operations. The number, size, and types of registers vary from one microprocessor to
another.

Most registers are general-purpose whereas some, such as the program counter
(PC), are provided for dedicated functions. The PC normally contains the address of the
next instruction to be executed. As metioned before, upon activating the microprocessor chi
p’s RESET input pin, the PC is normally initialized with the address of the first instruction.
For example, the 80486, upon hardware reset, reads the first instruction from the 32-bit
hex address FFFFFFFO. To execute the instruction, the microprocessor normally places
the PC contents on the address bus and reads (fetches) the first instruction from external
memory. The program counter contents are then automatically incremented by the ALU.
The microcomputer thus usually executes a program sequentially unless it encounters
a jump or branch instruction. As mentioned earlier, the size of the PC varies from one
microprocessor to another depending on the address size. For example, the 68000 has a
24-bit PC, whereas the 68040 contains a 32-bit PC. Note that in general-purpose register-
based microprocessors, the four basic registers typically include a PC, an MAR, an IR, and
a data register.

Use of the Basic Microprocessor Registers
To provide a clear understanding of how the basic microprocessor registers are used,
a binary addition program will be considered. The program logic will be explained by
showing how each instruction changes the contents of the four registers. Assume that all
numbers are in hex. Suppose that the contents of the memory location 2010 are to be added
with the contents of 2012. Assume that [NNNN] represents the contents of the memory

4.

190 Fundamentals of Digital Logic and Microcomputer Design

location "NN. Now, suppose that [2010] = 0002 and [2012] = 0005. The steps involved
in accomplishing this addition can be summarized as follows:

Load the memory address register (MAR) with the address of the first data item
to be added, that is, load 2010 into MAR.
Move the contents of this address to a data register, DO; that is, move first data
into DO.
Increment the MAR by 2 to hold 2012, the address of the second data item to be
added.
Add the contents of this memory location to the data that was moved to the data
register, DO in step 2, and store the result in the 16-bit data register, DO. The above
addition program will be written using 68000 instructions. Note that the 68000
uses 24-bit addresses; 24-bit addresses such as 002000,, will be represented as
2000,, (1 6-bit number) in the following.

Load the contents of the next 16-bit memory word into the memory address
register, Al. Note that register A1 can be considered as MAR in the 68000.
Read the 16-bit contents of the memory location addressed by MAR into data
register, DO.
Increment MAR by 2 to hold 2012, the address of the second data to be added.
Add the current contents of data register, DO to the contents of the memory
location whose address is in MAR and store the 16-bit result in DO.
The following steps for the Motorola 68000 will be used to achieve the above

1.

2.

3.

4.

The following steps will be used to achieve this addition for the 68000:
1.

2.

3.
4.

addition:

3279,, Load the contents of the next 1 6-bit memory word into the memory
address register, Al .

3010,, Read the 16-bit contents of the memory location addressed by MAR
into data register, DO.

5249,, Increment MAR by 2.

DO5 1 , 6 Add the current contents of data register, DO, to the contents of the
memory location whose address is in MAR and store the 16-bit
result in DO.

Addressof 1 MemON I

Program
Memory

Data
MemON

Memory Word
2000
2002
2004
2006
2008
200A

201 0
2012

Word'

0002
0005

FIGURE 6.5 Microprocessor addition program with initial register and memory

Microcomputer Architecture, Programming, and System Design Concepts 1 9 1

The complete program in hexadecimal, starting at location 2000,, (arbitrarily
chosen) is given in Figure 6.5. Note that eachmemory address stores 16 bits. Hence, memory
addresses are shown in increments of 2. Assume that the microcomputer can be instructed
that the starting address of the program is 2000,,. This means that the program counter can
be initialized to contain 2000,,, the address of the first instruction to be executed. Note that
the contents of the other three registers are not known at this point. The microprocessor
loads the contents of memory location addressed by the program counter into IR. Thus, the
first instruction, 3279,,, stored in address 2000,, is transferred into IR.

The program counter contents are then incremented by 2 by the microprocessor's
ALU to hold 2002,,. The register contents that result along with the program are shown in
Figure 6.6.

The binary code 3279,, in the IR is executed by the microprocessor. The
microprocessor then takes appropriate actions. Note that the instruction, 3279,,, loads the
contents of the next memory location addressed by the PC into the MAR. Thus, 2010,, is
loaded into the MAR. The contents of the PC are then incremented by 2 to hold 20041,.
This is shown in Figure 6.7

Program

Memory

Data
Memory

r' I
Address of Memory

Memory 1 word I
word

2000
2002
2004
2006
2008
200A

DO Fl rPR
2002 PC

FIGURE 6.6 Microprocessor addition program (modified during execution)

Address of Memory
Memory 1 word 1
word

Program

Memory

2000
2002
2004
2006
2008
200A

3279
2010
3010
5249
DO51

FIGURE 6.7 Microprocessor addition program (modified during execution)

192 Fundamentals of Digital Logic and Microcomputer Design

Program

Memoly

Data
Memoly

Address of Memory
Memory 1 word 1
Word

2004
2006
2008
200A

2012

2010 M
IR

2006 PC

FIGURE 6.8 Microprocessor addition program (modified during execution)

Program
Memory

Address of Memory
Memory 1 Word 1
y&cl

2000
2002
2004
2006
2008
200A IR

PC

~~ ~~~ ~

FIGURE 6.9 Microprocessor addition program (modified during execution)

Next, the microprocessor loads the contents of the memory location addressed by
the PC into the IR; thus, 3010,, is loaded into the IR. The PC contents are then incremented
by 2 to hold 2006,,. This is shown in Figure 6.8. In response to the instruction 3010,,, the
contents of the memory location addressed by the MAR are loaded into the data register,
DO; thus, 0002,, is moved to register DO. The contents of the PC are not incremented this
time. This is because 0002,, is not immediate data. Figure 6.9 shows the details. Next the
microprocessor loads 5249,, to IR and then increments PC to contain 2OO8,, as shown in
Figure 6.10.

In response to the instruction 5249,, in the IR, the microprocessor increments
the MAR by 2 to contain 2012,, as shown in Figure 6.1 1. Next, the instruction D051,, in
location 2008,, is loaded into the IR, and the PC is then incremented by 2 to hold 200A,, as
shown in Figure 6.12. Finally, in response to instruction DO5 1 ,,, the microprocessor adds
the contents of the memory location addressed by MAR (address 201 2,,) with the contents
of register DO and stores the result in DO. Thus, 0002,, is added with OOOS,,, and the 16-bit
result 0007,, is stored in DO as shown in Figure 6.13. This completes the execution of the
binary addition program.

Microcomputer Architecture, Programming, and System Design Concepts

0002
2012
5249
2008

193

DO
MAR
IR
PC

Program
Memory

Data
Memory

Address of
Memory
U r d

2000
2002
2004
2006
2008
200A

201 0
2012
pq 0005

I 0002] DO

2008 I PC

FIGURE 6.10 Microprocessor addition program (modified during execution)

Program
Memory

Data
Memory

Word

FIGURE 6.1 1 Microprocessor addition program (modified during execution)

Other Microprocessor Registers
General-Purpose Registers
The 16-, 32-, and 64-bit microprocessors are register oriented. They have a number of
general-purpose registers for storing temporary data or for carrying out data transfers
between various registers. The use of general-purpose registers speeds up the execution
of a program because the microprocessor does not have to read data from external
memory via the data bus if data is stored in one of its general-purpose registers. These
registers are typically 16 to 32 bits. The number of general-purpose registers will
vary from one microprocessor to another. Some of the typical finctions performed by
instructions associated with the general-purpose registers are given here. We will use
[REG] to indicate the contents of the general-purpose register and [MI to indicate the
contents of a memory location.
1.
2.
3 .
4.

Move [REG] to or from memory: [MI - [REG] or [REG] +- [MI.
Move the contents of one register to another: [REG11 - [REG2].
Increment or decrement [REG] by 1 : [REG] + [REG] + 1 or [REG] +- [REG] - 1.
Load 16-bit data into a register [REG] : [REG] - 16-bit data.

194 Fundamentals of Digital Logic and Microcomputer Design

2000
2002
2004
2006
2008
200A

Program
Memory

Data
Memory

3279
201 0
301 0
5249
DO51

Address of Memory
Memory 1 W 1
Word

2010 Fl
201 2

Fl L R
IR

200A PC

-

FIGURE 6.12 Microprocessor addition program (modified during execution)

Address of Memory
Memory 1 I
word

Program
MemON

2000
2002
2004
2006
2008
200A

0007 DO
2012 MAR
DO51 IR
200A PC

FIGURE 6.13

Index Register

Microprocessor addition program (modified during execution)

An index register is typically used as a counter in address modification for an
instruction, or for general storage functions. The index register is particularly useful
with instructions that access tables or arrays of data. In this operation the index register
is used to modify the address portion of the instruction. Thus, the appropriate data in
a table can be accessed. This is called “indexed addressing.” This addressing mode
is normally available to the programmers of microprocessors. The effective address
for an instruction using the indexed addressing mode is determined by adding the
address portion of the instruction to the contents of the index register. Index registers
are typically 16 or 32 bits long. In a typical 16- or 32-bit microprocessor, general-
purpose registers can be used as index registers.

Status Register
The status register, also known as the “processor status word register” or the “condition
code register,” contains individual bits, with each bit having special significance. The
bits in the status register are called “flags.” The status of a specific microprocessor
operation is indicated by each flag, which is set or reset by the microprocessor’s internal
logic to indicate the status of certain microprocessor operations such as arithmetic and

Microcomputer Architecture, Programming, and System Design Concepts 195

logic operations. The status flags are also used in conditional JUMP instructions. We
will describe some of the common flags in the following.

The carryflag is used to reflect whether or not the result generated by an arithmetic
operation is greater than the microprocessor’s word size. As an example, the addition
of two 8-bit numbers might produce a carry. This carry is generated out of the eighth
position, which results in setting the carry flag. However, the carry flag will be zero if
no carry is generated from the addition. As mentioned before, in multibyte arithmetic,
any carry out of the low-byte addition must be added to the high-byte addition to
obtain the correct result. This can illustrated by the following example:

high byte low byte

0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1

0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0
T

high-order bit cam is reflected -
position into-the high-byte

addition

While performing BCD arithmetic with microprocessors, the carry out of the low
nibble (4 bits) has a special significance. Because a BCD digit is represented by 4
bits, any carry out of the low 4 bits must be propagated into the high 4 bits for BCD
arithmetic. This carry flag is known as the auxiliary carryflag and is set to 1 if the
carry out of the low 4 bits is 1, otherwise it is 0.

A zeroflag is used to show whether the result of an operation is zero. It is set to 1
if the result is zero, and it is reset to 0 if the result is nonzero. Aparityflag is set to 1 to
indicate whether the result of the last operation contains either an even number of 1 ’s
(even parity) or an odd number of 1 ’s (odd parity), depending on the microprocessor.
The type of parity flag used (even or odd) is determined by the microprocessor’s internal
structure and is not selectable. The sign flag (also sometimes called the negative flag)
is used to indicate whether the result of the last operation is positive or negative. If the
most significant bit of the last operation is 1, then this flag is set to 1 to indicate that
the result is negative. This flag is reset to 0 if the most significant bit of the result is
zero, that is, if the result is positive.

As mentioned before, the overflowflag arises from the representation of the sign
flag by the most significant bit of a word in signed binary operation. The overflow flag
is set to 1 if the result of an arithmetic operation is too big for the microprocessor’s
maximum word size, otherwise it is reset to 0. Let C’be the final carry out of the most
significant bit (sign bit) and C, be the previous carry. It was shown in Chapter 2 that
the overflow flag is the exclusive OR of the carries C, and C’

Overflow = C, 0 C’
Stack Pointer Register

The stack consists of a number of RAM locations set aside for reading data from
or writing data into these locations and is typically used by subroutines (a subroutine is
a program that performs operations frequently needed by the main or calling program).
The address of the stack is contained in a register called the “stack pointer.” Two
instructions, PUSH and POP, are usually available with the stack. The PUSH operation

196 Fundamentals of Digital Logic and Microcomputer Design

Bonom of
Slack

FIGURE 6.14 PUSH operation when accessing stack from bottom

Before POP After POP

FIGURE 6.15 POP operation when accessing stack from bottom

Before PUSH After PUSH

\ /
Tap of
Slack

FIGURE 6.16 PUSH operation when accessing stack from top

Microcomputer Architecture, Programming, and System Design Concepts 197

I I Before POP After POP

I ' Top of ' H I Stack

FIGURE 6.17 POP operation when accessing stack from top

is defined as writing to the top or bottom of the stack, whereas the POP operation
means reading from the top or bottom of the stack. Some microprocessors access the
stack from the top; the others access via the bottom. When the stack is accessed from
the bottom, the stack pointer is incremented after a PUSH and decremented after a
POP operation. On the other hand, when the stack is accessed from the top, the stack
pointer is decremented after a PUSH and incremented after a POP. Microprocessors
typically use 16- or 32-bit registers for performing the PUSH or POP operations. The
incrementing or decrementing of the stack pointer depends on whether the operation
is PUSH or POP and also whether the stack is accessed from the top or the bottom.

We now illustrate the stack operations in more detail. We use 16-bit registers in
Figures 6.14 and 6.15. In Figure 6.14, the stack pointer is incremented by 2 (since 16-
bit register) to address location 20C7 after the PUSH. Now consider the POP operation
of Figure 6.15. Note that after the POP, the stack pointer is decremented by 2. [2OC5]
and [2OC6] ace assumed to be empty conceptually after the POP operation. Finally,
consider the PUSH operation of Figure 6.16. The stack is accessed from the top. Note
that'the stack pointer is decremented by 2 after a PUSH. Next, consider the POP
(Figure 6.17). [2OC4] and [2OC5] are assumed to be empty after the POP.
Note that the stack is a LIFO (Last In First Out) memory.

Exarnde 6.1
Determine the carry (C) , sign (9, zero (4, overflow (v), and parity (P) flags for the
following operation: 0 1 10, plus 10 10, .

Assume the parity bit = 1 for ODD parity in the result; otherwise the parity bit =

0. Also, assume that the numbers are signed. Draw a logic diagram for implementing the
flags in a 5-bit register using D flip-flops; use P = bit 0, V = bit 1, Z = bit 2, S = bit 3, and
C = bit 4. Note that Verilog and VHDL descriptions along with simulation results of this
status register are provided in Appendices I and J respectively.
Solution

I 1 0 t Intermediate Carries
0 1 1 0

+ l o 1 0

Result = 0 0 0 0 -
Z = 1 since result = 0
P = 0 since even panty
v=c,e c, =1 e 1 = 0

198

The flag register can be implemented from the 4-bit result as follows:

Fundamentals of Digital Logic and Microcomputer Design

I I U

6.3.2 Control Unit
The main purpose of the control unit is to read and decode instructions from the program
memory. To execute an instruction, the control unit steps through the appropriate blocks
of the ALU based on the op-codes contained in the instruction register. The op-codes
define the operations to be performed by the control unit in order to execute an instruction.
The control unit interprets the contents of the instruction register and then responds to
the instruction by generating a sequence of enable signals. These signals activate the
appropriate ALU logic blocks to perform the required operation.

The control unit generates the control signals, which are output to the other
microcomputer elements via the control bus. The control unit also takes appropriate actions
in response to the control signals on the control bus provided by the other microcomputer
elements.

The control signals vary from one microprocessor to another. For each specific
microprocessor, these signals are described in detail in the manufacturer’s manual. It is
impossible to describe all the control signals for various manufacturers. However, we
cover some of the common ones in the following discussion.

RESET. This input is common to all microprocessors. When this input pin is driven
to HIGH or LOW (depending on the microprocessor), the program counter is loaded
with a predefined address specified by the manufacturer. For example, in the 80486,
upon hardware reset, the program counter is loaded with FFFFFFFO,,. This means
that the instruction stored at memory location FFFFFFFO,, is executed first. In some
other microprocessors, such as the Motorola 68000, the program counter is not
loaded directly by activating the RESET input. In this case, the program counter is
loaded indirectly from two locations (such as 000004 and 000006) predefined by the
manufacturer. This means that these two locations contain the address of the first
instruction to be executed.
READ/WRITE (m. This output line is common to all microprocessors. The
status of this line tells the other microcomputer elements whether the microprocessor

Microcomputer Architecture, Programming, and System Design Concepts 199

is performing a READ or a WRITE operation. A HIGH signal on this line indicates
a READ operation and a LOW indicates a WRITE operation. Some microprocessors
have separate READ and WRITE pins.
READY. This is an input to the microprocessor. Slow devices (memory and 110) use
this signal to gain extra time to transfer data to or receive data from a microprocessor.
The READY signal is usually an active low signal, that is, LOW means that the
microprocessor is ready. Therefore, when the microprocessor selects a slow device, the
device places a LOW on the READY pin. The microprocessor responds by suspending
all its internal operations and enters a WAIT state. When the device is ready to send
or receive data, it removes the READY signal. The microprocessor comes out of the
WAIT state and performs the appropriate operation.
Interrupt Request (INT or IRQ). The external I/O devices can interrupt the
microprocessor via this input pin on the microprocessor chip. When this signal is
activated by the external devices, the microprocessor jumps to a special program,
called the “interrupt service routine.” This program is normally written by the user
for performing tasks that the interrupting device wants the microprocessor to do.
After completing this program, the microprocessor returns to the main program it was
executing when the interrupt occurred.

6.3.3
The ALU performs all the data manipulations, such as arithmetic and logic operations,
inside the microprocessor. The size of the ALU conforms to the word length of the
microcomputer. This means that a 32-bit microprocessor will have a 32-bit ALU. Typically,
the ALU performs the following functions:

Arithmetic and Logic Unit (ALU)

1. Binary addition and logic operations
2. Finding the ones complement of data
3. Shifting or rotating the contents of a general-purpose register 1 bit to the left or

right through carry

Functional Representations of a Simple and a Typical Microprocessor 6.3.4
Figure 6.18 shows the functional block diagram of a simple microprocessor. Note that the

I I
Arithmetic and Logic unR (ALU)

Status Register

stuner

9
Comp!amenter t: ’2

Bookan Lo&
and Addition I

t!

General Purpcse
Register

Instruction

FIGURE 6.18 Functional representation of a simple microprocessor

200

15 8 7 0 I 20 , b
ALU for

6 Computation

ieral
pose I , b

Fundamentals of Digital Logic and Microcomputer Design

Idress /Data Bus 4 I

Other General
Purpose Registers

~

-
I

Control

Stack Pointer w

-

MUltiDlexed I I

4
Temporaty Registers

1 II-
ALU for

Arithmetic
Logic

Operations

1

r
b

16-bit
Segment
Registers

Unit

I -

4 -
- 1

Instruction
Registers

SIX instructions
are queued in

a FIFO
(First-In First
Out) Memory

J

Bus Interface Unit IBIU)

FIGURE 6.19 Simplified block diagram of the 8086

data bus shown is internal to the microprocessor chip and should not be confused with the
system bus. The system bus is external to the microprocessor and is used to connect all
the necessary chips to form a microcomputer. The buffer register in Figure 6.18 stores any
data read from memory for further processing by the ALU. All other blocks of Figure 6.18
have been discussed earlier. Figure 6.19 shows the simplified block diagram of a realistic
microprocessor, the Intel 8086.

The 8086 microprocessor is internally divided into two functional units: the bus
interface unit (BIU) and the execution unit (EU). The BIU interfaces the 8086 to external
memory and 110 chips. The BIU and EU function independently. The BIU reads (fetches)
instructions and writes or reads data to or from memory and I/O ports. The EU executes
instructions that have already been fetched by the BIU. The BIU contains segment registers,
the instruction pointer (IP), the instruction queue registers, and the address generatiodbus
control circuitry.

The 8086 uses segmented memory. This means that the 8086’s 1 MB main memory
is divided into 16 segments of 64 KB each. Within a particular segment, the instruction
pointer (IP) works as a program counter (PC). Both the IP and the segment registers are
16 bits wide. The 20-bit address is generated in the BIU by using the contents of a 16-bit
IP and a 16-bit segment register. The ALU in the BIU is used for this purpose. Memory
segmentation is useful in a time-shared system when several users share a microprocessor.
Segmentation makes it easy to switch from one user program to another by changing the

Microcomputer Architecture, Programming, and System Design Concepts 20 1

Salts flags

shfter t
Complememer

t

contents of a segment register.
The bus control logic of the BIU generates all the bus control signals such as read

and write signals for memory and I/O. The BIU’s instruction register consist of a first-
in-first-out (FIFO) memory in which up to six instruction bytes are preread (prefetched)
from external memory ahead of time to speed up instruction execution. The control unit in
the EU translates the instructions based on the contents of the instruction registers in the
BIU.

The EU contains several 16-bit general-purpose registers. Some of them are AX,
BX, CX, and DX. Each of these registers can be used either as an 8-bit register (AH, AL,
BH, BL, CH, CL, DH, DL) or as a 16-bit register (AX, BX, CX, DX). Register BX can also
be used to hold the address in a segment. The EU also contain a 16-bit status register. The
ALU in the EU performs all arithmetic and logic operations. The 8086 is covered in detail
in Chapter 9.

6.3.5
In this section, we discuss how the op-codes are interpreted by the microprocessor.
Most microprocessors have an internal memory, called the “control memory” (ROM).
This memory is used to store a number of codes, called the “microinstructions.” These
microinstructions are combined together to design instructions. Each instruction in the
instruction register initiates execution of a set of microinstructions in the control unit to
perform the operation required by the instruction. The microprocessor manufacturers
define the microinstructions by programming the control memory (ROM) and thus,
design the instruction set of the microprocessor. This type of programming is known
as “microprogramming.” Note that the control units of most 16-, 32-, and 64-bit
microprocessors are microprogrammed.

For simplicity, we illustrate the concepts of microprogramming using Figure
6.18. Let us consider incrementing the contents of the register. This is basically an addition
operation. The control unit will send an enable signal to execute the ALU adder logic.

Microprogramming the Control Unit (A Simplified Explanation)

c

b

c

c

I I
rilhnelic ard b g i c ml (ALU)

Register

Memory Address

Program Colnter

l m l m i o n

FIGURE 6.20 Transferring register contents to data bus

202 Fundamentals of Digital Logic and Microcomputer Design

Incrementing the contents of a register consists of transferring the register contents to
the ALU adder and then returning the result to the register. The complete incrementing
process is accomplished via the five steps shown in Figures 6.20 through Figure 6.24, In
all five steps, the control unit initiates execution of each microinstruction. Figure 6.20
shows the transfer of the register contents to the data bus. Figure 6.2 1 shows the transfer
of the contents of the data bus to the adder in the ALU in order to add 1 to it. Figure 6.22
shows the activation of the adder logic. Figure 6.23 shows the transfer of the result from
the adder to the data bus. Finally, Figure 6.24 shows the transfer of the data bus contents to
the register.

Microprogramming is typically used by the microprocessor designer to program
the logic performed by the control unit. On the other hand, assembly language programming
is a popular programming language used by the microprocessor user for programming the
microprocessor to perform a desired function. A microprogram is stored in the control unit.
An assembly language program is stored in the main memory. The assembly language
program is called a macroprogram. A macroinstruction (or simply an instruction) initiates
execution of a complete microprogram.

A simplified explanation of microprogramming is provided in this section. This
topic will be covered in detail in Chapter 7.

-
*---L Cornplementer 4 b

Boolean Logic b

Arithmetic and Logic unit (ALU) ,
Status flags

.c--* and Addition
01 101010

Buffer Register
Data Bus

01 101010

Program Counter

Instruction
Register

h

FIGURE 6.21 Transferring data bus contents to the ALU

Microcomputer Architecture, Programming, and System Design Concepts 203

\rithmetic and Logic unit (ALU) , I,
Shilter I

9 Compkmenter r-

and Addition
01101011

Register

01101010

Instruction

Buffer Register

FIGURE 6.22 Activating the ALU logic

rrithmetic and Logic unit (ALU) ,
t-H Status flags

1 I I I I
Shiner b

w Compkmenter

r
r
0

0
-
r
7

0

Bookan Logic
and Addition
01 101011

Bookan Logic
and Addition Y 01 101011

71: Buffer Register

Register

01 101010

Memoly Address

Program Counter

I Controlunit 1

FIGURE 6.23 Transferring the ALU result to the data bus

204

- Statuslbgs 4

4----* Shifler

4----* Comp!ementer

Fundamentals of Digital Logic and Microcomputer Design

b

b

b

irithmetic and Logic unit (ALU)
I 7

Buffer Register

Register

01101011

Memory Address
Register

Program Counter

Instruction
Register

1 control Unit 1

FIGURE 6.24 Transferring the data bus

6.4 The Memory

The main or external memory (or simply the memory) stores both instructions and data. For
8-bit microprocessors, the memory is divided into a number of 8-bit units called “memory
words.” An 8-bit unit of data is termed a “byte.” Therefore, for an 8-bit microprocessor,
“memory word” and “memory byte” mean the same thing. For 16-bit microprocessors,
a word contains two bytes (16 bits). A memory word is identified in the memory by
an address. For example, the 8086 microprocessor uses 20-bit addresses for accessing

Segment 15
FFFFFH

FOOOOH

IFFFF,,

10000,,

OFFFF,,

ooooo,,

Segment 1

Segment 0

FIGURE 6.25 The main memory of the 8086

Microcomputer Architecture, Programming, and System Design Concepts 205

Memory

I

I

Static Pseudo
Dynamic static

FIGURE 6.26 Summary of available semiconductor memories for microprocessor
systems

memory words. This provides a maximum of 220 = 1 MB of memory addresses, ranging
from 00000,, to FFFFF,, in hexadecimal.

As mentioned before, an important characteristic of a memory is whether it is
volatile or nonvolatile. The contents of a volatile memory are lost if the power is turned off.
On the other hand, a nonvolatile memory retains its contents after power is switched off.
Typical examples of nonvolatile memory are ROM and magnetic memory (floppy disk).
A RAM is a volatile memory unless backed up by battery.

As mentioned earlier, some microprocessors such as the Intel 8086 divide the
memory into segments. For example, the 8086 divides the 1 MB main memory into 16
segments (0 through 15). Each segment contains 64 IU3 of memory and is addressed by 16
bits. Figure 6.25 shows atypical main memory layout ofthe 8086. In the figure, the high four
bits of an address specify the segment number. As an example, consider address 10005,, of
segment 1. The high four bits, 000 1, of this address define the location is in segment 1 and
the low 16 bits, OOOS,,, specify the particular address in segment 1. The 68000, on the other
hand, uses linear or nonsegmented memory. For example, the 68000 uses 24 address pins
to directly address 224= 16 MB of memory with addresses from 000000,, to FFFFFF,,. As
mentioned before, memories can be categorized into two main types: read-only memory
(ROM) and random-access memory (RAM). As shown in Figure 6.26, ROMs and RAMs
are then divided into a number of subcategories, which are discussed next.

6.4.1 Random-Access Memory (RAM)
There are three types of RAM: dynamic RAM, pseudo-static RAM , and static RAM.
Dynamic RAM stores data in capacitors, that is, it can hold data for a few milliseconds.
Hence, dynamic RAMs are refreshed typically by using external refresh circuitry. Pseudo-
static RAMs are dynamic RAMs with internal refresh. Finally, static RAM stores data

206 Fundamentals of Digital Logic and Microcomputer Design

in flip-flops. Therefore, this memory does not need to be refreshed. RAMs are volatile
unless backed up by battery. Dynamic RAMs (DRAMs) are used in applications requiring
large memory. DRAMs have higher densities than Static RAMs (SRAMs). Typical
examples of DRAMs are 4464 (64K x 4-bit), 44256 (256K x 4-bit), and 41000 (1M x
1-bit). DRAMs are inexpensive, occupy less space , and dissipate less power compared
to SRAMs. Two enhanced versions of DRAM are E D 0 DRAM (Extended Data Output
DRAM) and SDRAM (Synchronous DRAM). The E D 0 DRAM provides fast access by
allowing the DRAM controller to output the next address at the same time the current data
is being read. An SDRAM contains multiple DRAMs (typically 4) internally. SDRAMs
utilize the multiplexed addressing of conventional DRAMs . That is, SDRAMs provide
row and column addresses in two steps like DRAMs. However, the control signals and
address inputs are sampled by the SDRAM at the leading edge of a common clock signal
(1 33 MHz maximum). SDRAMs provide higher densities by further reducing the need for
support circuitry and faster speeds than conventional DRAMs. The SDRAM has become
popular with PC (Personal Computer) memory.

6.4.2 Read-only Memory (ROM)
ROMs can only be read. This memory is nonvolatile. From the technology point of view,
ROMs are divided into two main types, bipolar and MOS. As can be expected, bipolar
ROMs are faster than MOS ROMs. Each type is further divided into two common types,
mask ROM and programmable ROM. MOS ROMs contain one more type, erasable PROM
(EPROM such as Intel 2732 and EAROM or EEPROM or E*PROM such as Intel 2864).
Mask ROMs are programmed by a masking operation performed on the chip during the
manufacturing process. The contents of mask ROMs are permanent and cannot be changed
by the user. On the other hand, the programmable ROM (PROM) can be programmed by
the user by means of proper equipment. However, once this type of memory is programmed,
its contents cannot be changed. Erasable PROMs (EPROMs and EAROMs) can be
programmed, and their contents can also be altered by using special equipment, called the
PROM programmer. When designing a microcomputer for a particular application, the
permanent programs are stored in ROMs. Control memories are ROMs. PROMs can be
programmed by the user. PROM chips are normally designed using transistors and fuses.

FIGURE 6.27

Clock

Address
AO-A15

Do- 4 +M-

Typical Instruction Fetch Timing Diagram for an 8-bit Microprocessor

Microcomputer Architecture, Programming, and System Design Concepts 207

These transistors can be selected by addressing via the pins on the chip. In order to program
this memory, the selected fuses are “blown” or “burned” by applying a voltage on the
appropriate pins of the chip. This causes the memory to be permanently programmed.

Erasable PROMS (EPROMs) can be reprogrammed and erased. The chip must
be removed from the microcomputer system for programming. This memory is erased by
exposing the chip via a lid or window on the chip to ultraviolet light. Typical erase times
vary between 10 and 30 min. The EPROM can be programmed by inserting the chip into a
socket of the PROM programmer and providing proper addresses and voltage pulses at the
appropriate pins of the chip. Electrically alterable ROMs (EAROMs) can be programmed
without removing the memory from the ROM’s sockets. These memories are also called
read mostly memories (RMMs), because they have much slower write times than read
times. Therefore, these memories are usually suited for operations when mostly reading
rather that writing will be performed. Another type of memory called “Flash memory”
(nonvolatile) invented in the mid 1980s by Toshiba is designed using a combination of
EPROM and E2PROM technologies. Flash memory can be reprogrammed electrically
while being embedded on the board. One can change multiple bytes at a time. An example
of Flash memory is the Intel 28F020 (256K x 8). Flash memory is typically used in cellular
phones and digital cameras.

6.4.3 READ and WRITE Operations
To execute an instruction, the microprocessor reads or fetches the op-code via the data bus
from a memory location in the ROM/RAM external to the microprocessor. It then places
the op-code (instruction) in the instruction register. Finally, the microprocessor executes the
instruction. Therefore, the execution of an instruction consists of two portions, instruction
fetch and instruction execution. We will consider the instruction fetch, memory READ and
memory WRITE timing diagrams in the following using a single clock signal. Figure 6.27
shows a typical instruction fetch timing diagram.

In Figure 6.27, to fetch an instruction, when the clock signal goes to HIGH, the
microprocessor places the contents of the program counter on the address bus via the address
pins A,-A,, on the chip. Note that since each one of these lines A,-A,, can be either HIGH
or LOW, both transitions are shown for the address in Figure 6.27. The instruction fetch
is basically a memory READ operation. Therefore, the microprocessor raises the signal

Clock

Address
AD-A15

ROBd

Data

00-4 “-1 lnslwtm fetch tetcn

I

FIGURE 6.28 Typical Memory READ Timing Diagram

208 Fundamentals of Digital Logic and Microcomputer Design

on the READ pin to HIGH. As soon as the clock goes to LOW, the logic external to the
microprocessor gets the contents of the memory location addressed by A,-A,, and places
them on the data bus Do-D,. The microprocessor then takes the data and stores it in the
instruction register so that it gets interpreted as an instruction. This is called “instruction
fetch.” The microprocessor performs this sequence of operations for every instruction.

We now describe the READ and WRITE timing diagrams. A typical READ timing
diagram is shown in Figure 6.28. Memory READ is basically loading the contents of a
memory location of the main ROM/RAM into an internal register of the microprocessor.
The address of the location is provided by the contents of the memory address register
(MAR). Let us now explain the READ timing diagram of Figure 6.28 as follows:

1.

2.
3.

4.
5 .

The microprocessor performs the instruction fetch cycle as before to READ the op-
code.
The microprocessor interprets the op-code as a memory READ operation.
When the clock pin signal goes to HIGH, the microprocessor places the contents of the
memory address register on the address pins A,-A,, of the chip.
At the same time, the microprocessor raises the READ pin signal to HIGH.
The logic external to the microprocessor gets the contents of the location in the main
ROWRAM addressed by the memory address register and places them on the data
bus.
Finally, the microprocessor gets this data from the data bus via its pins Do - D, and
stores it in an internal register.

Memory WRITE is basically storing the contents of an internal register of the
microprocessor into a memory location of the main RAM. The contents of the memory
address register provide the address of the location where data is to be stored. Figure 6.29
shows a typical WRITE timing diagram. It can be explained in the following way:

6.

1.
2.

3.

The microprocessor fetches the instruction code as before.
The microprocessor interprets the instruction code as a memory WRITE instruction
and then proceeds to perform the DATA STORE cycle.
When the clock pin signal goes to HIGH, the microprocessor places the contents of the

FIGURE 6.29 Typical Memory WRITE Timing Diagram

Microcomputer Architecture, Programming, and System Design Concepts 209

memory address register on the address pins Ao-A,5 of the chip.
At the same time, the microprocessor raises the WRITE pin signal to HIGH.
The microprocessor places data to be stored from the contents of an internal register
onto the data pins Do-D,.
The logic external to the microprocessor stores the data from the register into a RAM
location addressed by the memory address register.

4.
5.

6.

6.4.4 Memory Organization
Microcomputer memory typically consists of ROMs / EPROMs, and RAMs. Because
RAMs can be both read from and written into, the logic required to implement RAMs
is more complex than that for ROMs / EPROMs. A microcomputer system designer is
normally interested in how the microcomputer memory is organized or, in other words,
how to connect the ROMS /EPROMs and RAMs and then determine the memory map
of the microcomputer. That is, the designer would be interested in finding out what
memory locations are assigned to the ROMs / EPROMs and RAMs. The designer can then
implement the permanent programs in ROMs / EPROMs and the temporary programs in
RAMs. Note that RAMs are needed when subroutines and interrupts requiring stack are
desired in an application.

As mentioned before, DRAMs (Dynamic RAMs) use MOS capacitors to store
information and need to be refreshed. DRAMs are inexpensive compared to SRAMs,
provide larger bit densities and consume less power. DRAMs are typically used when
memory requirements are 16k words or larger. DRAM is addressed via row and column
addressing. For example, one megabit DRAM requiring 20 address bits is addressed using
10 address lines and two control lines, (Row Address Strobe) and CAS (Column
Address Strobe). To provide a 20-bit address into the DRAM, a LOW is applied to RAS
and 10 bits of the address are latched. The other 10 bits of the address are applied next and
CAS is then held LOW.

The addressing capability of the DRAM can be increased by a factor of 4 by
adding one more bit to the address line. This is because one additional address bit results
into one additional row bit and one additional column bit. This is why DRAMs can be
expanded to larger memory very rapidly with inclusion of additional address bits. External
logic is required to generate the RAS and CAS signals, and to output the current address
bits to the DRAM.

DRAM controller chips take care of refreshing and timing requirements needed by
the DRAMs. DRAMs typically require 4 millisecond refresh time. The DRAM controller
performs its task independent of the microprocessor. The DRAM controller sends a wait
signal to the microprocessor if the microprocessor tries to access memory during a refresh
cycle.

Because of large memory, the address lines should be buffered using 74LS244
or 74HC244 (Unidirectional buffer), and data lines should be buffered using 74LS245 or
74HC245 (Bidirectional buffer) to increase the drive capability. Also, typical multiplexers
such as 74LS 157 or 74HC 157 can be used to multiplex the microprocessors address lines
into separate row and column addresses.

-

-

- -

6.5 InDut/OutDut

Input/Output (I/O) operation is typically defined as the transfer of information between
the microcomputer system and an external device. There are typically three main ways of

210 Fundamentals of Digital Logic and Microcomputer Design

Assembly or high-
level language
(source code)

transferring data between the microcomputer system and the external devices. These are
programmed I/O, interrupt I/O, and direct memory access. We now define them.

Translator Binary
(assembler or - machine language

CornpilerAnterpreter) (object code)

Programmed I/O. Using this technique, the microprocessor executes a program to
perform all data transfers between the microcomputer system and the external devices,
The main characteristic of this type of 110 technique is that the external device carries
out the functions as dictated by the program inside the microcomputer memory. In
other words, the microprocessor completely controls all the transfers.
Interrupt I/O. In this technique, an external device or an exceptional condition such
as overflow can force the microcomputer system to stop executing the current program
temporarily so that it can execute another program, known as the “intempt service
routine.” This routine satisfies the needs of the external device or the exceptional
condition. After having completed this program, the microprocessor returns to the
program that it was executing before the interrupt.
Direct Memory Access (DMA). This is a type of I/O technique in which data can
be transferred between the microcomputer memory and external devices without any
microprocessor (CPU) involvement. Direct memory access is typically used to transfer
blocks of data between the microcomputer’s main memory and an external device
such as hard disk. An interface chip called the DMA controller chip is used with the
microprocessor for transferring data via direct memory access.

6.6 MicrocomDuter Programming ConceDts

This section includes the fundamental concepts of microcomputer programming. Typical
programming characteristics such as programming languages, microprocessor instruction
sets, addressing modes, and instruction formats are discussed.

FIGURE 6.30 Translating assembly or a high-level language into binary machine
language

Microcomputer Architecture, Programming, and System Design Concepts 2 1 1

all its instructions. These instructions are called the microprocessor’s “instruction set.”
Programs in assembly and high-level languages are represented by instructions that use
English- language-type statements. The programmer finds it relatively more convenient
to write the programs in assembly or a high-level language than in machine language.
However, a translator must be used to convert the assembly or high-level programs into
binary machine language so that the microprocessor can execute the programs. This is
shown in Figure 6.30.

An assembler translates a program written in assembly language into a machine
language program. A compiler or interpreter, on the other hand, converts a high-level
language program such as C or C++ into a machine language program. Assembly or high-
level language programs are called “source codes.” Machine language programs are known
as “object codes.” A translator converts source codes to object codes. Next, we discuss the
three main types of programming language in more detail.

6.6.2 Machine Language
A microprocessor has a unique set of machine language instructions defined by its
manufacturer. No two microprocessors by two different manufacturers have the same
machine language instruction set. For example, the Intel 8086 microprocessor uses the
code 01D8,, for its addition instruction whereas the Motorola 68000 uses the code D282,,.
Therefore, a machine language program for one microcomputer will not usually run on
another microcomputer of a different manufacturer.

At the most elementary level, a microprocessor program can be written using its
instruction set in binary machine language. As an example, a program written for adding
two numbers using the Intel 8086 machine language is

1011 1000 0000 0001 0000 0000
1011 1011 0000 0010 0000 0000
0000 0001 1101 1000
1111 0100

Obviously, the program is very difficult to understand, unless the programmer remembers
all the 8086 codes, which is impractical. Because one finds it very inconvenient to work
with 1’s and O’s, it is almost impossible to write an error-free program at the first try. Also,
it is very tiring for the programmer to enter a machine language program written in binary
into the microcomputer’s RAM. For example, the programmer needs a number of binary
switches to enter the binary program. This is definitely subject to errors.

To increase the programmer’s efficiency in writing a machine language program,
hexadecimal numbers rather than binary numbers are used. The following is the same
addition program in hexadecimal, using the Intel 8086 instruction set:

B80100

BB0200

01D8

F4

It is easier to detect an error in a hexadecimal program, because each byte contains only
two hexadecimal digits. One would enter a hexadecimal program using a hexadecimal

212 Fundamentals of Digital Logic and Microcomputer Design

keyboard. A keyboard monitor program in ROM, usually offered by the manufacturer,
provides interfacing of the hexadecimal keyboard to the microcomputer. This program
converts each key actuation into binary machine language in order for the microprocessor
to understand the program. However, programming in hexadecimal is not normally used.

6.6.3 Assembly Language
The next programming level is to use the assembly language. Each line in an assembly
language program includes four fields:

1. Label field
2.
3 . Operand field
4. Comment field

Instruction, mnemonic, or op-code field

As an example, a typical program for adding two 16-bit numbers written in 8086 assembly
language is

Label Mnemonic Operand Comment

START MOV AX, 1 move 1 into AX

MOV BX, 2 move 2 into BX

ADD AX, BX add the contents of AX with BX

JMP START jump to the beginning of the program

Obviously, programming in assembly language is more convenient than
programming in machine language, because each mnemonic gives an idea of the type of
operation it is supposed to perform. Therefore, with assembly language, the programmer
does not have to find the numerical op-codes from a table of the instruction set, and
programming efficiency is significantly improved.

The assembly language program is translated into binary via a program called
an “assembler.” The assembler program reads each assembly instruction of a program as
ASCII characters and translates them into the respective binary op-codes. As an example,
consider the HLT instruction for the 8086. Its binary op-code is 11 11 0100. An assembler
would convert HLT into 1 1 1 01 00 as shown in Figure 6.3 1.

An advantage ofthe assembler is address computation. Most programs use addresses
within the program as data storage or as targets for jumps or calls. When programming in
machine language, these addresses must be calculated by hand. The assembler solves this
problem by allowing the programmer to assign a symbol to an address. The programmer
may then reference that address elsewhere by using the symbol. The assembler computes
the actual address for the programmer and fills it in automatically. One can obtain hands-

Assembly Code

Binary form of ASCII
Codes as Seen by

Assembler

Binary OP Code
Created by
Assembler

H
L
T

0100 1000
0100 1100
0101 0100

1111 0100

~

FIGURE 6.31 Conversion of HLT into its binary op-code

Microcomputer Architecture, Programming, and System Design Concepts 2 13

on experience with a typical assembler for a microprocessor by downloading it from the
Internet.

Most assemblers use two passes to assemble a program. This means that they read
the input program text twice. The first pass is used to compute the addresses of all labels in
the program. In order to find the address of a label, it is necessary to know the total length
of all the binary code preceding that label. Unfortunately, however, that address may be
needed in that preceding code. Therefore, the first pass computes the addresses of all labels
and stores them for the next pass, which generates the actual binary code. Various types of
assemblers are available today. We define some of them in the following paragraphs.

One-Pass Assembler. This assembler goes through the assembly language program
once and translates it into a machine language program. This assembler has the problem
of defining forward references. This means that a JUMP instruction using an address
that appears later in the program must be defined by the programmer after the program
is assembled.
Two-Pass Assembler. This assembler scans the assembly language program twice. In
the first pass, this assembler creates a symbol table. A symbol table consists of labels
with addresses assigned to them. This way labels can be used for JUMP statements and
no address calculation has to be done by the user. On the second pass, the assembler
translates the assembly language program into the machine code. The two-pass
assembler is more desirable and much easier to use.
Macroassembler. This type ofassembler translates a program written in macrolanguage
into the machine language. This assembler lets the programmer define all instruction
sequences using macros. Note that, by using macros, the programmer can assign a name
to an instruction sequence that appears repeatedly in a program. The programmer can
thus avoid writing an instruction sequence that is required many times in a program
by using macros. The macroassembler replaces a macroname with the appropriate
instruction sequence each time it encounters a macroname.

It is interesting to see the difference between a subroutine and a macroprogram. A
specific subroutine occurs once in a program. A subroutine is executed by CALLing
it from a main program. The program execution jumps out of the main program and
then executes the subroutine. At the end of the subroutine, a RET instruction is used to
resume program execution following the CALL SUBROUTINE instruction in the main
program. A macro, on the other hand, does not cause the program execution to branch
out of the main program. Each time a macro occurs, it is replaced with the appropriate
instruction sequence in the main program. Typical advantages of using macros are
shorter source programs and better program documentation. A disadvantage is that
effects on registers and flags may not be obvious.

Conditional macroassembly is very useful in determining whether or not an
instruction sequence is to be included in the assembly depending on a condition that is
true or false. Iftwo different programs are to be executed repeatedly based on a condition
that can be either true or false, it is convenient to use conditional macros. Based on
each condition, a particular program is assembled. Each condition and the appropriate
program are typically included within IF and ENDIF pseudo-instructions.
Cross Assembler. This type of assembler is typically resident in a processor and
assembles programs for another for which it is written. The cross assembler program
is written in a high-level language so that it can run on different types of processors
that understand the same high-level language.
Resident Assembler. This type of assembler assembles programs for a processor

214 Fundamentals of Digital Logic and Microcomputer Design

in which it is resident. The resident assembler may slow down the operation of the
processor on which it runs.
Meta-assembler. This type of assembler can assemble programs for many different
types of processors. The programmer usually defines the particular processor being
used.

As mentioned before, each line of an assembly language program consists of four
fields: label, mnemonic or op-code, operand, and comment. The assembler ignores
the comment field but translates the other fields. The label field must start with an
uppercase alphabetic character. The assembler must know where one field starts
and another ends. Most assemblers allow the programmer to use a special symbol or
delimiter to indicate the beginning or end of each field. Typical delimiters used are
spaces, commas, semicolons, and colons:

Spaces are used between fields.
Commas (,) are used between addresses in an operand field.
A semicolon (;) is used before a comment.
A colon (:) or no delimiter is used after a label.
To handle numbers, most assemblers consider all numbers as decimal numbers

unless specified. Most assemblers will also allow binary, octal, or hexadecimal numbers.
The user must define the type of number system used in some way. This is usually done by
using a letter following the number. Typical letters used are

B for binary
Q for octal
H for hexadecimal
Assemblers generally require hexadecimal numbers to start with a digit. A 0

is typically used if the first digit of the hexadecimal number is a letter. This is done to
distinguish between numbers and labels. For example, most assemblers will require the
number A5H to be represented as OA5H.

Assemblers use pseudo-instructions or directives to make the formatting of the
edited text easier. These pseudo-instructions are not directly translated into machine
language instructions. They equate labels to addresses, assign the program to certain areas
of memory, or insert titles, page numbers, and so on. To use the assembler directives or
pseudo-instructions, the programmer puts them in the op-code field, and, if the pseudo-
instructions require an address or data, the programmer places them in the label or data
field. Typical pseudo-instructions are ORIGIN (ORG), EQUATE (EQU), DEFINE BYTE
(DB), and DEFINE WORD (DW).

ORIGIN (ORG)
The pseudo-instruction ORG lets the programmer place the programs anywhere

in memory. Internally, the assembler maintains a program-counter-type register called the
“address counter.” This counter maintains the address of the next instruction or data to be
processed.

An ORG pseudo-instruction is similar in concept to the J U M P instruction. Recall
that the JUMP instruction causes the processor to place a new address in the program
counter. Similarly, the ORG pseudo-instruction causes the assembler to place a new value
in the address counter.

Typical ORG statements are
ORG 7000H
CLC

The 8086 assembler will generate the following code for these statements:

Microcomputer Architecture, Programming, and System Design Concepts 2 15

7000 F8
Most assemblers assign a value of zero to the starting address of a program if the

programmer does not define this by means of an ORG.

Equate (EQU)
The pseudo-instruction EQU assigns a value in its operand field to an address in

its label field. This allows the user to assign a numeric value to a symbolic name. The user
can then use the symbolic name in the program instead of its numeric value. This reduces
errors.

A typical example of EQU is START EQU 0 2 0 OH, which assigns the value 0200
in hexadecimal to the label START. Another example is

PORTA EQU 40H
MOV AL, OFFH
OUT PORTA, AL

In this example, the EQU gives PORTA the value 40 hex, and FF hex is the data
to be written into register AL by MOV AL, 0 FFH. OUT PORTA, AL then outputs this data
FF hex to port 40, which has already been equated to PORTA before.

Note that, if a label in the operand field is equated to another label in the label
field, then the label in the operand field must be previously defined. For example, the EQU
statement

BEGIN EQU START

will generate an error unless START is defined previously with a numeric value.

Define Byte (DB)

value. For example,
The pseudo-instruction DB is usually used to set a memory location to certain byte

START DB 4 5H

will store the data value 45 hex to the address START.

of data as follows:
With some assemblers, the DB pseudo-instruction can be used to generate a table

ORG 7000H
TABLE DB 20H, 3 0 H , 40H, 50H

In this case, 20 hex is the first data of the memory location 7000; 30 hex, 40 hex,
and 50 hex occupy the next three memory locations. Therefore, the data in memory will
look like this:

7000 20
7001 30
7002 40
7003 50

Note that some assemblers use DC.B instead of DB. DC stands for Define Constant.

Define Word @W)

memory locations. For example,
The pseudo-instruction DW is typically used to assign a 16-bit value to two

ORG 7000H
START DW 4AC2H

216 Fundamentals of Digital Logic and Microcomputer Design

will assign C2 to location 7000 and 4A to location 700 1. It is assumed that the assembler
will assign the low byte first (C2) and then the high byte (4A).

With some assemblers, the DW pseudo-instruction can be used to generate a table
of 16-bit data as follows:

ORG 80OOH
POINTER DW 5000H, 6000H, 7000H

In this case, the three 16-bit values 5000H, 6000H, and 7000H are assigned to
memory locations starting at the address 800OH. That is, the array would look like this:

8 0 0 0 00
8001 50
8002 00
8 0 0 3 6 0
8004 00

8005 70
Note that some assemblers use DC.W instead of DW.

Assemblers also use a number of housekeeping pseudo-instructions. Typical
housekeeping pseudo-instructions are T I T L E , PAGE, END, and L I S T . The following are
the housekeeping pseudo-instructions that control the assembler operation and its program
listing.
TITLE prints the specified heading at the top of each page of the program listing. For
example,

T I T L E “ S qu a re Root A1 go r i t h m “
will print the name “Square Root Algorithm” on top of each page.
PAGE skips to the next line.
END indicates the end of the assembly language source program.
LIST directs the assembler to print the assembler source program.

addressing modes available with typical microprocessors will be discussed.
In the following, assembly language instruction formats, instruction sets, and

Assembly Language Instruction Formats

formats:
Depending on the number of addresses specified, we have the following instruction

Three address
Two address
One address
Zero address
Because all instructions are stored in the main memory, instruction formats

are designed in such a way that instructions take less space and have more processing
capabilities. It should be emphasized that the microprocessor architecture has considerable
influence on a specific instruction format. The following are some important technical
points that have to be considered while designing an instruction format:

The size of an instruction word is chosen in such a way that it facilitates the specification
of more operations by a designer. For example, with 4- and 8-bit op-code fields, we
can specify 16 and 256 distinct operations respectively.
Instructions are used to manipulate various data elements such as integers, floating-
point numbers, and character strings. In particular, all programs written in a symbolic
language such as C are internally stored as characters. Therefore, memory space will
not be wasted if the word length of the machine is some integral multiple of the number

Microcomputer Architecture, Programming, and System Design Concepts 2 17

of bits needed to represent a character. Because all characters are represented using
typical 8-bit character codes such as ASCII or EBCDIC, it is desirable to have 8-, 16-,
32-, or 64-bit words for the word length.
The size of the address field is chosen in such a way that a high resolution is guaranteed.
Note that in any microprocessor, the ultimate resolution is a bit. Memory resolution
is function of the instruction length, and in particular, short instructions provide less
resolution. For example, in a microcomputer with 32K 16-bit memory words, at least
19 bits are required to access each bit of the word. (This is because 215 = 32K and 24 =

16)
The general form of a three address instruction is shown below:

Some typical three-address instructions are
<op-code> Addrl , Addr2, Addr3

MUL A, B , C C < - A * B
ADD A, B , C I C < - A + B
SUB R1, R2, R3 I R3 <- R1 - R2

In this specification, all alphabetic characters are assumed to represent memory
addresses, and the string that begins with the letter R indicates a register. The third address
of this type of instruction is usually referred to as the “destination address.” The result of
an operation is always assumed to be saved in the destination address.

Typical programs can be written using these. three address instructions. For
example, consider the following sequence of three address instructions

MUL A, B , R1 I R1 <- A * B
MUL C, D, R2 I R2 <- C * D
MUL E, F, R3 I R3 <- E * F
ADD R1, R2, R1 I R1 <- R1 + R2
SUB R1, R3, Z I Z <- R1 - R3

Thissequenceimplementsthestatement Z = A * B + C * D - E * F. The
three-address format is normally used by 32-bit microprocessors in addition to the other
formats.

If we drop the third address from the three-address format, we obtain the two-
address format. Its general form is

<op-code> Addrl , Addr2
Some typical two-address instructions are

MOV A, R1 , R1 <- A
ADD C , R2 I R2 <- R2 + C
SUB R1, R2 , R2 <- R2 - R1

In this format, the addresses Addrl and Addr2 respectively represent source and
destination addresses. The following sequence of two-address instructions is equivalent to
the program using three-address format presented earlier:

MOV A, R1 I R1 <- A
MUL B, R1 , R1 <- R1 * B
MOV C , R2 I R2 <- C
MUL D, R2 , R2 <- R2 * D
MOV E , R3 I R3 <- E
MUL F, R3 I R3 <- R3 * F
ADD R2, R1 , R1 <- R1 + R2
SUB R3, R1 , R1 <- R1 - R3
MOV R1, 2 I Z <- R1

218 Fundamentals of Digital Logic and Microcomputer Design

This format is predominant in typical general-purpose microprocessors such as the
Intel 8086 and the Motorola 68000. Typical 8-bit microprocessors such as the Intel 8085
and the Motorola 6809 are accumulator based. In these microprocessors, the accumulator
register is assumed to be the destination for all arithmetic and logic operations. Also, this
register always holds one of the source operands. Thus, we only need to specify one address
in the instruction, and therefore, this idea reduces the instruction length. The one-address
format is predominant in 8-bit microprocessors. Some typical one-address instructions are

LDA B I Acc <- B
ADD C I Act<- Acc f C
MUL D I Acc <- Acc * D
STA E I E <- Acc

The following program illustrates how one can translate the statement Z = A *
B + C * D - E * F into asequence ofone-address instructions:

LDA E , Ace <- E
MUL F I AcC <- Acc * F
STA T1 I T1 <- ACC
LDA C , Ace <- C
MUL D I Acc <- Acc * D
STA T2 I T2 <- ACC
LDA A ACC <- A
MUL B I AcC <- Acc * B
ADD T2 I AcC <- Acc f T2
SUB T1 I AcC <- Acc - T1
STA Z I Z <- ACC

In this program, T1 and T2 represent the addresses of memory locations used to
store temporary results. Instructions that do not require any addresses are called “zero-
address instructions.” All microprocessors include some zero-address instructions in the
instruction set. Typical examples of zero-address instructions are CLC (clear carry) and
NOP.

Typical Assembly Language Instruction Sets
An instruction set of a specific microprocessor consists of all the instructions that

it can execute. The capabilities of a microprocessor are determined, to some extent, by the
types of instructions it is able to perform. Each microprocessor has a unique instruction set
designed by its manufacturer to do a specific task. We discuss some of the instructions that
are common to all microprocessors. We will group chunks of these instructions together
which have similar functions. These instructions typically include

Data Processing Instructions. These operations perform actual data manipulations.
The instructions typically include arithmetidlogic operations and increment/
decrement and rotatekhift operations. Typical arithmetic instructions include ADD,
SUBTRACT, COMPARE, MULTIPLY, AND DIVIDE. Note that the SUBTRACT
instruction provides the result and also affects the status flags while the COMPARE
instruction performs subtraction without any result and affects the flags based on
the result. Typical logic instructions perform traditional Boolean operations such
as AND, OR, and EXCLUSIVE-OR. The AND instruction can be used to perform a
masking operation. If the bit value in a particular bit position is desired in a word, the

Microcomputer Architecture, Programming, and System Design Concepts 2 19

word can be logically ANDed with appropriate data to accomplish this. For example,
the bit value at bit 2 of an 8-bit number 0100 1Y 10 (where unknown bit value of Y is
to be determined) can be obtained as follows:

0 1 0 0 1 Y 1 0 -- 8-bit number
0 0 0 0 0 1 0 0 --Masking data

0 0 0 0 0 Y 0 0 - Result

AND
___-__---_--______-__

If the bit value Y at bit 2 is 1, then the result is nonzero (Flag Z=O); otherwise,
the result is zero (Flag Z=1) . The Z flag can be tested using typical conditional JUMP
instructions such as JZ (Jump if Z=1) or JNZ(Jump if Z=O) to determine whether Y
is 0 or 1. This is called masking operation. The AND instruction can also be used
to determine whether a binary number is ODD or EVEN by checking the Least
Significant bit (LSB) of the number (LSB=O for even and LSB=l for odd). The OR
instruction can typically be used to insert a 1 in a particular bit position of a binary
number without changing the values of the other bits. For example, a 1 can be
inserted using the OR instruction at bit number 3 of the 8-bit binary number 0 1 1 1
0 0 1 1 without changing the values of the other bits as follows:

0 1 1 1 0 0 1 1 -- 8-bit number
0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit number 3

0 1 1 1 1 0 1 1 -- Result

OR
____-__--_________-

The Exclusive-OR instruction can be used to find the ones complement of a binary
number by XORing the number with all 1’s as follows:

0 1 0 1 1 1 0 0 - - %bit number
XOR 1 1 1 1 1 1 1 1 - - data

..........................
1 0 10 0 0 1 1 -- Result (Ones Complement of the 8-bit number

0 1 0 1 1 1 0 0)

Instructions for Controlling Microprocessor Operations. Theseinstructions typically
include those that set the reset specific flags and halt or stop the microprocessor.
Data Movement Instructions. These instructions move data from a register to memory
and vice versa, between registers, and between a register and an I/O device.
Instructions Using Memory Addresses. An instruction in this category typically
contains a memory address, which is used to read a data word from memory into a
microprocessor register or for writing data from a register into a memory location.
Many instructions under data processing and movement fall in this category.
Conditional and Unconditional JUMPS. These instructions typically include one of
the following:
1. Unconditional JUMP, which always transfers the memory address specified in the

instruction into the program counter.
2 . Conditional J U M P , which transfers the address portion of the instruction into the

program counter based on the conditions set by one of the status flags in the flag
register.

220

Typical Assembly Language Addressing Modes
One of the tasks performed by a microprocessor during execution of an instruction

is the determination of the operand and destination addresses. The manner in which a
microprocessor accomplishes this task is called the “addressing mode.” Now, let us present
the typical microprocessor addressing modes, relating them to the instruction sets of
Motorola 68000.

An instruction is said to have “implied or inherent addressing mode” if it does
not have any operand. For example, consider the following instruction: RTS, which means
“return from a subroutine to the main program.” The RTS instruction is a no-operand
instruction. The program counter is implied in the instruction because although the program
counter is not included in the RTS instruction, the return address is loaded in the program
counter after its execution.

Whenever an instructionloperand contains data, it is called an “immediate mode”
instruction. For example, consider the following 68000 instruction:

ADD #15, DO I DO <- DO t 15
In this instruction, the symbol # indicates to the assembler that it is an immediate mode
instruction. This instruction adds 15 to the contents of register DO and then stores the result
in DO. An instruction is said to have a register mode if it contains a register as opposed
to a memory address. This means that the operand values are held in the microprocessor
registers. For example, consider the following 68000 instruction:

Fundamentals of Digital Logic and Microcomputer Design

ADD D 1 , DO ; DO <- D 1 + DO
This ADD instruction is a two-operand instruction. Both operands (source and

destination) have register mode. The instruction adds the 16-bit contents of DO to the 16-bit
contents of D1 and stores the 16-bit result in DO.

An instruction is said to have an absolute or direct addressing mode if it contains
a memory address in the operand field. For example, consider the 68000 instruction

ADD 3 0 0 0 , D 2
This instruction adds the 16-bit contents of memory address 3000 to the 16-

bit contents of D2 and stores the 16-bit result in D2. The source operand to this ADD
instruction contains 3000 and is in absolute or direct addressing mode. When an instruction
specifies a microprocessor register to hold the address, the resulting addressing mode is
known as the “register indirect mode.” For example, consider the 68000 instruction:

This instruction clears the 16-bit contents of a memory location whose address is in register
A0 to zero. The instruction is in register indirect mode.

The conditional branch instructions are used to change the order of execution
of a program based on the conditions set by the status flags. Some microprocessors use
conditional branching using the absolute mode. The op-code verifies a condition set by a
particular status flag. If the condition is satisfied, the program counter is changed to the
value of the operand address (defined in the instruction). If the condition is not satisfied,
the program counter is incremented, and the program is executed in its normal order.

Typical 16-bit microprocessors use conditional branch instructions. Some
conditional branch instructions are 16 bits wide. The first byte is the op-code for checking
a particular flag. The second byte is an 8-bit offset, which is added to the contents of the
program counter if the condition is satisfied to determine the effective address. This offset
is considered as a signed binary number with the most significant bit as the sign bit. It
means that the offset can vary from -128,, to +127,, (0 being positive). This is called
relative mode.

CLR (A O)

Microcomputer Architecture, Programming, and System Design Concepts 22 1

Consider the following 68000 example, which uses the branch not equal (BNE)
instruction:

BNE 8
Suppose that the program counter contains 2000 (address of the next instruction to

be executed) while executing this BNE instruction. Now, if Z = 0, the microprocessor will
load 2000 + 8 = 2008 into the program counter and program execution resumes at address
2008. On the other hand, if Z = 1, the microprocessor continues with the next instruction.

In the last example the program jumped forward, requiring positive offset. An
example for branching with negative offset is

BNE -14
Suppose that the current program counter value = 2004,

=0010 0000 0000 0100
offset = 2’s complement of 14,,, = F2,,

$111 0010

reflect this 1 to the high byte
(sign extension)

Therefore, to branch backward to 1FF6,,, the assembler uses an offset of F2
following the op-code for BNE.

An advantage of relative mode is that the destination address is specified
relaive to the address of the instruction after the instruction. Since these conditional Jump
instructions do not contain an absolute address, the program can be placed anywhere in
memory which can still be excuted properly by the microprocessor. A program which
can be placed anywhere in memory, and can still run correctly is called a “relocatable”
program. It is a good practice to write relocatable programs.

Subroutine Calls in Assembly Language
It is sometimes desirable to execute a common task many times in a program.

Consider the case when the sum of squares of numbers is required several times in a
program. One could write a sequence of instructions in the main program for carrying out
the sum of squares every time it is required. This is all right for short programs. For long
programs, however, it is convenient for the programmer to write a small program known
as a “subroutine” for performing the sum of squares, and then call this program each time
it is needed in the main program.

Therefore, a subroutine can be defined as a program carrying out a particular
function that can be called by another program known as the “main program.” The
subroutine only needs to be placed once in memory starting at a particular memory location.
Each time the main program requires this subroutine, it can branch to it, typically by using
a jump to subroutine (JSR) instruction along with its starting address. The subroutine is
then executed. At the end of the subroutine, a RETURN instruction takes control back to the
main program.

The 68000 includes two subroutine call instructions. Typical examples include
J S R 4 0 0 0 and B SR 2 4 . J S R 4 0 0 0 is an instruction using absolute mode. In response
to the execution of J S R , the 68000 saves (pushes) the current program counter contents
(address of the next instruction to be executed) onto the stack. The program counter is then

222 Fundamentals of Digital Logic and Microcomputer Design

loaded, with 4000 included in the JSR instruction. The starting address of the subroutine is
4000. The RTS (return from subroutine) at the end of the subroutine reads (pops) the return
address saved into the stack before jumping to the subroutine into the program counter.
The program execution thus resumes in the main program. BSR 2 4 is an instruction
using relative mode. This instruction works in the same way as the J S R 4 0 0 0 except
that displacement 2 4 is added to the current program counter contents to jump to the
subroutine.

The stack must always be balanced. This means that a PUSH instruction in a
subroutine must be followed by a POP instruction before the RETURN from subroutine
instruction so that the stack pointer points to the right return address saved onto the stack.
This will ensure returning to the desired location in the main program after execution of
the subroutine. If multiple registers are PUSHED in a subroutine, one must POP them in
the reverse order before the subroutine RETURN instruction.

6.6.4 High-Level Languages
As mentioned before, the programmer’s efficiency with assembly language increases
significantly compared to machine language. However, the programmer needs to be well
acquainted with the microprocessor’s architecture and its instruction set. Further, the
programmer has to provide an op-code for each operation that the microprocessor has
to carry out in order to execute a program. As an example, for adding two numbers, the
programmer would instruct the microprocessor to load the first number into a register,
add the second number to the register, and then store the result in memory. However, the
programmer might find it tedious to write all the steps required for a large program. Also,
to become a reasonably good assembly language programmer, one needs to have a lot of
experience.

High-level language programs composed of English-language-type statements
rectify all these deficiencies of machine and assembly language programming. The
programmer does not need to be familiar with the internal microprocessor structure or its
instruction set. Also, each statement in a high-level language corresponds to a number of
assembly or machine language instructions. For example, consider the statement F = A
+ B written in a high-level language called FORTRAN. This single statement adds the
contents of A with B and stores the result in F. This is equivalent to a number of steps
in machine or assembly language, as mentioned before. It should be pointed out that the
letters A, B, and F do not refer to particular registers within the microprocessor. Rather,
they are memory locations.

A number of high-level languages such as C and C++ are widely used these days.
Typical microprocessors, namely, the Intel 8086, the Motorola 68000, and others, can
be programmed using these high-level languages. A high-level language is a problem-
oriented language. The programmer does not have to know the details of the architecture
of the microprocessor and its instruction set. Basically, the programmer follows the rules
of the particular language being used to solve the problem at hand. A second advantage is
that a program written in a particular high-level language can be executed by two different
microcomputers, provided they both understand that language. For example, a program
written in C for an Intel 8086-based microcomputer will run on a Motorola 68000-based
microcomputer because both microprocessors have a compiler to translate the C language
into their particular machine language; minor modifications are required for input/output
programs.

As mentioned before, like the assembly language program, a high-level language

Microcomputer Architecture, Programming, and System Design Concepts 223

program requires a special program for converting the high-level statements into object
codes. This program can be either an interpreter or a compiler. They are usually very large
programs compared to assemblers.

An interpreter reads each high-level statement such as F = A + B and directs
the microprocessor to perform the operations required to execute the statement. The
interpreter converts each statement into machine language codes but does not convert the
entire program into machine language codes prior to execution. Hence, it does not generate
an object program. Therefore, an interpreter is a program that executes a set of machine
language instructions in response to each high-level statement in order to carry out the
function. A compiler, however, converts each statement into a set of machine language
instructions and also produces an object program that is stored in memory. This program
must then be executed by the microprocessor to perform the required task in the high-
level program. In summary, an interpreter executes each statement as it proceeds, without
generating an object code, whereas a compiler converts a high-level program into an object
program that is stored in memory. This program is then executed. Compilers normally
provide inefficient machine codes because of the general guidelines that must be followed
for designing them. C, C++, and Java are the only high-level languages that include Input/
Output instructions. However, the compiled codes generate many more lines of machine
code than an equivalent assembly language program. Therefore, the assembled program
will take up less memory space and will execute much faster compared to the compiled
C, C++, or Java codes. I/O programs written in C are compared with assembly language
programs written in 8086 and 68000 in Chapters 9 and 10. C language is a popular high-
level language, the C++ language, based on C, is also very popular, and Java, developed by
Sun Microsystems, is gaining wide acceptance.

Therefore, one of the main uses of assembly language is in writing programs for
real-time applications. “Real-time” means that the task required by the application must be
completed before any other input to the program can occur which will change its operation.
Typical programs involving non-real-time applications and extensive mathematical
computations may be written in C, C++, or Java. A brief description of these languages is
given in the following.

C Language
The C Programming language was developed by Dennis Ritchie of Bell Labs in

1972. C has become a very popular language for many engineers and scientists, primarily
because it is portable except for I/O and however, can be used to write programs requiring
I/O operations with minor modifications. This means that a program written in C for the
8086 will run on the 68000 with some modifications related to I/O as long as C compilers
for both microprocessors are available.

C is case sensitive. This means that uppercase letters are different from lowercase
letters. Hence Start and start are two different variables. C is a general-purpose programming
language and is found in numerous applications as follows:

Systems Programming. Many operating systems, compilers, and assemblers are
written in C. Note that an operating system typically is included with the personal
computer when it is purchased. The operating system provides an interface between
the user and the hardware by including a set of commands to select and execute the
software on the system
Computer-Aided Design (CAD) Applications. CAD programs are written in
C. Typical tasks to be accomplished by a CAD program are logic synthesis and

224 Fundamentals of Digital Logic and Microcomputer Design

simulation.
Numerical Computation. To solve mathematical problems such as integration and
differentiation
Other Applications. These include programs for printers and floppy disk controllers,
and digital control algorithms using single-chip microcomputers.

A C program may be viewed as a collection of functions. Execution of a C program
will always begin by a call to the function called “main.” This means that all C programs
should have its main program named as main. However, one can give any name to other
functions.

A simple C program that prints “I wrote a C-program” is
/ * First C-program * /
#include <stdio.h>
main ()

i

1
printf (“I wrote a C-program“) ;

Here, main is a function of no arguments, indicated by (). The parenthesis must
be present even if there are no arguments. The braces { } enclose the statements that make
up the function.

The line printf (“I wrote a C-program”) ; is a function call that calls
a function named printf, with the argument “I wrote a C-program.” printf
is a library function that prints output on the terminal. Note that / * * / is used to enclose
comments. These are not translated by the compiler.

A variation of the C program just described is
/ * Another C program * /
#include <stdio.h>
main ()
I
L

printf (”I wrote“) ;
printf (“ a C-“) ;
printf (“program”) ;
printf (“\n”) ;

1
Here, #include is a preprocessor directive for the C language compiler. These

directives give instructions to the compiler that are performed before the program is
compiled. The directive #include <stdio . h> inserts additional statements in the
program. These statements are contained in the file stdi0.h. The file s tdio . h is included
with the standard C library. The stdio . h file contains information related to the input/
output statement.

The \n in the last line of the program is C notation for the newline character.
Upon printing, the cursor moves forward to the left margin on the next line. print f never
supplies a newline automatically. Therefore, multiple printf’s may be used to output “I
wrote a C-program” on a single line in a few steps. The escape sequence \n can be used to
print three statements on three different lines. An illustration is given in the following:

#include <stdio.h>
main ()

i
printf (“I wrote a C-Program \n“) ;

Microcomputer Architecture, Programming, and System Design Concepts 225

p r i n t f (” T h i s w i l l b e p r i n t e d on a new l i n e \ n ”) ;
p r i n t f (“So a l s o i s t h i s l i n e \ n ”) ;

1
All variables in C must be declared before use, normally at the start of the function

before any executable statements. The compiler provides an error message if one forgets
a declaration. A declaration includes a type and a list of variables that have that type. For
example, the declaration i n t a , b implies that the variables a and b are integers. Next,
write a program to add and subtract two integers a and b where a = 100 and b = 200. The C
program is

i n c l u d e < s t d i o . h >
m a i n ()

t

* /
i n t a = 1 0 0 , b = 2 0 0 ; /*a

p r i n t f (“The sum i s : %d \n”, a + b
p r i n t f (“The d i f f e r e n c e i s : %d \n“

1

and b a r e i n t e g e r s

I

a - b) ;

The %din the p r i n t f statement represents “decimal integer.”Note that p r i n t f
is not part of the C language; there is no input or output defined in C itself. p r i n t f is
a function that is contained in the standard library of routines that can be accessed by
C programs. The values of a and b can be entered via the keyboard by using the scanf
function. The scanf allows the programmer to enter data from the keyboard. A typical
expression for scan f is

scanf (“%d%d“, & a , & b) ;
This expression indicates that the two values to be entered via the keyboard are in

decimal. These two decimal numbers are to be stored in addresses a and b. Note that the
symbol & is an address operator.

The C program for adding and subtracting two integers a and b using scan f is
/ * C Program t h a t performs b a s i c 1/0 * /
i n c l u d e < s t d i o . h >
main ()

t
i n t a , b;
p r i n t f (“ I n p u t two i n t e g e r s : “) ;

scanf (“%d%d“, & a , & b) ;
p r i n t f (“ T h e i r sum i s : %d\n” , a + b) ;
p r i n t f (“ T h e i r d i f f e r e n c e i s : %d\n“ , a - b) ;

In summary, writing a working C program involves four steps as follows:
Step 1:

Step 2

Using a text editor, prepare a file containing the C code. This file is
called the “source file.”
Preprocess the code. The preprocessor makes the code ready for
compiling. The preprocessor looks through the source file for lines
that start with a #. In the previous programming examples, # i n c l u d e
< s t d i o . h> is a preprocessor. This preprocessor instruction copies
the contents of the standard header file s t d i o . h into the source code.
This header file s t d i o . h describes typical inputloutput functions
such as scanf () and p r i n t f () functions.

226 Fundamentals of Digital Logic and Microcomputer Design

The compiler translates the preprocessed code into machine code. The
output from the compiler is called object code.
The linker combines the object file with code from the C libraries. For
instance, in the examples shown here, the actual code for the library
function p r i n t f () is inserted from the standard library to the object
code by the linker. The linker generates an executable file. Thus, the
linker makes a complete program.

Before writing C programs, the programmer must make sure that the computer
runs either the UNIX or MS-DOS operating system. Two essential programming tools are
required. These are a text editor and a C compiler. The text editor is a program provided
with a computer system to create and modify compiler files. The C compiler is also a
program that translates C code into machine code.
C++

C++ is a modified version of C language. C++ was developed by Bjarne Stroustrup
of Bell Labs in 1980. It includes all features of C and also supports object-oriented
programming (OOP). A program can be divided into subprograms using OOP. Each
subprogram is an independent object with its own instructions and data. Thus, complexity
of programming is reduced. It is therefore easier for the programmer to manage larger
programs.

All OOP languages including C++, have three characteristics: encapsulation,
polymorphism, and inheritance. Encapsulation is a technique that keeps code and data
together in such a way that they are protected form outside interference and misuse. A
subprogram thus created is called an “object.”

Code, data, or both may be private or public. Private code and/or data may be
accessed by another part of the same object. On the other hand, public code and/or data
may be accessed by a program resident outside the object containing them. One of the
most important characteristic of C++ is the class. The class declaration is a technique for
creating an object. Note that a class consists of data and functions.

Encapsulation is available with C to some extent. For example, when a library
function such as p r i n t f is used, one uses a black box program. When p r i n t f is
used, several internal variables are created and intialized that are not accessible to the
programmer.

Polymorphism (from Greek word meaning “several forms”) allows one to define
a general class of actions. Within a general class, the specific action is determined by the
type of data. For example, in C, the absolute value actions a b s () and f abs () compute
the absolute values of an integer and a floating point number respectively. In C++, on the
other hand, one absolute value action, abs () is used for both data types. The type of data
is then used to call a b s () to determine which specific version of the function is actually
used. Thus, one function name for two different data items is used.

Inheritance is the ability by which one class called subclass obtains the properties of
another class called a superclass. Inheritance is convenient for code reusability. Inheritance
supports hierarchy classes.

Step 3:

Step 4:

Following are some basic differences between C and C++:
1. In C, one must use v o i d with the prototype for a function with no arguments.

For example, in C, the prototype i n t rand (v o i d) ; returns an integer
that is a random number.
In C++, the v o i d is optional. Therefore, in C++, the prototype for rand (
) can be written as i n t rand () ;. Of course, i n t rand (v o i d) ; is a

Microcomputer Architecture, Programming, and System Design Concepts 227

valid prototype in C++. This means that both prototypes are allowed in C++
C++ can use the C type of comment mechanism. That is, a comment can start
with / * and end with * /. C++ can also use a simple line comment that starts
with a / / and stops at the end of the line terminated by a carriage return.
Typically, C++ uses C-like comments for multiline comments and the C++
comment mechanism for short comments.
In C++, local variables can be declared anywhere. In contrast, in C,
local variables must be declared at the start of a block before any action
statements.
In C++, all functions need to be prototyped. In C, prototypes are optional.
Note that a function prototype allows the compiler to check that the function
is called with the proper number and types of arguments. It also tells the
compiler the type of value that the function is supposed to return. In C, if
the function prototype is omitted, the compiler will return an integer. An
example of a prototype function is int abs (int n) , this provides an
integer that is an absolute value of n.

2.

3.

4.

Java
Introduced in 1991 by Sun MicroSystems, Java is based on C++ and is a true

object oriented language. That is, everything in a Java program is an object and everything
is obtained from a single object class.

A Java program must include at least one class. A class includes data type
declarations and statements. Every Java standalone program requires a main method at
the beginning. Java only supports class methods and not separate functions. There is no
preprocessor in Java. However, there is an import statement, which is similar to the
#include preprocessor statement in C. The purpose of the import statement in Java is
to instruct the interpreter to load the class, which exists in another compilation statement.
Java uses the same comment syntax, / * * / and / /, as C and C++. In addition, a special
comment syntax, / * * * /, that can precede declarations is used in Java.

Java does not require pointers. In C, a pointer may be substituted for the array
name to access array elements. In Java, arrays are created by using the “new” operator
by including the size of the array in the new expression (rather than in the declaration) as
follows:

int array [] = new int[61;
Also, all arrays store the specified size in a variable named length as follows:

int stringsize = array.length;
Therefore, in Java, arrays and strings are not subject to the errors or confusion that is
common to arrays and strings in C.

6.7 Monitors

A monitor consists of a number of subroutines grouped together to provide “intelligence”
to a microcomputer system. This intelligence gives the microcomputer with the capabilities
for software development of user programs such as assembling and debugging. The
monitor is typically offered by the microprocessor manufacturers and others in a ROM
or CD memory. When a microcomputer is designed by connecting the microprocessor,
memory, and I/O, a monitor program can be used for development of user programs.

An example of a monitor is the Intel SDK-86 monitor, which contains debugging

228 Fundamentals of Digital Logic and Microcomputer Design

routines, a display routine, and many other programs. The user can assemble, debug,
execute and display results for user-written 8086 assembly language programs using the
monitor provided by Intel with the SDK-86 microcomputer.

6.8 Flowcharts

Before writing an assembly language program for a specific operation, it is convenient to
represent the program in a schematic form calledflowchart. A brief listing of the basic
shapes used in a flowchart and their functions is given in Figure 6.32.

6.9

A microcomputer development system is a tool that allows the designer to develop, debug,
and integrate error-free application software in microprocessor systems.

Development systems fall into one of two categories: systems supplied by
the device manufacturer (nonuniversal systems) and systems built by after-market
manufacturers (universal systems). The main difference between the two categories is
the range of microprocessors that a system will accommodate. Nonuniversal systems
are supplied by the microprocessor manufacturer (Intel, Motorola) and are limited to use
for the particular microprocessor manufactured by the supplier. In this manner, an Intel
development system may not be used to develop a Motorola-based system. The universal
development systems (Hewlett-Packard, Tektronix) can develop hardware and software
for several microprocessors.

Basic Features of Microcommter DeveloDment Svstems

sy@Q! FUllCtion

opelation to be - E I carried ouf

Rectangle

Diarmrd

Teminal pant
(typically start and
end of program)

Oval

Emr&

A = 3 0

Avow iKlicales dlrection
of program flow

Y 4 Yes

Exit darmnd from rigM d
A + Bandfrombanom~l
A = B

0 Clrcle

Connection from one
p in t in a flowchart
to another

I/O Operation

Parallebgram

FIGURE 6.32 Flowchart symbols

Microcomputer Architecture, Programming, a n d System Design Concepts 229

Within both categories of development systems, there are basically three types
available: single-user systems, time-shared systems, and networked systems. A single-user
system consists of one development station that can be used by one user at a time. Single-
user systems are low in cost and may be sufficient for small systems development. Time-
shared systems usually consist of a “dumb” type of terminal connected by data lines to a
centralized microcomputer-based system that controls all operations. A networked system
usually consists of a number of smart cathode ray tubes (CRTs) capable of performing most
of the development work and can be connected over data lines to a central microcomputer.
The central microcomputer in a network system usually is in charge of allocating disk
storage space and will download some programs into the user’s workstation microcomputer.
A microcomputer development system is a combination of the hardware necessary for
microprocessor design and the software to control the hardware. The basic components of
the hardware are the central processor, the CRT terminal, mass storage device (floppy or
hard disk), and usually an in-circuit emulator (ICE).

In a single-user system, the central processor executes the operating system
software, handles the input/output (I/O) facilities, executes the development programs
(editor, assembler, linker), and allocates storage space for the programs in execution. In
a large multiuser networked system the central processor may be responsible for the I/O
facilities and execution of development programs. The CRT terminal provides the interface
between the user and the operating system or program under execution. The user enters
commands or data via the CRT keyboard, and the program under execution displays data
to the user via the CRT screen. Each program (whether system software or user program)
is stored in an ordered format on disk. Each separate entry on the disk is called ajZe. The
operating system software contains the routines necessary to interface between the user and
the mass storage unit. When the user requests a file by a specificfile name, the operating
system finds the program stored on disk by the file name and loads it into mean memory.
More advanced development systems contain memory management software that protects
a user’s files from unauthorized modification by another user. This is accomplished via
a unique user identification code called USER ID. A user can only access files that have
the user’s unique code. The equipment listed here makes up a basic development system,
but most systems have other devices such as printers and EPROM and PAL programmers
attached. A printer is needed to provide the user with a hard copy record of the program
under development.

After the application system software has been completely developed and
debugged, it needs to be permanently stored for execution in the target hardware. The
EPROM (erasable/programmable read-only memory) programmer takes the machine
code and programs it into an EPROM. EPROMs are more generally used in system
development because they may be erased and reprogrammed if the program changes.
EPROM programmers usually interface to circuits particularly designed to program a
specific EPROM.

Most development systems support one or more in-circuit emulators (ICES).
The ICE is one of the most advanced tools for microprocessor hardware development.
To use an ICE, the microprocessor chip is removed from the system under development
(called the target processor) and the emulator is plugged into the microprocessor socket.
The ICE will functionally and electrically act identically to the target processor with the
exception that the ICE is under the control of development system software. In this manner
the development system may exercise the hardware that is being designed and monitor
all status information available about the operation of the target processor. Using an ICE,

Fundamentals of Digital Logic and Microcomputer Design

processor register contents may be displayed on the CRT and operation of the hardware
observed in a single-stepping mode. In-circuit emulators can find hardware and software
bugs quickly that might take many hours to locate using conventional hardware testing
methods.

Architectures for development systems can be generally divided into two
categories: the master/slave configuration and the single-processor configuration. In a
mastedslave configuration, the master (host) processor controls the mass storage device
and processes all I/O (CRT, printer). The software for development systems is written for
the master processor, which is usually not the same as the slave (target) processor. The
slave microprocessor is typically connected to the user prototype via a connector which
links the slave processor to the master processor.

Some development systems such as the HP 64000 completely separate the system
bus from the emulation bus and therefore use a separate block of memory for emulation.
This separation allows passive monitoring of the software executing on the target processor
without stopping the emulation process. A benefit of the separate emulation facilities
allows the master processor to be used for editing, assembling, and so on while the slave
processor continues the emulation. A designer may therefore start an emulation running,
exit the emulator program, and at some hture time return to the emulation program.

Another advantage of the separate bus architecture is that an operating system
needs to be written only once for the master processor and will be used no matter what type
of slave processor is being emulated. When a new slave processor is to be emulated, only
the emulator probe needs to be changed.

A disadvantage of the master/slave architecture is that it is expensive. In single-
processor architecture, only one processor is used for system operation and target emulation.
The single processor does both jobs, executing system software as well as acting as the
target processor. Because there is only one processor involved, the system software must
be rewritten for each type of processor that is to be emulated. Because the system software
must reside in the same memory used by the emulator, not all memory will be available
to the emulation process, which may be a disadvantage when large prototypes are being
developed. The single-processor systems are inexpensive.

The programs provided for microprocessor development are the operating system,
editor, assembler, linker, compiler, and debugger. The operating system is responsible for
executing the user’s commands. The operating system handles I/O functions, memory
management, and loading of programs from mass storage into RAM for execution. The
editor allows the user to enter the source code (either assembly language or some high-
level language) into the development system.

Almost all current microprocessor development systems use the character-
oriented editor, more commonly referred to as the screen editor. The editor is called a
“screen editor” because the text is dynamically displayed on the screen and the display
automatically updates any edits made by the user.

The screen editor uses the pointer concept to point to the character(s) that need
editing. The pointer in a screen editor is called the “cursor,” and special commands allow
the user to position the cursor to any location displayed on the screen. When the cursor
is positioned, the user may insert characters, delete characters, or simply type over the
existing characters.

Complete lines may be added or deleted using special editor commands. By
placing the editor in the insert mode, any text typed will be inserted at the cursor position
when the cursor is positioned between two existing lines. If the cursor is positioned on a

Microcomputer Architecture, Programming, and System Design Concepts

line to be deleted, a single command will remove the entire line from the file.
Screen editors implement the editor commands in different fashions. Some editors

use dedicated keys to provide some cursor movements. The cursor keys are usually marked
with arrows to show the direction of the cursor movement. More advanced editors (such as
the HP 64000) use soft keys. A soft key is an unmarked key located on the keyboard directly
below the bottom of the CRT screen. The mode of the editor decides what functions the
keys are to perform. The function of each key is displayed on the screen directly above the
appropriate key. The soft key approach is valuable because it allows the editor to reassign
a key to a new function when necessary.

The source code generated on the editor is stored as ASCII or text characters
and cannot be executed by a microprocessor. Before the code can be executed, it must be
converted to a form accessible by the microprocessor. An assembler is the program used
to translate the assembly language source code generated with an editor into object code
(machine code), which may be executed by a microprocessor.

The output file from most development system assemblers is an object file. The
object file is usually relocatable code that may be configured to execute at any address. The
function of the linker is to convert the object file to an absolute file, which consists of the
actual machine code at the correct address for execution. The absolute files thus created are
used for debugging and finally for programming EPROMs.

Debugging a microprocessor-based system may be divided into two categories:
software debugging and hardware debugging. Both debugging processes are usually carried
out separately because software debugging can be carried out on an out-of-circuit emulator
(OCE) without having the final system hardware.
The usual software development tools provided with the development system are

23 1

Single-step facility
Breakpoint facility
A single stepper simply allows the user to execute the program being debugged

one instruction at a time. By examining the register and memory contents during each
step, the debugger can detect such program faults as incorrect jumps, incorrect addressing,
erroneous op-codes, and so on. A breakpoint allows the user to execute an entire section of
a program being debugged.

There are two types of breakpoints: hardware and software. The hardware
breakpoint uses the hardware to monitor the system address bus and detect when the
program is executing the desired breakpoint location. When the breakpoint is detected,
the hardware uses the processor control lines to halt the processor for inspection or cause
the processor to execute an interrupt to a breakpoint routine. Hardware breakpoints can be
used to debug both ROM- and RAM-based programs. Software breakpoint routines may
only operate on a system with the program in RAM because the breakpoint instruction
must be inserted into the program that is to be executed.

Single-stepper and breakpoint methods complement each other. The user may
insert a breakpoint at the desired point and let the program execute up to that point. When
the program stops at the breakpoint the user may use a single-stepper to examine the
program one instruction at a time. Thus, the user can pinpoint the error in a program.

There are two main hardware-debugging tools: the logic analyzer and the in-circuit
emulator. Logic analyzers are usually used to debug hardware faults in a system. The logic
analyzer is the digital version of an oscilloscope because it allows the user to view logic
levels in the hardware. In-circuit emulators can be used to debug and integrate software and
hardware. PC-based workstations are extensively used as development systems.

232

6.10 Svstem DeveloDment Flowchart

Fundamentals of Digital Logic and Microcomputer Design

The total development of a microprocessor-based system typically involves three phases:
software design, hardware design, and program diagnostic design. A systems programmer
will be assigned the task of writing the application software, a logic designer will be
assigned the task of designing the hardware, and typically both designers will be assigned
the task of developing diagnostics to test the system. For small systems, one engineer may
do all three phases, while on large systems several engineers may be assigned to each
phase. Figure 6.33 shows a flowchart for the total development of a system. Notice that
software and hardware development may occur in parallel to save time.

The first step in developing the software is to take the system specifications and
write a flowchart to accomplish the desired tasks that will implement the specifications.
The assembly language or high-level source code may now be written from the system
flowchart. The complete source code is then assembled. The assembler is the object code
and a program listing. The object code will be used later by the linker. The program listing
may be sent to a disk file for use in debugging, or it may be directed to the printer.

The linker can now take the object code generated by the assembler and create

1 1

Prqlram EPROM I PAL

FIGURE 6.33 Microprocessor system development flowchart

Microcomputer Architecture, Programming, and System Design Concepts 233

the final absolute code that will be executed on the target system. The emulation phase
will take the absolute code and load it into the development system RAM. From here, the
program may be debugged using breakpoints or single stepping.

Working from the system specifications, a block diagram of the hardware must
be developed. The logic diagram and schematics may now be drawn using the block
diagram as a guide, and a prototype may now be constructed and tested for wiring errors.
When the prototype has been constructed it may be debugged for correct operation using
standard electronic testing equipment such as oscilloscopes, meters, logic probes, and logic
analyzers, all with test programs created for this purpose. After the prototype has been
debugged electrically, the development system in-circuit emulator may be used to check it
functionally. The ICE will verify the memory map, correct I/O operation, and so on. The
next step in system development is to validate the complete system by running operational
checks on the prototype with the finalized application software installed. The EPROMs
and/or PALS are then programmed with the error-free programs.

OUESTIONS AND PROBLEMS

6.1

6.2

6.3

6.4

6.5

6.6

6.7

What is the difference between a single-chip microprocessor and a single-chip
microcomputer?

What is a microcontroller? Name one commercially available microcontroller.

What is the difference between:
(a) The program counter (PC) and the memory address register (MAR)?
(b) The accumulator (A) and the instruction register (IR)?
(c) General-purpose register-based microprocessor and accumulator-based
microprocessor. Name a commercially available microprocessor of each type.

Assuming signed numbers, find the sign, carry, zero, and overflow flags of:
(a> 0916 + 1716.
(b) A516 - A516

(el 7E16 + 7E16

(c> 71 I6 - A916

(dl 6E16 + 3A16

What is meant by PUSH and POP operations in the stack?

Suppose that an 8-bit microprocessor has a 16-bit stack pointer and uses a 16-bit
register to access the stack from the top. Assume that initially the stack pointer
and the 16-bit register contain 20COI, and 0205,, respectively. After the PUSH
operation:
(a) What are the contents of the stack pointer?
(b) What are the contents of memory locations 20BE16 and 20BFI6?

Assuming the microprocessor architecture of Figure 6.18, write down a possible
sequence of microinstructions for finding the ones complement of an %bit number.
Assume that the number is already in the register.

234

6.8

6.9

6.10

6.1 1

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Fundamentals of Digital Logic and Microcomputer Design

What do you mean by a multiplexed address and data bus?

Name four general-purpose registers in the 8086.

Name one 8086 register that can be used to hold an address in a segment.

What is the difference between EPROM and PROM? Are both types available with
bipolar and also MOS technologies?

Assuming a single clock signal and four registers (PC, MAR, Reg, and IR) for a
microprocessor, draw a timing diagram for loading the memory address register.
Explain the sequence of events relating them to the four registers.

Given a memory with a 14-bit address and 8-bit word size.
(a) How many bytes can be stored in this memory?
(b) If this memory were constructed from 1K x 1-bit RAMS, how many memory
chips would be required?
(c) How many bits would be used for chip select?

Define the three types of I/O. Identify each one as either “microprocessor initiated”
or “device initiated.”

What is the basic difference between a compiler and an assembler?

Write a program equivalent to the Pascal assignment statement:

Use only
(a) Three-address instructions
(b) Two-address instructions

Z := (A + (B * C) t (D * E) - (F / G) - (H * I)

Describe the meaning of each one of the following addressing modes.

(a) Immediate (d) Register indirect

(b) Absolute (e) Relative

(c) Register (f) Implied

Assume that a microprocessor has only two registers R1 and R2 and that only the
following instruction is available:

XOR R i , Rj Rj <- Ri @ Rj
, i , j = 1,2

Using this XOR instruction, find an instruction sequence in order to exchange the
contents of registers R1 and R2

What are the advantages of subroutines?

6.20 Explain the use of a stack in implementing subroutine calls.

Microcomputer Architecture, Programming, and System Design Concepts

6.21

235

Determine the contents of address 5004,, after assembling the following:
(a) ORG 5002H

(b) ORG 5000H
DB OOH, 05H, 07H, OOH, 03H

DW 0702H, 123FH, 7020H, OOOOH

6.22 What is the difference between:
(a) A cross assembler and a resident assembler
(b) A two-pass assembler and meta-assembler
(c) Single step and breakpoint

6.23 Identify some of the differences between C, C++, and Java.

6.24 How does a microprocessor obtain the address of the first instruction to be
executed?

6.25 Summarize the basic features of a typical microcomputer development system.

6.26 Discuss the steps involved in designing a microprocessor-based system.

7
DESIGN OF COMPUTER

INSTRUCTION SET
AND THE CPU

This chapter describes the design of the instruction set and the central processor unit
(CPU). Topics include op-code encoding, design of typical microprocessor registers, the
arithmetic logic unit (ALU), and the control unit.

7.1

A program consists of a sequence of instructions. An instruction performs operations on
stored data. There are two components in an instruction: an op-code field and an address
field. The op-code field defines the type of operation to be performed on data, which
may be stored in a microprocessor register or in the main memory. The address field may
contain one or more addresses of data. When data are read from or stored into two or more
addresses by the instruction, the address field may contain more than one address. For
example, consider the following instruction:

MOVE DO, D1

Desim of the ComDuter Instructions

Op-code field Address field
Assume that this computer uses DO as the source register and D 1 as the destination

register. This instruction moves the contents of the microprocessor register DO to register
D 1. The number and types of instructions supported by a microprocessor vary from one
microprocessor to another and primarily depend on the microprocessor architecture. The
number of instructions supported by a typical microprocessor depends on the size of
the op-code field. For example, an 8-bit op-code can specify a maximum of 256 unique
instructions.

As mentioned before, a computer only understands 1 ’s and 0’s. This means that
the computer can execute an instruction only if it is in binary. A unique binary pattern must
be assigned to each op-code by a process called “op-code encoding.”

The Block code method is one of the simplest techniques of designing instructions.
In this approach, a fixed length of binary pattern is assigned to each op-code. For example, an
n-bit binary number can represent 2” unique op-codes. Consider for example, a hypothetical
instruction set shown in Figure 7.1. In this figure, there are 8 different instructions that can
be encoded using three bits i,, i,, i, as shown in Figure 7.2. A 3-to-8 decoder can be used to
encode the 8 hypothetical instructions as shown in Figure 7.3.

An n-to-2” decoder is required for an n-bit op-code. As n increases, the cost of the
decoder and decoding time will also increase. In some op-code encoding techniques such as

237

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

238 Fundamentals of Digital Logic and Microcomputer Design

the “expanding op-code” method, the length of the instruction is a function of the number
of addresses used by the instruction. For example, consider a 16-bit instruction in which
the lengths of the op-code and address fields are 5 bits and 1 1 bits respectively. Using such
an instruction format, 32 (F) operations allowing access to 2048 (2”) memory locations
can be specified. Now, if the size of the instruction is kept at 16 bits but the address field
is increased to 12 bits, the op-code length will then be decreased to 4 bits. This change will
specify 16 (24) operations with access to 4096 (212) memory locations. Thus, the number of

Instruction Operation Performed

MOVE reg,, reg,

CLR reg reg - 0

ADD reg,, reg,

SUB reg,, reg,

AND reg,, reg,

OR reg,, reg,

reg, - reg,

reg, + reg, + reg,

reg, + reg - reg,

reg, - reg, AND reg,

reg, - reg, OR reg,

I N C reg

JMP addr

reg + reg + 1

PC - addr; Unconditionally
Jump to addr

FIGURE 7.1 A hypothetical instruction set

Instruction

MOVE

CLR

ADD

SUB

AND

OR

I N C

JMP

3-Bit Op-Code

4 i , ill

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FIGURE 7.2 Op-code encoding using block code

FIGURE 7.3 Instruction decoder

Design of Computer Instruction Set and the CPU 239

operations is reduced by 50% and the number of memory locations is increased by 100%.
This concept is used in designing instructions with expanding op-code technique.

Consider an instruction format with 8-bit instruction length and a 2-bit op-code
field. Four unique two-address (3 bits for each address) instructions can be specified. This
is depicted in Figure 7.4. If three rather than four two-address instructions are used, eight
one-address instructions can be specified. This is shown in Figure 7.5. The length of the
op-code field for each one-address instruction is 5 bits. Thus, the length of the op-code
field increases as the number of address field is decreased. Now, if the total number of
one-address instructions is reduced from 8 to 7, then eight 0-address instructions can also
be specified. This is shown in Figure 7.6.

7.2 Reduced Instruction Set ComDuter (RISC)

RISC, which stands for reduced instruction set computer, is a generation of faster and
inexpensive machines. The initial application of FUSC principles has been in desktop
workstations. Note that the PowerPC is a RISC microprocessor. The basic idea behind

OP- Code Address 1 Address 2
(2-bits) (3-bits) (3-bits)

i , i,

0 0 x2 XI xo Y2 YI Yo

0 1 x2 XI xo Y2 YI Yo

1 0 x2 xi xo Y2 Yl Yo

1 1 x2 XI xo Y2 YI Yo

FIGURE 7.4 Four two-address instructions

OP code Address 1 Address 2
(3 bits) (3 bits)

i 1 io

x 2 x, xo

x 2 x, xo

Y, Y, Y o

Y, Y, Y o
instructions

1 0 x z x, xo Y, Y, Yo

5-b1l+(1 1 0 0 0 1 Y , Y , Y o
opcode 0 0 1 Y, Y, Yo

1 1 0 1 0 Y , Y , Y o

1 1 1 0 0 Y , Y , Y o
1 1 1 0 1 Y , Y , Y o
1 1 1 1 0 Y , Y , Y o

1 1 1 1 1 Y , Y , Y O
Y , Y , Y o

1 1 0 1 1 Y z Y , Y o Eight
1 -address

FIGURE 7.5 Three 2-address and eight 1 -address instructions

240 Fundamentals of Digital Logic and Microcomputer Design

1 1 0 1 1 Y I Y , Y
1 1 1 0 0 y, y, y
1 1 1 0 1 Y , Y , Y
1 1 1 1 0 y2 y, y

1 -address

&bit +I 1 1 1 1 1 0 0 0 I oocode 1 1 1 1 1 0 0 1
Eight 1 1

\ ' : :)-address
nstructions

1 1 1
_ _ _
_ _ _

0 1 0 _ _ _
_ _ _

FIGURE 7.6 5 two-address, 7 one-address, and 8 zero-address instr tions

RISC is for machines to cost less yet run faster, by using a small set of simple instructions
for their operations. Also, RISC allows a balance between hardware and software based on
functions to be achieved to make a program run faster and more efficiently. The philosophy
of RISC is based on six principles: reliance on optimizing compilers, few instructions and
addressing modes, fixed instruction format, instructions executed in one machine cycle,
only call/return instructions accessing memory, and hardwired control.

The trend has always been to build CISCs (complex instruction set computers),
which use many detailed instructions. However, because of their complexity, more
hardware would have to be used. The more instructions, the more hardware logic is needed
to implement and support them. For example, in a RISC machine, an ADD instruction takes
its data from registers. On a CISC, each operand can be stored in any of many different
forms, so the compiler must check several possibilities. Thus, both RISC and CISC have
advantages and disadvantages. However, the principles of understanding optimizing
compilers and what actually happens when a program is executed lead to RISC.

Case Study: RISC I (University of California, Berkeley)
The RISC machine presented in this section is the one investigated at the University of
California, Berkeley. The RISC I is designed with the following design constraints:

1. Only one instruction is executed per cycle.
2. All instructions have the same size.
3. Only load and store instructions can access memory.
4. High-level languages (HLL) are supported.
Two high level Languages (C and Pascal) were supported by RISC I. A simple

architecture implies a fewer transistors, and this leads to the fact that most pieces of a RlSC
HLL system are in software. Hardware is utilized for time-consuming operations. Using
C and Pascal, a comparison study was made to determine the frequency of occurrence of
particular variable and statement types. Studies revealed that integer constants appeared
most frequently, and a study of the code produced revealed that the procedure calls are the
most time-consuming operations.

Design of Computer Instruction Set and the CPU 24 1

opcode(7) I scc(1) I dest(5)

i) Basic FUSC Architecture
The RISC I instruction set contains a few simple operations (arithmetic, logical, and shift).
These instructions operate on registers. Instruction, data, addresses and registers are all
32 bits long. RISC instructions fall in four categories: ALU, memory access, branch, and
miscellaneous. The execution time is given by the time taken to read a register, perform
an ALU operation, and store the result in a register. Register 0 always contains a 0. Load
and store instructions move data between registers and memory. These instructions use
two CPU cycles. Variations of memory-access instructions exist in order to accommodate
sign-extended or zero-extended %bit, 16-bit and 32-bit data. Though absolute and register
indirect addressing are not directly available, they may be synthesized using register 0.
Branch instructions include CALL, RETURN, and conditional and unconditional jumps.
The following instruction format is used:

sourcel(5) imm(1) I source2(13)

For register-to-register instructions, dest selects one of the 32 registers as destination of
the result of the operation that is itself performed on registers source 1 and source2. If
imm equals 0, the low-order 5 bits of source2 specify another register. If imm equals 1,
then source2 is regarded as a sign-extended 13-bit constant. Since the frequency of integer
constants is high, the immediate field has been made an option in every instruction. Also,
SCC determines whether the condition codes are set. Memory-access instructions use source
1 to specify the index register and source2 to specify offset.

ii) Register Windows
The procedure-call statements take the maximum execution time. A RISC program has
more call statements, since the complex instructions available in CISC are subroutines
in RISC. The RISC register window scheme strives to make the call operation as fast as
possible and also to reduce the number of accesses to data memory. The scheme works as
follows.

Using procedures involve two groups of time-consuming operations, namely,
saving or restoring registers on each callheturn and passing parameters and results to and
from the procedure. Statistics indicate that local variables are the most frequent operands.

This creates a need to support the allocation of locals in the registers. One available
scheme is to provide multiple banks of registers on the chip to avoid saving and restoring of
registers. Thus each procedure call results in a new set of registers being allocated for use
by that procedure. The return alters a pointer that restores the old set. A similar scheme is
adopted by RISC. However, there are some registers that are not saved or restored; these
are called global registers. In addition, the sets of registers used by different processes
are overlapped in order to allow parameters to be passed. In other machines, parameters
are usually passed on the stack with the calling procedure using a register to point to the
beginning of the parameters (and also to the end of the locals). Thus all references to
parameters are indexed references to memory. In RISC I the set of window registers (r10 to
r3 1) is divided into three parts. Registers r26 to 1-3 1 (HIGH) contain parameters passed from
the calling procedure. Registers r16 to r25 (LOCAL) are for local storage. Registers r l0 to
1-15 (LOW) are for local storage and for parameters to be passed to the called procedure.
On each call, a new set of r l 0 to r3 1 registers is allocated. The LOW registers of the caller
are required to become the HIGH registers of the called procedure. This is accomplished
by having the hardware overlap the LOW registers of the calling frame with the HIGH
registers of the called frame. Thus without actually moving the information, parameters are

242 Fundamentals of Digital Logic and Microcomputer Design

transferred.
Multiple register banks require a mechanism to handle the case in which there

are no free register banks available. RISC handles this problem with a separate register-
overflow stack in memory and a stack pointer to it. Overflow and underflow are handled
with a trap to a software routine that adjusts the stack. The final step in allocating variables
in registers is handling the problem of pointers. RISC resolves this by giving addresses to
the window registers. If a portion of the address space is reserved, we can determine with
one comparison whether an address points to a register or to memory. Load and store are
the only instructions that access memory and they take an extra cycle already. Hence this
feature may be added without reducing the performance of the load and store instructions.
This permits the use of straightforward computer technology and still leaves'a large fraction
of the variables in registers.

iii) Delayed Jump
A normal RISC I instruction cycle is long enough to execute the following sequence of
operations:

1. Read a register.
2. Perform an ALU operation.
3. Store the result back into a register.
Performance is increased by prefetching the next instruction during the current

instruction. To facilitate this, jumps are redefined such that they do not occur until after the
following instruction. This is called delayed jump.

7.3 Desim of the CPU

The CPU contains three elements: registers, the ALU (Arithmetic Logic Unit), and the
control unit. These topics are discussed next. Verilog and VHDL descriptions along with
simulation results of a typical CPU are provided in Appendices I and J respectively.

7.3.1 Register Design
The concept of general-purpose and flag registers is provided in Chapters 5 and 6. The main
purpose of a general-purpose register is to store address or data for an indefinite period of
time. The computer can execute an instruction to retrieve the contents of this register
when needed. A computer can also execute instructions to perform shift operations on the
contents of a general-purpose register. This section includes combinational shifter design
and the concepts associated with barrel shifters.

A high-speed shifter can be designed using combinational circuit components
such as a multiplexer. The block diagram, internal organization, and truth table of a typical
combinational shifter are shown in Figure 7.7. From the truth table, the following equations
can be obtained:

yo = s1 soi, + s,soi., + sls0i.2 + s1s0i.,

The 4 x 4 shifter of Figure 7.7 can be expanded to obtain a system capable of

This design can be extended to obtain a more powerful shifter called the barrel
rotating 16-bit data to the left by 0, 1,2, or 3 positions, which is shown in Figure 7.8.

Design of Computer Instruction Set and the CPU

i3 iz il io i., i.2 i l

243

i3 i2 i, io
Block Diagram

S1

so I I 1 I

Internal Schematic

0 1 1 i, i-, i-, L~ Left shift three times ’

Truth Table (X is don’t care in the above)

FIGURE 7.7 4 x 4 combinational shifter

shifter. The shift is a cycle rotation, which means that the input binary information is
shifted in one direction; the most significant bit is moved to the least significant position.

The block-diagram representation of a 16 x 16 barrel shifter is shown in Figure
7.9. This shifter is capable of rotating the given 16-bit data to the left by n positions, where
0 5; n s 15. Figure 7.9 shows the truth table representing the operation of the shifter. The
barrel shifter is an on-chip component for typical 32-bit and 64-bit microprocessors.

244 Fundamentals of Digital Logic and Microcomputer Design

~ Count Shift ~

output I

(b) Truth Table
FIGURE 7.8
2, or 3 positions

Combinational shifter capable of rotating 16-bit data to the left by 0, 1,

7.3.2 Adders
Addition is the basic arithmetic operation performed by an ALU. Other operations such as
subtraction and multiplication can be obtained via addition. Thus, the time required to add
two numbers plays an important role in determining the speed of the ALU.

The basic concepts of half-adder, full adder, and binary adder are discussed in
Section 4.5.1. The following equations for the full-adder were obtained. Assume x, = x, y,
= y , c, = z, and C,+, = C in Table 4.6.

 sum,^, = T i c , +x,y ,c , + x , k F +x,y,c,
- -

= x, 0 y , 0 c,

The logic diagrams for implementing these equations are given in Figure 7.10.
As has been made apparent by Figure 7.10, for generating C#+, from c,, two gate

delays are required. To generate S, from c,, three gate delays are required because c, must
be inverted to obtain c. Note that no inverters are required to get x, or y , from x, or y,,
respectively, because the numbers to be added are usually stored in a register that is a
collection of flip-flops. The flip-flop generates both normal and complemented outputs.

- -

Design of Computer Instruction Set and the CPU 245

iy= Barrel 16x16 SMfter $), amounl Shift

so

(a) Block Diagram of a 16 x 16 Barrel Shifter

(b) Truth Table of the 16 x 16 Barrel Shifter

FIGURE 7.9 Barrel shifter

For the purpose of discussion, assume that the gate delay is A time units, and the actual
value of A is decided by the technology. For example, if transistor translator logic (TTL)
circuits are used, the value of A will be 10 ns.

By cascading n full adders, an n-bit binary adder capable of handling two n-bit
operands (X and Y) can be designed. The implementation of a 4-bit ripple-cany or binary
adder is shown in Figure 7.1 1. When two unsigned integers are added, the input carry, co,
is always zero. The 4-bit adder is also called a “carry-propagate adder” (CPA), because
the carry is propagated serially through each full adder. This hardware can be cascaded to
obtain a 16-bit CPA, as shown in Figure 7.12; co = 0 or 1 for multiprecision addition.

Although the design of an n-bit CPA is straightforward, the carry propagation
time limits the speed of operation. For example, in the 16-bit CPA (see Figure 7.12), the

246 Fundamentals of Digital Logic and Microcomputer Design
-
x i
y ,

5 S,

x ,
y,
-

xi
Y,

(b) Carry
FIGURE 7.10 Logic circuit of full adder

(a) Block Diagram of a 4-bit Ripple-Carry Adder

y, x, y, 5 y, x, yo 5

(b)
FIGURE 7.1 1 Implementation of a 4-bit Ripple-Carry Adder

addition operation is completed only when the sum bits so through sI5 are available.
To generate sIs, c , ~ must be available. The generation of cI5 depends on the

availability of cI4, which must wait for cI3 to become available. In the worst case, the carry
process propagates through 15 full adders. Therefore, the worst-case add-time of the 16-bit
CPA can be estimated as follows:

Four 4-bit Full Adders are Cascaded to implement a 4-Bit Ripple-Carry Adder

Time taken for carry to propagate
through 15 full adders (the delay
involved in the path from co to cI5)

Time taken to generate sI5 from cI5

Total = 3 3 A

= 1 5 * 2 A

= 3 A

If A = 10 ns, then the worst-case add-time of a 16-bit CPA is 330 ns. This delay
is prohibitive for high-speed systems, in which the expected add-time is typically less
than 100 ns, which makes it necessary to devise a new technique to increase the speed of
operation by a factor of 3. One such technique is known as the “carry look-ahead.’’ In this
approach the extra hardware is used to generate each carry (c,, i > 0) directly from co. To
be more practical, consider the design of a 4-bit carry look-ahead adder (CLA). Let us see
how this may be used to obtain a 16-bit adder that operates at a speed higher than the 16-bit
CPA.

Recall that in a full adder for adding X,, Y,, and C,, the output carry C,,, is related
to its carry input C,, as follows:

The result can be rewritten as

whereG,=X,Y, andP,=X,+ Y,
The function G, is called the carry-generate function, because a carry is generated

when X, = Y, = 1. IfX, or Y, is a 1, then the input carry C, is propagated to the next stage. For
this reason, the function P, is often referred to as the “carry-propagate” function. Using G,
and P,, Cl, C,, C,, and C, can be expressed as follows:

c,+, =KY, + XC, + yc,

c,+i = G,+ PIC,

C, = Go + POCO
C, = GI + PIC,
C, = G, + P,C,
C, = G, + P,C,

248 Fundamentals of Digital Logic and Microcomputer Design

go=

Po=

FIGURE 7.13

Therefore C,, C,, C3, and C, can be generated directly from Co. For this reason, these
equations are called “carry look-ahead equations,” and the hardware that implements these
equations is called a “4-stage look-ahead circuit” (4-CLC). The block diagram of such
circuit is shown in Figure 7.13.
The following are some important points about this system:

A Four-Stage Carry Look-ahead Circuit

A 4-CLC can be implemented as a two-level AND-OR logic circuit (The first level
consists of AND gates, whereas the second level includes OR gates).
The outputs go and po are useful to obtain a higher-order look-ahead system.

To construct a 4-bit CLA, assume the existence of the basic adder cell shown
in Figure 7.14. Using this basic cell and 4-bit CLC, the design of a 4-bit CLA can be
completed as shown in Figure 7.15. Using this cell as a building block, a 16-bit adder can
be designed as shown in Figure 7.16.

The worst-case add-time of this adder can be calculated as follows:

&

f romX,,Y,(Osis 15) ... A

For P,, G, generation

To generate C, from Co ... 2 8

To generate C, from C, ... 2A

To generate C,, from C, ... 2A

To generate C,, from C,, ... 2A

To generate S,, from C,, ... 3 8

Total delay ... 12A

A graphical illustration of this calculation can be shown as follows:
Data available H GiPi --t C, 3 CS 3 C I ~ 2 CIS ~ S I S

From this calculation, it is apparent that the new 16-bit adder is faster than the 16-bit
CPA by a factor of 3. In fact, this system can be speeded up further by employing another
4-bit CLC and eliminating the carry propagation between the 4-bit CLA blocks. For this
purpose, the g, and p , outputs generated by the 4-bit CLA are used. This design task is left
as an exercise to the reader.

A 2A

Design of Computer Instruction Set and the CPU

G, -
p, +-

249

BA + XI

Y, (Basicadder) -
FIGURE 7.14 Basic CLA cell

I 1

4
C
L
C

FIGURE 7.15 A 4-bit CLA

p ! 4-bit CIA

X,> -x. Y,, Y .

4-bit CLA

FIGURE 7.16 Design of a 16-bit adder using 4-bit CLAs

250 Fundamentals of Digital Logic and Microcomputer Design

If there is a need to add more than 3 operands, a technique known as “carry-save
addition” is used. To see its effectiveness, consider the following example:

44
28
32
- 79
- 63+Sum vector

L t C a r r y vector
M+Fina l answer

In this example, four decimal numbers are added. First, the unit digits are added,
producing a sum of 3 and a carry digit of 2. Similarly, the tens digits are added, producing
a sum digit of 6 and a carry digit of 1. Because there is no carry propagation from the
unit digit to the tenth digit, these summations can be carried out in parallel to produce
a sum vector of 63 and a carry vector of 12. When all operands are exhausted, the sum
and the shifted carry vector are added in the conventional manner, which produces the
final answer. Note that the carry is propagated only in the last step, which generates the
final answer no matter how many operands are added. The concept is also referred to as
“addition by deferred carry assimilation.”

7.3.3 Addition, Subtraction, Multiplication and Division of unsigned and signed
numbers
The procedure for addition and subtraction of two’s complement signed binary numbers
is straightforward. The procedure for adding unsigned numbers is discussed in Chapter
2. Also, addition of two 2’s complement signed numbers was included in Chapter 2. Note
that binary numbers represented in two’s complement form contain both unsigned numbers
(Most Significant Bit = 0) and signed numbers (Most Significant Bit = 1). The procedure for
adding two 2’s complement signed numbers using pencil and paper is provided below:

Add the two numbers along with the sign bits. Check the overflow bit (V) using V
= C, 0 C, where C, is the final carry and C, is the previous carry. If V = 0, then the result
of addition is correct. On the other hand, if V = 1 , then the result is incorrect; one needs to
increase the number of bits for each number, and repeat the addition operation until V = 0
to obtain the correct result.

Subtraction of two 2’s complement signed binary numbers using pencil and paper
can be performed as follows:

Take the 2’s complement of subtrahend along with the sign bit and add it to the
minuend . The result is correct if there is no overflow. The result is wrong if there is an
overflow. In case of overflow, increase the number of bits for each number, repeat the
subtraction operation until the overflow is zero to obtain the correct result. Note that if
there is a final carry after performing the 2’s complement subtraction, the result is positive.
On the other hand, if there is no final carry after 2’s complement subtraction, the result is
negative.

Computers utilize common hardware to perform addition and subtraction
operations for both unsigned and signed numbers. The instruction set of computers
typically include the same ADD and SUBTRACT instructions for both unsigned and signed
numbers. The interpretations of unsigned and signed ADD and SUBTRACT operations are
performed by the programmer. For example, consider adding two 8-bit numbers, A and B
(A = FF,, and B= FF,,) using the ADD instruction by a computer as follows:

Design of Computer Instruction Set and the CPU

1 1 1 1 1 1 1 - Intermediate carries
FF,,= 1111 1111

+ FF,,= 1111 1111
---________________________

Final carry -1 11 11 11 10 = FE,,

25 1

When the above addition is interpreted as an unsigned operation by the programmer, the
result will be
A + B =FF,, + FFl6 = 255,,+ 255,,= 510,, which is FE,, with a carry as shown above.
However, if the addition is interpreted as a signed operation, then, A + B =FF,, + FF,, =

(-1 ,,) + (- 1 ,,) = -2], which is FE,, as shown above, and the final carry must be discarded by
the programmer. Similarly, the unsigned and signed subtraction can be interpreted by the
programmer.

Typical 8-bit microprocessors, such as the Intel 8085 and Motorola 6809, do not
include multiplication and division instructions due to limitations in the circuit densities
that can be placed on the chip. Due to advances in semiconductor technology, 16-, 32-, and
64-bit microprocessors usually include multiplication and division algorithms in a ROM
inside the chip. These algorithms typically utilize an ALU to carry out the operations. one
can write a program that multiplies two numbers. Although this solution seems viable, the
operational speed is unsatisfactory.

For application environments such as real-time digital filtering, in which the
processor is expected to perform 32 to 64 eight-bit multiplication operations within 100
p e c (sampling frequency = 10 kHz), speed is an important factor. New device technologies
such as BICMOS and HCMOS, allow manufacturers to pack millions of transistors in a
chip. Consequently, state-of-the-art 32-bit microprocessors such as the Motorola 68060
(HCMOS) and Intel Pentium (BICMOS) designed using these technologies, have a
larger instruction set than their predecessors, which includes multiplication and division
instructions. In this section, multiplier design principles are discussed. Two unsigned
integers can be multiplied using repeated addition as mentioned in Chapter 2. Also, they
can be multiplied in the same way as two decimal numbers are multiplied by paper and
pencil method. Consider the multiplication of two unsigned integers, where the multiplier
Q = 15 and the multiplicand is M = 14, as illustrated:

In the paper and pencil algorithm, shifted versions of multiplicands are added.

252 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 7.17
the Paper and Pencil Algorithm

Generalized Version of the Multiplication of Two 4-bit Numbers Using

a. Bast Cell

FIGURE

b. Infernal Organizabon

7.18 4 x4 Array Multiplier

This procedure can be implemented by using combinational circuit elements such as AND
gates and FULL adders. Generally, a 4-bit unsigned multiplier Q and a 4-bit unsigned
multiplicand M can be written as M: m, m2 m, m, and Q: q, q2 ql q,.The process of
generating the partial products and the final product can also be generalized as shown in

FIGURE 7.19 ROM-based 4x4 Multiplier

Design of Computer Instruction Set and the CPU 253

Figure 7.17. Each cross-product term (mi qj) in this figure can be generated using an AND
gate. This requires 16 AND gates to generate all cross-product terms that are summed by
full adder arrays, as shown in Figure 7.18.
Consider the generation of p2 in Figure 7.18(b). From Figure 7.1 7, p 2 is the sum of m2qo,
m,q, and m0q2. The sum of these three elements is obtained by using two full adders. (See
column for p2 in Figure 7.18). The top full-adder in this column generates the sum m,q, +
m,q,. This sum is then added to m0q2 by the bottom full-adder along with any carry from
the previous full-adder for pI.
The time required to complete the multiplication can be estimated by considering the
longest carry propagation path comprising of the rightmost diagonal (which includes the
full-adder forp, and the bottom full-adders forp, andp,), and the last row (which includes
the full-adder for p6 and the bottom full-adders for p4 and ps) . The time taken to multiply
two n-bit numbers can be expressed as follows:

In this equation, all cross-product terms miqi can be generated simultaneously by an array
of AND gates. Therefore, only one AND gate delay is included in the equation. Also,
the rightmost diagonal and the bottom row contain (n - 1) full-adders each for the n x n
multiplier.
Assuming that A = A cur~p,opagofion = 2gate delays = 2A, the preceding expression can
be simplified as shown:
T(n) = 28 + (2n - 2)2A = (4n - 2)A.
The array multiplier that has been considered so far is known as Braun’s multiplier.
The hardware is often called a nonadditive multiplier (NM), since it does not include
any additive inputs. An additive multiplier (AM) includes an extra input R, it computes
products of the form
P = M * Q + R
This type of multiplier is useful in computing the sum of products of the form EXiYi.
Both an NM and an AM are available as standard 1C blocks. Since these systems require
more components, they are available only to handle 4- or 8-bit operands.
Alternatively, the same 4x4 NM discussed earlier can be obtained using a 256 x 8 ROM
as shown in Figure 7.19.
It can be seen that a given MQ pair defines a ROM address, where the corresponding 8-bit
product is held. The ROM approach can be used for small-scale multipliers because:

The technological advancements allow the manufacturers to produce low-cost
ROMs.
The design effort is minimum.

T(n) + A ANDgure + (n -) A currypropagarion + - A currypropugurion

In case of large multipliers, ROM implementation is unfeasible, since large-size ROMs
are required. For example, in order to implement an 8 x 8 multiplier, a 216 x 16 ROM is
required. If the required 8 x 8 product is decomposed into a linear combination of four 4x4
products, an 8 x 8 multiplier can be implemented using four 256 x 8 ROMs and a few 4-bit
parallel adders. However, PLDs can be used to accomplish this.
Signed multiplication can be performed using various algorithms. A simple algorithm
follows.

In the case of signed numbers, there are three possibilities:
1. M and Q are in sign-magnitude form.
2. M and Q are in ones complement form.
3. M and Q are in twos complement form.

For the first case, perform unsigned multiplication of the magnitudes without the sign

254 Fundamentals of Digital Logic and Microcomputer Design

bits. The sign bit of the product is determined as M, 0 Qn, where M, and Qn are the most
significant bits (sign bits) of the multiplicand (M> and the multiplier (Q), respectively. For
the second case, proceed as follows:

Step 1 : If M, = 1, then compute the ones complement of M.
Step 2: If Q, = 1, then compute the ones complement of Q.
Step 3: Multiply the n - 1 bits of the multiplier and the multiplicand.
Step 4: S, = M, 0 Qn
Step 5: If S, = 1, then compute the ones complement of the result obtained in Step 3.
Whenever the ones complement of a negative number (sign bit = 1) is taken, the

sign is reversed. Hence, with respect to the multiplier, the inputs are always a positive
quantity. When the sign of the bit is negative, however (M, 0 Q, = l), the result must be
presented in the ones complement form. This is why the ones complement of the product
found by the unsigned multiplier is computed. When M and Q are in twos complement
form, the same procedure is repeated, with the exception that the twos complement must be
determined when Q, = 1, M, = 1, or M, 0 Q, = 1. Consider M and Q as twos complement
numbers. Suppose M = 1 100, and Q = 01 1 1,. Because M, = 1, take the twos complement of
M = 0 100,; because Qn = 0, do not change Q. Multiply 0 1 1 1 , and 0 100, using the unsigned
multiplication method discussed before. The product is 0001 1 100,. The sign of the product
S, = M, 0 Qn = 1 0 0 = 1. Hence, take the twos complement of the product 000 1 1 100, to
obtain 11 lOOlOO,, which is the final answer: -28,,.

As mentioned in Chapter 2, unsigned division can be performed using repeated
subtraction. However, the general equation for division can be used for signed division.
Note that the general equation for division is Dividend = Quotient *Divisor + Remainder.
For example, consider dividend = - 9, divisor = 2. Three possible solutions are shown
below:

(a)
(b)
(c)

- 9 = - 4 * 2 - 1, Quotient = - 4 , Remainder =- 1.
- 9 ~ - 5 * 2 + 1, Quotient = - 5, Remainder = +l.
- 9 = - 6 * 2 + 3, Quotient = - 6, Remainder = +3.

However, the correct answer is shown in (a) in which, Quotient = - 4 and Remainder =

- 1. Hence, for signed division, the sign of the remainder is the same as the sign of the
dividend, unless the remainder is zero. Typical microprocessors such as Motorola 68XXX
follow this convention.

7.3.4 ALU Design
Functionally, an ALU can be divided up into two segments: the arithmetic unit and

the logic unit. The arithmetic unit performs typical arithmetic operations such as addition,
subtraction, and increment or decrement by 1. Usually, the operands involved may be
signed or unsigned integers. In some cases, however, an arithmetic unit must handle 4-bit
binary-coded decimal (BCD) numbers and floating-point numbers. Therefore, this unit
must include the circuitry necessary to manipulate these data types. As the name implies,
the logic unit contains hardware elements that perform typical operations such as Boolean
NOT and OR. In this section, the design of a simple ALU using typical combinational
elements such as gates, multiplexers, and a 4-bit parallel adder is discussed. For this
approach, an arithmetic unit and a logic unit are first designed separately; then they are
combined to obtain an ALU.

For the first step, a two-function arithmetic unit, as shown in Figure 7.20 is
designed. The key element of this system is a 4-bit parallel adder. The multiplexers select

Design of Computer Instruction Set and the CPU

n

I I

Y

255

FIGURE 7.20

either Y or 7 for the 3-input of the parallel adder. In particular, if so = 0, then B = R
otherwise B = 7. Because the selection input (so) also controls the input carry (CJ, the
following results:

Ifs,=OthenF=Xplus Y

Organization of an arithmetic unit

else F = Xplus Tplus 1
= Xminus Y

This arithmetic unit generates addition and subtraction operations. For the second step, let
us design a two-function logic unit; this is shown in Figure 7.21. From Figure 7.21 it can be
seen that when so = 0, the output G = X AND Y; otherwise the output G = X@ Y. Note that
from these two Boolean operations, other operations such as NOT and OR can be derived
by the following Boolean identities:

x O R y = x @ y @ x y
Therefore, NOT and OR operations can be obtained by using additional hardware

and the circuit of Figure 7.21. The outputs generated by the arithmetic and logic units can
be combined by using a set of multiplexers, as shown in Figure 7.22. From this organization
it can be seen that when the select line s, = 1, the multiplexers select outputs generated by
the logic unit; otherwise, the outputs of the arithmetic unit are selected.

More commonly, the select line, s,, is referred to as the mode input because it
selects the desired mode of operation (arithmetic or logic). A complete block diagram
schematic of this ALU is shown in Figure 7.23. The truth table illustrating the operation of
this ALU is shown in Figure 7.24. This table shows that this ALU is capable of performing
2 arithmetic and 2 logic operations on the 4-bit operands Xand Y.

The rapid growth in IC technology permitted the manufacturers to produce an
ALU as an MSI block. Such systems implement many operations, and their use as a system

l o x = ;

256 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 7.21 Organization of a 4-bit two-function logic unit

FIGURE 7.22 Combining the outputs generated by the arithmetic and logic units

component reduces the hardware cost, board space, debugging effort, and failure rate.
Usually, each MSI ALU chip is designed as a 4-bit slice. However, a designer can easily
interconnect n such chips to get a 4n-bit ALU. Some popular 4-bit ALU chips are the
74381 and 74181. The 74381 ALU performs 3 arithmetic and 2 miscellaneous operations
on 4-bit operands. The 74 18 1 ALU performs 16 arithmetic and 16 Boolean operations on
two 4-bit operands, using either active high or active low data. A complete description and
operational characteristics of these devices may be found in the data books.

Typical 8-bit microprocessors, such as the Intel 8085 and Motorola 6809, do not
include multiplication and division instructions due to limitations in the circuit densities that
can be placed on the chip. Due to advanced semiconductor technology, 16-, 32-, and 64-bit

Design of Computer Instruction Set and the CPU

Select Lines

SI Sn

257

Output z Comment

Y-

,

0

0

4

0 x plus Y Addition

1 x DlUS P PlUS 1 2’s ComDlement subtraction

L

1

Arithmetic u4

1 X O Y Exclusive-OR

Logic
unit

4

1

FIGURE 7.23 Schematic representation of the four functions

4

/ - z

I l I O I X A Y I Boolean AND I

FIGURE 7.24 Truth table controlling the operations of the ALU of Figure 7.23

microprocessors usually include multiplication and division algorithms in a ROM inside
the chip. These algorithms typically utilize an ALU to carry out the operations. Verilog
and VHDL descriptions along with simulation results of typical ALU’s are included in
Appendices I and J respectively.

7.3.5
The main purpose of the control unit is to translate or decode instructions and generate
appropriate enable signals to accomplish the desired operation. Based on the contents of
the instruction register, the control unit sends the selected data items to the appropriate
processing hardware at the right time. The control unit drives the associated processing
hardware by generating a set of signals that are synchronized with a master clock.

The control unit performs two basic operations: instruction interpretation
and instruction sequencing. In the interpretation phase, the control unit reads (fetches)
an instruction from the memory addressed by the contents of the program counter into

Design of the Control Unit

258 Fundamentals of Digital Logic a n d Microcomputer Design

the instruction register. The control unit inputs the contents of the instruction register. It
recognizes the instruction type, obtains the necessary operands, and routes them to the
appropriate functional units of the execution unit (registers and ALU). The control unit
then issues the necessary signals to the execution unit to perform the desired operation and
routes the results to the specified destination.

In the sequencing phase, the control unit generates the address of the next
instruction to be executed and loads it into the program counter. To design a control unit,
one must be familiar with some basic concepts such as register transfer operations, types of
bus structures inside the control unit, and generation of timing signals. These are described
in the next section.

There are two methods for designing a control unit: hardwired control and
microprogrammed control. In the hardwired approach, synchronous sequential circuit
design procedures are used in designing the control unit. Note that a control unit is a clocked
sequential circuit. The name “hardwired control” evolved from the fact that the final
circuit is built by physically connecting the components such as gates and flip-flops. In the
microprogrammed approach, on the other hand, all control functions are stored in a ROM
inside the control unit. This memory is called the “control memory.” RAMS and PALS are
also used to implement the control memory. The words in this memory are called “control
words,” and they specify the control functions to be performed by the control unit. The
control words are fetched from the control memory and the bits are routed to appropriate
functional units to enable various gates. An instruction is thus executed. Design of control
units using microprogramming (sometimes calledfirmware to distinguish it from hardwired
control) is more expensive than using hardwired controls. To execute an instruction, the
contents of the control memory in microprogrammed control must be read, which reduces
the overall speed of the control unit.The most important advantage of microprogramming is
its flexibility; many additions and changes are made by simply changing the microprogram
in the control memory. A small change in the hardwired approach may lead to redesigning
the entire system.

There are two types of microprocessor architectures: CISC (Complex Instruction
Set Computer) and RISC (Reduced Instruction Set Computer). CISC microprocessors
contain a large number of instructions and many addressing modes while RISC
microprocessors include a simple instruction set with a few addressing modes. Almost all
computations can be obtained from a few simple operations. RISC basically supports a
small set of commonly used instructions which are executed at a fast clock rate compared
to CISC which contains a large instruction set (some of which are rarely used) executed
at a slower clock rate. In order to implement fetch /execute cycle for supporting a large
instruction set for CISC, the clock is typically slower. In CISC, most instructions can
access memory while RISC contains mostly loadhtore instructions. The complex
instruction set of CISC requires a complex control unit, thus requiring microprogrammed
implementation. RISC utilizes hardwired control which is faster. CISC is more difficult to
pipeline while RISC provides more efficient pipelining. An advantage of CISC over RISC
is that complex programs require fewer instructions in CISC with a fewer fetch cycles
while the RISC requires a large number of instructions to accomplish the same task with
several fetch cycles. However, RISC can significantly improve its performance with a faster
clock, more efficient pipelining and compiler optimization. PowerPC and Intel 8OXXX
utilize RISC and CISC architectures respectively. Intel Pentium family, on the other hand,
utilizes a combination of RISC and CISC architectures for providing high performance.
The Pentium uses RISC (hardwired control) to implement efficient pipelining for simple

Design of Computer Instruction Set and the CPU 259

Register 9
Register

FIGURE 7.25 16-Bit register transfer from R, to R,

Register

E $ ' I Register

FIGURE 7.26 An enable input controlling register transfer

instructions. CISC (microprogrammed control) for complex instructions is utilized by the
Pentium to provide upward compatibility with the Intel 8086/80X86 family.

Basic Concepts
Register transfer notation is the fundamental concept associated with the control

unit design. For example, consider the register transfer operation of Figure 7.25. The
contents of 16-bit register R, are transferred to 16-bit register R, as described by the
following notation:

4 - Ro

The symbol +- is called the transfer operator. However, this notation does not
indicate the number of bits to be transferred. A declaration statement specifying the size of
each register is used for the purpose:

Declare registers RO [1 6] , R1 [16]
The register transfer notation can also be used to move a specific bit from one

register to a particular bit position in another. For example, the statement

means that bit 14 of register R, is moved to bit 1 of register R,.
An enable signal usually controls transfer of data from one register to another.

For example, consider Figure 7.26. In the figure, the 16-bit contents of register R, are
transferred to register R, if the enable input E is HIGH; otherwise the contents of R, and R,
remain the same. Such a conditional transfer can be represented as

E: R, +- R,
Figure 7.27 shows a hardware implementation of transfer of each bit of R, and R,.

The enable input may sometimes be a function of more than one variable. For example,
consider the following statement involving three 16-bit registers: If R, < R, and R, [11 = 1
then R, - R, .

The condition R,, < R, can be determined by an 8-bit comparator such that the
output y of the comparator goes to 0 if R, < R,. The conditional transfer can then be

R, [11+ R, ~ 4 1

260 Fundamentals of Digital Logic and Microcomputer Design

of Register of Registei
R i Muniplexer

FIGURE 7.27 Hardware for each bit transfer from R, to R,
15 __---- 1 0

FIGURE 7.28 Hardware implementation E R , - R, where E = y * R, [l]

Declare registers R[81 ,M[81 ,Q[81;
Declare buses inbus[8],outbus[8];

Start: R + 0, M - inbus; Clear register R to 0 and move
multiplicand

Q - inbus; Transfer multiplier

If Q < > 0 then go t o loop; repeatifQ#O

Outbus - R;
Loop : R +- R + M, Q +- Q-1; Add multiplicand

Halt: Go to Halt:

FIGURE 7.29
8-bit result)

Register transfer description of 8 x 8 unsigned multiplication (Assume

expressed as follows: E: R, +- R, where E = y . R, [l]. Figure 7.28 depicts the hardware
implementation.

A number of wires called “buses” are normally used to transfer data in and out
of a digital processing system. Typically, there will be a pair of buses (“inbuses” and
“outbuses”) inside the CPU to transfer data from the external devises into the processing
section and vice versa. Like the registers, these buses are also represented using register
transfer notations and declaration statements. For example, “Declare inbus [161 and outbus
[16]” indicate that the digital system contains two 16-bit wide data buses (inbus and
outbus). R, - inbus means that the data on the inbus is transferred into register R, when
the next clock arrives. An equate (=) symbol can also be used in place of -. For example,
“outbus = R, [15:8]” means that the high-order 8 bits of the 16-bit register R, are made
available on the outbus for one clock period. An algorithm implemented by a digital system
can be described by using a set of register transfer notations and typical control structures
such as if-then and go to. For example, consider the description shown in Figure 7.29 for

Design of Computer Instruction Set and the CPU 26 1

multiplying two 8-bit unsigned numbers (Multiplication of an 8-bit unsigned multiplier
by an 8-bit multiplicand) using repeated addition.

The hardware components for the preceding description include an 8-bit inbus, an
8-bit outbus, an 8-bit parallel adder, and three 8-bit registers, R, M, and Q. This hardware
performs unsigned multiplication by repeated addition. This is equivalent to unsigned
multiplication performed by assembly language instruction.

A distinguishing feature of this description is to describe concurrent operations.
For example, the operations R - 0 and M - inbus can be performed simultaneously. As
a general rule, a comma is inserted between operations that can be executed concurrently.
On the other hand, a semicolon between two transfer operations indicates that they must be
performed serially. This restriction is primarily due to the data path provided in the hardware.
For example, in the description, because there is only one input bus, the operations M -
inbus and Q + inbus cannot be performed simultaneously. Rather, these two operations
must be carried out serially. However, one of these operations may be overlapped with the
operation R - 0 because the operation does not use the inbus. The description also includes
labels and comments to improve readability of the task description. Operations such as R
+- 0 and M - inbus are called “micro-operations”, because they can be completed in one
clock cycle. In general, a computer instruction can be expressed as a sequence of micro-
operations.

The rate at which a microprocessor completes operations such as R - R
+ M is determined by its bus structure inside the microprocessor chip. The cost of the
microprocessor increases with the complexity of the bus structure. Three types of bus
structures are typically used: single-bus, two-bus, and three-bus architectures.

The simplest of all bus structures is the single-bus organization shown in Figure
7.30. At any time, data may be transferred between any two registers or between a register
and the ALU. If the ALU requires two operands such as in response to an ADD instruction,
the operands can only be transferred one at a time. In single-bus architecture, the bus must
be multiplexed among various operands. Also, the ALU must have buffer registers to hold
the transferred operand.

In Figure 7.30, an add operation such as R, - R, + R, is completed in three clock
cycles as follows:

First clock cycle: The contents of R, are moved to buffer register B, of the ALU.
Second clock cycle: The contents of R, are moved to buffer register B, of the ALU.
Third clock cycle: The sum generated by the ALU is loaded into R,.

A single-bus structure slows down the speed of instruction execution even though
data may already be in the microprocessor registers. The instruction’s execution time is
longer if the operands are in memory; two clock cycles may be required to retrieve the
operands into the microprocessor registers from external memory.

Prcgram CDlnfer (PC)

Addrsu Register (Ao)

Stack Pointer

Buffer BUfW
Rwislem.01 ReQistemBZ

~

R ,
~

~~

FIGURE 7.30 Single-bus architecture

R I

RZ

7 special Pvpase __

I
Registers

262 Fundamentals of Digital Logic and Microcomputer Design

Bus A -
T t

Bus 6

TI- Register 0

-

1 1

\ I

i l

1

Special
Register
Group2 0

FIGURE 7.31 Two-bus architecture

Group1 :o : L
Bus C

FIGURE 7.32 Three-bus architecture

To execute an instruction such as ADD between two operands already in register,
the control logic in a single-bus structure must follow a three-step sequence. Each step
represents a control state. Therefore, a single-bus architecture requires a large number of
states in the control logic, so more hardware may be needed to design the control unit.
Because all data transfers take place through the same bus one at a time, the design effort
to build the control logic is greatly reduced.

Next, consider a two-bus architecture, shown in Figure 7.3 1. All general-purpose
registers are connected to both buses (bus A and bus B) to form a two-bus architecture. The
two operands required by the ALU are, therefore, routed in one clock cycle. Instruction
execution is faster because the ALU does not have to wait for the second operand, unlike
the single-bus architecture. The information on a bus may be from a general-purpose
register or a special-purpose register. In this arrangement, special-purpose registers are
often divided into two groups. Each group is connected to one of the buses. Data from two
special-purpose registers of the same group cannot be transferred to the ALU at the same
time.

In the two-bus architecture, the contents of the program counter are always
transferred to the right input of the ALU because it is connected to bus A . Similarly, the
contents of the special register MBR (memory buffer register, to hold up data retrieved
from external memory) are always transferred to the left input of the ALU because it is
connected to bus B.

Design of Computer Instruction Set and the CPU 263

In Figure 7.3 1, an add operation such as R, * R, + R, is completed in two clock

First clock cycle: The contents of R, and R, are moved to the inputs of ALU.
The ALU then generates the sum in the output register.

Second clock cycle: The sum from the output register is routed to R,.

cycles as follows:

The performance of a two-bus architecture can be improved by adding a third
bus (bus C), at the output of the ALU. Figure 7.32 depicts a typical three-bus architecture.
The three-bus architecture perform the addition operation R, + R, + R, in one cycle as
follows:

The contents of R, and R, are moved to the inputs of the
ALU via bus A and bus B respectively. The sum generated
by the ALU is then transferred to R, via bus C.

The addition of the third bus will increase the system cost and also the complexity
of the control unit design.

Note that the bus architectures described so far are inside the microprocessor chip.
On the other hand, the system bus connecting the microprocessor, memory, and I/O are
external to the microprocessor.

Another important concept required in the design of a control unit is the generation
of timing signals. One of the main tasks of a control unit is to properly sequence a set of
operations such as a sequence of n consecutive clock pulses. To cany out an operation,
timing signals are generated from a master clock. Figure 7.33 shows the input clock pulse
and the four timing signals To, T , , T,, and T3. A ring counter (described in Chapter 5) can
be used to generate these timing signals. To carry out an operation Pi at the ith clock pulse,
a control unit must count the clock pulses and produce a timing signal T,.

First cycle:

1.

2.
3.
4.

5 .

Hardwired Control Design
The steps involved in hardwired control design are summarized as follows:

Derive a flowchart from the problem definition and validate the algorithm by
using trial data.
Obtain a register transfer description of the algorithm from the flowchart.
Specify a processing hardware along with various components.
Complete the design of the processing section by establishing the necessary
control inputs.
Determine a block diagram of the controller.

Timing Sigrui

Timing Signal
T,

FIGURE 7.33 Timing signals

264 Fundamentals of Digital Logic and Microcomputer Design

6 .
7.

8.

Obtain the state diagram of the controller.
Specify the characteristic of the hardware for generating the required timing
signals used in the controller.
Draw the logic circuit of the controller.
The following example is provided to illustrate the concepts associated with

implementation of a typical instruction in a control unit using hardwired control. The
unsigned multiplication by repeated addition discussed earlier is used for this purpose. A 4-

M <- Muniplicand

R <-- R + M

I c

V

FIGURE 7.34 Flowchart for 4-bit x 4-bit multiplication

Initialization 0 0 0 0 0 1 0 0
R M

Iteration 1
R <-- R + M
Q <-- Q - 1

0 1 0 0 0 1 0 0

Q
0 0 1 1

0 0 1 0

Iteration 2
1 0 0 0 0 1 0 0 0 0 0 1 R <-- R + M

Q <-- Q - 1

Iteration 3
R <-- R + M 1 1 0 0 0 1 0 0 0 0 0 0

‘y, Product =12,,

Q <-- Q - 1

FIGURE 7.35 Verification of the unsigned multiplication algorithm

Design of Computer Instruction Set and the CPU 265

bit by 4-bit unsigned multiplication will be considered. Assume the result of multiplication
is 4 bits.
Step I : Derive a flowchart from the problem definition and then validate the algorithm
using trial data.
Figure 7.34 shows the flowchart. In the figure, Mand Q are two 4-bit registers containing
the unsigned multiplicand and unsigned multiplier respectively. Assume that the result of
multiplication is 4-bit wide. The 4-bit result of the multiplication called the “product” will
be stored in the 4-bit register, R. The contents of R are then output to the outbus.

The flowchart in Figure 7.34 is similar to an ASM chart and provides a hardware
description of the algorithm. The sequence of events and their timing relationships are
described in the flowchart. For example, the operations, R +- 0 and M + multiplicand
shown in the same block are executed simultaneously. Note that M - multiplicand via
inbus and Q +- multiplier via inbus must be performed serially because both operations
use a single input bus for loading data. These operations are, therefore, shown in different

Clear Register to 0 and move multiplicand

Perform addition, decrement counter

Start: R - 0, M + inbus;
Q + i n b u s ; Transfer Multiplier

If Q < > 0 then goto Loop; RepeatifQ+ 0
outbus +- R;

L O O P : R + R + M, Q + Q -1;

H a l t : Go to Halt;

FIGURE 7.36 Register transfer description 4-bit x 4-bit unsigned multiplication

C L D Clack Action

1 0 0 Clear
0 1 0 LOadExterrddata
o o 1 1 Decrementbyom
0 0 0 1 Nochanpe

(a) General Purpose Register

Control
Input F

1 I + r
Control 0 No operation

Input

(b) 4-bit w Adder 4

$ 4 Control Y

X
Control Input
Input 1

0 High
lmpedence

State

(c) Tristate Buffer
FIGURE 7.37 Components of the processing section of 4-bit by 4-bit unsigned

multiplication

266 Fundamentals of Digital Logic and Microcomputer Design

blocks. Because R - 0 does not use the inbus, this operation is overlapped, in our case,
with initializing of M via the inbus. This simultaneous operation is indicated by placing
them in the same block.

The algorithm will now be verified by means of a numerical example as shown
in Figure 7.35. Suppose M = 0100, = 4,, and Q = 001 1, = 310; then R = product = 1100, =

Step 2: Obtain a register transfer description of the algorithm from the flowchart. Figure
7.36 shows the description of the algorithm.
Step 3: Specify a processing hardware along with various components.
The processing section contains three main components:

1210

General-purpose registers
4-bit adder
Tristate buffer
Figure 7.37 shows these components. The general-purpose register is a trailing

edge-triggered device.
Three operations (clear, parallel load, and decrement) can be performed by

applying the appropriate inputs at C, L, and D. All these operations are synchronized at the
trailing (high to low) edge of the clock pulse.

The 4-bit adder can be implemented using 4-bit adder circuits. The tristate buffer
is used to control data transfer to the outbus.
Step 4: Complete the design of the processing section by establishing the necessary

control inputs.
Figure 7.38 shows the detailed logic diagram of the processing section, along with

the control inputs.
Step 5: Determine a block diagram of the controller. Figure 7.39 shows the block
diagram.

The controller has three inputs and seven outputs. The Reset input is an
asynchronous input used to reset the controller so that a new computation can begin. The
Clock input is used to synchronize the controller’s action. All activities are assumed to be
synchronized with the trailing edge of the clock pulse.
Step 6: Obtain the state diagram of the controller.

The controller must initiate a set of operations in a specified sequence. Therefore,
it is modeled as a sequential circuit. The state diagram of the unsigned multiplier controller
is shown in Figure 7.40.

Initially, the controller is in state To. At this point, the control signals C,, and C, are
HIGH. Operations R + 0 and M + inbus are carried out with the trailing edge of the next
clock pulse. The controller moves to state TI with this clock pulse. When the controller is
in T2, R - R + M and Q - Q - 1 are performed.

All these operations take place at the trailing edge of the next clock pulse. The
controller moves to state T, only when the unsigned multiplication is completed. The
controller then stays in this state forever. A hardware reset input causes the controller to
move to state To, and a new computation will start.

In this state diagram, selection of states is made according to the following
guidelines:

If the operations are independent of each other and can be completed within
one clock cycle, they are grouped within one control state. For example, in
Figure 7.40, operations R +- 0 and M - inbus are independent of each other.
With this hardware, they can be executed in one clock cycle. That is, they are

Design of Computer Instruction Set and the CPU

Reset
b

Z
b

267

---+C

d C

--+C
Controller --+C

- C

- C

A ---+C

C,:RCO

C q Mbinbus

C , 'Ofinbus

C,: F = r + l

c,: a a - i

c; ournus 6 R

C , : R f F

1 4

i i

-

FIGURE 7.38 Detailed logic diagram of the processing section

FIGURE 7.39 Block diagram of the unsigned multiplier controller

4 z=1

z=o

T.4

8

Control
State

TO

TI

TP

T3

T4

T5

Operation
Performed

R t 0, M t inbus

Q t inbus

R t R + M ,

None

outbus t R

None

Q t Q - 1

Control Signal
to be

activated

co, c1
CP

CB, c4, c6

None

c5

None

(a) State Diagram (b) Controller action

FIGURE 7.40 Controller description

268 Fundamentals of Digital Logic and Microcomputer Design

Input Cbck
puke

Timing Signal
To

Timing Signal

Timing T2 Signal yy--
Timing Signal

T ,

+ t
T,

FIGURE 7.41 Timing signals generated by the controller

microoperations. However, if they cannot be completed within the To clock cycle,
either clock duration must be increased or the operations should be divided into a
sequence of microoperations.
Conditional testing normally implies the introduction of new states. For example,
in the figure, conditional testing of Z introduces the new state T3.
One should not attempt to minimize the number of states. When in doubt, new
states must be introduced. The correctness of the control logic is more important
than the cost of the circuit.

Step 7: Specify the characteristics of the hardware for generating the required timing
signals.

There are six states in the controller state diagram. Six nonoverlapping timing
signals (To through T,) must be generated so that only one will be high for a clock pulse.
For example, Figure 7.41 shows the four timing signals To, T,, T,, and T3. A mod-8 counter
and a 3-to-8 decoder can be used to accomplish this task. Figure 7.42 shows the mod-8
counter.
Step 8: Draw the logic circuit of the controller.

Figure 7.43 shows the logic circuit of the controller. The key element of the
implementation in Figure 7.43 is the sequence controller (SC) hardware, which sequences

External Data

Clock

0, 0 , 0,

w
Counter Output

C L E Cloc Action

1 X X X Clear

0 1 X J Load external

0 0 1 J Count up

0 0 0 J No operation

k

data

Note: X = don’t care

(a) Block Diagram (b) Function Table

FIGURE 7.42 Characteristics of the counter used in the controller design

Design of Computer Instruction Set and the CPU

Inputs

Z T, T,
0 1 X

X X 1

Clock J

outputs

L d* d, do
1 0 1 0

1 1 0 1

FIGURE 7.43 Logic diagram of the unsigned multiplier controller

(a) Truth Table

Or Array (Sum Array)

(b) PLA Implementation
FIGURE 7.44 Sequence controller design

269

the controller according to the state diagram of Figure 7.40. Figure 7.44(a) shows the truth
table for the SC controller.

Consider the logic involved in deriving the entries of the SC truth table. The mod-
8 counter is loaded (or initialized) with the specified external data if the counter control
inputs C and L are 0 and 1 respectively from Figure 7.42. In this counter, the counter load

270

control input L overrides the counter enable control input E.
From the controller’s state diagram of Figure 7.40, the controller counts up

automatically in response to the next clock pulse when the counter load control input L =

0 because the enable input E is tied to HIGH. Such normal sequencing activity is desirable
for the following situations:

Fundamentals of Digital Logic and Microcomputer Design

Present control state is To, T I , T,, T4.
Present control state is T3 and Z = 1 ; the next state is T4.
The SC must load the counter with the appropriate count when the counter is

required to load the count out of its normal sequence.
For example, from the controller’s state diagram of Figure 7.40, if the present

control state is T3 (counter output O,O,O,= 01 1) and if Z = 0, the next state is T2. When
these input conditions occur, the counter must be loaded with external value 010 at the
trailing edge of the next clock pulse (T, = 1 only when O,O,O,= 010. Therefore, the SC
generates L = 1 and d2dld0 = 010.

Similarly, from the controller’s state diagram of Figure 7.40, if the present state
is T,, the next control state is also T,. The SC must generate the outputs L = 1 and d2d,do =

101. The SC truth table of Figure 7.41 shows these out-of-sequence counts. For each row
of the SC truth table of Figure 7.44(a), a product term is generated in the PLA:

Po i- 2T3 and PI = T,.
The PLA (Figure 7.44b) generates four outputs: L, d,, d,, and do. Each output is

directly generated by the SC truth table and the product terms. The PLA outputs are as
follows:

L = P,+P,
d2 = P,
d, = P o
do = P ,

The controller design is completed by relating the control states (To through T,) to
the control signals (C, though C,) as follows:

C, = C, = To
C, = TI
c = c = c =
C, = T4

3 4 6 T 2

From these equations, when the control is in state To or T,, multiple micro-
operations are performed. Othenvise,when the control is in state TI or T4, a single micro-
operation is performed.

The unsigned multiplication algorithm just implemented using hardwired control
can be considered as an unsigned multiplication instruction with a microprocessor. To
execute this instruction, the microcomputer will read (fetch) this multiplication instruction
from external memory into the instruction register located inside the microprocessor. The
contents of this instruction register will be input to the control unit for execution. The control
unit will generate the control signals C , through C, as shown in Figure 7.43. These control
signals will then be applied to the appropriate components of the processing section in
Figure 7.38 at the proper instants of time shown in Figure 7.40. Note that the control signals
are physically connected to the hardware elements of Figure 7.38. Thus, the execution of
the unsigned multiplication instruction will be completed by the microprocessor.

Microprogrammed Control Unit Design
As mentioned earlier, a microprogrammzd control unit contains programs written

Design of Computer Instruction Set and the CPU 27 1

using microinstructions. These programs are stored in a control memory normally in a
ROM inside the CPU. To execute instructions, the microprocessor reads (fetches) each
instruction into the instruction register from external memory. The control unit translates
the instruction for the microprocessor. Each control word contains signals to activate one
or more microoperations. A program consisting of a set of microinstructions is executed
in a sequence of micro-operations to complete the instruction execution. Generally, all
microinstructions have two important fields:

Control word
Next address
The control field indicates which control lines are to be activated. The next

address field specifies the address of the next microinstruction to be executed. The concept
of microprogramming was first proposed by W. V. Wilkes in 195 1 utilizing a decoder and
an 8 x 8 ROM with a diode matrix. This concept is extended further to include a control
memory inside the CPU. The cost of designing a CPU primarily depends on the size of the
control memory. The length of a microinstruction, on the other hand, affects the size of the
control memory. Therefore, a major design effort is to minimize the cost of implementing
a microprogrammed CPU by reducing the length of the microinstruction.

The length of a microinstruction is directly related to the following factors:
The number of micro-operations that can be activated simultaneously. This is
called the “degree of parallelism.”
The method by which the address of the next microinstruction is determined.
All microinstructions executed in parallel can be included in a single

microinstruction with a common op-code. The result is a short microprogram. However,
the length of the microinstruction increases as parallelism grows.

The control bits in a microinstruction can be organized in several ways. One
obvious way is to assign a single bit for each control line. This will provide full parallelism.
No decoding of the control field is necessary. For example, consider Figure 7.45 with two
registers, Xand Y with one outbus.

In figure 7.45, the contents of each register are transferred to the outbus when the

FIGURE 7.45 An example of a register transfer

do d l

Decoder li ;t04i ii
unused c No

1 ‘0 operation

FIGURE 7.46 Encoded format

272 Fundamentals of Digital Logic and Microcomputer Design

Control Bits

C, C,

appropriate control line is activated:
C,: outbus + X
C,: outbus +- Y

Here, each operation can be performed one at a time because there is only one
outbus. A single bit can be assigned to perform each transfer as follows:

Operation
Performed

1 0

0 1

0 0

Outbus - X

Outbus-Y

No operation

This method is called “unencoded format.”
The three operations can be implemented using two bits and a 2-to-4 decoder

as shown in Figure 7.46. This is called “encoded format.” The relationship between the
encoded and actual control information is as follows:

Encoded Bits

d , dn

Operation
Performed

0 1 I Outbus-x

1 0 Outbus - y

Note that a 5-bit control field is required for five operations. However, three
encoded bits are required for five operations using a 3 to 8 decoder. Hence, the encoded
format typically provides a short control field and thus results in short microinstructions.
However, the need for a decoder will increase the cost. Therefore, there is a trade-off
between the degree of parallelism and the cost. Microinstructions can be classified into
two groups: horizontal and vertical. The horizontal microinstruction mechanism provides
long microinstructions, a high degree of parallelism, and little or no encoding. The vertical
microinstruction method, on the other hand, offers short microinstructions, limited
parallelism, and considerable decoding.

Microprogramming is the technique of writing microprograms in a
microprogrammed control unit. Writing microprograms is similar to writing assembly
language programs. Microprograms are basically written in a symbolic language called
microassembly language. These programs are translated by a microassembler to generate
microcodes, which are then stored in the control memory.

In the early days, the control memory was implemented using ROMs. However,
these days control memories are realized in writeable memories. This provides the
flexibility of interpreting different instruction set by rewriting the original microprogram,
which allows implementation of different control units with the same hardware. Using
this approach, one CPU can interpret the instruction set of another CPU. The design of a
microprogrammed control unit is considered next. The 4-bit x 4-bit unsigned multiplication

Design of Computer Instruction Set and the CPU 273

Control
Memory
Address

Control Word

0 START R - 0, M - i n b u s ;

1 Q + i n b u s ;

2 LOOP R -R -t M I Q + Q - 1;

3 If Z = 0 t h e n g o t o Loop;

4 o u t b u s - R;

5 HALT Go t o HALT

FIGURE 7.47 Symbolic microprogram for 4-bit x 4-bit unsigned multiplication using
repeated addition

C , :R-0
C, : M - inbus

C, : F - 1 + r

C, : outbus - R

%- Control Memory C, : Q - inbus
(CM)

6 x 1 2

C, Q + Q - 1

1 l2
Condition Branch CWR C , : R - - F Control (cornmi

Select Adder Functions

I 2 , 3 J . 4
c,c , .. c,

FIGURE 7.48 Microprogrammed unsigned multiplier control unit

using hardwired control (presented earlier) is implemented by microprogramming. The
register transfer description shown in Figure 7.36 is rewritten in symbolic microprogram
language as shown in Figure 7.47. Note that the unsigned 4-bit x 4-bit multiplication uses
repeated addition. The result (product) is assumed to be 4 bits wide.

To implement the microprogram, the hardware organization of the control unit
shown in Figure 7.48 can be used. The various components of the hardware of Figure 7.48
are described in the following:

Microprogram Counter (MPC). The MPC holds the address of the next
microinstruction to be executed. It is initially loaded from an external source
to point to the starting address of the microprogram. The MPC is similar to the
program counter (PC). The MPC is incremented after each microinstruction fetch.
If a branch instruction is encountered, the MPC is loaded with the contents of the
branch address field of the microinstruction.
Control Word Register (CWR). Each control word in the control memory in
this example is assumed to contain three fields: condition select, branch address,
and control function. Each microinstruction fetched from the Control Memory is
loaded into the CWR. The organization of the CWR is same for each control word

1.

2.

274 Fundamentals of Digital Logic and Microcomputer Design

and contains the three fields just mentioned. In the case of a conditional branch
microinstruction, if the condition specified by the condition select field is true,
the MPC is loaded with the branch address field of the CWR; otherwise, the MPC
is incremented to point to the next microinstruction. The control function field
contains the control signals.
MUX (Multiplexer). The MUX is a condition select multiplexer. It selects one
of the external conditions based on the contents of the condition select field of the
microinstruction fetched into the CWR.

3.

In Figure 7.48, a 2-bit condition select field is required as follows:

~~ ~

Condition Select Field

0 0

Interpretation

No branching (no condition)

0 1 I Branch i f Z = 0

'

1 0 I Unconditional branching

ROM Address Control Word Comments
In decimal In binary Condition Branch Control Function

Select Address Co C1 C2 C, C4 C5 C6
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 R t 0 , M t i n b u s
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 O Q t i n b u s
2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 R t R + M , Q t Q - 1 ,

3 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 I fZ=Othengoto

4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o u t b u s t R
5 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 Gotoaddress5(HALT)

R t F

address 2 (loop)

From Figure 7.47 six control memory address (addresses 0 through 5) are required
for the control memory to store the microprogram. Therefore, a 3-bit address is necessary
for each microinstruction. Hence, three bits for the branch address field are required. From
Figure 7.48 seven control signals (C, through C,) are required. Therefore, the size of the
control function field is 7 bits wide. Thus, the size of each control word can be determined
as follows:

size of a = size of the condition + size of the branch + number
control word select field address field of control

signals

2 + 3 + 7 - -

12 bits - -

Therefore, the size of the control memory is 6 bits x 12 bits because the
microprogram requires six addresses (0 through 5) and each control word is 12 bits wide.
The size of the CWR is 12 bits. The complete binary listing of the microprogram is shown
in Figure 7.49.

Design of Computer Instruction Set and the CPU 275

Let us now explain the binary program. Consider the first line of the program.
The instruction contains no branching. Therefore, the condition select field is 00. The
contents of the branch in this case filled with 000. In the control function field, two micro-
operations, C, and C,, are activated. Therefore, both C, and
C, are set to 1; C, through C, are set to 0.

(address 0) of Figure 7.49:
This results in the following binary microinstruction shown in the first line

Condition Branch Control
Select Address Function

00 000 1 100000

Next, consider the conditional branch instruction of Figure 7.49. This
microinstruction implements the conditional instruction “If Z = 0 then go to address 2.” In
this case, the microinstruction does not have to activate any control signal of the control
function field. Therefore, C, through C, are zero. The condition select field is 01 because
the condition is based on Z = 0. Also, if the condition is true (Z = 0), the program branches
to address 2. Therefore, the branch address field contains 010,. Thus, the following binary
microinstruction is obtained:

Condition Branch Control
Select Address Function

01 010 000000

The other lines in the binary representation of the microprogram can be explained
similarly. To execute an unsigned multiplication instruction implemented using the
repeated addition just described, a microprogrammed microprocessor will fetch the
instruction from external memory into the instruction register. To execute this instruction,
the microprocessor uses the control unit of Figure 7.48 to generate the control word based
on the microprogram of Figure 7.49 stored in the control memory. The control signals
C, through C, of the control function field of the CWR will be connected to appropriate
components of Figure 7.38 The instruction will thus be executed by the microprocessor.

By examining the microprogram in Figure 7.49, it is obvious that the control
function field contains all zeros in case of branch instructions. In a typical microprogram,
there may be several conditional and unconditional branch instructions. Therefore, a lot of
valuable memory space inside the control unit will be wasted if the control field is filled
with zeros. In practice, the format of the control word is organized in a different manner to
minimize its size. This reduces the implementation cost of the control unit. Whenever there
are several branch instructions, the microinstructions, can be formatted by using a method
called multiple microinstruction format. In this approach, the microinstructions are divided
into two groups: operate and branch instructions.

An operate instruction initiates one or more microoperations. For example, after
the execution of an operate instruction, the MPC will be incremented by 1. In the case of a
branch instruction, no microoperation will usually be initiated, and the MPC may be loaded
with a new value.
This means that the branch address field can be removed from the microinstruction format.
Therefore, the control function field is used to specify the branch address itself. Typically,

ROM Address Control Word
In decimal In binary Condition Branch Control Function

Select Address Co C, Cz C3 C4 Cs CC,
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1

0 1 1 0 I 0 1 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
5 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0

1 3

each microinstruction will have two fields, as shown next:

Comments

R t 0 , M t i n b u s
O Q t i n b u s

R t F
I fZ=Othengoto
address 2 (loop)
o u t b u s t R
Gotoaddress5(HALT)

R t R + M , Q t Q - 1 ,

CONDITION-
SELECT FIELD

If S, So = 00, the microinstruction is considered as an operate instruction, and
the contents of the control function field are treated as the control signals. Assume the
Condition Select Field is encoded as follows:

CONTROL FUNCTION FIELD

Sl S O

0 0 No branch
0 1 Branch if cond-1 = 1
1 1 Branch if cond-2 = 1
1 0 Unconditional branch

If S, So = 01, the instruction is regarded as a branch instruction, and the contents
of the control field are assumed to be a 7-bit branch address. In this example, it is assumed
that when S, So = 01, the MPC will be loaded with the appropriate address specified by C,
C, C4 C3 C, C, C, if the condition Z = 0 is satisfied; on the other hand, if S, So = 10, an
unconditional branch to the address specified by the Control Function I Branch Address
Field occurs.

In order to illustrate this concept, the microprogram for 4-bit by 4-bit unsigned
multiplication of Figure 7.49 is rewritten using the multiple instruction format as shown in
Figure 7.50.

It can be seen from the figure 7.50 that the total size of the control store is 54
bits (6 x 9 = 54). In contrast, the control store of figure 7.49 contains 72 bits. For large
microprograms with many branch instructions, tremendous memory savings can be
accomplished using the multiple microinstructon format. Addresses 0, 1, 2, and 4 contain
microinstructions with the contents of the conditional select field as 00, and are considered
as operate instructions. In this case, the contents of the control fimction field are directed
to the processing hardware.

Address 3 contains a conditional branch instruction since the contents of the
condition select field are 01 ; while address 5 contains an unconditional branch instruction

Design of Computer Instruction Set and the CPU 277

I , I

scsc4c3 c2 CI
b

To the Pmcesrcng Section

FIGURE 7.51 Microprogrammed Controller for the Microprogram of Figure 7.50.
CPU

7 A 0

Memory

256 x 8
RAM

FIGURE 7.52 Programming Model of a Simple Processor

(halt instruction; that is, jump to the same address) since the condition select field is 10.
Hence, the 7-bit control function field directly specifies the desired branch addresses 2 and
5, respectively. Figure 7.5 1 shows the hardware schematic.

7.4

Next, the design of a microprogrammed processor is illustrated. The programming model
of this processor is shown in Figure 7.52.
The CPU contains two registers:
1. An 8-bit register A
The flag register holds only zero (Z) and carry (C) flags. All programs and data are stored in
the 256 x 8 RAM. The detailed hardware schematic of the data-flow part of this processor
is shown in Figure 7.53.
From Figure 7.53, it can be seen that the hardware organization includes four more 8-bit
registers, PC, IR, MAR, and BUFFER. These registers are transparent to a programmer.
The 8-bit register BUFFER is used to hold the data that is retrieved from memory. In this
system, only a restricted number of data paths are available. These paths are controlled by
the control inputs C, through C,, as defined in Table 7.1.

Desim of a MicroDroPrammed CPU

2. A 2-bit flag register F

278 Fundamentals of Digital Logic and Microcomputer Design

256 A 8

Data out

FIGURE 7.53 Hardware Schematic of the Simple Processor (Note: 8-bit PC is
connected to eight 2 to 1 MUXs-- Not shown above)

From Figure 7.54, notice that the proposed instruction set contains 11 instructions. The
first 7 instructions are classified as memory reference instructions, since they all require
a memory address (which is an 8-bit number in this case). The last 4 instructions do not
require any memory address; they are called nonmemory reference instructions. Each
memory reference instruction is assumed to occupy 2 consecutive bytes in the RAM. The
first byte is reserved for the op-code, and the second byte indicates the 8-bit memory
address. In contrast, a nonmemory reference instruction takes only one byte of storage.
This instruction set supports only two addressing modes: implicit and direct. Both branch
instructions are assumed to be absolute mode branch instructions. The op-code encoding
for this instruction set is carried out in a logical manner, as explained in Figure 7.55.
The bit I3 of Figure 7.55 decides the instruction type. If I3 = 1, it is a memory reference
instruction (MRI), otherwise it is a nonmemory reference instruction (NMRI).
Within the memory reference category, instructions are classified into four groups, as
follows:

GROUP NO. INSTRUCTIONS
0 Load and store
1 Add and subtract
2 Jumps
3 Logical

There are two instructions in the first three groups. Bit I, is used to determine the desired
instruction of a particular group. If Io of group 0 equals zero, it is the load (LDA) instruction;
otherwise it is the store (STA) instruction. Nevertheless, no such classification is required
for group 3 and the nonmemory reference instructions.

As mentioned before, the instruction execution involves the following steps:

Design of Computer Instruction Set and the CPU 279

c,: PC - 0

TABLE 7.1 Definitions of the Control Inputs C,-C,

MICROOPERATION I COMMENT

Clear PC to zero.

C5GC,: BUFFER - M ((MAR))

C,C,: MAR - BUFFER

C,cC,: IR - M ((MAR))

C,: A +- F

C, C,: M ((MAR)) - A
--

C , : P C - P C + 1 I Advance the PC.

Read the data from the memory and save the
result in BUFFER.

Transfer the content of the BUFFER into MAR.

Read the data from memory and save the result
into IR.

Transfer the ALU output into the A register.

Save contents of register A into memory.

C,C,G: PC - M ((MAR))

C,C,: MAR - PC
-

Read the data from the memory and save it in the
PC.

Transfer the contents of the PC into MAR.

Cl

0

0

0

0

1

1

1

1

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:
Step 6:

1 c,, CI,

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

F

0

R

L+R

L-R

L+ 1

L- 1

L AND R

NOT L

Fetch the instruction.
Decode the instruction to find out the required operation.
If the required operation is a halt operation, then go to Step 6;
otherwise continue.
Retrieve the operands and perform the desired operation.
Go to Step 1.
Execute an infinite LOOP.

The first step is known as the fetch cycle, and the rest are collectively known
as the execution cycle. To decode the instruction, the hardware shown in Figure 7.56 is
used.

With this hardware and the status flags (Z and C), a microprogram to implement
the instruction set can be written. The symbolic version of this microprogram is shown in

280 Fundamentals of Digital Logic and Microcomputer Design

(add&: 8-bit memory address in binary
taddrH): 8-bit memory address in hex

MRI: memory reference instruction
NMRI: nonmemory reference instruction.

FIGURE 7.54 Instruction Set to be Implemented

Figure 7.57.
The hardware organization of the microprogrammed control unit for this situation

shown in Figure 7.58 directly follows the symbolic listing shown in Figure 7.57. No
attempt has been made toward arriving at a minimal microprogram. Rather, the concept
was presented. The task of translating the symbolic microprogram of Figure 7.57 into a
binary microprogram is left as an exercise.

Design of Computer Instruction Set and the CPU 28 1

TC:
GN:

Type classifier (if I3 = 1, then it is a MRI; otherwise it is
Group number within a type

(I 2 I1 Group no.

0 0 0

0 1 1

1 0 2

1 1 3 1
SC: Subcategory within a group

FIGURE 7.55 Op-code Encoding Logic

a NMRI)

FIGURE 7.56 Instruction-decoding Hardware

282 Fundamentals of Digital Logic and Microcomputer Design

Svmbolic MicroDrogram:

ROM Address

0

1 FETCH

2

3

4

5

6

7

8 CMA

9

10 INCA

1 1

12 DCRA

13

14 MEMREF

15

16

17 AND

18

19

20

21

22

23 LDSTO

24

25

26

27 LOAD

28

29

30 STO

31

PC- 0;

MAR - PC;

IR - M ((MAR)), PC - PC + 1;

IF 1, = 1 then go to MEMREF;

IF XC, = 1 then go to CMA;

IF XC, = 1 then go to INCA;

IF XC, = 1 then go to DCRA;

Go to HALT;

A - A;
Go to FETCH;

A - A + l ;

Go to FETCH;

A - A - 1;

Go to FETCH;

IF XC, = 1 then go to LDSTO;

These operations constitute the
fetch cycle.

Here we decode the
instructions.

Execute CMA instructions.

Execute INCA instruction.

Execute DCRA instruction.

Here we branch to the various
groups of the memory
reference instruction.

IF XC, = 1 then go to ADSUB;

IF XC, = 1 then go to JMPS;

MAR - PC;

BUFFER - M ((MAR)), PC - PC + 1;

MAR + BUFFER;

BUFFER - M ((MAR));

A - A A BUFFER;

Go to FETCH;

MAR - PC;

BUFFER +- M ((MAR)), PC - PC + 1;

MAR - BUFFER;

IF I, = 1 then go to STO;

BUFFER + M ((MAR));

A + BUFFER;

Go to FETCH;

M ((MAR)) +- A;

Go to FETCH;

Execute AND instruction.

FIGURE 7.57 Symbolic Microprogram that implements the instruction set of figure
7.54

Design of Computer Instruction Set and the CPU

- 0 -
Z - 1

C 2

13 3

xc2 4 MUX -
xc 1 .5
xco - 6
10 7

"CL - 8

A
Condition

select
field Interpretation ,I 4

0000 No branch
0001 Branchif 2 1
001 0 Branch if C = 1
001 1 Branch if 13 = 1

283

4
Load16

MPC Reset

6

Control memory
(52 x 33)

23

Condition Branch Control CMDB
select address functions

J 6 4 c
co c,,

32 ADSUB MAR-PC;

33

34 MAR - BUFFER ;

35 BUFFER 6 M ((MAR));

36 IF I, = 1 then go to SUB;

37 ADD A - A + BUFFER, Execute ADD instruction

38 Go to FETCH;

39 SUB A + A - BUFFER; Execute SUB instruction

40 Go to FETCH;

41 JMPS MAR - PC;

42

43

44 JOZ IF Z = 1 then go to LOADPC; Execute JZ instruction

BUFFER - M ((MAR)), PC + PC + 1 ;

IF I, = 1 then go to JOC;

IF I, = 1 then go to JOC;

45 P C - P C + l ;

46 Go to FETCH;

47 JOC IF C = 1 then go to LOADPC; Execute JC instruction

48 P C t P C + l ;

49 Go to FETCH;

50 LOADPC PC - M((MAR));

51 Go to FETCH;

52 HALT Go to HALT; Execute HALT instruction

FIGURE 7.57 Continued

284 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 7.59 A microprogram of size A x B

Upper integer of

Microprogram Nanoprogram

Nanoprogram
Control Memory

FIGURE 7.60 Nanomemory

O0 01

10

3 x 4 nanocontrol store

000
00 1
010
01 1
100
101
110

0100 El
FIGURE 7.61 7 x 4-bit single control memory

000
00 1
010
01 1
100
101
110

7 x 2-bit mici rocontrol store

FIGURE 7.62 Two-level store (nanomemory)
I t 9 4
I I+- 70 4

640 x 9

store
640 1 Microcontrol

FIGURE 7.63 68000 nanomemory

Design of Computer Instruction Set and the CPU

Example 7.1
If the following two instructions are to be added to the instruction set of Figure 7.54, write
a symbolic microprogram for the CPU of section 7.3 that describes the execution of each

285

instruction:

GENERAL FORMAT

(4 CLRA

(b) PRSA

OPERATION DESCRIPTION

A+O Clear register A

A+ 11 11 11 1 1 Set register A to all ones

Solution:
(a) CLRA: A+O

(b) PRSA: A t 0
A+A
go to FETCH

go to FETCH
; Use ALU’s zero output (C,,C,,C,,=OOO)
9

; Use ALU’s zero output (C,,C, ,C,,=OOO)
,

Nanomemory is another approach for reducing the size of the control memory.
This technique contains a two-level memory: control memory and nanomemory. At the
outset, are may feel that the two-level memory will increase the overall cost. In fact, it
reduces the cost of the system by minimizing the memory size.

The concept of nanomemory is derived from a combination of horizontal and
vertical instructions. However, this method provides trade-offs between them.

Motorola uses nanomemory to design the control units of their popular 16-bit and
32-bit microprocessors, including the 68000, 68020, 68030, and 68040. The nanomemory
method provides significant savings in memory when a group of micro-operations occur
several times in a microprogram. Consider the microprogram of Figure 7.59, which contains
A microinstructions B bits wide. The size of the control memory to store this microprogram
is AB bits. Assume that the microprogram has n (n < A) unique microinstructions. These n
microinstructions can be held in a separate memory called the “nanomemory” of size nB
bits. Each of these n instructions occurs once in the nanomemory. Each microinstruction
in the original microprogram is replaced with the address that specifies the location of the
nanomemory in which the original B-bit-wide microinstructions are held.

Because the nanomemory has n addresses, only the upper integer of log,n bits
is required to specify a nanomemory address. This is illustrated in Figure 7.60. The
operation of microprocessor employing a nanomemory can be explained as follows: The
microprocessor’s control unit reads an address from the microprogram. The content of this
address in the nanomemory is the desired control word. The bits in the control word are used
by the control unit to accomplish the desired operation. Note that a control unit employing
nanomemory (two-level memory) is slower than the one using a conventional control
memory (single memory). This is because the nanomemory requires two memory reads
(one for the control memory and the other for the nanomemory). For a single conventional
control memory, only one memory fetch is necessary. This reduction in control unit speed
is offset by the cost of the memory when the same microinstructions occur many times in
the microprogram.

Consider the 7 x 4-bit microprogram stored in the single control memory of Figure
7.61. This simplified example is chosen to illustrate the nanomemory concept even though
this is not a practical example. In this program, 3 out of 7 microinstructions are unique.

286 Fundamentals of Digital Logic and Microcomputer Design

Therefore, the size of the microcontrol store is 7 x 2 bits and the size of the nanomemory
is 3 x 4 bits. This is shown in Figure 7.62.

Memory requirements for the single control memory = 7 x 4 = 28 bits. Memory
requirements for nanomemory = (7 x 2 + 3 x 4) bits = 26 bits. Therefore, the saving
using nanomemory = 28 - 26 = 2 bits. For a simple example like this, 2 bits are saved.
The HMOS 68000 control unit nanomemory includes a 640 x 9-bit microcontrol store
and a 280 x 70-bit nanocontrol store as shown in Figure 7.63. In Figure 7.63, out of 640
microinstructions, 280 are unique. If the 68000 were implemented using a single control
memory, the requirements would have been 640 x 70 bits. Therefore,

Memory savings = (640 x 70) - (640 x 9 + 280 x 70) bits

= 19,440 bits
= 44,800 - 25,360

This is a tremendous memory savings for the 68000 control unit.

DUESTIONS AND PROBLEMS

7.1

7.2

7.3

7.4

7.5

7.6

It is desired to implement the following instructions using block code: ADD,
SUB, XOR, MOVE, HALT. Draw a block diagram.

The instruction length and the size of an address field are 9 bits and 3 bits
respectively. Is it possible to have

6 two-address instructions
15 one-address instructions
8 zero-address instructions

using expanding op-code technique? Justify your answer.

Using the instruction format of Problem 7.2, is it possible to have
7 two-address instructions
7 one-address instructions
8 zero-address instructions

using expanding opcode technique? Justify your answer.

Assume that it is desired to have 2 two-address, 7 one-address, and 25 zero-
address instructions in a computer instruction set. Using expanding op-code
technique with a 2-bit op-code and 3-bit address field, is it possible to accomplish
the above? If so, justify your answer and determine the instruction length.

Assume that using an instruction length of 9 bits and the address field size of 3
bits, 5 two-address and 10 one-address instructions have already been designed,
using expanding op-code technique. Is it possible to have at least 48 zero-address
instructions that can be added to the instruction set?

Design a combinational logic shifter with 4-bit input and 4-bit output as follows:

-
OE

1
0
0
0
0

7.7

7.8

7.9

7.10

7.1 1

7.12

7.13

Shift Count 4 - bit output

s, so
X X High Impedance output lines
0 0 No Shift
0 1 Right Shift once
1 0 Right Shift twice
1 1 Right Shift three times

where X means don’t care. Using multiplexers and tristate buffers, draw a logic
diagram.

Draw a logic diagram for a 4 x 4 barrel shifter.

Using a minimum number of full adders and multiplexers, design an incremented
decrementer circuit as follows: If S = 0, output y = x + 1 ; otherwise, y = x - 1.
Assume x and y are 4-bit signed numbers and the result is 4 bits wide.

Design a combinational circuit to compute the absolute value of an 8-bit twos
complement number. Use %bit binary adder and exclusive-OR gates. Draw a
logic circuit.

Using a 4-bit CLA as the building block, design an 8-bit adder.

Design:
(a)

(b)

(c)

a 16-bit adder whose worst-case add-time is 10A using a 4-bit CLA as a
building block.
the fastest 64-bit adder using a 4-bit CLA as the building block. Estimate
the worst-case add-time of your design.
a combinational circuit to compute the fimctionf(x) = (3/8) * x where x
is a 4-bit 2’s complement number.

Design an arithmetic logic unit to perform the following hnctions:

A minus B
A AND B
A O R B

Use multiplexers, binary adders, and gates as needed. Assume that A and B are
4-bit numbers. Draw a logic circuit.

Design a combinational circuit that will perform the following operations:

B
15

288

7.14

Fundamentals of Digital Logic and Microcomputer Design
--

Assume that A is a 4-bit number and B = u3 a, a , a,. Draw a logic diagram.

Design a 4-bit ALU to perform the following operations:

S F
0
1 0

Logical Left Shift A once

7.15

7.16

7.17

7.18

7.19

7.20

7.2 1

7.22

Assume that A is a 4-bit number. Draw a logic diagram using a binary adder,
multiplexers, and inverters as necessary.

Design a 4-bit arithmetic unit as follows:

S I F
A plus B

Assume that A and B are 4-bit numbers

Design an ALU to perform the following operations:

O B
XO

_ _ _ _
Assume that x and y are 4-bit numbers, and B= y3 y , y , y,. Draw a logic diagram.

Assume two 2’s complement signed numbers, M = 1 1 1 1 1 1 1 1 , and Q = 1 1 1 1 1 100,.
Perform the signed multiplication using the algorithm described in Section 7.2.2.

What is the purpose of the control unit in a microprocessor?

Draw a logic diagram to implement the following register transfers:
(a) If the content of the 8-bit register R is odd, then

x + x o y
else x+ x AND y

Assume x and y are 4 bits wide.
(b) If the number in the 8-bit register R is negative, then x + x - 1 else x -

x + 1. Assume x and y are 4 bits wide.

Discuss briefly the merits and demerits of single-bus, two-bus, and three-bus
architectures inside a control unit.

What is the basic difference between hardwired control, microprogramming, and
nanoprogramming? Name the technique used for designing the control units of
the Intel 8086, Motorola 68000, and PowerPC.

Using the following components: 4-bit general-purpose register, 4-bit
adderhubtractor, and tristate buffer, and assuming the inbus and outbus are

Design of Computer Instruction Set and the CPU 289

4 bits wide, design a control unit using hardwired control to perform the
following operations. You may use counters, decoders, and PLAs as required.

I

Clock R 4

4-bit General c
Purpose Register

~

7.23

7.24

7.25

4

D-

1

F 4 4

X
,L-4

Control
Input

t
Y

R C L D Clock

0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 0 0 0 .J
0 0 0 0 .J

Control
Input

1

0

Control
Input

1
0

Action
Clear
Load External d
Decrement by (
Logical Right Sl
No Change

F
I + r
I - r

Y

X
High

lmpedence

(a)

(b)

Outbus - 4 x A . Assume A is a 4-bit unsigned number and the result is
4 bits wide.
If the 4-bit number in register B is odd, outbus +- 0; otherwise outbus -
A + (B I 2). Assume A and B are unsigned 4 bit numbers. Also, assume
data is already loaded into B.
If the content of a 4-bit register Q = 0, perform R + M and then transfer
the 4-bit result to outbus. On the other hand, if the content of the 4-bit
register Q # 0, perform R - 0 and then transfer the 4-bit result to the
outbus. Assume M and R are 4 bits wide.

(c)

Repeat Problem 7.22 using microprogramming.

Discuss the basic differences between microprogramming and nano-
programming.

(a) A conventional microprogrammed control unit includes 1024 words by
85 bits. Each of 5 12 microinstructions are unique. Calculate the savings
if any by having a nanomemory. Calculate the sizes of microcontrol
memory and nanomemory.
Consider the following 14 x 6 microprogram using a conventional
control memory:

(b)

290

s1

1

Fundamentals of Digital Logic and Microcomputer Design

so Y,

0 1 4
0 0 0 Circuit

-
o x , so

1 1 1

0000
000 1
0010
001 1
0100
0101
01 10
0111
1000
1001
1010
101 1
1100
1101
1110

000001
00001 1
0000 10
00001 1
0000 1 0 B 000001

Implement this microprogram in a nanomemory. Justify the use of either a single-
control memory or a two-level memory for the program.

7.26 Discuss the basic differences between CISC and RISC.

7.27 Design and implement a combinational circuit that will work as follows:

Shift left A
A lus B lus 1

1 Shift left A + 1
Note that A and B are 4-bit operands

7.28 i) Design a combinational circuit that will satisfy the following
specification.

ii) Using the results of part i), design a 4-bit, 8-function arithmetic unit
ii) will function as described next:

A plus B
0 A plus

that

Design of Computer Instruction Set and the CPU

1
1
1

29 1

0 1 A plus B plus 1
1 0 A plus B plus 1
1 1 A

1 1 1 0 1 0 I A plus 1 I

0 l o 1 1
0 1 1 l o

A plus E
A plus B

7.29 Design a 4-bit, 8-function arithmetic unit that will meet the following
specifications:

1
1
1
1

s 2 I s 1 I so I F
0 l o l o I 2A

0 0 2Aplus 1
0 1 A plus B plus 1
1 0 A plus B plus 1
1 1 A

I o I 1 I 1 I ~ m i n u s 1 I

(b) Using another selection bit S1, modify the circuit of i) to include the
arithmetic and logic functions as follows:
- s1 - SO FUNCTION TO BE PERFORMED
0 0 F = A p l u s B
0 1 F - B
1 0 F = shift left (logical) A
1 1 F = A

(c) Design a 4-bit logic unit that will function as follows:

7.3 1 Design and implement a 6 x 6 array multiplier.

7.32 Design an unsigned 8 x 4 non-additive multiplier using additive-multiplier-
module whose block diagram representation is as follows:

292 Fundamentals of Digital Logic and Microcomputer Design

M Q

1
P - M.0- Y

Assume that M, Q, and Y are unsigned integers.

7.33 Using four 256 x 8 ROMS and 4-bit parallel adders, design a 8 x 8 unsigned,
nonadditive multiplier. Draw a logic diagram of your implementation.

7.34 Consider the registers and ALU shown in Figure P7.34:

C, -

Load 8

The intemretation of various control points are summarized as follows:

R minus S A + F
R and S
R EX-OR

FIGURE P7.34

Answer the following questions by writing suitable control word(s). Each control
word must be specified according to the following format: C, C , C2 C, Co
For example:

c4 c3 c2 c, co
1 0 0 0 1 ; A - A p l u s B

Design of Computer Instruction Set and the CPU 293

(a)

(b)

How will the A register be cleared? (Suggest at least two possible ways.)
DIRECT CLEAR input is not available.
Suggest a sequence of control words that exchanges the contents of A
and B registers (exchange means A .E- B and B -+ A).

7.35 Consider the following algorithm:
Declare registers A [8], B [8], C [8];
START: A - 0; B * 0000 10 10;
LOOP: A + A + B; B + B - 1;

If B < > 0 then go to LOOP
C c- A;

HALT: Go to HALT
Design a hardwired controller that will implement this algorithm.

7.36 It is desired to build an interface in order establish communication between a 32-
bit host computer and a front end 8-bit microcomputer (See Figure P7.36). The
operation of this system is described as follows:
Step 1: First the host processor puts a high signal on the line “want” (saying that

it needs a 32-bit data) for one clock period.
Step 2: The interface recognizes this by polling the want line.
Step 3: The interface unit puts a high signal on the line “fetch” for one clock

period (that is it instructs the microcomputer to fetch an 8-bit data).
Step 4: In response to this, the microcomputer samples the speech signal,

converts it into an 8-bit digital data and informs the interface that the
data is ready by placing a high signal on the “ready” line for one clock
period.

Step 5: The interface recognizes this (by polling the ready line), and it reads the
8-bit data into its internal register.

.Step 6: The interface unit repeats the steps 3 through 5 for three more times (so
that it acquires 32-bit data from the microcomputer).

Step 7: The interface informs the host computer that the latter can read the 32-bit
data by placing a high signal on the line “takeit” for one clock period.

Step 8: The interface unit maintains a valid 32-bit data on the 32-bit output bus
until the host processor says that it is done (the host puts a high signal on
the line “done” for one clock period). In this case, the interface proceeds
to step 1 and looks for a high on the “want” line.

(a)
(b)
(c)
(d)

Provide a Register Transfer Language description of the interface.
Design the processing section of the interface.
Draw a block diagram of the interface controller.
Draw a state diagram of the interface controller.

294

Speech Sample and hold

signat -* plus
lowpass titter

-*

Fundamentals of Digital Logic and Microcomputer Design

want
Micro- fetch Interface +-- 32-blt

-* computer t-

7.37 Solve Problem 7.35 using the microprogrammed approach.

7.38 Design a microprogrammed system to add numbers stored in the register pair AB
and CD. A, B, C, and D are 8-bit registers. The sum is to be saved in the register
pair AB. Assume that only an 8-bit adder is available.

7.39 The goal of this problem is to design a microprogrammed 3rd order FIR (Finite
impulse response) digital filter. In this system, there are 4 coefficients w,, w,,
w,, and w3. The output y , (at the kth clock period) is the discrete convolution
product of the inputs (x ~) and the filter coefficients. This is formally expressed as
follows:

y , = wg *x, + WI *xk-1 + w2* x,-2+ w,* Xk-3
In the above summation, x, represents the input at the kth clock period

while xk-, represents input at (k- i)th sample period. For all practical purposes, we
assume that our system is causal and so xi = 0 for i < 0. The processing hardware
is shown in Figure P7.39. This unit includes 8 eight-bit registers (to hold data and
coefficients), N D (Analog digital converter), MAC (multiplier accumulator), and
a D/A (Digital analog converter). The processing sequence is shown below:

1 Initialize coefficient registers
2
3
4

5
6
7

Clear all data registers except x,
Start N D conversion (first make sc = 1 and then retract it to 0)
Wait for one control state (To make sure that the conversion is
complete)
Read the digitized data into the register x,
Iteratively calculate filter output y, (use MAC for this)
Pass y , to D/A (Pass Accumulator’s output to D/A via Rounding
ROM)

8 Movethedatatoreflectthetimeshift(x,_,=x,_, , X ~ . ~ - X , - ~ -

9 G o t 0 3
(a) Specify the controller organization.
(b) Produce a well documented listing of the binary microprogram

Design of Computer Instruction Set and the CPU 295

sc
(slan mnverston)

AnalDg

(mnicient databus)

dm
(data move)

(dala dear)

Deader

i-' I I I I I l l I I

le
(baa enable)

I
I- - I I

I

I-
L - - - - - - - - - - - - - - -

filter

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Rounding

16

? MAC

FIGURE P7.39

7.40 Your task is to design a microprogrammed controller for a simple robot with 4
sensors (see Fig. A). The sensor output will go high only if there is a wall or an
obstruction within a certain distance. For example, if F= 1, there is an obstruction
or wall in the forward direction. In particular, your controller is supposed to
communicate with a motor controller unit shown in Fig. B. The flow chart that
describes the control algorithm is shown in Fig. C. The outputs such as MFTS,
MRT, MLT, MUT, and STP, andd the status signals such as FMC, and TC will be
high for one clock period. Assume that a power on reset causes the controller to
go the WAIT STATE 0.

296

F 1

R 1

L ,1 *
B 1

Fundamentals of Digital Logic and Microcomputer Design

1

1

I Make a U-Turn (MUT)

Make a Right Turn (MRT)

Make a Left Turn (MLT) -

Robot
1 Stop robot(STR)

1

F: forward direction sensor
R: right direction sensor
L: left direction sensor
B: backward direction sensor

Figure A

FIGURE P7.40a
(a) Specify the controller organization.

Stan

Clock

$ 4 4 4 4
Motor

controller
unit

Turn Completed (TC)

Fonvard Motion Completed (FMC)

Figure 0

FIGURE P7.40b
(b) Provide a well documented listing of the binary microprogram.

Design of Computer Instruction Set and the CPU 297

MFTS = 1 b
No

No
A MRT = 1

1r
MLT = 1

L
r

I’

STP = 1 9 Wait slate 6-

-7i Wait slate

+J$ = l ?

L .
r

Figure C

FIGURE P7.40~

7.41 It is desired to add the following instructions to the instruction set shown in
Figure 7.54.

(a) MVIA tdata8) A 6 (data% This is an immediate mode move
GENERAL FORMAT OPERATION DESCRIPTION

instruction.
The first byte contains the op-code
while the second byte contains the 8-
bit data.

(b) NEGA A + - A This instruction negates the contents
o f A

Write a symbolic microprogram that describes the execution of each instruction.

7.42 Explain how the effect of an unconditional branch instruction of the following
form is simulated:
JP taddri

298 Fundamentals of Digital Logic and Microcomputer Design

Use the instruction set shown in Figure 7.54.

7.43 Using the instruction set shown in Figure 7.54, write a program to add the contents
of the memory locations 64,, through 6D,, and save the result in the address
6%

7.44 Show that it is possible to specify 675 microoperations using a 10 bit control
function field.

7.45 A microprogram occupies 100 words and each word typically emits 70 control
signals. The architect claims that by using a 2’ x 70 nanomemory (for some i > 0),
it is possible to save 4260 bits. If this were true, determine the number of distinct
control states in the original microprogram (Note that here when we say a control
state we refer only to the control function field).
Hint: You may have to employ a trial and error approach to solve this problem.

MEMORY, I/O, AND
PARALLEL

PROCESSING
This chapter describes the basics of memory, input/output(I/O) techniques, and parallel
processing. Topics include memory array design, memory management concepts, cache
memory organization, input/output methods utilized by typical microprocessors, and
fundamentals of parallel processing.

8.1 Memorv Orpanization

8.1.1 Introduction
A memory unit is an integral part of any microcomputer system, and its primary purpose
is to hold instructions and data. The major design goal of a memory unit is to allow it to
operate at a speed close to that of the processor. However, the cost of a memory unit is
so prohibitive that it is practically not feasible to design a large memory unit with one
technology that guarantees a high speed. Therefore, in order to seek a trade-off between the
cost and operating speed, a memory system is usually designed with different technologies
such as solid state, magnetic, and optical.

In a broad sense, a microcomputer memory system can be divided into three
groups:

Processor memory
Primary or main memory
Secondary memory

Processor memory refers to a set of microprocessor registers. These registers are used to
hold temporary results when a computation is in progress. Also, there is no speed disparity
between these registers and the microprocessor because they are fabricated using the same
technology. However, the cost involved in this approach limits a microcomputer architect
to include only a few registers in the microprocessor. The design of typical registers is
described in Chapters 5, 6 and 7.

Main memory is the storage area in which all programs are executed. The
microprocessor can directly access only those items that are stored in main memory.
Therefore, all programs must be within the main memory prior to execution. CMOS
technology is normally used these days in main memory design. The size of the main
memory is usually much larger than processor memory and its operating speed is slower
than the processor registers. Main memory normally includes ROMs and RAMS. These are
described in Chapter 6.

299

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

300 Fundamentals of Digital Logic and Microcomputer Design

Electromechanical memory devices such as disks are extensively used as
microcomputer’s secondary memory and allow storage of large programs at a low cost.
These secondary memory devices access stored data serially. Hence, they are significantly
slower than the main memory. Popular secondary memories include hard disk and floppy
disk systems. Programs are stored on the disks in files. Note that the floppy disk is
removable whereas the hard disk is not. Secondary memory stores programs in excess
of the main memory. Secondary memory is also referred to as “auxiliary” or “virtual”
memory. The microcomputer cannot directly execute programs stored in the secondary
memory, so in order to execute these programs, the microcomputer must transfer them to
its main memory by a program called the “operating system.”

Programs in disk memories are stored in tracks. A track is a concentric ring of
programs stored on the surface of a disk. Each track is further subdivided into several
sectors. Each sector typically stores 512 or 1024 bytes of information. All secondary
memories use magnetic media except the optical memory, which stores programs on a
plastic disk. CD-ROM is an example of a popular optical memory used with microcomputer
systems. The CD-ROM is used to store large programs such as a C++ compiler. Other
state-of-the-art optical memories include CD-RAM, DVD-ROM and DVD-RAM. These
optical memories are discussed in Chapter 1.

In the past, one of the most commonly used disk memory with microcomputer
systems was the floppy disk. The floppy disk is a flat, round piece of plastic coated with
magnetically sensitive oxide material. The floppy disk is provided with a protective jacket
to prevent fingerprint or foreign matter from contaminating the disk’s surface. The 3%-
inch floppy disk was very popular because of its smaller size and because it didn’t bend
easily. All floppy disks are provided with an off-center index hole that allows the electronic
system reading the disk to find the start of a track and the first sector.

The storage capacity of a hard disk varied from 10 megabytes (MB) in 1981 to
hundreds of gigabytes (GB) these days. The 3 M-inch floppy disk, on the other hand, can
typically store 1.44 MB. Zip disks were an enhancement in removable disk technology
providing storage capacity of 100 MB to 750 MB in a single disk with access speed similar
to the hard disk. Zip disk does not use a laser. Rather, it uses a magnetic-coated Myler
inside, along with smaller read/write heads, and a rotational speed of 3000 rpm. The
smaller heads allow the Zip drive to store programs using 2,118 tracks per inch, compared
to 135 tracks per inch on a floppy disk. Floppy disks are being replaced these days by USB
(Universal Serial Bus) Flash memory. Note that USB is a standard connection for computer
peripherals such as CD burners. Also, flash memory gets its name because the technology
uses microchips that allow a section of memory cells called blocks to be erased in a single
action called a “flash”. USB flash memory offers much more storage capacity than floppy
disks, and can typically store 16 megabytes up to multiple gigabytes of information.

8.1.2 Main Memory Array Design
From the previous discussions, we notice that the main memory of a microcomputer is
fabricated using solid-state technology. In a typical microcomputer application, a designer
has to implement the required capacity by interconnecting several small memory chips.
This concept is known as the “memory array design.” In this section, we address this topic.
We also show how to interface a memory system with a typical microprocessor.

Now let us discuss how to design ROM/RAM arrays. In particular, our discussion
is focused on the design of memory arrays for a hypothetical microcomputer. The pertinent
signals of a typical microprocessor necessary for main memory interfacing are shown in

Memory, I/O, and Parallel Processing 301

Address
Bw

l6 - Bus

FIGURE 8.1
interfacing

Pertinent signals of a typical microprocessor required for main memory

FIGURE 8.2 A typical 1K x 8 RAM chip

Figure 8.1. In Figure 8.1, there are 16 address lines, A,* through &, with A, being the least
significant bit. This means that this microprocessor can directly address a maximum of 216
= 65,536 or 64K bytes of memory locations. The control line M / m goes to LOW if the
microprocessor executes an I/O instruction, and it is held HIGH if the processor executes
a memory instruction. Similarly, the control line W w goes to HIGH to indicate that the
operation is READ and it goes to LOW for WRITE operation. Note that all 16 address lines
and the two control lines described so far are unidirectional in nature; that is, information
can always travel on these lines from the processor to external units. Also, in Figure 8.1
eight bidirectional data lines D, through Do (with Do being the least significant bit) are
shown. These lines are used to allow data transfer from the processor to external units and
vice versa.

In a typical application, the total amount of main memory connected to a
microprocessor consists of a combination of both ROMs and RAMS. However, in the
following we will illustrate for simplicity how to design memory array using only the
RAM chips.

The pin diagram of a typical 1K x 8 RAM chip is shown in Figure 8.2. In this
RAM chip there are 10 address lines, A, through A,, so one can read or write 1024 (21°
= 1024) different memory words. Also, in this chip there are 8 bidirectional data lines
D, through Do so that information can travel back and forth between the microprocessor
and the memory unit. The three control lines m, CS2, and are used to control the
RAM unit according to the truth table shown in Figure 8.3. From this truth table it can
be concluded that the RAM unit is enabled only when m= 0 and CS2 = 1 . Under this
condition,

To connect a microprocessor to ROM/RAM chips, three address-decoding
techniques are usually used: linear decoding, full decoding, and memory decoding using

= 0 and W- = 1 imply write and read operations respectively.

3 02 Fundamentals of Digital Logic and Microcomputer Design

cs1 c s 2 w- I Function

Write Operation

Read Operation

The chip is not selected

X means Don’t Care
FIGURE 8.3

PLD. Let us first discuss how to interconnect a microprocessor with a 4K RAM chip array
comprised of the four 1K RAM chips of Figure 8.2 using the linear decoding technique.
Figure 8.4 uses the linear decoding to accomplish this.

In this approach, the address lines A, through A, of the microprocessor are
connected to all RAM chips. Similarly, the control lines M/mand W-ofthe microprocessor
are connected to the control lines CS2 and W- respectively of each RAM chip. The high-
order address bits A,, through A,, directly act as chip selects.

In particular, the address lines A,, and A , , select the RAM chips I and I1
respectively. Similarly, the address lines A,, and A,, select the RAM chips I11 and IV
respectively. A,, and A,, are don’t cares and are assumed to be 0. Figure 8.5 describes how

Truth table for controlling RAM

P
-

P
-

P
-

A,-A, Wl6- RIW

D - D
RAMchip 1’

FIGURE 8.4
technique

Microprocessor connected to 4K RAM using linear select decoding

Memory, I/O, and Parallel Processing 303

Address Range
in Hexadecimal

3800-3BFF

3400-37FF

2C00-2FFF

1 COO- 1 FFF

RAM Chip
Number

I

I1
I11

IV

FIGURE 8.5 Address map of the memory organization of Figure 8.4

the addresses are distributed among the four 1K RAM chips. This method is known as
“linear select decoding,” and its primary advantage is that it does not require any decoding
hardware. However, if two or more lines of A,, through A,, are low at the same time, more
than one RAM chip are selected, and this causes a bus conflict. Because of this potential
problem, the software must be written in such a way that it never reads into or writes
from any address in which more than one of the bits A,, through A,, are low. Another
disadvantage of this method is that it wastes a large amount of address space. For example,

A,, A,, A,,
0 0 0

0 0 1

0 1 0

0 1 1

~ ~~

Selected RAM Chip

RAM chip I

RAM chip I1

RAM chip I11

RAM chip IV

I A,, A,, A,, A,, A,, A,, M l i 6 R64

I

FIGURE 8.6
memory addressing

Interconnecting a microprocessor with a 4K RAM using full decoded

Address Range
in Hexadecimal

0000-03FF

0400-07FF

0800-OBFF

OCOO-OFFF
~ ~ ~~

FIGURE 8.7 Address map of the memory organization of Figure 8.6

RAM Chip
Number

I

I1

111

IV

Memory, I/O, and Parallel Processing

c
Logical
Address

305

Logical
Address

-
Physical
Address

Ph$cal

of both off-board disk (secondary memory) and on-board semiconductor main memory
must be designed into a system. This requires a mechanism to manage the two-way flow
of information between the primary (semiconductor) and secondary (disk) media. This
mechanism must be able to transfer blocks of data efficiently, keep track of block usage,
and replace them in a nonarbitrary way. The main memory system must, therefore, be able
to dynamically allocate memory space.

An operating system must have resource protection from corruption or abuse by
users. Users must be able to protect areas of code from each other while maintaining the
ability to communicate and share other areas of code. All these requirements indicate the
need for a device, located between the microprocessor and memory, to control accesses,
perform address mappings, and act as an interface between the logical (Programmer’s
memory) and the physical (Microprocessor’s directly addressable memory) address
spaces. Because this device must manage the memory use configuration, it is appropriately
called the “memory management unit (MMU).” Typical 32-bit processors such as the
Motorola 68030/68040 and the Intel 80486Pentium include on-chip MMUs. The MMU
reduces the burden of the memory management function of the operating system.

The basic functions provided by the MMU are address translation and protection.
The MMU translates logical program addresses to physical memory address. Note that
in assembly language programming, addresses are referred to by symbolic names. These
addresses in a program are called logical addresses because they indicate the logical
positions of instructions and data. The MMU translates these logical addresses to physical
addresses provided by the memory chips. The MMU can perform address translation in
one of two ways:

1.
2.

By using the substitution technique as shown in Figure 8.8(a)
By adding an offset to each logical address to obtain the corresponding physical
address as shown in Figure 8.8(b)
Address translation using the substitution technique is faster than the offset

method. However, the offset method has the advantage of mapping a logical address to any
physical address as determined by the offset value.

Memory is usually divided into small manageable units. The terms “page” and
“segment” are frequently used to describe these units. Paging divides the memory into
equal-sized pages; segmentation divides the memory into variable-sized segments. It is
relatively easier to implement the address translation table if the logical and main memory
spaces are divided into pages.

There are three ways to map logical addresses to physical addresses: paging,
I I

Logical
Address

OFFSET

I I 1 I

.
Physical
Address

FIGURE 8.8 (a) Address translation using the substitution technique;
(b) Address translation by the offset technique

3 06 Fundamentals of Digital Logic and Microcomputer Design

segmentation, and combined PagingJsegmentation. In a paged system, a user has access to a
larger address space than physical memory provides. The virtual memory system is managed
by both hardware and software. The hardware included in the memory management unit
handles address translation. The memory management software in the operating system
performs all functions including page replacement policies to provide efficient memory
utilization. The memory management software performs functions such as removal of the
desired page from main memory to accommodate a new page, transferring a new page
from secondary to main memory at the right instant of time, and placing the page at the
right location in memory.

If the main memory is full during transfer from secondary to main memory, it is
necessary to remove a page from main memory to accommodate the new page. Two popular
page replacement policies are first-in-first-out (FIFO) and least recently used (LRU). The
FIFO policy removes the page from main memory that has been resident in memory for
the longest amount of time. The FIFO replacement policy is easy to implement, but one of
its main disadvantages is that it is likely to replace heavily used pages. Note that heavily
used pages are resident in main memory for the longest amount of time. Sometimes this
replacement policy might be a poor choice. For example, in a time-shared system, several
users normally share a copy of the text editor in order to type and correct programs. The
FIFO policy on such a system might replace a heavily used editor page to make room for
a new page. This editor page might be recalled to main memory immediately. The FIFO,
in this case, would be a poor choice. The LRU policy, on the other hand, replaces the page
that has not been used for the longest amount of time.

In the segmentation method, the MMU utilizes the segment selector to obtain a
descriptor from a table in memory containing several descriptors. A descriptor contains
the physical base address for a segment, the segment’s privilege level, and some control
bits. When the MMU obtains a logical address from the microprocessor, it first determines
whether the segment is already in the physical memory. If it is, the MMU adds an offset
component to the segment base component of the address obtained from the segment
descriptor table to provide the physical address. The MMU then generates the physical
address on the address bus for selecting the memory. On the other hand, if the MMU
does not find the logical address in physical memory, it interrupts the microprocessor. The
microprocessor executes a service routine to bring the desired program from a secondary
memory such as disk to the physical memory. The MMU determines the physical address
using the segment offset and descriptor as described earlier and then generates the physical
address on the address bus for memory. A segment will usually consist of an integral
number of pages, each, say, 256 bytes long. With different-sized segments being swapped
in and out, areas of valuable primary memory can become unusable. Memory is unusable
for segmentation when it is sandwiched between already allocated segments and if it is not

FIGURE 8.9 Memory fragmentation (external)

Memoy, I/O, and Parallel Processing 3 07

large enough to hold the latest segment that needs to be loaded. This is called “external
fragmentation” and is handled by MMUs using special techniques. An example of external
fragmentation is given in Figure 8.9. The advantages of segmented memory management
are that few descriptors are required for large programs or data spaces and that internal
fragmentation (to be discussed later) is minimized. The disadvantages include external
fragmentation, the need for involved algorithms for placing data, possible restrictions on
the starting address, and the need for longer data swap times to support virtual memory.

Address translation using descriptor tables offers a protection feature. A segment
or a page can be protected from access by a program section of a lower privilege level. For
example, the selector component of each logical address includes one or two bits indicating
the privilege level of the program requesting access to a segment. Each segment descriptor
also includes one or two bits providing the privilege level of that segment. When an
executing program tries to access a segment, the MMU can compare the selector privilege
level with the descriptor privilege level. If the segment selector has the same or higher
privilege level, then the MMU permits the access. If the privilege level of the selector is
lower than that of the descriptor, the MMU can interrupt the microprocessor, informing
it of a privilege-level violation. Therefore, the indirect technique of generating a physical
address provides a mechanism of protecting critical program sections in the operating
system. Because paging divides the memory into equal-sized pages, it avoids the major
problem of segmentation-external fragmentation. Because the pages are of the same size,
when a new page is requested and an old one swapped out, the new one will always fit
into the vacated space. However, a problem common to both techniques remains-internal
fragmentation.

Internal fragmentation is a condition where memory is unused but allocated due
to memory block size implementation restrictions. This occurs when a module needs, say,
300 bytes and page is 1 K bytes, as shown in Figure 8.10

In the paged-segmentation method, each segment contains a number of pages. The
logical address is divided into three components: segment, page, and word. The segment
component defines a segment number, the page component defines the page within the
segment, and the word component provides the particular word within the page. A page
component of n bits can provide up to 2“ pages. A segment can be assigned with one or
more pages up to maximum of 2“ pages; therefore, a segment size depends on the number
of pages assigned to it.

A protection mechanism can be assigned to either a physical address or a logical
address. Physical memory protection can be accomplished by using one or more protection
bits with each block to define the access type permitted on the block. This means that

PAGES Z E 1 K
IF 300 BYTES NEEDED 1 K BYTES ARE ALLOCATED

MEMORY UNUSED BUT ALLOCATED BECAUSE OF
IMPLEMENTATION RESTRICTIONS ON BLOCK SIZES PAGE

ALLOCATED

FIGURE 8.10 Memory fragmentation (internal)

308 Fundamentals of Digital Logic and Microcomputer Design

each time a page is transferred from one block to another, the block protection bits must
be updated. A more efficient approach is to provide a protection feature in logical address
space by including protection bits in descriptors of the segment table in the MMU.
Virtual memory is the most fundamental concept implemented by a system that performs
memory-management functions such as space allocation, program relocation, code sharing
and protection.The key idea behind this concept is to allow a user program to address
more locations than those available in a physical memory. An address generated by a user
program is called a virtual address. The set of virtual addresses constitutes the virtual
address space. Similarly, the main memory of a computer contains a fixed number of
addressable locations and a set of these locations forms the physical address space. The
basic hardware for virtual memory is implemented in modem microprocessors as an on-
chip feature. These contemporary processors support both cache and virtual memories. The
virtual addresses are typically converted to physical addresses and then applied to cache.

In the early days, when a programmer used to write a large program that could
not fit into the main memory, it was necessary to divide the program into small portions so
each one could fit into the primary memory. These small portions are called overlays. A
programmer has to design overlays so that they are independent of each other. Under these
circumstances, one can successively bring each overlay into the main memory and execute
them in a sequence.

Although this idea appears to be simple, it increases the program-development
time considerably.
However, in a system that uses a virtual memory, the size of the virtual address space is
usually much larger than the available physical address space. In such a system, aprogrammer
does not have to worry about overlay design, and thus a program can be written assuming a
huge address space is available. In a virtual memory system, the programming effort can be
greatly simplified. However, in reality, the actual number of physical addresses available
is considerably less than the number of virtual addresses provided by the system. There
should be some mechanism for dividing a large program into small overlays automatically.
A virtual memory system is one that mechanizes the process of overlay generation by
performing a series of mapping operations.

A virtual memory system may be configured in one of the following ways:
Paging systems
Segmentation systems

In a paging system, the virtual address space is divided into equal-size blocks
called pages. Similarly, the physical memory is also divided into equal-size blocks called
frames. The size of a page is the same as the size of a frame. The size of a page may be 5 12,
1024 or 2048 words.

In a paging system, each virtual address may be regarded as an ordered pair (p,
n), where p is the page number and n is the word number within the page p. Sometimes the
quantity n is referred to as the displacement, or offset. A user program may be regarded as
a sequence of pages, and a complete copy of the program is always held in a backup store
such as a disk. A page p of the user program can be placed in any available page frame p’
of the main memory. A program may access a page if the page is in the main memory. In a
paging scheme, pages are brought from secondary memory and are stored in main memory
in a dynamic manner. All virtual addresses generated by a user program must be translated
into physical memory addresses. This process is known as dynamic address translation and
is shown in Figure 8.1 1.

When a running program accesses a virtual memory location v = (p, n), the

Memory, I/O, and Parallel Processing 309

V I M address
page number
displacement

Page
frame

numbers

} i*h

FIGURE 8.1 1 Paging Systems-Virtual versus Main Memory Mapping

mapping algorithm finds that the virtual page p is mapped to the physical frame p'. The
physical address is then determined by appending p' to n.

This dynamic address translator can be implemented using a page table. In most
systems, this table is maintained in the main memory. It will have one entry for each virtual
page of the virtual address space. This is illustrated in the following example.

Examde 8.1
Design a mapping scheme with the following specifications:

Virtual address space = 32K words
Main memory size = 8K words
Page size = 2K words
Secondary memory address = 24 bits

32K words can be divided into 16 virtual pages with 2K words per page, as
Solution

follows: .
VIRTUAL ADDRESS PAGE NUMBER

0-2047 0

2048-4095 1

4096-6 143 2

6144-819 1 3

8 192- 10239 4

10240- 12287 5

12288- 14335 6

14336-1 6383 7

16384- 1843 1 8

18432-20479 9

20480-22527 10

22528-24575 11

24576-26623 12

310 Fundamentals of Digital Logic and Microcomputer Design

26624-28671 13

28672-30719 14

30720-32767 15
Since there are 8K words in the main memory, 4 frames with 2K words per frame

are available:

PHYSICAL ADDRESS FRAME NUMBER

0-2047 0

2048-4095 1

4096-6 143 2

6 1 44-8 1 9 1 3

Since there are 32K addresses in the virtual space, 15 bits are required for the
virtual address. Because there are 16 virtual pages, the page map table contains 16 entries.
The 4 most-significant bits of the virtual address are used as an index to the page map
table, and the remaining 1 1 bits of the virtual address are used as the displacement to locate
a word within the page frame. Each entry of the page table is 32 bits long. This can be
obtained as follows:

1 bit for determining whether the page table is in main memory or not (residence

2 bits for main memory page frame number.
bit).

24 bits for secondary memory address
- 5 bits for future use. (Unused)
32 bits total

The complete layout of the page table is shown in Figure 8.12. Assume the virtual
address generated is 01 1 1 000 0010 1101. From this, compute the following:
Virtual page number = 7,,
Displacement = 43 ,o

From the page-map table entry corresponding to the address 01 1 1, the page can be
found in the main memory (since the page resident bit is 1).

The required virtual page is mapped to main memory page frame number 2.
Therefore, the actual physical word is the 43rd word in the second page frame of the main
memory.

So far, a page referenced by a program is assumed always to be found in the main
memory. In practice, this is not necessarily true. When a page needed by a program is not
assigned to the main memory, a page fault occuns. A page fault is indicated by an interrupt,
and when this interrupt occurs, control is transferred to a service routine of the operating
system called the page-fault handler. The sequence of activities performed by the page-
fault handler are summarized as follows:

The secondary memory address of the required page p is located from the page table.
Page p from the secondary memory is transferred into one of the available main
memory frames by performing a block-move operation.
The page table is updated by entering the frame number where page p is loaded and by
setting the residence bit to 1 and the change bit to 0.

When a page-fault handler completes its task, control is transferred to the user
program, and the main memory is accessed again for the required data or instruction. All

Memoiy, YO, and Parallel Processing 31 1

FIGURE 8.12 Mapping Scheme for the Paging System of Example 8.1

these activities are kept hidden from a user. Pages are transferred to main memory only
at specified times. The policy that governs this decision is known as the fetch policy.
Similarly, when a page is to be transferred from the secondary memory to main memory,
all frames may be full. In such a situation, one of the frames has to be removed from the
main memory to provide room for an incoming page. The frame to be removed is selected
using a replacement policy. The performance of a virtual memory system is dependent
upon the fetch and replacement strategies. These issues are discussed later.

The paging concept covered so far is viewed as a one-dimensional technique
because the virtual addresses generated by a program may linearly increase from 0 to some
maximum value M. There are many situations where it is desirable to haveamultidimensional
virtual address space. This is the key idea behind segmentation systems.

Each logical entity such as a stack, an array, or a subroutine has a separate virtual
address space in segmentation systems. Each virtual address space is called a segment, and
each segment can grow from zero to some maximum value. Since each segment refers to a
separate virtual address space, it can grow or shrink independently without affecting other
segments.

In a segmentation system, the details about segments are held in a table called
a segment table. Each entry in the segment table is called a segment descriptor, and it
typically includes the following information:

Segment base address b (starting address of the segment in the main
memory)
Segment length 1 (size of a segment)

3 12 Fundamentals of Digital Logic and Microcomputer Design

Segment table

Base address I Length I IF1 d Corn para lor

L = 1 anlywhen

2' = 1 implies
lenglh vlolaum

address
Physlcal

Main memory

I 0 B i . j
FIGURE 8.13 Address Translation in a Segmentation System. (Note that 2 = 2')

Segment presence bit
Protection bits

From the structure of a segment descriptor, it is possible to create two or more
segments whose sizes are different from one another. In a sense, a segmentation system
becomes a paging system if all segments are of equal length. Because ofthis similarity, there
is a close relationship between the paging and segmentation systems from the viewpoint of
address translation.

A virtual address, V, in a segmentation system is regarded as an ordered pair (s,
d), where s is the segment number and d is the displacement within segment s. The address
translator for a segmentation system can be implemented using a segment table, and its
organization is shown in Figure 8.13.

The details of the address translation process is briefly discussed next.
Let V be the virtual address generated by the user program. First, the segment

number field, s, of the virtual address V is used as an index to the segment table. The base
address and length of this segment are b, and l,, respectively. Then, the displacement d of
the virtual address V is compared with the length of the segment I , to make sure that the
required address lies within the segment. If d is less than or equal to l,, then the comparator
output Z will be high. When d 5 I,, the physical address is formed by adding b, and d. From
this physical address, data is retrieved and transferred to the CPU. However, when d > I,
, the required address lies out of the segment range, and thus an address out of range trap
will be generated. A trap is a nonmaskable interrupt with highest priority.

In a segmentation system, a segment needed by a program may not reside in main
memory. This situation is indicated by a bit called a valid bit. A valid bit serves the same
purpose as that of a page resident bit, and thus it is regarded as a component of the segment
descriptor. When the valid bit is reset to 0, it may be concluded that the required segment
is not in main memory.

Memory, YO, and Parallel Processing 313

This means that its secondary memory address must be included in the segment
descriptor. Recall that each segment represents a logical entity. This implies that we can
protect segments with different protection protocols based on the logical contents of the
segment. The following are the common protection protocols used in a segmentation
system:

Read only
Execute only
Read and execute only
Unlimited access
No access

protection codes and these codes have to be included in a segment descriptor.

address, one of the following traps may be generated:

Thus it follows that these protection protocols have to be encoded into some

In a segmented memory system, when a virtual address is translated into a physical

Segment fault trap is generated when the required segment is not in the main
memory.
Address violation trap occurs when d >I,.
Protection violation trap is generated when there is a protection violation. 9

In response, the operating system has to perform the following activities:
When a segment fault occurs, control will be transferred to the operating system.

First, it finds the secondary memory address of the required segment from its segment
descriptor.
Next, it transfers the required segment from the secondary to primary memory.
Finally, it updates the segment descriptor to indicate that the required segment is in the
main memory.

After performing the preceding activities, the operating system transfers control
to the user program and the data or instruction retrieval or write operation is repeated.

A comparison of the paging and segmentation systems is provided next. The
primary idea behind a paging system is to provide a huge virtual space to a programmer,
allowing a programmer to be relieved from performing tedious memory-management tasks
such as overlay design. The main goal of a segmentation system is to provide several
virtual address spaces, so the programmer can efficiently manage different logical entities
such as a program, data, or a stack.

The operation of a paging system can be kept hidden at the user level. However,
a programmer is aware of the existence of a segmented memory system.

To run a program in a paging system, only its current page is needed in the main
memory. Several programs can be held in the main memory and can be multiplexed. The
paging concept improves the performance of a multiprogramming system. In contrast, a
segmented memory system can be operated only if the entire program segment is held in
the main memory.

In a paging system, a programmer cannot efficiently handle typical data structures
such as stacks or symbol tables because their sizes vary in a dynamic fashion during
program execution. Typically, large pages for a symbol table or small pages for a stack
cannot be created. In a segmentation system, a programmer can treat these two structures
as two logical entities and define the two segments with different sizes.

The concept of segmentation encourages people to share programs efficiently.
For example, assume a copy of a matrix multiplication subroutine is held in the main
memory. Two or more users can use this routine if their segment tables contain copies of

3 14 Fundamentals of Digital Logic and Microcomputer Design

the segment descriptor corresponding to this routine. In a paging system, this task cannot
be accomplished efficiently because the system operation is hidden from the user. This
result also implies that in a segmentation system, the user can apply protection features to
each segment in any desired manner. However, a paging system does not provide such a
versatile protection feature.

Since page size is a fixed parameter in a paging system, a new page can always be
loaded in the space used by a page being swapped out. However, in a segmentation system
with uneven segment sizes, there is no guarantee that an incoming segment can fit into the
free space created by a segment being swapped out.

In a dynamic situation, several programs may request more space, whereas some
other programs may be in the process of releasing the spaces used by them. When this
happens in a segmented memory system, there is a possibility that uneven-sized free spaces
may be sparsely distributed in the physical address space. These free spaces are so irregular
in size that they cannot normally be used to satisfy any new request. This is called an
external fragmentation, and an operating system has to merge all free spaces to form a
single large useful segment by moving all active segments to one end of the memory. This
activity is known as memory compaction. This is a time-consuming operation and is a pure
overhead. Since pages are of equal size, no external fragmentation can occur in a paging
system.

In a segmented memory system, a programmer defines a segment, and all segments
are completely filled.

The page size is decided by the operating system, and the last page of a program
may not be filled completely when a program is stored in a sequence of pages. The space
not filled in the last page cannot be used for any other program. This difficulty is known as
internal fragmentation-a potential disadvantage of a paging system.

In summary, the paging concept simplifies the memory-management tasks to be
performed by an operating system and therefore, can be handled efficiently by an operating
system. The segmentation approach is desirable to programmers when both protection and

(Segment number) (Page #) (Displacement)

12 12 bits I

Segment table Paae table

I

)its I

I ' P h y s i c a i a d d r e s s 4

FIGURE 8.14 Address-translation Scheme for a Paged-segmentation System

Memory, YO, and Parallel Processing 315

sharing of logical entities among a group of programmers are required.
To take advantage of both paging and segmentation, some systems use a different

approach, in which these concepts are merged. In this technique, a segment is viewed as
a collection of pages. The number of pages per segment may vary. However, the number
of words per page still remains fixed. In this situation, a virtual address V is an ordered
triple (s, p, d), where s is the segment number and p and d are the page number and the
displacement within a page, respectively.

The following tables are used to translate a virtual address into a physical
address:

Page table: This table holds pointers to the physical frames.
Segment table: Each entry in the segment table contains the base address of
the page table that holds the details about the pages that belong to the given
segment.

The address-translation scheme of such a paged-segmentation system is shown
in Figure 8.14:
First, the segment number s of the virtual address is used as an index to the
segment table, which leads to the base address b, of the page table.
Then, the page number p of the virtual address is used as an index to the page
table, and the base address of the frame number p' (to which the page p is
mapped) can be found.
Finally, the physical memory address is computed by adding the displacement
d of the virtual address to the base address p' obtained before.

To illustrate this concept, the following numerical example is provided.

ExamDle 8.2
Assume the following values for the system of Figure 8.14:

Now, determine the value of the physical address using the following

Length of the virtual address field =32 bits
Length of the segment number field = I 2 bits
Length of the page number field = 8 bits
Length of the displacement field =12 bits

information:
Value of the virtual address field = 000FAOBA,,
Contents of the segment table address (OOO),, = OFF,,
Contents of the page table address (1F9,,) = AC,,

Solution
From the given virtual address, the segment table address is 000,, (three high-order
hexadecimal digits of the virtual address). It is given that the contents of this segment-able
address is OFF,,. Therefore, by adding the page number p (fourth and fifth hexadecimal
digits of the virtual address) with OFF,,, the base address of the page table can be determined
as:

OFF,, + FA,, = 1F9,,
Since the contents of the page table address 1F9,, is AC,,, the physical address can be
obtained by adding the displacement (low-order three hexadecimal digits of the virtual
address) with AC,, as follows:
ACOOO,, + OOOBA,, = ACOBA,,
In this addition, the displacement value OBA is sign-extended to obtain a 20-bit number
that can be directly added to the base value p'. The same final answer can be obtained if p'

316 Fundamentals of Digital Logic and Microcomputer Design

I
Frame number

FIGURE 8.15

and d are first concatenated. Thus, the value of the physical address is ACOBA,,.
The virtual space of some computers use both paging and segmentation, and it is called
a linear segmented virtual memory system. In this system, the main memory is accessed
three times to retrieve data (one for accessing the Dage table: one for accessing the segment

Address Translation Using a TLB

Y Y - . -
table; and one for accessing the data itself).
Accessing the main memory is a time-consuming operation. To speed up the retrieval
operation, a small associative memory (implemented as an on-chip hardware in modem
microprocessors) called the translation lookaside buffer (TLB) is used. The TLB stores the
translation information for the 8 or 16 most recent virtual addresses. The organization of a
address translation scheme that includes a TLB is shown in Figure 8.15.

In this scheme, assume the TLB is capable of holding the translation information
about the 8 most recent virtual addresses.

The pair (s, p) of the virtual address is known as a tag, and each entry in the TLB
is of the form: y

the frame p'

When a user program generates a virtual address, the (s, p) pair is associatively
compared with all tags held in the TLB for a match. If there is a match, the physical address
is formed by retrieving the base address of the frame p' from the TLB and concatenating
this with the displacement d. However, in the event of a TLB miss, the physical address
is generated after accessing the segment and page tables, and this information will also be
loaded in the TLB. This ensures that translation information pertaining to a future reference
is confined to the TLB. To illustrate the effectiveness of the TLB, the following numerical
example is provided.

ExamDle 8.3
The following measurements are obtained from a computer system that uses a linear
segmented memory system with a TLB:

Memory, I D , and Parallel Processing 317

Number of entries in the TLB = 16
Time taken to conduct an associative search in the TLB = 160 ns
Main memory access time = 1 p s

Determine the average access time assuming a TLB hit ratio of 0.75.
Solution
In the event of a TLB hit, the time needed to retrieve the data is:

tl = TLB search time + time for one memory access
= 160ns+ l p s
= 1.160ps

However, when a TLB miss occurs, the main memory is accessed three times to retrieve
the data. Therefore, the retrieval time t2 in this case is

t2 = TLB search time + 3 (time for one memory access)
= 1 6 0 n s + 3 p s
=3.160 p s

The average access time,
t,, = htl + (1 - h)t2

where h is the TLB hit ratio.
The average access time t,, = 0.75 (1.6) + 0.25 (3.160) psec
= 1.2 + 0.79 psec
= 1.99 psec
This example shows that the use of a small TLB significantly improves the

efficiency of the retrieval operation (by 33%). There are two main reasons for this
improvement. First, the TLB is designed using the associated memory. Second, the TLB
hit ratio may be attributed to the locality of reference. Simulation studies indicate that it
is possible to achieve a hit ratio in the range of 0.8 to 0.9 by having a TLB with 8 to 16
entries.

In a computer based on a linear segmented virtual memory system, the performance
parameters such as storage use are significantly influenced by the page size p. For instance,
when p is very large, excessive internal fragmentation will occur. If p is small, the size of the
page table becomes large. This results in poor use of valuable memory space. The selection
of the page size p is often a compromise. Different computer systems use different page
sizes. In the following, important memory-management strategies are described. There
are three major strategies associated with the management:

Fetch strategies
Placement strategies
Replacement strategies

All these strategies are governed by a set of policies conceived intuitively. Then
they are validated using rigorous mathematical methods or by conducting a series of
simulation experiments. A policy is implemented using some mechanism such as hardware,
software, or firmware.

Fetch strategies deal with when to move the next page to main memory. Recall
that when a page needed by a program is not in the main memory, a page fault occurs.
In the event of a page fault, the page-fault handler will read the required page from the
secondary memory and enter its new physical memory location in the page table, and the
instruction execution continues as though nothing has happened.

In a virtual memory system, it is possible to run a program without having any
page in the primary memory. In this case, when the first instruction is attempted, there is
a page fault. As a consequence, the required page is brought into the main memory, where

318 Fundamentals of Digital Logic and Microcomputer Design

the instruction execution process is repeated again. Similarly, the next instruction may
also cause a page fault. This situation is handled exactly in the same manner as described
before. This strategy is referred to as demand paging because a page is brought in only
when it is needed. This idea is useful in a multiprogramming environment because several
programs can be kept in the main memory and executed concurrently.

However, this concept does not give best results ifthe page fault occurs repeatedly.
For instance, after a page fault, the page-fault handler has to spend a considerable amount of
time to bring the required page from the secondary memory. Typically, in a demand paging
system, the effective access time t,, is the sum of the main memory access time t and p,
wherep is the time taken to service a page fault. Example 8.4 illustrates the concept.

Example 8.4
(a)

(b)

Solution
(a)

Assuming that the probability of a page fault occurring is p, derive an expression
for t,, in terms oft , p, and p.
Suppose that t = 500 ns and p = 30 ms, calculate the effective access time t,, if it
is given that on the average, one out of 200 references results in a page fault.

If a page fault does not occur, then the desired data can be accessed within a time
t. (From the hypothesis the probability for a page fault not to occur is 1 - p) . If the
page fault occurs, then p time units are required to access the data. The effective
access time is

Since it is given that one out of every 200 references generates a page fault, p =
11200. Using the result derived in part (a):

42” = (I - P) t + P p
(b)

t,, = [(1 - 0.005) x 0.5 + 0.005 x 30,0001 PS
= [0.995 x 0.5 + 1501 p s = [0.4975 + 1501 ps
= 150.4975 ps

These parameters have a significant impact on the performance of a time-sharing
system.

As an alternative approach, anticipatory fetching can be adapted. This conclusion
is based on the fact that in a short period of time addresses referenced by a program are

FIGURE 8.16 Stream of Page References

Total number
01 dislncl pages

8“ a picgram

L 7!c---:
FIGURE 8.17
Window Size m

Relationship between One Cardinality of the Working Set and the

Memory, I/O, and Parallel Processing 319

clustered around a particular region of the address space. This property is known as locality
of reference.
The working set of a program W(m, t) is defined as the set of m most recently needed pages
by the program at some instant of time t . The parameter m is called the window of the
working set. For example, consider the stream of references shown in Figure 8.16:

From this figure, determine that:
W(4,tJ = (293) W(4,tz) = {1,2,31 W(5,tJ = { 12,3941
In general, the cardinality of the set W(0, t) is zero, and the cardinality of the set W(m, t)
is equal to the total number of distinct pages in the program. Since m + 1 most-recent page
references include m most-recent page references:

In this equation, the symbol # is used to indicate the cardinality of the set W(m, t) . When
m is varied from 0 to 00, #W(m, t) increases exponentially. The relationship between m and
#W(m, t) is shown in Figure 8.17.

In practice, the working set of program varies slowly with respect to time.
Therefore, the working set of a program can be predicted ahead of time. For example, in
a multiprogramming system, when the execution of a suspended program is resumed, its
present working set can be reasonably estimated based on the value of its working set at
the time it was suspended. If this estimated working set is loaded, page faults are less likely
to occur. This anticipatory fetching further improves the system performance because the
working set of a program can be loaded while another program is being executed by the
CPU. However, the accuracy of a working set model depends on the value of m. Larger
values of m result in more-accurate predictions. Typical values of m lie in the range of
5000 to 10,000.

To keep track of the working set of a program, the operating system has to perform
time-consuming housekeeping operations. This activity is pure overhead, and thus the
system performance may be degraded.
Placement strategies are significant with segmentation systems, and they are concerned
with where to place an incoming program or data in the main memory. The following are
the three widely used placement strategies:

First-fit technique
Best-fit technique
Worst-fit technique

The first-fit technique places the program in the first available free block or hole
that is adequate to store it. The best-fit technique stores the program in the smallest free
hole of all the available holes able to store it. The worst-fit technique stores the program in
the largest free hole. The first-fit technique is easy to implement and does not have to scan
the entire space to place a program. The best-fit technique appears to be efficient because
it finds an optimal hole size. However, it has the following drawbacks:

#[W(m + 1, t)] c #[W(m, t)]

It is very difficult to implement.
It may have to scan the entire free space to find the smallest free hole that can hold the
incoming program. Therefore, it may be time-consuming.
It has the tendency continuously to divide the holes into smaller sizes. These smaller
holes may eventually become useless.

Worst-fit strategy is sometimes used when the design goal is to avoid creating
small holes. In general, the operating system maintains a list known as the available space
list (ASL) to indicate the free memory space. Typically, each entry in this list includes the
following information:

320

After each allocation or release, the operating system updates the ASL. In the
following example, the mechanics of the various placement strategies presented earlier are
explained.

ExamDle 8.5
The available space list of a computer memory system is specified as follows:

Fundamentals of Digital Logic and Microcomputer Design

Starting address of the free block
Size of the free block

STARTING BLOCK SIZE
ADDRESS (IN WORDS)

100 50

200 150

450 600

1,200 400
Determine the available space list after allocating the space for the stream of

requests consisting of the following block sizes:
25, 100, 250, 200, 100, 150
a) Use the first-fit method.
b) Use the best-fit method.
c) Use the worst-fit method.
Solution

a) First-fit method. Consider the first request with a block size of 25. Examination
of the block sizes of the available space list reveals that this request can be satisfied by
allocating from the first available block. The block size (50) is the first of the available
space list and is adequate to hold the request (25 blocks). Therefore, the first request with
25 blocks will be allocated from the available space list starting at address 100 with a block
size of 50. Request 1 will be allocated starting at an address of 100 ending at an address 100
+ 24 = 124 (25 locations including 100). Therefore, the first block of the available space list
will start at 125 with a block size of 25. The starting address and block size of each request
can be calculated similarly.

b) Best-fit method. Consider request 1. Examination of the available block size
reveals that this request can be satisfied by allocating from the first smallest available block
capable of holding it. Request 1 will be allocated starting at address 100 and ending at 124.
Therefore, the available space list will start at 125 with a block size of 25.

c) Worst-fit method. Consider request 1 . Examination of the available block sizes
reveals that this request can be satisfied by allocating from the third block (largest) starting
at 450. After this allocation the starting address of the available list will be 500 instead of
450 with a block size of 600 - 25 = 575. Various results for all the other requests are shown
in Figure 8.1 8.

In a multiprogramming system, programs of different sizes may reside in the
main memory. As these programs are completed, the allocated memory space becomes
free. It may happen that these unused free spaces, or holes, become available between two
allocated blocks, or partitions. Some of these holes may not be large enough to satisfy the
memory request of a program waiting to run. Thus valuable memory space may be wasted.
One way to get around this problem is to combine adjacent free holes to make the hole size
larger and usable by other jobs. This technique is known as coalescing of holes.

It is possible that the memory request made by a program may be larger than

Memory, I/O, and Parallel Processing

Worst
fit

321

1200 400 1200 400 1450 150

100 50 100 50 100 50

200 150 200 150 200 150

500 575 600 475 850 225

Request 1 Request 2 Request 3
(100) (250)

1200

First
fit

-

Best
fit

400 1200 400 1200 400

I 125 I 25 I 125 I 25 -I 125-r 25 ~

1400

I 200 I 150 I 300 I 50 I 300 I 50

200 1400 200 1550 50

I 200 I 150 I 300 I 50 I 300 I 50
I

I 450 I 600 I 450 I 600 I 450 I 600

Request 4

300 I 50 I 300 I 50 I 300 I 50 1
900 I 150 I 1000 I 50 I 1000 1 50 I

300 300 300
I

650 I 400 I 650 I 400 I 800 I 250 I

850 I 225 I 950 I 125 I 850 I 125 I

FIGURE 8.18 Memory Map after Allocating Space for All Requests Given Example
Using Different Placement Strategies

Hdw c 4
x x x x
x x x x

. .-.~“ c 4
x x x x
x x x x

FIGURE 8.19 Memory Status before Compaction

~~

x x x x
x x x x

FIGURE 8.20 Memory Status after Compaction

any free hole but smaller than the combined total of all available holes. If the free holes
are combined into one single hole, the request can be satisfied. This technique is known
as memory compaction. For example, the status of a computer memory before and after
memory compaction is shown in Figures 8.19 and 8.20, respectively.

Placement strategies such as first-fit and best-fit are usually implemented as
software procedures. These procedures are included in the operating system’s software.
The advent of high-level languages such as Pascal and C greatly simplify the programming
effort because they support abstract data objects such as pointers. The available space list
discussed in this section can easily be implemented using pointers.

The memory compaction task is performed by a special software routine of
the operating system called a garbage collector. Normally, an operating system runs the
garbage collector routine at regular intervals.

In a paged virtual memory system, when no frames are vacant, it is necessary

322 Fundamentals of Digital Logic and Microcomputer Design

Pagestream 2 3 2 4 6 2 5 6 1 4 6

Pointer to the Hit Hit
front element
of the queue Hit ratio = 211 1

FIGURE 8.21 Hit Ratio Computation for Example 8.6

to replace a current main memory page to provide room for a newly fetched page. The
page for replacement is selected using some replacement policy. An operating system
implements the chosen replacement policy. In general, a replacement policy is considered
efficient if it guarantees a high hit ratio. The hit ratio h is defined as the ratio of the number
of page references that did not cause a page fault to the total number of page references.

The simplest of all page replacement policies is the FIFO policy. This algorithm
selects the oldest page (or the page that amved first) in the main memory for replacement.
The hit ratio h for this algorithm can be analytically determined using some arbitrary stream
of page references as illustrated in the following example.

Examole 8.6
Consider the following stream of page requests.

Determine the hit ratio h for this stream using the FIFO replacement policy. Assume the
main memory can hold 3 page frames and initially all of them are vacant.
Solution
The hit ratio computation for this situation is illustrated in Figure 8.21.

From Figure 8.21, it can be seen that the first two page references cause page
faults. However, there is a hit with the third reference because the required page (page 2)
is already in the main memory. After the first four references, all main memory frames
are completely used. In the fifth reference, page 6 is required. Since this page is not in
the main memory, a page fault occurs. Therefore, page 6 is fetched from the secondary
memory. Since there are no vacant frames in the main memory, the oldest of the current
main memory pages is selected for replacement. Page 6 is loaded in this position. All other
data tabulated in this figure are obtained in the same manner. Since 9 out of 11 references
generate a page fault, the hit ratio is 2/11.

The primary advantage of the FIFO algorithm is its simplicity. This algorithm
can be implemented by using a FIFO queue. FIFO policy gives the best result when
page references are made in a strictly sequential order. However, this algorithm fails if
a program loop needs a variable introduced at the beginning. Another difficulty with the
FIFO algorithm is it may give anomalous results.
Intuitively, one may feel that an increase in the number of page frames will also
increase the hit ratio. However, with FIFO, it is possible that when the page frames are
increased, there is a drop in the hit ratio. Consider the following stream of requests:

1 ,2 ,3 ,4 ,5 , 1 ,2 ,5 , 1 ,2 ,3 ,4 , 5 , 6 , 5
Assume the main memory has 4 page frames; then using the FIFO policy there is a

hit ratio of 4/15. However, if the entire computation is repeated using 5 page frames, there

2 ,3 ,2 ,4 ,6 ,2 ,5 ,6 , 1,436

Memory, I/O, and Parallel Processing 323

Page reference 2 3 2 4 6 2 5 6 1 4 6

5 - + 5 - + 7 - + 1 - + 1
6 6 6 6 6

- - -

Pointer to the Hit Hit Hit Hit Hit
page to be
replaced Hit ratio = 5/11

FIGURE 8.22 Hit Ratio Computation for Example 8.7

is a hit ratio of 3/15. This computation is left as an exercise.
Another replacement algorithm of theoretical interest is the optimal replacement

policy. When there is a need to replace a page, choose that page which may not be needed
again for the longest period of time in the future.

The following numerical example explains this concept.

Example 8.7
Using the optimal replacement policy, calculate the hit ratio for the stream of page references
specified in Example 8.6. Assume the main memory has three frames and initially all of
them are vacant.
Solution
The hit ratio computation for this problem is shown in Figure 8.22.

From Figure 8.22, it can be seen that the first two page references generate page
faults. There is a hit with the sixth page reference, because the required page (page 2)
is found in the main memory. Consider the fifth page reference. In this case, page 6 is
required. Since this page is not in the main memory, it is fetched from the secondary
memory. Now, there are no vacant page frames. This means that one of the current pages
in the main memory has to be selected for replacement. Choose page 3 for replacement
because this page is not used for the longest period of time. Page 6 is loaded into this
position. Following the same procedure, other entries of this figure can be determined.
Since 6 out of 1 1 page references generate a page fault, the hit ratio is 511 1.

The decision made by the optimal replacement policy is optimal because it makes
a decision based on the future evolution. It has been proven that this technique does not
give any anomalous results when the number of page frames is increased. However, it is not
possible to implement this technique because it is impossible to predict the page references
well ahead of time. Despite this disadvantage, this procedure is used as a standard to
determine the efficiency of a new replacement algorithm. Since the optimal replacement
policy is practically unfeasible, some method that approximates the behavior of this policy
is desirable. One such approximation is the least recently used (LRU) policy.
According to the LRU policy, the page that is selected for replacement is that page that has
not been referenced for the longest period of time. Example 8.8 illustrates this.

Example 8.8
Solve Example 8.7 using the LRU policy.
Solution
The hit ratio computation for this problem is shown in Figure 8.23.

In the figure we again notice that the first two references generate a page fault,

324 Fundamentals of Digital Logic and Microcomputer Design

Page reference 2 3 2 4 6 2 5 6 1 4 6

page to be
replaced

Hd ratio = 4t11

FIGURE 8.23 Hit Ratio Computation for Example 8.9

whereas the third reference is a hit because the required page is already in the main memory.
Now, consider what happens when the fifth reference is made. This reference requires page
6, which is not in the memory.

Also, we need to replace one of the current pages in the main memory because
all frames are filled. According to the LRU policy, among pages 2, 3, and 4, page 3 is the
page that is least recently referenced. Thus we replace this page with page 6. Following
the same reasoning the other entries of Figure 8.23 can be determined. Note that 7 out of
1 1 references generate a page fault; therefore, the hit ratio is 4/11. From the results of the
example, we observe that the performance of the LRU policy is very close to that of the
optimal replacement policy. Also, the LRU obtains a better result than the FIFO because it
tries to retain the pages that are used recently.
Now, let us summarize some important features of the LRU algorithm.

In principle, the LRU algorithm is similar to the optimal replacement policy except
that it looks backward on the time axis. Note that the optimal replacement policy
works forward on the time axis.
If the request stream is first reversed and then the LRU policy is applied to it, the
result obtained is equivalent to the one that is obtained by the direct application of the
optimal replacement policy to the original request stream.
It has been proven that the LRU algorithm does not exhibit Belady’s anamoly. This is
because the LRU algorithm is a stack algorithm. A page-replacement algorithm is said
to be a stack algorithm if the following condition holds:

In the preceding relation the quantity Pt(i) refers to the set of pages in the main memory
whose total capacity is i frames at some time t. This relation is called the inclusion
property. One can easily demonstrate that FIFO replacement policy is not a stack
algorithm, This task is left as an exercise.
The LRU policy can be easily implemented using a stack. Typically, the page numbers
of the request stream are stored in this stack. Suppose that p is the page number being
referenced. If p is not in the stack, then p is pushed into the stack. However, if p is
in the stack, p is removed from the stack and placed on the top of the stack. The top
of the stack always holds the most recently referenced page number, and the bottom
of the stack always holds the least-recent page number. To see this clearly, consider
Figure 8.24, in which a stream of page references and the corresponding stack instants
are shown. The principal advantage of this approach is that there is no need to search
for the page to be replaced because it is always the bottom most element of the stack.
This approach can be implemented using either software or microcodes. However, this
method takes more time when a page number is moved from the middle of the stack.
Alternatively, the LRU policy can be implemented by adding an age register to each
entry of the page table and a virtual clock to the CPU. The virtual clock is organized
so that it is incremented after each memory reference. When a page is referenced, its

P,(i) C P,(i + 1)

Memory, I/O, and Parallel Processing 325

2 3 4 2 5

i
3 1

11 4 4

FIGURE 8.24 Implementation of the LRU Algorithm Using a Stack

age register is loaded with the contents of the virtual clock. The age register of a page
holds the time at which that page was most recently referenced. The least-recent page
is that page whose age register value is minimum. This approach requires an operating
system to perform time-consuming housekeeping operations. Thus the performance of
the system may be degraded.
To implement these methods, the computer system must provide adequate hardware
support. Incrementing the virtual clock using software takes more time. Thus the
operating speed ofthe entire system is reduced. The LRU policy can not be implemented
in systems that do not provide enough hardware support. To get around this problem,
some replacement policy is employed that will approximate the LRU policy.
The LRU policy can be approximated by adding an extra bit called an activity bit to
each entry of the page table. Initially all activity bits are cleared to 0. When a page is
referenced, its activity bit is set to 1. Thus this bit tells whether or not the page is used.
Any page whose activity bit is 0 may be a candidate for replacement. However, the
activity bit cannot determine how many times a page has been referenced.
More information can be obtained by adding a register to each page table entry. To
illustrate this concept, assume a 16-bit register has been added to each entry of the
page table. Assume that the operating system is allowed to shift the contents of all the
registers 1 bit to the right at regular intervals. With one right shift, the most-significant
bit position becomes vacant. If it is assumed that the activity bit is used to fill this
vacant position, some meaningful conclusions can be derived. For example, if the
content of a page register is OOOO,,, then it can be concluded that this page was not in
use during the last 16 time-interval periods. Similarly, a value FFFF,, for page register
indicates that the page should have been referenced at least once in the last 16 time-
interval periods. If the content of a page register is FFOO,, and the content of another
one is OOFO,,, the former was used more recently.
If the content of a page register is interpreted as an integer number, then the least-recent
page has a minimum page register value and can be replaced. If two page registers
hold the minimum value, then either of the pages can be evicted, or one of them can be
chosen on a FIFO basis.
The larger the size of the page register, the more time is spent by the operating
system in the update operations. When the size of the page register is 0, the history
of the system can only be obtained via the activity bits. If the proposed replacement
procedure is applied on the activity bits alone, the result is known as the second-
chance replacement policy.
Another bit called a dirty bit may be appended to each entry of the page table. This bit
is initially cleared to 0 and set to 1 when a page is modified.
This bit can be used in two different ways:

The idea of a dirty bit reduces the swapping overhead because when the dirty
bit of a page to be replaced is zero, there is no need to copy this page into the

326 Fundamentals of Digital Logic and Microcomputer Design

secondary memory, and it can be overwritten by an incoming page. A dirty
bit can be used in conjunction with any replacement algorithm.
A priority scheme can be set up for replacement using the values of the dirty
and activity bits, as described next.

PRIORITY ACTIVITY DIRTY MEANING

LEVEL BIT BIT

0 0 0 Neither used nor modified.

1 0 1 Not recently used but modified.

2 1 0 Used but not modified.

3 1 1 Used as well as dirty.
Using the priority levels just described, the following replacement policy can
be formulated: When it is necessary to replace a page, choose that page whose
priority level is minimum. In the event of a tie, select the victim on a FIFO basis.
In some systems, the LRU policy is approximated using the least frequently used

(LFU) and most frequently used (MFU) algorithms. A thorough discussion of these
procedures is beyond the scope of this book.
One of the major goals in a replacement policy is to minimize the page-fault rate. A
program is said to be in a thrashing state if it generates excessive numbers of page
faults. Replacement policy may not have a complete control on thrashing. For example,
suppose a program generates the following stream of page references:

1,2,3,4, 1,2,3,4, 1,2,3,4,. . .
If it runs on a system with three frames it will definitely enter into thrashing state

even if the optimal replacement policy is implemented.
There is a close relationship between the degree of multiprogramming and thrashing.
In general, the degree of multiprogramming is increased to improve the CPU use.
However, in this case more thrashing occurs. Therefore, to reduce thrashing, the degree
of multiprogramming is reduced. Now the CPU utilization drops. CPU utilization and
thrashing are conflicting performance issues.

8.1.4 Cache Memory Organization
The performance of a microcomputer system can be significantly improved by introducing
a small, expensive, but fast memory between the microprocessor and main memory.
This memory is called “cache memory” and this idea was first introduced in the IBM
360/85 computer. Later on, this concept was also implemented in minicomputers such
as the PDP-I 1/70. With the advent of VLSI technology, the cache memory technique is
gaining acceptance in the microprocessor world. Studies have shown that typical programs
spend most of their execution times in loops. This means that the addresses generated by
a microprocessor have a tendency to cluster around a small region in the main memory,
a phenomenon known as “locality of reference.” Typical 32-bit microprocessors can
execute the same instructions in a loop from the on-chip cache rather than reading them
repeatedly from the external main memory. Thus, the performance is greatly improved. For
example, an on-chip cache memory is implemented in Intel’s 32-bit microprocessor, the
80486/Pentium, and Motorola’s 32-bit microprocessor, the MC 68030/68040. The 80386
does not have an on-chip cache, but external cache memory can be interfaced to it.

The block diagram representation of a microprocessor system that employs a
cache memory is shown in Figure 8.25. Usually, a cache memory is very small in size and

Memory, I/O, and Parallel Processing 327

FIGURE 8.25
memory

Memory organization of a microprocessor system that employs a cache

+-
Hex Address = 12 bits

Address

F F F F F

256 x 16
Cache Memory
Address = 8 bits
Data = 16 bits

FIGURE 8.26 Addresses for main memory and cache memory

its access time is less than that of the main memory by a factor of 5 . Typically, the access
times of the cache and main memories are 100 and 500 ns, respectively. If a reference
is found in the cache, we call it a “cache hit,” and the information pertaining to the
microprocessor reference is transferred to the microprocessor from the cache. However,
if the reference is not found in the cache, we call it a “cache miss.” When there is a cache
miss, the main memory is accessed by the microprocessor and, the instructions andor data
are then transferred to the microprocessor from the main memory. At the same time, a
block containing the desired information needed by the microprocessor is transferred from
the main memory to cache. The block normally contains 4 to 16 words, and this block is
placed in the cache using the standard replacement policies such as FIFO or LRU. This
block transfer is done with a hope that all future references made by the microprocessor
will be confined to the fast cache.

The relationship between the cache and main memory blocks is established using
mapping techniques. Three widely used mapping techniques are Direct mapping, Fully
associative mapping, and Set-associative mapping. In order to explain these three mapping
techniques, the memory organization of Figure 8.26 will be used. The main memory is
capable of storing 4K words of 16 bits each. The cache memory, on the other hand, can store
256 words of 16 bits each. An identical copy of every word stored in cache exists in main

328 Fundamentals of Digital Logic and Microcomputer Design

memory. The microprocessor first accesses the cache. If there is a hit, the microprocessor
accepts the 16-bit word from the cache. In case of a miss, the microprocessor reads the
desired 16-bit word from the main memory and this 16-bit word is then written to the
cache. A cache memory may contain instructions only (Instruction cache) or data only
(Data cache) or both instructions and data (Unified cache).

Direct mapping uses a RAM for the cache. The microprocessor's 12-bit address
is divided into two fields, an index field and a tag field. Because the cache address is 8 bits
wide (28 = 256), the low-order 8 bits of the microprocessor's address form the index field,
and the remaining 4 bits constitute the tag field. This is illustrated in Figure 8.26.

In general, if the main memory address field is m bits wide and the cache memory
address is n bits wide, the index field will then require n bits and the tag field will be (rn
- n) bits wide. The n-bit address will access the cache. Each word in the cache will include
the data word and its associated tag. When the microprocessor generates an address for
main memory, the index field is used as the address to access the cache. The tag field of

010

247

445

Memory Address

00 1

002

100 2714

101 23B4

2F17

3245

OFAl

200

20 1

200

20 1

2FF -1
Main Memory

Index 0O:::l

01

02 A370

FF 1523

Cache Memory

FIGURE 8.27 Direct mapping numerical example

JT l 2

t"'---++L
FIGURE 8.28 Associative mapping, numerical example

Memory, I/O, and Parallel Processing 329

the main memory is compared with the tag field in the word read from cache. A hit occurs
if the tags match. This means that the desired data word is in cache. A miss occurs if there
is no match, and the required word is read from main memory. It is written in the cache
along with the tag. One of the main drawbacks of direct mapping is that numerous misses
may occur if two or more words with addresses having the same index but with different
tags are accessed several times. This situation should be avoided or can be minimized by
having such words far apart in the address lines. Let us now illustrate the concept of direct
mapping for a data cache by means of a numerical example of Figure 8.27. All numbers are
in hexadecimal.

The content of index address 00 of cache is tag = 0 and data = 013F. Suppose that
the microprocessor wants to access the memory address 100. The index address 00 is used
to access the cache. The memory address tag 1 is compared with the cache tag of 0. This
does not produce a match. Therefore, the main memory is accessed and the data 2714 is
transferred into the microprocessor. The cache word at index address 00 is then replaced
with a tag of 1 and data of 2714.

The fastest and the most expensive cache memory utilizes an associative memory.
This method is known as “fully associative mapping.” Each element in associative memory
contains a main memory address and its content (data). When the microprocessor generates
a main memory address, it is compared associatively (simultaneously) with all addresses
in the associative memory. If there is a match, the corresponding data word is read from
the associative cache memory and sent to the microprocessor. If a miss occurs, the main
memory is accessed and the address along with its corresponding data are written to the
associative cache memory. If the cache is full, certain policies such as FIFO are used as
replacement algorithms for the cache. The associative cache is expensive but provides
fast operation. The concept of an associative cache is illustrated by means of a numerical
example in Figure 8.28. Assume all numbers are in hexadecimal.

The associative memory stores both the memory address and its contents (data).
The figure shows four words stored in the associative cache. Each word in the cache is
the 12-bit address along with its 16-bit contents (data). When the microprocessor wants
to access memory, the 12-bit address is placed in an address register and the associative
cache memory is searched for a matching address. Suppose that the content of the
microprocessor address register is 445. Because there is a match, the microprocessor
reads the corresponding data OFAl into an internal data register.

Set-associative mapping is a combination of direct and associative mapping. Each
cache word stores two or more main memory words using the same index address. Each
main memory word consists of a tag and its data word. An index with two or more tags
and data words forms a set. When the microprocessor generates a memory request, the
index of the main memory address is used as the cache address. The tag field of the main
memory address is then compared associatively (simultaneously) with all tags stored under
the index. If a match occurs, the desired data word is read. If a match does not occur, the

Index Tag Data Data

01

FIGURE 8.29 Set-associative mapping, numerical example with set size of 2

330

data word, along with its tag, is read from main memory and also written into the cache.
The hit ratio improves as the set size increases because more words with the same

index but different tags can be stored in the cache. The concept of set-associative mapping
can be illustrated by the numerical example shown in figure 8.29. Assume that all numbers
are in hexadecimal.

Each cache word can store two or more memory words under the same index
address. Each data item is stored with its tag. The size of a set is defined by the number of
tag and data items in a cache word. A set size of two is used in this example. Each index
address contains two data words and their associated tags.Each tag includes 4 bits, and
each data word contains 16 bits. Therefore, the word length = 2 x (4 + 16) = 40 bits. An
index address of 8 bits can represent 256 words. Hence, the size of the cache memory is
256 x 40. It can store 5 12 main memory words because each cache word includes two data
words.

The hex numbers shown in Figure 8.29 are obtained from the main memory
contents shown in Figure 8.27. The words stored at addresses 000 and 200 of main memory
of figure 8.27 are stored in cache memory (shown in Figure 8.29) at index address 00.
Similarly, the words at addresses 101 and 201 are stored at index address 01. When the
microprocessor wants to access a memory word, the index value of the address is used
to access the cache. The tag field of the microprocessor address is then compared with
both tags in the cache associatively (simultaneously) for a cache hit. If there is a match,
appropriate data is read into the microprocessor. The hit ratio will improve as the set size
increases because more words with the same index but different tags can be stored in the
cache. However, this may increase the cost of comparison logic.

There are two ways of writing into cache: the write-back and write-through
methods. In the write-back method, whenever the microprocessor writes something into
a cache word, a “dirty” bit is assigned to the cache word. When a dirty word is to be
replaced with a new word, the dirty word is first copied into the main memory before it
is overwritten by the incoming new word. The advantage of this method is that it avoids
unnecessary writing into main memory.

In the write-through method, whenever the microprocessor alters a cache address,
the same alteration is made in the main memory copy of the altered cache address. This
policy can be easily implemented and also ensures that the contents of the main memory
are always valid. This feature is desirable in a multiprocesssor system, in which the main
memory is shared by several processors. However, this approach may lead to several
unnecessary writes to main memory.

One of the important aspects of cache memory organization is to devise a method
that ensures proper utilization of the cache. Usually, the tag directory contains an extra bit
for each entry, called a “valid” bit. When the power is turned on, the valid bit corresponding
to each cache block entry of the tag directory is reset to zero. This is done in order to
indicate that the cache block holds invalid data. When a block of data is first transferred
from the main memory to a cache block, the valid bit corresponding to this cache block is
set to 1. In this arrangement, whenever the valid bit is zero, it implies that a new incoming
block can overwrite the existing cache block. Thus, there is no need to copy the contents of
the cache block being replaced into the main memory.

The performance of a system that employs a cache can be formally analyzed as
follows: If tc, h, and r,,, specify the cache-access time, hit ratio, and the main memory
access time, respectively; then the average access time can be determined as shown in the
equation below:

Fundamentals of Digital Logic and Microcomputer Design

Memory, I/O, and Parallel Processing 33 1

t,,= ht,+(l -h)(t ,+t,)
The hit ratio h always lies in the closed interval 0 and 1, and it specifies the

relative number of successful references to the cache. In the above equation, when there is
a cache hit, the main memory will not be accessed; and in the event of a cache miss, both
main memory and cache will be accessed. Suppose the ratio of main memory access time
to cache access time is y, then an expression for the efficiency of a system that employs a
cache can be derived as follows:

Efficieny= E = 2
- t c -

ht, + (1 - h)(tc + t m)

- 1

- 1

-
h+(l -h) (l+?)

-
h + (l -h)(l + y)

1 - -
1 + y (1 - h)

Note that E is maximum when h = 1 (when all references are confined to the
cache). A hit ratio of 90% (h = 0.90) is not uncommon with many contemporary systems.

ExamDle 8.9
Calculate t,,, y, and E of a memory system whose parameters are as indicated:

t , = 160 ns
t,,, = 960 ns
h = 0.90

Solution
to,= h t , + (l - h)(t,+t,)

= 0.9 (1 60) + (0.1) (960 + 160)
= 144+ 112
= 256 ns

y = r = - - 160 -
t m 960

=0.625 1 -
1 +y(l - h) - 1 +6(0.1) E =

This result indicates that by employing a cache, efficiency is improved by 62.5%.
Assume the unit of mapping is a block; then the relationship between the main and cache
memory blocks can be established by using a specific mapping technique.

In hl ly associative mapping, a main memory block i can be mapped to any cache
block j, where 0 i M - 1 and 0 j N - 1 Note that the main memory has M blocks
and the cache is divided into N blocks. To determine which block of main memory is
stored into the cache, a tag is required for each block. Hence,

Tag (j) = address of the main memory block stored in the cache block j .
Suppose M = 2m and N = 2"; then m and n bits are required to specify the addresses of
a main and cache memory block, respectively. Also, block size = 2", where w bits are
required to specify a word in a block.
For Associative maminz : m bits of the main memory are used as a tag; and N tags are

332

needed since there are N cache blocks.
Main memory address = (Tag + w)bits.

For Direct mawing: High order (m-n) bits are used as a tag.
Main memory address = (Tag + n + w)bits

For Set-associative mawinp:
Tag field = (m - n + s) bits, where Blocks/set = 2.
Cache set number = (n - s) bits
Main memory address = (Tag size + cache set number + w) bits.

Fundamentals of Digital Logic and Microcomputer Design

Examde 8.10
The parameters of a computer memory system are specified as follows:

Determine the sizes of the tag field along with the main memory address using each of the
following methods:

Main memory size = 8K blocks
Cache memory size =5 12 blocks
Block size = 8 words

(a) Fully associative mapping
(b) Direct mapping
(c) Set associative mapping with 16 blockdset
Solution
With the given data, compute the following:

M = 8K = 8192 = 213, and thus m = 13.
N = 512 = 29, and thus n = 9.
Block size = 8 words = 2' words, and thus we require 3 bits to specify a word
within a block.

Using this information, we can determine the main and cache memory address formats as
shown next:

IQ Main memory address > I
I(16 bits ,I

I' Block number >I- Word 4
I(13 bits 3 bits ,I

I(Cache memory address >I
I* 12 .*I

I(Block number +k------ Word *I
I< 9 ;I: 3 4

(a) In this case, the size of the tag field is m = 13 = bits:
Size of the main memory address = Tag (bits) + Word (bits)

= 13 bits + 3 bits
= 16 bits

Memory, I/O, and Parallel Processing 333

(b) In this case, the size of the tag field is m - n = 13-9=4 bits:

Ii Main memory address fl
L 16 bits PI

1- Tag ------I- Cache block number -1- Word -1
1- 4 bits -----+I- 9 bits -1-3 bits -1

(c) s = 16 = 24, and thus s = 4. Therefore, the size of the tag field is m - n + s =13-9+4=8
bits:

IC Main memory address ,I
I4 16 bits > I
I

I+------ Tag -1- Cache set number \I Word --I
1-8 bits A 5 bits -1- 3 bits ------+I

Examde 8.11
The access time of a cache memory is 50 ns and that of the main memory is 500 ns. It is
estimated that 80% of the main memory requests are for read and the remaining are for
write. The hit ratio for read access only is 0.9 and a write-through policy is used.

(a) Determine the average access time considering only the read cycles.
(b) What is the average time if the write requests are also taken into

consideration
Solution
(a) to,, = ht, + (1 - h)(tc + t,)

= 0.9 x 50 + (0.1)(550)
= 45 + 55 ns
= 100ns

(b) fread/wr,re = (read request probability) x tavread + (1 - read request probability) x t,,
read request probability = 0.8
write requestprobability = 0.2

frrvread = t,, = 100 ns (result of part (a))
faywrite = 500 ns (because both the main and cache memories are updated at the

same time)
tread/wrrre = 0.8 x 100 + 0.2 x 500

= 80 + 100 ns
= 180 ns

The growth in 1C technology has allowed manufacturers to fabricate a cache on
the CPU chip. The on-chip cache of Motorola’s 32-bit microprocessor, the MC68020, is
discussed next.

The MC68020 on-chip cache is a direct mapped instruction cache. Only
instructions are cached; data items are not. This cache is a collection of 64 entries, where
each cache entry consists of a 26-bit tag field and 32-bit instruction data. The tag field

334

24-bt FC Valid
memqaddress 2 blt

1-0ut 01.64

Fundamentals of Digital Logic and Microcomputer Design

Instruction
data

3241 memory address

r J.
\

I

25 I' 25

FC2 FCl FCO A31 All A7 A2 A1 A0

I
-

1
- Replacement

t--t data

16,. I' 16

1 ~ O i n s t ~ ~ ~ i o n
execulion unit

Match if Vald bit

Hit

1 ~ O i n s t ~ ~ ~ i o n
execulion unit

FIGURE 8.30

includes the following components:

MC68020 On-chip Cache Organization

High-order 24 bits of the memory address.
The most-significant bit FC2 of the function code. In the MC68020 processor,
the 3-bit function code combination FC2 FC1 FCO is used to identify the status
of the processor and the address space (discussed in Chapter 10) of the bus
cycle. For example, FC2 = 1 means the processor operates in the supervisory
or privileged mode. Otherwise, it operates in the user mode. Similarly, when
FC 1 FCO = 0 1, the bus cycle is made to access data. When FC 1 FCO = 10, the
bus cycle is made to access code.
Valid bit.

A block diagram of the MC68020 on-chip cache is shown in Figure 8.30.
If an instruction fetch occurs when the cache is enabled, the cache is first checked

to determine if the word requested is in the cache. This is achieved by first using 6 bits of
the memory address (A7-A2) to select one of the 64 entries of the cache. Next, address bits
A3 1 -A8 and function bit FC2 are compared to the corresponding values of the selected
cache entry. If there is a match and the valid bit is set, a cache hit is occurs.

In this case, the address bit A1 is used to select the proper instruction word stored
in the cache and the cycle ends. If there is no match or the valid bit is cleared, and a
cache miss occurs. In this case, the instruction is fetched from external memory. This
new instruction is automatically written into the cache and the valid bit is set. Since the
processor always pre fetches instructions from the external memory in the form of long
words, both instruction data words of the cache will be updated regardless of which word
caused the miss.

Memory, YO, and Parallel Processing

1 -

I
I
I
I
I

335

2-cycle I 3-cycle
access I access

lnslruction System
Instructmn

unit
execution cache Systembus memory

I
I

FIGURE 8.31 MC68020 Instruction Cache.

The MC68020 on-chip instruction cache obtains a significant increase in
performance by reducing the number of fetches required to external memory. Typically,
this cache reduces the instruction execution time in two ways. First, it provides a two-
clock-cycle access time for an instruction that hits in the cache (see Figure 8.3 1); second, if
the access hits in the cache, it allows simultaneous instruction and data access to occur. Of
these two benefits, simultaneous access is more significant, since it allows 100% reduction
in the time required to access the instruction rather than the 33% reduction afforded by
going from three to two clocks.

Finally, microprocessors such as Intel Pentium I1 support two-levels of cache.
These are L1 (Level 1) and L2 (Level 2) cache memories. The L1 cache (Smaller in size)
is contained inside the processor chip while the L2 cache (Larger in size) is interfaced
external to the microprocessor. The L1 cache normally provides separate instruction and
data caches. The processor can directly access the L1 cache while the L2 cache normally
supplies instructions and data to the L1 cache. The L2 cache is usually accessed by the
microprocessor only if L1 misses occur. This two-level cache memory enhances the
performance of the microprocessor.

8.2 InDutIOutDut

One communicates with a microcomputer system via the I/O devices interfaced to it.
The user can enter programs and data using the keyboard on a terminal and execute the
programs to obtain results. Therefore, the I/O devices connected to a microcomputer system
provide an efficient means of communication between the microcomputer and the outside
world. These I/O devices are commonly called “peripherals” and include keyboards, CRT
displays, printers, and disks.

The characteristics of the I/O devices are normally different from those of the
microcomputer. For example, the speed of operation of the peripherals is usually slower
than that of the microcomputer, and the word length of the microcomputer may be different
from the data format of the peripheral devices. To make the characteristics of the I/O
devices compatible with those of the microcomputer, interface hardware circuitry between
the microcomputer and I/O devices is necessary. Interfaces provide all input and output
transfers between the microcomputer and peripherals by using an I/O bus. An I/O bus
carries three types of signals: device address, data, and command.

The microprocessor uses the I/O bus when it executes an I/O instruction. A typical
YO instruction has three fields. When the computer executes an I/O instruction, the control
unit decodes the op-code field and identifies it as an I/O instruction. The CPU then places
the device address and command from respective fields of the I/O instruction on the 110
bus. The interfaces for various devices connected to the I/O bus decode this address, and

336 Fundamentals of Digital Logic and Microcomputer Design

an appropriate interface is selected. The identified interface decodes the command lines
and determines the function to be performed. Typical functions include receiving data
from an input device into the microprocessor or sending data to an output device from the
microprocessor. In a typical microcomputer system, the user gets involved with two types
of I/O devices: physical I/O and virtual I/O. When the computer has no operating system,
the user must work directly with physical I/O devices and perform detailed I/O design.

There are three ways of transferring data between the microcomputer and physical
I/O device:

1. Programmed I/O
2. Interrupt I/O
3. Direct memory access (DMA)

The microcomputer executes a program to communicate with an external device
via a register called the “I/O port” for programmed I/O. An external device requests the
microcomputer to transfer data by activating a signal on the microcomputer’s interrupt
line during interrupt I/O. In response, the microcomputer executes a program called the
interrupt-service routine to carry out the function desired by the external device. Data
transfer between the microcomputer’s memory and an external device occurs without
microprocessor involvement with direct memory access.

In a microcomputer with an operating system, the user works with virtual I/O
devices. The user does not have to be familiar with the characteristics of the physical
I/O devices. Instead, the user performs data transfers between the microcomputer and the
physical I/O devices indirectly by calling the I/O routines provided by the operating system
using virtual I/O instructions.

Basically, an operating system serves as an interface between the user programs
and actual hardware. The operating system facilitates the creation of many logical or virtual
110 devices, and allows a user program to communicate directly with these logical devices.
For example, a user program may write its output to a virtual printer. In reality, a virtual
printer may refer to a block of disk space. When the user program terminates, the operating
system may assign one of the available physical printers to this virtual printer and monitor
the entire printing operation. This concept is known as “spooling” and improves the system
throughput by isolating the fast processor from direct contact with a slow printing device. A
user program is totally unaware of the logical-to-physical device-mapping process. There
is no need to modify a user program if a logical device is assigned to some other available
physical device. This approach offers greater flexibility over the conventional hardware-
oriented techniques associated with physical I/O.

8.2.1 Programmed IIO
A microcomputer communicates with an external device via one or more registers called
“110 ports” using programmed I/O. I/O ports are usually of two types. For one type, each
bit in the port can be individually configured as either input or output. For the other type, all
bits in the port can be set up as all parallel input or output bits. Each port can be configured
as an input or output port by another register called the “command” or “data-direction
register.” The port contains the actual input or output data. The data-direction register is an
output register and can be used to configure the bits in the port as inputs or outputs.

Each bit in the port can be set up as an input or output, normally by writing a 0 or
a 1 in the corresponding bit of the data-direction register. As an example, if an 8-bit data-
direction register contains 34H, then the corresponding port is defined as follows:

Memory, YO, and Parallel Processing

o

337

1 0 0 Data-direction

__

m] vopori

+ + + + + + + I .
In this example, because 34H (0011 0100) is sent as an output into the data-

direction register, bits 0, 1, 3, 6, and 7 of the port are set up as inputs, and bits 2, 4, and
5 of the port are defined as outputs. The microcomputer can then send output to external
devices, such as LEDs, connected to bits 2,4, and 5 through a proper interface. Similarly,
the microcomputer can input the status of external devices, such as switches, through bits
0, 1, 3, 6, and 7. To input data from the input switches, the microcomputer assumed here
inputs the complete byte, including the bits to which LEDs are connected. While receiving
input data from an I/O port, however, the microcomputer places a value, probably 0, at the
bits configured as outputs and the program must interpret them as “don’t cares.” At the
same time, the microcomputer’s outputs to bits configured as inputs are disabled.

For parallel I/O, there is only one data-direction register, usually known as the
“command register” for all ports. A particular bit in the command register configures all
bits in the port as either inputs or outputs. Consider two I/O ports in an I/O chip along with
one command register. Assume that a 0 or a 1 in a particular bit position defines all bits of
ports A or B as inputs or outputs. An example is depicted in the following:

Other control information
such as timer control signals -
7 2 1 0

0 1 Command register

Some I/O ports are called “handshake ports.” Data transfer occurs via these
ports through exchanging of control signals between the microcomputer and an external
device.

I/O ports are addressed using either standard I/O or memory-mapped I/O
techniques. The “standard I/O” (also called “isolated I/O” by Intel) uses an output pin such
as M/I% pin on the Intel 8086 microprocessor chip. The processor outputs a HIGH on
this pin to indicate to memory and the I/O chips that a memory operation is taking place.
A LOW output from the processor to this pin indicates an I/O operation. Execution of IN
or OUT instruction makes the M / n LOW, whereas memory-oriented instructions, such
as MOVE, drive the M / m to HIGH. In standard I/O, the processor uses the M / n pin to
distinguish between I/O and memory. For typical processors, an %bit address is commonly
used for each I/O port. With an %bit 110 port address, these processors are capable of
addressing 256 ports. In addition, some processors can also use 16-bit 110 ports. However,
in a typical application, four or five I/O ports may usually be required. Some of the address
bits of the microprocessor are normally decoded to obtain the I/O port addresses. With

338 Fundamentals of Digital Logic and Microcomputer Design

“memory-mapped VO”, the processor, on the other hand, does not differentiate between
I/O and memory, and therefore, does not use the M / m control pin. The processor uses a
portion of the memory addresses to represent I/O ports. The I/O ports are mapped as part of
the processor’s main memory addresses which may not physically exist, but are used by the
microprocessor’s memory-oriented instructions such as MOVE to generate the necessary
control signals to perform I/O. Motorola microprocessors do not have the control pin such
as M / E pin and use only “memory-mapped I/O’ while Intel microprocessors can use
both types.

When standard I/O is used, typical processors normally use 2-byte M or OUT
instruction as follows:

rN { 2-byte instruction for

the specified I10 port
into the processor’s register

port number inputting data from

OUT { 2-byte instruction for
port number outputting data from

the register into the
specified I10 port

With memory-mapped I/O, the processor normally uses instructions, namely,
MOVE, as follows:

MOVE where M= I instruction
M, reg Port address for inputting I/O data

mapped into memory into a register

MOVE where M= t instruction for outputting
reg, M Port address data from a register

mapped into memory into the specified port

There are typically two ways via which programmed I/O can be utilized. These
are unconditional I/O and conditional I/O. The processor can send data to an external

The processor
o*pLIs or inpm
data lo or from

FIGURE 8.32 Flowchart for conditional programmed I/O

b

(end of Busy conversion) 4

b
butput enable

1 Microcomputer 1 I A/D Converter I
FIGURE 8.34 Interfacing an A D converter to a microcomputer

D6 8-bit
D, tri-state
D, digital

output
ND tri-state converter 8-bit ! ;::]

D, . D, . Do

device at any time using unconditional I/O. The external device must always be ready for
data transfer. A typical example is when the processor outputs a 7-bit code through an
110 port to drive a seven-segment display connected to this port. In conditional I/O, the
processor outputs data to an external device via handshaking. This means that data transfer
occurs via exchanging of control signals between the processor and an external device.
The processor inputs the status of the external device to determine whether the device is
ready for data transfer. Data transfer takes place when the device is ready. The flow chart
in Figure 8.32 illustrates the concept of conditional programmed I/O.

The concept of conditional I/O will now be demonstrated by means of data transfer
between a processor and an analog-to-digital (A/D) converter. Consider, for example, the
A/D converter shown in Figure 8.33. This A/D converter transforms an analog voltage V,
into an %bit binary output at pins D,-Do. A pulse at the START conversion pin initiates
the conversion. This drives the BUSY signal LOW. The signal stays LOW during the
conversion process. The BUSY signal goes to HIGH as soon as the conversion ends.
Because the A/D converter’s output is tristated, a LOW on the OUTPUT ENABLE transfers
the converter’s outputs. A HIGH on the OUTPUT ENABLE drives the converter’s outputs
to a high impedance state.

The concept of conditional I/O can be demonstrated by interfacing the A/D
converter to a typical processor. Figure 8.34 shows such an interfacing example. The user
writes a program to carry out the conversion process. When this program is executed, the
processor sends a pulse to the START pin of the converter via bit 2 of port A. The processor
then checks the BUSY signal by inputting bit 1 of port A to determine if the conversion is
completed. If the BUSY signal is HIGH (indicating the end of conversion), the processor
sends a LOW to the OUTPUT ENABLE pin of the A/D converter. The processor then
inputs the converter’s Do-D, outputs via port B. If the conversion is not completed, the

340

processor waits in a loop checking for the BUSY signal to go to HIGH.

Fundamentals of Digital Logic and Microcomputer Design

8.2.2 Interrupt I/O
A disadvantage of conditional programmed I/O is that the microcomputer needs to check
the status bit (BUSY signal for the A/D converter) by waiting in a loop. This type of I/O
transfer is dependent on the speed of the external device. For a slow device, this waiting
may slow down the microcomputer’s capability of processing other data. The interrupt I/O
technique is efficient in this type of situation.

Interrupt I/O is a device-initiated I/O transfer. The external device is connected
to a pin called the “interrupt (INT) pin” on the processor chip. When the device needs an
I/O transfer with the microcomputer, it activates the interrupt pin of the processor chip.
The microcomputer usually completes the current instruction and saves the contents of the
current program counter and the status register in the stack.

The microcomputer then automatically loads an address into the program counter
to branch to a subroutine-like program called the “intempt-service routine.” This program
is written by the user. The external device wants the microcomputer to execute this
program to transfer data. The last instruction of the service routine is a RETURN, which
is typically similar in concept to the RETURN instruction used at the end of a subroutine.
The RETURN from interrupt instruction normally loads the program counter and the status
register with the information saved in the stack before going to the service routine . Then,
the microcomputer continues executing the main program. An example of interrupt I/O is
shown in Figure 8.35.

Assume the microcomputer is MC68000 based and executing the following
program:

ORG $ 2 0 0 0
M0VE.B #$81, DDRA ; configure bits 0 and I

M0VE.B #$OO, DDRB ; configure Port B as input
M0VE.B #$81, PORTA ; send start pulse to A/D

M0VE.B #$01, PORTA
CLR . W DO ; clear 16-bit register DO to 0

; of port A as outputs

; and H I G H to OUTPUT ENABLE

BEGIN M0VE.W D1, D2

The extensions .B and . W represent byte and word operations. Note that the symbols $ and
indicate hexadecimal number and immediate mode respectively. The preceding program
is arbitrarily written. The program logic can be explained using the MC68000 instruction
set. Ports DDRA and DDRB are assumed to be the data-direction registers for ports A
and B, respectively. The first four MOVE instructions configure bits 0 and 7 of port A as
outputs and port B as the input port, and then send a trailing START pulse (HIGH and then
LOW) to the A/D converter along with a HIGH to the OUTPUT ENABLE. This HIGH
OUTPUT ENABLE is required to disable the MD’s output. The microcomputer continues
with execution of the CLR . W DO instruction. Suppose that the BUSY signal becomes
HIGH, indicating the end of conversion during execution of the CLR . W DO instruction.
This drives the INT signal to HIGH, interrupting the microcomputer. The microcomputer
completes execution ofthe current instruction, CLR . W DO. It then saves the current contents
of the program counter (address BEGIN) and status register automatically and executes
a subroutine-like program called the service routine. This program is usually written by
the user. The microcomputer manufacturer normally specifies the starting address of the

Memory, I D , and Parallel Processing 341

service routine, or it may be provided by the user via external hardware. Assume this
address is $4000, where the user writes a service routine to input the AID converter’s
output as follows:

ORG $4000
M0VE.B #$OO, PORTA ; Activate OUTPUT ENABLE.
M0VE.B PORTB, D1 Input A/D
RTE Return and restore PC and SR.

In this service routine, the microcomputer inputs the A/D converter’s output.
The return instruction RTE, at the end of the service routine, pops address BEGIN and
the previous status register contents from the stack and loads the program counter and
status register with them. The microcomputer executes the MOVE. W D1, D2 instruction
at address BEGIN and continues with the main program. The basic characteristics of
interrupt I/O have been discussed so far. The main features of interrupt I/O provided with
a typical microcomputer are discussed next.

Interrupt Types
There are typically three types of interrupts: external interrupts, traps or internal interrupts,
and software interrupts. External interrupts are initiated through the microcomputer’s
interrupt pins by external devices such as A/D converters. External interrupts can hrther
be divided into two types: maskable and nonmaskable. Nonmaskable interrupt can not
be enabled or disabled by instructions while microprocessor’s instruction set contains
instructions to enable or disable maskable interrupt. For example, Intel 8086 can disable
or enable maskable interrupt by executing instructions such as CLI (Clear interrupt
flag in the Status register to 0) or STI (Set interrupt flag in the Status register to 1) . The
8086 recognizes the maskable interrupt after execution of the STI while ignores it upon
execution of the CLI. Note that the 8086 has an interrupt-flag bit in the Status register. The
nonmaskable interrupt has a higher priority than the maskable interrupt. If both maskable
and nonmaskable interrupts are activated at the same time, the processor will service the
nonmaskable interrupt first. The nonmaskable interrupt is typically used as a power failure
interrupt.‘ Processors normally use +5 V DC, which is transformed from 110 V AC. If the
power falls below 90 V AC, the DC voltage of +5 V cannot be maintained. However, it
will take a few milliseconds before the AC power drops below 90 V AC. In these few
milliseconds, the power-failure-sensing circuitry can interrupt the processor. The interrupt-
service routine can be written to store critical data in nonvolatile memory such as battery-
backed CMOS RAM, and the interrupted program can continue without any loss of data
when the power returns.

converter
Port B

Bit 0

FIGURE 8.35 Microcomputer A/D converter interface via interrupt 110

342 Fundamentals of Digital Logic and Microcomputer Design

Some processors such as the 8086 are provided with a maskable handshake
interrupt. This interrupt is usually implemented by using two pins - INTR and INTA.
When the INTR pin is activated by an external device, the processor completes the current
instruction, saves at least the current program counter onto the stack, and generates an
interrupt acknowledge (INTA). In response to the INTA, the external device provides an
8-bit number, using external hardware on the data bus of the microcomputer. This number
is then read and used by the microcomputer to branch to the desired service routine.

Internal interrupts, or traps, are activated internally by exceptional conditions
such as overflow, division by zero, or execution of an illegal op-code. Traps are handled
in the same way as external interrupts. The user writes a service routine to take corrective
measures and provide an indication to inform the user that an exceptional condition has
occurred. Many processors include software interrupts, or system calls. When one of these
instructions is executed, the processor is interrupted and serviced similarly to external or
internal interrupts. Software interrupt instructions are normally used to call the operating
system. These instructions are shorter than subroutine calls, and no calling program is
needed to know the operating system’s address in memory. Software interrupt
instructions allow the user to switch from user to supervisor mode. For some processors,
a software interrupt is the only way to call the operating system, because a subroutine call
to an address in the operating system is not allowed.

-

- -

Interrupt Address Vector
The technique used to find the starting address of the service routine (commonly known as
the interrupt address vector) varies from one processor to another. With some processors,
the manufacturers define the fixed starting address for each interrupt. Other manufacturers
use an indirect approach by defining fixed locations where the interrupt address vector is
stored.

Saving the Microprocessor Registers
When a processor is interrupted, it saves at least the program counter on the stack so that
the processor can return to the main program after executing the service routine. Typical
processors save one or two registers, such as the program counter and status register, before
going to the service routine. The user should know the specific registers the processor
saves prior to executing the service routine. This will allow the user to use the appropriate
return instruction at the end of the service routine to restore the original conditions upon
return to the main program.

Interrupt Priorities
A processor is typically provided with one or more interrupt pins on the chip. Therefore, a
special mechanism is necessary to handle interrupts from several devices that share one of
these interrupt lines. There are two ways of servicing multiple interrupts: polled and daisy
chain techniques.

i) Polled Interrupts
Polled interrupts are handled by software and are therefore are slower than daisy chaining.
The processor responds to an interrupt by executing one general-service routine for all
devices. The priorities of devices are determined by the order in which the routine polls
each device. The processor checks the status of each device in the general-service routine,
starting with the highest-priority device, to service an interrupt. Once the processor
determines the source of the interrupt, it branches to the service routine for the device.

Memory, I/O, and Parallel Processing

Processor PB ,
PA I

PBO

PA,

INT

343

1

4

4

7 1
Device Device Device

1 2 N

4 1 1
FIGURE 8.36 Polled interrupt

Start
(from processor)

AID converter

Output enable

Do- D,

From bit N
of port A

of the processor

___) To I ~ N
Op’

porl B

FIGURE 8.37

Figure 8.36 shows a typical configuration of the polled-interrupt system.
In Figure 8.36, several external devices (device 1, device 2, ..., device N) are

connected to a single interrupt line of the processor via an OR gate (not shown in the
figure). When one or more devices activate the INT line HIGH, the processor pushes the
program counter and possibly some other registers onto the stack. It then branches to an
address defined by the manufacturer of the processor. The user can write a program at this
address to poll each device, starting with the highest-priority device, to find the source of
the interrupt. Suppose the devices in Figure 8.36 are MD converters. Each converter, along
with the associated logic for polling, is shown in Figure 8.37.

Assume that in Figure 8.36 two AID converters (device 1 and device 2) are
provided with the START pulse by the processor at nearly the same time. Suppose the
user assigns device 2 the higher priority. The user then sets up this priority mechanism in
the general-service routine. For example, when the BUSY signals from device 1 andor 2
become HIGH, indicating the end of conversion, the processor is interrupted. In response,
the processor pushes at least the program counter onto the stack and loads the PC with the
interrupt address vector defined by the manufacturer.

The general interrupt-service routine written at this address determines the source
of the interrupt as follows: A 1 is sent to PA1 for device 2 because this device has higher
priority. Ifthis device has generated an interrupt, the output (PB 1) of the AND gate in Figure
8.37 becomes HIGH, indicating to the processor that device 2 generated the interrupt. If
the output of the AND gate is 0, the processor sends a HIGH to PA0 and checks the output

Device N and associated logic for polled interrupt

344 Fundamentals of Digital Logic and Microcomputer Design

INT

Processor -
INTA

DO- D 7

Device Device Device

. . . .

Hardware for
generating the
interrupt
address vector

FIGURE 8.38 Daisy chain interrupt

Analog signal I ",
Do- D,

AID converter

I When low. o r o v e d e s K
for the. next device

INTA from
processor

To INT line of the processor

When high, initiates external . hardware for providing the
interrupt address vector for
this device to the processor

FIGURE 8.39 Each device and the associated logic in a daisy chain

(PBO) for HIGH. Once the source of the interrupt is determined, the processor can be
programmed to jump to the service routine for that device. The service routine enables the
A/D converter and inputs the converter's outputs to the processor.

Polled interrupts are slow, and for a large number of devices, the time required
to poll each device may exceed the time to service the device. In such a case, a faster
mechanism, such as the daisy chain approach, can be used.

ii) Daisy Chain Interrupts
Devices are connected in a daisy chain fashion, as shown in Figure 8.38, to set

up priority systems. Suppose one or more devices interrupt the processor. In response, the
processor pushes at least the PC and generates an interrupt acknowledge (INTA) signal to
the highest-priority device (device 1 in this case). If this device has generated the interrupt,
it will accept the INTA; otherwise, it will pass the INTA onto the next device until the
INTA is accepted.

Once accepted, the device provides a means for the processor to find the intermpt-

Memory, I/O, and Parallel Processing 345

address vector by using external hardware. Assume the devices in Figure 8.38 are A/D
converters. Figure 8.39 provides a schematic for each device and the associated logic.

Suppose the processor in Figure 8.39 sends a pulse to start the conversions of
the A/D converters of devices 1 and 2 at nearly the same time. When the BUSY signal
goes to HIGH, the processor is interrupted through the INT line. The processor pushes
the program counter and possibly some other registers. It then generates a LOW at the
interrupt-acknowledge INTA for the highest-priority device (device 1 in Figure 8.38).
Device 1 has the highest priority-it is the first device in the daisy chain configuration
to receive m. If A/D converter 1 has generated the BUSY HIGH, the output of the
AND gate becomes HIGH. This signal can be used to enable external hardware to provide
the interrupt-address vector on the processor’s data lines. The processor then branches to
the service routine. This program enables the converter and inputs the A/D output to the
processor via Port B. If A/D converter #1 does not generate the BUSY HIGH, however, the
output of the AND gate in Figure 8.39 becomes LOW (an input to device 2’s logic) and the
same sequence of operations takes place. In the daisy chain, each device has the same logic
with the exception of the last device, which must accept the INTA. Note that the outputs of
all the devices are connected to the INT line via an OR gate (not shown in Figure 8.38)

8.2.3 Direct Memory Access @MA)
Direct memory access (DMA) is a technique that transfers data between a microcomputer’s
memory and an I/O device without involving the microprocessor. DMA is widely used in
transferring large blocks of data between a peripheral device such as a hard disk and the
microcomputer’s memory. The DMA technique uses a DMA controller chip for the data-
transfer operations. The DMA controller chip implements various components such as a
counter containing the length of data to be transferred in hardware in order to speed up data
transfer. The main functions of a typical DMA controller are summarized as follows:

The I/O devices request DMA operation via the DMA request line of the controller
chip.
The controller chip activates the microprocessor HOLD pin, requesting the
microprocessor to release the bus.
The processor sends HLDA (hold acknowledge) back to the DMA controller, indicating
that the bus is disabled. The DMA controller places the current value of its internal
registers, such as the address register and counter, on the system bus and sends a
DMA acknowledge to the peripheral device. The DMA controller completes the DMA
transfer.

There are three basic types of DMA: block transfer, cycle stealing, and interleaved
DMA. For block-transfer DMA, the DMA controller chip takes over the bus from the
microcomputer to transfer data between the microcomputer memory and I/O device. The
microprocessor has no access to the bus until the transfer is completed. During this time,
the microprocessor can perform internal operations that do not need the bus. This method
is popular with microprocessors. Using this technique, blocks of data can be transferred.

Data transfer between the microcomputer memory and an I/O device occurs on
a word-by-word basis with cycle stealing. Typically, the microprocessor is generated
by ANDing an INHIBIT signal with the system clock. The system clock has the same
frequency as the microprocessor clock. The DMA controller controls the INHIBIT line.
During normal operation, the INHIBIT line is HIGH, providing the microprocessor clock.
When DMA operation is desired, the controller makes the INHIBIT line LOW for one
clock cycle. The microprocessor is then stopped completely for one cycle. Data transfer

346 Fundamentals of Digital Logic and Microcomputer Design

between the memory and I/O takes place during this cycle. This method is called “cycle
stealing” because the DMA controller takes away or steals a cycle without microprocessor
recognition. Data transfer takes place over a period of time.

With interleaved DMA, the DMA controller chip takes over the system bus when
the microprocessor is not using it. For example, the microprocessor does not use the bus
while incrementing the program counter or performing an ALU operation. The DMA
controller chip identifies these cycles and allows transfer of data between the memory and
I/O device. Data transfer takes place over a period of time for this method.

Because block-transfer DMA is common with microprocessors, a detailed
description is provided. Figure 8.40 shows a typical diagram of the block-transfer
DMA. In the figure, the I/O device requests the DMA transfer via the DMA request line
connected to the controller chip. The DMA controller chip then sends a HOLD signal to
the microprocessor, and it then waits for the HOLD acknowledge (HLDA) signal from the
microprocessor. On receipt of the HLDA, the controller chip sends a DMA ACK signal
to the I/O device. The controller takes over the bus and controls data transfer between
the RAM and 110 device. On completion of the data transfer, the controller interrupts the
microprocessor by the INT line and returns the bus to the microprocessor by disabling the
HOLD and DMA ACK signals.

The DMA controller chip usually has at least three registers normally selected
by the controller’s register select (RS) line: an address register, a terminal count register,
and a status register. Both the address and terminal counter registers are initialized by
the microprocessor. The address register contains the starting address of the data to be
transferred, and the terminal counter register contains the desired block to be transferred.
The status register contains information such as completion of DMA transfer. Note that the

Decoding
logic

7-
Address cs

Data
lines

Controller

Address
lims HOLD

110
device

Data
lines

FIGURE 8.40 Typical block transfer

Memory, UO, and Parallel Processing 347

I
I

Programmed VO Interrupt VO Direct Memory Access
(DMA)

Cycle Stealing
Standard VO M ~ ~ ~ ~ -

Isolated VO
or Mapped VO Interleaved

or
Port VO

External Internal

Maskable Non-maskable Due to Software
(can be (cannot be enabled or exceptional such as
enabled disabled by conditions TRAP .. -. ._

such as instructions or disabled instructions

by instructions) overflow

FIGURE 8.41

DMA controller implements logic associated with data transfer in hardware to speed up the
DMA operation.

I/Ostructure of a typical microcomputer

8.3 Summarv of 1 / 0

Figure 8.4 1 summarizes various I/O devices associated with a typical microprocessor.

8.4 Fundamentals of Parallel Processing

The term “parallel processing” means improving the performance of a computer system
by carrying out several tasks simultaneously. A high volume of computation is often
required in many application areas, including real-time signal processing. A conventional
single computer contains three functional elements: CPU, memory, and I/O. In such a
uniprocessor system, a reasonable degree of parallelism was achieved in the following
manner:

1. The IBM 3704 68 and CDC 6600 computers included a dedicated I/O processor.
This additional unit was capable of performing all I/O operations by employing the DMA
technique discussed earlier. In these systems, parallelism was achieved by keeping the CPU
and I/O processor busy as much as possible with program execution and I/O operations
respectively.

2. In the CDC 6600 CPU, there were 24 registers and 10 execution units. Each
execution unit was designed for a specific operation such as addition, multiplication, and
shifting. Since all units were independent of each other, several operations were performed
simultaneously.

3. In many uniprocessor systems such as IBM 360, parallelism was achieved
by using high-speed hardware elements such as carry-look-ahead adders and carry-save
adders.

4. In several conventional computers, parallelism is incorporated at the instruction-
execution level. Recall that an instruction cycle typically includes activities such as op
code fetch, instruction decode, operand fetch, operand execution, and result saving. All
these operations can be carried out by overlapping the instruction fetch phase with the

348 Fundamentals of Digital Logic and Microcomputer Design

Single-instruction stream-multiple-data stream
Multiple-instruction stream-single-data stream
Multide-instruction stream-multide-data stream

instruction execution phase. This is known as instruction pipelining. This pipelining
concept is implemented in the state-of-the-art microprocessors such as Intel’s Pentium
series.

5. In many uniprocessor systems, high throughput is achieved by employing
high speed memories such as cache and associative memories. The use of virtual memory
concepts such as paging and segmentation also allows one to achieve high processing rates
because they reduce speed imbalance between a fast CPU and a slow periphal device such
as a hard disk. These concepts are also implemented in today’s microprocessors to achieve
high performance.

6. It is a common practice to achieve parallelism by employing software methods
such as multiprogramming and time sharing in uniprocessors. In both techniques, the CPU
is multiplexed among several jobs. This results in concurrent processing, which improves
the overall system throughput.

SIMD
MISD
MIMD

8.4.1
Over the last two decades, parallel processing has drawn the attention of many research
workers, and several high-speed architectures have been proposed. To present these results
in a concise manner, different architectures must be classified in well defined groups.
All computers may be categorized into different groups using one of three classification
methods:

General Classifications of Computer Architectures

1. Flynn
2 . Feng
3. Handler
The two principal elements of a computer are the processor and the memory. A

processor manipulates data stored in the memory as dictated by the instruction. Instructions
are stored in the memory unit and always flow from memory to processor. Data movement

I) CS$<,, ; \

\y y I
1

Inwudioils 1 1, i I Data

NCillQry

FIGURE 8.42 Processor-Memory Interaction

I NAME OF THE ARCHITECTURE NAME OF THE I ARCHITECTURE IN
ABBREVIATED FORM

Single-instruction stream-single-data stream 1 SISD

FIGURE 8.43 Classification of Computers Using Flynn’s Method

Memory, NO, and Parallel Processing 349

is bidirectional, meaning data may be read from or written into the memory. Figure 8.42
shows the processor-memory interaction.

The number of instructions read and data items manipulated simultaneously by
the processor form the basis for Flynn’s classification. Figure 8.43 shows the four types
of computer architectures that are defined using Flynn’s method. The SISD computers
are capable of manipulating a single data item by executing one instruction at a time. The
SISD classification covers the conventional uniprocessor systems such as the VAX- 1 1,
IBM 370, Intel 8085, and Motorola 6809. The processor unit of a SISD machine may
have one or many functional units. For example, the VAX-l1/780 is a SISD machine with
a single functional unit. CDC 6600 and IBM 370/168 computers are typical examples of
SISD systems with multiple functional units. In a SISD machine, instructions are executed
in a strictly sequential fashion. The SIMD system allows a single instruction to manipulate
several data elements. These machines are also called vector machines or array processors.
Examples of this type of computer are the ILLIAC-IV and Burroughs Scientific Processor
(BSP).

The ILLIAC-IV was an experimental parallel computer proposed by the University
of Illinois and built by the Burroughs Corporation. In this system, there are 64 processing
elements. Each processing element has its own small local memory unit. The operation of
all the processing elements is under the control of a central control unit (CCU). Typically,
the CCU reads an instruction from the common memory and broadcasts the same to all
processing units so the processing units can all operate on their own data at the same
time. This configuration is very useful for carrying out a high volume of computations
that are encountered in application areas such as finite-element analysis, logic simulation,
and spectral analysis. Modern microprocessors such as Intel Pentium I1 use the SIMD
architecture.

By definition, MISD refers to a computer in which several instructions manipulate
the same data stream concurrently. The notion of pipelining is very close to the MISD
definition.

A set of instructions constitute a program, and a program operates on several data
elements. MIMD organization refers to a computer that is capable of processing several
programs simultaneously. MIMD systems include all multiprocessing systems. Based on
the degree of processor interaction, multiprocessor systems may be further divided into two
groups: loosely coupled and tightly coupled. A tightly coupled system has high interaction
between processors. Multiprocessor systems with low interprocessor communications are
referred to as loosely coupled systems.

In Feng’s approach, computers are classified according to the number of bits
processed within a unit time. However, Handler’s classification scheme categorizes
computers on the basis of the amount of parallelism found at the following levels:

CPU
ALU
Bit

A thorough discussion of these schemes is beyond the scope of this book. Since
contemporary microprocessors such as Intel Pentium I1 use SlMD architechture, a basic
coverage of SIMD is provided next. The SIMD computers are also called array processors.
A synchronous array processor may be defined as a computer in which a set of identical
processing elements act under the control of a master controller (MC). A command given
by the MC is simultaneously executed by all processing elements, and a SIMD system is
formed. Since all processors execute the same instruction, this organization offers a great

350

7

MCM

MCU

4

Fundamentals of Digital Logic and Microcomputer Design

Control
information

Control
information

Processor
array

r-------i

' I
p, I

1 PM, I
I i I
I I

I

I t

FIGURE 8.44 A Typical Array Processor Organization

FIGURE 8.45 A Four-segment Pipeline

attraction for vector processing applications such as matrix manipulation.
A conceptual organization of a typical array processor is shown in Figure 8.44.

The Master Controller (MC) controls the operation of the processor array. This array
consists of N identical processing elements (Po through P,.]). Each processing element Pi is
assumed to have its own memory, PM', to store its data. The MC of Figure 8.44 contains
two major components:

The MCU is the CPU of the master controller and includes an ALU and a set of
registers. The purpose of the MCM is to hold the instructions and common data.
Each instruction of a program is executed under the supervision of the MCU in a sequential
fashion. The MCU fetches the next instruction, and the execution of this instruction will
take place in one of the following ways:

The master control unit (MCU)
The master control memory (MCM)

Memoly, I/O, and Parallel Processing 351

If the instruction fetched is a scalar or a branch instruction, it is executed by
the MC itself.
If the instruction fetched is a vector instruction, such as vector add or vector
multiply, then the MCU broadcasts the same instruction to each Pi, of the
processor array, allowing all P,’s to execute this instruction simultaneously.

Assume the required data is already within the processing element’s private
memory. Before execution of a vector instruction, the system ensures that appropriate data
values are routed to each processing element’s private memory. Such an operation can be
performed in two ways:

All data values can be transferred to the private memories from an external
source via the system data bus.
The MCU can transfer the data values to the private memories via the control
bus.

In an array processor like the one shown in Figure 8.44, it may be necessary
to disable some processing elements during a vector operation. This is accomplished
by including a mask register, M, in the MCU. The mask register contains a bit, mi, for
each processing element, pi. A particular processing element, pi, will respond to a vector
instruction broadcast by the MCU only when its mask bit, mi, is set to 1; otherwise,
the processing element. Pi, will not respond to the vector instruction and is said to be
disabled.

In an array processor, it may be necessary to exchange data between processing
elements. Such an exchange of data between processing elements takes place through the
path provided by the interprocessor communication network (IPCN). Data exchanges
refers to exchanges between scratchpad registers of the processing elements and exchanges
between private memories of the processing elements.

8.4.2 Pipeline Processing
The purpose of this section is to provide a brief overview of pipelining.
Basic Concepts
Assume a task T is carried out by performing four activities: Al, A2, A3, and A4, in that
order. Hardware Hi is designed to perform the activity Ai. Hi is referred to as a segment,
and it essentially contains combinational circuit elements. Consider the arrangement shown
in Figure 8.45.

In this configuration, a latch is placed between two segments so the result computed
by one segment can serve as input to the following segment during the next clock period.
The execution of four tasks T1, T2, T3, and T4 using the hardware of Figure 8.45 is
described using a space-time chart shown in Figure 8.46.
Initially, task T1 is handled by segment 1. After the first clock, segment 2 is busy with TI
while segment 1 is busy with T2. Continuing in this manner, the task T1 is completed at the
end of the fourth clock. However, following this point, one task is shipped out per clock.
This is the essence of the pipeline concept. A pipeline gains efficiency for the same reason
as an assembly line does: Several activities are performed but not on the same material.
Suppose ti and L denote the propagation delays of segment i and the latch, respectively.
Then the pipeline clock period T can be expressed as follows:

T = max (Ti, T2, . . . Tn) + L
The segment with the maximum delay is known as the bottleneck, and it decides

Consider the execution of m tasks using an n-segment pipeline. In this case, the
the pipeline clock period T. The reciprocal of T is referred to as the pipeline frequency.

352 Fundamentals of Digital Logic and Microcomputer Design

Segment 4

Segment 3

Segment 2
Segment 1

1 2 3

FIGURE 8.46 Overlapped Execution of Four Tasks Using a Pipeline

first task will be completed after n clocks (because there are n segments) and the remaining
m-1 tasks are shipped out at the rate of one task per pipeline clock.

Therefore, n + (m - 1) clock periods are required to complete m tasks using an
n-segment pipeline. If all rn tasks are executed without any overlap, mn clock periods are
needed because each task has to pass through all n segments. Thus speed gained by an n
segment pipeline can be shown as follows:

number of clocks
required when there

mn - - speedup - is no overlap -
P(n) number of clocks n + m - I

required when tasks
arc overlapped in
time

P(n) approaches n when m approaches infinity. This implies that when a large
number of tasks are carried out using an n-segment pipeline, an n-fold increase in speed
can be expected.
The previous result shows that the pipeline completes m tasks in the m + n - 1 clock
periods. Therefore, its throughput can be defined as follows:

throughput number of
of an n- tasks
segment = U(n) = computed =
pipeline per unit

m
(n + rn - l)T

time

For a large value of m, U(n) approaches 1/T, which is the pipeline frequency.
Thus the throughput of an ideal pipeline is equal to the reciprocal of its clock period. The
efficiency of an n-segment pipeline is defined as the ratio of the actual speedup to the
maximum speedup realized.

efficiency
of an n-
segment maximum speedup n
pipeline

actual speedup - P(n)
- - = E(n) =

This illustrates that when m is very large, E(n) approaches 1 as expected.

Memory, YO, and Parallel Processing 353

In many modem computers, the pipeline concept is used in carrying out two tasks:
arithmetic operations and instruction execution.

Arithmetic Pipelines
The pipeline concept can be used to build high-speed multipliers. Consider the multi-
plication P = M * Q, where M and Q are 8-bit numbers. The 16-bit product P can be
expressed as:

P = M(q,27+q626+q525+q,24+q,23+q222+q,2'+q,20). Hence, P =ZMqi2'. This result can also

be rewritten as: P =C Si

where, S j = Mq,2' and each Si represents a 16-bit partial product. Each partial product is the
shifted multiplicand. All 8 partial products can be added using several carry-save adders.

This concept can be extended to design an n x n pipelined multiplier. Here n
partial products must be summed with 2n bits per partial product. So, as n increases, the
hardware cost associated with a fully combinational multiplier increases in an exponential
fashion. To reduce the hardware cost, large multipliers are designed.

The pipeline concept is widely used in designing floating-point arithmetic units.
Consider the process of adding two floating point numbers A = 0.9234 * 1 O4 and B = 0.48 *
lo2. First, notice that the exponents of A and B are unequal. Therefore, the smaller number
should be modified so that its exponent is equal to the exponent of the greater number.
For this example, modify B to 0.0048 * lo4. This modification step is known as exponent
alignment. Here the decimal point of the significand 0.48 is shifted to the right to obtain
the desired result. After the exponent alignment, the significands 0.9234 and 0.0048 are
added to obtain the final solution of 0.9282 * lo4.

For a second example, consider the operation A - B, where A = 0,9234 * 1 O4 and
B = 0.9230 * lo4. In this case, no exponent alignment is necessary because the exponent
of A equals to the exponent of B. Therefore, the significand of B is subtracted from the
significand
of A to obtain 0.9234 - 0.9230 = 0.0004. However, 0.0004 * lo4 cannot be the final answer
because the significand, 0.0004, is not normalized. A floating-point number with base b is
said to be normalized if the magnitude of its significand satisfies the following inequality:
llb 5 Isignificandl< 1.

In this example, since b = 10, a normalized floating-point number must satisfy the
condition:

0.1 I Isignificand(< 1
(Note that normalized floating-point numbers are always considered because for each real-
world number there exists one and only one floating-point representation. This uniqueness
property allows processors to make correct decisions while performing compare
operations).

The final answer is modified to 0.4 * 10,. This modification step is known as
postnormalization, and here the significand is shifted to the left to obtain the correct
result.

In summary, addition or subtraction of two floating-point numbers calls for four
activities:

1. Exponent comparison
2. Exponent alignment
3. Significand addition or subtraction
4. Postnormalization

I

I

1 3

3 54

Segment 1

Fundamentals of Digital Logic and Microcomputer Design

Exponent comparison unit

Input

A

Segment 2

1
I Latch

1 1

Exponent alignment unit

segment

FIGURE 8.47 A Pipelined Floating-point Add/Subtract Unit

Significand addisubtract
unit

Based on this result, a four-segment floating-point adder/subtracter pipeline can
be built, as shown in Figure 8.47.

It is important to realize that each segment in this pipeline is primarily composed
of combinational components such as multiplexers. The shifter used in this system is the
barrel shifter discussed earlier. Modem microprocessors such as Motorola MC 68040
include a 3-stage floating-point pipeline consisting of operand conversion, execute, and
result normalization.

Segment 4

Instruction Pipelines
Modern microprocessors such as Motorola MC 68020 contain a 3-stage instruction
pipeline. Recall that an instruction cycle typically involves the following activities:

1. Instruction fetch 2. Instruction decode 3. Operand fetch
4. Operation execution 5. Result routing.
This process can be effectively carried out by using the pipeline shown in Figure

8.48. As mentioned earlier, in such a pipelined scheme the first instruction requires five
clocks to complete its execution. However, the remaining instructions are completed at
a rate of one per pipeline clock. Such a situation prevails as long as all the segments are
busy.

In practice, the presence of branch instructions and conflicts in memory accesses
poses a great problem to the efficient operation of an instruction pipeline.

Post normalization unit

Memory, I/O, and Parallel Processing

s1

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

I1 12 13 14 15

1
I 1 Latch

Instruction fetch
unit

I Latch I

I Instruction decode I unit

I Latch
I

Operand fetch unit

Latch

unit ,*
Result routing unit L2

355

Latch + c
FIGURE 8.48 A Five-segment Instruction Pipeline

356 Fundamentals of Digital Logic and Microcomputer Design

For example, consider the execution of a stream of five instructions: 11,12,13,14, and IS
in which I3 is a conditional branch instruction. This stream is processed by the instruction
pipeline (Figure 8.48) as depicted in Figure 8.49.

When a conditional branch instruction is fetched, the next instruction cannot be
fetched because the exact target is not known until the conditional branch instruction has
been executed. The next fetch can occur once the branch is resolved. Four additional clocks
are required due to 13.

Suppose a stream of s instructions is to be executed using an n-segment pipeline. If
c is the probability for an instruction to be a conditional branch instruction, there will be sc
conditional branch instructions in a stream of s instructions. Since each branch instruction
requires n - 1 additional clocks, the total number of clocks required to process a stream of
s instructions is
An instruction cycle constitutes n pipeline clocks. Therefore, the total number of
instruction cycles required to execute an instruction is

I = n
The average number of instructions executed per instruction cycle is

n _ - S sn -
I - (n + s - l) + s c (n - l) - (s - 1)

(n + s - 1) + sc(n - 1)

(n +s- 1) +sc(n - 1)

7 + 7 +c(n - 1)

For a large value of s, the preceding result can be simplified as shown on the following
page:

n l imS -
S-m I - 1 +c(n - 1)

For n = 5, the equation becomes:
c
J

1 +4c

For no conditional branch instructions (c = 0), 5 instructions per instruction cycle
are executed. This is the best result produced by a five-segment pipeline. If 25% of the

MEMORY ADDRESS INSTRUCTION

2000 LDA X

200 1 INC Y
2002 JMP 2050

2003 SUB 2

2050 STA W

FIGURE 8.50 A Hypothetical Program

Memory, YO, and Parallel Processing 357

MEMORY ADDRESS

2000

200 1

2002

2003

2004

205 1

FIGURE 8.51 Modified Sequence

INSTRUCTION

LDA X

INC Y

JMP 2051

NOP

SUB 2

STA W

Instruction
fetch

Instruction NOP
execute 205 1

FIGURE 8.52 Pipelined Execution of a Hypothetical Instruction Sequence

instructions are branch instructions only,

= 2.5 instructions 1 + 4 * 0.25

per instruction cycle can be executed. This shows how pipeline efficiency is significantly
decreased even with a small percentage of branch instructions.

.In many contemporary systems, branch instructions are handled using a strategy
called Target Prefetch. When a conditional branch instruction is recognized, the immediate
successor of the branch instructions and the target of the branch are prefetched. The latter
is saved in a buffer until the branch is executed. If the branch condition is successhl, one
pipeline is still busy because the branch target is in the buffer.
Another approach to handle branch instructions is the use of the delayed branch concept. In
this case, the branch does not take place until after the following instruction. To illustrate

MEMORY ADDRESS INSTRUCTION

2000 LDA X

2001 JMP 2050

2002 INC Y

2003 SUB Z

2050 STA W

FIGURE 8.53 Instruction Sequence with Branch Instruction Reversed

358 Fundamentals of Digital Logic and Microcomputer Design

Instruction
fetch

Instruction
execute

INC Y STA W

JMP
LDA 2050

JMP
LDA 2050

INC Y

FIGURE 8.54 Execution of the Reversed-instruction Sequence

Memory Memory Memory Memory
module 0 module 1 module 2 module 3

FIGURE 8.55 Memory Interleaving

this, consider the instruction sequence shown in Figure 8.50.

to JMP 205 1. The program semantics remain unchanged. This is shown in Figure 8.5 1.

pipeline, as shown in Figure 8.52:

Suppose the compiler inserts a NOP instruction and changes the branch instruction

This modified sequence depicted in Figure 8.5 1 will be executed by a two-segment

Instruction fetch
Instruction execute

Because of the delayed branch concept, the pipeline still functions correctly
without damage.

The efficiency of this pipeline can be further improved if the compiler produces a
new sequence as shown in Figure 8.53.

In this case, the compiler has reversed the instruction sequence. The JMP
instruction is placed in the location 2001, and the INC instruction is moved to memory
location 2002. This reversed sequence is executed by the same 2-segment pipeline, as
shown in Figure 8.54.

It is important to understand that due to the delayed branch rule, the INC Y
instruction is fetched before the execution of JMP 2050 instruction; therefore, there is no
change in the order of instruction execution. This implies that the program will still produce
the same result. Since the NOP instruction was eliminated, the program is executed more
efficiently.
The concept of delayed branch is one of the key characteristics of RISC as it makes
concurrency visible to a programmer.

Memory, I/O, and Parallel Processing 359

As does the presence of branch instructions, memory-access conflicts cause
damage to pipeline performance. For example, if the instructions in the operand fetch
and result-saving units refer to the same memory address, these operations cannot be
overlapped.

To reduce such memory conflicts, a new approach called memory interleaving
is often employed. For this case, the memory addresses are distributed among a set of
memory modules, as shown in Figure 8.55.
In this arrangement, memory is distributed among many modules. Since consecutive
addresses are placed into different modules, the CPU can access several words in one
memory access.

OUESTIONS AND PROBLEMS

8.1 What is the basic difference between main memory and secondary memory?

8.2 Compare the basic features of hard disk, floppy disk and Zip disk.

8.3 What are the main differences between CD and DVD memories?

8.4 Name the methods used in main memory array design. What are the advantages
and disadvantages of each.

8.5 The block diagram of a 512 x 8 RAM chip is shown in Figure P8.5. In this
arrangement, the memory chip is enabled only when m= L and CS2 = H.
Design a 1K x 8 RAM system using this chip as the building block. Draw a
neat logic diagram of your implementation. Assume that the microprocessor can
directly address 64K with a W- and 8 data pins. Using linear decoding and don’t-
care conditions as l’s, determine the memory map in hex.

1 L A,-A, --t /8 %-Do

WE = Low lor Write
High lor Read

(Chip select 1) ~-

(Chip select 2) -

FIGURE PS.5

3 60

8.6

8.7

8.8

8.9

8.10

Fundamentals of Digital Logic and Microcomputer Design

FIGURE P8.6

Consider the hardware schematic shown in Figure P8.6.
(a) Determine the address map of this system. Note: MEMR=O €or read,

MEMR=I for write and, M/E=O for I/O and M/IX=l for memory.
(b) Is there any possibility of bus conflict in this organization? Clearly justify

your answer.

Interface a microprocessor with 16-bit address pins and 8-bit data pins and a W-
pin to a 1K x 8 EPROM chip and two 1K x 8 RAM chips such that the following
memory map is obtained:

Device Size Address Assignment (in hex)
EPROM chip l K x 8 8000-83FF
RAM chip 0 1 K x 8 9000-93FF
RAM chip 1 1 K x 8 C000-C3FF

Assume that both EPROM and RAM chips contain two enable pins; CE and OE
for the EPROM, CE and WE for each RAM. Note that WE =1 and WE = 0 mean
read and write operations for the RAM chip. Use a 74138 decoder.

Repeat Problem 8.7 to obtain the following memory map using a
decoder:

74138

Device Size Address Assignment in hex
EPROM chip 1 K x 8 7000-73FF
RAM chip 0 1 K x 8 D000-D3FF
RAM chip 1 1 K x 8 F000-F3FF

What is meant by "foldback" in linear decoding?

Comment on the importance of the following features in an operating
system implementation:
(a) Address translation
(b) Protection

Memory, I/O, and Parallel Processing

Op-code BR IR

36 1

Displacement

8.1 1

8.12

8.13

8.14

8.15

8.16

8.17

Explain briefly the differences between segmentation and paging.

Draw a block diagram showing the address and data lines for the 2716, 2732,
and 2764 EPROM chips.

How many address and data lines are required for a 1 M x 16 memory chip.

A microprocessor with 24 address pins and 8 data pins is connected to a 1K
x 8 memory chip with one-chip enable. How many unused address bits of the
microprocessor are available for interfacing other 1K x 8 memory chips. What is
the maximum directly addressable memory available with this microprocessor?

Design a direct mapped virtual memory system with the following
specifications:

Size of the virtual address space = 64K
Size of the physical address space = 8K
Page size = 5 12 words
Total length of a page table entry = 24 bits

A virtual memory system has the following specifications:

Pagesize=512

From the page table the following mapping is recognized:

Size of the virtual address space = 64K
Size of the physical address space = 4K

VIRTUAL PAGE NUMBER PHYSICAL PAGE FRAME
NUMBER

0 0
3 1
7 2
4 3
10 4
12 5
24 6
30 7

(a)
(b)

Find all virtual addresses that will generate a page fault.
Compute the main memory address for the following virtual addresses:

24, 3784, 10250, 30780

Assume a computer has a segmented memory with paged segments. (Fig. P8.17)
The instruction format of this machine is as shown:

3 62 Fundamentals of Digital Logic and Microcomputer Design

Op-code field

4-bit displacement field
The contents of the specified base and index registers are added with the
displacement to produce a virtual address whose format is shown next:

Virtual Addrcss

2-bit base register field BR
2-bit index register field IR

1 segment I page [offset 1
lt---3----.l-2 -I----5-l

The virtual address is translated into a physical address by means of segment
and page tables, which are stored in the main memory. The segment table entry
contains the starting address of its page table and the page table entry contains the
address of the location which holds the page frame number. The segment table
base address register contains the start address of the segment table. The final
physical address is the sum of the page table entry and the offset from the virtual
address. Consider the following situation:
(a)
(b)
physical address?

Compute the physical address needed by the given situation
Howmany two-operand summations are required to compute one

I","cll"n MI,,,

1100 1 0 0 I I iuon

Stlgrncnt
t d b k

24

25

26

27

28

19

30

3 1

32

33

34

10 bits

llloMM00

I]MI I IMO

IUI0llOM)I

3 M o l W o O l I

Baserindex regiran

1 - I

FIGURE P 8.17

Memov, YO, and Parallel Processing 363

8.18

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

Assume a main memory has 4 page frames and initially all page frames are empty.
Consider the following stream of references;

Calculate the hit ratio if the replacement policy used is as follows.
(a) FIFO
(b) LRU

1,2,3,4,5, 1,2,6, 1 ,2 ,3 ,4 ,5 ,6 ,5

Repeat Problem 8.18 when the main memory has 5 page frames instead of 4.
Comment on your results.

Consider the stream of references given in Problem 8.1 8. Plot a graph between the
hit ratio and the number of frames &I in the main memory after computing the hit
ratio for all valuesfin the range of 1 to 8. Assume LRU policy is used. (Hint: Use
the stack algorithm.)

What is the size of a decoder with one chip enable (m) to obtain a 64K x 32
memory from the 4K x 8 chips? Where are the inputs and outputs of the decoder
connected?

What is the advantage of having a cache memory? Name a 32-bit microprocessor
that does not contain an on-chip cache.

Discuss the various cache-mapping techniques.

A microprocessor has a main memory of 8K x 32 and a cache memory of 4K
x 32. Using direct mapping, determine the sizes of the tag field, index field, and
each word of the cache.

A microprocessor has a main memory of 4K x 32. Using a cache memory address
of 8 bits and set-associative mapping with a set size of 2, determine the size of
the cache memory.

A microprocessor can directly address one megabyte of memory with a 16-
bit word size. Determine the size of each cache memory word for associative
mapping.

A typical computer system has a 32K main memory and a 4K fully associative
cache memory. The cache block size is 8 words. The access time for the main
memory is 10 times that of the cache memory.
(a) How many hardware comparators are needed?
(b) What is the size of the tag field?
(c) If a direct mapping scheme were used instead, what would be the size of the

tag field?
(d) Suppose the access efficiency is defined as the ratio of the average access

time with a cache to the average access time without a cache, determine the
access efficiency assuming a cache hit ratio h of 0.9.

(e) If the cache access time is 200 nanoseconds, what hit ratio would be required
to achieve an average access time equal to 500 nanoseconds?

3 64

8.28

8.29

8.30

8.3 1

8.32

8.33

8.34

8.35

8.36

8.37

Fundamentals of Digital Logic and Microcomputer Design

A set associative cache has a total of 64 blocks divided into sets of 4 blocks
each.
(a) Main memory has 1024 blocks with 16 words per block. How many bits are

needed in each of the tag, set, and word fields of the main memory address?
(b) A computer system has 32K words of main memory and a set associative

cache. The block size is 16 words and the TAG field of the main memory
address is 5-bit wide. If the same cache were direct mapped, the main memory
will have a 3-bit TAG field. How many words are there in the cache? How
many blocks are there in a cache set?

Under what condition does the set associative mapping method become one of the
following?
(a) Direct mapping
(b) Fully associative mapping

Discuss the main features of Motorola 68020 on-chip cache.

What is the basic difference between:
(a) Standard I/O and memory-mapped I/O?
(b) Programmed I/O and virtual I/O?
(c) Polled I/O and interrupt I/O?
(d) A subroutine and interrupt I/O?
(e) Cycle-stealing, block transfer, and interleaved DMA?
(f) Maskable and nonmaskable interrupts?
(8) Internal and external interrupts?
(h) Memory mapping in a microprocessor and memory-mapped 1/0?

Explain the significance of interleaved memory organization in pipelined
computers.

Discuss the basic differences between SISD and SIMD.

The Cray - I computer has one CPU, and 12 functional units. Up to a maximum
of 8 functional units can be cascaded to form a chain. Each functional unit is
pipelined and the number of pipeline segments vary from 1 to 14. Each functional
unit is capable of manipulating 64-bit data. Is it possible to describe this machine
using Flynn’s approach? Explain.

Consider a processor array with 4 floating-point processors (FPP). Suppose that
each FPP takes 4 time units to produce one result, how long it would take to carry
out 100 floating point operations? Is there any performance improvement if the
same 100 floating-point operations are carried out using a 4-segment pipelined
processor in which each segment takes 1 time unit to produce the result (Ignore
latch delay)?

Explain the significance of masking in array processors.

Consider the floating-point pipeline discussed in section 8.4.2. Assume:

Memory, I/O, and Parallel Processing 365

8.38

8.39

8.40

8.41

Ti = 40 ns
T, = 180 ns
Ti = 20 ns
(a) Determine the pipeline clock rate.
(b) Find the time taken to add 1000 pairs of floating-point numbers using this

pipeline.
(c) What is the efficiency of the pipeline when 2000 pairs of floating-point

numbers are added?

T, = 100 ns
T, = 60 ns

Design a pipeline multiplier using canylsave adders (CSA) and carry-look-ahead
adders to multiply a stream of input numbers XO, X1, X2, by a fixed number Y.
Assume all Xs and Ys are 6-bit numbers. The output should be a stream of 12-bit
products YXO, YXl , YX2. Draw a neat schematic diagram of your design.

Consider the execution of 1000 instructions using a 6-segment pipeline.
(a) What is the average number of instructions executed per instruction cycle

when C = 0.2?
(b) What must be the value of C so execution of at least 4 instructions per

instruction cycle is always allowed.

Describe the methods used to handle branches in a pipeline instruction execution
unit.

Modify each of the following programs so the data flow in the 2-segment pipeline
(Figure 8.52) is properly regularized:
(a)

MEMORY ADDRESS
2000
200 1
2002
2003

2040

MEMORY ADDRESS
2000
200 1
2002
2003
2004

INSTRUCTION
LDA X
DCR Y
JMP 2040
SUB Z

STA W

INSTRUCTION
LDA X
DCR Y
JNZ 2040
SUB Z

STAW
2040

INTEL 8086

021,

This chapter covers the Intel 8086 in detail. Intel’s 32-bit microprocessors are based on the
Intel 8086. Therefore, the 8086 provides an excellent educational tool for understanding
Intel 32- and 64-bit microprocessors. Because the 8086 and its peripheral chips are
inexpensive, the implementation costs of 8086-based systems are low. This makes the
8086 appropriate for thorough coverage in a first course on microprocessors. Thus, the
8086 is covered in detail in this chapter.

All,

The 16-bit word at the even address 02000,, is A102,,. Next, consider a word
stored at an address 301 5 1 ,, as follows:

Low byte of the word High byte of the word

I 2EI6 ’ I 4 6 ,
Address 30 15 1 ,, Address 301 52,,

The 16-bit word stored at the odd address 30151 ,, is 462E3,,.
The 8086 always reads a 16-bit word from memory. This means that a word instruction
accessing a word starting at an even address can perform its function with one memory
read. A word instruction starting at an odd address, however, must perform two memory
accesses to two consecutive memory even addresses, discarding the unwanted bytes of
each. For byte read starting at odd address N, the byte at the previous even address N - 1
is also accessed but discarded. Similarly, for byte read starting at even address N, the byte
with odd address N + 1 is also accessed but discarded.

For the 8086, register names followed by the letters X, H, or L in an instruction
for data transfer between register and memory specify whether the transfer is 16-bit or 8-
bit. For example, consider MOV AX, [START] . If the 20-bit address START is an even
number such as 02212,,, then this instruction loads the low (AL) and high (AH) bytes of

367

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

368 Fundamentals of Digital Logic and Microcomputer Design

the 8086 16-bit register AX with the contents of memory locations 02212,, and 02213,6,
respectively, in a single access. Now, if START is an odd number such as 02213,,, then the
MOV AX, [START] instruction loads AL and AH with the contents of memory locations
02213,, and 02214,,, respectively, in two accesses. The 8086 also accesses memory
locations 022 12,, and 0221 5 , , but ignores their contents.

Next, consider MOV AL, [START 1 . If START is an even number such as 301 56,,,
then this instruction accesses both addresses, 30156,, and 30157,,, but loads AL with the
contents of 30156,, and ignores the contents of 30157,,. However, if START is an odd
number such as 30157,,, then MOV AL, [START] loads AL with the contents of 30157,,.
In this case the 8086 also reads the contents of 30156,, but discards it.

The 8086 is packaged in a 40-pin chip. A single +5 V power supply is required.
The clock input signal is generated by the 8284 clock generatoddriver chip. Instruction
execution times vary between 2 and 30 clock cycles.

There are four versions of the 8086. They are 8086,8086- 1,8086-2, and 8086-4.
There is no difference between the four versions other than the maximum allowed clock
speeds. The 8086 can be operated from a maximum clock frequency of 5 MHz. The
maximum clock frequencies of the 8086- 1, 8086-2 and 8086-4 are 10 MHz, 8 MHz and 4
MHz, respectively.

The 8086 family consists of two types of 16-bit microprocessors, the 8086 and
8088. The main difference is how the processors communicate with the outside world.
The 8088 has an 8-bit external data path to memory and I/O; the 8086 has a 16-bit external
data path. This means that the 8088 will have to do two READ operations to read a 16-bit
word from memory. Similarly, two write operations are required to write a 16-bit word into
memory. In most other respects, the processors are identical. Note that the 8088 accesses
memory in bytes. No alterations are needed to run software written for one microprocessor
on the other. Because of similarities, only the 8086 will be considered here. The 8088 was
used in designing IBM’s first personal computer.

An 8086 can be configured as a small uniprocessor (minimum mode when the
MN/m pin is tied to HIGH) or as a multiprocessor system (maximum mode when the
MN/m pin is tied to LOW). In a given system, the MN/m pin is permanently tied
to either HIGH or LOW. Some of the 8086 pins have dual functions depending on the
selection of the MN/m pin level.

In the minimum mode (MN/m pin HIGH), these pins transfer control signals
directly to memory and I/O devices; in the maximum mode (MNm pin LOW), these
same pins have different functions that facilitate multiprocessor systems. In the maximum
mode, the control functions normally present in minimum mode are assumed by a support
chip, the 8288 bus controller.

Due to technological advances, Intel introduced the high-performance 801 86
and 80188, which are enhanced versions of the 8086 and 8088, respectively. The 8-MHz
80 186/80188 provides two times greater throughput than the standard 5-MHz 808618088.
Both have integrated several new peripheral functional units, such as a DMA controller, a
16-bit timer unit, and an interrupt controller unit, into a single chip. Just like the 8086 and
8088, the 80186 has a 16-bit data bus and the 80188 has an 8-bit data bus; otherwise, the
architecture and instruction set of the 801 86 and 801 88 are identical. The 801 86/80188 has
an on-chip clock generator so that only an external crystal is required to generate the clock.
The 80186/80188 can operate at either a 6- or an 8-MHz internal clock frequency. The
crystal frequency is divided by 2 internally. In other words, external crystals of 12 or 16 MHz
must be connected to generate the 6- or 8-MHz internal clock frequency. The 801 86/80 188

Intel 8086 369

is fabricated in a 68-pin package. Both processors have on-chip priority interrupt controller
circuits to provide five interrupt pins. Like the 8086/8088, the 80186/80188 can directly
address one megabyte of memory. The 80186/80188 is provided with 10 new instructions
beyond the 808618088 instruction set. Examples of these instructions include INS and
OUTS for inputting and outputting a string byte or string word.

The 80286, on the other hand, has added memory protection and management
capabilities to the basic 8086 architecture. An 8-MHz 80286 provides up to 6 times greater
throughput than the 5-MHz 8086. The 80286 is fabricated in a 68-pin package. The
80286 can be operated at a clock frequency of 4, 6, or 8 MHz. An external 82284 clock
generator chip is required to generate the clock. The 82284 divides the external clock by
2 to generate the internal clock. The 80286 can be operated in two modes, real address
and protected virtual address. Real address mode emulates a very high-performance 8086.
In this mode, the 80286 can directly address one megabyte of memory. In virtual address
mode, the 80286 can directly address 16 megabytes of memory. Virtual address mode
provides (in addition to the real address mode capabilities) virtual memory management as
well as task management and protection. The programmer can select one of these modes
by loading appropriate data in the 16-bit machine status word (MSW) register by using the
load instruction (LMSW).

The 80286 was used as the microprocessor of the IBM PC/AT personal computer.
An enhanced version of the 80286 is the 32-bit 80386 microprocessor. The 80386 was used
as the microprocessor in the IBM 386PC. The 80486 is another 32-bit microprocessor. It
is based on the Intel 80386 and includes on-chip floating-point circuitry. IBM’s 486 PC
contains the 80486 chip. Other 32-bit and 64-bit Intel microprocessors include Pentium,
Pentium Pro, Pentium 11, Celeron, Pentium 111, Pentium 4 and Merced.

Although the 8086 seems to be obsolete, it is expected to be around for some time
from second sources. Therefore, a detailed coverage of the 8086 is included. A summary
of the 32- and 64-bit microprocessors is then provided.

9.2 8086 Main Memorv

The 8086 uses a segmented memory. There are some advantages to working with the
segmented memory. First, after initializing the 16-bit segment registers, the 8086 has to
deal with only 16-bit effective addresses. That is, the 8086 has to manipulate and store
16-bit address components. Second, because of memory segmentation, the 8086 can be
effectively used in time-shared systems. For example, in a time-shared system, several
users may share one 8086. Suppose that the 8086 works with one user’s program for, say,
5 milliseconds. After spending 5 milliseconds with one of the other users, the 8086 returns
to execute the first user’s program. Each time the 8086 switches from one user’s program
to the next, it must execute a new section of code and new sections of data. Segmentation
makes it easy to switch from one user program to another.

The 8086’s main memory can be divided into 16 segments of 64K bytes each
(16 x 64 KB = 1 MB). A segment may contain codes or data. The 8086 uses 16-bit
registers to address segments. For example, in order to address codes, the code segment
register must be initialized in some manner (to be discussed later): A 16-bit 8086 register
called the “instruction pointer” (IP), which is similar to the program counter of a typical
microprocessor, linearly addresses each location in a code segment. Because the size of
the IP is 16 bits, the segment size is 64K bytes (2’7. Similarly, a 16-bit data segment
register must be initialized to hold the segment value of a data segment. The contents of

3 70 Fundamentals of Digital Logic and Microcomputer Design

certain 16-bit registers are designed to hold a 16-bit address in a 64-Kbyte data segment.
One of these address registers can be used to linearly address each location once the data
segment is initialized by an instruction. Finally, in order to access the stack segment, the
8086 16-bit stack segment (SS) register must be initialized; the 64-Kbyte stack is addressed
linearly by a 16-bit stack pointer register. Note that the stack memory must be a readwrite
(RAM) memory. Whenever the programmer reads from or writes to the 8086 memory
or stack, two components of a memory address must be considered: a segment value and,
an address or an offset or a displacement value. The 8086 assembly language program
works with these two components while accessing memory. These two 16-bit components
(the contents of a 16-bit segment register and a 16-bit offset or IP) form a logical address.
The programmer writes programs using these logical addresses in assembly language
programming.

The 8086 includes on-chip hardware to map or translate these two 16-bit
components of a memory address into a 20-bit address called a “physical address” by
shifting the contents of a segment register four times to left and then adding the contents of
IP or offset. Note that the 8086 contains 20 address pins, so the physical address size is 20
bits wide.

Consider, for example, a logical address with the 16-bit code segment register
contents of 2050,, and the 16-bit 8086 instruction pointer containing a value of 0004,,.
Suppose that the programmer writes an 8086 assembly language program using this logical
address. The programmer assembles this program and obtains the object or machine code.
When the 8086 executes this program and encounters the logical address, it will generate
the 20-bit physical address as follows: If 16-bit contents of IP = 0004,6, 16-bit contents
of code segment = 2050,,, 16-bit contents of code segment value after shifting logically 4
times to the left = 20500,,, then the 20-bit physical address generated by the 8086 on its
20-pin address is 20504,, . Note that the 8086 assigns the low address to the low byte of a
16-bit register and the high address to the high byte of the 16-bit register for 16-bit transfers
between the 8086 and main memory. This is called Little-endian byte ordering.

9.3 8086 Repisters

As mentioned in Chapter 6, the 8086 is divided internally into two independent units: the
bus interface unit (BIU) and the execution unit (EU). The BIU reads (fetches) instructions,
reads operands, and writes results. The EU executes instructions already fetched by the
BIU. The 8086 prefetches up to 6 instruction bytes from external memory into a FIFO
(first-in-first-out) memory in the BIU and queues them in order to speed up instruction
execution. The BIU contains a dedicated adder to produce the 20-bit address. The bus
control logic of the BIU generates all the bus control signals, such as the READ and
WRITE signals, for memory and I/O. The BIU also has four 16-bit segment registers:
the code segment (CS), data segment (DS), stack segment (SS), and extra segment (ES)
registers.

All program instructions must be located in main memory, pointed to by the 16-
bit CS register with a 16-bit offset contained in the 16-bit instruction pointer (IP). Note
that immediate data are considered as part of the code segment. The SS register points
to the current stack. The 20-bit physical stack address is calculated from the SS and SP
(stack pointer) for stack instructions such as PUSH and POP. The programmer can create
a programmer’s stack with the BP (base pointer) instead of the SP for accessing the stack
using the based addressing mode. In this case, the 20-bit physical stack address is calculated

Intel 8086 371

from the BP and SS. The DS register points to the current data segment; operands for most
instructions are fetched from this segment. The 16-bit contents of a register such as the
SI (source index) or DI (destination index) or a 16-bit displacement are used as offsets for
computing the 20-bit physical address.
The ES register points to the extra segment in which data (in excess of 64 KB pointed to
by the DS) is stored. String instructions always use the ES and DI to determine the 20-bit
physical address for the destination.

The segments can be contiguous, partially overlapped, filly overlapped, or
disjointed. An example of how five segments (SEGMENT 0 through SEGMENT 4), may
be stored in physical memory is shown in Figure 9.1. In this example, SEGMENTs 0 and
1 are contiguous (adjacent), SEGMENTs 1 and 2 are partially overlapped, SEGMENTs 2
and 3 are filly overlapped, and SEGMENTs 2 and 4 are disjointed.

Every segment must start on 16-byte memory boundaries. Typical examples of
values of segments should then be selected based on physical addresses starting at 00000,,,
OOOIO,,, 00020,,, 00030,,, . . ., FFFFO,,. A physical memory location may be mapped into
(contained in) one or more logical segments. Many applications can be written to simply
initialize the segment registers and then forget them.

A segment can be pointed to by more than one segment register. For example, the
DS and ES may point to the same segment in memory if a string located in that segment
is used as a source segment in one string instruction and a destination segment in another
string instruction. Note that, for string instructions, a destination segment must be pointed
to by the ES. One example of four currently addressable segments is shown in Figure
9.2.

The EU decodes and executes instructions. It has a 16-bit ALU for performing
arithmetic and logic operations. The EU has nine 16-bit registers: AX, BX, CX, DX, SP,

Fully overlapped

Partially overlapped -

Contiguous

Physical L - U
memoly .T T .T ? .T

FIGURE 9.1

FIGURE 9.2

OOOOOH 20000H 40000H 60000H 80000H

An Example of 8086 Memory Segments

SS 0080 offset!
+ 00800..

ES 0070 OffS$ 1-1 00700~0

DS 0060

CS 0050 offset

Four currently addressable 8086 segments

address

372 Fundamentals of Digital Logic and Microcomputer Design

BP, SI, and DI, and the flag register. The 16-bit general registers AX, BX, CX, and DX can
be used as two 8-bit registers (AH, AL; BH, BL; CH, CL; DH, DL). For example, the 16-
bit register DX can be considered as two 8-bit registers DH (high byte of DX) and DL (low
byte of DX). The general-purpose registers AX, BX, CX, and DX perform the following
functions:

The AX register is 16 bit wide whereas AH and AL are 8 bit wide. The use of AX
and AL registers is assumed by some instructions. The I/O (IN or OUT) instructions
always use the AX or AL for inputtingloutputting 16- or 8-bit data to or from an I10
port. Multiplication and division instructions also use the AX or AL.
The BX register is called the “base register.” This is the only general-purpose register
whose contents can be used for addressing 8086 memory. All memory references
utilizing this register content for addressing use the DS as the default segment
register.
The CX register is known as the counter register because some instructions, such as
SHIFT, ROTATE, and LOOP, use the contents of CX as a counter, For example, the
instruction LOOP START will automatically decrement CX by 1 without affecting
flags and will check to see if (Cx) = 0. If it is zero, the 8086 executes the next
instruction; otherwise, the 8086 branches to the label START.
The DX register, or data register, is used to hold the high 16-bit result (data) (LOW
16-bit data is contained in AX) after 16 x 16 multiplication or the high 16-bit dividend
(data) before a 32 t 16 division and the 16-bit remainder after the division (16-bit
quotient is contained in AX).
The two pointer registers, SP (stack pointer) and BP (base pointer), are used to access
data in the stack segment. The SP is used as an offset from the current SS during
execution of instructions that involve the stack segment in external memory. The SP
contents are automatically updated (incremented or decremented) due to execution of
a POP or PUSH instruction. The BP contains an offset address in the current SS. This
offset is used by instructions utilizing the based addressing mode.
The two index registers, SI (source index) and DI (destination index), are used in
indexed addressing. Note that instructions that process data strings use the SI and
DI index registers together with the DS and ES, respectively, in order to distinguish
between the source and destination addresses.
The flag register in the EU holds the status flags, typically after an ALU operation. The

DX

stacicpointer[Tl
Base pointer Code segment

Source index Data segment
Destination index D1 SS Stack segment

FLAGS - ES Extra segment
EU BIU

FIGURE 9.3 8086 Registers

Intel 8086 3 73

EU sets or resets these flags to reflect the results of arithmetic and logic operations.
Figure 9.3 depicts the 8086 registers. It shows the nine 16-bit registers in the

EU. As described earlier, each one of the AX, BX, CX, and DX registers can be used as
two %bit registers or as one 16-bit register. The other registers can be accessed as 16-
bit registers. Also shown are the four 16-bit segment registers and the 16-bit IP in the
BIU. The IP is similar to the program counter. The CS register points to the current code
segment from which instructions are fetched. The effective address is derived from the CS
and IP. The SS register points to the current stack. The effective address is obtained from
the SS and SP. The DS register points to the current data segment. The ES register points
to the current extra segment where data is usually stored.

Figure 9.4 shows the 8086 flag register. The 8086 has six one-bit status flags. Let
us now explain these flags.

AF (auxiliary carry flag) is set if there is a carry due to addition of the low nibble into
the high nibble or a borrow due to the subtraction of the low nibble from the high
nibbleof a number.
This flag is used by BCD arithmetic instructions; otherwise, AF is zero.
CF (carry flag) is set if there is a carry from addition or a borrow from subtraction.
OF (overflow flag) is set if there is an arithmetic overflow (i.e., if the size of the result
exceeds the capacity of the destination location). An interrupt on overflow instruction
is available to generate an interrupt in this situation; otherwise, it is zero.
SF (sign flag) is set if the most significant bit of the result is one; otherwise, it is
zero.
PF (parity flag) is set if the result has even parity; PF is zero for odd parity of the
result.
ZF (zero flag) is set if the result is zero; ZF is zero for a nonzero result.

The 8086 has three control bits in the flag register that can be set or cleared by the

Setting DF (direction flag) causes string instructions to auto-decrement; clearing
DF causes string instructions to auto-increment.
Setting IF (interrupt flag) causes the 8086 to recognize external maskable
interrupts; clearing IF disables these interrupts.
Setting TF (trap flag) puts the 8086 in the single-step mode. In this mode, the
8086 generates an internal interrupt after execution of each instruction. The user
can write a service routine at the interrupt address vector to display the desired
registers and memory locations. The user can thus debug a program.

programmer:
1.

2.

3.

9.4 8086 Addressing Modes

The 8086 provides various addressing modes to access instruction operands. Operands
may be contained in registers, within the instruction op-code, in memory, or in 110 ports.
The 8086 has 12 addressing modes, which can be classified into five groups:

1. Register and immediate modes (two modes)
2. Memory addressing modes (six modes)
3. . Port addressing mode (two modes)
4. Relative addressing mode (one mode)
5. Implied addressing mode (one mode)

Note that in the following, symbol () is used to indicate the contents of an 8086
register or a memory location.

3 74

9.4.1 Register and Immediate Modes
Register mode. The addressing modes are illustrated utilizing 8086 instructions with
directives of a typical assembler. In register mode, source operands, destination operands,
or both may be contained in registers. For example, MOV AX, BX moves the 16-bit
contents of BX into AX. On the other hand, MOV AH, BL moves the 8-bit contents of BL
into AH.
Immediate mode. In immediate mode, 8- or 16 bit data can be specified as part of the
instruction. For example, MOV C X , 5 0 6 2 8 moves the 16-bit data 5062,, into register
cx.

Fundamentals of Digital Logic and Microcomputer Design

9.4.2 Memory Addressing Modes
The EU has direct access to all registers and data for register and immediate modes.
However, the EU cannot directly access the memory operands. It must use the BIU to
access memory operands. For example, when the EU needs a memory operand, it sends
an offset value to the BIU. As mentioned before, this offset is added to the contents of a
segment register after shifting it four times to the left, generating a 20-bit physical address,
For example, suppose that the contents of a segment register is 2052,, and the offset is
0020,,. Now, in order to generate the 20-bit physical address, the EU passes this offset to
the BIU. The BIU then shifts the segment register four times to the left, obtains 2052016
and then adds the 0020,, offset to provide the 20-bit physical address 2054016.

Note that the 8086 must use a segment register whenever it accesses the memory.
Also, every memory addressing mode has a standard default segment register. However, a
segment override instruction can be placed before most of the memory operand instructions
whose default segment register is to be overridden. For example, I N C BYTE PTR
[START] will increment the 8-bit contents of a memory location in DS with offset START

by 1. However, segment DS can be overridden by ES as follows: I N C ES : BYTE PTR
[START 1 . Segments cannot be overridden for stack reference instructions (such as PUSH
and POP). The destination segment of a string segment, which must be ES (if a prefix is
used with a string instruction, only the source segment DS can be overridden) cannot be
overridden. The code segment (CS) register used in program memory addressing cannot be
overridden. The EU calculates an offset from the instruction for a memory operand. This
offset is called the operand’s effective address, or EA. It is a 16-bit number that represents
the operand’s distance in bytes from the start of the segment in which it resides.

The various memory addressing modes will now be described.
1. Memory Direct Addressing. In this mode, the effective address is taken directly from

the displacement field of the instruction. No registers are involved. For example,
MOV BX, [START] , or MOV BX, OFFSET START moves the contents of the
20-bit address computed from DS and START to BX. Some assemblers use square
brackets around START to indicate that the contents of the memory location(s) are at
a displacement START from the segment DS. If square brackets are not used, then the
programmer may define START as a 16-bit offset by using the assembler directive,
OFFSET.

Register Zndirect Addressing. The effective address of a memory operand may be
taken directly from one of the base or index registers (BX, BP, SI, DI). For example,
consider MOV CX, [BX] . If (DS) = 2000,,, (BX) = 0004,,, and (20004,,) = 0224,,,
then, after MOV C X , [B X] , the contents of CX are 0224,,. Note that the segment
register used in MOV C X , [BX] can be overridden, such as MOV CX, ES : [BX] .
Now, the MOV instruction will use ES instead of DS. If (ES) = lOOO,, and (10004,,)

2.

Intel 8086 375

= OOO2,,, then, after MOV CX, ES : [BX] , the register CX will contain 0002,,. Note
that in the above, symbol () is used to indicate the contents of an 8086 register or a
memory location.
Based Addressing. In this mode, the effective address is the sum of a displacement
value (signed 8-bit or unsigned 16-bit) and the contents of register BX or BP. For
example, MOV AX , 4 [BX 1 moves the contents of the 20-bit address computed from a
segment register and BX + 4 into AX. The segment register is DS or SS. The content
of BX is unchanged. The displacement (4 in this case) can be unsigned 16-bit or signed
8-bit. This means that if the displacement is 8-bit, then the 8086 sign extends this to
16-bit. Segment register SS is used when the stack is accessed; otherwise, this mode
uses segment register DS. When memory is accessed, the 20-bit physical address is
computed from BX and DS. On the other hand, when the stack is accessed, the 20-bit
physical address is computed from BP and SS. Note that BP may be considered as the
user stack pointer while SP is the system stack pointer. This is because SP is used by
some 8086 instructions (such as CALL subroutine) automatically.
The based addressing mode with BP is a very convenient way to access stack data. BP
can be used as a stack pointer in SS to access local variables. Consider the following
instruction sequence (arbitrarily chosen to illustrate the use of BP for stack):

PUSH BP I Save BP
MOV BP, SP I Establish BP
PUSH CX , Save CX
SUB SP, 6 I Allocate 3 words of

, stack for local variables
MOV -4[BP], BX ; Push BX onto stack using BP
MOV -6[BP], AX ; Push AX onto stack using BP
MOV -8[BP], DX ; Push DX onto stack using BP
ADD SP, 6 I Deallocate stack
POP cx , Restore CX
POP BP , Restore BP

This instruction sequence can be depicted as follows:
High address

k % i p Bp=Sp

Temporary stack for local
variables

..:‘.-I
1 SP (top of stack)
Low address

BP-6
BP-8

Zndexed Addressing. In this mode, the effective address is calculated from the sum of
a displacement value and the contents of register SI or DI. For example, MOV AX ,
VALUE [S 1] moves the contents of the 20-bit address computed from VALUE, SI
and the segment register into AX. The segment register is DS. The content of SI is
unchanged. The displacement (VALUE in this case) can be unsigned 16-bit or signed
8-bit. The indexed mode can be used to access a table.
Based Zndexed Addressing. In this mode, the effective address is computed from the
sum of a base register (BX or BP), an index register (SI or DI), and a displacement. For
example, MOV AX, 4 [BX] [S I 3 moves the contents of the 20-bit address computed
from the segment register and (BX) + (SI) + 4 into AX. The segment register is DS.
The displacement can be unsigned 16-bit or signed 8-bit. This mode can be used to
access two-dimensional arrays such as matrices.

3 76 Fundamentals of Digital Logic and Microcomputer Design

6. String Addressing. This mode uses index registers. SI is assumed to point to the
first byte or word of the source string, and DI is assumed to point to the first byte
or word of the destination when a string instruction is executed. The SI or DI is
automatically incremented or decremented to point to the next byte or word depending
on DF. The default segment register for source is DS, and it may be overridden; the
segment register used for the destination must be ES, and can not be overridden. An
example is MOVS WORD. If (DF) = 0, (DS) = 300OI6, (SI) = OO2O,,, (ES) 5000,6, (DI)
= 0040,,, (30020) = 30,,, (30021) = 05,,, (50040) = O6,,, and (50041) = 20,,, then, after
this MOVS, (50040) = 30,,, (50041) = 05,,, (SI) = 0022,,, and (DI) = 0042,,.

9.4.3 Port Addressing
Two I/O port addressing modes can be used: direct port and indirect port. In either case,
8- or 16-bit I/O transfers must take place via AL or AX respective1y.h direct port mode,
the port number is an 8-bit immediate operand to access 256 ports. For example. I N AL ,
0 2 moves the contents of port 02 to AL. In indirect port mode, the port number is taken
from DX, allowing 64K bytes or 32K words of ports. For example, suppose (DX) = 0020,
(port 0020) = 0216, and (port 0021) = 03,,, then, after IN AX, DX, register AX contains
0302,,. On the other hand, after I N AL, DX, register AL contains 02,,.

9.4.4 Relative Addressing Mode
Instructions using this mode specify the operand as a signed %bit displacement relative to
IP. An example is JNC START. This instruction means that if carry = 0, then IP is loaded
with the current IP contents plus the %bit signed value of START; otherwise, the next
instruction is executed.

An advantage of relative mode is that the destination address is specified relative
to the address of the instruction after the conditional Jump instruction. Since the 8086
conditional Jump instructions do not contain an absolute address, the program can be placed
anywhere in memory which can still be executed properly by the 8086. A program which
can be placed anywhere in memory, and can still run correctly is called a “relocatable”
program. It is a good practice to write relocatable programs.

9.4.5 Implied Addressing Mode
Instructions using this mode have no operands. An example is CLC, which clears the carry
flag to zero.

9.5 8086 Instruction Set

The 8086 has approximately 117 different instructions with about 300 op-codes. The
8086 instruction set contains no-operand, single-operand, and two-operand instructions.
Except for string instructions that involve array operations, 8086 instructions do not permit
memory-to-memory operations. Appendices F and H provide 8086 instruction reference
data and the instruction set (alphabetical order), respectively. The 8086 instructions can be
classified into eight groups:

1. Data Transfer Instructions 2. Arithmetic Instructions
3. Bit Manipulation Instructions
5. Unconditional Transfer Instructions 6. Conditional Branch Instructions
7. Interrupt Instructions

4. String Instructions

8. Processor Control Instructions
Let us now explain some of the 8086 instructions with numerical examples. Note that

Intel 8086 3 77

TABLE 9.1 8086 Data Transfer Instructions
General Puruose

MOV d, s
PUSH d
POP d
XCHG medreg, mendreg
XLAT

IN A, DX or Port
OUT DX or Port, A

[d] - [s] MOV byte or word
PUSH word into stack
POP word off stack
[mendreg] + [mendreg]; No mem to mem.
AL 6 [20 bit address computed from AL, BX, and DS]

Input /Output
Input byte or word
Output byte or word

Address Object
LEAreg, mem LOAD Effictive Address
LDSreg, mem LOAD pointer using DS
LESreg, mem LOAD pointer using ES

LAHF LOAD AH register from flags
SAHF STORE AH register in flags
PUSHF PUSH flags onto stack
POPF POP flags off stack
d = “mem” or “reg” or “segreg,” s = “data” or “ mem” or ‘:reg” or “segreg,” A = AX or AL

Flag Transfer

in the following examples , symbol () is used to indicate the contents of a register or a
memory location.

9.5.1 Data Transfer Instructions
Table 9.1 lists the data transfer instructions. Note that LEA is used to load 16-bit offset to a
specified register; LDS and LES are similar to LEA except that they load specified register
as well as DS or ES. As an example, LEA BX, 3000H has the same meaning as MOV
BX,3000H. On the other hand, if (SI)=2000H, then LEA BX,4[SI] will load 2004H into
BX while MOV BX,4[SI] will initialize BX with the contents of memory
locations computed from 2004H and DS. The LEA instruction can be useful when
memory computation is desirable.

In Table 9.1, there are 14 data transfer instructions. These instructions move
single bytes and words between a register, a memory location, or an I/O port. Let us
explain some of the instructions in Table 9.1.

MOV C X , DX copies the 16-bit contents of DX into CX. MOV AX, 2025H moves
immediate data 2025H into the 16-bit register AX. MOV CH, [BX] moves the 8-bit
contents of a memory location addressed by BX in segment register DS into CH. If
(BX) = 0050H, (DS) = 2000H, and (20050H) = 08H, then, after MOV CH, [BX 3 , the
contents of CH will be 08H. MOV START [BPI , CX moves the 16-bit (CL to first
location and then CH) contents of CX into two memory locations addressed by the
sum of the displacement START and BP in segment register SS. For example, if (CX)
= 5009H, (BP)=0030H, (SS) = 3000H, and START = 06H, then, after MOV START
[BPI , CX, (30036H) = 09H and (30037H) = 50H.
LDS S I , [0 0 1 O H] loads SI and DS from memory. For example, if (DS) = 2000H,
(20010) = 0200H, and (20012) = OlOOH, then, after LDS S I , [OOlOH], SI and DS
will contain 0200H and 01 OOH, respectively.
In the 8086, the SP is decremented by 2 for PUSH and incremented by 2 for POP. For

378 Fundamentals of Digital Logic and Microcomputer Design

example, consider PUSH [BX]. If (DS) = 2000,,, (BX) = 0200,,, (SP) = 300016, (ss) =

4000,,, and (20200) = 0120,,, then, after execution of PUSH [BX] , memory locations
42FFF and 42FFE will contain 01 ,, and 2O,,, respectively, and the contents of SP will
be 2FFE,,.
XCHG has three variations: XCHG reg, reg and XCHG mem, reg or XCHG reg, mem.
For example, XCHG AX, BX exchanges the contents of 16-bit register BX with the
contents of AX. XCHG mem, reg exchanges 8- or 16-bit data in mem with 8-or 16-bit
reg.
XLAT can be used to employ an index in a table or for code conversion. This instruction
utilizes BX to hold the starting address of the table in memory consisting of 8-bit data
elements. The index in the table is assumed to be in the AL register. For example,
if (BX) = 020OI6, (AL) = 04,,, and (DS) = 3000,,, then, after XLAT, the contents of
location 30204,, will be loaded into AL. Note that the XLAT instruction is the same as
MOV AL, [AL] [BX I . As mentioned before, XLAT instruction can be used to convert
from one code to another. For example, consider an 8086-based microcomputer with
an ASCII keyboard connected to Port A and an EBCDIC printer connected to Port B.
Suppose that it is desired to enter numerical data via the ASCII keyboard, and then
print them on the EBCDIC printer. Note that numerical data entered into this computer
via the keyboard will be in ASCII code. Since the printer only understands EBCDIC
code, an ASCII to EBCDIC code conversion program is required. The ASCII codes
for numbers 0 through 9 are 30H through 39H while the EBCDIC codes for numbers
0 to 9 are FOH to F9H (Table 2.6). The EBCDIC codes for the numbers 0 to 9 can be
stored in a table starting at an offset 2030H , data can be input from the keyboard using
IN AL, PORTA, convert this ASCII data to EBCDIC using XLAT instruction, and
then output to Port B using OUT PORTB, AL. The instruction sequence for the code
conversion program is provided below:

MOV BX,2000H ;Initialize BX
IN AL , PORTA ;Input ASCII data
XLAT ;Obtain EBCDIC code from table below
OUT PORTB,AL ;Output to EBCDIC Printer
ORG 2030H
DB OF0,0F1,0F2,0F3,0F4,0F5rOF6,0F7,0F8,0F9

Consider fixed port addressing, in which the 8-bit port address is directly specified
as part of the instruction. I N AL, 38H inputs 8-bit data from port 38H into AL. IN
AX, 38H inputs 16-bit data from ports 38H and 39H into AX. OUT 3 8H , AL outputs
the contents of AL to port 38H. OUT 3 8H, AX, on the other hand, outputs the 16-bit
contents of AX to ports 38H and 39H.
For variable port addressing, the port address is 16-bit and is specified in the DX
register. Assume (DX) = 3 124,, in all the following examples.

IN AL, DX inputs 8-bit data from 8-bit port 3124,, into AL.
IN AX , DX inputs 16-bit data from ports 3 12416 and 3 125,, into AX.
OUT DX, AL outputs 8-bit data from AL into port 3124,,.
OUT DX, AX outputs 16-bit data from AX into ports 3124,, and 3125,,.

Variable port addressing allows up to 65,536 ports with addresses from OOOOH to
FFFFH. The port addresses in variable port addressing can be calculated dynamically
in a program. For example, assume that an 8086-based microcomputer is connected
to three printers via three separate ports. Now, in order to output to each one of the
printers, separate programs are required if fixed port addressing is used. However,

Intel 8086 3 79

with variable port addressing, one can write a general subroutine to output to the
printers and then supply the address of the port for a particular printer in which data
output is desired to register DX in the subroutine.

9.5.2 Arithmetic Instructions
Table 9.2 shows the 8086 arithmetic instructions. These operations can be performed
on four types of numbers: unsigned binary, signed binary, unsigned packed decimal, and
signed packed decimal numbers. Binary numbers can be 8 or 16 bits wide. Decimal
numbers are stored in bytes; two digits per byte for packed decimal and one digit per byte
for unpacked decimal with the high 4 bits filled with zeros.

Let us explain some of the instructions in Table 9.2.
Consider ADC mendreg , mem/reg. This instruction adds source and destination data
along with the carry flag, and stores the result in destination. There is no ADC mem
, mem instruction. All flags in the low byte of the Flag register are affected. For
example, if (AX) = OO2O,,, (BX) = 03001,, CF = 1, (DS) = 2020,,, and (20500) =

0100,,, then, after ADC AX, [BX] , the contents of register AX = 0020 + 0100 + 1 =

0121,,; CF = 0, PF = 0 (Result with odd Parity), AF = 0, ZF = 0 (Nonzero Result), SF
= 0 (Most Significant bit of the result is zero), and OF = 0.
Consider SBB m e d r e g , mem/reg. This instruction subtracts source data and the
carry flag from destination data, and stores the result in destination. There is no SBB
mem , mem instruction. All flags in the low byte of the Flag register are affected. For
example, if (CH) = 0316, (DL) = 02,,, and CF = 1, then, after SBB CH,DL, the contents
of register CH = 03 - 02 - 1 = OO,,.

1 1 1 1 1 1 1 + Intermediate Carries
Using two’s complement subtraction, (CH) = 0000 001 1 (+3)
Add two’s complement of 3 (DL plus CF) = + 11 1 1 1101 (-3)

--_____________________
Final Carry -1 0000 0000

Final carry is one’s complemented after subtraction to reflect the correct borrow.
Hence, CF = 0. Also, PF = 1 (Even parity; number of 1’s in the result is 0 and 0 is an
even number), AF = 1, ZF = 1 (Zero Result), SF = 0 (Most Significant bit of the result
is zero), and OF = C, 0 C, = 1 0 1 = 0.
The Compare (CMP) instruction subtracts source from destination providing no
result of subtraction; all status flags are affected based on the result. Note that the
SUBTRACT instruction provides the result and also affects the status flags. Consider
CMP DH, BL . If prior to execution of the instruction, (DH) = 40H and (BL) = 30H
then after execution of CMP DH, BL, the flags are: CF = 0, PF = 0, AF = 0, ZF = 0, SF
= 0, and OF = 0; result 10H is not provided. Suppose it is desired to find the number of
matches for an 8-bit number in an 8086 register such as DL in a data array of 50 bytes
in memory pointed to by BX in DS. The following instruction sequence with CMP
DL, [BX] rather than SUB DL, [BX] can be used :

MOV AL, 0

MOV CX,50 ;

START : CMP DL, [BXI ;
JZ MATCH ;

JM P COWN
MATCH : INC AL

Clear AL to 0, AL to hold number of
matches
Initialize array count
Compare the number to be matched in DL
with a data byte in the array.If there i s
a match, ZF=l. Branch to label MATCH.
Unconditional jump to label DCWN.
increment AL to hold number of matches.

3 80 Fundamentals of Digital Logic and Microcomputer Design

TABLE 9.2 8086 Arithmetic Instructions

Addition

ADD a, b

ADC a, b

INC regimem

AAA ASCII adjust for addition

DAA

Add byte or word

Add byte or word with carry

Increment byte or word by one

Decimal adjust [AL], to be used
after ADD or ADC

Subtraction

SUB a, b

SBB a, b

DEC regimem

NEG reg/mem

CMP a, b

AAS ASCII adjust for subtraction

DAS

Subtract byte or word

Subtract byte or word with borrow

Decrement byte or word by one

Negate byte or word

Compare byte or word

Decimal adjust [AL] after SUB or SBB

MUL regimem Multiply byte or word unsigned for byte

I M U L regimem Integer multiply byte or word
(signed)

[AX] - [AL] . [memireg]

for word

[DX][AX] + [AX] . [me&
reg1

Division

nIv regimem Divide byte or word unsigned “,=I
16 + 8 bit; [AX] + [mem/regl
[AH] t remainder IDIV regimem Intcger divide byte or word (signed)

[AL] t quotient
[DXAX]

32+16 bit; [DX:AX]+ [mem/regl
[DX] t remainder
[AX] t quotient

AAD

CBW

CWD

ASCII adjust for division

Convert byte to word

Convert word to double word

a = “reg” or “mem,” b = “reg” or “mem” or “data.”

DOWN : INC BX ; Increment BX to point to next data byte.
LOOP START ; Decrement CX by 1, go back to START if

; CX #O.If CX = 0, go to the next
; instruction

; A L contains the number of matches

Intel 8086 38 1

In the above, if SUB DL, [BX] were used instead of CMP DL, [BX] , then
the number to be matched needed to be loaded after each subtraction because the
contents of DL would have been lost after each SUB. Since we are only interested in the
match rather than the result, CMP DL, [BX 3 instead of SUB DL, [BX] should be
used in the above.

Numerical data received by an 8086-based microcomputer from a terminal is usually
in ASCII code. The ASCII codes for numbers 0 to 9 are 30H through 39H. Two
8-bit data items can be entered into an 8086-based microcomputer via a keyboard.
The ASCII codes for these data items (with 3 as the upper nibble for each type) can
be added. AAA instruction can then be used to provide the correct unpacked BCD.
Suppose that ASCII codes for 2 (32,& and 5 (35,J are entered into an 8086-based
microcomputer via a keyboard. These ASCII codes can be added and then the result
can be adjusted to provide the correct unpacked BCD using the AAA instruction as
follows:

ADD CL, DL ; (CL) = 32,, = ACSII f o r 2
(DL) = 35,, = ASCII f o r 5

; R e s u l t (CL) = 67,,
MOV AL, CL ; Move ASCII r e s u l t

; i n t o AL b e c a u s e AAA
; a d j u s t s only (AL)

AAA (AL) = 07, u n p a c k e d
; BCD f o r 7

Note that, in order to print the unpacked BCD result 07,, on an ASCII printer, (AL) =

07 can be ORed with 30H to provide 37H, the ASCII code for 7.
In case of an invalid BCD digit after addition, AAA instruction can be used to obtain
correct unpacked BCD as follows:

ADD BH, DL ;

MOV AL, BH ;

AAA

(BH) = 38,, = ACSII f o r 8
(DL) = 37,, = ASCII f o r 7

R e s u l t (BH) = 6F,,
Move ASCII r e s u l t
i n t o AL b e c a u s e AAA ge t s r i d . o f 6 i n
t h e u p p e r 4 b i t s of AL, a n d a d d s 6 t o
F f o r BCD c o r r e c t i o n t o p r o v i d e t h e
correct u n p a c k e d BCD f o r 5,(AL) = 05,
w i t h CF=1 so t h a t correct r e s u l t i s
15 decimal

DAA is used to adjust the result of adding two packed BCD numbers in AL to provide
a valid BCD number. If, after the addition, the low 4 bits of the result in AL is greater
than 9 (or if AF = l), then the DAA adds 6 to the low 4 bits of AL. On the other hand.
if the high 4 bits of the result in AL are greater than 9 (or if CF = I) , then DAA adds
60H to AL.
DAS may be used to adjust the result of subtraction in AL of two packed BCD numbers
to provide the correct packed BCD. While performing these subtractions, any borrows
from low and high nibbles are ignored, For example, consider subtracting packed BCD
55 in DL from packed BCD 94 in AL:
Packed BCD 55 = 0101 0101, and Packed BCD 94 = 1001 0100,.

Packed BCD 94 = 1001 0100
Add Two's complement of 0101 0101 = 1010 101 1

Ignore Carry -+ 1 001 1 I 1 1 I = 3FH

3 82 Fundamentals of Digital Logic and Microcomputer Design

I FFFF

.

FFFE

The invalid BCD digit (F) in the low 4 bits of the result can be corrected by subtracting
6 from F:
Low Nibble = FH = 11 11

-6 = l o 1 0

Ignore Carry 4 1 1001 This will provide the correct BCD result of 39.

The following 8086 instruction sequence will accomplish this:
SUB AL,DL ; [AL] = 3FH
DA S : [A L] = 39

For 8-bit by 8-bit signed or unsigned multiplication between the contents of a memory
location and AL, assembler directive BYTE PTR can be used. Example: IMUL BYTE
PTR[BX]. On the other hand, for 16-bit by 16-bit signed or unsigned multiplication
between the 16-bit contents of a memory location and register AX, assembler directive
WORD PTR can be used. Example: MUL WORD PTR[SI].
Consider 16 x 16 unsigned multiplication, MUL WORD PTR [BX] . If (BX) = 0050H,
(DS) = 3000H, (30050H) = 0002H, and (AX) = 0006H, then, after MUL WORD PTR
[BX] , (DX) = OOOOH and (AX) = 000CH.

MUL m e d r e g provides unsigned 8 x 8 or unsigned 16 x 16 multiplication. Consider
MUL BL. If (AL) = 20,, and (BL) = 02,,, then, after MUL BL, register AX will contain
0O4Ol6.
I M U L m e d r e g provides signed 8 x 8 or signed 16 x 16 multiplication. As an example,
if (CL) = FDH = -310 and (AL) = FEH = -2,,, then, after IMUL CL, register AX
contains 0006H.
Consider IMUL DH. If (AL) = FF,, = - l l o and (DH) = 02,,, then, after I M U L DH,
register AX will contain FFFE,, (-2,0) .
D I V m e d r e g performs unsigned division and divides (AX) or (DX:AX) registers by
reg or mem. For example, if (AX) = 000516 and (CL) = O2,,, then, after D I V CL, (AH)
= 01 I 6 = Remainder and (AL) = 02,,, Quotient.
Consider D I V BL. If (AX) = 0009H and (BL) = 02H, then, after D I V BL,

(AH) = remainder = 0 1 H
(AL) = quotient = 04H

I D I V m e d r e g performs signed division and divides 16-bit contents of AX by an 8-bit
number in a register or a memory location, or 32-bit contents of DX:AX registers by
a 16-bit number in a register or a memory location. Consider IDIV CX. If (CX) = 2
and (DXAX) = -Sl0 = FFFFFFFB,,, then, after this IDIV, registers DX and AX will
contain:

Note that in the 8086, after IDIV, the sign of remainder is always the same as the
dividend unless the remainder is equal to zero. Therefore, in this example, because the
dividend is negative (-510), the remainder is negative (-1 ,o).

Intel 8086 383

For 16-bit by 8-bit signed or unsigned division of the 16-bit contents of AX by 8-bit
contents of a memory location, assembler directive BYTE PTR can be used. Example:
IDIV BYTE PTR[BX]. On the other hand, for 32-bit by 16-bit signed or unsigned
division of the 32-bit contents of DXAX by 16-bit contents of a memory location,
assembler directive WORD PTR can be used. Example: MUL WORD PTR[SI].
Consider I D I V WORD PTR [BX] . If (BX) = 0020H, (DS) = 2000H, (20020H) =

0004H, and (DX) (AX) = 0000001 lH, then, after I D I V WORD PTR [BX] ,
(DX) = remainder = OOOlH
(AX) = quotient = 0004H

Consider CBW. This instruction extends the sign from the AL register to the AH
register. For example, if AL = F1 ,,, then, after execution of CBW, register AH will
contain FF,, because the most significant bit of F1 16 is 1. Note that the sign extension
is very useful when one wants to perform an arithmetic operation on two signed
numbers of different lengths. For example. the 16-bit signed number 002OI6 can be
added with the 8-bit signed number El , 6 by sign-extending E l as follows:

0020, ,=0000 0 0 0 0 0 0 1 o o o o 0 (3 2 , ~)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (+1 lo)
Sign
extension

E l , , $ l 1 1 1 1 1 111 1 1 1 0 0001(-3110)

WWWW
Ignore / O 0 0 1
carry

Another example of sign extension is that, to multiply a signed 8-bit number by a
signed 16-bit number, one must first sign-extend the signed 8-bit into a signed 16-bit
number and then the instruction I M U L can be used for 16 x 16 signed multiplication.
For unsigned multiplication of a 16-bit number by an 8-bit number, the 8-bit number
must be zero extended to 16 bits using logical instruction such as AND before using
the MUL instruction.
CWD sign-extends the AX register into the DX register. That is, if the most significant
bit of AX is 1, then FFFF,, is stored into DX.
AAD converts two unpacked BCD digits in AH and AL to an equivalent binary number
in AL after converting them to packed BCD. AAD must be used before dividing two
unpacked BCD digits in AX by an unpacked BCD byte. For example, consider
dividing (AX) = unpacked BCD 0508 (58 Packed BCD) by (DH) = 07H. (AX) must
first be converted to binary by using AAD. The register AX will then contain 003AH
= 58 Packed BCD. After D I V DH, (AL) = quotient = 08 (unpacked BCD), and (AH)
= remainder 02 (unpacked BCD).
AAM adjusts the product of two unpacked BCD digits in AX. If (AL) = 03H (unpacked
BCD for 3) = 00000011, and (CH) = 08H (unpacked BCD for 8) = 0000 IOOO,,
then, after MUL CH, (AX) = 000000000001 1000, = 0018H, and, after using AAM,
(AX) = 00000010000001 00, = unpacked 0204. The following instruction sequence
accomplishes this:

MUL CH
AAM

Note that the 8086 does not allow multiplication of two ASCII codes. Therefore,
before multiplying two ASCII bytes received from a terminal, one must make the
upper 4 bits of each one of these bytes zero, multiply them as two unpacked BCD
digits, and then use AAM for adjustment to convert the unpacked BCD product back to

3 84 Fundamentals of Digital Logic and Microcomputer Design

ASCII by ORing the product with 3030H. The result in decimal can then be printed on
an ASCII printer.

9.5.3 Bit Manipulation Instructions
The 8086 provides three groups of bit manipulation instructions. These are logicals, shifts,
and rotates, as shown in Table 9.3. The operand to be shifted or rotated can be either 8- or
16-bit. Let us explain some of the instructions in Table 9.3

Consider AND B H , 8 F H . If prior to execution of this instruction, (BH) = 72H, then
after execution of AND B H , 8 F H , the following result is obtained :

(BH)= 72H= 0111 0010
AND 8 F H = 1000 1111

(BH) = 0000 0010
ZF = 0 (Result is nonzero), SF = 0 (Most Significant Bit of the result is 0), PF = 0
(Result has odd parity). CF, AF, and OF are always cleared to 0 after logic operation.
The status flags are similarly affected after execution of other logic instructions such
as OR, XOR, NOT, and TEST.
The AND instruction can be used to perform a masking operation. If the bit value in
a particular bit position is desired in a word, the word can be logically ANDed
with appropriate data to accomplish this. For example, the bit value at bit 2 of an 8-
bit number 0100 IY 10 (where unknown bit value of Y is to be determined) can be
obtained as follows: 0 1 0 0 1 Y 1 0 -- 8-bit number

AND 0 0 0 0 0 1 0 0-- Masking data

0 0 0 0 OY 0 0--Result
-____-_-_____________

If the bit value Y at bit 2 is I , then the result is nonzero (Flag Z=O); otherwise, the
result is zero (Flag Z=1) . The Z flag can be tested using typical conditional JUMP
instructions such as JZ (Jump if Z=1) or JNZ (Jump if Z=O) to determine whether Y

TABLE 9.3 8086 Bit Manipulation Instructions
Lo picals

NOT medreg
AND a, b
OR a, b
XOR a, b
TEST a, b

SHLiSAL medreg, CNT

SHWSAR medreg, CNT

ROL medreg, CNT

NOT byte or word
AND byte or word
OR byte or word
Exclusive OR byte or word
Test byte or word

Shift Iogical/arithmetic left byte or word
Shift logical/arithmetic right byte or word

Rotate left byte or word

Sh ijk

Rotates

ROR medreg, CNT

RCL medreg, CNT

Rotate right byte or word
Rotate through carry left byte or word

RCR medreg, CNT
a = “reg” or “mem,” b = “reg” or “mem” or “data,” CNT = number of times to be shifted.

Rotate through carry right byte or word

If CNT > 1, then CNT is contained in CL. Zero or negative shifts and rotates are illegal.
If CNT = 1 then CNT is immediate data. Up to 255 shifts are allowed.

Intel 8086 385

is 0 or 1. This is called masking operation. The AND instruction can also be used
to determine whether a binary number is ODD or EVEN by checking the Least
Significant bit (LSB) of the number (LSB=O for even and LSB=1 for odd).
Consider OR DL , AH . If prior to execution of this instruction, [DL] = A2H and [AH]
= 5DH, then after exection of OR DL , AH , the contents of DL are FFH. The flags
are affected similar to the AND instruction. The OR instruction can typically be used
to insert a 1 in a particular bit position of a binary number without changing the
values of the other bits. For example, a 1 can be inserted using the OR instruction at
bit number 3 of the 8-bit binary number 0 1 1 1 0 0 1 1 without changing the values
of the other bits as follows:

OR
0 1 1 1 0 0 1 1 -- 8-bit number
0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit number 3

0 I 1 1 1 0 1 1 --Result
Consider XOR CX, 2 . If prior to execution of this instruction, (CX) = 2342H,
then after execution of XOR CX, 2 , the 16-bit contents of CX will be 2340H. All
flags are affected in the same manner as the AND instruction. The Exclusive-OR
instruction can be used to find the ones complement of a binary number by XORing
the number with all 1's as follows:

0 1 0 I 1 1 0 0 - - 8-bit number
XOR 1 1 1 1 1 1 1 I - - data

..........................
1 0 10 0 0 I 1 -- Result (Ones Complement of the

8-bit number 0 1 0 1 1 1 0 0)
TEST CL, 05H logically ANDs (CL) with 00000101, but does not store the result in
CL. All flags are affected.
Consider SHR mendreg, CNT or SHL mendreg, CNT. These instructions are logical
right or left shifts, respectively. The CL register contains the number of shifts if the
shift is greater than 1. If CNT = 1, the shift count is immediate data. In both cases, the
last bit shifted out goes to CF (carry flag) and 0 is the last bit shifted in. For example,
SHL BL,l logically shifts the contents of BL one bit to the left. Note that the shift
count '1' is immediate data. Now prior to execution of this instruction, if (BL) = A1 ,,
and CF = 0, then after SHL Bl,l, the contents of BL are 42,, and CF = 1.
Consider the 8086 instruction sequence,

MOV CL,2 ; shift count 2 is moved into CL
SHR DX,CL; Logically shifts (DX) twice to right

Prior to execution of the above instruction sequence, if (DX) = 97,, and CF = 0, then
after execution
of the above instruction sequence, (DX) = 25,, and CF = 1.

Figure 9.5 shows SAR mendreg, CNT or SAL mendreg, CNT. Note that a true arithmetic
left shift does not exist in 8086 because the sign bit is not retained after execution of
SAL. Also, SAL and SHL perform the same operation except that SAL sets OF to 1 if
the sign bit of the number shifted changes during or after shifting. This will allow one
to multiply a signed number by 2" by shifting the number n times to left; the result
is correct if OF = 0 while the result is incorrect if OF = 1. Since the execution time
of the multiplication instruction is longer, multiplication by shifting may be more
efficient when multiplication of a signed number by 2" is desired.

386 Fundamentals of Digital Logic and Microcomputer Design

SAR SAL

FIGURE 9.5 8086 SAR and SAL instructions

ROL ROR
150~7 . . . 1 0 15or7 . . . 0

. .

FIGURE 9.6 8086 ROR and ROL instructions

RCL RCR

fl .,.,., ,~ 1 0

F 1 5 G . . . 4
u

FIGURE 9.7 8086 RCL and RCR instructions

ROL medreg, CNT rotates [medreg] left by the specified number of bits (Figure 9.6).
The number of bits to be rotated is either 1 or contained in CL. For example, if CF =

0, (BX) = 0010,,, and (CL) = 03 ,h then, after ROL BX, CL, register BX will contain
0080,, and CF = 0. On the other hand, ROL BL, 1 rotates the 8-bit contents of BL
1 bit to the left. ROR medreg, CNT is similar to ROL except that the rotation is to the
right (Figure 9.6).
Figure 9.7 shows RCL medreg , CNT and RCR medreg , CNT .

9.5.4 String Instructions
The word “string” means that an array of data bytes or words is stored in consecutive
memory locations. String instructions are available to MOVE, COMPARE, or SCAN for a
value as well as to move string elements to and from AL or AX. The instructions, listed in
Table 9.4, contain “repeat” prefixes that cause these instructions to be repeated in hardware,
allowing long strings to be processed much faster than if done in a software loop.
Let us explain some of the instructions in Table 9.4.

MOVS WORD or BYTE moves 8- or 16-bit data from the memory location
addressed by SI in DS to the memory location addressed by DI in ES. SI and
DI are incremented or decremented depending on the DF flag. For example, if
(DF) = 0, (DS) = 1000,,, (ES) = 3000,,, (SI) = 0002,,, (DI) = 0004,,, and (10002)
= 1234,,, then, after MOVS WORD, (30004) = 1234,,, (SI) = 0004,,, and (DI) =

TABLE 9.4 8086 String Instructions

R E P

REPE/REPZ.

REPNE/REPNZ

MOVS BYTE/WORD

CMPS BYTE/WORD

SCAS BYTE~WORD

LODS BYTE/WORD

STOS BYTE/WORD

Repeat MOVS or S T O S until CX = 0
Repeat CMPS or SCAS until ZF = 1 or C x = 0
Repeat CMPS or SCAS until ZF = 0 or CX = 0
Move byte or word string
Compare byte or word string
Scan byte or word string
Load from memory into AL or AX
Store AL or AX into memory

Intel 8086 387

OOO6,,. Assuming (10002,J = 1234)6, the following 8086 instruction sequence
will accomplish the above:

CLD ; D F = 0
MOV A X r l O O O H ; D S = l O O O H
MOV D S , A X

MOV BXr3000H ; E S = 3000H
MOV E S , B X
MOV SIr0002H ; I n i t i a l i z e SI t o OOOZ,,
MOV DI r0004H ; I n i t i a l i z e D I t o 0004,,
MOVS WORD

Note that DS (source segment) in the MOVS instruction can be overridden while
the destination segment, ES is fixed, cannot be overridden. For example, the
instruction ES: MOVS WORD will override the source segment, DS by ES while
the destination segment remains at ES so that data will be moved in the same
extra segment, ES.
REP repeats the instruction that follows until the CX register is decremented to
0. For example, the following instruction sequence uses LOOP instruction for
moving 50 bytes from source to destination:
MOV CX,50 ; Initialize CX to 50
BACK: MOVSB ; Move a byte from source array to destination

LOOP BACK ; array in the direction based on DF. LOOP
: decrements CX by 1
: and goes to label BACK if CX f O . If CX =

; 0,goes to the next instruction. Thus, 50 bytes
; are moved

The above instruction sequence can be replaced using REP prefix as follows:

MOV CX,50 ; Initialize CX to 50
REPMOVSB ; Move a byte from source array to destination

; array in the direction based on DF. REP
; decrements CX by 1
: and executes MOVSB 50 times.

; Thus, 50 bytes are moved.
A REPE/REPZ or REPNE/REPNZ prefix can be used with CMPS or SCAS to
cause one of these instructions to continue executing until ZF = 0 (for the REPNE/
REPNZ prefix) or cx = 0. REPE and REPZ also provide a similar purpose. If
CMPS is prefixed with REPE or REPZ, the operation is interpreted as “compare
while not end-of-string (CX # 0) or strings are equal (ZF = I).” If CMPS is
preceded by REPNE or REPNZ, the operation is interpreted as “compare while
not end-of-string (CX # 0) or strings not equal (ZF = O).” Thus, repeated CMPS
instructions can be used to find matching or differing string elements.
If SCAS is prefixed with REPE or REPZ, the operation is interpreted as “scan
while not end-of-string (CX # 0) or string-element = scan-value (ZF = 1)” This
form may be used to scan for departure from a given value. If SCAS is prefixed
with REPNE or REPNZ, the operation is interpreted as “scan while not end-of-
string (CX # 0) or string-element is not equal to scan-value (ZF = O).” This form
may be used to locate a value in a string.
Consider SCAS WORD or BYTE. This compares the memory with AL or AX. If
(DI) = 0000,,, (ES) = 2000,,, (DF) = 0, (20000) = 05,,, and (AL) = 03,,, then, after

388 Fundamentals of Digital Logic and Microcomputer Design

SCAS BYTE, DI will contain 0001 1 6 because (DF) = 0 and all flags are affected
based on the operation (AL) - (20000).
CMPS WORD or BYTE subtracts without any result (affects flags accordingly)
8- or 16-bit data in the source memory location addressed by SI in DS from the
destination memory location addressed by DI in ES. SI and DI are incremented
or decremented depending on the DF flag. For example, if (DF) = 0, (DS) =

lOOO,,, (ES) = 3000,,, (SI) = 0002,,, (DI) = 0004,,, (10002) = 1234,,, and (30004)
= 1234,, then, after CMPS WORD, CF = 0, P F = 1, A F = 1 , Z F = 1, S F = 0 , OF =

0, (10002) = 1234,,, and (30004) = 1234, 6 , (SI) = 0004,,, and (DI) = 0006,,.
LODS BYTE or WORD loads a byte into AL or a word into AX respectively from
a string in memory addressed by SI in DS ; SI is then automatically incremented
or decremented by 1 for a byte or by 2 for a word based on DF. For example, prior
to execution of LODS BYTE, if (SI)= 0020H, (DS) = 3000H, (30020H) = 05H,
DF = 0, then after execution of LODS BYTE, 05H is loaded into AL; SI is then
automatically incremented to 0021H since DF = 0. STOS BYTE or WORD, on
the other hand, stores a byte in AL or a word in AX respectively into a string
addressed by DI in ES. DI is then automatically incremented or decremented by
1 for a byte or by 2 for a word based on DF.

9.5.5 Unconditional Transfer Instructions
Unconditional transfer instructions transfer control to a location either in the current
executing memory segment (intrasegment) or in a different code segment (intersegment).
Table 9.5 lists the unconditional transfer instructions.

The 8086 CALL instructions provide the mechanism to call a subroutine into
operation while the RET instruction placed at the end of the subroutine transfers control
back to the main program. There are two types of 8086 CALL instruction. These are
intrasegment CALL (IP changes, CS is fixed), and intersegment CALL (both IP and CS
are changed). Intrasegment or Intersegment CALL is defined by the various operands of
the CALL instruction. For example, the three operands NEAR PROC, mem16, and reg16
define intrasegment CALLS to a subroutine. Upon execution of the intrasegment CALL
with any of the three operands, the 8086 pushes the current contents of IP onto the stack;
the SP is then decremented by 2. The saved IP value is the offset that contains the next
instruction to be executed in the main program. The 8086 then places a new 16-bit value (
Offset of the first instruction in the subroutine) into IP. The three types of operands of the
intrasegment CALL will be discussed next.

Consider CALL NEAR PROC. The assembler directive NEAR specifies the
CALL instruction with relative addressing mode. This means that NEAR determines a 16-
bit displacement, and the offset is computed relative to the address of the CALL instruction.
With 16-bit displacement, the range of the CALL instruction is limited to -32766 to + 32765
(0 being positive). As an example, consider the following 8086 instruction sequence:
CODE SEGMENT

ASSUME C S :CODE, D S : DATA, SS : STACK

TABLE 9.5 8086 Unconditional Transfers

CALL reg/mem/disp 16 Call subroutine

RET or RET disp 16 Return from subroutine

JMP disp8/disp 16 /reg1 6/mem16 Unconditional jump

Intel 8086 389

MULT I
HLT
PROC NEAR

_ _ _ _ _ _
RE T

MULTI ENDP
CODE ENDS

A
subroutine called MULTI is also resident in the same code segment named CODE. Since
this subroutine is in the same code segment as the main program containing the CALL
instruction, the contents of CS are not altered to access it. Use of the assembler directive
NEAR in the statement MULTI PROC NEAR tells the 8086 assembler that the main
program and the subroutine are located in the same code segment.

The instructions CALL meml6 and CALL reg16 specify a memory location or a
16-bit register such as BX to hold the offset to be loaded into IP. Thus, these two CALL
instructions use indirect addressing mode. An example of CALL meml6 is CALL [BX]
which loads the 16-bit value stored in the memory location pointed to by BX into IP. The
physical address of the offset is calculated from the current DS and the contents of BX.
The first instruction of the subroutine is contained in the address computed from new IP
value and current CS. Next, typical examples of CALL reg16 are CALL BX and CALL
BP; these instructions load the 16-bit contents of BX or BP into IP. The starting address
(physical address) of the subroutine is computed from the new value of IP and the current
CS contents. Note that intrasegment CALL instructions are used when the main program
and the subroutine are located in the same code segment.

Intersegment CALL instructions are used when the main program and the
subroutine are located in two different code segments. The two intersegment CALL
instructions are CALL FAR PROC and CALL mem32. These instructions define a new
offset for IP and a new value for CS. Upon execution of these two instructions, the 8086
pushes the current contents of IP and CS onto the stack, the new values of IP and CS are
then loaded. For example consider CALL FAR PROC which loads the new value of IP
from the next two bytes, and the new value of CS from the following two bytes. As an
example, consider the following 8086 instruction sequence:
CODE SEGMENT

In the above, the main program is located in a segment named CODE.

ASSUME CS :CODE, DS : DATA, SS :STACK
_ _ _ _ _ _ _ _ _ _ _ _

CODE
SUBR
MULT I

HLT
ENDS
SEGMENT
PROC FAR

3 90 Fundamentals of Digital Logic and Microcomputer Design

ASSUME CS : SUBR

- - -_
RE T

MULTI ENDP
SUBR ENDS

In the above, the main program is located in a segment named CODE. A
subroutine called MULTI is in a segment named SUBR. Since this subroutine is in a
different code segment from the CALL instruction, the contents of CS must be altered to
access it. Use of the assembler directive FAR in the statement MULTI PROC FAR tells
the 8086 assembler that the main program and the subroutine are located in different code
segments. When the assembler translates the CALL instruction, it will assign the value of
SUBR to CS, and will place the offset of the first instruction of the subroutine in SUBR as
the IP value in the instruction.

CALL FAR [SI] stores the pointer for the subroutine as four bytes in data memory.
The location of the first byte of the four-byte pointer is specified indirectly by one of the
8086 registers (SI in this case). In this example, the 20-bit physical address of the first byte
of the four-byte pointer is computed from DS and S1. Finally, CALL FAR [BX] pushes
CS and IP onto stack and loads IP and CS with the contents of four consecutive bytes
pointed to by BX.

RET instruction is usually placed at the end of a subroutine which pops IP
(pushed onto the stack by the intrasegment CALL instruction) or both IP and CS (pushed
onto the stack by the intersegment CALL instruction), and returns control to the main
program. RET disp 16, on the other hand, adds 16-bit value (disp 16) to SP after placing
the return address into IP (for intrasegment CALL) or into IP and CS ((for intersegment
CALL). The main objective of inclusion of the 16-bit displacement operand with the RET
instruction is to discard the parameters that were saved onto the stack before execution of
the subroutine CALL instruction.

Similar to the CALL instruction, the jump instruction in Table 9.5 can be either
intrasegment JMP (Jump within the current code segment; only IP changes) or intersegment
JMP (Jump from one code segment to another code segment; both CS and 1P contents are
modified). Intrasegment Jump can have an operand with a short label, near label, reg16 or
meml6. For example, the short label and near label operands use relative addressing mode.
This means that the Jump is performed relative to the address of the JMP instruction. For
jumps with short label, IP changes and CS is fixed. JMP d i s p 8 adds the second object
code byte (signed 8-bit displacement) to (IP + 2), and (CS) is unchanged. With an 8-bit
signed displacement, jump with a short label operand is allowed in the range from -128 to
f 127 (0 being positive) from the address of the JMP instruction. Near label operand allows
a JMP instruction to have a signed 16-bit displacement with a range -32K to +32K bytes
from the address of the JMP instruction. An example of JMP short label or near label is
JMP START. The 8086 assembler automatically computes the value of the displacement
START at assembly time. The programmer does not have to worry about it. Based upon
the displacement size of START (in this case), the assembler determines whether the JMP
is to be performed with short or near label.

JMP reg16 or JMP meml6 specifies the JUMP address respectively by the 16-
bit contents of of a register or a memory location. The range for this JMP is from -32K to
+32K bytes from the address of the JMP. An example of JMP reg16 is JMP SI which

Intel 8086

k d
Name Alternate Name

(JUMP if result zero)
J E disp 8 J Z displ
(JUMP if equal)
J N E disp8 J N Z disp 8

39 1

Unsipned
Name Allernate Name

J E disp8 J Z disp8
(JUMP if equal)
J N E disp8 J N Z dim8

(JUMP if zero)

(JUMP if greater)

J G E disp8 JNL disp8
(JUMP if greater or
equal)
J L disp8 JNGE disp8
(JUMP if less than)

J L E disp8 J N G disp8
(JUMP if less or

(JUMP if not less or
equal)

(JUMP if not less)

(JUMP if not greater or
equal)

(JUMP if not greater)

(JUMP knot equal) (JUMP if not zero) I (JUMP knot equal) (JUMP if not zero)
J G disp8 JNLE disp8 I J A disp8 J N B E disp8

(JUMP if above)

JAE displ JNB disp8
(JUMP if above or
equal)
J B disp8 J N A E disp8
(JUMP if below)

J B E disp8 J N A disp8
(JUMP if below or

(JUMP if not below or
equal)

(JUMP if not below)

(JUMP if not above or
equal)

(JUMP if not above)

copies the contents of SI into IP. SI contains the 16-bit displacement. The 8086 computes
the physical address from the current CS value and the new IP value. An example of JMP
meml6 is JMP [DI] which uses the contents of DI as the address of the memory location
containing the offset. This offset is placed into IP. The physical address is computed from
this IP value and the current code segment value.

The intersegment JMP instruction includes operands with far label and mem32.
Jump with far label uses a 32-bit immediate operand ; the first 16 bits are loaded into IP
while the next 16 bits are loaded into CS. An example of JMP with far label is JMP FAR
BEGIN (or some 8086 assemblers use JMP FAR PTR BEGIN) which unconditionally
branches to a label BEGIN in a different code segment.

Finally, JMP mem32 indirectly specifies the offset and the code segment values.
IP and CS are loaded from the 32-bit contents of four consecutive memory locations; each
memory location contains a byte. As an example, JMP FAR [S I 3 loads IP and CS with
the contents of four consecutive bytes pointed to by SI in DS.

9.5.6 Conditional Branch Instructions
All 8086 conditional branch instructions use %bit signed displacement. That is, the
displacement covers a branch range of -128 to +127, with 0 being positive. The structure
of a typical conditional branch instruction is as follows:

If condition is true,
then IP - IP + disp8,
otherwise IP - IP + 2 and execute next instruction.

There are two types of conditional branch instructions. In one type, the various
relationships that exist between two numbers such as equal, above, below, less than, or
greater than can be determined by the appropriate conditional branch instruction after a
COMPARE instruction. These instructions can be used for both signed and unsigned
numbers. When comparing signed numbers, terms such as “less than” and “greater than”
are used. On the other hand, when comparing unsigned numbers, terms such as “below
zero” or “above zero” are used.

Table 9.6 lists the 8086 signed and unsigned conditional branch instructions.
Note that in Table 9.6 the instructions for checking which two numbers are “equal” or

3 92 Fundamentals of Digital Logic and Microcomputer Design

TABLE 9.7 8086 Conditional Branch Instructions Affecting Individual Flags
J C disp8
J N C disp8
J P disp8
JNP disp8
J O disp8
J N O disp8
J S disp8
JNS disp8
J Z disp8
J N Z disp8

JUMP if carry, i.e., CF = 1
JUMP if no carry, is . , CF = 0
JUMP if parity, i.e., PF = 1
JUMP if no parity. i.e., PF = 0
JUMP if overflow, i.e., OF = 1
JUMP if no overflow, i t . , OF = 0
JUMP if sign, i.e., SF = 1
JUMP if no sign, i t . . SF = 0
JUMP if result zero, i.e.. ZF = 1
JUMP if result not zero, i.e., ZF = 0

TABLE 9.8
following.

8086 Instructions To Be Used after CMP A, B ; a and b are data in the

Signed “a ” and “b ” Unsigned “a“ and “b”
J G E disp8 i f a 2 b JAE disp8 i f a r b
J L disp8 i f a < b J B displ i f a < b
J G disp8 i f a > b J A disp8 i f a > b
JLE disp8 i f a s b JBE dispd i f a s b

“not equal” are the same for both signed and unsigned numbers. This is because when two
numbers are compared for equality, irrespective of whether they are signed or unsigned,
they will provide a zero result (ZF = 1) if they are equal and a nonzero result (ZF = 0) if
they are not equal. Therefore, the same instructions apply for both signed and unsigned
numbers for “equal to” or “not equal to” conditions. The second type of conditional branch
instructions is concerned with the setting of flags rather than the relationship between two
numbers. Table 9.7 lists these instructions.

Now, in order to check whether the result of an arithmetic or logic operation is
zero, nonzero, positive or negative, did or did not produce a carry, did or did not produce
parity, or did or did not cause overflow, the following instructions should be used: JZ,
JNZ, JS, JNS, JC, JNC, JP, JNP, JO, JNO. However, in order to compare two signed
or unsigned numbers (a in address A or b in address B) for various conditions, we use CMP
A, B, which will form u - b. and then one of the instructions in Table 9.8.

Now let us illustrate the concept of using the preceding signed or unsigned
instructions by an example. Consider clearing a section of memory word starting at B up to
and including A, where (A) = 3000,, and (B) = 2000,, in DS = lOOO,,, using the following
instruction sequence:

MOV AX, lOOOH
MOV DS, AX ;Initialize DS
MOV BX, 2000H
MOV CX, 3000H

AGAIN: MOV WORD PTR[BX], OOOOH
INC BX
INC BX
CMP CX, BX
JGE AGAIN

JGE treats CMP operands as twos complement numbers. The loop will terminate
when BX = 3002H. Now, suppose that the contents of A and B are as follows: (A) = 8500,,
, (B) = 0500,,

In this case, after CMP CX, BX is first executed,

Intel 8086 393

8500 - 0500
8000,,
1000000000000000
t
SF = 1, i.e., a negative number

Because SOOO,, is a negative number, theloop terminates.
The correct approach is to use a branch instruction that treats operands as unsigned

numbers (positive numbers) and uses the following instruction sequence:
MOV AXllOOOH
MOV DS,AX ; initialize DS
MOV BX10500H
MOV CX,8500H

INC BX
INC BX
CMP CX,BX
JAE AGAIN

AGAIN : MOV WORD PTR[BX], OOOOH

JAE will work regardless of the values of A and B.
Also, note that addresses are always positive numbers (unsigned). Hence,

unsigned conditional jump instruction must be used to obtain the correct answer. The
above examples are shown for illustrative purposes.

9.5.7 Iteration Control Instructions
Table 9.9 lists iteration control instructions. All these instructions have relative addressing
modes.

LOOP disp8 decrements the CX register by 1 without affecting the flags and then
acts in the same way as the JMP dsp8 instruction except that if CX z 0, then the JMP is
performed: otherwise, the next instruction is executed.

LOOPE (Loop while equal) / LOOPZ (Loop while zero), on the other hand,
decrements CX by 1 without affecting the flags. The contents of CX are then checked for
zero, and also the zero flag (ZF), that results from execution of previous instruction, is
checked for one. If CX # 0 and ZF = 1, the loop continues. If either CX = 0 or ZF = 0, the
next instruction after the LOOPE or LOOPZ is executed. The following 8086 instruction
sequence compares an array of 50 bytes with data byte OOH. As soon as a match is not
found or end of array is reached, the loop exits. LOOPE instruction can be used for this
purpose. The following 8086 instruction sequence illustrates this:

.

MOV SI, START ; Intialize SI with the starting
; offset of the array

TABLE 9.9

LOOP disp8

LOOPE/LOOPZ dispd

8086 Iteration Control Instructions

Decrement CX by 1 without affecting flags and branch to label if
CX * 0; otherwise, go to the next instruction.
Decrement CX by 1 without affecting flags and branch to label
if CX * 0 and ZF = 1; otherwise (CX=O or ZF=O), go to the next
instruction.
Decrement CX by 1 without affecting flags and branch to label if
CX * 0 and ZF = 0; otherwise (CX=O or ZF=l), go to the next
instruction.
JMP if register CX =O.

LOOPNE/LOOPNZ disp8

J C X Z disp8

394 Fundamentals of Digital Logic and Microcomputer Design

DEC SI
MOV CX,50 ; Initialize CX with array count

CMP BYTE PTR[SI],OOH ; Compare array element with OOH
LOOPE BACK

BACK: INC SI ; Update pointer

LOOPNE (LOOP while not equal) / LOOPNZ (Loop while not zero) is similar to
LOOPE / LOOPZ except that the loop continues if CX # 0 and ZF = 0. On the other hand,
If CX = 0 or ZF = 1, the next instruction is executed. The following 8086 instruction
sequence compares an array of 50 bytes with data byte OOH for a match. As soon as a match
is found or end of array is reached, the loop exits. LOOPNE instruction can be used for this
purpose. CX=O and ZF=O upon execution of the CMP instruction 50 times in the following
would imply that data byte OOH was not found in the array. The following 8086 instruction
illustrates this:

MOV SI, START ; Intialize SI with the starting offset of

DEC SI
MOV CX,50 ; Initialize CX with array count

CMP BYTE PTR[SI],OOH ; Compare array element with OOH
LOOPNE BACK

; the array

BACK: INC SI ; Update pointer

JCXZ START jumps to label START if CX = 0. This is normally used to skip a loop
(instruction sequence arbitrarily chosen inside the loop) as follows:

JCXZ DOWN ; If CX is already 0, skip
; the loop

; 16-bit contents of
; addressed by SI

; next value

; Loop until
; c x = o

BACK: SUB WORD PTR[SI], 4 ; Subtract 4 from the

ADD SI, 2 ; Update SI to point to

LOOPBACK ; Decrement CX by 1 and

DOWN: .

9.5.8 Interrupt Instructions
Table 9.10 shows the interrupt instructions. I N T n is a software interrupt instruction.
Execution of I N T n causes the 8086 to push current CS, IP , and Flags onto the stack, and
loads CS and IP with new values based on interrupt type n; an interrupt service routine is
written at this new address. I R E T at the end of the service routine transfers control to the
main program by popping old CS, IP, and flags from the stack.

The interrupt on overflow is a type 4 (n = 4) interrupt. This interrupt occurs if
the overflow flag (OF) is set and the I N T O instruction is executed. The overflow flag

TABLE 9.10 8086 Interrupt Instructions

I N T n Software interrupt instructions
(n can be 0-255,,)
I N T O Interrupt on overflow
I R E T Interrupt return

(INT 32,, - 255,, available to the user.)

Intel 8086 395

is affected, for example, after execution of a signed arithmetic (such as IMUL, signed
multiplication) instruction. The user can execute an I N T O instruction after the IMUL.
If there is an overflow, an error service routine written by the user at the type 4 interrupt
address vector is executed.

Interrupt instructions are discussed in detail later in this Chapter.

9.5.9 Processor Control Instructions
Table 9.11 shows the processor control functions. Let us explain some of the instructions
in Table 9.1 1. . ESC mem places the contents of the specified memory location on the data bus

at the time when the 8086 ready pin is asserted by the addressed memory device.
This instruction is used to pass instructions to a coprocessor such as the 8087 math
coprocessor which shares the address and data bus with the 8086.
LOCK prefix allows the 8086 to ensure that another processor does not take control
of the system bus while it is executing an instruction which uses the system bus.
LOCK prefix is placed in front of an instruction so that when the instruction with the
LOCK prefix is executed, the 8086 outputs a LOW on the LOCK pin of the 8086 for
the duration of the next instruction. This Lock signal is connected to an external bus
controller which prevents any other processor from taking over the system bus. Thus
the LOCK prefix is used in multiprocessing.
WAIT causes the 8086 to enter an idle state if the signal on the TEST input pin is not
asserted. This means that the 8086 will remain in the idle state until its TEST pin
is asserted. The WAIT instruction can be used to synchronize the 8086 with other
external hardware such as the 8087 (Math coprocessor).

-
-

9.6 8086 Assembler-DeDendent Instructions

Some 8086 instructions do not define whether an 8-bit or a 16-bit operation is to be executed.
Instructions with one of the 8086 registers as an operand typically define the operation as
8-bit or 16-bit based on the register size. An example is MOV CL, [BX] , which moves an
8-bit number with the offset defined by [BX] in DS into register CL; MOV CX, [BXI , on
the other hand, moves a 16-bit number from offsets (BX) and (BX + 1) in DS into CX

Instructions with a single-memory operand may define an 8-bit or a 16-bit
operation by adding B for byte or W for word with the mnemonic. Typical examples are

TABLE 9.1 1 8086 Processor Control Instructions
Set carry CF + 1
Clear carry CF - 0
Complement carry, CF - CF

STC
CLC
CMC
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CL I
N O P No operation
HLT Halt
WAIT
ESC mem
LOCK

-

Clear interrupt enable flag

Wait for TEST pin active
Escape to external processor
Lock bus during next instruction

3 96 Fundamentals of Digital Logic and Microcomputer Design

MULB [BX] and I D I V W [ADDR] . The string instructions may define this in two ways.
Typical examples are MOVSB or MOVS BYTE for 8-bit and MOVSW or MOVS WORD for
16-bit. Memory offsets can also be specified by including BYTE PTR for 8-bit and WORD
PTR for 16-bit with the instruction. Typical examples are INC BYTE PTR [BXI and INC
WORD PTR [B X] .

9.7 Typical 8086 Assembler Pseudo-Instructions or Directives

One of the requirements of typical 8086 assemblers such as MASM (discussed later) is that
a variable’s type must be declared as a byte (8-bit), word (16-bit), or double word (4 bytes
or 2 words) before using the variable in a program. Some examples are as follows:

BEGIN DB 0 ;BEGIN is declared as a byte offset with contents zero.
START DW 25F1H ;START is declared as a word offset with contents 25FlH.
PROG DD 0 ;PROG is declared as a double word (4 bytes) offset with

zero contents.
Note that the directive DD is not used by all assemblers. In that case, one should

use the directive DW twice to declare a 32-bit offset.
The EQU directive can be used to assign a name to constants. For example, the

statement NUMB EQU 2 1 H directs the assembler to assign the value 21H every time it
finds NUMB in the program. This means that the assembler reads the statement MOV BH ,
NUMB as MOV BH, 21H. As mentioned before, DB, DW, and DD are the directives used
to assign names and specific data types for variables in a program. For example, after
execution of the statement ADDR DW 2050H the assembler assigns 50H to the offset
name ADDR and 20H to the offset name ADDR + 1. This means that the program can use
the instruction MOV BX , [ADDR] to load the 16-bit contents of memory starting at the
offset ADDR in DS into BX. The DW sets aside storage for a word in memory and gives
the starting address of this word the name ADDR.

As an example, consider 16 x 16 multiplication. The size of the product should
be 32 bits and must be initialized to zero. The following will accomplish this:

Multiplicand DW 2A0 5H
Multiplier DW 052AH
Product DD 0

Some versions of MASM assembler such as version 5.1 0 use directive AT to assign a value
to an 8086 segment.
The 8086 addressing mode examples for the typical assemblers are given next:

MOV AH, BL Both source and destination are in register

MOV C H , 8 Source is in immediate mode and

MOV AX, [START] Source is in memory direct mode and

MOV C H , [B X] Source is in register indirect mode and

MOV [S I] , AL Source is in register mode and destination is

MOV [D I] , BH Source is in register mode and destination is

mode.

destination is in register mode.

destination is in register mode.

destination is in register mode.

in register indirect mode.

in register indirect mode.

3 97 Intel 8086

MOV BH, VALUE [DI] Source is in register indirect with
displacement mode and destination is
in register mode. VALUE is typically
defined by the EQU directive prior to this
instruction.

MOV AX, 4[DI] Source is in indexed with displacement
mode and destination is in register mode.

MOV S I , 2[BP] [DI] Source is in based indexed withdisplacement
mode and destination is in register mode.

OUT 30H, AL Source is in register mode and destination is
in direct port mode.

IN AX, DX Source is in indirect port mode and
destination is in register mode.

In the following paragraphs, more assembler directives such as SEGMENT, ENDS,
ASSUME, and DUP will be discussed.

9.7.1 SEGMENT and ENDS Directives
A section of a an 8086 program or a data array can be defined by the SEGMENT and ENDS
directives as follows:

START SEGMENT
x1 DB OFlH
x2 DB 50H
x3 DB 25H
START ENDS

The segment name is START (arbitrarily chosen). The assembler will assign
a numeric value to START corresponding to the base value of the data segment. The
programmer must use the 8086 instructions to load START into DS as follows:

MOV EX, START
MOV DS, EX

Note that all segment registers except CS must be loaded via a 16-bit general
purpose register such as BX. A data array or an instruction sequence between the SEGMENT
and ENDS directives is called a logical segment. These two directives are used to set up
a logical segment with a specific name. A typical assembler allows one to use up to 31
characters for the name without any spaces. An underscore is sometimes used to separate
words in a name, for example, PROGRAM BEGIN.

9.7.2 ASSUME Directive
As mentioned before, at any time the 8086 can directly address four physical segments,
which include a code segment, a data segment, a stack segment, and an extra segment. The
8086 may contain a number of logical segments containing codes, data, and stack. The
ASSUME directive assigns a logical segment to a physical segment at any given time. That
is, the ASSUME directive tells the assembler what addresses will be in the segment registers
at execution time.

For example, the statement ASSUME CS : PROGRAM 1 , DS : DATA 1, SS :
STACK 1 directs the assembler to use the logical code segment PROGRAM -1 as CS,
containing the instructions, the logical data segment DATA-l as DS, containing data, and
the logical stack segment STACK -1 as SS, containing the stack.

-

398

9.7.3
The DUP directive can be used to initialize several locations to zero. For example, the
statement START DW 4 DUP (0) reserves four words starting at the offset START
in DS and initializes them to zero. The D U P directive can also be used to reserve several
locations that need not be initialized. A question mark must be used with DUP in this
case. For example, the statement BEGIN DB 1 0 0 DUP (?) reserves 100 bytes of
uninitialized data space to an offset BEGIN in DS. Note that B E G I N should be typed in the
label field, DB in the OP code field, and 1 0 0 D U P (?) in the operand field.

Fundamentals of Digital Logic and Microcomputer Design

DUP, LABEL, and Other Directives

A typical example illustrating the use of these directives is given next:
DATA-1
ADDR-1
ADDR-2
DATA-1
STACK-1

STACK-TOP

STACK-1
CODE-1

SEGMENT
DW 3005H
DW 2003H
ENDS
SEGMENT
DW 60 DUP (0)

LABEL WORD

ENDS
SEGMENT
ASSUME CS: CODE-1, DS: DATA-1,
MOV AX, STACK-1
MOV SS, AX
LEA SP, STACK-TOP
MOV AX, DATA-1
MOV DS, AX
LEA SI, ADDR-1
LEA DI, ADDR-2

Assign 60 words
of stack with zeros
Define stack
as 16-bit
words.

SS: STACK-1

-
t Main program

- t body

CODE-1 ENDS -

Note that LABEL is a directive used to the allocate stack from the next location
after the top of the stack. The statement STACK TOP LABEL WORD allocates the stack
for local variables from the next address after STACK TOP. In this example, 60 words are
set aside for the stack. The WORD in this statement indicates that PUSH into and POP
from the stack are done as words.

Also note that in the above, ASSUME directive tells the assembler to use the logical
segment names CODE-], DATA-I, and STACK-I as the code segment, data segment,
and stack segment, respectively. The extra segment can be assigned a name in a similar
manner. When the instructions are executed, the displacements in the instructions along
with the segment register contents are used by the assembler to generate the 20-bit physical
addresses. The segment register, other than the code segment, must be initialized before it
is used to access data. The code segment is typically initialized upon hardware reset or by
using ORG.

When the assembler translates an assembly language program, it computes the
displacement, or offset, of each instruction code byte from the start of a logical segment
that contains it. For example, in the preceding program, the CS: CODE-I in the ASSUME
statement directs the assembler to compute the offsets or displacements by the following
instructions from the start of the logical segment CODE-1. This means that when the
program is run, the CS will contain the 16-bit value where the logical segment CODE-1
is located in memory. The assembler keeps track of the instruction byte displacements,
which are loaded into IP. The 20-bit physical address generated from CS and IP are used

Intel 8086 399

to fetch each instruction. Some versions of MASM use directive AT to assign a segment
value.

Note that typical 8086 assemblers such as Microsoft and Hewlett-Packard
HP64000 use the ORG directive to load CS and IP. For example, CS and IP can be
initialized with 2000H and 0300H as follows:
For Microsoft 8086 Assembler (some versions)
For HP64000 8086 Assembler ORG 2000H:0300H

ORG 2 0 0 0 0 3 0 OH

9.7.4 8086 Stack
Each 8086 stack segment is 64K bytes long and is organized as 32K 16-bit words. The
lowest byte (valid data) of the stack is pointed to by the 20-bit physical address computed
from current SP and SS. This is the lowest memory location in the stack (Top of the Stack)
where data is pushed. The 8086 PUSH and POP instructions always utilize 16-bit words.
Therefore, stack locations should be configured at even addrsesses in order to minimize the
number of memory cycles for efficient stack operations. The 8086 can have several stack
segments; however, only one stack segment is active at a time.

Since the 8086 uses 16-bit data for PUSH and POP operations from the top of the
stack, the 8086 PUSH instruction first decrements SP by 2 and then the 16-bit data is written
onto the stack. Therefore, the 8086 stack grows from high to low memory addresses of the
stack. On the other hand, when a 16-bit data is popped from the top of the stack using the
8086 POP instruction , the 8086 reads 16-bit data from the stack into the specified register
or memory, the 8086 then increments the SP by 2. Note that the 20-bit physical address
computed from SP and SS always points to the last data pushed onto the stack. One can
save and restore flags in the 8086 using PUSHF and POPF instructions. Memory locations
can also be saved and restored using PUSH and POP instructions without using any 8086
registers. Finally, One must POP registers in the reverse order in which they are PUSHed.
For example, if the registers BX, DX, and SI are PUSHed using

PUSH BX
PUSH DX

PUSH S I

then the registers must be popped using
POP SI
POP DX

POP BX

9.8 8086 Delav routine

Typical 8086 software delay loops can be written using MOV and LOOP instructions.
For example, the following instruction sequence can be used for a delay loop of 20
millisecond:

MOV CX,count
DELAY: LOOP DELAY

The initial loop counter value of “count” can be calculated using the cycles required to
execute the following 8086 instructions (Appendix F):

MOV reghmm (4 cycles)
LOOP label (1 7/5 cycles)

Note that the 8086 LOOP instruction requires two different execution times.
LOOP requires 17 cycles when the 8086 branches if the CX is not equal to zero after

400 Fundamentals of Digital Logic and Microcomputer Design

autodecrementing CX by 1. However, the 8086 goes to the next instruction and does not
branch when CX = 0 after autodecrementing CX by 1, and this requires 5 cycles. This
means that the DELAY loop will require 17 cycles for (count - 1) times, and the last
iteration will take 5 cycles.

20 m sec For 2-MHz 8086 clock, each cycle is 500ns. For 20 ms, total cycles = =

40,000. The loop will require 17 cycles for (count - 1) times when CX # 0 and 5 cycles
will be required when no branch is taken (CX = 0). Thus, totai cycles including the MOV
= 4+17x(count - 1) + 5= 40,000. Hence, count = 2353,, = 0931 , 6 . Therefore, CX must be
loaded with 2353,,or 0931,,.

Now, in order to obtain delay of 20 seconds, the above DELAY loop of 20
millisecond can be used with an external counter. Counter value = (20 sec) / (20 msec)
= 1000. The following instruction sequence will provide an approximate delay of 20
seconds:

MOV D X , 1 0 0 0 ;Initialize counter f o r 20 second delay
BACK: MOV C X , 2 3 5 3
DELAY: LOOP DELAY ;20msec delay

DEC DX
J N E BACK

Next, the delay time provided by the above instruction sequence can be calculated.
From Appendix F, the cycles required to execute the following 8086 instructions:

MOV reg / imm (4 cycles)
DEC reg16 (2 cycles)
J N E (1 6/4 cycles)

As before, assuming 4-MHz 8086 clock, each cycle is 25011s. Total time from the
above instruction sequence for 20-second delay = Execution time for MOV DX + 1000 *
(20 msec delay) + 1000 * (Execution time for DEC) + 999* (Execution time for JNE for
Z = 0 when DX # 0) + (Execution time for JNE for Z = 1 when DX = 0) = 4 * 250ns +
1000 * 20msec + 1000 * 2 * 250ns + 999 * 16 * 250ns + 4 * 250ns c: 20.0045 seconds
which is approximately 20 seconds discarding the execution times of MOV DX, DEC, and
JNE.

ExamDle 9.1
(a)
i). D I V CH ii). CBW iii). MOVSW Assume the following data
prior to execution of each of these instructions independently (assume that all numbers are
in hexadecimal): (DS) = 2000H, (ES) = 4000H, (CX) = 0300H, (AX) = 0091H, (20300H)
= 05H, (20301H) = 02H, (40200H) = 06H, (40201H) = 07H, (SI) = 0300H, (DI) = 0200H,
DF = 0.
(b) Write an 8086 assembly language program for each of the following C language
program structures:
i). if (x >= y)

Determine the effect of each of the following 8086 instructions:

x = x + 10;
else y = y - 12;

Assume x and y are addresses of two 16-bit signed integers.
ii). sum = 0;

for (i=O; i<=9; i=i+l)
sum = sum + a[i];

Assume sum is the address of the 16-bit result.
Solution

Intel 8086 40 1

(a>
i) .
after D I V CH, (AH) = remainder = 01H and (AL) = quotient = 48,, = 30H.
ii).
is 91H, the sign bit is 1. Therefore, after CBW, (AX) = FF91H
iii). Before MOVSW,

Before unsigned division, CH contains 03,, and AX contains 145,0. Therefore,

CBW sign-extends the AL register into the AH register. Because the content of AL

Source String Destination String
(SI) = 0300H, (DS) = 2000H
Physical address = 20300H

(DI) = 0200H, (ES) = 4000H
Physical address = 40200H

After MOVSW, (40200H) = 05H, (40201H) = 02H. Because DF = 0, (SI) = 0302H, (DI)
= 0202H

(b)
i) .
memory locations addressed by offsets BX and SI in segment register, DS:

Assume addresses x and y are initialized with the contents of the 8086

MOV AX, [BX] ; Move [XI into AX
CMP AX, [SI] ; Compare [XI with [y]
JGE TEN
SUB WORD PTR[SI],12 ; Execute else part
JMP FINISH

TEN: ADD WORD PTR[BX],10 ; execute then part
FINISH: HLT ; Halt

ii).
BX contains the offset of sum :

Assume register s 1 holds the address of the first element of the array while

MOV CX,lO ;initialize CX
MOV WORD PTR [BX] ,O ; sum = 0

ADD [BX],AX
ADD SI,2
LOOP AGAIN
HLT

AGAIN: MOV AX, [SI]

Examde 9.2
(a) Write an 8086 assembly program to find (X2)/255 where X is an 8-bit signed number
stored in CH. Store the 16-bit result onto the stack. Initialize SS and SP to lOOOH and
2000H respectively.
(b) What are the remainder, quotient, and registers containing them after execution of the
following 8086 instruction sequence?

MOV AH, OFFH
MOV AL, OFFH
MOV CX, 2
IDIV CL

Solution
(a)
CODE SEGMENT

ASSUME
MOV
MOV
MOV
MOV
IMUL
MOV
DIV
PUSH
HLT

CS:CODE, SS:STACK
AX, lOOOH
SS, AX

AL, CH
CH
CL, 255
CL
AX

SP, 2000;

Initialize SS
to lOOOH
Initialize SP to 2000H
Move X into AL
Compute X2and store in AX
Since XZand255 are both positve, use
unsigned division. Remainder in AH
and quotient in AL. Push AX to stack

402 Fundamentals of Digital Logic and Microcomputer Design

CODE ENDS
STACK SEGMENT
STACK ENDS

MOV AH, OFFH ; AH = FFH
MOV AL, OFFH ; AL = FFH, hence AX = FFFFH = -1
MOV CX, 2 ; AX / CL = -1/2
IDIV CL

AH AL

(b)

FFH I OOH 1
8-bit remainder 8-bit
= -1 10 quotient =

0

ExamDle 9.3
Write an 8086 assembly language program to add two 16-bit numbers in CX and DX and
store the result in location 0500H addressed by DI.
Solution
Microsoft (R) Macro Assembler Version 6.11 10/25/04 23:54:48
ex93 .asm Page 1 - 1

0000 DATA SEGMENT
GO00 DATA ENDS
0000 CODE SEGMENT

0000 B8 ---- R MOV AX, DATA ;Initialize DS
0003 8E D8 MGV DS, AX
0005 BF 0500 MOV DI, 0500H
0008 03 CA ADD CX, DX ;Add
OOOA 89 OD MOV [DII ,CX ;Store
OOOC F4 HLT
O O O D CODE ENDS

ASSUME CS : CODE, DS : DATA

END
Microsoft (R) Macro Assembler Version 6.11 10/25/04 23:54:48
ex93.asm Symbols 2 - 1
Segments and Groups:

N a m e Size Length Align Combine
Class

CODE 16 Bit O O O D Para Private
DATA 16 Bit 0000 Para Private

0 Warnings
0 Errors

ExamDle 9.4
Write an 8086 assembly language program to add two 64-bit numbers. Assume SI and DI
contain the starting offsets of the numbers. Store the result in memory pointed to by DI.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/08/04 23:20:22
ex94. asm Page 1 - 1

0000 PRGG-CODE SEGMENT

0000 B8 ---- R MOV AX, DATA-ARRAY
ASSUME CS:PROG-CODE, DS:DATA-ARRAY

Intel 8086 403

0003 8E D8
0005 BA 0004
0008 BE 0000
OOOB BF 0008
OOOE F8
OOOF 8B 04
0011 11 05
0013 46
0014 46
0015 47
0016 47
0017 4A
0018 75 F5
OOlA F4
OOlB
0000
0000 OA71
0002 F218
0004 2F17
0006 6200
0008 7A24
OOOA 1601
OOOC 152A
OOOE 671F
0010

START:

MOV DS,AX
MOV DX, 4
MGV S1,OOOOH
MOV DI,0008H
CLC
MGV AX, [SI]
ADC [DII ,AX
INC SI
INC SI
INC DI
INC DI
DEC DX
JNZ START
HLT

PROG-CODE ENDS
DATA-ARRAY SEGMENT
DATAl DW OA71H

DW OF218H
DW 2F17H
DW 6200H

DATA2 DW lA24H
DW 1601H
DW 152AH
DW 671FH

DATA-ARRAY ENDS
END

;Initialize DS
;Load 4 into DX
;Initialize SI
;Initialize DI
;Clear Carry
;Load DATAl
;Add with carry
;Update pointers
;by 2 for WORD
;Update pointers
;by 2 for WORD
;decrement
;branch

;DATA1 low

;DATA1 high

:DATA2 low

;DATA2 high

Microsoft (R) Macro Assembler Version 6.1111/08/04 2 3 : 2 0 : 2 2
ex94 .asm Symbols 2 - 1
Segments and Groups:

N a m e Size Length Align Combine
Class

DATA-ARRAY 16 Bit 0010 Para Private
PROG-CODE 16 Bit OOlB Para Private
Symbols:

DATAl Word 0000 DATA-ARRAY
DATA2 Word 0008 DATA-ARRAY
START L Near OOOF PROG-CODE

N a m e Type Value Attr

0 Warnings
0 Errors

Examde 9.5
Write an 8086 assembly language program to multiply two 16-bit unsigned numbers to
provide a 32-bit result. Assume that the two numbers are stored in CX and DX.

Solution
Microsoft (R) Macro Assembler Version 6.11 11/03/04 16:18:45
ex95. asm Page 1 - 1

0000 CODE-SEG SEGMENT

0000 8B C2 MOV AX, DX ;Move first data
0 0 0 2 F7 El MUL CX ; [DX] [AX] <-- [AX] * [CX]
0004 F4 HLT
0005 CODE-SEG ENDS

ASSUME CS:CODE-SEG

END
Microsoft (R) Macro Assembler Version 6.11 11/03/04 16:18:45
ex95. asm Symbols 2 - 1

404 Fundamentals of Digital Logic and Microcomputer Design

Segments and Groups:
N a m e Size Length Align Combine

Class
COVE-SEG 16 Bit 0005 Para Private

0 Warnings
0 Errors

ExamDle 9.6
Write an 8086 assembly language program to clear 50,, consecutive bytes starting at offset
1000H. Assume DS is already initialized.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/03/04 01:32:04
ex9-6. asm Page 1 - 1

0000 CODE-SEG SEGMENT

0000 BB 1000 MOV BX, lOOOH ;initialize EX
0003 B9 0032 MOV CX, 50 ;initialize loop count
0006 C6 07 00 START: MOV BYTE PTR[BX],OOH ;clear memory byte
0009 43 INC BX ;update pointer
OOOA E2 FA LOOP START ;decrement CX and loop
0OOC F4 HLT ;halt
OOOD CODE-SEG ENDS
0000 DATA-SEG SEGMENT
0000 DATA-SEG ENDS

ASSUME CS:CODE-SEG,DS:DATA-SEG

END
Microsoft (R) Macro Assembler Version 6.11
01: 32:04
ex9-6. asm
Symbols 2 - 1
Segments and Groups:

11/03/04

N a m e

CODE-SEG
DATA-SEG
Symbols :
Name

START
0 Warnings

0 Errors

Size Length Align Combine Class

16 Bit OOOD Para Private
16 Bit 0000 Para Private

Type Value Attr

L Near 0006 CODE-SEG

ExamDle 9.7
Write an 8086 assembly program to implement the following C language program loop:
sum = 0;
f o r (i = O ; i < = 9 9 ; i = i + 1)
sum = sum + x[i] * y[i];
The assembly language program will compute b y i wherexi andyi are signed 8-bit numbers
stored at offsets 4000H and 5000H respectively. Initialize DS to 2000H. Store 16-bit result
in DX. Assume no overflow.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/03/04 13:44:38
ex97. asm Page 1 - 1

0000 CODE SEGMENT

Intel 8086 405

0000
0003
0005
0008
OOOB
OOOE
0011
0013
0015
0017
0018
0019
001B
OOlC
0000
0000

B8 2000
8E D8
B9 0064
BB 4000
BE 5000
BA 0000
8A 07
F6 2C
03 DO
43
46
E2 F6
F4

ASSUME
MOV
MOV
MOV
MOV
MOV
MOV

START: MOV
IMUL
ADD
INC
INC
LOOP
HLT

CODE ENDS
DATA SEGMENT
DATA ENDS

END

CS:CODE,DS:DATA
AX, 2000H ;Initialize
DS,AX ;Data Segment
cx, 100 ;Initialize loop count
BX, 4000H ;Initialize pointer of Xi
SI, 5000H ;Initialize pointer of Yi
DX, OOOOH ;Initialize sum to 0
ALr [BXI ;Load data into AL
BYTE PTR [SI] ;Signed 8x8 multiplication
DX, AX ;Sum XiYi
BX ;Update pointer
SI ;Update pointer
START ;Decrement CX & loop

;End program

Microsoft (R) Macro Assembler Version 6.11 11/03/04 13:44:38
ex97 .asm Symbols 2 - 1
Segments and Groups:
N a m e Size Length Align Combine Class

CODE 16 Bit O O l C Para Private
DATA 16 Bit 0000 Para Private
Symbols :

N a m e Type Value Attr
START L Near 0011 CODE

0 Warnings
0 Errors

ExamDle 9.8
Write an 8086 assembly language program to add two words; each contains two ASCII
digits. The first word is stored in two consecutive locations with the low byte pointed to
by SI at offset 0300H, while the second word is stored in two consecutive locations with
the low byte pointed to by DI at offset 0700H. Store the unpacked BCD result in memory
location pointed to by DI. Assume that each unpacked BCD result of addition is less than
or equal to 09H.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/09/04 12:00:57
9-8. asm Page 1 - 1

0000

0 0 0 0

0003
0005

0008
OOOB.
OOOE

0010
0012
0013

B8 2000

8E D8
B9 0002

BE 0300
BF 0700
8A 04

02 05
37
88 05

CODE SEGMENT
ASSUME
MOV

MOV
MOV

MOV
MOV

START: MOV

ADD
AAA
MOV

CS:CODE,DS:DATA
AX, 2000H ;initialize

DS , AX ;at 2000H
cx, 2 ;initialize

SI, 0300H ;initialize SI
DI, 0700H ;initialize DI
AL, [S I I ;load data into

; AL
ALr [DII ;perform addition

;ASCII adjust
[DII rAL ;store result

;data segment

loop count

406 Fundamentals of Digital Logic and Microcomputer Design

0015 46
0016 47
0017 E2 F5

INC SI
INC DI
LOOP START

0019 F4 HLT
OOlA CODE ENDS
0000 DATA SEGMENT
0000 DATA ENDS

END
Microsoft (R) Macro Assembler Version 6.11
9-8. asm
Segments and Groups:

CODE 16 Bit
DATA 16 Bit
Symbols:

START L Near

N a m e Size

N a m e Type

0 Warnings

0 Errors

;update pointer
;update pointer
;decrement CX &

;loop
;halt

11/09/04 12:00:57
Symbols 2 - 1

Length Align Combine Class
OOlA Para Private
0000 Para Private

Value Attr
OOOE CODE

ExamDie 9.9
Write an 8086 assembly language program to compare a source string of 50,, words pointed
to by an offset lOOOH in the data segment at 2000H with a destination string pointed to by
an offset 3000H in the extra segment at 4000H. The program should be halted as soon as a
match is found or the end of the string is reached.
Solution
Microsoft (R) Macro Assembler Version 6.11
E9-9. ASM

11/06/04 15:09:33
Page 1 - 1

0000

0000
0003
0005
0008
OOOA
OOOD
0010
0013

0014

0016
0017
0000
0000
0000
0 0 0 0

B8 2000
8E D8
B8 4000
8E CO
BE 1000
BF 3000
B9 0032
FC

F2/ A7

CODE

F4
CODE
DATAl
DATAl
DATA
DATA

SEGMENT
ASSUME CS:CODE,DS:DATA,ES:DATAl
MOV AX,2000H ;Initialize
MOV DS,AX ;Data Segment at 2000H
MOV AX, 4000H ;Initialize
MOV ES,AX ;ES at 4000H
MOV SI,1000H ;Initialize SI at lOOOH FOR DS
MOV DI,3000H ;Initialize DI AT 3000H FOR ES
MOV CX,50 ;Initialize CX
CLD ;Clear DF SO THAT

;SI and DI will
;autoincrement
;after compare

;until compared words are equal
REPNE CMPSW ;Repeat CMPSW until CX=O or

HLT ;Halt
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END ;End program

Microsoft (R) Macro Assembler Version 6.11 11/06/04 15:09:33
E9-9. ASM Symbols 2 - 1
Segments and Groups:

CODE 16 Bit 0017 Para Private
N a m e Size Length Align Combine Class

Intel 8086 407

DATA1
DATA

0 Warnings
0 Errors

1 6 Bit 0000 Para Private
1 6 Bit 0000 Para Private

ExamDle 9.10
Write a subroutine in 8086 assembly language which can be called by a main program in
the same code segment. The subroutine will multiply a signed 16-bit number in CX by a
signed 8-bit number in AL. The main program will perform initializations (DS to 5000H,
SS to 6000H, SP to 0020H and BX to 2000H), call this subroutine, store the result in two
consecutive memory words, and stop. Assume SI and DI contain pointers to the signed
8-bit and 16-bit data respectively. Store 32-bit result in a memory location pointed to by
BX.
Solution
Microsoft (R) Macro Assembler Version 6 . 1 1
9-l0.asm

11/09/04 12:31:12
Page 1 - 1

0000 CODE

0000
0003
0005
0008
OOOA
OOOD
0010
0013
0 0 1 6
0018
OOlA
OOlD
OOlF
0022
0023
0023
0024
0026
0027
0027
0000
0000
0000
0000

B8 5000
8E D8
B8 6 0 0 0
8E DO
BC 0020
BB 2000
BE 0000
BF 0004
8A 04
8B OD
E8 0 0 0 6
89 17
89 47 02
F4

98
F7 E9
C3

MULTI

MULTI
CODE
DATA
DATA
STACK
STACK

SEGMENT
ASSUME CS:CODE, DS:DATA,SS:STACK
MOV AX, 5000H
MOV DS, AX
MOV AX, 6000H
MOV SS, AX
MOV SP, 0020H
MOV BX, 2000H
MOV SI, OOOOH
MOV DI, 0004H
MOV AL, [SI]
MOV CX, [DI]
CALL MULTI
MOV [BX], DX
MOV [BX+2], AX
HLT
PROC NEAR
CBW
IMUL CX
RET
ENDP
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END

Aicrosoft (R) Macro Assembler Version 6 . 1 1
9-10 .asm
Segments and Groups:

N a m e Size
Class
CODE 1 6 Bit
DATA 1 6 Bit
STACK 1 6 Bit
Procedures, parameters and locals:

N a m e Type Value
MULTIP Near 0023

0 Warnings

0 Errors

; Initialize Data Segment at
; 5000H
; Initialize SS at
; 6000H
; Initialize SP at 0020H
; Initialize BX at 2000H
; Initialize SI
; Initialize DI
; Move 8-bit data
; Move 16-bit data
; Call MULTI subroutine
; Store high word of result
; Store low word of result
; Halt
; Must be called from
; Sign extend AL
; [DX] [AX] < - - [AXl*[CXl
; Return
; End of procedure

11/09/04 12:31:12
Symbols 2 - 1

Length Align Combine

0027 Para Private
0000 Para Private
0000 Para Private

Attr
CODE Length= 0004 Private

408

Examde 9.1 1
Write an 8086 assembly program that converts a temperature (signed) from Fahrenheit
degrees stored at an offset contained in SI to Celsius degrees. The program stores the 8-bit
integer part of the result at an offset contained in DI. Assume that the temperature can be
represented by one byte and, DS is already initialized. The source byte is assumed to reside
at offset 2000H in the data segment, and the destination byte at an offset of 3000H in the
same data segment. Use the formula: C = (F-32)/9 x 5
Solution

Fundamentals of Digital Logic and Microcomputer Design

Microsoft (R) Macro Assembler Version 6.11 11/10/04 14:28:58
9-ll.asm
0000 CODE

0000 BE 2000
0003 BF 3000
0006 8A 04
0008 98
0009 83 E8 20
OOOC B9 0005
OOOF F7 E9
0011 B9 0009
0014 F7 F9

0016 88 05
0018 F4
0019 CODE
0000 DATA
0000 DATA

Page 1 - 1
SEGMENT
ASSUME CS:CODE,DS:DATA
MOV SI,2000H
MOV DI,3000H
MOV AL, [SI]
CBW
SUB AX,32
MOV CX,5
IMUL CX
MOV CX, 9
IDIV CX

MOV [DIl,AL
HLT
ENDS
SEGMENT
ENDS
END

Microsoft (R) Macro Assembler Version 6.11
9-11 . a m
Segments and Groups:

Class
N a m e Size

; Initialize source pointer
; Unit. destination pointer
; Get degrees F
; Sign extend
; Subtract 32
; Get multiplier
; Multiply by 5
; Get divisor
; Divide by 9 to get
; Celsius
; Put result in destination
; stop
; End segment

11/10/04 14:28:58
Symbols 2 - 1

Length Align Combine

CODE 16 Bit 0019 Para Private
DATA 16 Bit 0000 Para Private
0 Warnings

0 Errors

Example 9.12
Write an 8086 assembly language program to multiply two 8 bit signed numbers stored
in the same register; AH holds one number and AL holds the other number. Store the 16-
bit result in DX.
Solution
Microsoft (R) Macro Assembler Version 6.11
EX10-12 .ASM

10/24/04 13:19:45
Page 1 - 1

0000 PROG-CODE SEGMENT

0000 F6 EC IMUL AH ; (AH) * (AL) --> (AX)
ASSUME CS:PROG-CODE,DS

0002 8B DO MOV DX,AX ;Store result in DX
0004 F4 HLT
0005 PROG-CODE ENDS

END

Microsoft (R) Macro Assembler Version 6.11 10/24/04 13:19:45

Intel 8086 409

EX10-12.ASM Symbols 2 - 1
Segments and Groups:

PROG-CODE 16 Bit OOOA Para Private
N a m e Size Length Align Combine Class

0 Warnings

0 Errors

Example 9.13
Write an 8086 assembly language program to move a block of 16-bit data of length loo,,
from the source block starting at offset 0200H to the destination block starting at offset
0300H from low to high addresses.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/16/04 16:31:36
EX91 3. ASM Page 1 - 1

0 0 0 0

0000
0003
0005
0008
OOOA
OOOD

0010
0013

0014
0016
0017
0000
0000
0 0 0 0
0000

CODE

B8 1000
8E D8
BB 2000
8E C3
BE 0200
BF 0300

B9 0064
FC

F3/ A5
F4

CODE
DATA
DATA
DATAl
DATA1

SEGMENT
ASSUME CS:CODE, DS:DATA, ES:DATAl
MOV AX, lOOOH ;INITIALIZE DS
MOV DS, AX
MOV BX, 2000H ;INITIALIZE ES
MOV ES, BX
MOV SI, 0200H ;INITIALIZE SOURCE
MOV DI, 0300H ;INITIALIZE DESTINATION

MOV CX, 100 ;INITIALIZE LOOP COUNTER
CLD ;CLEAR DF FOR LOW

REP MOVSW ;MOVE STRING WORD
HLT
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END

POINTERS

;TO HIGH ADDRESS

Microsoft (R) Macro Assembler Version 6.11
EX91 3. ASM

11/16/04 16:31:36
Symbols 2 - 1

Segments and Groups:

N a m e Size Length Align Combine Class

CODE 16 Bit 0017 Para Private
DATAl 16 Bit 0000 Para Private
DATA 16 Bit 0000 Para Private

0 Warnings

0 Errors

Examole 9.14
Write an 8086 assembly language program that will perform : 5 x X + 6 x Y + (Y/8) -
(BP)(BX) where X is an unsigned 8-bit number stored at offset OlOOH and Y is a 16-bit
signed number stored at offsets 0200H and 0201H. Neglect the remainder of Y/8. Store
the result in registers BX and BP. BX holds the low 16-bit of the 32-bit result and BP holds
the high 16-bit of the 32-bit result.
Solution

410 Fundamentals of Digital Logic and Microcomputer Design

Microsoft (R) Macro Assembler Version 6.11 11/16/04 15:36:15
9-14.asrn

0000 CODE

OOOC B8 1000
0003 8E D8
0005 BE 0100
0008 BF 0200
OOOB 8A 04
O O O D BB 0000
0010 B1 05
0012 F6 El

0014 03 D8
0016 BD 0000

0019 8B 05
OOlB B1 03
OOlD D3 F8
OOlF 99

0020 03 D8
0022 13 EA
0024 8B 05
0026 B9 0006
0029 F7 E9
002B 03 D8
0 0 2 D 13 EA
002F F4
0030 CODE
0000 DATA
ocoo DATA

Page 1 - 1

SEGMENT
ASSUME CS:CODE, DS:DATA
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MUL

A D D
MOV

MOV
MOV
SAR
CWD

ADD
ADC
MOV
MOV
IMUL
ADD
ADC
HLT
ENDS
SEGMENT
ENDS
END

AX, lOOOH
DS, AX
SI, OlOOH
DI, 0200H

BX, 0

CL

ALr [SII

CL, 5

BX, AX
BP, 0

AX, [DII
CL, 3
AX, CL

BX, AX
BP, DX
AX, [DII
CX, 6
cx
BX, AX
BP, DX

;Initialize DS

;Pointer to X
;Pointer to Y
;Move X to AL
;Clear 16-bit sum to zero

;Unsigned MUL
;[AX] = 5*X
;Sum 5*X with BX
;Convert 5*X to unsigned
; 32-bit
;Move Y to AX

;Divide by 8
;Convert Y/8 into 32-
;bit in [DX] [AX]
;Sum 5*X and Y/8
;in BP Bx
;Move Y to AX

; [DX] [AX] <- 6*Y
;32-bit result
;in BP BX
:Halt

Aicrosoft (R) Macro Assembler Version 6.11 11/16/04 15:36:15
9-14.asm Symbols 2 - 1

Segments and Groups:

CODE 16 Bit 0030 Para Private
DATA 16 Bit 0000 Para Private

N a m e Size Length Align Combine Class

0 Warnings

0 Errors

Examole 9.15
Write an 8086 assembly language program to add four 16-bit numbers stored in consecutive
locations starting at offset 5000H. Store the 16-bit result onto the stack. Use ADC
instruction for addition.

Solution
Microsoft (R) Macro Assembler Version 6.11
9-15. asm

11/10/04 16:14:38
Page 1 - 1

0000 CODE SEGMENT

0000 B8 ---- R MOV AX, DATA ; Initialize AX
ASSUME CS:CODE, DS:DATA, SS:STACK

Intel 8086 41 1

0003
0005
0008
OOOA
OOOD
0010
0013
0014
0016

8E D8
B8 0000
8E DO
BC 2000
BB 5000
B9 0004
F8
13 07
43

MOV
MOV
MOV
MOV
MOV
MOV
CLC

START: ADC
I NC

0017 43 I NC
0018 E2 FA LOOP
OOlA 50 PUSH

DS, AX
AX, OOOOH
S S , AX
SP, 2000H
BX, 5000H
cx, 4

AX, [BXI
BX

BX
START
AX

001B F4 HLT
OOlC CODE ENDS
0000 DATA SEGMENT
0000 DATA ENDS
0000 STACK SEGMENT
0000 STACK ENDS

END
Microsoft (R) Macro Assembler Version 6.11
9-15.asm
Segments and Groups:
N a m e Size
CODE 16 Bit
DATA 16 Bit
STACK 16 Bit
Symbols :

N a m e Type
START L Near

0 Warnings

0 Errors

Initialize DS
Initialize AX
Initialize SS at OOOOH
Initialize SP at 2000H
Initialize BX at 5000H
Initialize loop count
clear carry
Add
Update pointer. INC does not
affect CF
Update pointer
Decrement CX & loop
Storing 16-bit result onto
the stack
stop
End segment

11/10/04 16:14:38
Symbols 2 - 1

Length Align Combine Class
OOlC Para Private
0000 Para Private
0000 Para Private

Value Attr
0014 CODE

Example 9.16
Write a subroutine in 8086 assembly language in the same code segment as the main program
to implement the C language assignment statement: p = p + q; where addresses p and q hold
two 16-digit (64-bit) packed BCD numbers (N1 and N2). The main program will initialize
addresses p and q to DS:2000H and DS:3000H respectively. Address DS:2007H will hold
the lowest byte of N1 with the highest byte at address DS:2000H while address DS:3007H
will hold the lowest byte of N2 with the highest byte at address DS:3000H. Also, write
the main program at offset 7000H which will perform all initializations including DS to
2000H, SS to 6000H, SP to 0020H, SI to 2000H, DI to 3000H, loop count to 8 and, then
call the subroutine.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/29/04 00:37:06
ex916.asm Page 1 - 1

0000 CODE SEGMENT

0000 B8 2000 MOV AX,2000H ;Initialize Data segment at

0003 8E D8 MOV DS,AX
0005 B8 6000 MOV AX,6000H ;Initialize Stack segment at

0008 8E DO MOV SS,AX
OOOA BC 0020 MOV SP,0020H ;Initialize SP at 0020H

ASSUME CS:CODE,DS:DATA,SS:STACK

;2000H

; 6000H

412 Fundamentals of Digital Logic and Microcomputer Design

OOOD B9 0008 MOV CX, 8 ;Initialize Count
0010 BE 2000 MOV SI,2000H ;Initialize pointer to N1 -> q
0013 BF 3000 MOV DI,3000H ;Initialize pointer to N2 -> p
0016 B8 0000 MOV AX,OOOOH ;Clear AX
0019 E8 0001 CALL PBCD ;Call PBCD subroutine
OOlC F4
OOlD
OOlD F8
OOlE 8A 04
0020 8A 1D
0022 12 c3
0024 27
0025 88 05
0027 46
0028 47
0029 E2 F3
002B C3
002c
002c
0000
0000
0000
0 0 0 0

PBCD

START :

PBCD
CODE
DATA
DATA
STACK
STACK

HLT
PROC NEAR
CLC
MOV AL, [SI]
MOV BL, [DI]
ADC AL,BL
DAA
MOV [DI],AL
INC SI
INC DI
LOOP START
RET
ENDP
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END

Microsoft (R) Macro Assembler Version 6.11
ex916.asm

;Clear Carry
;Move Data to AL
;Move Data to AL
;Add ASCII into AL
;BCD adjust [AL]
;Store result in [DI]
;Update pointers
;Update pointers

;Return

11/29/04 00:37:06
Symbols 2 - 1

Segments and Groups:
N a m e Size Length Align Combine Class

CODE 16 Bit
DATA 16 Bit
STACK 16 Bit

Procedures, parameters and locals:

PBCD
N a m e Type Value
. P Near OOlD

Symbols :

START L Near OOlE
N a m e Type Value

002C Para Private
0000 Para Private
0000 Para Private

Attr
CODE Length= OOOF Private

Attr
CODE

0 Warnings

0 Errors

ExamDle 9.17
Write an 8086 assembly language program to move the 8-bit contents of a memory
location addressed by the contents of AL and BX into AL. Use XLAT instruction. This
program will illustrate that XLAT is equivalent to MOV AL, [AL][BX].

Solution
0000 CODE SEGMENT

ASSUME CS:CODE,DS:DATA
0000 BE 2030 MOV AX, 2030H ;Initialize
0003 8E D8 MOV DS, AX ;Data segment register
0005 BO 31 MOV AL, 31H ;Overwrite low byte of

0007 BB 2000 MOV BX, 2000H ;Store value 2000 in hex
;AX with 31H

Intel 8086 413

OOOA D7 XLAT
GOOB F4 HLT
oooc CODE ENDS
0000 DATA SEGMENT
0000 DATA ENDS

Microsoft (R) Macro Assembler Version 6.11
9-17 .asm
Segments and Groups:
N a m e Size
CODE 16 Bit
DATA 16 Bit

END

0 Warnings

0 Errors

;into BX
; [AL] <- [ALI + [BXI
;Halt

11/03/04 13:16:50
Symbols 2 - 1

Length Align Combine Class
OOOC Para Private
0000 Para Private

Examde 9.18
Write a subroutine in 8086 assembly language which can be called by a main program in a
different code segment. The subroutine will compute EX: / N. Assume the X,’s are 16-bit
signed integers, N = 100 and, EX,’ is 32-bit wide. The numbers are stored in consecutive
locations. Assume SI points to the X,’s. The subroutine will start at an offset 7000H, and
will initialize SI to 4000H, compute CX,Z / N, and store 32-bit result in DX:AX (16-bit
remainder in DX and 16-bit quotient in AX). Also, write the main program which will
initialize DS to 2000H, SS to 6000H, SP to 0040H, call the subroutine, and stop.
Solution

Microsoft (R) Macro Assembler Version 6.11
ex918. asm

11/29/04 00:05:33
Page 1 - 1

0000 CODE SEGMENT

0000 88 2000 MOV AX,2000H ;Initialize Data segment at

0003 8E D8 MOV DS,AX
0005 B8 6000 MOV AX,6000H ;Initialize Stack segment at

0008 8E DO MOV SS, AX
OOOA BC 0040 MOV SP,0040H
OOOD 9A ---- 7000 R CALL FAR PTR SQRDIV ;Call SQRDIV subroutine

ASSUME CS:CODE,DS:DATA,SS:STACK

;2000n

; 60008

0012
0013
0000

1 0 0 0
1000
7003
7006
7009
700c
1010
7012
7014
7015
1017
7019
701A

F4 HLT
CODE ENDS
SUER SEGMENT

ORG 7000H
ASSUME CS:SUBR

SQRDIV PROC FAR
B9 0064 MOV CX,100
BB 0000 MOV BX,OOGOH
BE 4000 MOV SI,4000H
BF 3000 MOV DI,3000H
Cl 05 0000 MOV [DI], OOCOH
8B 04 START: MOV AX, [SI]
Fl 2C IMUL WORD PTR [SI]
F8 CLC
13 D8 ADC BX,AX
11 15 ADC [DIl,DX
46 INC SI
46 INC SI

;Initialize CX to 100
;Clear low 16-bits sum to zero
;Initialize pointer of Xi
;High 16-bits sum
;Clear contents of DI to zero
;Load data into AX
;Signed multiplication Xi*Xi
;Clear Carry Flag
;Add low 16-bits to sum
;Add high 16-bits to sum
;Update pointer
;Twice for WORD

414 Fundamentals of Digital Logic and Microcomputer Design

701B E2 F3 LOOP START
701D 8B 15 MOV DX, [DI]

701F 8B C3 MOV AX,BX

7021 B9 0064 MOV CX,100
7024 F7 F1 DIV CX
7026 CB RET
7027 SQRDIV ENDP
7027 SUBR ENDS
0000 DATA SEGMENT
0000 DATA ENDS
0000 STACK SEGMENT
0000 STACK ENDS

END
Microsoft (R) Macro Assembler Version
ex918. asm

Segments and Groups:

N a m e
CODE
DATA
STACK
SUBR

;Jump and decrement CX
;Place high 16-bits of sum
;to DX
;Place low 16-bits of sum
;to AX
;Load 100 into CX
;unsigned division DX:AX / CX
;Return

6.11 11/29/04 0 0 : 0 5 : 3 3
Symbols 2 - 1

Size Length Align Combine Class
16 Bit 0013 Para Private
16 Bit 0000 Para Private
16 Bit 0000 Para Private
16 Bit 7027 Para Private

Procedures, parameters and locals:

N a m e Type Value Attr
SQRDIV P Far 7000 SUBR Length= 0027 Private

Symbols :
N a m e Type Value Attr

START L Near 7010 SUBR

0 Warnings
0 Errors

Note: In the above, DIV is used for computing sum (Xi**2)/N since both SUM (X,**2)
and N are unsigned (positive). Also, in order to execute the above program, values for X,
must be stored in memory using 8086 assembler directive, DW.

9.9

This section covers the basic concepts associated with interfacing the 8086 with its support
chips such as memory and I/O. Topics such as timing diagrams and 8086 pins and signals
will also be included. Appendix E provides data sheets for Intel 8086 and support chips.

9.9.1 8086 Pins and Signals
The 8086 pins and signals are shown in Figure 9.8. As mentioned before, the 8086 can
operate in two modes. These are the minimum (uniprocessor systems with a single 8086)
and maximum mode (multiprocessor system with more than one 8086). MN/m is an
input pin used to select one of these modes.

When MN/m is HIGH, the 8086 operates in the minimum mode. In this mode, the 8086

Svstem Design Using the 8086

Me18086 415

FIGURE 9.8 8086 Pin Diagram

is configured (that is, pins are defined) to support small single-processor systems using a
few devices that use the system bus. When M N / E is low, the 8086 is configured (that
is, some of the pins are redefined in maximum mode) to support multiprocessor systems.
In this case, the Intel 8288 bus controller is added to the 8086 to provide bus control and
compatibility with the multibus architecture. Note that, in a particular application, MN/
MX must be tied to either HIGH or LOW.

The ADo-AD,, lines are a 16-bit multiplexed addressldata bus. During the first
clock cycle, AD,-AD,, are the low-order 16-bit address. The 8086 has a total of 20 address
lines. The upper four lines, A,$S,, A,&, A,,/S,, and A,dS,, are multiplexed with the
status signals for the 8086. During the first clock period of a bus cycle (read or write
cycle), the entire 20-bit address is available on these lines. During all other cycles for
memory and I/O, ADo-AD,, lines contain the 16-bit data, and the multiplexed address /
status lines become S,, S,, S, , and S,. S, and S, are decoded as follows:

-

A17/S4 A,,/S3 Function

0 0 Extra segment

0 1 Stack segment

1 0 Code or no segment

1 1 Data segment

Therefore, after the first clock cycle of an instruction execution, the AI7/S, and
&,IS3 pins specify which segment register generates the segment portion of the 8086
address. Thus, by decoding these pins and then using the decoder outputs as chip selects
for memory chips, up to four megabytes (one megabyte per segment) can be included. This
provides a degree of protection by preventing erroneous write operations to one segment
from overlapping onto another segment and destroying the information in that segment.
A,,/S, and A,& are used as A,, and AI9, respectively, during the first clock cycle of an
instruction execution. If an 110 instruction is executed, they stay LOW for the first clock
period. During all other cycles, A,,/S, indicates the status of the 8086 interrupt enable flag

416 Fundamentals of Digital Logic and Microcomputer Design

and AI9/S, becomes S,; a LOW S, pin indicates that the 8086 is on the bus. During a hold
acknowledge clock period, the 8086 tristates the A,,& pin and this allows another bus
master to take control of the system bus. The 8086 tristates AD,-AD,, during interrupt
acknowledge or hold acknowledge cycles.

BHE/S, is used as BHE (bus high enable) during the first clock cycle of an
instruction execution. The 8086 outputs a LOW on this pin during the read, write, and
interrupt acknowledge cycles - in which data are to be transferred in a high-order byte
(AD,,-AD,) of the data bus. BHE can be used in conjunction with AD, - to select memory
banks. A thorough discussion is provided later. - During all other cycles, BHE/S, is used as
S, and the 8086 maintains the output level (BHE) of the first clock cycle on this pin. S, is
the same as BHE and does not have any special meaning.

TEST is an input pin and is only used by the WAIT instruction. The 8086 enters a
wait state after execution ofthe WAIT instruction until a low is seen on the TEST pin. This
input is synchronized internally during each clock cycle on the leading edge of the clock.

INTR is the maskable interrupt input. This line is not latched, so INTR must be
held at a HIGH level until it is recognized to generate an interrupt.

NMI is the nonmaskable interrupt pin input activated by a positive edge.
RESET is the system reset input signal. This signal must be HIGH for at least

four clock cycles to be recognized, except on power-on, which requires a 50-psec reset
pulse. It causes the 8086 to initialize registers DS, ES, SS, IP, and flags to zeros. It also
initializes CS to FFFFH. Upon removal of the RESET signal from the RESET pin, the
8086 will fetch its next instruction from a 20-bit physical address FFFFOH (CS = FFFFH,
IP = OOOOH). When the 8086 detects a positive edge of a pulse on RESET, it stops all
activities until the signal goes LOW. Upon hardware reset, the 8086 initializes the system
as follows:

- -

-

~~~ ~ ~~ 

8086 Components Content 

Flags Clear 

IP OOOOH 

cs FFFFH 

DS OOOOH 

ss OOOOH 

ES OOOOH 

Queue Empty 

As mentioned before, the 8086 can be configured in either minimum or maximum 
mode using the MN/m input pin. In minimum mode, the 8086 itself generates all bus 
control signals. These signals are as follows: 

D T E  (data transmitheceive) is an output signal required in a minimum system that 
uses an 8286/8287 data bus transceiver. It is used to control direction of data flow 
through the transceiver. 
DEN (data enable) is provided as an output enable for the 8286/8287 in a minimum 
system that uses the transceiver. DEN is active LOW during each memory and I/O 
access and for INTA cycles. 
ALE (address latch enable) is an 8086 output signal that can be used to demultiplex 
the multiplexed 8086 pins including AD,-AD,, into A,-A,, and DO-DI5 at the falling 

- 
- 

- 



Intel 8086 417 

edge of ALE. 
M/m is an 8086 output signal. It is used to distinguish a memory access (M/m = 

HIGH) from an 110 access (MAX = LOW). When the 8086 executes an I/O instruction 
such as IN or OUT, it outputs a LOW on this pin. On the other hand, the 8086 outputs 
HIGH on this pin when it executes a memory reference instruction such as MOV 
AX, [SI]. 
WR is used by the 8086 for a write operation. The 8086 outputs a low on this pin 
to indicate that the processor is performing a write memory or write I/O operation, 
depending on the M/m signal. Similarly, is low whenever the 8086 is reading data 
from memory or an I/O location. 

- 

For interrupt acknowledge cycles (for the INTR pin), the 8086 outputs LOW on the 
INTA pin. 
HOLD (input) and HLDA (output) pins are used for DMA. A HIGH on the HOLD pin 
indicates that another master is requesting to take over the system bus. The processor 
receiving the HOLD request will output a HIGH on the HLDA as an acknowledgment. 
At the same time, the processor tristates the system bus. Upon receipt of LOW on the 
HOLD pin, the processor places LOW on the HLDA pin and takes over the system 
bus. 
CLK (input) provides the basic timing for the 8086 and bus controller. 
READY (input) pin is used for slow peripheral devices. 

There are four versions of the 8086. They are 8086, 8086- 1, 8086-2, and 8086-4. 
There is no difference between the four versions other than the maximum allowed clock 
speeds. The 8086 can be operated from a maximum clock frequency of 5 MHz. The 
maximum clock frequencies of the 8086-1,8086-2 and 8086-4 are 10 MHz, 8 MHz and 4 
MHz, respectively. Because the design of these processors incorporates dynamic cells, a 
minimum frequency of 2 MHz is required to retain the state of the machine. The 8086-4, 
8086, and 8086-2 will be referred to as 8086 in the following discussion. 

CSYNC - 
PCLK- 
AENl- 
RDY 1- 

READY 
RDY2- 
AEN2 - 

CLK- 
GND - 

Pin Name 
XI.  x, 
Fie ' 

CLK 
RES 
- 

RESET 
vcc  
GND 
osc 
TANK 
EFI 
CSYNC 
RDYl, RDY2 

-- 
AEN 1, AEN2 

PCLK 
READY 

Description 
Crystal connections 
Clock source select 
MOS CLOCK for the 8086 
Reset input to the 8284 from 
an RC circuit 
Reset input to the processor 
+5 v 
ov 
Oscillator output 
Used with overtone crystal 
External clock input 
Clock synchronization input 
Ready signals from two 
multibus systems 
Address enables for ready 
signals 
TTL clock for peripherals 
Ready output 

FIGURE 9.9 8284 pins and signals 



418 Fundamentals of Digital Logic and Microcomputer Design 

The reset, clock, and the ready signals of the 8086 can be generated by the Intel 

The 8284 is an 18-pin chip designed for providing three input signals for the 
8284. Figure 9.9 shows the pins and signals of the 8284. 

8086: 
1. 8086 CLK input 
2. 8086 Reset input 
3. 8086 Ready input 

The 8284 pins and signals are described in the following. 

Clock Generation Signals 
Because the 8086 has no on-chip clock generator circuitry, the 8284 chip is required 
to provide the 8086 clock input. The 8284 F/C input pin is provided for clock source 
selection. When the F/C pin is connected to LOW, a crystal connected between 8284’s X, 
and X, pins is used. On the other hand, when F/C is connected to HIGH, an external clock 
source is used; the external clock source is connected to the 8284 EFI (external frequency 
input) pin. The 8284 divides the clock inputs at the X,X, pins or the EFI pin by 3. This 
means that if a 15-MHz crystal is connected at the X,X, or EFI pins, the 8284 CLK output 
pin will be 5 MHz. The 8284 CLK pin will be connected to the 8086 CLK pin. This 
provides the clock input for the 8086. When selecting a crystal for use with the 8284, the 
crystal series resistance should be as low as possible. The oscillator delays in the 8284 
appear as inductive elements to the crystal and cause the 8284 to run at a frequency below 
that of the pure series resonance: a capacitor C, should be placed in series with the crystal 
and the 8284 X, pin. The capacitor cancels the inductive element. The impedance of the 
capacitor X, = 1/(27rfCL) wherefis the crystal frequency. Intel recommends that the crystal 
series resistance plus X, should be kept less than 1 KQ. 

As the crystal frequency increases, C, should be decreased. For example, a 12- 
MHz crystal may require C, = 24 pf whereas a 22-MHz crystal may require C, = 8pf. C, 
values of 12 to 15 pf may be used with a 15-MHz crystal. Two crystal manufacturers 
recommended by Intel are Crystle Corp., Model CY 15A (1 5 MHz), and CTS Knight, Inc., 
Model CY 24A (24 MHz). Note that the 8284 CLK output pin is the MOS clock for the 
8086. 

There are two more clock outputs on the 8284, the PCLK (peripheral clock) pin 
and the OSC (oscillator) clock pin. These signals are provided to drive peripheral ICs. The 
8284 divides the frequency of the crystal at the X,X, pins or the external clock at the EFI 
pin by 6 to provide the PCLK. Therefore, the frequency of the PCLK is half the frequency 
of the 8284 CLK output pin. This means that for a 15-MHz crystal, the PCLK and CLK 
outputs are 2.5 MHz and 5 MHz respectively. Furthermore, PCLK is provided at the 
TTL-compatible level rather than at the MOS level. The OSC clock, on the other hand, is 
derived from the crystal oscillator inside the 8284 and has the same clock frequency as the 
crystal. Therefore, the OSC output is three times that of the CLK output. The OSC is also 
TTL compatible. Finally, the CSYNC (clock synchronization) input pin when connected 
to HIGH provides external synchronization in systems that employ multiple clocks. A 
typical 8284 interface to the 8086 for providing a 5-MHz clock to the 8086 is shown in the 
following figure: 



Intel 8086 419 

Reset Signals 
When designing the microprocessor’s reset circuit, two types of reset must be considered: 
power-up reset and manual reset. These reset circuits must be designed using the parameters 
specified by the manufacturer. 

Therefore, a microprocessor must be reset when its Vcc pin is connected to 
power. This is called “power-up reset.” After some time during normal operation the 
microprocessor can be reset upon activation of a manual switch such as a pushbutton. A 
reset circuit, therefore, needs to be designed following the timing parameters associated 
with the microprocessor’s reset input pin specified by the manufacturer. The reset circuit, 
once designed, is connected to the microprocessor’s reset pin. 

As mentioned before, the 8086 reset input provides a hardware mechanism for 
initializing the 8086 microprocessor. This is typically done at power-up to provide an 
orderly start-up of the system. The 8284 RES (reset input) pin when driven active LOW 
generates a HIGH on the 8284 reset output pin. The 8284 reset pin is connected to the 
8086 reset (input) pin. As mentioned before, Intel designed the 8086 in such a way that the 
8086 requires its reset pin to be HIGH for at least four clock cycles in order to obtain the 
physical address (FFFFOH) of the first instruction to be executed, except after power-on, 
which requires a 50-psec reset pulse. 

According to Intel, in order to guarantee a reset from power-up, the 8086 reset 
input must remain below 1.05 V for 50 psec after Vcc has reached the minimum supply 
voltage of 4.5 V. The 8284 RES input can be driven by an RC circuit as shown in the 
following figure: 

- 

- 

+ To 8284 RES input pin 

A -  
The voltage across the capacitor initially is zero upon connecting +Vcc to power. 

If the switch is not depressed, the capacitor charges to +Vcc through the resistor after a 
definite time determined by the time constant RC. 

The charging voltage across the capacitor can be determined from the following 
equation. Capacitor voltage, V,(t) = Vcc x [l - exp(-t/RC)], where t = 50 psec and Vc(t) = 
1.05 V, and V, = 4.5 V. Substituting these values in the equation, RC = 188 psec. For 
example, if C is chosen to be 0.1 pF, then R is 1.88 KQ. 

When the switch is depressed, the 8284 RES input pin is short-circuited to ground. 
This takes the 8284 RES pin to LOW and thus discharges the capacitor. - As the switch 
is released, the direct short to ground is broken. However, the 8284 RES pin remains 
effectively short-circuited to ground through the discharged capacitor. The capacitor now 
starts to recharge with time toward the +Vcc voltage level. 

The 8284 generates a reset signal from an internal Schmitt trigger input. A Schmitt 
trigger is a special analog circuit that shifts the switching threshold based on whether the 
input changes from LOW to HIGH or from HIGH to LOW. To illustrate this, consider a 

- 
- 



420 Fundamentals of Digital Logic and Microcomputer Design 

TTL Schmitt trigger inverter. Suppose that the input of this inverter is at 0 V (logic 0). The 
output will be approximately 3.4 V (logic 1). Now, because of the Schmitt trigger circuit, 
if the input voltage is increased, the output will not go to low until the value is about 1.7 
V. Also, after reaching a low output, the inverter will not produce a HIGH output until the 
input is decreased to about 0.9 V. Thus, the switching threshold for positive-going input 
changes is about 1.7 V and for negative-going input changes is about 0.9 V. 

The difference between the two thresholds is called “hysteresis.” The Schmitt 
trigger inverter provides 1.7 V - 0.9 V = 0.8 V of hysteresis. Schmitt trigger inputs 
provide high noise immunity and will normally not respond to the noise encountered in 
microprocessor systems if its hysteresis is greater than the noise amplitude. 

As the voltage across the capacitor increases with time, it remains at logic 0 
level as long as the logic 1 threshold of the Schmitt trigger. Thus, the 8284 RES input 
is maintained at logic 0 for at least four clock cycles so that the 8284 RESET output will 
apply a HIGH at the 8086 reset input for at least four clock cycles. Note that whenever 
the 8282 RES input is at logic 0, the reset output pin of the 8284 is switched to logic 1 
according to the timing parameters. 

Ready Signals 
The 8284 Ready (output) pin is connected to the 8086 Ready (input) pin to insert wait 
states for slow peripheral devices connected to the 8086. There are two main ways to 
disable this function when not used. One way is to connect the 8086 Ready pin to HIGH, 
and keep the 8284 Ready output pin floating. The other way is to connect the 8284 RDY 1 
and RDY2 pins to LOW, and the AENl and AEN2 to HIGH, which will permanently 
disable this function. The 8284 Ready (output) pin can then be connected to the 8086 
Ready input pin. 

The RDY 1, AENl and RDY2, AEN2 input signals provide logic for operation 
with multiprocessor systems and the 8284 ready output. In multiprocessor systems, these 
signals are used to control access over the system bus by several 8086’s. The 8284 TANK 
pin is replaced by the ASYNC input pin on the newer version of 8284. The ASYNC pin 
can be driven to LOW by a slower device to generate the 8284 READY output pin which 
can be connected to the 8086 READY pin. This makes it easier for the slower devices to 

- 

- 

N.C. 
+5v 

RDY 1 

N.C. I 88 K 

RESET Pin XoTuF 
RES 

interface to the 8086. Typical 8284 clock (using a 15-MHz crystal), reset, and ready signal 
(unused) connections to single 8086-appropriate pins are shown in the above figure. 

In the maximum mode, some of the 8086 pins in the minimum mode are 
redefined. For example, pins HOLD, HLDA, m, M/m, DTE,  DEN, ALE, and in 
the minimum mode are redefined as RQ/GTO, RQ/GTl, LOCK, S,, S,, S,, QS,, and QS,, 
respectively. In maximum mode, the 8288 bus controller decodes the status information 
from S,, S,, and to generate the bus timing and control signals that are required for a bus 

- - - - __ - - - 

_ _  



Intel 8086 42 1 
- _  

cycle. So, S,, and $are 8086 outputs and are decoded as follows: 

S, S, S" I Function 
0 0 0 I Interrupt acknowledge 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Read IiO port 
Write I/O port 
Halt 
Code access 
Read memory 
Write memory 
Inactive 

- 

The @/m and RQ/m requesdgrant pins are used by other local bus masters 
to force the processor to release the local bus at the end of the processor's current bus 
cycle. Each pin is bidirectional, with RQ/m having higher priority than R Q / m . T h e s e  
pins have internal pull-up resistors so that they may be left unconnected. The requesdgrant 
function of the 8086 works as follows: 

A pulse (one clock wide) from another local bus master (m/m or RQ/m pin) 
indicates a local bus request to the 8086. 
At the end of the current 8086 bus cycle, a pulse (one clock wide) from the 8086 
to the requesting master indicates that the 8086 has relinquished the system bus 
and tristates the outputs. Then the new bus master subsequently relinquishes 
control of the system bus by sending a LOW on m/m or RQ/m pin. The 
8086 then regains bus control. 
The 8086 outputs LOW on the pin to prevent other bus masters from 
gaining control of the system bus. 
Note that since the 8086 RESET vector is located at the physical address FFFFOH, 

there may not be enough locations available to write programs. The following 8086 
instruction sequence can be used with 8086 assembler (HP 64XXX) to jump to a different 
code segment upon hardware reset to write programs: 
ORG 0FFFFH:OOOOH ; Reset Vector 
JMP FAR PTR START START -} User 

The above instruction sequence will allow the 8086 to jump to the offset START (0200H) 
in code segment lOOOH upon hardware reset where the user can write programs. 

ORG 1000H:0200H 

-1 Programs 

9.9.2 Basic 8086 System Concepts 
This section describes basic concepts associated with the 8086 bus cycles, address and data 
bus, in minimum mode. 

8086 Bus Cycle 
To communicate with external devices via the system for transferring data or fetching 
instructions, the 8086 executes a bus cycle. The 8086 basic bus cycle timing diagram is 
shown in Figure 9.10. The minimum bus cycle contains four microprocessor clock periods 
or four T states. Note that each cycle is called a T state. The bus cycle timing diagram 
depicted in Figure 9.10 can be described as follows: 

During the first T state (T,), the 8086 outputs the 20-bit address computed from a 
segment register and an offset on the multiplexed address/data/status bus. 
For the second T state (T2), the 8086 removes the address from the bus and either 

1. 

2. 



422 

Read 
cycle 

Write 
cycle 

Fundamentals of Digital Logic and Microcomputer Design 

FIGURE 9.10 Basic 8086 bus cycle 
tristates or activates the AD15-ADo lines in preparation for reading data via the 
ADls-ADo lines during the T, cycle. In the case of a write bus cycle, the 8086 
outputs data on the AD,,-AD, lines during the T, cycle. Also, during T,, the 
upper four multiplexed bus lines switch from address (AI9-Al6) to bus cycle status 
(S6, S,, S,, S,). The 8086 outputs LOW on (for the read cycle) or WR (for the 
write cycle) during portion of T,, all of T,, and portion of T,. 
During T,, the 8086 continues to output status information on the four A19-A16/ 
S,-S, lines and will continue to output write data or input read data to or from the 
AD,,-AD, lines. 
If the selected memory or I/O device is not fast enough to transfer data to the 
8086, the memory or I/O device activates the 8086's READY input line LOW 
by the start of T,. This will force the 8086 to insert additional clock cycles (wait 
states T,) after T,. Bus activity during T, is the same as that during T,. When the 
selected device has had sufficient time to complete the transfer, it must activate 
the 8086 ready pin HIGH. As soon as the T, clock period ends, the 8086 executes 
the last bus cycle (T,). The 8086 will latch data on the ADls-ADo lines during the 
last wait state or during T, if no wait states are requested. 
During T,, the 8086 disables the command lines and the selected memory and 
I/O devices from the bus. Thus, the bus cycle is terminated in T4. The bus 
cycle appears to devices in the system as an asynchronous event consisting of an 
address to select the device, a register or memory location within the device, a 
read strobe, or a write strobe along with data. 
The DEN and D T E  pins are used by the 8286/8287 transceiver in a minimum 
system. During the read cycle, the 8086 outputs DEN LOW during part of the 
T, and all of the T, cycles. This signal can be used to enable the 8286/8287 
transceiver. The 8086 outputs a LOW on the DT/E pin from the start of the T I  
through part ofthe T, cycles. The 8086 uses this signal to receive (read) - data from 
the receiver during T,-T,. During a write cycle, the 8086 outputs DEN LOW 
during part of the TI, all of the T,, and T,, and part of the T, cycles. The signal can 
be used to enable the transceiver. The 8086 outputs a HIGH on DT/E throughout 
the 4 bus cycles to transmit (write) data to the transceiver during T,-T,. 

3. 

4. 

5 .  

6. - 



Intel 8086 

FFFFEH 

423 

FIGURE 9.11 Demultiplexing address, data, and status lines of the 8086 

OOOOlH 
OOOOOH 

00002H 
OOOOOH 

BHE 

ti 

I 
D7-rb 

b 

(a) One megabyte 
address 

(b) Physical implementation of address space 

FIGURE 9.12 8086 Memory 

Address and Data Bus Concepts 
The majority of memory and I10 chips capable of interfacing to the 8086 require a stable 
address for the duration of the bus cycle. Therefore, the address on the 8086 multiplexed 
addresddata bus during T, should be latched. The latched address is then used to select 
the desired I/O or memory location. To demultiplex the bus, the 8086 ALE pin can be used 
along with three 74LS373 latches. 

The 74LS373 Output Control (oc) pin can be connected to ground with the 
74LS373 pin represented by G or C or LE (shown as E in Figure 9.1 1) in data book tied 
to 8086 ALE. This will latch the 8086 address and pins at the falling edge of ALE. 
Figure 9.1 1 shows how this can be accomplished. 

The programmer views the 8086 memory address space as a sequence of one 



424 Fundamentals of Digital Logic and Microcomputer Design 

mega bytes in which any byte may contain an 8-bit data element and any hvo consecutive 
bytes may contain a 16-bit data element. There is no constraint on byte or word addresses 
(boundaries). The address space is physically implemented on a 16-bit data bus by dividing 
the address space into two banks of up to 5 12K bytes as shown in Figure 9.12. These banks 
can be selected by BHE and A, as follows: 

- 

- 
BHE A, 

0 0 
0 1 
1 0 

Byte transferred 
Both bytes via demultiplexed Do-D,, pins for even address. 
Upper byte to/from odd address via demultiplexed D,-D,, pins. 
Lower byte to/from even address via demultiplexed Do-D, pins. 

One bank is connected to D,-Do and contains all even-addressed bytes (A, = 0). 
The other bank is connected to D,,-D, and contains odd-addressed bytes (A, = 1). A 
particular byte in each bank is addressed by AI9-A,. The even-addressed bank is enabled 
by a LOW on A,, and data bytes are transferred over the D,-Do lines. The 8086 outputs 
a HIGH on BHE (bus high enable) and thus disables the odd-addressed bank. The 8086 
outputs a LOW on BHE to select the odd-addressed bank and a HIGH on A, to disable the 
even-addressed bank. This directs the data transfer to the appropriate half of the data bus. 

Activation of A, and BHE is performed by the 8086 depending on odd or even 
addresses and is transparent to the programmer. As an example, consider execution of the 
instruction MOV [ BX] , DH. Suppose the 20-bit address computed by BX and DS is even. 
The 8086 outputs a LOW on A, and a HIGH on BHE .This will select the even-addressed 
bank. The content of DH is placed on the D,-Do lines by a memory chip. The 8086 
writes this data via D,-Do and automatically places it in the selected memory location. 
Next, consider writing a 16-bit word by the 8086 with the low byte at an even address as 
shown in Figure 9.13. For example, suppose that the 8086 executes the instruction MOV 
[BXI  , CX. Assume [BX] = 0004H and [DS] = 2000H. The 20-bit physical address for 
the word is 20004H. The 8086 outputs a LOW on both A, and m, enabling both banks 
simultaneously. The 8086 outputs [CL] to the D,-Do lines and [CHI to the D,,-D, lines, 
with WR = LOW and M / E  = HIGH. The enabled memory banks obtain the 16-bit data 
and write [CL] to location 20004H and [CHI to location 20005H. 

Next, consider writing an odd-addressed 16-bit word by the 8086 using MOV 
[ BX] , CX . For example, suppose the 20-bit physical address computed by the 8086 is 
20005H. The 8086 accomplishes this transfer in two bus cycles. In the first bus cycle, 
the 8086 outputs a HIGH on A, and a LOW on BHE, and thus enables the odd-addressed 
bank and disables the even-addressed bank. The 8086 also outputs a LOW on the WR and 
a HIGH on the M / E  pins. In this bus cycle, the 8086 writes data to odd memory bank 
via D,,-D, lines; the 8086 writes the contents of CL to address 20005H. In the second 

- 

FIGURE 9.13 Even-addressed word transfer 



Intel 8086 

Address -------+ 
- >  

425 

High 8-bit 
bank 

(a) First bus cycle @) Second bus cycle 

FIGURE 9.14 Odd-addressed word transfer 

Control 

Data w 

FIGURE 9.15 Relationship of ALE and read 

+ 
_j Low 8-bit 

+ bank 

bus cycle, the 8086 outputs a LOW on A, and a HIGH on BHE and thus enables the even- 
addressed bank and disables the odd-addressed bank. The 8086 also outputs a LOW on 
the WR and a HIGH on the M / m  pins. The 8086 writes data to even memory bank via 
D,-Do lines; the 8086 writes the contents of CH to address 20006H. This odd-addressed 
word write is shown in Figure 9.14. 

If memory or I/O devices are directly connected to the multiplexed bus, the 
designer must guarantee that the devices do not corrupt the address on the bus during 
T,. To avoid this, the memory or I/O devices should have an output enable controlled by 
the 8086 read signal. The 8086 timing guarantees that the read is not valid until after the 
address is latched by ALE as shown in Figure 9.15. 

All Intel peripherals, EPROMs, and RAMs for microprocessors provide output 
enable for read inputs to allow connection to the multiplexed bus. Several techniques are 
available for interfacing the devices without output enables to the 8086 multiplexed bus. 
However, these techniques will not be discussed here. 

9.9.3 Interfacing with Memories 
In Figure 9.16, the 16-bit word memory in the 8086 is partitioned into odd and even 8- 
bit banks on the upper and lower halves of the data bus selected by BHE and A,. This is 
typically used for RAMs. Note that RAMs are needed when subroutines and interrupts 
requiring stack are desired in an application. 

- 



426 

A, 
A6 
A5 
A4 
A3 
A2 
A,  
A0 
0 0  

0, -- 
0, 

GND -- 

Fundamentals of Digital Logic and Microcomputer Design 

24 -- VCC Details --1 
- -2  23--A8 Access Time: 450 ns 
--3 22--A9 4K x 8 UV EPROM 
--4 21 -- 4, 
-5 2 0 - E  CE (chip enable) 
- 6  19-- OE (output enable) 

0,-0, (8 data pins) 
- -7  18 -- CE 
- - 8  2732 17- 0, 
--9 16--06 

- - I1  14- 0 4  

1 3 - 7 0 3  

A,-A, , (1 2 address pins) - 

- 

10 15 -- 0, 

8086 unused address pin (Low to select) 1 , 
Demulti lexed 

8086 ‘8 ;emultipiexL 8086 .41-&2 ~ 

- - 9 8086 

8086 M / i i  

ROMs and EPROMs 
ROMs and EPROMs are the simplest memory chips to interface to the 8086. Because 
ROMs and EPROMs are read-only devices and the 8086 always reads 16-bit data but 
discards unwanted bytes (if necessary), A, and BHE are not required to be part of the chip 
enablehelect decoding (chip enable is similar to chip select decoding except that chip 
enable also provides whether the chip is in active or standby power mode). The 8086 
address lines must be connected to the ROM/EPROM chips starting with A, and higher 
to all the address lines of the ROM/EPROM chips. The 8086 unused address lines can 
be used as chip enablehelect decoding. To interface the ROMs/EPROMs directly to the 
8086 multiplexed bus, they must have output enable signals. Figure 9.17 shows the 8086 
interfaced to two 2732 chips along with the pin diagram of 2732. 

The 8086’s interface to 2732 EPROMs in Figure 9.17(b) does not use 8Xm 
and A,, to distinguish between even and odd 2732s. The 8086 and inverted M / m  pins 
are ORed and connected to the 2732 pins. The 8086 can be connected to either 
ground or an unused 8086 address pin. Note that both 2732’s are enabled for all data reads; 
the odd 2732 places data on the demultiplexed 8086 D,-D,, pins while the even 2732 
places data on the demultiplexed 8086 Do-D7 pins. The 8086 reads the desired data and 
discards unwanted data if necessary depending on byte, odd word address or even word 
address transfers. 

- 

- 
CE 

0 0  - 01 

A0 -A, I 

OE 

2732(ODD) 

- 

8 

- 
4 CE 

Demulti lexed< 
8086 &-Q / 0 0 - 0 ,  

-&-All 

> 
- 
OE 

2732 (EVEN) 



Intel 8086 427 

Read 
Write 
Stand by or Disable (Tnstate) 

A7 Details 
Access Time: 120 ns 

2K x 8 SRAM designed using HCMOS 
Ao-Al0 (1 1 addresses) 
DO,-DO, (8 data pins) 
- W (write enable) 
G - (output enable) 
E (chip enable) 

v c c  +5 v 
Vss Ground 

A3 
A2 - 

L L H 
L L L 
H X X 

- - Mode Selection 
I E  G W 

Demultiplexed 
8086 A, 

Demultiplexed . _ _ ~  

8086 AI-A~I 

DO,- DO, Demultiplexed 
b 8 0 8 6 T L 0 - D  

i 6116(EVEN) 1 
(b) 8086-61 16 connections 

FIGURE 9.18 808641 16 interface along with 6 1 16 pin diagram 

Static RAMS (SRAMs) 
Because static RAMs are readwrite - memories and data will be written to RAM(s) once 
selected by the 8086, both A, and BHE must be included in the chip select logic. For each 
static RAM, the data lines must be connected to either the upper half (AD,,-AD,) or the 
lower half (AD7-ADo) of the 8086 data lines. Figure 9.18 shows the 8086 interface to two 
61 16 static RAMs along with the pin diagram of the 61 16. Note that the 61 16 signals, 
(Write Enable), (Output enable), and E (Chip enable) are decoded as follows: when G = 

0 and E = 0, then w = 1 for read and w = 0 for write. - 
In Figure 9.18, the 8086 demultiplexed BHE signal is used to select odd 6116 

SRAM chips; the data lines of this odd 61 16 are connected to the demultiplexed 8086 
D,-D,, pins. The 8086 demultiplexed A, signal, on the other hand, is used to select even 
61 16 SRAM chip; the data lines of this even 61 16 are connected to the demultiplexed 8086 
Do-D, pins. Note that the 6 1 16 has two chip enables E and G along with a single readiwrite 
pin (w) .When the 61 16 is enabled, w = 1 for read and G = 0 for write. 



428 Fundamentals of Digital Logic and Microcomputer Design 

Dynamic RAMs (DRAMS) 
Dynamic RAMs store information as charges in capacitors. Because capacitors 

can hold charges for a few milliseconds, refresh circuitry is necessary in dynamic RAMs 
for retaining these charges. Therefore, dynamic RAMs are complex devices to use to 
design a system. To relieve the designer of most of these complicated interfacing tasks, 
Intel provides dynamic RAM controllers to interface with the 8086 to build a dynamic 
memory system. Dynamic RAMs are used for microcomputers requiring large memories. 
DRAMs are typically used when memory requirements are 16k words or larger. DRAM is 
addressed via row and column addressing. For example, one megabit DRAM requiring 20 
address bits is addressed using 10 address lines and two control lines, RAS (Row Address 
Strobe) and CAS ( Column Address Strobe). To provide a 20-bit address into the DRAM, 
a LOW is applied to and 10 bits of the address are latched. The other 10 bits of the 
address are applied next and CAS is then held LOW. 

The addressing capability of the DRAM can be increased by a factor of 4 by 
adding one more bit to the address line. This is because one additional address bit results 
into one additional row bit and one additional column bit. This is why DRAMs can be 
expanded to larger memory very rapidly with inclusion of additional address bits. External 
logic is required to generate the RAS and CAS signals, and to output the current address 
bits to the DRAM. 

DRAM controller chips take care of refreshing and timing requirements needed 
by the DRAMs. DRAMs typically require 4 millisecond refresh time. The DRAM 
controller performs its task independent of the microprocessor. The DRAM controller 
sends a wait signal to the microprocessor if the microprocessor tries to access memory 
during a refresh cycle. 

or 74HC244 (Unidirectional buffer), and data lines should be buffered using 74LS245 
or 74HC245 (Bidirectional buffer) to increase the drive capability. Also, typical 
multiplexers such as 74LS157 or 74HC157 can be used to multiplex the microprocessors 
address lines into separate row and column addresses. 

- 

- 

- - 

Because of large memory, the address lines should be buffered using 74LS244 

9.9.4 8086 I/O Ports 
Devices with 8-bit I/O ports can be connected to either the upper or the lower half of the 
data bus. If the I/O port chip is connected to the lower half of the 8086 data lines (AD,- 
AD,), the port addresses will be even (A, = 0). On the other hand, the port addresses will 
be odd (A, = 1) if the I/O port chip is connected to the upper half of the 8086 data lines 
(AD,-AD,,). A, will always be 1 or 0 for the partitioned I/O chip. Therefore, A, cannot 
be used as an address input to select registers within a particular I/O chip. If two chips 
are connected to the lower and upper halves of the 8086 address bus that differ only in A, 
(consecutive odd and even addresses), A, and BHE must be used as conditions of chip 
select decoding to avoid a write to one I/O chip from erroneously performing a write to 
the other. 

The 8086 uses either standard I/O or memory-mapped I/O. The standard I/O uses 
the instructions IN and OUT, and is able to provide up to 64K bytes of I/O locations. The 
standard 110 can transfer either 8-bit data or 16-bit data to or from a peripheral device. The 
64-Kbyte I/O locations can then be configured as 64K 8-bit ports or 32K 16-bit ports. All 
I/O transfers between the 8086 and peripheral devices take place via AL for 8-bit ports (AH 
is not involved) and AX for 16-bit ports. 

__ 



Intel 8086 

A, A, 
0 0 

0 1 

1 0 

1 1 

429 

Port Name 

PortA 

PortB 

POrtC 

Control register 

2 
Mode 
select 

1 = active 
flag 

6 5 4 3 2 1 0  

yjAq Port C (upper 

Mode selection 

Group B 

bits) 
Port c (low 4 

1 = input 
o =  output 

o =  output 
1 = input 

Mode selection 
0 = mode 0 
1 = mode 1 

00 = mode 0 
01 =mode 1 

The definitions of the control register are shown in Figure 9.19. 

Indirect 
IN AX , DX or I N  AL,  DX inputs 16-bit data into a port addressed by DX into AX 
or 8-bit data into a port addressed by DX into AL, respectively. 
OUT DX , AX or OUT DX, AL outputs 16-bit contents of AX into a port addressed 
by DX or 8-bit contents of AL into a port addressed by DX, respectively. 
Memory-mapped I/O is basically accomplished by using the memory instructions 

such as MOV AX or AL, [ BX] and MOV [ BX] , AX or AL for inputting or outputting, 8- 
or 16-bit data to/from AL or AX addressed by the 20-bit address computed from DS and 
BX. Note that any 8- or 16-bit general purpose register and memory modes can be used in 
memory-mapped I/O. 

The 8086 programmed 1/0 capability will be explained in the following paragraphs 
using the 8255 I/O chip. The 8255 chip is a general-purpose programmable I/O chip. The 
8255 has three 8-bit I/O ports: ports A, B, and C. Ports A and B are latched 8-bit ports for 
both input and output. Port C is also an 8-bit port with latched output, but the inputs are 
not latched. Port C can be used in two ways: It can be used either as a simple 110 port or as 
a control port for data transfer using handshaking via ports A and B. 

The 8086 configures the three ports by outputting appropriate data to the 8-bit 
control register. The ports can be decoded by two 8255 input pins A, and A,, as follows: 



430 Fundamentals of Digital Logic and Microcomputer Design 

Bit 7 (D7) of the control register must be 1 to send the definitions for bits 0-6 
(Do-D,) as shown in the diagram. In this format, bits Do-D,, are divided into two groups: 
groups A and B. Group A configures all 8 bits of port A and the upper 4 bits of port C; 
group B defines all 8 bits of port B and the lower 4 bits of port C. All bits in a port can 
be configured as a parallel input port by writing a 1 at the appropriate bit in the control 
register by the 8086 OUT instruction, and a 0 in a particular bit position will configure the 
appropriate port as a parallel output port. Group A has three modes of operation: modes 
0, 1, and 2. Group B has two modes: modes 0 and 1. Mode 0 for both groups provides 
simple I/O operation for each of the three ports. No handshaking is required. Mode 1 for 
both groups is the strobed I/O mode used for transferring I/O data to or from a specified 
port in conjunction with strobes or handshaking signals. Ports A and B use the pins on 
port C to generate or accept these handshaking signals. Mode 2 of group A is the strobed 
bidirectional bus I/O and may be used for communicating with a peripheral device on 
a single 8-bit data bus for both transmitting and receiving data (bidirectional bus UO). 
Handshaking signals are required. Interrupt generation and enable/disable functions are 
also available. 

When D, = 0, the bit setheset control word format is used for the control register 
as follows: 

Bit setheset ::$ Bit setheset 
reset flag 1 =set 
0 = active v Bit select 0 = reset 

0 - 7  

This format is used to set or reset the output on a pin of port C or when enabling of 
the interrupt output signals for handshake data transfer is desired. For example, the 8 bits 
( O m 1  100) will clear bit 6 of port C to zero, Note that the control word format can be 
output to the 8255 control register by using the 8086 OUT instruction. Now, let us define 
the control word format for mode 0 more precisely by means of a numerical example. 
Consider that the control word format is 1000001 0,. With this data in the control register, 
all 8 bits of Port A are configured as outputs and the 8 bits of port C are also configured as 
outputs. All 8 bits of port B, however, are defined as inputs. On the other hand, outputting 
1001 101 1, into the control register will configure all three 8-bit ports (ports A, B, and C) 
as inputs. 

9.9.5 
From the preceding discussions, the following points can be summarized: 

Important Points To Be Considered for 8086 Interface to Memory and I/O 

For ROMs/EPROMs/E2PROMs, BHE and A, are not required as part of chip 
enablekelect decoding. 
For RAMs and I/O port chips, both BHE and A, must be used in chip select 
logic. 
For ROMs/EPROMs/E2PROMs and RAMs, both even and odd chips are required. 
However, for I/O chips, an odd-addressed 1/0 chip, an even-addressed I/O chip, 
or both can be used, depending on the number of ports required in an application. 
The 8086 BHE and/or A, must be used in I/O chip select logic depending on the 
number and type (oddeven) of I/O chips used. 
For interfacing ROMs/EPROMs/ E2PROMs to the 8086, the same chip select 
logic must be used for both the even and its corresponding odd memory chip. The 
same thing applies to RAM and I/O chips except that both BHE and A, must be 

- 
1 .  

2. 

3. 

- 

- 

4. 

__ 



Intel 8086 43 1 

used for RAMS and I/O; however, this is applicable to I/O if both odd and even 
I/O chips are present in the system. 
ROMs/EPROMs/E*PROMs must be connected in such a way that the 8086 reset 
vector address FFFFOH is contained ih the memory map. 

5. 

Examde 9.19 
An 8086-8255-2732-6 1 16-based microcomputer is required to drive an LED connected 
to bit 2 of port B based on two switch inputs connected to bits 6 and 7 of port A. If both 
switches are either HIGH or LOW, turn the LED ON; otherwise, turn it OFF. Assume 
a HIGH will turn the LED ON and a LOW will turn it OFF. Write an 8086 assembly 
language program to accomplish this. 
Solution 
PORTA EQU OF8H 
PORTB EQU OFAH 
CNTRL EQU OFEH 
PROG SEGMENT 

ASSUME C S :  PROG 
MOV 
OUT 

B E G I N  : I N  

AND 
J P E  

MOV 
OUT 
JMP 

LEDON : MOV 
OUT 
J M P  

PROG ENDS 

END 

AL, 9 0 H  
CNTRL, AL 

AL, PORTA 

AL, OCOH 
LE DON 

AL, O O H  
PORTB, AL 
B E G I N  
AL, 0 4 H  
PORTB, AL 
B E G I N  

C o n f i g u r e  p o r t  A 
a s  i n p u t  and  p o r t  B 
a s  o u t p u t  
I n p u t  p o r t  A 

R e t a i n  b i t s  6 and  I 
I f  b o t h  s w i t c h e s  a r e  e i t h e r  
HIGH o r  LOW, t u r n  t h e  LED ON 
O t h e r w i s e  t u r n  t he  
LED O F F  
R e p e a t  
T u r n  LED 
ON 

ExamDle 9.20 
Write an 8086 assembly language program to drive an LED connected to bit 7 of port 
A based on a switch input at bit 0 of port A. If the switch is HIGH, turn the LED ON; 
otherwise, turn the LED OFF. Assume an 8086/2732/6116/8255 microcomputer. Also, 
write a C++ program to accomplish the same task. Compare the 68000 assembly program 
with the compiled assembly code. Comment on the result. 
Solution 
The 8086 assembly language program and the C++ program along with the compiled 
assembly code are shown below. The 8086 assembly program contains 11 instructions 
whereas the 8086 C++ code generates 16 instructions. This example illustrates that 
although C++ programming can handle I/O, it generates more codes than assembly language 
programming. Although programs in C++ are easier to write compared to assembly, the 
machine code generated by the equivalent assembly language is shorter. Also note that 
C++ programs are not 100 % portable while the same I/O programs are written using 
C++ for microprocessors by two different manufactures. This is because of the different 
hardware configurations (IiO and memory maps) for different manufacturers. 



432 Fundamentals of Digital Logic and Microcomputer Design 

Note that the assembly language program can also be written by rotating bit 0 
(switch input) of port A to bit 7 (LED output) of port A only once by using ROR Al,1 
rather than RCL AL,CL with [CL]=7. The equivalent C++ program will still generate more 
assembled codes than the assembly language program. 

8086/8255 Microcomputer Assembly Code for Switch and LED (MASM) of Example 
9.20 

= 00F8 
= OOFE 
0000 

0000 B1 07 
0002 BO 90 
0004 E6 FE 
0006 E4 F8 
0008 8A D8 
OOOA BO 80 
OOOC E6 FE 
OOOE 8A C3 
0010 D2 DO 
0012 E6 F8 
0014 EB EC 
0016 

PORTA EQU 
CTLREG EQU 
LAB SEGMENT 

ASSUME 
MOV 

REPEAT: MOV 
OUT 
IN 
MOV 
MOV 
OUT 
MOV 
RCL 
OUT 
JMP 

LAB ENDS 
END 

OF8H 
OFEH 

CS : LAB 
CL, 7 
AL, 90H 
CTLREG, AL 

BL, AL 
AL, 80H 
CTLREG, AL 
AL, BL 
AL, CL 
PORTA, AL 
REPEAT 

AL, PORTA 
; set PORTA as input 
; read switch 
; save switch status 

; set PORTA as output 
; get switch status 
; rotate switch status 
; output to LED 
; repeat 

#include <dos.h> 
#define PORTA 0xOF8 
#define CNTLREG OxOFE 
int main ( )  ( 

int x; 
while (1) ( 

outportb (CNTLREG, 0x90) ; / /  set PORTA as input 
x = inportb (PORTA) ; / /  read switch 
outportb (CNTLREG, 0x80) ; / /  set PORTA as output 
outportb(PORTA, x << 7) ; / /  output to LED 

I 
I I 

Assembly code generated from C++ code above using Microsoft DEBUG unassembler: 
8086/8255 Microcomputer C++ program for Switch and LED (C++ Compiler) of 

Example 9.20 

-r 
AX=0000 BX=OOOO CX=022E DX=0000 SP=FFEE BP=0000 SI=OOOO 
DI=0000 
DS=159B ES=159B SS=159B CS=159B IP=O100 NV UP EI PL NZ NZ PO NC 
159B:0100 800COO OR BYTE PTR [SI],OO 

DS:OOOO=CD 
-u 2aa 2c8 
159B:02AA BAFEOO MOV DX,OOFE 
159B:02AD B090 MOV AL,90 
159B:02AF EE OUT DX, AL 
159B:02BO BAF800 MOV DX,OOF8 
159B:02B3 EC IN AL, DX 
159B:02B4 B400 MOV AH,OO 



Intel 8086 

159B:02B6 
15 9B : 02B8 
15 9B : 02BB 
159B: 02BD 
159B: 02BE 
159B:02CO 
159B: 02C2 
159B: 0 x 4  
159B:02C7 
159B:02C8 

8BD8 
BAFEOO 
B080 
EE 
B107 
8AC3 
D2EO 
BAF800 
EE 
EBE 0 

MOV 
MOV 

MOV 
OUT 
MOV 
MOV 
SHL 
MOV 
OUT 
JMP 

BX, AX 
DX, OOFE 
AL, 80 
DX,AL 
CL, 07 
AL, BL 
AL, CL 
DX, 00F8 
DX,AL 
02AA 

,94 
H Z d  

I ". 

433 

FIGURE 9.20 8086-based microcomputer 



434 

8086 M I 5  - 
OE 

A13 _I)o_ CE 
- 

8086 A,-A,, /." A,-'%, 

2732 (EVEN) 

Fundamentals of Digital Logic and Microcomputer Design 

8 
/ 

'To 8086 <-D7 

8086 AI-AII 

- 
8086A14 E 

A, - 4 0  

61 16 (ODD) 

8086 
8086 

TO 8086 Q - D,, I- 
8086 
8086 
8086 

8086 
8086 
8086 
8086 
8086 

Port c 

FIGURE 9.23 Even 8255 with pertinent connections 

9.10 8086-Based Microcomwter 

In this section, an 8086 will be interfaced in minimum mode to provide 4K x 16 EPROM, 
2K x 16 static RAM, and six 8-bit I/O ports. The 2732 EPROM, 6116 static RAM, and 
8255 I/O chips are used for this purpose. Memory and I/O maps are determined. Figure 
9.20 shows a hardware schematic for accomplishing this. 

The power and ground pins of all chips must be connected together to the power 
supply's power and ground pins. The 8086 MN/Mx is connected to +5 V for minimum 
mode (single processor) operation. Linear decoding is used to select both EPROMs and 
SRAMs. 8086 demultiplexed A,, = 1 is used to select 2732s and 8086 demultiplexed A,, 
= 0 is used for 61 16s. No unused address pin is used for selecting the 8255s because the 
8086 M / n  pin distinguishes between memory and I/O. 

Let us determine the 8086 memory and I/O maps. To determine the memory 
map for 2732 EPROMs, consider Figure 9.21 (obtained from Figure 9.20), which shows 
pertinent connections for the even 2732. 

In Figure 9.20, M / m  = 1 when the 8086 executes a memory-oriented instruction 
such as MOV [ BX] , DL to access the memory. Also, in the figure, A,, = 1 is used to 
select the EPROMs and A,, = 1 is used to deselect the RAMS. This is done to include the 
8086 reset vector FFFFO,, in the EPROMs. Therefore, an inverter is used to invert AI3. 



Intel 8086 43 5 

FEOOOH, FE002H, ... , FFFFEH 

FEOOlH, FE003H, ... , FFFFFH 

F9000H, F9002H, ... , F9FFEH 

F9001H, F9003H, ... , F9FFFH 

TABLE 9.12 Memory and 110 Maps for the Microcomputer of Figure 9.20 
Memon, Man 

Value 
FEOOH 

FEOOH 

F900H 

F900H 

OOOOH, 0002H, ... , IFFEH 

OOOIH, 0003H, ... , IFFFH 

OOOOH, 0002H, ... , OFFEH 

OOOIH, 0003H, ... , OFFFH 

Logical Address I Segment Offset 
Chip Number Phvsical Address 

Chip Number 
Even 8255 
Odd 8255 

~ 

Even 2732 

Odd 2732 

Even 6116 

Odd 6116 

EPROM 

EPROM 

SRAM 

SRAM 

Port Address 
Port A = FSH, Port B = FAH, Port C = FCH, Control Register = FEH 
Port A = F9H, Port B = FBH, Port C = FDH, Control Register = FFH 

Note that 8086 address pins AI5-A,, are not used and are, therefore, don't cares. Assume 
the don't cares to be HIGH. The even memory map for the 2732 in Figure 9.21 can be 
obtained as follows: 

A19A18 4 7 A 1 6  45 A14&3 '%*&I  404 4 4 4 '% '% 4 4 AI pb 
1 1  1 1 1 1 1 \----/ 0 

T Can be all 0's 

Select even 
- . T  to all 1 Is 

Deselect 2732 is 
61 16 's 1 

Therefore, the memory map for the even 2732 contains the even addresses 
FEOOOH, FE002H, ..., FFFFEH. Similarly, the memory map for the odd 2732 can be 
determined as: FEOOlH, FE003H, ..., FFFFFH. Note that the reset vector FFFFOH is 
included in this map. 

Let us now determine the memory map for the odd 61 16. Consider Figure 9.22 
(obtained from Figure 9.20), which shows pertinent connections for the odd 6 1 16. 

In Figure 9.20, A,, = 0 deselects 2732s and A,, = 0 selects 61 16s. Also, the 8086 
outputs HIGH on its M / m  pin (M/m = 1) when it executes a memory-oriented instruction 
such as MOV CX, [ SI ] . Furthermore, the 8086 outputs a LOW on the BHE pin for odd 
addresses. With don't care addresses, pins A,,-A,, and A,, as ones, the odd memory map 
for the 61 16 in Figure 9.22 can be obtained as follows: 

- 

4 9 & 8 4 7 A 1 6  4 5  * I 4 4 3  *12'%l & O & $  4 '% '% %As 44 4 
1 1  1 1  1 0  0 1 L - / ~ ( - L - J l  

Can be all 0's T Don't assume cares 1 's 1 2 s e l e q  to all 1 9s odd 

Select 2732 'S Don? care 
61 16's assume 1 

Therefore, the memory for the odd 6116 contains the odd addresses F9001H, 
F9003H, . . ., F9FFFH. Similarly, the memory map for the even 61 16 can be obtained as 
F9000H, F9002H, . . . , F9FFEH. 

Finally, the I/O map for the 8255s is determined. Consider Figure 9.23 (obtained 



436 Fundamentals of Digital Logic and Microcomputer Design 

from Figure 9.20), which shows pertinent connections for the even 8255. The 8086 outputs 
LOW on its M / n  pin ( M / E  = 0) when it executes an IN or OUT instruction. The 8086 
outputs LOW (A, = 0) for an even port address. This will produce a LOW on the cs pin 
of the even 8255. The even 8255 will thus be selected. 

Using 8086 A, and A, pins for port addresses, the I/O map for the even 8255 chip 
can be determined as follows: 

Port €3 X X X X X 0 1 O = F A H  
- + J +  

Don't cares Port B even 
assume 1 's 

X X X X X 1 0 O = F C H  Port c 

- + J +  
Don't cares Port C even 
assume 1 Is 

X X X X X l  1 O = F E H  

Don't cares Control even 
assume 1 Is register 

Control Register 

- w +  

Similarly, the I/O map for the odd 8255 chip is: 

Port addresses for the odd 8255 
PortA = F9H 
PortB = FBH 
PortC = FDH 

Control Register = FFH 

Table 9.12 summarizes the memory and I/O maps. 

9.11 8086 InterruDts 

The 8086 assigns every interrupt a type code so that the 8086 can identify it. Interrupts 
can be initiated by external devices or internally by software instructions or by exceptional 
conditions such as attempting to divide by zero. 

9.11.1 Predefined Interrupts 
The first five interrupt types are reserved for specific functions. 

Type 0: I N T O  Divide by zero 
Type 1: I N T l  Single step 
Type 2: INT2 Nonmaskable interrupt (NMI pin) 
Type 3: I N T 3  Breakpoint 
Type 4: INT4 Interrupt on overflow 

The interrupt vectors for these five interrupts are predefined by Intel. The user 
must provide the desired IP and CS values in the interrupt pointer table. The user may also 
initiate these interrupts through hardware or software. If a predefined interrupt is not used 
in a system, the user may assign some other function to the associated type. 

The 8086 is automatically interrupted whenever a division by zero is attempted. 



Intel 8086 437 

This interrupt is nonmaskable and is implemented by Intel as part of the execution of the 
divide instruction. 

When the TF (trap flag) is set by an instruction, the 8086 goes into single-step 
mode. The TF can be cleared to zero as follows: 

PUSHF , Save flags 
MOV BP,  SP I Move [ S P I  t o  [BPI  
AND 0 [BPI  , OFEFFH I Clear T F  
POPF Pop flags 

Note here that O[BP] rather than [BPI is used because BP cannot normally be used without 
displacement in the 8086 assembler. Now, to set TF, the AND instruction just shown 
should be replaced by OR 0 [BPI  , 0 1 0  OH. Once TF is set to 1, the 8086 automatically 
generates a type 1 interrupt after execution of each instruction. The user can write a service 
routine at the interrupt address vector to display memory locations and/or register to debug 
a program. Single-step mode is nonmaskable and cannot be enabled by the STI (enable 
interrupt) or disabled by the C L I  (disable interrupt) instruction. 

The nonmaskable interrupt is initiated via the 8086 NMI pin. It is edge triggered 
(LOW to HIGH) and must be active for two clock cycles to guarantee recognition. It 
is normally used for catastrophic failures such as a power failure. The 8086 obtains 
the interrupt vector address by automatically executing the INT2 (type 2) instruction 
internally. 

The type 3 interrupt is used for breakpoints and is nonmaskable. The user inserts 
the 1-byte instruction I N T 3  into a program by replacing an instruction. Breakpoints are 
useful for program debugging. 

The interrupt on overflow is a type 4 interrupt. This interrupt occurs if the overflow 
flag (OF) is set and the INTO instruction is executed. The overflow flag is affected, for 
example, after execution of a signed arithmetic (such as IMUL, signed multiplication) 
instruction. The user can execute an INTO instruction after the IMUL. If there is an 
overflow, an error service routine written by the user at the type 4 interrupt address vector 
is executed. 

9.11.2 Internal Interrupts 
The user can generate an interrupt by executing an interrupt instruction INTnn. The INTnn 
instruction is not maskable by the interrupt enable flag (IF). The INTnn instruction can 
be used to test an interrupt service routine for external interrupts. Type codes 32-255 can 
be used; type codes 5 through 3 1 are reserved by the Intel for future use. If a predefined 
interrupt is not used in a system, the associate type code can be utilized with the INTnn 
instruction to generate software (internal) interrupts. 

9.11.3 External Maskable Interrupts 
The 8086 maskable interrupts are initiated via the INTR pin. These interrupts can be 
enabled or disabled by STI (IF = 1) or CLI (IF = 0), respectively. If IF = 1 and INTR active 
(HIGH) without occurrence of any other interrupts, the 8086, after completing the current 
instruction, generates INTA LOW twice, each time for about one cycle. 

INTA is only generated by the 8086 in response to INTR, as shown in Figure 
9.24. The interrupt acknowledge sequence includes two INTA cycles separated by two 
clock cycles. ALE is also generated by the 8086 and will load the address latches with 
indeterminate information. The first INTA bus cycle indicates that an interrupt acknowledge 
cycle is in progress and allows the system to be ready to place the interrupt type code on the 

- 
- 



43 8 Fundamentals of Digital Logic and Microcomputer Design 

next INTA bus cycle. The 8086 does not obtain the information from the bus during the 
first cycle. The external hardware must place the type code on the lower half of the 16-bit 
data bus (Do-D,) during the second cycle. 

In the minimum mode, the M / m  is LOW, indicating I/O operation during the 
INTA bus cycles. The 8086 internal LOCK signal is also LOW from T, of the first bus 
cycle until T, of the second bus cycle to keep the BIU from accepting a hold request 
between the two INTA cycles. Figure 9.25 shows a simplified interconnection between 
the 8086 and 74LS244 for servicing the INTR. enables the 74LS244 to place type 
code nn on the 8086 data bus. In the maximum mode, the status lines So-S, will generate 
the output. 

9.11.4 Interrupt Procedures 
Once the 8086 has the interrupt type code (via the bus for hardware interrupts, from software 
interrupt instructions INTnn, or from the predefined interrupts), the type code is multiplied 
by 4 to obtain the corresponding interrupt vector in the interrupt vector table. The 4 bytes 
of the interrupt vector are the least significant byte of the instruction pointer, the most 
significant byte of the instruction pointer, the least significant byte of the code segment 
register, and the most significant byte of the code segment register. During the transfer of 
control, the 8086 pushes the flags and current code segment register and instruction pointer 
onto the stack. The new CS and IP values are loaded. Flags TF and IF are then cleared 
to zero. The CS and IP values are read by the 8086 from the interrupt vector table. No 
segment registers are used when accessing the interrupt pointer table. S,S, has the value 
10, to indicate no segment register selection. 

9.11.5 Interrupt Priorities 
As far as the 8086 interrupt priorities are concerned, the single-step interrupt has the 
highest priority, followed by NMI, followed by the software interrupts. This means that a 

- 

Redriven by microprocessor if queue is not fuU 

FIGURE 9.24 Cycle 

I 

nnof 

32-255 

FIGURE 9.25 Servicing the INTR in the minimum mode 



Intel 8086 439 

simultaneous NMI and single-step interrupt will cause the NMI service routine to follow 
the single step; a simultaneous software interrupt and single step interrupt will cause the 
software interrupt service routine to follow the single step; and a simultaneous NMI and 
software interrupt will cause the NMI service routine to be executed prior to the software 
interrupt service routine. The INTR is maskable and has the lowest priority. A priority 
interrupt controller such as the 8259A can be used with the 8086 INTR to provide eight 
levels of interrupts. The 8259A has built-in features for expansion of up to 64 levels with 
additional 8259s. The 8259A is programmable and can be readily used with the 8086 to 
obtain multiple interrupts from the single 8086 INTR pin. 

9.11.6 Interrupt Pointer Table 
The interrupt pointer table provides interrupt address vectors (IP and CS contents) for all 
the interrupts. There may be up to 256 entries for the 256 type codes. Each entry consists 
of two addresses, one for storing IP and the other for storing CS. Note that in the 8086 each 
interrupt address vector is a 20-bit address obtained from IP and CS. 

To service an interrupt, the 8086 calculates the two addresses in the pointer table 
where IP and CS are stored for a particular interrupt type as follows: 

For INTnn 

Type code 

The table address for IP = 4 x nn and the table address for CS = 4 x nn + 2. For example, 
consider I NT 2 : 

Address for IP = 4 x 2 = 00008H 
Address for CS = 00008 + 2 = OOOOAH 

The values of IP and CS are loaded from location 00008H and OOOOAH in the pointer table. 
Similarly, the IP and CS addresses for other INTnn are calculated, and their values are 
obtained from the contents of these addresses in the pointer table (Table 9.13). The 8086 
interrupt vectors are defined as follows: 

Vectors 0-4 For predefined interrupts 
Vectors 5-3 1 
Vectors 32-255 For user interrupts 

For Intel’s future use 

Interrupt service routines should be terminated with an IRET (interrupt return) instruction, 
which pops the top three stack words into the IP, CS, and flags, thus returning control to 
the right place in the main program. 

9.12 8086DMA 

When configured in minimum mode ( M N / E  HIGH) the 8086 provides HOLD and HLDA 
(hold acknowledge) signals to control the system bus for DMA applications. In this type 
of DMA, the peripheral device can request the DMA transfer via the DMA request (DRQ) 
line connected to a DMA controller chip such as the 8257. In response to this request, the 
8257 sends a HOLD signal to the 8086. The 8257 then waits for the HLDA signal from 
the 8086. On receipt of this HLDA, the 8257 sends a DMACK signal to the peripheral 
device. The 8257 then takes over the bus and controls data transfer between the RAM and 
peripheral device. On completion of data transfer, the 8257 returns control to the 8086 by 
disabling the HOLD and DMACK signals. 



440 

TABLE 9.13 

Fundamentals of Digital Logic and Microcomputer Design 

8086 Interrupt Pointer Table 

IP 
cs 

...................................................... 255 

Interrupt Type Code I 20-Bif Memory Address 

003FCH 
003FEH 

I IP .................................................... OOOOOH 
00002H 
00004H 
00006H 

00008H 

OOOOAH 

Examde 9.21 
In Figure 9.26, an 8086-based microcomputer is required to implement a voltmeter to 
measure voltage in the range 0 to 5 V and display the result in two decimal digits: one integer 
part and one fractional part. The microcomputer is required to start the A/D converter at 
the falling edge of a pulse via bit 0 of Port C. When the conversion is completed, the 
A/D’s “conversion complete” signal will go HIGH. During the conversion, the AD’S  
“conversion complete” signal stays LOW. Use the 8255 control register = FEH, Port A = 

F8H, Port B = FAH, and Port C = FCH. 
Using programmed I/O, the microcomputer is required to poll the AID’S 

“conversion complete” signal. When the conversion is completed, the microcomputer will 
send a LOW of the A/D converter’s “output enable” line via bit 1 to port C and then input 
the 8-bit output from AID via port B and display the voltage (0 to 5 V) in two decimal 
digits (one integer and one fractional) via port A on two TIL 3 1 1 displays. Note that the 
TIL 3 1 1 has an on-chip BCD to seven-segment decoder. The microcomputer will output 
each decimal digit on the common lines (bits 0-3 of port A) connected to the DCBA inputs 
of the displays. Each display will be enabled by outputting LOW on each LATCH line 

8086/2732/6116/8255 

FIGURE 9.26 Figure for Example 9.2 1 



Intel 8086 44 1 

in sequence (one after another) so that the input voltage V, (0 to 5 V) will be displayed 
with one integer part and fractional part. Write an 8086 assembly language program to 
accomplish this. 
Using interrupt I10 (both NMI and INTR), repeat the task. Write the main program to 
initialize the 8255 control register and start the AID. The service routine will input the A/D 
data, display the result, and stop. Write an 8086 assembly language program for the main 
program and the service routine. Use the memory map of your choice. Write the service 
routines for both NMI and INTR starting at IP=2000H, CS=1000H. Use 8086 assembler 
directive such as ORG CS:IP for the HP (Hewlett-Packard) 64XXX microcomputer 
development system in the following programs. 
Solution 
Because the maximum decimal value that can be accommodated in 8 bits is 2%,, (FFI6), 
the maximum voltage of 5 V will be equivalent to 255,,. This means the display in decimal 
is given by 

D = 5 x (InputI255) 
=Quotient +Remainder 

Integer palt 

This gives the integer part. The fractional part in decimal is 
F = (Remainder15 1) x 10 
I (Remainder)/S ' 

For example, suppose that the decimal equivalent of the 8-bit output of A/D is 200. 
D = 20015 1 => Quotient = 3, Remainder = 47 

Integer part = 3 
Fractional part, F = 4715 = 9 

Therefore, the display will show 3.9 V. 
The 8086 assembly language program using programmed I/O can be written as 
follows: 

(a) 

ORG 0FEOOH:OlOOH; CS=FEOOH, IP= OlOOH 
CDSEG a SEGMENT 

ASSUME CS : CDSEG 
PORTA EQU OF8H 
PORTB EQU OFAH 
PORTC EQU OFCH 
CNTRL EQU OFEH 
MOV AL,8AH Configure PORTA, PORTB 

OUT CNTRL,AL and PORTC 
MOV AL,03H Send 1 to START pin of A/D 

OUT PORTC,AL and 1 to (OUTPUTENABLE) 
MOV AL,02H Send 0 to start pin 
OUT PORTC,AL of A/D 

ROL AL,1 Complete bit for HIGH 
BEGIN: IN AL, PORTC Check conversion 

JNC BEGIN 
MOV AL,OOH Send LOW to (OUTPUTENABLE) 
OUT PORTC,AL 
IN AL, PORTB Input A/D data 
MOV AH, 0 Convert input data to 16-bit 

unsigned number in AX 



442 Fundamentals of Digital Logic and Microcomputer Design 

1 

MOV 
DIV 
MOV 
XCHG 
MOV 

MOV 
DIV 
MOV 
MOV 
OR 
AND 
OUT 
MOV 
OR 
AND 
OUT 
HLT 

CDSEG ENDS 
END 

DL, 51 
DL 
CL, AL 
AH, AL 
AH, 0 

BL, 5 
BL 
DL, AL 
AL, CL 
AL, 20H 
AL, 2FH 
PORTA, AL 
AL, DL 
AL, 10H 
AL, 1FH 
PORTA, AL 

Convert data to 
integer part 
Save quotient (integer) in CL 
Move remainder to AL 
Convert remainder to unsigned 
16-bit number 
Convert data to 
fractional part 
Save quotient (fraction) to DL 
Move integer part 
Disable fractional display 
Enable integer display 
Display integer part 
Move fractional part 
Disable integer display 
Enable fractional display 
Display fractional part 

~~ 

(b) UsingNMI 
In Figure 9.26, connect the “conversion complete” to 8086 NMI; all other 
connections in Figure 9.26 will remain unchanged. Note that all addresses 
selectable by the user are arbitrarily chosen in the following. The main program 
in 8086 assembly language is 

3TSEG 

STSEG 

PORTA 
PORTB 
PORTC 
ZNTRL 

ZDSEG 

DELAY: 
ZDSEG 

ORG 3900H:OlOOH ;SS = 3900H, SP = OlOOH 
SEGMENT 
DB 32 DUP ( ? )  
ENDS 
END 
EQU OF8H 
EQU OFAH 
EQU OFCH 
EQU OFEH 
ORG 0FEOOH:OlOOH ; CS = FEOOH, IP = OlOOH 
SEGMENT 
ASSUME CS:CDSEG,SS:STSEG,DS:DATA 
MOV AX,3900H ; Initialize 
MOV SS,AX ; stack segment 
MOV AX,OOOOH ; Initialize 
MOV DS,AX ; data segment 
MOV SP,0100H ; Initialize SP 
MOV AL,8AH ; Configure PORTA, PORTB 
OUT CNTRL, AL ; and PORTC 
MOV AL,03H ; Send 1 to START pin of A/D 
OUT PORTC,AL ; and 1 to (OUTPUTENABLE) 
MOV AL,02H ; Send 0 to start pin 
OUT PORTC,AL ; of A/D 

ENDS 
END 

JMP DELAY ; Wait for interrupt 



Intel 8086 443 

)RG 0000H: 0008H ; DS = OOOOH, Offset = 0008H 
IATA SEGMENT 

DW 2000H ; Initialize IP = 2000H, 
DW lOOOH ; CS = lOOOH 

IATA ENDS ; for Pointer Table 
END 

Phe NMI Service routine is: 

ORG 1000H:2000H ; 

ASSUME CS:CODE 
MOV AL,OOH 
OUT PORTC,AL 
IN AL, PORTB 
MOV AH,O 
MOV DL,51 
DIV DL 
MOV CL,AL 
XCHG AH,AL 
MOV AH,O 
MOV BL,5 
DIV BL 

:ODE SEGMENT 
CS = 1000H, IP = 2000H 
Start Program at 
CS = 1000H, IP = 2000H 
Send LOW to (OUTPUTENABLE) 

Input A/D data 
Convert input to 16-bit unsig num. 
Convert data to 
integer part 
Save quotient (integer) in CL 
Move remainder to AL 
Convert remainder to unsigned 16-bit 
Convert data to 
fractional part 

MOV 
MOV 
OR 
AND 
OUT 
MOV 
OR 
AND 
OUT 
HLT 

CODE ENDS 
END 

DL, AL 
AL, CL 
AL, 20H 
AL, 2FH 
PORTA, AL 
AL, DL 
AL, 10H 
AL, 1FH 
PORTA, AL 

Save quotient (fraction) to DL 
Move integer part 
Disable fractional display 
Enable integer display 
Display integer part 
Move fractional part 
Disable integer display 
Enable fractional display 
Display fractional part 
stop 

(c) Using INTR 
All connections in Figure 9.26 will be same except A/D’s “conversion complete” 
to 8086 INTR as shown in Figure 9.27. All other connections in Figure 9.26 will 
remain unchanged. INT FFH is used. In response to INTR, the 8086 pushes IP 
and SR onto the stack, and generates LOW on INTA. An octal buffer such as 
74LS244 can be enabled by this to transfer FF,, in this case (can be entered 
via eight DIP switches connected to + 5 V through a 1 KO resistor) to the input of 
the octal buffer. The output of the octal buffer is connected to the demultiplexed 
D,-D, lines of the 8086. The 8086 executes INT FFH and goes to the interrupt 
pointer table to load the contents of physical addresses 003FCH (logical address: 



444 Fundamentals of Digital Logic and Microcomputer Design 

CS = OOOOH, IP = 03FCH) and 003FEH (logical address: CS = OOOOH, IP = 

03FEH) to obtain IP and CS for the service routine respectively. Suppose that it 
is desired to write the service routine at IP = 2000H and CS = 1000H; these IP 
and CS values must be stored at addresses 003FCH and 003FEH respectively. 
All user selectable addresses are arbitrarily chosen. The main program in 8086 
assembly language is 

DELAY : JMP DELAY 
CDSEG ENDS 

END 
ORG 0000H: 03FCH 

DW 2000H 
DW lOOOH 

DATA SEGMENT 

DATA ENDS 

I END 

ORG 3900H:8500H ; SS = 3900H, SP = 8500H 
STSEG SEGMENT 

DB 32 DUP ( ? )  

END 
STSEG ENDS 

PORTA EQU OF8H 
PORTB EQU OFAH 
PORTC EQU OFCH 
CNTRL EQU OFEH 

ORG OF300H:OlOOH ; CS = F300H, IP = OlOOH 

ASSUME CS:CDSEG, SS:STSEG,DS:DATA 
CDSEG SEGMENT 

MOV 

MOV AX,3900H 
MOV SS,AX 
MOV AX,OOOOH 
MOV DS,AX 

SP, 8500H 
MOV AL,8AH 
OUT CNTRL,AL 
STI 
MOV AL,03H 
OUT PORTC,AL 
MOV AL,02H 
OUT PORTC,AL 

; Initialize 
; stack segment 
; Initialize 
; data segment 

Initialize SP 
; Configure port A, port B, 
; and port C 
; Enable Interrupt 
; Send one to start pin of A/D 
; and one to (OUTPUTENABLE) 
; Send zero to start pin of A/D 

; Wait for interrupt 

; DS = OOOOH, Offset = 03FCH 

; Initialize IP = 2000H, 
; CS = lOOOH 

for Pointer Table 



Intel 8086 445 

rhe INTR Service routine i s :  

3RG 1000H:2000H 
SODE SEGMENT 

ASSUMECS:CODE 
MOV AL, 0 
OUT PORTC,AL 
IN AL, PORTB 
MOV AH,O 

MOV 
DIV 
MOV 
XCHG 
MOV 
MOV 
DIV 
MOV 
MOV 
OR 
AND 
OUT 
MOV 
OR 
AND 
OUT 
HLT 

,ODE ENDS 
END 

DL,51 
DL 
CL,AL 
AH, AL 
AH, 0 
BL, 5 
BL 
DL, AL 
AL, CL 
AL,20H 
AL, 2FH 
PORTA, AL 
AL, DL 
AL, 10H 
AL, 1FH 
PORTA, AL 

CS = 1000H, IP = 2000H 

Send LOW to 
(OUTPUT ENABLE) 
Input A/D data 
Convert input data to 
16-bit unsigned number in AX 
Convert data 
to integer part 
Save quotient (integer) in CL 
Move remainder to AL 
Convert remainder to unsigned 16-bit 
Convert data 
to fractional part 
Save quotient (fraction) in DL 
Move integer part 
Disable fractional display 
Enable integer display 
Display integer part 
Move fractional part 
Disable integer display 
Enable fraction display 
Display fractional part 
stop 

9.13 Interfacing an 8086-Based MicrocomDuter to a Hexadecimal Kevboard and 
Seven-SePment Disdavs 

This section describes the characteristics of the 8086-based microcomputer used with a 
hexadecimal keyboard and a seven-segment display. 

9.13.1 Basics of Keyboard and Display Interface to a Microcomputer 
A common method of entering programs into a microcomputer is via a keyboard. A popular 
way of displaying results by the microcomputer is by using seven-segment displays. The 
main functions to be performed for interfacing a keyboard are: 
Sense a key actuation. 
Debounce the key. 
Decode the key. 

Let us now elaborate on keyboard interfacing concepts. A keyboard is arranged in 
rows and columns. Figure 9.28 shows a 2 x 2 keyboard interfaced to atypical microcomputer. 
In Figure 9.28, the columns are normally at a HIGH level. A key actuation is sensed by 
sending a LOW (closing the diode switch) to each row one at a time via PA0 and PA1 of 
port A. The two columns can then be input via PB2 and PB3 of port B to see whether any 
of the normally HIGH columns are pulled LOW by a key actuation. If so, the rows can be 



446 Fundamentals of Digital Logic and Microcomputer Design 

Connected to 

"Conversion 
complete'' 

pin of A/D 

Microcomputer 

74LS244 

8-bit type 
code vector 

25510 ( F 5 6 )  

To 8086 
dernultiplexed 
Do-D, pins 

FIGURE 9.27 Hardware interface for 8086 INTR 

checked individually to determine the row in which the key is down. The row and column 
code for the pressed key can thus be found. 

The next step is to debounce the key. Key bounce occurs when a key is pressed 
or released-it bounces for a short time before making the contact. When this bounce 
occurs, it may appear to the microcomputer that the same key has been actuated several 
times instead of just once. This problem can be eliminated by reading the keyboard after 
about 20 ms and then verifying to see if it is still down. If it is, then the key actuation 
is valid. The next step is to translate the row and column code into a more popular code 
such as hexadecimal or ASCII. This can easily be accomplished by a program. Certain 
characteristics associated with keyboard actuations must be considered while interfacing to 
a microcomputer. Typically, these are two-key lockout and N-key rollover. The two-key 
lockout ensures that only one key is pressed. An additional key depressed and released 
does not generate any codes. The system is simple to implement and most often used. 
However, it might slow down the typing because each key must be fully released before 
the next one is pressed down. On the other hand, the N-key rollover will ignore all keys 
pressed until only one remains down. 

Now let us elaborate on the interfacing characteristics of typical displays. The 
following functions are typically performed for displays: 

Output the appropriate display code. 
Output the code via right entry or left entry into the displays if there are more than 
one displays. 

These functions can easily be realized by a microcomputer program. If there are more than 
one display, the displays are typically arranged in rows. A row of four displays is shown 
in Figure 9.29. In the figure, one has the option of outputting the display code via right 
entry or left entry. If the code is entered via right entry, the code for the least significant 
digit of the four-digit display should be output first, then the next digit code, and so on. The 
program outputs to the displays are so fast that visually all four digits will appear on the 
display simultaneously. If the displays are entered via left entry, then the most significant 
digit must be output first and the rest of the sequence is similar to the right entry. 

Two techniques are typically used to interface a hexadecimal display to the 
microcomputer: nonmultiplexed and multiplexed. In nonmultiplexed methods, each 
hexadecimal display digit is interfaced to the microcomputer via an I/O port. Figure 
9.30 illustrates this method. BCD to seven-segment conversion is done in software. 
The microcomputer can be programmed to output to the two display digits in sequence. 
However, the microcomputer executes the display instruction sequence so fast that the 
displays appear to the human eye at the same time. Figure 9.3 1 illustrates the multiplexing 
method of interfacing the two hexadecimal displays to the microcomputer. In the 
multiplexing scheme, appropriate seven-segment code is sent to the desired displays on 

1. 
2. 



Intel 8086 447 

FIGURE 9.28 Typical microcomputer-keyboard interface 

entry --.o 0 B g g  
FIGURE 9.29 A row of four displays 

Port A 

Port B 

Microcomputer 

FIGURE 9.30 Nonmultiplexed hexadecimal displays 

seven lines common to all displays. However, the display to be illuminated is grounded. 
Some displays such as Texas Instrument’s TIL 3 1 1 have on-chip decoder. In this case, the 
microcomputer is required to output four bits (decimal) to a display. 

The keyboard and display interfacing concepts described here can be realized 
by either software or hardware. To relieve the microprocessor of these functions, 
microprocessor manufacturers have developed a number of keyboard/display controller 
chips. These chips are typically initialized by the microprocessor. The keyboarddisplay 
functions are then performed by the chip independent of the microprocessor. The amount of 
keyboarddisplay functions performed by the controller chip varies from one manufacturer 
to another. However, these functions are usually shared between the controller chip and 
the microprocessor. 

9.13.2 Hex Keyboard Interface to an 8086-Based Microcomputer 
In this section, an 8086-based microcomputer is designed to display a hexadecimal digit 



448 

entered via a keypad (16 keys). Figure 9.32 shows the hardware schematic. 
Port A is configured as an input port to receive the row-column code. 
Port B is configured as an output port to display the key(s) pressed. 
Port C is configured as an output port to output zeros to the rows to detect a key 
actuation. 
The system is designed to run at 2 MHz. Debouncing is provided to avoid 

unwanted oscillation caused by the opening and closing of the key contacts. To ensure 
stability for the input signal, a delay of 20 ms is used for debouncing the input. 

The program begins by performing all necessary initializations. Next, it makes 
sure that all the keys are opened (not pressed). A delay loop of 20 ms is included for 
debouncing, and the following instruction sequence is used (Section 9.8): 

Fundamentals of Digital Logic and Microcomputer Design 

1. 
2. 
3. 

MOV CX,0930H 
D E L A Y :  L O O P  DELAY 

The next three lines detect a key closure. If a key closure is detected, it is 
debounced. It is necessary to determine exactly which key is pressed. To do this, a sequence 
of row-control codes (OFH, OEH, ODH, OBH, 07H) are output via port C. The row-column 
code is input via port A to determine if the column code changes corresponding to each 
different row code. If the column code is not OFH (changed), the input key is identified. 
The program then indexes through a look-up table to determine the row+olumn code 
saved in DL. If the code is found, the corresponding index value, which equals the input 

Port A 

Port B 

I Microcomputer 

FIGURE 9.31 Multiplexed displays 
+ 5v 

FIGURE 9.32 8086-based microcomputer interface to keyboard and display 



Intel 8086 449 

key’s value (a single hexadecimal digit) is displayed. The program is written such that it 
will continuously scan for input key and update the display for each new input. Note that 
lowercase letters are used to represent the 8086 registers in the program. For example, al, 
ah, and ax  in the program represent the 8086 AL, AH, and AX registers, respectively. 

The memory and I/O maps are arbitrarily chosen. A listing of the 8086 assembly 
nguage program is given in the following: 
I000 CDSEG SEGMENT 

ASSUME CS:CDSEG,DS:DTSEG 
= 00F8 PORTA EQU 

= OOFA PORTB EQU 
= OOFC PORTC EQU 

= OOFO OPEN EQU 
= OOFE CSR EQU 

0000 BB 0100 mov 
0003 8E DB mov 
0005 BO 90 start: mov 

0007 E6 FE out 
0009 2A CO sub 
OOOB E6 FA out 
O O O D  2A CO scan-key:sub 
OOOF E6 FC out 
0011 E4 F8 key-open:in 
3013 3C FO cmp 
0015 75 FA jnz 
0017 B9 0930 mov 
OOlA E2 FE delayl: loop 
OOlC E4 F8 key-c1ose:in 
OOlE 3C FO CmP 
0020 74 FA jz 
0022 B9 0930 rnov 
0025 E2 FE delay2: loop 
0027 BO FF rnov 
0029 F8 clc 
002A DO DO next-row: rcl 
002C 8A C8 mov 
OOZE E6 FC out 
0030 E4 F8 in 
0032 8A DO mov 
0034 24 FO and 
0036 3C FO cmp 
0038 75 05 jnz 
003A 8A C1 mov 
003C F9 stc 
003D EB EB j mp 
003F BE FFFF decode: mov 
0042 B9 OOOF mov 
0045 46 search: inc 

OF8h 

0 FAh 
OFCh 
OFEh 
OFOh 

bx, OlOOh 
ds, bx 
al, 90h ; 

CSR, a1 
al, a1 ; 

PORTB,al ; 

al, a1 ; 

PORTC, a1 ; 
al, PORTA 
al, OPEN 
key-open 
cx, 0930h 
delayl 
al, PORTA 
al, OPEN 
key-close ; 
cx, 0930h ; 
delay2 ; 

al, OFFh ; 

al, 1 
cl, a1 ; 

PORTC, a1 ; 
al, PORTA ; 
dl, a1 ; 
al, OFOh ; 

al, OFOh ; 

decode ; 

al, cl ; 

next-row ; 

si, -1 ; 

cx, OOOFh ; 
si 

Hex keyboard input 
(row/column) 
LED displays/controls 
Hex keyboard row controls 
Control status register 
Row/column codes if all 
keys are opened 

Config ports A, B, C 
as i/o/o 

Clear a1 
Enable/initialize display 
Clear a1 
Set row controls to zero 
Read PORTA 
Are all keys opened? 
Repeat if closed 
Delay of 20 ms 

read PORTA 
Are all keys closed? 
repeat if opened 
delay of 20 ms 
Debounce key closed 
Set a1 to all 1’s 
carry 
Set up row mask 
Save row mask in cl 
Set a row to zero 
Read PORTA 
Save row/coln codes in dl 
Mask row code 
Is coln code affected? 
If yes, decode coln code 
Restore row mask to a1 
if no, set carry 
Check next row 
Initialize index register 
Set up counter 
Increment index 

key opened 



450 Fundamentals of Digital Logic and Microcomputer Design 

0 0 4 6  3A 94 0000 R 

004A EO F9 
004C 8A C 1  d o n e :  

004E  E 6  FA 
0 0 5 0  EB BB 

0052  CDSEG 
0 0 0 0  DTSEG 
0 0 0 0  7 7  TABLE 
0 0 0 1  B7 
0002  D7 
0003 E 7  
0 0 0 4  7B 
0 0 0 5  BB 
0 0 0 6  DB 
0 0 0 7  EB 
0 0 0 8  7 D  
0 0 0 9  BD 
OOOA DD 
OOOB ED 
OOOC 7 E  
O O O D  BE 
OOOE DE 
OOOF EE 
0 0 1 0  DTSEG 

cmp d l ,  [TABLE+s i ] ;  I n d e x  t h r u  tab le  o f  

l o o p n e  search ; L o o p  i f  n o t  f o u n d  
mov a l , c l  ; g e t  character a n d  e n a b l e  

; d i s p l a y  
o u t  PORTB,a l  ; d i s p l a y  k e y  
j m p  s c a n - k e y  ; R e t u r n  t o  s c a n  a n o t h e r  

e n d s  
s e g m e n t  
DB 7 7 h  ; C o d e  f o r  F 
DB OB7h ; Code f o r  E 
DB OD7h ; C o d e  f o r  D 
DB OE7h ; C o d e  f o r  C 
DB 7Bh  ; C o d e  f o r  B 
DB OBBh ; C o d e  f o r  A 
DB ODBh ; C o d e  f o r  9 
DB OEBh ; C o d e  f o r  8 
DB 7 Dh ; C o d e  f o r  7 
DB OBDh ; C o d e  f o r  6 
DB ODDh ; Code f o r  5 
DB OEDh ; C o d e  f o r  4 
DB 7 E h  ; C o d e  f o r  3 
DB OBEh ; C o d e  f o r  2 
DB ODEh ; Code f o r  1 
DB OEEh ; C o d e  f o r  0 
e n d s  
e n d  

codes 

; k e y  i n p u t  

In the program, the “Key-open’’ loop ensures that no keys are closed. On the other 
hand, the “Key-close’’ waits in the loop for a key actuation. Note that in this program, the 
table for the codes for the hexadecimal numbers 0 through F are obtained by inspecting 
Figure 9.32. 

For example, consider key F. When key,F is pressed and if a LOW is output by 
the program to bit 0 of port C, the top row and the rightmost column of the keyboard will 
be LOW. This will make the content of port A as: 

Bitnumber: 7 6 5 4 3 2 1 0 

uu 
7 7 

Data : 0 1 1 1 0 1 1 1 =77,, 

Thus, a code of 77,, is obtained at Port A when the key F is pressed. Diodes are 
connected at the four bits (Bits 0-3) of Port C. This is done to make sure that when a 0 
is output by the program to one of these bits (row of the keyboard), the diode switch will 
close and will generate a LOW on that row. 

Now, if a key is pressed on a particular row which is LOW, the column connected 
to this key will also be LOW. This will enable the programmer to obtain the appropriate 
key code for each key. 



Intel 8086 

OUESTIONS AND PROBLEMS 

45 1 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

9.10 

What is the basic difference between the 8086,8086-1,8086-2, and 8086-4? 

Assume (DS)=1000H, (SS)=2000H, (CS)=3000H, (BP)=OOOFH, (BX)=OOOAH 
before execution of the following 8086 instructions: 
(a) MOV CX,[BX] (b) MOV DX,[BP] 
Which instruction will be executed faster by the 8086, and why ? 

What is the purpose of the 8086 MN/m pin? 

If (DS) = 205FH and OFFSET = 0052H, what is the 8086 physical address? 
Does the EU or BIU compute this physical address? 

In an 8086 system, SEGMENT 1 contains addresses 00100H-00200H and 
SEGMENT 2 also contains addresses 00100H-00200H. What are these segments 
called? 

Determine the addressing modes for the following 8086 instructions: 
(a) CLC 
(b) CALL WORDPTR [BX] 
(c) MOV AX, DX 
(d) ADD [SI], BX 

Find the overflow, direction, interrupt, trap, sign, zero, parity, and carry flags after 
execution of the following 8086 instruction sequence: 

MOV AH, OFH 
SAHF 

What is the content of AL after execution of the following 8086 instruction 
sequence? 

MOV BH, 33H 
MOV AL, 32H 
ADD AL, BH 
AAA 

What happens after execution of the following 8086 instruction sequence? 
Comment. 

MOV DX, OOlFH 
XCHG DL, DH 
MOV AX, DX 
IDIV DL 

What are the remainder, quotient, and registers containing them after execution of 
the following 8086 instruction sequence? 

MOV AH, 0 
MOV AL, OFFH 
MOV CX, 2 
IDIV CL 



452 

9.1 1 

9.12 

9.13 

9.14 

9.15 

9.16 

9.17 

9.18 

9.19 

9.20 

9.2 1 

9.22 

9.23 

9.24 

Fundamentals of Digital Logic and Microcomputer Design 

Write an 8086 instruction sequence to set the trap flag for single stepping without 
affecting the other flags in the Status register. 

Write an 8086 assembly language program to subtract two 64-bit numbers. 
Assume SI and DI point to the low words of the numbers. 

Write an 8086 assembly program to add a 16-bit number stored in BX (bits 0 to 7 
containing the high-order byte of the number and bits 8 to 15 containing the low- 
order byte) with another 16-bit number stored in CX (bits 0 to 7 containing the 
low-order 8 bits of the number and bits 8 thorough 15 containing the high-order 8 
bits). Store the result in AX. 

Write an 8086 assembly program to multiply the top two 16-bit unsigned words 
of the stack. Store the 32-bit result onto the stack. 

Write an 8086 assembly language program to add three 16-bit numbers. Store the 
16-bit result in AX. 

Write an 8086 assembly language to find the area of a circle with radius 2 meters 
and save the result in AX. 

Write an 8086 assembly language program to convert 255 degrees in Celsius in 
BL to Fahrenheit degrees and store the value in AX. Use the equation 

Assume AL, CX and DXBX contain a signed byte, a signed word, and a signed 
32-bit number respectively. Write an 8086 assembly language program that will 
compute the signed 32-bit result: AL - CX + DXBX - DXBX. 

F = ( C I 5 ) * 9 + 3 2  

Write an 8086 assembly program to divide an 8-bit signed number in CH by an 
8-bit signed number in CL. Store the quotient in CH and the remainder in CL. 

Write an 8086 assembly program to add 25 16-bit numbers stored in consecutive 
memory locations starting at displacement OlOOH in DS = 0020H. Store the 16- 
bit result onto the stack. 

Write an 8086 assembly program to find the minimum value of a string of 10 
signed 8-bit numbers using indexed addressing. Assume Offset 5000H contains 
the first number. 

Write an 8086 assembly program to move 100 words from a source with offset 
OOlOH in ES to a destination with offset OlOOH in the same extra segment. 

Write an 8086 assembly program to divide a 28-bit unsigned number in the high 
28 bits of DX AX by 8,0. Do not use any divide instruction. Store the quotient in 
the low 28 bits of DX AX. Discard remainder. 

Write an 8086 assembly program to compare two strings of 15 ASCII characters. 
The first character (string 1) is stored starting at offset 5000H in DS followed 



Intel 8086 453 

by the string. The first character of the second string (string 2) is stored starting 
at 6000H in ES. The ASCII character in the first location of string 1 will be 
compared with the first ASCII character of string 2, and so on. As soon as a match 
is found, store OOEE,, onto the stack; otherwise, store 0000,, onto the stack. 

9.25 Write a subroutine in 8086 assembly language that can be called up by a main 
program in a different code segment. The subroutine will compute the 16-bit 
sum 

100 

i=l 
C xi 

Assume the xi’s are signed 8-bit numbers and are stored in consecutive locations 
starting at displacement 0050H. Also, write the main program that will call this 
subroutine to compute 

100 

i=l C %  
and store the 16-bit result (8-bit remainder and 8-bit quotient) in two consecutive 
memory bytes starting at offset 0400H. 

9.26 Write a subroutine in 8086 assembly language to convert a 2-digit unpacked 
BCD number to binary. The most significant digit is stored in a memory location 
starting at offset 4000H, and the least significant digit is stored at offset 4001H. 
Store the binary result in DL.Use the value of the 2-digit BCD number, 
V =  D, x 10 + Do.  Note that arithmetic operations will provide binary result. 

9.27 Assume an 8086/2732/6116/8255 microcomputer. Suppose that four switches are 
connected at bits 0 through 3 of port A and an LED is connected at bit 4 of port B. 
If the number of LOW switches is even, turn the port B LED ON; otherwise, turn 
the port B LED OFF. Write an 8086 assembly language program to accomplish 
this. Do not use any instructions involving the Parity flag. 

9.28 Interface two 2732 and one 8255 odd to an 8086 to obtain even and odd 2732 
locations and odd addresses for the 8255’s port A, port B, port C, and control 
registers. Show only the connections for the pins shown in Figure P9.28. Assume 
all unused address lines to be zeros. 



454 Fundamentals of Digital Logic and Microcomputer Design D;gTpz; Port c 

8086 mu>, -AD,, h-jTkq-07 - OE 

1 2 3  11v k- 

A ,  AD16-AD19/s 3-s 6 - 
RD 

WR 
- rF, - 

FIGURE P9.28 

X 

To INTR of an 
8086/2732/6116/8255 

y microtomputer 

Volage 
measurement, 
VM 

FIGURE P9.29 

9.29 In Figure P9.29, if VM > 12 V, turn the LED ON connected at bit 4 of port A. 
On the other hand, if VM < 11 V, turn the LED OFF. Use ports, registers, and 
memory locations of your choice. Draw a hardware block diagram showing the 
microcomputer and the connections of the figure to its ports. Write a service 
routine in 8086 assembly language. Assume all segment registers are already 
initialized. The service routine should be written as CS=1000H, IP=2000H. 
The main program will initialize SP to 2050H, initialize ports, and wait for 
interrupts. 

9.30 Repeat Problem 9.29 using the 8086 NMI interrupt. 

9.31 An 808612732161 1618255-based microcomputer is required to drive the LEDs 
connected to bit 0 of ports A and B based on the input conditions set by switches 
connected to bit 1 of ports A and B. The I/O conditions are as follows: 

If the input at bit 1 of port A is HIGH and the input at bit 1 of port B is 
low, then the LED at port A will be ON and the LED at port B will be 
OFF. 
If the input at bit 1 of port A is LOW and the input at bit 1 of port B is 
HIGH, then the LED at port A will be OFF and the LED at port B will be 
ON. 

LOW), then both LEDs at ports A and B will be ON. 
. If the inputs at both ports A and B are the same (either both HIGH or both 

Write an 8086 assembly language program to accomplish this. Do not use any 
instructions involving the parity flag. 



Intel 8086 455 

9.32 

9.33 

9.34 

9.35 

9.36 

An 8086/2732/6116/8255-based microcomputer is required to test a NAND 
gate. Figure P9.32 shows the I/O hardware needed to test the NAND gate. The 
microcomputer is to be programmed to generate the various logic conditions for 
the NAND inputs, input the NAND output, and turn the LED ON connected to bit 
3 of port A if the NAND gate chip is found to be faulty. Otherwise, turn the LED 
ON connected to bit 4 of port A. Write an 8086 assembly language program to 
accomplish this. - +5v +5v 

Bit 0 of Portd 

Bit 1 of PortE 

Bit 2 of PortC 

Bit 3 of Po@ 

Bit 4 of Po@ 

LED ' 

8086 pC 
FIGURE P9.32 (Assume both LEDs are OFF initially) 

Bit 0 
Bit 1 

Bit 2 

A Bit3 
Port 

I Bit4 
Bit 5 

Bit 6 

I 
FIGURE P9.33 

1 
GND 

An 8086/2732/6116/8255 microcomputer is required to add two 3-bit numbers 
in AL and BL and output the sum (not to exceed 9) to a common cathode seven- 
segment display connected to port A as shown in Figure P9.33.Write an 8086 
assembly language program to accomplish this by using a look-up table. Do not 
use XLAT instruction. 

Write an 8086 assembly language program to turn an LED OFF connected to bit 
2 of port A of an 8086/2732/6116/8255 microcomputer and then turn it on after 
delay of 15 s. Assume the LED is ON initially. 

What are the factors to be considered for interfacing a hex keyboard to a 
microcomputer? 

An 8086/2732/6116/8255 microcomputer is required to input a number from 0 
to 9 from an ASCII keyboard interfaced to it and output to an EBCDIC printer. 
Assume that the keyboard is connected to port A and the printer is connected 
to port B. Write an 8086 assembly language to accomplish this. Use XLAT 
instruction. 



r- r- r- - 
TEST HLDA HOLD 

- NMI 
- INTR 
- INTA 
- 

8086 

r w/Mx 
+ 

A D 0 - q 9 -  VI 

WR AL E /  

8086 A ,  

8086 ,Do-D, < I - 7 cs 
8 

P o r t A t t ,  Al ,A1 

‘’ 8 L, Latches - 
- 

> ALE -m r - [m 8255 ~ 

J 

PortB- 

POrtC+++ 
8 

Will the circuit shown in Figure P9.37 work? If so, determine the I/O map in hex. 
If not, justify briefly, modify the circuit and determine the J/O map in hex. Use 
only the pins and signals provided. Assume all don’t cares to be zeros. Note that 
I/O map includes the addresses for port A, port B, port C ,  and the control register. 
Using the logical port addresses, write an instruction sequence to configure port 
A as input and port B as output. 



10 
MOTOROLA 

MC68000 
This chapter describes the basic features of Motorola’s MC68000 (1 6-bit microprocessor). 
The addressing modes, instruction set, I/O, and system design concepts of the MC68000 
are covered in detail. 

Motorola’s original MC68000 was designed using HMOs technology. Motorola’s 
MC68000 is replaced it by a lower power MC68HC000, which is designed using HCMOS 
technology. The MC68HC000 is equivalent to the MC68000 in all aspects except that 
the MC68HC000 is designed using HCMOS whereas the MC68000 was designed using 
HMOs technology. This means that unlike the MC68000, the unused inputs of the 
MC68HC000 should not be kept floating, they should be connected to +5 V, ground, or 
outputs of other chips as appropriate. Also, note that an HCMOS output can drive 10 
LSTTL inputs. However, an LSTTL output is not guaranteed to provide HCMOS input 
voltage. Hence, the HCT gates may be required when driving HC inputs. The MC 
68HC000 has the same registers, addressing modes, instruction set, pins and signals, and 
I/O capabilities as the MC68000. The term “MC68000” will be used interchangeably with 
the term “MC68HC000” throughout this chapter. 

The MC68HC000, implemented in HCMOS, is applicable to designs for which 
the following considerations are relevant: 

The MC68HC000 completely satisfies the input/output drive requirements of HCMOS 
logiv devices. 
The MC68HC000 provides an order of magnitude reduction in power dissipation 
when compared to the HMOs MC68000. 
The minimum operating frequency of the MC68HC000 is 4 MHz. 

Although the MC68HC000 is implemented with input protection diodes, care should be 
exercised to ensure that the maximum input voltage specification (-0.3 V to +6.5 V) is not 
exceeded. 

10.1 Introduction 

The MC68000 is Motorola’s first 16-bit microprocessor. Its address and data registers 
are all 32 bits wide, and its ALU is 16 bits wide. The 68000 requires a single 5-V supply. 
The processor can be operated from a maximum internal clock frequency of 25 MHz. The 
68000 is available in several frequencies, inc1udin.g 4, 6, 8, 10, 12.5, 16.67, and 25 MHz. 
The 68000 does not have on-chip clock circuitry and therefore, requires an external crystal 
oscillator or clock generatoddriver circuit to generate the clock. 

The 68000 has several different versions, which include the 68008, 68010, and 
68012. The 68000 and 68010 are packaged either in a 64-pin DIP (dual in-line package) 

457 

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman 
Copyright 0 2005 John Wiley & Sons, Inc. 



458 Fundamentals of Digital Logic and Microcomputer Design 

with all pins assigned or in a 68-pin quad pack or PGA (pin grid array) with some unused 
pins. The 68000 is also packaged in 68-terminal chip carrier. The 68008 is packed in a 48- 
pin dual in-line package, whereas the 68012 is packed in an 84-pin grid array. The 68008 
provides the basic 68000 capabilities with inexpensive packaging. It has an 8-bit data bus, 
which facilitates the interfacing of this chip to inexpensive %bit peripheral chips. The 
680 10 provides hardware-based virtual memory support and efficient looping instructions. 
Like the 68000, it has a 16-bit data bus and a 24-bit address bus. The 68012 includes all 
the 6801 0 features with a 3 1 -bit address bus. The clock frequencies of the 68008, 6801 0, 
and 68012 are the same as those of the 68000. The following table summarizes the basic 
differences among the 68000 family members: 

68000 68008 68010 68012 

Data size (bits) 16 8 16 16 

Address bus size (bits) 24 20 24 31 

Virtual memory No No Yes Yes 

Control registers None None 3 3 

Directly addressable 16MB 1 M B  16MB 2 G B  
memory (bytes) 

To implement operating systems and protection features, the 68000 can be operated 
in two modes: supervisor and user. The supervisor mode is also called the “operating 
system mode.” In this mode, the 68000 can execute all instructions. The 68000 operates in 
one of these modes based on the S bit of the status register. When the S bit is 1, the 68000 
operates in the supervisor mode; when the S bit is 0, the 68000 operates in the user mode. 

Table 10.1 lists the basic differences between the 68000 user and supervisor 
modes. From Table 10.1, it can be seen that the 68000 executing a program in the supervisor 
mode can enter the user mode by modifying the S bit of the status register to 0 via an 
instruction. Instructions such as MOVE to SR, AND1 to SR, and EORI to SR can be used to 
accomplish this. On the other hand, the 68000 executing a program in the user mode can 
enter the supervisor mode only via recognition of a trap, reset, or interrupt. Note that, upon 
hardware reset, the 68000 operates in the supervisor mode and can execute all instructions. 
An attempt to execute privileged instructions (instructions that can only be executed in the 
supervisor mode) in the user mode will automatically generate an internal interrupt (trap) 
by the 68000. 

The logical level in the 68000 hnction code pin (FC2) indicates to the external 
devices whether the 68000 is currently operating in the user or supervisor mode. The 
68000 has three function code pins (FC2, FC1, and FCO), which indicate to the external 
devices whether the 68000 is accessing supervisor prograddata or user prograddata or 
performing an interrupt acknowledge cycle. 

The 68000 can operate on five different data types: bits, 4-bit binary-coded 
decimal (BCD) digits, bytes, 16-bit words, and 32-bit long words. The 68000 instruction 
set includes 56 basic instruction types. With 14 addressing modes, 56 instructions, and 
5 data types, the 68000 contains over 1000 op-codes. The fastest instruction is one that 
copies the contents of one register into another register. It is executed in 500 ns at an 8- 
MHz clock rate. The slowest instruction is 32-bit by 16-bit divide, which in executed in 
21.25 ps at 8 MHz. The 68000 has no I/O instructions. Thus, the I/O is memory mapped. 



Motorola MC6800 

- DO 

- D1 Eight - - D2 data 
- 

D3 registers - 
- 

- 
- D4 

- - D5 

- - D6 
- - D7 

459 

TABLE 10.1 68000 User and Supervisor Modes 

Supervisor Mode User Mode 
~ ~ ~~~ ~ 

Enter mode by Recognition of a trap, reset, or 
interrupt 

Clearing status bit S 

System stack pointer Supervisor stack pointer User stack pointer 

Other stack pointers User stack pointer registers, AO-A6 
and registers AO- 
A6 

STOP under Supervisor mode 
RESET 
MOVE to/fiom SR 
AND1 to/from SR 
OR1 to/from SR 
E O R I  to/from SR 
MOVE USP to (An) 
MOVE to USP 
RTE 

Instructions available All including: All except those listed 

Function code pin FC2 1 0 

Hence, MOVE instructions between a register and a memory address are also used as I/O 
instructions. The MC68000 is a general-purpose register-based microprocessor. Although 
the 68000 PC is 32 bits wide, only the low-order 24 bits are used. Because this is a byte- 

I I Programcounter 

15 8.7 0 

FIGURE 10.1 MC68000 programming model 



460 Fundamentals of Digital Logic and Microcomputer Design 

addressable machine, it follows that the 68000 microprocessor can directly address 16 MB 
of memory. Note that symbol [ 3 is used in the examples throughout this chapter to indicate 
the contents of a 68000 register or a memory location 

T 

10.2 68000 RePisters 

S . . . . .  12 I1 10 . . . . . . . .  X N 2 V C 

Figure 10.1 shows the 68000 registers. This microprocessor includes eight 32-bit data 
registers (DO-D7) and nine 32-bit address registers (AO-A7 plus A7’). Data registers 
normally hold data items such as 8-bit bytes, 16-bit words, and 32-bit long words. An 
address register usually holds the memory address of an operand; AO-A6 can be used as 
16- or 32-bit. Because the 68000 uses 24-bit addresses, it discards the uppermost 8 bits 
(bits 24-3 1) while using the address registers to hold memory addresses. The 68000 uses 
A7 or A7’ as the user or supervisor stack pointer (USP or SSP), respectively, depending 
on the mode of operation. 

The 68000 status register is composed of two bytes: a user byte and a system byte 
(Figure 10.2). The user byte includes typical condition codes such as C, V, N, Z, and X. 
The meaning of the C ,  V, N, and Z flags is obvious. Let us explain the meaning of the X 
bit. Note that the 68000 does not have any ADDC or SUBC instructions; rather, it has ADDX 
and SUBX instructions. 

Because the flags C and X are usually affected in an identical manner, one can use 
ADDX or SUBX to reflect the carries or borrows in multiprecision arithmetic. The contents 
of the system byte include a 3-bit interrupt mask (12, 11, 10), a supervisor flag (S), and a 
trace flag (T). When the supervisor flag is 1, then the system operates in the supervisor 
mode; otherwise, the user mode of operation is assumed. When the trace flag is set to 1, the 
processor generates a trap (internal interrupt) after executing each instruction. A debugging 
routine can be written at the interrupt address vector to display registers andor memory 
after execution of each instruction. Thus, this will provide a single-stepping facility. Note 
that the trace flag can be set to one in the supervisor mode by executing the instruction 
ORI# $8000, SR. 

The interrupt mask bits (12, 11, 10) provide the status of the 68000 interrupt pins 
IPL2, IPLl and IPLO. I2 I1 I0 = 000 indicates that all interrupts are enabled. I2 I1 I0 = 

11 1 indicates that all maskable interrupts except the nonmaskable interrupt (Level 7) are 
disabled. The other combinations of 12, 11, and I0 provide the maskable interrupt levels. 
Note that the signals on the IPL2, IPLl and IPLO pins are inverted internally and then 
compared with 12,11, and 10, respectively. 

-- - 

-- __ 

System Byte User Byte 
A A 

/ 4 - 



Motorola MC6800 

Address = N 
N + 2  

46 1 

15 8 7  0 
Byte 0 Byte 1 N +  1 
Byte 2 Byte 3 N + 3  

Address = N 
N + 2  
N + 4  

(a) 68000 Words Stored in Bytes (4 Bytes) 
I 15 0 1  

Word 0 N+1 
Word 1 N + 3  
Word 2 N + 5  

Address = N 
N + 2  
N + 4  
N + 6  

15 0 
Long word 0 (H) N+1 
Long word 0 (L) N + 3  
Long word 1 (H) N + 5  
Long word 1 (L) N + 7  

10.3 68000 Memorv Addressinp 

The MC68000 supports bytes (8 bits), words (1 6 bits), and long words (32 bits) as shown 
in Figure 10.3. Byte addressing includes both odd and even addresses (0, 1, 2, 3, ...), 
word addressing includes only even addresses in increments of 2 (0, 2, 4, ...), and long 
word addressing contains even addresses in increments of 4 (0, 4, 8, . . .). As an example 
of 68000 addressing structure, consider MOVE . L DO, $5 0 6 0 8 0 . If [DO] = $07F 1248 1, 
then after this MOVE, [$506080] = $07, [$506081] = $F1, [$506082] = $24, and [$506083] 
= $8 1. In the 68000, all instructions must be located at even addresses for byte, word, and 
long word instructions; otherwise, the 68000 generates an internal interrupt. The size of 
each 68000 instruction is even multiples of a byte. This means that once the programmer 
writes a program starting at an even address, all instructions are located at even addresses 
after assembling the program. For byte instructions, data can be located at even or odd 
addresses. On the other hand, data for word and long word instruction must be located at 
even addresses; otherwise the 68000 generates an internal interrupt. 

Note that in 68000 for word and long word data, the low-order address stores the 
high-order byte of a number. This is called Big-endian byte ordering. 

10.4 68000 Addressing Modes 

The 14 addressing modes of the 68000 shown in Table 10.2 can be divided into 6 basic 
groups: register direct, address register indirect, absolute, program counter relative, 
immediate, and implied. 

As mentioned, the 68000 has three types of instructions: no operand, single 
operand, and double operand. The single-operand instructions contain the effective address 
(EA) in the operand field. The EA for these instructions is calculated by the 68000 using 
the addressing mode used for this operand. In the case of two-operand instructions, one of 
the operands usually contains the EA and the other operand is usually a register or memory 
location. The EA in these instructions is calculated by the 68000 based on the addressing 



462 

TABLE 10.2 68000 Addressing Modes 

Fundamentals of Digital Logic and Microcomputer Design 

Addressing Mode Generation Assembler Syntax 
Register direct addressing 

Data register direct EA = Dn Dn 
Address register direct EA = An An 

Register indirect EA = (An) (An) 
Postincrement register indirect EA = (An), An +- An (An)+ 
Predecrement register indirect + N  -(An) 
Register indirect with offset d(An) 

Address register indirect addressing 

An +- An - N, EA = 

EA = (An) + d,, 
Indexed register indirect with (An) d(An, Ri) 

offset 

. 

EA = (An) + (Ri) + d, 
Absolute data addressing 

Absolute short EA = (Next word) xxxx 
Absolute long EA = (Next two x x x x x x x x 

words) 
Program counter relative addressing 

Relative with offset EA = (PC) + d,, d 
Relative with index and offset 

Immediate data addressing 
EA = (PC) + (Ri) + d, d(Ri) 

Immediate DATA = Next word(s) #xxxx 
Quick immediate Inherent data #xx 

Implied addressing 
Implied register EA = SR, USP, SP, 

PC 
Notes: 
EA = effective address 
An = address register 

Dn = data register 

Ri 

SR = status register 
PC = program counter 
SP 

= address or data register used as index 
register 

= active system stack pointer 

USP = user stack pointer 
d, = 8-bit signed offset 

(displacement) 
d,, = 16-bit signed offset 

(displacement) 
N = 1 for byte, 2 for words, and 

4 for long words 
( ) = contents of 
-+ =replaces 

mode used for the EA. 
Some two-operand instructions have the EA in both operands. This means that 

the operands in these instructions use two addressing modes. Note that the 68000 address 
registers do not support byte-sized operands. Therefore, when an address register is used 
as a source operand, either the low-order word or the entire long word operand is used, 
depending on the operation size. When an address register is used as the destination 
operand, the entire register is affected regardless of operation size. If the operation size is 
a word, an address register in the destination operand is sign-extended to 32 bits after the 
operation is performed. Data registers, on t5e ather hand, support data operands of byte, 



Motorola MC6800 463 

word, or long word size. 
To identify the operand size of an instruction, the following notation is placed 

after a 68000 mnemonic: .B for byte, .W or none (default) for word, and .L for long word. 
For example, 

10.4.1 Register Direct Addressing 
In this mode, the eight data registers (DO-D7) or seven address registers (AO-A6) contain 
the data operand. For example, consider ADD. W $0 0 5 0 0 0 I DO. The destination operand 
of this instruction is in data register direct mode. Now, if [005000] = 0002,, and [DO.W] 
= 0003,,, then after execution of ADD $ 0 0 5 0 0 0  I DO, the contents of D0.W = 0002 + 
0003 = 0005. Note that in this instruction, the $ symbol is used by Motorola to represent 
hexadecimal numbers. Also note that instructions are not available for byte operations 
using address registers. 

10.4.2 Address Register Indirect Addressing 
There are five different types of address register indirect mode. In this mode, an address 
register contains the effective address. For example, consider CLR . W ( A 1  ) . If [A1 . 
L]=$OOOO3000, then, after execution of CLR.  W ( A l )  , the 16-bit contents of memory 
location $003000 will be cleared to zero. 

The postincrement address register indirect mode increments an address register 
by 1 for byte, 2 for word, and 4 for long word after it is used. For example, consider CLR . L 
(A0 ) +. If [AO] = 00005000,,, then after execution of CLR. L (A0 ) +, the 16-bit contents 
of each of the memory locations 005000,, and 005002,, are cleared to zero and [AO] = 
00005000 + 4 = 00005004. The postincrement mode is typically used with memory arrays 
stored from LOW to HIGH memory locations. For example, to clear 1000,, words starting 
at memory location 003000,, and above, the following instruction sequence can be used: 

MOVE. W # $ l O O O , D O  ; Load length of data into DO 
M0VEA.L #$00003000,AO ; Load starting address into A0 

REPEAT CLR.W (AO)  + ; Clear a location pointed to 
; by A0 and increment A0 by 2 

SUBQ . W #1,DO ; Decrement DO by 1 
BNE . B REPEAT ; Branch to REPEAT if 2 = 0; 
. . .  ; otherwise, go to next instruction 

Note that the symbol # in the above is used by the Motorola assember to indicate 
the immediate mode. This will be discussed later in this section. Also, note that C L R .  W 
(A0 ) + automatically points to the next location by incrementing A0 by 2 after clearing a 

memory location. 
The predecrement address register indirect mode, on the other hand, decrements 

an address register by 1 for byte, 2 for word, and 4 for long word before using a register. 
For example, consider CLR.  W - ( A O )  . If [AO] = $00002004, then the content of A0 is 
first decremented by 2-that is, [AO] = 00002002,,. The content of memory location 
002002 is then cleared to zero. The predecrement mode is used with arrays stored from 
HIGH to LOW memory locations. For example, to clear 1 000,, words starting at memory 
location 0040OOl6 and below, the following instruction sequence can be used: 

MOVE. W #$1000, DO ; Load length of data into DO 



464 Fundamentals of Digital Logic and Microcomputer Design 

M 0 V E A . L  # $ 0 0 C 0 4 0 0 2 , A O  ; Load starting address plus 2 into A 0  
R E P E A T  CLR.W - ( A O )  ; Decrement A0 by 2 and clear memory 

; location addressed by AC 
SUBQ. W #1,DC ; Decrement DO by 1 
BNE . B R E P E A T  ; I f  2 = 0, branch to R E P E A T  
. . .  ; otherwise, go to next instruction 

In this instruction sequence, CLR.  w - (A0 ) first decrements A0 by 2 and then 
clears the location. Because the starting address is 004000,,, A0 must initially be loaded 
with 00004002,,. It should be pointed out that the predecrement and postincrement modes 
can be combined in a single instruction. A typical example is MOVE . W (A5 ) + , - (A3 ) . 

The two other address register modes provide accessing of the tables by allowing 
offsets and indexes to be included with an indirect address pointer. The address register 
indirect with offset mode determines the effective address by adding a 16-bit signed integer 
to the contents of an address register. For example, consider MOVE . W $10 (A5 ) , D3 
in which the source operand is in address register indirect with offset mode. If [A51 = 

00002000,, and [002010],, = 0014,,, then, after execution of M0VE.W $ 1 0  (A5) , D3, 
register D3.W will contain 0014,,. 

The indexed register indirect with offset mode determines the effective address by 
adding an 8-bit signed integer and the contents of a register (data or address register) to the 
contents of an address (base) register. This mode is usually used when the offset from the 
base address register needs to be varied during program execution. The size of the index 
register can be a signed 16-bit integer or an unsigned 32-bit value. As an example, consider 
MOVE. W $ 1 0  (A4, D3 . W) , D4 in which the source is in the indexed register indirect with 
offset mode. Note that in this instruction A4 is the base register and D3.W is the 16-bit 
index register (sign-extended to 32 bits). This register can be specified as 32 bits by using 
D3.L in the instruction, and 1 0,, is the 8-bit offset that is sign-extended to 32 bits. If [A41 
= 00003000,,, [D3.W] = 0200,,, and [003210,,] = 0024,,, then this MOVE instruction will 
load 0024,, into the low 16 bits of register D4. 

The address register indirect with offset mode can be used to access a single table. 
The offset (maximum 16 bits) can be the starting address of the table (fixed number), and 
the address register can hold the index number in the table to be accessed. Note that the 
starting address plus the index number provides the address of the element to be accessed 
in the table. For example, consider MOVE. W $34 0 0 (A5) , D1. If A5 contains 04, then 
this MOVE instruction transfers the contents of 3404 (i.e. the fifth element, 0 being the 
first element) into the low 16 bits of D1. The indexed register indirect with offset mode, 
on the other hand, can be used to access multiple tables. Here, the offset (maximum 8 bits) 
can be the element number to be accessed. The address register pointer c2n be used to 
hold the starting address of the table containing the lowest starting address, and the index 
register can be used to hold the difference between the starting address of the table being 
accessed and the table with the lowest starting address. For example, consider three tables, 
with table 1 starting at OO2OOO,,, table 2 at 003000,,, and table 3 at 004000,,. To transfer 
the seventh element (0 being the first element) in table 2 to the low 16 bits of register DO, 
the instruction MOVE. W $ 0  6 (A2, D1 . W) , DO can be used, where [A21 = the starting 
address of the table with the lowest address (= 002000,, in this case) and [Dl],,, 16b,,s = the 
difference between the starting address of the table being accessed and the starting address 
of the table with the lowest address = 003000,, - 002000,, = lOOO,,. Therefore, this MOVE 
instruction will transfer the contents of address 003006,, (the seventh element in table 2) 
to register DO. The indexed register indirect with offset mode can also be used to access 
two-dimensional arrays such as matrices. 



Motorola MC6800 465 

10.4.3 Absolute Addressing 
In this mode, the effective address is part of the instruction. The 68000 has two modes: 
absolute short addressing, in which a 16-bit address is used (the address is sign-extended 
to 24 bits before use), and absolute long addressing, in which a 24-bit address is used. 
For example, consider ADD $2 0 0 0, D2 as an example of the absolute short mode. If 
[$002000] = 0012,, and [D2.W] = 0010,,, then, after executing ADD $2 0 0 0, D2 , register 
D2.W will contain OO22,,. The absolute long addressing mode is used when the address 
size is more than 16 bits. For example, MOVE. w $ 2  4 0 0 0 0 D5 loads the 16-bit contents 
of memory location 240000,, into the low 16 bits of D5. The absolute short mode includes 
an address ADDR in the range of 0 s ADDR s $7FFF or $FF8000 5 ADDR s $FFFFFF. 
Note that a single instruction may use both short and long absolute modes, depending on 
whether the source or destination address is less than, equal to, or greater than the 16-bit 
address. A typical example is MOVE . W $5 0 0 0 0 2, $ 1 0  0 0. Also, note that the absolute 
long mode must be used for MOVE to or from address $008000. For example, MOVE. 
W $8000,D1 will move the 16-bit contents of location $FF8000 to D1 while MOVE. W 
$008000,D1 will transfer the 16-bit contents of address $008000 to D1. 

10.4.4 Program Counter Relative Addressing 
The 68000 has two program counter relative addressing modes: relative with offset and 
relative with index and offset. In the relative with offset mode, the effective address is 
obtained by adding the contents of the current PC with a signed 16-bit displacement. This 
mode can be used when the displacement needs to be fixed during program execution. 
Typical branch instructions such as BEQ, BRA, and BLE use the relative with offset 
mode. This mode can also be used by some other instructions. For example, consider 
ADD $ 3  0 ( PC) D5, in which the source operand is in the relative with offset mode. Now 
suppose that the current PC contents is $002000, the content of 002030,, is 0005, and the 
low 16 bits of D5 contain OOlO,,. Then, after execution of this ADD instruction, D5 will 
contain 0015,,. 

In the relative with index and offset mode, the effective address is obtained by 
adding the contents of the current PC, a signed 8-bit displacement (sign-extended to 32 
bits), and the contents of an index register (address or data register). The size of the index 
register can be 16 or 32 bits wide. For example, consider ADD. W $ 4  (PC, DO . W) D2. 
If [D2] = 00000012,,, [PC] = 002000,,, [DO],,, = OOlO,,, and [002014] = 0002,,, then, 
after this ADD, [D2],,, = 0014,,. This mode is used when the displacement needs to be 
changed during program execution by modifying the content of the Index register. 

An advantage of the relative mode is that the destination address is specified 
relative to the address of the instruction after the instruction. Since the 68000 instructions 
with relative mode do not contain an absolute address, the program can be placed anywhere 
in memory which can still be excuted properly by the 68000. A program which can be 
placed anywhere in memory, and can still run correctly is called a “relocatable” program. 
It is a good practice to write relocatable programs. 

10.4.5 Immediate Data Addressing 
Two immediate modes are available with the 68000: immediate and quick immediate modes. 
In immediate mode, the operand data is constant data, which is part of the instruction. For 
example, consider ADDI . W #$0005, DO. If [DO.W] = 0002,,, then, after this ADDI 
instruction, [DO.W] = 0002,, + 0005,, = 0007,,. Note that the # symbol is used by Motorola 
to indicate the immediate mode. Quick immediate (ADD or SUBTRACT) mode allows 



466 Fundamentals of Digital Logic and Microcomputer Design 

Addressing Modes 
Data register direct 

Addressing Categor?, 

X X 
Data Memory Control Alterable 

Address register direct 
Address register indirect 
Address register indirect 

X 
X X X X 
X X X 

with postincrement 
Address regisiter indirect X X 
with predecrement 
Address register indirect 
with displacement 
Address register indirect 
with index 
Absolute short 
Absolute long 
Program counter with 
displacement 
Program counter with 
index 

X X X X 

X X X X 

X X X X 
X X X X 
X X X 

X X X 

one to increment or decrement a register or a memory location (.B, .W, .L) by a number 
from 0 to 7. For example, ADDQ . B #1, DO increments the low 8-bit contents of DO by 1. 
Note that immediate data, 1 is inherent in the instruction. That is, data 0 to 7 is contained in 
the three bits of the instruction. Note that ADDQ.B #O,Dn is similar to NOP instruction. 

10.4.6 Implied Addressing 
The instructions using implied addressing mode do not require any operand, and registers 
such as PC, SP, or SR are referenced in these instructions. For example, RTS returns to 
the main program from a subroutine by placing the return address into PC using the PC 
implicitly. 

It should be pointed out that in the 68000 the first operand of a two-operand 
instruction is the source and the second operand is the destination. Recall that in the case 
of the 8086, the first operand is the destination and the second operand is the source. 

10.5 

All of the 68000 addressing modes in Table 10.2 can be further divided into four functional 
categories as shown in Table 10.3. 

Data Addressing Mode. An addressing mode is said to be a data addressing mode if it 
references data objects. For example, all 68000 addressing modes except the address 
register direct mode fall into this category. 
Memory Addressing Mode. An addressing mode capable of accessing a data item 
stored in memory is classified as a memory addressing mode. For example, the data 
and address register direct addressing modes cannot satisfy this definition. 
Control Addressing Mode. This refers to an addressing mode that has the ability to 
access a data item stored in memory without the need to specify its size. For example, 
all 68000 addressing modes except the following are classified as control addressing 

Functional Catepories Of 68000 Addressinp Modes 



Motorola Me6800 467 

TABLE 10.4 Some of the 68000 Instructions affecting Conditional codes. 

Instruction X N Z V C 
ABCD J U J U - 

ADD, ADDI,  ADDQ, ADDX J J J J J 
AND, AND1 - J J 0 0 
ASL, ASR J J J J J 
BCHG, BCLR, BSET, BTST - 

CHK - J U U U 
CLR - 0 1 0 0 

J J J J CMP, CMPA, CMPI ,  CMPM - 

DIVS,  DIVU - J J J 0 
EOR, E O R I  - J J 0 0 
EXT - J J 0 0 

LSL,  L S R  J J J 0 J 

MOVE (ea), (ea) -- J J 0 0 

MOVE TO CCR J J J J J 

MOVE TO S R  J J J J J 

MOVEQ - J J 0 0 
MULS, MULU - J J 0 0 
NBCD J U J U J 

NEG, NEGX J J J J J 

NOT - J J 0 0 
OR, OR1  - J J 0 0 

J J 0 J ROL, ROR - 

ROXL, ROXR J J J 0 J 

RTE, RTR J J J J J 

SBCD J U J U J 

S T O P  J J J J J 

SUB, S U B I ,  SUBQ, SUBX J J J J J 

SWAP - J J 0 0 
TAS - J J 0 0 
T S T  - J J 0 0 

- - - J 

Affected, - Not Affected, U Undefined 

Note: ADDA, B,,, and RTS do not affect flags. 

modes: data register direct, address register direct, address register indirect with 
postincrement, address register indirect with predecrement, and immediate. 
Alterable Addressing Mode. If the effective address of an addressing mode is written 
into, then that mode is an alterable addressing mode. For example, the immediate and 
the program counter relative addressing modes will not satisfy this definition. 

10.6 68000 Instruction Set 

The 68000 instruction set contains 56 basic instructions. Table 10.4 lists some of the 
instructions affecting the condition codes. Appendices D and G provide the 68000 
instruction execution times and the instruction set (alphabetical order), respectively. 
The 68000 instructions can be classified into eight groups as follows: 



468 

TABLE 10.5 

Fundamentals of Digital Logic and Microcomputer Design 

68000 Data Movement Instructions 
Instruction Size Comment 

Exchange the contents of two registers. Rx or Ry can be EXG Rx, Ry 

LEA (EA), An 

L I N K  An, #-displacement 

MOVE (EA), (EA) 

MOVEM reg list, (EA) or 
(EA), reg list 

MOVEP Dn, d (Ay) or 
d (AY), Dn 

MOVEQ # data, Dn 

PEA (EA) 

SWAP Dn 

any address or data register. 
No flags are affected. 
The effective address (EA) is calculated using the 
particular addressing mode used and then loaded into 
the address register. (EA) specifies the actual data to be 
loaded into An. 
The current contents of the specified address register 
are pushed onto the stack. After the push, the address 
register is loaded from the updated SP. Finally, the 16- 
bit sign-extended displacement is added to the SP. A 
negative displacement is specified to allocate stack. 
(EA)s are calculated by the 68000 using the specific 
addressing mode used. (EA)s can be register or memory 
location. Therefore, data transfer can take place between 
registers, between a register and a memory location, and 
between different memory 
locations. Flags are affected. For byte-size operation, 
address register direct is not allowed. An is not allowed 
in the destination (EA). The source (EA) can be An for 
word or long word transfers. 
Specified registers are transferred to or from consecutive 
memory locations starting at the location specified by 
the effective address. 
Two (W) or four (L) bytes of data are transferred 
between a data register and alternate bytes of memory, 
starting at the location specified and incrementing by 2. 
The high-order byte of data is transferred first, and the 
low-order byte is transferred last. 
This instruction has the address register indirect with 
displacement only mode. 
This instruction moves the %bit inherent data into the 
specified data register. The data is then sign-extended 
to 32 bits. 
Computes an effective address and then pushes the 32- 
bit address onto the stack. 
Exchanges 16-bit halves of a data register. 

UNLK An Unsized An -, SP; (SP) + -+ An 

(EA) in LEA (EA), An can use all addressing modes except Dn, An, (An) +, - (An), 
and immediate. 
Destination (EA) in MOVE (EA), (EA) can use all modes except An, relative, and 
immediate. 
Source (EA) in MOVE (EA), (EA) can use all modes. 
Destination (EA) in MOVEM reg list, (EA) can use all modes except, An, (An)+, relative, 
and immediate. 
Source (EA) in MOVEM (EA), reg list can use all modes except Dn, An,- (An), and 
immediate. 
(EA) in PEA (EA) can use all modes except, An, (An)+, - (An), and immediate. 



Motorola MC6800 469 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Data movement instructions 
Arithmetic instructions 
Logical instructions 
Shift and rotate instructions 
Bit manipulation instructions 
Binary-coded decimal instructions 
Program control instructions 
System control instructions 

10.6.1 Data Movement Instructions 
These instructions allow data transfers from register to register, register to memory, memory 
to register, and memory to memory. In addition, there are also special data movement 
instructions such as MOVEM (move multiple registers). Typically, byte, word, or long word 
data can be transferred. A list of the 68000 data movement instructions is give11 in Table 
10.5. Let us now explain the data movement instructions. 

MOVE Instructions 
The format for the basic MOVE instruction is MOVE. S (EA), (EA), where S = L, 

W, or B. (EA) can be a register or memory location, depending on the addressing mode 
used. Consider MOVE . B D 3  I D1, which uses the data register direct mode for both the 
source and destination. If [D3.B] = 0516 and [Dl.B] = Ol, , ,  then, after execution of this 
MOVE instruction, [DI.B] = 05,, and [D3.B] = 05,,. 

There are several variations of the MOVE instruction. For example MOVE . W CCR, 
(EA) moves the contents of the low-order byte of SR (i.e., CCR) to the low-order byte of 
the destination operand; the upper byte of SR is considered to be zero. The source operand 
is a word. Similarly, MOVE. W (EA), CCR moves an 8-bit immediate number, or low-order 
%bit data, from a memory location or register into the condition code register; the upper 
byte is ignored. The source operand is a word. Data can also be transferred between (EA) 
and SR or USP (A7) using the following privileged instructions: 

MOVE. W (EA), SR 
MOVE. W SR, (EA) 
MOVE. L A7, An 
MOVE. L An, A7 

MOVEA . W or.  L (EA), An can be used to load an address into an address register. 
Word-size source operands are sign-extended to 32 bits. Note that (EA) is obtained by 
using an addressing mode. As an example, MOVEA. W # $2 0 0 0, A5 moves the 16-bit 
word 2000,, into the low 16 bits of A5 and then sign-extends 2000,, to the 32-bit number 
00002000,,. Note that sign extension means extending bit 15 of 2OOO,, from bit 16 through 
bit 31. As mentioned before, sign extension is required when an arithmetic operation 
between two signed binary numbers of different sizes is performed. The (EA) in MOVEA 
can use all addressing modes. 

The MOVEM instruction can be used to push or pop multiple registers to or from 
the stack. For example, M0VEM.L DO-D7/AO-A6, - (SP) saves the contents of all 
eight data registers and seven address registers in the stack. This instruction stores address 
registers in the order A6-A0 first, followed by data registers in the order D7-DO, regardless 
of the order in the register list. MOVEM . L ( SP) + I  DO-D7 /A0 -A6 restores the contents of 
the registers in the order DO-D7, AO-A6, regardless of the order in the register list. 

The MOVEM instruction can also be used to save a set of registers in memory. In 



470 Fundamentals of Digital Logic and Microcomputer Design 

addition to the preceding predecrement and postincrement modes for the effective address, 
the MOVEM instruction allows all the control modes. If the effective address is in one of 
the control modes, such as absolute short, then the registers are transferred starting at the 
specified address and up through higher addresses. The order of transfer is from DO to D7 
and then from A0 to A6. For example, MOVEM . W A 5  / D 1 /  D 3  / A 1  -A3  $2 0 0 0 transfers 
the low 16-bit contents of D1, D3, A l ,  A2, A3, and A5 to locations $2000, $2002, $2004, 
$2006, $2008, and $200A, respectively. 

The MOVEQ. L #$d8, Dn instruction moves the immediate 8-bit data into 
the low byte of Dn. The 8-bit data is then sign-extended to 32 bits. This is a one-word 
instruction. For example, MOVEQ . L #$8F, D5 moves $FFFFFFSF into D5. 

To transfer data between the 68000 data registers and 6800 (8-bit) peripherals, 
the MOVEP instruction can be used. This instruction transfers 2 or 4 bytes of data between 
a data register and alternate byte locations in memory, starting at the location specified 
and incrementing by 2. Register indirect with displacement is the only addressing mode 
used with this instruction. If the address is even, all transfers are made on the high-order 
half of the data bus; if the address is odd, all transfers are made on the low-order half of 
the data bus. The high-order byte to/from the register is transferred first, and the low-order 
byte is transferred last. For example, consider MOVEP. L $ 0 0 2 0  ( A 2 )  , D1. If [A21 = 

$00002000, [002020,,] = 02, [002022,,] = 05, [002024,,] = 01, and [002026,,] = 04, then, 
after execution of this MOVEP instruction, D1 will contain 02050104,,. 

EXG and SWAP Instructions 
The EXG. L Rx, Ry instruction exchanges the 32-bit contents of Rx with that of Ry. The 
exchange is between two data registers, two address registers, or an address register and 
a data register. The EXG instruction exchanges only 32-bit-long words. The data size (L) 
does not have to be specified after the E X G  instruction because this instruction has only one 
data size (L) and it is assumed that the default is this single data size. No flags are affected. 
The SWAP. W Dn instruction, on the other hand, exchanges the low 16 bits of Dn with the 
high 16 bits of Dn. All condition codes are affected. 

LEA and PEA Instructions 
The LEA.  L (EA), An instruction moves an effective address (EA) into the specified 
address register. The (EA) can be calculated based on the addressing mode of the source. 
For example, LEA $00256022, A 5  moves $00256022 into A5. This instruction is 
equivalent to MOVEA . L # $ 0  0 2 5 6 0 2 2 A5.  Note that $00256022 is contained in PC. It 
should be pointed out that the LEA instruction is very useful when address calculation is 
desired during program execution. The (EA) in LEA specifies the actual data to be loaded 
into An, whereas the (EA) in MOVEA specifies the address of actual data. For example, 
consider LEA $ 0 4  ( A 5 ,  D2. W) , A3. If [A51 = 00002000,, and [D2] = 0028,,, then 
the LEA instruction moves 0000202C,, into A3. On the other hand, MOVEA $ 0 4  ( A 5 ,  
D2 . W) , A 3  moves the contents of 00202C,, into A3. Therefore, it is obvious that if 
address calculation is required, the instruction LEA is very useful. 

The PEA.L (EA) computes an effective address and then pushes it on to the 
Supervisor stack (S=l) or User stack (S=O). This instruction can be used when the 16- 
bit address in absolute short mode is required to be pushed onto the stack. For example, 
consider PEA.L $9000 in the user mode. If [A7]=$00003006, then $9000 is sign-extended 
to 32 bits ($FFFF9000). The low-order 16 bits ($9000) are pushed at $003004, and the high 
order 16 bits ($FFFF) are pushed at $003002. 



Motorola Me6800 47 1 

\ 

FIGURE 10.4 Execution of the LINK instruction 

LINK and UNLK Instructions 
Before calling a subroutine, the main program quite often transfers the values of certain 
parameters to the subroutine. It is convenient to save these variables onto the stack before 
calling the subroutine. These variables can then be read from the stack and used by the 
subroutine for computations. The 68000 LINK and UNLK instructions are used for this 
purpose. In addition, the 68000 LINK instruction allows one to reserve temporary storage 
for the local variables of a subroutine. This storage can be accessed as needed by the 
subroutine and can be released using UNLK before returning to the main program. The 
LINK instruction is usually used at the beginning of a subroutine to allocate stack space for 
storing local variables and parameters for nested subroutine calls. The UNLK instruction is 
usually used at the end of a subroutine before the RETURN instruction to release the local 
area and restore the stack pointer contents so that it points to the return address. 

The LINK An, #- displacement instruction causes the current contents of the 
specified An to be pushed onto the system stack. The updated SP contents are then loaded 
into An. Finally, a sign-extended twos complement displacement value is added to the SP. 
No flags are affected. For example, consider LINK A5 I # - $ l o o .  If [A51 = 00002100,, 
and [USP] = 00004104,,, then after execution of the LINK instruction, the situation shown 
in Figure 10.4 occurs. This means that after the LINK instruction, [A51 = $00002100 is 
pushed onto the stack and the [updated USP] = $004100 is loaded into A5. USP is then 
loaded with $004000 and therefore IOO,, locations are allocated to the subroutine at the 
beginning of which this particular LINK instruction can be used. Note that A5 cannot be 
used in the subroutine. 

The UNLK instruction at the end of this subroutine before the RETURN instruction 
releases the 1 00,, locations and restores the contents of A5 and USP to those prior to using 
the LINK instruction. For example, UNLK A5 will load [A51 = $00004100 into USP 
and the two stack words $00002100 into A5. USP is then incremented by 4 to contain 
$00004104. Therefore, the contents of A5 and USP prior to using the LINK instruction are 
restored. 

In this example, after execution of the LINK, addresses $0003FF and below can 
be used as the system stack. One hundred (Hex) locations starting at $004000 and above 
can be reserved for storing the local variables of the subroutine. These variables can then 
be accessed with an address register such as A5 as a base pointer using the address register 
indirect with displacement mode. MOVE . W d (A5 ) , D1 for read and MOVE . W D1 I d (A5 ) 
for write are typical examples. 
The use of LINK and UNLK can be illustrated by the following subroutine structure: 

SUER L I N K  A2, #-50 ; Allocate 50 b y t e s  



472 Fundamentals of Digital Logic and Microcomputer Design 

UNLK A2 Restore original values 

RTS Return to subroutine 

The L I N K  instruction is used in this case to allocate 50 bytes for local variables. 
At the end of the subroutine, UNLK A2 is used before RTS to restore the original values of 
the registers and the stack. RT S returns program execution in the main program. 

10.6.2 Arithmetic Instructions 
These instructions allow: 

8-, 16-, or 32-bit additions and subtractions. 
16-bit by 16-bit multiplication (both signed and unsigned) and 32-bit by 16-bit division 
(both signed and unsigned) 
Compare, clear, and negate instructions. 
Extended arithmetic instruction for performing multiprecision arithmetic. 
Test (TST) instruction for comparing the operand with zero. 

Test and set (TAS) instruction, which can be used for synchronization in a multiprocessor 
system. 

The 68000 arithmetic instructions are summarized in Table 10.6. Let us now 
explain the arithmetic instructions. 

TABLE 10.6 68000 Arithmetic Instructions 

Instruction Size Oueration 

Addition and Subtraction Instructions 

ADD (EA), (EA) B, W, L (EA) + (EA) - (EA) 

A D D 1  #Data, (EA) B, W, L (EA) + data - (EA) 

ADDQ #d,, (EA) B, W, L (EA) + d, - (EA) 
d, can be an integer from 0 to 7 

ADDA (EA), An w, L An + (EA) - An 

SUB (EA), (EA) B, W, L (EA) - (EA) - (EA) 

SUB1 ## data, (EA) B, W, L (EA) -data - EA 

d, can be an integer from 0 to 7 
SUBQ #d,, (EA) B, W, L (EA) - d, 4 EA 

SUBA (EA), An w, L An - (EA) - An 

Multiplication and Division Instructions 

MULS (EA), Dn W (Dn)l6 * (EA),, - (W32 
(signed multiplication) 

MULU (EA), Dn W (Dn)16 * (EA),6 -?= (Dn)32 
(unsigned multiplication) 

D I V S  (EA), Dn W (Dn)32 (EA)16 -+ (Dn)32 



Motorola MC6800 473 

(signed division, high word of Dn contains 
remainder and low word of Dn contains the 
quotient) 

D I V U  (EA), Dn W (W32 / (ENI6 - (W32 
(unsigned division, remainder is in high word of 
Dn and quotient is in low word of Dn) 

Compare, Clear, and Negate Instructions 

B, W, L CMP (EA), Dn 

CMPA (EA), An W, L 

CMPI # data, B, W, L (EA) - data - No result. Affects flags. 

CMPM (Ay) +, 

C L R  (EA) B,W,L 0 - (EA) 

NEG (EA) B,W,L 0 - (EA) +(EA) 

Dn - (EA) - No result. Affects flags. 

An - (EA) --j No result. Affects flags. 

F A )  

(Ax) + 

B, W, L (Ax)+ - (Ay)+ - No result. Affects flags. 

Extended Arithmetic instructions 

ADDX Dy,Dx B , W , L  D x + D y + X - + D x  

ADDX -(Ay), B, W, L - (AX) + - (Ay) + X - (AX) 
- (Ax) 

EXT Dn w, L If size is W, then sign extend low byte of Dn to 16 
bits. If size is L, then sign extend low 16 bits of Dn 
to 32 bits. 

NEGX (EA) 

SUBX Dy,Dx B , W , L  D x - D y - X + D x  

SUBX - (Ay), 
- (AX)' 

B, W, L 0 - (EA) - X -+ (EA) 

B, W, L - (AX) - - (Ay) - X + (AX) 

Test Instruction 

TST (EA) B, W, L (EA) - 0 Flags are affected. 

Test and Set Instruction 
~~~ ~ ~~ ~ ~ 

TAS (EA) B If (EA) = 0, then set Z = 1; else Z = 0, N = 1

and then always set bit 7 of (EA) to 1.

NOTE: If source (EA) in the ADDA or SUBA instruction is an address register, the operand
length is WORD or LONG WORD.
(EA) in any instruction is calculated using the addressing mode used.
All instructions except ADDA and SUBA affect condition codes.

Source (EA) in the above ADD, ADDA, SUB, and SUBA can use all modes. Destination
(EA) in the above ADD and SUB instructions can use all modes except An. relative,
and immediate.
Destination (EA) in A D D 1 and SUB1 can use all modes except An. relative, and

474 Fundamentals of Digital Logic and Microcomputer Design

immediate.
Destination (EA) in ADDQ and SUBQ can use all modes except relative and
immediate.
(EA) in all multiplication and division instructions can use all modes except An.
Source (EA) in CMP and CMPA instructions can use all modes.

Destination (EA) in CMPI can use all modes except An, relative, and immediate.
(EA) in CLR and NEG can use all modes except An, relative, and immediate.

(EA) in NEGX can use all modes except An, relative and immediate.
(EA) in TST can use all modes except An, relative, and immediate.
(EA) in TAS can use all modes except An, relative, and immediate.

Addition and Subtraction Instructions
C0nsiderADD.W $ 1 2 2 0 0 0 , D0.1f[122000,6]=0012,,and[DO]=OO02,6, then,after
execution of this ADD, the low 16 bits of DO will contain 0014,,. C = 0 (No Carry), X
= 0 (Same as C), V=O (No Overflow since previous Carry and the final Carry are the
same), N = 0 (Most Significant Bit of the result is 0), Z = 0 (Nonzero result).
The A D D 1 instruction can be used to add immediate data to a register or memory
location. The immediate data follows the instruction word. For example, consider
A D D I .W #$0012, $100200. If [100200,,] = 0002,,, then, after execution of this
A D D I , memory location 100200,, will contain 0014,,.

ADDQ adds a number from 0 to 7 to the register or memory location in the destination
operand. This instruction occupies 16 bits, and the immediate data 0 to 7 is specified
by 3 bits in the instruction word. For example, consider ADDQ . B #2 I D 1 . If [Dl],,,
byle = 20,,, then, after execution of this ADDQ, the low byte of register D1 will contain

All subtraction instructions subtract the source from the destination. For example,
consider SUB .W D2 I $122200. If [D2],,,,,,,=0003,,and [122200,,] =0007,,, then,
after execution of this SUB, memory location 122200,, will contain 0004,,.

SUBX.B D1,D2 subtracts the source byte (D1.B) plus the X-bit (same as the Carry
flag) from the destination byte (D2.B); the result is stored in the destination byte, no
other bytes of the destination register are affected. All condition codes are .affected.
For example, if [D2.L] = 2AB10003,,, [Dl.L] =A2345602,,, and X = C = 1, then, after
SUBX.B Dl,D2, the contents of D2.B = 03 - 02 - 1 = OO,,. [D2.L] = 2AB10000,,.

1 1 1 1 1 1 11 +- Intermediate Carries
Using two’s complement subtraction, [D2.B] = 0000 001 1 (+3)
Add two’s complement of 3 (D1 .B plus Carry) = + 11 11 1101 (-3)

2216.

___________---------___
Final Carry +1 0000 0000

Final carry is one’s complemented after subtraction to reflect the correct borrow.
Hence, C = 0.
Also, X = 0 (Same as C), Z = 1 (Zero Result), N = 0 (Most Significant of the result is
zero), andV = C, @ C,= 1 @ 1 = 0.

Consider SUBI . W # 3 , DO. If [DO]lowword = 0014,,, then, after execution ofthis SUBI,
DO will contain 001 116’ Note that the same result can be obtained by using a SUBQ . w
3 I DO. However in this case, the data item 3 is inherent in the instruction word.

Motorola MC6800 475

Multiplication and Division Instructions

integer numbers.
The 68000 instruction set includes both signed and unsigned multiplication of

MULS (EA), Dn multiplies two 16-bit signed numbers and provides a 32-bit result.
For example, consider MULS #-2 , D5. If [D5.W] = 000316, then, after this MULS, D5
will contain the 32-bit result FFFFFFFA,,, which is -6 in decimal.

MULU (EA), Dn performs unsigned multiplication. Consider MULU (A0) , D1. If [AO]
= 00102000,,, [102000,,] = 0300,,, and [Dl.W] = 0200,,, then, after this MULU, D1
will contain the 32-bit result 00060000,,.

Consider DIVS # 2 , D1. If [DI] = -510 = FFFFFFFB,,, then, after this DIVS, register
D1 will contain

D1 I FFFF I FFFE
16-bit 16-bit
remainder = quotient =

-1 10 -210

Compare, Clear, and Negate Instructions
The Compare (CMP) instruction subtracts source from destination providing no
result of subtraction; all condition codes are affected based on the result. Note that
the SUBTRACT instruction provides the result and also affects the Condition Codes.
Consider CMP . B D3, DO . If prior to execution of the instruction, [DO.B] = $40
and [D3.B] = $30 then after execution of CMP . B D3, DO, the condition codes are as
follows: C = 0, X = 0, Z = 0, N = 0, and V = 0. Suppose it is desired to find the number
of matches for an 8-bit number in a 68000 register such as D5.B in a data array (stored
from low to high memory) of 50 bytes in memory pointed to by AO. The following
instruction sequence with CMP . B (A0) + , D5 rather than SUB. B (A0) +, D5 can
be used :

CLR.B DO
M0VE.B #50,D1 ;

START CMP.B (A01 t , D 5 ;

BNE DECR
ADDQ.B # l , D O

DECR SUBQ.B #1,D1
BNE START

Clear D0.B to 0, D0.B to hold number of matches
Initialize array count
Compare the number to be aatched in D5
with a data byte in the array. If there
is a match, Z=1 and increment DO.
Decrement D1 by 1, go back to START if
Z = O.If 2 = 1, go to the next

Note that in the 68000, after DIVS, the sign of remainder is always the same as the
dividend unless the remainder is equal to zero. Therefore, in this example, because
the dividend is negative (-5,,J, the remainder is negative (-1 ,,,). Also, division by zero
causes an internal interrupt automatically. A service routine can be written by the
user to indicate an error. N = 1 if the quotient is negative, and V = 1 if there is an
overflow.

DIVU is the same as the DIVS instruction except that the division is unsigned. For
example, consider DIVU #4, D5. If [D5] = 14,, = 00000000E,,, then after this DIVU,
register D5 will contain

D5

remainder
As with the DIVS instruction, division by zero using DIVU causes a trap (internal
interrupt).

476

Processor
1

Fundamentals of Digital Logic and Microcomputer Design

RAM I, Processor
2

; instruction
; D0.B contains the number of matches

In the above, if SUB. B (AO) + , D 5 were used instead of CMP . B (A0) +, D 5 ,
the number to be matched needs to be loaded after each subtraction because the contents
of D5.B would have been lost after each SUB. Since we are only interested in the match
rather than the result, CMP . B (A 0) +, D5 instead of SUB. B (A 0) + , D 5 should be
used in the above.

The 68000 instruction set includes a memory to memory COMPARE instruction.
For example, CMPM. W (AO) +, (A l l +. If [AO] = 00100000,,, [All = 00200000,,,
[lOOOOO,,] = 0005,,, and [200000,,] = OOO6,,, then, after this CMPM instruction, N = 0,
C = 0, X = 0, V = 0, Z = 0, [AO] = 00100002,,, and [All = 00200002,,.

CLR. L D 5 clears all 32 bits of D5 to zero.

Consider NEG . W (A 0) . If [AO] = OO2OOOOO,, and [200000] = 5,,, then after this NEG
instruction, the low 16 bits of location 200000,, will contain FFFB,,.

Extended Arithmetic Instructions

The ADDX and SUBX instruction can be used in performing multiprecision arithmetic
because there are no ADDC (add with carry) or SUBC (subtract with borrow) instructions.
For example, in order to perform a 64-bit addition, the following two instructions can
be used:

ADD.L D O , D 5 ;Add low 32 bits of data and store in D5.
ADDX.L D 1 , D 6 ;Add high 32 bits of data along with any carry from

;the low 32-bit addition and store result in D6.
Note that in this example, DlDO contain one 64-bit number and D6D5 contain the
other 64-bit number. The 64-bit result is stored in D6D5.

Consider EXT. W D2. If [D2],o,byte = F3,,, then, after the EXT, [D2],o,,o,d = FFF3,,.

An example of sign extension is that, to multiply a signed 8-bit number by a signed
16-bit number, one must first sign-extend the signed 8-bit into a signed 16-bit number
and then the instruction IMUL can be used for 16 x 16 signed multiplication. For
unsigned multiplication of a 16-bit number by an 8-bit number, the 8-bit number must
be zero extended to 16 bits using logical instruction such as AND before using the
MUL instruction.

Test Instruction
Consider T S T . W
T S T . W
cleared to 0, and N is set to 1 . The V and C flags are always cleared to 0.

Test and Set Instruction
TAS . B (E A) is usually used to synchronize two processors in multiprocessor

data transfers. For example, consider the two 68000-based microcomputers with shared
RAM as shown in Figure 10.5.

(AO). If [AO] = 00300000,, and [300000,,] = FFFF,,, then, after the
(A O) , the operation FFFF,, - 0000,, is performed internally by the 68000, Z is

FIGURE 10.5 Two 68000s interfaced via shared RAM using TAS instruction

Motorola MC6800 477

Suppose that it is desired to transfer the low byte of DO from processor 1 to the
low byte of D2 in processor 2. A memory location, namely, TRDATA, can be used to
accomplish this. First, processor 1 can execute the TAS instruction to test the byte in the
shared RAM with address TEST for zero value. If it is, processor 1 can be programmed to
move the low byte of DO into location TRDATA in the shared RAM. Processor 2 can then
execute an instruction sequence to move the contents of TRDATA from the shared RAM
into the low byte of D2. The following instruction sequence will accomplish this:

Processor I Routine
P r o c - 1 T A S . B T E S T P r o c - 2 T A S . B T E S T

Processor 2 Routine

BNE P r o c 1 BNE P r o c 2
MOVE. B D O , TRDATA
C L R . B T E S T CLR.B T E S T

MOVE. B TRDATATD2

Note that in these instruction sequences, TAS . B T E S T checks the byte addressed
by TEST for zero. If [TEST] = 0, then Z is set to 1; otherwise, Z = 0 and N = 1. After
this, bit 7 of [TEST] is set to 1. Note that a zero value of [TEST] indicates that the shared
RAM is free for use, and the Z bit indicates this after the TAS is executed. In each of the
instruction sequences, after a data transfer using the MOVE instruction, [TEST] is cleared
to zero so that the shared RAM is free for use by the other processor. To avoid testing the
TEST byte simultaneously by two processors, the TAS is executed in a read-modify-write
cycle. This means that once the operand is addressed by the 68000 executing the TAS, the
system bus is not available to the other 68000 until the TAS is completed.

10.6.3 Logical Instructions
These instructions include logical OR, EOR, AND, and NOT as shown in Table 10.7.

Consider AND. B #$8F, DO . If prior to execution of this instruction, [DO.B] = $72,
then after execution of AND. B # $8 F, DO, the following result is obtained :

[DO.B] = $72 =0111 0010
AND $8F= 1000 1111

[DO.B]= 0000 0010
Z = 0 (Result is nonzero) and N = 0 (Most Significant Bit of the result is 0). C and
V are always cleared to 0 after logic operation. The condition codes are similarly
affected after execution of other logical instructions such as OR, EOR, and NOT.
The AND instruction can be used to perform a masking operation. If the bit value
in a particular bit position is desired in a word, the word can be logically ANDed
with appropriate data to accomplish this. For example, the bit value at bit 2 of an 8-
bit number 0100 1Y 10 (where unknown bit value of Y is to be determined) can be
obtained as follows: 0 1 0 0 1 Y I 0 -- 8-bit number

0 0 0 0 0 1 0 0 --Masking data AND

0 0 0 0 0 Y 0 0 - Result
If the bit value Y at bit 2 is 1, then the result is nonzero (Flag Z=O); otherwise,
the result is zero (Z=1) . The Z flag can be tested using typical conditional .JUMP
instructions such as BEQ (Branch if Z=1) or BNE (Branch if Z=O) to determine

478

TABLE 10.7 68000 Logical Instructions

Fundamentals of Digital Logic and Microcomputer Design

Instruction Size Operation
AND (EA), (EA)

A N D I # data, (EA) B, W, L (EA) AND # data - (EA);

A N D I # data,, CCR B CCR AND # data - CCR
A N D I # data,,, SR W SR AND# data - SR
EOR Dn, (EA) B, W, L Dn 0 (EA)+ (EA);

E O R I # data, (EA) B, W, L (EA) 0 # data - (EA);

NOT (EA)
OR F A) , (EA)

O R 1 # data, (EA)

O R 1 # data,, CCR B
O R 1 # data,,, SR W

B, W, L (EA) AND (EA) --j (EA);
(EA) cannot be address register

(EA) cannot be address register

(EA) cannot be address register

(EA) cannot be address register
One’s complement of (EA) - (EA);
(EA) OR (EA) - (EA);
(EA) cannot be address register
(EA) OR # data - (EA);
(EA) cannot be address register
CCR OR # data, - CCR
SR OR # data - SR

B, W, L
B, W, L

B, W, L

whether Y is 0 or 1. This is called masking operation. The AND instruction can also
be used to determine whether a binary number is ODD or EVEN by checking
the Least Significant bit (LSB) of the number (LSB=O for even and LSB=l for odd).

Consider AND. W D 1 , D5. If [Dl .W] = 0001 ,, and [D5.W] = FFFF,,, then, after
execution of this AND, the low 16 bits of both D1 and D5 will contain 0001 16.

Consider A N D I . B #$OO, CCR. If [CCR] = 01 ,6r then, after this A N D I , register CCR
will contain OO,,.

Source (EA) in AND and OR can use all modes except An.

Destination (EA) in AND or OR or EOR can use all modes except An, relative, and
immediate.

Destination (EA) in A N D I , ORI, and E O R I can use all modes except An, relative, and
immediate.

(EA) in NOT can use all modes except An, relative, and immediate.

Consider EOR. W #2, D5 . If prior to execution of this instruction, [D5 . W] =

$2 3 4 2, then after execution of EOR . W # 2 , D 5 , low 16-bit contents of D5 will be
$ 2 3 4 0. All condition codes are affected in the same manner as the AND instruction.
The Exclusive-OR instruction can be used to find the ones complement of a binary
number by XORing the number with all 1’s as follows:

0 1 0 1 1 1 0 0 - - 8-bit number
XOR 1 1 1 1 1 1 1 1 - - data

________-_--_-____________
1 0 10 0 0 1 1 -- Result (Ones Complement of the 8-bit number

0 1 0 1 1 1 0 0)

Consider E0R.W D 1 , D2. If [Dl.W] = FFFF,, and [D2.W] = FFFF,,, then, after

Motorola MC6800 479

execution of this EOR, register D2.W will contain 0000,,, and D1 will remain
unchanged at FFFF,,.

Consider NOT. B D5. If [D5.B] = O2,,, then, after execution of this NOT, the low byte
of D5 will contain FD,,.

Consider OR. B D2 I D 3 . If prior to execution of this instruction, [D2.B] = A2,,
and [D3.B] = 5DI6, then after exection of O R . B D 2 I D3, the contents of D3.B are
FFH. All flags are affected similar to the AND instruction. The OR instruction can
typically be used to insert a 1 in a particular bit position of a binary number without
changing the values of the other bits. For example, a 1 can be inserted using the OR
instruction at bit number 3 of the 8-bit binary number 0 1 1 1 0 0 1 1 without changing
the values of the other bits as follows:

0 1 1 1 0 0 1 1 -- 8-bit number
OR 0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit number 3

0 1 1 1 1 0 1 1 --Result
__---__------------

Consider O R 1 #$lo02 I SR. If [SR] = 11 lD,,, then after execution of this ORI,
register SR will contain 1 1 lF,,. Note that this is a privileged instruction because the
high byte of SR containing the control bits is changed and therefore, can be executed
only in the supervisor mode.

10.6.4 Shift and Rotate Instructions
The 68000 shift and rotate instruction are listed in Table 10.8.

All the instructions in Table 10.8 affect N and Z flags according to the result. V is reset
to zero except for ASL.

Note that in the 68000 there is no true arithmetic shift left instruction. In true arithmetic
shifts, the sign bit of the number being shifted is retained. In the 68000, the instruction
ASL does not retain the sign bit, whereas the instruction ASR retains the sign bit after
performing the arithmetic shift operation.

TABLE 10.8 68000 Shift and Rotate Instructions
Instruction Size Operation

ASL Dx, Dy B, w, L

ASL # data, Dn

ASL (EA)

Shift [Dy] by the number of times to
left specified in Dx; the low 6 bits of
Dx specify the number of shifts from
0 to 63.
Same as ASL Dx, Dy, except that
the number of shifts is specified by
immediate data from 0 to 7.
(EA) is shifted one bit to the left; the
most significant bit of (EA) goes to x
and c, and zero moves into the least
significant bit.

480

ASR Dx, Dy

ASR # data, Dn

ASR (EA)

LSL Dx, Dy

LSL # data, Dn

LSL (EA)
LSR Dx, Dy

LSR # data, Dn

LSR (EA)

ROL Dx, Dy

ROL # data, Dn

ROL (EA)
ROR Dx, Dy

ROR # data, Dn

ROR (EA)

Fundamentals of Digital Logic and Microcomputer Design

Arithmetically shift [Dy] to the right
by retaining the sign bit; the low
6 bits of Dx specify the number of
shifts from 0 to 63.
Same as above except the number of
shifts is from 0 to 7.
Same as above except (EA) is shifted
once to the right.

.
Low 6 bits of Dx specify the number
of shifts from 0 to 63.
Same as above except that the
number of shifts is specified by
immediate data from 0 to 7.
(EA) is shifted one bit to the left.

Same as LSL Dx, Dy, except shift is
to the right.
Same as above except shift is to the
right by immediate data from 0 to 7.

Same as LSL (EA) except shift is
once to the right.

c + 7 -
Low 6 bits of Dx specify the number
of times [Dy] to be rotated.
Same as above except that the
immediate data specifies that [Dn] to
be rotated from 0 to 7.
(EA) is rotated one bit to the left.

Same as above except the rotate is to
the right by immediate data from 0
to 7.
(EA) is rotated one bit to the right.

48 1 Motorola MC6800

ROXL Dx, Dy

ROXL # data, Dn

ROXL (EA)
ROXR Dx, Dy

Low 6 bits of Dx contain the number
of rotates from 0 to 63.
Same as above except that the
immediate data specifies number of
rotates from 0 to 7.
(EA) is rotated one bit to the left.

ROXR # data, Dn B, w , L

ROXR (EA) B, w , L

I

Low 6 bits of Dx contain the number
of rotates from 0 to 63.
Same as above except the rotate is to
the right by immediate data from 0
to 7.
Same as above except the rotate is
once to the right.

(EA) in ASL, ASR, LSL, LSR, ROL, ROR, ROXL, and ROXR can use all modes except
Dn, An, relative, and immediate.

Consider ASL. W D1, D5. If [Dl],,, = 0002,, and [D5],,, ,, bits = 9FFO,,, then,
after this ASL instruction, [D5],,, = 7FCO,,, C = 0, and X = 0. Note that the sign
of the contents of D5 is changed from 1 to 0 and, therefore, the overflow is set. The
sign bit of D5 is changed after shifting [D5] twice. For ASL, the overflow flag is
set to one if the sign bit changes during or after shifting. The contents of D5 are not
updated after each shift. The ASL instruction can be used to multiply a signed number
by 2" by shifting the number n times to the left; the result is correct if V = 0 while
the result is incorrect if V = 1. Since execution time of the multiplication instruction
is longer, multiplication by shifting may be more efficient when multiplication of a
signed number by 2" is desired.

ASR retains the sign bit. For example, consider ASR. W #2, D1. If [Dl .W] = FFE2,,,
then, after this ASR, the low 16 bits of [Dl] = FFF8,,, C = 1, and X = 1. Note that the
sign bit is retained.

ASL (EA) or ASR (EA) shifts (EA) 1 bit to left or right, respectively. For example,
consider ASL . W (AO) . If [AO] = 00002000,, and [002000,,] = 9001 16, then, after
execution of this ASL, [002000,,] = 2002,,, X = 1, and C = 1. On the other hand, after
ASR . W (AO) , memory location 002000,, will contain C800,,, C = 1, and X = 1.

The LSL and ASL instructions are the same in the 68000 except that with the ASL, V
is set to 1 if the sign of the result is changed from the sign of the original value during
or after shifting. This will allow one to multiply a signed number by 2" by shifting
the number n times to left; the result is correct if V = 0 while the result is incorrect if
V = 1. Since execution time of the multiplication instruction is longer, multiplication
by shifting may be more efficient when multiplication of a signed number by 2" is
desired.

482

TABLE 10.9 Bit Manipulation Instructions

Fundamentals of Digital Logic and Microcomputer Design

Instruction Size Operation
BCHG Dn, (EA) A bit in (EA) specified by Dn or immediate data is
BCHG # data, (EA) tested: the 1’s complement of the bit is reflected in

both the Z flag and the specified bit position.
BCLR Dn,(EA) 1 B,L A bit in (EA) specified by Dn or immediate data is
BCLR # data, (EA) tested and the 1’s complement of the bit is reflected

in the Z flag: the specified bit is cleared to zero.
BSET Dn,(EA) 1 B,L A. bit in (EA) specified by Dn or immediate data is
BSET # data, (EA) tested and the 1’s complement of the bit is reflected

in the Z flag: the specified bit is then set to one.
BTST Dn,(EA) 1 B,L A bit in (EA) specified by Dn or immediate data is
BTST # data, (EA) tested. The 1’s complement of the specified bit is

1 B,L

reflected in the Z flag.
(EA) in the above instructions can use all modes except An, relative, and immediate. . ,
If (EA) is memory location then data size is byte: if (EA) is Dn then data size is long
word.

Consider LSR. W # 3 , D 1 . If [Dl.W] = 8000,,, then after this LSR, [Dl.W] = IOOO,,,
X = 0, and C = 0.

Consider ROL. B # 2 , D2. If [D2.B] = B1 and C = 1, then, after this ROL, the low
byte of [D2] = C6,, and C = 0. On the other hand, with [D2.B] = B1 and C = 1,
consider ROR . B #2 , D2. After this ROR, low byte of register D2 will contain 6C,,
and C = 0.

Consider ROXL . W D2, D 1 . If [D2.W] = 0003,,, [Dl .W] = F201 Ib, C = 0, and X = 1
then after execution of this ROXL, [Dl .W] = 900F,,, C = 1, and X = 1.

10.6.5 Bit Manipulation Instructions
The 68000 has four bit manipulation instructions, and these are listed in Table 10.9.

In all of the instructions in Table 10.9, the ones complement of the specified bit is
reflected in the Z flag. The specified bit is ones complemented, cleared to 0, set to 1,
or unchanged by BCHG, BCLR, BSET, or BTST, respectively. In all the instructions in
Table 10.9, if (EA) is Dn, then the length of Dn is 32 bits; otherwise, the length of the
destination is one byte memory.

Consider BCHG . B #2, $0 03 0 0 0. If [003000,,] = 05,,, then, after execution of this
BCHG, Z = 0 and [0030OOl6] = 01

Consider BCLR. L #3, D 1 . If [DI] = F210E128,,, then after execution of this BCLR,
register D1 will contain F210E120,, and Z = 0.

Consider BSET . B #O, (A1) . If [All = 00003000,, and [003000,,] = OO,,, then, after
execution of this BSET, memory location 003000,, will contain 01

Consider BTST . B #2 , $0 02 0 0 0. If [002000,,] = 02,,, then, after execution of this
BTST, Z = 1, and [002000,,] = 02,,; no other flags are affected.

and Z = 1.

10.6.6 Binary-Coded-Decimal Instructions
The 68000 instruction set contains three BCD instructions, namely, ABCD for adding,
SBCD for subtracting, and NBCD for negating. They operate on packed BCD byte(s) and
provide the result containing one packed BCD byte. These instructions always include the

Motorola MC6800 483

TABLE 10.10 68000 Binary Coded Decimal Instructions

Instruction Operand Size Operation
ABCD Dy, Dx B [Dxl,, + [DYl,, + x + [Dxl
ABCD - (Ay), -(AX)
SBCD Dy, Dx
SBCD - (Ay), - (AX)

B
B
B

-(Ax),, + - (AY),, + x - (Ax)
[Dxl,, - [DYlIO - x -+ [Dxl
- (Ax),, - - (AY),, - x - (Ax)

NBCD (EA) B 0 - (EA),, - X -+ (EA),n
(EA) in NBCD can use all modes except An, relative, and immediate.

extend (X) bit in the operation. The BCD instructions are listed in Table 10.10.

Consider ABCD.B D 1 , D 2 . If [Dl.B] = 25,,, [D2.B] = 15,,, and X = 0, then, after
execution of this ABCD instruction, [D2.B] = 40,,, X = 0, and Z = 0.

Consider SBCD.B - (A 2) , - (A 3) . If [A21 = 00002004,,, [A31 = 00003003,,,
[002003,,] = 05,,, [003002,,] = 06,,, and X = 1, then after execution of this SBCD
instruction, [003002,,] = OO,,, X = 0, and Z = 1.
Consider NBCD. B (A l) . If [All = [00003000,,], [003000,,] =05,,, and X = 1, then,
after execution of this NBCD instruction, [003000,,] = -6,,.

Note that packed BCD subtraction used in the instructions SBCD and NBCD can be obtained
by using the concepts discussed in Chapter 2 (Section 2.5.2).

10.6.7 Program Control Instructions
These instructions include branches, jumps, and subroutine calls as listed in Table 10.1 1.

Consider Bcc d. There are 14 branch conditions. This means that the cc in Bcc
can be replaced by 14 conditions providing 14 instructions: BCC, BCS, BEQ, BGE, BGT,
BHI, BLE, BLS, BLT, BMI, BNE, BPL, BVC, and BVS. It should be mentioned that some
of these instructions are applicable to both signed and unsigned numbers, some can be
used with only signed numbers, and some instructions are applicable to only unsigned
numbers.

After signed arithmetic operations, instructions such as BEQ, BNE, BVS, BVC,
BMI, and BPL can be used. On the other hand, after unsigned arithmetic operations,
instructions such as BCC, BCS, BEQ, and BNE can be used. It should be pointed out that if
V = 0, BPL and BGE have the same meaning, Likewise, if V = 0, BMI and BLT perform
the same function.

The conditional branch instruction can be used after typical arithmetic instructions
such as subtraction to branch to a location if cc is true. For example, consider SUB. W D 1 ,
D2. Now if [Dl] and [D2] are unsigned numbers, then

BCC d can be used if [D2] > [Dl]
BCS d can be used if [D2] s [Dl]
BEQ d can be used if [D2] = [DI]
BNE d can be used if [D2] z [DI]
B H I d can be used if [D2] < [Dl]
BLS d can be used if [D2] s [Dl]

On the other hand, if [Dl] and [D2] are signed numbers, the after SUB. W D 1 ,
D2, the following branch instruction can be used:

BEQ d can be used if [D2] = [DI]
BNE d can be used if [D2] f [Dl]
BLT d can be used if [D2] < [Dl]

484

TABLE 10.1 1

Fundamentals of Digital Logic and Microcomputer Design

68000 Program Control Instructions

Bcc d

BRA d

BSR d

DBcc Dn, d

JMP (EA)

J S R (EA)

RT R

RTS

Scc (EA)

Instruction Size Operation

B,W If condition code cc is true, then PC + d - PC. The PC value is

B,W

B,W

W

unsized

unsized

unsized

unsized

B

current instruction location plus 2. d can be 8- or 16-bit signed
displacement. If 8-bit displacement is used, then the instruction
size is 16 bits with the 8-bit displacement as the low byte of
the instruction word. If 16-bit displacement is used, then the
instruction size is two words with 8-bit displacement field
(low byte) in the instruction word as zero and the second word
following the instruction word as the 16-bit displacement.
There are 14 conditions such as BCC (Branch if Carry Clear),
BEQ (Branch if result equal to zero, i.e., Z = l), and BNE
(Branch if not equal, i.e., Z = 0). Note that the PC contents will
always be even since the instruction length is either one word
or two words depending on the displacement widths.
Branch always to PC + d where PC value is current instruction
location plus 2. As with Bcc, d can be signed 8 or 16 bits.
This is an unconditional branching instruction with relative
mode. Note that the PC contents are even since the instruction
is either one word or two words.

PC + d + PC
The address of the next instruction following PC is pushed
onto the stack. PC is then loaded with PC + d. As before, d
can be signed 8 or 16 bits. This is a subroutine call instruction
using relative mode.
If cc is false, then Dn - 1 - Dn, and if Dn = - 1, then PC +
2 - PC
If Dn * - 1 , then PC + d - PC; else PC + 2 -+ PC.
(EA) - PC
This is an unconditional jump instruction which uses control
addressing mode.

(EA) - PC
This is a subroutine call instruction which uses control
addressing mode
(SP) + - CCR
(SP) + + PC
Return and restore condition codes
Return from subroutine
(SP) + - PC

PC - - (SP)

PC - - (SP)

If cc is true, then the byte specified by (EA) is set to all ones;
otherwise the byte is cleared to zero.

*(EA) in JMP and JSR can use all modes except Dn, An, (An) +, - (An), and
immediate.
*(EA) in SCC can use all modes except An, relative, and immediate.

Motorola MC6800 485

BLE d can be used if [D2] 5 [Dl]
BGT d can be used if [D2] > [Dl]
BGE d can be used if [D2] 2 [Dl]

Now as a specific example, consider BEQ BEGIN. If current [PC] = OOO200,,,
and BEGIN=$20 then, after execution of this BEQ, program execution starts at 000220,, if
z = 1; if z = 0, program execution continues at 000200,,. The instructions BRA and JMP
are unconditional jump instructions. BRA uses the relative addressing mode, whereas JMP
uses only control addressing mode. For example, consider BRA. B START. If [PC] =

0002001,, and START=$40 then, after execution of this BRA, program execution starts at
000240,,. Now, consider JMP (A 1) . If [All = 00000220,,, then, after execution of this
JMP, program execution starts at 000220,,.

The instructions BSR and J S R are subroutine call instructions. BSR uses the relative
mode, whereas J S R uses the control addressing mode. Consider the following program
segment: Assume that the main program uses all registers; the subroutine stores the
result in memory.

Main Program Subroutine
- SUB M0VEM.L DO-D7/AO-A6, - (S P)

-

J S R

START -
-

S U B Main body of
- subroutine
- :>
M0VEM.L (S P) f, DO-D7/AO-A6
RT S

Here, the J S R SUB instruction calls the subroutine SUB. In response to JSR, the
68000 pushes the current PC contents called START onto the stack and loads the
starting address SUB of the subroutine into PC. The first MOVEM in the SUB pushes
all registers onto the stack and, after the subroutine is executed, the second MOVEM
instruction pops all the registers back. Finally, RTS pops the address START from the
stack into PC, and program control in returned to the main program. Note that BSR
SUB could have been used instead of J S R SUB in the main program. In that case, the
68000 assembler would have considered the SUB with BSR as a displacement rather
than as an address with the J S R instruction.

DBcc Dn, d tests the condition codes and the value in a data register. DBcc first checks
if cc (NE, EQ, GT, etc.) is satisfied. If cc is satisfied, the next instruction is executed.
If cc is not satisfied, the specified data register is decremented by 1; if [Dn] = -1, then
the next instruction is executed; on the other hand, if Dn z -1, then branch to PC + d
is performed. For example, consider DBNE . W D 5 I BACK with [D5] = 00003002,,,
BACK= -4 and [PC] = 002006,,. If Z = 1, then [D5] = 00003001,,. Because [D5] #

-1, program execution starts at 002002,,. It should be pointed out that there is a false
condition in the DBcc instruction and that this instruction is the DBF (some assemblers
use DBRA for this). In this case, the condition is always false. This means that, after
execution of this instruction, Dn is decremented by 1 and if [Dn] = -1, then the next
instruction is executed. If [Dn] z - 1 , then branch to PC + d.

486

TABLE 10.12

Fundamentals of Digital Logic and Microcomputer Design

68000 System Control Instructions
Instruction Size Operation

RESET Unsized If supervisor state, then assert reset

RTE Unsized If supervisor state, then restore SR

STOP #data Unsized If supervisor state, then load

line; else TRAP

and PC; else TRAP

immediate data to SR and then
STOP; else TRAP

These instructions
were discussed earlier

Trap and Check Instructions
Unsized PC - - (SP)

1
O R 1 to SR
MOVE USP
ANDI to SR
E O R I to SR
MOVE (EA) to SR

TRAP #vector

TRAPV

SR - - (SP)
Vector address.-+ PC
TRAP if V = 1
If Dn < 0 or Dn > (EA), then
TRAP;

Unsized

CHK (EA), Dn W else, go to the next instiuction.
Status ReKister

ANDI to CCR \
E O R I to CCR
MOVE (EA) to/from CCR
O R 1 to CCR
MOVE S R to (EA)

Already explained
earlier

*(EA) in CHK can use all modes except An.

Consider SPL . B (A 5) . If [AS] = 00200020,, and N = 0, then, after execution of this
SPL, memory location 200020,, will contain 11 11 11 11,.

10.6.8 System Control Instructions
The 68000 system control instructions contain certain privileged instructions including
RESET, RTE, S T O P and instructions that use or modify SR. Note that the privileged
instructions can be executed only in the supervisor mode. The system control instructions
are listed in Table 10.12.

The RESET instruction when executed in the supervisor mode outputs a low signal
on the reset pin of the 68000 in order to initialize the external peripheral chips. The
68000 reset pin is bidirectional. The 68000 can be reset by asserting the reset pin
using hardware, whereas the peripheral chips can be reset using the software RESET
instruction.

MOVE. L A 7 , A n or MOVE. L A n , A7 can be used to save, restore, or change the
contents of the A 7 in supervisor mode. A 7 must be loaded in supervisor mode because

Motorola MC6800 487

MOVE A7 is a privileged instruction. For example, A7 can be initialized to $005000 in
supervisor mode using M0VEA.L #$00005000,A1

Consider TRAP #n. There are 16 TRAP instructions with n ranging from 0 to 15.
The hexadecimal vector address is calculated using the equation: Hexadecimal vector
address = 80 + 4 x n. The TRAP instruction first pushes the contents of the PC and then
the SR onto the stack. The hexadecimal vector address is then loaded into PC. TRAP
is basically a software interrupt. The TRAP instruction can be used for service calls to
the operating system. For application programs running in the user mode, TRAP can
be used to transfer control to a supervisor utility program. RTE at the end of the TRAP
routine can be used to return to the application program by placing the saved SR from
the stack, thus causing the 68000 to return to the user mode.

There are other traps that occur due to certain arithmetic errors. For example,
division by zero automatically traps to location 1416. On the other hand, an overflow
condition (i.e., if V = 1) will trap to address IC,, if the instruction TRAPV is
executed.

The CHK. W (EA), Dn instruction compares [Dn] with (EA). If [Dn],,, ,, b,,n< 0 or if
[Dn],,, 16b,ts > (EA), then a trap to location OOl8,, is generated. Also, N is set to 1 if
[Dn],,, 16blts < 0, and N is reset to 0 if [Dn],,, 16 bl,, > (EA). (EA) is treated as a 16-bit
twos complement integer. Note that program execution continues if [Dn],o, 16 bits lies
between 0 and (EA).

[003000,6] = O1OOI6, then, after execution of this CHK, the 68000 will trap because
[D2] = 0200,, is greater than [003000] = O10Ol6.

The purpose of the CHK instruction is to provide boundary checking by testing
if the content of a data register is in the range from zero to an upper limit. The upper
limit used in the instruction can be set equal to the length of the array. Then, every time
the array is accessed, the CHK instruction can be executed to make sure that the array
bounds have not been violated.

The CHK instruction is usually placed after the computation of an index value
to ensure that the index value is not violated. This permits a check of whether or
not the address of an array being accessed is within array boundaries when address
register indirect with index mode is used to access an array element. For example, the
following instruction sequence permits accessing of an array with base address in A2
and array length of 50,, bytes:

M0VE.L Al ,A7

Consider CHK . W (A 5) D2. If [D2]j0, 16 bits = O2OOI6, [A51 = OOOO3OOO,6, and

-

CHK.W #49, D2
M0VE.B O(A2,D2*W),D3

-

Here, if the low 16 bits of D2 are less than 0 or greater than 49, the 68000 will
trap to location 0018,,. It is assumed that D2 is computed prior to execution of the CHK
instruction.

10.6.9 68000 Stack
The 68000 supports stacks with the address register indirect postincrement and predecrement
addressing modes. In addition to two system stack pointers (A7 and A7'), all seven address

488 Fundamentals of Digital Logic and Microcomputer Design

registers (AO-A6) can be used as user stack pointers by using appropriate addressing
modes. Subroutine calls, traps, and interrupts automatically use the system stack pointers:
USP (A7) when S = 0 and SSP (A7’) when S = 1. Subroutine calls push the PC onto the
system stack; RTS pops the PC from the stack. Traps and interrupts push both PC and SR
onto the system stack; RTE pops PC and SR from the stack.

The 68000 accesses the system stack from the top for operations such as subroutine
calls or interrupts. This means that stack operations such as subroutine calls or interrupts
access the system stack automatically from HIGH to LOW memory. Therefore, the system
SP is decremented by 2 for word or 4 for long word after a push and incremented by 2 for
word or 4 for long word after a pop. As an example, suppose that a 68000-CALL instruction
(JSR or BSR) is executed when PC = $003 1 F200; then, after execution of the subroutine
call, the stack will push the PC as follows:

USP - 4
or

SSP - 4

USP - 2
or

SSP - 2

USP
or

SSP

0031 (H)

F200 (L)

Valid data

V
HIGH Address

Note that the 68000 SP always points to valid data.
In 68000, stacks can be created by using address register indirect with

postincrement or predecrement modes. Typical 68000 memory instructions such as MOVE
tolfrom can be used to access the stack. Also, by using one of the seven address registers
(AO-A6) and system stack pointers (A7,A7’), stacks can be filled from either HIGH to
LOW memory or vice versa:
1. Filling a stack from HIGH to LOW memory (Top of the stack) is implemented with

predecrement mode for push and postincrement mode for pop.
2. Filling a stack from LOW to HIGH (Bottom of the stack) memory is implemented

with postincrement for push and predecrement for pop.
For example, consider the following stack growing from HIGH to LOW memory

addresses in which A7 is used as the stack pointer:

A1
L

To push the 16-bit contents 0504,, of memory location 30501 6,,, the instruction
MOVE. W $ 3 0 5 0 1 6 , - (A 7) can be used as follows:

Motorola MC6800 489

The 16-bit data item 0504,, can be popped from the stack into the low 16 bits
of DO by using MOVE. W (A 7) f , DO. Register A7 will contain 200504,, after the pop.
Note that, in this case, the stack pointer A7 points to valid data. Next, consider the stack
growing from LOW to HIGH memory addresses in which the user utilizes A6 as the stack
pointer:

, Stack ,

To push the 16-bit contents 20701, of the low 16 bits of D5, the instruction MOVE .
W D 5 , (A6) + can be used as follows. The 16-bit data item 207016 can be popped from
the stack into the 16-bit contents of memory location 41 7024,, by using MOVE . W - (A6) ,
$ 4 17 0 2 4. Note that, in this case, the stack pointer A6 points to the free location above the
valid data.

, Stack I

10.7 68000 Delav Routine

Typical 68000 software delay loops can be written using MOVE and DBF instructions.
For example, the following instruction sequence can be used for a delay loop of 2
millisecond:

MOVE. W # c o u n t , DO
DELAY DBF. W DO, DELAY

Note that DBF.W in the above decrements D0.W by one, and if D0.W * -1
branches to DELAY; if D0.W = -1, the 68000 executes the next instruction. Since DBF.W
checks for D0.W for -1, the value of “count” must be one less than the required loop count.
The initial loop counter value of “count” can be calculated using the cycles (Appendix D)

490

required to execute the following 68000 instructions:

Fundamentals of Digital Logic and Microcomputer Design

MOVE. W # n , DO
DBF . W DO , DELAY (10/14 cycles)

(8 cycles)

Note that the 68000 DBF.W instruction requires two different execution times.
DBF.W requires 10 cycles when the 68000 branches if the content of D0.W is not equal to
-1after autodecrementing D0.W by 1. However, the 68000 goes to the next instruction and
does not branch when [DO.W] = -1 after autodecrementing D0.W by 1, and this requires 14
cycles. This means that the DELAY loop will require 10 cycles for “count” times, and the
last iteration will take 14 cycles.

Assuming 4-MHz 68000 clock, each cycle is 250ns. For 2 millisecond delay,

total cycles = 250 nSec = 8,000. The loop will require 10 cycles for “count” times when
D0.W # -1 and the last iteration will take 14 cycles when no branch is taken (D0.W = -1).
Thus, total cycles including the MOVE. W = 8 + 10 x (count) + 14 = 8,000. Hence, count
= 798,, = 031E,,. Therefore, D0.W must be loaded with ?98,, or 031E,,.

Now, in order to obtain delay of two seconds, the above DELAY loop of 2

millisecond can be used with an external counter. Counter value = 2 m sec = 1000. The
following instruction sequence will provide an approximate delay of two seconds:

2 m sec

2 sec

M0VE.W #1000,D1 ; I n i t i a l i z e c o u n t e r fo r
;2 s e c o n d d e l a y

BACK M0VE.W # 7 9 8 , D 0
DELAY DBF, W DO, DELAY ;20msec d e l a y

SUB0.W # 1 , D 1
BNE . B BACK

Next, the delay time provided by the above instruction sequence can be calculated.
From Appendix D, the cycles required to execute the following 68000 instructions:

MOVE. w # n , DI (8 cycles)
SUBQ. w # n , DI (4 cycles)
BNE. B (1 0/8 cycles)

As before, assuming 4-MHz 68000 clock, each cycle is 250ns. Total time from
the above instruction sequence for two-second delay = Execution time for M0VE.W +
1000 * (2 msec delay) + 1000 * (Execution time for SUBQ.W) + 999* (Execution time for
BNE.B for Z = 0 when Dl * 0) + (Execution time for BNE.B for Z = 1 when D1 = 0 for
last iteration) = 8 * 25011s + 1000 * 2msec + 1000 * 4 * 250ns + 999 * 10 * 250ns + 8 *
250ns 5 2.0035 seconds which is approximately 2 seconds discarding the execution times
of MOVE.W, SUBQ.W, and BNE.B.

ExamDle 10.1
Determine the effect of each of the following 68000 instructions:

CLR DO

M0VE.L D1, DO
CLR.L (AO) +
MOVE -(AO), DO
MOVE 20(AO), DO
M0VEQ.L #$D7, DO
MOVE 21(AO, Al.L), DO

Assume the following initial configuration before each instruction is executed; also assume

Motorola MC6800

all numbers in hex:

49 1

[DO] = 22224444, [DI] = 55556666
[AO] = 00002224, [All = 00003333
[002220] = 8888, [002222] = 7777
[002224] = 6666, [002226] = 5555
[002238] = AAAA, [00556C] = FFFF

Instruction Effective Address Net Effect (Hex)
CLR DO Destination EA = DO DO + 22220000
M0VE.L D1,DO Destination EA = DO DO - 55556666
C L R . L (AO)+ Destination EA = [AO] [002224] - 0000

[002226] - 0000
A0 +- 00002228
A0 - 00002222
DO - 22227777
DO + 2222AAAA

MOVE - (AO) , DO

MOVE 20 (AO) ,DO

Source EA = [AO] - 2
Destination EA = DO
Source EA = [AO] + 20,,

Destination EA = DO

Destination EA = DO
Source EA = [AO] + [All + 21 ,,

= $00556C
Destination EA = DO

(or 14,J = 002238

M0VEQ.L # $ O D 7 , D O Source data = D7,, DO - FFFFFFD7

MOVE 21 (AO, Al. L) I DO DO +- 2222FFFF

Examde 10.2
Write a 68000 assembly language program that implements each of the following C
language program segments:

(a) if (x >= y)
i)

x = x + 10;
else y = y - 12;

where x is the address of a 16-bit signed integer and, y is the address of a 16-bit signed

integer.

(b) sum = 0 ;
for (i = 0; i <= 9; i= i t 1)
sum = sum + a [i] ;

where sum is the address of the 16-bit result of addition.
ii) Write a 68000 assembly language program to find (X2) / (32765,J where X is a 16-bit
signed number stored in D0.W. Store the 32-bit result (quotient and remainder) onto the
user stack.
iii) What are the remainder, quotient, and register containing them after execution of the

following 68000 instruction sequence?

M0VE.W #OFFFFH, D1
D 1 V S . W # 2 , D 1

Solution

i)

492 Fundamentals of Digital Logic and Microcomputer Design

(4 x EQU 1 0 0
Y EQU 200

LEA.L x,AO
LEA.L y,Al
MOVE. W (AO) , DO
CMP.W (Al), DO
BGE.B THPRT
SUB1.W #12, (Al)
BPJ4.B STAY

THPRT ADD1.W #lo, (AO)
STAY JMP STAY

(b) Assume register A0 holds the
array.

SUM EQU 300
LEA.L 200,AO
CLR.W DO
M0VE.W #9,D1

LOOP ADD.W (AO) +, DO
DBF. W D1, LOOP
MOVE. W DO, SUM

FINISH JMP FINISH

; Initialize A0
; Initialize A1
; Move [XI into DO
; Compare [XI with [y]

;Execute else part

;Execute then part
; Halt

address of the first element of the

; Initialize SUM to 300 for result
; Point A0 to a[Ol
; Clear the sum to zero
; Initialize D1 with loop limit
; Perform the iterative summation

; Store 16-bit result in address SUM
; Halt

Note that, in the above condition F in DBF is always false. Hence, the program exits from
the LOOP when D1= -1. Therefore, the addition process is performed 10 times.

i i) MULS. D0,DO
D1VU.W #32765,D0 ;

M0VE.L DO,-(A7)

FINISH JMP FINISH

Compute X2and store in D0.L
Since X2and32765 are both
positve, use
unsigned division.
Remainder in high word
of DO and quotient in low word
of DO. Push
D0.L to stack

iii) MOVE.W #OFFFFH, DI
D1VS.W #2, D1

; D1 = FFFFH -1
; D1/2 = -1/2

High D1.W Low D1. W

I FFFFH I OOOOH
16-bit 16-bit
remainder = quotient =

-1 10 0

ExamDle 10.3
Write a 68000 assembly program at address $002000 to clear loo,,, consecutive bytes (from
low to high addresses) to zero starting at location $003000.
Solution
00002000 1
00002000 207C 00003000 2
00002006 303C 0063 3
0000200A 4218 4 LOOP
0000200C 51C8 FFFC 5

00002010 4EF8 2010 6 FINISH
No errors detected

ORG $2000
M0VEA.L #$3000,AO ;LOAD A0 WITH $3000
M0VE.W #99,DO ;MOVE 99 INTO DO
CLR.B (AO)+ ;CLEAR[3000H] t
DBF. W DO, LOOP ; DECREMENT AND

JMP FINISH ;HALT
;BRANCH

Motorola MC6800

No warnings generated

Note that the 68000 has no HALT instruction.. Therefore, the unconditional jump to the
same location such as FINISH JMP FINISH is normally used at the end of the program.
Because DBF is a word instruction and considers DO’S low 16-bit word as the loop count,
one should be careful about initializing DO using MOVEQ . L #d8,Dn since this instruction
sign extends low byte of Dn to 32 bits.

ExamDle 10.4 N
Write a 68000 assembly language program at address $001 000 to compute X,Y,, where

X,. and Y, are signed 16-bit numbers and N = 100. Store the 32-bit result in D1. Assume that
the starting addresses of X, and Y, are loo,, and 200,, respectively.

i= 1

Solution
00000000 =00000100
00000000 =00000200
00001000
00001000 303C 0063
00001004 41F8 0100
00001008 43F80200
OOOOlOOC 4281

00001010 C5D9
00001012 D282
00001014 51C8 FFF8
00001018 4EF8 1018
0000101c
No errors detected
No warnings generated

O O O O ~ O O E 3418

1 P
2 Q
3
4
5
6
7

9
10
11
12FINISH
13

aLoop

EQU $100
EQU $200
ORG $1000
M0VE.W #99,DO
LEA.L P,AO
LEA.L Q,A1
CLR.L D1
M0VE.W (AO)t,D2
MULS.W (Al)+,D2
ADD.L D2,Dl
DBF . W DO, LOOP
JMP FINISH

;MOVE 99 INTO DO
;LOAD ADDRESS P INTO A0
;LOAD ADDRESS Q INTO A1
;INITIALIZE D1 TO ZERO
;MOVE [XI TO D2

;D1 <-- SUM XiYi
;DECREMENT AND BRANCH
; HALT

;D2 <--[X]*[Y]

Note: In order to execute the above program, values for X, and Y, must be stored in
memory using assembler directive, DC.W.

ExamDle 10.5

Write a 68000 subroutine to compute Y = T2 IN. Assume the X, ’s are 16-bit signed

integers and N = 100. The numbers are stored in consecutive locations. Assume A0 points
to the X, ’s and A7 is already initialized in the main program. Store 32-bit result in D1
(16-bit remainder in high word of D1 and 16-bit quotient in the low word of DI). Assume
user mode.
Solution

N

i= 1

00000000 48E7 3080 1 SQR M0VEM.L D2/D3/AO,-(A7);SAVE REGISTERS
00000004 4281 2 CLR.L D1 ;CLEAR SUM
00000006 343C 0063 3 M0VE.W #99,D2 ;INITIALIZE LOOP COUNT
OOOOOOOA 3618 4 BACK M0VE.W (AO)+,D3 ;MOVE Xi‘s INTO D3
oooooooc c7c3 5 MULS.W D3,D3 ;COMPUTE X1**2 USING

OOOOOOOE D283 6 ADD.L D3,Dl ;SINCE Xi**2 IS

00000010 51CA FFF8 7 DEE .W D2, BACK ;COMPUTE
00000014 82FC 0064 8 D1VU.W #100,D1 ;SUM OF Xi**2/N

00000018 4CDF GO04 9 MOVEM.L(A7) t,D2/D3/AO ;RESTORE REGISTERS
OOOOOOlC 4E75 10 RTS
No errors detected
No warnings generated

; MULS

;ALWAYS +VE

;USING DIVU

494

In the above program, D I V U is used for computing CX,ZM since both SUM (Xi**2) and
N= 100 are unsigned (positive). Note that in order to execute the above program, values
for X, must be stored in memory using assembler directive, DC.W.

Examole 10.6
Write a 68000 assembly language program at address 0 to move a block of 16-bit data of
length loo,,, from the source block starting at location 002000,, to the destination block
starting at location 003000,, from low to high addresses.
Solution

Fundamentals of Digital Logic and Microcomputer Design

00000000 387C 2000 1 M0VEA.W #$2000,A4 ;LOAD A4 WITH SOURCE ADDR
00000004 3A7C 3000 2 M0VEA.W #$3000,A5 ;LOAD A5 WITH DEST ADDR
00000008 303C 0063 3 M0VE.W #99,DO ;LOAD DO WITH COUNT - 1 ~ 9 9
OOOOOOOC 3ADC 4 START M0VE.W (A4)+, (A5)+ ;MOVE SOURCE DATA TO DEST

00000012 4EF8 0012 6 STAY JMP STAY ;HALT
No errors detected
No warnings generated

OOOOOOOE 51C8 FFFC 5 DBF.W D0,START ;BRANCH IF DO#-1

Note: Typical assemblers assemble a program starting at address 0 if assembler directive
ORG is not used at the beginning of the program.

ExamDle 10.7
Write a 68000 assembly language program at address 0 to add two words, each containing
two ASCII digits. The first word is stored in two consecutive locations (from LOW to
HIGH) with the low byte pointed to by A0 at address 000300,,, and the second word is
stored in two consecutive locations (from LOW to HIGH) with the low byte pointed to by
A1 at 000700,,. Store the packed BCD result in D5.
Solution
00000000 7401 1 M0VEQ.L #1,D2
00000002 307C 0300 2 M0VEA.W #$0300,AO
00000006 327C 0700 3 MOVEA . W #$07 00, A1
OOOOOOOA 0218 OOOF 4START AND1.B #$OF, (AO)+
OOOOOOOE 0219 OOOF 5 AND1.B #$OF, (Al)+
30000012 51CA FFFG 6 DBF.W D2,START
00000016 1C20 7 M0VE.B -(AO),D6
00000018 1E20 8 M0VE.B -(AO) ,D7
OOOOOOlA E90E 9 LSL.B #4,D6

000000lC 8C07 10 0R.B D7,D6
OOOOOOlE 1A21 11 M0VE.B -(Al),D5

00000020 1821 12 M0VE.B -(Al),D4
00000022 E90D 13 LSL.B #4,D5

00000024 8A04 14 0R.B D4,D5

00000026 0600 0000 15 ADD1.B #O,DO
OOOOOOSA CB06 16 ABCD.B D6,D5
0000002C 4EF8 002C 17 FINISH JMP FINISH
No errors detected

No warnings generated

;INITIALIZE A0
;INITIALIZE A1
;CONVERT IST # TO UNPAC.BCD
;CONVERT 2ND # TO UNPAC.BCD

;GET HIGH UNPAC.BYTE OF IST#
;GET LOW UNPAC. BYTE OF IST#
;SHIFT IST# HIGH BYTE 4
;TIMES
;D6=PACKED BCD BYTE OF IST#
;GET HIGH UNPAC. BYTE OF
; 2ND#
;GET LOW UNPAC. BYTE OF 2ND#
;SHIFT 2ND # HIGH BYTE 4
;TIMES
;D5 HAS PACKED BCD BYTE OF
; 2ND#
;CLEAR X-BIT
;D5.B =PACKED BCD RESULT

ExamDIe 10.8
Write a 68000 assembly language program that will perform : 5 x X + 6 x Y + [Y/8] -[
D 1 .L] where Xis an unsigned 8-bit number stored in the lowest byte of DO and Y is a 16-bit
signed number stored in the upper 16 bits of D1. Neglect the remainder of Y/8.

Motorola MC6800 495

Solution
00000000 0240 OOFF 1 AND1.W #$OOFF,DO
00000004 COFC 0005 2 MULU.W #5,DO
00000008 4841 3 SWAP.W D1
OOOOOOOA 3401 4 M0VE.W D1,D2
OOOOOOOC C3FC 0006 5 MULS.W #6,D1
00000010 D280 6 ADD.L DO,D1
00000012 48C2 7 EXT.L D2
00000014 E682 8 hSR.L #3,D2
00000016 D282 9 ADD.L D2,Dl
00000018 4EF8 0018 10 FINISH JMP FINISH
No e r r o r s d e t e c t e d

No warnings genera ted

;CONVERT X TO UNSIGNED 16-BIT
;COMPUTE UNSIGNED 5*X IN D0.L
;MOVE Y TO LOW 16 BITS IN D1
;SAVE Y TO LOW 16 BITS OF D2
;COMPUTE SIGNED 6*Y IN D1.L
;ADD 5*X WITH 6*Y
;SIGN EXTEND
;PERFORM Y18;DISCARD REMAINDER
;PERFORM 5*X+6*Y +Y/8

Example 10.9
Write a 68000 assembly language program to convert temperature from Fahrenheit to
Celsius using the following equation: C = [(F - 32)/9] x 5 ; assume that the low byte of
DO contains the temperature in Fahrenheit. The temperature can be positive or negative.
Store result in DO.
Solution
00000000 4880 1 EXT.W DO ;SIGN EXTEND (F) LOW BYTE OF DO
00000002 0440 0020 2 SUB1.W #32,DO ;PERFORM F-32
00000006 ClFC 0005 3 MULS.W #5,DO ;PERFORM 5* (F-32)/9 AND STORE
OOOOOOOA 81FC 0009 4 D1VS.W #9,DO ;REMAINDER IN HIGH WORD OF DO
OOOOOOOE 4EF8 OOOE 5 FINISH JMP FIN1SH;AND QUOTIENT IN LOW WORD OF DO
No e r r o r s d e t e c t e d

No warnings genera ted

Examule 10.10
Write a 68000 assembly language program at address $4000 to add four 32-bit numbers
stored in consecutive locations starting at address $3000. Store the 32-bit result onto the
user stack. Assume that no carry is generated due to addition of two consecutive 32-bit
numbers and A7 is already initialized.
Solution
0 0 0 0 3 0 0 0 1 ORG $3000
00003000 00000001 00000002 2 DC.L 1,2,3,4
00003002 00000003 00000004
00004000 3 ORG $4000
00004000 7003 4 M0VEQ.L #3,DO
00004002 207C 00003000 5 M0VEA.L #$3000,AO
00004008 4281 6 CLR.L D1
0 0 0 0 4 0 0 A D298 7 START ADD.L (AO)+,Dl
0000400C 51C8 FFFC 8 DBF . W DO, START
00004010 2F01 9 M0VE.L Dl,-(A7)
00004012 4EF8 4012 10 FINISH JMP FINISH

No e r r o r s d e t e c t e d
No warnings genera ted

Examule 10.11
Write a subroutine in 68000 assembly language to implement the C language assignment
statement: p = p + q; where addresses p and q hold two 16-digit (64-bit) packed BCD
numbers (N1 and N2). The main program will initialize addresses p and q to $002000 and
$003000 respectively. Address $002007 will hold the lowest byte of N1 with the highest
byte at address $002000 while Address $003007 will contain the lowest byte of N2 with

496 Fundamentals of Digital Logic and Microcomputer Design

the highest byte at address $003000. Also, write the main program at address $004000
which will perform all initializations including address p (pointer A0 to $002000), address
q (pointer A1 to $003000), loop count (D1 to 7), and then call the subroutine at $008000
and stop. The subroutine will accomplish the task with the initialized values of AO, Al ,
and D1 in the main program. Use ABCD.B for BCD addition with predecrement mode.
Assume supervisor mode. Note that the 68000 supervisor stack pointer is initialized upon
hardware reset.
Solution
00004000
00004000 307C 2000
00004004 327C 3000
00004008 323C 0007
0000400C 4EB9 00008000
00004012 4EF8 4012
00004016
00008000
00008000 41FO 1001
00008004 43F1 1001
00008008 0600 0000
0000800C C109
0000800E 51C9 FFFC
00008012 4E15
No e r r o r s d e t e c t e d

No warnings genera ted

1 ORG $004000
2 M0VEA.W #$2000,AO
3 M0VEA.W #$3000,A1
4 M0VE.W #7,D1
5 JSR BCDADD
6 STAY JM? STAY
7
8 ORG $008000
9 BCDADD LEA.L 1 (A0,Dl.W) ,A0 ;UPDATE A0
10 LEA.L 1 (A1,Dl.W) ,A1 ;AND A1

12 ALOO? ABCD.B - (A l) ,- (AO) ;ADD
11 ADD1.B #O,DO ;X-BIT =O

13 DBF. W D1, ALOOP
14 RT S

ExamDIe 10.12
Write a 68000 assembly program to multiply an 8-bit signed number in the low byte of D 1
by a 16-bit signed number in the high word of D5. Store the result in D3.
Solution
00000000 4881 1 EXT.W D1 ;SIGN EXTENDS LOW BYTE OF D1
00000002 4845 2 SWA?.W D5 ;SWAP LOW WORD WITH HIGH

00000004 CBCl 3 MULS.W D1,D5 ;MULTIPLY D1 WITH D5,

00000006 2605 4 M0VE.L D5,D3 ;COPY RESULT IN D3
00000008 4EF8 0008 5 FINISH JMP FINISH
No e r r o r s d e t e c t e d
No warnings genera ted

;WORD OF D5

;STORE RESULT

Examde 10.13
Write a 68000 assembly language program at address $2000 to add ten 32-bit numbers
stored in consecutive locations starting at address $502040. Initialize A6 to $00200504
and use the low 24 bits of A6 as the stack pointer to push the 32-bit result. Use only ADDX
instruction for adding two 32-bit numbers each time through the loop. Assume that no
carry is generated due to the addition of two consecutive 32-bit numbers; this will provide
the 32-bit result. This example illustrates use of the 68000 ADDX instruction.
Solution
00001000 1 ORG $1000
00000002 00000002 00000003 00000007 ... 2 DC.L 2,3,7,5,1,9,6,4,6,1
00001028 =00001000 3 START-ADR EQU $1000
00002000 4 CRG $2000
00002000 -00000009 5 COUNT EQU 9
00002000 2 0 7 C 00001000 6 MCVEA.1. #START-ADR,AO ;LOAD STARTING

;ADDRESS IN A0

;COUNTER
00002006 103C 0009 1 MOVE.B #COUNT,DO ;USE no AS A

0000200A 2C7C 00200504 8 MOVEA.I,#$00200504,A6 ;USE A6 AS THE

Motorola MC6800 497

00002010 4281

00002012 0606 0000
oonozoi6 2618

0000201A 51C8 FFFA

0000201E 2D01

00002020 4EF8 2020

No errors detected
No warnings generated

9

10
11 AGAIN

12

13

14

15 FINISH

; S P
CLR.L D1 ;CLEAR Di

;REGISTER
ADD1.A #O,D6 ;CLEAR X BIT
M0VE.L (AO)+,D3 ;MOVE A 32 BIT

;NUMBER
;IN D3

ADDX. I, D3, D1 ;AOD NUMBERS
;USING
; ADDX

; DO=-1

;RESULT
;ONTO STACK

DBF.W DO,AGAIN ;REPEAT UNTIL

M0VE.L D1,-(A6) ;PUSH 32-bit

JMP FINISH

Note that ADDX adds the contents of two data registers or the contents of two memory
locations using predecrement modes.

Examole 10.14
Write a 68000 assembly language program at address $2000 to subtract two 32-bit packed
BCD numbers. The BCD number 1 is stored at the locations starting from $003000
through $003003, with the least significant byte at $003003 and the most significant byte
at $003000. Similarly, the BCD number 2 is stored at the locations starting from $004000
through $004003, with the least significant byte at $004003 and the most significant byte
at $004000. The BCD number 2 is to be subtracted from BCD number 1. Store the packed
BCD result at addresses $005000 (Lowest byte of the result) through $005003 (Highest
byte of the result). In the program, first initialize loop counter D7 to 4, source pointer A0 to
$003000, source pointer A1 to $004000, destination pointer A3 to $005000, and then write
the program to accomplish the above using these initialized values.
Solution
0 0 0 0 3 0 0 0 1 ORG $003000
00003000 99221133 2 DC.L $99221133
00004000 3 ORG $004000
00004000 33552211 4 DC.L $33552211
00002000 5 ORG $2000
00002000 3E3C 0004 6 M0VE.W #4,D7 ;NUMBER OF BYTES TO BE SUBTRACTED
00002004 307C 3000 7 M0VEA.W #$3000,AO ;STARTING ADDRESS FOR FIRST NUMBER
00002008 327C 4000 8 M0VEA.W #$4000,A1 ;STARTING ADDRESS FOR SECOND NUMBER
0000200C DOC7 9 ADDA.W D7,AO ;MOVE ADDRESS POINTERS TO THE END
0000200E D2C7 10 ADDA.W D7,Al ;OF EACH 32 BIT PACKED BCD NUMBER
00002010 367C 5000 11 M0VEA.W #$5000,A3 ;LOAD POINTER FOR DESTINATION ADDR
00002014 5347 12 SUBQ.W #1,D7 ;SUBTRACT D7 by 1 for DBF

0000201A 1020 14 LOOP M0VE.B -(AO),DO ;GET A BYTE FROM FIRST NUMBER
3000201C 1221 15 M0VE.B -(Ai),Dl ;GET A BYTE FROM SECOND NUMBER
0000201E 8101 16 SRCD.B D1,DO ;BCD SUBTRACTION, RESULT IN DO
00002020 16CO 17 M0VE.B DO,(A3)+ ;STORE RESULT IN DESTINATION ADDR
00002022 51CF FFF6 18 DBF D7,LOOP ;CONTINUE UNTIL COUNTER HAS EXPIRED
00002026 4EF8 2026 19 FINISH JMP FINISH

No errors detected
No w a r n i n g s generated

00002016 0607 0000 13 ADD1.B #O,D7 ;CLEAR X-BIT

Note that SBCD subtracts the contents of two data registers or the contents of two memory
locations using predecrement modes.

Examole 10.15
Write a 68000 assembly program at address $1000 which is equivalent to the following C
language segment:

498 Fundamentals of Digital Logic and Microcomputer Design

sum = 0;
for (i=O;i <= 9; i = i + 1)
sum = sum + x[i] * y[i];
Assume that the arrays, x[i] and y[i] contain unsigned 16-bit numbers already stored in
memory starting at addresses $3000 and $4000 respectively. Store the 32-bit result at
address $5000.
Solution
00001000 1 ORG $1000
00001000 =00003000 2 x EQU $3000
00001000 = 0 0 0 0 4 0 0 0 3 y EQU $4000
00001000 =00005000 4 s u m EQU $5000
00001000 5
00001000 303C 0009 6 M0VE.W # 9 , D O ;USE DO AS A LOOP COUNTER
00001004 41F8 3000 7 LEA.L x,AO ;INITIALIZE A0 WITH x
00001008 43F8 4000 8 LEA.L y,Al ;INITIALIZE A1 WITH y
OOOOlOlC 45F8 5000 9 LEA.L sum,A2 ;INITIALIZE A2 WITH SUM
00001010 4285 10 CLR.L D5 ;CLEAR SUM TO 0
00001012 3418 11 LOO? M0VE.W (AO)+,D2;MOVE X [i] INTO D2
00001014 C4D9 12 MULU.W (Al)+,D2;COM?UTE X [i l * y [i l
00001016 DA82 13 ADD.L D2,D5 ;UPDATE SUM

OOOOlOlC 2485 15 M0VE.L D5,(A2) ;STORE SUM IN MEMORY
OOOOlOlE 4EF8 1OlE 16 FINISH JMP FINISH
No e r ro r s detected

No warnings generated

00001018 51C8 FFF8 14 DBF.W DO,LOO? ;REPEAT UNTIL DO=-1

10.8 68000 Pins And Signals

The 68000 is usually packaged in one of the following:
a) 64-pin dual in-line package (DIP)
b) 68-pin quad pack

Figure 10.6 shows the 68000 pin diagram for the DIP. Appendix C provides data
sheets for the 68000 and support chips.

The 68000 is provided with two V,, (+5 V) and two ground pins. Power is thus
distributed in order to reduce noise problems at high frequencies. Also, to build a prototype
to demonstrate that the paper design for the 68000-based microcomputer is correct, one
must use either wire-wrap or solder for the actual construction. Prototype board must not
be used because, at high frequencies (above 4 MHz), there will be noise problems due to
stray capacitances. The 68000 consumes about 1.5 W of power.

D,-D,S are the 16 data bus pins. All transfers to and from memory and I/O devices
are conducted over the &bit (LOW or HIGH) or 16-bit data bus depending on the size of
the device. A,-A,, are the 23 address lines. A, is obtained by encoding the UDS (upper data
strobe) and LDS (lower data strobe) lines.

The 68000 operates on a single-phase TTL-level clock at 4, 6, 8, 10, 12.5, 16.67,
or 25 MHz. The clock signal must be generated externally and applied to the 68000 clock
input line. An external crystal oscillator chip is required to generate the clock. Figure 10.7
shows the 68000 CLK waveform and clock timing specifications. The clock is at TTL-
compatible voltage. The clock timing specifications provide data for three different clock
frequencies: 8 MHz, 10 MHz, and 12.5 MHz The 68000 CLK input can be provided by an
external crystal oscillator or by designing an external circuit.

c) 68-terminal chip carrier
d) 68-pin grid array (PGA)

-
-

The 68000 signals can be divided into five functional categories:

Motorola MC6800

< tcyc -~ >

t- k L + - fCH+

2.0v L 1 1 1

499

0.8 v I

tcr + z

A, 32 r -

FIGURE 10.6 68000 pins and signals

c ? '

-In

500

1.
2. System control lines
3. Interrupt control lines
4. DMA control lines
5. Status lines

Fundamentals of Digital Logic and Microcomputer Design

Synchronous and asynchronous control lines

10.8.1 Synchronous and Asynchronous Control Lines
The 68000 bus control is asynchronous. This means that once a bus cycle is initiated, the
external device must send a signal back to complete it. The 68000 also contains three
synchronous control lines that facilitate interfacing to synchronous peripheral devices such
as Motorola’s inexpensive MC6800 family.

Synchronous operation means that bus control is synchronized or clocked using
a common system clock signal. In 6800 family peripherals, this common clock is the E
clock signal depending on the particular chip used. With synchronous control, all READ
and WRITE operations must be synchronized with the common clock. However, this may
create problems when interfacing with slow peripheral devices. This problem does not
arise with asynchronous bus control.

Asynchronous operation is not dependent on a common clock signal. The 68000
utilizes the asynchronous control lines to transfer data between the 68000 and peripheral
devices via handshaking. Using asynchronous operation, the 68000 can be interfaced to
any peripheral chip regardless of the speed.

The 68000 has three control lines to transfer data over its bus in a synchronous
manner: E (enable), VPA (valid peripheral address), and VMA (valid memory address).
The E clock corresponds to the clock of the 6800. The E clock is output at a frequency that
is one tenth of the 68000 input clock. VPA is an input and tells the 68000 that a 6800 device
is being addressed and therefore the data transfer must be synchronized with the E clock.
VMA is the processor’s response to VPA. VMA is asserted when the memory address is
valid. This also tells the external device that the next data transfer over the data bus will be
synchronized with the E clock.

VPA can be generated by decoding the address pins and address strobe (AS).
Note that the 68000 asserts AS LOW when the address on the address bus is valid. VMA
is typically used as the chip select of the 6800 peripheral. This ensures that the 6800
peripherals are selected and deselected at the correct time. The 6800 peripheral interfacing
sequence is as follows:

__ -

- --

1.
2.

The 68000 initiates a cycle by starting a normal read or write cycle.
The 6800 peripheral defines the 68000 cycle by asserting the 68000 VPA input.
If VPA is asserted as soon as possible after assertion of AS, then VPA will be
recognized as being asserted after three cycles. If VPA is not asserted after
three cycles, the 68000 inserts wait states until VPA is recognized by the 68000
as asserted. DTACK should not be asserted while VPA is asserted. The 6800
peripheral must remove VPA within 1 clock period after AS is negated.
The 68000 monitors enable (E) until it is LOW. The 68000 then synchronizes all
READ and WRITE operations with the E clock. The VMA output pin is asserted
LOW by the 68000.
The 6800 peripheral waits until E is active (HIGH) and then transfers the data.
The 68000 waits until E goes to LOW (on a read cycle, the data is latched as E
goes to LOW internally). The 68000 then negates m, AS, m, and m. The

-

-
-

3.

4.
5 .

Motorola MC6800 501

68000 thus terminates the cycle and starts the next cycle.
The 68000 utilizes five lines to control address and data transfers asynchronously:

AS(address - strobe), R/w (readwrite), DTACK (data acknowledge), UDS (upper data
strobe), and LDS (lower data strobe).

The 68000 outputs to notify the peripheral device when data is to be transferred,
AS is active LOW when the 68000 provides a valid address on the address bus. The R/m
output line indicates whether the 68000 is reading data from or writing data into a peripheral
device. W- is HIGH for read and LOW for write. DTACK is used to tell the 68000 that a
transfer is to be performed. When the 68000 wants to transfer data asynchronously, it first
activates the AS line and at the same time generates the required address on the address
lines to select the peripheral device.

Because the AS line tells the peripheral chip when to transfer data, the AS line
should be part of the address decoding scheme. After enabling AS, the 68000 enters the wait
state until it receives DTACK from the selected peripheral device. On receipt of DTACK?
the 68000 knows that the peripheral device is ready for data transfer. The 68000 then
utilizes the W- and data lines to transfer data. UDS and LDS are defined as follows:

-

U D S L D S Data Transfer Occurs Via: Address
1 0 Do-D, pins for byte Odd
0 1 D,-D,, pins for byte Even
0 0 Do-D,, pins for word or long word Even

- - -
A, is encoded from UDS and LDS. When UDS is asserted, the contents of even

addresses are transferred on the high-order eight lines of the data bus, Ds-D,,. The 68000
internally shifts this data to the low byte of the specified register. When LDS is asserted, the
contents of odd addresses are transferred on the low-order eight lines of the data bus, Do-
D,. During word and long word transfers, both UDS and LDS are asserted and information
is transferred on all 16 data lines, Do-D,, pins. Note that during byte memory transfers, A,
corresponds to UDS for even addresses (A, = 0) and to for odd addresses (A, =l). The
circuit in Figure 10.8 shows how even and odd addresses are interfaced to the 68000.

c_

_ _ -

FIGURE 10.8 Interfacing of the 68000 to even and odd addresses

502

10.8.2 System Control Lines
The 68000 has three control lines, (bus error), HALT, and RESET, which are used
to control system-related functions. BERR is an input to the 68000 and is used to inform the
processor that there is a problem with the instruction cycle currently being executed. With
asynchronous operation, this problem may arise if the 68000 does not receive DTACK
from a peripheral device. An external timer can be used to activate the BERR pin if the
external device does not send DTACK within a certain period of time. On receipt of BERR,
the 68000 does one of the following:

Fundamentals of Digital Logic and Microcomputer Design

Reruns the instruction cycle that caused the error.

Executes an error service routine.
The troubled instruction cycle is rerun by the 68000 if it receives a HALT signal

along with the BERR signal. On receipt of LOW on both the HALT and pins, the
68000 completes the current instruction cycle and then goes into the high-impedance state.
On removal of both HALT and BERR (that is, when both HALT and are HIGH),
the 68000 reruns the troubled instruction cycle. The cycle can be rerun repeatedly if both
BERR and HALT are enabled/disabled continually.

On the other hand, an error service routine is executed only if the BERR signal is
received without HALT. In this case, the 68000 will branch to a bus error vector address
where the user can write a service routine. If two simultaneous bus. errors are received via
the BERR pin without HALT, the 68000 automatically goes into the halt state until it is
reset.

The HALT line can also be used by itself to perform single stepping or to provide
DMA. When the HALT input is activated, the 68000 completes the current instruction and
goes into a high-impedance state until HALT is returned to HIGH. By enablingldisabling
the HALT line continually, the single-stepping debugging can be accomplished. However,
because most 68000 instructions consist of more than one clock cycle, single stepping
using HALT is not normally used. Rather, the trace bit in the status register is used to
single-step the complete instruction.

One can also use HALT to perform microprocessor-halt DMA. Because the 68000
has separate DMA control lines, DMA using the HALT line will not normally be used. The
HALT pin can also be used as an output signal. The 68000 will assert the HALT pin LOW
when it goes into a halt state as a result of a catastrophic failure. The double bus error
(activation of BERR twice) is an example of this type of error. When this occurs, the 68000
goes into a high-impedance state until it is reset. The HALT line informs the peripheral
devices of the catastrophic failure.

line of the 68000 is also bidirectional. To reset the 68000, both the
RESET and HALT pins must be LOW for 10 clock cycles at the same time except when
Vcc is initially applied to the 68000. In this case, an external reset must be applied for at
least 100 ms. The 68000 executes a reset service routine automatically for loading the PC
with the starting address of the program.

The 68000 RESET pin can also be used as an output line. A LOW can be sent
to this output line by executing the RESET instruction in the supervisor mode in order to
reset external devices connected to the 68000 RESET pin. Upon execution of the RESET
instruction, the 68000 drives the RESET pin LOW for 124 clock periods and does not
affect any data, address, or status registers. Therefore, the RESET instruction can be placed
anywhere in the program whenever the external devices need to be reset.

Upon hardware reset, the 68000 sets the S-bit in SR to 1, and then loads the
supervisor stack pointer from location $000000 (high 16 bits) and $000002 (low 16 bits)

The

Motorola MC6800 503

and loads the PC from $000004 (high 16 bits) and $000006 (low 16 bits); but the low 24
bits are used. In addition, the 68000 clears the trace bit in SR to 0 and sets bits I2 I1 I0 in
SR to 1 1 1. All other registers are unaffected.

10.8.3 Interrupt Control Lines
IPLO, IPLl, and IPL2 are the three interrupt control lines These lines provide for seven
interrupt priority levels (IPL2, IPLl, IPLO = I 11 means no interrupt, and IPL2, IPLl, IPLO
= 000 means nonmaskable interrupt with the highest priority). The 68000 interrupts will be
discussed later in this chapter.

-- ~

-__- ~ - -

10.8.4 DMA Control Lines
The BR (bus request), BG (bus grant), and BGACK (bus grant acknowledge) lines are used
for DMA purposes. The 68000 DMA will be discussed later in this chapter.

10.8.5 Status Lines
The 68000 has the three output lines called function code pins (output lines) FC2, FCl,
and FCO. These lines tell external devices whether user datdprogram or supervisor data/
program is being addressed. These lines can be decoded to provide user or supervisor
programsidata and interrupt acknowledge as shown in Table 10.13.

The FC2, FCI , and FCO pins can be used to partition memory into four fknctional
areas: user data memory, user program memory, supervisor data memory, and supervisor
program memory. Each memory partition can directly access up to 16 megabytes, and thus
the 68000 can be made to directly address up to 64 megabytes of memory. This is shown
in Figure 10.9.

10.9

This section covers generation of 68000 clock and reset signals in detail because the clock
signal and the reset pins are two important signals of any microprocessor.

10.9.1 68000 Clock Signals
As mentioned before, the 68000 does not include an on-chip clock generation circuitry.
This means that an external crystal oscillator chip is required to generate the clock. The
68000 CLK input can be provided by a crystal oscillator or by designing an external circuit.
Figure 10.10 shows a simple oscillator to generate the 68000 CLK input.

This circuit uses two inverters connected in series. Inverter 1 is biased in its

68000 Clock and Reset Signals

TABLE 10.13 Function Code Lines

FC2 FCI FCO Operation
0 0 0 Unassigned
0 0 1 User data
0 1 0 User program
0 1 1 Unassigned
1 0 0 Unassigned
1 0 1 Supervisor data
1 1 0 Supervisor program
1 1 1 Interrupt acknowledge

504

D 0

74HC74

R = l K

I

Clock Q

Fundamentals of Digital Logic and Microcomputer Design

To 68000
CLK input

To each

Fc2 FC1 i-1; : 1

16M user data r\
program 1 1 -1 cs

16M supelvisor

r ' c s data ~

address
space

FIGURE 10.10 External clock circuitry

transition region by the resistor R. Inverter 1 inputs the crystal output (sinusoidal) to
provide a logic pulse train at the output of inverter 1. Inverter 2 sharpens the wave and
drives the crystal. For this circuit to work, HCMOS logic for the inverters must be used.
Therefore, the 74HC04 inverter chip is used. The 74HC04 has high noise immunity and
the ability to drive 10 LS-TTL loads. A coupling capacitor should be connected across
the supply terminals to reduce the ringing effect during high-frequency switching of the
HCMOS devices. Note that the ringing occurs when a circuit oscillates for a short time due
to the presence of stray inductance and capacitance. In addition, the output of this oscillator
is fed to the CLK input of a D flip-flop (74HC74) to hrther reduce the ringing. A clock
signal of 50% duty cycle at a frequency of '/z the crystal frequency is generated. This means
that this circuit with a 16-MHz crystal will generate an 8-MHz clock for the 68000.

10.9.2 68000 Reset Circuit
When designing the microprocessor's reset circuit, two types of reset must be considered:
power-up and manual. These reset circuits must be designed using the parameters

Motorola MC6800 505

specified by the manufacturer. Therefore, a microprocessor must be reset when its Vcc
pin is connected to power. This is called “power-up reset.” After some time during normal
operation, the microprocessor can be reset by the designer upon activation of a manual
switch such as a pushbutton. A reset circuit, therefore, needs to be designed following
the timing parameters associated typically with the microprocessor’s reset input pin
specified by the manufacturer. The reset circuit, once designed, is typically connected to
the microprocessor’s reset pin.

Upon hardware reset, the 68000 sets the S-bit in SR to 1 and performs the
following:
1. The 68000 loads the supervisor stack pointer from addresses $000000 (high 16 bits)

and $000002 (low 16 bits) and loads the PC from $000004 (high 16 bits) and $000006
(low 16 bits). Typical 68000 assembler directives such as DC.L can be used for this
purpose. For example, to load $200128 into supervisor SP and $3F1420 into PC, the
following instruction sequence can be used:

ORG $00000000
DC.L $00200128
DC.L S003F1420

2. The 68000 clears the trace bit in SR to 0 and sets the interrupt mask bits 12 I1 I0 in SR
to 1 1 1. All other registers are unaffected.

To cause a power-up reset, Motorola specifies that both the RESET and HALT
pins ofthe 68000 must be held LOW for at least 100 ms. This means that an external circuit
needs to be designed that will generate a negative pulse with a width of at least 100 ms for
both RESET and HALT. The manual RESET requires both the and HALT pins to
be LOW for at least 10 cycles(1.25 microseconds for 8MHz). In general, it is safer to assert
RESET and HALT for much longer than the minimum requirements. Figure 10.1 1 shows a
typical 68000 reset circuit that asserts and HALT LOW for approximately 200 ms.
The 555 timer is used in the circuit.

The reset circuit in the figure utilizes the 555 timer chip and provides for both
power-up and manual resets by asserting the 68000 RESET and HALT pins for at least
200 ms. The computer designer does not have to know about the details of the 555 chip.
Instead, the designer should know how to use the 555 chip to generate the 68000 RESET
signal.

The 555 is a linear 8-pin chip. The TRIGGER pin is the input signal. When the
voltage at the TRIGGER input pin is less than or equal to 113 V,,, the OUTPUT pin is
HIGH. The DISCHARGE and THRESHOLD pins are tied together to R, and C. Note
that the values of R, and C determine the output pulse width. The CONTROL input pin
controls the THRESHOLD input voltage. According to the manufacturer’s data sheets,
the control input should be connected to a 0.01-pF capacitor whose other lead should be
grounded. Also, from the manufacturer’s data sheets, the output pulse width, fPW= 1.1 R,C
seconds. The values of R, and C can be chosen for stretching out the pulse width. An
RC circuit is connected at the 555 TRIGGER pin. A slow pulse obtained by charging
and discharging the capacitor C, is applied at the 555 TRIGGER input pin. The 555 will
generate a clean and fast pulse at the output. Capacitor C, is at zero voltage upon power-up.
This is obviously lower than 1/3 V,, with V,, = 5 V. Thus, the 555 will generate a HIGH
at the OUTPUT pin. The OUTPUT pin is connected through a 7404 inverter to provide a
LOW at the 68000 pins. The 7404 output is buffered via two 7407’s
(noninverting buffers) to ensure adequate currents for the 68000 RESET and HALT pins.
Note that the 7407 provides an open collector output. Therefore, a 1 -Kohm pull-up is used

_ _ _ -

and

506 Fundamentals of Digital Logic and Microcomputer Design

+5 v
R=100K ohm

TRIGGER DISCHARGE

swtch
OUTPUT THRESHOLD

RESET CONTROL
555 Timer

7407

7404 7407

FIGURE 10.11 68000 RESET circuit

for each 7407. Now, let us explain how the timing requirements for the 68000 RESET are
satisfied.

As mentioned before, capacitor C, is initially at zero voltage upon power-up. C,
then charges to V,, after a definite time determined by the time constant, RC,. The charging
voltage across the capacitor is

Vc(t) = Vcc[1 - e - F]
t

V,(t) must be less than or equal to VJ3 volts (1.7 V). To be on the safe side, let us

1 I Hence, - - 1 - e - F 4 -
_-

e R C 1 =0.75

t Therefore, RC1 = 0.29

As mentioned earlier, it is desired to provide 200 ms (arbitrarily chosen; satisfying the
minimum requirements specified by Motorola) reset time for both power-up and manual
reset.

200 ms RCI = 0.29 = 689.65 ms

Hence, RCI 0.69 s
If R is arbitrarily chosen as 100 KQ, then C, = 6.9 pF.
The 555 output pulse width can be determined using the equation,

t,,, = 1.1 R, C. Since t,,, = 200 msec, hence R, C = 0.18 seconds. If R, = 1 MQ (arbitrarily
chosen) then C = 0.18 / 1 Oh = 0.18 pF.

Motorola MC6800 507

The reverse-biased diode (1 N904 or equivalent) connected at the 555 TRIGGER
input circuit is used to hold the capacitor (C, charged to 1.25 V) voltage at 1.25 V in case
V, (obtained using a power supply from AC voltage) drops below 5V to a level such that
the capacitor C, may discharge through the 100-KQ resistor. In such a situation, the diode
will be forward biased essentially shorting out the 100-Kohm resistor, thus maintaining the
capacitor voltage at 1.25 V.

In Figure 10.1 1, upon power-up, the capacitor C, charges to approximately 1.25
V. After some time, if the reset switch is depressed, the capacitor is short-circuited to
ground. The capacitor, therefore, discharges to zero. This logic 0 at the 555 TRIGGER
input pin will provide 200 ms LOW at the 68000 and HALT input pins. This will
satisfy the minimum requirement of 10 clock cycles(1.25 microseconds for 8MHz clock)
at the 68000 and HALT pins for manual reset. The values of R and C, at the 555
trigger input should be recalculated for other 68000 clock frequencies for manual reset,
Note that the 68000 power-up reset time is fixed with a timing requirement of at least 100
ms whereas the manual reset time depends on the 68000 clock frequency and must be at
least 10 clock cycles.

Another way of generating the power-up and manual resets is by using a Schmitt-
trigger inverter such as the 741 4 chip. Figure 10.12 shows a typical circuit. The purpose of
the Schmitt trigger in a microprocessor reset circuit has already been explained in Chapter
9 for 8086 reset using the 8284 chip. The operation of the 68000 power-up and manual
resets using the RC circuit in Figure 10.12 has already been described in this section.
The purpose of the two 7414 Schmitt-trigger inverters is primarily to shape up a slow
pulse generated by the RC circuit to obtain a fast and clean negative pulse. Two 7407
open-collector noninverting buffers are used to amplify currents for the 68000 RESET and
HALT pins. Let us now determine the values of R and C.

When the input of the 7414 Schmitt-trigger inverter is low (0 V for example), the
output will be HIGH, typically at about 3.7 V. For input voltage from 0 to about 1.7 V, the
output of the 7414 will be HIGH. Let us arbitrarily choose V, = 1.5V to provide a low at
the input of the first 7414 in the figure. As before,

~c = Vcc[l- e-+ 1
1 1.5 Hence, 1 - e-E = ~ 5

e-+ zo .7
Let us design the reset circuit to provide 200 ms reset time. Therefore, t = 200

ms.

+5 v
I +5 v
l-

1N904 1 rz
lOOk

To 68000

Reset Pin

7407 7414 1 Reset 5.5pF 7414
+

switch vc T (Schmitt- (Schmitt-
trigger trigger
inverter) inverter)

-1 -

FIGURE 10.12 68000 Reset circuit using a Schmitt trigger

Motorola MC6800 509

10.10

The 68000 family of processors (68000, 68008, 68010, and 68012) uses a handshaking
mechanism to transfer data between the processors and peripheral devices. This means that
all these processors can transfer data asynchronously to and from peripherals of varying
speeds.

During the read cycle, the 68000 obtains data from a memory location or an I/O
port. If the instruction specifies a word (such as MOVE . W $0 2 0 5 0 4 , D1) or a long word
(such as MOVE. L $ 0 3 0 8 0 8 , DO), the 68000 reads both upper and lower bytes at the
same time by asserting the UDS and LDS pins. When the instruction is for a byte operation,
the 68000 utilizes an internal bit to find which byte to read and then outputs the data strobe
required for that byte.

For byte operations, when the address is even (A, = 0), the 68000 asserts UDS
and reads data via the D,-D,, pins into the low byte of the specified data register. On
the other hand, when the address is odd (A, = l), the 68000 outputs a LOW on LDS and
reads data via the Do-D, pins to the low byte of the specified data register. For example,
consider MOVE. B $5 0 7 1 4 4 , D 5 . The 68000 outputs a LOW on (because A, = 0)
and a HIGH on LDS. The memory chip’s eight data lines must be connected to the 68000
D8-D,, pins. The 68000 reads the data byte via the D,-D,, pins into the low byte of D5.
Note that, for reading a byte from an odd address, the data lines of the memory chip must
be connected to the 68000 D,-D, pins. In this case, the 68000 outputs a LOW on LDS
(because A, = I) and a HIGH on UDS, and then reads the data byte into the low byte of the
data register.

Figure 10.13 shows the read/write timing diagrams. During SO, address and data
signals are in the high-impedance state. At the start of S1, the 68000 outputs the address on
its address pins (A,-AZ3). During SO, the 68000 outputs FC2-FCO signals. AS is asserted
at the start of S2 to indicate a valid address on the bus. AS can be used at this point to latch
the signals on the address pins. The 68000 asserts the UDS, LDS, and W- = 1 to indicate
a READ operation. The 68000 now waits for the peripheral device to assert DTACK. Upon
placing data on the data bus, the peripheral device asserts DTACK. The 68000 samples the
DTACK signal at the end of S4. If DTACK is not asserted by the peripheral device, the
processor automatically inserts a wait state(s) (W).

However, upon assertion of m, the 68000 negates the AS, UDS, and LDS
signals, and latches the data from the data bus into an internal register at the end of the next
cycle. Once the selected peripheral device senses that the 68000 has obtained data from the
data bus (by recognizing the negation of AS, UDS, or LDS), the peripheral device must
negate DTACK immediately so that it does not interfere with the start of the next cycle.

If DTACK is not asserted by the peripheral at the end of S4 (Figure 10.13,
SLOW READ), the 68000 inserts wait states. The 68000 outputs valid addresses on the
address pins and keeps asserting AS, UDS, and LDS until the peripheral asserts DTACK.
The 68000 always inserts an even number of wait states if DTACK is not asserted by the
peripheral because all 68000 operations are performed using the clock with two states per
clock cycle. Note in Figure 10.13 that the 68000 inserts 4 wait states or 2 cycles.

As an example of word read, consider that the 68000 is ready to execute the
MOVE . W $6 0 2 1 2 2 , D O instruction. The 68000 performs as follows:

At the end of SO the 68000 places the upper 23 bits of the address 602122,, on

At the end of S 1, the 68000 asserts z, m, and

68000 Read and Write Cvcle Timinp Diagrams

- -

-

-

__

-
-

--

--

_ _ _ -

-- -

1 .

2.
A,-A,,.

.

510 Fundamentals of Digital Logic and Microcomputer Design

The 6800
latches data at th-
edge of S6 since DTACK
is low at the falling edge i__/ Of 54.

68000 m K
input driven
by external
memory and I10
chips
(Arbitarily chosen)

FIGURE 10.14 68000 CLK and DTACK signals

-i

FIGURE 10.15 68000 interface to 2732 / 61 16

Motorola MC6800 51 1

The 68000 continues to output a HIGH on the W- pin from the beginning of the
read cycle to indicate a READ operation.
At the end of SO, the 68000 places appropriate outputs on the FC2-FCO pins to
indicate either supervisor or user read.
If the peripheral asserts DTACK at the end of S4, the 68000 reads the contents of
602122,, and 602123,, via the D,-D,, and Do-D, pins, respectively, into the high
and low bytes of D0.W at the end of S6. If the peripheral does not assert DTACK
at the end of S4, the 68000 continues to insert wait states.
Figure 10.14 shows a simplified timing diagram illustrating the use of DTACK

for interfacing external memory and I/O chips to the 68000. As mentioned before, the
68000 checks the DTACK input pin at the falling edge of S4 (three cycles), the external
memory, or I/O in this case, drives 68000 DTACK input to LOW, and the 68000 waits for
one cycle and latches data at the end of S6. However, if the 68000 does not find DTACK
LOW at the falling edge of S4, it waits for one clock cycle and then again checks DTACK
for LOW. If DTACK is LOW, the 68000 latches data after one cycle (falling edge of S8).
If the 68000 does not find DTACK LOW at the falling edge of S6, it checks for DTACK
LOW at the falling edge of S8 and the process continues. Note that the minimum time
to latch data is four cycles. This means that in the preceding example, if the 68000 clock
frequency is 8 MHz, data will be latched after 500 ns because the DTACK is asserted LOW
at the end of S4 (375 ns).

3.

4.

5.

10.11 68000 Memorv Interface

One of the advantages of the 68000 is that it can easily be interfaced to memory chips
with various speeds because it goes into a wait state if DTACK is not asserted (LOW) by
the memory devices at the end of S4. A simplified schematic showing an interface of a
68000 to two 2732’s and two 61 16’s is given in Figure 10.15. As mentioned in Chapter 9,
the 2732 is a 4K x 8 EPROM and the 61 16 is a 2K x 8 static RAM. The pin diagrams of
the 61 16 and 2732 are provided in Appendices C and E respectively. For a 4-MHz clock,
each cycle is 250 ns. Because the 68000 samples data at the falling edge of S4 (750 ns)
and latches data at the falling edge of S6 (1000 ns), AS can be used to assert DTACK.
From the 68000 timing diagram of Figure 10.13, AS goes to LOW after approximately two
cycles (500 ns). The time delay between AS going LOW and the falling edge of S6 is 500
ns. Note that LDS and UDS must be used as chip selects as in Figure 10.15. They must not
be connected to A0 of the memory chips. Because in that case half of the memory in each
memory chip would be wasted. Note that LDS and UDS also go to LOW after about two
cycles (500 ns).

In Figure 10.15, a delay circuit for DTACK is not required because the 2732
and 61 16 both place data on the bus lines before the 68000 latches data. This is because
the 68000 clock frequency is 4 MHz in this case. Thus, each clock cycle is 250 ns. The
access times of the 2732 and 6 1 16 are 200 ns and 120 ns respectively. Because DTACK
is sampled after 3 clock cycles (3 x 250 ns = 750 ns), both the 2732 and 61 16 will have
adequate time to place data on the bus for the 68000 to latch.

For example, consider the even 2732 EPROM of Figure 10.16. UDS and AS are
NORed and then NANDed with inverted AI3 to select this chip. With the 200-ns access
time of the 2732 (Used to be 450ns), data will be placed on the 68000 D,-D,, pins after
approximately 720 nanoseconds (500 ns for AS or UDS + 10 ns for the NOR gate + 10 ns for
the NAND gate + 200 ns for the 2732). Therefore, no delay circuit for the 68000 DTACK

- -

- -

512 Fundamentals of Digital Logic and Microcomputer Design
-

68000 A I -.
68000
A1 -A12

FIGURE 10.16 68000 interface to even 2732

B

CE I
- (Even)
OE

D8 -Dl 5
(68000)

A0 -A1 I I

TABLE 10.14 68000-2732 Timing Example
Time before

68000 Clock first DTACK
Case Frequency Cycle is sampled C0mment

1 12.5 MHz 80 ns 3(80) Not enough time for 2732
= 240 ns to place data on bus;

needs delay circuit for
DTACK

2 16.67MHz 60 ns 3(60) Same as case 1

3 25 MHz 40 ns 3(40) Same as case 1
= 180 ns

= 120 ns

is required because the 68000 latches data from the D,-D,, pins after 4 cycles (1 000 ns in
this case). The timing parameters of the 68000-2732 with various 68000 frequencies are
shown in Table 10.14.

Next, consider odd 6 1 16 static RAM (SRAM) with a 4-MHz 68000. Note that the
61 16 signals, w (Write enable), C (Output enable), and E (Chip enable) are decoded as
follows: when G = 0 and E = 0, then w = 1 for read and w = 0 for write. In this case, LDS
and AS are NORed and NANDed with A13 to select this chip. With the 120-ns access time
of the 61 16 RAM, data will be placed on the 68000 Do-D, pins after approximately 640
ns. Because the 68000 latches data after four cycles (1000 ns in this case), no delay circuit
for DTACK is required. The requirements for DTACK for 68000161 16 for various 68000
clock frequencies can similarly be determined.

In case a delay circuit for DTACK is required, a ring counter with D flip-flops can
be used. Let us now determine the memory maps. Figure 10.16 shows the 68000 interface
to even 2732 obtained from Figure 10.15. When A,, = 0, UDS = 0, AS = 0, and W w =1,
the 2732 will be selected by the 68000 to read data from the 68000 D,-D,, pins. The 68000
address pins A,,-A,, are don’t cares (assume 0). The memory map for the even 2732 can
be determined as follows:

Motorola MC6800 513

A l l * '
0 * . . U !i + ii even

2732 Don't cares To select Can be 0's to 1's
assume 0's 2732

Address range: $000000, $000002, . .. , $001FFE

Similarly, the memory for the odd 2732, even 6116, and odd 6116 can be
determined as follows:

2732odd

A l l . . - -
0 0 * . - 0 0 Can be 0's to 1's 1

Address range: $00000 1, $000003, . . . , $00 I FFF
6116 even

* A l l . - -
0 0 - . . 1 0 Can be 0's to 1's 0

Address range: $002000, $002002, . . . , $002FFE

6116 odd
' ' *12 A l l * ' - -

0 0 . . - 1 0 Can be 0's to 1's 1
Address range: $002001, $002003, . . . , $002FFF

In the above, for 61 16's, A,, and A,, - A,, are don't cares (assume 0's). Static
RAMs such as 61 16 are used for small memory system. Note that RAMs are needed when
subroutines and interrupts requiring stack are desired in an application. Microprocessors
requiring larger RAMs use dynamic RAMs (DRAMs). Concepts associated with interfacing
DRAMs to 68000 will be discussed next.

DRAMs are typically used when memory requirements are 16k words or larger.
DRAM is addressed via row and column addressing. For example, one megabit DRAM
requiring 20 address bits is addressed using 10 address lines and two control lines, RAS
(Row Address Strobe) and CAS (Column Address Strobe). To provide a 20-bit address
into the DRAM, a LOW is applied to and 10 bits of the address are latched. The other
10 bits of the address are applied next and CAS is then held LOW.

The addressing capability of the DRAM can be increased by a factor of 4 by
adding one more bit to the address line. This is because one additional address bit results
into one additional row bit and one additional column bit. This is why DRAMs can be
expanded to larger memory very rapidly with inclusion of additional address bits. External
logic is required to generate the RAS and CAS signals, and to output the current address
bits to the DRAM.

DRAM controller chips take care of refreshing and timing requirements needed by
the DRAMs. DRAMs typically require 4 millisecond refresh time. The DRAM controller
perfonns its task independent of the microprocessor. The DRAM controller sends a wait

-

- -

514 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 10.17 6821 pin diagram

signal to the microprocessor if the microprocessor tries to access memory during a refresh
cycle.

Because of large memory, the address lines should be buffered using 74LS244
or 74HC244 (Unidirectional buffer), and data lines should be buffered using 74LS245 or
74HC245 (Bidirectional buffer) to increase the drive capability. Also, typical multiplexers
such as 74LS 157 or 74HC 157 can be used to multiplex the microprocessor’s address lines
into separate row and column addresses.

10.12 68000 I/O

This section covers the I/O techniques associated with the Motorola 68000.

10.12.1 68000 Programmed I/O
As mentioned before, the 68000 uses memory-mapped I/O. Data transfer using I/O ports
(programmed 110) can be achieved in the 68000 in one of the following ways:

By interfacing the 68000 with an inexpensive slow 6800 I/O chip such as the
MC682 1.

By interfacing the 68000 with its own family of I/O chips such as the MC68230.

Motorola MC6800 515

TABLE 10.15 6821 Register Definition

Control Register Bits 2
RSI RSO CRA-2 CRB-2 Register Selected

0 0 1 X I/O port A
0 0 0 X Data direction register A
0 1 X X Control register A
1 0 X 1 I/O port B
1 0 X 0 Data direction register B
1 1 X X Control register B

X = Don’t care

68000/6821 Interface
The Motorola 682 1 is a 40-pin peripheral interface adapter (PIA) chip. It is provided with
an 8-bit bidirectional data bus (Do-D,), two register select lines (RSO, RSI), readwrite
(W-) and reset (RESET) lines, an enable line (E), two 8-bit I/O ports (PAO-PA7), and
(PBO-PB7), and other pins. Figure 10.17 shows the pin diagram of the 6821. There are six
6821 registers. These include two 8-bit ports (ports A and B), two data direction registers,
and two control registers. Selection of these registers is controlled by the RSO and RS1
inputs together with bit 2 of the control register. Table 10.15 shows how the registers are
selected. In Table 10.15, bit 2 in each control register (CRA-2 and CRB-2) determines
selection of either an 110 port or the corresponding data direction register when the proper
register select signals are applied to RSO and RS1. A 1 in bit 2 in CRA or CRB allows
access of I/O ports; a 0 in bit 2 of CRA or CRB selects the data direction registers.

Each I/O port bit can be configured to act as an input or output. This is accomplished
by sending a 1 in the corresponding data direction register bit for those bits that are to be
output and a 0 for those bits that are to be inputs. A LOW on the pin clears all PIA
registers to 0. This has the effect of configuring PAO-PA7 and PBO-PB7 as inputs.

Three built-in signals in the 68000 provide the interface with the 6821: enable (E),
valid memory address (m), and valid peripheral address (m). The enable signal (E)
is an output from the 68000. It corresponds to the E signal of the 6821. This signal is the
clock used by the 6821 to synchronize data transfer. The frequency of the E signal is one
tenth of the 68000 clock frequency. This allows one to interface the 68000 (which operates
much faster than the 6821) with the 6821. The valid memory address (m) signal is
output by the 68000 to indicate to the 6800 peripherals that there is a valid address on the
address bus. The valid peripheral address (m) is an input to the 68000. This signal is
used to indicate that the device addressed by the 68000 is a 6800 peripheral. This tells the
68000 to synchronize data transfer with the enable signal (E).

Let us now discuss how the 68000 instructions can be used to configure the 6821
ports. As an example, bit 7 and bits 0-6 of port A can be configured, respectively, as input
and outputs using the following instruction sequence:

BCLR.B #$2,CRA Address DDRA
M0VE.B #$7F,DDRA ; Configure p o r t A
BSET.B #$2,CRA Address p o r t A

Once the ports are configured to the designer’s specification, the 682 1 can be used
to transfer data from an input device to the 68000 or from the 68000 to an output device by
using the MOVE. B instruction as follows:

M0VE.B (E A) , Dn ; T r a n s f e r 8 - b i t d a t a from an input p o r t

M0VE.B Dn, (E A) ; T r a n s f e r 8 - b i t d a t a from t h e specified
; t o t h e specified d a t a r e g i s t e r Dn

516

FIGURE 10.18 68000/6821 Interface

; data register Dn t o a n output p o r t

-

PB7 d 24

Design

FIGURE 10.19 68230 pin diagram

Motorola MC6800 517

Figure 10.18 shows a block diagram of how two 682 1’s are interfaced to the 68000
in order to obtain four 8-bit I/O ports. Note that the least significant bit, A,, of the 68000
address pin is internally encoded to generate two signals, the upper data strobe (UDS) and
lower data strobe (LDS). For byte transfers, UDS is asserted if an even-numbered byte is
being transferred and LDS is asserted for an odd-numbered byte. In Figure 10.18, I/O port
addresses can be obtained as follows: When A,, = 1 and AS = 0, the OR gate output will
be LOW. This OR gate output is used to assert m. The inverted OR gate output, in turn,
makes CSl HIGH on both 6821’s. Note that A,, is arbitrarily chosen. A,, is chosen to be
HIGH to enable CS1 so that the addresses for the ports and the reset vector are not the
same. Assuming that the don’t care address lines A,, and A,,-A, are O’s, the addresses
for the I/O ports, control registers, and data direction registers for the even 6821 (A, = 0)
can be obtained as shown; similarly, the addresses for the ports, control registers, and data
direction registers for the odd 6821 (A, = 1) can be determined as follows:

-
- -
-

Port A CRA Port B CRB

or or

DDRA DDRB

682 1 (even) $400000 $400002 $400004 $4 0 0 0 0 6

682 l(odd) $40000 1 $400003 $400005 $400007

68000/68230 Interface
The 68230 is a 48-pin I/O chip designed for the 68000 family of microprocessors. The
68230 offers various functions such as programmed I/O, an on-chip timer, and a DMA
request pin for connection to a DMAcontroller. Figure 10.19 shows the 68230 pin diagram.
The 68230 can be configured in two modes of operation: unidirectional and bidirectional.
In the unidirectional mode, data direction registers configure the corresponding ports as
inputs or-outputs. This is the programmed I/O mode of operation. Both 8-bit and 16-bit
ports can be used. In the bidirectional mode, the 68230 provides data transfer between the
68000 and external devices via exchange of control signals (known as handshaking). This
section will only cover the programmed 110 feature of the 68230.

This 68230 ports can be configured in either unidirectional or bidirectional mode
by using bits 7 and 6 of the port general control register, PGCR (RO) as follows:

PGCR Bits

7 6 Mode

0 0 0 (unidirectional 8-bit)

0 1 1 (unidirectional 16-bit)

1 0 2 (bidirectional 8-bit)

1 1 3 (bidirectional 16-bit)

The other bits of the PGCR are defined for handshaking.
Modes 0 and 2 configure ports A and B as unidirectional or bidirectional 8-bit

ports. Modes 1 and 3, on the other hand, combine ports A and B together to form a 16-

518

TABLE 10.16

Fundamentals of Digital Logic and Microcomputer Design

Some of the 68230 Registers

Register Select Bits

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

RS5 RS4 RS3 RS2 RSI

PBCR, Port B Control Register (R7)

PADR, Port A Data Register (R8)

PBDR, Port B Data Register (R9)

0 0 0 0 0

0 0 0 1 0

0 0 0 1 1

0 0 1 1 0

Register Selected

PGCR, Port General Control Register
(RO)

PADDR, Port A Data Direrction Register
(W
PBDDR, Port B Data Direction Register
(R3)

PACR, Port A Control Register (R6)

Oscillator
Crystal

Oscillator
Crystal

CLK

68000 1
EVEN
68230

(Unidirectional
&bit mode)

_ _
~ DTACK

FIGURE 10.20 68000/65230 interface

Motorola MC6800 519

bit unidirectional or bidirectional port. Ports configured as unidirectional 8-bit must be
programmed further as submodes of operation using bits 7 and 6 of PACR (R6) and PBCR
(R7) as follows:

Submode Bit 7 of Bit 6 of Comment
PACR or PACR or

PBCR PBCR
00 0 0 Pin-definable double-buffered input or

01 0 1 Pin-definable double-buffered output

1x 1 X Bit I/O (pin-definable single-buffered

single-buffered output

or nonlatched input

output or nonlatched input)

Note that X means don’t care. Nonlatched inputs are latched internally, but the values are
not latched externally by the 68230 at the port. Bit I/O is used for programmed I/O.

The submodes define the ports as parallel input ports, parallel output ports, or
bit-configurable 1/0 ports. In addition to these, the submodes further define the ports
as latched input ports, interrupt-driven ports, DMA ports, and ports with various I/O
handshake operations. Table 10.16 lists some of the 68230 registers. The registers required
for programmed I/O are considered in the following discussion. Note that the 68230 register
select pins (RS5-RSl) are used to select the 68230 registers. Figure 10.20 illustrates how
to obtain specific addresses for the 68230 I/O ports.

The hardware schematic for the 68000/68230 interface shown in Figure 10.20 is
connected in such a way that each 68230 WO port has a unique address. A,, is chosen to be
HIGH to select the 68230 chips so that the port addresses are different from the 68000 reset
vector addresses OOOOOO,,-000006,,. The configuration in the figure will provide even port
addresses because UDS is used for enabling the 68230 m. The 68230 DTACK is an open-
drain output. Hence, a pull-up resistor is required.

From the figure, addresses for registers PGCR (RO), PADDR (R2), PBDDR (R3),
PACR (R6), PBCR (R7), PADR (R8), and PBDR (R9) can be obtained. Consider PGCR
as follows:

1 0 0 0 . * - 0 0 0 0 0 0 0 =$800000
- A

I -
UDS

RS5 1 RS1

Therefore, Address for PGCR = $800000
Similarly, Address for PADDR = $800004, Address for PBDDR = $800006

Address for PACR = $80000C, Address for PBCR = $80000E
Address for PADR = $800010, Address for PBDR = $80001 2
As an example, the following instruction sequence will select mode 0, submode

1X and configure bits 0-5 of Port A as outputs, bits 6 and 7 of Port A as inputs, and port
B as an input port:

PGCR EQU $800000
PADDR EQU $ 8 0 0 0 0 4
PBDDR EQU $800006
PACR EQU $ 8 0 0 0 0 C
PBCR EQU $ 8 0 0 0 0 E

AND1.B # $ 3 F , P G C R ; Select mode 0
BSET. B # 7 , PACR ; P o r t A bit 1/0 submode

520 Fundamentals of Digital Logic and Microcomputer Design

BSET. B #7, PBCR ; Port B bit I/O submode
M0VE.B #$3F,PADDR ; Configure port A bits 0-5 as

M0VE.B #$OO,PBDDR ; Configure port B as an input port
; outputs and bits 6 and 7 as inputs

ExamDle 10.16
A 68000/68230-based microcomputer is required to drive an LED connected at bit 7 of
port A based on two switch inputs connected at bits 6 and 7 of port B. If both switches
are equal (either HIGH or LOW), turn the LED ON; otherwise turn it OFF. Assume that a
HIGH will turn the LED ON and a LOW will turn it OFF. Write a 68000 assembly program
to accomplish this.
Solution

PGCR EQU $800000
PACR EQU $80000C
PBCR EQU $80000E
PADDR EQU $800004
PBDDR EQU $800006
PADR EQU $800010
PBDR EQU $800012

AND1.B #$3F,PGCR ; Select mode 0
BSET.B #7,PACR ; Port A bit I/o submode
BSET.B #7,PBCR ; Port B bit i/o submode
M0VE.B #$8O,PADDR ; Configure port A bit 7 as output
M0VE.B #O,PBDDR ; Configure port B bits 6 and 7 as

M0VE.B PBDR,DO ; Input port B
AND1.B #$OCO,DO ; Retain bits 6 and 7
BEQ LEDON ; If both switches LOW, turn LED ON
CMP1.B #$OCO,DO ; if both switches HIGH, turn LED ON
BEQ LEDON
M0VE.B #$OO,PADR ; Turn LED OFF
JMP FINISH

inputs

LEDON M0VE.B #$80, PADR ; Turn LED ON
FINISH JMP FINISH

ExamDle 10.17

Write a 68000 assembly language program to drive an LED connected to bit 7 of Port
A based on a switch input at bit 0 of Port A. If the switch is HIGH, turn the LED ON;
otherwise turn the LED OFF. Assume a 68000/2732/6116/6821 microcomputer. Also,
write a C++ program to accomplish the same task. Use port addresses of your choice.
Solution
The 68000 assembly language program and the C++ program follow.

68000/6821 Microcomputer Assembly Code for Switch and LED
PORTA EQU $001001
DDRA EQU $001001
CR4 EQU $001003

BCLR.B #2,CR4 ; address DDRA
M0VE.B #$80,DDRA ; Configure PORT A
0SET.B #2,CRA ; Address PORT A

R0R.B #l,DO ; Rotate switch status
M0VE.B D0,PORTA ; Output to LED
JMP START ; Repeat

START M0VE.B PORTA,DO ; Read switch

Motorola MC6800 52 1

0 68000/6821 Microcomputer C++ program for Switch and LED
main ()

I
char *porta, *ddra, *cra;
porta=Ox1001;
ddra=Ox1001;
cra=Ox1003;
*cra=O; / * Address DDRA * /
*ddra=Ox80; / * Configure Port A * /
*cra=4; / * Address Port A * /
while (1)

*porta=*porta <<7; / * Read switch and send to LED * /

The C++ compiler will generate more machine codes for the above program
compared to the equivalent assembly program. Note that the C++ program is not 100%
portable while using I/O. However, it is easier to write programs using C++ than using
assembly language.

10.12.2 68000 Interrupt System
The 68000 interrupt I/O can be divided into two types: external interrupts and internal
interrupts.

External Interrupts
The 68000 provides seven levels of external interrupts, 1 through 7. The external hardware
provides an interrupt level using the pins IPLO, IPLl, and IPL2. Like other microprocessors,
the 68000 checks for and accepts interrupts only between instructions. It compares the
value of inverted IPLO-IPL2 with the current interrupt mask contained in the bits 10, 9,
and 8 of the status register.

If the value of the inverted IPLO-IPL2 is greater than the value of the current
interrupt mask, then the 68000 acknowledges the interrupt and initiates interrupt processing. -
Otherwise, the 68000 continues with the current interrupt. Interrupt request level 0 (IPLO-
IPL2 all HIGH) indicates that no interrupt service is requested. An inverted IPL2, IPL1,
IPLO of 7 is always acknowledged. Therefore, interrupt level 7 is “nonmaskable.” Note
that the interrupt level is indicated by the interrupt mask bits (inverted IPL2, IPLl, IPLO).

To ensure that an interrupt will be recognized, the following interrupting rules
should be considered:
1. The incoming interrupt request level must have a higher priority level than the mask

level set in the interrupt mask bits (except for level 7, which is always recognized).
2. The IPL2-IPLO pins must be held at the interrupt request level until the 68000

acknowledges the interrupt by initiating an interrupt acknowledge (IACK) bus cycle
Interrupt level 7 is edge-triggered. On the other hand, interrupt levels 1-6 are

level sensitive. However, as soon as one of them is acknowledged, the processor updates
its interrupt mask at the same level.

The 68000 does not have any EI (enable interrupt) or DI (disable interrupt)
instructions. Instead, the level indicated by I2 I1 I0 in the SR disables all interrupts below
or equal to this value and enables all interrupts above. For example, if I2 I1 I0 = 100, then
interrupt levels 1 4 are disabled and 5-7 are enabled. Note that I2 I1 I0 = 000 enables all
interrupts and I2 I1 I0 = 11 1 disables all interrupts except level 7 (nonmaskable).

Once the 68000 has decided to acknowledge an interrupt, it performs several steps:
1. Makes an internal copy of the current status register.
2. Updates the priority mask and address lines A,-A, with the level of the interrupt

-- -

--

--

- --
-

--

Vector Address
$60, $62
$64, $66
$68, $6A
$6C, $6E
$70, $72
$74, $76
$78, $7A
$7C, $7E

$80 to $BC
$CO to $FC

$100 to $3FC

Vector Number
Spurious interrupt $18

Autovector 1 $19
Autovector 2 $1A
Autovector 3 $1B
Autovector 4 $1C
Autovector 5 $1D
Autovector 6 $1E
Autovector 7 $1F

TRAP instructions $20 to $2F
Unassigned $30 to $3F

User interrupts $40 to $FF
(nonautovector)

3.
4.
5.
6.
7.

8.

9.
10.

recognized (inverted IpL pins) and then asserts AS to inform the external devices that
A,-A, has the interrupt level.
Enters the supervisor state by setting the S bit in SR to 1.
Clears the T bit in SR to inhibit tracing.
Pushes the program counter (PC) onto the supervisor stack.
Pushes the internal copy of the old SR onto the supervisor stack.
Runs an IACK bus cycle for vector number acquisition (to provide the address of the
service routine).
Multiplies the %bit interrupt vector by 4. This points to the location that contains the
starting address of the interrupt service routine.
Jumps to the interrupt service routine.
The last instruction of the service routine should be RTE, which restores the original
status word and program counter by popping them from the supervisor stack.

External logic can respond to the interrupt acknowledge in one of three ways: by
requesting automatic vectoring (autovector), by placing a vector number on the data bus
(nonautovector), or by indicating that no device is responding (spurious interrupt).
Autovector (address vectors predefined by Motorola)

If the hardware asserts VPA to terminate the IACK bus cycle, the 68000 directs
itself automatically to the proper interrupt vector corresponding to the current interrupt
level. No external hardware is inquired for providing the interrupt address vector. The
seven levels of autovector interrupt are listed below:

-

I2 I1 I0
Level 1 + Interrupt vector $19 for 0 0 1
Level 2 +- Interrupt vector $ l A for 0 1 0
Level 3 +- Interrupt vector $ l B for 0 1 1
Level 4 - Interrupt vector $lC for 1 0 0
Level 5 - Interrupt vector $ lD for 1 0 1
Level 6 +- Interrupt vector $1 E for 1 1 0
Level 7 + Interrupt vector $ I F for 1 1 1

Nonautovector (user-definable address vectors via external hardware)
The interrupting device uses external hardware to place a vector number on data

lines D,-D, and then performs a DTACK handshake to terminate the IACK bus cycle. The
vector numbers allowed are $40 to $FF, but Motorola has not implemented a protection
on the first 64 entries so that user-interrupt may overlap at the discretion of the system
designer.

Motorola MC6800 523

Spurious Interrupt
Another way to terminate an interrupt acknowledge bus cycle is with the BERR

(bus error) signal. Even though the interrupt control pins are synchronized to enhance noise
immunity, it is possible that external system interrupt circuitry may initiate an IACK bus
cycle as a result of noise. Because no device is requesting interrupt service, neither DTACK
nor VPA will be asserted to signal the end of the nonexisting IACK bus cycle. When there
is no response to an IACK bus cycle after a specified period of time (monitored by the user
using an external timer), BERR can be asserted by an external timer. This indicates to the
processor that it has recognized a spurious interrupt. The 68000 provides 18H as the vector
to fetch for the starting address of this exception-handling routine.

It should be pointed out that the spurious interrupt and bus error interrupt due to a
troubled instruction cycle (when no DTACK is received by the 68000) have two different
interrupt vectors. Spurious interrupt occurs when the BERR pin is asserted during interrupt
processing.

-

Internal Interrupts
The internal interrupt is a software interrupt. This interrupt is generated when the 68000
executes a software interrupt instruction (TRAP) or by some undesirable events such as
division by zero or execution of an illegal instruction.
68000 Interrupt Map

The 68000 uses an 8-bit vector n to obtain the interrupt address vector. The 68000
reads the long-word located at memory 4* n. This long word is the starting address of the
service routine. Figure 10.21 shows an interrupt map of the 68000. Vector addresses $00
through $2E (not shown in the figure) include vector addresses for reset, bus error, trace,
divide by 0, and so on, and addresses $30 through $5C are unassigned. The RESET vector
requires four words (addresses 0, 2, 4, and 6); the other vectors require only two words.

FIGURE 10.22 Autovector and nonautovector interrupts

5 24 Fundamentals of Digital Logic and Microcomputer Design

After hardware reset, the 68000 loads the supervisor SP high and low words, respectively,
from addresses 000000,, and 000002,,, and the PC high and low words, respectively, from
000004,6 and 000006,,. The typical assembler directive DC (define constant) can be used
to load the PC and Supervisor SP. For example, the following will load A7’ with $16F128
and PC with $781624:

ORG
DC.L $0016F128
DC.L $00781624

$0 0 0 0 0 0

-
IPLO

68000 Interrupt Address Vector
Suppose that the user decides to write a service routine starting at location $123456

using autovector 1. Because the autovector 1 address is $000064 and $000066, the numbers
$0012 and $3456 must be stored in locations $000064 and $000066, respectively. Note that
from Figure 10.21, n = $19 for autovector 1 . Hence, the starting address of the service
routine is obtained from the contents of the address 4 x $19 = $000064.

0

An Example of Autovector and Nonautovector Interrupts
As an example to illustrate the concept of autovector and nonautovector interrupts,

consider Figure 10.22. In this figure, I/O device 1 uses nonautovector and I/O device 2 uses
autovector interrupts. The system is capable of handling interrupts from seven devices
(IPL2 IPLl IPLO pins = 1 11 means no interrupt) because an 8-to-3 priority encoder such as
the 74LS148 is used. The 74LS 148 provides an inverted three-bit output with input 7 as the
highest priority and input 0 as the lowest priority. Hence, if all eight inputs of the 74LS148
are low simultaneously, the three-bit output will be 000 (inverted 11 1) indicating a LOW

-__-

Port B

Bit 0 of
port A

-
VPA

68000 based
Microcomputer

8

1
I B

10-D7

START

AID
Converter

__
3USY

FIGURE 10.23 Interfacingofa typical %bit AID converter to 68000-based microcomputer
using autovector interrupt

Motorola MC6800

a

525

octal I

buffer a

(analog
signal)

Port B

68000 based
Microcomputer

N D
Converter

FIGURE 10.24 Interfacing ofa typical 8-bit A/D converter to 68000-based microcomputer
using nonautovector interrupt

- -
on input 7. In figure 10.22, 1/01 and 1/02 from the interrupting devices are connected to
inputs 3 and 5 of the 74LS 148 encoder respectively. This means that the device with 1/02
as the interrupting signal will generate level 5 autovectored interrupt while the device with
1/01 as the interrupting signal will generate the nonautovectored interrupt.

LOW in order to activate line 5 of the
74LS148. This, in turn, will generate a LOW on input 5 of the 74LS148. This will provide
0 10 (inverted 10 1) on IpL2 pins of the 68000 generating a level 5 autovectored
interrupt. When the 68000 decides to acknowledge the interrupt, it drives FCO-FC2 HIGH.
The interrupt level is reflected on A,-A, when AS is activated by the 68000. The IACK5
and I/o2 signals are used to generate m. Once VPA is asserted, the 68000 obtains the
interrupt vector address using autovectoring.

In the case of 1/01, line 3 of the priority encoder is activated to initiate the
nonautovectored interrupt. By using appropriate logic, DTACK is asserted using IACK3
and 1/01, The vector number is placed on Do-D, by enabling an octal buffer such as the
74LS244 using m. The 68000 inputs this vector number and multiplies it by 4 to
obtain the interrupt address vector.

-

-

Suppose that I/O device 2 drives

-

__

526 Fundamentals of Digital Logic and Microcomputer Design

Interfacing a Typical A/D Converter to the 68000 Using Autovector and Nonautovector
Interrupts

Figure 10.23 shows the interfacing of a typical A/D converter to the 68000-based
microcomputer using the autovector interrupt. In the figure, the A/D converter can be
started by sending a START pulse. The signal can be connected to line 4 (for example)
of the encoder.
Note that line 4 is 100, for IPL2, IPLl, IPLO, which is a level 3 (inverted 100,) interrupt.
BUSY can be used to assert VPA so that, after acknowledgment of the interrupt, the 68000
will service the interrupt as a level 3 autovector interrupt. Note that the encoder in Figure
10.23 is used for illustrative purposes. This encoder is not required for a single device such
as the A/D converter in the example.

Figure 10.24 shows the interfacing of a typical A/D converter to the 68000-based
microcomputer using the nonautovector interrupt. In the figure, the 68000 starts the A/D
converter as before. Also, the BUSY signal is used to interrupt the microcomputer using
line 5 (IPL2, IPL1, IPLO= 101, which is a level 2 interrupt) of the encoder. BUSY can be
used to assert DTACK so that, after acknowledgment of the interrupt, FC2, FC 1, FCO will
become 1 1 l,, which can be NANDed to enable an octal buffer such as the 74LS244 in
order to transfer an 8-bit vector from the input of the buffer to the D,-D, lines of the 68000.
The 68000 can then multiply this vector by 4 to determine the interrupt address vector. As
before, the encoder in Figure 10.24 is not required for the single A/D converter.

- __

__

_ _ _ _ _ _ -

10.12.3 68000 DMA
Three DMA control lines are provided with the 68000. These a r e m (bus request), BG (bus
grant), and BGACK (bus grant acknowledge). The BR line is an input to the 68000. The
external device activates this line to tell the 68000 to release the system bus. At least one
clock period after receiving m, the 68000 will enable its BG output line to acknowledge
the DMA request. However, the 68000 will not relinquish the bus until it has completed the
current instruction cycle. The external device must check the AS (address strobe) line to
determine the completion of the instruction cycle by the 68000. When AS becomes HIGH,
the 68000 will tristate its address and data lines and will give up the bus to the external
device. After taking over the bus, the external device must enable the BGACK line. The
BGACK line tells the 68000 and other devices connected to the bus that the bus is being
used. The 68000 stays in a tristate condition until BGACK becomes HIGH.

10.13 68000 ExceDtion Handliw

A 16-bit microcomputer is usually capable of handling unusual or exceptional conditions.
These conditions include situations such as execution of illegal instruction or division by
zero. In this section, the exception-handling capabilities of the 68000 are described.

The 68000 exceptions can be divided into three groups, namely, groups 0, 1,
and 2. Group 0 has the highest priority, and group 2 has the lowest priority. Within each
group, there are additional priority levels. A list of 68000 exceptions along with individual
priorities is as follows:

Group 0 Reset (highest level in this group), address error (next level), and bus

Group 1 Trace (highest level), interrupt (next level), illegal op-code (next level),
error (lowest level)

and privilege violation (lowest level)

Motorola MC6800 527

Group 2 TRAP, TRAPV, CHK, and ZERO DIVIDE (no individual priorities
assigned in group 2)

Exceptions from group 0 always override an active exception from group 1 or group 2.
Group 0 exception processing begins at the completion of the current bus cycle

(2 clock cycles). Note that the number of cycles required for a READ or WRITE operation
is called a “bus cycle.” This means that during an instruction fetch if there is a group
0 interrupt, the 68000 will complete the instruction fetch and then service the interrupt.
Group 1 exception processing begins at the completion of the current instruction. Group
2 exceptions are initiated through execution of an instruction. Therefore, there are no
individual priority levels within group 2. Exception processing occurs when a group 2
interrupt is encountered, provided there are no group 0 or group 1 interrupts.

When an exception occurs, the 68000 saves the contents of the program counter
and status register onto the stack and then executes a new program whose address is
provided by the exception vectors. Once this program is executed, the 68000 returns to the
main program using the stored values of program counter and status register.

Exceptions can be of two types: internal or external. The internal exceptions are
generated by situations such as division by zero, execution of illegal or unimplemented
instructions, and address error. As mentioned before, internal interrupts are called “traps.”
The external exceptions are generated by bus error, reset, or interrupt instructions. The
basic concepts associated with interrupts, relating them to the 68000, have already been
described. In this section, we will discuss the other exceptions.

In response to an exceptional condition, the processor executes a user-written
program. In some microcomputers, one common program is provided for all exceptions.
The beginning section of the program determines the cause of the exception and then
branches to the appropriate routine. The 68000 utilizes a more general approach. Each
exception can be handled by a separate program.

As mentioned before, the 68000 has two modes of operation: user state and
supervisor state. The operating system runs in supervisor mode, and all other programs are
executed in user mode. The supervisor state is therefore more privileged. Several privileged
instructions such as MOVE to SR can be executed only in supervisor mode. Any attempt to
execute them in user mode causes a trap.

We will now discuss how the 68000 handles exceptions caused by external resets,
trap instructions, bus and address errors, tracing , execution of privileged instructions in
user mode, and execution of illegalhnimplemented instructions:

The reset exception is generated externally. In response to this exception, the
68000 automatically loads the initial starting address into the processor.

The 68000 has a TRAP instruction, which always causes an exception. The
operand for this instruction varies from 0 to 15. This means that there are 16 TRAP
instructions. Each TRAP instruction has an exception vector. TRAP instructions
are normally used to call subroutines in an operating system. Note that this
automatically places the 68000 in supervisor state. TRAPS can also be used for
inserting breakpoints in a program. Two other 68000 instructions cause traps if a
particular condition is true: TRAPV and CHK. TRAPV generates an exception if the
overflow flag is set. The TRAPV instruction can be inserted after every arithmetic
operation in a program in order to cause a trap whenever there is the possibility
of an overflow. A routine can be written at the vector address for the TRAPV to
indicate to the user that an overflow has occurred. The CHK instruction is designed
to ensure that access to an array in memory is within the range specified by the

528 Fundamentals of Digital Logic and Microcomputer Design

user. If there is a violation of this range, the 68000 generates an exception.

A bus error occurs when the 68000 tries to access an address that does not belong
to the devices connected to the bus. This error can be detected by asserting the
BERR pin on the 68000 chip by an external timer when no DTACK is received
from the device after a certain period of time. In response to this, the 68000
executes a user-written routine located at an address obtained from the exception
vectors. An address error, on the other hand, occurs when the 68000 tries to read
or write a word (1 6 bits) or long word (32 bits) in an odd address. This address
error has a different exception vector from the bus error.

The trace exception in the 68000 can be generated by setting the trace bit in the
status register. In response to the trace exception, the 68000 causes an internal
exception after execution of every instruction. The user can write a routine at
the exception vectors for the trace instruction to display register and memory
contents. The trace exception provides the 68000 with the single-stepping

FIGURE 10. $25 68000-based microcomputer

Motorola MC6800 529

debugging feature.

As mentioned before, the 68000 has privileged instructions, which must be
executed in supervisor mode. An attempt to execute these instructions causes
privilege violation.

Finally, the 68000 causes an exception when it tries to execute an illegal or
unimplemented instruction.

10.14

Figure 10.25 shows the schematic of a 68000-based microcomputer with a 4K EPROM, a
4K static RAM, and four 8-bit I/O ports. Let us explain the various sections of the hardware
schematic. Two 2732 and two 61 16 chips are required to obtain the 4K EPROM and 4K
RAM. The LDS and pins are ORed with the memory select signal to enable the chip
selects for the EPROMs and the RAMs. Address decoding is accomplished by using a 3
x 8 decoder. The decoder enables the memory or the I/O chips depending on the status of
address lines A,,-A,, and the AS line of the 68000. AS is used to enable the decoder. &
selects the EPROMs,

When addressing memory chips, the DTACK input of the 68000 must be asserted
for data acknowledge. The 68000 clock in the hardware schematic is 10 MHz. Therefore,
each clock cycle is 100 ns. In Figure 10.25, AS is used to enable the 3 x 8 decoder. The
outputs of the decoder are gated to assert 68000 DTACK. This means that AS is indirectly

68000/2732/6 1 16/682 1 -Based Microconmuter

selects the RAMs, and selects the I/O ports.

DTACK
1 w m 2 w m +5v

EPROM '5 1
- SELECT
b

FIGURE 10.26 Delay circuit for DTACK

!- EPR-OM Sel.
l o

-
Q2 or
DTACK
-

FIGURE 10.27 Timing diagram for the DTACK delay circuit

530 Fundamentals of Digital Logic and Microcomputer Design

used to assert DTACK. From the 68000 read timing diagram, AS goes to LOW after
approximately 2 cycles (200 ns for the 10-MHz clock) from the beginning of the bus cycle.
With no wait states, the 68000 samples DTACK at the falling edge of S4 (300 ns) and, if
DTACK is recognized, the 68000 latches data at the falling edge of S6 (400 ns). If DTACK
is not recognized at the falling edge of S4, the 68000 inserts a 1 -cycle (1 00 ns in this case)
wait state, samples DTACK at the end of S6, and, if DTACK is recognized, latches data
at the end of S8 (500 ns), and the process continues. Because the access time of the 2732
is 200 ns (Used to be 450ns), data will not be available at the output pins of the 2732’s
until after approximately 400 ns. To be on the safe side, DTACK recognition by the 68000
at the falling edge of S6 (400 ns) and latching of data at the falling edge of S8 (500 ns)
will definitely satisfy the timing requirement. This means that the decoder output for
EPROM select should go to LOW at the end of S6. Therefore, 20011s delay (Two cycles)
for DTACK is assumed.

A delay circuit, as shown in Figure 10.26, is designed using two D flip-flops.
EPPOM select activates the delay circuit. The input is then shifted right 2 bits to obtain a 2-
cycle wait state to allow sufficient time for data transfer. DTACK assertion and recognition
are delayed by 2 cycles during data transfer with EPROMs. Figure 10.27 shows the timing
diagram for the DTACK delay circuit. Note that DTACK goes to Low after about 2 cycles
if asserted by AS providing erronous result. Therefore, DTACK must be delayed.

When the EPROM is not selected by the decoder, the clear pin is asserted (output
of inverter), so Q is forced LOW and 0 is HIGH. Therefore, DTACK is not asserted. When
the processor selects the EPROMs, the output of the inverter is HIGH, so the clear pin is
not asserted. The D flip-flop will accept a high at the input, and Q2 will be HIGH and @
will be LOW. Now that @ is LOW, it can assert DTACK. Q1 will provide one wait cycle
and @ will provide two wait cycles. Because the 2732 EPROM has a 200-11s access time
and the microprocessor is operating at 10 MHz (100-ns clock cycle), two wait cycles are
inserted before asserting DTACK (2 x 100 = 200 ns). Therefore, @ can be connected to
the DTACK pin through an AND gate. No wait state is required for RAMs because the
access time for the RAMs is only 120 nanoseconds.

Four 8-bit 110 ports are obtained by using two 682 1 chips. When the IiO ports are
selected, the VPA pin is asserted instead of m. This will acknowledge to the 68000
that it is addressing a 6800-type peripheral. In response, the 68000 will synchronize all data
transfer with the E clock.

~-

The memory and 110 maps for the schematic are as follows:

Memory Maps (ull numbers in hex) . A,, - A,, are don’t cares and assumed to be 0’s.

LDS or UDS -
A r A , , A,, A,, A,, A,,-A, A”

0-0 0 0 0 0-0 0 EPROM(even) = 4K

0-0 0 0 0 1-1 0 $000000, $000002,
$000004, ... , $001 FFE

0-0 0 0 0 0-0 1 EPROM(odd) = 4K

0-0 0 0 0 1-1 1 $000001, $000003,
$000005, ... , $001FFF

Motorola MC6800 53 1

A, A,, is don’t care for RAM
(assume 0)

0-0 0 0 1 0-0 0 RAM(even)= 2K

0-0 0 0 1 1-1 0 $002000, $002002, ... ,
$002FFE

0-0 0 0 1 0-0 1 RAM(odd)= 2K

0-0 0 0 1 1-1 1 $002001, $002003, ... ,
$002FFF

Note that, upon hardware reset, the 68000 loads the supervisor SP high and low
words, respectively, from addresses $000000 and $000002 and the PC high and low words,
respectively, from locations $000004 and $000006. The memory map contains these reset
vector addresses in the even and odd 2732 chips.

Memory Mapped I/O (all numbers in hex). A23-A,, and A,2-A3 are don’t cares and
assumed to be 0’s.

RS1 RSO UDS or LDS -
A, Register Selected (Address)

- Even
0-0 0 1 0 0-0 0 0 0 Port A or DDRA = $004000
0-0 0 1 0 0 - 0 0 1 0 CRA = $004002
0-0 0 1 0 0 4 1 0 0 Port B or DDRB = $004004
0-0 0 1 0 0-0 1 1 0 ClU3 = $004006

Register Selected (Address)

0-0 0 1 0 0-0 0 0 1 Port A or DDRA = $004001
0-0 0 1 0 0-0 0 1 1 CRA = $004003
0-0 0 1 0 0-0 1 0 1 Port B or DDRB = $004005
0-0 0 1 0 0-0 1 1 1 CRB = $004007

- Odd

High address

TASLOC 1

Section 1

TASLOC2

Section 2

Address Section M
TASLoCM

(a) Shared RAM allocation

Set pointer

section length

available

(b) Flowchart for TAS

FIGURE 10.28 Memory allocation using TAS

532 Fundamentals of Digital Logic and Microcomputer Design

For both memory and I/O chips, AS, UDS and LDS must be used in chip select

For memory, both even and odd chips are required. However, for I/O chips,
an odd-addressed I/O chip, an even-addressed I/O chip, or both can be used,
depending on the number of ports required in an application. UDS and/or LDS
must be used in I/O chip select logic depending on the number of I/O chips used.
The same chip select logic must be used for both the even and its corresponding
odd memory chip.

DTACK must be connected to an external input (typically a signal from the
address decoding logic) to satisfy the timing requirements. In many instances, AS
is directly connected to DTACK.

3. The 68000 must be connected to ROMs / EPROMs / E2PROMs in such a way that
the 68000 RESET vector address is included as part of the memory map.

_ - __

logic. Note that:
1.

- -

2.

10.15 MubrocessinP with the 68000 Usinp the TAS Instruction and the AS SiPnal

Earlier, the 68000 TAS instruction was discussed. The TAS instruction supports the software
aspects of interfacing two or more 68000’s via shared RAM. When TAS is executed, the
68000 AS pin stays low. During both the read and write portions of the cycle, AS remains
LOW and the cycle starts as the normal read cycle. However, in the normal read, AS going
inactive indicates the end of the read. During execution of TAS, AS stays LOW throughout
the cycle, so AS can be used in the design as a bus-locking circuit. Due to the bus locking,
only one processor at a time can perform a TAS operation in a multiprocessor system.The
TAS instruction supports multiprocessor operations (globally shared resources) by checking
a resource for availability and reserving or locking it for use by a single processor.

The TAS instruction can, therefore, be used to allocate free memory spaces . The
TAS instruction execution flowchart for allocating memory is shown in Figure 10.28. The
shared RAM of the Figure 10.28 is divided into M sections. The first byte of each section
will be pointed to by (EA) of the TAS (EA) instruction. In the flowchart of Figure 10.28,
(EA) first points to the first byte of section 1. The instruction TAS (EA) is the executed.
The TAS instruction checks the most significant bit (N bit) in (EA). N = 0 indicates that
section 1 is free; N = 1 means that section 1 is busy. If N = 0, then section 1 will be
allocated for use. If N = 1 (section 1 is busy), then a program will be written to subtract
one section length from (EA) to check the next section for availability. Also, (EA) must be
checked with the value TASLOCM. If (EA) < TASLOCM, then no space is available for
allocation. However, if (EA) > TASLOCM, then TAS is executed and the availability of
that section is determined.

In a multiprocessor environment, the TAS instruction provides software support
for interfacing two or more 68000’s via shared RAM. The AS signal can be used to provide
the bus-locking mechanism.

Examde 10.18
Assume that the 68000/2732/6 1 1616821 microcomputer shown in Figure 10.29 is required
to perform the following:
(a) If Vx > Vy , turn the LED ON if the switch is open; otherwise turn the LED OFF.

Write a 68000 assembly language program starting at address $000300 to accomplish
the above by inputting the comparator output via bit 0 of Port B. Use Port A address =

$002000, Port B address = $002004, CRA = $002002, CRB = $002006. Assume the

Motorola MC6800

0

A ,

7
Bit OofPortB -

Port

.
-

533

r+

+5v

vx 2

Comparator
68000127321

6 1 161682 1
Microcomputer

FIGURE 10.29 Figure for Example 10.18

V X

VY

I 1 - I *I

Comparator

68000127321
61 1616821

Microcomputer

FIGURE 10.30 Example 10.1 8 using autovectors

LED is OFF initially.
(b) Repeat part (a) using autovector level 7 and nonautovector (Vector $40). Use Port

A (address $002000) for LED and switch as above with CRA=$002002. Assume
supervisor mode. Write the main program and service routine in 68000 assembly
language starting at addresses $000300 and $000A00 respectively. Also, initialize the

supervisor stack pointer at $001200.
Solution
(a) Using Programmed I/O
From figure 10.29, the following 68000 assembly language program can be written:

CRA EQU $ 0 0 2 0 0 2
CRB EQU $ 0 0 2 0 0 6
PORTA EQU $002000
DDRA EQU PORTA

PORTB EQU $ 0 0 2 0 0 4
DDRB EQU PORTB

ORG $ 0 0 0 3 0 0

534

BCLR . B
MOVE. B
BSET. B
BCLR. B
MOVE. B
BSET. B

COMP M0VE.B
LSR.B
BCC . B
MOVE. B
L.5L.B
MOVE. B

LED JMP

Fundamentals of Digital Logic and Microcomputer Design

#2,CRA

#2, CRA
#2, DDRA

#2,CRB
#O,DDRB
#2,CRB
PORTB, DO
#1, DO
COMP
PORTA, D1
#1, D1
D1, PORTA
LED

Address DDRA
Configure PORTA
Address PORTA
Address DDRB
Configure PORTB
Address PORTB
Input PORTB
Check
Comparator
Input switch
Align LED data
Output to LED

(b) Using Autovector Level 7 (nonmaskable interrupt)
Figure 10.30 shows the pertinent connections for Autovector Level 7 interrupt.
Main Program

CRA EQU $002002
PORTA EQU $002000
DDRA EQU PORTA

ORG $000300
BCLR.B #2,CRA ; Address DDRA
M0VE.B #2,DDRA ; Configure PORTA

BSET . B
WAIT JMP

Service Routine
ORG
MOVE. B
LSL.B
MOVE. B

FINISH JMP
Reset Vector

ORG
DC.L
DC.L

#2,CRA ; Address PORTA
WAIT ; Wait for interrupt

SOOOAOO
PORTA, D1 ; Input switch
#1, D1 ; Align LED data
D1, PORTA ; Output to LED
FINISH ; Halt

0
$ 0 0 0 0 12 0 0
$ 0 0 0 0 0 3 0 0

Service Routine Vector
ORG $00007C
DC. L $OOOOOAOO

V X

VY

68000/2732/
61 16/6821

Microcomputer

FIGURE 10.31 Example 10.18 using nonautovectors

Motorola MC6800 535

Using Nonautovectoring (vector $40)
Figure 10.3 1 shows the pertinent connections for nonautovectoring interrupt.
Main Program

CRA EQU $002002
PORTA EQU $002000
DDRA EQU PORTA

ORG $000300
BCLR.B #2,CRA ; Address DDRA
M0VE.B #2,DDRA ; Configure PORTA
BSET.B #2,CRA ; Address PORTA
AND1.W #$OF8FF,SR ; Enable interrupts

WAIT JMP WAIT ; Wait for interrupt
Service Routine

ORG SOOOA00
M0VE.B PORTA,Dl ; Input switch
LSL.B #$01,D1 ; Align LED data
M0VE.B D1,PORTA ; Output to LED

FINISH JMP FINISH ; Halt
Reset Vector

ORG 0
DC.L $00001200
DC.L $00000300

ORG $000100
DC.L $OOOOOA00

Service Routine Vector

OUESTIONS AND PROBLEMS

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

What are the basic differences between the 68000,68008, 68010, and 68012?

What does a HIGH on the 68000 FC2 pin indicate?

(a)

(b)

If a 68000-based system operates in the user mode and an interrupt occurs,
what will the 68000 mode be?
If a 68000-based system operates in the supervisor mode, how can the
mode be changed to user mode?

(a)
(b)

What is the purpose of 68000 trace and X flags?
How can you set or reset them?

Indicate whether the following 68000 instructions are valid or not valid. Justify
your answers.
(a) M0VE.B DO, (A l)
(b) M0VE.B DO,A1

How many addressing modes and instructions does the 68000 have?

What happens after execution of the following 68000 instruction?
M0VE.L DO,$03000013

What is meant by 68000 privileged instructions?

Identify the following 68000 instructions as privileged or nonprivileged:

536 Fundamentals of Digital Logic and Microcomputer Design

(a) MOVE (A2),SR
(b) MOVE CCR, (A5)
(c) M0VE.L A7,A2

10.10 (a) Find the contents of locations $305020 and $305021 after execution of the
MOVE D5, $305020. Assume [D5] = $6A2FA150 prior to execution of
this 68000 MOVE instruction.
If [AO] = $203040FF, [DO] = $40F12560, and [$3040FF] =

$2070, what happens after execution of the 68000 instruction:
MOVE (AO) , DO?

(b)

10.1 1 Identify the addressing modes for each of the following 68000 instructions:
(a) CLR DO
(b) M0VE.L (Al)t,-(A5)
(C) MOVE $2000 (A2), D1

10.12 Determine the contents of registers / memory locations affected by each of the
following 68000 instructions:
(a) MOVE (AO)t,Dl

Assume the following data prior to execution of this MOVE:
[AO] = $50105020
[Dl] = $70801F25
[$105020] = $50

(b) MOVEA D5,A2
Assume the following data prior to execution of this MOVEA:
[DS] = $A725B600
[A21 = $5030801F

[$105021] = $51
[$lo50221 = $52

[$lo50231 = $7F

10.13 Find the contents of register DO after execution of the following 68000 instruction
sequence:

EXT . W DO
EXT.L DO

Assume [DO] = $F2 15A700 prior to execution of the instruction sequence.

10.14 Find the contents of D1 after execution of DIVS. W # 6 , D1. Assume [DI] =

$FFFFFFF7 prior to execution of the 68000 instruction. Identify the quotient and
remainder. Comment on the sign of the remainder.

10.1 5 Write a 68000 assembly program to multiply a 16-bit signed number in the low
word of DO by an 8-bit signed number in the highest byte (bits 3 1-24) of DO.

10.16 Write a 68000 assembly program to divide a 16-bit signed number in the high
word of D1 by an 8-bit signed number in the lowest byte of D1.

10.17 Write a 68000 assembly program to add the top two 16 bits of the stack. Store the
16-bit result onto the stack. Assume supervisor mode.

10.18 Write a 68000 assembly program to add a 16-bit number in the low word (bits

Motorola MC6800 537

10.19

10.20

10.21

10.22

10.23

0-15) of D1 with another 16-bit number in the high word (bits 16-31) of D1.
Store the result in the high word of D1.

Write a 68000 assembly program to add two 48-bit data items in memory as
shown in Figure P 10.19. Store the result pointed to by A 1. The operation is given
by

$00 02 03 A1 07 20 -
$07 05 05 A3 OA 3A

Assume that the data pointers and the data are already initialized.

15 8,7 0 Increasing
memory

AO $00 $02 ad ess 4 $03 $A1

$07 $20

$07 $03 L $02 $02

*‘W
FIGURE P10.19
Write a 68000 assembly program to divide a 9-bit unsigned number in the high 9
bits (bits 3 1-23) of DO by 8,,,. Do not use any division instruction. Store the result
in DO. Neglect the remainder.

Write a 68000 assembly program to compare two strings of 15 ASCII characters.
The first string is stored starting at $502030. The second string is stored at location
$3025 10. The ASCII character in location $502030 of string 1 will be compared
with the ASCII character in location $302510 of string 2, [$502031] will be
compared with [$302511], and so on. Each time there is a match, store $EEEE
onto the stack; otherwise, store $0000 onto the stack. Assume user mode.

Write a subroutine in 68000 assembly language to subtract two 32-bit packed BCD
numbers. BCD number 1 is stored at a location starting from $500000 through
$500003, with the least significant digit at $500003 and the most significant digit
at $500000. BCD number 2 is stored at a location starting from $700000 through
$700003, with the least significant digit at $700003 and the most significant digit
at $700000. BCD number 2 is to be subtracted from BCD number 1. Store the
result as packed BCD digits in D5.

Write a subroutine in 68000 assembl language to compute
102

Z = C &
i= 1

Assume the ,Y.’s are signed 8-bit and stored in consecutive locations starting at
$504020. Assume A0 points to the 4 ’ s . Also, write the main program in 68000
assembly language to perform all initializations, call the subroutine, and then
compute Z/100.

538

10.24 (a)

Fundamentals of Digital Logic and Microcomputer Design

Write a subroutine in 68000 assembly language to convert a 3-digit
unpacked BCD number to binary using unsigned multiplications by 10,
and additions. The most significant digit is stored in a memory location
starting at $3000, the next digit is stored at $3001, and so on. Store the
binary result (N) in D3. Note that arithmetic operations for obtaining N
will provide binary result. Use the value of the 3-digit BCD number,

N = N 2 x 1 0 2 + N 1 x 1 0 1 + N 0
= ((l O x i W) + N l x 1O+NO

Assume 10-MHz 68000. Write a 68000 assembly language program to
obtain a delay routine for one millisecond. Using this one-millisecond
routine, write a 68000 assembly language program to provide a delay for
10 seconds.

(b)

10.25 Write a 68000 assembly program to compute the following:

where the locations $6000, $6002, & $6004 contain the 16-bit signed integers J , K ,
and M. Store the result into a long word starting at $6006. Discard the remainder
of KIM.

I = 6 x J + KIM

10.26 Write a subroutine in 68000 assembly language program to compute the trace of
a 4x4 matrix containing 8-bit unsigned integers. Assume that each element is
stored in memory as a 16-bit number with upper byte as zero in the row-major
order form; that is, elements are stored in memory as row by row and within a
row, elements are stored as column by column. Note that the trace of a matrix is
the sum of the elements of the leading diagonal.

10.27 A 68000168230 microcomputer-based microcomputer is required to drive the
LEDs connected to bit 0 of ports A and B based on the input conditions set by
switches connected to bit 1 of ports A and B. The I10 conditions are as follows:

If the input at bit 1 of port A is HIGH and the input at bit 1 of port B is low,
then the LED at port A will be ON and the LED at port B will be OFF.
If the input at bit 1 of port A is LOW and the input at bit 1 of port B is HIGH,
then the LED at port A will be OFF and the LED at port B will be ON.
If the inputs of both ports A and B are the same (either both HIGH or both

LOW), then both LEDs of ports A and B will be ON.

Write a 68000 assembly language program to accomplish this.

10.28 A 6800016821-based microcomputer is required to test a NAND gate. Figure
P10.28 shows the 110 hardware needed to test the NAND gate. The microcomputer
is to be programmed to generate the various logic conditions for the NAND
inputs, input the NAND output, and turn the LED ON connected at bit 3 of
port A if the NAND gate chip is found to be faulty. Otherwise, turn the LED
ON connected at bit 4 of port A. Write 68000 assembly language program to
accomplish this.

Motorola MC6800 539 - +5v +5v

10.29

10.30

10.31

10.32

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

::f=Q of Port 3p
of Po

of Port

330 R

LED

I 68000/6821 I

FIGURE P10.28 (Assume both LEDs are OFF initially).

FIGURE

Bit 0
Bit 1

Bit 2

) Bit4

Bit 5

Port A I Bit3

P10.29

1
GND

A 68000/68230-based microcomputer is required to add two 3-bit numbers stored
in the lowest three bits of DO and D1 and output the sum (not to exceed 9) to a
common cathode seven-segment display connected at port A as shown in Figure
P10.29.Write 68000 assembly language program to accomplish this by using a
look-up table.

A 68000/68230-based microcomputer is required to input a number from 0 to
9 from an ASCII keyboard interfaced to it and output to an EBCDIC printer.
Assume that the keyboard is connected to port A and the printer is connected to
port B. Store the EBCDIC codes for 0 to 9 starting at an address $003030, and use
this lookup table to write a 68000 assembly language program to accomplish the
above.

--
Determine the status of=, FC2-FC0, LDS, UDS, and address lines immediately
after execution of the following instruction sequence (before the 68000 tristates
these lines to fetch the next instruction):

MOVE #$2050, SR
M0VE.B D0,$405060

Assume the 68000 is in the supervisor mode prior to execution of the
instructions.

Suppose that three switches are connected to bits 0-2 of port A and an LED
to bit 6 of port B. If the number of HIGH switches is even, turn the LED ON;
otherwise, turn the LED OFF. Write a 68000 assembly language program to
accomplish this.
(a) Assume a 68000/6821 system.

540

10.33

10.34

10.35

10.36

Fundamentals of Digital Logic and Microcomputer Design

(b) Assume a 68000/68230 system.

Assume the pins and signal shown in Figure P10.33 for the 68000,68230 (ODD),
2764 (ODD and EVEN). Connect the chips and draw a neat schematic. Determine
the memory map and I/O map
(Addresses for PGCR, PADDR, PBDDR, PACR, PBCR, PADR, PBDR). Assume
a 16.67-MHz internal clock on the 68000.

As/-

REsETt
68000

-
CE

OE
-

0 0 - 0 7

- 4 0 4 1 2

2764 Even) or
2764[0dd)

RS 1 -RS5

DTACK

RESET

68230 (Odd)

FIGURE P10.33

- -
Find LDS and UDS after execution of the following 68000 instruction sequence:

M0VEA.L #$0005A123,A2
M0VE.B (A2), DO

(a) Write 68000 instruction sequence so that upon hardware reset, the 68000
will initialize the supervisor stack pointer to lOOO,, and the program counter to
2000,,.

(b) Write a 68000 service routine at address $1000 for a hardware reset that will
initialize all data registers to zero, address registers to $FFFFFFFF, supervisor
SP to $502078, and user SP to $1 F0524, and then jump to $7020FO.

Assume the 68000 stack and register values shown in Figure P10.36 before
occurrence of an interrupt. If an external device requests an interrupt by asserting
the IPL2, IPLI, and IPLO pins with the value 000,, determine the contents of
A7’ and SR during interrupt and after execution of RTE at the end of the service
routine of the interrupt. Draw the memory layouts and show where A7’ points to
and the stack contents during and after interrupt. Assume that the stack is not
used by the service routine.

- _ _ -

Stack

[PC]=$507030
$FF45E
$FF460

[SR]=$2004

A,’ =$FF464

FIGURE P10.36

Motorola MC6800 54 1

10.37 Consider the following data prior to a 68000 hardware reset:
[DO] = $7F2A1620
[All = $6AB11057
[SR] = $00 1 F

What are the contents of DO, A1 , and SR after hardware reset?

10.38 In Figure P.10.38, if VM > 12 V, turn an LED ON connected at bit 3 of port A. If
V, < 11 V, turn the LED OFF. Using ports, registers, and memory locations as
needed and level 1 autovectored interrupt:
(a) Draw a neat block diagram showing the 68000/6821 microcomputer and the

connections to the diagram in Figure P10.38 to ports.
(b) Write the main program and the service routine in 68000 assembly language.

The main program will initialize ports and wait for interrupt. The service
routine will accomplish the above task and stop.

To68000
IPLO pin of a
68000/6821
system

measurement

11v

FIGURE P10.38
Write a subroutine in 68000 assembly language using the TAS instruction to find,
reserve, and lock a memory segment for the main program. The memory is divided
into three segments (0, 1, 2) of 16 bytes each. The first byte of each segment
includes a flag byte to be used by the TAS instruction. In the subroutine, a
maximum of three 16-byte memory segments must be checked for a free segment
(flag byte = 0). The TAS instruction should be used to find a free segment. The
starting address of the free segment (once found) must be stored in A0 and the
low byte DO must be cleared to zero to indicate a free segment and the program
control should return to the main program. If no free block is found, $FF must be
stored in the low byte of DO and the control should return to the main program.

10.39

10.40 Will the circuit in Figure P10.40 work? If so, determine the 1/0 port addresses for
PGCR, PADR, PADDR, PBDR, PBDDR, PCDR and PCDDR. If not, comment
briefly, modify the circuit, and then determine the port addresses. Use only the
pins and the signals shown. Assume all don’t cares to be zeros.

542 Fundamentals of Digital Logic and Microcomputer Design

”’ MC68000pP MC68230

P L l

PLO

Not Connected

DTACK

RESET

I Reset Circuit I

FIGURE P10.40

11
INTEL AND MOTOROLA 32- &

64-BIT MICROPROCESSORS
This chapter provides a summary of the basic features of 32- and 64-bit microprocessors
manufactured by Intel and Motorola. Intel 80386 and Motorola 68020 are covered in detail
while an overview of the other 32-bit microprocessors is also included. Finally, a brief
coverage of the 64-bit microprocessors is provided.

11.1

This section describes the basic aspects of typical 32- and 64-bit microprocessors. Topics
include on-chip features such as pipelining, memory management, floating-point, and
cache memory implemented in typical 32- and 64-bit microprocessors.

The first 32-bit microprocessor was Intel’s problematic iAPX432, and
was introduced in 1980. Soon afterwards, the concept of “mainframe on a chip” or
“micromainframe” was used to indicate the capabilities of these microprocessors and to
distinguish them from previous 8- and 16-bit microprocessors.

The introduction of several 32-bit microprocessors revolutionized the
microprocessor world. The performance of these 32-bit microprocessors is actually more
comparable to that of superminicomputers such as Digital Equipment Corporation’s
VAXl1/750 and VAXl1/780. Designers of 32-bit microprocessors have implemented
many powerhl features of these mainframe computers to increase the capabilities of
the microprocessor chip sets. These include pipelining, on-chip cache memory, memory
management, and floating-point arithmetic.

As mentioned in Chapter 8, pipelining is the technique in which instruction
fetch and execute cycles are overlapped. This method allows simultaneous preparation
for execution of one or more instructions while another instruction is being executed.
Pipelining was used for many years in mainframe and minicomputer CPUs to speed up
the instruction execution time of these machines. The 32-bit microprocessors implement
the pipelining concept and simultaneously operate on several 32-bit words, which may
represent different instructions or part of a single instruction.

Although pipelining greatly increases the rate of execution of nonbranching code,
pipelines must be emptied and refilled each time a branch or jump instruction is in the code.
This may slow down the processing rate for code with many branches or jumps. Thus, there
is an optimum pipeline depth, which is strongly related to the instruction set, architecture,
and gate density attainable on the processor chip. For many of the applications run on the
32-bit microprocessors, the three-stage pipeline is considered a reasonably optimal depth.

With memory management, virtual memory techniques, traditionally a feature of
mainframes, are also implemented as on-chip hardware on typical 32-bit microprocessors.

TvDical Features of 32-bit and 64-bit MicroDrocessors

543

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

544 Fundamentals of Digital Logic and Microcomputer Design

This allows programmers to write programs much larger than those that could fit in the
main memory space available to the microprocessors; the programs are simply stored on a
secondary device, such as a disk drive, and portions of the program are swapped into main
memory as needed.

Segmentation circuitry has been included in many 32-bit microprocessor chips.
With this technique, blocks of code called “segments,” which correspond to modules of the
program and have varying sizes set by the programmer or compiler, are swapped. For many
applications, however, an alternative method borrowed from mainframes and superminis
called “paging” is used. Basically, paging differs from segmentation in that pages are of
equal sizes. Demand paging, in which the operating system automatically swaps pages as
needed, can be used with all 32-bit microprocessors.

Floating-point arithmetic is yet another area in which the new chips are mimicking
mainframes. With early microprocessors, floating-point arithmetic was implemented in
software, largely as a subroutine. When required, execution would jump to a piece of code
that would handle the tasks. This method, however, slows the execution rate considerably,
so floating-point hardware, such as fast bit-slice (registers and ALU on a chip) processors
and, in some cases, special-purpose chips, was developed. Other than the Intel 8087, these
chips behaved more or less like peripherals. When floating-point arithmetic was required,
the problems were sent to the floating-point processor and the CPU was freed to move
on to other instructions while it waited for the results. The floating-point processor is
implemented as on-chip hardware in typical 32-bit microprocessors, as in mainframe and
minicomputer CPUs. Caching or memory-management schemes are utilized with all 32-bit
microprocessors in order to minimize access time for.most instructions.

A cache, used for years in minis and mainframes, is a relatively small, high-speed
memory installed between a processor and its main memory. The theory behind a cache
is that a significant portion of the CPU time spent running typical programs is tied up in
executing loops; thus, the chances are good that if an instruction to be executed is not the
next sequential instruction, it will be one of some relatively small number of instructions
back, a concept known as locality of reference. Therefore, a high-speed memory large
enough to contain most loops should greatly increase processing rates. Cache memory is
included as on-chip hardware in typical 32-bit microprocessors.

Typical 32-bit microprocessors such as Pentium and PowerPC chips are
superscalar processors. This means that they can execute more than one instruction in one
clock cycle. Also, some 32-bit microprocessors such as the PowerPC contain an on-chip
real-time clock. This allows these processors to use modern multitasking operating systems
that require time keeping for task switching and for keeping the calendar date.

A few 32-bit microprocessors implement a multiple branch prediction feature.
This allows these microprocessors to anticipate jumps of the instruction flow ahead of
time. Also, some 32-bit microprocessors determine an optimal sequence of instruction
execution by looking at decoded instructions and then determining whether to execute
or hold the instructions. Typical 32-bit microprocessors use a “look ahead” approach to
execute instructions. Typical 32-bit microprocessors instruction pool for a sequence of
instructions and perform a usekl task rather than execute the present instruction and then
go to the next.

The 64-bit microprocessors include all the features of 32-bit microprocessors.
In addition, they also contain multiple on-chip integer and floating-point units, a larger
address and data bus. The 64-bit microprocessors can typically execute 4 instructions per
clock cycle and can run at a clock speed of more than 300 MHz.

Intel and Motorola 32- & 64-bit Microprocessors 545

The Pentium microprocessor is designed using a combination of mostly
microprogramming (CISC--Complex Instruction Set Computer) and some hardwired
control (RISC --Reduced Instruction Set Computer) whereas the PowerPC is designed
using hardwired control with almost no microcode. The PowerPC is a RISC microprocessor.
This means that a simple instruction set is included with PowerPC. The PowerPC
instruction set includes register to register, load, and store instructions. All instructions
involving arithmetic operations use registers; load and store instructions are utilized to
access memory. Almost all computations can be obtained from these simple instructions.
Finally, the 64-bit microprocessors are ideal candidates for data-crunching machines and
high-performance desktop systems/workstations.

11.2

This section provides a summary of Intel 32-bit and 64-bit microprocessors. The Intel line
of microprocessors has gone through many changes. The 8080/8085 (8-bit) was the first
major chip by Intel but did not see major use. In 1978, Intel introduced a more powerful
processor called the 8086. The 8086 is covered in detail in earlier sections of this chapter.
This chip had many improved features over the 8080/85. As mentioned before, the 8086
is a 16-bit processor and utilizes pipelining. Pipelining allows the processor to execute
and fetch instructions at the same time. The Intel line has progressed through the years
to the 80286, 80386, 80486, and Pentium. The general trend has been an expansion of
the bit width of the processors both internally and externally. The Pentium processor
was introduced in 1993, and the name was changed from 80586 to Pentium because of
copyright laws. The processor uses more than 3 million transistors and had an initial speed

Intel 32-Bit and 64-Bit MicroDrocessors

TABLE 11.1

Introduced

Maximum
Clock Speed
(M W

MIPS*
Transistors

On-chip cache
memory

Data bus
Address bus
Directly addr.

memory
Pins
Virtual

memory
On-chip

memory
management

and protection
Floating point

unit
* MIPS means m

Intel 803 86/80486/Pentium Micr
80386DX
October
1985
40

6
275,000

support
chips
available
32-bit
32-bit
4 GB

132
Yes

Yes

387DX

on of instruc

80386SX
June 1988

33

2.5
275,000

support
chips
available
16-bit
24-bit
16MB

100
Yes

Yes

387SX

ms per seconc

80486DX
April
1989
50

20
1.2
million
Yes

32-bit
32-bit
4 GB

168
Yes

Yes

on chip

lrocessors -
80486SX
April
1991
25

16.5
1.185
million
Yes

32-bit
32-bit
4 GB

168
Yes

Yes

487SX

80486DX2
March 1992

100

54
1.2 million

Yes

32-bit
32-bit
4 GB

168
Yes

Yes

on chip

hat the microprocessor can execute. MIPS

Pentium
March 1993

233

112
3.1 million

Yes

64-bit
32-bit
4 GB

273
Yes

Yes

on chip

typically used
as a measure of performance of a microprocessor. Faster microprocessors have a higher MIPS value.

546 Fundamentals of Digital Logic and Microcomputer Design

of 60 MHz. The speed has increased over the years to the latest speed of 233 MHz. Table
11 . I compares the basic features of the Intel 80386DX, 80386SX, 80486DX, 80486SX,
80486DX2, and Pentium. These are all 32-bit microprocessors. Note that the 80386SL (not
listed in the table) is also a 32-bit microprocessor with a 16-but data bus like the 80386SX.
The 80386SL can run at a speed of up to 25 MHz and has a direct addressing capability
of 32 MB. The 80386SL provides virtual memory support along with on-chip memory
management and protection. It can be interfaced to the 80387SX to provide floating-point
support. The 80386SL includes an on-chip disk controller hardware.

The Pentium microprocessor uses superscalar technology to allow multiple
instructions to be executed at the same time. The Pentium uses BICMOS technology,
which combines the speed of bipolar transistors and the power efficiency of CMOS
technology. The internal registers are only 32 bits even though externally it has a 64-bit
data bus. It has a 32-bit address bus, which allows 4 gigabytes of addressable memory
space. The math coprocessor is on-chip and is up to ten times faster than the 486 in
performing certain instructions. There are two execution units in the Pentium that allow
the multiple execution. The multiple execution only works for instructions that are data
independent, meaning that an instruction executed immediately after another using the
previous result cannot be done. The Pentium uses two execution units called the “U and
V pipes.” Each has five pipeline stages. The U pipe can execute any of the instructions
in the 80x86 set, but the V pipe executes only simple instructions. Another new feature of
the Pentium is branch prediction. This feature allows the Pentium to predict and prefetch
codes and advance them though the pipeline without waiting for the outcome of the zero
flag.

The implementation of virtual memory is an important feature of the Pentium.
It allows a total of 64 terabytes of virtual memory. The 386/486 allowed only a 4K page
size for virtual memory, but the Pentium allows either 4K or 4M page sizes. The 4K page
option makes it backward compatible with the 386/486 processors. The 4M page size
option allows mapping of a large program without fragmentation. It reduces the amount of
page misses in virtual memory mode.

In the next section, the Intel 80386 is. covered in detail.
Table 1 1.1 compares the basic features of 80386, 80486, and Pentium.

11.3 Intel 80386

The Intel 80386 is Intel’s first 32-bit microprogrammed microprocessor. Its introduction
in 1985 facilitated the introduction of Microsoft’s Windows operating systems. The high-
speed computer requirement of the graphical interface of Windows operating systems was
supplied by the 80386. Also, the on-chip memory management of the 80386 allowed
memory to be allocated and managed by the operating system. In the past, memory
management was performed by software.

The Intel 80386 is a 32-bit microprocessor and is based on the 8086. A variation
of the 80386 (32-bit data bus) is the 80386SX microprocessor, which contains a 16-bit
data bus along with all other features of the 80386. The 80386 is software compatible at
the object code level with the Intel 8086. The 80386 includes separate 32-bit internal and
external data paths along with 8 general-purpose 32-bit registers. The processor can handle
8-, 16-, and 32-bit data types. It has separate 32-bit data and address pins, and generates a
32-bit physical address. The 80386 can directly address up to 4 gigabytes (232) of physical
memory and 64 tetrabytes (246) of virtual memory. The 80386 can be operated from a

Intel and Motorola 32- & 64-bit Microprocessors 547

12.5-, 16-, 20-, 25-, 33-, or 40-MHz clock. The chip has 132 pins and is typically housed
in a pin grid array (PGA) package. The 80386 is designed using high-speed HCMOS 111
technology.

The 80386 is highly pipelined and can perform instruction fetching, decoding,
execution, and memory management functions in parallel. The on-chip memory
management and protection hardware translates logical addresses to physical addresses and
provides the protection rules required in a multitasking environment. The 80386 contains
a total of 129 instructions. The 80386 protection mechanism, paging, and the instructions
to support them are not present in the 8086.

The main differences between the 8086 and the 80386 are the 32-bit addresses
and data types and paging and memory management. To provide these features and other
applications, several new instructions are added in the 80386 instruction set beyond those
of the 8086.

11.3.1 Internal 80386 Architecture
The internal architecture of the 80386 includes several functional units that operate in
parallel. The parallel operation is known as “pipelined processing.” Fetching, decoding,
execution, memory management, and bus access for several instructions are performed
simultaneously. Typical functional units of the 80386 are these:

Bus interface unit (BIU)
Execution unit (EU)
Segmentation unit
Paging unit
The 80386 BIU performs similar function as the 8086 BIU. The execution

unit processes the instructions from the instruction queue. It contains mainly a control
unit and a data unit. The control unit contains microcode and parallel hardware for fast
multiplication, division, and effective address calculation. The data unit includes an ALU,
8 general-purpose registers, and a 64-bit barrel shifter for performing multiple bit shifts in
one clock cycle. The data unit carries out data operations requested by the control unit.
The segmentation unit translates logical addresses into linear addresses at the request of the
execution unit. The translated linear address is sent to the paging unit.

Upon enabling of the paging mechanism, the 80386 translates the linear addresses
into physical addresses. If paging is not enabled, the physical address is identical to the
linear address and no translation is necessary. The 80386 segmentation and paging units
support memory management functions. The 80386 does not contain any on-chip cache.
However, external cache memory can be interfaced to the 80386 using a cache controller
chip.

11.3.2 Processing Modes
The 80386 has three processing modes: protected mode, real-address mode, and virtual
8086 mode. Protected mode is the normal 32-bit application of the 80386. All instructions
and features of the 80386 are available in this mode. Real-address mode (also known as
“real mode”) is the mode of operation of the processor upon hardware reset. This mode
appears to programmers as a fast 8086 with a few new instructions. This mode is utilized
by most applications for initialization purposes only. Virtual 8086 mode (also called “V86
mode”) is a mode in which the 80386 can go back and forth repeatedly between V86 mode
and protected mode at a fast speed. When entering into V86 mode, the 80386 can execute
an 8086 program. The processor can then leave V86 mode and enter protected mode to

548

execute an 80386 program.
As mentioned, the 80386 enters real-address mode upon hardware reset. In this

mode, the protection enable (PE) bit in a control register-the control register 0 (CR0)-is
cleared to zero. Setting the PE bit in CRO places the 80386 in protected mode. When
the 80386 is in protected mode, setting the VM (virtual mode) bit in the flag register (the
EFLAGS register) places the 80386 in V86 mode.

Fundamentals of Digital Logic and Microcomputer Design

11.3.3 Basic 80386 Programming Model
The 80386 basic programming model includes the following aspects:

Memory organization and segmentation
Data types
Registers
Addressing modes
Instruction set

I/O is not included as part of the basic programming model because systems designers may
select to use I/O instructions for application programs or may select to reserve them for the
operating system.

Memory Organization and Segmentation
The 4-gigabyte physical memory of the 80386 is structured as 8-bit bytes.

Each byte can be uniquely accessed as a 32-bit address. The programmer can write
assembly language programs without knowledge of physical address space. The memory
organization model available to applications programmers is determined by the system
software designers. The memory organization model available to the programmer for each
task can vary between the following possibilities:
An address space includes a single array of up to 4 gigabytes. The 80386 maps the 4-
gigabyte space into the physical address space automatically by using an address-translation
scheme transparent to the applications programmers.
A segmented address space includes up to 16,383 linear address spaces of up to 4 gigabytes
each. In a segmented model, the address space is called the “logical” address space and
can be up to 64 terabytes. The processor maps this address space onto the physical address
space (up to 4 gigabytes by an address-translation technique).
Data Types

Data types can be byte (%bit), word (16-bit with the low byte addressed by n and
the high byte addressed by n + l), and double word (32-bit with byte 0 addressed by n and
byte 3 addressed by n + 3). All three data types can start at any byte address. Therefore, the
words are not required to be aligned at even-numbered addresses, and double words need
not be aligned at addresses evenly divisible by 4. However, for maximum performance,
data structures (including stacks) should be designed in such a way that, whenever possible,
word operands are aligned at even addresses and double word operands are aligned at
addresses evenly divisible by 4. That is, for 32-bit words, addresses should start at 0,4,8,
. . . for the highest speed.

Depending on the instruction referring to the operand, the following additional
data types are available: integer (signed 8-, 16-, or 32-bit), ordinal (unsigned 8-, 16-, or
32-bit), near pointer (a 32-bit logical address that is an offset within a segment), far pointer
(a 48-bit logical address consisting of a 16-bit selector and a 32-bit offset), string (8-, 16-,
or 32-bit from 0 bytes to 232 - 1 bytes), bit field (a contiguous sequence of bits starting at
any bit position of any byte and containing up to 32 bits), bit string (a contiguous sequence

Intel and Motorola 32- & 64-bit Microprocessors 549

I EAX I

AH YAL

1 , DH Dx DL

I j CH yx CL

I I BH Bx BL

-- Ed,

ECX

EBX

General re*enea
31 23 15 7 0

ooooooooooooooooo'v~ RF'O NT IOPL OF DF IF SF z o AF'O P I C F I

I ,
EBP BJP I

Vimnl8086 mode-X
Resume flag-X

Nested tank flag-X
VO privilage level-X

Directional flae-C 1
ovemow-s

17 0
Status and lnsmctian registers

31 1 2 3 I 15

I l l

--
(a) Applications register set

FIGURE 11.1 80386 registers

Sign flag-S ~

Intempt enable-X
Trap flag4

Zero flag-S
Auxiliary cany-S-

Parity flag-S
Carry fdg-S--

Notes: 0 or 1 indicates Intel resewed. Do not define.
S = stahls flag; C = conml flag; X = system flag.

(b) EFLAGS register

of bits starting at any position of any byte and containing up to 232 - 1 bits), and packed
unpacked BCD. When the 80386 is interfaced to a coprocessor such as the 80287 or
80387, then floating-point numbers are supported.

Registers
Figure 11.1 shows the 80386 registers. As shown in the figure, the 80386 has

16 registers classified as general, segment, status, and instruction pointer. The 8 general
registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDT. The
low-order word of each of these 8 registers has the 8086 register name AX (AH or AL),
BX (BH or BL), CX (CH or CL), DX (DH or DL), BP, SP, SI, and DI. They are useful for
making the 80386 compatible with the 8086 processor.

The six 16-bit segment registers-CS, SS, DS, ES, FS, and GS-allow systems
software designers to select either a flat or segmented model of memory organization. The
purpose of CS, SS, DS, and ES is same as that of the corresponding 8086 registers. The
two additional data segment registers FS and GS are included in the 80386 so that the four
data segment registers (DS, ES, FS, and GS) can access four separate data areas and allow
programs to access different types of data structures.

The flag register is a' 32-bit register, named EFLAGS in Figure 1 1.1, that shows
the meaning of each bit in this register. The low-order 16 bits of EFLAGS is named
FLAGS and can be treated as a unit. This is useful when executing 8086 code because this
part of EFLAGS is similar to the FLAGS register of the 8086. The 80386 flags are grouped
into three types: status flags, control flags, and system flags.

The status flags include CF, PF, AF, ZF, SF, and OF, like the 8086. The control
flag DF is used by strings like the 8086. The system flags control I/O, maskable interrupts,

550 Fundamentals of Digital Logic and Microcomputer Design

debugging, task switching, and enabling of virtual 8086 execution in a protected,
multitasking environment. The purpose of IF and TF is identical to the 8086. Let us
explain some of the system flags:

IOPL (UO privilege level). This 2-bit field supports the 80386 protection feature.
NT (nested task). The NT bit controls the IRET operation. If NT = 0, a usual
return from interrupt is taken by the 80386 by popping EFLAGS, CS, and EIP from
the stack. If NT = 1, the 80386 returns from an interrupt via task switching.
FW (resume flag). is used during debugging.
VM (virtual 8086 mode). When the VM bit is set to 1, the 80386 executes 8086
programs. When the VM bit is 0, the 80386 operates in protected mode.
The instruction pointer register (EIP) contains the offset address relative to the
start of the current code segment of the next sequential instruction to be executed.
The low-order 16 bits of EIP is named IP and is useful when the 80386 executes
8086 instructions.

11.3.4 80386 Addressing Modes
The 80386 has 11 addressing modes, classified into registedimmediate and memory
addressing modes. The register/immediate type includes 2 addressing modes, and the
memory addressing type contains 9 modes.

Registedlmm ediate Modes
Instructions using the register or immediate modes operate on either register or

immediate operands. In register mode, the operand is contained in one of the 8-, 16-, or 32-
bit general registers. An example is DEC ECX, which decrements the 32-bit register ECX
by 1. In immediate mode, the operand is included as part of the instruction. An example
is MOV EDX, 5167812FH, which moves the 32-bit data 5167812F,, to the EDX register.
Note that the source operand in this case is in immediate mode.

Memory Addressing Modes
The other 9 addressing modes specify the effective memory address of an operand.

These modes are used when accessing memory. An 80386 address consists of two parts:
a segment base address and an effective address. The effective address is computed by
adding any combination of the following four elements:

Displacement. The 8- or 32-bit immediate data following the instruction is the
displacement; 16-bit displacements can be used by inserting an address prefix
before the instruction
Base. The contents of any general-purpose register can be used as a base.
Index. The contents of any general-purpose register except ESP can be used as an
index register. The elements of an array or a string of characters can be accessed
via the index register.
Scale. The index register’s contents can be multiplied (scaled) by a factor of 1,2,
4, or 8. A scaled index mode is efficient for accessing arrays or structures.
Effective Address, EA = base register + (index register x scale) + displacement
The 9 memory addressing modes are a combination of these four elements. Of

the 9 modes, 8 of them are executed with the same number of clock cycles because the
effective address calculation is pipelined with the execution of other instructions; the mode
containing base, index, and displacement elements requires one additional clock cycle.

Direct mode.The operand’s effective addresses is included as part of the
instruction as an 8-, 16-, or 32-bit displacement. An example is DEC WORD PTR

1.

2.
3.

4.

1.

Intel and Motorola 32- & 64-bit Microprocessors 55 1

2.

3.

4.

5.

6.

7.

8.

9.

11.3.5

[4000H].
Register indirect mode. A base or index register contains the operand’s effective
address. An example is MOV EBX, [ECXI .
Base mode. The contents of a base register is added to a displacement to obtain
the operand’s effective address. An example is MOV [EDX + 1 6] , EBX.
Index mode. The contents of an index register is added to a displacement to obtain
the operand’s effective address. An example is ADD START [ED1] , EBX.
Scaled index mode. The contents of an index register is multiplied by a scaling
factor (1, 2, 4, or 8), and the result is added to a displacement to obtain the
operand’s effective address. An example is MOV START [EBX * 8 3 , ECX.
Based index mode. The contents of a base register is added to the contents of
an index register to obtain the operand’s effective address. An example is MOV

ECX, [ESI] [EAX].
Based scaled index mode. The contents of an index register is multiplied by
a scaling factor (1, 2, 4, 8), and the result is added to the contents of a base
register to obtain the operand’s effective address. An example is MOV [ECX * 4]
[EDX], EAX.

Based index mode with displacement. The operand’s effective address is
obtained by adding the contents of a base register and an index register with a
displacement. An example isMOV [EBXI [EBP + OF24782AHl , ECX.
Based scaled index mode with displacement. The contents of an index register
is multiplied by a scaling factor, and the result is added to the contents of base
register and displacement to obtain the operand’s effective address. An example
isMOV [ESI * 81 [EBP + 6OH1,ECX.

80386 Instruction Set
The 80386 can execute all 16-bit instructions in real and protected modes. This is provided
in order to make the 80386 software compatible with the 8086. The 80386 uses either 8- or
32-bit displacements and any register as the base or index register while executing 32-bit
code. However, the 80386 uses either 8- or 16-bit displacements with the base and index
registers while executing 16-bit code. The base and index registers utilized by the 80386
for 16- and 32-bit addresses are as follows:

I6-Bit Addressing 32-Bit Addressing
Base register BX, BP Any 32-bit general-purpose register
Index register SI, DI Any 32-bit general-purpose register except ESP

Displacement 0, 8, 16 bits 0, 8, 32 bits
Scale factor None 1 , 2 , 4 , 8

In the following, the symbol () will indicate the contents of a register or a memory location.
A description of some of the new 80386 instructions is given next.

1. Arithmetic Instructions
There are two new sign extension instructions beyond those of the 8086.

CWDE
CDQ

Sign-extend 16 bit contents of AX to a 32-bit double word in EAX.
Sign-extend a double word (32 bits) in EAX to a quadword (64 bits) in
EDX:EAX

The 80386 includes all of the 8086 arithmetic instructions plus some new ones. Two

552 Fundamentals of Digital Logic and Microcomputer Design

of the instructions are as follows:

Instruction

ADC reg32/mem32, imm32

ADC reg32/mem32, imm8

Operation

[reg32 or mem32]+- [reg32 or mem32] + 32-bit
immediate data + CF
[reg32 or mem321 - [reg32 or mem321 + 8-bit . - ~ ~-

I immediate data sign-extended to 32 bits + CF

I D I V AL, reg8/mem8

I D I V AX, reg16imem16

Similarly, the other add instructions include the following:

EAX = quotient and EDX = remainder.
AX + reg8 or mem8 (signed division)
AL = quotient and AH = remainder.
DX:AX -+ reg 16 or mem 16 (signed division)
AX = quotient and DX = remainder.

ADC reg32/mem32, reg32/mem32
ADD reg32/mem32, imm32
ADD reg32/mem32, imm8
ADD reg3Ymem32, reg32/mem32

The 80386 SUB/SBB instructions have the same operands as the ADD/ADC
instructions.

The 80386 multiply instructions include all of the 8086 instructions plus some
new ones. Some of them are listed next:

I M U L AX, reg16/mem16

I M U L AL, reg8/mem8

I M U L regl6, reg16/mem16,imm8

I M U L reg32, reg32/mem32, imm8

(signed multiplication).
CF and OF flags are cleared to 0 if the EDX
value is 0; otherwise, they are set.
DX:AX - AX * reg16/mem16
(signed multiplication)
(signed multiplication) AX - AL * reg81
mem8
reg16 + regl6/mem16 * (imm8 sign-
extended to 16-bits) (signed multiplication).
The result is the low 16 bits of product.
reg32 + reg32/mem32 * (imm8 sign-
extended to 32 bits) (signed multiplication).

I The result is the low 32 bits of product.

The unsigned multiplication MUL instruction has the same operands as I M U L .
The 80386 divide instructions include all of the 8086 instructions plus some new ones.
Some of them are listed next:

Instruction I Operation
I D I V EAX, reg32/mem32 I EDX:EAX -+ reg32 or mem32 (signed division).

2. Bit Instructions

Intel and Motorola 32- & 64-bit Microprocessors 553

The six 80386 bit instructions are as follows:
BSF Bit scan forward
BSR Bit scan reverse
BT Bit test
BTC Bit test and complement
BTR Bit test and reset
BTS Bit test and set

These instructions are discussed separately next.
BSF (bit scan forward) takes the form

BSF d, S

regl6, reg16
regl6, meml6
reg32, reg32
reg32, mem32

BSF scans (checks) the 16-bit (word) or 32-bit (double word) number defined
by s from right to left (bit 0 to bit 15 or bit 31). The bit number of the first 1
found is stored in d. If the whole 16-bit or 32-bit number is 0, the ZF flag is set
to 1; Otherwise, ZF = 0. For example, consider BSF EBX, EDX. If (EDX) =

01241240,,, then after BSF EBX, EDX, (EBX) = 00000006,, and ZF = 0. The
bit number 6 in EDX (contained in the second nibble of EDX) is the first 1 found
when (EDX) is scanned from the right.
BSR (bit scan reverse) takes the form

BSR d, S
regl6, reg16
regl6, meml6
reg32, reg32
reg32, mem32

BSR scans (checks) the 16-bit or 32-bit number defined by s from the most
significant bit (bit 15 or bit 3 1) to the least significant bit (bit 0). The destination
operand d is loaded with the bit index (bit number) of the first set bit. If the bits
in the number are all O’s, ZF is set to 1 and operand d is undefined; ZF is reset to
0 if a 1 is found.
BT (bit test) takes the form

BT

BT assigns

d
rig 16,
mem 16,
reg 16,
mem 16,
reg32,
mem32,
reg32
mem32.
the bit value

S
reg 1 6
reg 1 6
imm8

of operand d (base) specified operand s (bit offset) to
the carry flag. Only CF is affected. If operand s is an immediate data, only 8 bits
are allowed in the instruction. This operand is taken modulo 32 so that the range
of immediate bit offset is from 0 to 3 1. This permits any bit within a register to
be selected. If d is a register, the bit value assigned to CF is defined by the value
of the bit number defined by s taken modulo the register size (16 or 32). If d is a
memory bit string, the desired 16 bits or 32 bits can be determined by adding s (bit
index) divided by the operand size (16 or 32) to the memory address of d. The bit
within this 16- or 32-bit word is defined by d taken modulo the operand size (16 or
32). If d is a memory operand, the 80386 may access 4 bytes in memory starting
at effective address plus 4 x [bit offset divided by 321. As an example, consider

554 Fundamentals of Digital Logic and Microcomputer Design

BT CX, DX. If (CX) = 08 1 F and (DX) = 002 1 16, then after BT CX, DX, because
the contents of DX is 33,,, the bit number 1 [remainder of 33/16 = 1 of CX (value
l)] is reflected in CF and therefore, CF = 1.
BTC (bit test and complement) takes the form

where d and s have the same definitions as for the BT instruction. The bit of d
defined by s is reflected in CF. After CF is assigned, the same bit of d defined by
s is ones complemented. The 80386 determines the bit number from s (whether s
is immediate data or register) and d (whether d is register or memory bit string) in
the same way as for the BT instruction.
BTR (bit test and reset) takes the form

Where d and s have the same definitions as for the BT instruction. The bit of d
defined by s is reflected in CF. After CF is assigned, the same bit of d defined
by s is reset to 0. Everything else applicable to the BT instruction also applies to
BTR.
BTS (bit test and set) takes the form

BTS is the same as BTR except that the specified bit in d is set to 1 after the bit
value of d defined by s is reflected in CF. Everything else applicable to the BT
instruction also applies to BTS.

BTC d, s

BTR d, s

BTS d, s

Set Byte on Condition Instructions
These instructions set a byte to 1 or reset a byte to 0 depending on any of the 16
conditions defined by the status flags. The byte may be located in memory or in a
1 -byte general register. These instructions are very useful in implementing Boolean
expressions in high-level languages. The general structure of these instructions is
SETcc (set byte on condition cc), which sets a byte to 1 if condition cc is true or else
resets the byte to 0.
As an example, consider SETB BL (set byte if below; CF = 1). If (BL) = 52,, and
CF = 1, then, after this instruction is executed, (BL) = 01 and CF remains at 1 ; all
other flags (OF, SF, ZF, AF, PF) are undefined. On the other hand, if CF = 0, then,
after execution of this instruction, (BL) = OO,,, CF = 0, and ZF = 1; all other flags are
undefined. The other SETcc instructions can similarly be explained.

Conditional Jumps and Loops
J E C X Z disp8 jumps if [ECX] = 0; disp8 means a relative address. JECXZ tests the
contents of the ECX register for zero and not the flags. If [ECX] = 0, then, after
execution of the J E C X Z instruction, the program branches with a signed 8-bit relative
offset (+127,, to -128,, with 0 being positive) defined by disp8. The J E C X Z instruction
is useful at the beginning of a conditional loop that terminates with a conditional loop
instruction such as LOOPNE label. J E C X Z prevents entering the loop with [ECX] =

0, which would cause the loop to execute up to 2’* times instead of zero times.
The loop instructions are listed next:

LOOP disp8

LOOP/LOOPZ disp8

Decrement CWECX by 1 and jump if
CWECX # 0
Decrement CWECX by 1 and jump if
CWECX * 0 or ZF = 1

Intel and Motorola 32- & 44-bit Microprocessors 555

L 0 0 P N E / L 0 0 P N Z
disp8

Decrement CX/ECX by 1 and jump if
CX/ECX f 0 or ZF = 0

The 80386 loop instructions are similar to those of the 8086 except that if the counter
is more than 16 bits, the ECX register is used as the counter.

5. Data Transfer Instructions
a. Move Instructions

The move instructions are described as follows:
MOVSX d, S Move and sign-extend
MOVZX d, S Move and zero-extend

regl6, reg8
regl6, mem8
reg32, reg8
reg32, mem8
reg32, reg16
reg32, meml6

MOVSX reads the contents of the effective address or register as a byte or a word
from the source, sign-extends the value to the operand size of the destination
(16 or 32 bits), and stores the result in the destination. No flags are affected.
MOVZX, on the other hand, reads the contents of the effective address or register
as a byte or a word, zero-extends the value to the operand size of the destination
(1 6 or 32 bits), and stores the result in the destination. No flags are affected. For
example, consider MOVSX BX, CL. If (CL) = 81,,and (BX) = 21AF,,, then,
after execution of this MOVSX, register BX contains FF8 1 ,6 and the contents of
CL do not change. Now, consider MOVZX CX, DH. If (CX) = F237,, and (DH)
= 85,,, then, after execution of this MOVZX, register CX contains 0085,, and DH
contents do not change.

b. Push and Pop Instructions
There are new push and pop instructions in the 80386 beyond those of the 8086:
PUSHAD and POPAD. PUSHAD saves all 32-bit general registers (the order is
E M , ECX, EDX, EBX, original ESP, EBP, ESI, and EDI) onto the 80386 stack.
PUSHAD decrements the stack pointer (ESP) by 32,, to hold the eight 32-bit
values. No flags are affected. POPAD reverses a previous PUSHAD. It pops the
eight 32-bit registers (the order is EDI, ESI, EBP, ESP, EBX, EDX, ECX, and
E M) . The ESP value is discarded instead of loading onto ESP. No flags are
affected. Note that ESP is actually popped but thrown away so that (ESP), after
popping all the registers, will be incremented by 32,,,

c. Load Pointer Instructions
There are five instructions in the load pointer instruction category: LDS, LES,
LFS, LGS, and LSS. The 80386 can have four versions for each one of these
instructions as follows:

LDS regl6, meml6:meml6
LDS reg32, mem16:mem32
LES regl6, meml6:meml6
LES reg32, mem16:mem32

556 Fundamentals of Digital Logic and Microcomputer Design

Note that mem 1 6:mem 16 or meml6:mem32 defines a memory operand containing
the pointers composed of two numbers. The number to the left of the colon
corresponds to the pointer’s segment selector; the number to the right corresponds
to the offset. These instructions read a full pointer from memory and store it in
the selected segment register:specified register. The instruction loads 16 bits into
DS (for LDS) or into ES (for LES). The other register loaded is 32 bits for 32-bit
operand size and 16 bits for 16-bit operand size. The 16- and 32-bit registers to
be loaded are determined by the reg1 6 or reg32 register specified.
The three instructions LFS, LGS, and LSS are associated with segment registers
FS, GS, and SS can similarly be explained.

6. Flag Control Instructions
There are two new flag control instructions in the 80386 beyond those of the 8086:
PUSHFD and POPFD. PUSHFD decrements the stack pointer by 4 and saves the 80386
EFLAGS register to the new top of the stack. No flags are affected. POPFD pops the
32 bits (double word) from the top of the stack and stores the value in EFLAGS. All
flags except VM and RF are affected.

7. Logical Instructions
There are new logical instructions in the 80386 beyond those of the 8086:

SHLD d,
SHRD d,

d
reg 16,
mem 16,
reg 16,
meml6,
reg32,
mem32,
reg32,
mem32,

s,
s,

reg 16,
reg 16,
reg 16,
regl6,
reg32,
reg32,
reg32,
reg32,

S

count Shift left double
count Shift right double
count
imm8
imm8
CL
CL
CL
imm8
CL
CL

For both SHLD and SHRD, the shift count is defined by the low 5 bits, so shifts from 0
to 3 1 can be obtained.

SHLD shifts the contents of d s by the specified shift count with the result stored
back into d; d is shifted to the left by the shift count with the low-order bits of d filled
from the high-order bits of s. The bits in s are not altered after shifting. The carry flag
becomes the value of the bit shifted out of the most significant bit of d. If the shift
count is zero, this instruction works as an NOP. For the specified shift count, the SF,
ZF, and PF flags are set according to the result in d. CF is set to the value of the last
bit shifted out. OF and AF are undefined.

SHRD shifts the contents of d s by the specified shift count to the right with the
result stored back into d. The bits in dare shifted right by the shift count, with the high-
order bits filled from the low-order bits of s. The bits in s are not altered after shifting.
If the shift count is zero, this instruction operates as an NOP. For the specified shift
count, the SF, ZF, and PF flags are set according to the value of the result. CF is set
to the value of the last bit shifted out. OF and AF are undefined.

Intel and Motorola 32- & 64-bit Microprocessors 557

As an example, consider SHLD BX, DX, 2. If (BX) = 183F,, and (DX) = OlFl,,,
then, after this SHLD, (BX) = 60FC,,, (DX) = OlFl ,,, CF = 0, SF = 0, ZF = 0, and PF
= 1. Similarly, the SHRD instruction can be illustrated.

8. String Instructions
a. Compare String Instructions

A new 80386 instruction, CMPS mem32, mem32 (or CMPSD) beyond the compare
string instructions available with the 8086 compares 32-bit words ES:EDI (second
operand) with DS:ESI and affects the flags. The direction of subtraction of CMPS
is (ESI) - (EDI). The left operand (ESI) is the source, and the right operand (EDI)
is the destination. This is a reverse of the normal Intel convention in which the
left operand is the destination and the right operand is the source. This is true for
byte (CMPSB) or word (CMPSW) compare instructions. The result of subtraction
is not stored; only the flags are affected. For the first operand (ESI), DS is used
as the segment register unless a segment override byte is present; for the second
operand (EDI), ES must be used as the segment register and cannot be overridden,
ESI and ED1 are incremented by 4 if DF = 0 and are decremented by 4 if DF = 1.
CMPSD can be preceded by the REPE or REPNE prefix for block comparison. All
flags are affected.
Load and Move String Instructions
There are new load and move instructions in the 80386 beyond those of 8086.
These are LODS mem32 (or LODSD) and MOVS mem32, mem32 (or MOVSD).
LODSD loads the (32-bit) double word from a memory location specified by DS:
ESI into EAX. After the load, ESI is automatically incremented by 4 if DF = 0
and decremented by 4 if DF = 1. No flags are affected. LODS can be preceded
by the REP prefix. LODS is typically used within a loop structure because hrther
processing of the data moved into EAX is normally required. MOVSD copies the
(32-bit) double word at the memory location addressed by DS:ESI to the memory
location at ES:EDI. DS is used as the segment register for the source and may be
overridden. After the move, ESI and ED1 are incremented by 4 if DF = 0 and are
decremented by 4 if DF = 1. MOVS can be preceded by the REP prefix for block
movement of ECX double words. No flags are affected.

There are new string I/O instructions in the 80386 beyond those of the 8086: I N S
mem32, DX (or INSD) and OUTS DX, mem32 (or OUTSD). I N S D inputs 32-bit
data from a port addressed by the contents of DX into a memory location specified
by ES:EDI. ES cannot be overridden. After data transfer, ED1 is automatically
incremented by 4 if DF = 0 and decremented by 4 if DF = 1. I N S D can be
preceded by the REP prefix for block input of ECX double words. No flags are
affected. OUTSD outputs 32-bit data from a memory location addressed by DS:
ESI to a port addressed by the contents of DX. DS can be overridden. After
data transfer, ESI is incremented by 4 if DF = 0 and decremented by 4 if DF =

1. OUTSD can be preceded by the REP prefix for block output of ECX double
words.
Store and Scan String Instructions
There is a new 80386 STOS mem32 (or STOSD) instruction. STOS stores the
contents of the EAX register to a double word addressed by ES and EDI. ES
cannot be overridden. After the storage, ED1 is automatically incremented by

b.

c. String I/O Instructions

d.

558 Fundamentals of Digital Logic and Microcomputer Design

4 if DF = 0 and decremented by 4 if DF = 1. No flags are affected. STOS can
be preceded by the REP prefix for a block fill of ECX double words. There is
also a new scan instruction, the SCAS mem32 (or SCASD) in the 80386. SCASD
performs the 32-bit subtraction (EAX) - [memory addressed by ES and EDI].
The result of subtraction is not stored, and the flags are affected. SCASD can be
preceded by the REPE or REPNE prefix for block search of ECX double words.
All flags are affected.

A modified version of the 8086 XLAT instruction is available in the 80386. XLAT
mem8 (XLATB) replaces the AL register from the table index to the table entry.
AL should be the unsigned index into a table addressed by DS:BX for a 16-bit
address and by DS:EBX for the 32-bit address. DS can be overridden. No flags
are affected.

e. Table Look-Up Translation Instruction

9. High-Level Language Instructions
Three instructions, ENTER, LEAVE, and BOUND, are included in the 80386. The
ENTER imml6,imm8 instruction creates a stack frame. The data imm8 defines the
nesting depth of the subroutine and can be from 0 to 3 1. The value 0 specifies the first
subroutine only. The data imm8 defines the number of stack frame pointers copied
into the new stack frame from the preceding frame. After the instruction is executed,
the 80386 uses EBP as the current frame pointer and ESP as the current stack pointer.
The data imml6 specifies the number of bytes of local variables for which the stack
space is to be allocated. If imm8 is zero, ENTER pushes the frame pointer EBP onto
the stack; ENTER then subtracts the first operand imml6 from the ESP and sets EBP
to the current ESP.

For example, a procedure with 28 bytes of local variables would have an ENTER
2 8 I 0 instruction at its entry point and a LEAVE instruction before every RET. The 28
local bytes would be addressed as offset from EBP. Note that the LEAVE instruction
sets ESP TO EBP and then pops EBP. The 80386 uses BP (low 16 bits of EBP) and SP
(low 16 bits of ESP) for 16-bit operands and uses EBP and ESP for 32-bit operands.

The BOUND instruction ensures that a signed array index is within the limits
specified by a block of memory containing an upper and lower bound. The 80386
provides two forms of the BOUND instruction:

BOUND regl6, mem32
BOUND reg32, mem64

The first form is for 16-bit operands. The second form is for 32-bit operands and is
included in the 80386 instruction set. For example, consider BOUND ED1 I ADDR.
Suppose (ADDR) = 32-bit lower bound d, and (ADDR + 4) = 32 bit upper bound d,,.
If, after execution of this instruction, (EDI) cd, orxl,, the 80386 traps to interrupt 5;
otherwise, the array is accessed.

The BOUND instruction is usually placed following the computation of an index
value to ensure that the limits of the index value are not violated. This permits a
check to determine whether or not an address of an array being accessed is within the
array boundaries when the register indirect with index mode is used to access an array
element. For example, the following instruction sequence will allow accessing an
array with base address in ESI, the index value in EDI, and an array lenght 50 bytes;
assuming the 32-bit contents of memory location, 20000100,, and 20000104,, are 0
and 49, respectively:

Intel and Motorola 32- & 44-bit Microprocessors 559

BOUND EDI, 20000 1 OOH
MOV EAX, [EDI][ESI]

ExamDle 11.1
Determine the effect of each of the following 80386 instructions:

(a) CDQ

(c) MOVSX ECX, E7H
(b) BTC CX, BX

Assume (EAX) = FFFFFFFFH, (ECX) = F1257124H, (EDX) = EEEEEEEEH, and (BX) =

0004H prior to execution of each of these given instructions.
Solution
(a) After CDQ,

(EAX) = FFFFFFFFH
(EDX) = FFFFFFFFH

(b) After BTC CX, BX, bit 4 of register CX is reflected in CF and then ones complemented
in CX, as is shown below.

Before BTC CX, BX :
[CX]=15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0

CF=O
1 's complement

After [C X] = W BTC CX, BX: 0 -I?=- 0 0 1 o u o -

7 1 3 4

Hence,
(CX) = 7 134H
(BX) = 0004H

(c) MOVSX ECX, E7H copies the 8-bit data E7H into the low byte of ECX and then sign-
extends to 32 bits. Therefore, after MOVSX ECX, E7H,

(ECX) = FFFFFFE7H

Examole 11.2
Write an 80386 assembly language program to multiply a signed 8-bit number in AL by a
signed 32-bit number in ECX. Assume that the segment registers are already initialized.
Solution

CBW Sign-extend byte to word
CWDE Sign-extend word to 32-bit
IMUL EAX, ECX ; Perform singed multiplication
HLT stop

ExamDle 11.3
Write an 80386 assembly language program to move two columns of ten thousand 32-bit
numbers from A (i) to B (i). In other words, move A (1) to B (l), A (2) to B (2), and so
on.
Solution
MOV ECX, 10000 Initialize counter
MOV BX, SOURCE - SEG Initialize DS
MOV DS, BX register
MOV BX, DEST-SEG Initialize ES

5 60 Fundamentals of Digital Logic and Microcomputer Design

ADS# 80386 wR#
Processor D/C##

]i Control Bus Cycle Definition Milo ,
LOCK# ,

Coprocessor Signalling BUSY#

ERROR#

HOLD ,

~ vcc
G m } Power Connections

Interrupts

FIGURE 11.2

MOV ES, BX register
MOV ESI, SOURCE - INDX ; Initialize ESI
MOV EDI, DEST - INDX Initialize ED1
CLD Clear DF to auto-increment
REP MOVSD MOV A (i) to
HLT B (i) . until ECX = 0

80386 Functional signal groups

11.3.6 80386 Pins and Signals
The 80386 contains 132 pins in Pin Grid Array (PGA) or other packages.
Figure 1 1.2 shows functional grouping of the 80386 pins. A brief description of the 80386
pins and signals is provided in the following. The # symbol at the end of the signal name
or the - symbol above a signal name indicates the active or asserted state when it is low.
When the symbol # is absent after the signal name or the symbol - is absent above a signal
name, the signal is asserted when high.

The 80386 has 20 Vcc and 21 GND pins for power distribution. These multiple
power and ground pins reduce noise. Preferably, the circuit board should contain Vcc and
GND planes.

CLK2 pin provides the basic timing for the 80386. This clock is then divided by
2 by the 80386 internally to provide the clock used for instruction execution. The 80386 is
reset by activating the RESET pin for at least 15 CLK2 periods. The RESET signal is level-
sensitive. When the RESET pin is asserted, the 80386 will start executing instructions
at address FFFF FFFOH. The 82384 clock generator provides system clock and reset
signals.

Do-D,, provides the 32-bit data bus. The 80386 can transfer 16- or 32-bit data via
the data bus.

The address pins A,-A,, along with the byte enable signals BEO# through BE3#
are used to generate physical memory or I/O port addresses. Using the pins, the 80386 can
directly address 4 gigabytes by physical memory (OOOOOOOOH through FFFFFFFFH).

The byte enable outputs, BEO# through BE3# of the 80386, define which bytes of
Do-D,, are utilized in the current data transfer. These definations are given below:

BEO# is low when data is transferred via Do-D,
BEI# is low when data is transferred via D,-D,,

Intel and Motorola 32- & 64-bit Microprocessors 56 1

BE2# is low when data is transferred via D,,-D,,
BE3# is low when data is transferred via D,,-D,,

The 80386 asserts one or more byte enables depending on the physical size of the operand
being transferred (1,2,3, or 4 bytes).

W/R#, D/C#, M/IO#, and LOCK# output pins specify the type of bus cycle being
performed by the 80386. W/R# pin, when HIGH, identifies write cycle and, when LOW,
indicates read cycle. D/C# pin, when HIGH, identifies data cycle , when LOW, indicates
control cycle. M/IO# differentiates between memory and I/O cycles. LOCK# distinguishes
between locked and unlocked bus cycles. W/R#, D/C#, and M/IO# pins define the primary
bus cycle. This is because these signals are valid when ADS# (address status output) is
asserted. Some of these bus cycles are listed below.

M/IO# D/C# W/R# Bus cycle type
Low Low Low TNTERRUPT ACKNOWLEDGE
Low High Low I/O DATA READ
Low High High I/O DATA WRITE
High Low Low MEMORY CODE READ
High High Low MEMORY DATA READ
High High High MEMORY DATA WRITE

The 80386 bus control signals include ADS# (address status), READY# (transfer
acknowledge), NA# (next address request), and BS16# (bus size 16).

The 80386 outputs LOW on the ADS# pin indicate a valid bus cycle (W/R#, D/
C#, MOO#) and bus enable / address (BEO#-BE3#, A,-A,,) signals.

When READY# input is LOW during a read cycle or an interrupt acknowledge
cycle, the 80386 latches the input data on the data pins and ends the cycle. When READY#
is low during a write cycle, the 80386 ends the bus cycle.

The NA# input pin is activated low by external hardware to request address
pipelining. BS16# input pin permits the 80386 to interface to 32- and 16-bit memory or
I/O. For 16-bit memory or I/O, BS16# input pin is asserted low by an external device, the
80386 uses the low-order half (D0-D,J of the data bus corresponding to BEO# and BEl#
for data transfer.

BS16# is asserted high for 32-bit memory or I/O. HOLD (input) and HLDA
(output) pins are 80386 bus arbitration signals. These signals are used for DMA transfers.
PEREQ, BUSY#, and ERROR# pins are used for interfacing coprocessors such as 80287
or 80387 to the 80386.

There are two interrupt pins or the 80386. These are WTR (maskable) and NMI
(nonmaskable) pins. NMI is leading-edge sensitive, whereas INTR is level-sensitive. When
INTR is asserted and if the IF bit in the EFLAGS is 1, the 80386 (when ready) responds
to the WTR by performing two interrupt acknowledge cycles and at the end of the second
cycle latches an 8-bit vector on Do-D, to identify the source of interrupt. Interrupts are
serviced in a similar manner as the 8086.

11.3.7 80386 Modes
As mentioned before, the 80386 can be operated in real, protected, or virtual 8086 mode.
These modes can be selected by some of the bits in the status register. Upon reset or
power-up, the 80386 operates in real mode. In real mode, the 80386 can access all the
8086 registers along with the 80386 32-bit register. In real mode, the 80386 can directly
address up to one megabyte of memory. The address lines A,-A,,, BEO#-BE3# are used

5 62

by the 80386 in this mode.
The protected mode provides more memory space than is provided by the real

mode. Furthermore, this mode supports on-chip memory management and protection
features along with a multitasking operating system. Finally, the virtual 8086 mode permits
the execution of 8086 programs, taking full advantage of the 80386 protection mechanism.
In particular, the virtual the 8086 mode allows execution of 8086 operating system and
application programs concurrently with the 80386 operating system and application
programs.

Fundamentals of Digital Logic and Microcomputer Design

11.3.8 80386 System Design
In this section, the 80386 is interfaced to typical EPROM chips. As mentioned in the last
section the 80386 address and data lines are not multiplexed. There is a total of thirty
address pins (A2-A3,) on the chip. A, and A, are decoded internally to generate four byte
enable outputs, BEO#, BEl#, BE2#, and BE3#. In real mode, the 80386 utilizes 20-bit
addresses and A, through A,, address pins are active and the address pins A,, through A,,
are used in real mode at reset, high for code segment (CS)-based accesses, low for others,
and always low after CS changes. In the protected mode, on the other hand, all address
pins A, through A,, are active. In both modes, A, and A, are obtained internally. In all
modes, the 80386 outputs on the byte enable pins to activate appropriate portions of the
data to transfer byte (8-bit), word (16-bit), and double-word (32-bit) data as follows:

Byte Enable Pins Data Bus
BEO# Do-D,
BEl# D,-D,,
BE2# D,,-Dn
BE3# D,,-D,~

The 80386 supports dynamic bus sizing. This feature connects the 80386 with 32-
bit or 16-bit data busses for memory or I/O. The 80386 32-bit data bus can be dynamically
switched to a 16-bit bus by activating the BS16# input from high to low by a memory or
I/O device. In this case, all data transfers are performed via D,-Dls pins. 32-bit transfers
take place as two consecutive 16-bit transfers over data pins Do through Dls. On the other
hand, the 32-bit memory or I/O device can activate the BSl6# pin HIGH to transfer data
over Do-D,, pins.

The 80386 address pins A, and A, specify the four addresses of a four byte (32-
bit) word. Consider the following :

4 I D24, 4 3 Q6 9 Qs D * , D, Do

I ! DataPins Ll
The contents of the memory addresses which include 0, 4, 8, ... with A,A, = 00,

are transferred over Do-D,. Similarly, the contents of addresses which include 1,5,9, ...,
with A,A, = 01, are transferred over D,, -D8. On the other hand, the contents of memory
addresses 2, 6, 10, ... with A,A, = 10, are transferred over D,,-D23 while contents of
addresses 3, 7, 11, ... with A,A, = 11, are transferred over D,,-D3,. Note that A,A, is
encoded from BE3# -BEO#. The following figure depicts this:

Intel and Motorola 32- & 64-bit Microprocessors 563

FFFFFFFF

FFFFFFFE

00000002H

00000001 H

OOOOOOOOH

80386
Physical
Memory

BANK 3
1 gigabyte

FFFFFFFF

F F F F F F F B

00000007H

00000003H

BANK2
1 gigabyte

B M 1
1 gigabyte

F F F F F F F9

BANK0
1 gigabyte

FFFFFFFC

FFFFFFF8

00000004H

OOOOOOOOH

G
D, -Do

E O#

In each bank, a byte can be accessed by enabling one of the byte enables, BEO#
-BE3#. For example, in response to execution of a byte-MOVE instruction such as MOV
[00000006H], BL, the 80386 outputs low on BE2# and high on BEO#, BE1# and BE3# and
the content of BL is written to address 00000006H. On the other hand, when the 80386
executes a MOVE instruction such as MOV [0 0 0 0 0 0 0 4 HI AX, the 80386 drives BEO#
and BE1# to low. The locations 00000004H and 00000005H are written with the contents
of AL and AH via Do-D, and D,-D,, respectively. For 32-bit transfer, the 80386 executing
a MOVE instruction from an aligned address such as MOV [0 0 0 0 0 0 0 4 H] EAX, drives
all bus enable pins (BEO# -BE3#) to low and writes four bytes to memory locations
00000004H through 00000007H from EAX. Byte (8-bit), aligned word (16-bit), and
aligned double-word (32-bit) are transferred by the 80386 in a single bus cycle.
The 80386 performs misaligned transfers in multiple cycles. For example, the 80386
executing a misaligned word MOVE instruction such as MOV [0 0 0 0 0 0 0 3 HI AX drives
BE3# to low in the first bus cycle and writes into location 00000003H (bank 3) from AL in
the first bus cycle. The 80386 then drives BEO# to low in the second bus cycle and writes
into location 00000004H (bank 0) from AH. This transfer takes two bus cycles.

[0 0 0 0 0 0 02 HI EAX, on the other
hand, takes two bus cycles. In the first bus cycle, the 80386 enables BE2# and BE3#, and
writes the contents of low 16-bits of EAX into addresses 00000002H and 00000003H from
banks 2 and 3 respectively. In the second cycle, the 80386 enables BEO# and BE1# to
low and then writes the contents of upper 16-bits of EAX into addresses 00000004H and
00000005H.

In the following, design concepts associated with the 80386’s interface to memory
will be discussed. The 80386 device will use 128 Kbyte, 32-bit wide memory. Four
27C256’s (32 K x 8 HCMOS EPROMs) are used.

Since the 27C256 chip is 32K x 8 chip, the 80386 address lines A,-A,6 are used for
addressing the 27C256’s. The 80386 M/IO#, D/C#, W/R#, and BEO#-BE3# are also used.
Figure 11.3 shows a simplified 80386 - 27C256 interface.
In figure 1 1.3, A, A,,, BE3#-BEO#, D/C#, and ADS# pins of the 80386 are used to generate
four byte enable signals, EO, E l , E2, and E.

The 80386 outputs low on ADS# (Address status) pin to indicate valid bus cycle
(W/R#, D/C#, M/IO#) and address (BEO# -BE34 signals.

The 80386 A, and A, bits (obtained internally) indicate which portion of the data
bus will be used to transfer data. For example, A, A, = 1 1 means that contents of addresses
such as 00G00003H, 00000007H, ... will be used by the 80386 to transfer data via its
D,,-D,,pins. BE3#-BEO# and D/C# are used to produce the byte enable signals which

A 32-bit misaligned transfer such as MOV

_ _ -

5 64 Fundamentals of Digital Logic and Microcomputer Design

MAO#
WR#

READY#

BS16#

BE3#-BEO#
D/C#

ADS#

80386

A 16

24 - 31

D 16 - D 23

D 8 - D 1 5

DO-D,

NA#

FIGURE 11.3

From output of
byte enable
logic circuit -

EO

Byte Enable

Logic Circuit

I I I
I I

+is v

80386/27C256 Interface.

are connected to the ?% pin of the appropriate EPROM. The inverted M/IO# is logically
ORed with the W/R# pin. The output of this OR gate is connected to the pin of all four
EPROM's.
EO, E l , E2, and are ANDed and connected to the READY# pin. When the READY#
pin is asserted LOW, the 80386 latches or reads data. Until READY# pin is asserted LOW
by the external device, the 80386 inserts wait states. One must ensure that the data is ready
before READY# is asserted. The BS16# is asserted HIGH by connecting it to inverted
ADS# to indicate 32-bit memory. NA# is connected to +5 V to disable pipelining.

_ - -

The memory map can be determined as follows:

EPROM#l :

Don't cares
Assume zeros to Ones

= 00000000H, 00000004H, ... , OOOlFFFCH

Similarly, the memory maps for other EPROMs are :
EPROM#2: 00000001H, 00000005H, ... ,0001 FFFDH
EPROM#3: 00000002H, 00000006H, ... ,0001 FFFEH
EPROM#4: 00000003H, 00000007H, ... , OOOlFFFFH

11.3.9 80386 I/O
The 80386 can use either a standard I/O or a memory-mapped I/O technique.

Intel and Motorola 32- & 44-bit Microprocessors 565

The address decoding required to generate chip selects for devices using standard
I/O is often simpler than that required for memory-mapped devices. But, memory-mapped
I/O offers more flexibility in protection than standard I/O does.

The 80386 can operate with 8-, 16-, and 32-bit peripherals. Eight-bit I/O devices
can be connected to any of the four 8-bit sections of the data bus. For efficient operation,
32-bit I/O devices should be assigned to addresses that are even multiples of four. For
standard I/O, the 80386 includes there types of I/O instructions. These are direct, indirect,
and string 110 instructions which include the following:
Direct

For 8-bit :

For 16-bit:

Indirect
For 8-bit :

For 16-bit:

For 32-bit:

String
For 8-bit :

For 16-bit:

For 32-bit:

IN AL, PORT
OUT PORT, AL
IN AX, PORT
OUT PORT, AX

IN AL, DX
OUT DX, AL
IN AX, DX
OUT DX, AX
IN EAX, DX
OUT DX, EAX

INSB, (ES:DI) - ((DX))

OUTSB ((DX)) -(ES:SI)

INSW, , (ES:DI) - ((DX))

OUTSW, (ES:SI) - ((DX))

INSD, (ES:EDI) - ((DX))

OUTSD, ((DX)) +- (ES:ESI)

DI +DI 1

SI - SI 2 1

(DI) - DI 2 2

(SI) c- SI 2 2

ED1 .+ ED1 2 4

ESI + ESI t 4

11.4 Intel 80486 Micromocessor

The Intel 80486 is an enhanced 80386 microprocessor with on-chip floating-point
hardware.

11.4.1 Intel 80486B0386 Comparison
Table 1 1.2 compares the basic features of the 80486 with those of the 80386.

11.4.2 Special Features of the 80486
The Intel 80486 is a 32-bit microprocessor, like the Intel 80386. It executes the complete
instruction set of the 80386 and the 80387DX floating-point coprocessor. Unlike the
80386, the 80486 on-chip floating-point hardware eliminates the need for an external
floating-point coprocessor chip and the on-chip cache minimizes the need for an external
cache and associated control logic.

566

TABLE 11.2 80386 vs. 80486

Characteristic 80386 80486
Introduced in 1985; 386SX in 1988 1989

Fundamentals of Digital Logic and Microcomputer Design

Main features

Data bus size accommodated
On-chip Cache
Address bus size
On-chip transistors
Directly addressable memory
Virtual memory size
Clock
Pins

Address and data buses
Registers

Adds’ paging 32-bit extension,
on chip address translation, and
greater speed than 8086. 32-bit
microprocessor
16-, 32-bit
No; Can be interfaced externally
32-bit
275,000
4 Gigabytes
64 Terabytes
25 MHz to 50 MHz
100 for 80386SX; 168 for other
80386’s
non-multiplexed
8 32-bit general purpose registers
32-bit EIP and Flag register
6 16-bit segment registers
6 64-bit segment descriptor
registers
4 32-bit system control registers

(CRO-CR3)

Adds on-chip cache, floating-
point unit, and greater
speed than 386. 32-bit
microprocessor.
8-, 16-, 32-bit
Yes
32-bit
1.2 million
4 Gigabytes
64 Terabytes
25 MHz to 100 MHz
168

non-multiplexed
All registers listed under the
80386 plus the following
registers:
8 80-bit
8 2-bit
8 16-bit
3 16-bit
2 48-bit

Address Defined by A,-A,,; BEO#-BE3# Same as the 80386
Address HOLD Not available The AHOLD input pin causes

the 80486 to float its address
bus in the next clock cycle.
This allows an external device
to drive an address into the
80486 for internal cache line
invalidation.
Three pins are used:

HLDA output pin
BREQ output

Direct Memory Access Two pins are used:
(DMA) HOLD input pin HOLD input pin

HLDA output pin

Bus backoff Not available The BOFF# input pin

On-chip memory management Yes
hardware
Operating modes: Real,
Protected, and Virtual 8086
modes 8086
On-chip floating-point No
hardware
Instructions 129 including the floating-point

Yes. Does not support max-
imum or minimum modes like the

instrucions where the 80386 is
interfaced to the 80387

-~
indicates that another bus
master needs to complete
a bus cycle in order for the
80486’s current cycle to
complete.
Yes

Same as the 80386

Yes

All 80386 instructions
including the floating-point
instructions for the on-chip
floating-point hardware plus

Intel and Motorola 32- & 64-bit Microprocessors 567

The 80486 is object code compatible with the 8086, 8088, 80186, 80286, and
80386 processors. It can perform a complete set of arithmetic and logical operations on 8-,
16-, and 32-bit data types using a full-width ALU and eight general-purpose registers. Four
gigabytes of physical memory can be addressed directly via its separate 32-bit addresses
and data paths. An on-chip memory management unit is added, which maintains the
integrity of memory in the multitasking and virtual-memory environments. Both memory
segmentation and paging are supported.

The 80486 has an internal 8 Kbyte cache memory. This provides fast access to
recently used instructions and data. The internal write-through cache can hold 8 Kbytes
of data or instructions. The on-chip floating-point unit performs floating-point operations
on the 32-, 64-, and 80- bit arithmetic formats specified in the IEEE standard and is object
code compatible with the 8087, 80287, and 80387 coprocessors. The fetching, decoding,
execution, and address translation of instructions is overlapped within the 80486 processor
using instruction pipelining. This allows a continuous execution rate of one clock cycle per
instruction for most instructions.

Like the 80386, the 80486 processor can operate in three modes (set in software):
real, protected, and virtual 8086 mode. After reset or power up, the 80486 is initialized in
real mode. This mode has the same base architecture as the 8086, but allows access to the
32-bit register set of the 80486 processor. Nearly all of the 80486 processor instructions
are available, but the default operand size is 16 bits. The main purpose of real mode is to
set up the processor for protected mode.

Protected mode, or protected virtual address mode, is where the complete
capabilities of the 80486 become available. Segmentation and paging can both be used in
protected mode. All 8086,80286, and 386 processor software can be run under the 80486
processor’s hardware-assisted protection mechanism.

Virtual 8086 mode is a submode for protected mode. It allows 8086 programs to
be run but adds the segmentation and paging protection mechanisms of protected mode. It
is more flexible to run 8086 in this mode than in real mode because virtual 8086 mode can
simultaneously execute the 80486 operating system and both 8086 and 80486 processor
applications.

The 80486 is provided with a bus backoff feature. Using this, the 80486 will float
its bus signals if another bus master needs control of the bus during a 80486 bus cycle and
then restart its cycle when the bus again becomes available. The 80486 includes dynamic
bus sizing. Using this feature, external controllers can dynamically alter the effective
width of the data bus with 8-, 16-, or 32-bit bus widths.

In terms of programming models, the Intel 80386 has very few differences with
the 80486 processor. The 80486 processor defines new bits in the EFLAGS, CRO, and
CR3 registers. In the 80386 processor, these bits were reserved, so the new architectural
features should be a compatibility issue.

11.4.3 80486 New Instructions Beyond Those of the 80386
There are six basic instructions plus floating-point instructions added to the 80486
instruction set beyond those of the 80386 instruction set as follows:

1. Three New Application Instructions
BSWAP
XADD
CMPXCHG

2. Three New System Instructions

568 Fundamentals of Digital Logic and Microcomputer Design

I N V D
WBINVD
INVLPG

The 80386 can execute all its floating-point instructions when the 80387 is
present in the system. The 80486, on the other hand, can directly execute all its floating-
point instructions (same as the 80386 floating-point instructions) because it has the on-chip
floating-point hardware.

The three new application instructions included with the 80486 are BSWAP reg32;
XADD dest, source; and CMPXCHG dest, source. BSWAP reg32 reverses the byte order
of a 32-bit register, converting a value in littlebig endian form to big/little endian form.
That is, the BSWAP instruction exchanges bits 7-0 with bits 31-24 and bits 15-8 with bits
23-1 6 of a 32-bit register. Executing this instruction twice in a row leaves the register with
the original value. When BSWAP is used with a 16-bit operand size, the result left in the
destination operand is undefined. Consider an example of a 32-bit operand: If (EAX) =

12345678H, then after BSWAP EAX, the contents of EAX are 78563412H. Note that little
endian is a byte-oriented method in which the bytes are ordered (left to right) as 3, 2, 1,
and 0, with byte 3 being the most significant byte. Big endian on the other hand, is also a
byte-oriented method where the bytes are ordered (left to right) as 0, 1,2, and 3 with byte
0 being the most significant byte. The BSWAP instruction speeds up execution of decimal
arithmetic by operating on four digits at a time.

XADD dest, source has the form

XADD dest, source
regUrnem8, reg8
reg 1 6/mem 16, reg 16
reg321mem32, reg32

The XADD dest, source instruction loads the destination into the source and then
loads the sum of the destination and the original value of the source into the destination.
For example, if (AX) = 0123H, (BX) = 9876H, then after XADD AX, BX, the contents of
AX and BX are respectively 9999H and 0123H.

CMPXCHG dest, source has the form:
CMPXCHG dest, source

reg8/mem8, reg8
regl6/meml6, reg16
reg32/mem32, reg32

The CMPXCHG instruction compares the (AL, AX or EAX register) with the destination.
If they are equal, the source is loaded into the destination; Otherwise, the destination is
loaded into the AL,AX or EAX. For example, if (DX) = 4324H, (AX) = 4532H, and (BX)
= 4532H, then after CMPXCHG BX, DX, the ZF flag is set to one and (BX) = 4324H.

11.5 Intel Pentium Microprocessor

Table 1 1.3 summarizes the fundamental differences between the basic features of 486 and
Pentium families. Microprocessors have served largely separate markets and purposes:
business PCs and engineering workstations. The PCs have used Microsoft’s DOS and
Windows operating systems whereas the workstations have used various features of UNIX.

Intel and Motorola 32- & 64-bit Microprocessors 569

TABLE 11.3 Basic Differences Between 80486 and Pentium Processor

Feature 486 Processor Pentium Processor
Clock 25 to 100 MHz 60 to 233 MHz
Address and data buses 32-bit data bus 64-bit data bus

32-bit address bus 32-bit address bus
Pipeline model Single Dual
Internal cache 8K for both data and instruction 8k for data and 8k for

instruction
Number of transistors 1.2 million 3.2 million
Performance at 66 MHZ 54 MIPS 112 MIPS
in MIPS (millions of
instructions per second)
Number of pins 168 273

The PCs have not been utilized in the workstation market because of their relatively modest
performance, especially with regard to complicated graphics display and floating-point
calculations. Workstations have been kept out of the PC market partially because of their
high prices and hard-to-use system software.

The Pentium has brought the PCs up to workstation-class computational
performance with sophisticated graphics. The Intel Pentium is a 32-bit microprocessor with
a 64-bit data bus. The Intel Pentium, like its predecessor the Intel 80486, is 100% object
code compatible with 8086/80386 systems. BICMOS(Bipo1ar and CMOS) technology is
used for the Pentiurn.

The Pentium processor has three modes of operation; real-address mode (also
called “real mode”), protected mode, and system management mode. The mode determines
which instructions and architecture features are accessible. In real-address mode, the
Pentium processor runs programs written for 8086 or for the real-address mode of an 80386
or 80486.

The architecture of the Pentium processor in this mode is identical to that of the
8086 microprocessor. In protected mode, all instruction and architectural features of the
Pentium are available to the programmer. Some of the architectural features of the Pentium
processor include memory management, protection, multitasking, and multiprocessing.
While in protected mode, the virtual 8086 (v86) mode can be enabled for any task. For
the v86 mode, the Pentium can directly execute “real-address-mode’’ 8086 software in a
protected, multitasking environment.

The Pentium processor is also provided with a system management mode (SMM)
similar to the one used in the 80486SL, which allows to design for low power usage. SMM
is entered through activation of an external interrupt pin (system management interrupt,
SMI#). In December 1994, Intel detected a flaw in the Pentium chip while performing
certain division calculations. The Pentium is not the first chip that Intel has had problems
with. The first version of the Intel 80386 had a math flaw that Intel quickly fixed before
there were any complaints. Some experts feel that Intel should have acknowledged the
math problem in the Pentium when it was first discovered and then have offered to replace
the chips. In that case, the problem with the Pentium most likely would have been ignored
by the users. However, Intel was heavily criticized by computer magazines when the
division flaw in the Pentium chip was first detected.

The flaw in the division algorithm in the Pentium was caused by a problem with a
look-up table used in the division. Errors occur in the fourth through the fifteenth significant

570 Fundamentals of Digital Logic and Microcomputer Design

decimal digits. This means that in a result such as 5.78346, the last three digits could be
incorrect. For example, the correct answer for the operation 4,195,835 - (4,195,835 +
3,145,727) + (3,145,727) is zero. The Pentium provided a wrong answer of 256. IBM
claimed this problem can occur once every 24 days. Intel eventually fixed the division
flaw problem in the Pentium.

The Pentium microprocessor is based on a superscalar design. This means that
the processor includes dual pipelining and executes more than one instruction per clock
cycle; note that scalar microprocessors such as the 80486 family have only one pipeline
and execute one instruction per clock cycle, and superscalar processors allow more than
one instruction to be executed per clock cycle.

The Pentium microprocessor contains the complete 80486 instruction set along
with some new ones that are discussed later. Pentium’s on-chip memory management unit
is completely compatible with that of the 80486.

The Pentium includes faster floating-point on-chip hardware than the 80486.
Pentium’s on-chip floating-point hardware has been completely redesigned over the
80486. Faster algorithms provide up to ten times speed-up for common operations such
as add, multiply, and load. The two instruction pipelines and on-chip floating-point unit
are capable of independent operations. Each pipeline issues frequently used instructions
in a single clock cycle. The dual pipelines can jointly issue two integer instructions in one
clock cycle or one floating-point instruction (under certain circumstances, two floating-
point instructions) in one clock cycle.

Branch prediction is implemented in the Pentium by using two prefetch buffers,
one to prefetch code in a linear fashion and one to prefetch code according to the contents
of the branch target buffer (BTB), so the required code is almost always prefetched before
it is needed for execution. Note that the branch addresses are stored in the branch target
buffer (BTB).

There are two instruction pipelines, the U pipe and the V pipe, which are not
equivalent and interchangeable. The U pipe can execute all integer and floating-point
instructions, whereas the V pipe can only execute simple integer instructions and the
floating-point exchange register contents (FXCH) instructions.
The instruction decode unit decodes the prefetched instructions so that the Pentium can
execute them. The control ROM includes the microcode for the Pentium processor and
has direct control over both pipelines. A barrel shifter is included in the chip for fast shift
operations.

11.5.1 Pentium Registers
The Pentium processor includes the same registers as the 80486. Three new system flags
are added to the 32-bit EFLAGS register.

11.5.2
The Pentium includes the same addressing modes as the 80386/80486.
The Pentium microprocessor includes three new application instructions and four new

system instructions beyond those of the 80486. One of the new application instruction
is the CMPXCHG8B. As an example, CMPXCHG8B reg64 or mem64 compares the 64-bit
value in EDX:EAX with the 64 bit contents of reg64 or mem64. If they are equal, the
64-bit value in ECX:EBX is stored in reg64 or mem64; otherwise the content of reg64 or
mem64 is loaded into EDX:EAX.
Pentium floating-point instructions execute much faster than those of the 80486 instructions.

Pentium Addressing Modes and Instructions

Intel and Motorola 32- & 64-bit Microprocessors 57 1

For example, a 66-MHz Pentium microprocessor provides about three times the floating-
point performance of a 66-MHz Intel 80486 DX2 microprocessor.

11.5.3 Pentium versus 80486: Basic Differences in Registers, Paging, Stack
Operations, and Exceptions
Registers of the Pentium Processor versus Those of the 80486
This section discusses the basic differences between the Pentium and 80486 control, debug,
and test registers.

One new control register, CR4, is included in the Pentium. CR4 contains bits
that enable certain extensions to the 80486 provided in the Pentium processor. These
extensions include functions for handling certain hardware error conditions.

The Pentium processor defines the type of breakpoint access by two bits in
DR7 to perform breakpoint functions such as break on instruction execution only, break
on data writes only, and break on data reads or writes but not instruction fetches. The
implementation of test registers on the 80486 used for testing the cache has been redesigned
in the Pentium processor.
Paging

functions of the 80486 to support larger page sizes.
Stack Operations

The Pentium, 80486, and 80386 microprocessors push a different value of SP on
the stack for a PUSH instruction than does the 8086. The 32-bit processors push the value
of the SP before it is decremented whereas the 8086 pushes the value of the SP after it is
decremented.
Exceptions

The Pentium processor implements new exceptions beyond those of the 80486.
For example, a machine check exception is newly defined for reporting parity errors and
other hardware errors.

External hardware interrupts on the Pentium may be recognized on different
instruction boundaries due to the pipelined execution of the Pentium processor and
possibly an extra instruction passing through the V pipe concurrently with an instruction in
the U pipe. When the two instructions complete execution, the interrupt is then serviced.
Therefore, the EIP pushed onto the stack when servicing the interrupt on the Pentium
processor may be different than that for the 80486 (i.e., it is serviced later). The priority of
exceptions is the same on both the Pentium and 80486.

11.5.4 Pentium Input/Output
The Pentium processor handles I/O in the same way as the 80486. The Pentium can use
either standard I/O or memory-mapped I/O. Standard I/O is accomplished by using IN/OUT
instructions and a hardware protection mechanism. When memory-mapped I/O is used,
memory-reference instructions are used for inpudoutput and the protection mechanism is
provided via segmentation or paging.

The Pentium can transfer 8, 16, or 32 bits to a device. Like memory-mapped I/O,
16-bit ports using standard I/O should be aligned to even addresses so that all 16 bits can
be transferred in a single bus cycle. Like double words in memory-mapped I/O, 32-bit
ports in standard I/O should be aligned to addresses that are multiples of four. The Pentium
supports I/O transfer to misaligned ports, but there is a performance penalty because an
extra bus cycle must be used.

The Pentium processor provides an extension to the memory management/paging

5 72 Fundamentals of Digital Logic and Microcomputer Design

The INS and OUTS instructions move blocks of data between I/O ports and
memory. The INS and OUTS instructions, when used with repeat prefixes, perform block
input or output operations. The string IiO instructions can operate on byte (8-bit) strings,
word (16-bit) strings, or double word (32-bit) strings. When the Pentium is running in
protected mode, IiO operates as in real address mode with additional protection features.

11.5.5 Applications with the Pentium
The performance of the Pentium’s floating-point unit (FPU) makes it appropriate for wide
areas of numeric applications:

Pentium’s FPU can accept decimal operands and produce extra decimal results
of up to I8 digits. This greatly simplifies accounting programming. Financial
calculations that use power functions can take advantage of exponential and
logarithmic functions.
Many minicomputer and mainframe large simulation problems can be executed
by the Pentium. These applications include complex electronic circuit simulations
using SPICE and simulation of mechanical systems using finite element
analysis.
The Pentium’s FPU can move and position machine control heads with accuracy
in real time. Axis positioning can efficiently be performed by the hardware
trigonometric support provided by the FPU. The Pentium can therefore be used
for computer numerical control (CNC) machines.
The pipelined instruction feature of the Pentium processor makes it an ideal
candidate for DSP (digital signal processing) and related applications for
computing matrix multiplications and convolutions.
Other possible application areas for the Pentium include robotics, navigation, data
acquisition, and process control.

11.5.6 Pentium versus Pentiurn Pro
The Pentium was first introduced by Intel in March 1993, and the Pentium Pro was
introduced in November 1995. The Pentium processor provides pipelined superscalar
architecture. The Pentium processor’s pipelined implementation uses five stages to extract
high throughput and the Pentium Pro utilizes 12-stage, superpipelined implementation,
trading less work per pipestage for more stages. The Pentium Pro processor reduced its
pipestage time by 33% compared with a Pentium processor, which means the Pentium Pro
processor can have a 33% higher clock speed than a Pentium processor and still be equally
easy to produce from a semiconductor manufacturing process. A 200-MHz Pentium Pro
is always faster than a 200-MHz Pentium for 32-bit applications such as computer-aided
design (CAD), 3-D graphics, and multimedia applications.

The Pentium processor’s superscalar architecture, with its ability to execute two
instructions per clock, was difficult to exceed without a new approach. The new approach
used by the Pentium Pro processor removes the constraint of linear instruction sequencing
between the traditional “fetch” and “execute” phases, and opens up a wide instruction pool.
This approach allows the “execute” phase of the Pentium Pro processor to have much more
visibility into the program’s instruction stream so that better scheduling may take place.
This allows instructions to be started in any order but always be completed in the original
program order.

Microprocessor speeds have increased tremendously over the past 10 years, but
the speed of the main memory devices has only increased by 60 percent. This increasing

Intel and Motorola 32- & 64-bit Microprocessors 573

TABLE 11.4 Pentium vs. Pentium Pro

Pentium Pentium Pro
First introduced March 1993
2 instructions per clock cycle
Primary cache of 16K
Current clock speeds of 100, 120, 133, 150,
166,200, and 233 MHz
More silicon is needed to produce the chip

Designed for operating systems written in

Introduced November 1995
3 instructions per clock cycle
Primary cache of 16K
Current clock speeds 166, 180,200 MHz

Tighter design reduces silicon needed and makes
chip faster (shorter distances between transistors)
Designed for operating systems written in 32-bit

memory latency, relative to the microprocessor speed, is a fundamental problem that
the Pentium Pro is designed to solve. The Pentium Pro processor “looks ahead” into its
instruction pool at subsequent instructions and will do useful work rather than be stalled.
The Pentium Pro executes instructions depending on their readiness to execute and not on
their original program order. In summary, it is the unique combination of improved branch
prediction, choosing the best order, and executing the instructions in the preferred order
that enables the Pentium Pro processor to improve program execution over the Pentium
processor. This unique combination is called “dynamic execution.”

The Pentium Pro does a great job running some operating systems such as
Windows NT or Unix. The first release of Windows 95 contains a significant amount of
16-bit code in the graphics subsystem. This causes operations on the Pentium Pro to be
serialized instead of taking advantage of the dynamic execution architecture. Nevertheless,
the Pentium Pro is up to 30% faster than the fastest Pentium in 32-bit applications. Table
1 1.4 compares the basic features the Pentium with those of the Pentium Pro.

11.5.7
The 32-bit Pentium II processor is Intel’s latest addition to the Pentium line of
microprocessors, which originated form the widely cloned 80x86 line. It basically takes
attributes of the Pentium Pro processor plus the capabilities of MMX technology to yield
processor speeds of 333, 300, 266, and 233 MHz. The Pentium I1 processor uses 0.25
micron technology (this refers to the width of the circuit lines on the silicon) to allow
increased core frequencies and reduce power consumption. The Pentium I1 processor took
advantage of four new technologies to achieve its performance ratings:

Pentium I1 / Celeron / Pentium I1 XeonTM / Pentium I11 / Pentium 4

Dynamic Execution
Intel MMX Technology
Single-Edge-Contact Cartridge

Dual Independent Bus Architecture (DIB)

DIB was first implemented in the Pentium Pro processor to address bandwidth
limitations. The DIB architecture consists of two independent buses, an L2 cache bus and
a system bus, to offer three times the bandwidth performance of single bus architecture
processors. The Pentium I1 processor can access data from both buses simultaneously to
accelerate the flow of information within the system.

Dynamic execution was also first implemented in the Pentium Pro processor.
It consists of three processing techniques to improve the efficiency of executing
instructions.
These techniques include multiple branch prediction, data flow analysis, and speculative

5 74 Fundamentals of Digital Logic and Microcomputer Design

execution. Multiple branch prediction uses an algorithm to determine the next instruction
to be executed following a jump in the instruction flow. With data flow analysis, the
processor determines the optimum sequence for processing a program after looking at
software instructions to see if they are dependent on other instructions. Speculative
execution increases the rate of execution by executing instructions ahead of the program
counter that are likely to be needed.

MMX (matrix math extensions) technology is Intel’s greatest enhancement to
its microprocessor architecture. MMX technology is intended for efficient multimedia
and communications operations. To achieve this, 57 new instructions have been added to
manipulate and process video, audio, and graphical data more efficiently. These instructions
support single-instruction multiple-data (SIMD) techniques, which enable one instruction
to perform the same function on multiple pieces of data. Programs written using the new
instructions significantly enhance the capabilities of Pentium 11.

The final feature in Intel’s Pentium I1 processor is single-edge-contact (SEC)
packaging. In this packaging arrangement, the core and L2 cache are fully enclosed in a
plastic and metal cartridge. The components are surface mounted directly to a substrate
inside the cartridge to enable high-frequency operation.

Intel Celeron processor utilizes Pentium I1 as core .The Celeron processor family
includes: 333 MHz, 300A MHz, 300 MHz, and 266 MHz processors.The Celeron 266
MHz and 300 MHz processors do not contain any level 2 cache. But the Celeron 300A
MHz and 333 MHz processors incorporate an integrated L2 cache. All Celeron processors
are based on Intel’s 0.25 micron CMOS technology. The Celeron processor is designed
for inexpensive or “Basic PC” desktop systems and can run Windows 98. The Celeron
processor offers good floating-point (3D geometry calculations) and multimedia (both
video and audio) performance.

The Pentium I1 Xeon processor contains large, fast caches to transfer data at super
high speed through the processor core. The processor can run at either 400 MHz or 450
MHz. The Pentium I1 Xeon is designed for any mid-range or higher Intel-based server
or workstation.The 450 MHz Pentium I1 Xeon can be used in dual-processor (two-way)
workstations and servers. The 450 MHz Pentium I1 Xeon processor with four-way servers
is expected to be available in the future.

The Pentium 111 operates at 450 MHz and 500 MHz. It is designed for desktop
PCs. The Pentium 111 enhances the multimedia capabilities of the PC, including full screen
video and graphics. Pentium 111 Xeon processors run at 500 MHz and 550 MHz. They are
designed for mid-range and higher Internet-based servers and workstations. It is compatible
with Pentium I1 Xeon processor-based platforms. Pentium I11 Xeon is also designed for
demanding workstation applications such as 3-D visualization, digital content creation, and
dynamic Internet content development. Pentium 111-based systems can run applications on
Microsoft Windows NT or UNIX-based environments. The Pentium 111 Xeon is available
in a number of L2 cache versions such as 5 12-Kbytes, 1-Mbyte, or 2-Mbytes (500 MHz);
512 Kbytes (550 MHz) to satisfy a variety of Internet application requirements.

The Intel Pentium 4 is an enhanced Pentium 111 processor. It is currently available at
1.30,1.40,1 S O , and 1.70 GHz. The chip’s all-new internal design contains Intel NetBurstTM
micro-architecture. This provides the Pentium 4 with hyper pipelined technology (which
doubles the pipeline depth to 20 stages), a rapid execution engine (which pushes the
processor’s ALUs to twice the core frequency), and 400 MHz system bus. The Pentium 4
contains 144 new instructions. Furthermore, inclusion of an improved Advanced Dynamic
Execution and an improved floating point pushes data efficiently through the pipeline.

Intel and Motorola 32- & 64-bit Microprocessors 575

This enhances digital audio, digital video and 3D graphics. Along with other features such
as streaming SIMD Extensions 2 (SSE2) that extends MMXTM technology, the Pentium 4
gives the advanced technology to get the most out of the Internet. Finally, the Pentium
4 offers high performance when networking multiple PCs, or when attaching Pentiurn 4
based PC to home consumer electronic systems and new peripherals.

11.6 MercedIIA-64

Intel and Hewlett-Packard recently announced a 64-bit microprocessor called “Merced”
and also known as “Intel Architecture-64” (IA-64) or Itanium. The microprocessor is not
an extension of Intel’s 32-bit 80x86 or Pentium series processors, nor is it an evolution
of HP’s 64-bit RISC architecture. IA-64 is a new design that will implement innovative
fonvard-looking features to help improve parallel instruction processing: that is, long
instruction words, instruction prediction, branch elimination, and speculative loading.
These techniques are not necessarily new concepts, but they are implemented in ways that
are much more efficient.

An 80x86 instruction varies in length from 8 to 108 bits, and the microprocessor
spends time and work decoding each instruction while scanning for the instruction
boundaries during execution. In addition, Pentium processors frantically try to reorder
instructions and group them so that two instructions can be fed into two processing
pipelines simultaneously. Although improving performance, this approach is still rather
ineffective and has a high cost of logic circuitry in the chip.

The IA-64 packs three instructions into a single 128-bit bundle-something
Intel calls “explicitly parallel instruction computing” (EPIC). During compilation of a
program, the compiler explicitly tells the microprocessor inside the 128-bit packet which
of the instructions can be executed in parallel. Hence, the microprocessor does not need to
scramble at run-time to discover and reorder instructions for parallel execution because all
of this has already been done at compilation. While trying to keep the instruction pipeline
full, 80x86 or Pentium family processors try to predict which way branches will take place
and speculatively execute instructions along the predicted path. In case of wrong guesses,
the microprocessor must discard the speculative results, flush the pipelines, and reload the
correct instructions into the pipe. This results in a large loss of microprocessor cycles.

In dealing with branch prediction, the IA-64 puts the burden on the compiler.
Wherever practical, the compiler inserts flags into the instruction packets to mark
separate paths from a branch instruction. These flags, known as “predicates,” allow the
microprocessor to funnel instructions for a specific branch into a pipe and execute
each branch separately and simultaneously. This effectively lets the microprocessor
process different paths of a branch at the same time, then discard the results of the path it
does not need.

One drawback of the 80x86 processor series is the fact that data is not fetched
from memory until the microprocessor needs it and calls for it. The IA-64 implements
speculative loading, which allows the memory and I/O devices to be delivering data to the
microprocessor before the processor actually needs it, eliminating some of the delays the
80x86 processor incurs while waiting for data to appear on the bus.

During compilation of a program, the compiler scans the source code and when it
sees an upcoming load instruction, removes it and inserts a speculative load instruction a
few cycles ahead of it. In this manner, the IA-64 is able to continue executing code while
minimizing delay time that the memory or I/O devices inherently incur.

576 Fundamentals of Digital Logic and Microcomputer Design

11.7 Overview of Motorola 32- and 64-bit Microarocessors

This section provides an overview of the state-of-the-art in Motorola’s microprocessors.
Motorola’s 32-bit microprocessors based on 68HC000 architecture include the MC68020,
MC68030, MC68040, and MC68060. Table 11.5 compares the basic features of some of
these microprocessors with the 68HC000.

The PowerPC family of microprocessors were jointly developed by Motorola,
IBM, and Apple. The PowerPC family contains both 32- and 64-bit microprocessors. One
of the noteworthy feature of the PowerPC is that it is the first top-of-the-line microprocessor
to include an on-chip real-time clock (RTC). The RTC is common in single-chip
microcomputers rather than microprocessors. The PowerPC is the first microprocessor to
implement this on-chip feature, which makes it easier to satisfy the requirements of time-
keeping for task switching and calendar date of modem multitasking operating systems. The
PowerPC microprocessor supports both the Power Mac and standard PCs. The PowerPC
family is designed using RISC architecture

11.7.1 Motorola MC68020
The MC68020 is Motorola’s first 32-bit microprocessor. The design of the 68020 is based
on the 68HC000. The 68020 can perform a normal read or write cycle in 3 clock cycles
without wait states as compared to the 68HC000, which completes a read or write operation
in 4 clock cycles without wait states. As far as the addressing modes are concerned, the
68020 includes new modes beyond those of the 68HC000. Some of these modes are
scaled indexing, larger displacements, and memory indirection. Furthermore, several new
instructions are added to the 68020 instruction set, including the following:

Bit field instructions are provided for manipulating a string of consecutive bits
with a variable length from 1 to 32 bits.

TABLE 11.5 Motorola MC68HC000 vs. MC68020/68030/68040

MC68HC000 MC68020 MC68030 MC68040
Comparable Clock 33MHz 33 MHz 33 MHz 33 MHz
Speed
Pins
Address Bus
Addressing Modes
Maximum Memory
Memory
Management
Cache (on chip)

Floating Point

Total Instructions

ALU size

(4MHz min)*
64,68
24-bit
14
16 Megabytes
NO

NO

NO

56

One 16-bit

(8 MHz min.)*
114
32-bit
18
4 Gigabytes
By interfacing the
68851 MMU chip
Instruction cache

By interfacing
68881/68882
floating-point
coprocessor chip
101

Three 32-bit

(8 MHz min.)*
118
32-bit
18
4 Gigabytes
On-chip MMU

Instruction and
data cache
By interfacing
68881/68882
floating-point
coprocessor chip
103

Three 32-bit

(8 MHz min.)*
118
32-bit
18
4 Gigabytes
On-chip MMU

Instruction and
data cache
On-chip
floating point
hardware

103 plus
floating- point
instructions
Three 32-bit

ALU ALU’s ALU’s ALU’s
*Higher clock speeds available

Intel and Motorola 32- & 64-bit Microprocessors 577

Two new instructions are used to perform conversions between packed BCD and
ASCII or EBCDIC digits. Note that a packed BCD is a byte containing two BCD
digits.
Enhanced 68000 array-range checking (CHK2) and compare (CMP2) instructions
are included. CHK2 includes lower and upper bound checking; CMP2 compares a
number with lower and upper values and affects flags accordingly.
Two advanced instructions, namely, CALLM and RTM, are included to support
modular programming.
Two compare and swap instructions (CAS and CAS2) are provided to support
multiprocessor systems.

A comparison of the differences between the 68020 and 68HC000 will be provided later
in this section.

The 68030 and 68040 are two enhanced versions of the 68020. The 68030 retains
most of the 68020 features. It is a virtual memory microprocessor containing an on-chip
MMU (memory management unit). The 68040 expands the 68030 on-chip memory
management logic to two units: one for instruction fetch and one for data access. This
speeds up the 68040’s execution time by performing logical-to-physical-address translation
in parallel. The on-chip floating-point capability of the 68040 provides it with both integer
and floating-point arithmetic operations at a high speed. All 68HC000 programs written
in assembly language in user mode will run on the 68020/68030 or 68040. The 68030 and
68040 support all 68020 instructions except CALLM and RTM. Let us now focus on the
68020 microprocessor in more detail.

MC68020 Functional Characteristics
The MC68020 is designed to execute all user object code written for the 68HC000. Like the
68HC000, it is manufactured using HCMOS technology. The 68020 consumes a maximum
of 1.75 W. It contains 200,000 transistors on a 318” piece of silicon. The chip is packaged
in a square (1.345” x 1.345”) pin grid array (PGA) and other packages. It contains 169 pins
(1 14 pins used) arranged in a 13 x 13 matrix.

The processor speed of the 68020 can be 12.5, 16.67,20,25, or 33 MHz. The chip
must be operated from a minimum frequency of 8 MHz. Like the 68HC000, it does not
have any on-chip clock generation circuitry. The 68020 contains 18 addressing modes and
101 instructions. All addressing modes and instructions of the 68HC000 are included in the
68020. The 68020 supports coprocessors such as the MC6888 1 /MC68882 floating-point
and MC6885 1 MMU coprocessors.

These and other hnctional characteristics of the 68020 are compared with the
68HC000 in Table 1 1.6. Some of the 68020 characteristics in Table 11.6 will now be
explained.

Three independent ALUs are provided for data manipulation and address
calculations
A 32-bit barrel shift register (occupies 7% of silicon) is included in the 68020 for
very fast shift operations regardless of the shift count.
The 68020 has three SPs. In the supervisor mode (when S = l), two SPs can be
accessed. These are MSP (when M = 1) and ISP (when M = 0). ISP can be used
to simplify and speed up task switching for operating systems.
The vector base register (VBR) is used in interrupt vector computation. For
example, in the 68HC000, the interrupt vector address is obtained by using VBR
+ 4 x 8-bit vector.

578

TABLE 11.6

Fundamentals of Digital Logic and Microcomputer Design

Functional Characteristics, MC68HC000 vs. MC68HC020

Characteristic 68HCOOO 68020
Technology HCMOS HCMOS
Number of pins

Control unit

Clock

ALU
Address bus
size
Data bus size

Instructions and
data access

Instruction
cache

Directly
addressable
memory
Registers

64,68

Nanomemory (two-level
memory)
6 MHz, IOMHz, 12.5 MHz,
16.67 MHz, 20 MHz, 25 MHz,
33 MHz (4 MHz minimum
requirement).
One 16-bit ALU
24 bits with A, encoded from
UDS and fi.
The 68HC000 can only be
configured as 16-bit memory (two
8-bit chips) via Do-D, for odd
addresses and D,-D,S for even
addresses during byte transfers;
for word and long word, uses Do-
D,5. The I/O can be configured
as byte (one 8-bit word) or 16-bit
(two 8-bit words).
Instructions must be at even
addresses for .B, .W, and .L. Byte
data can be accessed at either
even or odd addresses while
word and long word data must be
at even addresses.
None

16 megabytes

8 32-bit data registers
7 32-bit address registers
2 32-bit SPs
1 32-bit PC (24 bits used)
1 16-bit SR

169 (1 3 x 13 matrix; pins come out
at bottom of chip; 114 pins currently
used.)
Nanomemory (two-level memory)

12.5 MHz, 16.67 MHz,20 MHz,25
MHz, 33 MHz (8 MHz minimum
requirement).

Three 32-bit ALUs
32 bits with no encoding of A, is
required.
The 68020 can be configured as 8-bit
memory (a single 8-bit chip) via D,,-D2,
pins or 16-bit memory (two 8-bit chips)
via D,, - D,, pins or 32-bit memory
(four 8-bit chips) via D,,-Do pins. I/O
can be configured as 8-bit or 16-bit or
32-bit.

Instructions must be accessed at even
addresses for .B, .W, and .L; data
accesses can be at either even or odd
addresses for .B, .W, .L.

128K 16-bit word cache. At start of
an instruction fetch, the 68020 always
outputs LOW on ECS (early cycle
start) pin and accesses the cache. If
instruction is found in the cache, the
68020 inhibits outputting LOW on AS
pin; otherwise, the 68020 sends LOW
on AS pin and reads instruction from
main memory.
4 gigabytes (4,294,964,296 bytes)

-

8 32-bit data registers
7 32-bit address registers
3 32-bit SPs
1 32-bit PC (all bits used)
1 16-bit SR
1 32-bit VBR (vector base register)
2 3-bit function code registers (SFC and
DFC)
1 32-bit CAAR (cache address register)
1 CACR (cache control register)

Intel and Motorola 32- & 64-bit Microprocessors 579

Addressing
modes
Instruction set
Barrel shifter
Stack pointers

Status register
Coprocessor
interface

FCO, FC 1, FC2
pins

14

56 instructions
No
USP, SSP

T, S, I O J I , 12, X, N, Z, V, C
Emulated in software; that is, by
writing subroutines, coprocessor
functions such as floating-point
arithmetic can be obtained.

FCO, FCl, FC2 = 11 1 means
interrupt acknowledge.

18

10 1 instructions
Yes. For fast-shift operations.
USP, MSP (master SP), ISP (interrupt
SP)
TO, T1, S, M, IOJl, 12, X, N, Z, V, C
Can be directly interfaced to
coprocessor chips, and coprocessor
functions such as floating-point
arithmetic can be obtained via 68020
instructions.
FCO, FCI, FC2 = 1 1 1 means CPU
space cycle; then by decoding A1 6-
A 19, one can obtain breakpoints,
coprocessor functions, and interrupt
acknowledge.

The SFC (source function code) and DFC (destination function code) registers are
3 bits wide. These registers allow the supervisor to move data between address
spaces. In supervisor mode, 3-bit addresses can be written into SFC or DFC
using such instructions such as MOVEC A2 I SFC. The upper 29 bits of SFC are
assumed to be zero. The MOVES. W (A0) I DO can then be used to move a word
from a location within the address space specified by SFC and [AO] to DO. The
68020 outputs [SFC] to the FC2, FC 1, and FCO pins. By decoding these pins via
an external decoder, the desired source memory location addressed by [AO] can
be accessed.
The new addressing modes in the 68020 include scaled indexing, 32-bit
displacements, and memory indirection. To illustrate the concept of scaling,
consider moving the contents of memory location 50,, to A1 . Using the 68000,
the following instruction sequence will accomplish this

M0VEA.W #lo, A0
M0VE.W #lo, DO
ASL #2, DO
M0VEA.L 0 (AO, DO.W), A1

The scaled indexing mode can be used with the 68020 to perform the same as
follows:

M0VEA.W #lo, A0
M0VE.W #lo, DO
M0VEA.L (0, AO, D0.W * 4), A1

Note that [DO] here is scaled by 4. Scaling by 1, 2, 4, or 8 can be obtained.
The new 68020 instructions include bit field instructions to better support
compilers and certain hardware applications such as graphics, 32-bit multiply
and divide instructions, pack and unpack instructions for BCD, and coprocessor
instructions. Bit field instructions can be used to input A/D converters and
eliminate wasting main memory space when the A/D converter is not 32 bits
wide. For example, if the A/D is 12 bits wide, then the instruction BFEEXTU
$22320000 { 2 : 13) I DO will input bits 2-13 of memory location $22320000
into DO. Note that $22320000 is the memory-mapped port, where the 12-bit A/D
is connected at bits 2-13. The next A/D can be connected at bits 14-25, and so
on.

580 Fundamentals of Digital Logic and Microcomputer Design

FC2, FC1, FCO = 1 11 means CPU space cycle. The 68020 makes CPU space
access for breakpoints, coprocessor operations, or interrupt acknowledge cycles.
The CPU space classification is generated by the 68020 based upon execution
of breakpoint instructions or coprocessor instructions, or during an interrupt
acknowledge cycle. The 68020 then decodes AI6-Al9 to determine the type of
CPU space. For example, FC2, FCl, FCO = 11 1 and A,,, A,,, A,,, A,, = 0010
mean coprocessor instruction.
For performing floating-point operation, the 68HC000 user must write subroutines
using the 68HC000 instruction set. The floating-point capability in the 68020 can
be obtained by connecting a floating-point coprocessor chip such as the Motorola
68881. The 68020 has two coprocessor chips: the 68881 (floating point) and the
6885 1 (memory management). The 68020 can have up to eight coprocessor chips.
When a coprocessor is connected to the 68020, the coprocessor instructions are
added to the 68020 instruction set automatically, and this is transparent to the
user. For example, when the 68881 floating-point coprocessor is added to the
68020, instructions such as FADD (floating-point add) are available to the user.
The programmer can then execute the instruction FADD F D O , FD1. Note that
registers FDO and FDl are in the 68881. When the 68020 encounters the FADD
instruction, it writes a command in the command register in the 6888 1, indicating
that the 68881 has to perform this operation. The 68881 then responds to this
by writing in the 68881 response register. Note that all coprocessor registers are
memory mapped. Hence, the 68020 can read the response register and obtain the
result of the floating-point add from the appropriate locations .
The 68HC000 DTACK pin is replaced by two pins on the 68020: DSACKl and
DSACKO. These pins are defined as follows:

DSACKO DSACKO Device Size
0 0 3 2-bit device
0 1 16-bit device
1 0 8-bit device
1 1 Data not ready; insert wait states

The 68020 can be configured as a byte, 16-bit, or 32-bit memory system. As a
byte memory system, the data pins of a single 8-bit memory containing all addresses in
increments of one can be connected to the 68020 D3,-D2, pins. All data transfers occur
via pins D3,-D2,. The byte memory chip informs the 68020 of its size by activating
DSACKl = 1 and DSACKO = 0 so that the 68020 transfers data via its D,,-D,, pins. For
byte instructions, one byte is transferred via these pins; for word (1 6-bit) instructions, two
consecutive bytes are transferred via these pins; for long word (32-bit) instructions, four
consecutive bytes are transferred via these pins.

When the 68020 is configured as a word (16-bit) memory system, two byte
memory chips are interfaced to the 68020 via its D3,- D,, pins. The data pins of the byte
memory chips containing even and odd addresses are connected to the 68020 pins D3,-
D,, and D,,-D,,, respectively. The memory chips inform the 68020 of the 16-bit memory
configuration by activating DSACKl = 0 and DSACKO = 1. The 68020 then uses D,,-D,,
to transfer data for byte, word, or long word instructions. For byte instructions, one byte is
transferred via pins D,,-D,, or D,,-D,, depending on whether the address is even or odd.
For word instructions, the contents of both even and odd addresses are transferred via pins
D,,-D,, with even-address byte via D,,-D,, pins and odd-addressed byte via D,,-D,, pins;

Intel and Motorola 32- & 64-bit Microprocessors 58 1

for long word instructions, four consecutive bytes are transferred via pins D3,-D,, with
the contents of even addresses via pins D,,-D,, using additional cycles. Data transfer can
be aligned or misaligned. For 16-bit memory systems, a word or long word instruction
with data transfer starting at an even address is called an “aligned transfer.” For example,
the instruction MOVE . W D1 I $ 3 0 0 0 0 0 0 0 will store one data byte at the even address
$30000000 via pins D,I-D24 and one data byte at the odd address $30000001 via pins
D23-D,, in one cycle. On the other hand, MOVE . W DO I $ 3 0 0 0 0 0 0 1 is a misaligned
transfer. The 68020 transfers one byte to $30000001 via pins D,,-D,, in the first cycle
and another byte to $30000002 via pins D3,-D24 in the second cycle. Thus, the misaligned
transfer for word instruction takes two cycles in a 16-bit memory configuration. For 32-
bit transfers, MOVE . L D1 I $ 3 0 0 0 0 0 0 0 is an aligned transfer. During the first cycle,
the 68020 transfers 8-bit contents of the highest byte of DO to $30000000 via pins D3,-
D24, and the next 8-bit contents of DO to $30000001 via pins D2,-DI6. During the second
cycle, the 68020 transfers next byte of DO to $30000002 via pins D,,-D,, and the lowest
byte of register DO to $30000003 via pins D2,-DI,. Thus, for aligned transfer with 16-bit
memory configuration, the 68020 transfers data in two cycles for 32-bit transfers. Next,
consider the instruction, MOVE . L DO, $ 3 0 0 0 0 0 0 1. This is a misaligned transfer. The
68020 transfers the most significant byte of DO to $30000001 via pins D,,-D,, in the first
cycle, the next byte of register DO to $30000002 via pins D,,-D,,, and the next byte of DO
to $30000003 via pins D23-D,, in the second cycle and finally, the lowest byte of DO to
address $30000004 via pins D3,-D24 in the third cycle. Thus, for misaligned transfers in a
16-bit memory configuration, the 68020 requires 3 cycles to transfer data for long word
instructions.

When the 68020 is configured as a 32-bit memory system, four byte memory
chips are connected to D,,-Do. The memory chip with data pins connected to D3,-D24
contains addresses 0, 4, 8, ...; the,memory chip with data pins connected to D,,-D,,
contains addresses 1, 5, 9, ...; the memory chip with data pins connected to D,,-D,
includes addresses 2, 6, 10, . . .; and the memory chip with data pins connected to D,-Do
contains addresses 3,7, 1 1, The memory chips inform the 68020 of the 32-bit memory
configuration by activating DSACKl = 0 and DSACKO = 0. The 68020 then uses pins
D,,-Do to transfer data for byte, word, or long word instructions. For byte instructions,
data is transferred via the appropriate 8 data pins of the 68020 depending on the address in
one cycle. For word instructions starting at addresses 0,4, 8, . . ., addresses 1, 5,9, . . ., and
addresses 2, 6, 10, . . . , data are aligned, and will be transferred in one cycle. For example,
consider MOVE . W D1 I $2 0 0 0 0 0 0 5. The 68020 transfers the contents of D 1 (bits 15-8)
to address $20000005 via pins D,,-D,, and contents of register D1 (bits 7-0) to address
$20000006 via pins D,,-D, in one cycle. On the other hand, MOVE . W D1 I $2 0 0 0 0 0 0 7
is a misaligned transfer. In this case, the 68020 transfers the contents of register D1 (bits
15-8) to address $20000007 via pins D,-Do in the first cycle and the contents of D1 (bits
7-0) to address $20000008 via pins D,,-D,, in the second cycle.

For long word instructions, data transfers with addresses starting at 0,4, 8, . . . are
aligned transfers. They will be performed in one cycle. Data with addresses in all other
three chips are misaligned and will require additional cycles. For I/O configuration, one to
four chips can be connected to the appropriate D,,-Do pins as required by an application.
The addresses in the I/O chips will be memory mapped and connected to the appropriate
portions of pins D,,-Do in the same way as the memory chips.

MC68020 Programmer’s Model

582 Fundamentals of Digital Logic and Microcomputer Design

i-
d

m % >

1

k
v J

0

FIGURE 11.4 MC68020 programming model

The MC68020 programmer’s model is based on sequential, nonconcurrent instruction
execution. This implies that each instruction is completely executed before the next
instruction is executed. Although instructions might operate concurrently in actual
hardware, they do not operate concurrently in the programmer’s model.

Figure 11.4 shows the MC68020 user and supervisor programming models. The
user model has fifteen 32-bit general-purpose registers (DO-D7 and AO-A6), a 32-bit
program counter (PC), and a condition code register (CCR) contained within the supervisor
status register (SR). The supervisor model has two 32-bit supervisor stack pointers (ISP
and MSP), a 16-bit status register (SR), a 32-bit vector base register (VBR), two 3-bit

Intel and Motorola 32- & 64-bit Microprocessors

T1

583

TO1 S M 0 12111 101 0) 01 OIX N Z V I C
w

Zero
Negative
Extend
Interrupt priority mask
Masterhntermpt state
Supervisorhser state
Trace enable

System byte
User byte

(condition code register)

FIGURE 11.5 MC68020 status register

alternate function code registers (SFC and DFC), and two 32-bit cache-handling (address
and control) registers (CAAR and CACR). The user stack pointer (USP) A7, interrupt
stack pointer (ISP) A7’, and master stack pointer (MSP) A7” are system stack pointers.

The status register, as shown in Figure 1 1.5, consists of a user byte (condition code
register, CCR) and a system byte. The system byte contains control bits to indicate that the
processor is in the trace mode (TI, TO), supervisoduser state (S), and master/intermpt state
(M). The user byte consists of the following condition codes: carry (C), overflow (V), zero
(Z), negative (N), and extend (X).

The bits in the 68020 user byte are set or reset in the same way as those of the
68HCOOO user byte. Bits 12,11,10, and S have the same meaning as those of the 68HC000.
In the 68020, two trace bits (TI, TO) are included as opposed to one trace bit (T) in the
68HC000. These two bits allow the 68020 to trace on both normal instruction execution
and jumps. The 68020 M bit is not included in the 68HC000 status register.

The vector base register (VBR) is used to allocate the exception processing vector
table in memory. VBR supports multiple vector tables so that each process can properly
manage independent exceptions. The 68020 distinguishes address spaces as supervisor1
user and program/data. To support full access privileges in the supervisor mode, the
alternate function code registers (SFC and DFC) allow the supervisor to access any address
space by preloading the SFCDFC registers appropriately. The cache registers (CACR and
CAAR) allow software manipulation of the instruction code. The CACR provides control
and status accesses to the instruction cache; the CAAR holds the address for those cache
control functions that require an address.

MC68020 Addressing Modes
Table 1 1.7 lists the MC68020’s 18 addressing modes. Table 1 1.8 compares the addressing

5 84 Fundamentals of Digital Logic and Microcomputer Design

TABLE 11.7 68020 Addressing Modes
Mode Syntax

Register direct
Data register direct
Address register direct
Register indirect

Dn
An

Address register indirect (AM) (An)
Address register indirect with postincrement (An)+
Address register indirect with predecrement
Address register indirect with displacement
Register indirect with index
Address register indirect with index (8-bit displacement)
Address register indirect with index (base displacement)

(d8, An, Xn)
(bd, An, Xn)

Memory indirect
Memory indirect, postindexed
Memory indirect, preindexed
Program counter indirect with displacement
Program counter indirect with index
PC indirect with index @bit displacement)
PC indirect with index (base displacement)
Program counter memory indirect
PC memory indirect, postindexed
PC memory indirect, preindexed
Absolute

(d8, PC, Xn)
(bd, PC, Xn)

Absolute short (xxx).W
Absolute long (xxx).L
Immediate #data

Notes:
Dn
An

d8, d l 6

Xn

bd

od

data register, DO -D7
address register, AO-A6
2’s complement or sign-extended displacement; added as part of
effective address calculation; size is 8 (d8) or 16 (d16) bits; when
omitted, assemblers use a value of 0
address or data register used as an index register; form is Xnsize
* scale, where size is .W or .L (indicates index register size) and
scale is 1,2,4, or 8 (index register is multiplied by scale); use of
size andlor scale is optional
2’s complement base displacement; when present, size can be 16 or
32 bits
outer displacement, added as part of effective address calculation
after any memory indirection; use is optional with a size of 16 or
32 bits
program counter
immediate value of 8, 16, or 32 bits
effective address

[] = use as indirect address to long word address
ARI = Address Register Indirect

Intel and Motorola 32- & 64-bit Microprocessors 585

modes of the 68HC000 with those of the MC68020. Because 68HC000 addressing modes
were covered earlier in this chapter in detail with examples, the 68020 modes not available
in the 68HC000 will be covered in the following discussion.

ARI (Address Register Indirect) with Index (Scaled) and 8-Bit Displacement
Assembler syntax: (d8, An, Xn.size * scale)
EA = (An) + (Xnsize * scale) + d8
Xn can be W or L.

If the index register (An or Dn) is 16 bits, then it is sign-extended to 32 bits and multiplied
by 1, 2 , 4 or 8 to be used in EA calculations. An example is MOVE. W (0 I A2 I D2 . W
* 2) , D1. Suppose that [A21 = $50000000, [D2.W] = $1000, and [$50002000] = $1571;
then, after the execution of this MOVE, [Dl],,, , 6 = $1571 because EA = $5000000 +
$1000 * 2 + 0 = $50002000.

ARI (Address Register Indirect) with Index and Base Displacement
Assembler syntax: (bd, An, Xn.size * scale)
EA = (An) + (Xnsize * scale) + bd
Base displacement, bd, has value 0 when present or can be 16 or 32 bits.

The following figure (next page) shows the use of ARI with index, Xn, and base
displacement, bd, for accessing tables or arrays:

TABLE 11.8 Addressing Modes, MC68HC000 vs. MC68020

AddressinP Modes Available Svntax 68HCOOO 68020
Data register direct Dn Yes Yes
Address register direct
Address register indirect (AN)
ARI with postincrement
ARI with predecrement
ARI with displacement (1 6-bit disp)
ARl with index @-bit disp)
ARI with index (base disp; 0, 16, 32)
Memory indirect (postindexed)
Memory indirect (preindexed)
PC indirect with disp. (16-bit)
PC indirect with index (8-bit disp)
PC indirect with index (base disp)
PC memory indirect (postindexed)
PC memory indirect (preindexed)
Absolute short
Absolute long

Yes
Yes
Yes .
Yes
Yes
Yes*
No
No
No
Yes

Yes*
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes*
Yes
Yes
Yes
Yes

Yes*
Yes
Yes
Yes
Yes
Yes

Immediate #<data> Yes Yes
*68HC000 has no scaling capability; 68020 can scale Xn by 1,2,4,or 8.

586 Fundamentals of Digital Logic and Microcomputer Design

Xn * Scale

An example is M0VE.W ($5000, A2, D1.W * 4), D5. If [A21 = $30000000, [Dl.W] =

$0200, and [$30005800] = $01 74, then, after execution of this MOVE, [D5],,, 16bifs = $0174
because EA = $5000 + $30000000 + $0200 * 4 = $30005800.

Memory Indirect
Memory indirect mode is distinguished from address register indirect mode by the

use of square brackets in the assembler notation. The concept of memory indirect mode is
depicted in the following figure:

I I

~ ~ ~ 4 5 1)

$20000500 X X O O

Here, register A5 points to the effective address $20000501. Because CLR ([A5 3) is a
16-bit clear instruction, 2 bytes in location $20000501 and $20000502 are cleared to 0.

Memory indirect mode can be indexed with scaling and displacements. There are
two types of memory indirect mode with scaled indexing and displacements: postindexed
memory indirect mode and preindexed memory indirect mode. For postindexed memory
indirect mode, an indirect memory address is first calculated using the base register (An)
and base displacement (bd). This address is used for an indirect memory access of a long
word followed by adding a scaled indexed operand and an optional outer displacement (od)
to generate the effective address. Note that bd and od can be zero, 16 bits, or 32 bits. In
postindexed memory indirect mode, indexing occurs after memory indirection.

Assembler syntax: ([bd, An], Xn.size * scale, od)
EA = ([bd + An]) + (Xn.size * scale + od)

AnexampleisM0VE.W ([$ 0 0 0 4 , All , D 1 . W * 2 , 2) , D2.If[A1]=$20000000,
[$2000004] = $00003000, [Dl .W] = $0002, and [$00003006] = $1A40, then, after execution
of this MOVE, intermediate pointer = (4 + $20000000) = $20000004, [$2000004], which is
$00003000 used as a pointer. Therefore, EA = $00003000 + $00000004 + 2 = $00003006.

For memory indirect preindexed mode, the scaled index operand is added to
the base register (An) and base displacement (bd). This result is then used as an indirect
address into the data space. The 32-bit value at this address is read and an optional outer
displacement (od) is added to generate the effective address. The indexing, therefore,
occurs before indirection.

Hence, [D2],,, 16bits= $1A40.

Assembler syntax: ([bd, An, Xn.size * scale], od)

Intel and Motorola 32- & 64-bit Microprocessors

EA = (bd, An + Xnsize * scale) + od
As an example of the preindexed mode, consider several I/O devices in a system.

The addresses of these devices can be held in a table pointed to by An, bd, and Xn. The
actual programs for these devices can be stored in memory pointed to by the respective
device addresses plus od.

The memory indirect preindexed mode will now be illustrated by a numerical
example. Consider

M0VE.W ([$ 0 0 0 2 , Al,DO.W*2], Z), D 1
If [All = $20000000, [DO.W] = $0004, [$2000000A] = $00121502, [$00121504] = $F124,
then after execution of this MOVE, intermediate pointer = $20000000 + $0002 + $0004*2
= $2000000A. Therefore, [$2000000A], which is $00121502, is used as a memory pointer.
Hence, [Dl] low 16 bits = $F124.

587

MC68020 Instruction Set
The MC68020 instruction set includes all 68HC000 instructions plus some new ones. Some
of the 68HC000 instructions are enhanced. Over 20 new instructions are added to provide
new functionality. A list of these instructions is given in Table 11.9.

Succeeding sections will discuss the 68020 instructions listed next:
68020 new privileged move instructions
RTD instruction
CHK/CHKZ and CMP/CMP2 instructions
TRAPcc instructions
Bit field instructions

TABLE 11.9 68020 New Instructions

Instruction Description
BFCHG Bit field change
BFCLR Bit field clear-
BFEXTS Bit field signed extract
BFEXTU Bit field unsigned extract
BFFFO Bit field find first one set
B F I N S Bit field insert
BFSET Bit field set
BFTST Bit field test
CALLM Call module
CAS Compare and swap
CAS 2
CHK2
CMP2
cpBcc
cpDBcc

c p G E N Coprocessor general function
cpRESTORE Coprocessor restore internal state
cpSAVE Coprocessor save internal state
cpSETcc
cpTFL4Pcc

PACK Pack BCD
RTM Return from module
UNPK Unpack BCD

Compare and swap (two operands)
Check register against upper and lower bounds
Compare register against upper and lower bounds
Coprocessor branch on coprocessor condition
Coprocessor test condition, decrement, and branch

Coprocessor set according to coprocessor condition
Coprocessor trap on coprocessor condition

588 Fundamentals of Digital Logic and Microcomputer Design

PACK and UNPK instructions
Multiplication and division instructions
68HC000 enhanced instructions

68020 New Privileged Move Instructions
The 68020 new privileged move instructions can be executed by the 68020 in the supervisor
mode. They are listed below:

Instruction Operand Size Operation Notation
MOVE 16 SR + destination MOVE SR, (EA)
MOVEC 32 Rc -+ Rn MOVEC. L Rc, &

Rn + Rc M0VEC.L h , R c

Source using SFC - Rn
MOVES 8, 16, 32 Rn + destination using DFC MOVES. S Rn, (EA)

MOVES. S (EA),Rn
Note that Rc includes VBR, SFC, DFC, MSP, ISP, USP, CACR, and CAAR. Rn can be
either an address or a data register.

The operand size (.L) indicates that the MOVEC operations are always long word.
Notice that only register to register operations are allowed. A control register (Rc) can
be copied to an address or a data register (Rn) or vice versa. When the 3 bit SFC or DFC
register is copied into Rn, all 32 bits of the register are overwritten and the upper 29 bits
are “0.”

The MOVES (move to alternate space) instruction allows the operating system
to access any addressed space defined by the function codes. It is typically used when
an operating system running in the supervisor mode must pass a pointer or value to a
previously defined user program or data space. The operand size (.S) indicates that the
MOVES instruction can be byte (.B), word (.W), or long word (.L). The MOVES instruction
allows register to memory or memory to register operations. When a memory to register
move occurs, this instruction causes the contents of the source function code register to
be placed on the external function hardware pins. For a register to memory move, the
processor places the destination function code register on the function code pins. The
MOVES instruction can be used to move information from one space to another.

Examde 11.3
(a) Find the contents of address $70000023 and the function code pins FC2, FCI , and FCO
after execution of MOVES. B D 5 , (A5). Assume the following data prior to execution
of this MOVES instruction: [SFC] = OOl,, [DFC] = 101, , [A51 = $70000023, [D5] =

$718F2A05, [$70000020] = $01, [$70000021] = $F1, [$70000022] = $A2, [$70000023]
= $2A
Solution
After execution of this MOVES instruction,

(b) The following 68000 instruction sequence:

is used by a subroutine to access a parameter whose address has been passed into A0 and
then moves the parameter to D3. Find the equivalent 68020 instruction.
Solution
Return and Delocate Instruction

The return and delocate (RTD) instruction is useful when a subroutine has the
responsibility to remove parameters off the stack that were pushed onto the stack by the
calling routine. Note that the calling routine’s JSR (jump to subroutine) or BSR (branch to

FC2 FCl FCO = 101,, [$70000023] = $05
MOVEA. L
M0VE.W (AO) ,D3

8 (A7) , A0

MOVE. W ([8, A7]) , D3

Intel and Motorola 32- & 64-bit Microprocessors 589

subroutine) instructions do not automatically push parameters onto the stack prior to the
call as do the CALLM instructions. Rather, the pushed parameters must be placed there
using the MOVE instruction. The format of the RTD instruction is shown next:

Instruction Operand Size Operation Notation
(SP) + PC, SP + 4 + d + SP RTD # <disp> RTD Unsized

As an example, consider RTD #8, which, at the end of a subroutine, deallocates 8 bytes of
unwanted parameters off the stack by adding 8 to the stack pointer and returns to the main
program. The size of the displacement is 16-bit.
CHWCHK2 and CMP/CMP2 Instructions

The 68020 check instruction (CHK) compares a 32-bit twos complement integer
value residing in a data register (Dn) against a lower bound (LB) value of zero and against
an upper bound (UB) value of the programmer’s choice. The upper bound value is located
at the effective address (EA) specified in the instruction format. The CHK instruction has
the following format: CHK . S (EA), Dn where the operand size (. S) designates word (.W)
or long word (.L).
If the data register value is less than zero (Dn < 0) or if the data register is greater than the
upper bound (Dn > UB), then the processor traps through exception vector 6 (offset $18) in
the exception vector table. Of course, the operating system or the programmer must define
a check service handler routine at this vector address. The condition codes after execution
of the CHK are affected as follows: If Dn < 0 then N = 1; if Dn > UB (upper bound) then
N =O. If 0 s Dn s UB then N is undefined. X is unaffected and all other flags are undefined
and program execution continues with the next instruction.

The CHK instruction can be used for maintaining array subscripts because all
subscripts can be checked against an upper bound (i.e., UB = array size - 1). If the compared
subscript is within the array bounds (i.e., 0 s subscript value s UB value), then the subscript
is valid, and the program continues normal instruction execution. If the subscript value
is out of array limits (i.e., 0 > subscript value or subscript value > UB value), then the
processor traps through the CHK exception.

Examale 11.4
Determine the effects of execution of CHK.L (A5), D3, where A5 represents a memory
pointer to the array’s upper bound value. Register D3 contains the subscript value to be
checked against the array bounds. Assume the following data prior to execution of this
CHK instruction:

[D3] = $01507126
[A51 = $00710004
[$00710004] = $01500000

Solution
The long word array subscript value $01507126 contained in data register D3 is compared
against the long word UB value $01 500000 pointed to by address register AS. Because the
value $01507126 contained in D3 exceeds the UB value $01500000 pointed to by A5, the
N bit is cleared. (X is unaffected and the remaining CCR bits are undefined.) This out-of-
bounds condition causes the program to trap to a check exception service routine.

590 Fundamentals of Digital Logic and Microcomputer Design

Enter check
exception

service

0 < D3.L > $01500000
:. N = 0, TRAP

D ~ / I 1
Memory ~ 1 routine

A5=$00710004 0 1 5 0 0 0 0 0 m CCR
~ X N Z V C

The operation of the CHK instruction can be summarized as follows:
Instruction Operand Size Operation Notation

CHK 16,32 If Dn < 0 or Dn > source, then TRAP CHK (EA), Dn
The 68020 CMP.S (EA), Dn instruction subtracts (EA) from Dn and affects the

condition codes without any result. The operand size designator (.S) is either byte (.B) or
word (.W) or long word (.L).

Both the CHK2 and the CMP2 instructions have similar formats:
CHK2. S (EA), Rn

CMP2. S (EA), Rn
They compare a value contained in a data or address register (designated by Rn

) against two (2) bounds chosen by the programmer. The size of the data to be compared
(.S) may be specified as byte (.B), word (.W), or long word (.L). As shown in the following
figure, the lower bound (LB) value must be located in memory at the effective address
(EA) specified in the instruction, and the upper bound (UB) value must follow immediately
at the next higher memory address. That is, UB addr = LB addr + size, where size = B (+l),
W (+2), or L (+4).

and

I Memorv I
EA 4 Lower bound I

EA + size Upper bound -l----i
If the compared register is a data register (i.e., Rn = Dn) and the operand size (.S)

is a byte or word, then only the appropriate low-order part of the data register is checked.
If the compared register is an address register (i.e., Rn = An) and the operand size (.S) is
a byte or word, then the bound operands are sign-extended to 32 bits and the extended
operands are compared against the full 32 bits of the address register. After execution of
CHK2 and CMP2, the condition codes are affected as follows:

cany = 1 if the contents of Dn are out of bounds

Z = 1 if the contents of Dn are equal to either bound
= 0 otherwise.

= 0 otherwise.

In the case where an upper bound equals the lower bound, the valid range for
comparison becomes a single value. The only difference between the CHK2 and CMP2
instructions is that, for comparisons determined to be out ofbounds, CHK2 causes exception
processing utilizing the same exception vector as the CHK instructions, whereas the CMP2
instruction execution affects only the condition codes.

In both instructions, the compare is performed for either signed or unsigned

Intel and Motorola 32- & 64-bit Microprocessors 591

bounds. The 68020 automatically evaluates the relationship between the two bounds to
determine which kind of comparison to employ. If the programmer wishes to have the
bounds evaluated as signed values, the arithmetically smaller value should be the lower
bound. If the bounds are to be evaluated as unsigned values, the programmer should make
the logically smaller value the lower bound.

The following CMP2 and CHK2 instruction examples are identical in that they
both utilize the same registers, comparison data, and bound values. The difference is how
the upper and lower bounds are arranged.

Before CMP2.W(A2), D1

D 1 7 1

Memory

Operation After

Signed comparison CCR

-$5000<Dl.W <+$5000 x ? 0 ? 0
:. c = 0 m

W ' A2+2 = $00007002

-$5000# Dl.W++ $5000
A2=$00007000 -1 ~ :. z = 0

1 are undefined

not
affected
N and V

In this example, the word value $BOO0 contained in memory (as pointed to by
address register A2) is the lower bound and the word value $5000 immediately following
$BOO0 is the upper bound. Because the lower bound is the arithmetically smaller value,
the programmer is indicating to the 68020 to interpret the bounds as signed numbers. The
twos complement value $BOO0 is equivalent to an actual value of -$5000. Therefore,.the
instruction evaluates the word contained in data register D1 ($0200) to determine whether
it is greater than or equal to the upper bound, +$5000, or less than or equal to the lower
bound, -$5000. Because the compared value $0200 is within bounds, the carry bit (C) is
cleared to 0. Also, because $0200 is not equal to either bound, the zero bit (Z) is cleared.
The following figure shows the range of valid values that D1 could contain:

$8000 $BOO0 0000 ~1 .w $5000 $7FFF

-32 K -$S,OOO +$SO00 +32K - I
Rang-

values (signed)

A typical application for the CMP2 instruction would be to read in a number of
user entries and verify that each entry is valid by comparing it against the valid range
bounds. In the preceding CMP2 example, the user-entered value would be in register D1
and register A2 would point to a range for that value. The CMP2 instruction would verify
whether the entry is in range by clearing the CCR carry bit if it is in bounds and setting the
carry bit if it is out of bounds.

592

Examde 11.6
Determine the effects of execution of C H K 2 . W (A2) , D1. Assume the following data
prior to execution of this C H K 2 instruction:

Fundamentals of Digital Logic and Microcomputer Design

Sol

This time, the value $5000 located in memory is the lower bound and the value
$BOO0 is the upper bound.

Now, because the lower bound contains the logically smaller value, the programmer
is indicating to the 68020 to interpret the bounds as unsigned numbers, representing only a
magnitude. Therefore, the instruction evaluates the word contained in register D 1 ($0200)
to determine whether it is greater than or equal so the lower bound, $5000, or less than or
equal to the upper bound, $B000. Because the compared value $0200 is less than $5000,
the carry bit is set to indicate an out of bounds condition and the program traps to the CHK/
C H K 2 exception vector service routine. Also, because $0200 is not equal to either bound,
the zero bit (Z) is cleared. The figure above shows the range of valid values that D1 could
contain.

A typical application for the C H K 2 instruction would be to cause a trap exception
to occur if a certain subscript value is not within the bounds of some defined array. Using
the C H K 2 example format just given, if we define an array of 100 elements with subscripts
ranging from 0- 99,,, and if the two words located at (A2) and (A2 + 2) contain 50 and 99,
respectively, and register D1 contains lOO,,, then execution of the C H K 2 instruction would
cause a trap through the C H K / C H K ~ exception vector. The operation of the C M P 2 and
C H K 2 instructions are summarized as follows:

Instruction Operand Size Operation Notation
CMP2 8,16,32 Compare Rn < source - lower bound or Rn > CMP2 (EA), Rn

source - upper bound and set CCR
CHK2 If Rn < source - lower bound or Rn > source CHK2 (EA), Rn

- upper bound, then TRAP
8, 16,32

Trap-on-Condition Instructions
The new trap condition (TRAPCC) instruction allows a conditional trap exception

on any of the condition codes shown in Table 1 1.1 0. These are the same conditions that are

Intel and Motorola 32- & 64-bit Microprocessors 593

TABLE 11.10 Conditions for TRAPcc

Code Description Result -
CC Carry clear C
CS Carry set C
E Q Equal Z
F Nevertrue , 0

G E Greater or equal N * V + N - 8
GT Greater than N * V * Z + R - v * z

-
H I High C *z
LE Less or equal Z + N v+ V
LS Low or same c + z
LT Less than N * V + N * V
M I Minus N
NE Notequal Z
PL Plus N
T Always true 1

vc Overflow clear V
VS Overflow set V

-

-

allowed for the set-on-condition (SCC) and the branch-on-condition (Bcc) instructions. The
TRAPcc instruction evaluates the selected test condition based on the state of the condition
code flags, and if the test is true, the 68020 initiates exception processing by trapping
through the same exception vector as the TRAPV instruction (vector 7, offset $1C, VBR =

VBR + offset). The trap-on-condition instruction format is
TRAPcc or TRAPcc.S #<data>

where the operand size (.S) designates word (.W) or long word (.L).
If either a word or long word operand is specified, a 1 - or 2-word immediate operand

is placed following the instruction word. The immediate operand(s) consists of argument
parameters that are passed to the trap handler to hrther define requests or services it should
perform. If cc is false, the 68020 does not interpret the immediate operand(s) but instead
adjusts the program counter to the beginning of the following instruction. The exception
handler can access this immediate data as an offset to the stacked PC. The stacked PC is
the next instruction to be executed.

A summary of the TRAPcc instruction operation is shown next:
Instruction Operand Size Operation Notation

TRAPcc None If cc, then TRAP TRAPcc
16 Same
32 Same

T R A P c c . W #<data>
T R A P c c . L #<data>

Bit Field Instructions
The bit field instructions, which allow operations to clear, set, ones complement,

input, insert, and test one or more bits in a string of bits (bit field), are listed on the next
page. Note that the condition codes are affected according to the value in the field before
execution of the instruction. All bit field instructions affect the N and Z bits as shown for
BFTST. That is, for all instructions, Z = 1 if all bits in a field prior to execution of the
instruction are zero; Z = 0 otherwise. N = 1 if the most significant bit of the field prior
to execution of the instruction is one; N = 0 otherwise. C and V are always cleared. X is

594 Fundamentals of Digital Logic and Microcomputer Design

always unaffected. Next, consider BFFFO. The offset of the first bit set 1 in a bit field is
placed in Dn; if no set bit is found, Dn contains the offset plus the field width.
Immediate offset is from 0 to 31, whereas offset in Dn can be specified fiom -23‘ to Z3‘
- 1. All instructions are unsized. They are useful for memory conservation, graphics, and
communications. The bit field instructions are listed below:

Instruction Operand Size Operation Notation
BFTST 1-32 Field MSB - N, BFTST (EA)

Z = 1 if all bits in field are
zero; Z = 0 otherwise

{offset:width}

BFCLR 1-32 0’s -+ Field BFCLR (EA)
{offset:width}

BFSET 1-32 1’s -+ Field BFSET (EA)
{ offset:width}

BFCHG 1-32 Field -j Field BFCHG (EA)
{offset:width}

BFEXTS 1-32 Field -+ Dn; BFEXTS (EA)
sign-extended {offset:width}, Dn

BFEXTU 1-32 Field - Dn; BFEXTU (EA)
Zero-extended { offset:width}, Dn

BFINS 1-32 Dn +- field B F I N S Dn, (EA)

BFFFO 1-32 Scan for first bit-set in field BFFFO (EA)

~

{ offset:width}

{offset:width}, Dn

As an
contents:

example, consider BFCLR $5 0 0 2 { 4 : 12

$5001
$5002

$5003
$5004

(Base address)

1 . Assume the

~ Bit number

following memory

Bit 7 of the base address $5002 has the offset 0. Therefore, bit 3 of $5002 has the
offset value of 4. Bit 0 of location $5001 has offset value -1, bit 1 of $5001 has offset value
-2, and so on. The example BFCLR instruction just given clears 12 bits starting with bit 3
of $5002. Therefore, bits 0-3 of location $5002 and bits 0-7 of location $5003 are cleared
to 0. Therefore, the memory contents change as follows:

$5001

$5002

$5003

$5004

7 6 5 4 3 2 1 0

Width 12

The use of bit field instructions may result in memory savings. For example,
assume that an input device such as a 12-bit A D converter is interfaced via a 16-bit port
of a MC68020 based microcomputer. Now, suppose that 1 million pieces of data are to be
collected from this port. Each 12 bits can be transferred to a 16-bit memory location or bit
field instructions can be used.

Using a 16-bit location for each 12 bits:
Memory requirements = 2 x 1 million

= 2 million bytes

Intel and Motorola 32- & 64-bit Microprocessors

Using bit fields:
12 bits = 1.5 bytes

Memory requirements = 1.5 x 1 million
= 1.5 million bytes

Savings = 2 million bytes - 1.5 million bytes
= 500,000 bytes

-16
-8

$5004-+O

595

1 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1

ExamDle 11.7
Determine the effect of each of the following bit field instructions:

BFCHG $5004{D5:D6]
BFEXIU $5004{2:4},D5
BFINS D4, (AO) {D5:D6}
BFFFO $5004{D6:4},D5

Assume the following data prior to execution of each of the given instructions. Register
contents are given in hex, CCR and memory contents in binary, and offset to the left of
memory in decimal.

A0 [OOOO 5004 1
D5 1 FFFF FFFF 1
D6 10000000041

CCK 1 01001 j
D4 17125 F214 I

Solution
BFCHG $5004 {D5:D6}
Offset = - 1, Width = 4

Memory

7 6 5 4 3 2 1 0

+8
+16
+24
+32
+40

X N Z V C
CCR

BFEXTU $5004 {2:4},D5
Offset = 2, Width = 4

X N Z V C
CCR F O n l

D5 10 0 0 0 0 0 0 21

BFINS D4, (AO) {D5:D6}
Offset = - 1, Width = 4

X N Z V C c w l C C K I m q
$5004 1 0 0

BFFFO $5004 {D6:4],D5
Offset = 4, Width = 4

596 Fundamentals of Digital Logic and Microcomputer Design

X N Z V C
CCR -1

Pack and Unpack Instructions
The details of the PACK and UNPK instructions are listed next:

Instruction Operand Size Operation Notation
PACK 1 6 - 8 Unpacked source + #data PACK -(An), - packed destination -(An), #<data>

PACK Dn,
Dn,#<data>

UNPK 8 + 16 Packed source - unpacked UNPK -(An),
source -(An), #<data>
unpacked source + #data ---f
unpacked destination Dn,#<data>

UNPK Dn,

Both instructions have three operands and are unsized. They do not affect the
condition codes. The PACK instruction converts two unpacked BCD digits to two packed
BCD digits:

U L l 8 7 4 3
Unpacked BCD: 0 0 0 01 BCDOlO 0 0 01 BCDl

The UNPK instruction reverses the process and converts two packed BCD digits
to two unpacked BCD digits. Immediate data can be added to convert numbers from one
code to another. That is, these instructions can be used to translate codes such as ASCII or
EBCDIC to a BCD and vice versa.

The PACK and UNPK instructions are useful when I/O devices such as an ASCII
keyboard and an ASCII printer are interfaced to an MC68020-based microcomputer.
Data can be entered into the microcomputer via the keyboard in ASCII codes. The PACK
instruction can be used with appropriate adjustments to convert these ASCII codes into
packed BCD. Arithmetic operations can be performed inside the microcomputer, and the
result will be in packed BCD. The UNPK instruction can similarly be used with appropriate
adjustments to convert packed BCD to ASCII codes for outputting to the ASCII printer.

ExamDle 11.8
Determine the effect of execution of each of the following
PACK and U N P K instructions:

PACK DO,D5,#$0000

U N P K D4,D6,#$3030
PACK- (A l) , - (A 4) , #$OOOO

UNPK- (A 3) , - (A 2) , #$3030
Assume the following data prior to execution of each of the above instructions:

Intel and Motorola 32- & 64-bit Microprocessors 597

$507124~1 Fl
$507 124B2
S507124B3
$507 124B4
$507 124B5
$507 124B6
$507124B7 27
$507 124B8

Solution
PACK DO,D5,#$0000

[DO]=32 37

+ 00 00

32 37

low
word

4 1
[D5]= 27

Note that ASCII code for 2 is $32 and for 7 is $37. Hence, this packsinstruction
converts ASCII code to packed BCD.
PACK - (Al) , - (A4), $0000

71 24B2] = 37 3237
71 24B1]= 32 ~ 0000

3237
4d :. [3005 OOAO] = 27 packed BCD

.Hence, this pack instruction with the specified data converts two ASCII digits to
their equivalent packed BCD form.

:. [D6]=XXXX 33 35
[D4]=XXXXXX 35

Therefore, this UNPK instruction with the assumed data converts from packed
BCD in D4 to ASCII code in D6; the contents of D4 are not changed.
UNPK - (A3), - (AZ) , #$3030

[$5071 24B8] = 27

30 30
32 37

:. [$300500A2] = 37
[$300500A1] = 32

This UNPK instruction with the assumed data converts two packed BCD digits to
their equivalent ASCII digits.

598

Multiplication and Division Instructions

instructions:

Fundamentals of Digital Logic and Microcomputer Design

The 68020 includes the following signed and unsigned multiplication

Instruction Operand Size Operation
MULS . W (EA), Dn
or
MULU
MULS . L (EA), Dn
or
MULU

MULS . L (EA),Dh:Dn
or
MULU multiplication

16 x 16 - 32 (EA)16 * (Dn)16 - (Dn)32

32 x 32 --j 32 (EA) * Dn .+ Dn
Dn holds 32 bits of the result after
multiplication. Upper 32 bits of the
result are discarded.
(EA) * Dn --j Dh:Dn
(EA) holds 32-bit multiplier before

Dh holds high 32 bits of product
after multiplication.
Dn holds 32-bit multiplicand before
multiplication and low 32 bits of
product after multiplication.

32 x 32 - 64

(EA) can use all modes except An. The condition codes N; Z. and V are affected;
C is always cleared to 0, and X is unaffected for both MULS and MULU. For signed
multiplication, overflow (V = 1) can only occur for 32 x 32 multiplication, producing a
32-bit result if the high-order 32 bits of the 64-bit product are not the sign extension of the
low-order 32 bits. In the case of unsigned multiplication, overflow (V = 1) can occur for 32
x 32 multiplication, producing a 32-bit result if the high-order 32 bits of the 64-bit product
are not zero.

Both MULS and MULU have a word form and a long word form. For the word
form (16 x 16), the multiplier and multiplicand are both 16 bits and the result is 32 bits.
The result is saved in the destination data register. For the long word form (32 x 32), the
multiplier and multiplicand are both 32 bits and the result is either 32 bits or 64 bits. When
the result is 32 bits for a 32-bit x 32-bit operation, the low-order 32 bits of the 64-bit
product are provided.

The signed and unsigned division instructions of the 68020 include the following,
in which the source is the divisor, the destination is the dividend.

Instruction Operation
DIVS . W (EA), Dn
or
DIVU
DIVS. L (EA), Dq
or No remainder is provided.
DIVU
DIVS . L (EA),Dr:Dq

DIVU
DIVSL. L (EA),Dr:Dq
or Dr contains 32-bit dividend
DIVUL

32/16 - 16r:16q

32/32 - 329

64/32 -+ 32r:32q
O r

Dr/(EA) - 32r:32q

(EA) can use all niodes except An. The condition codes for either signed or

Intel and Motorola 32- & 64-bit Microprocessors 599

unsigned division are affected as follows: N = 1 if the quotient is negative; N = 0 otherwise.
N is undefined for overflow or divide by zero. Z = 1 if the quotient is zero; Z = 0 otherwise,
Z is undefined for overflow or divide by zero. V = 1 for division overflow; V = 0 otherwise.
X is unaffected. Division by zero causes a trap. If overflow is detected before completion
of the instruction, V is set to 1, but the operands are unaffected.

Both signed and unsigned division instructions have a word form and three long
word forms. For the word form, the destination operand is 32 bits and the source operand
is 16 bits. The 32-bit result in Dn contains the 16-bit quotient in the low word and the 16-
bit remainder in the high word. The sign of the remainder is the same as the sign of the
dividend.

For the instruction
DIVS . L (EA), Dq
or
DIVU

both destination and source operands are 32 bits. The result in Dq contains the 32-bit
quotient and the remainder is discarded.

For the instruction
DIVS . L (EA), Dr:Dq
or
DIVU

the destination is 64 bits contained in any two data registers and the source is 32 bits.
The 32-bit register Dr (DO-D7) contains the 32-bit remainder and the 32-bit register Dq
(DO-D7) contains the 32-bit quotient.

For the instruction
DIVSL. L (EA), Dr:Dq
or
DIVUL

the 32-bit register Dr (DO-D7) contains the 32-bit dividend and the source is also 32 bits.
After division, Dr contains the 32-bit remainder and Dq contains the 32-bit quotient.

ExamDle 11.9
Determine the effect of execution of each of the following multiplication and division
instructions:

MULU . L # $ 2 , D5 if [D5] = $FFFFFFFF
MULS. L #$2, D5 if [D5] = $FFFFFFFF

DIVS. L #$2, D5 if [D5] = $FFFFFFFC

MULU. L #$2, D5 if [D5] = $FFFFFFFF

MULU . L #$2, D5 : D2 if [D5] = $2ABC1800 and [D2] = $FFFFFFFF

DIVS . L #$2, D2 : DO if [D2] = $FFFFFFFF and [DO] = $FFFFFFFC
DIVSL. L #$2, D6 : D1 if [Dl] = $00041234 and [D6] = $FFFFFFFD

Solution

$FFFFFFFF

00000001 FFFFFFFE

V,= 1 Low 32-bit
mce result in D5

this is
nonzero

* $00000002 --

Therefore, [DS] = SFFFFFFFE, N = 0 since the most significant bit of the result is

600 Fundamentals of Digital Logic and Microcomputer Design

0, Z = 0 because the result is nonzero, V = 1 because the high 32 bits of the 64-bit
product are not zero, C = 0 (always), and X is not affected.
MULS . L # $2, D5 if [D5] = $FFFFFFFF

$FFFFFFFF (-1)

$FFFFFFFF $-E (-2)

* $00000002 (+2)

Result in D5

Therefore, [D5] = SFFFFFFFE, X is unaffected, C = 0, N = 1, V = 0, and Z = 0.
MULU . L #$2, D5 : D2 if [D5] = $2ABC1800 and D2 = $FFFFFFFF

$ F F F F F F F F
* $00000002

00000001 FFFFFFFE

D5 D2
--

Here N = 0, Z = 0, V = 0, C = 0, and X is not affected.
DIVS . L #$2, D 5 if [D5] = $FFFFFFFC

-2 -
FFFF FFFE

- 1 -
t2 4

[D5] = $FFFFFFFE, X is unaffected, N = 1, Z = 0, V = 0, and C = 0 (always).
DIVS . L #$2, D2 : DO if [D2] = $FFFFFFFF and [DO] = $FFFFFFFC

-2 0
F--L--. A

q = FFFF FFFE, r = 0000 0000
00000002 FFFF FFFF FFFF FFFC
L-J ' \-----,

2 -4

[D2] = $00000000 = remainder, [DO] = $FFFFFFFE = quotient, X is unaffected,
Z = 0, N = 1, V = 0, and C = 0 (always).
DIVSL. L #$2, D6 : D1 if [DI] = $00041234 and [D6] = $FFFFFFFD

-1 -1
<-> r - w

q = FFFFFFFF, r = FFFFFFFF
0000 0002 I C F Z F T

-3

[D6] = $FFFFFFFF = remainder, [Dl] = $FFFFFFFF = quotient, X is unaffected,
N = 1 , Z = 0, V = 0, and C = 0 (always).

MC68HC000 Enhanced Instructions
The MC68020 includes the enhanced version of the instructions as listed next:

Instruction Operand Size Operation
BRA label 8 , 16, 32 P C + d + P C
Bcc label 8, 16, 32 If cc is true, then PC + d - PC;

else next instruction

Destination - #data - CCR is affected
Destination - 0 + CCR is affected
An -+ -(SP); SP + An; SP + d + SP

BSR label 8, 16, 32 PC + -(SP); PC + d 4 PC
CMPI . S #data, (EA)
T S T . S (EA)
L I N K . S An, -d 16,32
EXTB. L Dn 32 Sign-extend byte to long word

8, 16, 32
8, 16, 32

Intel and Motorola 32- & 64-bit Microprocessors 60 1

Note that S can be B, W, or L. In addition to 8- and 16-bit signed displacements for
BRA, Bcc, and BSR like the 68HC000, the 68020 also allows signed 32-bit displacements.
LINK is unsized in the 68HC000. (EA) in CMPI and TST supports all 68HC000 modes
plus PC relative. An example is CMP1.W #$2000, (START, PC). In addition to EXT.W Dn
and EXT.L Dn like the 68HC000, the 68020 also provides an EXTB.L instruction.

ExamDle 11.10
Write a program in 68020 assembly language to multiply a 32-bit signed number in D2 by
a 32-bit signed number in D3 by storing the multiplication result in the following manner:
(a) Store the 32-bit result in D2.
(b) Store the high 32 bits of the result in D3 and the low 32 bits of the result in D2.
Solution

MULS.L D3,D2
FINISH JMP FINISH

MULS . L
FINISH JMP FINISH

(4

(b) D3, D3 : D2

Examde 11.1 1
Write a program in 68020 assembly language to convert 10 packed BCD bytes (20
BCD digits) stored in memory starting at address $00002000 and above, to their ASCII
equivalents and, store the result in memory locations starting at $FFFF8000.
Solution

M0VEA.W #$2000,AO ; Load starting addr. of BCD array into A0
M0VEA.W #$8000,A1 ; Load starting addr. of ASCII array into A1
MOVEQ. L #9, DO ; Load data length into DO

START M0VE.B (AO)+,Dl ; Load a packed BCD byte
UNPK Dl,D2,#$3030; Convert to ASCII
M0VE.W D2, (Al)+ ; Store ASCII data to addr. pointed to by A 1
DBF.W D0,START ; Decrement and branch if false

FINISH JMP FINISH ; otherwise stop

M68020 Pins and Signals
The 68020 is arranged in a 13 x 13 matrix array (1 14 pins defined) and fabricated in a pin
grid array (PGA) or other packages such as RC suffix package. Both the 32-bit address
(AO-A31) and data (DO-D31) pins of the 68020 are nonmultiplexed. The 68020 transfers data

3 . 2 1 ~

Transfer

I

I 2 . 0 m

MC68020
Microprocessor

,CDIS Cache Control

1,CLK * 2 micron HCMOS Drocess

'('3) *Power Dissipation = 1.75W (max)

FIGURE 11.6 MC68020 functional signal groups

602 Fundamentals of Digital Logic and Microcomputer Design

with an 8-bit device via D,,-D24, with a 16-bit device via D,,-D3,, and with a 32-bit device
via D3,-Do. Figure 1 1.6 shows the MC68020 functional signal group. Table 11.1 1 lists
these signals along with a description of each. There are 10 Vcc (+5 V) and 13 ground pins
to distribute power in order to reduce noise.

Like the MC68HC000, the three function code signals FC2, FC1, and FCO identify
the processor state (supervisor or user) and the address space of the bus cycle currently
being executed except that the 68020 defines the CPU space cycle as follows:

FC2 FCI FCO Cycle type
0 0 0 Undefined, reserved
0 0 1 User data space
0 1 0 User program space
0 1 1 Undefined, reserved
1 0 0 Undefined, reserved
1 0 1 Supervisor data space
1 1 0 Supervisor program space
1 1 1 CPU space

Note that in the 68HC000, FC2, FCl, FCO = 11 1 indicates the interrupt
acknowledge cycle. In the MC68020, it indicates the CPU space cycle. In this cycle, by
decoding the address lines A,,-A,,, the MC68020 can perform various types of functions
such as coprocessor communication, breakpoint acknowledge, interrupt acknowledge, and
module operations as follows:

A , , A,, A,, A, , Function performed
0 0 0 0 Breakpoint acknowledge
1 0 0 1 Module operations
0 0 1 0 Coprocessor communication
1 1 1 1 Interrupt acknowledge

Note that A,,, A,*, A,,, A,, = 001 1, to 11 10, is reserved by Motorola. In the
coprocessor communication CPU space cycle, the MC68020 determines the coprocessor
type by decoding A,,-A,, as follows:

A , , A,, A , , Coprocessor Type
0 0 0 MC6885 1 paged memory management unit
0 0 1 MC6888 1 floating-point coprocessor
The 68020 offers a feature called “dynamic bus sizing,” which enables designers

to use 8-bit and 16- and 32-bit memory and 110 devices without sacrificing system
performance. The SIZO, SIZl, DSACKO and DSACKl pins are used to implement this.
These pins are defined as follows:

SIZl SIZO Number of Bytes Remaining to be Transferred
0 1 Byte
1 0 Word
1 1 3bytes

0 1 16-bit device
1 0 8-bit device
1 1 Data not ready; insert wait states

During each bus cycle, the external device indicates its width via DSACKO and
DSACKl. The DSACKO and DSACKl pins are used to indicate completion of bus cycle.

Intel and Motorola 32- & 64-bit Microprocessors

TABLE 11.11 Hardware Signal Index
Signal Name Mnemonic Function

603

32-bit address bus used to address any of Address bus

Data bus

Function codes

Size

Read-modify-write cycle

External cycle start
Operand cycle start

Address strobe
Data strobe

Readwrite
Data buffer enable
Data transfer and size
acknowledge

Cache disable
Interrupt priority level
Autovector

Interrupt pending
Bus request

Bus grant

Bus grant acknowledge

Reset
Halt

Bus error

Clock
Power supply

&-A31

Do-D,,

FCO-FC2

SIZO/SIZI

__
RMC

ECS
ocs
-
-

-
AS
DS
-

m-
DBEN
DSACKO/
DSACKl

-
CDIS
IPLO-IPL2
AVEC

IPEND
BR

BG

BGACK

RESET
HALT

BERR

CLK
vcc

-__

-

-

-

4,294,961,296 bytes
32-bit data bus used to transfer 8,16,24, or 32 bits of
data per bus cycle
3-bit function code used to identify the address space
of each bus cycle
Indicates the number of bytes remaining to be
transferred for this cycle; these signals, together with
A0 and Al , define the active sections of the data bus.
Provides an indicator that the current bus cycle is part
of an indivisible read-modify-write operation
Provides an indication that a bus cycle is beginning
Identical operation to that of ECS except that ocs is
asserted only during the first bus cycle of an operand
transfer
Indicates that a valid address is on the bus
Indicates that valid data is to be placed on the data bus
by an external device or has been placed on the data
bus by the MC68020
Defines the bus transfer as a 68020 read or write
Provides an enable signal €or external data buffers
Bus response signals that indicate the requested data
transfer operation are completed; in addition, these
two lines indicate the use of the external bus port on a
cycle-by-cycle basis
Dynamically disables the on-chip cache
Provides an encoded interrupt level to the processor
Requests an autovector during an interrupt
acknowledge cycle
Indicates that an interrupt is pending
Indicates that an external device requires bus
mastership
Indicates that an external device may assume bus
mastership
Indicates that an external device has assumed bus
control
System reset
Indicates that the processor should suspend bus
activity
Indicates that an illegal bus operation is being
attempted
Clock input to the processor
+5 volt * 5% power supply

Ground GND Ground connection

At the start of a bus cycle, the 68020 always transfers data to lines Do-D,,, taking into
consideration that the memory or J/O device may be 8, 16, or 32 bits wide. After the first
bus cycle, the 68020 knows the device size by checking the DSACKO and DSACKl pins
and generates additional bus cycles if needed to complete the transfer.

Unlike the 68HC000, the 68020 permits word and long word operands to start at
an odd address. However, i f the starting address is odd, additional bus cycles are required to

604 Fundamentals of Digital Logic and Microcomputer Design

OPO OP 1 OP2

complete the transfer. For example, for a 16-bit device, the 68020 requires 2 bus cycles for
a write to an even address such as MOVE . L D1 $4 0 0 0 2 0 5 0 to complete the operation.
On the other hand, the 68020 requires 3 bus cycles for MOVE . L D1 $4 0 0 0 2 0 5 1 for a
16-bit device to complete the transfer. Note that, as in the 68HC000, instructions in the
68020 must start at even addresses.

Next, consider an example of dynamic bus sizing. The four bytes of a 32-bit data
can be defined as follows:

OP3

If this data is held in a data register Dn and is to be written to a memory or 110
location, then the address lines A, and A, define the byte position of data. For a 32-bit
device, A,A, = 00 (addresses 0, 4, 8,), AIA, = 01 (addresses 1, 5, 9, ...), A,A, = 10
(addresses 2, 6, 10, ...), and A,A, = 11 (addresses 3,7, 11, ...) will store OPO, OPl,OP2,
and OP3, respectively. This data is written via the 68020 D,,-Do pins. However, if the
device is 16-bit, data is always transferred as follows:

All even-addressed bytes via pins D3!-D,,.
All odd-addressed bytes via pins D2,-DI6.

Finally, for an 8-bit device, both even- and odd-addressed bytes are transferred
via pins D3,-D2,.

The 68020 always starts transferring data with the most significant byte first. As
an example, consider MOVE. L D1 $2 0 10 7 4 2 0. In the first bus cycle, the 68020 does
not know the size of the device and, hence, outputs all combinations of data on pins D,,-D,,
taking into consideration that the device may be 8, 16, or 32 bits wide. Assume that the
content of D1 is $02A10512 (OPO = $02, OP1 = $Al, OP2 = $05, and OP3 = $12). In
the first bus cycle, the 68020 sends SIZl SIZO = 00, indicating a 32-bit transfer, and then
outputs data on its D,,-Do pins as follows:

D3 1 :D24 D23 :D16 D, :D, DT :DO

I $02 1 $A1 I $05 I $12 1

If the device is 8-bit, it will take data $02 from pins D,,-D,, in the first cycle and
will then assert DSACKl and DSACKO as 10, indicating an 8-bit device. The 68020 then
transfers the remaining 24 bits ($A1 first, $05 next, and $12 last) via pins D3,-D2., in three
consecutive cycles, with a total of four cycles being necessary to complete the transfer.

However, if the device is 16-bit, in the first cycle the device will take the 16-bit
data $02A1 via pins D,,-D,, and will then assert DSACKl and DSACKO as 01, indicating
a 16-bit device. The 68020 then transfers the remaining 16 bits ($05 12) via pins D3,-D,, in
the next cycle, requiring a total of two cycles for the transfer.

Finally, if the device is 32-bit, the device receives all 32-bit data $02A10512 via
pins D,,-D, and asserts DSACKl DSACKO = 00 to indicate completion of the transfer.
Aligned data transfers for various devices are as follows :
For 8-bit device:

Intel and Motorola 32- & 64-bit Microprocessors

Register D:&]

68020pins D31 D24 SIZl SIZO A1 A0 DSACKl DSACKO

0 +--Bit number

--

First cycle 02 0 0 0 0 1 0
Second cycle 0 1 1 0

Fourth cycle 0 1 1 1 1 0
1 0 1 0 Third cycle 1 A

605

For 16-bit device:
68020pinS 4 1 D24 &3 D16 SIZl SIZO Al A0 m l D m O
First cycle m] 0 0 0 0 0 1
Secondcycle wl 1 0 1 0 0 1

For 32-bit device:

~-
SIZl SIZO A1 A, DSACKl DSACKO 68020pin~ D31 DO

First cycle 1-1 0 0 0 0 0 0

Next, consider a misaligned transfer such as M0VE.W D1, $02010741 with [Dl]
= $20F107A4. The 68020 outputs $0707A4XX on its D,,-Do pins in its first cycle where
XX are don’t cares. Data transfers to various devices are summarized below:
For 8-bit device:

+Bit number

-~ Register D1 /my
68020pins D3, Q4 SIZl SIZO A1 A0 DSACKl DSACKO

Firstcycle 1 0 0 1 1 0
Second cycle 0 1 1 0 1 0

For 16-bit device:

--
68020pins D,, D2,,DZ3 D,, SIZl SIZO A, A0 DSACKl DSACKO

1 0 0 1 0 1
0 1

First cycle
Second cycle

For 32-bit device:

--
68020pin~ D31 Q4D23 4 6 4 5 D& Do SIZl SIZO A1 A0 DSACKl DSACKO
First cycle I I 07 I A4 I I 1 0 0 1 0 0

Let us explain some of the other 68020 pins.
T h e m (external cycle start) pin is an MC68020 output pin. The MC68020 asserts

this pin during the first one half clock of every bus cycle to provide the earliest indication
of the start of a bus cycle. The use of ECS must be validated later with AS, because the
MC68020 may start an instruction fetch cycle and then abort it if the instruction is found in
the cache. In the case of a cache hit, the MC68020 does not assert AS, but provides A,,-A,,
SIZl, SIZO, and FC2-FCO outputs.

The MC68020 AVEC input is activated by an external device to service an
autovector interrupt. The AVEC has the same function as VPA on the 68HC000. The

~

606 Fundamentals of Digital Logic and Microcomputer Design

hnctions of the other signals, such as AS, Rlw, IpL2 - m, m, m, and BGACK, are
similar to those of the MC68HC000.

The MC68020 system control pins are functionally similar to those of the
MC68HC000. However, there are some minor differences. For example, for hardware
reset, RESET and HALT pins need not be asserted simultaneously. Therefore, unlike the
68HC000, the RESET and HALT pins are not required to be tied together in the MC68020
system.

The RESET and HALT pins are bidirectional and open drain (external pull-up
resistances are required), and their functions are independent. The RESET signal is a
bidirectional signal. The RESET pin, when asserted by an external circuit for a minimum
of 520 clock periods, the RESET pin resets the entire system including the MC68020.
Upon hardware reset, the MC68020 completes any active bus cycle in an orderly manner
and then performs the following:

Reads the 32-bit content of address $00000000 and loads it into the ISP (the
contents of $00000000 are loaded to the most significant byte of the ISP and so
on).
Reads the 32-bit contents of address $00000004 into the PC (contents of
$00000004 to most significant byte of the PC and so on).
Sets the I2 I1 I0 bits of the SR to 1 1 1, sets the S bit in the SR to 1, and clears the
T1, TO, and M bits in the SR.
Clears the VBR to $00000000.
Clears the cache enable bit in the CACR.
All other registers are unaffected by hardware reset.
When the RESET instruction is executed, the MC68020 asserts the RESET pin

for 512 clock cycles and the processor resets all the external devices connected to the
RESET pin. Software reset does not affect any internal register.

As mentioned earlier while describing dynamic bus sizing, the 68020 always
drives all data lines during a write operation. Furthermore, for all inputs there is a sample
window of at least 20 ns during which the 68020 latches the input level. To guarantee the
recognition of a certain level on a particular falling edge of the clock, the input level must
be held stable throughout this sample window, 20 ns; otherwise, the level recognized by
the MC68020 is unknown or legal.

During data transfer operations, the 68020 can use either synchronous or
asynchronous operation. In synchronous operation, the 68020 clock is used to generate
DSACKl , DSACKO, and other asynchronous inputs. Also, in synchronous operation, if
the DSACKl and DSACKO are asserted for the required window of at least 20 ns (at least
5 ns before and at least 15 ns after the falling edge of S2) on the falling edge S2, the 68020
latches valid data on the falling edge of S4 on a read cycle. The 68020 does not generate
any wait states if DSACKl and DSACKO are asserted at the falling edge of S2; otherwise
the 68020 inserts wait cycles like the 68HC000 and latches data at the falling edge of the
following cycle as soon as DSACKl and DSACKO are asserted. A minimum of three clock
cycles are required for a read operation.

In asynchronous operation, clock frequency independence at a system level is
achieved and the 68020 is used in an asynchronous manner. This typically requires using
the bus signals such as AS, m, DSACKl, and DSACKO to control data transfer. Using
asynchronous operation, AS starts the bus cycle and DS is used as a condition of valid
data on a write cycle. Decoding of SIZ1, SIZO, A,, and A, provides enable signals, which
indicate the portion of the data bus that is used in data transfer. The memory or I/O chip

- -

~ _ _ _

Intel and Motorola 32- & 64-bit Microprocessors 607

then responds by placing the requested data on the correct portion of the data bus for a
read cycle or latching the data on a write cycle and asserting DSACK1, and DSACKO,
corresponding to the memory or I/O port size (%bit, 16-bit, or 32-bit), to terminate the bus
cycle. If no memory or I/O device responds or the address is invalid, the external control
logic asserts the and HALT signal(s) to abort or retry the bus cycle or
retries the bus cycle.

In asynchronous operation, the DSACKl, and DSACKO signals are allowed to be
asserted before the data from memory or an I/O device is valid on a read cycle. The 68020
latches data according to Parameter #3 1 provided in Motorola manuals. (Parameter #3 1
is a maximum of 60 ns for the 12.5-MHz 68020, a maximum of 50 ns for the 16.67-MHz
68020, and a maximum of 43 ns for the 20-Mhz 68020, and maximum time is specified
from the assertion of AS to the assertion of DSACKl , and DSACKO. This is because the
68020 will insert wait cycles in one-clock-cycle increments until DSACKI, and DSACKO
are recognized as asserted.)

or

MC68020 System Design
The following 8-MHz 68020 system design will use a 128 KE3 32-bit wide supervisor data
memory. Four 27C256’s (32K x 8 HCMOS EPROM with 120-ns access time) are used for
this purpose. Because the memory is 32 KB, the 68020 address lines A,-A,, are used for
addressing the 27C256’s. The 68020 SIZl, SIZO, A,, A,,, DSACK1, and DSACKO pins are
utilized for selecting the memory chips.

Table 11.12 shows the table for designing the enable logic for the four 27C256
chips. The 68020 A,, pin is used to distinguish between memory and I/O. A,, = 0 is used to
select the memory chips; A,, = 1 is used to select I/O chips (not shown in the design). Table
1 1.13 shows the K-maps for the enable logic. A logic diagram can be drawn for generating
the memory byte enable signals DBBEl, DBBE2, DBBE3, and DBBE4.

The 68020 system with 32-bit memory consists of four 27C256’s, each connected
to its associated portion of the system data bus (Dj,-D24, D,,-D,,, D,,-D,, and D,-Do).

TABLE 11.12

~ _ _ _ _ _ _

Table for memory enables for 32-bit memory

1 0

1 1

srzi srzo A , A , DBBEl I DBBE22 DBBE33 DBBE44
0 1 0 0 1 0 0 0

0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1
0 0 1 1 0 0
0 1 0 1 1 0
1 0 0 0 1 1

1 1 0 0 0 1
0 0 1 1 1 0
0 1 0 1 1 1
1 0 0 0 1 1

1 1 0 0 0 1

0 0 0 0 1 1 1 1
0 1 0 1 1 1

1 0 0 0 1 1
1 1 0 0 0 1

608 Fundamentals of Digital Logic and Microcomputer Design

TABLE 11.13 K-maps for Enable Signals for Memory

S

K-MAPI

_ _
DBBEll =A1

"MAP2

K-MAP3

I + S I Z I . S I ~ O . ~ + S I z I & K

K-MAP4

Ai DBBEll -
- DBBEI
DS AD

DBBEZ

DS

slzo

To manipulate this memory configuration, 32-bit data bus control byte enable logic is
incorporated to generate byte enable signals (m, m, m, and m).
These byte enables are generated by using 68020's SIZ I , SIZO, A,, A,, A,,, and DS pins as
shown in the individual logic diagrams of the byte enable logic. A PAL can be programmed
to implement this logic. A schematic of the 68020-27C256 interface is shown in Figure
11.7.

Because the 68020 clock is used to generate DSACK1, and DSACKO, the 68020
operates in synchronous mode.

A 74HC138 decoder is used for selecting memory banks to enable the appropriate
memory chips. The 74HC138 is enabled by AS = 0. The output line 5 (FC2FClFCO = 101
for supervisor data) is used to select the memory chips. Assuming don't cares to be zeros
and also note that A,, = 0 for memory, the supervisor data memory map is obtained as
follows:

EPROM # 1 $00000000, $00000004, . . . , $0001 FFFC
EPROM #2 $00000001, $00000005, . . ., $0001FFFD
EPROM #3 $00000002, $00000006, . . . , $0001 FFFE
EPROM #4 $00000003, $00000007, . . ., $0001FFFF

DSACKI and DSACKO are generated by ANDing the m, m, m,

Intel and Motorola 32- & 64-bit Microprocessors 609

5
9
s,
5
'E

i"

h

FIGURE 11.7 68020/27C256 System

and DBBE4 outputs of the byte enable logic circuit. When one or more EPROM chips are
selected, the appropriate enables (DBBE1-DBBE4) will be low, thus asserting DSACKl
= 0 and DSACKO = 0. This will tell the 68020 that the memory is 32 bits wide. Data from
the selected memory chip(s) will be placed on the appropriate data pins of the 68020.
For example, in response to execution of the instruction MOVE . W $0 0 0 0 0 0 0 1, DO in
the supervisor mode, the 68020 will generate appropriate signals to generate DBBEl= 1,
DBBE2= 0, DBBE3= 0, DBBE4= 1, W- = 1, and output 5 of the decoder = 0
This will select EPROM #2 and EPROM #3 chips. Thus, the contents of address

$00000001 are transferred to DO (bits 8-15) and the contents of address $00000002 are
moved to DO (bits 0-7). The supervisor program, user program, and user data memories
can be connected in a similar way (not shown in the figure). For each memory space, four
memory chips are required.

Let us discuss the timing requirements of the 68020/27C256 system. Because the

___-

_ _ _ _ _ _ _ _ _

610 Fundamentals of Digital Logic and Microcomputer Design

68020 clock is used to generate DSACKl and DSACKO, the 68020 operates in synchronous
mode. This means that the 68020 checks DSACKl and DSACKO for LOW at the falling
edge of S2 (two cycles). From the 68020 timing diagram (Motorola manual), AS, DS, and
all other output signals used in memory decoding go to LOW at the end of approximately
one clock cycle. For an 8-MHz 68020 clock, each cycle is 125 ns. From byte enable logic
diagrams, a maximum of four gate delays (40 ns) are required. Therefore, the selected
EPROM(s) will be enabled after 165 ns (125 ns + 40 ns). With 120-11s access time, the
EPROM(s) will place data on the output lines after approximately 285 ns (165 ns + 120 ns).
With an 8-MHz 68020 clock, DSACKl and DSACKO will be checked for LOW (32-bit
memory) after two cycles (250 ns) and if LOW, the 68020 will latch data after three cycles
(375 ns). Hence, no delay circuit is required for DSACKl and DSACKO.. In case a delay
circuit is required, a ring counter can be used. Note that the 20-ns window requirement
for DSACKl and DSACKO inputs (5 ns before and 15 ns after the falling edge of S2) is
satisfied.

_ _

MC68020 VO
The 68020 I/O handling features are very similar to those of the 68000. This

means that the 68020 uses memory-mapped I/O, and the 68230 I/O chip can be used for
programmed 110. The external interrupts are handled via the 68020 IPL2, IPLl, and IPLO
pins using autovectoring and nonautovectoring pins. However, the 68020 uses a new pin
called AVEC rather than VPA (68HC000) for autovectoring. Nonautovectonng is handled
using DSACKO = 0 and DSACKl = 0 rather than DTACKO= 0 (as with the-68HC000).
Note that the 68020 does not have the VPA pin. Like the 68HC000, the 68020 uses the m,
m, and BGACK pins for DMA transfer. The 68020 exceptions are similar to those of the
68000 with some variations such as coprocessor exceptions.

11.7.2 Motorola MC68030
The MC68030 is a virtual memory microprocessor based on the MC68020 with additional
features. The MC68030 is designed by using HCMOS technology and can be operated at
clock rates of 16.67 and 33 MHz. The MC68030 contains all features of the MC68020,
plus some additional ones. The basic differences between the MC68020 and MC68030 are
as follows:

-- -

-

Characteristics MC 68020 MC68030
On-chip cache 256-byte instruction cache 256-byte instruction cache and

On-chip memory None
management unit (MMU)
Instruction set 101

256 byte data cache
Paged data memory management
(demand page of the MC68851)
103 (four new instructions are
for on-chip MMU); CALLM
and RTM instructions are not
supported.

Like the MC68020, the MC68030 also supports 7 data types and 18 addressing modes. The
MC68030 110 is identical to the MC68020.

11.7.3 Motorola MC68040 / MC68060
This section presents an overview of the Motorola MC68040 and MC 68060 32-bit
microprocessors. The MC68040 is Motorola’s enhanced 68030, 32-bit microprocessor,
implemented in HCMOS technology. Providing balance between speed, power, and
physical device size, the MC68040 integrates on-chip MC68030-compatible integer unit,

Intel and Motorola 32- & 64-bit Microprocessors 61 1

an MC6888 1/ MC68882-compatible floating-point unit (FPU), dual independent demand-
paged memory management units (MMUs) for instruction and data stream accesses, and
an independent 4 IU3 instruction and data cache. A high degree of instruction execution
parallelism is achieved through the use of multiple independent execution pipelines,
multiple internal buses, and separate physical caches for both instruction and data accesses.
The MC68040 also includes 32-bit nonmultiplexed external address and data buses.
The MC68060 is a superscalar (two instructions per cycle) 32-bit microprocessor. The
68060, like the Pentium, is designed using a combination of RISC and CISC architectures
to obtain high performance. For some reason, Motorola does not offer MC68050
microprocessor. The 68060 is fully compatible with the 68040 in the user mode. The 68060
can operate at 50- and 66-MHz clocks with performance much faster than the 68040. An
striking feature of the 68060 is the power consumption control. The 68060 is designed
using static HCMOS to reduce power during normal operation.

11.7.4 PowerPC Microprocessor
This section provides an overview of the hardware, software, and interfacing features
associated with the RISC microprocessor called the PowerPC. Finally, the basic features
of both 32-bit and 64-bit PowerPC microprocessors are discussed

Basics of RISC
RISC is an acronym for Reduced Instruction Set Computer. This type of microprocessor
emphasizes simplicity and efficiency. RISC designs start with a necessary and sufficient
instruction set. The purpose of using RISC architecture is to maximize speed by reducing
clock cycles per instruction. Almost all computations can be obtained from a few simple
operations. The goal of RISC architecture is to maximize the effective speed of a design
by performing infrequent operations in software and frequent functions in hardware, thus
obtaining a net performance gain. The following summarizes the typical features of a RISC
microprocessor:

1.

2.
3.

4.
5.

6.

7.

The RISC microprocessor is designed using hardwired control with little or
no microcode. Note that variable-length instruction formats generally require
microcode design. All RISC instructions have fixed formats, so microcode design
is not necessary.
A RISC microprocessor executes most instructions in a single cycle.
The instruction set of a RISC microprocessor typically includes only register,
load, and store instructions. All instructions involving arithmetic operations use
registers, and load and store operations are utilized to access memory.
The instructions have a simple fixed format with few addressing modes.
A RISC microprocessor has several general-purpose registers and large cache
memories.
A RISC microprocessor processes several instructions simultaneously and thus
includes pipelining.
Software can take advantage of more concurrency. For example, Jumps occur
after execution of the instruction that follows. This allows fetching of the next
instruction during execution of the current instruction.
RISC microprocessors are suitable for embedded applications. Embedded

microprocessors or controllers are embedded in the host system. This means that the
presence and operation of these controllers are basically hidden from the host system.
Typical embedded control applications include office automation systems such as laser

612 Fundamentals of Digital Logic and Microcomputer Design

printers. Since a laser printer requires a high performance microprocessor with on-chip
floating-point hardware, RISC microprocessors such as PowerPC are ideal for these types
of applications.

RISC microprocessors are well suited for applications such as image processing,
robotics, graphics, and instrumentation. The key features of the RISC microprocessors
that make them ideal for these applications are their relatively low level of integration in
the chip and instruction pipeline architecture. These characteristics result in low power
consumption, fast instruction execution, and fast recognition of interrupts. Typical 32- and
64-bit RISC microprocessors include PowerPC microprocessors.

IBMlMotorolalApple PowerPC 601
This section provides an overview of the basic features of PowerPC microprocessors. The
PowerPC 601 was jointly developed by Apple, IBM, and Motorola. It is available from IBM
as PP 601 and from Motorola as MPC 601. The PowerPC 601 is the first implementation
of the PowerPC family of Reduced Instruction Set Computer (RISC) microprocessors.
There are two types of PowerPC implementations: 32-bit and 64-bit. The PowerPC 601
implements the 32-bit portion of the IBM PowerPC architectures and Motorola 881 00
bus control logic. It includes 32-bit effective (logical) addresses, integer data types of
8, 16, and 32 bits, and floating-point data types of 32 and 64 bits. For 64-bit PowerPC
implementations, the PowerPC architecture provides 64-bit integer data types, 64-bit
addressing, and other features necessary to complete the 64-bit architecture.

The 601 is a pipelined superscalar processor and is capable of executing three
instructions per clock cycle. A pipelined processor is one in which the processing of an
instruction is broken down into discrete stages, such as decode, execute, and write-back
(the result of the operation is written back in the register file).

Because the tasks required to process an instruction are broken into a series of
tasks, an instruction does not require the entire resources of an execution unit. For example,
after an instruction completes the decode stage, it can pass on to the next stage, and the
subsequent instruction can advance into the decode stage. This improves the throughput
of the instruction flow. For example, it may take three cycles foi an integer instruction to
complete, but if there are no stalls in the integer pipeline, a series of integer instructions can
have a throughput of one instruction per cycle. Each unit is kept busy in each cycle.
A superscalar processor is one in which multiple pipelines are provided to allow instructions
to execute in parallel. The PowerPC 601 includes three execution units: a 32-bit integer
unit (IU), a branch processing unit (BPU), and a pipelined floating-point unit (FPU).

The PowerPC 601 contains an on-chip, 32 IU3 unified cache (combined instruction
and data cache) and an on-chip memory management unit (MMU). It has a 64-bit data bus
and a 32-bit address bus. The 601 supports single-beat and four-beat burst data transfer
for memory accesses. Note that a single-beat transaction indicates data transfer of up to
64 bits. The PowerPC 601 uses memory-mapped I/O. Input/output devices can also be
interfaced to the PowerPC 601 by using the I/O controller. The 601 is designed by using an
advanced, CMOS process technology and maintains full compatibility with TTL devices.

The PowerPC 601 contains an on-chip real-time clock (RTC). The RTC was
normally an 110 device completely outside the CPU in earlier microcomputers. Although the
RTC appearing inside the microcomputer chip is common on single-chip microcomputers,
this is the first time the RTC is implemented inside a top-of-the-line microprocessor such
as the PowerPC. This implication is that modem multitasking operating systems require
time keeping for task switching as well as keeping the calendar date. The 601 real-time

Intel and Motorola 32- & 64-bit Microprocessors 613

clock (RTC) on-chip hardware provides a measure of real time in terms of time of day and
date, with a calendar range of 136.19 years.

To specify the ordering of four bytes (ABCD) within 32 bits, the 601 can use
either the ABCD (big-endian) or DCBA (little-endian) ordering. The 601 big- or little-
endian modes can be selected by setting the LM bit (bit 28) in the HID0 register. Note
that big-endian ordering (ABCD) assigns the lowest address to the highest-order eight bits
of the multibyte data. On the other hand, little-endian byte ordering (DCBA) assigns the
lowest address to the lowest order (rightmost) 8 bits of the multibyte data.

Note that Motorola 68XXX microprocessors support big-endian byte ordering
whereas Intel 8OXXX microprocessors support little-endian byte ordering.

PowerPC 601 Registers
PowerPC 601 registers can be accessed depending on the program’s access

privilege level (supervisor or user mode). The privilege level is determined by the privilege
level (PR) bit in the machine status register (MSR). The supervisor mode of operation is
typically used by the operating system, and user mode is used by the application software.
The PowerPC 601 programming model contains user- and supervisor-level registers. Some
of these are

The user-level register can be accessed by all software with either user or
supervisor privileges.
The 32-bit GPRs (general-purpose registers, GPRO-GPR3 1) can be used as the
data source or destination for all integer instructions. They can also provide data
for generating addresses.
The 32-bit FPRs (floating-point registers, FPRO-FPR31) can be used as data
sources and destinations for all floating-point instructions.
The floating-point status and control register (FPCSR) is a user control register in
the floating-point unit (FPU). It contains floating-point status and control bits such
as floating-point exception signal bits, exception summary bits, and exception
enable bits.
The condition register (CR) is a 32-bit register, divided into eight 4-bit fields,
CRO-CR7. These fields reflect the results of certain arithmetic operations and
provide mechanisms for testing and branching.
The remaining user-level registers are 32-bit special purpose registers-SPRO,
SPR1, SPR4, SPR5, SPR8, and SPR9.
SPRO is known as the MQ register and is used as a register extension to hold
the product for the multiplication instructions and the dividend for the divide
instructions. The MQ register is also used as an operand of long shift and rotate
instructions.
SPRl is called the integer exception register (XER). The XER is a 32-bit register
that indicates carries and overflow bits for integer operations. It also contains two
fields for load string and compare byte indexed instructions.
SPR4 and SPRS respectively represent two 32-bit read only registers and hold
the upper (RTCU) and lower (RTCL) portions of the real-time clock (RTC). The
RTCU register maintains the number of seconds from a time specified by software.
The RTCL register maintains the fraction of the current second in nanoseconds.
SPRS is the 32-bit link register (LR). The link register can be used to provide
the branch target address and to hold the return address after branch and link
instructions.

614 Fundamentals of Digital Logic and Microcomputer Design

SPR9 represents the 32-bit count register (CTR). The CTR can be used to hold a
loop count that can be decremented during execution of certain branch instructions.
The CTR can also be used to hold the target address for the branch conditional to
count register instruction.

PowerPC 601 Addressing Modes
The effective address (EA) is the 32-bit address computed by the processor when

executing a memory access or branch instruction or when fetching the next sequential
instruction. Since the PowerPC is based on the RISC architecture, arithmetic and logical
instructions do not read or modify memory.

Load and store operations have two types of effective address generation:

i) Register Indirect with Immediate Index Mode
Instructions using this mode contain a signed 16-bit index (d operand in the 32-

bit instruction) which is sign extended to 32-bits, and added to the contents of a general-
purpose register specified by five bits in the 32-bit instruction (rA operand) to generate
the effective address. A zero in the rA operand causes a zero to be added to the immediate
index (d operand). The option to specify rA or 0 is shown in the instruction descriptions of
the 601 user’s manual as the notation (rAlO).

An example is lbz rD,d (rA) where rA specifies a general-purpose register (GPR)
containing an address, d is the the 16-bit immediate index and rD specifies a general-
purpose register as destination. Consider l bz r l I 2 0 (r 3) . The effective address (EA)
is the sum r3+20. The byte in memory addressed by the EA is loaded into bits 3 1 through
24 of register r l . The remaining bits in r l are cleared to zero. Note that the registers rl and
r3 represent GPRl and GPR3 respectively.

ii) Register Indirect with Index Mode
Instructions using this addressing mode add the contents of two general-purpose

registers (one GPR holds an address and another holds the index). An example is lbzx rD,
rA, rB where rD specifies a GPR as destination, rA specifies a GPR as the index, and rB
specifies a GPR holding an address. Consider lbzx r l I r 4 I r 6 . The effective address
(EA) is the sum (r410)+(r6). The byte in memory adressed by the EA is loaded into register
rl (24-3 1). The remaining bits in register rD are cleared to zero.

PowerPC 601 conditional and unconditional branch instructions compute the
effective address (EA) or the next instruction address using various addressing modes A
few of them are described below:

Branch Relative Branch instructions (32-bit wide) using the relative mode
generate the address of the next instruction by adding an offset and the current
program counter contents. An example of this mode is an instruction be s t a r t
unconditionally jumps to the address PC + start.
Branch Absolute Branch instructions using this mode include the address of
the next instruction to be executed. For example, the instruction ba begin
unconditionally branches to the absolute address “begin” specified in the
instruction.
Branch to Link Register Branch instructions using this mode branch to the
address computed as the sum of the immediate offset and the address of the
current instruction. The instruction address following the instruction is placed
into the link register. For example, the instruction b l I s t a r t unconditionally
jumps to the address computed from current PC contents plus start. The return

Intel and Motorola 32- & 64-bit Microprocessors 615

address is placed in the link register.
Branch to Count Register Instructions using this mode branch to the address
contained in the current register. Consider b c t t r B I means branch
conditional to count register. This instruction branches conditionally to the address
specified in the count register.

The BI operand specifies the bit in the condition register to be used as the
condition of the branch. The BO operand specifies how the branch is affected by
or affects condition or count registers. Numerical values specifying BI and BO
can be obtained from the 601 manual.
Note that some instructions combine the link register and count register modes.

An example is bcc t r BO, B I . This instruction first performs the same operation as the
bcttr and then places the instruction address following the instruction into the link register.
This instruction is a form of “conditional call” because the return address is saved in the
link register.

Typical PowerPC 601 Instructions

BO,

The 601 instructions are divided into the following categories:
1. Integer Instructions
2. Floating-point Instructions
3. Loadstore Instructions
4. Flow Control Instructions
5. Processor Control Instructions

Integer instructions operate on byte (8-bit), half-word (1 6-bit), and word (32-bit) operands.
Floating-point instructions operate on single-precision and double-precision floating-point
operands.

Integer Instructions
The integer instructions include integer arithmetic, integer compare, integer rotate

and shift, and integer logical instructions. The integer arithmetic instructions always set
the integer exception register bit, CA, to reflect the carry out of bit 7. Integer instructions
with the overflow enable (OE) bit set will cause the XER bits SO (summary overflow
-overflow bit set due to exception) and OV (overflow bit set due to instruction execution)
to be set to reflect overflow of the 32-bit result. Some examples of integer instructions
are provided in the following. Note that rS, rD, rA, and rB in the following examples are
32-bit general purpose registers (GPRs) of the 601 and SIMM is 16-bit signed immediate
number.

add r D , r A , SIMM performs the following immediate operation: rD + (rAl0) +
SIMM; rAl0) can be either (rA) or 0. An example is add r D , r A , SIMM or add
r D , 0 , SIMM.
add r D , r A , r B performs rD - rA + rB.
add. r D , r A , r B adds with CR update as follows: rD - rA + rB. The dot suffix
enables the update of the condition register.
s u b f r D , r A , r B performs rD - rB - rA.
s u b r D , r A , r B performs the same operation as subf but updates the condition code
register.
addme r D , r A performs the (add to minus one extended) operation: rD - (rA) +
FFFF FFFFH + CA bit in XER.
s u b f m e r D , r A performs the (subtract from minus one extended) operation: rD -

616 Fundamentals of Digital Logic and Microcomputer Design

(x) + FFFF FFFFH + CA bit in XER, where (x) represents the ones complement of
the contents of rA.
mulhwu rD, rA, rB performs an unsigned multiplication of two 32-bit numbers in
rA and rB. The high-order 32 bits of the 64-bit product are placed in rD.
mulhw rD, rA, rB performs the same operation as the mulhwu except that the
multiplication is for signed numbers.
mullw rD, rA, rB places the low order 32-bits of the 64-bit product (rA)*(rB) into
rD. The low-order 32-bit products are independent whether the operands are treated as
signed or unsigned integers.
mulli rD, rA, SIMMplaces the low-order32 bits ofthe48-bit product (rA)*SIMM,,
into rD. The low-order bits of the 32-bit product are independent whether the operands
are treated as signed or unsigned integers.
divw rD, rA, rB divides the 32-bit signed dividend in rA by the 32-bit signed
divisor in rB. The 32-bit quotient is placed in rD and the remainder is discarded.
divwu rD, rA, rB is the same as the divw instruction except that the division is for
unsigned numbers.
cmpi crfD, L, rA, SIMM compares 32 bits in rA with immediate SIMM treating
operands as signed integer. The result of comparison is placed in crfd field (0 for CRO,
1 for CRl , and so on) of the condition register. L=O indicates 32-bit operands while
L=l represents the 64-bit operands. For example, cmpi 0 , 0, rA, 2 0 0 compares
32 bits in register rA with immediate value 200 and CRO is affected according to the
comparison.
xor rA, rS , rB performs exclusive-or operation between the contents of rS and rB.
The result is placed into register rA.
extsb rA, rS places bits 24-31 ofrS into bits 24-31 of rA. Bit 24 of rS is then sign
extended through bits 0-23 of rA.
slw rA, rS, rB shifts the contents of rS left by the shift count specified by rB [27-
3 11. Bits shifted out of position 0 are lost. Zeros are placed in the vacated positions on
the right. The 32-bit result is placed into rA.
srw rA, rS, rB is similar to slw rA, rS, rB except that the operation is for right
shift.

Floating-Point Instructions
Some of the 601 floating-point instructions are provided below:

f add f rD, f rA, f rB adds the contents of the floating-point register, frA to the
contents of the floating-point register frB. If the most significant bit of the resultant
significand is not a one, then the result is normalized. The result is rounded to the
specified position under control of the FPSCR register. The result is rounded to the
specified precision under control of the FPSCR register. The result is then placed in
frD.

Note that this fadd instruction requires one cycle in execute stage, assuming
normal operations; however, there is an execute stage delay of three cycles if the next
instruction is dependent.

The 601 floating point addition is based on “exponent comparison and add by
one” for each bit shifted, until the two exponents are equal. The two significands are
then added algebraically to form an intermediate sum. If a carry occurs, the sum’s
significand is shifted right one bit position and the exponent is increased by one.
f sub f rD, f rA, f rB performs frA - frB, normalization, and rounding of the result

Intel and Motorola 32- & 64-bit Microprocessors 617

are performed in the same way as the f add instruction.

Normalization and rounding of the result are performed in the same way as the fadd.
Floating-point multiplication is based on exponent addition and multiplication of the
significands.
f d i v f r D , f r A , f r B performs the floating-point division frD + frA/frB. No
remainder is provided. Normalization and rounding of the result are performed in the
same way as the f add instruction.
f m s u b f r D , f r A , F r C , f r B perfoms frD - frA * frC - frB. Normalization and
rounding of the result are performed in the same way as the f add instruction.

f m u l f r D , f r A , f r C performsfrD+ frA*frC.

LoaaStore Instructions
Some examples of the 601 load and store instructions are

lhzx r D , r A , r B loads the half word (16 bits) in memory addressed by the sum
(rA/O) + (rB) into bits 16 through 3 1 of rD. The remaining bits of rD are cleared to
zero.
s t h u x r S , r A , r B stores the 16-bit half word from bits 16-31 of register rS in
memory addressed by the sum (rAl0) + (rB). The value (rAl0) + rB is placed into
register rA.
l m w r D , d (r A) loads n (where n = 32 - D and D = 0 through 31) consecutive words
starting at memory location addressed by the sum (r10) + d into the general-purpose
register specified by rD through r3 1.
s t m u r S , d (r A) is similar to l m w except that s t m w stores n consecutive words.

Flow Control Instructions
Flow control instructions include conditional and unconditional branch

instructions. An example of one of these instructions is
bc (branch conditional) BO, B I , target branch with offset target if the condition bit
in CR specified by bit number BI is true (The condition “true” is specified by a value
in BO).

For example, bc 1 2 , 0 , t a rge t means that branch with offset target if the
condition specified by bit 0 in CR (BI = 0 indicates the result is negative) is true
(specified by the value BO = 12 according to Motorola PowerPC 601 manual).

Processor Control Znstructions
Processor control instructions are used to read from and write to the machine state register

(MSR), condition register (CR), and special status register (SPRs). Some examples of
these instructions are
m f c r r D places the contents of the condition register into rD.
m t m s r r S places the contents of rS into the MSR. This is a supervisor-level
instruction.
m f i m s r r D places the contents of MSR into rD. This is a supervisor-level instruction.

PowerPC 601 Exception Model
All 601 exceptions can be described as either precise or imprecise and either synchronous
or asynchronous. Asynchronous exceptions are caused by events external to the processor’s
execution. Synchronous exceptions, on the other hand, are handled precisely by the 601
and are caused by instructions; precise exception means that the machine state at the time
the exception occurs is known and can be completely restored. That is, the instructions

618 Fundamentals of Digital Logic and Microcomputer Design

that invoke trap and system call exceptions complete execution before the exception is
taken. When exception processing completes, execution resumes at the address of the next
instruction.

An example of a maskable asynchronous, precise exception is the external
interrupt. When an asynchronous, precise exception such as the external interrupt occurs,
the 601 postpones its handling until all instructions and any exceptions associated with
those instructions complete execution. System reset and machine check exceptions are two
nomaskable exceptions that are asynchronous and imprecise. These exceptions may not
be recoverable or may provide a limited degree of recoverability for diagnostic purpose.

Asynchronous, imprecise exceptions have the highest priority with the
synchronous, precise exceptions having the next priority and the asynchronous, precise
exceptions the lowest priority.
The 601 exception mechanism allows the processor to change automatically to supervisor
state as a result of exceptions. When exceptions occur, information about the state of the
processor is saved to certain registers rather than in memory as is usually done with other
processors in order to achieve high speeds. The processor then begins execution at an
address (exception vector) predetermined for each exception. The exception handler at the
specified vector is then processed with processor in supervisor mode.

601 System Interface
The pins and signals of the PowerPC 601 include a 32-bit address bus and 52 control and
information signals. Memory access allows transfer sizes of 8, 16, 24, 32, 40, 48, 56, or
64 bits in one bus clock cycle. Data transfer occurs in either single-beat transactions or
four-beat burst transactions. Both memory and I/O accesses can use the same bus transfer
protocols. The 601 also has the ability to define memory areas as I/O controller interface
areas. The 601 uses the TS pin for memory-mapped accesses and the XATS pin for I/O
controller interface accesses.

Summary of PowerPC 601 Features
The PowerPC 601 is a RISC-based superscalar microprocessor. That is, it can execute two
or more instructions per cycle. The PowerPC 601 is based on loadhtore architectures. This
means that all instructions that access memory are either loads or stores, and all operate
instructions are from register to register. Both load and store instructions have 32-bit fixed-
length instructions along with 32-bit integer and 32-bit floating-point registers.

The PowerPC 601 includes two primary addressing modes: register plus
displacement and register plus register. In addition, the 601 load and store instructions
perform the load or store operation and also modify the index register by placing the
effective address just computed. In the PowerPC 60 1, Branch target addresses are normally
determined by using program counter relative mode. That is, the branch target address
is determined by adding a displacement to the program counter. However, as mentioned
before, conditional branches in the 601 may test fields in the condition code register and
the contents of a special register called the count register (CTR). A single 601 branch
instruction can implement a loop-closing branch by decrementing the CTR, testing its
value, and branching if it is nonzero.

The PowerPC 601 saves the return address for certain control transfer instructions
such as subroutine call in a general-purpose register. The 601 does this in any branch
by setting the link (LK) bit to one. The return address is saved in the link register. The
PowerPC 60 1 utilizes sophisticated pipelines. The 60 1 uses relatively short independent

Intel and Motorola 32- & 64-bit Microprocessors

TABLE 11.14

619

PowerPC 601 vs. 620

Features PowerPC 601 PowerPC 620
Technology HCMOS HCMOS
Transistor count 2.8 million I million
Clock speed 50 MHz, 66 MHz 133 MHz
Size of the microprocessor 32-bit 64-bit
Address bus 32-bit 40-bit
Data bus 64-bit 128-bit

pipelines with more buffering. The 601 does a lot of computation in each pipe stage. The
601 has a unified (combined) 32 KE3 cache. That is, instructions and data reside in the same
cache in the 601. Finally, the 601 offers high performance by utilizing sophisticated design
tricks. For example, the 601 includes powerful instructions such as floating-point multiply-
add and update loadlstore that perform more tasks with fewer instructions.

PowerPC 64-Bit Microprocessors
PowerPC 64-bit microprocessors include the PowerPC 620, 603e, 7501740, and 604e.
These microprocessors are 64-bit superscalar processors. This means that they can execute
more than one instruction in a cycle. Table 1 1.14 compares the basic features of the 32-bit
PowerPC 601 with the 64-bit PowerPC 620.

There are a few versions of the 64-bit PowerPC available: PowerPC 603e,
PowerPC 750/740, and PowerPC 604e. The PowerPC 603e microprocessor is available
at speeds of 250, 275, and 300 MHz. The 603e has high performance and low power
consumption, which makes it suited for applications found in the embedded system market.
The PowerPC 603e is used in the Power Macintosh C500 series, which offers features such
as accelerated multimedia, advanced video capture, and publishing. The PowerPC 750/740
is available at speeds up to 266 MHz and uses only 5 watts of power. The unique features
offered by this microprocessor are built-in power-saving modes, an on-chip thermal sensor
to regulate processor temperature, and a choice of packaging configurations. The PowerPC
604e microprocessor, another member of the PowerPC family, provides speeds of 350
MHz and using 8.0 watts of power. Like Intel, Motorola used the 0.25 micron process
technology to achieve this speed. The PowerPC 604e is intended for high-end Macintosh
and Mac-compatible systems.

Apple) utilized
PowerPC 750 for Apple’s iMac and Power Macintosh personal computers. Apple’s G3
(later version) used Motorola’s copper-based PowerPC microprocessor, providing speed
of up to 400 MHz.

11.7.5 Motorola’s State-of-the-art Microprocessors
As part of their plans to carry the PowerPC architecture into the future, Motorola /IBMl
Apple already announced AltiVec extensions for the PowerPC family. The result is the
MPC7400 PowerPC microprocessor. This microprocessor is available in 400 MHz, 450
MHz and 500 MHz clock speeds. Motorola’s AltiVec technology is the foundation for the
Velocity Engine of Apple Computer’s next generation desktop computers. For example,
Apple rececently announced Power Mac G5 which uses Motorola’s 64-bit microprocessor,
G5. AltiVec extensions are somewhat comparable to the MMX extensions in Intel’s
Pentium family. AltiVec has independent processing units while Intel tied MMX to the
floating-point unit. Both utilize SIMD (Chapter 8). A comparison of some of the features

Apple Computer’s original G3 (Marketing name used by

620

of AltiVec vs. MMX is provided below:

Fundamentals of Digital Logic and Microcomputer Design

Features AltiVec MMX
Size 128 bits at a time 64 bits at a time
Instructions 162 instructions 57 instructions
Registers 32 registers 8 registers
Unit Independent tied to Floating-point Unit

In AltiVec, each processing unit can work independent of the others. This provides more
parallelism by separate units. Since Intel tied MMX to floating-point unit, Pentiums can
perform either floating-point math or switch over to MMX, but not both simultaneously.
The switch requires a mode change that can cost hundreds of cycles, both going into and
coming out of MMX mode. It may be very tricky with Pentiums to write good and efficient
codes when mixing of modes are required in some computing algorithms.

AltiVec can vetorize the floating-point operations. This means that one can use
AltiVec to work on some data in the Floating-point Unit, then load the data in the AltiVec
side (Vector Unit) without any significant mode switch. This may save hundreds of cycles
. Also, this allows programmers to do more with the Vector Unit since they can go back
and forth to mix and match.

The biggest drawback with MMX or AltiVec is getting programmers to use
them. Programmers are required to use assembly language for MMX. Therefore, a few
programmers used MMX for dedicated applications. For example, Intel hand tuned some
photoshop filters for Adobe. Programmers can use C language with AltiVec. Therefore, it
is highly likely that more programmers will use AltiVec than MMX.

In the future, Motorola and IBM plan to introduce the PowerPC series 2K. It is
expected that the chip will contain 100 million transistors and have clock speeds greater
than 1 GHz.

OUESTIONS AND PROBLEMS

11.1

11.2

11.3

11.4

11.5

Discuss the typical features of 32-bit and 64-bit microprocessors.

(a) What is the basic difference between the 80386 and 80386SX?
(b) What is the basic difference between the 80386 and 80486?

What is the difference between the 80386 protected, real-address, and virtual
8086 modes?

Discuss the basic features of the 80486.

Assume the following 80386 register contents
(EBX) = 0000 1 OOOH
(ECX) = 04000002H
(EDX) = 20005000H

prior to execution of each of the following 80386 instructions. Determine the
contents of the affected registers andor memory locations after execution of each
of the following instructions and identify the addressing modes:

(a)MOV [EBX * 41 [ECX], EDX
(b)MOV [EBX * 21 [ECX + 2020H1, EDX

Intel and Motorola 32- & 64-bit Microprocessors 62 1

11.6

11.7

11.8

11.9

1.10

1.11

1.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

Determine the effect of each of the following 80386 instructions:
(a) MOVZX EAX, CH

Prior to execution of this MOVZX instruction, assume
(EAX) = 8000 1234H
(ECX) = 00008080H

(b) MOVSX EDX, BL
Prior to execution of this MOVSX assume

(EDX) = FFFFFFFFH
(EBX) = 05218888H

Write an 80386 assembly program to add a 64-bit number in ECX: EDX with
another 64-bit number in EAX: EBX. Store the result in EAX: EBX.

Write an 80386 assembly program to divide a signed 32-bit number in DX:AX by
an 8-bit signed number in BH. Store the 16-bit quotient and 16-bit remainder in
AX and DX respectively.

Write an 80386 assembly program to compute
N

where N = 1000 and the 4 ’ s are signed 32-bit numbers.
Assume that Z: can be stored as a 32-bit number.

Discuss 80386 I/O.

Compare the on-chip hardware features of the 80486 and Pentium micro-
processors.

What are the sizes of the address and data buses of the 80486 and the Pentium?

Identify the main differences between the 80486 and the Pentium.

What are the clock speed, pipeline model, number of on-chip transistors, and
number of pins on the 80486 and Pentium processors?

Discuss typical applications of Pentium.

Identify the main differences between the Intel 80386 and 80486.

What is meant by the 80486 BUS BACKOFF feature?

How many pipeline stages are in Pentium and Pentium Pro?

How many new instructions are added to the 80486 beyond those of the 80386?

Given the following register contents,
(EBX) = 7F27 108AH
(ECX) = 2A157241H

622

11.21

1 1.22

11.23

1.24

1.25

1.26

11.27

11.28

11.29

11.30

11.31

1 1.32

1 1.33

11.34

Fundamentals of Digital Logic and Microcomputer Design

what is the content of ECX after execution of the following 80486 instruction
sequence:

MOV EBX, ECX
BSWAP ECX
BSWAP ECX
BSWAP ECX
BSWAP ECX

If (EBX) = 0123A212H and (EDX) = 46B12310H, then what are the contents of
EBX and EDX after execution of the 80486 instruction XADD EBX, EDX?

If (BX) = 271AH, (AX) = 712EH, and (CX) = 1234H, what are the contents of
AX after execution of the 80486 instruction CMPXCHG CX, BX?

What are three modes of the Pentium processor? Discuss them briefly.

What is meant by the statement, “The Pentium processor is based on a superscalar
design”?

What are the purposes of the U pipe and V pipe of the Pentium processor?

What are the sizes of the data and instruction caches in the Pentium?

Summarize the basic differences among Pentium, Pentium Pro, and Pentium 11,
Celeron, Pentium I1 Xeon, Pentium 111, and Pentium 111 Xeon processors.

Why are the Pentium Pro’s complete capabilities not used by the Windows 95
operating system?

Summarize the basic features of the InteUHewlett-Packard “Merced”
microprocessor.

Summarize the basic differences between the 68000, 68020, 68030, 68040 and
68060.

What is the unique feature of the Power PC microprocessor family?

Name three new 68020 instructions that are not provided with the 68000.

Find the contents of the affected registers and memory locations after execution of
the 68020 instruction MOVE ($ 1 0 0 0, A5, D3 . W* 4) , D1. Assume the following
data prior to execution of this MOVE:

[A51 = $0000F210, [$00014218] = $4567
[D3] = $00001002, [$0001421A] = $2345
[Dl] = $F125012A

Assume the following 68020 memory configuration:

Intel and Motorola 32- & 64-bit Microprocessors 623

11.35

11.36

11.37

11.38

0

Find the contents of the affected memory locations after execution of MOVE . W

#$1234, ([All) .

Find the 68020 compare instruction with the appropriate addressing mode to
replace the following 68000 instruction sequence:

ASL.L #1,D5
CMP.L 0 (AO,D5.L) ,DO

Find the contents of D1, D2, A4, and CCR and the memory locations after
execution of each of the following 68020 instructions:

(a) BFSET $5000 {D1:lO}
(b) BFINS D2, (A4) {Dl:D4}

Assume the data given in Figure P11.36 prior to execution of each of these
instructions.

Memory
7 0

$5000

-16
-8

+
+8

+16

Pl] = $00000004, [D4] = $00000004
[D2] = $12345678, [A41 = $00005000

[Dl] = $00000004, [D4] = $00000004
[D2] = $12345678, [A41 = $00005000

FIGURE P11.36

Identify the following 68020 instructions as valid or invalid. Justify your
answers.
(a) DIVS AO,D1
(b) CHK.B DO, (AO)
(c) M0VE.L DO, (AO)
It is given that [AO] = $1025671A prior to execution of the MOVE.

Determine the values of the Z and C flags after execution of each of the following
68020 instructions:
(a) CHK2. W (A5) , D3
(b) CMP2.L $2001,A5

624 Fundamentals of Digital Logic and Microcomputer Design

Assume the following data prior to execution of each of these instructions:

Memory

$2000 -fi
2004
1E21

[D3] = $02001 740, [A51 = $0002004

11.39 Write a 68020 assembly program to add two 64-bit numbers in DlDO with another
64-bit number in D2D3. Store the result in DlDO.

11.40 Write a 68020 assembly program to multiply a 32-bit signed number in D5 by
another 16-bit signed number in D1. Store the 64-bit result in D58 l .

Write a subroutine in 68020 assembly language to compute
Assume the X,’s are signed 32-bit numbers and the array starts at $50000021.
Neglect overflow.

y=c g
1 1.41 i=1

11.42 Write a program in 68020 assembly language to find the first one in a bit field
which is greater than or equal to 16 bits and less than or equal to 5 12 bits. Assume
that the number of bits to be checked is divisible by 16. If no ones are found, store
zero in D3; otherwise store the offset of the first set bit in D3, and then stop.
Assume A2 contains the starting address of the array, and D2 contains the number
of bits in the array.

1 1.43 Write a program in 68020 assembly language to multiply a signed byte by a 32-bit
signed number to obtain a 64-bit result. Assume that the numbers are respectively
pointed to by the addresses that are passed on to the user stack by a subroutine
pointed to by (A7+6) and (A7+8). Store the 64-bit result in D2:Dl.

1 1.44 What is meant by 68020 dynamic bus sizing?

1 1.45 Consider the 68020 instruction MOVE . B D1, $0 0 0 0 0 0 1 6. Find the 68020 data
pins over which data will be transferred if DSACKl DSACKO = 00. What are
the 68020 data pins if DSACKl DSACKO = 1 O?

1 1.46 If a 32-bit data is transferred using 68020 MOVE . L DO, $5 0 6 0 7 0 1 1 instruction
to a 32-bit memory with [DO] = $81F27561, how many bus cycles are needed to
perform the transfer? What are A,A, equal to during each cycle? What is the SIZl
SIZO code during each cycle? What bytes of data are transferred during each bus
cycle?

1 1.47 Discuss 68020 I/O.

1 1.48 What do you mean by the unified cache of the 601? What is its size?

Intel and Motorola 32- & 64-bit Microprocessors 625

11.49

1 1 S O

11.51

11.52

11.53

1 1.54

11.55

List the user-level and general-purpose registers of the 601.

Name one supervisor-level register in the 601. What is its purpose?

How does the 601 MSR indicate the following:
(a) The 601 executes both the user- and supervisor- level instructions.
(b) The 60 1 executes only the user-level instructions.

Explain the operation performed by each of the following 601 instructions:
(a) add. rl , r2, r3
(b) divwu r2,r3,r4
(c) e x t s b rl,r2

Discuss briefly the exceptions included in the PowerPC 601.

Compare the basic features of the 601 with the 620. Discuss PowerPC 64-bit
,up 's.

Summarize the basic features of Motorola's state-of-the-art microprocessors.

APPENDIX

A
ANSWERS TO SELECTED PROBLEMS

ChaDter 2

2.l(b) 1101.101,= 13.625,,
2.2(b) 343,,= 101010111,
2.3(a) 1843,, = 3463,
2.4(b) 3072,, = COO,,
2.6(c) -48,, = 1101 0000,
2.1 l(c)
2.16(b) 0011 1110,
2.19(b) 0; no overflow
2.19(d) overflow
2.22(a)

Chapter 3

3.1
3.3 1’s Complement of A7,,

61440,, = 1001 0100 01 11 01 11 001 1,

0001 0000 0010, = 102 in BCD

36,, 0 2A,, = lC,,

3.4(d) - -
(A + AB) = A(AB) -

= A (A + B)
= A B

_ _

3.4(f) B C + A B C + A ? =?@+A) +ABC
= c(5) + (AB)C
= C 0 (AB)

F = n M (0 , 1, 5,7, 10, 14, 15)

F = BC + Z B
F = W 0 Y

f = A + BC + B c

3.5(c) BC
3.7(a)
3.9(c) F =z
3.10(b)
3.11(d)
3.11(e) F = Z
3.14(a)

3.15 F = A C + C D

3.17(b)

ChaDter 4

4.1 F = O -
4.3(c) F = A C + BC
4.7 f = A O C
4.10 J ; = A B C , f; = C

J ; = B @ C fo=s
4.13 Add the 4-bit unsigned number to itself using full-adders.

3.14(c) f = B _ _ --

F = (m) + (B + ?)

__
_ _ _

627

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

628 Fundamentals of Digital Logic and Microcomputer Design

4.16 Z = 1
Y = O
X = m 5
W = m 9
For 4-Bit signed number, A 4.20

A + 11 1 1, = A - 1, decrement by 1.
A + 0 0 0 1 , = A + 1,incrementby 1.
Manipulate C,, to accomplish the above.

ChaDter 5

5.5 A = l , B = O
5.7 A = l , B = l
5.9

- qqg Figure €or solution 5.9

Tie JK inputs to HIGH - ; Clock is the T input.
B, = A , outputy = B
Jx = z, kx = y
Jy = 1, ky = x + z
Jz =xy, kz = x
DA = (A O x) + %x-
DR = x(A O B) + ABx

Q
5.13
5.15
5.17(b)

-

Where x is the input 5.19

5.20(c) Tx =;
Ty = 1

73 = Q,Qo + QzQiQo
J, = B, K, = BC, J, = C, K,= C, J, = 1, K, = A + B

self correcting

5.23
5.24(a)

ChaDter 6

6.4(a)

6.6(a)

6.13(a)

(4

Cb)

(b)
(c)

6.18

sign = 0, carry = 0, zero = 0, overflow = 0.
sign = 1, carry = 0, zero = 0, overflow = 1.
20BE
(20BE) = 05, (20BF) = 02
16,384
128 chips
4 bits
Use the following identities: a 0 a = 0 and a O 0 = a and (a 0 6) 0 a = b

ChaDter 7

7.2 Yes, it is possible
7.5 Yes, it is possible
7.6 Use four mux’s. Manipulate inputs of the mux’s to obtain the desired outputs. Use the

tristate buffers at the outputs of the mux’s.

If x7 = 0, then y ,.... y2yIyo = x7 x2xlxo
else

7.9 y = l x l

- - - _
y7 y2y1yo = x7 XZXlX0 + 1

Appendix A: Answers to Selected Problems

use XOR gates for finding 1's complement of x .

xi

7. (a) s 15 c 15 2'5 c 12 2'5 g;p; 2 G;P; + y; ; worst case add-time: 1 OA
A

co

629

7.14 Refer to figure below:

4-Bit Binary Adder

F

7.17
7.22(a)

Product = 0000 0000 0000 01 00,
Po = zT3, P, = T,
L = P o + PI, d ,=P, , d , =Po, d o = P l
C = C = T C = T C = C = C = T C = T

0 I O ~ Z I r 3 4 6 2 ~ 5 4

7.25(a) Savings = 34,304 bits
7.34(a)

c, c, c2 c, co
Solution 1 1 0 1 0 0 ; A - AminusA
Solution 2 1 1 1 0 0 ; A + Aex-or A

7.42 Step I:
Step 2: Execute JZ instruction.

Make F=O (set c,,c, lc12 to 000) and set the zero flag to 1.

ChaDter 8

8.5

8.6(a)

8.13
8.14

8.16

8.18
8.21
8.24

8.26

Memory Chip #1 ECOOH - EDFFH
Memory Chip #2 F200H - F3FFH
ROM Map: OOOOH - 07FFH
RAM Map: 2000H - 27FFH
20
Maximum Directly Addressable Memory = 16 Megabytes;
14 unused address pins Available.
(b) Virtual address Physical address

24 24
3784 I224
10250 page fault
30780 page fault

(a) 4115
6 x 64 decoder
Cache Tag Field = I-bit
Cache Index Field = 12-bits
Cache Data Field = 32-bits
Cache word size = 36 bits.

630

8.27 (a) 512 (e)h=0.85
8.28 (b) Cache size is 4K words.

4 blocks per set.
8.37 (a) Pipeline clock rate = 5 MHz

(c) Efficiency = 99.8%
8.39 (a) Avg. number of instructions executed per instruction cycle = 4.98
8.41 (a) LDA X

Fundamentals of Digital Logic and Microcomputer Design

J M P 2 0 4 0
DCR Y
SUB Z

2 0 4 0 STAW
The above program assumes that the system supports delayed branch.

ChaDter 9

9.4 20642H
9.6(a) Implied
9.8 (A L) = 5
9.13

XCHG B L , B H
MOV AX, BX
ADD AX,CX
HLT

9.19 MOV AL,CH
CBW
I D I V CL
MOV CL,AH
MOV CH,AL
HLT

9.26 CONV SEGMENT
ASSUME C S : CONV

MOV B X , 4 0 0 0 H
MOV C L , 1 0
MOV DX, 0
MOV AL, [BX]
MUL CL
ADD DX,AX
I N C BX
ADD DL, [BX]
RE T
ENDP
ENDS
END

BCD2BIN PROC FAR

B C 2 B I N
CONV

9.27

BACK :

MOV C L , 4
MOV A L , 9 0 H
OUT CNTRL,AL
MOV B L , O

I N AL, PORTA

Appendix A: Answers to Selected Problems 63 1

RCR A L , 1
J C START
I N C BL

START: DEC C L
J N Z BACK
RCR BL, 1
J N C LEDON
MOV AL, 0
OUT PORTB,AL
HLT

LEDON: MOV A L , l O H
OUT PORTB,AL
HLT

Port A = OlH, Port B = 03H, Port C = 05H, CNTRL = 07H
2732 ODD = 00001H,00003H, ..., 01FFFH
2732 EVEN = 00000H,00002H, ..., 01FFEH
For 15 sec. delay: a count of 093 1 H provides a delay of 20 msec; this loop needs to be
executed 750 times.

9.28

9.34

ChaDter 10

10.7
10.9(c) Privileged
10.13 $0000 0000
10.16 SWAP D1

TRAP occurs since odd address.

MOVE D1 , DO
EXT . L DO
SWAP D 1
EXT. W D 1
D I V S D1 , DO

F I N I S H J M P F I N I S H

10.18 MOVE. W D 1 , D O
SWAP D 1
ADD DO,D1
SWAP D 1

F I N I S H JMP F I N I S H -
10.31 A S = 0 , FC2FClFCO=-l -

L D S = I , UDS=O

even 2764 $000000,$000002, ..., $003FFE
odd 2764 $000001 ,$000003,...,$003FFF
68230 I/O map:

10.33 Memory map:

PGCR = $004001, PADDR = $004005
PBDDR = $004007, PACR = $00400D
PBCR = $00400F, PADR = $00401 1
PBDR = $004013

ChaDter 11

1 1.6(a)
11.8 MOVSX CX, BH

(E M) = 0000 0080H

I D I V AX,CX
HLT

11.20 (ECX) = 2A157241H

632 Fundamentals of Digital Logic and Microcomputer Design

11.22 (AX) = 1234H
11.33 (D1.W) = $4567
11.35 CMP.L (O,AO,D5.L*2) ,DO
11.39 ADD.L D3, DO

FINISH JMP FINISH
1 1.45

ADDX.L D2,Dl

*32-bit device: Byte data will be transferred via 68020 D,, - D, pins.
*8-bit device: Byte data will be transferred via D,, - &,pins.

1 1.49 GPRO - GPR3 I
11.51(b) The PR bit in MSR is 1.
11.52(a The 32-bit contents of r2 and r3 are added; the result is stored in r l . The dot suffix

enables the update of the condition register.

APPENDIX

GLOSSARY
ABEL: A programming language for PLDs developed by Data I/O Corporation.

Absolute Addressing:
instruction.

This addressing mode specifies the address of data with the

Accumulator: Register used for storing the result after most ALU operations; available
with %bit microprocessors.

Address: A unique identification number (or locator) for source or destination of data.
An address specifies the register or memory location of an operand involved in the
instruction.

Addressing Mode: The manner in which a microprocessor determines the effective
address of source and destination operands in an instruction.

Address Register: A register used to store the address (memory location) of data.

Address Space: The number of storage location in a microcomputer’s memory that can
be directly addressed by the microprocessor. The addressing range is determined by the
number of address pins provided with the microprocessor chip.

American Standard Code for Information Interchange (ASCII):
commonly used with microprocessors for representing alphanumeric codes.

An %bit code

Analog-to-Digital (A/D) Converter:
equivalent.

Transforms an analog voltage into its digital

AND gate: The output is 1, if all inputs are 1; otherwise the output is 0.

Arithmetic and Logic Unit (ALU): A digital circuit which perfoms arithmetic and logic
operations on two n-bit numbers.

ASIC: Application Specific IC. Chips designed for a specific, limited application. Normally
reduces the total manufacturing cost of a product by reducing chip count.

Assembler: A program that translates an assembly language program into a machine
language program.

633

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

634 Fundamentals of Digital Logic and Microcomputer Design

Assembly Language: A type of microprocessor programming language that uses a semi-
English-language statement.

Asynchronous Operation: The execution of a sequence of steps such that each step is
initiated upon completion of the previous step.

Asynchronous Sequential Circuit: Completion of one operation starts the next operation
in sequence. Time delay devices (logic gates) are used as memory.

Asynchronous Serial Data Transmission: The transmitting device does not need to be
synchronized with the receiving device.

Autodecrement Addressing Mode: The contents of the specified microprocessor register
are first decremented by n (1 for byte, 2 for 16-bit, and 4 for 32-bit) and then the resulting
value is used as the address of the operand.

Autoincrement Addressing Mode: The contents of a specified microprocessor register
are used as the address of the operand first and then the register contents are automatically
incremented by n (1 for byte, 2 for 16-bit, and 4 for 32-bit).

Barrel Shifter: A specially configured shift register that is normally included in 32-bit
microprocessors for cycle rotation. That is , the barrel shifter shifts data in one direction.

Base address: An address that is used to convert all relative addresses in a program to
absolute (machine) addresses.

Baud Rate: Rate of data transmission in bits per second.

Behavioral Modeling: Using hardware description languages such as Verilog and VHDL,
a system can be described in terms of what it does and how it behaves rather than in terms
of its components and their interconnections.

Binary-Coded Decimal (BCD): The representation of 10 decimal digits, 0 through 9, by
their corresponding 4-bit binary number.

Bit: An abbreviation for a binary digit. A unit of information equal to one of two possible
states (one or zero, on or off, true or false).

Block Transfer DMA: A peripheral device requests the DMA transfer via the DMA request
line, which is connected directly or through a DMA controller chip to the microprocessor.
The DMA controller chip completes the DMA transfer and transfers the control of the bus
to the microprocessor.

Branch: The branch instruction allows the computer to skip or jump out of program
sequence to a designated instruction either unconditionally or conditionally (based on
conditions such as carry or sign).

Breakpoint: Allows the user to execute the section of a program until one ofthe breakpoint

Appendix B: Glossary 635

conditions is met. It is then halted. The designer may then single step or examine memory
and registers. Typically breakpoint conditions are program counter address or data
references. Breakpoints are used in debugging assembly language programs.

Browser: Program in the personal computer to see contents on the web via http protocol.

Buffer: A temporary memory storage device deigned to compensate for the different data
rates between a transmitting device and a receiving device (for example, between a CPU
and a peripheral). Current amplifiers are also referred to as buffers.

Bus: A collection ofwires that interconnects computermodules. The typical microcomputer
interface includes separate buses for address, data, control, and power functions.

Bus Arbitration: Bus operation protocols (rules) that guarantee conflict-free access to
a bus. Arbitration is the process of selecting one respondent from a collection of several
candidates that concurrently request service.

Bus Cycle: The period of time in which a microprocessor cames out read or write
operations.

Cache Memory: A high speed, directly accessible, relatively small, semiconductor r ead
write memory block used to store datahstructions that the microcomputer may need in
the immediate future. Increases speed by reducing the number of external memory reads
required by the processor.Typica1 32 and 64-bit microprocessors are normally provided
with on-chip cache memory.

CD (Compact Disc) Memory: Optical memory. Uses laser and stores audio information.

Central Processing Unit (CPU): The brains of a computer containing the ALU, register
section, and control unit. CPU in a single chip is called microprocessor.

Chip: An Integrated Circuit (IC) package containing digital circuits.

CISC: Complex Instruction Set Computer. The Control unit is designed using
microprogramming. Contains a large instruction set. Difficult to pipeline compared to
RISC.

Clock: Timing signals providing synchronization among the various components in a
microcomputer system. Analogous to heart beats of a human being.

CMOS: Complementary MOS. Dissipates low power, offers high density and speed
compared to TTL.

Combinational Circuit:
memory.

Output is provided upon application of inputs; contains no

Compiler: A program which translates the source code written in a high-level programming
language into machine language that is understandable to the processor.

636 Fundamentals of Digital Logic and Microcomputer Design

Condition Code Register: Contains information such as carry, sign, zero, and overflow
based on ALU operations.

Control Unit: Part of the CPU; its purpose is to translate or decode instructions read
(fetched) from the main memory into the Instruction Register.

Coprocessor: A companion microprocessor that performs specific functions such as
floating-point operations independently from the microprocessor to speed up overall
operations.

CPLD: Complex PLD. This chip contains several basic PLDs along with all
interconnections.

Cycle Stealing DMA: The DMA controller transfers a byte of data between the
microcomputer's memory and a peripheral device such as the disk by stealing a clock
cycle of microprocessor.

Data: Basic elements of information represented in binary form (that is, digits consisting
of bits) that can be processed or produced by a microcomputer. Data represents any group
of operands made up of numbers, letters, or symbols denoting any condition, value, or
state. Typical microcomputer operand sizes include: a word, which typically contains
2 bytes or 16-bits; a long word, which contains 4 bytes or 32 bits; a quad word, which
contains 8 bytes or 64 bits.

Dataflow Modeling: Behavioral modeling with concurrent statements.

Data Register: A register used to temporarily hold operational data being sent to and from
a peripheral device.

Debugger: A program that executes and debugs the object program generated by the
assembler or compiler. The debugger provides a single stepping, breakpoints, and program
tracing.

Decoder: A chip, when enabled, selects one of 2" output lines based on n inputs.

Demultiplexer: Performs reverse operation of a multiplexer.

Digital to Analog @/A) Converter: Converts binary number to analog signal.

Diode: Two terminal electronic switch.

Direct Memory Access @MA): A type of inputloutput technique in which data can
be transferred between the microcomputer memory and external devices without the
microprocessor's involvement.

Directly Addressable Memory: The memory address space in which the microprocessor
can directly execute programs. The maximum directly addressable memory is determined
by the number of the microprocessor's address pins.

Appendix B: Glossary 637

DRAM: See Dynamic RAM.

DVD Memory: Stands for Digital Video Disc or Digital Versatile Disc. Optical memory.
Uses laser and stores both audio and video information.

Dynamic RAM: Stores data as charges in capacitors and therefore, must be refreshed since
capacitors can hold charges for a few milliseconds. Hence, requires refresh circuitry.

EAROM (Electrically Alterable Read-only Memory): Same as EEPROM or E2
PROM. Can be programmed one line at a time without removing the memory from its
sockets. This memory is also called read-mostly memory since it has much slower write
times than read times.

Editor: A program that produces an error-free source program, written in assembly or
high-level languages.

EEPROM or E2PROM: Same as EAROM (see EAROM).

Effective Address: The final address used to carry out an instruction. Determined by the
addressing mode.

Emulator: A hardware device that allows a microcomputer system to emulate (that is,
mimic) another microcomputer system.

Encoder: Performs reverse operation of a decoder. Contains a maximum of 2” inputs and
n outputs.

EPROM (Erasable Programmable Read-only Memory): Can be programmed and
erased all programs in an EPROM chip using ultraviolet light. The chip must be removed
from the microcomputer system for programming.

Equivalence: See Exclusive-NOR.

Exception Processing: Includes the microprocessor’s processing states associated with
interrupts, trap instructions, tracing, and other exceptional conditions, whether they are
initiated internally or externally.

Exclusive-OR: The output is 0, if inputs are same; otherwise; the output is 1.

Exclusive-NOR: The output is 1, if inputs are same; otherwise, the output is 0.

Extended Binary-Coded Decimal Interchange Code (EBCDIC): An 8-bit code
commonly used with microprocessors for representing alphanumeric codes. Normally
used by IBM.

Firmware: Microprogram is sometimes referred to as firmware to distinguish it from
hardwired control (purely hardware method).

63 8 Fundamentals of Digital Logic and Microcomputer Design

Flag(s): An indicator, often a single bit, to indicate some conditions such as trace, carry,
zero, and overflow.

Flash Memory: Utilizes a combination of EPROM and EEPROM technologies. Used in
cellular phones and digital cameras.

Flip-Flop: One-bit memory.

FPGA: Field Programmable Gate Arrays. This chip contains several smaller individual
logic blocks along with all interconnections.

Full-Adder: Adds three bits generating a sum bit and a carry bit.

Gate: Digital circuits which perform logic operations.

Half-Adder: Adds two bits generating a sum bit and a carry bit.

Handshaking: Data transfer via exchange of control signals between the microprocessor
and an external device.

Hardware: The physical electronic circuits (chips) that make up the microcomputer
system.

Hardwired Control: Used for designing the control unit using all hardware.

HCMOS: High speed CMOS. Provides high density and consumes low power.

Hexadecimal Number System: Base-1 6 number system.

High-Level Language: A type of programming language that uses a more understandable
human-oriented language such as C.

HMOS: High-density MOS reduces the channel length of the NMOS transistor and
provides increased density and speed in VLSI circuits.

Immediate Address: An address that is used as an operand by the instruction itself.

Implied Address:
instruction.

An address is not specified, but is contained implicitly in the

In-Circuit Emulation: The most powerful hardware debugging technique; especially
valuable when hardware and software are being debugged simultaneously.

Index: A number (typically 8-bit signed or 16-bit unsigned) is used to identify a particular
element in an array (string). The index value typically contained in a register is utilized by
the indexed addressing mode.

Indexed Addressing: The effective address of the instruction is determined by the sum of

Appendix B: Glossary 639

the address and the contents of the index register. Used to access arrays.

Index Register: A register used to hold a value used in indexing data, such as when a value
is used in indexed addressing to increment a base address contained within an instruction.

Indirect Address: A register holding a memory address to be accessed.

Instruction: Causes the microprocessor to carry out an operation on data. A program
contains instructions and data.

Instruction Cycle: The sequence of operations that a microprocessor has to carry out
while executing an instruction.

Instruction Register (IR): A register storing instructions; typically 32 bits long for a 32-
bit microprocessor.

Instruction Set: Lists all the instructions that the microcomputer can execute.

Interleaved DMA: Using this technique, the DMA controller takes over the system bus
when the microprocessor is not using it.

Internal Interrupt: Activated internally by exceptional conditions such as overflow and
division by zero.

Internet: Connects users from around the world via a web of data transmission lines.

Interpreter: A program that executes a set of machine language instructions in response
to each high-level statement in order to carry out the function.

Interrupt I/O: An external device can force the microcomputer system to stop executing
the current program temporarily so that it can execute another program known as the
interrupt service routine.

Interrupts: A temporary break in a sequence of a program, initiated externally or
internally, causing control to jump to a routine, which performs some action while the
program is stopped.

I/O (Input/Output): Describes that portion of a microcomputer system that exchanges data
between the microcomputer system and an external device.

1 / 0 Port:
microcomputer to external peripherals.

A register that contains control logic and data storage used to connect a

Inverting Buffer: Performs NOT operation. Current amplifier.

Karnaugh Map: Simplifies Boolean expression by a mapping mechanism.

Keyboard: Has a number of push button-type switches configured in a matrix form (rows

640

x columns).

Fundamentals of Digital Logic and Microcomputer Design

Keybounce: When a mechanical switch opens or closes, it bounces (vibrates) for a small
period of time (about 10-20 ms) before settling down.

Large-Scale Integration (LSI): An LSI chip contains 100 to 1000 gates.

LED: Light Emitting Diode. Typically, a current of 10 ma to 20 ma flows at 1 . 7 ~ to 2 . 4 ~
drop across it.

Local Area Network: A collection of devices and communication channels that connect
a group of computers and peripheral devices together within a small area so that they can
communicate with each other.

Logic Analyzer: A hardware development aid for microprocessor-based design; gathers
data on the fly and displays it.

Logical Address Space: All storage locations with a programmer’s addressing range.

Loops: A programming control structure where a sequence of microcomputer instructions
are executed repeatedly (looped) until a terminating condition (result) is satisfied.

Machine Code:
understands.

A binary code (composed of 1’s and 0’s) that a microcomputer

Machine Language: A type of microprocessor programming language that uses binary
or hexadecimal numbers.

Macroinstruction: Commonly known as an instruction; initiates execution of a complete
microprogram. Example includes assembly language instructions.

Macroprogram: The assembly language program.

Mask A pattern of bits used to specify (or mask) which bit parts of another bit pattern
are to be operated on and which bits are to be ignored or “masked” out. Uses logical AND
operation.

Mask ROM: Programmed by a masking operation performed on the chip during the
manufacturing process; its contents cannot be changed by user.

Maskable Interrupt: Can be enabled or disabled by executing typically the interrupt
instructions.

Memory: Any storage device which can accept, retain, and read back data.

Memory Access Time: Average time taken to read a unit of information from the
memory.

Appendix B: Glossary 64 1

Memory Address Register (MAR): Stores the address of the data.

Memory Cycle Time: Average time lapse between two successive read operations.

Memory Management Unit (MMU): Hardware that performs address translation and
protection functions.

Memory Map: A representation of the physical locations within a microcomputer’s
addressable main memory.

Memory-Mapped IIO: I/O ports are mapped as memory locations, with every connected
device treated as if it were a memory location with a specific address. Manipulation of I/O
data occurs in “interface registers” (as opposed to memory locations); hence there are no
input (read) or output (write) instructions used in memory-mapped I/O.

Microcode: A set of instructions called “microinstructions” usually stored in a ROM in
the control unit of a microprocessor to translate instructions of a higher-level programming
language such as assembly language programming.

Microcomputer: Consists of a microprocessor, a memory unit, and an inputloutput unit.

Microcontroller: Typically includes a microcomputer, timer, A/D (Analog to Digital)
and D/A (Digital to Analog) converters in the same chip.

Microinstruction: Most microprocessors have an internal memory called control
memory. This memory is used to store a number of codes called microinstructions. These
microinstructions are combined to design the instruction set of the microprocessor.

Microprocessor: The Central Processing Unit (CPU) of a microcomputer.

Microprocessor Development System: A tool for designing and debugging both hardware
and software for microcomputer-based system.

Microprocessor-Halt DMA: Data transfer is performed between the microcomputer’s
memory and a peripheral device either by completely stopping the microprocessor or by a
technique called cycle stealing.

Microprogramming: The microprocessor can use microprogramming to design the
instruction set. Each instruction in the Instruction register initiates execution of a
microprogram stored typically in ROM inside the control unit to perform the required
operation.

Monitor: Consists of a number of subroutines grouped together to provide “intelligence”
to a microcomputer system. This intelligence gives the microcomputer system the
capabilities for debugging a user program, system design, and displays.

Multiplexer: A hardware device which selects one of n input lines and produces it on the
output.

642 Fundamentals of Digital Logic and Microcomputer Design

Multiprocessing: The process of executing two or more programs in parallel, handled by
multiple processors all under common control. Typically each processor will be assigned
specific processing tasks.

Multitasking: Operating system software that permits more than one program to run on
a single microprocessor. Even though each program is given a small time slice in which
to execute, the user has the impression that all tasks (different programs) are executing at
the same time.

Multiuser: Describes a computer operating system that permits a number of users to
access the system on a time-sharing basis.

NAND: The output is 0, if all inputs are 1; otherwise, the output is 1 .

Nanomemory: Two-level ROM used in designing the control unit.

Nested Subroutine: A commonly used programming technique in which one subroutine
calls another subroutine.

Nibble: A 4-bit word.

Non-inverting Buffer: Input is same as output. Current amplifier.

Nonmaskable Interrupt: Occurrence of this type of interrupt cannot be ignored by
microcomputer and even though interrupt capability of the microprocessor is disabled. Its
effect cannot be disabled by instruction.

Non-Multiplexed: A non-multiplexed microprocessor pin that assigns a unique function
as opposed to a multiplexed microprocessor pin defining two functions on time-shared
basis.

NOR: The output is 1, if all inputs are 0’s; otherwise, the output is 0.

NOT gate: If the input is 1, the output is 0, and vice versa.

Object Code: The binary (machine) code into which a source program is translated by a
compiler, assembler, or interpreter.

Octal Number System: Base 8-number system.

Ones Complement: Obtained by changing 1’s to ‘ O’s, and 0’s to 1’s of a binary
number.

One-Pass Assembler: This assembler goes through the assembly language program once
and translates the assembly language program into a machine language program. This
assembler has the problem of defining forward references. See Two-Pass Assembler.

Op Code (Operation Code): Part of an instruction defining the operation to be

Appendix B: Glossary

performed.

643

Operand: A datum or information item involved in an operation from which the result is
obtained as a consequence of defined addressing modes. Various operand types contain
information, such as source address, destination address, or immediate data.

Operating System: Consists of a number of program modules to provide resource
management. Typical resources include microprocessors, disks, and printers.

OR Gate: The output is 0, if all inputs are 0; otherwise, the output is 1

Page: Some microprocessors, divide the memory locations into equal blocks. Each of
these blocks is called a page and contains several addresses.

Parallel Operation: Any operation carried out simultaneously with a related operation.

Parallel Transmission: Each bit of binary data is transmitted over a separate wire.

Parity: The number of 1 ’s in a word is odd for odd parity and even for even parity.

Peripheral: An I/O device capable of being operated under the control of a CPU through
communication channels. Examples include disk drives, keyboards, CRT’s, printers, and
modems.

Personal Computer: Low-cost, affordable microcomputer normally used by an individual
for word processing and Internet applications.

Physical Address Space:
microprocessor.

Address space is defined by the address pins of the

Pipeline: A technique that allows a microcomputer processing operation to be broken
down into several steps (dictated by the number of pipeline levels or stages) so that the
individual step outputs can be handled by the microcomputer in parallel. Often used
to fetch the processor’s next instruction while executing the current instruction, which
considerably speeds up the overall operation of the microcomputer. Overlaps instruction
fetch with execution.

Pointer: A storage location (usually a register within a microprocessor) that contains the
address of (or points to) a required item of data or subroutine.

Polled Interrupt:
multiple interrupt system.

A software approach for determining the source of interrupt in a

POP Operation: Reading from the top or bottom of stack.

Port:
devices.

A register through which the microcomputers communicate with peripheral

644 Fundamentals of Digital Logic and Microcomputer Design

Primary or Main Memory: Storage that is considered as part of the microcomputer. The
microcomputer can directly execute all instructions in the main memory. The maximum
size of the main memory is defined by the number of address pins in the microprocessor.

Privileged Instructions: An instruction which can only be executed by the microprocessor
in the supervisor (operating system) mode.

Processor Memory: A set of microprocessor registers for holding temporary results when
a computation is in progress.

Program: A self-contained sequence of computer software instructions (source code) that,
when converted into machine code, directs the computer to perform specific operations for
the purpose of accomplishing some processing task. Contains instructions and data.

Program Counter (PC):
instruction to be executed in a program.

A register that normally contains the address of the next

Programmable Array Logic (PAL): Contains programmable AND gates and fixed OR
gates. Similar to a ROM in concept except that it does not provide full decoding of the
input lines. PAL’S can be used with 32-bit microprocessors for performing the memory
decode function.

Programmable Logic Array (PLA): Contains programmable AND and Programmable
OR gates.

Programmable Logic Device (PLD): Contains AND gates and OR gates.

Programmed I/O: The microprocessor executes a program to perform all data transfers
between the microcomputer system and external devices.

PROM (Programmable Read-only Memory): Can be programmed by the user by using
proper equipment. Once programmed, its contents cannot be altered.

Protocol: A list of data transmission rules or procedures that encompass the timing, control,
formatting, and data representations by which two devices are to communicate. Also known
as hardware “handshaking”, which is used to permit asynchronous communication.

PUSH Operation: Writing to the top or bottom of stack.

Random Access Memory (RAM): A read/write memory. RAMS (static or dynamic) are
volatile in nature (in other words, information is lost when power is removed).

Read-Only-Memory (ROM): A memory in which any addressable operand can be read
from, but not written to, after initial programming. ROM storage is nonvolatile (information
is not lost after removal of power).

Reduced Instruction Set Computer (RISC): A simple instruction set is included. The
RISC architecture maximizes speed by reducing clock cycles per instruction. The contro!

Appendix B: Glossary 645

unit is designed using hardwired control. Easier to implement pipelining.

Register: A high-speed memory usually constructed from flip-flops that are directly
accessible to the microprocessor. It can contain either data or a specific location in memory
that stores word(s) used during arithmetic, logic, and transfer operations.

Register Indirect: Uses a register which contains the address of data.

Relative Address: An address used to designate the position of a memory location in a
routine or program.

RISC: See Reduced Instruction Set Computer.

Routine: A group of instructions for carrying out a specific processing operation. Usually
refers to part of a larger program. A routine and subroutine have essentially the same
meaning, but a subroutine could be interpreted as a self-contained routine nested within a
routine or program.

Scalar Microprocessor: Provided with one pipeline. Allows execution rate of one clock
cycle per instruction for most instructions. The 80486 is a scalar microprocessor.

Scaling: Multiplying an index register by 1,2,4 or 8. Used by the addressing modes of
typical 32- and 64-bit microprocessors.

Schmitt Trigger: An analog circuit that provides high noise immunity.

SDRAM: Synchronous DRAM. This chip contains several DRAMS internally. The control
signals and address inputs are sampled by the SDRAM by a common clock.

Secondary Memory Storage: An auxiliary data storage device that supplements the main
(primary) memory of a microcomputer. It is used to hold programs and data that would
otherwise exceed the capacity of the main memory. Although it has a much slower access
time, secondary storage is less expensive. Examples include floppy and hard disks.

Sequential Circuit: Combinational circuit with memory.

Serial Transmission: Only one line is used to transmit the complete binary data bit by
bit.

Server: Large computer performing actual work on the Internet

Seven-Segment LED: Contains an LED in each of the seven segments.Can display
numbers.

Single-Chip Microcomputer: Microcomputer (CPU, memory, and input/output) on a
chip.

Single-chip Microprocessor: Microcomputer CPU (microprocessor) on a chip.

646 Fundamentals of Digital Logic and Microcomputer Design

Single Step: Allows the user to execute a program one instruction at a time and examine
contents of memory locations and registers.

Software: Programs in a microcomputer.

Source Code: The assembly language program written by a programmer using assembly
language instructions. This code must be translated to the object (machine) code by the
assembler before it can be executed by the microcomputer.

S U M : See Static RAM.

Stack: An area of read/write memory typically used by a microcomputer during subroutine
calls or occurrence of an intermpt.The microcomputer saves in the stack the contents of
the program counter before executing the subroutine or program counter contents and other
status information before executing the interrupt service routine. Thus, the microcomputer
can return to the main program after execution of the subroutine or the interrupt service
routine. The stack is a last idfirst out (LIFO) readwrite memory (RAM) that can also be
manipulated by the programmer using PUSH and POP instructions.

Stack Pointer: A register used to address the stack.

Standard I/O: Utilizes a control pin on the microprocessor chip typically called the M / m
pin, in order to distinguish between input/output and memory; IN and OUT instructions are
used for input/output operations.

Static RAM: Also known as SRAM. Stores data in flip-flops; does not need to be
refreshed. Information is lost upon power failure unless backed up by battery.

Status Register:
processor.

A register which contains information concerning the flags in a

Structural Modeling: Using hardware description languages such as Verilog and VHDL,
a schematic or a logic diagram can be described.

Subroutine: A program carrying out a particular function and which can be called by
another program known as the main program. A subroutine needs to be placed only once in
memory and can be called by the main program as many times as the programmer wants.

Superscalar Microprocessor: Provided with more than one pipeline and executes more
than one instruction per clock cycle. The Pentium is a superscalar microprocessor.

Supervisor State: When the microprocessor processing operations are conducted at a
higher privilege level, it is usually in the supervisor state. An operating system typically
executes in the supervisor state to protect the integrity of “basic” system operations from
user influences.

Synchronous Operation: Operations that occur at intervals directly related to a clock
period.

Appendix B: Glossary 647

Synchronous Sequential Circuit: The present outputs depend on the present inputs and
the previous states stored in flip-flops.

Synchronous Serial Data Transmission: Data is transmitted or received based on a clock
signal.

TCP/IP: Protocol used on the Internet.

Tracing: Allows single stepping. A dynamic diagnostic technique permits analysis
(debugging) of the program’s execution.

Transistor: Electronic switch; performs NOT; current amplifier.

Tristate Buffer: Has three output states: logic 0, 1, and a high-impedance state. This chip
is typically enabled by a control signal to provide logic 0 or 1 outputs. This type of buffer
can also be disabled by the control signal to place it in a high-impedance state.

TWO’S Complement: The two’s complement of a binary number is obtained by replacing
each 0 with a 1 and each 1 with a 0 and adding one to the resulting number.

Two-Pass Assembler: This assembler goes through the assembly language program
twice. In the first pass, the assembler assigns binary addresses to labels. In the second pass,
the assembly program is translated to the machine language. No problem with forward
branching.

UART (Universal Asynchronous Receiver Transmitter): A chip that provides all the
interface functions when a microprocessor transmits or receives data to or from a serial
device. Converts serial data to parallel and vice versa. Also called ACIA (Asynchronous
Communications Interface Adapter) by Motorola.

User State: Typical microprocessor operations processing conducted at the user level.
The user state is usually at lower privilege level than the supervisor state. In the user mode,
the microprocessor can execute a subset of its instruction set, and allows protection of basic
system resources by providing use of the operating system in the supervisor state. This is
very useful in multiuser/multitasking systems.

Vectored Interrupts: A device identification technique in which the highest priority
device with a pending interrupt request forces program execution to branch to an interrupt
routine to handle exception processing for the device.

Verilog: Not an acronym. Hardware design language developed by Gateway Design
Automation in 1984 and later acquired by Cadence Design Systems. Verilog syntax is
based mostly on C and some Pascal. Used for programming CPLD and FPGA chips.

Very Large Scale Integration (VLSI): a VLSI chip contains more than 1000 gates.
More commonly, a VLSI chip is identified by the number of transistors rather than the gate
count.

648 Fundamentals of Digital Logic and Microcomputer Design

VHDL: Stands for VHSIC (Very High Speed Integrated Circuit) Hardware Description
Language. Developed by US Department of Defense. Syntax is based on Ada. can be used
to program CPLD and FPGA chips.

Virtual Memory: An operating system technique that allows programs or data to exceed
the physical size of the main, internal, directly accessible memory of the microcomputer.
Program or data segmentdpages are swapped from external disk storage as needed. The
swapping is invisible (transparent) to the programmer. Therefore, the programmer does
need not to be concerned with the actual physical size of internal memory while writing
the code.

Web: All the interconnected data sources that can be accessed by the personal computers
on the Internet.

Wide Area Network: Data network connecting systems within a large area.

Word: The bit size of a microprocessor refers to the number of bits that can be processed
simultaneously by the basic arithmetic and logic circuits of the microprocessor. A number
of bits taken as a group in this manner is called a word.

APPENDIX

Advance Information

C
M C i l . 8

18 MHz)
MC68000UO

MOTOROLA 68000 AND SUPPORT CHIPS

@ MOrOROLA
(4 MHz)

MC6800016
16 MHzl

1681T MICROPROCESSING UNIT

Advances en semiconductor technology have prov!ded the capabdny
to place on a single Silicon chip a mlCroPrOCeSSOr at lea51 an order 01
rnagnrlude higher m performance and CKCYII Complexlty than has been
Drevbously avalable The MC- ts the llrsl of a lamtly 01 such VLSl
rnc%mroceswrs from Motorola It combines state-of the-art
technologv and advanced ciicuil desgn techniques wlth computer
sc8ences to achieve an architecturally advanced 16-btt mcroprocessor

The i e s o ~ i ~ e s available 10 the MC683m user cons!st of the Iollowmg

0 32-681 Data and Address Registers
0 16 Megabyte Diroci Addressing Range
0 56 Powerful InltruCI~on Types
0 Operattans on Five Mam Data Types

0 Memoiv Maoped 110
0 14 Addressmg Modes

As shown In Ihe pr0l)ramrnlng model. Ihe MC- offers seventeen
32-bil regisleis 8n addmon to the 32-bll program Counter and a 16bil
stitus regisler The It151 tnght registers I W D 7 1 are used as data
registers lor byte t&b,Il. wora (Ibbnl. and long word 132-brll data
operat~ons The second set of seven regmers IAOABI and the syslem
stack 008nler may be used as software stack Polnlers and base address
regmerr In addition. ihese reg~sters play De used lor word and long
word ddd(es5 operations All seventeen registers may be used as index
regssters

1 PROG1AMMING MODEL

I
I

DL
DB
D7

I
I

A3

A4
A5

A8
I
I

HMOS
IHIGH-[HNSIP(. N-CHANNEL,

SILICON-GATE DEPLmON LOAD1

16EIT
MICROPROCESSOR I

CLAAMIC PACKAGE
I CASE 146 1

64-pin dual In-line package

b49

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

650

' 0 Q 0 0 0 0 0 0 0 0 I

nfnn IRO rci N C AI A S 41 410 A I I I lk

" O O Q 0 0 0 A l l A l l A 1 6
f i i i i I P ~ I

Fundamentals of Digital Logic and Microcomputer Design

olacfi LOS UOS DO 03 06 09 011 014 015

68-Terminal Chip Carrier

68-Pin Quad Pack

-013
-014
-015
-GNO
-GNO
- 4 2 1

68-pin grid arrav.

/

Appendix C: Motorola 68000 and Support Chips 65 1

@ MOTOROLA

I Advance Information

MC88PO PARALLEL INTERFACElTlMER

The MC68230 Parallel Inlerfacel Tlmel provtdes versatile d o u M but
leied parallel tnterlaces and an operattng system oriented trmer to
MCtiBaX) systems The parallel ~nterfaces operate In urndirectional or
bidirectional modes miher 8 or 16 bits wide In !he unidtrmtlonal
modes an associated data dlrectlon register determmes whether Ihe
PO~I pins are inputs or outputs In the bidirectional modes the data
d8rection registers are Ignored and the dirsctlon IS determlned
dynamically Ov the alate 01 four handshake pins Thest ProgrammaMe
handshake pins provtde an Interface lexlble enough for connecuon to a
wde variety 01 low medurn or hlgh speed Peripherals or olher corn
puler systems The PIlT ports allow use of vectored or autorectored In-
rerrupts and also provlde a DMA Aequesl ptn for connection to the
MC-50 Dtrect Memory Access Conlroller or a Sim4ar Ciicuit The PI11
timer Lontains a 24 bll wlde counter and a 5 bii prescaler The trner
may be clocked by the system clock IPVT CLK plnl or by an external
clock (TIN pin1 and a 5 b8t prescaler can be used It can generate
perlodc ~mterruois a sauare wave. or a single wierrupt alter a pro
grammed tme penod Also 11 can be used lor elapsed time measure
men1 or as a device watchdog

0 MC65XQ Bus CompatNble
0 Port Modes Include

Bji I t 0

Un)dmctonal 8.641 and 16 Bit
Bidirect\onal 8 %I and 16 Bit

0 Selectable Handshaking Optnons
0 24 011 Programmable Timer
0 Software Programmable Timer Modes
0 Contains lnierrupt Vector Generation Logic
0 Separale Port and Timer lnterrupl Servlce Reauesls

Regtsters are ReadtWriIe and Dwectlv Addressable
0 Registers are Addressed for MOVEP IMove Perlpherall and DMAC

Compatibility

MC68230l.8 I

HMOs
IHIGH-DENSITY N-CHANNEL

SILICON-GATE1

PARALLEL INTERFACWTIMER

L SUFFIX

P SUFFIX CASE 740

, ” -
CfRAMIC PACKAGE

PLASTIC PACKAGE
AVA114RLf 2 0 8 2

PIN ASSWMENT

652

C h 8 r ~ ~ 8 r l R l c r S ~ m b d Value
SUPP~V Voltage vcc - 0 3 1 0 r 7 0
Input Woliagc v,, - 0 3 t n * l O
Owrattng Temoerowre Ranpe T L I" TH

M C S 2 1 MCWA2t MC68821 TA 0 10 70
M C S 2 t L MCfflA21C MCfflEZtC - 4 a t a *@5

Siorase Tem0eratu.e Ranae TQ," 55 to + 153

Fundamentals of Digital Logic and Microcomputer Design

Unit

v
v

"C

O C

@ MOTOROLA
MC68B21

1-
2.0 MHz

PERIPHERAL INTERFACE ADAPTER (PIAI

The MC6821 Peripheral Interlace Adapter provldes the umversa:
means 01 umrfacmq pt.r,pheral equ~pment 10 the v613.X familv of
rn~crop#ocessors This device as capable 0 1 8nlerlaany the MPU lo
DerNpnerals through two B-b?! u~a~rectlonal petnpheral data buses and
four contio' lines No external iog8c 1s requared for mterlaclng to most
permheral dewces

The functional conligurarton ot Ihe PIA 15 programmed by the MPU
d u m g system m18aliratior Eat\ 01 :be peripheral data lines can be pro-
grammed to aci as an input or output. and each of the four con-
rrol:intetrupl line5 mav be programmed lo: one of sevefol control
modes This allows a high degree of llexibtliiv in the overall Overatton 01
the mlerlace

8.Btt Bidiiec1,onaI Data Bus for tomm~un8cauon with the
MPU
Two Bidirecl8onal B-Eit auses lor Interlace 10 Per~pherals

Two Programwable Control Regsters

Two Programmable Data Direction Aegisrers

FOW Ind!vlduallv-Controlled Interrupt InDuI hnes. Iwo

0 Handshake Conrrol Log'c 'or lnpul and Outpui Pewheral

High-Impedance Three-State and Dtrecl Transtslo: Dtlvo

Program Controlled Interruvt and Interrupt Disable Capabtlity

CMOS Drive Capability on Side A Peripheral LJries

Two TTL Drive Capability cn All A and B Stde Bullers

TTL-Cornpal~ble

Static Omration

?Isable a5 Peripheral Control Ourpds

Operation

Perxmral Lines

MOS
INCHANNEL, SILICON-GATE.

DEPLETION LOAOI

PERIPHERAL INTERFACE
ADAPTER

I

t - , - 7 , I

THERMAL CHARACTERISTICS
Chorutmlic [s y m w I valuv 1 unit

Tnerrnal Resistance I I I

L SUFFIX
CER4MIC P I C X 4 G E

C4SE 715

S SUFFIX
CERDIP PACKAGE

CASL 7%

CASE 711

PIN ASSIGNMENT

V S S d r v y \ CAI

Appendix C: Motorola 68000 and Support Chips 653

-

Bur Input

3b

- 2 P A 0

output c) 3 P A 1

c) 4 P A 2 Rog~srer A
I O R A)

Per bp heral - 5 P A 3 - 6 P A 4 Interfbce
A - 7 P A 5

CC 8 P A 6

p\

-

- 3
m -

00

0 1

0 2

0 3

0 4

0 5

06

0 7

I

a Rep8it.r
(B I R)

C

4 .t- Interrupt Status

Deta Direction

- 9 P A 7

:: 3 1 g--
Data Bur
Buff.rr

2 9 IOBB)

U

4 0 C A l

39 C A 2

cso 22 -
csi 2 4

RSO 36

RS1 35
Control A / X 21

m 34

Enabla 25

I , . I I 1 1 0

Irl

P 60

P e l

PB2

P 8 3

P 8 4

PUS

1 6 PB6

17 P 8 7

I W B 37 + 19 CB2

654 Fundamentals of Digital Logic and Microcomputer Design

PIA INTERFACE SIGNALS FOR MPU

The PIA interfaces to the M68a) bus with an &bit bidirec
tional data bus. three chip select lines. two register select
lines. two interrupt request lines, a readlwritp line, an enable
line and a reset line To ensure proper operation with the
MC6800. M C W , or MC6808 mcroprocessors. VMA
should be used as an active part of the address decoding

Bdiralonsl Data I W D 7) - The bidirectional data lines
IWD71 allow the transfer of data between the MPU and the
PIA The data bus output drivers are three-state devices that
remain in the high impedance loffl state except when the
MPU performs a PIA read operation The readlwrite line is in
the read lhighl State when the PIA is selected for a read
operation

Enable (El - The enable pulse. E. IS the only timing
signal that is supplied to the PIA Timing of all other signals
IS referenced to the leading and trailing edges of the E pulse

RdlWri te (fl/wl - This signal is generated by the
MPU to COntrOl the direction of data transfers on the data
bus A low slate on the PIA readlwrite lineenables the input
buffers and data is transferred from the MPU to the PIA on
the E wgnal if the device has been selected A high on the
read/write line sets up the PIA for a transfer of data to the
bus The PIA output buffers are enabled when the proper ad
dress and the enable pulse E are present

- The active low RESEi lhne is used to reset all
regismr bits in the PIA to a logical zero llow) This line can be
used as a power on reset and as a master reset during
system operation

Chip Ssleca ICSO. CS1, and c3i) - These three input
signals are used to select the PIA CSO and CSl must be
high and m m u s t be lovi for selection of the device Data
transfers are then performed under the control of the enable
and readlwrite signals The chip select lines must be stable

for the duration of the E pulse The device is deselected
when any of the chip selects are in the inactive state

Repam Salscci (AS0 and RSll - The two regtster
select lines are used to select the various registers inside the
PIA These two lines are used m conjunction with internal
Control Registers to select a particular register that IS to be
written or read

The register and chip select lines should be stable lor the
duration of the E pulse while in the read or write cycle

lntermpt R e q u a (r x a n d r2- The active low In
terrupt Request lines IlROA and lRQBl act to interrupt the
MPU either directly or through interrupt priority circuitry
These lines are open drain'' (no load device on the chipl
This permits all interrupt request lines to be tied together In a
wireOR configuration

Each Interrupt Request line has two internal interrupt flag
bits that can cause the Interrupt Request line to go low Each
flag bit is associated with a particular peripheral interrupt
line Also,four interrupt enable bits are provided In the PIA
which may be used to inhibit a panicular interrupt from a
peripheral device

Servicing an interrupt by the MPU may be accomplished
by a software routine that. on a prioritized basis. sequentially
reads and tests the two control registers in each PIA for in

terrupt flag bits that are set
The interrupt flags are cleared (zeroed1 as a result of an

MPU Read Peripheral Data Operation of the corresponding
data register Alter being cleared, the interrupt flag bit can
not be enabled to be set until the PIA is deselecled during an
E pulse The E pulse is used to condition the intefrupt control
lines (CAI. CA2, CB1, CB21 When these llnes are used as
interrupt inputs, at least one E pulse must wxur from the in

active edge to the active edge of the interrupt Input signal to
condition the edge sense network If the interrupt flag has
been enabled and the edge sense circuit has been properly
conditioned, the interrupt flag will be set on the next active
transition 01 the interrupt input pin

PIA PERIPHERAL INTERFACE LINES

The PIA provides two Ebi t bidirectional data buses and
four interruptlcontrol lines for interfacmg to peripheral
devicas

S r t b n A PmiphersI Data lPAo.PA7) - Each of !he
peripheral data lines can be programmed l o act as an input or
output This is accomplished by setting a '1' in the cor
responding Data Direction Register bit for those lines which
are to be outputs A "0" in a bit of the Data Direction
Register causes the corresponding peripheral data line to act
as an inpul During an MPU Read Peripheral Data Operation.
the data on peripheral lines programmed to act as inputs a p
pears directly on the corresponding MPU Data Bus lines In
the input mode, the Internal pullup resistor on these lines
represents a maximum of 1 5 standard TTL loads

The data in Output Register A will appear on the data lines
that are programmed to be outputs A logical "1' written in
to Ihe register will cause a "high" on the corresponding data

line while a "0' results in a "low " Data in Output Reglster A
may be read by an MPU "Read Peripheral Data A ' operation
when the corresponding lines are programmed as outputs
This data will be read property if the voltage on the
peripheral data lines is greater than 2 0 volts for a logic "1"
output and less than 0 8 volt for a logic "0' output Loading
the output lines such that the voltage on these lines does not
reach full voltage causes the data transferred into the MPU
on a Read operation to differ from that contained in the
respective bit of Output Register A

SIcCion B Periph6al Data (PBC&PB7) - The peripheral
data lines in th9 B Section cf the PIA Can be programmed to
act as eitlier inputs or outputs in a similar manner to PA&
PA7 They have three-state capabitty. allowing them to enter
a high-impedance state when the peripheral data line is used
as an Input In addition. data on the peripheral data lbnes

Appendix C: Motorola 68000 and Support Chips 655

P80P87 will tm read properly from those IheS programmed
as outputs even if the voltages are below 2 0 volts for a
"high' or above 0 8 V for a "low" As outputs. thesa lines
are compatible with standard TTL and may also be used as a
source of up to 1 milliampere at 1 5 volts to directly drlve the
base 01 a transistor switch

lnnrmpt Input (CA1 and CBlJ - Peripheral input lines
CAI and C81 are input only lines that set the interrupt flags
of the control registers The active transition for these
signals 's also programmed by the two control registers

Puiphaal Contrd (CA2) - The peripheral control line
CA2 can be programmed to act as an interrupt input or as a

peripheral control output 4 s an output. this line IS compati-
ble with standard TTL. as an input the internal pullup resistor
on this line represents 1 5 standard TTL loads The function
of this signal line is programmed with Control Register A

Palph.rsl Contrd (CBZI - Peripheral Control line C82
may also be programmed to act as an tntwrupt input or
peripheral control output As an input. :his line has high in-
put impedance and is compatible with standard TTL As an
output it is compatible with sundard TTL and may also be
used as a source of up lo 1 milliampere a t 1 5 volts 10 directly
drive the base of a transistor switch This line IS programmed
by Control Register B

INTERNAL CONTROLS

INlTlALlZATlON
A RESEf has the effect of zeroing all PIA registers This

will set PAOPA7. PBCkPB7, CA2 and C82 as inputs. and all
interrupts disabled The PIA must be configured during the
restart program which follows the reset

There are six locations wlthin the PIA accessible to the
MPU data bus two Peripheral Registers. two Data Direction
Registers, and two Control Registers Selection of these
locations is controlled by the RSO and R S l inputs together
with bit 2 in the Control Register. as shown in Table 0 1

Details of possible configurations 01 the Data Direction
and Control Register are as follorvs

TABLE 8.1 INTERNAL ADDRESSING

x oonicarr

PORT A-8 HARDWARE CHARACTERIST\CS
As shown in Figure 1.7. the MC6B21 has a pair of I/O ports

whose characteristics differ greatly The A side is designed
lo drive CMOS logic to normal 30% to 70% levels. and incor-
porates an internal pullup device that remains connected
even in the input mode Because of this, the A slde requires
more drive current in the input mode than Port 8 In con-
trast. the B slde uses e normal threestate NMOS buHer
which cannot pullup to CMOS levels without external
resistors Tha B side can drive extra loads such as Darl-
ingtons without problem When the PIA comes out of -1,
the A pon represents inputs with pullup resstors. whereas
the 8 side (input mode also1 mll float high or low, depending
upon tha load connected to it

Notice the differences between a Port A and Port B read
Operation when in the output mode When reading Port A.
the actual pin is read whereas the 8 side read comes from an
output latch, ahead of the actual pin

CONTROL REGISTERS (CRA and CRB)
The two Control Registers ICRA and CR8l allow the MPU

to control the operation of the four peripheral control lines
CAI. CAZ. CB1, and C82 In additlon they allow the MPU to
enable the interrupt lines and monltor the status of the inter-
rupt flags Bits 0 through 5 of the two regtsters may be writ
ten or read by the MPU when the proper Chip select and
register select signals are applied Bits 6 and 7 of the two
registers are read only and are modified by external interrupts
occurring on control lines CA1. CA2. CB1, or CB2 The for-
mat of the control words is shown in Figure 0 3

DATA DIRECTION ACCESS CONTRpL BIT ICRA-2 and

811 2, in each Control Register lCRA and CRBI, deter-
mines selection of either a Peripheral Output Register or the
corresponding Data Direction E Register when the proper
register select signals are applied to AS0 and AS1 A "1 in
bit 2 allows access of the Peripheral Interlace Register. while
a "0" causes the Data Direction Regoster to be addressed

lntmupt flag# (CRA-6. CRA-7. CRB-6, end CRB-71 -
The four interrupt flag bits are set by active transitions of
signals on the lout Interrupt and Peripheral Control lines
when those lines are programmed to be inputs These bits
cannot be -1 directly from the MPU Data Bus and are m e t
indirectly by a Read Peripheral Data Operation on the ap-
propriate Section

Contrd of Cp3 and CB2 Peripheral Convd Lima (CRA-3,
CRA4, CRA-6, CRB-3, CRBI , and CRB-51 - Bits 3.4. and
5 of the lwo control registers are used to control the CA2 and
C82 Peripheral Control lines These bits determine if the con
trol lines will be an interrupt input or an output control
signal If bit CRA 5 iCR8-51 is low. CA2 iC82I is an Interrupt
input line similar to CA1 ICB1) When CRA-5 iCR8.51 is
high. CA2 iC821 becomes an output signal that may be used
to control peripheral data transfers When in :he output
mode, CA2 and C82 have slightly difterent loading
characteristics

CRB-21

656 Fundamentals of Digital Logic and Microcomputer Design

Control of CA1 and CB1 Interrupt Input L i n a (CRA-0,
CRB-1, CRA.1, and CRB-1) - The two lowest-order bits of
the control regmers are used to control the interrupt Input
lines C A I and CB1 Bits CRA-0 and CRB-0 are used to

enable the MPU Interrupt signals and lm, respec-
twely. 81s CRA-1 and CAB- I determine the active transition
of the mterrupt input signals C A I and CB1

FIGURE 8.2 PORT A AND PORT B EOUIVALENT CIRCUITS

PUN: A Port E
"CC vcc

Appendix C: Motorola 68000 and Support Chips 657

DIUrmln A- C A l ICB11 Trmdnm fa Wlng
lntnrupc F I q 1ROAIB)l - IMt 71
b l - 0 IROAlBll set by hlgh-to-iow Ifanallaon on CA1

ICE11

lCEl l M - 0 Olssbles IROAIBI MPU Interrupt by C A l
l c 8 l l active transmon 1

W = 1 Enable IAQA(B1 MPU lnlsrrupt by CA1 ICBl l
a c t w tianstion

1 IRQAIEI wtll m u r on next (MPU tran ate dl posittve
lrinsition of bo it CAl ICBl l acttva traostmn oc-
curred while interrupt was dmbled

b l = 1 IRQAIEIl set by low tohigh transition on CAI cAi icni) bimpc R W + ~ E ~ ~ I L M M M

1

Go% high on active transmon of CAI ICE11 Automa
trcally cleared by MPU Read 01 Output Register A161
May also be cleared bv hardware Reset

1

b7 b5 b5 M b3 b2 I bl 1 w
CA2 ICEZI OOR C A l ICE11

Control Access Control
cQntrol RWnar IROAlEIl IRaA(E12

Flag Flag

IRMIBIZ lntenuv Flag IM El
When CA2 ICB21 IS an Input. IROAIEI goes hlgh on ac
w e transition CA2 ICEZI. Automatcalk cleared by
MPU Read 01 Outcut Register A161 May also be b2-0 Dala Directton Register selected
cleared by hardware Resel b2= 1 Outpul Registel seleC1ed
CAZ lCB2l Establtshed as Output lb5= I 1 IROAIEI
2 -0 not alfected by CA2 IC821 ttans~ltons

I I
I

I I
C U ICE21 ENbllehd n Oulput by b6= 1

b5 M

t o

- - .
INore that operation of CA2 and CE2 ou1Puf
lunctions are not dentcall

+ CA2
b3-0 R u d Strob. wilh C A I Restore

CA2 poes low on IwSt high~to-tow
E transil~on lollowing an MPU read
01 Output Register A, returned high
by next aclnve CAI lransitoon. as
s w i l l e d by bit 1
R n d SWob. wiih E R I t m
CA2 goes low on firs1 hiQh.la-low
E lransiiion lollomng an MPU read
of Output Register A. returned high
ay nmr high-lolow E transition dur.
8ng a deselect

b3- 1

+ CE2
b3.0 Wrl(. SUobe WRh CEl R r t m

CB2 goes low on h15t Io*I.to-hlgh
E transition lollowmg an MPU write
mto Output Regaier 0; returned
high by the next actwe CBI rransi~
i n n as soeched by hu 1 CRB-b7
must lmt be cleared by a read of
data

C82 goes low on first low-lo-high
E transition lollowinq an MPU write
lnto Out~ut Register 6. returned

b3 1 Wdte SW* wi(h E RIU)r*

nqh by the next low to high E Iran
smon lollowing an E puloe which
occurred while tha part was de

1 1 S . V R U (CA2 lCB2I
CAZ ICBZI goes tow a5 MPU wriles
b3-0 mto Control Register
CAZ ICBZI .pas hqh as MPU writes
b3- 1 anto Control Register

I
C U ICBZI Enrblirhed IS Input bv U-0

b3- 0 Disables IROAlAl MPU Interrupt by
CA2 Ice21 aclive transtiion

b3- 1 Enables IROA(B1 MPU Interrupt by
CA2 lCB2l active transtion

' I R ~ A I E I will occur on next (MPU general
led1 postwe lransilicm of b3 11 CA2 ICE21
aclwe transition Occurred while interrupt
wac dfsabled

4 D e u r m i n r A d b C A l ICE21 Tnnmmn fa
S m n p Iniewupt F I q IRMIBl2 - Ink MI
M = O IROAIE12 set bv high to tow lfans!

tion on CA2 ICBZI
M = 1 IROAlBlZ set by low lo high trans

Ifon on CA2 fCE21

658 Fundamentals of Digital Logic and Microcomputer Design

@ MO-ROLA MCM6116

18K BIT STATIC RANDOM ACCESS MEMORY

The MCM6116 is a 16.384-bt Statlc Random Access Memory
organized as zw8 words by 8 bits. fabricated uvng Motorola's high
perlormance sillcon gate CMOS IHCMOSI technology It usesa design
approach which provides the simple liming features assoclated with lul-
lv static memories and the reduced power associated with CMOS
memories Thls means low standbv power without the need lor clocks.
nor reduced data rates due to cycle tunes that exceed access time

Chip Enable (€1 controls the power-down feature It IS not a clock but
rather a chip control that affects power consumption In less than a cy-
cle time after Chip Enable IF1 goes high. the part aulomaticillly reduces
its Wwer requlrementsand remains m this low power Standby as long
as the Chip Enable (El remains htgh The automatic power-down
feature caum no perlormance dqradatlon

The MCM6116 IS in a 24-pin dual-in-line package with the industry
standard JEDEC approved plnoul and IS pmout compatible with the in-
dustry standard 16K EPROMlROM
0 Single + 5 V Supply
0 2048 Words by 8.811 Operation
0 HCMOS Technology
0 Fullv Static No Clock or Timing Strobe Required
0 Maximum Access Time MCM611.512 - lx) ns

MCM6116-15 - 150 ns
MCM6116-M - 203 ns

0 Power Dtssipatlon 70 mA Maximum IActlvel
15 mA Maximum (Standby-TTL Levels1
2 rnA Maximum lStandby1

0 Low Power Version Also Available - MCM61L16
0 Low Voltage Data Retention lMCM61L16 Only1
50 f i Maximum

BLOCK MAGRAM I

I

I I

HCMOS
ICOMPLEMEWTARV MOSI

2,046~ 8 BIT
STATIC RANDOM
ACCESS MEMORY

Pm 16 I ucc
P n IZ.VSS

PIN ASSIGNMENTS

PIN NAMES
Address lnplt

omoa7 O m InputlOutput

vcc P o r n I +5v1
vss

Appendix C: Motorola 68000 and Support Chips

Power Dissipanon

Ooerating Temoerature Range

Storage Temperature Range

ABSOLUTE MAXIMUM RATINGS (See Notel

I Rnina I Valua -rGG-l

1 2 Wait

O t o t70 "C

-6510 +I50 "C

Temperature Under Blas

DC Output Current

Voltage on Any Pin Wllh Respect 10 V s s - 1 0 1 0 + 7 0

Paramnar

Supply Voltage

Input Voltage

Swnbol Min Typ Max Unn
Vcc 4 5 5 0 55 V

vss 0 0 0 v
VIH 2 2 3 5 6 0 V

VIL - 1 0 ' - 0 8 v

NOTE Permanent device damage may occur i t ABSOLUTE MAXIMUM RATINGS are ex.
ceeded Functional operation should be restricted to RECOMMENDED OPERAT
ING CONDITIONS Exposure to higher than recommended voltages lor eatend-
ed periods 01 time could affect device rel$abllnty

Charanninic ' Symbol

Input capacttame.- Cm

InputlOutput Capacilance and E input Capacitance C i i o

659

Typ Max Unic

3 5 PF

5 7 PF

This device contains clrcuilrv to protecI the
inputs agalnst damage h e to hlgh statc
voltages or electric flelds. however. 8 1 8s ad
vised that normal precautlons be taker' 10

aroid application of any voltage hogher than
rnaiirnum rated voltages to lhls high
tmpedance ctrcunt

M& E G w
Standbv H X X

Read L L H

Wrlte Cycle 111 L H L

Write Cycle 121 L L L

DC OPERATING CONDITIONS AND CHARACTERISTICS
IFull operating voltage and temperature ranges unless otherwise noted I

VCCCurrent DO

ISB, lsBt High Z
'CC 0

Icc D
1cc 0

'The device will withstand undershoots 10 the - 1 0 volt level wllh a maxlmum pulse width of 32 ns at the - 0 3 voll level This 1s per$od~callV
sampled galher than 100% tested

RECOMMENDED OPERATING CHARACTERISTICS

' V c c = 5 V 1 ~ = 2 5 ' C

"Also. output voltages are compatible with Motorola's new high-speed CMOS logic family 11 the same Dower supplv voltage 1s used

CAPACITANCE If - 10 MHz. Tn=25"C. DellOdlCallv SamDled rather than 100% tested I

MODE SELECTION

660 Fundamentals of Digital Logic and Microcomputer Design

AC OPERATING CONDITIONS AND CHARACTERISTICS
!Full opera!lng voltage and terr~l)eratune unless otherwlse noted I

'rrp"! Pulse levels 1 5 vo115

Irpui 1t1s~ m d Fall T,wea tons Ot<:nur Lmd 1 TTLGateandC~= IOOpF

!>volt i o 3 6 VOIIS I.-W a-d Output Tmmg Reference Levels

READ CYCLE

WRITE CYCLE

TIMING PARAMETER ABBREVIATIONS

signal name from which interval IS delmed

signal name to w h c h mterval I S dellned
transition dlrection for second signal

transition direction for first signal - 4
The IranSlIlOn dellnitions used ~n thls data sheet are

H = transition to high
L = Iransition to low
V = transmon 10 valid
X = transition 10 lnvahd or don'i care
Z= Ifanbitton to 011 h g h impedance)

TIMING LIMITS
The table of cirnlng values shows elther a m m m u m or a

maxmuni hmlt for each parameter Input requlrements are
specified lrom the external system point of view Thus. ad-
dress setup l m e IS shown as a mtnlmum Slnce the svslem
must supply at least that much tlme leven though most
devices do no! reautie i t 1 On the other hand, responses lrom
the memory are specilied lrom The devlce point of vtew
Thus. the access time is shown as a maximum smce the
devlce never Drovides data later than that tlme

APPENDIX

A d d d n g Mode
Register

Dn Data Register Direct
An Address Register Direct

1Anl Address Register Indirect
(An) +
- 1Anl
dlAnl

xxx w Absolute Short
xxx L Absolute Lono

M a n ,

Address Register Indirect with Postincrement
Address Register Indirect with Predecrement
Address Register Indirect with Displacement
Address Register Indirect with Index d(An. 1x1.

D

Byte, Word Lone

010/01 010/01
0(0/01 010101

41 1/01 812/01
41 1/01 812/01
6(1 I01 1012/01
812101 12l3/01
la2101 14l3/01
8(2/01 12(3/01

12(3/01 1614/01

68000 EXECUTION TIMES

' dlPC)
dlPC e.1.
l x x x

D.l INTRODUCTION

Program Counter with Displacement 8(2/01 1213/01
Program Counter with Index lO(2101 1413101
Immediate 41 1/01 812/01

This Appendix contains listings of the instruction execution times in terms of external
clock (CLK) perlods. In this data, it is assumed that both memory read and write cycle
tlmes are four clock perlods. A longer memory cycle wil l cause the generation of wait
states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (rlw) where r is the number of read cycles and w is the number of write
cycles Included in the clock period number. Recalling that either a read or write cycle re-
quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
for some internal function of the processor.

NOTE
The number of periods includes instruction fetch and all applicable operand
fetches and stores.

*The size of the index register (1x1 does not affect execution time

66 1

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

662 Fundamentals of Digital Logic and Microcomputer Design

0.3 MOVE INSTRUCTION EXECUTION TIMES

Tables D-2 and D-3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (rlw).

Table D-2. Move Byte and Word lnstructlon Executlon Tlmes

Source Mination

- IAnl
dl Aril

diPC. ,XI.
l x x x

*The size 01 :l,e index reglster 11x1 does no1 affect execulion m e

Table D-3. Move Long lnstructlon Execution Tlmes

I
Dn I An I (An) I [An)+

Dn 411101 41/01 1211/21 1211/21
An 411101 411/0l 1211/21 1211121

Swrw

xxx L ao(5/01 Pl5/01 2815/21 2815/21
dlPCl 1814/01 1814/01 2414/2l 2414/21

l X X X 1213/01 1213/0l 2013/21 2013/2l
dlPC, txI* i a w o i l a w 0 1 2614/21 2 8 ~ 2 1

1211/21 1612/21 1812/21 1612/21 2013/2i
2013121 2414/21 2614/21 2414/2l 2815/21

2013/21 2414/21 2614/21 2414/21 2815/2l
P13/21 2614/2l 2814/2l 2614/21 3015/21
2414/21 28(5/21 3015121 2815/21 3216121

2614/21 3015/21 5215/21 3015/21 3416121
2414/21 2815/21 3015/21 2815/2l 3216/2l

*The size of the Index reglster i ~ x l does not affect execution time

Appendix D: 68000 Execution Times 663

D.4 STANDARD INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-4 Indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown in parenthesis as (rlw). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad-
dress calculation where indicated.

in Table 0-4 the headings have the following meanings: An =address register operand,
Dn =data register operand, ea = an operand specified by an effective address, and
M = memory effective address operand.

Table D-4. Standard lnatructlon Executlon Tlmer

NOTES
+ add effective address calculation time
t word or long only

indicates maurnurn value
The base time of six clock periods is increased to eight i t the effective address mode IS

register direct or immediate leffective address time should also be added1
Only available effective address made is data register direct

DIVS, DlVU - The divide algorlthm used by the MC880M) provides less than 10% difference
between the best and worst case timings

MULU n= the number of ones in the <ea>
MULS n= concatanate the <ea> with a zero as the LSE. n is the resultant number of

10 or 01 patterns in the 17-bit source, I e , worst caw happens when the
source is 55555

MULS. MULU - The multiply algorithm requires 38+ 2n clocks where n IS defined as

664 Fundamentals of Digital Logic and Microcomputer Design

D.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

The number of clock periods shown in Table D-5 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (rlw). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table D-5, the headings have the following meanings: # = immediate operand,
Dn =data register operand, An =address register operand, and M = memory operand.
SR = status register.

Table D-5. Immedlate lnbtructlon Execution Tlm08

+add effective address calculation time
*word only

Appendix D: 68000 Execution Times 665

0.6 SiNQLE OPERAND INSTRUCTION EXECUTION TIMES

Table 06 Indicates the number of clock periods for the single operand instructions. The
number of bus read and wrlte cycles is shown In parenthesls as (rlw). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

Table D6. Slngle Operand Instruction Executlon Times

+add effective address calculation lime

D.7 SHlFTlROTATE INSTRUCTION EXECUTION TIMES

Table D-7 Indicates the number of clock periods for the shift and rotate Instructions. The
number of bus read and write cycles is shown In parenthesls as (rlw). The number of
clock perlods and the number of read and wrlte cycles must be added respectively to
those of the effective address calculatlon where Indicated.

Table D-7. ShiftlRotate lnrtructlon Executlon Tlmer

+ add effective address calculafion tlme
n IS the shift counf

666

D.8 BIT MANIPULATION INSTRUCTION EXECUTION TIMES

Fundamentals of Digital Logic and Microcomputer Design

Table D.8 lists the timing data for the bit manipulation instructions. The total number of
clock periods, the number of read cycles, and the number of write cycles are shown in the
previously described format. The number of clock periods, the number of read cycles, and
the number of write cycles, respectively must be added to those of the effective address
calculation where indicated by a plus sign (+).

Table D.8. Bit Manipulation Instruction Execution Times

* indicates maximum value; data addressing mode only

D.9 CONDITIONAL INSTRUCTION EXECUTION TIMES

Table D.9 lists the timing data for the conditional instructions. The total number of clock
periods, the number of read cycles, and the number of write cycles are shown in the
previously described format.

Table D.9. Conditional Instruction Execution Times

Appendix D: 68000 Execution Times

D.10 JMP, JSR, LEA, PEA, AND MOVEM INSTRUCTION EXECUTION TIMES

Instruction Size op Dn, Dn

667

O P M, M

Table D.10 lists the timing data for the jump (JMP), jump to subroutine (JSR), load
effective address (LEA), push effective address (PEA), and move multiple registers
(MOVEM) instructions. The total number of clock periods, the number of read cycles, and
the number of write cycles are shown in the previously described format.

ADDX

CMPM

Table D.lO. JMP, JSR, LEA, PEA, and MOVM Instruction Execution Times

Byte, Word 4(110) 18(3/1)
Long 8(1 /0) 30(5/2)

Byte, Word 12(3/0)

* The size of the index register (Xn) does not affect the instruction’s execution time.

D . l l MULTI-PRECISION INSTRUCTION EXECUTION TIMES

Table D-I 1 lists the timing data for multi-precision instructions. The number of clock periods
includes the time to fetch both operands, perform the operations, store the results, and read
the next instructions. The total number of clock periods, the number of read cycles, and the
number of write cycles are shown in the previously described format.

The following notation applies in Table D- I 1 :
Dn - Data register operand
M - Memoryoperand

Table D-I 1. Multi-Precision Instruction Execution Times

-----I Long 20(5/0)

1 ono
SUBX Byte, Word

1 I

SBCD Byte 6(110) 18(3/1)

668 Fundamentals of Digital Logic and Microcomputer Design

Instruction

MOVEP

D.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Sue Regista-Momtny M.mg-Ro~&tu
Word 1012/2l 18l4/0)

24(2/4) 2UWO) Long

Tables 0-12 and D-13 lndlcate the number of clock periods for the foliowlng
mlscellaneous Instructions. The number of bus read and write cycles Is shown In paren-
thesis as (rlw). The number of clock perlods plus the number of read and wrlte cycles
must be added to those of the effectlve address calculation where Indicated.

Tabla 042. Mlrcollanoour lnrtructlon Exocutlon Timor

+add eltective address calculation time

Tabla 0.13. Movo Porlphoral Inrlructlon Exocutlon Tlmor

Appendix D: 68000 Execution Times 669

0.13 EXCEPTION PROCESSINQ EXECUTION TIMES

Table D14 indicates the number of clock periods for exceptlon processing. The number
of clock periods includes the time for all stacking, the vector fetch, and the fetch of the
flrst two instructlon words of the handier routine. The number of bus read and write
cycles Is shown in parenthesls as (rlw).

Table D.14. Exception Procerrlng Execution Timer

CHK Instruction

Divide bv Zero I 4215/41
I ~lleaa~ Instruction I 3014/31 I

Interrupt 4415/31*
Privilege Violation 3814/31

Trace

TRAP Instruction I 3814/41
[TRAPV lnstruction I 3414/31 1

+add effective address calculation time
*The interrupt acknowledge cycle IS assumed

to take lour clock periods
'*lndlcates the time from when RESET and

HALT are first sanpled as negated to when
instruction execution starts

APPENDIX

E
INTEL 8086 AND SUPPORT CHIPS

808618086-2/8086-4
16=BIT HMOs MICROPROCESSOR

Direct Addressing Capability to 1 rn Blt, Byte, Word, and Block Operations

rn &and 16-Bll Signed and Unsigned
MByte of Memory

Arithmetic in Binary or Decimal
including Multiply and Divide

rn Assembly Language Compatible with
808018085

5 MHz Clock Rate (8 MHz for 6086.2)

rn MULTIBUSTM System Compatible

14 Word, By 16-Bit Register Set with

rn 24 Operand Addressing Modes

(4 MHt for 8086.4)

interface

Symmetricel Operations

The Intel@ 8086 is a new generation, high performance microprocessor implemented in N-channel. depletion load.
Silicon gale IeChnolOgy (HMOS). and packaged in a 40.pin CerOlP package. The processor has attributes of both 8. and
16-bit microprocessors It addresses memory asa sequence of 8-blt bytes. but has a 16.bil wide physlcal path to mem.
Ory tor high performance.

40 LEAD

8086 Pln Dlrgrim

67 1

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

672 Fundamentals of Digital Logic and Microcomputer Design

I8284
CL0C.C GENERATOR AP.D DRIVER

FOR 8086,8088,8089 PROCESSORS
Generates the System Clock for the

m Uses a Crystal or a TTL Signal for Fre-

Generates System Reset Output from

Provides Local Ready and MULTIBUSTM
8086, 8088 and 8089

quency Source Ready Synchronization

Schmltt Trigger Input

Single + 5V Power Supply

18-Pin Package

Capable of Clock Synchronization with

Industrial Temperature Range

other 8284's

-40' to +85'C

The 18284 I S a bipolar clock generatoridrlver designed lo provide clock signals for the 8086, 8088 & 8089 and
peripherals I t also contains READY logic for operation wllh two MULTIEUSTM systems and prowdes the processors
required READY synchronization and timlng Reset loglc with hysteresis and synchronizatlon is also provided

I8284 PIN CONFIGURATION 18284 BLOCK DIAGRAM

---t=kJ C I I W

18284 PIN NAMES

i i , fONNECTlONS FOR CRYSl lL

ICNK USED WITH OVEITONC CRYSTAL
Fle CLOCR SOURCE SELECT
EFl EXTERNAL CLOCK INPUT
C S I N C CLOCK SYNCWROHIZCTION INPUl

t::i: RECDV SIGNAL FROM TWO HULTIIUS'" SYSIEHS

:s2 ~ AOORESS ENABLE0 OUCLIFIERS FOR R O I t I

Rx RESET IHPUT
RESEl SVNCHROHIZED RE5El OUTPUT

C L I
K L K TTL CLOCK FOR PfRlPYERALS
READY SYNCHRONIZED REAOV OUIQUl

GND OYOLTS

-

OSC OSCILLATOR OUTPul
MOS CLOCK FOR THE PROCESSOR

vcc . 5 VOLTS

Appendix E: Intel 8086 and Support Chips 673

inu" 8288
BUS CONTROLLER

FOR 8086,8088,8089 PROCESSORS

B Bipolar Drive Capability %State Command Output Drivers

Provides Advanced Commands Configurabie for Use with an 110 Bus

m Provides Wide Flexibility in System Facilitates Interface to One or Two
Configurations Multi-Master Busses

The Intel@ 8288 Bus Controller is a 20.pin bipolar component for use with medium-to4arge 8086 processing Systems.
The bus controller provides command and control timing generation as well as bipolar bus drive capability while
optimizing system performance.

A strapping option on the bus controller configures i t for use with a multi-master system bus and separate 110 bus.

PIN CONFIGURATION

Sl s2
BLOCK DIAGRAM

L Y U C
DECODEn

5) --
SIGNAL iORC

IOWC
GENER

AIOWC

YULTIBUS'"
COYYAWD
IICWALS

I
FUNCTIONAL PIN-OUT

I
O N D

i
t 5 V

COYYANO
nus

674 Fundamentals of Digital Logic and Microcomputer Design

i5ENpp vcc
(181 I201 (2 4

Read VII VII +5

2732
32K (4K x 8) UV ERASABLE PROM in@@

OUTPUTS
(911.1117l

Lhir

m Fast Access Time: - 450 ns Max. 2732 - 550 ns Max. 2732-6

Slngle +5V f 5% Power Supply

Standby VIH

Pin Compatlble to Intel@ 2716 EPROM

Completely Static

Don't Care +5 High Z

m Simple Programming Requirements - Single Location Programmlng
- Programs with One 50ms Pulse

Output Enable for MCS-85'" and
MCS-86'" Compatibility

Program Vsrofy

Low Power Dlsslpation:
150mA Max. Actlve Current
30mA Max. Standby Current Interface

Three-State Output for Direct Bus

The IntelQ 2732 is a 32.768-bit ultraviolet erasable and electrically programmable read-only memory :EPROMi. The 2732
operates from a single 5volt power supply, has a standby mode. and features an output enable control. The total program.
ming time for all bits is three and a half minutes. All these features make designing with the 2732 in microcomputer systems
faster, easier, and more economical.

An important 2732 feature is the separate output control, Output Enable I F E I , from the Chip Enable control ,= The@
Control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-30 describes the
microprocessor system implementation of the o? and controls on Intel's 2716 and 2732 EPROMs. AP-30 is avallable
from Intel's Literature Department.

The 2732 has a standby mode which reduces the power dissipation without increasing access time. The maximum active
current is 150mA. while the maximum standby current is only 30mA. an 80% savings. The standby mode is achieved by
applying a TTL-high signal to the input.

VIL V I ~ +5 Dour

PIN CONFIGURATION

PIN NAMES

I 1 1 I I J

BLOCK DIAGRAM

Appendix E: Intel 8086 and Support Chips 675

8255AI8255A-5
PROGRAMMABLE PERIPHERAL INTERFACE

rn MCS.85TY Compatlble 8255A-5

24 Programmable 110 Pins

Dlrect Blt SeUReset Capablllty Easing
Control Application Interface

Completely TTL Compatible 4QPln Oual In-Llne Package

m Reduces System Package Count 8 Fully Compatible with Intel@ Micro
processor Families

Improved Tlmlng Characteristics m Improved DC Driving Capability

The lntela 8255A is a general purpose programmable 110 device designed for use with Intel. microprocessors. I1 has
24 110 pins which may be individually programmed in 2 groups of 12 and used In 3 major modes of operalion. In the flnt
mode (MODE O), each group of 12 UO pins may be programmed in sets of 4 to be input or output. In MODE 1, the second
mode, each group may be programmed to have 8 lines of input or outpul. Of the rw t i i nhg 4 pins, 3 are used for hand.
shaking and interrupt control signale. The third mode of operation (MODE 2) is a bidirectional bus mode which uses 8
lines lor a bidirectional bus, and 5 lines. borrowing one from the other group, for handshaking.
-

PIN CONFIGURATION

PIN NAMES

0-

APPENDIX

AAA (no operands)
ASCII adjust for addition

AAA

F
O D I T S Z A P C
U u u x u x Flags

8086 INSTRUCTION SET

AAD (no operands)
ASCII adjust for division

Operands Clocks Transfers' Bytes

AAD

2 (no operands) 60 -

REFERENCE DATA

O D I T S Z A P C
U x x u x u Flags

Codlng Example

AAD

Operands

(no operands)

Operands IClocks I Transfers' I Bytes I Coding Example

(no operands) 4 - 1 AAA

Clocks Transfers' Bytes Codlng Example

4 - 1 AAS

I AAM AAM (no operands) I ASCII adjust for rnultiDlv [O D I T S Z A P C
U x x u x u

I I . _ I

Operands I Clocks I Transfers' I Bytes I Codina Example
I I I

(no operands) 1 8 3 I - 1 AAM

1 AAS AAS (no operands) I ASCII adjust for subtraction
I Flags E D I T S Z A P C

u u x u x

677

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

678 Fundamentals of Digital Logic and Microcomputer Design

-
1
2

2
-

-

O D I T S Z A P C
x x x x x Flags ADC destination,source

Add with carry ADC
-I

2
2-4
2 4
3-4
3 6
2-3

Operands

register, memory
memory, register 16+EA
register, immediate
memory, immediate 17+ €A
accumulator. immediate 4

CBW (no operands)
Convert byte to word

CBW

Operands Clocks Trrnrfers' Bytes

(no operands) 2 - 1

Bytes Coding Example

ADC DX. BETA [SI]
ADC ALPHA [EX] [Sl], DI

O D I T S Z A P C Flags

Coding Example

CBW

ADD ADD destination.source 1 Addition
1

Operands

register, register
register, memory
memory, register
register, immediate
memory, immediate
accumulator, immediate

16+ €A
4 3-4

17+ €A 3-6
4 2-3

O D I T S Z A P C
x x x x x Flags

Coding Example

ADD CX, DX
ADD DI, [BX].ALPHA
ADD TEMP,CL
ADD CL,2
ADD ALPHA, 2
ADD AX, 200

AND destination,source
Logical and

AND

Operands I Clocks I Transfers' I Bytes

O D I T S Z A P C

register, register
register, memory ' memory, register

1 register, immediate
1 memory, immediate
accumulator, immediate

3
9+EA
16+EA

4
17+EA

4

AND AL,BL
AND CX,FLAG-WORD
AND ASCII [DIJ,AL
AND CX,OFOH
AND BETA,OlH
AND AX, 010100008

CALL target I Cali a orocedure
I CALL

Operands

near-proc
far-proc
memptr 16 21 + EA
regptr 16 16
memptr 32 37+EA

O D I T S Z A P C I Flags

Bytes Coding Examples

CALL NEAR-PROC

CALL PROC-TABLE [Si]
CALL AX

Appendix F: 8086 Instruction Set Reference Data 679

CLC (no operands)
Clear carry flag

(no operands) 2

CLC

Operands Clocks Transfers' Bytes

1 -

O D I T S Z A P C
0

Flags

Coding Example

CLC

I CLD

Operands

(no operands)

CLD (no operands) I Clear direction flag

Clocks Transfers' Bytes

1 - 2

CLI (no operands)
Clear interrupt flag

c LI

Operrnds Clocks Transfers. Bytes

O D I T S Z A P C

O D I T S Z A P C
Flags

Coding Example

Operands Clocks

(no operands) 2

1 CLI - (no operands) 2

CMC O D I T S Z A P C
X

Flags
CMC (no operands)
Complement carry flag

Transfers' Bytes ---
1 -

CMP destlnation,source
Compare destination to source

Operands Clocks Transfers' Bytes

CMP

2 - register, register 3

register, lmmedlate 4 - 3-4

reglster, memory 9+EA 1 2-4
memory, register 9+EA 1 2-4

memory, immedlate 10+EA 1 3-6
accumulator, immediate 4 - 2-3

b

Coding Example I
I CMC

O D I T S Z A P C
x x x x x Flags

Coding Example

CMP BX,CX
CMP DH.ALPHA
CMP [BP+2).Si
CMP BL,O2H
CMP [6X].RADAR [Dl], 3420H
CMP AL, 0001WOOB

CMPS dest-strlng,source-string
Compare string

Operand8

dest-string, source-strlng

I O D l T S Z A P C
x x x x x Flags

I

Codlng Example I
CMPS EUFF1, BUFF2
REPECMPS ID, KEY I

~

~Fortha~. .ddfourclockaforeuhibbit word tranaferwilh~noddaddr~rs F o r l h ~ ~ . a d d f o u r c I o c k ~ f o r ~ a c h 1 6 4 i t word tranaler

680 Fundamentals of Digital Logic and Microcomputer Design

Operands

(no operands)

O D I T S Z A P C Flags CWD (no operands)
Convert word to doubleword CWD

Clocks Transfers' Bytes Coding Example

1 CWD - 5

DAA (no operands)
Decimal adjust for addition DAA

Operands Clocks I Transfers' I Bytes

(no operands) 4 - 1

I

O D I T S Z A P C
x x x x x Flags

Codlng Example

DAA

DAS (no operands)
Decimal adjust for subtraction

Operands

(no operands)

I

Operands

reg8
reg16
mem8

meml6

I DEC

Clocks Transfers' Bytes

80-90 -
144-162 -
(86-96) 1 2-4

2
2

+ EA

+€A
(150-168) 1 2-4

DEC destination I Decrement by 1

L I

Operands Clocks Transfers' Bytes

immediate, memory 8+EA 1 2-4
2 - immediate, register 2

Operands

reg16

memory 15+EA 2 2-4

I O D I T S Z A P C
x x x x x Flags

Codlng Example

DAS

I O D I T S Z A P C
x x x x Flags

Coding Example

DEC AX
DEC AL I DEC ARRAY [Sl]

I ESC ESC external-opcode,source I EscaDe

I O D I T S Z A P C
u u u u u Flags

DiV CL
DIV BX
DIV ALPHA

DIV TABLE [Sl]

I O D I T S Z A P C I Flags

Codlng Example I ESC 20,AL
ESC 6,ARRAY [Sl]

1 I I I I 1
'FortheB086,addfourelocks(oreach 16-bil word Iranllferwllh~noddaddre?ls. FortheB088. add lourclocksforesch16-b1l wordtransfer

Appendix F: 8086 Instruction Set Reference Data 68 1

I

Operandr Clocks Tranders' Bytes

(no operands) 2 - 1

I HLT

Coding Example

HLT

HLT (no operands) 1 Halt

accumulator, immed8
accumulator, DX

I O D I T S Z A P C I Flags

10 1 2 IN AL,OFFEAH
8 1 1 IN AX,DX I

INC destlnation
Increment by 1 INC

Operandr Clocks Transfers' Bytes

I O N source
Integer dlvision

Operands Clocks Transfers'

IDlV

reg8 101-1 12 -
reg18 185-184 -
mem8 (107-1 18) 1

meml6 (1 71-190) 1
+ EA

+ EA

O D I T S Z A P C
x x x x Flags

Codlng Example

O D I T S Z A P C
u u u u u

reg1 6
reg8
memory

Bytes Coding Example

2 IDlV EL
2 iDlV CX

2-4 IDiV DIVISOR-BYTE [Sl]

2-4 IDlV [BX).DIVISOR-WORD

2 - 1 INC CX
3 - 2 INC BL

15+ EA 2 2-4 INC ALPHA [Dl] [EX]

I integer multiplication I I O D I T S Z A P C
u u u u x Flags IMUL source

Operands

reg16

meml6

1281
(88-1 04)

(1 34-160)
+ EA

Bytes Codlng Example

IMUL RATE-BYTE

IN accumulator,port I Input byte or word I I O D I T S Z A P C Flags

I Operands I Clocks I Transfers' I Bytes I Coding Example I

682 Fundamentals of Digital Logic and Microcomputer Design

INT INT interrupt-type O D I T S Z A P C
Interrupt Flags 0 0

I Operands I Clocks I Transters' I Bytes I Codlng Example I
immed8 (type = 3)
immed8 (type # 3)

52 5 1 INT 3
51 5 2 INT 67

I INTR (external maskable interrupt) I O D I T S Z A P C
Flags 0 0 I Interrupt i f INTR and I F 4

I

Operands Clocks Transfers. Bytes

(no operands) 61 7 NIA

Coding Example

NIA

INTO (no operands)
InterruDt if overflow

I INTO
I

Operands Clocks Transfers. Bytes

(no operands) 53 or 4 5 1

Coding Example

INTO

Operands I Clocks Transfers' Bytes Coding Example

(no operands) I 24 I 3 I 1 1 IRET

IRET (no operands)
Interrupt Return

IRET

O D I T S Z A P C
Flags JA/JNBE short-label

Jump if abovelJump if not below nor equal
JA/JNBE

O D I T S Z A P C
R R R R R R R R R

Operands I Clocks 1 Transfers' 1 Bytes I Coding Example

short-label I 16or4 1 - I 2 I JA ABOVE

~

JAE/JNB short-label
Jump if above orequallJump if not below

Operands Clocks Transters' Bytes

JAE/ J N 8

short-label 16 or 4 - 2

JBIJNAE short-label
Jump i f belowlJumpif notabove nor equal

J B/ J NAE

Operands Clocks Transters' Bytes

short-label 16 or 4 - 2

~ ~

O D I T S Z A P C
Flags

Coding Example

JAE ABOVE-EQUAL

O D I T S Z A P C

Coding Example

JB BELOW

Appendix F: 8086 Instruction Set Reference Data 683

O D I T S Z A P C Flags
JBE/JNA short-label
Jump i f below or equallJump i f not above

JBE/JNA

Operands I Clocks I Translers* [Bytes Coding Example
t

JC short-label
Jump i f carry

JC

Operands Clocks transfers. Bytes

short-label 10or4 - 2

JCXZ short-label
Jump i f CX is zero JCXZ

Operands Clocks Transfers' Bytes

short-label 18or8 - 2

JE/JZ short-label
Jump If equallJump i f zero JE/JZ

Operands Clocks Translers' Bytes

short-label 16or4 - 2

O D I T S Z A P C Flags

Codlng Example

JC CARRY-SET

O D I T S Z A P C Flags

Coding Example

JCXZ COUNT-DONE

O D I T S Z A P C Flags

Codlng Example

JZ ZERO

1 JWJNLE

, " ~

Operands Clocks Transfers. Bytes

short-label 18or4 - 2

I O D I T S Z A P C Flags I JG/JNLE short-label I JUmD i f QreaterlJumo i f not less nor eaual

Coding Example

JGE GREATER-EQUAL

t
. - I

Operands I Clocks 1 Transfers' I Bytes I Codlna ExamDle

short-label 16or4 - 2 JG GREATER 1
I JGEIJNL 1 JQENNL shot?-label 1 0 0 1 T S Z A P C I JurnoIfareateroreauallJumo i f not less

I JLIJNGE I O D I T S Z A P C 1 Flags JUJNQE short-label I JumD If IesslJumo i f noloreater nor eaua
I ' .~ I I

ODermdS i Clocks I Transfers* I Bytes i Coding Example i
I short-label I 16or4 1 - I 2 I JL LESS I

'Forlhe W86, a~dfourc locksforeschl~bi tword 1 r ~ n r t ~ r u i t h r n ~ d d . d d r ~ a a . F ~ r t h . ~ , . d d b u r c i ~ k S f o r ~ ~ c h 16bil word lranaler

684 Fundamentals of Digital Logic and Microcomputer Design

t 1 '

Operands Clocks Transfers* Bytes

2 short-label 16 or 4 -

I JLEIJNG

Coding Example

JNG NOT-GREATER

I O D I T S Z A P C 1 Flags
JLE/JNG short-label I Jump if less or eQual/JUmD if not areater

Transfers' Bytes

2
- 3
- 5

- 2

-

1 2-4

' 2 2-4

Coding Example

JMP SHORT
JMP WITHIN-SEGMENT
JMP FAR-LABEL
JMP [BX).TARGET
JMP CX
JMP 0THER.SEG [Sl]

I JMP

Operands

short-label

I

Clocks Transfers' Bytes Coding Example

16 Or 4 - 2 JNC NOTLCARRY

JMP target 1 Jump

9 '

Operands Clocks I Transfers' I Bytes

short-label 16or4 1 - I 2

~~

Operands I Clocks

Codlng Example

JNO NO-OVERFLOW

short-label
near-label
far-label
memptrl6 1 8 t EA
regptrl6
memptr32 24 t €A

JNP/JPO short-label
Jump i f not paritylJump if parity odd JNP/JPO

Operands Clock8 Transfers' Bytes

short-label 16 or 4 - 2

I O D I T S Z A P C I Flags

O D I T S Z A P C
Flags

Coding Example

JPO ODD-PARITY

JNS short-label
Jump If not sign JNS

Operands Clocks Tran8fer8' Bytes

short-label I 16or4 I - I 2

JNC short-label O D I T S Z A P C
Jump i f not carry Flags JNC

O D I T S Z A P C
Flags

Coding Example

JNS POSITIVE

O D I T S Z A P C
Flags

JNEIJNZ short-label
Jump if not equailJump if not zero JNE/JNZ

Operand8 I Clocks [Transfers' I Bytes I Coding Example

short-label I 16or4 I - I 2 I JNE NOTLEQUAL

I JNO JNO short-label I Jumo if not overflow I O D I T S Z A P C I Flags

~~

'For lhe KIM add lour Clock8 lor each lbblt word Iransfer with an odd lddrass For the W38, add four clockslor eacn lbbit word trinsler

Appendix F: 8086 Instruction Set Reference Data 685

Operands

short-label

I JO
Clocks Transfers' Bytes Coding Example

16or4 - 2 JO SIGNED-OVRFLW

JO short-label I Jumo i f overflow

JP/JPE short-label
Jump i f paritylJump if parity even

JP/JPE

I O D I T S Z A P C I Flags

Flags O D I T S Z A P C

I

Operands Clocks Transfers' Bytes

1 - (no operands) 4

Coding Example

LAHF

Operands 1 Clocks Transfers' Bytes Codlng Example

short-label I 1 6 ~ 4 1 - I 2 1 JPE EVEN-PARITY

LDS destination,source
Load pointer using DS

Operands Clocks Transfers Bytes

LDS

regl6, mem32 16+EA 2 2-4

LEA destination.source
Load effective address LEA

I JS

O D I T S Z A P C Flags

Coding Example

LDS SI,DATA.SEG [Ol]

O D I T S Z A P C Flags

JS short-label I Jumo i f sian

reg16, mem32 16+EA 2 2-4

I I O D I T S Z A P C
Flags

LES DI, (BX].TEXT-BUFF

Operands I Clocks 1 Transfers' I Bytes I Coding Example

short-label 1160r4 I - I 2 I JS NEGATIVE

~LAHF LAHF (no operands) I Load AH from flaos
I O D I T S Z A P C

Flags

I Operands I Clocks 1 Transfers' 1 Bytes I Coding Example 1
regl6, meml6 2+EA - 2-4 LEA BX,(BP][DI)

I . I LES LES destination,source I Load oointer usina ES I O D I T S Z A P C I Flags

t Omrands I Clocks I Transfers' I Bvtes I Coding ExemDle
1 - ~ I

~

'For the 8086 add four Clocksfof each lEblt word transfer wlth an odd address For the W, add four clocks for each 16bil word tranllW

686 Fundamentals of Digital Logic and Microcomputer Design

1 I

Operands Clocks Transfers' Bytes Coding Example

(no operands) 2 - 1 LOCK XCHGFLAG.AL

I LOCK

Operands

source-string
(repeat) source-string

LOCK (no operands) I Lock bus

Clocks Transfers' Bytes Coding Example

12 1 1 LODS CUSTOMER-NAME
9+13/rep l lrep 1 REP LODSNAME

I O D I T S Z A P C I Flags

short-label 1715 - 2 LOOP AGAIN

1 LODS

Operands

short-label

LODS source-string I Load strino

Clocks Transfers' Bytes Coding Example

18or6 - 2 LOOPE AGAIN

I O D I T S Z A P C I Flags

LOO PNE/LOOPNZ O D I T S Z A P C
Flags

LOOPNE/LOOPNZ short-label
Loop if not equallLoop if not zero

I LOOP

I

Operands Clocks Transfers' Bytas

(nooperands) 50' 5 NIA

LOOP short-label I LOOP

Coding Example

N IA

I I O D I T S Z A P C

I

Operands Clocks Transfers' Bytes Coding Example

LOOPE/LOOPZ short-label
Loop if equal I Loop if zero

1 LO&PE/LOOPZ I O D I T S Z A P C I Flags

Operands 1 Clocks I Tranrfers' [Bytes Coding Example

short-label I 19or5 I - I 2 1 LOOPNE AGAIN

N M I ~ I NMI (external nonmaskable interrupt) O S I T S Z A P C I lnterruot it NMI = 1

Appendix F: 8086 Instruction Set Reference Data

dest-string, source-string
(repeat) dest-string, source-string

687

18 2 1 MOVS LINE EDIT-DATA
9+17/rep 2lrep 1 REP MOVS SCREEN, BUFFER

MOV

MOVSB/MOVSW

MOV destinatlon,source I Move

O D I T S Z A P C
Flags MOVSB/MOVSW (no operands)

Move string (bytelword)

I

ODerandS I Clocks I Transfers;' I Bytes

Clocks

18
9+17lrep

memory, accumulator
accumulator, memory
register, register
register, memory
memory, register
register, immediate
memory, immediate
seg-reg, reg16
seg-reg, meml6
regl6, seg-reg
memory, seg-reg

Transfers' Bytes Coding Example

2 1 MOVSB
2lrep 1 REP MOVSW

10
10
2

8+ EA
9+EA

4
10+ EA

2
8+EA

2
9+EA

MUL source
Multipllcation, unsigned MUL

Operands I Clocks I Transfers' I Bytes

3
3
2

2-4
2-4
23-
3-6
2

2-4
2

2-4

O D I T S Z A P C
u u u u x Flags

Coding Example

Flags O D I T S Z A P C

Codino Examole
~~ ~

MOV ARRAY [Sl], AL
MOV AX, TEMP-RESULT
MOV AX.CX
MOV BP, STACK-TOP
MOV COUNT [Dl]. CX
MOV CL,2
MOV MASK [BX] [Sl], 2CH
MOV ES,CX
MOV DS, SEGMENT-BASE
MOV BP,SS
MOV [BXlSEG-SAVE, CS

1 MOVS I O D I T S Z A P C I Flags MOVS dest-string,source-string I Move string

1 Operands I Clocks I Transfers' I Bytes I CodlngExample I

Operands

(repeat) (no operands)

reg8
reg16
mem0

meml6

I

70-77

MUL MONTH [Sl]

(1 24-1 39) MUL BAUD-RATE

'For the W, add four clocks for each lbbit word transler with an odd address. For the8OOl. add lour clocks for each 16bil word IIanSler

688

Operands Clocks Transfers' Bytes

2 - register 3
memory 16+EA 2 2-4

Fundamentals of Digital Logic and Microcomputer Design

Coding Example

NEG AL
NEG MULTIPLIER

I NEG

NOP (no operands)
NOP No Operation

Operands Clocks Transfers' Bytes

(no operands) 3 - 1

NOT destination
Logical not NOT

Operands Clocks Transfers' Bytes

register 3 - 2
memory 1 6 t E A 2 2-4

OR destination,source
Logical inclusive or

Operands Clocks Transfers' Bytes

OR

register, register 3 - 2
register, memory 9+EA 1 2-4
memory, register 16cEA 2 2-4
accumulator, immediate 4 - 2-3
register. immediate 4 - 3-4
memory, immediate 17+EA 2 3-6

OUT pori,accumulator
Output byte or word OUT

Operands Clocks Transfers' Bytes

immed8, accumulator 10 1 2
DX, accumulator 8 1 1

POP destination
Pop word off stack POP

Operands Clocks Transfers' Bytes

register 8 1 1
seg-reg (CS illegal) 8 1 1
memory 17+EA 2 2-4

NEQ destination I Negate

1

O D I T S Z A P C Flags

Coding Example

NOP

O D I T S Z A P C
Flags

Coding Example

NOT AX
NOT CHARACTER

O D I T S Z A P C
x x u x 0 Flags

Coding Example -
OR AL,BL
OR DX. PORT-ID [Dll
OR FLAG-BYTE,CL
OR AL,011011008
ORCX,OlH
OR [EX].CMD-WORD,OCFH

O D I T S Z A P C
Flags

Coding Example

OUT 44,AX
OUT DX.AL

O D I T S Z A P C
Flags

Codlng Examph

POP DX
POP DS
POP PARAMETER

X X X X 1 '
Flags I O D I T S Z A P C

'Forlhe M60, add four clocks for each 16-bti wor4 transfer wilhan oddaddrsrs ForthcMM. add fourcIockSforeaCh lbbi i wcfd lransfar

Appendix F: 8086 Instruction Set Rtference Data 689

Operands

(no operands)

POPF (no operands) I Pop flags off stack
(POPF

Clocks Transfers. Bytes Coding Examplo

8 1 1 POPF

Opersnds Clocks Transfers* Bytes

register 11 1 1
seg-reg (CS legal) 10 1 1
memory 16+EA 2 2-4

1 PUSH

Codlng Example

PUSH SI
PUSH ES
PUSH RETURN-CODE [Sl]

PUSH source I Push word onto stack

PUSHF (no operands)
Push flags onto stack

PUSHF

Operands I Clocks I Transfers' 1 Bytes

I I Flags O D I T S Z A P C

O D I T S Z A P C Flags

Codlna ExamDle

I -
Operands Clocks Transfers' Bytes

register, 1 2 - 2
register, CL 8 + 41bit - 2
memory, 1 15+EA 2 2-4
memory, CL 20+EA+ 2 2-4

41bit

I
Coding Example

RCL CX,1
RCL AL,CL
RCL ALPHA,l
RCL [BP].PARM, CL

I I - I -
(no operands) I 10 I 1 I 1 I PUSHF 1

RCR designation.count
Rotate right through carry

RCR
Operands 1 Clocks I Transfers' I Bytes

I RCL

O D I T S Z A P C
X Flags

Coding Exrmple

RCL destlnation,count I Rotate left throuah carrv

2
8+41bit
15+EA

20+EA+
41bit

I I O D I T S Z A P C
X Flags

- 2 RCR BX.1

2 2-4 RCR [BX].STATUS, 1
2 2-4 RCR ARRAY [DI], CL

2 RCR BL,CL -

REP (no operands)
Repeat string operation

REP
Operands I Clocks I Tranrfors* 1 Bytes

O D I T S Z A P C Flags

Coding Example

register, 1
register, CL
memory, 1
memory, CL

(no operands) 2 - 1 REP MOVS DEST, SRCE I
'ForlheEO&S, addfourclocks~orsachl~bi lwordlr~nrlerwi lh~nodd~ddr~rr . ForIh. W, add fourcloekaloraachlbblIwordtranrf@r.

690 Fundamentals of Digital Logic and Microcomputer Design

(no operands)

1 REPE/REPZ

2 - 1 REPE CMPS DATA, KEY

I REPE/REPZ (no operands) 1 O D I T S Z A P C
Repeat strinQ ooeration whileequallwhile zero Flags

Operands

(no operands)

I
. .

1

Operands I Clocks 1 Transfers' 1 Bytes I Coding Example 1

Clocks Transfers' Byles Coding Example

2 - 1 REPNE SCAS INPUT-LINE

RET optional-pop-value
Return from procedure

Operands 1 Clocks I Transfers' I Bytes

R ET O D I T S Z A P C
Flags

Coding Example

(intra-segment, no pop)
(intra-segment, pop)
(inter-segmenl. no pop)
(inter-segment, pop)

1 ROL

~

8 1 1 RET
12 1 3 RET 4
18 2 1 RET
17 2 3 RET 2

ROL deslination.coun1 I Rotate left

2
8+ 41 bit
15+EA

20+EA+
41bit

t Operands I Clocks I Transfers I Bytes I Coding Examples
I I

- 2- ROL BX,l
- 2 ROL DI,CL
2 2-4 ROL FLAG-BYTE [DI],1
2 2-4 ROL ALPHA .CL

register. 1
register, CL
memory, 1
memory, CL

ROR destination.count
Rotate riaht ROR O D I T S Z A P C

X Flags

Operand

register, CL
memory, 1
memory, CL

Clocks

8 + 4 / bit
15+EA

20+EA+ t 41bit

Transfers' Bytes 7 - k
I 2-4

Coding Example

ROR AL.1
ROR BX,CL
ROR PORTLSTATUS, 1
ROR CMD-WORD, CL

[SAHF SAHF (no operands) I Store AH into flags R R R R R Flags I O D I T S Z A P C

I Operands 1 Clocks I Transfers' I Bytes I CodingExample I

Appendix F: 8086 Instruction Set Reference Data 69 1

2
8+4/bit
15+EA

20+ EA+
41bit

SAL/SHL

2
2

-
-
2 2-4
2 2-4

SAL/SHL destination.count I Shift arithmetic IeftlShift loaical left

Operands

register, 1
register, CL
memory, 1
memory, CL

ODerands I Clocks I Transfers' I Bvtes

Clocks Transfers. Bytes Coding Example

8+ 41 bit - 2 SAR DI,CL
15+EA 2 2-4 SAR N-BLOCKS. 1

2 - 2 SAR DX,?

20+EA+ 2 2-4 SAR N-BLOCKS,CL
41bil

register,l
register, CL
memory,l
memory, CL

Bytes

2
2-4
2-4
2-3
3-4
3-6

Coding Example

SBB BX,CX
SBB 01, [BX].PAYMENT
SBB BALANCE, AX
SBB AX.2
SBB CL. 1
SBB COUNT [Si], 10

A

O D I T S Z A P C
X

Flags

I -
Operands Clocks Translers' Bytes

(no operands) 2 - 1

Coding Examples

Coding Example

MOV SS:PARAMETER, AX

SAL AL.1
SHL 01, CL
SHL [BX].OVERDRAW, 1
SAL STORE-COUNT, CL

I SAR SAR destination,source I Shift arithmetic right x x u x x I Flags

I SBB SBB destination,source I Subtract with borrow I I O D I T S Z A P C
x x x x x Flags

I Operands

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

1

I SCAS

Clocks

3
9+EA
16+EA

4
4

17+EA

Transfers'

SCAS dest-string I Scan string x x x x x I I o D I T S Z A P C
Flags

I Operands I Clocks I T r a n s f e a - B y t e s I Coding Example I
dest-string I (repeat) dest-string

15 1
REPNE SCAS BUFFER I

 SEGMENT^ SEGMENT override prefix I Override to soecified seoment
I O D I T S Z A P C

Flags

'For the 8006. add lour clocks for each 16-blt word transfer with an odd address For tne Boo. add four clocks for each 16 bil word transfer

tASM-86 tncorporales the segment override pretix into the operand SQBCIfICaliOn and not as a separate instruclion SEGMENT I S included In table

2-21 only lor timing inlormation

SHR destination.count
Shift logical right

SHR

I Operands

O D I T S Z A P C
X Flags

register, 1
register, CL
memory, 1
memory, CL

I

Operands Clocks Transfers. Bytes

(no operands) 50 5 NIA

Codlng Example

15+EA
20+EA+

4Ibit

SHR ID-BYTE (SI] [EX], 1

Coding Example

NIA

I SINGLE STEP (Trap flag interrupt) I O D I T S Z A P C (SINGLE STEP^ I InterruDt i f TF = 1 Flags

I -
Operands Clocks Transfers’ Rytes

(no operands) 2 - I 1

Coding Example

STD

I STC

~~

O D I T S Z A P C Flags , STI (no operands)
Set Interrupt enable flag

STI

Operands Clocks Transiers’ Bytes Coding Example

1 STI - (no operands) 2

STOS dest-string O D I T S Z A P C
Store byte or word string Flags i STOS

0 pera nd s Clocks Transfers’ Bytes Coding Example

dest-string 11 1 1 STOS PRINT-LINE
l (repeat) dest-string 9+10/rep l l r e p 1 REP STOSDISPLAY

STC (no operands) I Set carrv ilaa I O D I T S Z A P C
I I Flags

I . I

Coding Example

(no operands)

I STD STD (no operands) I Set direction flaa I O D I T S Z A P C I Flags

‘Forthe 8086. add four clocks lor each 18-blt word transfer wlth an odd address For tne 8088. aaa lour clocks lor each 16-bit word traister

tSlNGLE STEP IS not an instruction. It IS mludea In table 2-21 only lor liming information

Appendix F: 8086 Instruction Set Reference Data 693

Operands

register, register

memory, register
register, memory

accumulator, immediate
register, immediate
memory, immediate

1 SUB

Clocks Transfers' Bytes Coding Example

3 - 2 SUB CX.BX

16+EA 2 2-4 SUB [BP+2],CL
9+EA 1 2-4 SUB DX, MATH TOTAL ISl]

4 - 2-3 SUB AL.10
4 - 3-4 SUB SI,5280

17+EA 2 3-6 SUB [BP].BALANCE, 1000

I Subtraction x x x x x I I O D I T S Z A P C Flags SUB destination.source

TEST destination, source
Test or nondestructive logical and TEST

Operands I Clocks 1 Transfers' I Bytes

O D I T S Z A P C
x x u x o Flags

Coding Example

register, register
register, memory
accumulator, immediate
register, immediate
memory, immediate

I O D I T S Z A P C I Flags WAIT (no operands) I Walt whlle TEST oin not asserted I WAIT

3 - 2 TEST SI.DI
9+EA 1 2-4 TEST SI, END-COUNT

4 - 2-3 TEST AL, OOlOOOOOB
5 - 3-4 TEST BX.OCC4H

11 + € A - 3-6 TEST RETURN-CODE. 01H

(no operands) 3 + 5n

(XCHG

1 WAIT -

XCHG destination,source I Exchange

I XLAT'

I

Operands I Clocks 1 Transfers'

O D I T S Z A P C
Flags XLAT source-table

Translate

accumulator, reg16
memory, register
register, register

Operands Clocks Transfers' Bytes

source-table 11 1 1

O D I T S Z A P C
Flags

Coding Example

XLAT ASCIILTAB

+ I XCHG AX,BX 1
XCHG SEMAPHORE, AX
XCHG AL, BL

'For fhe8086. add IOUrclocksIoreach l&bitwotd lransletwllhanoddaddress. Forlhe8088. add lour clocksfor each 16-blI word transfer

694 Fundamentals of Digital Logic and Microcomputer Design

register, register
register, memory
memory, register
accumulator, immediate
register, immediate
memory, immediate

XOR

3 - 2 XOR CX,BX
9+EA 1 2-4 XOR CL. MASK-BYTE
16+EA 2 2-4 XOR ALPHA [Sl], DX

2-3 XOR AL,OlOOOOlOB - 4
4 3-4 XOR SI,00C2H -

17+EA 2 3 6 XOR RETURN-CODE,ODZH

XOR destinatlon,source I Logical exclusive or x x u x o Flag6 I O D i T S Z A P C

Operands I Clocks I Transfers' I Byte8 1 CodlngExrmpls

APPENDIX

1)).]

G

4 0

68000 INSTRUCTION SET
Instruction Size Length Operation

ABCD - (Ay), - (AX)
ABCD Dy, Dx

ADD (E N , (EA)
ADDA (EA), An
ADD1 #data, (EA)

ADDQ #data, (EA)

ADDX Dy, Dx
AND (EA), (EA)
ANDI #data, (EA)

ADDX - (AYL - ('4x1

ANDI #data& CCR
ANDI #datal6, SR
ASL Dx, Dy

ASL #data, Dy

ASL (EA)

1

1
1
1

2 for B, W
3 for L
1
1

1
1

2 for B, W
3 for L
2

2
1

1

1

ASR Dx, Dy B,W,L 1

ASR #data, Dy B , W , L 1

ASR (EA) B,W,L I

-[Ay] lo+-[Ax] IO+X+[Ax]
[DyllO + [DxIlO +X + Dx
[EA] + [EA] - EA
[EA] + An -+ An

data + [EA] - EA

data + [EA] + EA

Dy + Dx + X + Dx
[EA] [EA] - EA
data A [EA] - EA

- [Ay] + - [AX] + X + [AX]

data8 A [CCR] + CCR
data16 [SR] + SR if s = 1; else trap

numher of shifts dercmiincd by I l h]

695

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

696 Fundamentals of Digital Logic and Microcomputer Design

Instruction Size Length Operation

BCC d

(words)
1 for B B, W Branch to PC + d if carry = 0; else next instruction

BCHG Dn, (EA)

BCHG #data. (EA)

BCLR Dn (EA)

BCLR #data, (EA)

BCS d

BEQ d

BGE d

BGT d

BHl d

BLE d

BLS d

BLT d

BMI d

BNE d

BPL d

BRA d

BSET Dn, (EA)

BSET #data, (EA)

BSR d

BTST Dn, (EA)
BTST #data, (EA)

BVC d

BVS d

CHK (EA), Dn

CLR(EA)
CMP (EA), Dn
CMP (EA), An

CMPI #data, (EA)

2 for W
1

2

1

2

1 forB
2 for W
1 for B
2 for W
1 for B
2 for W
1 forB
2 for W

1 for B
2 for W
1 for B
2 for W

1 forB
2 for W

1 forB
2 for W
1 for B
2 for W
1 forB
2 for W

1 forB
2 for W
1 forB
2 for W

1

2

1 forB
2 for W
1

2

1 for B
2 for W
1 for B
2 for W
1

B,W, L 1
B,W,L 1
W , L 1

B, W, L 2 for B, W
3 for L

[bit of [EA], specified by Dn]’ + Z
[bit of [EA] specified by Dn]’ +bi t of [EA]
Same as BCHG Dn, [EA] except bit number is specified by
immediate data
[bit of [EA]]’ -, Z
0 + bit of [EA] specified by Dn

Same as BCLR Dn, [EA] except the bit is specified by
immediate data

Branch to PC + d if carry = 1; else next instruction

Branch to PC + d if 2 = 1; else next instruction

Branch to PC + d if greater than or equal; else next
instruction
Branch to PC + d if greater than; else next instruction

Branch to PC + d if higher; else next instruction

Branch to PC + d if less or equal; else next instruction

Branch to PC + d if low or same; else next instruction

Branch to PC + d if less than; else next instruction

Branch to PC +d if N = I ; else next instruction

Branch to PC +d if Z = 0: else next instruction

Branch to PC + d if N = 0; else next instruction

Branch always to PC + d

[bit of [EA]]’ - Z
1 + bit of [EA] specified by Dn
Same as BSET Dn, [EA] except the bit is specified by
immediate data
PC - - [SP]
PC + d + PC
[bit of [EA] specified by Dn]’ - 2
Same as BTST Dn, [EA] except the bit is specified by data
Branch to PC + d if V = 0; else next instruction

Branch to PC + d if V = 1; else next instruction

If Dn < 0 or Dn > [EA], then trap

O+EA
Dn - [EA] + Affect all condition codes except X
An - [EA] + Attect all condition codes except X
[EA] -data + Affect all flags except X-bit

Appendix G: 68000 Instruction Set 697

Instruction Sue Length Operation

CMPM (Ay) +, (Ax) + B, W, L

DBCC Dn. d

DBCS Dn, d
DBEQ Dn, d
DBF Dn, d
DBGE Dn, d
DBGT Gn, d
DBHIDn, d
DBLE Dn, d
DBLS Dn, d
DBLT Dn, d
DBMl Dn, d
DBNE Dn, d
DBPL Dn, d
DBT Dn, d
DBVC Dn, d
DBVS Dn, d
DIVS (EA), Dn

D I W (EA), Dn
EOR Dn, (EA)
E O N #data, (EA)

E O N #d8, CCR
E O N #d16, SR
EXG Rx, Ry
EXTDn

JMP (EA)

JSR (EA)

LEA (EA), An

LSL Dx, Dy
LINK An, # -d

LSL #data, Dy

LSL (EA)

LSR Dx, Dy

LSR #data, Dy

LSR (EA)

(words)
1

2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1

1
1
2 for B, W
3 for L
2
2
1
1

1

1

1
2
1

1

1

1

1

I

[Ax]+ - [Ay]+ + Affect all flags except X; update Ax

and AY
If condition false, i.e., C = 1, then Dn - 1 --> Dn;
if Dn f - 1, then PC + d - PC; else PC + 2 - PC
Same as DBCC except condition is C = 1
Same as DBCC except condition is 2 = 1
Same as DBCC except condition is always false
Same as DBCC except condition is greater or equal
Same as DBCC except condition is greater than
Same as DBCC except condition is high
Same as DBCC except condition is less than or equal
Same as DBCC except condition is low or same
Same as DBCC except condition is less than
Same as DBCC except condition is N = 1
Same as DBCC except condition Z = 0
Same as DBCC except condition N = 0
Same as DBCC except condition is always true
Same as DBCC except condition is V = 0
Same as DBCC except condition is V = 1
Signed division

[Dn]32/[EA]16 -
[Dn] 0-15 = quotient
[Dn] 16-3 1 = remainder

Same as DIVS except division is unsigned
Dn 0 [EA] - EA
data 0 [EA] -+ EA

d8 0 CCR -+ CCR
d16 0 SR - SR if S = 1; else trap
Rx -Ry
Extend sign bit of Dn from 8-bit to 16-bit or from 16-bit
to 32-bit depending on whether the operand size is B
or W
[EAI- PC
Unconditional jump using addres's in operand

Jump to subroutine using address in operand
[EA] - An

PC--[SP]; [EA] -PC

An+-[SP]; S P + A n ; S P - d -+SP

Same as LSL Dx, Dy except immediate data specify the
number of shifts from 0 to 7
Same as LSL Dx, Dy except left shift is performed only
once

Same as LSR except immediate data specifies the
number of shifts from 0 to 7
Same as LSR, Dx, Dy except the right shift is performed
only once

698 Fundamentals of Digital Logic and Microcomputer Design

Instruction Size Length Operation
(words)
1
1 [EA] - CCR
1 CCR - [EA]
1
1
I

2 Register list - [EA]

[EA] source +. [EA] destination

If S = I , then [EA] - SR; else TRAP
If S = I , then SR - [EA]; else TRAP
If S = I, then An - USP; else TRAP

1 [USP] - An

MOVE (EA), (EA)
MOVE (EA), CCR
MOVE CCR, (EA)
MOVE (EA), SR
MOVE SR, (EA)
MOVE An, USP
MOVE USP, An
MOVEM register list,
(EA)
MOVEM (EA), register
list
MOVEP Dx, d (Ay)
MOVEP d (Ay), Dx
MOVEQ #dS, Dn
MULS(EA)16, (Dn) 16

2 [EA] - register list

2 Dx - d[Ay]
2 d[Ay] - Dx
1
1

d8 sign extended to 32-bit - Dn
Signed 16 x 16 multiplication [EA]16 * [Dn]16 -
[Dn]32

MULU(EA)16, (Dn)16

NBCD (EA)
NEC (EA)
NEGX (EA)
NOP
NOT (EA)
OR F A) , F A)
ORI #data, (EA)

W 1 Unsigned 16 x 16 multiplication [EA]16 * [Dn]16 +

[Dn]32
0 - [EAIlO - X - EA
0-[EAI-EA ~

0 - [EA] - X - EA
No operation
[EA]' - EA
[EA]V[EA] --+ EA
data V[EA] - EA

1
1
1
1
1
1
2 for B, W
3 for L
2
2
1
1
1

O N #d8, CCR
O N #d16, SR
PEA (EA)
RESET
ROL Dx, Dy

B
W
L
Unsized
B, W, L

d8VCCR - CCR
If S = I , then dl6VSR -> SR; else TRAP
[EA] 16 sign extend to 32 bits - - [SP]
If S = I, then assert RESET line; else TRAP -
Same as ROL Dx, Dy except immediate data specifies
number of times to be rotated from 0 to 7
Same as ROL Dx, Dy except [EA] is rotated once

ROL #data, Dy I

ROL (EA)
ROR Dx, Dy -

Same as ROR Dx, Dy except the number of rotates is
specified by immediate data from 0 to 7
Same as ROR Dx, Dy except [EA] is rotated once

. . .

ROR #data, Dy

ROR (EA)
ROXL Dx, Dy

1

ROXL #data, Dy B, W, L I

ROXL (EA) B, W, L 1

Same as ROXL Dx, Dy except immediate data specifies
number of rotates from 0 to 7
Same as ROXL Dx, Dy except [EA] is rotated once

ROXR Dx, Dy B, W, L 1

. . . -

Appendix G: 68000 Instruction Set 699

Instruction S u e Length Operation
(words)

ROXR #data, Dy B,W, L 1 Same as ROXR Dx, Dy except immediate data specifies

ROXR (EA)
RTE
RTR
RTS

SBCD Dy, Dx
SCC (EA)
SCS (EA)

SEQ (E N
SF (EA)
SGE (EA)
SGT (EA)
SHI (EA)
SLE (EA)
SLS(EA)
SLT (EA)
SMI (EA)
SNE (EA)
SPL(EA)
ST (EA)
STOP #data

SBCD -(Ay), -(AX)

SUB (W , (E N
SUBA (EA), An
SUB1 #data, (EA)

SUBQ #data, (EA)

SUBX Dy, Dx
SVC (EA)
SVS (EA)
SWAP Dn
TAS (EA)

SUBX - (Ay), - (A X)

TRAP #vector

TRAPV
TST (EA)

B,W, L
Unsized
Unsized
Unsized
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
Unsized

B, W, L
W,L
B, W, L

B, W, L
B, W, L
B, W, L
B
B
W
B

Unsized

Unsized
B,W, L

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2

1
1
2 for B, W
3 for L
1
1
1
1
1
1
1

1

1
1

number of rotates from 0 to 7
Same as ROXR Dx, Dy except [EA] is rotated once
If S = I, then [SP] + -P S R [SP] + - PC, else TRAP
[SP] + -+ c c ; [SP] + + PC
[SP] + -+ PC
- (AX)lO - (Ay)lO - X -+ (A X)
[Dx]lO - [DyllO - X + DX
If C = 0, then Is - [EA] else 0s -+ [EA]
Same as SCC except the condition is C = 1
Same as SCC except if Z = 1
Same as SCC except condition is always false
Same as SCC except if greater or equal
Same as SCC except if greater than
Same as SCC except if high
Same as SCC except if less or equal
Same as SCC except if low or same
Same as SCC except if less than
Same as SCC except if N = 1
Same as SCC except if Z = 0
Same as SCC except if N = 0
Same as SCC except condition always true
If S= 1, then data + SR and stop; TRAP if executed in
user mode

An - [EA] -+ An
[EA] - data + EA

[EA] - [EA] -, EA

[EA] - data + EA

- "4x1 - [AYl- x- "4x1
Dx - Dy - X + Dx
Same as SCC except if V = 0
Same as SCC except if V = 1
Dn [31:16] - Dn [15:0]
[EA] tested; N and Z are affected accordingly; 1 -+ bit
7 of [EA]
PC -, - [SSP], SR - - [SSP], (vector) - PC; 16
TRAP
If V = 1, then TRAP; else next instruction
[EA] - 0 + condition codes affected; no result provided

APPENDIX

8086 INSTRUCTION SET

Instructions Interpretation Comments
AAA ASCII adjust [AL] after addition This instruction has implied addressing mode; this

AAD

AAM

'4AS

ADC medreg I ,
medreg 2

ADC mem, data

ADC reg, data

ADD medreg 1,
memlreg 2

ADD mem. data

ADD reg, data

AND medreg 1:
memlreg 2

ASCII adjust for division

ASCII adjust after multiplication

ASCII adjust [AL] after

[medreg I] + [memheg I] +
subtraction

[medreg 21 + CF

[mem] - [rnem] + data + CF

[reg] -[reg] + data + CF

[medreg I] - [medreg 21 +
[medreg I]

[mem] - [mern] + data

[reg] - [reg] + data

[medreg 13 - [medreg I]
[medreg 21

AND mem, data [mem] - [mem] data

AND reg, data [reg] - [reg] +data

instruction is used to adjust the content of AL after
addition of two ASCII characters

two unpacked BCD digits in AX into equivalent
binary numbers in AL; AAD must be used before
dividing two unpacked BCD digits by an unpacked
BCD byte

This instruction has implied addressing mode; after
multiplying two unpacked BCD numbers, adjust the
product in AX to become an unpacked BCD result;
ZF, SF, and PF are affected

This instruction has implied addressing mode used to
adjust [AL] after subtraction of two ASCII characters

Memory or register can be 8- or 16-bit; all flags
are affected; no segment registers are allowed; no
memory-to-memory ADC is permitted

register; all flags are affected

register; all flags are affected

ADD is permitted; all flags are affected; mem uses
DS as the segment register; reg 1 or reg 2 cannot be
segment register

Mem uses DS as the segment register; data can be 8-or
16-bit; all flags are affected

Data can be 8- or 16-bit; no segment registers are
allowed; all flags are affected

This instruction logically ANDs 8- or 16-bit data in
[medreg 11 with 8- or 16-bit data in [medreg 21; all
flags are affected; OF and CF are cleared to zero; no
segment registers are allowed; no memory-to-memory
operation is allowed; mem uses DS as the segment
register

Data can be 8- or 16-bit; mem uses DS as the segment
register; all flags are affected with OF and CF always
cleared to zero

register; all flags are affected with OF and CF cleared
to zero

This instruction has implied addressing mode; converts

Data can be 8- or 16-bit; mem uses DS as the segment

Data can be 8- or 16-bit; register cannot be segment

Add two 8- or 16-bit data; no memory-to-memory

Data can be 8- or 16-bit; reg cannot be segment

70 1

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

702 Fundamentals of Digital Logic and Microcomputer Design

Instructions
CALL PROC
WEAR)

CALL reg 16

CALL mem 16

CALL subroutine
in another
segment

CALL
DWORDPTR
[reg 161

CBW
CLC
CLD
CLI

CMC
CMP mem/reg 1,
medreg 2

CMP memheg,

CMPS BYTE or
data

CMPSB

CMPS WORD or
CPSW

CWD

Interpretation
Call a subroutine in the same
segment with signed 16-bit
displacement (to CALL a
subroutine in k32K)

CALL a subroutine in the same
segment addressed by the
contents of a 16-bit general
register

CALL a subroutine addressed
by the content of a memory
location pointed to by 8086
16-bit register such as BX, S1,
and DI

segment
CALL a subroutine in another

CALL a subroutine in another
segment

Convert a byte to a word
C F - 0
DF+O
IF + 0

CF + CF
[medreg 11 - [medreg 21, flags

-

are affected

[medreg] - data, flags are
affected

FOR BYTE
[[SI]] - [[DI]], flags are affected
[SI] + [SI] t 1
[DI] - [DI] t 1

FOR WORD
[[SI]] - [[DI]], flags are affected
[SI] - [SI] t 2
[DI] - [DI] t 2

Convert a word to 32 bits

Comments
NEAR in the statement BEGIN PROC NEAR
indicates that the subroutine ‘BEGIN’ is in the same
segment and BEGIN is 16-bit signed; CALL BEGIN
instruction decrements SP by 2 and then pushes IP
onto the stack and then adds the signed 16-bit value of
BEGIN to IP and CS is unchanged; thus, a subroutine
is called in the same segment (intrasegment direct)

The 8086 decrements SP by 2 and then pushes IP onto
the stack, then specified 16-bit register contents (such
as BX, SI, and DI) provide the new value for IP; CS
is unchanged (intrasegment indirect)

The 8086 decrements SP by 2 and pushes IP onto the
stack; the 8086 then loads the contents of a memory
location addressed by the content of a 16-bit register
such as BX, SI, and DI into IP; [CS] is unchanged
(intrasegment indirect)

FAR in the statement BEGIN PROC FAR indicates
that the subroutine ‘BEGIN’ is in another segment
and the value of BEGIN is 32 bit wide

The 8086 decrements SP by 2 and pushes CS onto the
stack and moves the low 16-bit value of the specified
32-bit number such as ‘BEGIN’ in CALL BEGIN
into CS; SP is again decremented by 2; IP is pushed
onto the stack; IP is then loaded with high 16-bit
value of BEGIN; thus, this instruction CALLS a
subroutine in another code segment

(intersegment direct)
This instruction decrements SP by 2, and pushes CS
onto the stack; CS is then loaded with the contents of
memory locations addressed by [reg 16+2] and [reg
16 + 31 in DS; the SP is again decremented by 2; IP
is pushed onto the stack; IP is then loaded with the
contents of memory locations addressed by [reg 161
and [reg 16 + 11 in DS; typical 8086 registers used for
reg 16 are BX, SI, and DI (intersegment indirect)

Extend the sign bit (bit 7) ofAL register into AH
Clear carry to zero
Clear direction flag to zero
Clear interrupt enable flag to zero to disable maskable

One’s complement carry
mem/reg can be 8- or 16-bit; no memory-to-memory

interrupts

comparison allowed; result of subtraction is not
provided; all flags are affected

Subtracts 8- or 16-bit data from [mem or reg] and
affects flags; no result is provided

8- or 16-bit data addressed by [DI] in ES is subtracted
from 8- or 16-bit data addressed by SI in DS and
flags are affected without providing any result; if
DF = 0, then SI and DI are incremented by one for
byte and two for word; if DF = 1, then SI and DI are
decremented by one for byte and two for word;

the segment register ES in destination cannot be
overridden

Extend the sign bit of AX (bit 15) into DX

Appendix H: 8086 Instruction Set 703

Instructions Interpretation Comments
DAA

DAS

DEC reg 16

DEC mendreg 8

DIV medreg

ESC external OP
code, source

HLT
IDIV mendreg
IMUL memheg

IN AL, DX

IN AX, DX

IN AL, PORT

M AX, PORT

INC reg 16

Decimal adjust [AL] after
addition

Decimal adjust [AL] after
subtraction

[reg 161 + [reg 161 - 1

[mem] - [mem] - I or [reg 81 +

[reg 81 - 1

16/8 bit divide:
[Ax1

[mem8 / reg81
lAHl - Remainder
iALj - Quotient

32/16 bit divide:
[DXI [MI

[memlb / reglb]

[DX] + Remainder,
[AX] + Quotient

ESCAPE to external processes

HALT
Same as DIV mendreg
For 8 x 8
“4x1 - [ALI *
[mem 8 / reg 81

For 16 x 16
[DXl[AXl- LAXI *
[mem 16 / reg 161

[AL] - PORT [DX]

[AX] - PORT [DX]

[AL] - [PORT]

[AX] - [PORT]

[reg 161 - [reg 161 + 1

This instruction uses implied addressing mode; this
instruction converts [AL] into BCD; DAA should be
used after BCD addition

converts [AL] into BCD; DAS should be used after
BCD subtraction

This is a one-byte instruction; used to decrement a 16-
bit register exceptsegment register; does not affect the
cany flag

Used to decrement a byte or a word in memory or an
8-bit register content; segment register cannot be
decremented by this instruction; does not affect carry

This instruction uses implied addressing mode;

flag
Mendreg is %bit for 16-bit by %bit divide and 16-
bit for 32-bit by 16-bit divide; this is an unsigned
division; no flags are affected; division by zero
automatically generates an internal interrupt

This instruction is used to pass instructions to
a coprocessor such as the 8087 floating point
coprocessor which simultaneously monitors the
system bus with the 8086; the coprocessor OP codes
are 6-bit wide; the coprocessor treats normal 8086
instructions as NOP’s; the 8086 fetches all instructions
from memory; when the 8086 encounters an ESC
instruction, it usually treats it as NOP; the coprocessor
decodes this instruction and carries out the operation
using the 6-bit OP code independent of the 8086; for
ESC OP code, memory, the 8086 accesses data in
memory for the coprocessor; for ESC data, register,
the coprocessor operates on 8086 registers; the 8086
treats this as an NOP

Halt
Signed division. No flags are affected.
M e d r e g can be 8- or 16-bit; only CF and OF are
affected; signed multiplication

Input AL with the 8-bit content of a port addressed by
DX; this is a one-byte instruction

Input AX with the 16-bit content of a port addressed by
DX and DX + 1; this is a one-byte instruction

Input AL with the 8-bit content of a port addressed by
the second byte of the instruction

Input AX with the 16-bit content of a port addressed by
the &bit address in the second byte of the instruction

This is a one-byte instruction; used to increment a 16-
bit register except the segment register; does not affect
the cany flag

704 Fundamentals of Digital Logic and Microcomputer Design

Instructions
INC memireg 8

INT n (n can be
zero thru 2 5 5)

INTO

IRET

JNJNBE disp 8

JAE/JNB/JNC
disp 8
JB/JC/JNAE
disp 8
JBEIJNA disp 8

JCXZ disp 8

JE/JZ disp 8

JG/JNLE disp 8

JGEIJNL disp 8

JLIJNGE disp 8

JLEiJNG disp 8

Interpretation
[mem] - [mem] + 1 or [reg 81 - [reg 81 + 1

[SP] - [SP] - 2 ,[[SP]] - Flags
IF + 0,TF + 0
WI - [SPI - 2, “SPII - [CSI
[CS] - 4n + 2
[SP] - [SP] - 2
“SPII - [IPI
[IP] - 4n
Interrupt on Overflow

Interrupt Return

Jump if above/jump if not below
or equal

Jump if above or equal/jump if
not below/jump if no cany

Comments
This is a two-byte instruction; can be used to increment
a byte or word in memory or an 8-bit register content;
segment registers cannot be incremented by this
instruction; does not affect the cany flag

Software interrupts can be used as supervisor calls;
that is, request for service from an operating system;
a different interrupt type can be used for each type of
service that the operating system could supply for an
application or program; software interrupt instructions
can also be used for checking interrupt service
routines written for hardware-initiated interrupts

Generates an internal interrupt if OF = I ; executes INT
4; can be used after an arithmetic operation to activate
a service routine if OF = 1; when INTO is executed and
if OF = 1, operations similar to INT n take place
POPS IP, CS and Flags from stack; IRET is used as
return instruction at the end of a service routine for
both hardware and software intempts
Jump if above/jump if not below or equal with 8-bit
signed displacement; that is, the displacement can be
from -128,, to +127,,, zero being positive; JA and
INBE are the mnemonic which represent the same
instruction; Jump if both CF and ZF are zero; used for
unsigned comparison

0; used for unsigned Comparison
Same as JNJNBE except that the 8086 Jumps if CF =

Jump if below/jump if cany/jump Same as JNJNBE except that the jump is taken CF = I ,
if not above or equal used for unsigned comparison
Jump if below or equal/jump if Same as JNJNBE except that the jump is taken if CF =

not above 1 or ZF = 0; used for unsigned comparison
Jump if CX = 0 Jump if CX = 0; this instruction is useful at the

beginning of a loop to bypass the loop if CX = 0
Jump if equal/jump if zero Same as JNJNBE except that the jump is taken if ZF =

1; used for both signed and unsigned comparison
Jump if greatedjump if not less Same as JNJNBE except that the jump is taken if ((SF
or equal 0 OF) or ZF) = 0; used for signed comparison
Jump if greater or equal/ jump if Same as JNJNBE except that the jump is taken if (SF
not less 0 OF) = 0; used for signed comparison
Jump if less/Jump if not greater Same as JNJNBE except that the jump is taken if (SF
nor equal 0 OF) = 1 ; used for signed comparison
Jump if less or equal/ jump if not Same as JNJNBE except that the jump is taken if ((SF
greater 0 OF) or ZF) = I ; used for signed comparison

Appendix H: 8086 Instruction Set 705

Instructions Interpretation Comments
JMP Label Unconditional Jump with a The label START can be signed 8-bit (called SHORT

signed 8-bit (SHORT) or signed
16-bit (NEAR) displacement in
the same segment

JMP reg16 [IP] * [reg 161; [CS] is
unchanged

JMP mem 16

JMP Label
(to another
segment)

JNE/JNZ disp 8

JNO disp 8

JNp/JPO disp 8

JNS disp 8

JO disp 8

JP/JPE disp 8

JS disp 8

LAHF

[IP] + [mem]; [CS] is unchanged

Unconditionally jump to another
segment

Unconditionally jump to another
segment

Jump if not equal/jump if not
zero
Jump if not overflow

Jump if no parity/jump if parity
odd
Jump if not sign

Jump if overflow

Jump if parity/jump if parity even

Jump if sign

[AH] + Flag low-byte

jump) or signed 16-bit (called NEAR jump)
displacement; the assembler usually determines
the displacement value; if the assembler finds the
displacement value to be signed 8-bit (-128 to +127,
0 being positive), then the assembler uses two bytes
for the instruction: one byte for the OP code followed
by a byte for the displacement; the assembler sign
extends the 8-bit displacement and then adds it to IP;
[CS] is unchanged; on the other hand, if the assembler
finds the displacement to be signed 16-bit (+32 K),
then the assembler uses three bytes for the instruction:
one byte for the OP code followed by 2 bytes for the
displacement; the assembler adds the signed 16-bit
displacement to IP; [CS] is unchanged; therefore,
this JMP provides a jump in the same segment
(intrasegment direct jump)

Jump to an address specified by the contents of a 16-
bit register such as BX, SI, and DI in the same code
segment; in the example JMP BX, [BX] is loaded
into IP and [CS] is unchanged (intrasegment memory
indirect jump)

Jump to an address specified by the contents of a 16-bit
memory location addressed by 16-bit register such
as BX, SI, and DI; in the example, JMP [BX] copies
the content of a memory location addressed by BX in
DS into IP; CS is unchanged (intrasegment memory
indirect jump)

This is a 5-byte instruction: the first byte is the OP code
followed by four bytes of 32-bit immediate data; bytes
2 and 3 are loaded into IP; bytes 4 and 5 are loaded
into CS to JUMP unconditionally to another segment
(intersegment direct)

This instruction loads the contents of memory locations
addressed by [reg 161 and [reg 16 + I] in DS into IP; it
then loads the contents of memory locations addressed
by [reg 16 + 21 and [reg 16 + 31 in DS into CS; typical
8086 registers used for reg 16 are BX, SI, and DI
(intersegment indirect)

Same as JNJNBE except that the jump is taken if ZF =

0; used for both signed and unsigned comparison
Same as JNJNBE except that the jump is taken if OF

= O
Same as JNJNBE except that the jump is taken if PF

= O
Same as JNJNBE except that the jump is taken if SF

= O
Same as JNJNBE except that the jump is taken if OF
= 1

Same as JNJNBE except that the jump is taken if PF
= 1

Same as JNJNBE except that the jump is taken if SF
= 1

This instruction has implied addressing mode; it loads
AH with the low byte of the flag register; no flags are
affected

706 Fundamentals of Digital Logic and Microcomputer Design

Instructions Interpretation Comments
LDS reg, mem [reg] + [mem]

[DS] + [mem + 21
Load a 16-bit register (AX, BX, CX, DX, SP, BP, SI,
DI) with the content of specified memory and load
DS with the content of the location that follows; no
flags are affected; DS is used as the segment register
for mem

source operand rather than its content to register (such
as SI, DI, BX) which are allowed to contain offset for
accessing memory; no flags are affected

LEA reg, mem [reg] + [offset portion of
address]

LEA (load effective address) loads the value of the

LES reg, mem [reg] + [mem]
[ES] - [mem+ 21

DS is used as the segment register for mem; in the
example LES DX, [BX], DX is loaded with 16-bit
value from a memory location addressed by 20-bit
physical address computed from DS and BX; the 16-
bit content of the next memory is loaded into ES; no
flags are affected

LOCK bus during next instruction Lock is a one-byte prefix that causes the 8086 LOCK

LODS BYTE or FOR BYTE
LODSB “4LI + “SUl

[SI] + [SI] e 1

[AX1 + “sIll>[sIl +- [SII f 2
LODS WORD or FOR WORD
LODSW

LOOP disp 8 Loop if CX not equal to zero

(configured in maximum mode) to assert its bus
LOCK signal while following instruction is executed;
this signal is used in multiprocessing; the LOCK pin
of the 8086 can be used to LOCK other processors
off the system bus during execution of an instruction;
in this way, the 8086 can be assured of uninterrupted
access to common system resources such as shared
RAM

Load 8-bit data into AL or 16-bit data into AX from
a memory location addressed by SI in segment DS;
if DF = 0, then SI is incremented by 1 for byte or
incremented by 2 for word after the load; if DF = 1,
then SI is decremented by 1 for byte or decremented
by 2 for word; LODS affects no flags

Decrement CX by one, without affecting flags and loop
with signed 8-bit displacement (from -128 to +127,
zero being positive) if CX is not equal to zero

LOOPE/I.OOPZ
disp 8

Loop while equaliloop while zero Decrement CX by one without affecting flags and loop
with signed 8-bit displacement if CX is equal to zero,
and if ZF = 1 which results from execution of the
previous instruction

Decrement CX by one without affecting flags and loop
with signed 8-bit displacement if CX is not equal
to zero and ZF = 0 which results from execution of
previous instruction

mem uses DS as the segment register; no memory-to-
memory operation allowed; that is, MOV mem, mem
is not permitted; segment register cannot be specified
as reg or reg; no flags are affected; not usually used to
load or store ‘A’ from or to memory

mem uses DS as the segment register; 8- or 16-bit data
specifies whether memory location is 8- or 16-bit; no
flags are affected

be 8- or 16-bit; no flags are affected

LOOPNEI
LOOPNZ disp 8 not zero

Loop while not equaliloop while

MOV mendreg 2, [mendreg 21 - [memireg I]
medreg 1

Segment register cannot be specified as reg; data can

MOV mem, data [mem] + data

MOV reg, data [reg] - data

MOV segreg, [segreg] - [memireg]
medreg
MOV medreg, [mendreg] + [segreg]
segreg

mem uses DS as segment register; used for initializing

mem uses DS as segment register; no flags are affected
CS, DS, ES, and SS; no flags are affected

Appendix H: 8086 Instruction Set 707

Instructions Interpretation Comments
MOVS BYTE or FOR BYTE Move 8-bit or 16-bit data from the memory location
MOVSB “DIII- “St11

[SI] - [SI] L 1
addressed by SI in segment DS location addressed by
DI in ES; segment DS can be overridden by a prefix
but destination segment must be ES and cannot be
ovemdden; if DF = 0, then SI is incremented by one
for byte or incremented by two for word; if DF = 1,
then SI is decremented by one for byte or by two for
word

MOVS WORD
or MOVSW

MUL mendreg

NEG mem/reg

NOP
NOT reg

NOT mem

OR Mem/reg I ,
Mendreg 2

OR mem. data

OR reg, data

OUT DX, AL

OUT DX, AX

OUT PORT, AL

OUT PORT, AX

POP mem

POP reg

POP segreg

POPF

PUSH mem

FOR WORD
[[Dill-- "Sill
[SI] +- [SI] * 2

F O R 8 x 8

FOR 16 x 16

[mendreg] - [mem/reg] + 1

mendreg can be 8- or 16-bit; only CF and OF are
[AX] - [AL] * [mendreg] affected; unsigned multiplication

[DXI “4x1 +- [AX1 * [mern/regl
mendreg can he 8- or 16-bit; performs two’s
complement subtraction of the specified operand
from zero, that is, two’s complement of a number is
formed; all flags are affected except CF = 0 if [mend
reg] is zero; otherwise CF = 1

No Operation 8086 does nothing

[reg1 - [reg1
-

mem and reg can be 8- or 16-bit; segment registers are
not allowed; no flags are affected; ones complement
reg -

[mem] - [mem]

[memheg 13 -
mem uses DS as the segment register; no flags are
affected; ones complement mem

No memory-to-memory operation is allowed; [mem]
or [reg I] or [reg 21 can be 8- or 16-bit; all flags are
affected with OF and CF cleared to zero; no segment
registers are allowed; mem uses DS as segment
register

mem and data can be 8- or 16-bit; mem uses DS as
segment register; all flags are affected with CF and OF
cleared to zero

reg and data can he 8- or 16-bit; no segment registers
are allowed; all flags are affected with CF and OF
cleared to zero

addressed by the 16-bit content of DX; this is a one-
byte instruction

addressed by the 16-bit content of DX; this is a one-
byte instruction

Output the 8-bit contents of AL into the Port specified
in the second byte of the instruction

Output the 16-bit contents of AX into the Port specified
in the second byte of the instruction

mem uses DS as the segment register; no flags are
affected

Cannot be used to POP segment registers or flag
register

POP CS is illegal

This instruction pops the top two stack bytes in thel6-

mem uses DS as segment register; no flags are affected;

[memheg I] v [memheg 21

[mem] - [mem] v data

[reg] - [reg] v data

PORT [DX] - [AL] Output the 8-bit contents of AL into an 110 Port

PORT [DX] +- [AX] Output tbe 16-bit contents of AX into an I/O Port

PORT - [AL]

PORT - [AX]

[mem] - [[SP]],[SP] +- [SP] + 2

[reg]- [[SP]] ,[SP] - [SP] + 2

begreg1 - “SPl1

[Flags] + “SPII
[SP] - [SP] + 2
[SP] - [SP] - 2
[[SPll - [meml

[SP] - [SP] + 2

bit flag register

pushes 16-bit memory contents

708

Instructions Interpretation Comments
PUSH reg

Fundamentals of Digital Logic and Microcomputer Design

[SP] - [SP] - 2 reg must be a 16-bit register; cannot be used to PUSH

PUSH segreg

PUSHF

RCL memireg, 1

RCL memireg,
CL

RCR memireg, 1

RCR memheg,
CL

ROL memireg, 1

ROL memireg,
CL

ROR memheg, 1

“SPII + [reg1
[SP] - [SP] - 2

[SP] +- [SP] - 2
“SPl1 + [Flags] stack
ROTATE through carry left once

segment register or Flag register
PUSH CS is illegal

This instruction pushes the 16-bit Flag register onto the

FOR BYTE

“SPl1 - [segregl

byte or word in memireg
1 7 n l
k ‘ I . . . 1-14

L I I . . .
FOR WORD

ROTATE through carry left byte Operation same as RCL memheg, 1 except the number
of rotates is specified in CL for rotates up to 255; zero
or negative rotates are illegal

or word in memireg by [CL]

ROTATE through carry right FOR BYTE
once byte or word in memheg

. . .
FOR WORD

. . .
ROTATE through carry right byte Operation same as RCR memireg, 1 except the number

of rotates is specified in CL for rotates up to 255; zero
or negative rotates are illegal

or word in mem/reg by [CL]

ROTATE left once byte or word FOR BYTE
in memheg q :\-

-d

FOR WORD
15 0

ROTATE left byte or word by the [CL] contains rotate count up to 255; zero and negative
content of CL shifts are illegal; CL is used to rotate count when

the rotate is greater than once; mem uses DS as the
segment register

ROTATE right once byte or word FOR BYTE
in mendreg 7 r E q + a

FOR WORD

1s 0 - - a

Appendix H: 8086 Instruction Set 709

Instructions Interpretation Comments
ROR memireg, ROTATE right byte or word in Operation same as ROR memireg, I; [CL] specifics
CL memireg by [CL] the number of rotates for up to 255; zero and negative

rotates are illegal; mem uses DS as the segment
register

This instruction stores the contents of the AH register
in the low-byte of the flag register; OF, DF, IF, and
TF flags are not affected.

SAHF [Flags, low-byte] - [AH]

SAL medreg, 1 Shift arithmetic left once byte or FOR BYTE %rn,+[) word in mem or reg

FOR WORD

. i *-0

SAL memireg,
CL

SAR medreg, 1

S A R medreg,
CL

SBB memireg I ,

SBB mem. data
medreg 2

SBB reg, data

SCAS BYTE or
SCASB

SCAS WORD or

SHL memireg, 1
SCASW

SHL memheg,
L L

Mem uses DS as the segment register; reg cannot be segment registers;
OF and CF are affected; if sign bit is changed during or after shifting, the

OF i s set 10 one

shift count for up to 255; zero and negative shifts are
illegal; [CL] is used as shift count when shift is greater
than one; OF and SF are affected; if sign bit of [mem]
is changed during or after shifting, the OF is set to
one; mem uses DS as segment register

FOR BYTE

Shift arithmetic left byte or word Operation same as SAL medreg, I ; CL contains
by shift count on CL

SHIFT arithmetic right once byte

h r n

U=]+=
or word in medreg

. . .
FOR WORD

SHIFT arithmetic right byte or Operation same as S A R medreg, I ; however, shift
word in mem/reg by [CL] count is specified in CL for shifts up to 255; zero and

negative shifts are illegal

subtraction with borrow

with borrow

borrow

from 8- or 16-bit data in AL or AX and flags are
affected without affecting [AL] or [AX] or string
data; ES cannot be ovenidden; if DF = 0, then DI
is incremented by one for byte and two for word; if
DF = 1, then DI is decremented by one for byte or
decremented by two for word

[medreg I] - [medreg I] -

[mem] + [mem] - data - CF

[reg] -[reg] - data - CF

FOR BYTE [AL] - [[DI]], flags

Same as SUB medreg 1, medreg 2 except this is a

Same as SUB mem, data except this is a subtraction

Same as SUB reg, data except this is a subtraction with

8- or 16-bit data addressed by [DI] in ES is subtracted

[medreg 21 - CF

are affected,[DI] + [DI] * 1

FOR WORD[AX] - [[DI]], flags
are affected,[DI] + [DI] * 2

SHIFT logical left once byte or Same as SAL medreg, 1
word in medreg

SHIFT logical left byte or word in Same as SAL medreg, CL except overflow is cleared
memheg by the shift count in CL to zero

710 Fundamentals of Digital Logic and Microcomputer Design

Instructions Interpretation Comments
SHR mendreg, 1 FOR BYTE SHIFT right logical once byte or

o+ 1 . - 1
SHR mendreg,
CL

-+m

STC
STD
STI

STOS BYTE or
STOSB

STOS WORD or

SUB memireg 1,

SUB mem. data

STOSW

mem/reg 2

SUB reg, data
TEST memireg

I , mem/reg 2

TEST mem, data

word in mendreg

SHIFT right logical byte or word
in mem/reg by [CL]

CF- 1
DF- 1
IF - 1

FOR BYTE
“D111 - [ALI
[DI] - [DI] * 1

FOR WORD

[mendreg I] - [mendreg 11 -

[mem] - [mem] -data

"Dill - [A X I P I +- P I 1 * 2

[memireg 21

[reg] - [reg] -data
[medreg I]- [memireg 21, no
result; flagrare affected

[mem] - data, no result; flags are
affected

No memory-to-memory SUB permitted; all flags are

Data can be 8- or 16-bit; mern uses DS as the segment

Data can be 8- or 16-bit; all flags are affected
No memory-to-memory TEST is allowed; no result
is provided; all flags are affected with CF and OF
cleared to zero; [mem], [reg I] or [reg 21 can be 8-or
16-bit; no segment registers are allowed; mem uses
DS as the segment register

Mem and data can be 8- or 16-bit; no result is provid
ed;flagsareaffected with CF and OF cleared to zero;
mem uses DS as the segment register

affected; mem uses DS as the segment register

register; all flags are affected

TEST reg, data [reg]- data, no result; flags are
affected

Reg and data can be 8- or 16-bit; no result is provided;
all flags are affected with CF and OF cleared to zero;
reg cannot be segment register;
Causes CPU to enter wait state if the 8086 TEST pin is
high; while in wait state, the 8086 continues to check
TEST pin for low; if TEST pin goes back to zero, the
8086 executes the next instruction; this feature can be
used to synchronize the operation of 8086 to an event
in external hardware
reg and mem can be both 8- or 16-bit; mem uses DS as
the segment register; reg cannot be segment register;
no flags are affected; no mem to mern .

WAIT 8086 enters wait state

reg can be 8-or 16-bit; reg cannot be segment register;
no flags are affected

XCHG mem/ [mem] - [reg]
reg, mem/
reg
XCHG reg,reg [reg] - [reg]

Appendix H: 8086 Instruction Set 71 1

Instructions Interpretation Comments
XLAT [AL] + [AL] + [BX] This instruction is useful for translating characters

from one code such as ASCII to another such as
EBCDIC; this is a no-operand instruction and is
called an instruction with implied addressing mode;
the instruction loads AL with the contents of a 20-bit
physical address computed from DS, BX, and AL;
this instruction can be used to read the elements in a
table where BX can be loaded with a 16-bit value to
point to the starting address (offset from DS) and AL
can be loaded with the element number (0 being the
first element number); no flags are affected; the XLAT
instruction is equivalent to MOV AL, [AL] [BX]
No memory-to-memory operation is allowed; [mem]
or [reg I] or [reg 21 can be 8- or 16-bit; all flags are
affected with CF and OF cleared to zero; mem uses DS
as the segment register
Data and mem can be 8- or 16-bit; mem uses DS as the
segment register; mem cannot be segment register; all
flags are affected with CF and OF cleared to zero
Same as XOR mem, data.

XOR medreg
1 , mendreg 2 [mendreg 21

[medreg I] + [mendreg I] 0

XOR mem, data [reg] - [mem] 0 data

XOR reg, data [reg] + [reg] 0 data

APPENDIX

VERILOG

1.1 Introduction to Verilov

Verilog describes a digital system as a set of modules. A module is a basic block in
Verilog. A typical Verilog segment is given below:

module <module name> // A typical Module
<port list>
<declarations>
<module items>
endmodule

In the above, the module is defined by the keyword module and endeded by
the keyword endmodule . The <module name> identifies a module uniquely. This means
that a name or an identifier is assigned to a module to identify it. This name must start with
an alpha character rather than a number. The two slashes (//) shown in the above Verilog
module is used before a single line comment. Verilog module, when invoked, creates a
unique object containing its name, variables, parameters, and inputloutput interface. The
objects are called instances and the process of obtaining objects from modules are known
as instantiation. Each port in the <port list> is defined by keywords i n p u t and o u t p u t
based on the port directions. Verilog also supports bidirectional ports which can be defined
by keyword i n o u t . The ports are included in parentheses with commas separating them.
A semicolon (;) is used to terminate the port statement. Ports provide' the module with a
means to connect to other modules. The wire declaration by keyword w i r e provides
internal connection in Verilog. All port declarations in Verilog are inherently defined as
wire. This means that a port is automatically declared as a wire if it is defined as i n p u t
or o u t p u t , or i n o u t .

Verilog includes a set of built-in logic gates such as OR, AND, XOR, NOT,
NOR, NAND, and XNOR. The outputs of these gates are one-bit data and are declared
as w i r e in Verilog. The built-in gates are utilized to provide a structural design called
netlist. The Netlist facilitates connections between one-bit wires and logic gates. Ports can
be internal or external to a module. Certain rules for port connections must be followed
for the Verilog simulator when modules are instantiated within other modules. Input ports
must be of the type Net (for all) internally. On the other hand, the inputs can be connected
externally to a variable which is reg or a w i r e . The output ports can be of the type
reg or w i r e internally. Output must always be connected to a w i r e (not reg) externally.
The i n o u t ports must always be of type w i r e . i n o u t ports must be connected to w i r e

externally.
Nets mean connection between hardware elements. Nets are driven continuously

713

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

714 Fundamentals of Digital Logic and Microcomputer Design

by the outputs of devices they are connected to. Nets are typically declared by the keyword
wire. Net is a class of data that includes w i r e as one data type. Verilog registers (defined
by keyword r e g) typically retain their values until a new value is stored. Verilog registers
are different from hardware registers which need a clock. Verilog register does not require a
clock. Also, Verilog register does not need a driver like the net. Values of Verilog registers
can be changed anytime during simulation by replacing with another value.

Keywords reg and wire are one-bit wide by default. To define a wider reg or
wire, the left and right bit positions are defined in square brackets separated by a colon.
For example, reg [7:0] a,b; declares two variables a and b as 8 bits with the most
significant bit as bit 7 (a[7] or b[7]) and the least significant bit as bit 0 (a[O] or b[O]).
Verilog contains approximately 100 keywords. Verilog keywords and identifiers are case
sensitive. This means that Fulladder and full-adder are distinct variables. Also, Verilog
keywords are reserved, and cannot be used as names.

The <declarations> define data objects as registers or wires. The <module
items> for behavioral modeling (to be discussed later) may be initial block or always block.
Verilog uses keywords b e g i n and e n d like Pascal to define a block. A typical initial
block is defined by using keyword i n i t i a l . The statements are contained between
keywords b e g i n and e n d as in conventional programs. The. always block is defined in a
similar manner except that a l w a y s instead of i n i t i a l is written before b e g i n . The
a l w a y s block is executed continuously and cannot be interrupted unless time control
feature of Verilog utilizing symbols such as @ is used. Note that the output of a typical
combinational logic circuit is altered with changes in input(s). The Verilog simulator
can use a l w a y s along with the symbol @ to stop execution of the a l w a y s block
continuously until changes in one or more inputs occur. For example, the statement
a l w a y s @ (a o r b o r c) means that a, b, and care three inputs to be used in the
always block that follows. The symbol @ allows the simulator to execute an i n i t i a l
block that may follow as long as there are no changes in the inputs; however, the always
block will be executed whenever changes in inputs occur. Note that all procedural blocks
are active concurrently. Constants in Verilog are decimal integers by default. However,
the syntax ‘b,’d, or ‘h can be used before a number to define it as binary, decimal or
hexadecimal. Furthermore, the total number of bits in a number can be represented by
placing the number before the quote. For example, 4 ’ b l l l l and 4’hf will represent 15
in decimal.

Verilog provides a conditional operator denoted by the symbol ?. For example,
consider the statement, a s s i g n z = s ? x : y; . Thismeans that ifs=l thenz=x,
else z=y for s=O. Note that in this expression, s is the condition, z=x is the true expression
while z=y is the false expression. Also, Verilog keyword p a r a m e t e r declares and assigns
value to a constant. For example, parameter x = 5; will assign the value of integer 5 to x.
Nesting ofmodules is not permitted in Verilog. That is, a module cannot be placed between
module and e n d m o d u l e of another module. However, modules can be instantiated within
other modules. This provides hierarchical modeling of design in Verilog. The name of a
Verilog module is not available outside the module unless hierarchical modeling is used.
The instance names must be defined when modules are instantiated.

Verilog offers a feature called reduction operator for the logic operations and,
nand, or, nor, xor and xnor. The reduction operation is performed bitwise from right to left
on the bits of the same word. As an example, consider the reduction operation &x where
x is a 4-bit number. In this case, the operation &x means x[3]&x[2]&x[l]&x[O].

To precisely model all logical conditions in a circuit, each bit in Verilog can be

Appendix I: Verilog 715

one of the following: l’bO, l’bl , l’bz (high impedance), or I’bx (don’t care). l’bO and
1 ’bl respectively correspond to 0 and 1. Verilog includes 1 ’bz for the situation when
the designer needs to define a high impedance state. Furthermore, Verilog includes 1 ’bx
to specify a don’t care condition. Sometimes, miswiring of gates may also result into an
unknown value of the output in certain situation. For example, if the designer makes a
mistake and connects outputs of two gates together. This output may want to assume a
value of either 0 or 1. This may cause physical damage to certain logic families. In order
for the simulator to detect such problems, 1 ’bx (don’t care) definition can be used for the
output.

A Verilog simulator includes a built-in system function called $time for
representing simulated time. This means that $time provides a measure of actual time for
the hardware to function when fabricated. $time is expressed as an integer value rather
than by time units such as seconds. However, designers typically use one time unit
as one nanosecond. Time control statements may be included in Behavioral Verilog. A
statement will not be executed with the symbol # followed by a number until the specified
number of time steps has elapsed. This allows Verilog to model propagation delays of
logic gates. The symbol # when used in test programs generates a sequence of patterns at
particular times that will behave like inputs to the hardware being designed. Also, if the
symbol @ is used before a statement, the statement that follows will not be executed until
the statement with @ is completed.

The test bench for the simulation is normally written by the designer. The test bench
tests the Verilog design by applying stimulas and providing outputs during simulation.
Test benches utilize procedural blocks which start with either the keywords initial or
always for providing stimulas for the test circuit. An example of a simple initial block
is provided below:
initial

begin
#O

#50

#50

x=l’bO; y=l’bO; z=l’bO;

x=l’bO; y=l‘bO; z=l’bl;

x=l‘bO; y=l’bl; z=l’bO;
end

In the above, keywords begin and end are used to define the block with the time
units defined by the symbol #. At time = 0, x = 0, y = 0 and z = 0. At time = 50 ns, x = 0, y
= 0 and z = 1. Finally, at time= 100 ns, x = 0, y = 1 a n d z = 0.

<module name>
<reg and wire declarations>
<Instantiate the Verilog design>
<Generate stimulus using initial and always keywords
<Produce the outputs using $monitor for verification>
endmodule

The inputs applied to the test (design) block for simulation are declared in the
stimulus block as reg data type. The outputs (responses) of the test block that are to be
monitored and verified are declared as wire data type. The test block has no inputs or
outputs. The stimulus block produces inputs for the test block and verifies the output of the

A simple test bench has the following structure:

716 Fundamentals of Digital Logic and Microcomputer Design

test block. initial and always procedural blocks can be used to produce the output.
The simulator can represent the output as waveforms or in tabular form using Verilog
system tasks such as $monitor. The syntax for $monitor is provided below:
$monitor (“time = %d x = %2d y = %3d z = %2b”,

$time, x, y, 2) ;

Verilog system task, $monitor can be used to display the output of the design
block under test. Verilog simulator allows the output to be represented in binary (%b or
%B), octal (%o or %O), decimal (%d or %D) or hexadecimal (%h or %H). $time is a
built-in function that provides the simulation time. In the above $monitor statement time, x,
and y are displayed in decimal while z is represented in binary. Another way to display the
output is by using system task $display. Notethat $display is used to display one time
value of variables. In contrast $monitor displays variables whenever changes in variables
occur during simulation. The syntax for $display is $display (“%b%d“, x, y) : which
will display x in binary and y in decimal. As mentioned before, there are three levels of
abstractions in Verilog. These are Structural, dataflow, and behavioral modeling. They
can be combined in an application. These abstractions are described along with Verilog
programming examples.

Verilog provides primitives which can be defined by the user to represent truth
table in a tabular form. These primitives are called User-Defined Primitives (UDP).
UDP descriptions are enclosed by keywords primitive and endprimitive rather than
keywords module and endmodule. There are two types of UDPs. These are Combinational
UDPs used for combinational circuits and Sequential UDPs used for sequential circuits.
As an example, a Verilog description using Combinational UDP for the 2-to1 multiplexer
of Table 4.1 1 is provided below. The truth table for the 2-to-1 multiplexer from Table
4.11:
Select input, S Output, Z

0 do
1 d,

//2tol multiplexer
primitive mux2tol (z,dO,dl,s);
output 2 ;

input d0,dl;
input s;
//Truth table is enclosed by keywords table and endtable
//The inputs are listed in order followed by colon(:)
//The output is always the last entry followed by semicolon(;)
//The symbol? in the table is used to represent don’t care
//condition
table
/ / dO dl s : z

l ? 0 : l ;
O ? 0 : o ;
? 1 l : l ;
? 0 1 : o ;

endtable
endprimitive
/ / stimulus for 2tol mux using UDP
module mux-stimulus;
reg i0,il;
reg s;

Appendix I: Verilog

XI'

xo-
e d

(Enable)

717

+ dI01
2-to4 __+ d[ll

Decoder __* d 121
__* d PI

wire out;
mux2tolmux(out, i0, il, s) ;
initial
begin
/ / set inputs
iO=1 , il=O;
#1 $display ("iO=%b, il=%b", i0, il) ;
//select i0
s=O ;
#1 $display("s=%b, out=%b", s,out) ;
//select il
s=l ;
#1 $display ("s=%b, out=%b", s, out) ;
end
endmodule
//simulation outputs
iO=1, il=O
s=o, out=l
s=l , out=0

1.1.1 Structural Modeling
The following Verilog structural description is provided for the 2-to-4 decoder of Figure
4.14. The figure is redrawn below for convenience:

/ / Structural description of a 2-to-4 decoder
module decoder2to4 (xl, x0, e, d);

input xl, x0, e;
output [0:3] d; //output vector d must be declared as wire.
wire [0:3] d; //if vector d is not declared as wire, Verilog
wire xll, x00; //will make vector d one bit by default.
not

invl (xll, xl),
inv2 (x00, x0);

andl (d[Ol, xll, xOO,e),
and2 (d[l], xll, x0, e),
and3 (d[2], xl, x00, e),
and4 (d[3], xl, x0, e);

and

endmodule
The above structural description for the 2-to-4 decoder contains three inputs

(xl, x0, e), and four outputs (d[O] through d[3]). The wire declaration provides internal
connections. Two NOT gates are used to obtain complements xl 1 and x00 of the inputs xl
and x0 respectively while the four AND gates are used for the outputs d[O] through d[3].
In the gate list such as andl (d [O] , xll, xoo, e) ; , the output d[O] is always listed
first followed by inputs x l l , x00, and e. The keyword and is written once for all AND
operators, and in this case, provides output d[O] by logically ANDing xl 1, x00, and e.

718 Fundamentals of Digital Logic and Microcomputer Design

Note that the Verilog keywords and names are case sensitive. Also, Verilog keywords are
reserved, and cannot be used as names. Note that if a Verilog operation is required several
times in a program such as not requiring twice in the above , the Verilog code can be
written in two ways. The two not operations, in the above, are written using the keyword
not followed by two different labels invl and inv2 separated by commas, and terminated
by ;. An alternate Verilog code for the two not operations can be written as follows:

not (xll, x l) ;
not (x00, x0);
Similarly, alternative codes for other logic operations in the above can be written.

A module instantiation statement associates the signals in the module instantiation with
the ports in a module definition. There are two ways to represent the association. These
are positional association, and named association. These two methods cannot be mixed. In
positional association, each signal in the module instantiation is mapped by position to the
corresponding signal in the module definition.
In order to illustrate positional association, consider the following Verilog program:
module system;

wire [3:0] d;
subsystem fl (d[3], d[ll, d[21, d[01);

endmodu le
module subsystem (w, x, y, z);

input x, y;
output w, z;

endmodu le
In the above program, the module system has an instance of the module subsystem

inside it. The connections to the subsystem are made by placing the bit vectors of the
identifier (d in this case) at the desired positions in the port definitions of the subsystem
module. In the above, d[3] is associated with w, d[l] with x, d[2] with y, and d[O] with z.
The ordering must be done properly. Therefore, in the positional association, the names of
the connecting signals must be included at the appropriate positions in the module port list.
Positional association is used for small systems while named association is used for large
systems.

In the named association, Verilog connects external signals by the port names
rather than by positions. The port connections can be specified in any order as long as the
port names in the module definition precisely match the external signals. For example,
the above Verilog program with positional association can be rewritten using named
association as follows:
module system;

wire [3:0] d;
subsystem fl (.w(d[O]) , . x (d [3 1) , .y(d[Zl) , .z(d[l])) ;

endmodu 1 e
module subsystem (w, x, y, z);

input x, y;
output w, 2 ;

e ndmodul e
In the above, d[O] is associated with w, d[l] with z, d[2] with y, and d[3] with

x. The ordering of the ports of instance fl of subsystem module is not important because
the signals are associated by names. Note that if an instance of a module contains an
unconnected port, the position of the port in the instantiation is left empty. For example,
consider a module representing a three-input OR gate with declaration as or3 (f, a, b, c);
. If it is desired to keep the input at position b unconnected, an instance of or3 will be

Appendix I: Verilog 719

or3 (f, a, , c); . Note that an unconnected module input is placed in high impedance state
automatically, and unconnected outputs are not used.

1.1.2 Dataflow Modeling
Dataflow modeling in Verilog allows a digital system to be designed in terms of its function.
Dataflow modeling utilizes Boolean equations, and uses a number of operators that can act
on inputs to produce outputs. Some of the operators are listed in the table below:
Verilog operators
Operation Symbol
Arithmetic addition +
Subtract -_
NOT of a single bit !
AND between two operands &&

OR between two operands I /
Bit-by-bit NOT -
Bit-by-bit logical AND &

Bit-by-bit XOR A

Logical Equality __

Bit-by-bit logical OR I

Bit-by-bit XNOR - A or A,

__
Less than <
Greater than >
Conditional ?
Concatenation { }

All Boolean equations are executed concurrently whenever any one of the values
on the right hand side of one or more equations changes. This is accomplished using
Verilog’s continuous assignment statement. This statement uses the keyword assign. A
continuous assignment statement is used to assign a value to a net. A net is not a verilog
keyword. It is used to specify the output (defined by output or wire using declaration
statements) of a gate. For example, consider the following assignment statement:
assign e = (a * b) & (- c I d);

The Boolean expression on the right hand side of the above equation is first
evaluated, and the AND gate output is connected to wire e. In order to illustrate dataflow
modeling in Verilog, consider the following program for a 2-to-4 decoder:
module decoder2to4 (e , a, b, do, dl, d2, d3);

input e, a, b;
output do, dl, d2, d3;
assign dO = (e & -a & -b);
assign dl = (e & - a & b);
assign d2 = (e & a & -b);
assign d3 = (e & a & b);

endmodu 1 e

equations using Boolean operators.
The above dataflow program uses Verilog keyword assign followed by Boolean

1.1.3 Behavioral Modeling
The Behavioral description in Verilog is used to describe the function of a design in an
algorithmic manner. Behavioral modeling is used in the initial stages of a design process to
determine design-related tradeoffs. Behavioral modeling in Verilog uses constructs similar

720 Fundamentals of Digital Logic and Microcomputer Design

to C language constructs. Verilog provides two types of procedural blocks. They are
represented using keywords initial (an initial block executes once), and always (an
always block executes continuously until simulation ends). The designer typically uses
“initial” procedural block to provide initializations for a simulation, and produce stimulus
waveforms for a simulation test bench.

The “always” procedural block provides a cyclic activity flow from simulation
time of zero. This means that the procedural statements in the always block are executed
continuously until simulation ends. The procedural statements in behavioral modeling
execute sequentially in the order they are listed in the source code. The outputs of the
procedural statements must be declared by the keyword reg. Input ports cannot be declared
as reg since they do not normally retain values, rather affect the changes in the external
signals they are connected to. Note that a reg data type retains its value until a new value
is assigned. As an illustration of behavioral modeling, Consider the following Verilog
program written using Behavioral modeling for the 2-to-4 decoder:

module decoder2to4 (e, i f d) ;
output [3:0] d;
input [l:O]i;
input e;
reg [3:0] d;

always @ (i or e)
if (e==l)

begin
case (i)

0: d = 4’b 0001;
1: d = 4’b 0010;
2: d = 4‘b 0100;
3: d = 4‘b 1000;
default d = 4‘b xxxx;

endcase
end

else
d = 4‘b 0000;

endmodule
In the above, i (2-bit) and e (1-bit) are declared as inputs while d is declared

as 4-bit reg output. The conditional statement if-else allows execution of the case
statements if e=logic 1. Note that the decoder is enabled when enable line, e equals logic
1. The logical operator == is used for logical equality in the if expression. If e= logic 1
, the statements (between case and endcase) are executed sequentially. The statement
if (e==l) is executed as soon as any of the inputs after @ in the always statement
changes. The case statement is used for multiple branching. For example, case (i)
determines the value of the 2-bit vector, i and compares it with the values with the list of
the statements. The assignment statement associated with the first value that matches is
executed. Since the vector i is a two-bit vector, it can be any of the four values from 0 to
3. For example, consider the statement 2: d= 4’bOlOO; . If i = lo,(2 in decimal), then
the case statement after executing 2: d= 4’bOlOO; will assign four-bit vector, d with the
binary value 0100. This means that the line 2 of the decoder output is high while others are
low. An optional default value can be used for the case statement. This is for assigning
other values such as don’t care (x) or high impedance (z). Also, in the above, if e= logic

Appendix I: Verilog 72 1

0, the 4-bit output vector,d is assigned with low values. This is shown as part of the else
statement. This means that the decoder is disabled.

1.2

In the following, Verilog descriptions of typical combinational logic circuits
provided.

Verilog descrbtions of tvDical combinational logic circuits

are

i) Write a Verilog description for a full adder using two half adders and an OR gate as
described in Section 4.5.1.
Solution
Assume x, y, z as three inputs and cout,sum as the two outputs of the full adder. x and y
can be applied as the inputs to the first half adder generating sum, s l = x 0 y and carry,
c l = xy. sl can be applied as one of the inputs to the second half adder with z as the other
input. The second half adder will produce a sum,
sum = x 0 y 0 z which is the desired sum of the full adder. The carry output, c2 of the
second half adder will be (x 0 y) z. c l and c2 can be logically ORed together to provide
the carry output (cout) of the Full adder.
The Verilog description is given below:
/ / Half Adder
module half-adder (s , c, x, y) ;

output s,c;
input x,y;
xor (s,x,Y);
and (c,x,Y);

endmodule
/ / Full adder is obtained by instantiating half adder twice
/ / (Hierarchical modeling)
module full-adder (sum, cout, x, y, z) ;

output sum,cout;
input x ,y , z ;
wire sl,cl,c2;
half-adder Bl(sl,cl,x,y);
half-adder B2 (sum,c2, sl, z) ;
or (cout, cl, c2) ;

endmodu 1 e
ii) Write a Verilog description along with the test bench for a 4-bit ripple-carry adder using
behavioral modeling.
Solution
Although the following program may not be an efficient one, it is included for illustrative
purposes. As mentioned before, the test bench usually does not have any inputs and
outputs. The inputs applied for simulation are declared as reg data type while the outputs
to be obtained from the simulation are declared as wire data type. Therefore, in this test
bench, the inputs (a, b, cin) to the design module are declared as reg data while outputs
(s, cout) are declared as wire data type. The initial block specifies several values to be
applied during simulation. The outputs are verified with the $monitor system task. The
simulator displays time, inputs, and outputs in binary (since %b is used) as soon as there
is a change in one or more input values. Note that the concatenate operator { } in {cout,s}
is used to combine cout and s as a 5-bit output.

722 Fundamentals of Digital Logic and Microcomputer Design

/ / 4 bit adder
module adder4 (cout, s, a, b, cin) ;

output cout;
output[3:0] s;
input [3 : 01 a, b;
input cin;
reg[3,01 s;
reg cout;
always @ (a or b or cin)

{ cout, s } = atbtcin;
begin

end
endmodule

/ / Test bench
module adder-test;

/ / declare variables
reg [3:0] a ,b ;
reg cin;
wire [3:01 s;
wire cout;

/ / Instantiate
adder4 A1 (cout, s, arb, cin) ;

initial
begin

$monitor ($time, "a=%b, b=%b, cin=%b, cout=%b, s=%b",
a, b, cin, cout,~);

end

initial
begin

/ / Stimulus inputs

a = 4'bOOOl; b = 4'b0010; cin = l'bO;
#10 a = 4'bOlOl; b = 4'bOOlO;
#10 a = 4'blOOO; b = 4'blOlO;
#10 a = 4'blOOl; b = 4'b0111;

end
endmodu 1 e
/ / Simulation outputs

0 a = 0001, b = 0010, cin = 0, cout = 0, s = 0011
10 a = 0101, b = 0010, cin = 0, cout = 0, s = 0111
20 a = 1000, b = 1010, cin = 0, cout = 1, s = 0010
30 a = 1001, b = 0111, cin = 0, cout = 1, s = 0000

iii) Write a Verilog description for a BCD to seven-segment code converter (Section 4.4)
for driving a common-cathode display for displaying the decimal digits 2, 4, and 9. The
converter will turn the display OFF for any other inputs.
S o h tion
module code-converter (bcd-in,seven-seg-out);

input [3:0] bcd-in;
output [6:0! seven-seg-out;

reg [6:0] seven-seg-out;
/ / bcd-in = abcdefg

Appendix I: Verilog 723

parameter two = 7’b1101101;
parameter four = 7‘b0110011;
parameter nine = 7’b1110011;
parameter other = 7’b0000000;
always @ (bcd-in)

case (bcd-in)
2: seven-seg-out = two;
4: seven-seg-out = four;

seven seg-out = nine; 9:
default: seven-seg-out = other;

-

endcase
e ndmodu 1 e

EXAMPLE 1.1
Write a Verilog description for f= A + B (Section 3.6) using structural modeling.
Solution
/ / file name: func.v
//written using structural modeling
module func(a, b, c, f);

input a, b, c;
output f;
wire yo, yl;
not (yor C) ;
and(y1, b, YO);
or(f, yl, a);

endmodule

EXAMPLE 1.2
Write a Verilog description for a two-input exclusive-OR gate using structural modeling.
Solution
The program is written as follows:
/ / Exclusive OR operation
/ / file name: xor-1.v
module xor-1 (a, b, y) ;

input a, b;
output y;
xor (y, a, b);

endmodu 1 e

EXAMPLE 1.3
Write a Verilog description for a 2 to 4 decoder with one high enable as described in
section 4.5.3. Use (a) behavioral modeling (b) dataflow modeling .
Solution
(a) Using behavioral modeling:
Note that {] is concatenate operator in Verilog.
module decoder(Y3, Y2, Y1, YO, A, B, en);

/ / Define inputs and outputs

input A, B;
input en;
reg Y3, Y2, Y1, YO;

output Y3, Y2, Y1, YO;

724 Fundamentals of Digital Logic and Microcomputer Design

always @ (A or B or en)
begin
/ / Use behavioral method for decoder
if (en == 1)
begin

case ({ A , B))
2'bOO: {Y3,Y2,Yl,YO} =

2'bOl: {Y3,Y2,Yl,YO) =

2'blO: {Y3,Y2,Yl,YO} =

2'bll: {Y3,Y2,Yl,YO] =

default: {Y3,Y2,Yl,YO)
endcase

end
if (en == 0)
{Y3,Y2,Yl,YO) = 4'bOOOO;
end
endmodule
(b) Using dataflow modeling:
/ / 2-to-4 decoder
/ / file name: dec0der.v
module decoder(E, X, Y, 20, 21, 22,

output ZO, 21, 22, 23;
input E, X, Y;
assign 20 = E & -X & -Y;
assign 21 = E & -X & Y;
assign 22 = E & X & -Y;
assign 23 = E & X & Y;

e ndmodu 1 e

4'bOOOl;
4'bOOlO;
4'bOlOO;
4'blOOO;
= 4'bxxxx;

2 3) ;

EXAMPLE 1.4
Write a Verilog description for the 2-to-1 multiplexer of figure 4.21 using structural
modeling. Figure 4.21 is redrawn below:

b
se

Solution

/ / file name: mux2.v

/ / 1/0 port declarations
module mux2(a, b, sel, cout);

output cout;
input a, b, sel;

wire yo, yl, y2;
/ / Instantiate logic gate primitives
not (y o , sel) ;
and(y1, a, YO);
and(y2, b, sel);
or(cout, yl, y2);

/ / Internal nets

endmodule

Appendix I: Verilog 725

EXAMPLE 1.5
Write a verilog description for a four-bit binary adder using hierarchical modeling.
Solution

/ / Define a 1-bit full-adder
/ / file name: fu1ladd.v
module fulladd(sum, c-out, a, b, c-in);

/ / 1/0 port declarations
output sum, c-out;
input a, b, c-in;

/ / Internal nets
wire sl, cl, c2;

/ / Instantiate logic gate primitives
xor (sl, a, b);
and (cl, a, b);

xor (sum, sl, c-in);
and (c2, sl, c-in);
or (c-out, c2, el);

endmodule

/ / Define a 4-bit binary adder
module fulladd4(sum, c-out, a, b, c-in);

/ / I/O port declarations
output [3:0] sum;

input [3:01 a, b;
input c-in;

output c-out;

/ / Internal nets
wire cl, c2, c3;

/ / Instantiate four 1-bit full adders.
fulladd faO(sum[O], cl, a[O], b[O], c-in);
fulladd fa1 (sum[l], c2, a[l], b[l], el);
fulladd fa2(sum[2], c3, a[2], b[2], c2);
fulladd fa3 (sum[3], c-out, a[3], b[31, c3);
endmodule
Note: In Verilog, nesting of modules is not permitted. That is, a module cannot be placed
between module and endmodule of another module. However, modules can be instantiated
within other modules. This provides hierarchical modeling of design in Verilog. In the
above program, the full-adder is defined by instantiating primitive gates. The next module
describes the 4-bit binary adder by instantiating four full-adders. The instantiation is done
by using the name of the module that is instantiated with the same port names in this case.

EXAMPLE 1.6
Write a Verilog description for a full-adder using 74138 decoder and gates (Figure 4.17).

726 Fundamentals of Digital Logic and Microcomputer Design

Solution
This problem implements a full adder using a 3to8 decoder and two 4 input AND gates
as shown in figure 4.17 in the text book. Behavioral modeling is used for implementation
of 3to8 decoder and the 4 input AND gate while Structural modeling is used for the
interconnection of the decoder with the AND gates using the schematic of figure 4.17 as
follows:

S

C

that the bubble,O at t
output indicates LOW when selected.

The 74138 is a 3to8 decoder with an active low output when selected and
only driven if the chip enable lines are in a valid state (Gl, G2A, G2B :
decoder is not selected, the outputs are tristated.

-- the outputs
= 100,). If

are
the

For the 4 input AND gate, the inputs are ANDed using the bit-wise’AND operator “&”.

//Description: Full Adder Using 3-to-8 MUX with AND gates
//implementation of a f u l l adder using 2 four input
//AND gates and one 3to8 decoder-74138

//APPROACH:Behavioral. for the implementation of the decoder and 4 input
//AND gates.
//Structural approach when combining the decoder and AND gates,
//decoder74138 3 to 8 decoder with active low outputs.

//INPUTS: --X, Y, Z (select lines)

/ / --G1, nG2A, nG2B (enable lines)
/ / Out[7:0] (eight output lines)

//OUTPUTS: --high impendance “Z” outputs when chip not selected
/ / --active low output on line selected. (if chip selected)
module decoder74138 (nout, G1, nG2A, nG2B, X , Y , Z);

output [7:01 n0ut;
input G1, nG2A, nG2B, X, Y, Z;
reg [7:0] n0ut;
always @(G1 or nG2A or nG2B or X or Y or Z)

begin

/ / chip enabled

/ / select conditions for select lines w/ active low outputs

if((G1, nG2A , nG2B) ==3’b100)

begin

case (I X, Y, 2))
0: nOut[7:0] = 8‘b1111-1110;
1: nOut[7:0] = 8’b1111-1101;
2: nOut[7:0) = 8’b1111-1011;
3: nOut[7:0] = 8’b1111-0111;
4: nOut[7:0] = 8’b1110-1111;
5: nOut[7:0] = 8’b1101-1111;
6: nOut[7:0] = 8’b1011-1111;
7: nOut[7:0] = 8’b0111-1111;

Appendix I: Verilog 727

default nOut [7:0] = 8'bx; //this should never happen
endcase

end
else

/ / chip disabled
begin

end
nOut [7:0] = 8'hzz;

end
endmodule
//AND4:4 input and gate

//INPUTS: --A,B, C,D

//OUTPUTS: --Out AND output of all four inputs

module AND4 (Out, A, B, C, D) ;
output out;
input A,B,C,D;
reg Out;
always@(A or B or C or D)

Out=A & B & C & D;
begin

end
endmodu 1 e

//Full-Add:Full adder using 3to8 decoder 74138 and 2 four input AND gates
//INPUTS : -- X , Y , Z (X bit to add, Y bit to add , Z carry to add)

//OUTPUTS: --S = sum bit
/ / --C = Carry out bit
module Full-Add (C,S,X,Y,Z);

output c , s;
input X , Y , 2;

wire [7:0] decoder-out;

/ / 3 to 8 decoder enabled with bits to be added as inputs

decoder74138 decoder74138-0(decoder-out [7:01,l'bl,l'bO,l'bO, X , Y , Z);

/ / use 4 input AND gates to do final sum and carry

AND4AND4 - O(S,decoder-out[O] ,decoder-out [3l ,decoder-out [51 ,decoder-out [6 l) ;

AND4AND4-1 (C,decoder-out[Ol ,decoder-out [11 ,decoder-out[21 ,decoder-out[41) ;
endmodule

//Full-Add-Test: test bench for f u l l adder implemented w/ 3to8 decoder
//and two 4 input AND gates

module Full-Add-Test;
reg X , Y , Z;
wire S , C ;

Full-Add Full-Add-0 (C,S,X,Y,Z);

initial
$monitor("Time=%Od, X= %b, Y = %b, Z= %b, S= %b, C= %b",

$time, X, Y, Z, S, C);

728 Fundamentals of Digital Logic and Microcomputer Design

i n i t i a l
b e g i n
#O
X = 1‘bO;Y = 1’bO;Z = l’bO;
#50

#50

#50

#50
X = 1‘bl;Y = 1’bl ;Z = l’bO;
#50
X = 1‘bO;Y = 1‘bl;Z = l ’ b l ;
#50

#50
X = 1’bO;Y = 1’bO;Z = l‘bO;
end
endmodule
Note: An alternative to Verilog code for the AND4 module in the above is provided
below. The codes from i n p u t to a l w a y s can be replaced by using the reduction operator
& as follows:

X = 1‘bO;Y = 1‘bO;Z = l ‘ b l ;

X = 1‘bO;Y = 1’bl;Z = l’bO;

X = 1’bl;Y = 1‘bO;Z = l’bO;

X = 1‘bl;Y = 1’bl ;Z = l ’ b l ;

i n p u t [3 : 0 1 A;
reg o u t ;
a s s i g n o u t = & A;

1.3

Sequential circuits are typically described in Verilog using behavioral modeling. Verilog
utilizes two basic statements in behavioral modeling. They are represented using keywords
i n i t i a l and a l w a y s . An i n i t i a l block is created using an i n i t i a l statement. The
i n i t i a l block executes once during simulation starting at time 0. For several blocks, each
block executes concurrently at time 0. Each block completes its execution independent
of the other blocks. Keywords b e g i n and e n d are normally used to group multiple
behavioral statements. Grouping is not required for a single behavioral statement.
The i n i t i a l blocks are typically used to provide initializations for a simulation and
produce stimulus waveforms for a simulation test bench. An a l w a y s block, on the other
hand, is defined using an a l w a y s statement. The a l w a y s block executes the statements
continuously starting at time 0 until simulation ends. Furthermore, Keywords i n i t i a l
and a l w a y s can be used to generate a clock signal for simulating a sequential circuit. An
example is provided below:
module c lock;
reg c lk ;
i n i t i a l

a l w a y s

i n i t i a l

Verilog descriotions of tvpical svnchronous seauential circuits

clk=l‘bO;

2 0 c lk=-c lk ;

Appendix I: Verilog 729

#2000 $ f i n i s h ;
endmodule

In the above, the i n i t i a l statement starts the clock at time=O. The a l w a y s
statement complements the clock every 20 time units with a time period of 40 time units.
The simulation is ended by the system task $ f i n i s h at 2000 time units.
Verilog provides timing controls to specify the simulation at which procedural statements
execute. Two such timing controls include delay- based timing control and event control.
Delay-based timing control in an expression defines the time between start of execution
of the statement and its completion. Symbol # is used to specify delays. An example is
given below:
i n i t i a l
b e g i n

5 x=2; / / D e l a y e x e c u t i o n o f x=2 b y 5 t i m e u n i t s

The event control expression, on the other hand, defines a condition based on
the change in value in a register or a net to trigger execution of a statement or a block of
statements. An event control is defined by the symbol @ along with the keyword a l w a y s .
Level-sensi$ve and edge-triggered events will be considered next. In synchronous sequential
circuits, level-sensitive and edge-triggered flip-flops are encountered. The level-sensitive
flip-flop can be accomplished by the following statement:
a l w a y s @ (x o r e n a b l e)

As soon as a change in x or enable occurs,.the procedural statements in the
a l w a y s block will be executed. Verilog provides the keywords p o s e d g e and n e g e d g e
to implement positive-edge triggered or negative-edge triggered clock. For example, the
statements a l w a y s @ posedge clock and a l w a y s @ n e g e d g e c l o c k will initiate
execution of the procedural statements in the always block respectively for positive clock
and negative clock. Since a sequential circuit is comprised of flip-flops and combinational
circuits, it can be represented using behavioral and dataflow modeling. Flip-flops can be
described with behavioral modeling using a l w a y s keyword while the combinational
circuit part can be assigned with dataflow modeling using a s s i g n keyword and Boolean
equations.

Note that a behavioral model in Verilog is defined using the keyword i n i t i a l
or a l w a y s followed by one or several procedural statements. The procedural statements in
behavioral modeling execute sequentially in the order they are listed in’the source code. The
final output of these statements must be of the reg data type rather than w i r e (normally
used for structural) data type. Note that wire continuously updates the output while the
reg stores the value until a new value is provided.

Next, the meaning of “procedural statement” will be discussed. A procedural
statement is an assignment in an i n i t i a l or a l w a y s statement. Also, procedural
statement assigns value to a register (data objects of type reg). There are three types
of procedural assignments. These are procedural assignment (uses = as the operator),
continuous procedural assignment (uses keyword a s s i g n with = as the operator), and
non-blocking procedural assignment (uses <= as the operator). The right hand side of a
procedural assignment is an expression which must evaluate to a value while the left hand
side is typically a r e g . The procedural continuous assignment retains the last output (when
a digital circuit is disabled) until it is enabled again. This is useful in modeling latches
and flip-flops. The first two procedural assignments that use the = operator execute the
statements sequentially. These statements are called blocking assignments. This means
that in blocking assignment, the next procedural assignment must wait until the present

730 Fundamentals of Digital Logic and Microcomputer Design

one is completed. In non-blocking procedural assignment, executions of the statements that
follow are not blocked. This means that the right hand side of the expression is evaluated
first, but assignment to the left hand side is not made until all expressions are evaluated.
Next, consider an example of the following blocking assignments:

reg a, b, c;
reg [3:0] x, y;
//Must place Behavioral statements in initial or always block
initial
begin

a=l; b=O; c=O;

y= 4‘bllll; x=y;
#10 y[l]= l’bO;

end
In the above, the statement b=O is executed only after a=l is executed. The

statements in the begin and end block can only execute in sequence since blocking
statements are used. All statements a = l through x=y are executed at time=O. However,
statement y [1] = 1’ bO is executed at time=lO since there is a delay of 10 time units in
this statement.

As mentioned before, non-blocking assignments permit scheduling of assignments
without blocking execution of the statements that follow. In order to illustrate non-blocking
assignments, the previous example is modified as follows:
reg a , b, c;
reg [3:01 x, y;
//Must place Behavioral statements in initial or always block
initial
begin

a=l ; b=O; c=O;
y= 4‘bllll; x=y;
y[l] <= #10 l‘bO;
x[l:O]<= #5 2’bOO

end
In the above, statements a=l through x=y are executed sequentially at time 0.

Then, the two non-blocking assignments are executed simultaneously. The statement y [1]
=l’bO is scheduled to execute after 10 time units while x [I: 01 = 2’bOO is scheduled
to be executed after 5 time units. The simulator schedules execution of a non-blocking
assignment, and then continues with the next statement in the block without waiting for
completion of the present statement. When the two non-blocking statements in the above
are executed, the right hand side expressions are evaluated first, and are stored in temporary
locations. The assignments to the left hand side are made after both the expressions are
completed. Non-blocking assignments are used in digital design where multiple concurrent
data transfers such as in a register transfer, take place after a common event (positive or
negative edge triggered clock).

For state machines, the inputs including clock, and outputs can be declared at
the beginning of a Verilog program. The states can be defined using parameter keyword
in Verilog which defines constants in a module. Statement using always along with
posedge or negedge can be used for the clock. Statements using case and i f -else can
be used to implement various state transitions.

Appendix I: Verilog 73 1

EXAMPLE 1.7
Write a Verilog description for a D flip-flop (a) with a positive edge reset and a negative
edge triggered clock. Use i f - e l se .

(b) with a positive edge triggered clock and a negative edge clear input. Use i f -else.
Solution

1.7 (a)
/ / D Flip-Flop
/ / Module DFF with synchronous reset
/ / file name: dff1op.v

module dfflop(q, d, clk, reset) ;
input d, clk, reset;
output q;
reg q;

//always do this when the reset is positive edge or clock is
//negative edge
always @(posedge reset or negedge clk)
/ / if it‘s reset q will equal to zero
if (reset)

/ / if it’s clock q will equal to d
else

en dmodu 1 e

q = l’bO;

q = d;

1.7 (b)

/ / FileName: D.v
//description: D flipflop
module D-ff (Q, Q-bar, CLR, CLK, D);
output Q, Q-bar;
input CLR, CLK, D;

reg Q, Q-bar;
always @(posedge CLK or negedge CLR)
begin
//When CLR == 0 (neg logic) Q is always 0
//else @ rising edge of clock, Q <-- D
if (!CLR)
begin

Q <= l‘bO;
Q-bar <= l’bl;

end
else

begin
Q <= D;
Q-bar <= !D;

/ / Q-bar <= !D;
end

end

endmodule

732 Fundamentals of Digital Logic and Microcomputer Design

EXAMPLE 1.8
Write a Verilog description for a JK flip-flop with negative edge triggered clock. Use
case statements.
Solution

/ / JK ff using case statements

/ / J = A and K=B as inputs

/ / Q and nQ are outputs

module j k-ff (A, B, clock, Q, nQ) ;

input A , B , clock;
output Q,nQ;
reg Q;
assign nQ=-Q
always @ (negedge clock)

case (t A , B J)
2‘ bOO : Q=Q;
2 bO 1 : Q=1’ bO ;
2‘blO:Q=l’bl;
2’bll :Q=-Q;
endc a s e

endmodule

EXAMPLE 1.9
Write a Verilog description for the state diagram of Figure 5.21. Use a reset input so that
the hardware can be initialized. Figure 5.21 is redrawn below:

Solution
//Description:state machine of Example 5.2
//File Name: fig5 21.v

//fig. 5.21 Implementation of state machine on figure 5.21
//APROACH : behavioral

Appendix I: Verilog 733

module fig5-21(Z , state , A , clk , reset);
outputz ;
output [l: 01 state;
re9 [1:0] currentstate , state;
reg Z ;
input A , clk , reset;
always @ (posedge clk)
begin
if (reset == 1) //need to reset to start from a known state at
//some point
currentstate = 0 ;
case (currentstate) //step thru all states per state table

0:
if(A == 1)
begin

state=l;
z = 0;

end

begin
else

state=O ;
z=1;

end
1:

if (A==l)
begin

state=2 ;
z = 0;

end

begin
else

state=3;
z = 0;

end
2:

if (A == 1)

state 3:
begin

2 = 1;
end
else

begin
state=O;
z=1;
end

3:
if (A==l)

734 Fundamentals of Digital Logic and Microcomputer Design

begin
state = 0;
z=1;

end
else
begin
state=l;
z=1;
end
default

if (A == 1)
begin
state = 2'bxx;
Z = l'bx;

end

begin
else

state = 2'bxx ;

Z = l'bx;
end

endcase
currentstate = state ;
pass
end
endmodule
module fig5-21-0 test;
reg A , clk, reset;
wire [1:01 state;

//update state for next time

wire Z ;
fig5-2 1 fig5-21 0 (Z, state,A, clk, reset) ; -

$time, state, A, 2 , reset) ;
initial

begin
#O
A= l'bO; //reset to state 0
reset=l'bl;
clk =l'bO;
#20
clk =l'bl;
#20
A= l'bO; //Input 1 to go to state 1
reset=l'bO;
clk =l'bO;
#20
clk = l ' b l ;
#20
A= l'bO; //Input 0 to go to state 3
reset=l'bO;
clk =l'bO;

Appendix I: Verilog 73 5

2 0
c l k =l‘bl;
#20
A= l‘bl; //Input 1 to go to state 0
reset=l’bO;
c l k =l’bO;
#20
c l k =l’bl;
#20
A= l’bO; //Input 0 to stay at state 0
reset=l’bO;
c l k =l’bO;
#20
c l k = l ‘ b l ;
2 0
A= l‘bO; //Input 1 to go to state 1
reset=l’bO;
c l k =l‘bO;
#20
c l k =l‘bl;
#20
A= l‘bl; //Input 1 to go to state 2
reset=l‘bO;
c l k =l‘bO;
#20
e l k =l‘bl;
2 0
A= l ‘ b l ; //Input 1 to go to state 3
reset=l’bO;
c l k =l‘bO;
#20
c l k =l’bl;
2 0
A= l’bl; //Input 1 to go to state 0
reset=l’bO;

c l k =l‘bO;
2 0
c l k =l’bl;
2 0
A= l‘bl; //done
reset=l’bO;
c l k =l’bO;
#20
c l k =l‘bl;
end

endmodule

736 Fundamentals of Digital Logic and Microcomputer Design

EXAMPLE 1.10
Write a Verilog description for the two-bit counter of example 5.5.
Solution

/ / exercise 5.5
module counter2bit (clock, reset, state) ;

input clock, reset;
output [1:01 state;
reg [1:0] state, next-state;
parameter so0 = 2’bOO,

so1 = 2‘b01,
s10 = 2‘b10,
sll = 2‘bll;

always @ (posedge clock or posedge reset)
begin

if (reset == 1)

else
state <= s00;

state <= next-state;
end

always @ (state)
begin

case (state)
so0 : next-state <= sol;
so1 : next-state <= s10;
s10 : next-state <= s l l ;
sll : next-state <= s00;

endcase
end

endmodul e
module test;

reg clock, reset;
wire [1:0] state;

counter2bit c2bit (clock, reset, state) ;
initial
begin

$display (” clock reset\tstate binary \tstate decimal”);
$monitor (“ %b\t %b\t %b\t %d “,

clock, reset, state, state) ;
#O reset = 0;
#1 reset = 1;
#1 reset = 0;
end
initial

begin
#O clock = 0;

#40 $finish;
end

endmodu 1 e
always #1 clock = -clock;

Appendix I: Verilog 73 7

Note: In the above, inclusion of \t with statements for $display and
$monitor provides horizontal tab.

=lock reset
0 0
1 1
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0

state binary state decimal
xx X

00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3

738

EXAMPLE I. 11
Write a Verilog description for the three-bit counter of Example 5.7.
Solution

Fundamentals of Digital Logic and Microcomputer Design

/ / example 5.7
module nonbinarycounter(clock, reset, state);
input clock, reset;
output [2:0] state;
reg [2 : 01 state, next-state;
parameter S O = 3'b000, sl = 3'b001,

s2 = 3'b010, s3 = 3'b011,
s4 = 3'b100, s5 = 3'b101,
s6 = 3'b110, s7 = 3'blll;

always @ (posedge clock or posedge reset)
begin

if (reset == 1)
state <= SO;

else
state <= next-state;

end

always @ (state)
begin

case (state)
SO : next-state <= s2;
sl : next-state <= s3;
s2 : next-state <= s3;
s3 : next-state <= s5;
s4 : next-state <= sl;
s5 : next-state <= s6;
s6 : next-state <= s7;
s7 : next-state <= SO;

endcase
end

endmodule
module test;

reg clock, reset;
wire [2:0] state;
nonbinarycounter nbc (clock, reset, state) ;

initial
begin
$display (" clock reset\tstate binary \tstate decimal");
$monitor (" %b\t %b\t %b\t %d n

clock, reset, state, state) ;
O reset = 0;
#1 reset = 1;
#1 reset = 0;
end
initial

begin
#O clock = 0;
#40 $finish;
end

always #1 clock = -clock;

Appendix I: Verilog 739

endmodule
N o t e : In the above, inclusion of \t with statements for $display and $monitor

-ovides horizontal tab.

:lock reset state binary state decimal

0 0 xxx X

1 1 000 0
0 0 000 0
1 0 010 2
0 0 010 2
1 0 011 3
0 0 011 3
1 0 101 5
0 0 101 5
1 0 110 6
0 0 110 6
1 0 111 I
0 0 111 7
1 0 000 0
0 0 000 0
1 0 010 2
0 0 010 2
1 0 011 3
0 0 011 3
1 0 101 5
0 0 101 5
1 0 110 6
0 0 110 6
1 0 111 7
0 0 111 1
1 0 000 0
0 0 000 0
1 0 010 2
0 0 010 2
1 0 011 3
0 0 011 3
1 0 101 5
0 0 101 5
1 0 110 6
0 0 110 6
1 0 111 I
0 0 111 1
1 0 000 0
0 0 000 0
1 0 010 2

740

EXAMPLE 1.12
Write a Verilog description for the General Purpose register of figure 5.41.
Solution
.

Fundamentals of Digital Logic and Microcomputer Design

* * * *
Description: Basic Cell
File Name: BasicCe1l.v
.
* * * /
module Basiccell(q, CLR, CLK, s, A 1 ;
output q;
input CLK, CLR;
input [1:0] s;
input [3:0] A;
wire data, q-bar;
mux4tol M 1 (data, s , A) ;

D-ff D O (q, q-bar, CLR, CLK, data) ;

endmodule

.
****Description: D Flip Flop
File Name: D.v

* * * /
module D-ff(Q, Q-bar, CLR, CLK, D) ;

output Q, Q-bar;
input CLR, CLK, D;

.

reg Q, Q-bar;
always @ (posedge CLK or negedge CLR)
begin //When CLR == 0 (neg logic) Q is always 0

//else I? rising edge of clock, Q <-- D
if (!CLR)

begin
Q <= l’bO;
Q-bar <= l’bl;

end

begin
else

end

Q <= D;
Q-bar <= !D;

e n d

endmodule
/ / The code for the 4 to 1 multiplexer used in the Basic cell is:
/ / Filename : mux4tol.v
//description: 4 to 1 multiplexer

module mux4tol(X, s, A);
output x;
input [1:01 s;
input [3:01 A;
assign X = (s == Z‘bOO)? A[O]:

(s == 2’b01)? A[1]:
(s == 2’b10)? A[1]: A[3];

endmodule

//description: General purpose register

Appendix I: Verilog 74 1

module GPR (Q, CLR, CLK, S, X, r-in, 1-in) ;
output [3:01 Q;
input CLR, CLK, r-in, 1-in;
input [1: 01 S ;

input [3:0] X;
wire [3:0] A;
Basiccell Cell3 (A[3] , CLR, CLK, S,
Basiccell Cell2 (A[21 , CLR, CLK, S,
Basiccell Cell1 (A[11 , CLR, CLK, S,
Basiccell Cell0 (A[O] , CLR, CLK, S ,
assign Q = A;

endmodule

1.4 Status register desim using Verilog

In this section, the Verilog description of the Status register of Example 6.1 will be
provided.

EXAMPLE 1.13
Write a Verilog description of the Status register of Figure 6.1.
Solut ion

VeriLogger Program, Test Bench and Results
/ / Status Register

module statsreg (stat, cfinal, cprev, clk, r) ;

input [3 : 0] r;

input cfinal, cprev, clk;

output [4:0] stat;

reg [4:0] stat;

/ *
output is shown at a positive edge of the clock.

* /

The status register is 5-bits. They will be latched and the

always@ (posedge clk)

begin

stat [O] <= r [3] A r [ZI Ar [l] A r [O] ; //Parity flag

stat [l] <= cfina1”cprev; //Overflow flag

stat[Z] <= -(r[3] (r[Z] Ir[l] Ir[O]); //Zero flag

stat[3] <= r[3]; //MSB

stat[4] <= cfinal; //Final carry

end

endmodule
/ / The following is a test bench to verify the results of our

module above.

module tbench;

reg [3:0] r-in;

reg cfinal-in, cprev-in, clock;

742 Fundamentals of Digital Logic and Microcomputer Design

wire [4:0] stat-out;

/ / module statsreg(stat, cfinal, cprev, clk, r) ;

statsreg SRegl (stat-out, cfinal-in, cprev-in, clock, r-in) ;

initial

begin

$monitor("Time=%Od clock=%b r - in=%b cfinal - in=%b cprev - in=%b

stat-out=%b", $time, clock, r-in, cfinal-in, cprev-in, stat-out) ;
end

always

begin
#1 clock=O;

#I clock=l;

end

initial

begin

#O r-in=O; cfinal-in=l; cprev-in=l;

#2
3 r_in=6; cfinal-in=l; cprev-in=O;

#2
#3 r_in=15; cfinal-in=O; cprev-in=O;
#2
#1 $finish;

end

endmodule

Time=O clock=x r_in=0000 cfinal-in=l cprev-in=l

Time=l clock=O r - in=0000 cfinal-in=l cprev-in=l

Time=2 clock=l r_in=0000 cfinal-in=l cprev-in=l

Time=3 clock=O r_in=0110 cfinal-in=l cprev-in=O

Time=4 clock=l r - in=0110 cfinal-in=l cprev-in=O

Time=5 clock=O r_in=0110 cfinal-in=l cprev-in=O

Time=6 clock=l r-in=llll cfinal-in=O cprev-in=O

Time=7 clock=O r-in=llll cfinal-in=O cprev-in=O
Time=8 clock=l r-in=llll cfinal_in=O cprev-in=O

stat-out=xxxxx

stat-out=xxxxx

stat_out=10100

stat_out=10100
stat_out=10010

stat_out=10010

stat_out=01000

stat_out=01000
stat_out=01000

1.5 CPU design using Veriloz

Memory can be modeled in Verilog as an array of registers. The following are some of
the typical examples of specifying memory in Verilog:
reg addr [0:2047]; / / Memory with 2K 1-bit words (Addresses

Appendix I: Verilog 743

/ / addrc01
/ / through addr[2047]).

reg [15:01 addr [0:4095]; / / Memory with 4K 16-bit words (Addresses
/ / addr[O] through addr[4095]).

reg [2 2 : 0] mem [52:0]; / / Memory of size 5 3 x 2 3 bits (Addresses mem[O]
/ / through mernr521).

data = rnem[locl / / Memory read operation. Read the contents of a
/ / memory
/ / location addressed by loc into a register
/ / called data.
/ / Memory write operation. Write the contents of
/ / a register
/ / called data into a memory location addressed
/ / by loc.

mem[loc] = data

Examale 1.14

Write a Verilog description for the ALU of Figure 7.24.
Solut ion

The verilog coding for 4-bit ripple carry adder is:
~ include "FA. v"
module Add4 (c-out, Sum, A, B, c-in) ;
//Add 2 4-bit numbers A & B with carry in
//output Sum and c-out

output [3:0] Sum;
input [3:0] A, B;
input c-in;
wire [2:0] carry;

output c-out;

//need 4 f u l l adders

FA fa0 (carry[Ol, Sum[O], A[Ol, B[O] I c-in) ;
FA fa1 (carry[ll I Sum[l], A[l], B[11 I carry[O]);
FA fa2 (carry[2], Sum[2], A[21 I B[21 I carry[ll) ;

FA fa3 (c-out, Sum[3] I A[3] I B[31 I carry[i]]) ;
endmodu 1 e

//The included code for full adder is:

module FA(c-out, sum, a, b, c-in);
//Full Adder

input a, b, c-in;
output sum, c-out;
assign{c-out, sum} = a + b + c-in;

endmodu 1 e
//The coding for multiplexer is:

module mux2tol (x, select, AO, Al) ;

input select, AO, Al;
assign x = (select)? Al: AO;
endmodu le

output x;

744 Fundamentals of Digital Logic and Microcomputer Design

//description: 4-bit ALU
module ALU(F, C-out, X, Y, fCode);
output [3:0] F;

input [3:01 X, Y;
input [1:0] fCode;
wire [3:0] B, Y-not, AU, LU, LU-0,
wire carry;

output C-out;

LU-1;

//Structure of Arithmetic unit
//Prep inverted Y
not (Y-not [O], Y [O]) ;

not(Y-not[ll, Y[11);
not (Y-not [21, Y [21) ;
not (Y-not [3], Y [31) ;

//Prep input B to adder
mux2tol BO(B[O], fCode[OI, Y[O], Y not[Ol);
mux2tol B1(B[1], fCode[O], Y[1], YInot[ll);
mux2tol B2 (B[2], fCode [O], Y [Z], Y-not [21) ;
mux2tol B3(B[3], fCode[OI, Y[31, Y_not[31);

//Feed signal to adder
Add4 Adder(carry, AU, X, B, fCode[Ol);
//Only when S1 = 0, we need carry
//otherwise carry should be 0
and(C-out, carry, -fCode[l]);

//Structure of logic unit;
//Input when SO == 0
and(LU-O[Ol, XlOl, Y I O I) ;
and(LU-O[lI, X[ll, Y[11);
and (LU-0 [2 1 , X [2 1 , Y [2 1) ;
and(LU_0[31, X[31, Y[31);
//Input when SO == 1
xor (LU-1 [OI, X[Ol, Y [Ol) ;
xor (LU-1 [ll, X[11, Y[11);
xor (LU-1[21, X[21, Y[21) ;
xor (LU-1 [3], X[31, Y[31) ;

//calc output of logic unit
mux2tol GO (LU[O] , fCode [O], LU-0 [O] , LU-1[01) ;
mux2tol Gl(LU[l], fCode[OI, LU-o[11, Lu-1[11);
mux2tol G2(LU[2], fCode[O], LU-0[21, LU-1[21);
mux2tol G3 (LU[3], fCode [O], LU-0 [3l, LU_1[3l) ;
//Connect arithmethic and logic unit together
mux2tol FO(F[O], fCode[ll, AU[Ol, LU 01);
mux2tol Fl(F[l], fCode[l], AU[ll, LU 11);
mux2tol F2(F[2], fCode[l], AU[2], LU 21);

mux2tol F3(F[3], fCode[ll, AU[31, LU
endmodul e

31);

Appendix I: Verilog 745

Ons I 120ns 14Ons 160 n s 180ns IlOOns

f F V 6 k : F
\ D r’, F -yz / \

;)m,F,v-) 2 - 3 1, 0 yi-/f 2 y, 3

YDX C 1 2 ~ D ~ ~ ~ 9 1 5 1 7 1 6 ’ ~ ~ ~ . - ,’-

ExamDle 1.15
Write a Verilog description for the microprogrammed CPU of section 7.4.

Solution
Xlinix ModelSim simulator is used to simulate the Verilog program. A test bench

is written to instantiate the CPU module and generate the clock.
Seven modules are created in the Verilog program to implement the

microprogrammed CPU. The modules are memcntrl, reg-tlbit, alu-tlbit, muxtlbit,
ram, processor and cpu. The design is created using hierarchical method. The cpu
module is at the top of the hierarchy, processor and memcntrl are under cpu module, and
finally the rest of the modules are under the processor.

The memcntrol contains the ROM, filled with a 23-bit value, which contains
a 4-bit condition select, a 6-bit branch address, and 13-bit control input (C12 - CO) for
the registers, ALU, and RAM. It also has the conditional statement that will make the
Microprogram Counter (MPC) to count up by one if the loadhncrement is LOW, or will
load the branch address passed by the control memory buffer if loadincrement is HIGH. The
processor module connects mux, a h , registers (regA, regIR, regMAR, regPC, regBUFF),
and the RAM. It also includes the instruction decoder and performs the following (Figure
7.58) : If condition select field = 0, loadhncrement = 0, no branch. I f condition select = 1
and Z = 1, branch. If condition select = 2 and C = 1, branch. If condition select = 3 and I3
= 1, branch. If condition select = 4 and XC2 = 1, branch. If condition select = 5 and XC 1 =

1, branch. If condition select = 6 and XC0 = 1, branch. If condition select = 7 and I0 = 1,
branch.

The 256 x 8 RAM holds program instructions and data. The program is stored
beginning at RAM address 0. This program tests two instructions (LOAD and ADD) of
the CPU. The program will first load a value into register A from RAM address 100, add
it to itself and store the result in register A.

The CPU module has only two inputs. These are reset and clock. It connects the
processor module with the memory control module to complete the hierarchy of the
microporgrammed CPU design.
Verilog code for the microprogrammed CPU is provided in the following:

/ / Microprogrammed Controller Module for the CPU
/ / Port declarations

746

module memcntrl (C-fn, Z, C, 13, XC2, XC1, XCO,IO, reset, clk);
input 2 , C, 13, XC2, XC1, XCO, 10, reset, clk;
output [12:0] C-fn;
reg [22:0] mem [52:01;
reg [12:0] C-fn;
reg [22:0] regCMDB;
reg [5:01 regMPC;
reg Id-inc;
/ / Binary microprogram
/ / The size of the control memory is 53 x 23 bits. The 23-bit
/ / control word consists of 13-bit control function containing CO
/ / through C12 with CO as bit 12 and C12 as bit 0. The condition
/ / select field is 4-bit wide (bits 19-22). For example, consider
/ / the code for line 0 with the operation PC <- 0 in the
/ / following. Since there is no condition in this operation,
/ / condition select field (CS) bits are 0‘s. The branch address
/ / field (Brn)bits are assumed as don’t cares arbitrarily. To
/ / clear PC to 0, CO = 1 (bit 12). To disable RAM, C6 = 1. C1,
/ / C2, C4, C7, C8 and C9 are initialized to 0‘s. Other bits are
/ / arbitrarily initialized as don’t cares.
initial
begin

Fundamentals of Digital Logic and Microcomputer Design

/ / 23-bit value contains a 4-bit condition select, a 6-bit branch
/ / address, and 13-bit control. input (C12 - CO) for the
/ / registers, ALU, and RAM.

/ / cs Brn Cntrl Func
mem[O] = 23’b0000xxxxxx100x0xlOOOxxx;
mem[l] = 23‘b0000xxxxxx00001xlOOOxxx;
mem[2] = 23’b0000xxxxxx010x01OOlOxxx;
mem[3] = 23’b0011001110000x0xl@OOxxx;
mem[4] = 23’b0110001000000x0xl@OOxxx;
mem[5] = 23‘b0101001010000x0xlOOOxxx;
mem[6] = 23‘b0100001100000x0xlOOOxxx;
mem[7] = 23‘b1000110100000x0xlOOOxxx;
mem[8] = 23’b0000xxxxxx000x0xlOOllll;
mem[9] = 23’b1000000001000x0xlOOOxxx;
mem[lO] = 23’b0000xxxxxx000x0xlOOllOO;

/ / 22 19 12 0

mem
mem
mern
mem
mem
mem
mem

111 = 23’b1000000001000x0xlOOOx~~;
121 = 23’b0000xx~~xx000~0~1001101;
131 = 23’b1000000001000~0~lOOOx~~;
141 = 23’b0110010111000~0xlOOOx~~;
151 = 23‘b0101100000000x0xlOOOx~~;
161 = 23’b0100101001000x0xlOOOx~~;
171 = 23’b0000xxxxxx00001xlOOOxxx;

mem[l8] = 23’b0000xxxxxx010x01OlOOxxx;
mem[l9] = 23’b0000xxxxxx00011xlOOOxxx;
mem[20] = 23’b0000xxxxxx000x01OlOOxxx;
mem[21] = 23rb0000xxxxxx000x0x1001110;
mem[22] = 23’b1000000001000x0xlOOOxxx;
mem[231 = 23’b0000xxxxxx0@001xlOOOxxx;
mem[24] = 23‘b0000xxxxxx010x01OlOOxxx;

Appendix I: Verilog

mem[25] = 23’b0000xxxxxx00011xlOOOxxx;
mem[26] = 23’b0111011110000x0xlOOOxxx;
mem[27] = 23’b0000xxxxxx000x01OlOOxxx;
mem[28] = 23’b0000xxxxxx000x0xlOOlOOl;
mem[29] = 23’b1000000001000x0xlOOOxxx;
mem[30] = 23’b0000xxxxxx000x00OOOOxxx;
mem[31] = 23’b1000000001000x0xlOOOxxx;
mem[32] = 23’b0000xxxxxx00001xlOOOxxx;
mem[33] = 23’b0000xxxxxx010x01OlOOxxx;
mem[34] = 23’b0000xxxxxx00011xlOOOxxx;
mem[35] = 23’b0000xxxxxx000x01OlOOxxx;
mem[36] = 23’b0111100111000x0xlOOOxxx;
mem[37] = 23’b0000xxxxxx000x0xlOOlOlO;
mem[38] = 23’b1000000001000x0xlOOOxxx;
mem[39] = 23’b0000xxxxxx000x0xlOOlOll;
mem[40] = 23’b1000000001000x0xlOOOxxx;
mem[41] = 23’b0000xxxxxx00001xlOOOxxx;
mem[42] = 23’b0000xxxxxx000x0xlOOOxxx;

747

mem
mem
mem
mem
mem
mem
mem
mem

431 = 23’b0111101111000~110000~~~;
441 = 23’b0001110010000x0xlOOOxxx;
451 = 23‘b0000x~~~xx010~0x1000~~~;
461 = 23’b1000000001000~0~1000~~~;
471 = 23’b0010110010000~0~1000~~~;
481 = 23’b1000000001000~0xlOOO~~~;
491 = 23‘b0000xxxxxx010~0xlOOO~xx;
5 0

mem[51
mem [52
end
a 1 ways

= 23’b0000xxxxxx001~010000~~~;
= 23’b1000000001000x0xlOOOxxx;
= 23’b1000110100000~0xlOOO~~~;

@ (reset)

if (reset)
begin / / when reset is active and reset is high

end
regMPC = 6‘b000000;// initialize MPC to zero

//conditional statement that will make the Microprogram Counter
//(MPC) to count up by one if the load/increment is low, or will
//load the branch address passed by the control memory buffer.

always @ (posedge clk) / / when clock is at positive edge
begin

regCMDB = mem[regMPC];
/ / register regCMDB contains 23-bit contents of memory addressed
/ / by regMPC

C-fn = regCMDB [12:0];
/ / control function equals to first 13 bits of register CMDB

/ / if condition select field = 0, load /increment = 0, no
/ / branch.
/ / if condition select = 1 and Z = 1, branch
/ / if condition select = 2 and C =1, branch
/ / if condition select = 3 and I3 = 1, branch
/ / if condition select = 4 and XC2 = 1, branch

748 Fundamentals of Digital Logic and Microcomputer Design

/ / if condition select = 5 and XC1 = 1, branch
/ / if condition select = 6 and XCO = 1, branch
/ / if condition select = 7 and I0 = 1, branch
/ / if condition select = 8 and load /increment= 1, branch

(regCMDB [22:19] == 0)?l'bO: / / if cmdb= 0 Id-inc = 0
(regCMDB [22:19] == 1)?Z: / / if cmdb= 1 Id-inc = 2
(regCMDB [22:19] == 2)?C: / / if cmdb= 2 Id-inc = C
(regCMDB [22:19] == 3)?I3: / / if cmdb= 3 Id-inc = I3
(regCMDB [22:191 == 4)?XC2: / / if cmdb= 4 ld-inc = XC2
(regCMDB [22:191 == 5)?XC1: / / if cmdb= 5 Id-inc =XC1
(regCMDB [22:191 == 6)?XCO: / / if cmdb= 6 ld-inc = XCO
(regCMDB [22:19] == 7)?IO: / / if cmdb= 7 Id-inc = I0
(regCMDB [22:19] == 8)?l'bl: / / if cmdb= 8 ld-inc = 1

assign Id-inc =

Id inc = x - l'bx; / / else
if (Id-inc)

else
regMPC = regCMDB [18:131; / / load branch address

regMPC = regMPC + 1; / / increment MPC by 1
end

endmodu 1 e

//Register 8 bit module

/ / General Purpose Register (GPR)
module reg-8bit (b, a, self clk);
input [7:0] a;
input [2:0] sel;
input clk;
output [7:0] b;
reg [7:01 b;

always @ (sel)
begin

b <= (sel==O)?b: / / b = b if sel = 0
(sel==l)?O : / / b= 0 if sel = 1
(sel==2)?b+l : / / b= btl if sel = 2
(sel==4) ?a: / / b= a if sel = 4
8'bx; / / else b=xxxxxxxx

end
endmodul e
//ALU module
/ / ALU with zero and carry flags
module alu-8bit (f, zflag, cflag, a, b, sel);
input [2:0] sel;
input [7:01 a, b;
output [7:01 f;
output zflag, c-flag;
reg z-flag, cflag;

initial
begin

z-flag = l'bO; / / initialize zero and carry flag to zero

end
c-flag = l'bO; / /

Appendix I: Verilog 749

assign f =(sel==O)?O : / / f=O if sel=O
(sel==l) ?b: / / f=b if sel=l
(sel==2)?atb: / / f=atb if sel=2
(sel==3)?a-b: / / f=a-b if sel=3
(sel==4)?a+l : / / f=a+l if sel=4
(sel==5)?a-l ://f=a-1 if sel=5
(sel==6) ?a&b://f=a&b if sel=6
(sel==7)?-a://f=-a if sel=7
8'bx; / / else f=xxxxxxxx

//Carry and Zero Flag registers
always @ (f)

begin
if (f==O) / / if alu output = 0, zero flag = 1

else if (f ! = 0 & (sel != 3'bxxx)) / / if f not zero
assign z-flag =l;

/ / and
/ / sel not xxx

assign z-flag = 0; / / zero flag = 0

end

always@ (f)

begin
if (sel==4 I sel==2)

if (carry) / / if alu outputs carry, carry flag = 1
assign c-flag = 1;
else if (!carry & (sel ! = 3'bxxx)) / / if not carry and

carry = (a[7l+b[7])*f[7l+a[71*b[71;

assign c-flag = 0; / / sel not xxx, carry = 0
end

e ndmodul e
//Processor module (Figures 7.53 and 7.56)
/ / Processor

module processor (13, XCO, XC1, XC2, XC3, 10, z-flag, c-flag, clock,
c0, cl, c2, c3, c4, c5, c6, c7, c8, c9, c10, cll, c12);
input clock;
input c0, cl, c2, c3, c4, c5, c6, c7, c8, c9, c10, cll, c12;
output 13, XCO, XC1, XC2, XC3, 10, z-flag, c-flag;
wire [7:0] IR-out;
wire [7:0] F-out, BUFF-out, RAM-dataout, RAM - addr, MAR-in, PC-out;
reg [7:0] regA-out;
reg 10, 13, XCO, XC1, XC2, XC3;

//module muxp8bit(z, sel, mux-in0, mux-inl);

Fundamentals of Digital Logic and Microcomputer Design

mux-8bit Muxl (MAR-in, c3, PC-out, BUFF-out) ;

//module alu-8bit (f, zflag, c-flag, a, b, sel) ;
alu-8bit ALUl (F-out, zflag, c-flag, regA-out, BUFF-out, (c10, cll,
c121);

//module reg-8bit (b, a, sel, clk) ;
//regP8bit regA(regA-in, F-out, (c9, l'bO, l'bO}, clock) ;
reg-8bit regIR(1R-out, RAM-dataout, {c8, l'bO, l'bO1, clock) ;
reg-8bit regMAR(RAM-addr, MAR-in, {c4, l'bO, l'bO], clock) ;
reg-8bit regPC(PC-out, RAM-dataout, {c2, cl, CO), clock);
reg-8bit regBUFF(BUFF-out, RAM-dataout, { c 7 , l'bO, l'bO1 , clock) ;

//module ram (dataout, memeaddr, datain, rw, en) ;
ram RAM1 (RAM-dataout, RAM-addr, regA-out, c5, c6) ;
initial
begin

xco <= 0; //initialize control signals to zero
xc1 <= 0;
xc2 <= 0;
xc3 <= 0;
I0 <= 0;
I3 <= 0;

end

always@ (clock)
begin

13 <= IR_out[3]; / / instruction decoder
I0 <= IR-out[O]; / / 13= irout[3] , I0 = irout[O]

case ((IR_out[2], IR-out[l]))

2'dO:begin XCO =1; XC1 =O; XC2 = 0; end //if irout[2:l]=O,XCO=l,

2'dl:begin XC1 =l; XCO =O; XC2 = 0; end / / if irout[2:1]=1,XCl=l,

2'd2:begin xC2 =1; XCO =O; XC1 =O; end / / if irout[2:1]=2,XC2=1,

iI'd3:begin XC3 =l; XCO =O; XCl=O; XC2= 0; end//if irout[2:1]=3,

//others zero

//others zero

//others zero

//XC3=1, others 0
default:

begin XCO =lfbx; XC1 = l'bx; XC2 = l'bx; XC3 =l'bx; end / / else

endcase
end

//everything x

Appendix I: Verilog 75 1

always @ (posedge clock)
begin

out= regA-out

= F-out

xxxxxxxx

regA-out <= (c9==O)?regA_out: / / if c9=0 , regA-

(c9==1) ?F-out: / / if c9 =1, regA-out

8'bx; / / else regA-out=

end
e ndmodu 1 e
//Mux 8 bit module
module mux-8bit (2 , self mux-in0, mux-inl) ;

input sel;
input [7:0] mux-in0, mux-inl;
output [7:0] z ;

/ / The output is defined as register
reg [7:0] z;

/ / The output changes whenever any of the inputs changes
always @(sel or mux-in0 or mux-inl)

/ / Check the control signal
case (sel)
l'bO:

l'bl:

endcase

z = mux inO; / / if sel= 0 , z = in0

z = mux - inl; / / if sel=l, z = in 1

-

endmodule

//256 x 8 Ram
module ram (dataout, memaddr, datain, rw, en) ;
//--------------Input ports-----------------------

input [7:0] memaddr;
input [7:0] datain;
input rw, en;
output [7 : 01 dataout;

reg [7:0] dataout ;
reg [7:0] mem [0:255];

initial
mem[O] = 8'b00001000; / / LDA mem <addr>
mem[l] = 100; / / <addr> = 100, A<-5
mem[2] = 8'b00001010; / / ADD A <- A + MEM<addr>
mem[3] = 100; / / <addr> = 100, A<-l0
mem[100] = 8'b00000101; / / init data = 5
always @ (rnemaddr or datain or rw)
begin : MEM - WRITE

//--------------Internal variables----------------

//--------------Code Starts Here------------------

if (!en & & !rw)

752 Fundamentals of Digital Logic and Microcomputer Design

mem[memaddr] = datain;
end
always @ (memaddr or rw or en)
begin : MEM-READ

if (!en & & rw)

dataout = mem[memaddr];
end
endmodu 1 e

//CPU module has only two inputs (system clock and system
reset)
module cpu (clock, reset) ;

input clock, reset;
wire xc2, xcl, xc0, i3, i0, z, c;
wire [12:0] cfn;
processor pl (.clock(clock) , .XC2 (xc2) , .XC1 (xcl) , .XCO (xc0) ,
. I3 (i3),
.IO(iO), . z - f l a g (z) , .c-flag(c), .cO(cfn[121), .cl(cfn[lll),
.c2(cfn[lO]),
.c3(cfn[9]), .c4(cfn[8]), .c5(cfn[7]) , .c6(cfn[6]), .c7(cfn[51),
. c8 (cfn [4]) , . c10 (cfn[2]) ,
) ;

memcntrl memc (.clk(clock) , .reset (reset), .XC2 (xc2) , .XC1 (xcl) ,
.XCO(xcO), .I3(i3), .IO(iO) , . Z (z) , .C(c), .C-fn(cfn));
endmodule

.c9 (cfn [3]) , . cll (cfn [l]) , . c12 (cfn[Ol)

/ / T e s t Bench for CPU module
module test-cpu;
reg clock, rst;
cpu dut (clock, rst);
initial / / Clock generator
begin / / generating clock with period of 2ns

clock = 0;
#lo01 forever
#lo00 clock = !clock;

initial / / Test stimulus
end

begin
rst = 1; / / reset goes high €or 3.5 ns then goes

#3500 rst = 0;
low

end
endmodu 1 e

Timing Diagram
All eleven instructions are tested successfully by simulating a sample program. Timing
diagrams are generated accordingly. The following simple program inside the 256 x 8 RAM
is simulated for testing the proper operation of two (LDA,ADD) of the eleven instructions.
The timing diagram of Figure 1.1 is generated. Note that PC is the program counter for
the sample program in the RAM, and MPC is the microprogram counter for the symbolic
program in the ROM (Figure 7.57) inside the memory control module.
Program for testing LDA and ADD :

Appendix I: Verilog

mem[O] = LDA / / A<- MEM <addr>
mem[l] = 100; / / <addr> = 100, A<-5
mem[2] = ADD / / A <- A f MEM<addr>
mem[3] = 100; / / <addr> = 100,A<-10
rnem[1001 = 8'b00000101; / / init data = 5

753

LDA (PC=O) instruction with reference address 100, goes through the subroutines
in the symbolic program (Figure 7.57): FETCH (MPC=l at t=2ns), branching to
MEMREF(MPC=14 at t=8ns), then to LDSTO(MPC=23 at t=lOns), all the way through
LOAD (MPC = 27 at t=l8ns), and back to FETCH. At t=23ns, register A holds 05H,
showing that it has loaded the contents of RAM memory address 100 (See figure J.l).
Next, ADD (PC=2) operation is performed using reference address 100. At this point,
ADD goes through the following subroutines in the symbolic program: FETCH (MPC=l
at t=24ns), branching to MEMREF(MPC=l4 at t=30ns), then to ADDSUB(MPG32 at
t=34ns), all the way through ADD(MPC=37 at t=44ns), then back to FETCH (See figure
J.l). At t=46ns, register A and BUFFER hold the contents of memory address 100. They
are now the inputs to the ALU. The ALU will add these two values and its output will then
go to register A, as commanded by the ADD<addr> instruction. At t=47ns, one can see
that the contents of register A have changed to OAH (10,J (See figure I. 1).

ilesl-cpuklock

ltesl-cpulr st

/lesl_cpu:duVpl/PC_ouI
Mesl_cpu;duli3l/regA_out

IleSI~cpuidul/pl/ALU1 h-flag
/tesl_cpu:du~pl/ALU1Ic_flag

/lesl_cpuldurlpl/regMARb
/lesl-cpu/dut'n??m/ld

k s - c p u l d u U m l X C Z

:lesr-cpu/dul/mlXCl

:lesi-cpu/dutlnm/XCO

/lesl_cpu:duVn'enc/I~

/lest_cpuidulim/regMFC

/lesl-cpu/d utimTYld-irK

Ons 2Ons 40ns 600s

Figure I. 1 Verilog Timing Diagram (Top diagram-CPU clock, Next-Reset,
Next-PC, Next-reg A, Next-Zflag, Next-Cflag, Next-regMAR, Next-13, Next-XC2, Next-
XC 1, Next-XCO, Next-10, Next-mpc, Next-ld-inc)

OUESTIONS AND PROBLEMS

I. 1 Write a Verilog description for each of the following:
(a) a 2-to-4 decoder using dataflow modeling , generating a low output when

(b) a 3-to-8 decoder using modeling description of your choice, generating a

(c) the 4 -to-16 decoder of Problem 4.15 using modeling description of your

selected by a high enable.

high output when selected by a high enable.

754 Fundamentals of Digital Logic and Microcomputer Design

choice.
(d) a 4-to- 1 multiplexer using conditional operator.
(e) a BCD to seven-segment converter for a common cathode display using

behavioral modeling.
(f) the 2-bit unsigned comparator of Section 4.5.2.

1.2 Write a Verilog description for:
(a) the transparent latch of Section 5.2.3.
(b) the gated D flip-flop of Figure 5.5a.
(c) a D flip-flop with a synchronous reset input and a positive edge triggered

clock. Use synchronous reset such that if reset ==O, the flip-flop is cleared to
0; on the other hand, if reset==l, the output of the flip-flop is unchanged until
the procedural statements are evaluated at the positive edge of the clock.

(d) the T flip-flop (using D-ff and XOR gate) of Problem 5.13(b).
(e) the state machine of Problem 5.19.
(f) a 4-bit binary ripple counter. Note that in a binary ripple counter, the clock

inputs of high order flip-flops are not triggered by the common clock, but
by the transition outputs of the low order flip-flops. The 4-bit binary ripple
counter contains four T flip-flops (obtained from D-ffs), with the output of
each ff connected to the clock input of the next higher-order ff. The clock
input is connected to the least significant T-ff. The 4-bit ripple counter can be
designed using four T flip-flops (tffl) through tff3). Each T-ff can be obtained
from a D-ff by connecting its output q to the input of an inverter, and then
connecting the inverter output to the D input; the T-ff has one input (T input
is the same as the clock input). This T-ff toggles every clock. The 4-bit
ripple counter can be obtained by connecting the clock to the tffl) clock input,
q0 of tffl) to clock input of tffl, q l output of tffl to clock input of tff2, and
q2 output of tff2 to the clock input of tff3. Use negative edge-triggered D-
ffs. Each D-ff will have a reset input to clear the ff.

(8) a 4-bit serial shift (right) register with a positive edge triggered reset and a
positive edge triggered clock. The 4-bit serial shift register can be obtained
by connecting four D-ff s to a common clock and a common reset. The four
D-ff s are cleared to 0 at the positive edge triggered clock and positive edge
triggered reset. Assume, v as the serial input bit connected to the D input of
the leftmost D-ff with z as its output; z is connected to the D input of the next
right D-ff with y as its output; y is connected to the D input of the next right
D-ff with x as its output; finally, x is connected to the D input of the rightmost
D-ff with w as its output.

(h) a 4-bit register with a reset input, a parallel load input and a positive edge-
triggered clock. The 4-bit register is cleared to 0 at the positive edge of the
reset. On the other hand, if the load input is high, 4-bit data is transferred to
the register at the positive edge of the clock. Use behavioral modeling.

(i) the counters of Problems 5.24(a) through 5.24(c).
6) the general purpose register of Problem 5.25.

1.3 Write a Verilog description for the Status register of Example 6.1 using structural
modeling.

Appendix I: Verilog 755

1.4 Write a Verilog description for the four-bit by four-bit unsigned multiplier
(repeated addition) using:
(a) Hardwired control (Section 7.3.5). (b) Microprogramming (Section
7.3.5).

APPENDIX

J
VHDL

J.l Introduction to VHDL

Each VHDL description contains two blocks. These are input/output and architectural
components. The input/output description specifies the input and output connections (ports)
to the hardware. The architectural component defines the behavior of the hardware entity
being designed. A typical VHDL description includes a port statement contained within
an entity statement. All keywords in VHDL are reserved. This means that they cannot be
used for any other purpose. A typical VHDL entity is given below:

entity EXAMPLE is -- Entity Statement
port _ _ port Statement
(X,Y,Z : in BIT;

W : out BIT);

end EXAMPLE

The entity statement begins with the keyword entity followed by the name of
the entity EXAMPLE followed by the word 1s . Note that all keywords in VHDL are case
sensitive. The port statement is contained within an entity statement. The VHDL design
entity is comprised of two parts: an interface and a body. The interface is specified by the
keyword entity and the body is denoted by the keyword architecture. Typical logic and
arithmetic operators along with port modes are listed below:
LOGIC OPERA TORS

and
or
xor
xnor
nand
nor
not

ARITHMETIC OPERA TORS
-+
-
*
I
mod
rem
abs
**

TYPICAL PORTMODES

AND Operation
OR Operation
Exclusive-OR Operation
Exclusive-NOR Operation
NAND Operation
NOR Operation
NOT Operation

Positive sign or addition
Negative sign or subtraction
Multiplication
Division
Modulus
Remainder
Absolute value
Exponential

757

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

758 Fundamentals of Digital Logic and Microcomputer Design

in
out

Information from the signal flows into the entity.
Information from the signal flows out of the entity, the value of
the signal cannot be used inside the entity. Therefore, the value
can appear on the left of the <= symbol.
Information from the signal can flow into and out of the
entity.
Information from the signal flows out of the entity; however, the
signal can be used the entity. Therefore, the signal can appear
on both sides of the <= symbol.

In the following, a simple VHDL programming example is provided. A comment
is indicated by the symbol --before a statement. A VHDL program for an Exclusive-NOR
operation between two Boolean variables X and Y is provided below:

inout

buffer

-- Exclusive-NOR Operation
entity XNOR is
port(X,Y : in BIT; 2 : out BIT);
end XNOR;

architecture BEHAVIOR of XNOR is
begin
Z<=X xnor Y;
end BEHAVIOR:

-- Body

In the above example, architecture declares the name XNOR to associate the
architecture with the XNOR design entity interface. VHDL provides a library where the
intermediate files about a particular design can be stored. These files can be used during
analysis, synthesis and simulation of the design using IEEE standards. For example, the
statement library ieee;, can be used at the beginning of each program to specify the IEEE
library. Also, IEEE developed the 1164 standard logic package to satisfy the requirements
ofmost ofthedesigners. Thestatement library ieee;use.std-logic-l164 .all; written
at the start of a VHDL program can use all the definitions of the IEEE standard 1 164 logic
package. Some more features of VHDL are discussed in the following.

For instance, in the architecture definition, signal declaration can be used for
providing wire (internal connection) in a circuit. The signal declaration is similar to port
declaration except that no modes (in or out) need to be specified. Predefined data types
such as bit and bit-vector can be used with the signal declaration. bit data type can
have values of 0 or 1 while bit-vector data type can be used to define a binary number.
For example, the statement signal c:bit-vector (3 downto 0) ; defines bits 3 and 0 as
the most significant bit and the least significant bit of a 4-bit number respectively. VHDL
provides wait keyword which can be used in a test program to stop an operation for a
specified period of time and then verify the outputs based on the predefined inputs.

VHDL provides a case statement that executes one of several sequences of
statements based on the value of a single expression. A simple example illustrating the use
of the case statement is given below for a 2-to-1 multiplexer: case sel is

when “ O ” = >

when “1“=>
z<=a;

z<=b;

endcase;
In the above, sel is used as the select input for the 2-to-1 multiplexer. When

sel=O, output, z of the multiplexer is assigned with input, a. On the other hand, when
sel=1, output, z will be assigned with input, b. As mentioned before, in order to design

Appendix J: VHDL

a system using HDL such as VHDL, two basic levels of abstractions or modeling are
used. These are structural, modeling (used to describe a schematic or a logic diagram)
and behavioral modeling (used to describe what the system does and how it behaves; uses
both concurrent and sequential statements). Dataflow modeling is behavioral modeling
with concurrent statements. Hierarchical structural model is used to decompose a large
digital system into smaller blocks or modules. The three levels of abstractions (Structural,
Dataflow, and Behavioral) are illustrated in the following by means of VHDL programs for
the 2-to-4 decoder described in section 4.5.3.

J.l.1 Structural Modeling
The following VHDL structural description is provided for the 2-to-4 decoder' of Figure
4.14. The figure is redrawn below for convenience:

2-to4
Decoder

E

library IEEE;
useIEEE.std-logic-ll64.all;
entity decoder2to4 is

port (xl,xO,E: in B1T;d: out BIT-VECTOR(0
end decoder2to4;
architecture STRUCTURAL-DEC of decoder2to4 is

port (u : in BIT; v: out BIT);
component inv

end component;
--VHDL code for inv
library IEEE;
useIEEE.std-logic-ll64.all;
entity inv is

end inv;
architecture LOGIC1 of inv is
begin

end LOGIC1;

port (u: in BIT; v: out BIT);

v<=not u;

component and3

end component;
port (a, b, c: in BIT; f: out BIT);

--VHDL code for and3
library IEEE;
useIEEE.std-logic-ll64.all;
entity and3 is

end and3;
architecture LOGIC of and3 is
begin

end LOGIC;

begin

port (a, b, c: in BIT; f: out BIT);

f<= a and b and c;

signal xll, x00: BIT;

fO: inv port map (xl, xll);

to 3)) ;

fl: inv port map (x0, x00);
f2: and3 port map (E, xll, x00, d(0));

760 Fundamentals of Digital Logic and Microcomputer Design

f3: and3 port map (E, xll, x0, d (1)) ;
f4: and3 port map (E, xl, x00, d (2)) ;
f5: and3 port map (E, xl, x0, d(3));

end STRUCTURAL-DEC;

library IEEE;
useIEEE.std-logic-ll64.all;

As mentioned before, a VHDL program should include the statements :

The first statement provides access to the library called IEEE. This library contains
the directory in the computer file system where the std-logic-I164 package is stored. The
IEEE library files are plain text files that can be checked using any text editor. One can
look at the IEEE library files after installing Altera Quartus I1 running under Microsoft
Windows Operating System. The file that specifies the std- logic type is called std 1 164.
vhd. Also note that VHDL is a strongly typed language unlike C . This means that VHDL
compiler does not allow one to assign a value to a signal or a variable unless the type of
the value exactly matches the declared type of the signal or variable. The VHDL compiler
checks to see if data objects on both sides of assignment statements are identical. The
VHDL compiler will not compile the program if there is a descrepency. For simplicity, all
VHDL programs in this book will mostly use only the std-logic type. IEEE 1 164 standard
logic package defines many functions that operate on the standard data types such as std-
logic and std-logicvector. Besides defining a number of user-defined data types, the IEEE
1164 package also defines the basic logic operations such as AND and OR on these data
types . Because VHDL is a strongly typed language, it is often necessary to convert a
signal from one type to another. IEEE 1 164 package provides several conversion functions
such as from bit to std-logic or vice versa. It should be mentioned that the IEEE 1 I64 does
not include some of the common conversion functions such as from std-logic -vector to
a corresponding integer value. However, the user can write such a conversion program. In
the above example, all data objects for the inverter are defined as bits; this means that they
can only have values of 0 or 1. In order to provide more flexibility, VHDL offers the data
type called std-logic. Signals can have several different values when represented using this
data type. In the above VHDL program, the statement (after component inv) port (u: in
BIT; v: out: BIT); can be written as port (u: in std-logic; v: out std-logic); . The std-logic
provides several data types including 0, 1, Z (High impedance state), and - (don’t care
condition).

Three types of data objects are used to represent information in VHDL programs.
These are signals, constants, and variables. Signals are very common in logic circuits
since they provide wires (connections) in the circuit. Constants and variables are also
used in logic circuits. Furthermore, in order to implement arithmetic operators for signed
and unsigned numbers,a package called std-logic-arith along with std-logic-signed (for
signed numbers) and stdlogic-unsigned (for unsigned numbers) can be used.

The entity called decoder2to4 in the above VHDL program contains three
input ports and four output ports. E, xl , and x0 are defined as inputs with widths of one
bit each while the output , d is defined as a vector with an array size of four bits. In
this example, the name of the architecture body is STRUCTURE-DEC. There are two
component declarations (inv, and3), and one signal declaration. The signal declaration
declares two signals of type BIT named, X I 1 and x00. These signals represent wires that
are used to connect the various components of the decoder. Note that the statements inside
a component are concurrent. Therefore, these statements can be written in any order within
a component. The Structural model considers the components as black boxes for only
interconnecting them without taking behavior of components into consideration. In the

Appendix J: VHDL 76 1

architecture body of STRUCTURALDEC, signals xl , x0, and E are declared as input
ports in the decoder2to4 entity declaration. Next, consider the statement labeled f5. In
f5, port E is connected to input a of component and3, port xl is connected to input b of
component and3, port x0 is connected to input c of component and3, and port d(3) of the
decoder2to4 entity is connected to the output port f of component and3. Note that separate
entity along with architecture and appropriate declarations are included for components inv
and and3.

The component statement is used to describe the Structural model of an entity. Two
component names are used in the above program. These are inv and and3. The component
name is the name of a defined entity to be used in the current architecture body. Each
component is declared with port declarations. The component declaration is included in
the declaration part of an architecture declaration. The keyword port map defines a list that
associates ports of the named entity with signals in the current architecture. A component
instantiation statement associates the signals in the entity with the ports. There are two
ways to represent the association. These are positional association and named association.
In positional association, each signal in the port map is mapped by position with each port
in the component declaration. This means that the first port in the component declaration
corresponds to the first signal in the component instantiation, the second port with the
second signal, and so on. For example, consider the following component instantiation
statement in the above program fo: inv port map (xl, x l 1); in which fo is the component
label for the current instantiation of the inv component. Signal xl is associated with port
u of the inv component and signal x l 1 receives the output value (inverted X I in this case)
from the component. The ordering of signals must be done properly.

In the named association, each of the entity’s ports is connected using the
operator <= or => and the order of listing is unimportant. The named association is
illustrated by a two-input OR gate example provided below.
entity comb is

end comb;
architecture structural of comb is

port (a, b: in BIT; c: out BIT);

component OR2

end component;
signal sl: BIT;

gl: O R 2 port map(x=>a, y=>sl, z=>c);

port (x, y: in BIT; z: out BIT);

begin

end structural;
entity OR2 is

end O R 2 ;
architecture LOGIC of O R 2 i s
begin

end LOGIC;

In the above, signal a (declared in the entity port list) is associated with x declared
in the component port list, signal c is associated with z, and signal s l is associated with y.
In this named association, the ordering of the associations is not required.

5.1.2 Behavioral Modeling
The behavioral model contains statements that are executed sequentially in a predefined
order. These sequential statements are defined using a process statement inside an
architecture body. A VHDL program for a 2-to-4 decoder using Behavioral modeling is

port (x, y: in BIT; z: out BIT);

z<= x or y;

762 Fundamentals of Digital Logic and Microcomputer Design

given in the following:
library IEEE;
useIEEE.std-logic-ll64.all;
entity decoder2to4 is
port (xl, x0, E: in BIT; d: out BIT-VECTOR (0 to 3));
end decoder2to4;
architecture BEHAVIOR-DEC of decoder2to4 is

begin
process (xl, x0, E)

variable xll, x0O:BIT;

xll:= not xl;
xOO:= not x0;

begin

if E = '1' then
d(O)<= xll and x00;
d(l)<= xll and x0;
d(2)<= xl and x00;
d(3)<= xl and x0;

d< = " 0 0 0 0 " ;
else

end if;
end process;

end BEHAVIOR-DEC;

In the above, two variables x l 1 and x00 are declared using the keyword variable.
A variable is always assigned with a value instantaneously using the assignment operator
:=. A signal, on the other hand, is assigned with a value always after a certain delay using
the assignment operator <=. Signal and variable assignment statements in a process are
executed sequentially regardless of whether or not any event occurs on the right hand side
of the expression. The general form of process statement is given below:
process (sensitivitylist)
process declarations
begin
list of sequential statements such as signal assignments, variable assignments, and if
statements
end process;

The sensitivitylist includes signals to which the process is sensitive. The
process will be executed as soon as any changes in the values of these signals occur. As
mentioned before, variables and constants inside a process must be defined in the process
declarations part before the keyword begin. The statements that follow after the keyword
begin are executed sequentially. Variable assignments inside a process are denoted by
the := operator, and are executed immediately. This is in contrast to signal assignment
denoted by the operator <= in which changes occur after a delay. Therefore, variables
will be available immediately to all subsequent statements within the same process. In
the above program, if-else construct is used. The general form of if-else construct is as
follows:
if condition then
sequential statements
elseif condition then
sequential statements
else
sequential statements
end if;

Appendix J: VHDL 763

The if statement is executed by checking each condition (Boolean expression)
in the order they are written in the program until a true condition is found. In the above
program, E=l is the true condition. If an event occurs on any signal E, x l , or x0, variable
assignment statements are executed. When the if statement is executed , and if E=l , then
four signal assignment statements are executed. On the other hand, if E=O, the four-bit
vector, d receives the four-bit value 0000. When end of process is reached, the process
halts itself and waits for another event to occur on a signal in the sensitivity list.

5.1.3 Dataflow Modeling
As mentioned before, dataflow modeling is a form of behavioral modeling. A VHDL
program for the 2-to-4 decoder using dataflow modeling is provided in the following:
library IEEE;
useIEEE.std-logic-ll64.all;
entity decoderZto4 is

end decoder2to4;
architecture DATAFLOW-DEC of decoder2to4 is

begin

port (xl, x0, E: in BIT; out BIT-VECTOR (0 to 3)) ;

signal xll, x00: BIT;

xll <= not xl;
x00 <= not x0;
d(O)<=E and xll and x00;
d(l)<=E and xll and x0;
d(2)<=E and xl and x00;
d(3)<=E and xl and x0;

end DATAFLOW-DEC;

Note that VHDL programs written using dataflow modeling contain assignment
statements. These statements are executed if one of the values on the right hand side of
the assignment statement changes. The architecture body contains one signal declaration
and six concurrent signal assignment statements. Note that concurrent signal assignment
statements are concurrent statements, and hence, the ordering of these statements in the
architecture body is unimportant. The signal declaration declares X I 1 and x00 to be used
with the architecture body. Since no after clause is used for defining delays for each
signal assignment statement, a default delay of Ons is assumed. This delay of Ons is called
delta time and is denoted by a very small time delay. Now, Suppose that input signal,
x0 in the above program changes. This will affect the signal assignment statements for
x00, d(l), and d(3). Therefore, the right hand sides of these expressions will be evaluated
, and the corresponding values of x00, d(l), and d(3) will be assigned after certain time
delay (for example, t) during simulation. Since the value of x00 is affected due to changes
in x0, this, in turn, will affect the values of d(0) and d(2). Therefore, new values will
also be calculated for d(0) and d(2) after hrther time delays (for example, t+nt). The
meaning of this concurrent behavior shows that the simulation is event-triggered. Hence,
the simulation time proceeds to the next time unit when an event occurs. In the above
program, the library and entity statements are same as before. Signal declarations are made
for xl land x00. Signals x l 1 and x00 are obtained by applying logical not operations on
X I and x0 respectively. d(O), d(l), d(2), and d(3) are then obtained by performing logical
and operations on E, x l , x0, x l 1, x00 as defined by the Boolean equations of the 2-to-4
decoder.

There are two other ways of writing VHDL programs with dataflow modeling.
These are called conditional dataflow modeling, and are obtained by using when-else and
with-select constructs. The following VHDL program is written for the 2-to-4 decoder

764 Fundamentals of Digital Logic and Microcomputer Design

using when-else construct:
library IEEE;
useIEEE.std-logic-ll64.all;
entity decoder is

port (x: in bit-vector(1 downto 0);
E:in bit;
d: out bit-vector(3 downto 0));

end decoder;
architecture when-else of decoder is
signal Ex: in bit-vector(2 downto 0);
begin
Ex<= E & x;
d<= "0001" when Ex = '100" else

"0010" when Ex = "101" else
"0100" when Ex = "110" else
"1000" when Ex = "111" else
" 0 0 0 0"

end architecture when-else;

The truth table for the above decoder is given in table 4.8. The inputs in this table
are shown in the order E xl x0. In the above program, these three signals are represented
as a three-bit signal called Ex. In order to express Ex, the VHDL concatenate operator &
is used in the expression Ex<= E & x;. Thus, E and x are combined into Ex signal where
Ex(2) = E, Ex(1) = x l , and Ex (0) = x0. Ex is used as a condition in the above when-else
construct. This when-else conditional assignment is used to assign a signal value with one
of several choices. The syntax is as follows:
signalname<= expression when Boolean-condition else

expression when Booleancondition else
expression when Booleancondition else

...
expression

The signalname will have the value ofthe first expression whose Boolean condition
is true. If more than one condition is true, the signalname will be assigned with the value
associated with the first true condition. If no true condition is found, the signalname will
be assigned with the final expression. For example, if E= 1, x 1 = 0, x0 = I , then Ex = 10 1.
This means that the four-bit vector d will be assigned with the value 0010; hence, d3=0,
d2=0, d l= l , and dO=O. However, if Ex = 01 1, then the four-bit vector, d will be assigned
with the value 0000.

The following VHDL program is written for 2-to-4 decoder using with-select
construct:
library IEEE;
useIEEE.std-logic-ll64.all;
entity decoder is
port (x: in bit-vector(1 downto 0);

E:in bit;
d: out bit-vector(3 downto 0));

end decoder;

architecture with-select of decoder is
signal Ex: in bit-vector(2 downto 0);
begin
Ex<= E & x;

with Ex select

Appendix J: VHDL 765

d<= “ 0 0 0 1 ” when ‘’ 10 0 ” ,
“0010” when “101”,
“0100” when “110”,
“1000” when “lll“,
“0000” when others;

end architecture with-select;

The syntax for with-select construct is given below:
with choice-input select
signalvalue <= expression when value,

expression when value,
expression when value,

expression when others;
In the above, choice-input (the value of choiceinput is to be used for decision) is

placed between with and select. When choice-input equals value, the expression associated
with the value is assigned to signalvalue. For example, consider E=l, xl=l , and xO=O. This
means that Ex=l 10. Hence, 0100 is assigned to the four-bit vector, d. Therefore, d3=0,
d2=1, dl=0, and dO=O. All other values not listed are represented by the word, others.
Hence, if Ex = 0 1 1, then d will be assigned with the value 0000.

5.1.4 Mixed Modeling
In the following, an example is provided in which all three levels of modeling
(Structural, Dataflow, and Behavioral) are used. This is called mixed modeling. The full
adder is used for this purpose. The equations for the full adder can be written as follows:
S = w 0 z , where w = x 0 y
c = xy + yz + xz
The following VHDL program implements the above equations as follows:
w = x 0 y (Structural), S =S = w 0 z (Dataflow), C = xy + yz + xz (Behavioral)
--VHDL program for Full Adder using mixed modeling
library IEEE;
useIEEE.std-logic-ll64.all;
entity FA is

end FA;
-- Structural
architecture MIXED of FA is

port (x,y,z: in BIT; S, C: out BIT);

component XORO

end component;
signal w:BIT;

g : XORO port map (x,y,w);

port (a,b: in BIT; c: out BIT);

begin

--Behavioral

process (x, y, w)
variable fl, f2, f3: BIT;

fl:=x and y;
f2:=y and z;
f3:=x and z;
C<=fl or f2 or f3;

begin

end process;
--dataflow

end MIXED;
S<=w xor z;

766 Fundamentals of Digital Logic and Microcomputer Design

--VHDL code f o r XORO
entity XORO is

end XORO;
architecture LOGIC of XORO is
begin

end LOGIC;

port (m, n: in BIT; v: out BIT);

v<=m xor n;

5.2 VHDL descriDtions of tvoical Combinational lopic circuits

EXAMPLE J.l
Write a VHDL description for f = A + B
Solution
The program written using Dataflow modeling as follows.
Program :

(Section 3.6) using dataflow modeling.

-- file name: FUNC.vhd

library ieee;
use ieee.std-logic-ll64.all;
entity FUNC is

port (a,b,c:in std-logic;
f:out std-logic);

end FUNC;

architecture FUNC-arch of FUNC is

begin
signal y0,yl: std-logic;

yo <= not c;
yl <= b and yo;
f <= yl or a;

end FUNC-arch;

EXAMPLE 5.2
Write a VHDL description for a two-input Exclusive-OR gate using dataflow modeling.
Solution
This program is written using dataflow modeling as follows:
LIBRARY ieee;
USE ieee.std-logic-ll64.all;
ENTITY xor-bit IS

END xor-bit;
ARCHITECTURE behave OF xor-bit IS
BEGIN

PORT (a,b: IN bit; y: OUT bit);

y <= a XOR b;
END behave:

EXAMPLE 5.3
Write a VHDL description using dataflow modeling for the 2-to-1 multiplexer of figure
4.2 1 using dataflow modeling.

Solution

-- 2 to 1 MUX

Appendix J: VHDL 767

-- file name: MUX2.vhd
library ieee;
use ieee.std-logic-ll64.all;
entity MUX2 is

port (a, b, sel :in std-logic;
cout:out std-logic);

end MUX2;
architecture MUX-arch of MUX2 is
signal yO,yl,y2: std-logic;
begin

yo <= not sel;
yl <= a and yo;
y2 <= b and sel;

cout <= yl or y2;
end MUX-arch;

EXAMPLE 5.4
Write a VHDL description using dataflow modeling for a 4-bit binary adder.
Solution
-- 4 bit binary adder
-- file name: adder4.vhd
library ieee;
use ieee.std-logic-ll64.all;
entity adder4 is

port(a,b:in bit-vector(3 downto 0);
cin:in bit;
cout:out bit;
s:out bit-vector(3 downto 0));

end adder4;
architecture adder-arch of adder4 is

begin
signal c:bit_vector(3 downto 1);

s(O)<=a(O) xor b(0) X O L cin;
c(l)<=(a(O) and b (0)) or (a(0) and cin) or (b(0) and cin);
s(l)<=a(l) xor b(1) xor ~ (1) ;
c(2)<=(a(l) and b (1)) or (a(1) and ~ (1)) or (b (1) and c(1)
s(2)<=a(2) x o r b(2) xor c(2);
c(3)<=(a(2 and b(2)) or (a(2) and c(2)) or (b(2) and c(2)
s(3)<=a(3) xor b(3) xor c(3);
cout<=(a(3 and b(3)) or (a(3) and c(3)) or (b (3) and c(3)

end adder-arch;

EXAMPLE J.5
Write a VHDL description using hierarchical modeling for a 4-bit binary adder.
Solution
VHDL (Using Hierarchical)
--One full adder program
library ieee;
use ieee.std-logic-ll64.all;
-- full-adder
--Define outputs and inputs
entity full-adder is

port (a, b, cin: in std-logic;
sum, carry: ou t std-logic);

end full-adder;
--Use Boolean equations
architecture eqns of full-adder is
begin

768 Fundamentals of Digital Logic and Microcomputer Design

sum <= a xor b xor cin;
carry <= (a and b) or (cin and (a xor b)) ;

end eqns;

--4 bit full adder using the full adder program
-- 4-bit full adder using hierarchical logic
library ieee;
use ieee.std-logic-ll64.all;

-- module interface
entity hier-full-adder is
port (a, b : in std-logic-vector(3 downto 0);

cin : in std-logic ;

sum : out std-logic-vector(3 downto 0);
carry : out std-logic) ;

end hier-full-adder;
-- module hierarchical
architecture structural of hier-full-adder is

component full-adder

end component;
signal c0, cl, c2: std-logic;

faO: full-adder port map (a(O), b (O) , cin, sum(O), c 0) ;
fal: full-adder port map (a(l), b (l) , c0, sum(l), cl);
fa2: full-adder port map (a(2), b(2), cl, sum(2), c2);
fa3: full-adder port map (a(3), b(3), c2, sum(3), carry);

port (a, b, cin: in std-logic; sum, carry: out std-logic);

begin

end structural:

EXAMPLE 5.6
Write a VHDL description for a full-adder using 74138 decoder and gates (Figure 4.17).
Solution
The 74138 decoder is implemented using
implemented using structural modeling. The VHDL program is provided below:

conditional dataflow. The Full-adder is

LIBRARY IEEE;
USE 1EEE.STD-LOGIC-1164.ALL;
ENTITY Dec3to8 IS

DOWNTO 0);
PORT (A : in STD-LOGIC-VECTOR (2

G1, NOT-G2A, NOT-G2B: in STD-LOGIC ;
D : out STD-LOGIC-VECTOR (7

DOWNTO 0)) ;

END Dec3to8;
ARCHITECTURE Behavior OF Dec3to8 IS
SIGNAL Sel : std-logic-vector (5 downto 0);
BEGIN

Sel <= ((NOT-G2A & NOT-G2B) & G1) & A;
WITH Sel SELECT

D <= “11111110” WHEN “OOlOOO”,
“1 11 11 10 1 ” WHEN ”00 100 1 ” ,
“1 11 11 01 1 ” WHEN ”00 101 0”,
“1 1 1 10 1 1 1 ” WHEN ’’ 0 0 1 0 1 1 ” ,
“1 11 0 1 11 1 ” WHEN “00 11 0 0” ,
‘‘ 1 1 0 1 1 1 1 1 ” WHEN ’’ 0 0 1 10 1 ” ,
“1 0 1 1 1 1 1 1 “ WHEN ’’ 0 0 1 1 10 ” ,
“ 0 1 1 11 1 1 1 ” WHEN 0 0 1 1 1 1 ” ,
“11111111” WHEN OTHERS;

END Behavior;

Appendix J: VHDL 769

_ - IMPLEMENTATION OF A FULL ADDER USING 74138 & 4-INPUT AND GATES
LIBRARY IEEE;
USE IEEE.STD-LOGIC-1164.ALL;
ENTITY Full-Adder IS

PORT (X : in STD-LOGIC-VECTOR (2 DOWNTO 0);
S, C : out STD-LOGIC) ;

END Full-Adder;
ARCHITECTURE Structural OF Full-Adder IS
SIGNAL gl, 92, 93 : std-logic;
SIGNAL M : STD-LOGIC-VECTOR (7 DOWNTO 0);
COMPONENT Dec3to8

DOWNTO 0);
PORT (A : in STD-LOGIC-VECTOR (2

G1, NOT-G2A, NOT-G2B: in STD-LOGIC ;
.D : out STD-LOGIC-VECTOR(7

DOWNTO 0)) ;
END COMPONENT;
BEGIN

gl <= ‘1’;
92 <= ’0’;
93 <= ‘0’;
Dec: Dec3to8 port map (X, gl, 92, 93, M);
S <= (M (0) and M(3) and M(5) and M(6));
C <= (M(0) and M (1) and M(2) and M(4));

END Structural;

5.3

VHDL keyword process, described in section J. 1.2 for behavioral modeling, is used to
describe sequential circuits. Furthermore, state machines are normally modeled using a
case statement in a process. Since the case statement provides multiple branching, the
behavior ofa state in a state machine is represented using case statement. Also, the statement
clock’ event and clock=‘ 1‘ ; is used to obtain positive clock. This is because the syntax
clock’event uses a VHDL attribute. An attribute basically implies the property of an object
such as signal. The attribute ‘event means a change in the clock signal. By logically anding
clock’event with clock=l will indicate that the clock signal has just changed and the value
of the clock signal is 1. This means a positive clock edge.

EXAMPLE 5.7
Write a VHDL description for a D flip-flop using Behavioral modeling.
Solution
-- D Flip-Flop (Behaviorally)
-- Module DFF with synchronous reset
-- file name: dfflop.vhd

VHDL descriptions of tvDical svnchronous seauential circuits

library ieee;
use ieee.std-logic-ll64.all;
entity dfflop is

port(d, clk, reset: in std-logic;
q : out std-logic);

end dfflop;

architecture dfflop-arch of dfflop is

770 Fundamentals of Digital Logic and Microcomputer Design

begin
process (clk, reset) is
begin

if reset = ‘1‘ then

elsif clk’event and clk = ‘1‘ then

end if ;

<= ’0’ .

q < = d ;

end process;
end dfflop-arch;

Tabular form of simulation:
INPUTS reset d clk ;
OUTPUTS q ;
PATTERN
% r

e

,

s c ,

9, e l ,
t d k q %

o . o > 0 0 0 = 0
1000.0> 0 0 1 = 0 2000.0> 0 1 0 = 0 2006.5> 0 1 0 = 1
3000.0> 0 1 1 = 1 4000.0> 1 0 0 = 1 4006.5> 1 0 0 = 0
5000.0> 1 0 1 = 0 6000.0> 1 1 0 = 0 7000.0> 1 1 1 = 0

8000.0> 0 0 0 = 0 9000.0> 0 0 1 = 0 10000.0> X X X = X

EXAMPLE 5.8
Write a VHDL description for a T flip-flop using behavioral modeling.
Solution

Implementation of T Flip Flop using Behavioral method:
.

T FLIPFLOP IMPLEMENTATION _ _

.

LIBRARY ieee ;

USE ieee.std-logic-ll64.all ;

ENTITY tff IS

PORT (T ,preset, reset, C l o c k : IN STD-LOGIC ;

,¶not : buffer STD-LOGIC) ;
END tff ;

ARCHITECTURE Behavior OF tff IS

SIGNAL temp :STD-LOGIC;

begin

PROCESS (preset, reset, Clock)

BEGIN

IF reset = ‘0’ THEN

temp <= ’0’ ;

Appendix J: VHDL 77 1

ELSIF preset = ’0 ’ then

temp <= ‘1’;
ELSIF Clock‘EVENT AND Clock = ‘1‘ THEN

temp <= T xor temp ;
END IF ;

END PROCESS ;

q <= temp;
qnot <= not temp;

END Behavior;

EXAMPLE J.9
Write a VHDL description of the state machine of figure 5.21of Example 5.2
(a) using mixed modeling (dataflow and behavioral) (b) using behavioral modeling with
case statement. Figure 5.21 is redrawn below:

n O I 1

Solut ion
(a)
The following equations are obtained in Example 5.2:
D,=XTA +IT D,=?A + Y l = Y O A Z = B 2 + X
These equations are used to write the following program.
-- Example 5.2: Sequential circuit

-- file name: ex52-seql .vhd
LIBRARY ieee;
USE ieee.std-logic-ll64.all;
USE 1EEE.STD-LOGIC-UNSIGNED.ALL;
USE ieee.std-logic-arith.al1;

entity ex52-seql is
port (clk, a, reset: in std-logic; -- inputs for example 5.2

z,x-out,y-out: out std-logic); -- output for example 5.2
end ex52-seql;

architecture dfflop-arch of ex52-seql is
signal data-dl, data-d2, x, y :std-logic;
signal x1,yl: std-logic;

data-dl <= ((x and (not y) and a) or ((not x) and y)) ;

data-d2 <= (y xor a) ;

dffl: process (clk)

begin

772 Fundamentals of Digital Logic and Microcomputer Design

begin
if (reset=‘ 1‘) then

x<= ’0’ ;
y<= ‘0’ ;

end if;
begin

if (clk‘event and clk= ’1’) then
x <= data-dl;
y <= data-d2;

end if;
end process dffl;
z <= x or ((not y) and (not a));
x out <= x;
y-out <= y;
-

end dfflop-arch;

(b) Behavioral Modeling using case statement:

VHDL PROGRAM:

.
* *
- _ IMPLEMENTATION OF SYNCHRONOUS SEQUENTIAL *
_ _ CIRCUIT (Example 5.2)
*
.
* *
LIBRARY ieee ;
USE ieee.std-logic-ll64.all ;

ENTITY Mealy IS
PORT (x, reset, clock : IN STD-LOGIC ;

z : OUT STD-LOGIC) ;

END Mealy ;

ARCHITECTURE M OF Mealy IS
type state-type is (SO, S1, 52, S 3) ;
signal Yn : state-type;
begin

State Transition AND Next State Calculation _ _

process (clock, reset)
begin

if reset = ’0’ then

elsif clock’event and clock = ‘1’ then
Yn <= SO;

case Yn is
when SO => if x = ’0’ then Yn <= SO;

else Yn <= S1;
end if;

else Yn <= S2;
end if;

else Yn <= S3;
end if;

else Yn <= SO;

when S1 => if x = ‘0’ then Yn <= S3;

when S2 => if x = ’0’ then Yn <= SO;

when 53 => if x = ’0’ then Yn <= S1;

end if;

Appendix J: VHDL 773

end case ;
end i f ;

end process ;

_ _ Output Calcu la t ion

process (x, Yn)
begin

case Yn i s
when SO => i f x = ‘0’ then z <= ‘1‘;

e l s e z <= ’0’;
end i f ;

when S1 => z <= ’0 ’ ;
when S2 => z <= ’1’;
when S 3 => z <= ‘1’;

end case ;
end process ;

end M;

Note:
In the above VHDL program, the state table of the machine is defined using a c a s e

statement. Each when construct corresponds to a present state of the machine, and the i f

statement inside the when construct defines the next state at the positive edge of the clock
Note that in VHDL clock’event and clock=’ 1 ’ means positive edge of the clock.. In the
above, a type declaration is used for the signal Yn. The type declaration allows one to
specify new types analogous to existing types such as s td- logic . A type declaration starts
with the keyword type followed by the name of the new type, the keyword is, and the list
of the values of the signals of the new type in parentheses. The signal named Yn represents
the state of the machine. It is defined as state-type with four possibilities SO, S1, S2, and
S3. When the VHDL program is compiled, the compiler
automatically performs a state assignment to select appropriate bit patterns for the four
states. The behavior of the Mealy machine is defined by the inputs reset, clock, and input,
x. The program contains an asynchronous reset input that places the machine in state
SO. Consider the last four when statements between c a s e Yn i s and end case . The
first statement means that when Yn=SO (state 0), if input x=O then output z=1. When
Yn=SI (state l), output z=O for either input x=O or 1; when Yn=S2 (state 2), output z=l for
either input x=O or 1; when Yn=S3 (state 3), output z=l for either input x=O or 1. These
transitions agree with the state diagram of figure 5.2 1.

EXAMPLE J.10
Write a VHDL description for the two-bit counter of Example 5.5 to count in the sequence
0, 1, 2, 3, and repeat. Use T flip-flops.
Solution

BEHAVIORAL METHOD:

.

-- . IMPLEMENTATION OF COUNTER

*

-- (Example 5-5)

774 Fundamentals of Digital Logic and Microcomputer Design

*
LIBRARY ieee ;
USE ieee.std-logic-ll64.all ;

USE ieee.std-logic-unsigned.al1;

ENTITY Counter-21N IS
PORT (EN, reset, clock : IN STD-LOGIC ;

END Counter-21N ;

ARCHITECTURE M OF Counter-21N IS

count : OUT STD-LOGIC-VECTOR (1 DOWNTO 0)) ;

signal count-up : std-logic-vector (1 downto 0);
begin
process (clock, reset)

begin
if reset = ‘0‘ then

elsif clock’event and clock = ’1’ then
count-up <= (others => ’ 0 ’) ;

if EN =‘l’ then
count-up <= count-up + 1;

end if;
end if;

end process;
count <= count-up;

end M;

Note: In the above, the statement count-up <= (others => ‘0’); is equivalent to count-up
<=”00” since count-up is declared as a two-bit vector earlier in the code. The (others=>’O’)
syntax will assign a ‘0’ digit to each bit of countup regardless of the size of count-up.
Therefore, the above VHDL code can be used for any size of count-up rather than only for
the two-bit count-up.

EXAMPLE J.11
Write a VHDL description for the three-bit counter of Example 5.7.

Solut ion

-- AND -T FLIP FLOP:

_ _ .
*
-- AND-T FLIPFLOP IMPLEMENTATION
-- (Example 5-7)
.
*

LIBRARY ieee ;
USE ieee.std-logic-ll64.all ;

ENTITY AND-tff IS
PORT (x0, xl, Clock : IN STD-LOGIC ;

q : out STD-LOGIC) ;
END AND-tff ;

ARCHITECTURE Behavior OF AND-tff IS
signal T, temp : std-logic;

Appendix J: VHDL 775

BEGIN
T <= x0 and xl;
PROCESS

BEGIN
wait until Clock'EVENT AND Clock = '1';

temp <= T xor temp;//temp is 0 or 1

END PROCESS;
q <= temp;

END Behavior;

--OR-T FLIP FLOP:

-- .
*
-- OR-T FLIPFLOP IMPLEMENTATION
-- (Example 5-7)

.
*
LIBRARY ieee ;
USE ieee.std-logic-ll64.all ;

ENTITY OR-tff IS

PORT (x0, xl, Clock : IN STD-LOGIC ;

END OR-tff ;

ARCHITECTURE Behavior OF OR-tff IS
signal T, temp : std-logic;

q : out STD-LOGIC) ;

BEGIN
T <= x0 or xl;
PROCESS

BEGIN
wait until Clock'EVENT AND Clock = '1';

temp <= T xor temp;

g <= temp;
END PROCESS;

END Behavior;

--AND-OR-T FLIP FLOP:

-- .

-- AND-OR-T FLIPFLOP IMPLEMENTATION
-- (Example 5-7)

*

-- .
*
LIBRARY ieee ;
USE ieee.std-logic-ll64.all ;

ENTITY AND-OR-tff IS
PORT (x0, xl, x2, Clock : IN STD-LOGIC ;

776 Fundamentals of Digital Logic and Microcomputer Design

q : OUT STD-LOGIC) ;
END AND-OR-tff;

ARCHITECTURE Behavior OF AND-OR-tff IS
signal T, temp : std-logic;

BEGIN
T <= (x0 and xl) or x2;
PROCESS

BEGIN
wait until Clock’EVENT AND Clock = ‘1‘;

temp <= T xor temp;
END PROCESS;

q <= temp;
END Behavior;

--THE MAIN PROGRAM OF NONBINARY COUNTER:

-- .
*
-- NON BINARY COUNTER IMPLEMENTATION
-- (Example 5-7)

-- .
*

LIBRARY IEEE;
USE 1EEE.STD-LOGIC-1164.ALL;

ENTITY Non-Binary-Count IS
PORT (CLK : in std-logic;

A : buffer std-logic-vector (2 downto 0)) ;

END Non-Binary-Count;

ARCHITECTURE Structure OF Non-Binary-Count IS
signal t : std-logic-vector(2 downto 0);
COMPONENT AND-tff

PORT (x0, x1,Clock: IN STD-LOGIC ;
9 : OUT STD-LOGIC) ;

END COMPONENT;
COMPONENT AND-OR-tff

PORT (x0 , xl, x2,Clock: IN STD-LOGIC;
q : OUT STD-LOGIC) ;

END COMPONENT;
COMPONENT OR-tff

PORT (x0, xl, Clock : IN STD-LOGIC ;
q : OUT STD-LOGIC) ;

END COMPONENT;
Begin

t(0) <= not A(0);
t(1) <= not A(1);
t(2) <= not A(2);

TfO: AND-tff port map (A(O), A(1), CLK, A(2));
Tfl: OR-tff port map (t(l), A(O), CLK, A(1));
Tf2: AND-OR-tff port map (t(O), A(1), A(2), CLK, A(0));

END Structure:

Appendix J: VHDL 777

c= I
(from result)

Note: In the above VHDL code, wait until is used with the clock. This statement has
the same effect as the i f statement previously used with the clock. The sensitivity list is
omitted from the process since wait until construct is used. The wait until construct
means that the sensitivity list automatically contains only the clock signal.

D Q . C@it 4) = 1

>

5.4

In this section, the VHDL description of the Status register of Example 6.1 will be provided.
The VHDL program for the Status register is written using structural modeling. Schematic
for the Status register is redrawn below.

Status register d e s k usiw VHDL

Result { D O Z@it2)=1

41 >

I S @ i I 3) = 0
(The most signific '

bit of s = o the resul I

Clock I

The VHDL description for the D flip-flop (required by the Status register program) is
written using behavioral modeling.

EXAMPLE 5.12
Write a VHDL description of the Status register of Example 6.1.
Solution

LIBRARY IEEE:
USE 1EEE.STD LOGIC 1164.ALL;
ENTITY Status Reg IS
PORT (Ci, Si, Cf, Cp, CLK: in std logic;

Result: in std logic vector (3 downto 0);
C , S, 2, V, P: buffer std logic);

end Status Reg;
ARCHITECTURE Structure OF Status Reg IS
COMPONENT DFF

PORT (D, CLK: in std logic; Q: buffer std logic);
END COMPONENT
SIGNAL m, n, r : std logic;
BEGIN

778 Fundamentals of Digital Logic and Microcomputer Design

m <= not (Result (0) or Result (1) or Result (2) or Result (3));
n <= Cf xor Cp;
r <= ((Result(0) xor Result (1)) xor Result (2)) xor Result (3) ;
D1: DFF PORT MAP (Ci, CLK, C);
D2: DFF PORT MAP (Si, CLK, S) ;
D3: DFF PORT MAP (m, CLK, 2);
D4: DFF PORT MAP (n, CLK, V);
D5: DFF PORT MAP (r, CLK, P);

END Structure;

LIBRARY IEEE:
USE 1EEE.STD LOGIC 1164.ALL;
ENTITY DFF IS
PORT (D, CLK : in std logic; Q : buffer std logic);
end DFF;

ARCHITECTURE Behavior OF DFF IS
begin

process
begin

wait until CLK’EVENT AND CLK = “1” ;
Q < = D ;

end process;
end Behavior;

Waveform:

1

0

1

1

H O
0

0

0

0

0

I 0

After the clock is set to one, the outputs are generated. From the
waveform, it can be verified that Ci = 1, Si = 0, Cf = Cp =1, and result =

0000. That gets the output C = 1, S = 0, Z = 1, V = 0, P = 0

J.5 CPU desim usinv VHDL

In writing VHDL description for the CPU in Example 7.5, some of the VHDL statements
and keywords such as generate , generic , generic map, type-conversion functions,

Appendix J: VHDL 779

and constant are used. Therefore, these will be discussed below. The generate statement
can be used in applications where it is necessary to create multiple copies of a particular
structure within an architecture. For example, an n-bit ripple carry adder can be obtained
by connecting n full-adders. The generate statement in VHDL can be used to create such
repetitive structures. There are two types of generate. These are for generate and if
generate. The for generate allows concurrent statements to be selected apredetermined
number of times. The general form of for generate loop is given below:
label-name : for k in 1 to n generate

concurrent statements
end generate;

In the above, the identifier k must be declared as the same type as the range 1 to n
(integer in this case). The concurrent statements are executed once for each possible value
of the identifier within the range.
The if generate, on the other hand, allows concurrent statements to be conditionally
selected based on the value of an expression. The general form of if generate is given
below:
label-name : if k=n generate

concurrent statements

end generate;
In order to illustrate the applications of for generate and if generate

Statements, consider VHDL code for a 4-to16 decoder using five 2-to-4
decoders of figure 4.16 as follows:
library ieee;
use ieee.std-logic-ll64.all;
entity 4to16dec is
port (x:in std-logic-vector (3 downto 0);

d: out std-logic-vector (0 to 1 5)) ;
e:in std-logic;

end 4to16dec;
architecture decoder of 4tol6dec is
component 2to4dec
port (x:in std-logic-vector (1 downto 0);

d: out std-logic-vector (0 to 3);
e:in std-logic;

end component;
signal k: std-logic-vector (0 to 3));

fl: for i in 0 to 3 generate

f2: if i=3 generate

begin

dec-1: 2to4dec port map(x(1 downto G), k(i), d(4*i to 4*it3));

dec-2: 2to4dec port map (x(i downto i-l), e, k);
end generate;

end decoder;

In the above, after the component declaration, signal k is defined as the outputs of
the left 2-to-4 decoder of figure 4.16. Also, in figure 4.16, the outputs are instantiated by the
for generate statement. For each iteration, the statement with label dec-1 instantiates a
2-to-4 decoder component that corresponds to one of the four 2-to-4 decoders on the right
side of figure 4.16. The first iteration produces 2to4dec component with inputs xl and
x0, enable input kO and, generates outputs do, d l , d2, d3. The other outputs of the 440-16
decoder are similarly generated.

For the last iteration, the if generate statement with label f2 instantiates a
2to4dec component. Note that i=3 condition is true for this iteration. This defines the 2-
to-4 decoder on the left of figure 4.16 with x3 and x2 as inputs, enable e, generating outputs

780 Fundamentals of Digital Logic and Microcomputer Design

k0, k l , k2, and k3. It should be pointed out that the for generate statement could have
been used by instantiating this component outside the for generate statement rather than
using the if generate statement as above. This is done in order to illustrate the use of if
generate statement.

Digital circuits such as registers of different sizes are needed in many applications.
It is convenient to specify a register entity for which the number of flip-flops can be
readily changed to conform to the size of the required register. Therefore, a generic

parameter (integer for a register) specifying the number of flip-flops needs to be defined
before port declarations using the generic construct. By altering this parameter, the VHDL
code can be used for register of any size. The generic map clause can then be used to
specify a different value for the register size. In order to illustrate the use of generic and

generic map, a 4-bit inverter (bitwise 4-bit NOT operation; this can be considered as
four independent inverters with four inputs and four outputs) is first defined with an entity
called inv4 using generic and generate statements. Next, copies of this 4-bit inverter
are instantiated to obtain 8-bit and 16-bit inverters using generic map and port map
statements. The following VHDL code illustrates this:
library ieee;
use ieee.std-logic-1164.all;
entity inv4 is

generic (size:positive) ;
port(a:in std-logic-vector(size-1 downto 0);
b:out std-logic-vector(size-1 downto 0));

end inv4;
architecture inv4-example of inv4 is
component inv

port (x : in std-logic;
y:out std-logic);

end component;
--VHDL code for inv
library IEEE;
useIEEE.std-logic-ll64.all;
entity inv is

end inv;
architecture LOGIC1 of inv is
begin

end LOGIC1;
begin

port (x: in BIT; y: out BIT);

y<=not x;

fl: for n in size-1 downto 0 generate
f2: inv port map(a(n),b(n));
end generate;

end inv4-example;
library ieee;
use ieee.std-logic-ll64.all;
entity inv8-16 is

port(a1:in std-logic-vector(7 downto 0);
b1:out std-logic-vector(7 downto 0);

a2:in std-logic-vector(l5 downto 0);
b2:out std-logic-vector(l5 downto 0));

end inv8-16;
architecture inv-diffsize of inv8-16 is
component inv4

generic(size:positive);
port(a:in std-logic-vector(size-1 downto 0);

b:out std-logic-vector(size-1 downto 0));

Appendix J: VHDL 78 1

end component;
begin
gl:inv4 generic map(size=>8) port map(a1,bl);
g2:inv4 generic map(size=>16) port map(a2,b2);
end inv-diffsize;

Since VHDL is a strongly typed language, the value of a signal of one type is
not permitted to be used with another signal of a different type. This means that signals of
the types bit and std-logic cannot be mixed. In order to mix signals of different types,
type-conversion functions can be used. For example, consider converting s td-logic type
to an integer type. Suppose it is desired to convert a four-bit std-logic-vector signal
(a) into an integer signal (b) in the range from 0 to 15. Conversion function for assigning
the value of ‘b’ to ‘a’ can be written as: a<= conv-std-logic-vector (b, 4) ;.

The conversion function can be obtained by writing use ieee.std-logic-

arith. all; at the beginning of the VHDL code after library and use statements. This
conversion function is included as part of the std-logic-arith package. In the above, the
conversion function has two parameters. These are the name of the signal to be converted
(b in this case) and the number of bits in the std-logic-vector signal, a (four bits in this
case).

Finally, VHDL keyword constant can be used to assign a constant value to a
name which cannot be altered during simulation. The syntax for constant is as follows:
constant name: type := value;. For example, the declaration constant numb: std-
logic-vector (7 downto 0) := “00001111”; willassignnumb withthevalue00001111
whenever numb appears in the VHDL code. This improves readability of the code.

EXAMPLE 5.13
Write a VHDL description to implement the ALU of figure 7.24.
Solution
LIBRARY ieee ;
USE ieee.std logic 1164.all ;
ENTITY mux21 IS

PORT (wl, w0, s : IN STD-LOGIC ;
f l : OUT STD-LOGIC)

END mux21 ;
ARCHITECTURE Behavior OF mux21 IS
BEGIN

WITH s SELECT
fl <= w0 WHEN ’ O ’ ,

wl WHEN OTHERS ;
END Behavior ;
LIBRARY ieee ;
USE ieee.std logic 1164.all ;
ENTITY fulladd IS

PORT (Cin, x, y : IN STD-LOGIC ;
s, Cout : OUT STD-LOGIC) ;

END fulladd ;
ARCHITECTURE LogicFunc OF fulladd IS
BEGIN

s <= x XOR y XOR Cin ;
Cout <= (x AND y) OR (Cin AND x) OR (Cin AND y) ;

END LogicFunc ;
LIBRARY ieee ;
USE ieee.std logic 1164.all ;
ENTITY Four bitadder IS

PORT (Cin : IN STD-LOGIC ;
x3, x2, xl, xo ‘ : IN STD-LOGIC ;

782 Fundamentals of Digital Logic and Microcomputer Design

Y3, Y2r Ylr YO : IN STD-LOGIC ;
s3, s2, sl, so : OUT STD-LOGIC ;
Cout : OUT STD-LOGIC 1 ;

END Four bitadder ;
ARCHITECTURE Structure OF Four bitadder IS

SIGNAL cl, c2, c3 :STD-LOGIC ;
COMPONENT fulladd

PORT (Cin, x, y : IN STD-LOGIC ;
s , Cout : OUT STD-LOGIC) ;

END COMPONENT ;

stage0: fulladd PORT MAP (Cin, x0, yo, S O , cl) ;
stagel: fulladd PORT MAP (cl, xl, yl, s l , c2) ;
stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ;
stage3: fulladd PORT MAP (c3, ,x3, y3, s3, Cout) ;

BEGIN

--Cin => Cout, x=>x3, y=>y3, s=>s3;
END structure;
--Arithmetic Unit design
LIBRARY IEEE; USE 1EEE.STD LOGIC 1164.ALL;
ENTITY Arithmetic Unit IS
PORT (X3, X2, X1, XO :IN STD-LOGIC;

Y3, Y2, Y1, YO : IN STD-LOGIC;
so : IN STD-LOGIC;
Cout :OUT STD-LOGIC;

f3, f2, fl, fO: BUFFER STD-LOGIC);
end Arithmetic Unit;
ARCHITECTURE Structure OF Arithmetic Unit IS
COMPONENT Mux21

PORT (wl, w0, s : IN STD LOGIC; ;
fl : OUT STD-LOGIC;) ;

END COMPONENT;
COMPONENT Four bitadder

PORT (Cin : IN STD-LOGIC;
x3, x2, xl, xo : IN STD-LOGIC;
Y3, Y2, yl, YO : IN STD-LOGIC;

s3, s2, sl, S O : OUT STD-LOGIC;
Cout : OUT STD-LOGIC) ;

END COMPONENT;
signal c3, c2, cl, c0 :std-logic;
signal d3, d2, dl, dO :std-logic;

BEGIN
d3 <= (not Y3);
d2 <= (not Y2);
dl <= (not Yl);
dO <= (not YO);

Mux3 : MuX21 PORT MAP (d3, Y3, SO , c3);
Mux2 : Mux21 PORT MAP (d2, Y2, SO , c2);
Muxl : Mux21 PORT MAP (dl, Yl, SO , cl);
MuxO : Mux21 PORT MAP (do, YO, SO , c 0) ;
Adder : Four bitAdder PORT MAP (SO, X3, X2, X1, XO, c3, c2,

cl, cO,f3, f2, fl, f 0 , cout) ;

end Structure;

-- 4-bit Two-Function Logic unit design
LIBRARY IEEE;

USE 1EEE.STD LOGIC 1164.ALL;

ENTITY Logic Function IS

PORT (X3, X2, X1, XO

Y3, Y2, Y1, YO
: in std-logic;

: in std-logic;

Appendix J: VHDL 783

so : in std-logic ;
g3, 92, gl, go : buffer std-logic) ;

end Logic Function ;

ARCHITECTURE Structure OF Logic Function IS
COMPONENT Mux21

PORT (wl, w0, s : IN STD-LOGIC ;

END COMPONENT;
fl : OUT STD-LOGIC) ;

signal m3, m2, ml, mO : std-logic;
signal n3, n2, nl, nO :std -logic;

m3 <= (X3 and Y3);
m2 <= (X2 and Y2);
ml <= (X1 and Yl);
mO <= (XO and YO);
n3 <= (X3 xor Y3);
n2 <= (X2 xor Y2);
nl <= (X1 xor Yl);
nO <= (XO xor YO);
Mux3: Mux21 Port map (n3, m3, SO, 93);
Mux2: Mux21 Port map (n2, m2, SO, 92);
Muxl: Mux21 Port map (nl, ml, SO, gl);
MuxO: Mux21 Port map (no, mO, SO, g o) ;

begin

End Structure
--ALU Design
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
ENTITY ALU IS
PORT (X3, X2, X1, XO : in std-logic

Y3, Y2, Y1, YO : in std-logic;
s1, so : instd-logic ;
Cout : out std-logic ;

23, 22, 21, 20 : buffer std-logic) ;

end ALU;
ARCHITECTURE Structure OF ALU IS
COMPONENT Arithmetic Unit

PORT (X3, X2, XI, XO : in std- logic;
Y3, Y2, Y1, YO : in std- logic;
so : in std- logic ;
Cout : out std- logic ;
f3, f2, fl, fO : buffer std- logic) ;

END COMPONENT;
COMPONENT Logic Function

PORT (X3, X2, XI, XO : in std- logic;
Y3, Y2, Y1, YO : in std- logic;
so : in std- logic ;
93, g2, gl, go : buffer std- logic) ;

END COMPONENT;
COMPONENT Mux21

PORT (wl, w0, s : IN STD-LOGIC ;
fl : OUT STD-LOGIC) ;

END COMPONENT;
signal m3, m2, ml, mO : std-logic;
signal n3, n2, nl, nO : std-logic;

BEGIN
Arith: Arithmetic Unit Port map

) ;
Logic: Logic Function Port map

(x3, X2, XI, xO, Y3, Y2, Y1, YO, SO, Cout, m3, m2, ml, mO

(X3, x2, X1, XO, Y3, Y2, Y1, YO, SO, n3, n2, nl, nO) ;

Selection3: Mux21 Port map (n3, m3, S1, 23);
Selection2: Mux21 Port map (n2, m2, S1, 22);
Selectionl: Mux21 Port map (nl, ml, S1, 2 1) ;

784 Fundamentals of Digital Logic and Microcomputer Design

SelectionO: Mux21 Port map (no, mO, S1, Z O) ;
end Structure;

SIMULATION RESULTS:
ADD ODeration:

value 1. l00Ons 20OOns 3000ns 4000ns 5WOns 6WOns 7000ns 800Ons 9000ns 1 C
u
I l T

AND Operation:

Appendix J: VHDL 785

XOR ODeration:

EXAMPLE 5.14
Write a VHDL description for the microprogrammed CPU described in section 7.4.
Solution
This example illustrates the design of the microprogrammed CPU by using VHDL.
ModelSim simulator of Xilinx is used to implement the microprogrammed CPU. All
VHDL codes of the CPU is written in Xilinx WebPack 4.2. General purpose register is

786 Fundamentals of Digital Logic and Microcomputer Design

used for instruction register (IR), memory address register (MAR), register A, and buffer.
The VHDL module name of general purpose register is reg.

ModelSim simulator is used to simulate the VHDL program. The results can be
illustrated by the timing diagrams. Figure 7.65 depicts one such timing diagram.

Fifteen modules are created in the VHDL program to implement the
microprogrammed CPU. The modules are cpu, microl, micro2, cntr, cm, pctr, reg,
ah , memory, cpurom, cpu-ram, ir-toxc, mux9tol mux2tol and fal. The design is
created using hierarchical design. The cpu module is at the top of the hierarchy, microl
and micro2 are under cpu module, and cntr, cm and mux9to1 are under microl. Finally
pctr, memory, ah , ir-toxc, reg, mux2tol and rest of the modules are under micro2.
Program Counter (PC)

The pctr module is the program counter for the instructions inside the memory.
Memory Module

The memory module contains cpu-rom and cpuram modules. Instructions are
stored in the cpu-rorn, read only memory. The instructions test a few instructions of the
CPU like LOAD, STO, ADD, and HALT.
Memory Control Unit (module CM)

The memcntrol contains the ROM, which is filled with a 23-bit value which
contains a 4-bit condition select, a 6-bit branch address, and 13-bit control input (C12 - CO
) for the registers, ALU, and RAM. It also has the conditional statement that will make the
Microprogram Counter (MPC) to count up by one if the load /increment is low, or will load
the branch address passed by the control memory buffer.
Micro1 module

The microl module connects cntr, cm and mux9tol.
Micro2 module

The processor module connects mux, alu, registers (regA, regIR, regMAR,
regPC, regBUFF), and the memory module. It also includes the instruction decoder and
does the following :
if condition select field = 0, load increment = 0, no branch,
if condition select = 1 and Z = 1, branch, if condition select = 2 and C =1, branch, if
condition select = 3 and 13 = 1, branch, if condition select = 4 and XC2 = 1, branch,
if condition select = 5 and XCI = 1, branch, if condition select = 6 and XCO = 1, branch
if condition select = 7 and I0 = 1, branch.

CPU module
The CPU module has only two inputs: reset and clock. It connects the microl

module with the micro2 module to complete the hierarchy of the microporgrammed CPU
design.
--VHDL code for Microprogrammed CPU
--General Purpose Register
-- General purpose register

use ieee.std-logic-ll64.all;
entity reg is
generic (n : integer := 8) ; -- Port declarations

library ieee;

port (clk, load : in std-logic;-- clk: clock, load: load data to
reg

x : in std-logic-vector ((n-1) downto 0); -- x: input
d : out std-logic-vector ((n - 1) downto 0)) ; -- d: output

end reg;
architecture reg-arch of reg is

Appendix J: VHDL 787

begin -- Process when clock and load change
pl : process (clk, load) -- if the clocking signal (clk)
begin -- represents the rising edge

if load = '1' then -- stores the data into
if clk = '1' and clk'event then -- and if load pin is high then

-- the reg d <= x;
end if;

end if;
end process;

end reg-arch;

--Program Counter (PC)
-- program counter

use ieee.std-logic-ll64.all;
use ieee.std-logic-arith.al1;
entity pctr is
generic (n : integer := 8) ; -- Port declarations

library ieee;

port (clk, clr, inc, load : in std-logic; -- clk: clock, clr: clear PC
x : in std-logic-vector ((n-1) downto 0);
d : out std-logicvector ((n-1) downto 0)).; --,load: load

--branch address, x: input
-- d: output

end pctr;
architecture pctr-arch of pctr is
signal in-d : unsigned (x'range); -- in-d: connect d

in-x: connect x signal in-x : unsigned (x'range); --
begin

pl : process (clk, clr, inc, load) -- if clk = rising edge
begin -- and clr = 1

if clk = '1' and clk'event then -- then PC <- 0
if clr = '1' then -- if clk = rising edge
in-d <= conv-unsigned(0,n); -- and clr=O,inc = 1, load = 0
else -- then PC <- PC + 1

if inc = '1' then -- if clk = rising edge
in-d <= in-d t 1; -- and clr= 0, inc = 0, load = 1
else -- then PC <- x

in-d <= in-x;
if load = '1' then

end if;
end if;

end if;
end if;

end process;
gl : for i in x'range generate -- for i = 0 to 7 loop

in-x(i) <= x(i);
d(i) <= in-d(i);

end generate;
end pctr-arch;

--Full adder
-- Full adder

library ieee;
use ieee.std-logic-ll64.all;
entity fa1 is -- Port
declarations

port (a, b, c : in std-logic; -- c: carry input
s , cout, anda, nota : out std-logic) ; - - s: sum, cout: carry output

end fal; -- anda: a AND b, nota: NOT a
architecture fal-arch of fa1 is

788 Fundamentals of Digital Logic and Microcomputer Design

signal in-anda : std-logic; -- in-anda: connect anda

S <= a xor b xor c;
cout <= in-anda or (b and c) or (c and a);
in-anda <= a and b;
nota <= not a;
anda <= in - anda;

begin

end fal-arch;

-- Arithmetic logic unit
library ieee;
use 1EEE.std-logic-ll64.all;
use 1EEE.std-logic-arith.al1;
entity alu is -- Port declarations

generic (n : integer := 8) ;

port (CTRL : in STD-LOGICVECTOR (0 to 2);-- CTRL: control input

--ALU module

L, R : in STD-LOGIC-VECTOR ((n-1) downto 0);-- L, R: source inputs
F : out STD-LOGICVECTOR ((n-1) downto O) ; - - F: result output
C, Z : out STD-LOGIC) ; -- C: carry flag, Z: zero flag

end alu;
architecture alu-arch of alu is
component fa1

port (a, b, c : in STD-LOGIC;
s, cout, anda, nota : out STD-LOGIC) ;

signal in-L, in-R, in-xR, in-F : unsigned (L'range);
-- in-L: connect L, a, in-R: connect R

end component;

signal in-zer, in-sum, in-and, -- in-xR: connect b, in-F: connect F
in-not, in-inc, in-dec : unsigned (L'range); -- in-zer: connect 0,

in-sum: connect s --
signal in-c : STD-LOGIC-VECTOR (n downto 0);

signal in-zf : boolean;-- in-not: connect nota,
-- in-and: connect anda, in-zf: connect Z

begin _- in-c: connect C,
CTRL (2) , cout

gen : for i in L'range generate -- for 1 = 0 to 7 loop
fa-i : fa1 port map (in-L(i), in-xR(i), in-c(i), in-sum(i),

in-xR(i) <= in-R(i) xor CTRL(2); -- CTRL(2) can determine add

in - R(i)<= R(i); -- or subtract CTRL(2) = 1
in-L(i)<= L(i); -- if CTRL(2) = 1, in-R(i) xor CTRL(2)

in-c(i+l), in-and(i), in-not(i)) ;

-- CTRL(2) = 0

F(i) <= in-F(i) after 200 ps;-- performs 1's complement of R
end generate;
in-zer <= CONV-UNSIGNED(0, n) ;
in-inc <= in - L + 1 after 500 ps;
in-dec <= in L - 1 after 500 ps;
in_c(O) <= CTiiL(2);
C <= in-c (n) ;
in-zf <= (in F = 0) after 500 ps;
with CTRL selecf
in-F <= in-zer when "000", -- f=O if ctrl=O

-- performs 2's complement of R

in-R when "OOl", -- f=R if ctrl=l
in-sum when "OlO", -- f=L+R if ctrl=2
in-sum when " O l l " , -- f=L-R if ctrl=3
in-inc when 'loo'', -- f=L+l if ctrl=4
in-dec when "101", -- f=L-1 if ctrl=5
in-and when "110", -- f=L&R if ctrl=6
in - not when others; -- f=-L if ctrl=others

Appendix J: VHDL 789

with in-zf select
z <= '1' when True, -- z = 1 if in-zf = true

' 0 ' when others; -- z= 0 if in-zf = others
end alu-arch;

- -ROM
-- Read only memory (ROM)
LIBRARY IEEE;
USE 1EEE.STD-LOGIC-1164.ALL;
ENTITY cpu-rom IS

PORT (addr : in std-logic-vector (6 downto 0) ; - - addr: address input
data : out std-logic-vector (7 downto 0));-- data: data output

end cpu-rom;
ARCHITECTURE Arch-rom OF cpu-rom IS -- Programming ROM

-- Define instruction to opcode
constant LDA : std-logic-vector := "00001000";--08h

constant ADD : std-logicvector := "00001010";--OAh
constant SUB : std-logic-vector := "00001011";--OBh
constant JZ : std-logic-vector := "00001100";--0Ch
constant JC : std-logic-vector := "00001101";--ODh
constant A-ND : std-logic-vector := "00001110";--OEh
constant CMA : std-logic-vector := "00000000";--OOh
constant INCA : std-logic-vector := "00000010";--02h
constant DCRA : std-logic-vector := "00000100";--04h
constant HLT : std-logic-vector := "00000110";--06h
constant OUTPR : std-logic-vector := "10010000";--90h

constant D1 : std-logic-vector := "00000110";--06h
constant D2 : std-logic-vector := "00000111";--07h
constant D3 : std-logic-vector := "00001000";--08h
constant D4 : std-logic-vector := "00001001";--09h
constant D5 : std-lqgic-vector := "00001010";--0Ah
constant PROD : std-logic-vector := "10000000";--80h
constant CNTR : std-logic-vector := "10000001";--81h
constant V2 : std-logic-vector := "10000010";--82h
'constant V3 : std-logicvector := "10000011";--83h
constant V4 : std-logic-vector := "10000100";--84h
constant V5 : std-logic-vector := "10000101";--85h
constant V6 : std-logic-vector := "10000110";--86h
constant V7 : std-logic-vector := '10000111";--87h
constant V8 : std-logic-vector := "10001000";--88h
constant V9 : std-logic-vector := "10001001";--89h
constant VA : std-logicvector := "10001010";--8Ah
constant VB : std-logic-vector := "10001011";--8Bh
constant VC : std-logic-vector := "10001100";--8Ch
constant VD : std-logic-vector := "10001101";--8Dh
constant VE : std-logic-vector := "10001110";--8Eh
constant VF : std-logic-vector := "10001111";--8Fh
constant BEG : std-logic-vector := "00010010";--12h
constant LOP : std-logic-vector := "00101101";--2Dh
constant ENDS : std-logic-vector := "01000000";--40h
signal in-data : std-logic-vector (7 downto 0);

constant STA : std-logic-vector := "00001001"; --09h

-- Define label to memory address

-- Signal declaration
begin.

with addr select
in-data <= LDA when "OOOOOOO",-- 0 A <- D1 (A = 80h)

D1 when "0000001",-- 1 D1 =. 80h
ADD when "OOOOOlO",-- 2 A <- A + Dl(A=O,CF=l)
D1 when "0000011",-- 3 D1 = 80h

790 Fundamentals of Digital Logic and Microcomputer Design

JC when “OOOOlOO”,-- 4 Jump to begin if A=O
BEG when “0000101” , - - 5 BEG :=“00010010” = 12

”10000000” when “OOOOllO”, -- 6 D1 80h
“01001011” when “ 0 0 0 0 1 1 1 ” , - - 7 D2 4 Bh
“01010001” when “0001000”, -- 8 D3 51h
“00110010” when “OOOlOOl”, -- 9 D4 32h
“00000100” when ” 0 0 0 1 0 1 0 ” , - - A D5 04h
ADD
D2
STA
OUTPR
A-ND
D3
S TA
OUTPR
CMA
STA
OUTPR
INCA
STA
OUTPR
DCRA
STA
OUTPR
LDA
D4
SUB
D4
STA
PROD
L DA
D5
S TA
CNTR
LDA
PROD
ADD
D4
STA
PROD
LDA
CNTR
DCRA
JZ
ENDS
STA
CNTR
LDA
D1
SUB
D1
JZ
LOP
LDA
PROD
S TA
OUTPR
HLT

when “0010010”,-- 12 A <- A t D2. (A = 4Bh)
when “0010011”,-- 13 D2 = 4Bh
when “0010100“ , - - 14 Outport <- 4Bh
when “0010101”,-- 15
when “0010110” , - - 16 A <- 4Bh&51h(A = 41h)
when “0010111”,-- 17 03 = 51h
when “0011000”,-- 18 Outport <- 41h
when “0011001”,-- 19
when “0011010” , - - 1A A <- -A (A = BEh)
when “0011011” , - - 1B Outport <- BEh
when ”0011100”,-- 1C
when “ 0 0 1 1 1 0 1 ” , - - 1D A <- A t 1 (A=BFh)
when “0011110”,-- 1E Outport <- BFh
when “ 0 0 1 1 1 1 1 ” , -- 1 F
when “0100000”,-- 20 A <- A - 1 (A=BEh)
when “ 0 1 0 0 0 0 1 ” , - - 21 Outport <- BEh
when “ O l O O O l O ” , -- 22
when “ 0 1 0 0 0 1 1 ” , - - 23 A 2- D4 (A = 32h)
when “0100100”,-- 24 D4 = 32h
when “0100101“,-- 25 A <- A - D4 (A = OOh)
when “0100110”,-- 26 D4 = 32h
when “ 0 1 0 0 1 1 1 ” , - - 27 PROD <- A(PR0D = OOh)
when “0101000”, -- 28
when “ 0 1 0 1 0 0 1 ” , - - 29 A <- D5 (A = 04h)
when “0101010“,-- 2A D5 = 04h
when ”0101011”,-- 2B CNTR <-A (CNTR = 04h)
when “0101100”, -- 2C
when “OlOllOl“, -- 2D LOOP:PROD<-PROD tD4
when ”0101110”,-- 2E
when “0101111”,-- 2F A <- A + D4
when “0110000“,-- 30 D4 = 32h
when “ 0 1 1 0 0 0 1 ” , - - 31 PROD <- A
when “0110010”,-- 32
when “ 0 1 1 0 0 1 1 ” , - - 33 CNTR <- CNTR -1
when “ 0 1 1 0 1 0 0 ” , -- 34
when “ 0 1 1 0 1 0 1 ” , - - 35 A <- A - 1
when “0110110”,-- 36 If CNTR = 0 then
when “0110111“ , - - 37 Goto End, ENDS
when “ 0 1 1 1 0 0 0 ” , - - 38 CNTA <- A
when “0111001“,-- 39
when “0111010”,-- 3A Goto Loop
when “0111011“,-- 3B D1 = 80h
when “ 0 1 1 1 1 0 0 ” , - - 3C A <- A - D1 (A = OOh)
when “ 0 1 1 1 1 0 1 ” , - - 3D D1 = 80h
when “0111110”,-- 3E If A = 0 then
when “ 0 1 1 1 1 1 1 ” , -- 3F
when “1000000”,-- 40 End: Outport <- PROD
when “1000001”,-- 41
when “ 1 0 0 0 0 1 0 ” , - - 42 Outport <- A
when “ 1 0 0 0 0 1 1 ” , - - 43
when others; -- n

data <= in-data after 200 ps;
end Arch-rom;

Appendix J: VHDL 79 1

--RAM
-- Random access memory (RAM)
library IEEE;
use IEEE.std~logic~ll64.all;
use 1EEE.std-logic-arith.al1;
entity cpu-ram is
generic (nw : integer := 8;

nl : integer := 4) ;

addr : in STD-LOGIC-VECTOR ((nl-1) downto 0);

d-in : in STD-LOGIC-VECTOR ((nw-1) downto 0) ;

d-out : out STD-LOGIC-VECTOR ((nw-1) downto 0)) ; -- d-out

port (rw, en : in STD-LOGIC;-- rw: read/write, en: enable RAM

-- addr: address input

-- d - in: data input

-- data output
end cpu-ram;
architecture cpu-ram-arch of cpu - ram is

type Ram-Word is array (d-in'range) of STD - LOGIC;-- type declaration
type Ram-Array is array (0 to ((2**nl)-l)) of Ram-Word;-- type

-- declaration
signal in-din, doutl, dout2, in-dout : Ram-Word;-- in - din: connect

signal in-addr : unsigned (addr'range) ;

signal Ram-Mem : Ram-Array;-- in-addr: connect

d-in, --dout2: connect 0

-- in-out: connect d-out

--addr
begin

p: process (rw, en, in-addr)

begin
variable intaddr : integer;

intaddr := CONV-INTEGER (in-addr); --convert binary number

doutl <= Ram-Mem(intaddr) ;
if en = '0' and rw = '0' then

-- to integer

-- if en = 0 and rw = 0

-- then write data into the RAM
Ram-Mem(intaddr) <= in-din after 500 ps;

end if;
end process;
with en select

in-dout <= doutl when ' O f ,

gl: for i in d-out'range generate
dout2 when others;

-- for i = 0 to 7 loop
in-din(i) <= d in(i);
d-out(i) <= in-dout(i) after 200 ps;
dout2(i) <= '0';

-- set dout2 := "00000000''
end generate;
92: for i in addr'range generate

-- for i = 0 to 3 loop
in - addr(i) <= addr(i) after 100 ps;

end generate;
end cpu-ram-arch;

-- memory for cpu
library IEEE;
use 1EEE.std-logic-ll64.all;
entity memory is

--Memory for CPU (ROM + RAM)

port (RW, EN : in STD-LOGIC;

Fundamentals of Digital Logic and Microcomputer Design

-- RW: read/write, EN: enable memory
addr, din : in STD-LOGIC-VECTOR (7 downto 0) ;

-- addr: address input, din: data input

-- dout: data output

-- ioout: data io output
end memory;
architecture memory-arch of memory is
component cpu-ram

dout : out STD-LOGIC-VECTOR (7 downto 0);

ioout : out STD-LOGIC-VECTOR (7 downto 0)) ;

generic (nw, nl : integer) ;
port (rw, en : in STD-LOGIC;

addr : in STD-LOGICVECTOR ((nl-1) downto 0);
d-in : in STD-LOGIC-VECTOR ((nw-1) downto 0);
d-out : out STD-LOGIC-VECTOR ((nw-1) downto 0)) ;

end component;
component cpu-rom

port (addr : in STD-LOGIC-VECTOR (6 downto 0);
data : out STD-LOGIC-VECTOR (7 downto 0)) ;

end component; -- in-dl: connect data

-- in-d2: connect d-out
signal in-dl, in-d2 : STD-LOGIC-VECTOR (7 downto 0);

signal in-EnRAM : STD-LOGIC;

-- in-EnRAM: connect en
begin

roml : cpu-rom port map (addr=>addr(6 downto 0), data =>in-dl);
ram1 : cpu-ram generic map (8, 4)

port map (rw=>RW, en=>in-EnRAM, addr=>addr(3 downto 0),
d-in=>din, d-out=>in-d2);

in-EnRAM <= EN or (not addr(7)) or addr(6) or addr(5) or addr(4);

with addr(7) select
-- memory mapping:

-- programmed ROM when address =

dout <= in-d2 when 'l',

-- 00000000 to 01111111 (128 bytes)
in-dl when others;

-- RAM when address =

with addr select

-- 10000000 to 10001111 (16 bytes)
ioout <= din after 1 ns when "10010000",

-- I0 when address =

"00000000" after 800 ps when others;
-- 10010000 (1 byte)
end memory-arch;

--Multiplexer 2 to 1

-- Multiplexer 2 to 1
library IEEE;

use 1EEE.std-logic-ll64.all;
entity mux2tcl is
generic (n : integer :=8);

port (sl, S O : in STD-LOGIC-VECTOR ((n-1) downto 0);

Appendix J: VHDL 793

-- S O , sl: source inputs
S : in STD-LOGIC;

_ _ s : select line
f : out STD-LOGIC-VECTOR ((n-1) downto 0)) ;

-- f: output
end mux2tol;
architecture arch-mux of mux2tol is
begin

with s select
f <= S O when ‘ O ’ ,

s l when others;
end arch-mux;

--Instruction Decoder

-- Instruction decoder
library IEEE;
use 1EEE.std-logic-ll64.all;
entity ir-to-xc is

port (i : in STD-LOGIC-VECTOR (1 downto 0);

-- i: op-code bit 1 & 2
xc : out STD-LOGIC-VECTOR (2 downto 0)) ;

_ _ xc: group number output
end ir-to-xc;
architecture ir-to-xc-arch of ir-to-xc is
begin

with i select

xc <= “001” when “00”,

-- group 0
“010” when “Ol”,

-- group 1
‘100’‘ when “lo”,

-- group 2
”000” when others;

-- group 3
end ir-to-xc-arch;

--Micro2 module
-- Overall hardware2 (PC + Reg + Mux2tol + ALU + Memory + IR-to-XC)

library ieee;
use ieee.std-logic-ll64.all;
entity micro2 is

-- ctrl: control inputs CO-C12
port (ctrl : in STD-LOGIC-VECTOR (0 TC 12);

clr, clk : in STD-LOGIC;

-- clk: clock, clr: clear

-- dataout: data output
dataout : out STD-LOGIC-VECTOR (7 downto 0);

z, c, i3, i0 : out STD-LOGIC;

794 Fundamentals of Digital Logic and Microcomputer Design

_- z: zero flag, c: carry flag

-- i3, i0: op-code bit 3 & 0
end micro2;

xc : out std-logic-vector (2 downto 0)) ;

-- xc: group number
architecture micro2-arch of micro2 is
component pctr

generic (n: integer);
port (clk, clr,

-- clr: CO, inc: C1, load: C2
inc, load : in STD-LOGIC;

X : in STD-LOGIC-VECTOR ((n-1) downto 0);
-- x: branch

-- d: memory reference
end component;
component reg -- instantiate Register

d : out STD-LOGIC-VECTOR ((n-1) downto 0)) ;

generic (n: integer) ;

port (clk, load : in STD-LOGIC;

-- load: C4, C7, C8, C9

_ _ x: data input

-- d: data output
end component;
component mux2tol -- instantiate mux 2 to 1

X : in STD-LOGIC-VECTOR ((n-1) downto 0);

d : out STD-LOGIC-VECTOR ((n-1) downto 0)) ;

generic (n: integer) ;

port (sl, S O : in STD-LOGIC-VECTOR ((n-1) downto 0);
-- sl: from buffer, S O : from PC

s : in STD-LOGIC;

s: c3 --
f : out STD-LOGIC-VECTOR ((n-1) downto 0)) ;

-- f: to MAR
end component;
component alu -- instantiate ALU

generic (n: integer) ;

port (CTRL : in STD-LOGIC-VECTOR (0 to 2);
-- CTRL: C10, C11, C12

L, R : in STD-LOGIC-VECTOR ((n-1) downto 0);

F : out STD-LOGIC-VECTOR ((n-1) downto 0);

C, 2 : out STD-LOGIC) ;

-- L, R: data input

-- F: data output

-- C: carry flag, Z: zero flag
end component;
component memory -- instantiate memory

port (RW, EN : in STD-LOGIC;

-- RW: C5, EN: C6
addr, din : in STD-LOGIC-VECTOR (7 downto 0);

-- addr: fron MAR, din: from reg A

-- dout: to PC, IR, buffer
dout : out STD-LOGIC-VECTOR (7 downto 0);

ioout : out STD-LOGIC-VECTOR (7 downto 0)) ;

Appendix J: VHDL 795

-- ioout: to I0
end component;
component ir-to-xc -- instantiate instruction decoder

port (i : in STD-LOGIC-VECTOR (1 downto 0);

-_ 1: from IR, I1 L I2
xc : out STD-LOGIC-VECTOR (2 downto 0)) ;

xc: group number _ _
end component;

signal opc, oir, omux, omar,

-- opc: connect PC L MUX

0);
orega, obuf, oalu, omem : STD-LOGIC-VECTOR (7 downto

-- oir: connect IR L instruction decoding
signal in-clr, en-flag, incf : STD-LOGIC;

signal i-cf, 0-cf : STD-LOGIC-VECTOR (0 downto 0);
omux: connect MUX L MAR

omar: connect MAR L memory

_ _

_-
begin

_- orega: connect Reg A L ALU (L)
the-pc : pctr generic map (8)

-- obuf: connect Buffer L ALU (R)

-- oalu: connect Reg A L ALU (F)
port map (clk, in-clr, ctrl(l), ctrl(2), omem, opc);

the-ir : reg generic map (8)

-- omem: connect memory L PC, IR, Buffer
port map (clk, ctrl(8), omem, oir);

-- in-clr: connect CO or clr
the-mar : reg generic map (8)

-- en-flag: connect Z, C
port map (clk, ctrl(4), omux, omar);

-- inzf: connect ALU
the-rega : reg generic map (8)

-- incf: connect ALU
port map (clk, ctrl(9), oalu, orega);

-- i-zf: connect Z, i-cf: connect C
the-buf : reg generic map (8)

-- 0-zf: connect Z, o-cf: connect C
port map (clk, ctrl(7), omem, obuf);

the-mux : mux2tol generic map (8)

port map (obuf, opc, ctrl(3), omux);

port map (CTRL=>ctrl(lO to 12), L=>orega,
the-alu : alu generic map (8)

R=>obuf, F=>oalu, C=>incf, Z=>inzf);
--The zero flag is connected directly to the alu, the carry flag is
--instantiated.

the-cf : reg generic map (I)

796 Fundamentals of Digital Logic and Microcomputer Design

port map (clk, enflag, i-cf, o-cf);
the-mem : memory port map (ctrl(5), ctrl(6), omar,

orega, omem, dataout) ;
the-dec : ir-to-xc port map (i=>oir(2 downto l), xc=>xc);
in-clr <= ctrl(0) or clr;

-- ctrl(0) : PC <- 0
C <= o-cf(0);
i - cf(0) <= incf;
i3 <= oir(3);

-- i3: type classifier
i0 <= oir(0);

-- i0: subcategory within a group
en-flag <= ctrl(l0) or ctrl(l1) or ctrl(l2);

-- ctrl (lo), ctrl (ll), ctrl(12) : -- ALU control input
end micro2-arch;

--Memory Control Unit (module CM)
-- Control Unit
LIBRARY IEEE;

USE 1EEE.STD-LOGIC-1164.ALL;
ENTITY cm IS

PORT (addr : in std-logic-vector (5 downto 0);

-- addr: address input

-- cmbd: data output
end cm;
ARCHITECTURE Arch-cm OF cm IS

cmdb : out std-logic-vector (22 downto 0) 1 ;

signal in-cmdb : std-logic-vector (22 downto 0);

-- in-cmbd: connect cmbd
-- Binary microprogram
-- The size of the control memory is 53 x 23 bits. The 23-bit control word
-- consists of 13- bit control function containing CO through C12 with CO
-- as bit 12 and C12 as bit 0. The branch address field is 6-bit wide (bits
-- 13-18). For example, consider the code for line 0 with the operation
-- PC <- 0 in the following. Since there is no condition in this operation,
-- condition select field (CS) and branch address field (Brn) are all
-- 0’s. To clear PC to 0, CO = 1 . To disable RAM, C6 = 1 and, C5(RIW’)
-- is arbitrarily set to one.
begin

with addr select
22 19 12 0

_ - ICSl Brn I CTR FUNC I

--

n-cmdb <= “00000000001000011000000‘’ when “000000”, -- 0 PC <- 0
‘‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 0 ”
“0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0” when “ 0 0 0 0 1 0 ” , --2 IR<- M(MAR), PC <- PC t1
‘’ 0 0 11 0 0 11 10 0 0 0 0 0 1 1 0 0 0 0 0 0” when “0 0 0 0 1 1 ” , --3 IF 1 3 ~ 1 , goto MEMR(14)
’’ 0 1 1 0 0 0 10 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0” when “0 0 0 10 0 ” , --4 IF XCO=1, goto CMA(8)
“0 1 0 10 0 10 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0” when “0 0 0 1 0 1 ” , -- 5 IF XC1=1, goto INCA(10)
“0 10 0 0 0 1 10 0 0 0 0 0 0 1 10 0 0 0 0 0” when “0 0 0 1 1 0 ” , -- 6 IF XC2=1, goto DCRA(12)
’’ 1 0 0 0 11 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0” when “0 0 0 1 1 1 ” , -- 7 goto HALT(50)
‘I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 ” when “0 0 1 0 0 0 ” , -- 8 CMA A <- -A
I‘ 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 10 0 0 0 0 0 ” when ‘’ 0 0 10 0 1 ” , -- 9

“1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0” when “0 0 1 0 1 1 ” , -- 11

when ” 0 0 0 0 0 1 ” , --1 FETCH MAR<-PC

goto FETCH

goto FETCH
“0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 10 0” when “0 0 10 lo“, -- 10 INCA A <- A t 1

Appendix J: VHDL 797

“ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0 1 10 1 ” when ’I 0 0 1 1 0 0 ” ,
“1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 ” when “0 0 1 10 1 ” ,
“ 0 1 10 0 10 11 1 0 0 0 0 0 1 1 0 0 0 0 0 0” when ‘’ 0 0 1 11 0 ” ,

“0 1 0 1 10 0 0 0 0 0 0 0 0 0 1 10 0 0 0 0 0 ” when “0 0 1 1 1 I ” ,
“ 0 10 0 10 1 0 0 10 0 0 0 0 1 1 0 0 0 0 0 0 ” when “0 10 0 0 0 ” ,
‘0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 10 0 0 0 0 0 ” when “0 1 0 0 0 1 ” ,
“ 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 0 1 0 0 0 0 0” when “0 10 0 lo”,

“ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 10 0 0 0 0 0” when “0 10 0 1 1 ” ,
“0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 ” when “0 10 10 0 ” ,
“0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 ” when “0 10 10 1 ” ,
“ 10 0 0 0 0 0 0 0 1 0 0 0 0 0 1 10 0 0 0 0 0” when “0 10 1 lo”,
“ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 10 0 0 0 0 0 ” when “0 10 11 1 “ ,
“ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10 1 0 0 0 0 0 ” when “0 11 0 0 0 ” ,

“ 0 0 0 0 0 0 0 0 0 0 0 0 0 11 1 10 0 0 0 0 0 ” when ‘’ 0 1 1 0 0 1 ” ,
“ 0 11 1 0 11 1 10 0 0 0 0 0 1 1 0 0 0 0 0 0 ” when “0 1 10 1 0 ” ,
’‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 ” when “0 1 10 1 1 ” ,
” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 ” when “0 1 1 10 0 ” ,
“ 10 0 0 0 0 0 0 0 10 0 0 0 0 1 1 0 0 0 0 0 0 ” when “0 1 11 0 1 ” ,
‘‘ 0 ” when “0 1 1 1 1 0 ” ,
” 10 0 0 0 0 0 0 0 10 0 0 0 0 1 1 0 0 0 0 0 0 ” when “0 1 1 1 1 1 ” ,
‘‘ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0 0 0 0 0 ” when ‘‘ 10 0 0 0 0 ” ,
“ 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 0 1 0 0 0 0 0 “ when “1 0 0 0 0 I ” ,

\’ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0” when “1 0 0 0 lo“,
’’ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 0 0 0 0 0 ” when “1 0 0 0 1 1 ” ,
“ 0 11 1 1 0 0 11 10 0 0 0 0 1 1 0 0 0 0 0 0” when “1 0 0 10 0 ” ,
“ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 1 0 10” when “1 0 0 1 0 1 ” ,
” 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 10 0 0 0 0 0” when ”1 0 0 11 0 ” ,
“ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 1 0 1 1 ” when “1 0 0 1 1 1 ” ,
“1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 11 0 0 0 0 0 0” when “1 0 1 0 0 0 ” ,
“ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 11 0 0 0 0 0 0 ” when “1 0 10 0 1 ” ,
“ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0” when “1 0 1 0 l o ” ,
“ 0 1 11 10 11 1 1 0 0 0 0 0 1 10 0 0 0 0 0” when “1 0 10 1 1 ” ,
“ 0 0 0 1 11 0 0 10 0 0 0 0 0 1 10 0 0 0 0 0” when “1 0 11 0 0 ” ,
“0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 1 0 0 0 0 0 0 ” when ‘’ 1 0 11 0 1 ” ,
“ 10 0 0 0 0 0 0 0 10 0 0 0 0 1 1 0 0 0 0 0 0 “ when \‘ 10 11 1 0 ” ,
“ 0 0 1 0 1 10 0 10 0 0 0 0 0 1 1 0 0 0 0 0 0” when “ 10 1 1 1 1 ” ,
‘’ 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 1 0 0 0 0 0 0 ” when ‘’ 1 1 0 0 0 0 ” ,
’’ 100 0 0 0 00 0 1 0 000 0 11 0 0 0 0 0 0 ” when ”1 1000 1 ” ,
“0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 ” when ‘‘ 1 10 0 lo”,
‘’ 10 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0” when 1 10 0 1 1 “ ,
“10001101000000011000000” when others;

end Arch-cm;
cmdb <= in-crndb after 200 ps;

-- 12 DCRA A <- A - 1
-- 13 goto FETCH
-- 14 MEMREF IF XCO=1, got0
-- LDSTO (23)
-- 15 IF XC1=1, goto ADSUB(32)
-- 16 IF XC2=1, goto JMPS(41)
-- 17 AND MAR <- PC
-- 18 BUFFER <- M(MAR) ,

PC <- PC+1
-- 19 MAR <- BUFFER
-- 20 BUFFER <- M(MAR)
-- 21 A <- A BUFFER
-- 22 goto FETCH
-- 23 LDSTO MAR <- PC

--

-- 24 BUFFER <- M(MAR),
PC <- PC + 1 --

-- 25 MAR <- BUFFER
-- 26 IF IO=1, goto STO(30)
-- 27 LOAD BUFFER <- M(MAR)
-- 28 A <- BUFFER
-- 29 goto FETCH
-- 30 STO M(MAR) <- A
-- 31 got0 FETCH
-- 32 ADSUB MAR <- PC
-- 33 BUFFER <- M(MAR) ,
-- PC <- PC +I
-- 34 MAR <- BUFFER
-- 35 BUFFER <- M(MAR)
-- 36 IF I O = 1 , goto SUB(39)
-- 31 ADD A <- A + BUFFER
-- 38 goto FETCH
-- 39 SUB A <- A - BUFFER
-- 40 goto FETCH
-- 41 JMPS MAR <- PC
-- 42
-- 43 IF I0=1, goto JOC(47)
-- 44 JOZ IF Z=1, goto LOADPC
-- 45 PC <- PC + 1
-- 46 goto FETCH
-- 47 JOC IF C=l, goto LOADPC(50)
-- 48 PC <- PC+ 1
-- 49 goto FETCH
-- 50 LOADPC PC <- M(MAR)
-- 51 goto FETCH
-- 52 HALT goto HALT

--Microprogram Counter Module(MPC)
-- Microprogramming counter

use 1EEE.std-logic-ll64.all;
use 1EEE.std-logic-arith.al1;
entity cntr is
generic (n : integer := 6) ;

library IEEE;

port(clk : in STD-LOGIC; -- clk: clock
clr : in STD-LOGIC;-- clr: clear MPC
li : in STD-LOGIC;-- li: load/increase
x : in STD-LOGIC-VECTOR ((n-I) downto O);-- x: data input
d : out STD-LOGIC-VECTOR ((n-I) downto 0));--d:data output

end cntr;

798 Fundamentals of Digital Logic and Microcomputer Design

architecture cntr-arch of cntr is
signal in-d : UNSIGNED (x'range);-- in-d: connect d
signal in-x : UNSIGNED (x'range);-- in-x: connect x

pl : process (clk, clr, li)
begin

begin

if clk = '1' and clk'event then -- if clk = rising edge
if clr = '1' then -- and clr = 1

in-d <= CONV-UNSIGNED(0, n) after 200 ps; -- then MPC <- 0
else -- if clk = rising edge
if li = ' 0 ' then -- and clr = 0, li = 0

in - d <= in-d + 1 after 500 ps;-- MPC <- MPC + 1

in-d <= in-x after 500 ps;-- and clr = 0, li = 1
else -- if clk = rising edge

end if; -- MPC <- x
end if;

end if;
end process;
gl : for i in x'range generate -- for i = 0 to 5 loop

in - x(i) <= x(i);
d(i) <= in-d(i);

end generate;
end cntr-arch;

--MUX 9 to 1

-- Multiplexer 9 to 1

LIBRARY IEEE;
USE 1EEE.STD-LOGIC-1164.ALL;
ENTITY mux9tol IS
PORT (w : in std-logic-vector (8 downto 0);-- w: input

s : in std-logic-vector (3 downto O);-- s: select line
f : out std-logic) ; -- f: output

end rnux9tol;
ARCHITECTURE Arch-Mux OF mux9tol IS

begin
with s select

f <= w(O) when "OOOO",

w(1) when "OOOl",

w(2) when "OOlO",

w(3) when "OOll",

w(4) when "OlOO",

w(5) when "OlOl",

~ (6) when "OllO",

~ (7) when "Olll",

w(8) when others;

end Arch-Mux;

Appendix J: VHDL 799

--Micro1 (MPC + decoder + CM)
-- Overall hardware1 (MPC + Mux9tol t CM)

use 1EEE.std-logic-ll64.all;
entity rnicrol is

library IEEE;

port(Z : in STD-LOGIC; -- Z: zero flag
C : in STD-LOGIC; -- C: carry flag
I3 : in STD-LOGIC; -- 13: type classifier(if I3=1, then
XC : in STD-LOGIC-VECTOR (2 downto O);-- i-t is a MRL, othewise

--it is a NMRI)
I0 : in STD-LOGIC; -- XC: group number
CLR : in STD-LOGIC; -- 10: subcategory within a group
CLK : in STD-LOGIC; -- CLR: clear MPC
CTN : out STD-LOGIC-VECTOR (0 to 12)) ; - - CLK: clock

end microl; -- CTN: control functions
architecture microl-arch of micro1 is

component cntr
generic (n : integer) ;

port (clk : in STD-LOGIC;
clr : in STD-LOGIC;
li : in STD-LOGIC;
x : in STD-LOGIC-VECTOR ((n-1) downto 0);
d : out STD-LOGIC-VECTOR ((n-1) downto 0) 1 ;

end component;
component mux9tol

port (w : in std-logic-vector (8 downto 0);
s : in std-logic-vector (3 downto 0);

f : out std-logic) ;

end component;
component cm

port (addr : in std-logic-vector (5 downto 0);
cmdb : out std-logic-vector (22 downto 0) 1 ;

end component;
signal in-addr, in-brnh : STD-LOGIC-VECTOR (5 downto 0);

-- in-addr: connect MPC & CM
signal in-cs : STD-LOGICVECTOR (3 downto 0);

-- in-brnh: connect MPC cmbd(l8 downto 13)
signal in-li, IH, IL : STD-LOGIC;

-- in-cs: connect s & cmbd(22 downto 19)
-- in li: connect MUX & MPC begin -

cntrl : cntr generic map (6) -- IH: connect Vcc, IL: connect GND
port map (clk=>clk, clr=>clr, li=>in-li, x=>in - brnh,
d=>in-addr) ;

mux91 : mux9tol port map (w(8)=>IH, w(7)=>10, w(G)=>XC(O),

li) ;

w (5) =>XC (1) , w (4) =>XC (2) , w (3) =>I3,
w(2)=>C, w(l)=>Z, w(O)=>IL, s=>in-cs, f=>in -

cml : cm port map (addr=>in-addr, cmdb(22 downto 19)=>in_cs,
cmdb(l8 downto 13)=>in_brnh, cmdb(l2 downto

0) =>CTN) ;
IH <= '1';
IL <= '0';

end microl-arch;

--CPU module

-- Microprogrammed CPU

use 1EEE.std-logic-ll64.all;
library IEEE;

800 Fundamentals of Digital Logic and Microcomputer Design

entity CPU is
port (clk, reset: in STD LOGIC;-- clk: clock

d-out: out STD-LOGICIVECTOR (7 downto 0)) ;- d-out:data output
end CPU;
architecture CPU-arch of CPU is
component microl

port (Z : in STD-LOGIC;
C : in STD-LOGIC;
I3 : in STD-LOGIC;
XC : in STD-LOGIC-VECTOR (2 downto 0);
I0 : in STD-LOGIC;
CLR : in STD-LOGIC;
CLK : in STD-LOGIC;
CTN : out STD-LOGIC-VECTOR (0 to 1 2)) ;

end component;
component micro2

port (ctrl : in STD-LOGIC-VECTOR (0 to 12);
clr, clk : in STD-LOGIC;
dataout : out STD-LOGICVECTOR (7 downto 0);
2, C, I3,IO : out STD-LOGIC;
xc : out STD-LOGIC-VECTOR (2 downto 0));

end component;
signal in-2, in-C, in-13, in-I0 : STD-LOGIC;

-- in-2: connect 2 , in-C: connect C
-- in-13: connect 13, in-10: connect I0

signal ctrl
signal in-XC

-- ctrl: connect CTN, in-xc: XC
begin

t he-mpc

the-hdw

end CPU-arch;

--Test Bench

: microl port map (

: micro2 port map (

for CPU module
-- CPU test bench
LIBRARY ieee;
USE ieee.std-logic-ll64.ALL;
USE ieee.numeric-std.ALL;
ENTITY testbench IS
END testbench;
ARCHITECTURE behavior OF testbench
COMPONENT cpu
PORT (clk :

reset :
d-out :

END COMPONENT;
S I GNAL
S I GNAL
SIGNAL

BEGIN

: STD-LOGIC-VECTOR (0 to 12);
: STD-LOGIC-VECTOR (2 downto 0);

in-2, in-C, in-13, in-XC, in-10,
reset, clk, ctrl) ;

ctrl, reset, clk, d-out, in-2, in-C,
in-13, in-10, in-XC) ;

IS -- Architecture of the test bench
-- instantiate CPU module

IN std-logic;
IN std-logic;
OUT std-logicvector (7 downto 0)) ;

clk : std-logic;
reset : std-logic;
d-out : std-logic-vector (7 downto 0);

uut : cpu PORT MAP(clk => clk, -- port map CPU module
reset => reset,
d-out => d-out 1 ;

-- Shortest period : 2001 ps = Highest frequency ; 500 MHz
clk-process : PROCESS -- Process f o r Clock generator
BEGIN

for i in 0 to 600 loop-- generate clock with period of 2ns

Appendix J: VHDL 80 1

CLK <= ' 0 ' ;
wait for 1001 ps;
CLK <= '1';
wait for 1000 ps;

wait;
END PROCESS;
rst-test : PROCESS -- Process for Test stimulus
BEGIN

end loop;

reset <= '1'; -- reset goes high for.3.5 ns then goes low
wait for 3500 ps;

reset <= ' 0 ' ;
wait;

END PROCESS;

END;

Timing Diagram
Figure J. 1 shows a portion of the timing diagrams obtained by simulating the test program
inside the 256 x 8 RAM. This program successfully tests all eleven instructions. Note that
PC is the program counter for the test program in the module cpu-rom, and MPC is the
microprogram counter for the symbolic program in the memory control module cm.

From figure K.1, we can see that the first instruction executed is LDA. LDA
(PC=O) instruction using reference memory 06H, goes through the following subroutines
in the symbolic program. FETCH (MPC=l at t=6ns), branching to MEMREF(MPC=14
at t=l2ns), then to LDSTO(MPC=23 at t=l4ns), all the way through LOAD (MPC = 27
at t=22ns), and back to FETCH (Figure K.1). Next, ADD (PC=2) operation is performed
using reference memory 06H. At this point, ADD goes through the following subroutines
in the symbolic program: FETCH (MPC=l at t=28ns), branching to MEMREF(MPG14
at t=34ns), then to ADDSUB(MPC=32 at t=38ns), all the way through ADD (MPC=37
at t=48ns), then back to FETCH. At this point, the ALU generates the result with a carry.
Hence, the carry flag becomes high (Figure J. 1).

Ons lOns 2011s 3011s 4011s 5011s

Figure J.l VHDL Timing Diagram (Top diagram-testbench clock, Next-reset,

8 02

Next-cpu data-out, 8th from top-Zflag, 9th from top Carry flag, Bottom-mpc)
Several modules in the VHDL code are individually simulated for the CPU shown above.
The simulation result of each module along with the corresponding block diagram is
provided below:

Fundamentals of Digital Logic and Microcomputer Design

REGISTER
0

clk

&- load

s= X

s d

Simulation result:

Y ~ Y Y Y Y Y Y u u u u u u u u u u u w u u w u u u u ~

02 x 0 6 1 OA 1 OE 1 12 x 16 1

Block diagram:
.

REG

D[7. - -1
XC7. -

.............................

PROGRAM COUNTER
Simulation result:

~ 4 - clk

LP clr

w me

EM- load

S X

W D .
. .

- ALU .
E S CTRL

L

W R
6 F

- D C

-3 z

.

5W Ons 1 nus 15us 2 ous 2 5us

1 1

Block diagram: .%
PCTR

I

Simulation result:

Block diagram:

Appendix J: VHDL 803
.

f iLU

..

ROM
Simulation result:

Block diagram ...
CPU-RQM

...

&&l
Simulation result:

I mOOns4000ns6aIOns80DOnslOus 12us 14us 16us 18us 20us 22us :

3 addr H 3

GF d-in H I D

B d-out H 1C

Block diagram
.

cpu-Fvzrd

ADD R [3.- 01
P_IH[7..0]

MICRO2
Black diagram:

8 04 Fundamentals of Digital Logic and Microcomputer Design
.
I - l I C R O 2

CLR C

CLK I 3

-
-
-

MICROPROGRAM COUNTER
Simulation result:

CLK

C L R D C 5 , - m3.-

L I

- - x c 5 . - ma

MUX 9 TO1
Simulation result:

Block diagram: T
riuxg-roi

sc3- - Q)j

MICRO1
Simulation result:

Appendix J: VHDL 805

-
-

Block diagram:

CLK
Reset CIlT[-13..0] ,-

OUESTIONS AND PROBLEMS

5. 1 Write a VHDL description for each of the following using modeling
description of your choice:
(a) a 2-to-4 decoder, generating a low output when selected by a high
enable.
(b) a 3-to-8 decoder, genLrating a high output when selected by a high enable.
(c) the 4 -to- 16 decoder of Problem 4.15.
.(d) a 4-to-1 multiplexer.
(e) a BCD to seven-segment converter for a common cathode display.
(f) the 2-bit unsigned comparator of Section 4.5.2.

5.2 Write a VHDL description for:
(a) the SR latch of Figure 5.1.
(b) the gated D flip-flop of Figure 5.5a.
(c) a D flip-flop with a synchronous reset input and a positive edge triggered
clock. Use synchronous reset such that if reset ==O, the flip-flop is cleared to 0;
on the other hand, if reset==l, the output of the flip-flop is unchanged until the
procedural statements are evaluated at the positive edge of the clock.
(d) the T flip-flop (using D-ff and XOR gate) of Problem 5.13(b).
(e) the state machine of Problem 5.19.
(f) the counters of Problems 5.24(a) through 5.24(c).
(8) the general purpose register of Problem 5.25.

5.3 Write a VHDL description for an %bit register with a clear input. If clear is
low, the register is loaded with 0. On the other hand, if clear is high, an 8-bit
data is transferred to the register at the positive edge of the clock. Use behavioral
modeling.

806 Fundamentals of Digital Logic and Microcomputer Design

5.4 Write a VHDL description for the Status register of Example 6.1 using behavioral
modeling.

J.5 Write a VHDL description for the four-bit by four-bit unsigned multiplier
(repeated addition) using:
(a) Hardwired control (Section 7.3.5.2).
(b) Microprogramming (Section 7.3.5.3).

BIBLIOGRAPHY

Arnold, M. G., Verilog Digital Computer Design, Prentice Hall, Upper Saddle River, NJ,

Bhasker, J., VHDL Primer, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 1999.
Breeding, K., Digital Design Fundamentals, 2nd ed., Prentice Hall, Upper Saddle River,

Brown, S. and Vranesic, Z., Fundamentals of Digital Logic with VHDL Design, McGraw-

Bums, J., Within the 68020, Electronics and Wireless World, pp. 209-212, February 1985;

Ciletti, M. D., Modeling, Synthesis, and Prototyping with the Verilog HDL, Prentice Hall,

Daconta, M., Java for C/C++ Programmers, Wiley, Hoboken, NJ, 1996.
Dewey, A., Analysis and Design of Digital Systems with VHDL, PWS Publishing, Boston,

Feibus, M. and Slater, M., Pentium power, PC Magazine, April 27, 1993.
Hall, D., Microprocessors and Interfacing, McGraw-Hill, New York, 1986.
Hamacher, V. C., Vranesic, Z. G., and Zaky, S. G., Computer Organization, McGraw-Hill,

Hartman, B., 16-Bit 68000 Microprocessor concepts on 32-bit frontier, MC 68000 Article

Hayes, J., Computer Architecture and Organization, McGraw-Hill, New York, 1978.
Hayes, J., Digital System Design and Microprocessors, McGraw-Hill, New York, 1984.
Hayes, J., Introduction to Digital Logic Design, Addison-Wesley, Reading, MA, 1993.
Hwang, K., and Briggs, F. A., Computer Architecture and Parallel Processing, McGraw-

Intel, Intel Component Data Catalog, Intel Corporation, Santa Clara, CA, 1979.
Intel, Intel 486Microprocessor Family Programmer ‘s ReferenceManual, Intel Corporation,

Intel, Intel 486 Microprocessor Hardware Reference Manual, Intel Corporation, Santa

Intel, Marketing communications, The Semiconductor Memory Book, Wiley, Hoboken,

Intel, MCS-86 User’s Manual, Intel Corporation, Santa Clara, CA, 1982.
Intel, Memory Components Handbook, Intel Corporation, Santa Clara, CA, 1982.
Intel, Microprocessors and Peripheral Handbook, Vol. I , Microprocessors, Intel

Intel, Microprocessors and Peripheral Handbook, Vol. 2, Peripheral, Intel Corporation,

Intel, Pentium Processor User’s Manual, Intel Corporation, Santa Clara, CA, 1993.
Intel, 80386 Advance Information, Intel Corporation, Santa Clara, CA, 1985.
Intel, 80386 Hardware Reference Manual, Intel Corporation, Santa Clara, CA, 1986.
Intel, 80386 Programmer’s Reference Manual, Intel Corporation, Santa Clara, CA, 1986.

807

1999.

NJ, 1992.

Hill, New York, 2000.

pp. 103-106, March 1985.

Upper Saddle River, NJ, 1999.

1997.

New York, 1978; 2nd ed., 1984; 3rd ed., 1990.

Reprints, Motorola, pp. 50-57, March 198 1.

Hill, New York, 1984.

Santa Clara, CA, 1992.

Clara, CA, 1992.

NJ, 1978.

Corporation, 1988.

Santa Clara, CA, 1988.

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

808

Intel, The 8086 Family User’s Family, Intel Corporation, Santa Clara, CA, 1979.
Johnson, A comparison of MC68000 family processors, BYTE, pp. 205-218, September

Katz, R., Contemporary Logic Design, BenjarnidCummings, San Francisco, 1994.
Lee, S., Design of Computers and other Complex Digital Devices, Prentice Hall, Upper

Mano, M., Computer Engineering, Prentice Hall, Upper Saddle River, NJ, 1988.
Mano, M., Computer System Architecture, Prentice Hall, Upper Saddle River, NJ, 1983.
Mano, M., Digital Design, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1991; 3rd ed.,

Mano, M., and Kime, C., Logic and Computer Design Fundamentals, 2nd ed. updated,

Miller, M., Raskin, R., and Rupley, S., The pentium that stole Christmas, PC Magazine,

Motorola, MC68000 16-Bit Microprocessor User’s Manual, Motorola Corporation,

Motorola, MC68000 Supplement Material (Technical Training), Motorola Corporation,

Motorola, MC68000 Users Manual, Motorola Corporation, Schaumburg, IL, 1979.
Motorola, MC68020 Course Notes, MTTA20 Rev. 2, Motorola Corporation Schaumburg,

Motorola, MC68020 User’s Manual, Motorola Corporation, Schaumburg, IL, 1985.
Motorola, MC68020/68030 Audio Course Notes, Motorola Corporation, Schaumburg,

Motorola, MC68040 User’s Manual, Motorola Corporation, Schaumburg, IL, 1989.
Motorola, Microprocessor Data Material, Motorola Corporation, Schaumburg, IL, 198 1.
Motorola, Power PC 601, RISC Microprocessor User’s Manual, Motorola Corporation,

Motorola, Technical Summary, 32-Bit Virtual Memory Microprocessor, MC68020 BR2431

Motorola, 16-Bit Microprocessor: MC68000 User’s Manual, 4th ed., Prentice Hall, Upper

Motorola, 68020 User’s Manual, 2nd ed., MC68020 UM/AD Rev. 1, Prentice Hall, Upper

National Semiconductor, CMOS Logic Data Book, National Semiconductor, Santa Clara,

National Semiconductor, FasP Advanced Schottky TTL Logic Data Book, National

National Semiconductor, LS/S/TTL Logic Data Book, National Semiconductor, Santa

National Semiconductor, Programmable Logic Devices Data Book and Design Guide,

Nelson, V. P., Nagle, H. T., Irwin, J. D., and Carroll, B. D., Digital Logic Circuit Analysis

Osborne, A., An Introduction to Microprocessors, Vol. 1, Basic Concepts, rev. ed.,

Palnitkar, S., Verilog HDL: A Guide to Digital Design and Synthesis, SunSoft Press,

Fundamentals of Digital Logic and Microcomputer Design

1986.

Saddle River, NJ, 2000.

2002.

Prentice Hall, Upper Saddle River, NJ, 200 1.

February 27,1995.

Schaumburg, IL, 1982.

Schaumburg, IL, 1982.

IL, July 1987.

IL,1988.

Schaumburg, IL, 1993.

D, Rev. 2, Motorola Corporation, Schaumburg, IL, 1987.

Saddle River, NJ, 1984.

Saddle River, NJ, 1984.

CA, 1988.

Semiconductor, Santa Clara, CA, 1990.

Clara, CA, 1989.

National Semiconductor, Santa Clara, CA, 1989.

and Design, Prentice Hall, Upper Saddle River, NJ, 1995.

Osborne/McGraw-Hill, Berkeley, CA, 1980; 2nd ed., 1982.

Division of Prentice Hall, Upper Saddle River, NJ, 1996.

Bibliography 809

Pellerin, D., and Holley, M., Digital Design Using ABEL, Prentice Hall, Upper Saddle

Ra fiquzzaman, M., Microprocessors and Microcomputer Development Systems: Designing

Ra fiquzzaman, M., Microcomputer Theory and Applications with the INTEL SDK-85,2nd

Rafiquzzaman, M., Microprocessors-Theory and Applications-Intel and Motorola,

Rafiquzzaman, M., and Chandra, R., Modern Computer Architecture, West I PWS, Boston,

Rafiquzzaman, M., Microprocessors and Microcomputer-Based System Design, CRC

Smith, D., and Franzon, P., Verilog Styles for Synthesis of Digital Systems, Prentice Hall,

Smith, J., and Weiss, S., Power PC 601 and Alpha 21064: a tale of two RISCs, IEEE

Tanenbaum, A. S., Structured Computer Organization, Prentice Hall, Upper Saddle River,

Texas Instruments, Linear Circuits Data Book, Texas Instruments, Dallas, TX, 1990.
Texas Instruments, The TTL Data Book, Vol. 1, Texas Instruments, Dallas, TX, 1984.
Texas Instruments, The TTL Data Book for Design Engineers, 2nd ed., Texas Instruments,

Tocci, R. J., and Widmer, N. S., Digital Systems, 7th ed., Prentice Hall, Upper Saddle

Triebel, W., The 80386 DX Microprocessor, Prentice Hall, Upper Saddle River, NJ,

Triebel, W., and Singh, A. The 8086 Microprocessor, Prentice Hall, Upper Saddle River,

Van der Spiegel, J., VHDL Tutorial, Department of Electrical Engineering, University of

Wakerly, J., Digital Design Principles and Practices, 3rd ed. updated, Prentice Hall, Upper

White, R., How Computers Work, millennium ed., Que Corporation, 1999.
www.activewin.com, Windows 2000, Active Windows, 2000.
www.activewin.com, DVD FAQs, Active Windows, 2000.
Zorpette, G., Microprocessors - The beauty of 32-bits, IEEE Spectrum, Vol. 22, No.9, pp.

River, NJ, 1994.

Microprocessor-Based Systems, Harper & Row, New York, 1984.

ed., Wiley, Hoboken, NJ, 1987.

Prentice Hall, Upper Saddle River, NJ, 1992.

1988.

Press, Boca Raton, FL, 1990; 2nd ed., 1995.

Upper Saddle River, NJ, 2000.

Computer, June 1994.

NJ, 1984.

Dallas, TX, 1976.

River, NJ, 1998.

1992.

NJ, 1985.

Pennsylvania, Philadelphia, April 2002.

Saddle River, NJ, 2001.

65-71, September 1994.

CREDITS
The following material is reprinted by permission of the sources listed below:

Intel Corporation: Figure 9.3, Figure 9.4, Figure 9.8, Figure 9.9, Figure 9.10, Figure 9.19,
Figure 9.33, Figure 9.35, Appendix E, Appendix F. All mnemonics of Intel microprocessors
are courtesy of Intel Corporation. The 80386 microprocessor referred to in the text as the
i386TM, the 80486 as the i486TM, and the Pentium as the PentiumTM, trademarks of Intel
Corporation.

Motorola Corporation: Table 10-1, Table 10-2, Table 10-3, Table 10-13, Table 10-15,
Table 10-16, Table 10-19, Table 10-20, Table 10-21, Table 10-23, Figure 10.1, Figure
10.2, Figure 10.3, Figure 10.6, Figure 10.7, Figure 10.7, Figure 10.13, Figure 10.17, Figure
10.19, Figure 10.28, Figure 10.28, Figure 10.32, Figure 10.33, Figure 10.34, Appendix
C, Appendix D . All mnemonics of Motorola microprocessors are courtesy of Motorola
Corporation.

Rafiquzzaman, M. and Chandra, Rajan, “Modern Computer Architecture,” 1988, West/
PWS Publishinflafi Systems Inc. used with permission; Figure 4.16, Figure 4.32, Figure
4.34, Figure 4.35, Figure 4.40, Figure 4.41, Figure 5.40, Figure 5.41, Figure 5.42, Figure
5.43, Figure 5.44, Figure 7.7, Figure 7.9, Figure 7.13, Figure 7.15, Figure 7.16, Figure
7.17, Figure 7.18, Figure 7.28, Figure 7.29, Figure 7.34, Figure 7.38, pages 169-174, pages
186-1 88, pages 306-326, pages 220-232, pages 242-267.1

81 1

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

Index
1
16L8, 127.

PAL16L8. 127.

8255, 429432,434436,675.
8284, 417420,672.
8288. 673.

2
2732, 206,426,434435,453,510-513,529-532,

674.

4
4-stage look-ahead circuit, 248.

6
6116, 427,434436,453456,510-513,529-531,

658460.
68000 I 68HC000, 3 1, 198,205,218,220-223,

68008, 457458.
68010, 457458.
68012, 457458.
68020, 285,354,576410.
68030 168040 168060, 18,285,354,576-577,

610411.

284286,457-542,576-580,585,649-650.

6821, 514517,529-530,652457.
68230, 516-520,610,651,

7
7447, 102.

74HC00 174LS00, 58-59.
74HC02 174LS02, 58-59.

7448, 104.

74HC04 174LS04, 54.
74HC08 174LS08, 57.
74HC138 l74LSl38, 113-1 14, 1 I9
74HC151 174LS151, 119.

74HC283 I 74LS283, 11 9.

74HC373 174LS373, 143,423.
74HC86 l74LS86, 61.
74HCT244 I 74HCT245, 15.

74HC266 174LS266, 61-62.

74HC32 174LS32, 55-56.

8
80186 180188, 187,368-369.
80286, 369.
80386, 369,545-571.
80486, 189, 198,369,545,565-571.
8086, 187,200-201,204-205,211-212,341-342,

367456,671.
8088, 368.

A
A/D converter, 339-341,344345,44&441,

ABEL, 128,634.
Accumulator, 188-189,218,634.
Active high, 63.
Active low, 63.
Adder, 106-1 19,244-25 1.

524526,579,594,634,

BCD, 108-109
Binary, 106, 119.
Carry look ahead, 247-248.
Carry save, 250,347.

Half, 105-108,244.
Ripple c a y adder, 108.

Adder I Subtractor, 11 9-120.
Address, 3, 121, 123, 167, 187, 189,204-205,

21 6-2 18,634.
Addressing modes, 220,373-376,461466,

Address bus, 3, 187,458,.
Algorithmic State Machines (ASM) Chart. See ASM

charts.
Alphanumeric codes, 32-34.
Altera Quartus 11, 129.
AltiVec, 20,619,620.
AltiVec vs. MMX, 620.
ALU, 2,37, 188-189,254257,349-350,634,
Analog to Digital Converter. See AID Converter.
Analysis of a Combinational Logic Circuit,

Analysis of a Synchronous Sequential Circuit,

AND, 4,55-58,633.
Arithmetic and logic unit. See ALU.
Array multipliers, 252-253.
Array processors, 349-35 1.

Full, 106-107,244,246,250,638.

550-551,583-587,634.

100-1 01.

145-1 47.

ASCII, 33-34,212,378,380-381,383-384,596,
597,601,633.

ASIC, 20-21,634.
ASM charts, 135, 168-176.
Assemblers, 213-214,223,231,633.
Assembler Directives, 214-216, 396-399.
Assembly Language, 210-223,398,400,402414,

Assembly Language Instruction Formats, 216-21 8.
Assembly Language vs. C Language, 223
Associative cache, 329.
Asynchronous sequential circuit, 135, 176-178,

492498,559-560,588-601,634.

184,634.

813

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

814 Fundamentals of Digital Logic and Microcomputer Design

B
Barrel shifter, 242-245, 354, 547,570, 577,634.
Basic Microprocessor Registers, 188-1 89.
BCD Adder, 108-109.
BCD Addition, 4748,483.
BCD Arithmetic, 4748,483.
BCD code, 33,634.
BCD Subtraction, 48,483.
BCD to seven-segment decoder, 101-105,441.
BICMOS, 2, 18,251,546,569.
Big-endian, 461.
Binary, 1,24-33,38,46.
Binary Adders. See Adders, Binary.
Binary Arithmetic, 3 8 4 6 .
Binary number, I , 24,28-32.
Bipolar junction transistor, 4, 6.
Bit, 2, 634.
BJT, 4,6.
Block transfer DMA, 345-346.
Boolean algebra, 53,64-65.
Boolean function, 64.
Boolean Identities, 65.
Breakpoint, 231,437,580,602,634.
Buffer, 6,8, 15,635.
Bus, 3,186-187,200,260-263,635.
Byte, 2.

C
C Language, 223-226,400,404,41 I , 491,495,

497.
C++, 1,222-223,22&227,431432,520-521.
Cache, 326-335,543-546,565-569,578,583,603,

Cache Memory, 326-335,635.
605,610.

Associative, 329, 33 1.
Direct Mapping, 328.
Efficiency, 330-33 1.
Hit Ratio, 327, 330-33 1.
Miss, 327,33 1.
Motorola 68020 cache, 364,543.
Organization, 326-335.
Set Associative, 329-330.
Valid bit, 330, 334.
Write-back, 330.
Write-through, 330.

CAD Tools, 20, 127.
Canonical forms, 71.
Carry flag, 3 8 4 9 , 1977198,379,385,460,474,

549, 583.
Carry Look-ahead Adder. See Adder, Carry Look-

Carry Look-ahead Circuit, 248.
Carry Propagate adder, 245,247.
Cany Save addition, 250.
CD-memories, 21,300,635.
Central processing unit. See CPU.

Characteristics table

ahead.

D flip-flop, 142.
JK flip-flop, 142.
RS flip-flop, 142.
T flip-flop, 142.

Characteristic equation of D-FF, 144.
Characteristic equation of JK-FF, 144.
Characteristic equation of RS-FF, 144.
Characteristic equation of T-FF, 144.
Chip, 4, 635.

Clock, 4,140, 164,187,268,417418,503-504,
CISC, 240-241,258-259,545,611,635,

635.
CMOS, 13-17, 143,635.
CMOS Inverter, 13-14.
Codes, 32-36.

Alphanumeric, 32-34.

BCD, 33-34.
EBCDIC, 33-34.
Excess-3, 34-35.
Gray Code, 35-36.

ASCII, 33-34.

Code Converter, 101-105.
Combinational logic circuit, 99-101, 635.

Analysis, 100-101.
Design, 101.

Combinational shifter, 242-244.
Combined pagingkegmentation, 305.
Comparator, 110-1 12.
Compiler, 1,223,635.
Complement, 30,32,3840,70-71.
Complementary MOS. See CMOS.
Complement of a Boolean Function, 70-71,
Computer, 1, 186.
Computer Architectures, 348-349.
Computer Instructions, 237-239.
Consensus Theorem, 6 8 4 9 .
Control bus, 3, 187, 198.
Control memory, 201-202,258,271-275,284-286.
Control signals, 198-199.
Control Unit, 2, 198,201-204,237,257-259,

Control Unit Design, 257-277.
262-264,270-273,275,280,285,636,

Hardwired Control, 258,263-270.
Microprogrammed Control, 258,270-277.
Nanomemory, 284-286.

Counter, 156-161, 164-166,735-740,773-777.
Design, 156-161.
Johnson, 166.
Modulo-n, 164-1 66.
Ring, 165.
Self-correcting, 159.
Verilog, 735-740.
VHDL, 773-777.

CPLD, 126128,636,

CPU Design, 277-283.
CPU, 1-2, 185,635.

ALU, 2,37, 188-189,254-257,349-350,457,
Control Unit, 2, 198,200-204,237, 257-259,

Register, 162-1 64,242-244
262-264,27&273,275,280.

Index 815

Verilog, 129,741-743.
VHDL, 777-778.

Cross Assembler, 2 13.
Cycle stealing DMA, 345-346,347, 636.

D
D Flip-Flop, 139, 142.

Characteristic table, 142.
Description, 139.
Excitation table, 142.

DIA, 2,3, 19, 185,636.
Daisy Chain Interrupt, 342,346345.
Data, 1, 189, 190-193,636.
Data bus, 3, 187, 193,423.
Data direction register, 336-337, 515.
Debouncer, 137.
Decoder, 112-114, 118-120,636,
Define Byte (DB), 2 15.
Define Constant (DC), 2 15.
Define Word, 2 15-2 16.
Delay Routine, 399400, 489490.
Delimiters, 214.
DeMorgan’s Theorem, 6 5 4 6 , 70, 83.
Demultiplexers, 118,636.
Design of a Combinational Circuit, 101.
Design of Counters, 156-161.
Design of Synchronous Sequential Circuits,

Digital to Analog converter. See D/A.
Diode, 5,6,9, 11,55-57, 121-122, 124,636.
DIP, 16.
Direct cache mapping, 328.
Direct Memory Access. See DMA.
Distributive Law, 65-66.
Division of unsigned and signed numbers, 31,46,

253-254.

150-156.

DMA, 345-347,440,526,634,636,
Block Transfer, 345-346,634.
Cycle Stealing, 345-346.
Interleaved, 345-346.

Don’t Care Conditions, 83-85,96, 160.
DRAM, 166,206,209,637.
Dual of a Boolean Function, 65, 70-71.
Dual In-line Package. See DIP.
DVD, 21,637.
Dynamic RAM. See DRAM.

E
E2PROM, See EEPROM.
EAROM, See EEPROM.
EBCDIC, 33-34,637.
ECL, 9-10, 16.
EDODRAM, 206.
EEPROM, 123, 127,206,637.
Embedded Application, 61 1.
Encoders, 11 5-1 16,637.
EQU, 215.
Equivalence, 62,637.

Error Correction and Detection, 49-50.
Essential prime implicants, 81-82.
Even function, 93-94.
Excess-3 Code, 3 4 3 5 .
Excitation table, 142.

D flip-flop, 142.
JK flip-flop, 142.
RS flip-flop, 142.
T flip-flop, lp2.

Exclusive-NOR, 61-62,67, 93, 637.
Exclusive-OR, 6041,67, 88,91,93,637.
Expanding op-code technique, 238-239.
External Interrupts, 341-345,436-440,521-526.

F
Fan-out, 9.
Fetch timing diagram, 206-207.
Field Programmable Devices, 123-127.
Firmware, 258,637.
Five-Variable K-map, 84-86.
Fixed-Point Numbers, 37.
Flag register, 197-198,220,277, 372-373,460,

Flash memory, 127,207,300,638.
Flip-flops, 136,138-144,638.

D flip-flop, 139, 141-143.
JK flip-flop, 139-140,143-144.
Master-Slave, 140-141,
Preset and Clear, 141-143.
RS flip-flop, 138-139, 142, 144.
Summary, 143-144.
T flip-flop, 140, 142-144..

Floating-point Numbers, 37.
Floppy disk, 300.
Flowcharts, 228.
Foldback, 304.
Four-Variable K-map, 79.
FPGA, 127,638.
Fragmentation, 306-307.
Full adder. See Adder, Full.
Full subtractor, 109-1 10
Fully associative cache mapping, 329.

548-549,741-743,777-778.

G
Gates, 4, 54, 638.
Gates with multiple inputs, 66-67
General-purpose Resister-based Micorprocessor,

General-purpose Register, 162-164, 182, 189, 193.
Glitch, 70.
Gray Code, 35-36.

189.

H
Half-Adder. See Adder, Half.
Half subtractor, 109.
Hardware, 1,638.
Hardware breakpoint, 23 I .

816 Fundamentals of Digital Logic and Microcomputer Design

Hardware Description Language, 127-129.
Behavioral, 128,719-720.
Dataflow, 128,719.
Structural, 128,717-719.

Hardwired control, 263-270,638.
Hard disk, 300.
Hazard, 70.
HCMOS, 2, 18,251,457, 504,547, 563,638.
HCT chips, 14.
HDL. See Hardware Description Language.
Hexadecimal Numbers, 25,27-28,638.
High-level language, 222-227,638.
High-speed CMOS. See HCMOS.
HMOS, 18,286,457,638.

I
VO, 185-186,335-347,428432,436446,

514-526.
DMA, 345-347,440,526,
Interrupt I/O, 336,340-345,436446,521-526.
Programmed I/O, 335-346,428432,514521.

I/O summary, 347.
IC, 4.
IEEE Symbols for Logic Gates, 62.
Index Register, 194,375,462,464465,
InpuUOutput. See I/O.
Instruction, 1,218-219,238-239,376-395,

Instruction Encoding, 237-239.
Block code, 237.
Expanding opcode, 237-239.

467487,551-558,587-601,639.

Instruction Fetch Timing Diagram, 206207.
Instruction format, 216-218.
Instruction Register, 188, 190-193,639.
Instruction Set, See Instruction.
Integrated Circuit. See IC.
Intel 32- and 64-bit microprocessors, 545-546.
Intel 801 86, 368.
Intel 80188, 368.
Intel 80286, 369.
Intel 80386, 546565.

Addressing Modes, 550-55 1.
Data types, 548-549.
Dynamic Bus sizing, 562.
Functional units, 547.

Instruction Set, 551-558.
Memory Organization, 548.
Pins and Signals, 560-561.
Registers, 549-550
System Design, 562-564.

Intel 80386 vs. 80486, 566.
Intel 80486, 565-568.
Intel 8086-based Microcomputer schematic, 433.
Intel 8086, 200,367451, 701-711.

Addressing modes, 373-376.
Assembler directives, 396399.
C Programming Example, 400401,404,

I/O, 564-565,639.

41 1412,431432.

Clock generation, 41 8.
Delay routine, 399400.
Demultiplexing addreddata bus using 74LS373,

Display Interface, 446450.
DMA, 440.
Functional unites, 200-201.
I/O ports, 428432.
I/O map, 435436.
Instruction set, 376395,701-711.
Interfacing with memories, 425428.
Interrupts, 436440.
Keyboard / Display Interface, 446451.
Memory map, 434-435.
Memory & 110 interface, 434436.
Microcomputer schematic, 433.
Pins and Signals, 414417.
Programming examples, 40M14.
Ready, 420.
Registers, 370-373.
Reset, 419420.
Stack, 399.
System Design, 434436.
Timing Diagram, 421422.

423.

Intel 8284, 418420,672.
Intel 8255, 429430,434436,675.
Intel Merced/IA/64, 18,20,575.
Intel Pentium, 18, 545, 568-572.
Intel Pentium I1 / Celeron / Xeon, 573-574.
Intel Pentium 111 / Pentium 4, 574575.
Intel Pentium Pro, 572-573.
Interleaved DMA, 345-346, 639.
Internal interrupts, 341-342, 639.
Interrupt Address Vector, 342.
Intempt 110, 340-345,436446,521-526,639.
Interrupt Priorities, 342-345.
Interrupt service routine, 340-341,343,
Interrupt Types, 341.
Inverter, 4, 7,53-54.

J
Java, 227.
JK Flip-Flop, 139-140, 142.

Characteristic table, 142.
Description, 139-1 40.
Excitation table, 142.

Johnson Counter, 166.

K-map. See Karnaugh Maps.
Kamaugh Maps, 75-86,639.

L
LI Cache, 335.
L2 Cache, 335,573,574.
Latches, 136.
LED, 7-9,640,

Index 817

Light Emitting Diodes. See LED.
Literal, 65.
Little-endian, 370.
Locality of reference, 326.
Logical shift operation, 162.
LS-TTL, 9-l0,14-16,504.
LSI, 15-16,20-21,640,

M
Machine language, 210-212,640.
Macroassembler, 2 13.
Macroprogram, 202.
Main memory, 187,204-205,299-304,369-370,

644.
Main Memory Array Design, 300-304.
Maskable interrupts, 341-342,347,438440,

Masking operation, 219,384-385,477478.
Master-Slave Flip-Flop, 140-141.
Maxterms, 71, 72,73,74,75,83.
MC6116, 427,433435,510,512-513,658460,
MC68000, 31, 198,205,218,220-223,284286,

MC68008, 458.
MC68010, 458.
MC68012, 458.
MC6821, 516517,652457,

Mealy circuit, 148.
Memory, 1,3,121-123,166-168,185,204-209,

Memory Address Register, 189,641.
Memory fragmentation, 306,307.
Memory management, 304-307.
Memory Management Unit, 305-306,641.
Memory mapped I/O, 337-338,347,428429,456,

Memory Organization, 209,299.
Memory Types, 3,121, 123,127, 166168,

521-526.

457-542,576580,585,649450,

MC68230, 5 16-520,65 1.

434435,511-514,548,607410,640.

514-521,641.

205-209,326-335.
Cache,32&335.
DRAM, 166,206,209.
E2PROM, 123, 127,206,637.
EAROM, 123, 127,206,637.
EEPROM, 123,127,206,637.
Nonvolatile, 3, 121.
PROM, 123.

ROM, 121, 123.
SRAM, 166,205.
Volatile, 3, 166, 205.

Merced, 18,20,575.
Meta-assembler, 214.
Metal-Oxide Semiconductor, 4, 13.
Microcomputer, 2, 185-189,433,528, 641.
Microcomputer Bus, See Bus.
Microcomputer Development Systems, 228-23 1.
Microcomputer programming languages, 2 10.
Microcontrollers, 2, 185-186, 641.
Microinstruction, 201,270-277, 641.

RAM, 3, 166168,205-209.

Microprocessor, 1,2, 185, 188-201,641.
Microprocessor registers, 188-189, 193-198.
Microprocessor system development flowchart,

Microprogram, 201-204,270-283,641.
Microprogrammed Control Unit Design, 270-283.
Microprogrammed CPU Design, 277-283.
Microprogramming, 201-204,270-283.
Minterms, 71-74.
MIPS, 545.
MMU. See Memory Management Unit.

Modulo-4 Counter, 166.
Modulo-n Counters, 164.
Monitors, 227-228.
Moore circuit, 148.

MOS outputs, 15.
MOS switch input, 15.
Motorola 32- and 64-bit microprocessors, 576-620.
Motorola 68000-based microcomputer schematic,

Motorola’s stat-of-the art microprocessors,

Motorola 61 16, See MC6116.
Motorola 68000-based Microcomputer, 529-532.
Motorola MC68000/68HC00, 457-542,696-699.

Addressing Modes, 461466.
C Programming Example, 491492,495,497,

Clock Generation, 504-505.
DELAY Routine, 489490.
DMA, 526.
DTACK delay circuit, 529.
DTACK timing diagram, 529.
Exceptions, 526-529.
Programming examples, 4 9 W 9 8 .
I/Omap, 517,519.
Instruction Execution Times, 661-669.
Instruction Set, 467487,696-699.
Interfacing with Memories, 51 1-514.
Interrupts, 521-526.
Memory Addressing, 46 1.
Memory map, 513.
Microcomputer, 528-532.
Microcomputer schematic, 528.
Multiprocessing, 53 1-532.
Pins and Signals, 499-503.
Programmed YO, 5 14-52 1.
Registers, 460.
Reset, 505-509.
68000-6821 Interface, 515-517.
6800-68230 Interface, 517-519.
Stack, 487489.
System Design, 528-532.
Timing Diagrams, 508-5 1 1.

23 2-23 3.

MMX, 573-574,6 19-620.

MOS, 1-2, 13-15.

528.

619420.

520-52 1.

Motorola MC68008, 458.
Motorola MC68010, 458.
Motorola MC68012, 458.
Motorola MC6821, 514-517.

818 Fundamentals of Digital Logic and Microcomputer Design

Motorola MC68020, 576410.
Addressing Modes, 583-587.
Comparison with 68HC000, 576.
Dynamic Bus Sizing, 604405.
I/O, 610.
Instruction Set, 587401, 695499.
Interfacing with Memories, 607-610.
Pins and Signals, 601404.
Registers, 581-583.
System Design, 607410.

Motorola MC68030, 610.
Motorola MC68040 / MC68060, 610-61 1.
Motorola MC68230, 516-520.
Motorola PowerPC. See PowerPC.
MSI, 15, 16.
Multiple-Output Combinational Circuits, 102, 105.
Multiplexer, 116-1 18,641.
Multiplication of two unsigned and signed binary

MUX. See Multiplexer.
numbers, 46,250-254.

N
NAND, 15, 16,58-59,63,67,88-91,642.
NAND gate implementation, 88-91.
Nanomemory, 286286,642.
Nanoprogram. See Nanomemory.
Negative logic, 63.
Nibble, 2,642.
Nine’s complement, 39.
NMOS, 13.
Noise margin, 10.
Nonmaskable interrupts, 341,437, 521, 642.
Nonvolatile memory, 3, 121.

NOR gate implementation, 91-93,642.

Number Systems, 23-52.

NOR, 58,59,91-93,642.

NOT, 4,6,7, 12-13,53-54,642.

Binary, 24,2628.
Hexadecimal, 25,27-28.
Octal, 24, 25.
Signed, 29-32.
Unsigned, 28-3 1,

0
Object codes, 2 1 1,642.
Octal Number, 24,25,642.
Odd Function, 93.
One-Pass Assembler, 213,642.
Ones complement, 29, 3940,54,642.
Ones complement arithmetic, 39-40.
Op-code encoding, 237-239.
Open-collector outputs, 10-1 I .
Operating systems, 226,300,305, 336,458, 544,

643.
Optical memories, 21,300.
OR, 4,5456,643,
ORG, 215.
ORIGIN. See ORG.

Overflow, 4346,250,379,474,

P
Packed BCD, 33-34,381,383,482483,596597,
Paged-segmentation method, 307.
Paging, 305,307-309,311-315,318,643.

PAL16L8, 127.
Parallel processing, 347-359.
Parity, 49-50,93-94,643.
PEEL, 127.
Pentium, 18,545,568-572,644.
Pentium 11, Pentium 111, Pentium 4, 573-575.
Pentium Pro, 572-573.
PGA, 16.
Pin Grid Array. See PGA.
Pipelining, 258, 351-359, 643.

PAL, 124, 126-128,644.

Arithmetic pipeline, 353-354.
Instruction pipeline, 354-359.

PLA, 124126, 132,644.

PLD Programming Languages, 127-129.
PMOS, 13.
Polled interrupt, 342-344,643.
POP, 196197,222,399,487489,643.
Port, 336340,639,643.
Positive logic, 63.
PowerPC, 18,37, 189,258,546545,576,

Preset and Clear Inputs of Flip-Flops, 141-143.
Primary memory, See Main Memory.
Prime Implicants, 81-83.
Priority Encoder, 1 14-1 16.
Processor memory, 299,644.
Product-of-sums, 73-74,.
Program, 1, 189-193,644..
Programmable array logic. See PAL.
Programmable logic array. See PLA.
Programmable Logic Devices. See PLD.
Programmed I/O, 335-346,428432,516521,

Program Counter, 188-191.
PROM, 123,644.
Propagation delay, 9-10.
PUSH, 196197,222,399,487489,644,

PLDs, 123-124, 127,644.

61 1420.

644.

Q
Quine-McCluskey Method, 86-87.

RAM, 3, 1 6 6 1 68,205-209,644,
Random Access Memory. See RAM.
Race Condition, 70.
Read-only Memory. See ROM.

READY, 199.
READ and WRITE Operations, 207-209.

R E A D W T E , 198-199.

Index 819

READ Timing Diagram, 207.
Register, 162-164, 242-244,645.
Register transfer, 259-260.
Relocatable, 221.

Ring Counter, 165.
Ripple Cany Adder. 108.
Ripple Counter, 754.

ROM, 121,123,644.
ROM-based multiplier, 25 1.
RS Flip-Flop, 138-139, 142, 144..

Characteristic table, 142.
Description, 138.
Excitation table, 142.

RESET, 188-189,419420,505-509.

RISC, 18,239-242,258,545,611-612,644.

S

Scalar Processor, 570, 645.
Schmitt Trigger, 419420,507,645.
SDRAM, 206,645.
Secondary memory, 299-300,304-326,645.
Segmentation, 305-308, 3 1 1-3 15.
Segmented memory, 204-205,3 13-3 14,3 16,369.
Segments, 204-205,305-306,311-314.
Self-correcting counter, 159.
Sequential logic circuit, 172, 645.

Analysis, 145-147.
Design, 150-1 56.
Minimization, 148-150.

Set-associative cache mapping, 329-330.
Seven Segment Displays, 8.

Common anode, 8.
Common cathode, 8.

Shift Operations, 162-164, 386386,479482.
Signed addition, 250-25 1.
Signed binary numbers, 29-32.
Signed division, 254.
Signed multiplication, 253-254.
Signed subtraction, 251.
Sign extension, 221,383,476.
Sign-magnitude arithmetic, 38.
Sign-magnitude Numbers, 29.

Single-chip microcomputer, 2, 185,645.
Single-Chip Microprocessor, 185, 188,645.
Single-step, 23 1,373,437,460, 646.
Sixty-Four Bit Microprocessors, 545,575, 576,

Software, 1,228-233,646.
Software breakpoint, 231.
Spooling, 336.
SRAM, 166,205.
SRAM cell, 167.
SR Latch, 136-138.
SSI, 15-16.
Stack, 195-197, 372, 399,487489,646.
Stack Pointer, 195, 197,399,460,646.
Standard I/O, 337-338,428,565,646.
State diagram, 147-154, 158-159.

SIMD, 348-349.

619.

State machines, 135, 170.
State machine design using ASM chart, 170-1 76.
State table, 146, 147.
Static RAM. See SRAM.
Status Register, 194-195, 197-198, 372-373,460,
Subroutine, 221-222,388-391,485.
Subtractor,

Full-subtractor, 109-1 10.
Half-subtractor, 109.
One’s complement, 39-40.

Sum-of-Products, 72, 74, 88.
Superscalar Processor, 570,612,646.
Synchronous sequential circuit, 145-1 76, 647.

T
T Flip-Flop, 140, 142, 143, 144.

Characteristic table, 142.
Description, 140.
Excitation table, 142.

Ten’s complement, 39.
Thirty-two Bit Microprocessors, 543,576-61 1.
Three-Variable K-map, 76-77.
Totem-pole outputs, 10, 1 1.
Transistor, 1,6-7,647.

Active mode, 6.
Cut-off mode, 6.
Saturation mode, 6.

Tristate, 10, 1 I .
TTL, 9-1 I , 16, 17.
TTL outputs, 10-1 1.

Open-collector output, 10, 11.
Totem-pole output, 10, 11.
Tristate, 10, 11.

Two-Pass Assembler, 213.
Two-Variable K-map, 76.
Twos complement, 3946,647.

U
Unicode, 36-37.
Unified cache, 328.
Unpacked BCD, 32,34,381,383,405
Unsigned addition, 38.
Unsigned binary numbers, 28-29.
Unsigned division, 46.
Unsigned multiplication, 46.
USB Flash Memory, 300.

V
Vector machine, 349-351.
Verilog, 127-129,647,713-755.

ALU, 743-745.
always, 714,715.
assign, 719, 729.
begin, 714.
Behavioral, 128, 129,634,719-721.
Blocking assignment, 730.
case, 720.

Fundamentals of Digital Logic and Microcomputer Design

Clock, 729.
Combinational circuit design, 721-728.
Concatenate operator, 719, 723.
Conditional operator, 714, 719.
Counter, 735-740.
CPU, 745-753.
Dataflow, 128,636,719.
$display, 7 16.
$monitor, 716.
$time, 715.
end, 714.
endmodule, 713.
Hierarchical, 714, 725.
if-else, 720.
initial, 714, 715, 729.
Memory, 743.
Miswiring, 715
module, 713.
Named association, 718.
Net, 713, 714.
Non-blocking assignment, 729.
Numbers, 714.
Operators, 719.
parameter, 714.
Positional association, 71 8.
Procedural statement, 729.
Reduction operator, 714.
reg, 714.
Register, 729.
Sequential circuit design, 728.
Status Register, 741-743.
Structural, 128, 717-719.
Test bench, 7 15.
User-Defined Primitive (UDP), 716.
wire, 713.

ALU, 781-785.
architecture, 758.
Behavioral, 128, 129,634, 761-763.
bit-vector, 758.
buffer, 758.
case, 758.
Clock, 769.
Combinational circuit design, 766-769.
component, 76 1,
Concatenate operator, 764.
constant, 760.
Counter, 773-777.

Dataflow, 636,763-765.
entity, 758.
generate, 778-78 1.
generic, 778-781.
generic map, 778-781.
Hierarchical, 759.
IEEE 1164, 758,760.
if-else, 762, 763.
in, 758.
inout, 758.
Mixed, 765.

VHDL, 127-129,648,757-806.

CPU, 785-805.

Named association, 761.
Operators, 757,758.
out, 758.

Positional association, 761
process, 762, 769.
signal, 760, 762.
Status Register, 777-778.
Structural, 759-761.
Synchronous sequential circuit design, 769-805.
variable, 760, 762.
wait until, 777.
when-else, 763-764.
with-select, 763,764765.

port, 757.

Virtual memory, 304326,648.
VLSI, 15-16.
Volatile memory, 3, 166, 205.

W
Wired-AND logic, 10, 11.
Word, 2,3,648.
Write-back method, 330.
Write-through method, 330.
WRITE Timing Diagram, 208,209.

X
XNOR. See Exclusive-NOR.
XOR. See Exclusive-OR.
XOWXNOR Implementation, 91-94.

Z
Zero flag, 195, 197-198, 373,460.
Zip disk, 300.

	Digital Logic and Microcomputer Design
	Front Matter
	Table of Contents
	Preface

	Chapter 1: Introduction to Digital Systems
	Chapter 2: Number System and Codes
	Chapter 3: Boolean Algebra and Digital Logic Gates
	Chapter 4: Combinatorial Logic Design
	Chapter 5: Sequential Logic Design
	Chapter 6: Microcomputer Architecture, Programming, and System Design Concepts
	Chapter 7: Design of Computer Instruction Set and the CPU
	Chapter 8: Memory, I/O, and Parallel Processing
	Chapter 9: Intel 8086
	Chapter 10: Motorola MC68000
	Chapter 11: Intel and Motorola 32- & 64-Bit Microprocessors
	Appendix A: Answers to Selected Problems
	Appendix B: Glossary
	Appendix C: Motorola 68000 and Support Chips
	Appendix D: 6800 Execution Times
	Appendix E: Intel 8086 and Support Chips
	Appendix F: 8086 Instruction Set Reference Data
	Appendix G: 6800 Instruction Set
	Appendix H: 8086 Instruction Set
	Appendix I: Verilog
	Appendix J: VHDL
	Bibliography
	Credits
	Index

