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PREFACE

Simplification of modes of proof is not merely an indication of advance in our knowledge

of a subject, but is also the surest guarantee of readiness for further progress.

– W. Thomson [1st Baron Kelvin] and P. G. Tait,

Elements of Natural Philosophy, 1873

There are three timeless truths in the field of wireless communications:

• Demand for wireless throughput, both mobile and fixed, will always increase.

• The quantity of available electromagnetic spectrum will never increase, and the most

desirable frequency bands that can propagate into buildings and around obstacles and

that are unaffected by weather constitute only a small fraction of the entire spectrum.

• Communication theorists and engineers will always be pressured to invent or to

discover breakthrough technologies that provide higher spectral efficiency.

Given the history of more than a century of wireless innovation, we must look to the

physical layer for breakthrough technologies. The central assertion of this book is that

Massive MIMO constitutes a breakthrough technology. It is a scalable technology whereby

large numbers of terminals simultaneously communicate through the entire allocated

frequency spectrum. What enables this aggressive multiplexing is, first, an excess number

of service antennas compared with terminals, and, second, performing the multiplexing

and de-multiplexing based on measured propagation characteristics rather than on assumed

propagation characteristics. A disproportionate number of service antennas compared with

active terminals makes it likely that the propagation channels are conducive to successful

multiplexing, and basing the multiplexing on direct channel measurements makes the

antenna array tolerances independent of the number of antennas. The activity of growing

the number of antennas relative to the number of active terminals renders the simplest types

1
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2 Preface

of multiplexing and de-multiplexing signal processing exceedingly effective, and it permits

the same quality of service with reduced radiated power. Low radiated power is conducive

to frequency reuse. The combined action of many antennas eliminates frequency-dependent

fading and simplifies power control. By virtue of the time-division duplexing operation, the

propagation channel characteristics are measured on the uplink and used both for uplink data

detection and downlink beamforming. This facilitates operation in high-mobility scenarios.

Also, by performing appropriate power control, Massive MIMO yields uniformly good

service to all terminals, as measured in terms of 95%-likely throughputs on both the uplink

and downlink.

Ostensibly, analyzing the performance of a Massive MIMO system is a daunting task because

of the sheer number of frequency dependent propagation channels at work, and the fact that

all terminals transmit and receive information over all frequencies. The central message

of this book is that substantially closed-form performance expressions are obtainable for

even the most complicated multi-cell Massive MIMO deployments. We achieve analytical

tractability in three ways: first, we model small-scale fading – a-priori unknown to everyone

– as independent, Rayleigh distributed; second, we assume that large-scale fading is known

to everyone who needs to know it; and, third, we restrict attention to the simplest linear

multiplexing and de-multiplexing – zero-forcing and maximum-ratio processing, both on

the uplink and on the downlink. Collectively, these assumptions admit Bayesian analysis and

ergodic capacity lower bounds, whose derivation requires only elementary mathematical

techniques. For multi-cell Massive MIMO deployment, we obtain comprehensive but

remarkably simple non-asymptotic expressions for the capacity lower bounds. Massive

MIMO, in effect, creates a dedicated virtual circuit between the home base station and each

of its terminals, comprising a frequency independent channel whose quality depends only

on large-scale fading and power control. Our capacity lower bounds account for receiver

noise, channel estimation errors, the overhead associated with pilots, power control, the

imperfections of the particular multiplexing or de-multiplexing signal processing that is

employed, non-coherent inter-cell interference, and coherent inter-cell interference that

arises from pilot reuse. These bounds yield considerable intuitive insight into the workings

of Massive MIMO systems, the interplay of system parameters, and system scalability.

Numerical case studies illustrate the tremendous potential of Massive MIMO as well as the

value of the capacity bounds as system design tools.

This book should appeal to three classes of readers. Wireless engineers will find a clear

exposition of the principles of Massive MIMO that uses only elementary communication

theory and statistical signal processing. While exhaustive end-to-end system simulations

may be employed for detailed system performance analyses, and possibly for engineering

designs, our capacity-bound approach is likely to see extensive use because of its speed

and simplicity, the insight that it gives into the interaction of system parameters, and as
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an independent check on simulations. Researchers who are devising advanced Massive

MIMO techniques and algorithms can use baseline performance measures, embodied in our

capacity bounds, to quantify performance improvements versus implementation complexity.

For the student, this book should be an ideal vehicle for learning how to translate basic

information theory, and communication and signal processing principles, into the analysis

of complicated communication systems.

How to Read This Book

With the aid of the appendices, this book is self-contained and requires only linear algebra

and undergraduate-level probability theory as prerequisites.

Practicing systems engineers looking for a quick insight into the potential of Massive

MIMO technology may start by reading Chapter 6 on case studies, and then for insights

into the performance evaluation methodology, read Chapter 3 for the single-cell analysis,

and Chapter 4 for the multi-cell analysis. The other chapters and appendices can be used as

references when needed.

Professors looking to cover the topic in depth (a one-semester graduate-level course), or

students and researchers looking for a solid background in Massive MIMO performance

analysis, may first read Chapters 1–2, next study the background material in Appendices

A–C, and then read Chapters 3–8 in sequence, referring to the rest of the appendices

whenever needed.

A set of problems to each chapter, and an accompanying solution manual, are available to

course instructors and may be obtained by contacting the authors.
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Chapter 1

INTRODUCTION

The performance limitation of any wireless network will always be at the physical layer,

because, fundamentally, the amount of information that can be transferred between two

locations is limited by the availability of spectrum, the laws of electromagnetic propagation,

and the principles of information theory.

There are three basic ways in which the efficiency of a wireless network may be improved:

(i) deploying access points more densely; (ii) using more spectrum; and (iii) increasing the

spectral efficiency, that is, the number of bits that can be conveyed per second in each unit of

bandwidth. While future wireless systems and standards are likely to use an ever-increasing

access point density and use new spectral bands, the need for maximizing the spectral

efficiency in a given band is never going to vanish.

The use of multiple antennas, also known as multiple-input, multiple-output (MIMO)

technology, is the only viable approach for substantial improvement of spectral efficiency.

While mostly developed during the last two decades, it is noteworthy that a basic idea behind

MIMO is almost a century old: in [1], directional beamforming using an antenna array was

suggested to permit more aggressive frequency reuse of scarce spectrum – in this case, very

low frequency – for transoceanic communication.

MIMO technology is logically classified into one of three categories, whose development

occurred during roughly disjoint epochs: Point-to-Point MIMO, Multiuser MIMO, and

Massive MIMO. This book is about Massive MIMO, which arguably will be the ultimate

embodiment of MIMO technology. The following sections explain these incarnations of

MIMO and their important differences. This treatment is intended to be a quick overview,

and subsequent chapters will expand upon the concepts introduced here.

5
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6 Introduction Chapter 1

1.1 Point-to-Point MIMO

Point-to-Point MIMO emerged in the late 1990s [2–11] and represents the simplest form

of MIMO: a base station equipped with an antenna array serves a terminal equipped with

an antenna array; see Figure 1.1. Different terminals are orthogonally multiplexed, for

example via a combination of time- and frequency-division multiplexing. In what follows,

we summarize some basic facts about Point-to-Point MIMO. More details, along with

derivations of all formulas given here, are provided in Section C.3.

In each channel use, a vector is transmitted and a vector is received. In the presence of

additive white Gaussian noise at the receiver, Shannon theory yields the following formulas

for the link spectral efficiency (in b/s/Hz):

Cul
= log2

����IM +
ρul

K
GGH���� , (1.1)

Cdl
= log2

����IK +
ρdl

M
GHG

����
(a)
= log2

����IM +
ρdl

M
GGH���� . (1.2)

In (1.1) and (1.2), G is an M × K matrix that represents the frequency response of the

channel between the base station array and the terminal array; ρul and ρdl are the uplink and

downlink signal-to-noise ratios (SNRs), which are proportional to the corresponding total

radiated powers; M is the number of base station antennas; and K is the number of terminal

antennas. Also, in (a) we used Sylvester’s determinant theorem. The normalization by

K and M reflects the fact that for constant values of ρul and ρdl total radiated power is

independent of the number of antennas. The spectral efficiency values in (1.1) and (1.2)

require the receiver to know G but do not require the transmitter to know G. Performance

can be improved somewhat if the transmitter also acquires channel state information (CSI).

However, this requires special effort and is seldom seen in practice – see Section C.3 for the

associated capacity formula.

In isotropic (rich) scattering propagation environments, well modeled by independent

Rayleigh fading, for sufficiently high SNRs, Cul and Cdl scale linearly with min(M,K )

and logarithmically with the SNR. Hence, in theory, the link spectral efficiency can be

increased by simultaneously using large arrays at the transmitter and the receiver, that is,

making M and K large. In practice, however, three factors seriously limit the usefulness of

Point-to-Point MIMO, even with large arrays at both ends of the link. First, the terminal

equipment is complicated, requiring independent RF chains per antenna as well as the use

of advanced digital processing to separate the data streams. Second, more fundamentally,

the propagation environment must support min(M,K ) independent streams. This is often

not the case in practice when compact arrays are used. Line-of-sight (LoS) conditions are
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Figure 1.1. Point-to-Point MIMO.

particularly stressing. Third, near the cell edge, where normally a majority of the terminals

are located and where SNR is typically low because of high path loss, the spectral efficiency

scales slowly with min(M,K ). Figure 1.2 illustrates this problem on the downlink for a

terminal with K = 4 antennas and an SNR of −3 dB.
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Figure 1.2. Downlink spectral efficiency with Point-to-Point MIMO for a terminal at the

cell edge with K = 4 antennas, no CSI at the base station, and an SNR of −3 dB.

1.2 Multiuser MIMO

The idea of Multiuser MIMO is for a single base station to serve a multiplicity of terminals

using the same time-frequency resources; see Figure 1.3. Effectively, the Multiuser MIMO

scenario is obtained from the Point-to-Point MIMO setup by breaking up the K-antenna

terminal into multiple autonomous terminals. This section summarizes some basic results

of Multiuser MIMO. More details, and derivations of all formulas stated here, are given in

Section C.4.

The basic concept of serving several terminals simultaneously using an antenna array at the

base station is quite old [12–19]. However, a rigorous information-theoretic understanding

of Multiuser MIMO emerged much later [20–23]. The transition in thinking from Point-to-

Point MIMO to Multiuser MIMO is explained in some detail in [24].

Our discussion in this section is confined to that particular form of Multiuser MIMO for

which there is a comprehensive Shannon theory which provides the ultimate performance

of the system and specifies how this performance may be approached arbitrarily closely. It

will be convenient to call this conventional Multiuser MIMO, even though it is doubtful if

such a system has ever been reduced to practice.

Throughout this book, we assume that terminals in Multiuser MIMO have a single antenna.

Hence, in the setup in Figure 1.3 the base station serves K terminals. Let G be an M × K

matrix corresponding to the frequency response between the base station array and the K
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Figure 1.3. Multiuser MIMO.

terminals. The uplink and downlink sum spectral efficiencies are given by

Cul
= log2

���IM + ρulGGH��� , (1.3)

Cdl
= max

νk≥0∑
K

k=1
νk≤1

log2
���IM + ρdlGDνG

H��� , (1.4)

where ν = [ν1, . . . , νK ]T, ρul is the uplink SNR per terminal, and ρdl is the downlink SNR.

(For given ρul, the total uplink power is K times greater than for the Point-to-Point MIMO
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10 Introduction Chapter 1

model.) The computation of downlink capacity according to (1.4) requires the solution of

a convex optimization problem. The possession of CSI is crucial to both (1.3) and (1.4).

On uplink, the base station alone must know the channels, and each terminal has to be told

its permissible transmission rate separately. On the downlink, both the base station and the

terminals must have CSI.

Note that the terminal antennas in the point-to-point case can cooperate, whereas the

terminals in the multiuser case cannot. Quite remarkably, however, the inability of the

terminals to cooperate in the multiuser system does not compromise the uplink sum spectral

efficiency as seen by comparing (1.1) and (1.3). Note also that the downlink capacity (1.4)

may exceed the downlink capacity in (1.2) for Point-to-Point MIMO, because (1.4) assumes

that the base station knows G, where as (1.2) does not.

Multiuser MIMO has two fundamental advantages over Point-to-Point MIMO. First, it

is much less sensitive to assumptions about the propagation environment. For example,

LoS conditions are stressing for Point-to-Point MIMO, but not for Multiuser MIMO, as

explained in Chapter 7. Second, Multiuser MIMO requires only single-antenna terminals.

Notwithstanding these virtues, two factors seriously limit the practicality of Multiuser

MIMO in its originally conceived form. First, to achieve the spectral efficiencies in (1.3)

and (1.4) requires complicated signal processing by both the base station and the terminals.

Second, and more seriously, on the downlink both the base station and the terminals must

know G, which requires substantial resources to be set aside for transmission of pilots in

both directions. For these reasons, the original form of Multiuser MIMO is not scalable

either with respect to M or to K .

1.3 Massive MIMO

Originally conceived in [25,26],Massive MIMO is a useful and scalable version of Multiuser

MIMO. This section introduces the basic Massive MIMO concepts.

Consideration of net spectral efficiency alone according to the rigorous Shannon theory

that underlies (1.3) and (1.4) suggests the optimality of a rough parity between M and K in

conventional Multiuser MIMO: further growth of M only yields logarithmically increasing

throughputs while incurring linearly increasing amounts of time spent on training. Massive

MIMO represents a clean break from conventional Multiuser MIMO. Measures are taken

such that one operates farther from the Shannon limit, but paradoxically achieves much

better performance than any conventional Multiuser MIMO system.

There are three fundamental distinctions between Massive MIMO and conventional

Multiuser MIMO. First, only the base station learns G. Second, M is typically much
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Section 1.3 Massive MIMO 11

larger than K , although this does not have to be the case. Third, simple linear signal

processing is used both on the uplink and on the downlink. These features render Massive

MIMO scalable with respect to the number of base station antennas, M .

Figure 1.4 illustrates the basic Massive MIMO setup. Each base station is equipped with a

large number of antennas, M , and serves a cell with a large number of terminals, K . The

terminals typically (and throughout this book) have a single antenna each. Different base

stations serve different cells, and with the possible exception of power control and pilot

assignment, Massive MIMO uses no cooperation among base stations.

Either in uplink or in downlink transmissions, all terminals occupy the full time-frequency

resources concurrently. On uplink, the base station has to recover the individual signals

transmitted by the terminals. On the downlink, the base station has to ensure that each

terminal receives only the signal intended for it. The base station’s multiplexing and

de-multiplexing signal processing is made possible by utilizing a large number of antennas

and by its possession of CSI.

Under LoS propagation conditions, the base station creates, for each terminal, a beam

within a narrow angular window centered around the direction to the terminal; see

Figure 1.5(a). The more antennas, the narrower are the beams. By contrast, in the

presence of local scattering, the signal seen at any given point in space is the superposition

of many independently scattered and reflected components that may add up constructively

or destructively. When the transmitted waveforms are properly chosen, these components

superimpose constructively precisely at the locations of the terminals; see Figure 1.5(b).

The more antennas, the more sharply the power focuses onto the terminals. When focusing

the power, the use of sufficiently accurate CSI at the base station is essential. In time-division

duplex operation (TDD), the base station acquires CSI by measuring pilots transmitted by

the terminals, and exploiting reciprocity between the uplink and downlink channel. This

requires reciprocity calibration of the transceiver hardware, as discussed in Section 8.7.

However, phase-calibrated arrays are not required, since by virtue of the reciprocity a phase

offset between any two antennas will affect the uplink and the downlink in the same way.

Increasing the number of antennas, M , always improves performance, in terms of both

reduced radiated power and in terms of the number of terminals that can be simultaneously

served. In Chapters 3 and 4, we give rigorous lower bounds on Massive MIMO spectral

efficiency, and these bounds account for all overhead and imperfections associated with

estimating the channels from uplink pilots.

The use of large numbers of antennas at the base station is instrumental not only to obtain

high sum spectral efficiencies in a cell, but, more importantly, to provide uniformly

good service to many terminals simultaneously. An additional consequence of using

large numbers of antennas is that the required signal processing and resource allocation
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Figure 1.4. Massive MIMO.
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(a) LoS propagation conditions. (b) Propagation environment with scattering.

Figure 1.5. The effect of precoding in different propagation environments.

simplifies, owing to a phenomenon known as channel hardening. The significance of

channel hardening is that effects of small-scale fading and frequency dependence disappear

when M is large. Specifically, consider a terminal with M-dimensional channel response

g; if beamforming with a beamforming vector a is applied, then the terminal sees a scalar

channel with gain aTg. When M is large, by virtue of the law of large numbers, aTg is

close to its expected value, E
{
aTg

}
(a deterministic number). This means that the resulting

effective channel between each terminal and the base station is a scalar channel with

known, frequency-independent gain and additive noise. We show in Chapters 3 and 4 that

the capacity of this channel can be rigorously, and without approximations, characterized

in terms of an effective signal-to-interference-plus-noise ratio (SINR). Importantly, this

characterization does not rely on channel hardening and it is valid for any M and K ;

however, by virtue of channel hardening, most relevant capacity bounds are tight only

when M is reasonably large. This characterization in turn facilitates the use of simple

schemes for resource allocation and power control, as further explained in Chapter 5.

Furthermore, channel hardening renders channel estimation at the terminals, and the

associated transmission of downlink pilots, unnecessary in most cases.

Another benefit of channel hardening in Massive MIMO is that the effective scalar channel

seen by each terminal behaves much like an additive white Gaussian noise (AWGN) channel,

and hence standard coding and modulation techniques devised for the AWGN channel tend

to work well. To illustrate this point, consider the empirical link performance example

shown in Figure 1.6. Here, an array with M = 100 antennas serves K = 40 terminals that

transmit simultaneously in the uplink, using QPSK modulation and a rate-1/2 channel code,
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Figure 1.6. Empirical performance of a Massive MIMO uplink with M = 100 antennas

and K = 40 terminals using QPSK modulation with a rate-1/2 low-density parity check

code. The vertical solid line represents the SNR threshold obtained from the closed-form

lower bound on the spectral efficiency derived in Chapter 3.

with a coherence interval (see Chapter 2 for the exact definition) length of 400 samples.

The fading is Rayleigh and independent between the antennas and between the coherence

intervals, and there is coding across coherence intervals. All terminals have the same path

loss and transmit with the same power, and there is no shadow fading. The channel code is

a state-of-the-art low-density parity check code optimized for the AWGN channel [27]. The

base station learns the uplink channels through received pilot signals, and each terminal

transmits its own orthogonal pilot sequence of length 40. The instantaneous sum spectral

efficiency is equal to the number of terminals, K , times the number of bits per symbol, times

the code rate: 40 × 2 × (1/2) = 40 b/s/Hz. Assuming, for the sake of argument, that there is

only transmission in the uplink, the net sum spectral efficiency is equal to the fraction of the

coherence interval spent on payload data transmission multiplied by the instantaneous sum

spectral efficiency: (1 − 40/400) × 40 = 36 b/s/Hz. The receiver performs maximum-ratio

processing followed by channel decoding. The lower bound on the instantaneous ergodic

sum spectral efficiency for this case is K log2(1 + SINR) where SINR is the effective SINR

given in the upper right corner of Table 3.1 (the same for all terminals). Equating this bound

to 40 b/s/Hz, we find that the minimum required SNR is −13.66 dB. For a block length

of 100 000 bits, the SNR gap to the bound is about 1 dB. While not shown in Figure 1.6,

the smaller the ratio K/M , the closer is the effective channel seen by each terminal to an

AWGN channel, and the smaller is the gap to the corresponding capacity bound.
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The above example demonstrates both that off-the-shelf coding and modulation techniques

tend to work well in Massive MIMO, and that the closed-form spectral-efficiency bounds

derived in this book can be closely approached in practice. Hence, these bounds

are eminently suitable as proxy for the link performance, when working with system

optimization, resource allocation, and power control. Chapter 6 provides design examples

based on these bounds.

1.4 Time-Division versus Frequency-Division Duplexing

Point-to-Point MIMO, conventional Multiuser MIMO, and Massive MIMO require different

amounts of CSI at the base station and at the terminals. This CSI may be obtained either by

estimation from received pilot signals, or by feedback from the receiver to the transmitter,

or both:

• In time-division duplexing (TDD) operation, the base station learns the uplink channel

from uplink pilots. In addition, because the channel is reciprocal (the impulse

response between any two antennas is the same in both directions) once the base

station has learned the uplink channel, it automatically has a legitimate estimate of

the downlink channel. Massive MIMO, in the form described above and throughout

this book, assumes TDD operation.

• In frequency-division duplexing (FDD) operation, the terminals learn the downlink

channel from pilots sent by the base station, and communicate the estimated CSI

back to the base station over a control channel. This feedback can be very costly,

except in special cases, such as in LoS propagation, when the CSI can be efficiently

quantized. If the CSI possesses no special structure, then direct analog feedback may

be as efficient as any digital scheme [28].

To learn the uplink channel, the base station listens to pilots sent by the terminals.

Learning the channel by sending pilots consumes resources. More specifically, to facilitate

channel estimation at the receiver, during each segment of the time-frequency plane over

which the channel is static (called a coherence interval and defined more precisely in

Chapter 2), each transmitting antenna needs to be assigned a unique pilot waveform, and

all such pilots need to be mutually orthogonal. This means that, for example, in FDD, if M

antennas transmit orthogonal pilots in the downlink, then at least M samples per coherence

interval have to be spent on pilots.

Table 1.1 summarizes the amount of resources needed for pilots and CSI feedback for

Point-to-Point MIMO, Multiuser MIMO, and Massive MIMO. Massive MIMO operating
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in TDD mode stands out, because the amount of pilot resources required is independent of

the number of base station antennas, M . Moreover, feedback from the terminals is avoided

entirely. Consequently, Massive MIMO with TDD operation has unlimited scalability in

M , a central motivation of the Massive MIMO concept.

As we shall see, even Massive MIMO operating in TDD has ultimate limitations. In

particular, when terminals have mobility there is only time for the creation of a limited

number of orthogonal pilots. In multi-cell systems, pilots have to be reused to some degree

from cell to cell, which contaminates channel estimates in the home cell with channels from

other cells. This phenomenon, called pilot contamination, results in degradation of the

channel estimate quality and coherent interference that does not disappear with the addition

of more antennas.

In one respect, FDD offers an advantage over TDD. Specifically, under a peak power

constraint and noise-limited operation, FDD yields 3 dB better SNR than TDD. More

exactly, let B be the total system bandwidth for both uplink and downlink, let P be the

received power at the terminal during the time that the transmitter is active, and let N0 be

the noise spectral density. With TDD, the net downlink rate is

B

2
log2

(
1 +

P

BN0

)
(1.5)

b/s, where the division of B by 2 before the logarithm reflects the fact that transmission

takes place over the full bandwidth, but only half of the time. With FDD, the net rate is

B

2
log2

(
1 +

P

(B/2)N0

)
(1.6)

b/s, where B is divided by 2 both inside and outside of the logarithm because transmission

takes place continuously, but only over half the bandwidth. The discrepancy between (1.5)

and (1.6) is solely a consequence of the fact that with TDD the transmitter is silent half

of the time, so for a given P the received energy per unit time is only half that of FDD.

For mobile terminals, the greater multiplexing capability of TDD compared with FDD will

easily offset this 3 dB loss in coverage. Moreover, under interference-limited operation, the

3 dB gap tends to disappear because the interference power is the same for TDD and FDD.
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FDD TDD

Uplink Downlink Uplink Downlink

Point-to-Point MIMO K pilots M pilots K pilots M pilots

(no CSI at the transmitter)

Conventional Multiuser MIMO K pilots M pilots K pilots M pilots

+ M CSI coeff.

Massive MIMO K pilots M pilots K pilots none

+ M CSI coeff.

Table 1.1. Minimum possible resources consumed by pilot transmission and CSI feedback in terms of total number of

samples per coherence interval for the three variants of MIMO. CSI feedback assumes that M ≥ K , and analog feedback.
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1.5 Summary of Key Points

• With Point-to-Point MIMO, see Figure 1.1, terminals are orthogonally multiplexed.

Both the base station and the terminals have multiple antennas. Point-to-Point MIMO

is unscalable because of the required pilot overhead, and because LoS propagation

yields channels of insufficient rank. More detail on Point-to-Point MIMO is given in

Section C.3.

• With Multiuser MIMO, see Figure 1.3, terminals are spatially multiplexed. Each

terminal may have a single antenna, as assumed throughout this book. The

requirements on the propagation channel are substantially relaxed as compared

to Point-to-Point MIMO. However, optimal signal processing is complicated, and

accurate two-way CSI is required, which in turn demands that large resources be

devoted to pilots. More detail on Multiuser MIMO is given in Section C.4.

• Massive MIMO, the ultimate form of Multiuser MIMO (see Figure 1.4), stands out

from conventional Multiuser MIMO in several ways. First, only the base station

obtains CSI. Thanks to channel hardening, no channel estimation is required at the

terminals. By operating in TDD mode and exploiting reciprocity of the propagation

channel, the amount of resources needed for pilots only depends on the number of

simultaneously served terminals, K . This renders Massive MIMO entirely scalable

with respect to the number of base station antennas, M . When M is large, linear

processing at the base station is nearly optimal.
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Chapter 2

MODELS AND PRELIMINARIES

This chapter introduces the basic signal and channel models to be used throughout the

book. We use standard complex baseband representations of all signals and noise, with the

implicit assumption that all signals are eventually modulated onto a carrier with frequency

fc and wavelength λ = c/ fc, where c is the speed of light. Also, unless stated explicitly, all

Gaussian random variables are complex-valued and circularly symmetric; see Appendix A

for a treatment of such variables.

2.1 Single-Antenna Transmitter and Single-Antenna Receiver

The wireless channel takes an input signal x(t), emitted by a transmit antenna, and yields an

output signal y(t), observed at a receive antenna. The relation between x(t) and y(t) is linear,

owing to the linearity of Maxwell’s equations. However, this relation generally is time-

varying, since the transmitter, receiver, and other objects in the propagation environment

may move relative to one another.

2.1.1 Coherence Time

The time during which the channel can be reasonably well viewed as time-invariant is

called the coherence time and denoted by Tc (measured in seconds). To relate Tc to the

characteristics of the physical propagation environment, we consider a simple two-path

propagation model where a transmit antenna emits a signal x(t) that reaches the receiver

both directly via a LoS path, and via a single specular reflection; see Figure 2.1(a). If both

paths have unit strength, and the bandwidth of x(t) is small enough that time-delays can be

19
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(a)

(b)

d1

d2

d2 − d

d1 + d

d

transmitter receiver

Figure 2.1. Illustration of the two-path propagation model used to motivate the definitions

of coherence time and coherence bandwidth.

approximated as phase shifts, then by the superposition principle the received signal is

y(t) =

(
e−i2π fc

d1
c + e−i2π fc

d2
c

)
x(t)

=

(
e−i2π

d1
λ + e−i2π

d2
λ

)
x(t), (2.1)

where d1 and d2 are the propagation path lengths defined in Figure 2.1(a).

Suppose, for the sake of argument, that when the receiver is located as shown in Figure 2.1(a),

d1/λ and d2/λ are integers. Then the two paths add up constructively and y(t) = 2x(t).

Next, if the receiver is displaced d meters to the right, so that we have the situation in

Figure 2.1(b), the received signal will instead be

y(t) =

(
e−i2π d

λ + e−i2π −d
λ

)
x(t)

= 2 cos

(
2π

d

λ

)
x(t). (2.2)

The two paths add up destructively if the cosine in (2.2) is equal to zero. As shown in

Figure 2.2(a), this occurs periodically for displacements d that are spaced λ/2 meters apart.

The channel may be considered time-invariant as long as the receiver does not move farther

than this distance, λ/2. This means that if the receiver moves with velocity v meters/second,

then the coherence time, Tc, is

Tc =
λ

2v
seconds. (2.3)
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2
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· λ
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(a) The coherence time, Tc, is the time it takes

to move the distance between two consecutive

locations at which the two paths add up destructively,

that is, λ/2 meters.

0

2

1
2
· c
|d1−d2 |

3
2
· c
|d1−d2 |

|G
(

f
)|

f [Hz]

(b) The coherence bandwidth, Bc, is the frequency

separation between two nulls of the frequency

response G( f ), that is, c/|d1 − d2 | Hz.

Figure 2.2. Definitions of coherence time and coherence bandwidth for the two-path model

in Figure 2.1.

A real propagation environment is considerably more involved than the two-path model of

Figure 2.1. It can entail a direct path and a multiplicity of indirect paths via scattering centers

of different amplitudes. The overall response is generally complex-valued. Nevertheless,

the coherence time as specified by (2.3) is typically a good approximation.

2.1.2 Coherence Bandwidth

Consider now the transmission of a waveform whose time-duration is shorter than the

coherence time, Tc. The relation between x(t) and y(t) is then approximately time-invariant,

and defined by the channel impulse response g(t) (where y(t) =
∫ ∞
−∞dτ g(τ)x(t − τ)) or,

equivalently, by the channel frequency response

G( f ) =

∫ ∞

−∞
dt g(t)e−i2π f t . (2.4)

Generally, the magnitude of the channel frequency response, |G( f ) |, varies with f . The

length of a frequency interval over which |G( f ) | is approximately constant is called the

coherence bandwidth and denoted by Bc (measured in Hz). Consider again the two-path

propagation model in Figure 2.1(a), and assume that d1 and d2 are fixed and chosen such

that d1/λ and d2/λ are integers. If a sinusoidal signal, x(t) = ei2π f t , is transmitted, then

the received signal is

y(t) =

(
e−i2π( fc+ f )

d1
c + e−i2π( fc+ f )

d2
c

)
ei2π f t . (2.5)
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Hence, the frequency response of the channel is

G( f ) = e−i2π( fc+ f )
d1
c + e−i2π( fc+ f )

d2
c

= e−i2π f
d1
c + e−i2π f

d2
c . (2.6)

The magnitude of the frequency response is

|G( f ) | = ����e−i2π f
d1
c + e−i2π f

d2
c

����
= 2

�����cos

(
π f

d1 − d2

c

) ����� , (2.7)

independently of fc. |G( f ) | has zero-crossings at frequencies periodically spaced

c/|d1 − d2 | Hz apart; see Figure 2.2(b). Analogously to the definition of coherence time in

(2.3), we define the coherence bandwidth Bc to be the spacing between two nulls of |G( f ) |,
that is

Bc =
c

|d1 − d2 |
Hz. (2.8)

While the two-path model represents a simplified description of reality, in practice we

expect |G( f ) | to be substantially constant over a frequency interval whose length is given

by (2.8), where |d1−d2 | is the maximum difference in length between different propagation

paths from the transmitter to the receiver. As a first-order approximation, |d1 − d2 |/c is

equal to the delay spread of the channel, and g(t) is time-limited to |d1 − d2 |/c seconds.

2.1.3 Coherence Interval

A time-frequency space of duration Tc seconds and bandwidth Bc Hz is called a coherence

interval. This is the largest possible time-frequency space within which the effect of the

channel reduces to a multiplication by a complex-valued scalar gain g. The magnitude |g |
represents the scaling of the waveform envelope and arg(g) represents the shift in its phase.

According to the sampling theorem, any T-second segment of a waveform x(t) whose

energy is substantially contained in a B Hz wide frequency interval can be described in

terms of BT (complex-valued) samples taken at intervals of 1/B seconds. This means

that BcTc (complex-valued) samples are required to define a waveform that fits into one

coherence interval. We therefore say that a coherence interval has the length

τc = BcTc samples. (2.9)
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Indoors Outdoors

|d1 − d2 | = 30 meters |d1 − d2 | = 1 000 meters

Pedestrian

v = 1.5 m/s

(5.4 km/h)

Bc = 10 MHz

Tc = 50 ms

τc = 500 000

Bc = 300 kHz

Tc = 50 ms

τc = 15 000

Vehicular

v = 30 m/s

(108 km/h)

N/A

Bc = 300 kHz

Tc = 2.5 ms

τc = 750

Table 2.1. First-order estimates of the coherence time Tc, coherence bandwidth Bc, and

sample length of the coherence interval, τc, for some different propagation scenarios, at a

carrier frequency of 2 GHz (λ =15 cm).

Consider a waveform x(t), occupying one coherence interval, transmitted over a channel

having the same coherence interval. The output of the noisy channel, sampled at rate Bc,

takes the form

yn = gxn + wn, n = 0, . . . , τc − 1, (2.10)

where xn is the input, yn is the output, g represents the channel gain, and {wn} denote

samples of additive receiver noise. Throughout the book, we assume that the noise is a

stationary random process having flat bandlimited spectral support, [−Bc, Bc]. The noise

autocorrelation function is proportional to sinc(Bct), so noise samples {wn} taken at intervals

of 1/Bc seconds are uncorrelated.

Some typical values of Bc, Tc, and τc, computed using (2.3), (2.8), and (2.9), are shown in

Table 2.1 for a carrier frequency of fc = 2 GHz. The values of |d1 − d2 | depend on the

exact characteristics of the propagation environment, and the values in the table are only

first-order estimates. An important observation is that outdoors in high mobility, τc is only

on the order of a few hundred samples.

2.1.4 Interpretation of Tc and Bc in Terms of Nyquist Sampling Rate

It will be convenient in our subsequent analyses to pretend that the channel is static during

each coherence interval, as in (2.10). In reality, however, the amplitude and phase of g

smoothly evolve between consecutive samples and therefore have some dependence on n. In

a practical system, estimates of g acquired from pilots may require interpolation for which
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the sampling theorem provides a rational basis.

The sampling theorem applies rigorously to a function that is strictly bandlimited to [−B, B]

and is sampled at intervals of 1/B for all time. Our definitions of coherence time and

coherence bandwidth are equivalent to specifications of Nyquist sampling intervals for

functions that are substantially bandlimited. Thus, coherence time (2.3) is associated with

motion over half of one cycle of a sinewave, while coherence bandwidth (2.8) is equivalent

to the reciprocal of the channel delay spread. In practice, one may not be dealing with

strictly bandlimited functions (in particular, if there is strong near-field propagation, or

reverberation), but there is still ample precedent for invoking the sampling theorem. The

concept of the coherence interval (2.9), while exceedingly useful, is somewhat nebulous,

and in actual systems the nominal interval may have to be shortened to provide an adequate

design margin, especially in case a terminal is served over only a few consecutive coherence

intervals, or if residual carrier frequency offsets remain, or to accommodate special

applications that require high-accuracy interpolation. In the case studies of Chapter 6,

we adopt a factor of two design margin in specifying the coherence interval.

2.1.5 TDD Coherence Interval Structure

As pointed out in Section 1.4, TDD operation is ideal for Massive MIMO because the

training burden is independent of the number of base station antennas. Throughout the

book, we assume half-duplex TDD so that only one end of the link is transmitting at any

one time, either the base station or the terminals. As a consequence, the coherence interval

naturally divides into uplink and downlink subintervals, not necessarily of equal duration.

Figure 2.3 illustrates two possible configuration, where Figure 2.3(a) includes provision for

downlink as well as uplink pilots, and Figure 2.3(b) has only uplink pilots. Not shown are

guard intervals between uplink and downlink transmissions.

Let τul be the number of samples per coherence interval spent on transmission of uplink

payload data, τul,p the number of samples per coherence interval spent on uplink pilots, τdl

the number of samples used for transmission of downlink payload data, and τdl,p the number

of samples allocated for downlink pilots. For the Figure 2.3(a) structure,

τul + τul,p + τdl,p + τdl = τc . (2.11)

We show later that uplink pilots alone are sufficient to make TDD Massive MIMO work, and

for the remainder of the book we assume the coherence interval structure of Figure 2.3(b).

For the sake of simplicity, we drop the subscript (·)ul from the parameter τul,p, and the

structural constraint becomes

τul + τp + τdl = τc . (2.12)
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uplink data uplink pilots downlink pilots downlink data

τul τdl,pτul,p τdl

τc samples

(a) With downlink pilots.

uplink data uplink pilots downlink data

τul τdlτp

τc samples

(b) Without downlink pilots.

Figure 2.3. Allocation of the samples in a coherence interval.

2.1.6 The Coherence Interval in the Context of OFDM Modulation

Orthogonal frequency-division multiplexing (OFDM) is a popular modulation scheme that

is fundamentally simple and has numerous attractive properties. The use of OFDM also

facilitates a natural interpretation of the coherence interval concept. However, nothing said

in this book is specific to OFDM. All spectral efficiency results to be given in subsequent

chapters are valid regardless of the particular modulation scheme that is eventually used in

an implementation.

OFDM uses the (fast) discrete Fourier transform to decompose a frequency-selective channel

into many parallel channels called subcarriers; see Figure 2.4. By virtue of the cyclic prefix

(see below), the effect of the channel on each subcarrier is purely multiplicative, and each

subcarrier sees a flat-fading channel. While there are other versions of OFDM, here we

treat only the variant that uses a cyclic prefix.

Transmission entails a sequence of OFDM symbols, each symbol consisting of a useful

part of length Tu seconds, preceded by a cyclic prefix (also known as guard interval) of Tcp

seconds. In total, each OFDM symbol is Ts = Tcp + Tu seconds long; see Figure 2.5. The

useful part carries Ns samples which are obtained by discrete Fourier-transformation of Ns

information symbols, and the cyclic prefix replicates the Tcp last seconds of the useful part.
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Figure 2.4. Time-frequency domain view of an OFDM symbol, including its cyclic prefix.

The effect of prepending the cyclic prefix is that the linear convolution that represents the

effect of the channel impulse response is transformed into a circular convolution, which is

equivalent to multiplication in the frequency domain. OFDM renders the original wideband

delay-spread channel into many parallel narrowband flat-fading channels. The number of

subcarriers is Ns and the frequency separation between neighboring subcarriers is Bs = 1/Tu.

Hence, the total bandwidth occupied by an OFDM symbol is

Bo = NsBs =
Ns

Tu

. (2.13)

In order for consecutive OFDM symbols not to interfere, Tcp must be at least as large as the

channel delay spread.

In practice, several consecutive OFDM symbols are grouped together into one slot. We

denote the number of OFDM symbols in a slot by Nslot, and the duration of one slot by

Tslot = NslotTs. (2.14)

We assume that Tslot ≤ Tc, so that the channel is time-invariant during one slot. However,
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cyclic prefix Ns samples of data

time

Ts

Tcp Tu

Figure 2.5. Structure of an OFDM symbol, in the time domain.

Tslot is not necessarily equal to Tc. In fact, it may be expedient to use a slot that is shorter

than the coherence time, say if reduced latency were a consideration.

Normally, the total OFDM symbol bandwidth, Bo, is much greater than the channel

coherence bandwidth, Bc, while the subcarrier bandwidth Bs is smaller than Bc. We

denote the number of consecutive subcarriers in the frequency domain that fit into one

coherence bandwidth by Nsmooth, assumed to be an integer here. Then,

Bc = NsmoothBs. (2.15)

The number Nsmooth represents the number of subcarriers over which the channel frequency

response is smooth (approximately constant).

If Tc = Tslot, a coherence interval consists of Nsmooth neighboring subcarriers in the frequency

domain and Nslot consecutive OFDM symbols in the time domain. Each slot consists of

Ns

Nsmooth

=

Bo

Bc

(2.16)

coherence intervals that are located adjacent to one another in the frequency domain; see

Figure 2.6. The length of a coherence interval, measured in samples is

BcTc = BcTslot

= NsmoothBsNslotTs

=

Nsmooth

Tu

NslotTs

=

Ts

Tu

NsmoothNslot . (2.17)
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Figure 2.6. A slot comprises Nslot consecutive OFDM symbols, each of which contains

Ns subcarriers. If Tc = Tslot, a coherence interval spans Nslot OFDM symbols and Nsmooth

subcarriers and each slot contains Ns/Nsmooth coherence intervals. The lower part of the

figure shows a possible mapping between the time-frequency domain and the samples in a

coherence interval.

A fraction Tu/Ts of each coherence interval is useful, and the rest is spent on the cyclic

prefix. Thus, the number of useful samples per coherence interval is

Tu

Ts

BcTc = NsmoothNslot, (2.18)

which is equal to τc as defined in (2.9), up to a factor that reflects the loss of useful samples

associated with the cyclic prefix. All samples in a coherence interval are affected by a

scaling with a channel gain g as in (2.10). Figure 2.6 also shows a possible mapping

between the time-frequency domain and the NsmoothNslot samples in a coherence interval.

Table 2.2 shows parameters of a sample OFDM system, where the channel delay spread is
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OFDM symbol duration Ts
1
14

ms

OFDM symbol duration, useful part Tu
1
15

ms

Cyclic prefix duration Tcp
1

14×15
ms

Subcarrier spacing Bs 15 kHz

Coherence bandwidth Bc 210 kHz

Number of subcarriers within coherence bandwidth Nsmooth 14

Slot duration Tslot 2 ms

Number of OFDM symbols within one slot Nslot 28

Number of useful samples per coherence interval, if Tc = Tslot Nsmooth Nslot 392

Table 2.2. Parameters of a sample OFDM system.

assumed equal to the duration of the cyclic prefix, Tcp.

2.1.7 Small-Scale and Large-Scale Fading

Within a coherence interval, as illustrated in Figure 2.6 (for OFDM), the complex-valued

gain between any pair of antennas is substantially constant, and is denoted by the symbol

g. It is useful to factor g as follows:

g =

√
βh. (2.19)

The positive real number, β, called the large-scale fading coefficient, embodies range-

dependent path loss and shadow fading, it is virtually independent of frequency, and is

strongly correlated over many wavelengths of space. The complex-valued number h,

representing small-scale fading, models range dependent phase shift and constructive and

destructive interference among different propagation paths.

In all ensuing analyses, we will assume that the small-scale fading is Rayleigh; that is,

h ∼ CN(0, 1). The assumption of Rayleigh fading permits the use of Bayesian analysis

and it makes ergodic capacity a legitimate performance criterion. Rayleigh fading is

also straightforward to justify with simple physical models. For example, in isotropic

scattering, h represents the combined effect of many independent propagation paths so by

the superposition principle and the central limit theorem, h will be approximately circularly

symmetric Gaussian. While all quantitative performance analyses in this book rest on the

Rayleigh fading assumption, in Chapter 7 we will argue that under the extreme opposite
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LoS propagation regime, Massive MIMO is still fully functional. We will assume that

large-scale fading coefficients are known a priori to anyone who needs to know them, but

that small-scale fading is a priori known to nobody.

2.1.8 Normalized Signal Model and SNR

Henceforth, we will work with the following normalized model for the received signal:

y =
√
ρgx + w, (2.20)

where w is receiver noise and ρ is a dimensionless constant that scales the transmitted

signal. Throughout, we adopt the convention that each transmitted signal x has zero mean

and satisfies a unit power constraint, E {x} = 0 and E
{
|x |2

}
≤ 1. We also assume that the

noise is circularly symmetric Gaussian with unit variance, denoted w ∼ CN(0, 1), and is

independent of x. This gives ρ the interpretation of a signal-to-noise ratio (SNR) in the

following sense: if the median of β equals unity, and the transmitter expends its maximum

permitted power, then ρ is the median SNR measured at the receiver.

We denote the SNR associated with the uplink and downlink by ρul respectively ρdl. Hence,

on the uplink,

y =
√
ρulgx + w, (2.21)

and on the downlink,

y =
√
ρdlgx + w, (2.22)

where in both cases, x is the transmitted signal, y is the received signal, and w represents

noise. The uplink and downlink SNRs are different in general, owing to differences in the

transmit powers and the noise figures at the base station and the terminal.

2.2 Multiple Base Station Antennas and Multiple Terminals

We now consider cellular Massive MIMO whereby base stations, each equipped with an

array of M antennas, serve simultaneously a multiplicity of terminals in their designated

areas via spatial multiplexing. We introduce the signal models and assumptions that underlie

the spectral efficiency analysis in the ensuing chapters.

We confine the discussion entirely to the case when the terminals have a single antenna

each. The case of multiple-antenna terminals can be handled, for example, by treating each

terminal antenna as a separate terminal.
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2.2.1 Single-Cell System

We first consider the case of a single base station that simultaneously serves K terminals. We

call the area where the terminals are located a cell, and refer to the corresponding scenario

as single-cell, emphasizing the fact that there is no inter-cell interference to account for.

Let gm
k

be the channel gain between the kth terminal and the mth base station antenna; see

Figure 2.7. We will assume that the base station antennas are configured in a compact array,

so that the paths between a given terminal and all base station antennas are affected by the

same large-scale fading, but by different small-scale fading. Hence,

g
m
k =

√
βk hm

k , k = 1, . . . , K, m = 1, . . . ,M, (2.23)

where βk is a large-scale fading coefficient that depends on k but not on m, and hm
k

represents

the effect of small-scale fading. We let G be a matrix that comprises the channel gains

between all terminals and all base station antennas,

G =

⎡⎢⎢⎢⎢⎢⎢⎣
g

1
1
· · · g

1
K

...
. . .

...

g
M
1
· · · g

M
K

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.24)

Throughout all performance analyses, we will assume that the small-scale fading is Rayleigh

and independent between the antennas and the terminals, so that {hm
k
} are i.i.d. CN(0, 1)

random variables. We discuss this assumption further in Chapter 7.

Uplink

Consider the uplink. If the terminals simultaneously transmit the K signals x1, . . . , xK , then

the mth base station antenna receives the signal,

ym =
√
ρul

K∑
k=1

g
m
k xk + wm, (2.25)

where wm is receiver noise. As before, we assume that wm ∼ CN(0, 1). Additionally, we

will assume that the noise is uncorrelated across the antennas; that is, {wm} are independent.

The transmit powers of the terminals are individually constrained,

E
{
|xk |2

}
≤ 1, (2.26)
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terminal K

terminal k

terminal 1

base station array

g
m
k

1

2

m

M

Figure 2.7. Single-cell propagation model.

as in Section 2.1.8, and the transmitted signals have zero mean: E {xk } = 0. Collectively,

according to (2.25) the M antennas receive a vector y = [y1, . . . , yM]T,

y =
√
ρul

K∑
k=1

gk xk + w

=

√
ρulGx + w, (2.27)

where gk is the kth column of G, x = [x1, . . . , xK ]T and w = [w1, . . . ,wM]T.

Downlink

On the downlink, the M base station antennas transmit the M-vector x, and via reciprocity,

the kth terminal receives

yk =
√
ρdlg

T
k x + wk, (2.28)

where wk is noise. In vector form,

y =
√
ρdlG

Tx + w, (2.29)
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where y = [y1, . . . , yK ]T and w � [w1, . . . ,wK ]T. As before, we assume that the noise

samples {wk } are i.i.d. CN(0, 1). Analogously to the single-antenna case in Section 2.1.8,

we assume that x is normalized such that

E
{
‖x‖2

}
≤ 1. (2.30)

This normalization corresponds to enforcing a long-term constraint on the sum of the

radiated power from all antennas. While this assumption is analytically convenient, it is not

the only possibility. For example, one could alternatively consider power constraints for

each antenna individually.

Signal-to-Noise Ratio

As in the single-antenna case, the quantities ρul and ρdl have interpretations in terms of

SNR. In the current context, on the uplink, if the median of βk is unity for a given terminal

and the terminal transmits with its maximum permitted power, then ρul is the median SNR

for that terminal, measured at any of the base station antennas. On the downlink, if the total

permitted power were radiated through only one transmit antenna, say the first one, such

that E
{
|x1 |2

}
= 1 and x2 = · · · = xM = 0, and if additionally the median of βk were equal

to unity, then the median SNR measured at the kth terminal would be ρdl.

2.2.2 Multi-Cell System

Next we consider a multi-cell scenario. Here multiple base stations coexist, with some

geographical separation, and each base station serves terminals in its associated cell. The

antennas at each base station work coherently together, but different base stations do not

cooperate. Generally, the carrier frequency used in a particular cell is reused in other cells,

and inter-cell interference then results.

Throughout, we assume that there are K terminals in each cell. This assumption is made

only for simplicity and, in reality, there may, of course, be a varying number of terminals

in each cell. We will also assume synchronized operation, such that, at any given point

in time, either all base stations simultaneously transmit or all terminals simultaneously

transmit. This assumption is not strictly necessary, and it does not necessarily result in

optimal system performance, but it is convenient to make for purposes of analysis.

Uplink

Consider first the uplink. The signal received at the mth base station antenna in the lth

cell, denoted by ylm, is a superposition of signals transmitted from the K terminals in the
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lth cell, and the K (L − 1) terminals in all interfering cells l′ = 1, . . . , l − 1, l + 1, . . . , L.

Mathematically,

ylm =
√
ρul

K∑
k=1

g
lm
lk xlk +

√
ρul

L∑
l′=1
l′�l

K∑
k=1

g
lm
l ′k xl′k + wlm, (2.31)

where xl′k is the signal transmitted by the kth terminal in the l′th cell and g
lm
l ′k is the channel

gain from the kth terminal in the l′th cell to the mth base station antenna in the lth cell;

see Figure 2.8. The last term in (2.31), wlm, represents additive receiver noise, which we

assume is CN(0, 1) and independent among different m and l. In vector form,

yl =
√
ρulG

l
lxl +

√
ρul

L∑
l′=1
l′�l

Gl
l′xl′ + wl, (2.32)

where yl = [yl1, . . . , ylM ]T, wl = [wl1, . . . ,wlM ]T,

Gl
l′ =

⎡⎢⎢⎢⎢⎢⎢⎣
g

l1
l′1 · · · g

l1
l′K

...
. . .

...

g
lM
l ′1 · · · g

lM
l ′K

⎤⎥⎥⎥⎥⎥⎥⎦ (2.33)

is an M × K matrix that contains all channel gains from the terminals in the l′th cell to

the base station array in the lth cell, and the K-vector xl′ = [xl′1, . . . , xl′K ]T contains the

signals transmitted by the terminals in the l′th cell. In (2.33), analogous to (2.23),

g
lm
l ′k =

√
βl

l′k hlm
l ′k, (2.34)

where βl
l′k models the large-scale fading associated with propagation from the kth terminal

in the l′th cell to the base station array in the lth cell, and hlm
l ′k models small-scale fading.

Downlink

Next, consider the downlink. Under the assumption of reciprocity, the kth terminal in the

lth cell receives

ylk =
√
ρdlg

lT
lk xl +

√
ρdl

L∑
l′=1
l′�l

gl′T
lk xl′ + wlk, (2.35)
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Figure 2.8. Multi-cell propagation model.

where gl′
lk

is the kth column of Gl′
l
, xl′ represents the M-vector transmitted by the array in

the l′th cell, and wlk is noise with distribution CN(0, 1). Collectively, the K terminals in

the lth cell will receive the K-vector,

yl =
√
ρdlG

lT
l xl +

√
ρdl

L∑
l′=1
l′�l

Gl′T
l xl′ + wl, (2.36)

where yl = [yl1, . . . , ylK ]T and wl = [wl1, . . . ,wlK ]T is a K-vector of noise with i.i.d.

CN(0, 1) elements.

Similarly to the single-cell case, we will assume that the small-scale fading is Rayleigh and

independent between all antennas and all terminals, so that {hlm
l ′k } are i.i.d. CN(0, 1) random

variables.
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2.3 Capacity Bounds as Performance Metric

In Massive MIMO, after appropriate signal processing, the effective channel associated

with each of the terminals is a scalar point-to-point channel. Each time this channel is

used, it takes a (complex-valued) scalar input symbol x and delivers a (complex-valued)

output signal y. The action of the channel is characterized by the conditional probability

distribution of y given x.

To communicate a message over a point-to-point scalar channel, the transmitter maps the

message onto a sequence of symbols {xn}, and the receiver recovers the message from the

sequence of samples {yn}. The effective number of bits conveyed per transmitted symbol,

denoted by R, is called the rate and is measured in bits per channel use (bpcu). Recall

that a waveform contained in a time-frequency space of bandwidth B Hz and time-duration

T seconds can be described by BT samples; see Section 2.1.3. Hence, transmitting a

waveform with bandwidth B Hz and time-duration T seconds is equivalent to transmitting

BT symbols {xn}. Therefore, the rate R is usually termed spectral efficiency and measured

in bits per second per Hertz (b/s/Hz).

According to Shannon’s noisy channel coding theorem, there exists a quantity C (unit: bpcu)

called the channel capacity, which determines a rate R at which error-free communication is

possible, asymptotically, when coding over many transmitted symbols. More precisely, the

noisy channel coding theorem states that for any given probability of error ε , and any given

“gap from capacity” ζ , there exist a block length N , and a coding scheme that achieves the

rate R = C − ζ with a probability of a decoding error less than ε . Generally, achieving rates

R that are close to C requires that N be large, and in the limit when ζ is forced towards

zero, the required value of N tends to infinity.

For several channels, exact expressions for the capacity are known. In many cases, however,

only bounds on capacity, also known as achievable rates, are available. Throughout this

book, motivated by the channel coding theorem, we will use such capacity bounds as

the primary performance metric. As illustrated in Section 1.3, these capacity bounds

can typically be approached closely in practice by using state-of-the-art channel coding

techniques.

In what follows, we present some key results on capacity and capacity bounds for point-to-

point scalar channels that will be needed for the performance analysis in Chapters 3 and 4.

Section C.2 contains comprehensive derivations of these results.
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x y

√
ρ w ∼ CN(0, 1)

receiver

(a) Deterministic channel with additive Gaussian noise.

x y

√
ρ w, Var {w} = 1 (arbitrary distribution)

receiver

(b) Deterministic channel with additive non-Gaussian noise.

x y

g

√
ρ w ∼ CN(0, 1)

receiver

(c) Fading channel with additive Gaussian noise and perfect CSI at the receiver.

x y

g

√
ρ w, Var {w} = 1 (arbitrary distribution)

receiver

(d) Fading channel with additive non-Gaussian noise and no CSI at the receiver.

x y

side information Ω
g

√
ρ w (arbitrary distribution)

receiver

(e) Fading channel with additive non-Gaussian noise and side information at the receiver.

Figure 2.9. Scalar point-to-point channels.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.003
https:/www.cambridge.org/core


38 Models and Preliminaries Chapter 2

2.3.1 Deterministic Channel with Additive Gaussian Noise

The most fundamental example of a scalar point-to-point channel is the deterministic channel

with additive Gaussian noise; see Figure 2.9(a). Here,

y =
√
ρx + w, (2.37)

wherew is noise that is independent of x and has distribution CN(0, 1), and ρ is a constant. A

new independent realization of w is drawn for every transmitted symbol x. The transmitted

symbol x satisfies the power constraint E
{
|x |2

}
≤ 1. Hence, ρ has the meaning of SNR, as

in Section 2.1.8. The capacity of this channel is

C = log2

(
1 + ρ

)
, (2.38)

and this capacity is achieved when the input symbols x are Gaussian distributed.

2.3.2 Deterministic Channel with Additive Non-Gaussian Noise

The next case of interest is when (2.37) applies, E {w} = 0 and Var {w} = 1, but w is not

necessarily Gaussian; see Figure 2.9(b). Assuming that x and w are uncorrelated, but not

necessarily independent,

E
{
x∗w
}
= 0, (2.39)

the capacity is lower bounded as follows:

C ≥ log2

(
1 + ρ

)
. (2.40)

In contrast to the Gaussian noise case in Section 2.3.1, the optimal distribution of the input

symbol x is generally not Gaussian.

2.3.3 Fading Channel with Additive Gaussian Noise and Perfect CSI at the Receiver

We next introduce fading. The first model of interest is that of a fading channel with

Gaussian noise and a gain g that is perfectly known to the receiver but unknown to the

transmitter. Here,

y =
√
ρgx + w, (2.41)

where ρ, x, and w have the same meaning as in Section 2.3.1, x and w are independent,

and, in addition, g is a random variable that represents the fading channel gain and which
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is independent of x and w; see Figure 2.9(c). New independent realizations of g and w are

drawn for each transmitted symbol x. The distribution of g can be arbitrary. The capacity

is

C = E
{
log2

(
1 + ρ|g |2

)}
. (2.42)

Operationally, the capacity in (2.42) only has a meaning if there is coding across all sources

of randomness in the channel – including both the noise and channel gain.1 To stress this

fact, C is often called the ergodic capacity.

2.3.4 Fading Channel with Additive Non-Gaussian Noise and no CSI at the Receiver

We next extend the previous model to the case of an unknown channel gain and non-Gaussian

noise; see Figure 2.9(d). Equation (2.41) applies; E
{
|x |2

}
≤ 1, E {w} = 0, and Var {w} = 1,

however, w is not necessarily Gaussian. The signal x and the noise w are uncorrelated, but

not necessarily independent. Neither the transmitter, nor the receiver knows g. Also, g and

x are independent; however, no assumption is made on the statistical relation between g and

w.

To obtain a simple capacity bound, we rewrite the expression for y as follows:

y =
√
ρE {g}x + √ρ (g − E {g}) x + w. (2.43)

The receiver’s lack of knowledge about g is captured by the second term,
√
ρ
(
g − E {g}) x. A

direct calculation shows that the second and third terms of (2.43) are mutually uncorrelated,

and uncorrelated with x. Considering the two last terms of (2.43) as effective noise, the

channel in (2.43) is, with appropriate normalization, equivalent to the model we treated in

Section 2.3.2. Using (2.40) results in

C ≥ log2

(
1 +

ρ |E {g}|2
ρVar {g} + 1

)
. (2.44)

The bound in (2.44) is mainly useful when g fluctuates only slightly around its expected

value E {g}, so that Var {g} is small. This will be the case in many of the derivations of

capacity bounds for Massive MIMO in Chapters 3 and 4. The train of reasoning can be

summarized as follows: (i) Owing to the linear beamforming, each terminal sees a scalar

channel with unknown gain g, and additive uncorrelated effective noise that comprises

receiver noise and interference. (ii) The effect of the lack of knowledge of g, captured

1By contrast, in case each codeword sees only one realization of g, the capacity expression in (2.42) is

irrelevant. Instead, a quantity called outage capacity must be considered; see, for example, [29].
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in the deviation g − E {g}, is treated as additional uncorrelated effective noise. By virtue

of channel hardening, while g is random and unknown, it fluctuates only slightly around

E {g} so this additional effective noise is small. (iii) The variances of all effective noise

terms depend only on second- and fourth-order moments of Gaussian random variables,

and hence can be computed in closed form.

2.3.5 Fading Channel with Non-Gaussian Noise and Side Information

The final, and most general, case of interest is that of a fading channel with non-Gaussian

noise, where the receiver has access to side information quantified via a random variable

Ω; see Figure 2.9(e). The received signal is given by (2.41) where E
{
|x |2

}
≤ 1, and w has

an arbitrary distribution. The side information Ω may be correlated with g. Hence, while

the receiver has no direct access to g, its knowledge of Ω may convey implicit information

about g. We assume that x is independent of g and of Ω, that w has zero mean, and that x

and w are uncorrelated (but not necessarily independent), conditioned on Ω, in the precise

sense that

E {w |Ω} = E
{
x∗w |Ω}

= E
{
g
∗x∗w |Ω}

= 0. (2.45)

Then the capacity is bounded as follows:

C ≥ E

{
log2

(
1 +

ρ |E {g |Ω}|2
ρVar {g |Ω} + Var {w |Ω}

)}
, (2.46)

where the outer expectation is with respect to Ω.

Three special cases of (2.46) are noteworthy – in these special cases, we assume additionally

that Var {w} = 1:

1. In the absence of side information Ω, we revert to the case in Section 2.3.4. The

bound (2.46) then reduces to (2.44), as expected.

2. If the receiver knows g so that Ω = g, and w is independent of g, then (2.46)

specializes to

C ≥ E
{
log2

(
1 + ρ |g |2

)}
. (2.47)

The right-hand side of (2.47) is equal to (2.42). Hence, the bound (2.47) is tight in

the case of Gaussian noise.
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3. In the absence of fading, g is deterministic; say g = 1 for simplicity. Then (2.46)

becomes

C ≥ E

{
log2

(
1 +

ρ

Var {w |Ω}

)}
. (2.48)

By applying Jensen’s inequality (see Section C.1), specifically (C.3), to (2.48), we

find that

C ≥ log2

(
1 +

ρ

Var {w}

)

= log2

(
1 + ρ

)
. (2.49)

The bound in (2.49) coincides with the bound derived in Section 2.3.2, as expected.

Moreover, comparing with (2.38), we see that the bound is tight in the special case of

Gaussian noise.

2.4 Summary of Key Points

The key points of this chapter are the following:

• A coherence interval is a time-frequency space during which the channel is

substantially time-invariant and frequency-flat, so that its effect is well modeled

as multiplication by a complex-valued scalar gain. The duration of a coherence

interval is the channel coherence time Tc, and the bandwidth of a coherence interval

is the channel coherence bandwidth Bc. Each coherence interval contains τc = BcTc

complex-valued samples, and is split into an uplink and a downlink part. Table 2.1

shows some typical values of Bc, Tc, and τc.

If OFDM modulation is used, two important quantities are the number of subcarriers

over which the channel frequency response is approximately constant, Nsmooth, and

the number of OFDM symbols in a slot, Nslot. If the slot duration is equal to the

channel coherence time, then each coherence interval spans Nsmooth subcarriers and

Nslot consecutive OFDM symbols. For this case, Figure 2.6 shows a possible mapping

from OFDM symbols and subcarriers onto the samples in a coherence interval.

• In a system with L cells, K terminals per cell, and where each cell is served by an

M-element base station array, propagation is modeled as follows. On the uplink, if
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the K terminals in the l′th cell collectively transmit the K-vector xl′ , the base station

in the lth cell observes the M-vector

yl =
√
ρulG

l
lxl +

√
ρul

L∑
l′=1
l′�l

Gl
l′xl′ + wl, (2.50)

where wl is a vector of receiver noise and the (m, k)th element of Gl
l′, denoted by

g
lm
l ′k , contains the channel gain between the kth terminal in the l′th cell and the mth

base station antenna in the lth cell. On the downlink, if the l′th base station transmits

the M-vector xl′ then the terminals in the lth cell receive

yl =
√
ρdlG

lT
l xl +

√
ρdl

L∑
l′=1
l′�l

Gl′T
l xl′ + wl, (2.51)

where again, wl is receiver noise. In (2.50) and (2.51), ρul and ρdl have the operational

interpretation of SNR.

Each channel coefficient can be decomposed as

g
lm
l ′k =

√
βl

l′k hlm
l ′k, (2.52)

where βl
l′k represents the attenuation due to large-scale fading (that includes path loss

and shadow fading), and hlm
l ′k represents the effect of the small-scale fading.

• In Massive MIMO, we show in Chapters 3 and 4 that the effective channel to each

terminal is a scalar, point-to-point channel. Ergodic capacity (bounds) for the different

scalar point-to-point channels illustrated in Figure 2.9 are summarized in Table 2.3.
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Deterministic channel with additive Gaussian noise;

see Section 2.3.1 and Figure 2.9(a)
C = log2

(
1 + ρ

)
, if x and w are independent

Deterministic channel with additive non-Gaussian noise;

see Section 2.3.2 and Figure 2.9(b)
C ≥ log2

(
1 + ρ

)
, if E {x∗w} = 0

Fading channel with additive Gaussian noise and

perfect CSI at the receiver; see Section 2.3.3 and

Figure 2.9(c)

C = E
{
log2

(
1 + ρ |g |2

)}
,

if x,w and g are mutually independent

Fading channel with additive non-Gaussian noise and

no CSI at the receiver; see Section 2.3.4 and

Figure 2.9(d)

C ≥ log2

(
1 +

ρ |E {g}|2
ρVar {g} + 1

)
, if E {x∗w} = 0

Fading channel with additive non-Gaussian noise and

side information; see Section 2.3.5 and Figure 2.9(e)

C ≥ E

{
log2

(
1 +

ρ |E {g |Ω}|2
ρVar {g |Ω} + E

{ |w |2 |Ω}
)}
,

if E {w |Ω} = E {x∗w |Ω} = E {g∗x∗w |Ω} = 0

Table 2.3. Capacity bounds for the scalar point-to-point channels. In all cases, E {w} = 0 and x is independent of g and

Ω, but no other assumptions (other than those explicitly stated) on statistical independence are made.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.003
https:/www.cambridge.org/core


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.003
https:/www.cambridge.org/core


Chapter 3

SINGLE-CELL SYSTEMS

This chapter treats the single-cell scenario of Section 2.2.1, where a base station uses an

array of M antennas to communicate simultaneously with K active terminals. A great

deal of Massive MIMO phenomenology surfaces in this scenario: the effects of noise,

channel non-orthogonality, and channel estimation errors; the details of multiplexing and

de-multiplexing; near/far effects; and the significance of power control.

Throughout the chapter, we consider only zero-forcing and maximum-ratio processing.

While there are somewhat better performing alternatives: MMSE on the uplink, and

suitably optimized regularized zero-forcing on the downlink [30], there are no closed-form

non-asymptotic expressions available for their performance. Moreover, zero-forcing and

maximum-ratio themselves tend to be optimal under high- and low-SINR conditions

respectively.

3.1 Uplink Pilots and Channel Estimation

Learning the channel at the base station is a critical operation. As we have seen, a wideband

channel can be decomposed into coherence intervals of duration Tc seconds and bandwidth

Bc Hz. Every such interval offers τc = BcTc independent uses of a frequency-flat channel

as modeled in Section 2.2.1. Figure 2.3(b) illustrates the three activities that occupy each

coherence interval: uplink data transmission, uplink pilot transmission, and downlink data

transmission. In every coherence interval, the terminals use τp of the τc available samples

to transmit pilots that are known at both ends of the link, and from which the base station

estimates the channels.

45
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3.1.1 Orthogonal Pilots

Each coherence interval must host K pilot waveforms, and in order for them not to interfere,

they have to be mutually orthogonal. Henceforth, we assume that the terminals are assigned

mutually orthogonal pilot sequences of length τp, where τc ≥ τp ≥ K . Any set of orthogonal

pilots with the same energies yield the same performance. The significance of τp is to

quantify how much energy each terminal spends on pilots in each coherence interval. In

principle, any τp samples in the uplink part of the coherence interval can be used for pilots.

In practice, transmitters are typically peak-power limited, so constant-modulus signals, such

as orthogonal sinewaves, make ideal pilots.

We assign the kth terminal a pilot sequence denoted by a τp × 1 vector φk , which is the kth

column of a τp × K unitary matrix, such that τp ≥ K and

Φ
H
Φ = IK . (3.1)

Collectively, the terminals then transmit a K × τp signal,

Xp =
√
τpΦ

H, (3.2)

which is normalized so that each terminal expends a total energy that is equal to the duration

of the pilot sequence,

τpφ
H
k φk = τp . (3.3)

3.1.2 De-Spreading of the Received Pilot Signal

The pilot signals propagate through the uplink channel. The base station receives the M×τp
signal,

Y p =
√
ρulGXp +W p

=
√
τpρulGΦ

H
+W p, (3.4)

where the entries of the M × τp receiver noise matrix, W p, are i.i.d. CN(0, 1).

The base station performs a de-spreading operation by correlating the received signals with

each of the K pilot sequences. This is equivalent to right-multiplying the received signal

matrix by the matrix of pilots, yielding

Y ′p = Y pΦ

=
√
τpρulGΦ

H
Φ +W pΦ

=
√
τpρulG +W

′
p, (3.5)
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Section 3.1 Uplink Pilots and Channel Estimation 47

where W ′p = W pΦ is an M×K noise matrix, whose entries are again i.i.d. CN(0, 1) because

they are related to the original Gaussian noise matrix by a unitary multiplication.

No information is lost in the de-spreading operation because multiplication of the received

pilot signal by any vector in the orthogonal complement of Φ would only result in still

another noise matrix that is statistically independent of both G and W ′p.

3.1.3 MMSE Channel Estimation

After de-spreading, the base station has a noisy version (3.5) of the channel matrix. Under

the assumption of independent Rayleigh fading, the elements of the channel matrix and the

noise matrix are statistically independent. Hence, channel estimation decouples over both

the base station antennas and the terminals, and it is sufficient to consider only the (m, k)th

component of (3.5), [
Y ′p

]
mk
=
√
τpρulg

m
k +

[
W ′p

]
mk
. (3.6)

By assumption, the large-scale fading coefficients are known, so the prior distribution of

g
m
k

, CN(0, βk ), is also known. The MMSE estimator is

ĝ
m
k = E

{
g

m
k |Y p

}
= E

{
g

m
k |Y ′p

}
=

√
τpρul βk

1 + τpρul βk

[
Y ′p

]
mk
. (3.7)

The mean-square of the channel estimate is denoted by γk and given by

γk = E
{
|ĝm

k |2
}

=

τpρul β
2
k

1 + τpρul βk

. (3.8)

In (3.8), γk is the same for all m, since the channels for each of the antennas are statistically

identical. The channel estimation error is denoted by

g̃
m
k = ĝ

m
k − gm

k , (3.9)

and the mean-square estimation error is

E
{
|g̃m

k |2
}
=

βk

1 + τpρul βk

= βk − γk . (3.10)
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The channel estimation error is uncorrelated with both the channel estimate and the pilot

signal,

E
{
g̃

m
k

(
ĝ

m
k

)∗}
= 0, (3.11)

E
{
g̃

m
k

[
Y ′p

]∗
mk

}
= 0. (3.12)

The estimation error g̃m
k

and the estimate ĝm
k

are jointly Gaussian distributed, so the fact that

they are uncorrelated implies that they are also statistically independent, something that we

will require later.

Note that the estimator defined by (3.7) is the same for every antenna index, as are the

mean-square channel estimate (3.8) and the mean-square error (3.10). The estimate of the

channel to the kth terminal is denoted by an M × 1 vector ĝk = [ĝ1
k
, . . . , ĝM

k
]T, which, to

facilitate subsequent derivations, is expressed in normalized form as follows:

ĝk =
√
γk zk, (3.13)

where the components of zk are i.i.d. CN(0, 1). Using (3.13), we write the estimate of the

complete channel matrix to the K terminals, G, in normalized form as

Ĝ = ZD
1/2
γ , (3.14)

where γ = [γ1, . . . , γK ]T is a K × 1 vector of mean-square channel estimates, and Z is an

M × K matrix whose entries are i.i.d. CN(0, 1).

3.2 Uplink Data Transmission

All of the complexity in uplink data transfer resides in the base station. The terminals merely

weight their respective symbols by power control coefficients, and then synchronously

transmit the weighted symbols. In the analysis to follow, the only assumption about the

statistical distribution of the symbols is that they are uncorrelated and have zero mean.

However, in a practical implementation the symbols would likely come from a QAM

constellation; hence, we will denote them by {qk }. The base station receives a signal from

each antenna, and it processes these signals through a linear decoding operation, either

zero-forcing or maximum-ratio processing. Here linear decoding refers to the operation

of recovering the transmitted signal, qk . The receiver subsequently has to perform error-

correction decoding.

Power control is important in Massive MIMO in order to achieve uniformly good service, and

to prevent terminals having strong channels from interfering excessively with less fortunate

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.004
https:/www.cambridge.org/core
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terminals. All power control activity is slow; that is, the power control coefficients depend

only on the large-scale fading coefficients {βk }. In particular, this implies that the power

control coefficients are constant with respect to frequency and that they need to be updated

only at infrequent intervals. Throughout this book, we assume, mostly for simplicity, that

power control is applied only to data transmission, while the pilots are always transmitted

at maximum possible power.

In more detail, the kth terminal transmits a weighted symbol,

xk =
√
ηkqk, (3.15)

where ηk is a power control coefficient that satisfies 0 ≤ ηk ≤ 1. The symbols {qk } have

zero mean and unit variance, and they are uncorrelated,

E
{
qqH

}
= IK, (3.16)

where q = [q1, . . . , qK ]T. The signal received by the mth base station antenna is a linear

combination of the signals transmitted by all terminals (see Section 2.2.1),

ym =
√
ρul

K∑
k=1

g
m
k xk + wm

=

√
ρul

K∑
k=1

g
m
k

√
ηkqk + wm, (3.17)

where wm is receiver noise, independent over the antennas and with distribution CN(0, 1).

Equivalently, the complete M × 1 received signal is

y =
√
ρulGD

1/2
η q + w, (3.18)

where η = [η1, . . . , ηK ]T.

The base station does not know the actual channel, but it does know the channel estimate that

it derived from the uplink pilots. Within (3.18), we replace G by Ĝ − G̃, where G̃ = Ĝ − G

is a matrix of channel estimation errors, and in turn we replace the channel estimate by its

normalized version (3.14). This yields

y =
√
ρulĜD

1/2
η q +

(
w − √ρulG̃D

1/2
η q
)

=

√
ρulZD

1/2
γ D

1/2
η q +

(
w − √ρulG̃D

1/2
η q
)
, (3.19)

which expresses the received signal as if the transmitted signals passed through a known

channel followed by the addition of the quantities in parentheses that constitute effective
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noise. The effective noise is uncorrelated with the desired signal term because the receiver

noise w is independent of everything else, and the channel estimation error G̃ and the

channel estimate Ĝ are uncorrelated; see (3.11). For subsequent derivations, we require the

covariance of the effective noise that appears in (3.19),

Cov
{
w − √ρulG̃D

1/2
η q

}
= IM + ρulE

{
G̃Dη G̃

H
}

= IM + ρul

K∑
k ′=1

ηk ′E
{
g̃k ′ g̃

H
k ′
}

= 
�1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′�� IM . (3.20)

The base station processes its received signal through multiplication of the M-vector y by

a K ×M decoding matrix AH that is a function of the channel estimate Ĝ. We consider two

types of processing: zero-forcing and maximum-ratio.

3.2.1 Zero-Forcing

Zero-forcing nominally eliminates interference among the multiplexed signals. The

decoding matrix is

A = Ĝ

(
Ĝ

H
Ĝ

)−1

D
1/2
γ

= Z
(
ZHZ

)−1
, (3.21)

where again we have used the normalized channel estimate defined in (3.14). The result of

processing the signal (3.19) is

AHy =
√
ρul

(
ZHZ

)−1
ZHZD

1/2
γ D

1/2
η q +

(
ZHZ

)−1
ZH
(
w − √ρulG̃D

1/2
η q
)

=

√
ρulD

1/2
γ D

1/2
η q +

(
ZHZ

)−1
ZH
(
w − √ρulG̃D

1/2
η q
)
. (3.22)

Therefore, the kth component of the processed signal,[
AHy

]
k
=

√
ρulγkηkqk +

[ (
ZHZ

)−1
ZH
(
w − √ρulG̃D

1/2
η q
)]

k
, (3.23)

is equal to the constant
√
ρulγkηk times the desired signal qk , plus effective noise.

Conditioned on Z , the effective noise is uncorrelated with the desired signal. Since Z

is known to the receiver, to obtain a capacity bound we can apply the result in Section 2.3.5,
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treating Z as side information. To that end, we need to evaluate the variance of the effective

noise, conditioned on Z . In view of (3.20) and the fact that G̃ is statistically independent of

the channel estimate Ĝ, and hence of Z , we have that

Cov

{ (
ZHZ

)−1
ZH
(
w − √ρulG̃D

1/2
η q
) ���� Z}

=

�1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′��
(
ZHZ

)−1
ZHZ

(
ZHZ

)−1

=

�1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′��
(
ZHZ

)−1
. (3.24)

It follows from (3.24) that the variance of the effective noise for the kth terminal, conditioned

on Z , is

Var

{ [(
ZHZ

)−1
ZH
(
w − √ρulG̃D

1/2
η q
)]

k

���� Z}
= 
�1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′��

[(
ZHZ

)−1
]

kk
. (3.25)

Using the result in Section 2.3.5, we obtain the following lower bound on the instantaneous

ergodic capacity for the kth terminal:

C
zf,ul

inst.,k
≥ E

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
log2


������
1 +

ρulγkηk(
1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

) [ (
ZHZ

)−1
]

kk

�������
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (3.26)

We call this capacity “instantaneous” to stress that the effective loss of samples due to the

transmission of pilots in each coherence interval has not yet been considered. This cost will

be taken into account when computing the net spectral efficiency in Section 3.6. In obtaining

(3.26), we have implicitly assumed that there is coding over many coherence intervals that

experience independent fading; hence, C
zf,ul

inst.,k
is a bound on the ergodic capacity. Since

all analysis in this book rests on that assumption, for brevity in what follows we will say

“instantaneous capacity” instead of “instantaneous ergodic capacity”.

Use and Then Forget CSI

Equation (3.26) is difficult to interpret because of the expectation outside the logarithm.

In what follows, we derive an alternative, simpler lower bound which, in most cases, is
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fairly tight. The basic observation is that if the receiver neglects its knowledge of Z (called

side information in Section 2.3.5), the model in (3.23) is equivalent to the scalar channel

considered in Section 2.3.2. The interpretation of neglecting the knowledge of Z is that a

first party uses the channel estimate to perform zero-forcing processing, and then passes the

processed signal to a second party, but withholds the knowledge of the channel estimate.

The second party performs error correction decoding, but treats the channel estimate as

unknown.

To compute the bound, we use (3.24) and (B.1) in Appendix B to find the unconditional

variance of the effective noise in (3.23),

Var

{ [(
ZHZ

)−1
ZH
(
w − √ρulG̃D

1/2
η q
) ]

k

}

=

�1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′��E

{ [(
ZHZ

)−1
]

kk

}

= 
�1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′�� 1

M − K
. (3.27)

Then using (2.40), we obtain

Czf,ul

inst.,k
≥ log2

(
1 + SINRzf,ul

k

)
, (3.28)

where

SINRzf,ul

k
=

(M − K )ρulγkηk

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

. (3.29)

The quantity SINRzf,ul

k
can be interpreted as an effective SINR, in the sense that the capacity

bound is equal to the capacity of an additive Gaussian noise channel whose SNR equals the

effective SINR.

Interpretation of the Effective SINR and Functional Block Diagram

We can interpret the effective SINR expression in (3.29) as follows:

• We call the quantity in the numerator the coherent beamforming gain. Note that the

coherent beamforming gain is proportional to the mean-square channel estimate, γk ,

rather than to the inherent power of the channel, βk .

• The first term in the denominator represents the unit-variance receiver noise.
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qk q̂k

√
ρulγkηk

√
M−K

CN(0, 1)

CN(0, 1)

√
ρul

(
βk ′ − γk ′

)
ηk ′

intra-cell interference

signal of interest

receiver noise

(repeated for k′ = 1, . . . , K)

Figure 3.1. Functional block diagram for the single-cell uplink with zero-forcing

processing.

• The second term in the denominator corresponds to the effects of channel estimation

errors.

Throughout this chapter, for a single-cell system we use the term intra-cell interference to

denote all terms in the denominator except for the receiver noise.

The SINR expression in (3.29) motivates an equivalent system description as a functional

block diagram; see Figure 3.1. This diagram describes the passage of the original symbol

transmitted by the kth terminal to its final estimate at the base station. The effective channel

is scalar-valued and flat with respect to frequency.

3.2.2 Maximum-Ratio

The philosophy behind maximum-ratio processing is to amplify the signal of interest as

much as possible, disregarding interference. If only one terminal were transmitting, this

processing would be optimal. Here the linear decoding matrix is

A = ĜD
−1/2
γ = Z . (3.30)

The output of the maximum-ratio processing is

AHy =
√
ρulZ

HZD
1/2
γ D

1/2
η q + ZH

(
w − √ρulG̃D

1/2
η q
)
. (3.31)
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Thus,[
AHy

]
k
=

√
ρulz

H
k ZD

1/2
γ D

1/2
η q + zH

k

(
w − √ρulG̃D

1/2
η q
)

=

√
ρulγkηk ‖ zk ‖2qk + zH

k


����w −
√
ρulG̃D

1/2
η q +

K∑
k ′=1
k ′�k

√
ρulγk ′ηk ′ zk ′qk ′

����� . (3.32)

There are now three sources of mutually uncorrelated effective noise: the two that figured in

zero-forcing (3.23) corresponding to receiver noise and channel estimation errors, and a new

term due to non-orthogonality of the estimated channel vectors. The latter has conditional

covariance,

Cov

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K∑

k ′=1
k ′�k

√
ρulγk ′ηk ′ zk ′qk ′

���������
Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= ρul

K∑
k ′=1
k ′�k

γk ′ηk ′ zk ′ z
H
k ′ . (3.33)

Similarly to zero-forcing, we can apply the capacity bounding technique in Section 2.3.5.

To do so, we first use (3.20) together with (3.33) to compute the variance of the effective

noise in (3.32) conditioned on Z ,

Var

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zH

k


����w −
√
ρulG̃D

1/2
η q +

K∑
k ′=1
k ′�k

√
ρulγk ′ηk ′ zk ′qk ′

�����
���������
Z

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

�1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′�� ‖ zk ‖2 + ρul

K∑
k ′=1
k ′�k

γk ′ηk ′
���zH

k zk ′
���2 . (3.34)

This yields the bound,

Cmr,ul

inst.,k
≥ E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
log2


����������
1 +

ρulγkηk ‖ zk ‖2

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′ + ρul

K∑
k ′=1
k ′�k

γk ′ηk ′

������
zH

k
zk ′

‖ zk ‖
������
2

�����������

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.35)

Use and Then Forget CSI

We again obtain an inferior but more tractable bound by pretending that a first party performs

maximum-ratio processing, and then passes the processed signal to a second party without

CSI.
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To compute the bound, we normalize the processed signal for the kth terminal in (3.32) by

1/
√

M and rewrite it as follows:

√
1

M

[
AHy

]
k
=

√
ρulγkηk

M
E
{
‖ zk ‖2

}
qk

+

√
1

M
zH

k

(
w − √ρulG̃D

1/2
η q
)

+

√
1

M
zH

k


����
K∑

k ′=1
k ′�k

√
ρulγk ′ηk ′ zk ′qk ′

�����
+

√
ρulγkηk

M

(
‖zk ‖2 − E

{
‖ zk ‖2

})
qk, (3.36)

equivalent to a deterministic gain times the desired signal, plus three sources of mutually

uncorrelated effective noise, which constitutes the case treated in Section 2.3.2.

We interpret the four terms in (3.36), and compute their variances, as follows:

• The first term is the desired signal. Its mean-square value is the coherent beamforming

gain,

ρulγkηk

M

(
E
{
‖ zk ‖2

})2
= M ρulγkηk . (3.37)

• The second term represents noise and channel estimation errors, and has variance,

1

M
Var

{
zH

k

(
w − √ρulG̃D

1/2
η q
)}
= 1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′ . (3.38)

• The third term represents channel non-orthogonality, and has variance,

1

M
Var

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zH

k

K∑
k ′=1
k ′�k

√
ρulγk ′ηk ′ zk ′qk ′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

ρul

M

K∑
k ′=1
k ′�k

γk ′ηk ′E

{���zH
k zk ′

���2}

= ρul

K∑
k ′=1
k ′�k

γk ′ηk ′ . (3.39)
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• The fourth term represents the beamforming gain uncertainty. This term stems from

the receiver’s ignorance of the effective scalar channel gain
√
ρulγkηk ‖zk ‖2 in (3.32).

Its variance follows by using the formulas in Section A.2.4:

ρulγkηk

M
Var

{(
‖ zk ‖2 − E

{
‖ zk ‖2

})
qk

}
=

ρulγkηk

M

(
E
{
‖ zk ‖4

}
−
(
E
{
‖ zk ‖2

})2)
= ρulγkηk . (3.40)

The resulting capacity bound is

C
mr,ul

inst.,k
≥ log2

(
1 + SINRmr,ul

k

)
, (3.41)

where the effective SINR is found by dividing the coherent beamforming gain in (3.37) by

the sum of the variances in (3.38)–(3.40),

SINRmr,ul

k
=

M ρulγkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′

. (3.42)

Functional Block Diagram

Figure 3.2 shows the functional block diagram for maximum-ratio processing. This

figure should be compared with the corresponding diagram for zero-forcing processing in

Figure 3.1. Maximum-ratio processing yields a coherent beamforming gain of M rather than

M − K , since no degrees of freedom are expended on creating spatial nulls for interference

suppression. However, in contrast to the zero-forcing case, the contributions to the intra-cell

interference from each terminal is now proportional to the mean-square strength of the

channel, βk , rather than to the mean-square channel estimation error, βk − γk .

3.3 Downlink Data Transmission

Downlink data transmission entails a linear precoding operation that combines the message-

bearing symbols with the downlink channel estimates to create the actual signals that the

array transmits.

3.3.1 Linear Precoding

Denote the K × 1 vector of message-bearing symbols, as in the uplink case, by q, having

the covariance (3.16). The vector of transmitted signals, x, is generated by first scaling the
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qk q̂k

√
ρulγkηk

√
M

CN(0, 1)

CN(0, 1)

√
ρul βk ′ηk ′

intra-cell interference

signal of interest

receiver noise

(repeated for k′ = 1, . . . , K)

Figure 3.2. Functional block diagram for the single-cell uplink with maximum-ratio

processing.

K symbols with the square root of the corresponding power control coefficients {ηk }, and

then multiplying by an M × K precoding matrix, A,

x = AD
1/2
η q

=

K∑
k=1

√
ηk akqk . (3.43)

In (3.43), ak is the kth column of A. The scaling of the precoding matrix, and the choice

of non-negative power control coefficients, subject to

K∑
k=1

ηk ≤ 1, (3.44)

ensure that the total transmitted power is no greater than one: E
{
‖x‖2

}
≤ 1. The expected

power that is used for the kth terminal is

E
{��√ηkakqk

��2
}
= ηkE

{
‖ak ‖2

}
. (3.45)

Collectively, the terminals receive a K × 1 signal,

y =
√
ρdlG

Tx + w

=

√
ρdlĜ

T
x + w − √ρdlG̃

T
x

=

√
ρdlĜ

T
AD

1/2
η q + w − √ρdlG̃

T
x. (3.46)
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The signal received by the kth terminal is

yk =
√
ρdl ĝ

T
k AD

1/2
η q + wk − √ρdl g̃

T
k x. (3.47)

The three terms in (3.47) are mutually uncorrelated. For subsequent use, we evaluate the

variance of the sum of the last two terms,

Var
{
wk − √ρdl g̃

T
k x

}
= 1 + ρdlE

{
xH g̃∗k g̃

T
k x

}
= 1 + ρdl

(
βk − γk

)
E
{
‖x‖2

}
, (3.48)

which, significantly, depends only on the total radiated power.

As in the uplink case, we restrict ourselves to zero-forcing and maximum-ratio processing.

3.3.2 Zero-Forcing

Zero-forcing uses the precoding matrix,

A =
√

M − KZ∗
(
ZTZ∗

)−1
, (3.49)

where Z is the normalized channel estimate defined in (3.14). We verify that the transmitted

signal, (3.43), has the proper scaling,

E
{
‖x‖2

}
= E

{
Tr

{
ADηA

H
}}

= (M − K )E

{
Tr

{
Dη

(
ZTZ∗

)−1
}}

= (M − K )

K∑
k=1

ηkE

{ [(
ZTZ∗

)−1
]

kk

}

=

K∑
k=1

ηk, (3.50)

where in the last step we used the identity (B.1) in Appendix B. The columns of the

precoding matrix, {ak }, are statistically identical, so (3.45) and (3.50) together imply that

the power control coefficient, ηk , is in fact equal to the power expended for the kth terminal,

E
{��√ηk akqk

��2
}
= ηk . (3.51)

The substitution of (3.49) into (3.46) gives the following received signal vector:

y =
√

(M − K )ρdlĜ
T
Z∗
(
ZTZ∗

)−1
D

1/2
η q + w − √ρdlG̃

T
x

=

√
(M − K )ρdlD

1/2
γ ZTZ∗

(
ZTZ∗

)−1
D

1/2
η q + w − √ρdlG̃

T
x

=

√
(M − K )ρdlD

1/2
γ D

1/2
η q + w − √ρdlG̃

T
x. (3.52)
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In particular, the kth terminal receives the signal,

yk =

√
(M − K )ρdlγkηkqk + wk − √ρdl g̃

T
k x. (3.53)

Equation (3.53) expresses the received signal in terms of a deterministic gain√
(M − K )ρdlγkηk multiplied by the symbol of interest, qk , plus uncorrelated effective

noise. Hence, we have the model discussed in Section 2.3.2. The variance of the effective

noise follows from (3.48) and (3.50):

Var
{
wk − √ρdl g̃

T
k x

}
= 1 + ρdl(βk − γk )

K∑
k ′=1

ηk ′ . (3.54)

The resulting capacity bound is

Czf,dl

inst.,k
≥ log2

(
1 + SINRzf,dl

k

)
, (3.55)

where the effective SINR is given by

SINRzf,dl

k
=

(M − K )ρdlγkηk

1 + ρdl(βk − γk )
K∑

k ′=1

ηk ′

. (3.56)

Functional Block Diagram

Figure 3.3 shows the corresponding functional block diagram. This figure should be

compared with the uplink zero-forcing counterpart in Figure 3.1. The numerators of the

SINRs have identical form. For the downlink case, the effective noise depends only the

channel estimation error for the kth terminal weighted by the total transmitted power,

because the kth terminal receives power only through its own channel.

3.3.3 Maximum-Ratio

Maximum-ratio processing uses the precoding matrix,

A =
1√
M

Z∗. (3.57)
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qk q̂k

√
ρdlγkηk

√
M−K

CN(0, 1)

CN(0, 1)

√
ρdl

(
βk − γk

)

√∑K
k ′=1 ηk ′

signal of interest

receiver noise

intra-cell interference

Figure 3.3. Functional block diagram for the single-cell downlink with zero-forcing

processing.

We verify that the transmitted signal, (3.43), has the proper scaling,

E
{
‖x‖2

}
= E

{
Tr

{
ADηA

H
}}

=

1

M
Tr
{
DηE

{
ZTZ∗

}}
=

1

M
Tr
{
DηM IK

}
=

K∑
k=1

ηk . (3.58)

As in the case of zero-forcing, the expected power expended on the kth terminal is equal to

ηk .

The substitution of (3.57) into (3.46) gives the received signals,

y =

√
ρdl

M
Ĝ

T
Z∗D1/2

η q + w − √ρdlG̃
T
x

=

√
ρdl

M
D

1/2
γ ZTZ∗D1/2

η q + w − √ρdlG̃
T
x

=

√
ρdl

M
D

1/2
γ E

{
ZTZ∗

}
D

1/2
η q + w − √ρdlG̃

T
x

+

√
ρdl

M
D

1/2
γ

(
ZTZ∗ − E

{
ZTZ∗

})
D

1/2
η q. (3.59)
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The kth received signal is

yk =

√
ρdlγk

M
E
{
zT

kZ
∗}D1/2

η q + wk − √ρdl g̃
T
k x +

√
ρdlγk

M

(
zT

kZ
∗ − E

{
zT

kZ
∗}) D1/2

η q

=

√
ρdlγkηk

M
E
{
‖ zk ‖2

}
qk + wk − √ρdl g̃

T
k x +

√
ρdlγk

M

K∑
k ′=1
k ′�k

√
ηk ′ z

T
k z
∗
k ′qk ′

+

√
ρdlγkηk

M

(
‖ zk ‖2 − E

{
‖ zk ‖2

})
qk . (3.60)

Again we have the scalar channel model treated in Section 2.3.2. The coherent beamforming

gain is equal to M ρdlγkηk , which is larger than the zero-forcing gain, as seen in (3.53).

Also maximum-ratio processing results in two new sources of effective noise that are absent

from zero-forcing:

• The fourth term of (3.60) represents channel non-orthogonality, similar to (3.39),

with variance,

ρdlγk

M
Var

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K∑

k ′=1
k ′�k

√
ηk ′ z

T
k z
∗
k ′qk ′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= ρdlγk

K∑
k ′=1
k ′�k

ηk ′ . (3.61)

• The fifth term of (3.60) represents beamforming gain uncertainty, similar to (3.40),

which has variance,

ρdlγkηk

M
Var

{(
‖ zk ‖2 − E

{
‖ zk ‖2

})
qk

}
= ρdlγkηk . (3.62)

The sum of (3.48), (3.61), and (3.62) gives the total effective noise variance. The resulting

capacity bound is

C
mr,dl

inst.,k
≥ log2

(
1 + SINRmr,dl

k

)
, (3.63)

where

SINRmr,dl

k
=

M ρdlγkηk

1 + ρdl βk

K∑
k ′=1

ηk ′

. (3.64)
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qk q̂k

√
ρdlγkηk

√
M

CN(0, 1)

CN(0, 1)

√
ρdl βk

√∑K
k ′=1 ηk ′

signal of interest

receiver noise

intra-cell interference

Figure 3.4. Functional block diagram for the single-cell downlink with maximum-ratio

processing.

Functional Block Diagram

Figure 3.4 shows the functional block diagram, which should be compared with the block

diagram for zero-forcing processing in Figure 3.3. The coherent beamforming gain for

maximum-ratio transmission is proportional to M rather than M − K , but the effective

noise is proportional to the mean-square channel rather than to the mean-square channel

estimation error.

3.4 Discussion

Table 3.1 summarizes the effective SINR expressions upon which the capacity lower bounds

are obtained for the four cases of uplink and downlink, zero-forcing and maximum-ratio

processing. The uplink power control coefficients {ηk } satisfy 0 ≤ ηk ≤ 1. On the

downlink, {ηk } instead satisfy ηk ≥ 0 and

K∑
k=1

ηk ≤ 1. (3.65)

In the single-cell scenario, typically one employs full power, but in a multiple-cell scenario,

at least in some cells, the total power may be less than unity.

These simple formulas are quite comprehensive, as they account for both channel estimation

errors and the imperfections of the multiplexing and de-multiplexing, and they are
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Zero-Forcing Maximum-Ratio

Uplink
(M − K )ρulγkηk

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

M ρulγkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′

Downlink
(M − K )ρdlγkηk

1 + ρdl(βk − γk )
K∑

k ′=1

ηk ′

M ρdlγkηk

1 + ρdl βk

K∑
k ′=1

ηk ′

Table 3.1. Effective SINR for the kth terminal, SINRk , in a single-cell system.

remarkably similar. It is worth noting that all effective SINR expressions were obtained

without resorting to asymptotic random matrix results. Capacity lower bounds obtained

from these expressions are rigorously correct, in the case of zero-forcing for any M > K ≥ 1,

and in the case of maximum-ratio processing for any K ≥ 1 and M ≥ 1. However, caution

should be observed when using these formulas for small numbers of antennas. For example,

when M = K = 1, the uplink maximum-ratio SINR is always less than one (omitting the

redundant subscript k here),

SINR =
ρulγη

1 + ρul βη
< 1, (3.66)

and in this regime a less tractable but stronger bound would be more useful.

Appendix D gives alternative capacity bounds for several of the scenarios treated here.

3.4.1 Interpretation of the Effective SINR Expressions

The functional block diagrams and the companion effective SINR expressions provide

considerable intuitive insight:

• The frequency dependence of the channels disappears from the formulation, and only

the large-scale fading coefficients appear. This is consistent with the fact that the

coherent beamforming gain as well as the effects of intra-cell interference arise from

the combined action of many antennas.

• The numerator represents the coherent beamforming gain for the signal designated

for the kth terminal:
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1. This gain is proportional to M −K for zero-forcing and to M for maximum-ratio

processing. The reduced gain for zero-forcing is due to the expenditure of K −1

degrees of freedom for placing the signals in a null-space, and the loss of one

degree of freedom due to the capacity bounding technique.

2. The factors ρulγk and ρdlγk represent the effective strengths of the channel

between the base station and the kth terminal, as degraded by channel estimation

errors. Note that βk ≥ γk . If channel estimation were perfect, then γk would be

equal to βk .

3. Only the kth power control coefficient, ηk , affects the gain.

• The denominator comprises noise and intra-cell interference, whose magnitude is

independent of M:

1. The term “1” corresponds to receiver noise.

2. The remaining term, which is convenient to think of as intra-cell interference,

represents the effects of channel estimation errors, and in the case of maximum-

ratio processing, channel non-orthogonality and beamforming gain uncertainty

as well.

3. On the uplink, the intra-cell interference arrives from all of the terminals and

depends on the details of power control. In contrast, on the downlink the

interference arrives only by the path to the kth terminal, and is proportional

only to the total radiated power, i.e., the sum of the power control coefficients.

4. For zero-forcing, the intra-cell interference depends on the mean-square channel

estimation error, βk − γk , but for maximum-ratio processing it depends on the

mean-square channel, βk . It is somewhat remarkable that for maximum-ratio

processing, the combined effect of channel estimation errors, channel non-

orthogonality, and beamforming gain uncertainty is independent of the quality

of the channel estimates. This special result depends heavily on our assumption

of independent Rayleigh fading, and it may not hold for other channel models.

• If high-quality channel estimates are available, then zero-forcing will induce con-

siderably smaller intra-cell interference than maximum-ratio processing, yielding

significantly better performance under high SNR conditions. However, as shown

in Chapter 4, this advantage may evaporate in multi-cell systems because of

non-coherent inter-cell interference, whose magnitude is the same for zero-forcing

and maximum-ratio.
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3.4.2 Implications for Power Control

The absence of frequency dependence justifies the use of power control that is independent of

frequency. Hence power control for Massive MIMO is much simpler than for conventional

wireless systems:

• The power control coefficients, {ηk }, appear linearly in both the numerator and the

denominator of the SINR expressions. Hence, inequality constraints on the SINR

(which are equivalent to inequality constraints on the per-terminal capacity bounds)

are linear in the power control coefficients. As a consequence, many power control

laws, for example that providing max-min throughput, are obtainable by solving linear

programming problems, as shown in Chapter 5.

• Power control is a sharper tool for the uplink than for the downlink, because in the

uplink the intra-cell interference depends on the detailed distribution of the power

control coefficients. A terminal that has a particularly strong channel is capable of

causing large interference to the other terminals. A countervailing effect is that on

the downlink, power can be taken from one terminal and given to another, an option

not available on the uplink.

3.4.3 Scaling Laws and Upper Bounds on the SINR

The interplay of the number of antennas, M , the number of active terminals, K , and uplink

and downlink radiated powers is central to the scalability of Massive MIMO systems:

• Adding more antennas is always beneficial. The SINR is proportional to M − K

for zero-forcing and to M for maximum-ratio processing; however, because of its

logarithmic dependence, the capacity increases at a lesser rate.

• Increased radiated power, giving proportional increases to ρul and ρdl, is always

beneficial, but under maximum-ratio processing, extra power alone has limited

benefits.

With zero-forcing, we can obtain as high performance as desired in a single-cell

system by adding extra power. On the uplink, only ρul counts in the SINR (3.29).

This SINR grows without bound as ρul grows because when ρul →∞, (3.10) implies

that ρul(βk − γk ) converges to a constant. Similarly, the downlink SINR (3.56)

increases without bound as ρdl and ρul simultaneously increase.

With maximum-ratio processing, in contrast, increasing the power causes both the

numerator and the denominator in the SINR expressions to increase. The quantitative
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implications of this become clear if we consider the arithmetic mean of the SINR

(averaged over the K terminals). On the uplink, (3.42) implies that

1

K

K∑
k=1

SINRmr,ul

k
=

M

K

ρul

K∑
k=1

γkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′

<
M

K

K∑
k=1

βkηk

K∑
k ′=1

βk ′ηk ′

=

M

K
. (3.67)

Even with infinite power, the average SINR is less than the ratio of the number of

antennas to the number of terminals. Similarly, on the downlink, (3.64) implies that

1

K

K∑
k=1

SINRmr,dl

k
=

M

K

K∑
k=1

ρdlγkηk

1 + ρdl βk

K∑
k ′=1

ηk ′

<
M

K

K∑
k=1

βkηk

βk

K∑
k ′=1

ηk ′

=

M

K
. (3.68)

As a consequence, with maximum-ratio processing, the SINR saturates as the power

increases without limit.

• On the downlink, doubling the number of antennas, M , permits a reduction in total

radiated power by at least a factor of two with no degradation in SINR.

• On the uplink, increasing M permits a reduction in radiated power, but to a lesser

extent than on the downlink, because reducing power also degrades the quality of the

channel estimates. As power is reduced, eventually there is a “squaring” effect such

that a doubling of M permits only a reduction in power by a factor of
√

2.

• Increasing the number of active terminals, K , gives a linear increase to the

multiplexing gains and to the instantaneous sum capacity, but on the downlink, the

available power is divided among more terminals, so the SINR decreases. For fixed
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Zero-Forcing Maximum-Ratio

Uplink (M − K )ρul βkηk

M ρul βkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′

Downlink (M − K )ρdl βkηk

M ρdl βkηk

1 + ρdl βk

K∑
k ′=1
ηk ′

Table 3.2. Effective SINR for the kth terminal, SINRk , in a single-cell system, in the special

case of perfect CSI at the base station (γk = βk for all k).

downlink power, if M is increased in proportion to K , then the same original SINR

is enjoyed by more terminals. However, making K too big is eventually detrimental

with respect to net spectral efficiency because of the increased time spent on training

(to be discussed in more detail Section 3.6). The mobility of the terminals ultimately

limits the practical scalability of Massive MIMO.

3.5 Near-Optimality of Linear Processing when M � K

Maximum-ratio and zero-forcing processing are not only scalable and computationally

tractable, they also perform nearly optimally when M � K . To see this in more detail we

directly compare the performance of linear processing with that of optimal processing.

In the comparison to follow, we assume that all parties know G perfectly, because exact sum

capacity expressions for the uplink (multiple-access) and downlink (broadcast) channels are

only available under this assumption. These sum capacities are given by (1.3) and (1.4), and

derived in Section C.4. Their ergodic counterparts are obtained by taking the expectation

with respect to G. To find the corresponding performance with linear processing and

perfect CSI, we obtain a capacity lower bound by setting γk = βk in the effective SINR

expressions in Table 3.1, resulting in the SINRs shown in Table 3.2. We then compute∑K
k=1 log2(1 + SINRk ), with SINRk taken from Table 3.2.

By comparing the capacity expressions obtained from Table 3.2 with those in (1.3) and

(1.4), we make the following observations:
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• For the uplink, the ergodic sum capacity is upper bounded as follows:

E
{
log2

���IM + ρulGGH���} (a)
= E

{
log2

���IK + ρulG
HG

���}
(b)≤ E

⎧⎪⎨⎪⎩log2

�

K∏
k=1

[
IK + ρulG

HG
]

kk
��
⎫⎪⎬⎪⎭

=

K∑
k=1

E
{
log2

( [
IK + ρulG

HG
]

kk

)}
=

K∑
k=1

E
{
log2

(
1 + ρul

��gk
��2
)}

(c)≤
K∑

k=1

log2

(
1 + ρulE

{��gk
��2
})

=

K∑
k=1

log2

(
1 + M ρul βk

)
. (3.69)

In (3.69), in (a) we used Sylvester’s determinant theorem, in (b) we used the Hadamard

inequality, and in (c) we used Jensen’s inequality in the form (C.2). With perfect CSI

and zero-forcing processing, the sum capacity is lower bounded according to

Czf,ul
inst.,sum

���perfect CSI
≥

K∑
k=1

log2

(
1 + (M − K )ρul βkηk

)
. (3.70)

The right-hand sides of (3.69) and (3.70) are close if all terminals use full power (so

ηk = 1 for all k) and M � K . This near-optimality of zero-forcing processing is a

consequence of the asymptotic orthogonality of the channel vectors in independent

Rayleigh fading. See also the discussion in Chapter 7.

• Similarly, on the downlink, the ergodic sum capacity can be upper bounded, for any

fixed {νk } that satisfy νk ≥ 0 and
∑K

k=1 νk ≤ 1 as follows:

E
{
log2

���IM + ρdlGDνG
H���} ≤ K∑

k=1

log2

(
1 + M ρdl βkνk

)
. (3.71)

The sum capacity lower bound with perfect CSI and zero-forcing processing is

Czf,dl
inst.,sum

���perfect CSI
≥

K∑
k=1

log2

(
1 + (M − K )ρdl βkηk

)
. (3.72)

Comparing the right-hand sides of (3.71) and (3.72), we see that they are close if

νk = ηk , and M � K .
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Figure 3.5. Sum capacity compared with zero-forcing and maximum-ratio as functions of

M , for K = 16, and perfect CSI.

To give a quantitative example, suppose that the large-scale fading coefficients of all

terminals are equal to unity: βk = 1, and that no power control is applied – that is,

ηk = 1 in the uplink and ηk = 1/K in the downlink – for all k. Figure 3.5 compares the

sum capacities for the uplink and downlink with the corresponding lower bounds on the

sum capacity with linear processing. Results are shown for a cell with K = 16 terminals

and SNRs of ρul = −10 dB respectively ρdl = 0 dB. For small numbers of antennas, the

M − K gain factor seriously compromises zero-forcing performance. Conversely, for large

M zero-forcing enjoys interference-free operation. In either case, with linear processing the

sum capacity can be achieved with a small increase in numbers of antennas as compared

to what is required with optimal, non-linear processing. It is worth noting that typically it

would not be feasible to obtain the sum capacity shown in Figure 3.5(b) for large values of

M because of the dual CSI requirement.

3.6 Net Spectral Efficiency

We obtain the (ergodic) net spectral efficiency for the kth terminal, Cnet,k , by multiplying

the instantaneous (ergodic) capacity, Cinst.,k , by the fraction of samples in each coherence

interval that are used for transmission of payload data, that is, 1 − τp/τc,

Cnet,k =

(
1 − τp
τc

)
Cinst.,k . (3.73)
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The net sum spectral efficiency in a cell, Cnet,sum, is the sum of the net spectral efficiencies

of all K terminals that receive service,

Cnet,sum =

(
1 − τp
τc

) K∑
k=1

Cinst.,k . (3.74)

Equations (3.73) and (3.74) apply, separately, to both the uplink and the downlink. Lower

bounds on Cinst.,k are obtained from the effective SINR values in Table 3.1,

Cinst.,k ≥ log2(1 + SINRk ). (3.75)

To obtain uplink and downlink spectral efficiencies that can be obtained simultaneously,

the net spectral efficiencies in (3.73) and (3.74) must be multiplied by a factor that equals

the fraction of useful samples per coherence interval that are used for uplink respectively

downlink. If an equal number of useful samples are allocated for the uplink respectively the

downlink, then this factor is 1/2. To obtain net throughputs in b/s, all spectral efficiencies

must in turn be multiplied by the total system bandwidth.

3.7 Limiting Factors: Number of Antennas and Mobility

The net sum spectral efficiency in a cell is ultimately limited either by the availability

of spatial degrees of freedom – that is, the number of antennas, M , or by mobility – as

quantified by the length of the channel coherence interval, τc. Both M and τc determine the

number of terminals K that can be usefully multiplexed. When K becomes comparable to

M , the spatial degrees of freedom are exhausted. When K increases towards τc, then the

factor before the logarithm in (3.74) decreases because of the requirement that τp ≥ K , and

eventually the whole coherence interval must be used for pilots and none of it remains for

payload.

To illustrate these effects in more detail, we optimize the net sum spectral efficiency with

respect to K and τp, assuming an equal split between the uplink and downlink,

max
K,τp

0≤K≤τp≤τc

1

2

(
1 − τp
τc

) K∑
k=1

Cinst.,k . (3.76)

Figure 3.6 (for zero-forcing) and Figure 3.7 (for maximum-ratio) show the net sum spectral

efficiency achieved at the optimum of (3.76) for different M and τc, visualized as contour

plots. In all examples, βk = 1 for all k, and all terminals were allocated equal power. For the

sake of illustration, in this example, the optimization in (3.76) was performed independently
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for the uplink and the downlink. In practice, the same values of K and τp would have to be

used in the uplink and downlink.

Figures 3.6 and 3.7 show results for the uplink and downlink for three different SNRs:

• low SNR both on uplink and downlink – ρul = ρdl = −5 dB;

• low SNR on uplink and high SNR on downlink – ρul = −5 dB and ρdl = 10 dB;

• high SNR both on uplink and on downlink – ρul = ρdl = 10 dB.

Several phenomena can be observed from these figures:

• Increasing the SNRs ρul and ρdl always helps, but beyond some point the return

is diminishing owing to the logarithmic growth of capacity with power, and, for

maximum-ratio processing, the persistence of interference with increasing power.

• As the uplink SNR ρul increases, both the uplink and downlink capacities improve.

The downlink capacities improve because the quality of the channel estimates, which

are obtained on the uplink, improves. Zero-forcing benefits more from improved

channel estimates than does maximum-ratio.

• When the SNR is high, zero-forcing processing yields a much higher sum capacity

than maximum-ratio processing.

• Performance, both in uplink and downlink, and both for zero-forcing and maximum-

ratio processing, is limited either by the number of antennas (M) or the length of the

coherence interval (τc).

For fixed M , the benefits of increasing τc eventually saturate: training becomes

essentially cost-free, so one can give service to an arbitrary number of terminals.

However, the effective spatial multiplexing gain is limited by M , both on the uplink

and on the downlink. For zero-forcing, K < M is required to obtain a non-zero

capacity bound. For maximum-ratio, there is no upper limit on K , but as K grows

without bound, assuming that τc grows correspondingly, the sum capacity approaches

a finite limit. In the uplink, this saturation occurs because of persistent intra-cell

interference, and in the downlink it occurs because for every doubling of K , assuming

that the total power radiated by the array is fixed, the power per terminal is halved.

Conversely, for fixed τc, increasing M initially increases both the coherent beamform-

ing gain and the number of terminals that can be usefully multiplexed. However,

increasing M eventually gives only a logarithmic increase in sum capacity as the

coherent beamforming gain grows proportionally to M while there is no increase in
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multiplexing gain. The reason is that while the array offers M degrees of freedom

and could spatially multiplex M terminals, there is room in each coherence interval

to give at most τc terminals mutually orthogonal pilot sequences. Mobility becomes

the limiting factor: CSI cannot be acquired for more than τc terminals.

While not shown in Figures 3.6 and 3.7, we have made the following additional observations,

regarding the values of K and τp at the optimum in (3.76), for both zero-forcing and

maximum-ratio processing:

• When M � τc, the number of terminals that can be usefully multiplexed, K , is

limited by the number of different possible orthogonal pilot sequences, which in turn

is limited by the length of the coherence interval. In this regime, approximately half

of the coherence interval is used for pilots; τp ≈ τc/2. Also, the optimal number of

terminals to multiplex is K ≈ τc/2.

• Conversely, when τc � M , the number of simultaneously served terminals, K , is

limited by the number of spatial degrees of freedom, M . There is room for long pilot

sequences and τp substantially exceeds K . When the uplink SNR is high, the optimal

number of terminals is K ≈ M/2.

These observations are contingent on the assumption made in these examples, that all {βk }
are equal to unity, but generalize to some extent when that assumption is relaxed. With

general values of {βk }, a power control policy must be selected in order for an optimization

such as that in (3.76) to be meaningful. We defer further discussion of these aspects to

Chapters 5 and 6.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.004
https:/www.cambridge.org/core


Section 3.7 Limiting Factors: Number of Antennas and Mobility 73

Uplink Downlink
ρ

u
l
=
−5

d
B

,
ρ

d
l
=
−5

d
B

M

τ
c

10

20

50

100

200

10 100 1000
10

100

1000

10000

M

τ
c

10

20

50

1
0
0

10 100 1000
10

100

1000

10000

ρ
u
l
=
−5

d
B

,
ρ

d
l
=

1
0

d
B

same as for

ρul = −5 dB, ρdl = −5 dB

M

τ
c

10

20

50

100

200

10 100 1000
10

100

1000

10000

ρ
u
l
=

1
0

d
B

,
ρ

d
l
=

1
0

d
B

M

τ
c

10
20

50

100

200

10 100 1000
10

100

1000

10000

M

τ
c

1
0

20

50

100

200

10 100 1000
10

100

1000

10000

Figure 3.6. Zero-forcing processing in single-cell: Contours representing lower bounds on

net sum spectral efficiency (b/s/Hz), optimized with respect to number of terminals, K , and

pilot duration, τp; βk = 1 for all k, and equal power expended for each terminal.
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Figure 3.7. Maximum-ratio processing in single-cell: Contours representing lower bounds

on net sum spectral efficiency (b/s/Hz), optimized with respect to number of terminals, K ,

and pilot duration, τp; βk = 1 for all k, and equal power expended for each terminal.
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3.8 Summary of Key Points

• Massive MIMO uses zero-forcing or maximum-ratio processing both for decoding on

the uplink and precoding on the downlink. Such linear processing is nearly optimal

in the typical operating regime of Massive MIMO.

• Rigorous lower bounds on the instantaneous ergodic capacity Cinst.,k for the kth

terminal in a single-cell setup are given by log2(1 + SINRk ), where SINRk is an

effective SINR, given by Table 3.1, for the uplink and the downlink and for zero-

forcing and maximum-ratio processing, respectively. These bounds account for all

imperfections associated with channel estimation errors, channel non-orthogonality,

and beamforming gain uncertainty.

Appendix H summarizes the notation used in Table 3.1. The power control coefficients

{ηk } satisfy 0 ≤ ηk ≤ 1 for all k in the uplink. In the downlink, they satisfy the

conditions ηk ≥ 0 for all k, and

K∑
k=1

ηk ≤ 1. (3.77)

To obtain the net spectral efficiency, the instantaneous capacity has to be multiplied

by the fraction of the time during which the channel is used to transmit payload data;

see Section 3.6.

• The functional block diagrams in Figures 3.1–3.4 represent the effective passage of

the desired signal between the terminals and the base station. In these figures, qk is

the symbol to be communicated between the array and the kth terminal, and q̂k is the

estimate of this symbol obtained at the receiver.

• The achievable performance in a single cell is ultimately limited either by the number

of available spatial degrees of freedom – that is, the number of base station antennas,

M , or by mobility as quantified via the length of the channel coherence interval,

τc. Multiplexing to more than M terminals is not useful unless very low SINRs are

desired, and learning the channel for more than τc terminals is impossible unless

entirely new assumptions are made regarding the structure of small-scale fading.
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Chapter 4

MULTI-CELL SYSTEMS

We now extend the single-cell performance analysis of Chapter 3 to the multi-cell setting

as modeled in Section 2.2.2. The activities in the various cells occur synchronously, but

otherwise there is no cell-to-cell cooperation, with the exception of pilot assignment and

possibly power control. Each base station serves its own terminals. Data transmission

activities are identical to their single-cell counterparts. The channel estimation, however,

has to account for reuse of pilots in other cells.

The culmination of this chapter is Table 4.1 that summarizes effective SINRs analogous

to Table 3.1 in the single-cell case. Compared with the single-cell SINRs, the multi-cell

SINRs contain additional effective noise terms that correspond to inter-cell interference

of two types: non-coherent interference that is independent of the number of base station

antennas, and coherent interference that scales with the number of base station antennas.

Throughout this chapter, we denote the home cell by the index l. Although the terminals

within each cell have mutually orthogonal pilots, some reuse of pilots from cell to cell is

permitted. The assumption is that for any two distinct cells, the pilot sequences are either

perfectly orthogonal from cell to cell, or are perfectly replicated. Cells that use the same

pilots as the home cell cause pilot contamination. We call these cells contaminating cells

and denote the set of their indices by Pl , where by definition Pl also includes the home cell

l. For all l′ ∈ Pl , the kth terminal in the l′th cell is assigned the same kth pilot sequence.

We use the capacity bounding techniques of Chapter 3, but in our treatments of the uplink

we immediately adopt the “use and forget” technique, thereby skipping the forms of capacity

bounds that require taking expectations of logarithms.

77
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4.1 Uplink Pilots and Channel Estimation

During the training phase, the terminals in each cell transmit pilot sequences, as in (3.2).

Upon reception of the pilots, the base station performs a de-spreading operation. Because

of pilot reuse, the resulting signal is a linear combination of channel matrices from all cells

that share the same pilot sequences. Within the lth cell, the resulting signal (the counterpart

to (3.5)) is

Y ′
pl =
√
τpρul

∑
l′∈Pl

Gl
l′ +W

′
pl, (4.1)

where W ′
pl

represents noise whose elements are i.i.d. CN(0, 1). In terms of components,[
Y ′pl

]
mk
=
√
τpρul

∑
l′∈Pl

g
lm
l ′k +

[
W ′pl

]
mk
. (4.2)

To implement precoding and decoding, the home cell requires only an estimate of its own

channel matrix, Gl
l . Performance calculations and power control algorithms depend on the

mean-square channel estimates to all cells.

The MMSE estimate of glm
l ′k is

ĝ
lm
l ′k =

√
τpρul β

l
l′k

1 + τpρul

∑
l′′∈Pl

βl
l′′k

[
Y ′

pl

]
mk
, l′ ∈ Pl . (4.3)

Note that estimates obtained by the home cell for different values of l′, but with the same

terminal index, k, are perfectly correlated, which is the essence of pilot contamination. The

mean-square channel estimate is denoted by γl
l ′k and given by

γl
l ′k = E

{
|ĝlm

l ′k |2
}

=

τpρul

(
βl

l′k

)2
1 + τpρul

∑
l′′∈Pl

βl
l′′k

, l′ ∈ Pl . (4.4)

From (4.4), it is clear that γl
l ′k ≤ βl

l′k . As a consequence of pilot contamination, multi-cell

channel estimates may be considerably noisier than their single-cell counterpart, as seen by

comparing (4.4) with (3.8).

Let

g̃
lm
l ′k = ĝ

lm
l ′k − glm

l ′k (4.5)
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be the channel estimation error. The mean-square estimation error is

E
{
|g̃lm

l ′k |2
}
= βl

l′k − γl
l ′k, l′ ∈ Pl, (4.6)

independently of m. In matrix form, we represent the estimate (4.3) as follows:

Ĝ
l

l′ = Z lD
1/2

γl

l′
, l′ ∈ Pl, (4.7)

where Ĝ
l

l′ is a matrix of channel estimates, whose (m, k)th element equals ĝ
lm
l ′k ,

γl
l′ = [γl

l ′1, . . . , γ
l
l ′K ]T, and the elements of Z l are i.i.d. CN(0, 1). In what follows, it is

extremely important that Z l has no dependence on l′.

4.2 Uplink Data Transmission

During the uplink data phase, the kth terminal in the l′th cell transmits
√
ηl′kql′k , where the

symbols {ql′k } are mutually uncorrelated and have zero mean and unit power, and {ηl′k } are

power control coefficients that satisfy 0 ≤ ηl′k ≤ 1 for all l′ and k. The base station in the

home cell receives the following vector-valued signal:

yl =
√
ρul

∑
l′∈Pl

Gl
l′D

1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

=

√
ρul

∑
l′∈Pl

Ĝ
l

l′D
1/2
ηl′ ql′ −

√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

=

√
ρulZ

l
∑
l′∈Pl

D
1/2

γl

l′
D

1/2
ηl′ ql′ −

√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl, (4.8)

where G̃
l

l′ = Ĝ
l

l′ − Gl
l′ is a matrix of channel estimation errors, ηl′ = [ηl′1, . . . , ηl′K ]T, and

where in the last step we utilized (4.7). We note that the four terms in (4.8) are mutually

uncorrelated. Moreover, the last three terms are statistically independent of {Ĝl

l′ }, and hence

of Z l , for l′ ∈ Pl . Their covariance is

Cov

⎧⎪⎪⎨⎪⎪⎩−
√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

⎫⎪⎪⎬⎪⎪⎭
=

��ρul

∑
l′∈Pl

K∑
k ′=1

(
βl

l′k ′ − γl
l′k ′
)
ηl′k ′ + ρul

∑
l′�Pl

K∑
k ′=1

βl
l′k ′ηl′k ′ + 1

��� IM . (4.9)

Within (4.9), note that we take an unconditional expectation with respect to {Gl
l′ }, despite

the fact that the base station possesses estimates of these quantities in keeping with the “use

and forget CSI” technique.
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4.2.1 Zero-Forcing

Under zero-forcing, the home cell multiplies its received signal (4.8) by the scaled pseudo-

inverse of the channel estimate. The kth component of the processed signal is as follows:[
D

1/2

γl

l

(
Ĝ

lH

l Ĝ
l

l

)−1

Ĝ
lH

l yl

]
k

=

[(
Z lHZ l

)−1
Z lHyl

]
k

=

⎡⎢⎢⎢⎢⎢⎣
√
ρul

(
Z lHZ l

)−1
Z lHZ l

∑
l′∈Pl

D
1/2

γl

l′
D

1/2
ηl′ ql′

⎤⎥⎥⎥⎥⎥⎦ k

+

⎡⎢⎢⎢⎢⎢⎣
(
Z lHZ l

)−1
Z lH 
��−

√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

=

√
ρul

∑
l′∈Pl

√
γl

l ′kηl′kql′k

+

⎡⎢⎢⎢⎢⎢⎣
(
Z lHZ l

)−1
Z lH 
��−

√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

,

=

√
ρulγ

l
lk
ηlk qlk +

√
ρul

∑
l′∈Pl\{l}

√
γl

l ′kηl′kql′k

+

⎡⎢⎢⎢⎢⎢⎣
(
Z lHZ l

)−1
Z lH 
��−

√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

,

(4.10)

where, in the first step, we have used (4.7). The kth processed signal in (4.10) is equal to a

deterministic gain multiplied by the symbols from the home-cell terminal, plus uncorrelated

effective non-Gaussian noise terms. Consequently, we have an effective scalar channel of

the form treated in Section 2.3.2, and can use the capacity bound derived therein.
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We use (4.9) and (B.1) to evaluate the variance of the last effective noise terms in (4.10),

Var

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
(
Z lHZ l

)−1
Z lH 
��−

√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

⎫⎪⎪⎬⎪⎪⎭
=

��ρul

∑
l′∈Pl

K∑
k ′=1

(
βl

l′k ′ − γl
l′k ′
)
ηl′k ′ + ρul

∑
l′�Pl

K∑
k ′=1

βl
l′k ′ηl′k ′ + 1

���E

{ [ (
Z lHZ l

)−1
]

kk

}

=

1

M − K


��ρul

∑
l′∈Pl

K∑
k ′=1

(
βl

l′k ′ − γl
l ′k ′
)
ηl′k ′ + ρul

∑
l′�Pl

K∑
k ′=1

βl
l′k ′ηl′k ′ + 1

��� , (4.11)

where we exploited the independence between Z l and the last three terms of (4.8). From

(4.10) and (4.11), we obtain the effective SINR for the kth terminal in the lth cell, as follows:

SINRzf,ul

lk
=

(M − K )ρulγ
l
lk
ηlk

1+ρul

∑
l′∈Pl

K∑
k ′=1

(
βl

l′k ′ −γl
l ′k ′
)
ηl′k ′+ρul

∑
l′�Pl

K∑
k ′=1
βl

l′k ′ηl′k ′+(M − K )ρul

∑
l′∈Pl\{l}

γl
l ′kηl′k

,

(4.12)

and the resulting capacity bound

Czf,ul

inst.,lk
≥ log2

(
1 + SINRzf,ul

lk

)
. (4.13)

Interpretation of (4.12) and Functional Block Diagram

We interpret the effective SINR expression (4.12) as follows:

• The numerator represents the coherent beamforming gain of the desired signal

received at the base station in the home cell.

• The first term in the denominator is the receiver noise variance.

• The second term in the denominator is due to interference from contaminating

cells. This interference includes both inter-cell interference and intra-cell interference

within the home cell. The terms that make up this second term scale proportionally

with the mean-square channel estimation errors, but not with M .

• The third term in the denominator represents inter-cell interference from

non-contaminating cells that scales proportionally with the large-scale fading co-

efficients, but not with M .

We use the term non-coherent interference to denote the second and the third terms

in the denominator.
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• The fourth term in the denominator represents interference from contaminating cells,

excluding the home cell itself, proportional to the mean-square channel estimates and

to M − K . Due to the proportional scaling with M − K , we call this term coherent

interference.

The functional block diagram in Figure 4.1 provides further intuition.

4.2.2 Maximum-Ratio

Under maximum-ratio processing, the home cell multiplies the received signal (4.8) by the

complex conjugate of the channel estimate, resulting in[
1√
M

D
−1/2

γl

l

Ĝ
lH

l yl

]
k

=

[
1√
M

Z lHyl

]
k

=

⎡⎢⎢⎢⎢⎢⎣
1√
M

Z lH 
��
√
ρulZ

l
∑
l′∈Pl

D
1/2

γl

l′
D

1/2
ηl′ ql′

−√ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

. (4.14)
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(repeated for k′ = 1, . . . , K)
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(repeated for l′ � Pl)

Figure 4.1. Functional block diagram for the multi-cell uplink with zero-forcing processing.
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We rewrite (4.14) as the desired signal multiplied by a deterministic gain plus uncorrelated

effective noise,[
1√
M

Z lHyl

]
k

=

⎡⎢⎢⎢⎢⎢⎣
√
ρul

M
E
{
Z lHZ l

} ∑
l′∈Pl

D
1/2

γl

l′
D

1/2
ηl′ ql′

⎤⎥⎥⎥⎥⎥⎦ k

+

⎡⎢⎢⎢⎢⎢⎣
√
ρul

M

(
Z lHZ l − E

{
Z lHZ l

}) ∑
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D
1/2

γl

l′
D

1/2
ηl′ ql′

⎤⎥⎥⎥⎥⎥⎦ k

+

⎡⎢⎢⎢⎢⎢⎣
1√
M

Z lH 
��−
√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

=

⎡⎢⎢⎢⎢⎢⎣
√

M ρul

∑
l′∈Pl

D
1/2

γl

l′
D

1/2
ηl′ ql′

⎤⎥⎥⎥⎥⎥⎦ k

+

⎡⎢⎢⎢⎢⎢⎣
√
ρul

M

(
Z lHZ l − E

{
Z lHZ l

}) ∑
l′∈Pl

D
1/2
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l′
D

1/2
ηl′ ql′

⎤⎥⎥⎥⎥⎥⎦ k

+
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1√
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Z lH 
��−
√
ρul

∑
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G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul
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l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

=
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l′∈Pl

√
M ρulγ

l
l′kηl′kql′k +

⎡⎢⎢⎢⎢⎢⎣
√
ρul

M

(
Z lHZ l − E

{
Z lHZ l

}) ∑
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D
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l′
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1/2
ηl′ ql′

⎤⎥⎥⎥⎥⎥⎦ k

+

⎡⎢⎢⎢⎢⎢⎣
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��−
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G̃
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l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

. (4.15)

We find the variance of the first effective noise term in (4.15) by using results in

Section A.2.4,

Var

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣
√
ρul

M

(
Z lHZ l − E

{
Z lHZ l

}) ∑
l′∈Pl

D
1/2

γl

l′
D

1/2
ηl′ ql′

⎤⎥⎥⎥⎥⎥⎦ k

⎫⎪⎪⎬⎪⎪⎭ = ρul

∑
l′∈Pl

K∑
k ′=1

γl
l′k ′ηl′k ′ . (4.16)

We use (4.9) to evaluate the variance of the second effective noise term in (4.15),

Var

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎢⎢⎢⎣

1√
M

Z lH 
��−
√
ρul

∑
l′∈Pl

G̃
l

l′D
1/2
ηl′ ql′ +

√
ρul

∑
l′�Pl

Gl
l′D

1/2
ηl′ ql′ + wl

���
⎤⎥⎥⎥⎥⎥⎦ k

⎫⎪⎪⎬⎪⎪⎭
= ρul

∑
l′∈Pl

K∑
k ′=1

(
βl

l′k ′ − γl
l′k ′
)
ηl′k ′ + ρul

∑
l′�Pl

K∑
k ′=1

βl
l′k ′ηl′k ′ + 1. (4.17)
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The resulting effective SINR is

SINRmr,ul

lk
=

M ρulγ
l
lk
ηlk

1 + ρul

∑
l′∈Pl

K∑
k ′=1
βl

l′k ′ηl′k ′ + ρul

∑
l′�Pl

K∑
k ′=1
βl

l′k ′ηl′k ′ + M ρul

∑
l′∈Pl\{l}

γl
l ′kηl′k

,

(4.18)

and the corresponding capacity bound is

Cmr,ul

inst.,lk
≥ log2

(
1 + SINRmr,ul

lk

)
. (4.19)

Functional Block Diagram

The functional block diagram in Figure 4.2 illustrates the action of maximum-ratio

processing. In contrast to zero-forcing, see Figure 4.1, the coherent beamforming gain

(the numerator of (4.18)) and coherent interference (the fourth term in the denominator) are

proportional to M rather than to M −K . The non-coherent interference from contaminating

cells (the second term in the denominator) is proportional to the mean-square channel

rather than to the mean-square channel estimation error. Most significantly, the inter-cell

interference from the non-contaminating cells, often the dominant impairment, is the same

for both zero-forcing and maximum-ratio processing. In a multi-cell environment, the

principal advantage of zero-forcing over maximum-ratio processing is normally a reduction

of intra-cell interference. The reduced coherent interference from contaminating cells is of

no consequence because the coherent beamforming gain is reduced by the same factor.

4.3 Downlink Data Transmission

Downlink data transmission entails the l′th base station independently transmitting a signal,

xl′ = Al′D
1/2
ηl′ ql′, (4.20)

where Al′ is the precoding matrix, ηl′ is a vector of the power control coefficients {ηl′k },
and ql′ is a vector of K symbols intended for the K terminals in that cell. The power control

coefficients are non-negative and satisfy
∑K

k=1 ηl′k ≤ 1 for all l′. The precoding matrix, Al′ ,

depends only on the channel estimate within the respective cell and is normalized such that

E
{
‖xl′ ‖2

}
=

K∑
k=1

ηl′k . (4.21)
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Figure 4.2. Functional block diagram for the multi-cell uplink with maximum-ratio processing.
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The terminals in the lth (home) cell receive the signal,

yl =
√
ρdl

∑
l′∈Pl

Gl′T
l xl′ +

√
ρdl

∑
l′�Pl

Gl′T
l xl′ + wl

=

√
ρdl

∑
l′∈Pl

Ĝ
l′T
l xl′ − √ρdl

∑
l′∈Pl

G̃
l′T
l xl′ +

√
ρdl

∑
l′�Pl

Gl′T
l xl′ + wl

=

√
ρdl

∑
l′∈Pl

Ĝ
l′T
l Al′D

1/2
ηl′ ql′ −

√
ρdl

∑
l′∈Pl

G̃
l′T
l xl′ +

√
ρdl

∑
l′�Pl

Gl′T
l xl′ + wl . (4.22)

The kth terminal receives the signal,

ylk =
√
ρdl

∑
l′∈Pl

ĝl′T
lk Al′D

1/2
ηl′ ql′ −

√
ρdl

∑
l′∈Pl

g̃l′T
lk xl′ +

√
ρdl

∑
l′�Pl

gl′T
lk xl′ + wlk . (4.23)

All four terms in (4.23) are mutually uncorrelated. The first term contains, among others,

the signal of interest and the remaining three contain only effective noise. The variance

of the sum of the three effective noise terms is independent of whether zero-forcing or

maximum-ratio processing is used, and is equal to

Var

⎧⎪⎪⎨⎪⎪⎩−
√
ρdl

∑
l′∈Pl

g̃l′T
lk xl′ +

√
ρdl

∑
l′�Pl

gl′T
lk xl′ + wlk

⎫⎪⎪⎬⎪⎪⎭
= ρdl

∑
l′∈Pl

(
βl′

lk − γl′
lk

) 
�
K∑

k ′=1

ηl′k ′�� + ρdl

∑
l′�Pl
βl′

lk

�

K∑
k ′=1

ηl′k ′�� + 1. (4.24)

To obtain (4.24), we have used several facts: first, the channel estimation error is independent

of the channel estimates (and hence of the precoding matrices); second, the channel matrix

between the home cell and the non-contaminating cells is independent of the signals

transmitted by the base stations in the non-contaminating cells; and, third, the normalization

(4.21).

4.3.1 Zero-Forcing

Zero-forcing uses the precoding matrix,

Al′ =
√

M − KZ l′∗ (Z l′TZ l′∗)−1
. (4.25)
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The combination of (4.25) and (4.7) within the first term of (4.22) yields the following:

√
ρdl

∑
l′∈Pl

Ĝ
l′T
l Al′D

1/2
ηl′ ql′ =

√
ρdl

∑
l′∈Pl

Ĝ
l′T
l

√
M − KZ l′∗ (Z l′TZ l′∗)−1

D
1/2
ηl′ ql′

=

√
(M − K )ρdl

∑
l′∈Pl

D
1/2

γl′
l

Z l′TZ l′∗ (Z l′TZ l′∗)−1
D

1/2
ηl′ ql′

=

√
(M − K )ρdl

∑
l′∈Pl

D
1/2

γl′
l

D
1/2
ηl′ ql′ . (4.26)

The substitution of (4.26) into (4.23) yields the following:

ylk =

∑
l′∈Pl

√
(M − K )ρdlγ

l′
lk
ηl′kql′k − √ρdl

∑
l′∈Pl

g̃l′T
lk xl′ +

√
ρdl

∑
l′�Pl

gl′T
lk xl′ + wlk . (4.27)

The resulting effective SINR for the kth terminal in the lth cell is

SINRzf,dl

lk
=

(M − K )ρdlγ
l
lk
ηlk

1+ρdl

∑
l′∈Pl

(
βl′

lk
− γl′

lk

) ( K∑
k ′=1

ηl′k ′

)
+ρdl

∑
l′�Pl
βl′

lk

(
K∑

k ′=1

ηl′k ′

)
+(M−K )ρdl

∑
l′∈Pl\{l}

γl′
lk
ηl′k

,

(4.28)

where we have used the effective noise variance in (4.24). The corresponding capacity

bound is

Czf,dl

inst.,lk
≥ log2

(
1 + SINRzf,dl

lk

)
. (4.29)

Functional Block Diagram

Figure 4.3 shows the functional block diagram for the downlink with zero-forcing

processing. The principal difference between downlink and uplink zero-forcing (see

Figure 4.1) is that on downlink only the sum of power control coefficients matters, acting

now through the kth channel only.

4.3.2 Maximum-Ratio

Maximum-ratio transmission uses the precoding matrix,

Al′ =
1√
M

Z l′∗. (4.30)
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Figure 4.3. Functional block diagram for the multi-cell downlink with zero-forcing processing.
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The first term in (4.22) becomes

√
ρdl

∑
l′∈Pl
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The kth terminal receives the following:

ylk =

∑
l′∈Pl

√
M ρdlγ
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lk
ηl′kql′k +

⎡⎢⎢⎢⎢⎢⎣
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−√ρdl
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√
ρdl

∑
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The variance of the first effective noise term in (4.32) is, similarly to (4.16),

Var
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�

K∑
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(4.33)

The effective SINR for the kth terminal in the lth cell is

SINRmr,dl

lk
=

M ρdlγ
l
lk
ηlk

1 + ρdl

∑
l′∈Pl
βl′

lk

(
K∑
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ηl′k ′

)
+ ρdl

∑
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(
K∑
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ηl′k ′

)
+ M ρdl

∑
l′∈Pl\{l}

γl′
lk
ηl′k

,

(4.34)

and the capacity bound is

Cmr,dl

inst.,lk
≥ log2

(
1 + SINRmr,dl

lk

)
. (4.35)

Functional Block Diagram

Figure 4.4 shows the associated functional block diagram, which, compared with the

corresponding diagram for zero-forcing (Figure 4.3), shows greater coherent beamforming

gain but increased intra-cell interference and interference from the contaminating cells.
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Figure 4.4. Functional block diagram for the multi-cell downlink with maximum-ratio processing.
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4.4 Discussion

Table 4.1 summarizes the effective SINRs for the four multi-cell cases. These SINR

expressions are remarkably similar to their single-cell counterparts in Table 3.1:

• The coherent beamforming gain term – that is, the numerator – is identical to the

corresponding single-cell term, except that the mean-squared channel estimate γk is

exchanged for γl
lk

and the single-cell power control coefficients {ηk } are replaced by

the corresponding multi-cell coefficients {ηlk }.
• The contribution of the non-coherent interference from the home cell, contained in

the second term in the denominator, is unchanged from the single-cell case.

• The power control coefficients again appear linearly both in the numerator and in the

denominator.

A notable difference to the single-cell case, however, is that the effective noise now comprises

two different types of interference: non-coherent and coherent.

• Non-coherent interference from contaminating cells, represented by the second term

in the denominator, includes intra-cell interference in the home cell. The magnitude

of this non-coherent interference for zero-forcing is proportional to the mean-square

channel estimation error, while for maximum-ratio it is proportional to the mean-

square channel gains.

The magnitude of the non-coherent interference from non-contaminating cells, the

third term in the denominator, is the same irrespective of whether zero-forcing

or maximum-ratio is employed. This happens because transmissions from

non-contaminating cells manifest themselves as uncorrelated noise in the home cell.

• Coherent interference from contaminating cells, represented by the fourth term in the

denominator, grows with the number of base station antennas M at the same rate as

the coherent beamforming gain does in the numerator.

4.4.1 Asymptotic Limits with Infinite Numbers of Base Station Antennas

In the limit of an infinite number of base station antennas, for the same power control

coefficients, the effective SINRs are the same for zero-forcing and maximum-ratio
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Uplink

zero-forcing

(M − K )ρulγ
l
lk
ηlk

1 + ρul

∑
l′∈Pl

K∑
k ′=1

(
βl

l′k ′ − γl
l′k ′
)
ηl′k ′ + ρul

∑
l′�Pl

K∑
k ′=1

βl
l′k ′ηl′k ′ + (M − K )ρul

∑
l′∈Pl\{l}

γl
l ′kηl′k

Uplink

maximum-ratio

M ρulγ
l
lk
ηlk

1 + ρul

∑
l′∈Pl

K∑
k ′=1

βl
l′k ′ηl′k ′ + ρul

∑
l′�Pl

K∑
k ′=1

βl
l′k ′ηl′k ′ + M ρul

∑
l′∈Pl\{l}

γl
l ′kηl′k

Downlink

zero-forcing

(M − K )ρdlγ
l
lk
ηlk

1 + ρdl

∑
l′∈Pl

(
βl′

lk
− γl′

lk

) ( K∑
k ′=1

ηl′k ′

)
+ ρdl

∑
l′�Pl
βl′

lk

(
K∑

k ′=1

ηl′k ′

)
+ (M − K )ρdl

∑
l′∈Pl\{l}

γl′
lk
ηl′k

Downlink

maximum-ratio

M ρdlγ
l
lk
ηlk

1 + ρdl

∑
l′∈Pl
βl′

lk

(
K∑

k ′=1

ηl′k ′

)
+ ρdl

∑
l′�Pl
βl′

lk

(
K∑

k ′=1

ηl′k ′

)
+ M ρdl

∑
l′∈Pl\{l}

γl′
lk
ηl′k

Table 4.1. Effective SINR for the kth terminal in the lth cell, SINRlk , in a multi-cell system.
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processing,

lim
M→∞

SINRzf,ul

lk
= lim

M→∞
SINRmr,ul

lk

=

γl
lk
ηlk∑

l′∈Pl\{l}
γl

l ′kηl′k
, (4.36)

lim
M→∞

SINRzf,dl

lk
= lim

M→∞
SINRmr,dl

lk

=

γl
lk
ηlk∑

l′∈Pl\{l}
γl′

lk
ηl′k
. (4.37)

In this limit, the performance is independent of the radiated power that is expended solely

for data transmission. For particular values of the power control coefficients {ηlk }, the

expressions (4.36) and (4.37) coincide with those obtained in [26]; see Appendix E.

4.4.2 The Effects of Pilot Contamination

Pilot contamination has two effects on the effective SINR: first, it reduces the magnitude

of the mean-square channel estimate γl
l ′k , and hence degrades the coherent beamforming

gain in the numerator; second, it gives rise to coherent interference – the fourth term in

the denominator. Unless M is very large, the effect on the coherent beamforming gain is

typically the dominant impairment.

4.4.3 Non-Synchronous Pilot Interference

Throughout this chapter, we have assumed that the activities in all cells occur synchronously,

that is, during the training part of each coherence interval all terminals in all cells send

pilot sequences to their respective base stations. The pilot sequences used in the home cell

l are reused in all cells indexed by Pl . This reuse results in pilot contamination, which

manifests itself through degradation of the coherent beamforming gain and in the presence

of coherent interference. Yet, in terms of the magnitude of the pilot contamination effect, it

makes no fundamental difference whether the received pilots in the home cell are affected

by interference that stems from pilots synchronously transmitted by terminals in other cells,

or non-synchronously transmitted pilots from other cells, or payload data from other cells.

The reason is that any signal that is transmitted by terminals in other cells can always be

expanded in terms of the orthogonal pilot sequences that are used in the home cell.
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In more detail, consider the special case of only two cells: a home cell l and an interfering

cell l′, both with K terminals. If the terminals both in the home cell and in the interfering

cell synchronously transmit the same uplink pilotsΦl , as assumed in Section 4.1, then (4.2)

becomes [
Y ′

pl

]
mk
=
√
τpρulg

lm
lk +
√
τpρulg

lm
l ′k +

[
W ′

pl

]
mk
. (4.38)

The first term in (4.38) represents the channel of interest, and the second term represents the

contaminating channel response from the interfering cell. The second term has variance,

τpρul β
l
l′k . (4.39)

Now suppose that, by way of contrast, during the training phase of the home cell, the K

terminals in the interfering cell instead transmit non-synchronous pilots, or random payload

data, X l′ , with uncorrelated components and at maximum permitted power. Then the

counterpart to (4.1), the M × τp pilot signal received by the base station in the home cell, is

Y pl =
√
τpρulG

l
lΦ

H
l +
√
ρulG

l
l′X l′ +W pl . (4.40)

As in Section 4.1, by projecting Y pl ontoΦl , and using the fact thatΦH
l
Φl = IK , we obtain

the statistic Y ′
pl
= Y plΦl that is used for the channel estimation. The (m, k)th element of

Y ′
pl

is equal to [
Y ′

pl

]
mk
=
√
τpρulg

lm
lk +
√
ρul

[
Gl

l′X l′Φl

]
mk
+

[
W plΦl

]
mk
. (4.41)

Equation (4.41) should be compared to (4.38). In both expressions, the second term of

(4.41),
√
ρul

[
Gl

l′X l′Φl

]
mk

, represents contamination from the interfering cell. This term

has zero mean and variance,

ρul

K∑
k ′=1

βl
l′k ′ . (4.42)

If K is of the same order as τp (recall that τp ≥ K always), then the variances of the

contamination terms in (4.39) and (4.42) are of the same order too. As a consequence, the

effect of the pilot contamination caused by payload or non-synchronous pilot transmission

in other cells is comparable to the effect of the pilot contamination caused by transmission

of synchronous pilots.
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4.5 Summary of Key Points

• Table 4.1 gives rigorous lower bounds on the instantaneous ergodic capacity for the

kth terminal in the lth cell according to the formula Cinst.,lk = log2(1 + SINRlk ).

Instantaneous capacity is converted to net spectral efficiency as in Section 3.6.

These bounds account for all imperfections associated with channel estimation errors,

channel non-orthogonality, beamforming gain uncertainty, and pilot reuse.

Appendix H summarizes the notation used in Table 4.1. The power control coefficients

{ηlk } satisfy 0 ≤ ηlk ≤ 1 for all l and k on the uplink. In the downlink, they satisfy

ηlk ≥ 0 for all l and k, and

K∑
k=1

ηlk ≤ 1 (4.43)

for all l.

• Compared to the single-cell case, new types of effective noise appear. In total, the

effective noise comprises: (i) non-coherent interference from contaminating cells,

including the home cell; (ii) non-coherent interference from non-contaminating cells;

and (iii) coherent interference from contaminating cells, but excluding the home cell.

The power of these effective noises are given by the second, third, and fourth terms

of the denominator of the effective SINR expressions in Table 4.1.

• The functional block diagrams in Figures 4.1–4.4 provide interpretations of the

different terms that constitute the effective SINR: coherent beamforming gain of the

desired signal, non-coherent interference, coherent interference, and receiver noise.

• While we have assumed throughout the chapter that the number of terminals in each

cell is equal to K , the results can easily be generalized to the case of a different number

of terminals per cell at the expense of some additional notation.
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Chapter 5

POWER CONTROL PRINCIPLES

Effective and computationally tractable power control is one of the unique new features of

Massive MIMO. Among other things, power control handles near-far effects, and it enables

uniformly good service throughout the cell. Massive MIMO power control occurs on a

long time scale because effective SINRs depend only on large-scale fading coefficients. In

this chapter, we develop power control schemes to meet given performance targets both in

single-cell and multi-cell systems and both for the uplink and the downlink, with max-min

(egalitarian) SINR fairness as a particularly important special case.

5.1 Preliminaries

An inspection of effective SINRs in Table 3.1 and Table 4.1 discloses qualitatively identical

dependence on the power control coefficients for the four cases of uplink/downlink and

zero-forcing/maximum-ratio. This permits a unified treatment of power control.

In the single-cell case, from Table 3.1 we observe that the effective SINR for terminal k can

always be written in the following general form:

SINRk =
akηk

1 +
K∑

k ′=1

bk ′
k
ηk ′

, (5.1)

where {ak } and {bk ′
k
} are strictly positive constants, given by Table 5.1. In Table 5.1, M ,

K , ρul, ρdl, βk , γk and ηk have the meanings as defined in Chapter 3, and summarized in

Appendix H.
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Zero-Forcing Maximum-Ratio

Uplink
ak = (M − K )ρulγk

bk ′
k = ρul

(
βk ′ − γk ′

) ak = M ρulγk

bk ′
k = ρul βk ′

Downlink
ak = (M − K )ρdlγk

bk ′
k = ρdl

(
βk − γk

) ak = M ρdlγk

bk ′
k = ρdl βk

Table 5.1. Explicit formulas for the coefficients {ak } and {bk ′
k
} in (5.1) for a single-cell

system.

Zero-Forcing Maximum-Ratio

Uplink

alk = (M − K )ρulγ
l
lk

bl′k ′
lk = ρul

(
βl

l′k ′ − γl
l′k ′
)

cl′k ′
lk = ρul β

l
l′k ′

dl′
lk = (M − K )ρulγ

l
l′k

alk = M ρulγ
l
lk

bl′k ′
lk = ρul β

l
l′k ′

cl′k ′
lk = ρul β

l
l′k ′

dl′
lk = M ρulγ

l
l′k

Downlink

alk = (M − K )ρdlγ
l
lk

bl′k ′
lk = ρdl

(
βl′

lk − γl′
lk

)
cl′k ′

lk = ρdl β
l′
lk

dl′
lk = (M − K )ρdlγ

l′
lk

alk = M ρdlγ
l
lk

bl′k ′
lk = ρdl β

l′
lk

cl′k ′
lk = ρdl β

l′
lk

dl′
lk = M ρdlγ

l′
lk

Table 5.2. Explicit formulas for the coefficients {alk }, {bl′k ′
lk
}, {cl′k ′

lk
} and {dl′

lk
} in (5.2) for

a multi-cell system.
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Single-Cell Multi-Cell

Uplink
0 ≤ ηk ≤ 1

k = 1, . . . ,K

0 ≤ ηlk ≤ 1

k = 1, . . . , K, l = 1, . . . , L

K∑
k=1

ηk ≤ 1

K∑
k=1

ηlk ≤ 1, l = 1, . . . , L

Downlink and and

ηk ≥ 0, k = 1, . . . ,K ηlk ≥ 0, k = 1, . . . ,K, l = 1, . . . , L

Table 5.3. Summary of constraints on the power control coefficients.

Similarly, for the multi-cell case, from Table 4.1 the effective SINR for the kth terminal in

the lth cell can be written as

SINRlk =
alkηlk

1 +
∑

l′∈Pl

K∑
k ′=1

bl′k ′
lk
ηl′k ′ +

∑
l′�Pl

K∑
k ′=1

cl′k ′
lk
ηl′k ′ +

∑
l′∈Pl\{l}

dl′
lk
ηl′k

, (5.2)

where the non-negative coefficients {alk }, {bl′k ′
lk
}, {cl′k ′

lk
}, and {dl′

lk
} are given in Table 5.2.

In Table 5.2, βl
l′k ′, γ

l
l ′k and ηlk are defined in Chapter 4; see Appendix H for a summary

of their meanings. The single-cell scenario is, of course, a special case of the multi-cell

scenario, obtained by setting {cl′k ′
lk
} and {dl′

lk
} equal to zero and omitting the cell index l.

Table 5.3 summarizes the constraints on the power control coefficients for the single-cell

and multi-cell cases. Henceforth, we denote by L the total number of cells.

5.2 Power Control with Given SINR Targets

We show next that the problem of designing a power control policy that offers guaranteed

quality-of-service can be cast as a linear feasibility problem. The key observation is that

the numerator and denominator of (5.1) and (5.2) are each linear in the power control

coefficients.
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5.2.1 Single-Cell System

We start with a single-cell system. Consider a constraint of the form

SINRk ≥ SINRk, k = 1, . . . , K, (5.3)

where SINRk is a given target SINR for the kth terminal. An SINR target is directly

translatable to a spectral efficiency target, by using the formulas for net spectral efficiency

in Section 3.6. In practice, such a target could reflect a quality-of-service requirement for

a particular terminal. The set of constraints in (5.3) is equivalent to the following set of

inequalities:

akηk ≥ SINRk

�1 +

K∑
k ′=1

bk ′
k ηk ′��, k = 1, . . . ,K, (5.4)

which are linear in {ηk }. This means that the problem of designing a power control policy

under which the kth terminal achieves an SINR of at least SINRk can be written as

find {ηk }
subject to (i) SINRk ≥ SINRk, k = 1, . . . , K,

(ii) the constraints in Table 5.3. (5.5)

Problem (5.5) is a linear programming feasibility problem, which is easily solved using

standard software toolboxes. The set of all SINR constraints in (5.3) can be satisfied for

some permissible {ηk } if and only if the problem (5.5) has a solution.

5.2.2 Multi-Cell System

For the multi-cell case, we again impose a target SINR as a set of constraints,

SINRlk ≥ SINRlk, k = 1, . . . , K, l = 1, . . . , L (5.6)

where SINRlk is a target SINR for the kth terminal in the lth cell. Each inequality in (5.6)

is equivalent to the following inequality:

alkηlk ≥ SINRlk

��1 +

∑
l′∈Pl

K∑
k ′=1

bl′k ′
lk ηl′k ′ +

∑
l′�Pl

K∑
k ′=1

cl′k ′
lk ηl′k ′ +

∑
l′∈Pl\{l}

dl′
lkηl′k

���, (5.7)
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which is linear in {ηlk }. Hence, a power control policy design problem of the form

find {ηlk }
subject to (i) SINRlk ≥ SINRlk, k = 1, . . . , K, l = 1, . . . , L

(ii) the constraints in Table 5.3 (5.8)

is a linear programming feasibility problem, as in the single-cell case.

5.3 Max-Min Fairness Power Control

An important design philosophy for power control policies is max-min (egalitarian) fairness,

which seeks to maximize the worst SINR over all terminals. A simple proof by contradiction

establishes that the max-min solution to the optimization problem provides equal SINRs for

all terminals. Assume the contrary; then there is a terminal whose SINR is greater than the

max-min SINR. We can reduce the power control coefficient for that terminal somewhat,

which can only affect the other terminals by reducing their denominators, thereby increasing

their SINRs. Consequently, the original assumption of a max-min solution is false. Max-min

fairness power control therefore amounts to setting all SINR targets equal to a common value

SINR, and then finding the largest possible value of SINR that ensures that all constraints

in Table 5.3 are satisfied.

For a single-cell system, max-min fairness means that the SINR targets for all terminals in

the cell are equal. In a multi-cell system, max-min fairness may be imposed network-wide,

or independently within each cell. We discuss these different possibilities in more detail

next.

5.3.1 Single-Cell System with Max-Min Fairness

First, consider a single-cell system. Setting the SINR targets of all terminals in the cell

equal to a common value SINR amounts to requiring that

SINRk = SINR, k = 1, . . . ,K . (5.9)

Explicitly, the max-min philosophy then results in the following optimization problem:

maximize SINR

with respect to {ηk }
subject to (i) SINRk ≥ SINR, k = 1, . . . ,K

(ii) the constraints in Table 5.3. (5.10)
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All inequalities involved in (5.10) are linear and hence (5.10) is a quasi-linear programming

problem. Such a problem can in general be solved by performing a bisection search over

SINR and for each candidate value of SINR, solving a linear feasibility problem. However,

for the specific problem (5.10) simple closed-form solutions exist. We summarize these

solutions in Table 5.4, and give their derivations in what follows.

Uplink

Consider first the uplink. It is clear from (5.1) that for both zero-forcing and maximum-ratio

processing at least one of the coefficients {ηk } must be equal to unity. To see why, suppose

this is not the case so that ηk < 1 for k = 1, . . . , K . Then all {ηk } could be scaled by a

common constant such that at least one of them becomes equal to unity. This scaling would

increase all values {SINRk }, which contradicts the supposed optimality of the solution of

the original {ηk }. Hence, at the optimum it must hold that

SINRk = SINR, k = 1, . . . ,K , for some SINR,

ηk = 1, for at least one k, (5.11)

where SINR is the optimal common SINR. From (5.1) and (5.11), we have that

akηk = SINR
�1 +
K∑

k ′=1

bk ′
k ηk ′��, k = 1, . . . , K . (5.12)

For the uplink case, bk ′
k

has no dependence on k, so the right-hand side of (5.12) is a constant

with respect to k. Since {ηk } satisfy 0 ≤ ηk ≤ 1 for all k, and ηk = 1 for some k, we must

have that

ηk =

min
k ′
{ak ′ }

ak

. (5.13)

The resulting SINR is found by inserting (5.13) into (5.1), which yields

SINR =
1

1

min
k ′
{ak ′ }

+

K∑
k ′=1

bk ′
k

ak ′

, (5.14)

independently of k. The substitution of the expressions for {ak } and {bk ′
k
} from Table 5.1

yields the formulas listed in Table 5.4.
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Zero-Forcing Maximum-Ratio

Uplink

ηk =

min
k ′
{γk ′ }
γk

SINR =
(M − K )ρul

1

min
k
{γk }

+ ρul

K∑
k=1

βk − γk

γk

ηk =

min
k ′
{γk ′ }
γk

SINR =
M ρul

1

min
k
{γk }

+ ρul

K∑
k=1

βk

γk

Downlink

ηk =
1 + ρdl(βk − γk )

ρdlγk

(
1

ρdl

K∑
k ′=1

1

γk ′
+

K∑
k ′=1

βk ′ − γk ′

γk ′

)

SINR =
(M − K )ρdl

K∑
k=1

1

γk

+ ρdl

K∑
k=1

βk − γk

γk

ηk =
1 + ρdl βk

ρdlγk

(
1

ρdl

K∑
k ′=1

1

γk ′
+

K∑
k ′=1

βk ′

γk ′

)

SINR =
M ρdl

K∑
k=1

1

γk

+ ρdl

K∑
k=1

βk

γk

Table 5.4. Power control coefficients and resulting common SINR values, SINR, for max-min fairness power control in a

single-cell system.
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Downlink

For the downlink, we infer from (5.1) that a max-min solution requires that the power

constraint
∑K

k=1 ηk = 1 be satisfied with equality. To see why this is so, suppose
∑K

k=1 ηk < 1.

Then, since bk ′
k
> 0, by scaling all values {ηk } by a common scaling factor such that

∑K
k=1 ηk

increases, SINRk would increase for all k, which contradicts the max-min optimality of the

solution. Hence, at the optimum we must have that

SINRk = SINR, k = 1, . . . ,K , for some SINR, (5.15)

K∑
k=1

ηk = 1, (5.16)

where SINR is the max-min optimal common SINR. The combination of (5.15) and (5.1)

yields

akηk = SINR
�1 +
K∑

k ′=1

bk ′
k ηk ′��, k = 1, . . . , K . (5.17)

Here in the downlink case, bk ′
k

does not depend on k′ so we let bk = bk ′
k

. Hence, by using

(5.16) in (5.17), we obtain

ηk =
SINR(1 + bk )

ak

. (5.18)

Using (5.16) again, we conclude that

SINR

K∑
k=1

1 + bk

ak

=

K∑
k=1

ηk

= 1. (5.19)

Hence

SINR =
1

K∑
k=1

1 + bk

ak

, (5.20)

and

ηk =
1 + bk

ak

K∑
k ′′=1

1 + bk ′′

ak ′′

. (5.21)

The substitution of the expressions for {ak } and {bk } from Table 5.1 into (5.20) and (5.21)

gives the formulas in Table 5.4.
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The Effect of Adding Extra Terminals

One effect of max-min power control is that comparatively little power is expended on

terminals that enjoy strong channels. It is clear from Table 5.4 that ηk decreases as γk (and

therefore βk) increases. We further investigate this phenomenon by adding a new terminal

with a stronger channel than the existing terminals to a cell that is already giving max-min

service to K terminals. An inspection of the denominators of the max-min SINRs in

Table 5.4 discloses that the addition of a new (stronger) terminal is most disruptive when all

K +1 values of {βk } (and therefore {γk }) are equal, in which case the denominator increases

at most by a factor of (K+1)/K . For maximum-ratio, the numerator is unaffected by the new

terminal, and for zero-forcing the numerator decreases by the factor (M −K − 1)/(M −K ).

The general conclusion is that when K is large most power is spent on serving terminals

that are subject to severe large-scale fading, and service to additional terminals close to the

base station can be given almost for free.

Zero-Forcing versus Maximum-Ratio Processing

It is natural to ask when zero-forcing is preferable to maximum-ratio processing. The results

of Table 5.4 provide a remarkably simple and explicit answer: for both uplink and downlink,

SINR
zf
> SINR

mr
if and only if SINR

mr
> 1. To prove this result for the uplink, assume

that SINR
zf,ul
> SINR

mr,ul
, substitute the two expressions for SINR

zf,ul
and SINR

mr,ul
from

Table 5.4 into the inequality, and simplify. The equivalent inequality is that

1

min
k
{γk }

+ ρul

K∑
k=1

βk

γk

< M ρul, (5.22)

which holds precisely when SINR
mr,ul
> 1. A similar calculation establishes the desired

result for the downlink.

5.3.2 Multi-Cell Systems with Network-Wide Max-Min Fairness

For a multi-cell system with network-wide max-min fairness power control, we set all target

SINRs equal:

SINRlk = SINR, k = 1, . . . , K, l = 1, . . . , L. (5.23)
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This results in the following optimization problem:

maximize SINR

with respect to {ηlk }
subject to (i) SINRlk ≥ SINR, k = 1, . . . , K, l = 1, . . . , L

(ii) the constraints in Table 5.3. (5.24)

All inequalities involved in (5.24) are linear and hence (5.24) is a quasi-linear programming

problem. Modern software toolboxes can solve this problem even for large L. However,

since (5.24) yields power control coefficients such that all terminals in all cells obtain the

same SINR, the power control coefficients in a given cell, say the lth cell, will depend on

the conditions in other cells, l′ � l, that are far away.

Specifically, suppose some cell in the network has a low throughput, due to overcrowding

with terminals, or because a particular terminal that is scheduled for service experiences

severe shadow fading. Then that low throughput is unnecessarily imposed on all terminals

served in all other cells. In particular, the value of SINR achieved in (5.24) may approach

zero as L → ∞. To see why, consider first the common SINR achieved with max-min power

control in the single-cell case, given in Table 5.4. Clearly,

SINR
ul ≤ M ρul min

k
{γk }

≤ M ρul min
k
{βk } (5.25)

SINR
dl ≤ M ρdl min

k
{γk }

≤ M ρdl min
k
{βk }, (5.26)

irrespective of whether zero-forcing or maximum-ratio processing is used. Next, note that

an upper bound on SINR achieved in (5.24) will be given by the corresponding single-

cell SINR in Table 5.4 for the most disadvantaged cell in the network, the cell with the

smallest per-terminal throughput. Hence, the optimal SINR achieved in (5.24) cannot

exceed M ρul minl,k {βl
lk
} in the uplink, and M ρdl minl,k {βl

lk
} in the downlink. In lognormal

shadow fading, minl,k {βl
lk
} → 0 as L → ∞. This renders network-wide max-min fairness

power control fundamentally unscalable with respect to the number of cells, L.

5.3.3 Per-Cell Power Control for Negligible Coherent Interference and Full Power

A remedy to the scalability problem of network-wide max-min fairness power control is

to equalize the SINRs only within each cell. Next, we give an algorithm that does this, in
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the special case when the coherent interference is negligible and all cells use the maximum

allowed power. Specifically, let us make the following two assumptions:

• The coherent interference, that is the fourth term in the denominator of (5.2), is

negligible,

dl′
lk = 0, (5.27)

for all l, l′ and k. Excluding the coherent interference term does not mean that we are

ignoring pilot contamination; recall that for moderate values of M , the major effect

of pilot contamination is to reduce the coherent gain through a reduction in {γl′
lk
}.

Under the assumption (5.27), (5.2) simplifies as follows:

SINRlk =
alkηlk

1 +
∑

l′∈Pl

K∑
k ′=1

bl′k ′
lk
ηl′k ′ +

∑
l′�Pl

K∑
k ′=1

cl′k ′
lk
ηl′k ′

. (5.28)

• Each cell uses the full available power; that is, in the uplink, at least one terminal in

each cell transmits with maximum power,

ηlk = 1, for some k for every l = 1, . . . , L (5.29)

and in the downlink, all base stations expend the maximum available power,

K∑
k=1

ηlk = 1, l = 1, . . . , L. (5.30)

Under the assumptions stated, max-min power control can be performed within each cell

independently. At the resulting operating point, all terminals in each cell achieve a common

cell-specific SINR value, SINRl . Tables 5.5 and 5.6 summarize the results, and derivations

are given in what follows. Naturally, the single-cell results in Table 5.4 are special cases of

the multi-cell results in Tables 5.5 and 5.6.

With the power control strategy described here, each cell in the network is equally important

and no cell dictates what other cells should do. By contrast, with the network-wide

equal throughput strategy (see Section 5.3.2), the throughput is determined by the most

disadvantaged cell.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.006
https:/www.cambridge.org/core


108 Power Control Principles Chapter 5

Zero-Forcing

ηlk =

min
k ′

{
γl

lk ′
}

γl
lk

SINRl =
(M − K )ρul

1

min
k

{
γl

lk

} + ρul

∑
l′∈Pl

min
k

{
γl′

l′k

}
min

k

{
γl

lk

} K∑
k=1

βl
l′k − γl

l ′k

γl′
l′k

+ ρul

∑
l′�Pl

min
k

{
γl′

l′k

}
min

k

{
γl

lk

} K∑
k=1

βl
l′k

γl′
l′k

Maximum-Ratio

ηlk =

min
k ′

{
γl

lk ′
}

γl
lk

SINRl =
M ρul

1

min
k

{
γl

lk

} + ρul

∑
l′∈Pl

min
k

{
γl′

l′k

}
min

k

{
γl

lk

} K∑
k=1

βl
l′k

γl′
l′k

+ ρul

∑
l′�Pl

min
k

{
γl′

l′k

}
min

k

{
γl

lk

} K∑
k=1

βl
l′k

γl′
l′k

Table 5.5. Uplink power control coefficients, and per-cell max-min SINR, SINRl , when coherent interference is negligible

and “full power” is utilized in each cell. (The equations for maximum-ratio processing may be simplified by combining

the sums over l′ ∈ Pl and l′ � Pl , but we have not done that here in order to maintain the symmetry of exposition with the

zero-forcing case.)
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Zero-Forcing

ηlk =

1 +
∑

l′∈Pl
ρdl

(
βl′

lk
− γl′

lk

)
+

∑
l′�Pl
ρdl β

l′
lk

γl
lk

�

K∑
k ′=1

1

γl
lk ′
+ ρdl

∑
l′∈Pl

K∑
k ′=1

βl′
lk ′ − γl′

lk ′

γl
lk ′

+ ρdl

∑
l′�Pl

K∑
k ′=1

βl′
lk ′

γl
lk ′

��
SINRl =

(M − K )ρdl

K∑
k=1

1

γl
lk

+ ρdl

∑
l′∈Pl

K∑
k=1

βl′
lk
− γl′

lk

γl
lk

+ ρdl

∑
l′�Pl

K∑
k=1

βl′
lk

γl
lk

Maximum-Ratio

ηlk =

1 +
∑

l′∈Pl
ρdl β

l′
lk
+

∑
l′�Pl
ρdl β

l′
lk

γl
lk

�

K∑
k ′=1

1

γl
lk ′
+ ρdl

∑
l′∈Pl

K∑
k ′=1

βl′
lk ′

γl
lk ′
+ ρdl

∑
l′�Pl

K∑
k ′=1

βl′
lk ′

γl
lk ′

��
SINRl =

M ρdl

K∑
k=1

1

γl
lk

+ ρdl

∑
l′∈Pl

K∑
k=1

βl′
lk

γl
lk

+ ρdl

∑
l′�Pl

K∑
k=1

βl′
lk

γl
lk

Table 5.6. Downlink power control coefficients, and per-cell max-min SINR, SINRl , when coherent interference is

negligible and “full power” is utilized in each cell. (As in Table 5.5, the equations for maximum-ratio processing may be

simplified by combining terms.)
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Uplink

In the uplink, {bl′k ′
lk
} and {cl′k ′

lk
} in (5.28) are independent of k. If we denote bl′k ′

l
= bl′k ′

lk

and cl′k ′
l
= cl′k ′

lk
, then (5.28) becomes

SINRlk =
alkηlk

1 +
∑

l′∈Pl

K∑
k ′=1

bl′k ′
l
ηl′k ′ +

∑
l′�Pl

K∑
k ′=1

cl′k ′
l
ηl′k ′

. (5.31)

In (5.31), the denominator is independent of k, and SINRlk has the same form as in the

single-cell case. Since every cell uses full power in the sense of (5.29), the techniques for

the single-cell case (see Section 5.3.1) can be applied. In particular, the following choice

of power control coefficients yield nominal max-min fairness in the lth cell, for all l,

ηlk =

min
k ′
{alk ′ }

alk

, k = 1, . . . , K, l = 1, . . . , L, (5.32)

and the SINR achieved by all terminals in the lth cell is

SINRl =

min
k ′
{alk ′ }

1 +
∑

l′∈Pl

K∑
k ′=1

bl′k ′
l
ηl′k ′ +

∑
l′�Pl

K∑
k ′=1

cl′k ′
l
ηl′k ′

=

1

1

min
k ′
{alk ′ }

+

∑
l′∈Pl

min
k ′
{al′k ′ }

min
k ′
{alk ′ }

K∑
k ′=1

bl′k ′
l

al′k ′
+

∑
l′�Pl

min
k ′
{al′k ′ }

min
k ′
{alk ′ }

K∑
k ′=1

cl′k ′
l

al′k ′

, (5.33)

independent of k. Insertion of the formulas from Table 5.2 into (5.32) and (5.33) yields the

results in Table 5.5.
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Downlink

In the downlink, {bl′k ′
lk
} and {cl′k ′

lk
} do not depend on k′, so we can write bl′

lk
= bl′k ′

lk
and

cl′
lk
= cl′k ′

lk
. With this new notation, and under the assumption (5.30), (5.28) becomes

SINRlk =
alkηlk

1 +
∑

l′∈Pl

K∑
k ′=1

bl′
lk
ηl′k ′ +

∑
l′�Pl

K∑
k ′=1

cl′
lk
ηl′k ′

=

alkηlk

1 +
∑

l′∈Pl
bl′

lk

K∑
k ′=1

ηl′k ′ +
∑

l′�Pl
cl′

lk

K∑
k ′=1

ηl′k ′

=

alkηlk

1 +
∑

l′∈Pl
bl′

lk
+

∑
l′�Pl

cl′
lk

, (5.34)

which is of the same form as in the single-cell case; there is no dependence on k′ in the

denominator. Using a similar argument as in Section 5.3.1, we find that the following power

control coefficients yield max-min optimality in each cell:

ηlk =

1 +
∑

l′∈Pl
bl′

lk
+

∑
l′�Pl

cl′
lk

alk

K∑
k ′′=1

1 +
∑

l′∈Pl
bl′

lk ′′ +
∑

l′�Pl
cl′

lk ′′

alk ′′

. (5.35)

The resulting SINR nominally achieved by all terminals in the lth cell is

SINRl =
1

K∑
k ′′=1

1 +
∑

l′∈Pl
bl′

lk ′′ +
∑

l′�Pl
cl′

lk ′′

alk ′′

, (5.36)

independent of k. Insertion of the expressions in Table 5.2 into (5.35) and (5.36) yields the

results in Table 5.6.

Discussion

While the power control conditions (5.29) and (5.30) would generally be considered

reasonable cellular practice, the assumption of negligible coherent interference (5.27) may

be violated in some scenarios. In Section 6.2.5, we give a heuristic power control algorithm

that accounts for significant coherent interference.
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5.3.4 Uniformly Good Service

The application of max-min fairness power control ensures that all terminals enjoy uniformly

good service. However, in practice, because of path loss and shadow fading, some terminals

are likely to have a very small βl
l′k . With max-min power control in its pure form as described

above, substantial resources would be allocated to make sure that these terminals are well

served. This in turn may impose a significant penalty on the throughput of all others. It

is therefore often prudent to drop a small fraction of the terminals from service before

computing the power control coefficients. In the case studies presented in Chapter 6, we

will exclude a small percentage of the terminals from service in any given cell.

Alternatively, instead of dropping disadvantaged terminals from service entirely, one could

give them some minimal SINR, which would manifest itself as additional linear constraints

on the power control coefficients. Likewise, users demanding, or willing to pay for, extra

service could be allocated a much higher guaranteed SINR than what the typical terminal

receives.

5.4 Summary of Key Points

• In Massive MIMO, the power control coefficients {ηk } (for single-cell systems) and

{ηlk } (for multi-cell systems) depend only on the large-scale fading coefficients {βk }
respectively {βl

l′k }.
• For single-cell systems, Table 5.4 gives explicit formulas for power control coefficients

{ηk } that yield uniformly good throughputs in the cell in the max-min fairness sense.

The resulting {SINRk } for all terminals are equal to a common value SINR, which is

as large as possible under the given power constraints.

• For multi-cell systems, a network-wide solution to the max-min fairness SINR

optimization problem, that equalizes the SINRs of all terminals in all cells, can be

obtained by solving a quasi-linear optimization problem as described in Section 5.3.2.

In case the coherent interference can be neglected, and each cell uses full power in

the sense made precise by (5.29) and (5.30), then power control can be performed

such that max-min fairness holds within each cell; that is, all terminals in the lth

cell achieve a common SINR, SINRl , where SINRl may fluctuate from cell to cell.

Tables 5.5 and 5.6 give the power control coefficients {ηlk } that achieve this, along

with the resulting values of {SINRl }.
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• With max-min fairness power control, a small fraction of the terminals in each cell may

be dropped from service prior to computing the power control coefficients in order

to ensure that no deeply shadowed terminal dictates an unnecessarily low throughput

on all others.
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Chapter 6

CASE STUDIES

The case studies in this chapter are of two types: first, a single isolated cell for rural

broadband fixed access (Section 6.1); second, multi-cell deployments for dense urban

and suburban mobile access (Section 6.3). We model all important physical phenomena,

including randomness of terminal locations, path loss, and shadow fading, and use

the capacity expressions derived in Chapters 3–5. These expressions account for the

effects of intra- and inter-cell interference, channel estimation errors, and the cost of

pilot transmission. While all capacity bounds in Chapters 3 and 4 are rigorous and

all algorithms in Chapter 5 provide exact solutions to precise optimization problems, in

the multi-cell design examples some heuristic algorithms are needed for terminal-to-base

station assignment, pilot assignment, and power control; we describe these algorithms in

Section 6.2.

Tables 6.1–6.3 summarize all parameters used in the three design examples, and the resulting

performance. The numbers given in Tables 6.2 and 6.3 represent 95% likely values (over the

randomness associated with the large-scale fading), for the coverage probabilities specified

in Table 6.1. Specifically, in the rural scenario, all 3000 homes obtain 20 Mb/s in the

downlink and 10 Mb/s in the uplink, i.e., the coverage probability is 100%; Tables 6.2 and

6.3 list the numbers of antennas that are needed, with 95% probability, to offer this service.

In the mobile access scenario, the coverage probability is 95% – that is, 5% of all terminals

are dropped from service. The throughput numbers in Tables 6.2 and 6.3 represent the 95%

likely throughput for the terminals that remain in service. For the mobile access scenarios,

therefore, the overall reliability is equal to 0.95 × 0.95.

6.1 Single-Cell Deployment Example: Fixed Broadband Access in Rural Area

A single Massive MIMO base station serves 3000 homes in a rural area with data rates

comparable to cable- or fiber-based access. We assume an isolated cell, for example a rural

115
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Rural Dense urban Suburban

fixed access mobile access mobile access

Carrier frequency 800 MHz 1.9 GHz 1.9 GHz

Spectral bandwidth 20 MHz 20 MHz 20 MHz

Cell radius 11.3 km 500 m 2 km

Average number of terminals per cell 3000 18 18

Coverage probability 100% 95% 95%

Base station antenna gain 0 dBi 0 dBi 0 dBi

Terminal antenna gain 6 dBi 0 dBi 0 dBi

Base station receiver noise figure 9 dB 9 dB 9 dB

Terminal receiver noise figure 9 dB 9 dB 9 dB

Nominal noise temperature 300 K 300 K 300 K

Terminal mobility Stationary 142 km/ha 284 km/ha

Coherence time 50 ms 2 ms 1 ms

Coherence bandwidth 300 kHz 210 kHz 210 kHz

Shadow fading standard deviation 8 dB 8 dB 8 dB

Shadow fading diversity best of two none none

Path loss model Hata COST 231 COST 231

Base station antenna height 32 m 30 m 30 m

Terminal antenna height 5 m 1.5 m 1.5 m

Uplink pilot reuse factor N/A 7 3

Total radiated power per base station 10 W 1 W 1 W

Radiated power per terminal 1 W 200 mW 200 mW

aWith a factor-of-two design margin (see Section 2.1.4), these velocities are instead 71 km/h respectively

142 km/h.

Table 6.1. Summary of parameters used in the Massive MIMO case studies.
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Rural Dense urban Suburban

fixed access mobile access mobile access

Downlink net throughput per terminal 20 Mb/s 4.5 Mb/s 3.1 Mb/s

Uplink net throughput per terminal 10 Mb/s 2.8 Mb/s 1.1 Mb/s

Number of base station antennas 3 200 64 256

Table 6.2. Summary of performance with zero-forcing processing. All numbers in the

table represent 95% likely performance figures.

Rural Dense urban Suburban

fixed access mobile access mobile access

Downlink net throughput per terminal 20 Mb/s 4.8 Mb/s 3.2 Mb/s

Uplink net throughput per terminal 10 Mb/s 3.2 Mb/s 1.1 Mb/s

Number of base station antennas 8 200 64 256

Table 6.3. Summary of performance with maximum-ratio processing. All numbers in the

table represent 95% likely performance figures.

town, which is therefore free from inter-cell interference.

The system operates in the 800 MHz band with a total spectral bandwidth of 20 MHz. The

net throughput requirement in the uplink is 10 Mb/s for each subscriber, and 20 Mb/s in

the downlink. The max-min SINR power control scheme in Section 5.3.1, summarized in

Table 5.4, ensures that every subscriber enjoys uniformly good service.

The base station array is located 32 m above the ground. Each home has a terminal with a

fixed 6 dBi gain antenna, mounted outdoors 5 m above the ground. The Hata model [31]

determines the path loss. The shadow fading for the terminal is the best of two independent

realizations of a log-normal random variable having 0 dB mean and 8 dB standard deviation.

This simulates the choice of one of two possible locations on the exterior of the house for

the installation of the terminal antenna. We assume that the large-scale fading coefficients

for each house are constant over time.

The stationary nature of the channel permits a relatively long coherence time of Tc = 50 ms.

At 800 MHz carrier frequency, the coherence time may in fact be much longer since the

terminals are stationary, but we use a more conservative value to cap the latency between

uplink and downlink. Also changes in the environment, vehicle motion and trees swaying in

the wind, induce fluctuations in the channel. We furthermore assume a coherence bandwidth

of Bc = 300 kHz. Thus, the sample duration of the coherence interval is τc = BcTc = 15000.
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We split the coherence interval between the uplink and the downlink in proportion to the

throughput requirements. That is, after excluding the samples expended on uplink pilots,

1/3 of each coherence interval is used for uplink data transmission and 2/3 is used for

downlink data transmission.

We limit the uplink pilot overhead, somewhat arbitrarily, to 20%, and assign each terminal

a unique orthogonal pilot sequence, so we can serve 0.2 × τc = 3000 homes. With a

deployment density of 7.5 homes/km2, a cell that contains 3000 homes has the radius,

√
3000

π · 7.5 ≈ 11.3 km. (6.1)

6.1.1 Required Number of Antennas and Radiated Power

The pilot overhead leaves 80% of the coherence interval for data transmission. To obtain

net throughput, we multiply all instantaneous spectral efficiencies by (1/3) × 0.8 for the

uplink, and (2/3) × 0.8 for the downlink, to account for the resource split between uplink

and downlink, and for pilot overhead. The overhead associated with the possible need for a

cyclic prefix was neglected here.

The required instantaneous rate per terminal in both uplink and downlink is therefore

37.5 Mb/s, which is equivalent to an instantaneous spectral efficiency of 1.875 b/s/Hz.

Consequently, the required SINR is 21.875 − 1 = 2.668 (4.26 dB). It remains to determine

the number of antennas, M , and the radiated power, required to achieve this SINR. We first

compute how many base station antennas are needed to achieve the target uplink throughput,

and subsequently find the downlink radiated power required to achieve the downlink target

throughput.

Figure 6.1 shows the cumulative distribution of the number of antennas, M , that are needed

to achieve the uplink target throughput of 10 Mb/s/terminal for different uplink radiated

powers. We obtained this figure by generating 5000 independent random realizations of the

terminal locations and shadow fading profiles. To obtain the normalized SNRs, ρul and ρdl,

from absolute transmit powers, noise temperatures, and noise figures, we used a standard

link budget calculation; see Appendix F.

The superiority of zero-forcing relative to maximum-ratio processing for this scenario is

apparent: at 1 W uplink power, and 95% reliability, zero-forcing requires only M = 3200

while maximum-ratio requires M = 8200. Increasing the radiated power per terminal

beyond 1 W has only a minor effect; with 2, 4, and 8 W uplink power, the required number

of antennas is 3100, 3050, and 3030 for zero-forcing processing, and 8100, 8050, and 8030

for maximum-ratio processing. On the other hand, reducing the uplink power below 1 W
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Figure 6.1. Single-cell example: Required number of base station antennas, M , for

zero-forcing and maximum-ratio processing, for a range of uplink powers.

would notably increase the required number of base station antennas (not shown in the

figure). To understand the phenomenology, three points should be kept in mind:

• The use of zero-forcing requires that M > K ; so irrespective of power levels, the

number of antennas must be greater than 3000.

• As shown in Section 3.4.3, for maximum-ratio processing the SINR per terminal can

be no greater than M/K . Hence, given the stipulated SINR, the minimum number of

antennas is 3000 × 2.668 = 8004.

• The uplink power affects both the quality of the channel estimates and the noisiness
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Figure 6.2. Single-cell example: Required downlink transmit power with zero-forcing and

maximum-ratio processing, for a range of base station antennas, M , and uplink powers.
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Figure 6.3. Single-cell example: Cumulative distribution of power control coefficients {ηk }
for zero-forcing (ZF) and maximum-ratio (MR) processing.

of the data. This yields a “squaring” effect such that reducing power by a factor of

two requires the number of antennas to quadruple; see Section 3.4.3.

Figure 6.2 shows the cumulative distribution of the downlink power required to achieve

a downlink rate of 20 Mb/s/terminal for uplink powers and numbers of antennas that are

found sufficient to deliver the stipulated uplink throughput. The principal result to note is

that for both zero-forcing and maximum-ratio processing, no more than 10 W of downlink

power is required. For the reasons given above, the use of more power does not permit a

significant reduction in the number of antennas.

Finally, to give some insight into the operating SNRs in this example, note that with an

uplink radiated power of 1 W, we have ρul = 128 dB (see calculation in Appendix F). At the

cell edge, 11.3 km away from the base station, the Hata rural open model predicts a median

path loss of β = −125 dB. Thus, the median uplink SNR for terminals at the cell edge is

ρul β = 3 dB. Similarly, with a downlink radiated power of 10 W, we have ρdl = 138 dB and

a median downlink SNR at the cell edge of ρdl β = 13 dB.

6.1.2 Analysis of the Max-Min Fairness Power Control Policy

Figure 6.3 shows the distribution of the power control coefficients {ηk } in the single-cell

deployment example. With reference to Table 5.4, we observe the following:

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.007
https:/www.cambridge.org/core


122 Case Studies Chapter 6

• In the uplink, {ηk } are identical for zero-forcing and maximum-ratio processing, and

ηk is inversely proportional to γk . As a result, the spread of {ηk } reflects the spread

of {γk }. In turn, the long-duration pilots provide high-quality estimates for most of

the terminals, so typically γk ≈ βk .

• In the downlink, under zero-forcing processing ηk is approximately inversely

proportional to γk and the distribution of {ηk } is qualitatively similar to that of

uplink zero-forcing. For maximum-ratio processing, by contrast, since ρdl βk � 1

(13 dB median at the cell edge), ηk is approximately the same for all k. As a result,

all terminals are allocated roughly the same power.

6.2 Multi-Cell Deployment: Preliminaries and Algorithms

A starting point for the design of multi-cell Massive MIMO systems is the theory presented

in Chapters 4 and 5. As we shall see, a number of subsidiary issues have to be addressed,

including multi-cell modeling, algorithms for assignment of terminals to base stations, and

choice of appropriate uplink pilot reuse patterns.

6.2.1 Multi-Cell Cluster Modeling and Pilot Reuse

We assume a network of hexagonal cells, all of which fully reuse the same resources for

data transmission. Pilot contamination emerges as a major problem which is most simply

mitigated, with some additional overhead, by employing a pilot reuse factor, nreuse, greater

than one, so that all pilots in groups of nreuse adjacent cells are orthogonal. The geometry

of the pilot reuse strategy is the same as for traditional frequency division multiple access

(FDMA) wireless networks [32–34], and common reuse factors are nreuse = 1, 3, 4 and 7.

Figures 6.4–6.6 illustrate the configurations that we employ for pilot reuse 7, 3, and 4

respectively. Since we want to observe residual pilot contamination, and the reuse factor

should divide the total number of cells, reuse 7 requires a total of 49 cells, while reuse 3

or 4 requires 48 cells. All hexagons within a cluster tessellate, and the clusters themselves

tessellate. This makes it possible to replicate the cluster periodically so that every cell in the

cluster becomes statistically identical. That is, every cell is surrounded by other cells in the

cluster in the same fashion, so that no cell is in a more advantageous position than any other.

Clearly, for nreuse = 1, either the 49-cell or 48-cell cluster may be used, with substantially

identical result. The cells are enumerated such that the nth cell and the (n±nreuse)th cell use

the same set of orthogonal pilots. The letters on the boundary edges indicate cell borders

that coincide after periodic replication of the cluster.
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Figure 6.4. 49-cell cluster with pilot reuse nreuse = 7. Each pattern is associated with a

distinct set of orthogonal pilots that are also mutually orthogonal from pattern to pattern.

Reuse 7 surrounds the home cell with two concentric rings of non-contaminating cells,

while reuse 3 and 4 surround the home cell with one ring of non-contaminating cells. The

salutary reduction in pilot contamination comes with a price in terms of the proportionately

longer pilot sequences that have to be used. If the number of active terminals, K , is small,

this is not a problem, and large nreuse can be afforded. For example, with a coherence interval

of τc = 200 samples, K = 5 simultaneously active terminals per cell, and reuse nreuse = 7,

the pilots will occupy at least 5 × 7 = 35 samples, which represents only a 35/200 = 17.5%

overhead. But with large K , the pilots may consume a substantial fraction of the available

samples. For example, with K = 30 active terminals per cell and nreuse = 7, 30 × 7 = 210

pilot symbols are needed, which is already more than the number of available samples

(200).
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Figure 6.5. 48-cell cluster with pilot reuse nreuse = 3.

6.2.2 Assignment of Terminals to Base Stations

In each cell, K terminals are randomly distributed within the hexagon centered at the base

station. See Appendix G for an efficient algorithm to generate this distribution. Because of

shadow fading, a given terminal may not be best served by the geographically closest base

station, so the actual number of terminals served by a cell may deviate from K . In general,

for a given terminal the best serving base station may be different for the uplink and the

downlink. However, to avoid backhaul signaling overhead, it is desirable that the same base

station jointly serves the uplink and the downlink for every terminal.

In all design examples, we assign each terminal to the base station to which it has the biggest

large-scale fading coefficient. This strategy tends to favor the downlink over the uplink,

because the uplink suffers greater variability of the non-coherent interference. In summary,

our assignment strategy works well as a baseline, but better performance may be obtained

with a more sophisticated algorithm.
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Figure 6.6. 48-cell cluster with pilot reuse nreuse = 4.

6.2.3 Dropping Terminals from Service

In all wireless networks, a small percentage of the terminals will experience severe shadow

fading and should be dropped from service, particularly if max-min power control is used.

By dropping a small fraction of terminals from service, one can achieve substantial savings

in power, or equivalently, a greatly reduced required number of base station antennas.

Typical coverage by premier wireless service providers in a macro-cellular deployment is

95%; that is, the 5% of the terminals with the worst channel conditions in terms of large-scale

fading (path loss and shadow fading) are dropped from service. Ideally, the terminals with

the lowest SINRs should be dropped. However, the SINR for each terminal, as shown in

Chapter 5, can only be computed after the power control coefficients are determined, which

in turn depend on which terminals are served. Thus, we need a simple means to estimate the

channel conditions for each terminal before the power control coefficients are determined.

For this purpose, we define the (downlink) large-scale fading ratio (LSFR) for each terminal
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as

LSFRlk =

βl
lk

L∑
l′=1

βl′
lk

. (6.2)

The 5% terminals with the lowest value of LSFRlk are then dropped from service.

The LSFR in (6.2) is a very convenient metric as it is independent of the uplink and

downlink powers, the power control coefficients, and the large-scale fading coefficients

of other terminals. However, other metrics are possible. Similar to the base station

assignment policy in Section 6.2.2, the LSFR in (6.2) favors downlink performance over

uplink performance to some degree as no other base-station-to-terminal assignment than

that in Section 6.2.2 could yield a higher LSFR.

While the LSFR in (6.2) captures the effect of non-coherent inter-cell interference, it ignores

receiver noise and pilot contamination. In a fully embedded cellular system where each

base station radiates its full available power, the receiver noise is in general much smaller

than the non-coherent interference from neighboring cells; and for a moderate number of

antennas, pilot contamination can in many cases be reduced to a negligible level with proper

pilot reuse.

6.2.4 Pilot Assignment and Required Pilot Sequence Length

If every cell served exactly K terminals, the minimum required duration of the pilot

sequences, τp, would be equal to Knreuse. More generally, among the cells that reuse a

particular set of pilots, some cells serve more terminals than others. In the nreuse = 4

configuration in Figure 6.6, for example, cells {3, 7, 11, . . . , 47} share the same pilots, and

the number of orthogonal pilots required by this group of cells is equal to the maximum

number of terminals that any of the cells is responsible for. For each of the nreuse groups of

pilots, j = 1, . . . , nreuse, denote by Kmax, j the maximum number of terminals served by any

of the cells in that group. Then the required pilot duration is equal to the total number of

mutually orthogonal pilots in the system,

τp =

nreuse∑
j=1

Kmax, j . (6.3)

In each cell, every terminal is randomly assigned one of the pilot sequences allocated to

that cell. Conceivably, an artful pilot assignment algorithm may perform better.
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6.2.5 Per-Cell Max-Min Power Control that Accounts for Coherent Interference

In Section 5.3.3, we showed that by neglecting coherent interference (the fourth term in

the denominator of (5.2)), and assuming that all cells use full power as made precise by

(5.29) and (5.30), max-min SINR power control can be performed independently within

each cell. In situations where coherent interference is significant, a better algorithm is

needed. In what follows, we present a heuristic algorithm that corrects, to the first order

of approximation, the power control coefficients specified in Section 5.3.3 for the effects of

coherent interference.

We start with initial power control coefficients, {η̂lk }, obtained under the assumption that

the coherent interference can be neglected as described in Section 5.3.3. Let �SINRlk denote

the resulting exact SINR according to (5.2). We note that the denominator in (5.2), which

represents the effective noise, is the sum of LK terms, which suggests that perturbations

in the power control coefficients should have little effect on the value of the denominator.

Then, within the limits of this approximation, the quantity

f̂ lk =

�SINRlk

η̂lk

(6.4)

may be interpreted as the SINR that the kth terminal in the lth cell would obtain for ηlk = 1.

Hence, for any set of power control coefficients, {ηlk }, the resulting SINR is

SINRlk ≈ 
�
�SINRlk

η̂lk

�� ηlk

= f̂ lkηlk . (6.5)

Through this approximate formula, the (nearly) max-min optimal power control coefficients

in each cell follow directly.

Uplink

Let {η̂lk } be initial power control coefficients given by (5.32),

η̂lk =

min
k ′
{alk ′ }

alk

, k = 1, . . . , K, l = 1, . . . , L. (6.6)

Then the use of the approximate formula (6.5) and the max-min principle yields the power

control coefficients,

ηlk =

min
k ′

{
f̂ lk ′

}
f̂ lk

. (6.7)
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The resulting SINR is

SINRlk ≈ f̂ lkηlk

= min
k ′

{
f̂ lk ′

}
= min

k ′

⎧⎪⎨⎪⎩
�SINRlk ′

η̂lk ′

⎫⎪⎬⎪⎭ . (6.8)

Downlink

When neglecting coherent interference, the power control coefficients (5.35) yield equal

SINR within each cell,

η̂lk =

1 +
∑

l′∈Pl
bl′

lk
+

∑
l′�Pl

cl′
lk

alk

K∑
k ′′=1

1 +
∑

l′∈Pl
bl′

lk ′′ +
∑

l′�Pl
cl′

lk ′′

alk ′′

. (6.9)

To account for pilot contamination, we adjust the initial coefficients {η̂lk } obtained in (6.9)

by setting

ηlk =

1

f̂ lk

K∑
k ′=1

1

f̂ lk ′

. (6.10)

The resulting SINR is

SINRlk ≈ f̂ lkηlk

=

1

K∑
k ′=1

1

f̂ lk ′

=

1

K∑
k ′=1

η̂lk ′�SINRlk ′

. (6.11)

6.3 Multi-Cell Deployment Examples: Mobile Access

We give two examples of a multi-cell deployment of Massive MIMO: mobile access in a

dense urban environment, and mobile access in a suburban environment. The requirement
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is that 95% of the terminals should be guaranteed the best max-min service possible,

regardless of their location in the cell and subject to high mobility. We shall assume an

average of K = 18 simultaneously active terminals in each hexagonal cell.

In both examples, the system operates at a carrier frequency of 1.9 GHz and uses a total

bandwidth of 20 MHz. After excluding the samples used for pilots, half of the coherence

interval is used for the uplink and half for the downlink.

The base station array is located 30 meters above the ground and radiates 1 W in the

downlink. The radiated power by each terminal in the uplink is 200 mW. The pilots are

always transmitted at this maximum power level, while the uplink data transmission is

subject to power control.

6.3.1 Dense Urban Scenario

In the dense urban deployment, a base station array of M = 64 antennas serves a cell

of radius (center to vertex) 500 m. Such arrays can have small form factors [35]. The

Hata-COST231 propagation model for metropolitan areas [36] predicts a median path loss

of 129 dB at the cell edge.1

We assume a coherence time of Tc = 2 ms, which theoretically permits a mobility

of 142 km/h, that is, 71 km/h with a factor-of-two design margin; see Section 2.1.2

With a coherence bandwidth of Bc = 210 kHz, the coherence interval is of length

τc = BcTc = 420. The system employs OFDM, with the parameters shown in Table 2.2;

hence there are (14/15) × 420 = 392 useful samples per coherence interval when the

cyclic prefix is accounted for. Instantaneous spectral efficiency is converted to net

spectral efficiency, on either the uplink or the downlink, by applying the conversion factor

(1/2) × (14/15) × (1 − τp/392), where the factor 1/2 represents the even split of data

transmission time between uplink and downlink.

6.3.2 Suburban Scenario

In the suburban deployment, the base station has M = 256 antennas and serves a cell of

radius 2 km. At 1.9 GHz carrier frequency, the Hata-COST231 propagation model for

medium-sized cities [36] predicts 135 dB path loss between the base station antenna array

1The nominal applicable range for the Hata-COST231 model is from 1 km to 20 km. We have, however,

used the same formula for ranges less than 1 km, as is usual in RF prediction tools.

2Numerical results in some earlier research papers by the authors used a different convention for the

definition of coherence time.
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and the cell edge.3 This path loss is 6 dB larger than in the dense urban case, and we

compensate for that by increasing M from 64 to 256.

A mobility of up to 284 km/h is allowed for, that is, 142 km/h with a factor-of-two design

margin, see Section 2.1.4, resulting in a coherence time of Tc = 1 ms. With a coherence

bandwidth of Bc = 210 kHz, the length of the coherence interval is τc = BcTc = 210

samples, of which 196 are useful. All instantaneous spectral efficiencies are multiplied by

(1/2) × (14/15) × (1 − τp/196) to produce net spectral efficiencies.

6.3.3 Minimum Per-Terminal Throughput Performance

The choice of pilot reuse factor entails a tradeoff between a reduction in the deleterious

effects of pilot contamination, and additional time expended on transmission of pilots.

In what follows, we investigate the impact of pilot reuse factor nreuse = 1, 3, 4, 7 in the

configurations of cells shown in Figures 6.4–6.6 under the power control algorithm of

Section 6.2.5. Recall that this strategy employs maximum power in each cell, and it

approximately achieves max-min SINR power control in each cell. Throughput is nearly

the same for all terminals in a given cell, but throughput can differ considerably from cell

to cell.

Figures 6.7 and 6.8 show cumulative distributions of the minimum per-terminal throughput

in each cell derived from 100 independent random realizations of terminal positions and

shadow fading. For each of the 100 realizations, the smallest throughput in each of the 48 or

49 cells is identified for generation of the cumulative distribution. The principal conclusion

is that pilot reuse 7 is best for dense urban, while reuse 3 – marginally better than reuse 4 – is

best for suburban. This conclusion holds not only with respect to median throughput (50th

percentile), but also for the arguably more important 95% likely throughput (5th percentile).

In no case is reuse 1 a good idea: optimum reuse increases the 95% likely throughput by a

factor of at least 1.6, and in the case of dense urban uplink with maximum-ratio processing

by a factor of 4.8. A significant finding is that in all cases non-coherent interference is

the main impairment, and zero-forcing and maximum-ratio processing yield comparable

performance.

Note that the 95% likely throughput is higher in the downlink than in the uplink, despite

the fact that the total available power in the uplink (18× 0.2 W per cell on average) exceeds

that of the downlink (1 W per cell). The reason is that with the power control policy in

Section 6.2.5, the most disadvantaged terminal in each cell transmits with full power and

this terminal determines the common uplink SINR in the cell. Some of the terminals in the

cell use very little uplink power. On the downlink, the base station can, in effect, borrow

3See Footnote 1.
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Figure 6.7. Dense urban deployment: Minimum per-terminal net throughput with zero-forcing and maximum-ratio

processing, for different pilot reuse factors nreuse, using the power control algorithm in Section 6.2.5.
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Figure 6.8. Suburban deployment: Minimum per-terminal net throughput with zero-forcing and maximum-ratio

processing, for different pilot reuse factors nreuse, using the power control algorithm in Section 6.2.5.
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power from one terminal and give it to another, an option not available on the uplink.

6.3.4 Additional Observations

From Figures 6.7 and 6.8, and from additional numerical experiments not shown here, we

have made the following additional observations:

• Increasing the uplink pilot power beyond 200 mW has a limited effect on the per-

terminal throughput. Hence, the received SNR in the pilots is relatively high and the

main impairment to channel estimation quality is pilot interference from other cells.

The non-coherent inter-cell interference – given by the second and third terms in the

denominator of (5.2) – is the dominant impairment on average, and it significantly

exceeds the coherent interference power, the fourth term in the denominator of (5.2).

However, the impact of pilot contamination on the strength of the useful signal, the

numerator of (5.2), is significant. This is so because alk in (5.2) is proportional to γl
lk

in (4.4). In the absence of pilot contamination, and with a high uplink SNR, γl
lk

is

close to βl
lk

. However, with a small pilot reuse factor, pilot contamination can cause

γl
lk

to be much smaller than βl
lk

. Increasing the pilot reuse factor, nreuse, reduces∑
l′′∈Pl β

l
l′′k in the denominator in (4.4) and hence brings γl

lk
closer to βl

lk
.

In summary, increasing τpρul has limited impact because it increases both the

numerator and the denominator in (4.4) by roughly the same amount, whereas

increasing nreuse has a significant impact because it reduces the denominator in (4.4)

while keeping the numerator unchanged.

• In the downlink, increasing the radiated power from 1 W to 10 W can result in a

95% likely throughput performance increase by about 50%. This means that with

1 W output power, the system is not yet entirely interference limited in the downlink.

This is so because the cell radii in our case study are relatively large for the 1.9 GHz

band. We limited the downlink radiated power to 1 W to show that Massive MIMO

can offer superior radiated energy efficiency, and to obtain comparable downlink and

uplink throughput performance with an equal uplink/downlink split of the coherence

interval. In practice, lower radiated power may simplify the design of certain hardware

components, such as channel filters.

Similarly, increasing the uplink radiated power beyond 200 mW can also result in a

noticeable throughput performance gain.
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6.3.5 Comparison of Power Control Policies

The performance examples of Figures 6.7 and 6.8 used the heuristic power control algorithm

of Section 6.2.5, with full downlink power in each cell, full uplink power by at least one

terminal, and which approximately equalizes throughput within each cell. We now compare

the performance of this power control with that of five other algorithms, described below

(note that the term used in the figure legend is underlined):

(i) Equal-η: Equal and maximum permitted power for all terminals. In the uplink, ηlk = 1

for all l and k. In the downlink, ηlk = 1/K for all l and k.

(ii) Equal-SNR: Coherent beamforming gain (useful received power) is equalized within

every cell. In the uplink,

ηlk =

min
k ′

{
γl

lk ′
}

γl
lk

(6.12)

for all l and k and in the downlink,

ηlk =
1

γl
lk

K∑
k ′=1

1

γl
lk ′

(6.13)

for all l and k. There is no particular motivation behind this policy, other than that it

is simple and potentially tempting to use.

(iii) Network-wide equal-SINR: The network-wide max-min fairness power control

algorithm of Section 5.3.2. As pointed out, it is not scalable as the number of

cells in the network increases. However, it is still useful as a baseline for comparisons.

(iv) Single-cell equal-SINR: The max-min fairness power control algorithm for a single-cell

scenario, given in Section 5.3.1 and summarized in Table 5.4, neglects all interference

from cells other than the home cell.

(v) Multi-cell intra-cell equal-SINR, neglecting coherent interference (CI): The algorithm

of Section 5.3.3, summarized in Tables 5.5 and 5.6, seeks max-min SINR fairness

within each cell while neglecting coherent interference and operating all cells at full

power.

In the uplink, this policy is equivalent to the equal-SNR power control in (ii) above.

This follows by comparing the expression for {ηlk } in Table 5.5 to (6.12). Hence, for

the uplink, curves for this power control policy are omitted in the plots.
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(vi) Multi-cell approximate intra-cell equal-SINR, with correction for coherent

interference: The algorithm in Section 6.2.5, also used in the comparisons in

Figures 6.7 and 6.8.

Figures 6.9 and 6.10 show the performance of the six power control algorithms for dense

urban (nreuse = 7) and suburban (nreuse = 3) deployments respectively. We observe the

following:

• Power control is exceedingly important for Massive MIMO. There is a huge gap

between the better-performing power controls and equal-η, which is substantially no

power control at all.

• The multi-cell approximate intra-cell equal-SINR with correction for coherent inter-

ference policy consistently outperforms all other power control schemes examined

here. In particular, it yields improvements over the algorithms that neglect coherent

interference, especially in the suburban environment where nreuse is smaller.

• Power control that accounts for coherent interference has greater impact on the

downlink than on the uplink, because ρdl is 7 dB bigger than ρul, and the coherent

interference in Table 4.1 scales with these parameters.

• Equal-SNR power control performs rather well on uplink, and comparatively poorly

on downlink, because on uplink the non-coherent interference is the same for all

terminals in the same cell. On the downlink, zero-forcing performs somewhat better

than maximum-ratio because of reduced intra-cell interference.

• In the uplink, equal-SNR power control performs slightly better than single-cell

equal-SINR. The distinction between them is that the equal-SNR policy uses γl
lk

in

(4.4), whereas single-cell equal-SINR uses γk given by (3.8).

Also in the uplink, the multi-cell approximate intra-cell equal-SINR with correction

for coherent interference policy is effectively a modified version of the equal-SNR

scheme, obtained by taking into account coherent interference. When the magnitude

of the coherent interference is small (e.g., with nreuse = 7 in the dense urban scenario),

then equal-SNR is almost as good as multi-cell approximate intra-cell equal-SINR

with correction for coherent interference. However, when coherent interference is

significant, the performances of these two power control schemes differ appreciably.
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Figure 6.9. Dense urban deployment: Comparison of minimum per-terminal net throughput for six power control

algorithms with zero-forcing and maximum-ratio processing, and nreuse = 7.
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Figure 6.10. Suburban deployment: Comparison of minimum per-terminal net throughput for six power control algorithms

with zero-forcing and maximum-ratio processing, and nreuse = 3.
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6.4 Summary of Key Points

• This chapter has showcased prime application examples of Massive MIMO technol-

ogy: cable/fiber-like throughput to thousands of homes in a large geographical area,

and mobile cellular service for both dense urban and suburban deployments. Table 6.1

details the parameter values for these scenarios, and Tables 6.2 and 6.3 summarize

the resulting performance.

• When deploying Massive MIMO in multi-cell systems, pilots must be reused to

accommodate many simultaneously active terminals. A higher pilot reuse factor,

nreuse, pushes cells that use the same pilots farther apart, resulting in lower pilot

contamination and a higher effective SINR. But reusing pilots more sparsely means a

higher overhead in terms of the number of samples in each coherence interval that are

spent on pilots. Different choices of nreuse can give very different performance,

and hence nreuse must be carefully chosen for each given deployment scenario.

In particular, there is an optimal value of nreuse that maximizes the per-terminal

throughput.

Our models suggest that in a dense urban environment where the cells are small

and the terminal mobility is moderate, nreuse = 7 is best; in a suburban deployment,

where the cells are larger and terminal mobility is higher, nreuse = 3 is best. In both

environments, nreuse = 1 delivers substantially lower throughputs and thus should be

avoided.

• Careful power control is vital. Despite the simple dependence of SINR on power

control coefficients, the optimization of power control for a multi-cell system is

surprisingly difficult. The approximate algorithm described in Section 6.2.5 shows

promise, but further improvements may be possible.
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Chapter 7

THE MASSIVE MIMO PROPAGATION

CHANNEL

All of our performance analyses are based on the i.i.d. Rayleigh model for fading under

which the small-scale fading coefficients between every base station antenna and every

terminal are i.i.d. CN(0, 1) random variables. The justification is, first, that this model

is approximately correct under conditions of dense scattering, and second, that the model

enables the comprehensive performance analyses of Chapters 3 and 4. In this chapter, we

revisit small-scale fading, and we establish, under a radically different model, that Massive

MIMO still functions well.

7.1 Favorable Propagation and Deterministic Channels

We begin by considering Massive MIMO operation in a single cell, as in Section 2.2.1,

and we address two fundamental questions. For given constraints on the channel norms

{��gk
��}, we identify the joint behavior of the channel vectors that maximizes performance

from, first, an information-theoretic perspective, and, second, from the perspective of linear

processing.

Intuitively, to maximize performance, the channel vectors {gk } should be as different as

possible, according to some appropriate metric. To make this notion precise, we say that

the channel offers favorable propagation if

gH
k gk ′ = 0, k, k′ = 1, . . . , K, k′ � k . (7.1)

In the following sections, we shall see why (7.1) represents the most favorable scenario. In

practice, (7.1) will never be exactly satisfied, but it can be approximately satisfied and we

then say that we have approximately favorable propagation. Also, under some assumptions

139
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on the propagation environment it holds asymptotically that

1

M
gH

k gk ′ → 0, M → ∞, k, k′ = 1, . . . , K, k′ � k . (7.2)

When (7.2) is satisfied, we say that the environment offers asymptotically favorable

propagation. Of course, the limiting case that M → ∞ has no physical meaning, but in

many cases, taking the limit is useful in order to understand the behavior of the propagation

when M is large.

7.1.1 Capacity Upper Bound

The mutual orthogonality in (7.1) of {gk } offered in favorable propagation represents the

most desirable scenario from the perspective of maximizing the rate. To establish this fact,

we use a capacity argument. Consider the uplink. From Section 1.2, we know that for a

fixed, deterministic channel matrix G, the sum capacity is

Csum = log2
���IM + ρulGGH��� , (7.3)

assuming that the base station knows G and that the terminals know their respective

individual rates.

We now determine the largest value that Csum in (7.3) can assume for specified channel

norms {��gk
��2}. Analogously to (3.69), by using Sylvester’s determinant theorem and the

Hadamard inequality,

Csum = log2
���IM + ρulGGH���

= log2
���IK + ρulG

HG
���

(a)≤ log2

�

K∏
k=1

[IK + ρulG
HG]kk

��
=

K∑
k=1

log2

(
1 + ρul

��gk
��2
)
, (7.4)

with equality in (a) if and only if GHG is diagonal, which is equivalent to (7.1). Hence,

for given {��gk
��2}, Csum is maximized when (7.1) holds. This confirms the soundness of

favorable propagation as defined by (7.1).

The concept of favorable propagation can also be analyzed for the downlink, but this is

considerably more difficult because the corresponding capacity expression involves solving

an optimization problem.
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7.1.2 Distance from Favorable Propagation

An important question is how far from favorable propagation a given channel matrix G is.

One way to quantify the departure from favorable propagation is the ratio between Csum and

the upper bound in (7.4),

ΔC =

log2
���IM + ρulGGH���

K∑
k=1

log2

(
1 + ρul

��gk
��2
) . (7.5)

In favorable propagation, ΔC = 1. An operationally equivalent measure is the power

increase, say Δρul
that would be needed for the sum capacity offered by G to reach the upper

bound in (7.4) – that is, the value of Δρul
that solves the following equation:

K∑
k=1

log2

(
1 + ρul

��gk
��2
)
= log2

���IM + Δρul
ρulGGH��� . (7.6)

Note that both ΔC and Δρul
depend on the SNR, ρul.

7.1.3 Favorable Propagation and Linear Processing

We have seen in Chapters 3 and 4 that zero-forcing and maximum-ratio processing are

exceedingly effective. Their performance is bounded by that of the minimum mean-square

error (MMSE) filter. In turn, we can establish the propagation conditions that most enhance

MMSE performance.

Consider the uplink, given by (2.27), with the assumption that {xk } are i.i.d. CN(0, 1). The

objective of the base station is to detect x, given y. The MMSE estimate of x is

x̂mmse = E {x |y}
=

√
ρulG

H
(
IM + ρulGGH

)−1
y

=

√
ρul

(
IK + ρulG

HG
)−1

GHy . (7.7)

The error covariance of x̂mmse is

Cov {x |y} = IK − ρulG
H
(
IM + ρulGGH

)−1
G

=

(
IK + ρulG

HG
)−1
. (7.8)
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The {xk } are statistically independent, so the transmissions by the other terminals can only

hurt the detection of xk . Hence an upper bound on the performance of any detection

scheme corresponds to the hypothetical scenario whereby the kth terminal alone transmits,

and maximum-ratio processing is optimal,

x̂mmse,k
���kth terminal alone

=

√
ρul

1 + ρul
��gk

��2
gH

k y . (7.9)

This establishes an upper bound on performance,

Var {xk |y} ≥ 1

1 + ρul
��gk

��2
. (7.10)

Finally, we note that if the channel vectors were perfectly orthogonal, see (7.1), then

maximum-ratio processing would attain the above performance bound. Put another way,

mutually orthogonal channel vectors represent the best possible propagation, in which case

maximum-ratio processing (and incidentally zero-forcing) is optimal.

7.1.4 Singular Value Spread as a Measure of Favorable Propagation

To gain some additional insight, note that many of the preceding equations can be expressed

in terms of the singular values {σk } of G. Particularly, for the sum capacity,

Csum = log2
���IM + ρulGGH���

= log2
���IK + ρulG

HG
���

=

K∑
k=1

log2

(
1 + ρulσ

2
k

)
. (7.11)

Also, for the MMSE detector in (7.7),

K∑
k=1

Var {xk |y} = Tr

{(
IK + ρulG

HG
)−1
}

=

K∑
k=1

1

1 + ρulσ
2
k

. (7.12)

Note that there is no direct correspondence between the K singular values and the K

terminals, except for the special case of favorable propagation where GHG is a diagonal

matrix and σk =
��gk

��.
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Let σmax and σmin be the extreme values of {σk }. If σmax = σmin, then we must have

favorable propagation, because then GHG is a scaled identity matrix. It is also clear that if

we have asymptotically favorable propagation and if all {βk } are equal (to β1, say), then

σ2
max

M
→ β1, and

σ2
min

M
→ β1, M → ∞, (7.13)

so σmax/σmin ≈ 1 for large M . Hence, in case all {βk } are equal, the singular value spread

of G can be viewed as a proxy for how favorable G is.

The singular value ratio σmax/σmin is simple to evaluate, and it does not depend on ρul.

However, the measure σmax/σmin only has a meaning if M � 1 and all {βk } are equal, and

it disregards all other singular values than σmin and σmax. Hence, it is normally preferable

to directly work with ΔC in (7.5) or Δρul
in (7.6).

7.2 Favorable Propagation and Random Channels

So far in this chapter, we have considered favorable propagation for a given, deterministic

channel matrix G. In practice, G will be random due to fading. It is then of interest

to examine to what extent we have favorable propagation “on average”. To that end, we

may look at the distribution of {σk }, or the probability that σmax/σmin falls below a given

threshold, or the probability that ΔC and Δρul
fall below given thresholds. Alternatively, we

may look at the inner products gH
k
gk ′ in (7.1) on average.

Many, entirely different, practical scenarios result in approximately favorable propagation.

To understand this, we will consider two particular cases that represent disparate physical

situations: independent Rayleigh fading and uniformly random line-of-sight (UR-LoS).

Throughout, we consider a single cell and assume that the base station array is uniform and

linear with an antenna spacing of λ/2.

7.2.1 Independent Rayleigh Fading

The first scenario of interest is where the system operates in a dense, isotropic scattering

environment; see Figure 7.1. We model this scenario by assuming that G has independent

random elements {gm
k
} with zero mean and distribution CN(0, βk ), and we refer to the

scenario as independent Rayleigh fading.

The Gaussian distribution of {gm
k
} can be justified by the central limit theorem, assuming

that each antenna sees the superposition of many wavefronts that originate from independent

scatterers. Completely independent Rayleigh fading is, strictly speaking, incompatible with
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base station array

λ

2

1

2

m

M

Figure 7.1. A λ/2-spaced uniform linear array located in a propagation environment with

isotropic scattering, approximated by independent Rayleigh fading.

the wave equation. If one requires the random process to satisfy the wave equation, the

closest model to i.i.d. has the spatial correlation function r (d) = sinc(2d/λ), where d is the

spatial separation of the two locations at which the field is sampled [37]. Since r (d) = 0

when d is a nonzero integer multiple of λ/2, samples taken along a straight line at a spacing

of λ/2 are uncorrelated. Hence, the fading is independent between different elements in

the antenna array. Furthermore, r (d) is small if d � λ. Hence, the channel responses

associated with different terminals are also mutually independent.

In independent Rayleigh fading, E
{
|gm

k
|2
}
= βk and E

{
g

m∗
k
g

m′
k ′
}
= 0 when k′ � k or

m′ � m. By the law of large numbers,

1

M
��gk

��2 → βk, M → ∞, k = 1, . . . ,K, (7.14)

1

M
gH

k gk ′ → 0, M → ∞, k � k′. (7.15)

Hence, in independent Rayleigh fading, we have asymptotically favorable propagation.

In Section 7.2.3, we investigate to what extent we can expect the propagation to be

approximately favorable for finite M .
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Figure 7.2. A λ/2-spaced uniform linear array located in a line-of-sight propagation

environment.

7.2.2 Uniformly Random Line-of-Sight (UR-LoS)

The second scenario of interest is when there is no local scattering, and all terminals have

line of sight to the base station array; see Figure 7.2. We assume that the kth terminal is

located in the far-field of the array at the angle θk as measured relative to the array boresight.

Then,

gk =

√
βkeiφk

[
1 e−iπ sin(θk ) · · · e−i(M−1)π sin(θk )

]T
, (7.16)

where φk is a uniformly distributed random number between −π and π that models the

phase shift associated with a random range between the array and the kth terminal.

For any two terminals k and k′ with angles θk and θk ′ such that θk � θk ′ ,

1

M
gH

k gk ′ =
1

M

√
βk βk ′e

−i(φk−φk ′ )
M−1∑
m=0

eimπ(sin(θk )−sin(θk ′ ))

=

1

M

√
βk βk ′e

−i(φk−φk ′ ) 1 − eiMπ(sin(θk )−sin(θk ′ ))

1 − eiπ(sin(θk )−sin(θk ′))

→ 0. M → ∞, (7.17)
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Also,

1

M
��gk

��2
= βk, k = 1, . . . , K . (7.18)

Hence, we have asymptotically favorable propagation whenever {θk } are distinct. In

Section 7.2.3, we address the question of the extent to which we can expect the propagation

to be approximately favorable for finite M .

Henceforth, when we discuss line-of-sight propagation, we will assume that the terminal

locations are random such that the K sin-angles {sin(θk )} are uniformly distributed in the

interval [−1, 1]. We refer to this assumption as uniformly random line-of-sight (UR-LoS).

We make this assumption here for analytical convenience only, and a uniform distribution

of {θk } (instead of {sin(θk )}) over [−π, π] may be more realistic. However, typical antennas

(such as half-wavelength patch antennas) have a directional response that discriminates

against large angles of arrival, which is the regime where these two models would differ the

most.

7.2.3 Independent Rayleigh Fading versus UR-LoS

For simplicity of analysis, we assume that βk = 1 for all k. Independent Rayleigh fading can

then be referred to as i.i.d. Rayleigh fading. The conclusions here can then be extrapolated,

qualitatively, to general independent Rayleigh fading by re-normalizing the channel vectors

{gk }.
In order to compare i.i.d. Rayleigh fading and UR-LoS for finite M , we first study the

moments and limits of pairwise inner products gH
k
gk ′ of channel vectors gk and gk ′.

Table 7.1 summarizes the moments and limits of these inner products, and, additionally,

the asymptotic ratio between the largest and smallest singular values, known from [38].

Inspection of Table 7.1 reveals that all moments and limits are the same in i.i.d. Rayleigh

fading and UR-LoS, except for Var
{
|gH

k
gk ′ |2

}
, which is of the order of M times larger for

UR-LoS than for i.i.d. Rayleigh fading. Hence, we expect that for finite M , i.i.d. Rayleigh

fading will yield favorable channels more often than UR-LoS. Note that ��gk
��2
/M → 1 as

M → ∞, in both propagation environments. This means that a coherent beamforming gain

proportional to M is always achieved, and that channel hardening holds.

Recall that the notion of ergodic capacity is associated with coding over many independent

realizations of all sources of randomness, and it permits us to average over G to obtain

capacity expressions. This condition is typically fulfilled in the case of Rayleigh fading

through the frequency-dependence of small-scale fading, and the possibility of performing

coding over more than one temporal coherence interval. In UR-LoS, however, ergodic

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.008
https:/www.cambridge.org/core


Section 7.2 Favorable Propagation and Random Channels 147

i.i.d. Rayleigh UR-LoS

1

M
E
{��gk

��2
}

1 1

1

M
E
{
gH

k
gk ′

}
, k � k′ 0 0

1

M
E
{
|gH

k
gk ′ |2

}
, k � k′ 1 1

1

M2
Var

{
|gH

k
gk ′ |2

}
, k � k′

M + 2

M
≈ 1

(M − 1)M (2M − 1)

3M2
≈ 2

3
M

1

M
��gk

��2
, M → ∞ 1 1

1

M
|gH

k
gk ′ |, M → ∞, k � k′ 0 0

σmax

σmin

≈
1 +

√
K

M

1 −
√

K

M

N/A

Table 7.1. Comparison of asymptotic properties and moments of pairwise channel vector

inner products in i.i.d. Rayleigh and UR-LoS propagation. Here βk = 1 for all k.

capacity is unobtainable since the random angle of arrival is independent of frequency, and

remains substantially constant for long intervals of time.

Singular Value Comparisons

To provide further insight, we consider the distribution of the squared singular values {σ2
k
}.

Recall from (7.11) and (7.12) that the sum capacity and the sum of the mean-square errors

are functions of {σ2
k
}.

Figure 7.3 shows cumulative distribution functions of {σ2
k
} in i.i.d. Rayleigh fading and

UR-LoS, for two cases: M = 100 and K = 10 respectively M = 500 and K = 50. In all

cases, βk = 1. In i.i.d. Rayleigh fading, {σ2
k
} are almost uniformly spread out between

σ2
min and σ2

max, and the curves have no significant tails. Since the ratio σ2
max/σ

2
min is small
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if M � K (see Table 7.1), propagation is approximately favorable. By way of contrast, in

UR-LoS a few of the singular values are very small with substantial probability while the

rest are highly concentrated around their medians. This suggests that by dropping a few

terminals from service in each coherence interval, UR-LoS will offer favorable propagation

with very high probability. In the next section, we give a more exact argument.

Urns-and-Balls Model for UR-LoS

To quantify approximately how many terminals must be dropped from service in each

coherence interval in order to have favorable propagation with high probability in the

UR-LoS case, we consider the following “urns-and-balls model” [39]. A uniform linear

array with M elements at inter-element spacing λ/2 can create M orthogonal beams with

response vectors {gk } given by (7.16) and {θk } satisfying

sin (θk ) = −1 +
2k − 1

M
, k = 1, 2, ...,M . (7.19)

These vectors
{
gk

}
satisfy (7.1). In terms of the angular decomposition model of MIMO

channels [40] and [29, Chapter 7], the angles {θk } are resolvable, in the sense that sources

with the angles-of-arrival {θk } have distinct spatial signatures.

Suppose that each one of the K terminals is associated with one of the possible angles {θk }
defined implicitly by (7.19). This means that each terminal is randomly and independently

assigned to one of M orthogonal beams; see Figure 7.4. For the channel to offer

approximately favorable propagation, each of the M beams must contain at most one

terminal. If there are two or more terminals in a given beam, all but one of those terminals

have to be dropped from service in a given coherence interval in order for the propagation

to be favorable. In case some beams contain two or more terminals and none of them is

dropped, the remaining terminals in all other beams – that are occupied by at most one

terminal – would still experience favorable propagation.

Under the assumptions that underlie the UR-LoS model, each of the K terminals is equally

likely to fall into any of the M beams. Let N0 be the number of beams that have no terminal.

Then, M − K ≤ N0 < M , and the number of terminals that must be dropped from service is

Ndrop = K − (M − N0). The probability that n terminals, 0 ≤ n < K , are dropped is given

by

P
(
Ndrop = n

)
= P(K − (M − N0) = n)

= P(N0 = n + M − K )

(a)
=

(
M

n + M − K

) K−n∑
k=1

(−1)k

(
K − n

k

) (
1 − n + M − K + k

M

)K

, (7.20)
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Figure 7.3. Distribution of the squared singular values {σ2
k
} of G for i.i.d. Rayleigh fading (βk = 1 for all k) and UR-LoS

propagation.
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Figure 7.4. Urns-and-balls model for UR-LoS propagation.
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Figure 7.5. The probability that n or more terminals must be dropped from service in each

coherence interval, using the urns-and-balls model for UR-LoS propagation.

where (a) follows from a standard combinatorial argument [41, Eq. (2.4)].

Figure 7.5 shows the probability that n or more terminals must be dropped from service,

P
(
Ndrop ≥ n

)
=

K−1∑
n′=n

P
(
Ndrop = n′

)
, (7.21)

for two cases: M = 100,K = 10 and M = 500,K = 50. In the case of M = 100 and

K = 10, the probability that three or more terminals have to be dropped in each coherence

interval is about 1%. Similarly, in the case of M = 500 and K = 50, the probability

that eight or more terminals have to be dropped is about 1%. This is consistent with the

intuition developed from Figure 7.3: the presence of a few very small singular values with

appreciable probability suggests that a few terminals must be dropped from service in every

coherence interval.
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Capacity Comparisons

As a further quantitative example, Figure 7.6 compares the cumulative distribution function

of the uplink capacity per terminal – that is, the uplink sum capacity Csum in (7.3) divided by

K , and the corresponding favorable propagation upper bound (7.4) divided by K . The ratio

between these two quantities is ΔC in (7.5). The figures display capacities for M = 100 and

K = 10 under both i.i.d. Rayleigh fading and UR-LOS conditions when all ten terminals

are served and when eight selected terminals are served.

When all ten terminals are considered, the actual capacity is very close to its upper bound

with high probability in i.i.d. Rayleigh fading, but not in UR-LoS. The urns-and-balls model

analysis suggests that by dropping two terminals from service, the remaining terminals will

experience favorable propagation. As we see in Figure 7.6, this is indeed the case: by

choosing 8 out of 10 terminals that give the highest sum capacity, the sum capacity is very

close to the upper bound also in the UR-LoS case.

The results of Figure 7.6 are concerned with the arithmetic mean of the per-terminal

spectral efficiency. Substantially the same conclusions are observed, for each realization of

the small-scale fading, if linear processing and max-min power control are performed.

Discussion

Both independent Rayleigh fading and UR-LoS environments offer approximately favorable

propagation, provided that a few terminals can be dropped from service in every coherence

interval in the UR-LoS case. These two scenarios represent rather extreme cases, and in

reality we are more likely to have a situation in between these two cases. It is then reasonable

to expect that in most practical cases we have favorable propagation to a large extent.

This conclusion has been confirmed experimentally by several independent measurement

campaigns [42–46], even though the particular topology of the array can play a significant

role [47].

Throughout the analysis, we have assumed that the base station array is uniform and linear

with an inter-element spacing of λ/2. With a different array, the above conclusions may

or may not hold precisely as stated. Consider, as a first example, a uniform linear array

with twice the inter-element spacing, λ. In isotropic scattering, the correlation function

r (d) = sinc(2d/λ) equals zero when d is an integer multiple of λ/2; hence the fading is

uncorrelated between the antenna elements and we have independent Rayleigh fading, as

in the case with inter-element spacing λ/2. In UR-LoS, the array still offers M “beams,”

although each beam now is split into two sub-beams with half the angular width [40]. The

urns-and-balls model can still be used to analyze this situation, and the result is substantially
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Figure 7.6. Uplink spectral efficiency per terminal in i.i.d. Rayleigh fading and UR-LoS with βk = 1, M = 100 base

station antennas and K = 10 terminals. The SNR is ρul = −20 dB (the left pair of curves) and ρul = −10 dB (the right

pair of curves). The favorable propagation (FP) bound corresponds to perfectly orthogonal channel vectors.
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Figure 7.7. Keyhole channel with N = 2 keyholes.

the same as in the case of an antenna spacing of λ/2.

As a second example, consider a uniform rectangular array for which each element has

its closest neighbor at a distance of λ/2. In this case, the distance between diagonally

neighboring elements is λ/
√

2, and the fading is now correlated between two such

elements. Despite this mild correlation, numerical experiments disclose that capacity

is not significantly reduced from the i.i.d. case.

7.3 Finite-Dimensional Channels

Independent Rayleigh fading and UR-LoS are two examples of practical situations where

we expect propagation to be favorable. In contrast, Figure 7.7 shows a situation that may

arise in practice and where the propagation is not likely to be favorable. Here, all paths

from the base station array to the terminals pass through N keyholes – depicted as slots

through a wall in the figure, which is small compared to K ; N < K .

Here, the M × K channel matrix G is rank deficient since it can be written as the product

of an M × N matrix Ga that models the channel between the keyholes and the base station

array, and an N × K matrix Gb that describes the channel between the terminals and the
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keyholes,

G = GaGb. (7.22)

The rank of the product GaGb cannot exceed the rank of Ga, which in turn cannot exceed

the number of keyholes, N . Hence the rank of G cannot be larger than N . Therefore, (7.1)

cannot be satisfied, irrespective of how large M is. Propagation can only be favorable if

N ≥ K .

Another effect that will be visible in the environment illustrated in Figure 7.7 is that the

channel may not harden when M → ∞. Specifically, ��gk
��2
/M may not converge to a

deterministic constant as M → ∞. For example, consider a channel with a single keyhole

and a single terminal; N = 1 and K = 1. Then, dropping the index k = 1 for simplicity, we

have

g =
√
βgagb, (7.23)

where ga is an M × 1 random vector and gb is a random scalar. The elements of ga and the

scalar gb are well modeled as i.i.d. CN(0, 1) random variables. As M →∞, ��ga
��2
/M → 1,

but ‖g‖2/M does not converge to a deterministic constant. Hence, the channel does not

harden and the properties of g are very different from those in independent Rayleigh fading.

7.4 Summary of Key Points

• Propagation is said to be (approximately) favorable if the channel responses {gk } in

a given cell are pairwisely (nearly) orthogonal.

Favorable propagation brings several benefits. For example, on the uplink, the sum

capacity can be upper-bounded by a value that depends only on the channel norms

{‖gk ‖2}, and a channel that offers favorable propagation achieves this upper bound.

This means that there are no other channels {gk } with the same norms {‖gk ‖2}
that offer a higher sum capacity. Also, the error variance with linear detection is

minimized if propagation is favorable.

• Two environments that offer approximately favorable propagation are isotropic

scattering resulting in independent Rayleigh fading (see Section 7.2.1), and Uniformly

Random Line-of-Sight (see Section 7.2.2). In UR-LoS, a few terminals have to be

dropped from service in every coherence interval in order to guarantee favorable

propagation. The urns-and-balls model of Section 7.2.3 represents a useful way of

thinking about the need to drop terminals from service in UR-LoS propagation.
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• The switch from isotropic scattering to UR-LoS does not entail significant reduction in

performance, a fact that should lend considerable confidence to performance analyses

based on i.i.d. Rayleigh fading.
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Chapter 8

FINAL NOTES AND FUTURE DIRECTIONS

This chapter summarizes some open questions that demand further research, and briefly

discusses selected topics that we have been unable to cover in the book but on which

substantial investigations have taken place, or are taking place at the time of this writing.

8.1 Alternative Approaches to Performance Analysis

Our capacity analyses use techniques first developed in [48] for the uplink, and [49] for the

downlink. This approach has several advantages: the resulting capacity bounds are rigorous

and do not involve approximations, and the resulting expressions are in closed form and

easy to interpret intuitively.

Alternative approaches to the capacity analysis of Massive MIMO exist. Most notably, the

sequence of papers [50–52] used asymptotic random-matrix theoretic results in order to

obtain “deterministic equivalent” capacity expressions. An advantage of that approach is

that MMSE and regularized zero-forcing processing can be analyzed, whereas the theory

developed in this book is only applicable to zero-forcing and maximum-ratio processing.

While our capacity analyses assume independent small-scale fading, [50–52] accounted

for spatial correlation; however, they were unable to obtain exact closed-form performance

expressions.

8.2 Multiple-Antenna Terminals

Massive MIMO, in contrast to Point-to-Point MIMO, works extremely well with only

single-antenna terminals. Nothing in our discussion, however, precludes the use of multiple-

antenna terminals. A multiple-antenna terminal, for example, could enjoy throughput in

proportion to the number of antennas that it possesses without requiring exponentially
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growing SINRs. The simplest mode of operation would treat the multiple-antenna terminal

as a multiplicity of single-antenna terminals. Alternatively, a terminal could use multiple

antennas for out-of-system interference suppression, facilitated by adding a “quiet interval”

in each coherence interval, during which none of the base stations or terminals transmits.

The terminals (and incidentally the base station) could each identify the subspace in which

the interference is contained, and then operate in the orthogonal interference-free subspace.

8.3 Pilot Contamination and Pilot Assignment

We saw in Chapter 6 that pilot contamination can be a significant impairment in a multi-cell

system and that it may be mitigated by adopting a pilot reuse factor greater than one.

However, the greater overhead of high reuse factors limits the number of mobile terminals

that can simultaneously be served.

Is pilot contamination an unavoidable fundamental limitation in a multi-cell system, or is

it an artifact of suboptimal signal processing, in particular MMSE channel estimation and

linear processing? With MMSE channel estimation and linear processing, the consequence

of pilot contamination is that all known capacity lower bounds approach a finite limit when

M → ∞, as shown in Section 4.4.1 and in several papers [48, 53]. This is true even under

more specific model assumptions – for example, if the channel is finite-dimensional [54].

It is also known that contamination by payload data has similar effects as contamination by

pilots in other cells; see Section 4.4.3 and [55].

In contrast, we do not know of any relevant, non-trivial upper bounds on capacity that

account for the effects of imperfect channel knowledge. It is known, however, for the related

cases of Point-to-Point MIMO [11] and cellular systems with base station cooperation

[56] that capacity is ultimately limited by the availability of sufficiently accurate CSI,

which in turn is limited by the length of the channel coherence interval. Hence, we

conjecture that pilot contamination in Massive MIMO is an inevitable limitation that cannot

be entirely overcome. Nevertheless, sophisticated pilot assignment and signal processing

may significantly reduce the problem.

Throughout the book, we considered universal reuse of resources for the payload data, but

potentially sparser reuse of the pilots. Adaptation and optimization of the pilot allocation

between cells can further reduce the effects of pilot contamination [57–64]. Difference

in spatial correlation may be exploited to reuse pilots without incurring appreciable

contamination effects [65–67].

Several papers [68–72] proposed non-linear channel estimation algorithms that exploit both

received pilots and uplink payload data, and which can mitigate the pilot contamination
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problem to some extent. References [73–76] developed techniques to eliminate pilot

contamination by joint, coherent processing among base stations. These methods require

payload data and large-scale fading coefficients to be shared among the base stations, but

no small-scale CSI is shared.

8.4 Massive MIMO with FDD Operation

We have consistently assumed that Massive MIMO operates in TDD mode rather than in

FDD mode. As explained in Section 1.4, TDD is fundamentally superior to FDD. However,

for various commercial reasons there remains substantial interest in finding ways of making

Massive MIMO work in FDD. Subject to the assumption of enough special structure in

the propagation, the performance of FDD operation may be comparable to that of TDD

operation [77].

FDD-based Massive MIMO requires feedback of channel estimates from the terminals to the

base station. The references [78–80] proposed efficient non-coherent trellis quantization and

vector quantization methods for the feedback, and associated optimized downlink training

schemes. Other papers exploited assumed sparsity of the channel response in a particular

domain in order to reduce the quantity of downlink pilots and uplink feedback [81, 82].

The papers [83,84] proposed a type of two-stage precoding: an outer precoding for inter-cell

and inter-cluster interference cancellation, and an inner precoding for intra-cell spatial

multiplexing. Reference [85] proposed a similar dual-structured precoding for Massive

MIMO systems with multi-polarized antenna elements. In [86], a transmission scheme for

Massive MIMO that requires only statistical CSI at the base station was proposed.

8.5 Cell-Free Massive MIMO

Massive MIMO systems can be envisioned where the base station antennas are distributed

over a large geographical area, rather than co-located in a compact array. The following

discussion refers to such configurations as cell-free. In a cell-free deployment, the large-

scale fading coefficients depend on both the antenna index and the terminal index.

A number of research papers studied the performance of cell-free Massive MIMO systems

under the assumption that perfect CSI is available everywhere [87–91]. The paper [92]

compared the downlink performance of cell-free Massive MIMO with that of Massive

MIMO using co-located arrays and zero-forcing processing, also under the assumption of

perfect CSI.
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A few papers have studied the performance of cell-free Massive MIMO with imperfect

CSI. Reference [93] derived approximate expressions for the uplink performance with

maximum-ratio and MMSE processing, taking into account the effects of channel estimation

but assuming that all pilot sequences are orthogonal. In [94], rigorous capacity lower bounds

for maximum-ratio processing and algorithms for pilot allocation and max-min SINR power

control were obtained, accounting for channel estimation errors and assuming pilot reuse

– and therefore pilot contamination – within the network. Hybrid architectures are also

possible where base stations use large antenna arrays which operate cooperatively [66, 95].

8.6 Signal Processing Algorithms

Linear signal processing is sufficient to reach the capacity lower bounds in Chapters 3 and

4. Under certain conditions, more refined algorithms may yield improvements.

In the most elementary form of Massive MIMO, as presented in this book, the terminals do

not attempt to acquire CSI. In some cases, the downlink performance can be increased by

having every terminal estimate its effective (scalar) channel gain, either through downlink

pilots transmitted through the beams [96,97], or by using to blind estimation techniques [98].

Implementation of zero-forcing requires the computation of matrix inversions or solutions

of linear systems of equations. To that end, computationally efficient approximations based

on truncated polynomial expansions [99–102], or conjugate-gradient techniques [103], are

available.

More advanced precoders can be advantageous. References [104–106] developed precoding

for hybrid transceiver architectures that dispenses with the RF chain of each antenna, and

that instead uses a steerable phase-shifting network inserted between the RF frontend and the

antennas. For distributed Massive MIMO systems, [107] proposed a precoding technique

with individual CSI.

In the simpler forms of Massive MIMO, only K out of M spatial degrees of freedom are

employed. The M − K unused degrees of freedom can be exploited in several ways. For

example, when the pilot reuse factor is greater than one, nreuse > 1, each base station can

learn the channels both to the terminals in its own cell and to the terminals in neighboring

cells that use distinct pilots. The obtained channel estimates can then be used to suppress

inter-cell interference both in the uplink and the downlink [61, 108, 109]. Another possible

use of the spare degrees of freedom is on the downlink to place signal components in the

nullspace of the channel matrix. Within the limitations imposed by channel estimation

error, these components are invisible to the terminals receiving downlink data. Several

papers [110–113] have proposed to add invisible signal components in such a way that the
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waveforms emitted by each antenna have low peak-to-average-ratios. Other possible uses of

the spare degrees of freedom include broadcasting of information to terminals that are not

targeted by the beamforming [114], and transmission of artificial noise to improve secrecy

rates [115].

8.7 Effects of Non-Ideal Hardware

Massive MIMO exploits the law of large numbers when M � 1 to average out the effects of

small-scale fading, receiver noise, and non-coherent interference. There is some evidence

that distortion arising from hardware impairments, including non-linearities, I/Q-imbalance,

and phase noise, also averages out to a substantial extent.

The papers [116–118] analyzed the impact of in-band distortion from non-ideal transceiver

hardware, and showed that when M is large, the hardware quality of the terminals is

typically the limiting factor. There is a body of work that deals with specific types of

hardware impairments, for example I/Q imbalance [119, 120], quantization noise from

low-resolution analog-to-digital converters [121], power amplifier non-linearities [122],

and phase noise [117, 123–125].

Massive MIMO with TDD operation requires that the uplink and downlink channels be

reciprocal, as discussed in Chapter 1. In practice, reciprocity calibration of the hardware

chains is necessary. Algorithms that accomplish such calibration can be found in [126,127]

and in [128–132] for Massive MIMO specifically. These solutions either rely on extra

antennas dedicated to the calibration, or two-way channel measurements between base

stations and terminals, or on mutual coupling within the base station antenna array. Analyses

of the impact of reciprocity mismatch are contained in [133, 134].

8.8 Random Access and Resource Allocation

Massive MIMO creates virtual circuits between the serving base station and K terminals

in the cell, characterized by the functional block diagrams in Figures 3.1–3.4 and 4.1–4.4.

To achieve a high net sum throughput in a cell, a substantial number of terminals need to

be multiplexed simultaneously. This in turn requires appropriate algorithms for scheduling,

random access, and dynamic pilot assignment. These problems occur in conventional

Multiuser MIMO, but are magnified by the scale of Massive MIMO. Some initial approaches

were reported in [135,136]. Internet-of-Things, machine-to-machine communications, and

sensor networks represent possible applications of Massive MIMO for which scheduling

would be complicated by sporadic service requirements. In [137], such scenarios were
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considered, taking into account intermittent terminal activity and possible pilot collisions

within the cell.

Practical Massive MIMO systems may require the base station to transmit information

to terminals for which it has not yet acquired CSI. This information may include control

signaling or other public information. In the absence of CSI, beamforming is impossible

and the only way of benefitting from multiple antennas is to use space-time coding, which

does not offer multiplexing or array gains. Space-time coding in turn requires either the

transmission of downlink pilots or non-coherent communication. Some results on the

tradeoffs involved in the selection of appropriate codes here can be found in [138, 139].

Throughout this book, we have assumed that pilots are always transmitted with full power,

whereas power control is applied to the payload data. In some cases, adjusting the power of

the pilots can improve performance [140].

8.9 Total Energy Efficiency

The large array gain offered by Massive MIMO translates into substantial savings in radiated

power. In some deployment scenarios, the energy efficiency of wireless networks is a

concern. The total energy consumption, which includes both radiated power and power

dissipated in circuits and spent on signal processing, is then a relevant measure. A body

of literature exists that gives insights into the total energy-efficiency aspects of Massive

MIMO [141–145].
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Appendix A

CIRCULARLY SYMMETRIC COMPLEX

GAUSSIAN RANDOM VECTORS

This appendix reviews some elementary properties of circularly symmetric complex

Gaussian random vectors, which are used throughout the book.

A.1 Complex Gaussian Random Vectors

Baseband quantities are naturally complex-valued. In general, a complete characterization

of a complex random vector entails a specification of the joint distribution of its real and

imaginary parts. If z′ and z′′ are M × 1 real-valued, jointly Gaussian random vectors, then

z = z′ + iz′′ (A.1)

is a complex Gaussian vector. The probability density function of z is the joint probability

density function of its real and imaginary parts, that is, of the 2M real-valued Gaussian

random variables that constitute z.

In general, the fact that z is complex-valued does not lend any simplification to the

specification of its probability density. However the special property of circular symmetry

does permit considerable simplifications.

A.2 Circularly Symmetric Complex Gaussian Random Vectors

Let z be an M×1 complex-valued Gaussian vector. Then z is said to be circularly symmetric

if eiφ z has the same probability distribution as z for all real-valued φ. Note that if z is

163

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781316799895.010
http:/www.cambridge.org/core


164 Circularly Symmetric Complex Gaussian Vectors Appendix A

circularly symmetric, then for any φ we have that

E
{
eiφ z

}
= E {z}, (A.2)

so z must have zero mean:

E {z} = 0. (A.3)

If z is circularly symmetric Gaussian (with zero mean), then we write for short,

z ∼ CN(0,Λ), (A.4)

where Λ is the covariance:

Λ = Cov {z}
= E

{
z zH

}
. (A.5)

Circularly symmetric random vectors arise naturally in the modeling of noise, where the

absolute phase is random. They also naturally arise in models of wireless communications

links, where transmitters and receivers are separated by hundreds of wavelengths or more,

and it is perfectly accurate to treat the overall absolute phase as unknown and uniformly

distributed.

Clearly, if x is an arbitrary (not necessarily circularly symmetric) zero-mean, complex

Gaussian vector, and we construct a vector

z = xeiθ, (A.6)

where θ is a uniformly distributed phase, then eiφ z has the same distribution as z for all

real-valued φ, so z is circularly symmetric.

A.2.1 Pseudo-Covariance Matrix

If z is circularly symmetric, then for any real-valued φ,

E
{
z zT

}
= E

{
eiφ z
(
eiφ z
)T}

= ei2φE
{
z zT

}
. (A.7)

Hence,

E
{
z zT

}
= 0. (A.8)

The matrix E
{
z zT

}
is called the pseudo-covariance matrix of z.

Conversely, if z is a complex Gaussian random vector and (A.8) holds, then we show in the

next section that z must be circularly symmetric.
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A.2.2 Probability Density Function

Let z be an M×1 circularly symmetric complex Gaussian vector, with its real and imaginary

parts defined as in (A.1). The covariance of z can be decomposed as follows:

Λ = Λ
′
+ iΛ′′, (A.9)

where

Λ
′
= E

{
z′z′T

}
+ E

{
z′′z′′T

}
, (A.10)

Λ
′′
= −E

{
z′z′′T

}
+ E

{
z′′z′T

}
. (A.11)

Owing to the circular symmetry,

E
{
z zT

}
=

(
E
{
z′z′T

}
− E

{
z′′z′′T

})
+ i
(
E
{
z′z′′T

}
+ E

{
z′′z′T

})
= 0. (A.12)

Therefore,

E
{
z′z′T

}
= E

{
z′′z′′T

}
, and

E
{
z′z′′T

}
= −E

{
z′′z′T

}
. (A.13)

Equations (A.10), (A.11), and (A.13) yield

E

{ [
z′

z′′

] [
z′T z′′T

]}
=

1

2

[
Λ
′ −Λ′′

−Λ′′T Λ
′

]
. (A.14)

Using (A.14), the formula for the probability density of the 2M real-valued components of

z is

pz (ζ ) =

exp 
�−1

2

[
ζ ′T ζ ′′T

] (1
2

[
Λ
′ −Λ′′

−Λ′′T Λ
′

] )−1 [
ζ ′

ζ ′′

]��
(2π)2M/2

�����12
[
Λ
′ −Λ′′

−Λ′′T Λ
′

]�����
1/2

, (A.15)

where ζ ′ and ζ ′′ are real-valued M × 1-vectors and ζ = ζ ′ + iζ ′′.

To evaluate the determinant and the inverse of the covariance matrix in (A.15), we perform

a block-diagonalization as follows:(
1√
2

[
IM iIM

iIM IM

] ) (
1

2

[
Λ
′ −Λ′′

−Λ′′T Λ
′

]) (
1√
2

[
IM −iIM

−iIM IM

])
=

(
1√
2

[
IM iIM

iIM IM

] ) (
1

2
√

2

[
Λ −iΛ∗

−iΛ Λ
∗

])
=

1

2

[
Λ 0

0 Λ
∗

]
, (A.16)
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where we have used the skew-symmetry of the imaginary part of the covariance,Λ′′T = −Λ′′.
The left- and right-hand factors in (A.16) are unitary, so the determinant in (A.15) is�����12

[
Λ
′ −Λ′′

−Λ′′T Λ
′

]����� = 1

22M
|Λ| ��Λ∗��

=

1

22M
|Λ|2 . (A.17)

The inverse of the covariance follows directly from (A.16):

(
1

2

[
Λ
′ −Λ′′

−Λ′′T Λ
′

])−1

=

(
1√
2

[
IM −iIM

−iIM IM

]) (
2

[
Λ
−1 0

0
(
Λ
∗)−1

]) (
1√
2

[
IM iIM

iIM IM

])
. (A.18)

Using (A.18), the quadratic quantity in (A.15) is evaluated as follows:

1

2

[
ζ ′T ζ ′′T

] (1
2

[
Λ
′ −Λ′′

−Λ′′T Λ
′

])−1 [
ζ ′

ζ ′′

]
=

1

2

[
ζH −iζT

] [ Λ−1 0

0
(
Λ
∗)−1

] [
ζ

iζ∗

]
= ζH

Λ
−1ζ . (A.19)

Substitution of (A.17) and (A.19) into (A.15) yields the equivalent probability density,

pz (ζ ) =
1

πM |Λ| exp
(
−ζH
Λ
−1ζ
)
. (A.20)

Note from (A.20) that z and eiφ z have the same distribution for any φ. Hence, any random

vector with the probability density in (A.20) is circularly symmetric Gaussian. It also

follows that if a complex Gaussian random vector satisfies (A.8), then it must be circularly

symmetric.

A.2.3 Linear Transformations

Suppose z is circularly symmetric Gaussian with covariance Λ, let A be an arbitrary

deterministic, complex-valued matrix, and let y = Az. Since the real and imaginary parts

of y are linear functions of the real and imaginary parts of z, y is a complex Gaussian

vector. Furthermore, since z is circularly symmetric, eiφ z has the same distribution as z for
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any φ. Hence, eiφy = eiφAz has the same distribution as y for any φ. It follows that y is

circularly symmetric Gaussian. Its covariance matrix is

Cov {y} = E
{
y yH

}
= E

{
AzzHAH

}
= AΛAH. (A.21)

A.2.4 Fourth-Order Moment

In this subsection, we compute the moment E
{
‖ z‖4

}
, which is used in many places in the

text.

Consider first the scalar case, and let z ∼ CN(0, 1). Then

E
{
|z |4

}
=

1

π

∫
C

dz |z |4e−|z |
2

=

1

π

∫ ∞

0

∫ π

−π
dr dθ r5e−r2

= 2

∫ ∞

0

dr r5e−r2

=

∫ ∞

0

du u2e−u

= 2. (A.22)

Next, in the vector-valued case, let z = [z1, . . . , zM]T be a vector with distribution

z ∼ CN(0, IM ). Then

E
{
‖ z‖4

}
= E

⎧⎪⎪⎨⎪⎪⎩
�
M∑

m=1

|zm |2��
2⎫⎪⎪⎬⎪⎪⎭

=

M∑
m=1

M∑
m′=1

E
{
|zm |2 |zm′ |2

}
=

M∑
m=1

E
{
|zm |4

}
+

M∑
m=1

M∑
m′=1
m′�m

E
{
|zm |2 |zm′ |2

}
= M (M + 1), (A.23)

where in the last equality we used (A.22).
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Appendix B

USEFUL RANDOM MATRIX RESULTS

Let Z be an M × K , M ≥ K , matrix whose elements are i.i.d. CN(0, 1) random variables.

In this appendix, we provide self-contained proofs of the following two facts:

E

{ [(
ZHZ

)−1
]

kk

}
=

1

M − K
, k = 1, . . . ,K, (B.1)

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1[(

ZHZ
)−1

]
kk

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= M + 1 − K, k = 1, . . . , K . (B.2)

Equations (B.1)–(B.2) are the two principal random matrix-theoretic results used in this

book. Strictly speaking, there is no new material in this appendix, but we are not aware of

a simpler treatment elsewhere.

We first show in Section B.1 that all diagonal elements of
(
ZHZ

)−1
have the same marginal

distributions. In Section B.2, we then obtain the explicit marginal density. Finally, in

Section B.3 we compute the expectations in (B.1)–(B.2).

B.1 Symmetry

Let P be a K × K permutation matrix – a unitary matrix that shuffles the order of the

elements of a vector. Pre-multiplication and post-multiplication of a K × K matrix by P

and PH respectively shuffles the elements of the matrix while retaining the same diagonal

elements in shuffled form. We shuffle the inverse of the Gramian of Z as follows:

P
(
ZHZ

)−1
PH
=

(
PZHZPH

)−1

=

(
Z ′HZ ′

)−1
, (B.3)
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where Z′ = ZPH. But the density of Z is invariant to multiplications by a unitary matrix,

from which we conclude that the distribution of the shuffled matrix P
(
ZHZ

)−1
PH is the

same as that of the original matrix
(
ZHZ

)−1
. Hence the diagonal elements of

(
ZHZ

)−1

have identical marginal distributions.

B.2 QR Factorization

The QR factorization represents the matrix Z as the product of an M ×M unitary matrix Q

and an M × K upper-triangular matrix R,

Z = QR

= Q

[
R̄

0

]
, (B.4)

where R̄ is K × K upper-triangular. In terms of this factorization, we have

(
ZHZ

)−1
=

(
RHQHQR

)−1

=

(
RHR

)−1

=

(
R̄

H
R̄
)−1

= R̄
−1
(
R̄
−1
)H
. (B.5)

We focus on the K th diagonal element, and recall that the inverse of an upper-triangular

matrix is also upper-triangular,[(
ZHZ

)−1
]

KK
=

[
R̄
−1
(
R̄
−1
)H]

KK

=

[
R̄
−1
]

KK

[(
R̄
−1
)H]

KK

=

1

|[R̄]KK |2
, (B.6)

where [R̄]KK is the (K, K )th element of R̄.

We construct the unitary factor, Q, as a product of complex Householder matrices. Given

an M × 1 unitary vector a, ‖a‖2 = 1, the following unitary matrix:

H = IM − (e1 − a) (e1 − a)H

1 − aHe1

, (B.7)
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collapses the vector a into its first entry,

HHa = e1, (B.8)

where e1 is the first column of IM .

We form a unitary vector from the first column of the matrix Z , a = z1/‖ z1‖, and construct

the associated Householder matrix, denoted H1. The multiplication of the matrix Z by

HH
1

from the left does two things: first, it collapses the first column into its first entry,

HH
1 z1 = ‖z1‖ e1; second, it transforms the remaining columns of Z without altering

their statistical properties. Specifically, conditioned on z1, the product of HH
1 and the

remaining columns of Z comprise independent CN(0, 1) elements because the distribution

of independent CN(0, 1) random variables is invariant to unitary transformations. This

conditional density does not depend on H1 nor does it depend on z1, and hence the entities

are statistically independent. Note that ‖ z1‖2 is the sum of absolute squares of M CN(0, 1)

random variables, so it is equal to one-half of a chi-square random variable with 2M degrees

of freedom. Symbolically, we summarize the action of the Householder matrix as follows:

HH
1 Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1
2
χ2

2M
CN(0, 1) · · · CN(0, 1)

0 CN(0, 1) · · · CN(0, 1)
...

... · · · ...

0 CN(0, 1) · · · CN(0, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.9)

where it is understood that all elements of the matrix are statistically independent. Next we

apply a Householder matrix that leaves the first column and first row of HH
1 Z untouched,

but which collapses the last M − 1 elements of the second column,

H2 =

[
1 0H

0 H̄2

]
, (B.10)

where H̄2 is an (M − 1) × (M − 1) Householder matrix. The application of this second

Householder transformation yields the following:

HH
2 H

H
1 Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1
2
χ2

2M
CN(0, 1) CN(0, 1) · · · CN(0, 1)

0
√

1
2
χ2

2(M−1)
CN(0, 1) · · · CN(0, 1)

0 0 CN(0, 1) · · · CN(0, 1)
...

...
... · · · ...

0 0 CN(0, 1) · · · CN(0, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.11)
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We proceed in analogous fashion, and after the application of the K th and final Householder

transformation we have

HH
K · · ·HH

2 H
H
1 Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1
2
χ2

2M
CN(0, 1) · · · CN(0, 1)

0
√

1
2
χ2

2(M−1)
· · · CN(0, 1)

...
...

. . .
√

1
2
χ2

2(M+1−K)

0 0 · · · 0
...

... · · · ...

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.12)

Hence we have shown that |[R̄]KK |2 has the same distribution as the sum of absolute squares

of M + 1 − K independent CN(0, 1) random variables.

B.3 Expectations

In what follows, let y denote an (M + 1 − K ) × 1 vector of independent CN(0, 1) random

variables. Given (B.6), the symmetry properties of
(
ZHZ

)−1
and the distribution derived in

Section B.2, we can now compute the first desired expectation. We obtain, for k = 1, . . . , K ,

E

{ [(
ZHZ

)−1
]

kk

}
= E

{ [(
ZHZ

)−1
]

KK

}

= E

{
1

|[R̄]KK |2
}

= E

{
1

‖y‖2
}

=

1

πM+1−K

∫
CM+1−K

dy
exp
(
−‖y‖2

)
‖y‖2 . (B.13)

At this point, we utilize the identity,

1

‖y‖2 =
∫ ∞

0

ds exp
(
−s‖y‖2

)
(B.14)

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.011
https:/www.cambridge.org/core


Section B.3 Expectations 173

within (B.13). After changing orders of integration,1 we obtain the final result,

E

{ [(
ZHZ

)−1
]

kk

}
=

∫ ∞

0

ds
1

πM+1−K

∫
CM+1−K

dy exp
(
−s‖y‖2

)
exp
(
−‖y‖2

)

=

∫ ∞

0

ds
1

(1 + s)M+1−K

=

1

M − K
, k = 1, . . . , K . (B.15)

The second required expectation (that of the double inverse) is simpler,

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1[(

ZHZ
)−1

]
kk

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1[(

ZHZ
)−1

]
KK

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= E

{
|[R̄]KK |2

}
= M + 1 − K, k = 1, . . . , K . (B.16)

1Interchanging the order of integration is possible here since the integrand is positive and continuous.
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Appendix C

CAPACITY AND CAPACITY BOUNDING

TOOLS

This appendix reviews some basic results related to capacity and capacity bounds for scalar

point-to-point, Point-to-Point MIMO and Multiuser MIMO channels.

C.1 Jensen’s Inequality

Jensen’s inequality [146, Theorem 2.6.2] is a useful formula which states that for any random

variable z, and an arbitrary convex ∩ function f (·) (see Figure C.1),

E { f (z)} ≤ f (E {z}). (C.1)

Two instances of (C.1) are particularly useful:

• With f (z) = log2(1 + z), for z > 0, the second derivative of log2(1 + z) with respect

to z is negative, so f (z) is convex ∩. Equation (C.1) gives directly

E
{
log2(1 + z)

} ≤ log2 (1 + E {z}). (C.2)

• With z = 1/u for z > 0, the second derivative of the function log2(1 + 1/u) with

respect to u is positive. Consequently, − log2(1 + 1/u) is convex ∩. The application

of (C.1) gives

E
{
log2(1 + z)

} ≥ log2


������
1 +

1

E

{
1

z

}
�������
. (C.3)
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z

f (z)

Figure C.1. A function f (·) is convex ∩ if any chord lies below the curve.

C.2 Point-to-Point Scalar Channel

This section complements Section 2.3, where point-to-point scalar channels were intro-

duced. Figure 2.9 recapitulates the different channel models of concern, and Table 2.3

summarizes the main results.

The capacity of a general point-to-point scalar channel is [146, 147]1

C = max
px (·)

E{|x |2}≤1

I {y; x} , (C.4)

where E
{
|x |2

}
≤ 1 represents a power constraint2 and I {y; x} is a quantity called the mutual

information between the channel input x and its output y,

I {y; x} = h {y} − h {y |x} , (C.5)

where h {y} and h {y |x} are defined as follows:

h {y} = −E
{
log2

(
py

(
y
))}

= −
∫

dt py (t) log2

(
py (t)

)
, (C.6)

h {y |x} = −E
{
log2

(
py |x
(
y |x) )}

= −
∫

dt′ px

(
t′
) ∫

dt py |x
(
t |t′) log2

(
py |x
(
t |t′)) . (C.7)

1The notation px (·) and the term “probability density” imply that x is a continuous random variable.

However, all random variables of concern in this chapter could have discrete or mixed distributions, in which

case similar definitions and results apply but additional notation is needed for a mathematically rigorous

treatment.

2The power normalization is arbitrary – as in Section 2.1.8 we can assume a unit power constraint and

adjust the SNR by scaling the transmitted symbol by a factor
√
ρ.
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The quantities h {y} and h {y |x} are called differential entropy and conditional differential

entropy, respectively. In (C.4), the maximization is with respect to the probability

distribution px (·), subject to the power constraint. One can show that I {y; x} is symmetric,

in the sense that

I {y; x} = I {x; y}
= h {x} − h {x |y} . (C.8)

For vector-valued random variables x and y, I {y; x}, h {x} and h {y |x} are defined similarly.

Although the quantity I {x; y} has some intuitive appeal – the reduction in uncertainty

(entropy) of x due to the measurement of y – it only takes on concrete meaning in the

context of one of two coding theorems. The noisy channel coding theorem concerns the

possibility of reliable transmission at any rate less than capacity, while the converse to

the coding theorem asserts the impossibility of reliable transmission at rates greater than

capacity. Proofs of the noisy channel coding theorem entail a random codebook which

maps sequences of message bits into sequences of statistically independent symbols chosen

according to the probability density px (·).

C.2.1 Entropy is Invariant to Translation

The entropy of a random variable x is invariant to translation in the sense that

h {x + a} = h {x} for any constant a. To see this, note that if x′ = x + a, then

px′ (t) = px (t − a). Hence,

h
{
x′
}
= −
∫

dt px′ (t) log2

(
px′ (t)

)

= −
∫

d(t − a) px (t − a) log2

(
px (t − a)

)

= −
∫

dt px (t) log2

(
px (t)

)
= h {x} . (C.9)

Similarly, conditional entropy is invariant to translation in the sense that

h {x + a + by |y} = h {x |y} for any two random variables x and y and constants a and

b.

C.2.2 The Gaussian Distribution Maximizes Entropy

We first derive a subsidiary result that will be used repeatedly. Let x be a random variable

that satisfies Var {x} ≤ 1. Then h {x} is maximized if x ∼ CN(0, 1). To establish this fact,
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first note that by the translation invariance property (Section C.2.1), the mean of x does not

affect h {x}. Hence, we can without loss of generality assume that E {x} = 0, in which case

the constraint Var {x} ≤ 1 is equivalent to E
{
|x |2

}
≤ 1. Next define the auxiliary function

q(t) according to

q(t) =
1

π
e−|t |

2

. (C.10)

Note that q(t) is formally identical to the probability density function of a CN(0, 1) random

variable. Then upper bound h {x} as follows:

h {x} = −E
{
log2

(
px (x)

) }
= E

{
log2

(
q(x)

px (x)

)}
− E
{
log2

(
q(x)
)}

(a)≤ log2

(
E

{
q(x)

px (x)

})
− E
{
log2

(
q(x)
)}

(b)
= 0 − E

{
log2

(
q(x)
)}

(c)
= −E

{
− log2(π) − |x |2 log2(e)

}
(d)≤ log2(πe), (C.11)

where the expectations are taken with respect to the probability density function px (·). In

(C.11), (a) follows from Jensen’s inequality, (C.1), together with the fact that the logarithm

is convex ∩, (b) follows from the fact that

E

{
q(x)

px (x)

}
=

∫
dt px (t)

q(t)

px (t)

= 1, (C.12)

in (c) we inserted (C.10), and in (d) we used the constraint E
{
|x |2

}
≤ 1. Equality in (a)–(d)

holds precisely if px (t) = q(t), in which case x ∼ CN(0, 1).

More generally, for any random variable x with given variance, an upper bound on entropy

is h {x} ≤ log2 (πeVar {x}) with equality if x is circularly symmetric Gaussian with zero

mean. Also, if x and y are two, possibly statistically dependent, random variables, then the

conditional entropy satisfies

h {x |y} ≤ E
{
log2

(
πeVar {x |y})}, (C.13)

with equality if the conditional density px |y (·|·) is circularly symmetric Gaussian.
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In the vector-valued case, for given Cov
{
xxH

}
,

h {x} ≤ log2
���πeCov

{
xxH

}��� , (C.14)

with equality if x is circularly symmetric Gaussian. The above proof applies in this case as

well, where the function q(·) is the probability density function of a multivariate circularly

symmetric Gaussian vector having the specified covariance.

C.2.3 Deterministic Channel with Additive Gaussian Noise

Consider the deterministic channel with additive Gaussian noise; see Section 2.3.1 and

Figure 2.9(a). To perform the maximization in (C.4), first note that the constraint

E
{
|x |2

}
≤ 1 implies that E

{
|y |2

}
≤ 1 + ρ. Then write I {y; x} as follows:

I {y; x} = h {y} − h {y |x}
(a)
= h {y} − h

{
y − √ρx |x}

(b)
= h {y} − h {w}
= h {y} − log2(πe)

(c)≤ log2

(
1 + ρ

)
, (C.15)

where in (a) we used the fact that translation does not change the entropy (see Section C.2.1),

(b) follows from the fact that x and w are independent so h
{
y − √ρx |x

}
= h {w |x} = h {w},

and (c) follows by applying the result obtained in Section C.2.2. Equality in (c) holds

precisely if y ∼ CN(0, 1 + ρ). The particular choice of input distribution x ∼ CN(0, 1)

satisfies the constraint E
{
|x |2

}
≤ 1 and yields y ∼ CN(0, 1 + ρ). Hence, under the given

constraints the maximum possible value of I {y; x} is C in (2.38), and the distribution of x

that achieves this capacity is x ∼ CN(0, 1).

C.2.4 Deterministic Channel with Additive Non-Gaussian Noise

The next case of concern is that of a deterministic channel with additive non-Gaussian

noise; see Section 2.3.2 and Figure 2.9(b). In what follows, we derive the capacity bound

(2.40), which is substantially a special case of results in [148, 149].
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First, note that for any distribution px (·),

C ≥ I {y; x}
= h {x} − h {x |y}
(a)≥ h {x} − E

{
log2

(
πeVar {x |y})}

(b)≥ h {x} − log2

(
πeE {Var {x |y}})

= h {x} − log2

(
πeE

{
|x − E {x |y} |2

})
(c)≥ h {x} − log2

(
πe

Var {x}
1 + ρVar {x}

)
, (C.16)

where in (a) we used the result in Section C.2.2, in (b) we used Jensen’s inequality (see

(C.2)), in (c) we used the fact that E
{
|x − E {x |y} |2

}
is the mean-square error associated

with the MMSE estimate of x given y, which cannot exceed that of the linear MMSE

estimator, which in turn is equal to Var {x}/(1 + ρVar {x}) . In (c), the fact that x and w are

uncorrelated is crucial.

The bound in (C.16) holds irrespective of the distribution px (·). By taking x to be CN(0, 1),

the power constraint E
{
|x |2

}
≤ 1 is satisfied and we have h {x} = log2(πe) and Var {x} = 1.

With this choice of px (·), (C.16) yields

C ≥ log2(πe) − log2

(
πe

1

1 + ρ

)

= log2(1 + ρ), (C.17)

which is (2.40). We stress, however, that the optimal input distribution px (·) is in general

not Gaussian.

The above capacity bound is quite powerful, and is sufficient to derive all of the principal

capacity bounds in Chapters 3 and 4. On the downlink, Bayesian statistics represent the

received signal as a known gain times the desired signal, plus uncorrelated noise. On the

uplink, the base station first performs linear decoding, then it conveniently forgets that it

knows the channel estimates and uses Bayesian statistics to represent the processed signal

for each terminal as a known gain times the desired signal, plus uncorrelated noise.

C.2.5 Fading Channel with Additive Gaussian Noise and Perfect CSI at the Receiver

Next, consider the point-to-point, scalar fading channel with additive Gaussian noise defined

in Section 2.3.3 and Figure 2.9(c). The receiver knows g, and hence effectively observes
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(
y, g
)

instead of only y. Hence, the pertinent mutual information in this case – to be used

in lieu of I {y; x} – is I {y, g; x}. We calculate I {y, g; x} as follows:

I {y, g; x} = h {y, g} − h {y, g |x}

= E

{
log2

(
py,g |x (y, g |x)

py,g (y, g)

)}

= E

{
log2

(
py |g,x (y |g, x)pg,x (g, x)

px (x)py,g (y, g)

)}

(a)
= E

{
log2

(
py |g,x (y |g, x)pg (g)px (x)

px (x)py,g (y, g)

)}

= E

{
log2

(
py |g,x (y |g, x)

py |g (y |g)

)}

= E

{
E

{
log2

(
py |g,x (y |g, x)

py |g (y |g)

) ����� g
}}
, (C.18)

where in (a) we exploited the fact that x and g are independent. The outer expectation on

the right-hand side of (C.18) is with respect to g. In view of the results in Section C.2.3,

the expression inside the outer expectation on the right-hand side of (C.18) is maximized

for any g by taking x ∼ CN(0, 1), and (2.42) follows.

C.2.6 Fading Channel with Additive Non-Gaussian Noise and Side Information

The final case of concern is that of a fading channel with non-Gaussian additive noise and

side information; see Section 2.3.5 and Figure 2.9(e).

The relevant mutual information between x and (y,Ω) is I {y,Ω; x}. The optimal input

distribution px (·), and the resulting capacity C, are unknown in general. To derive a bound,

note that for any distribution of x,

C ≥ I {y,Ω; x}
= h {x} − h {x |y,Ω}

= E

{
log2

(
px |y,Ω(x |y,Ω)

px (x)

)}

(a)
= E

{
log2

(
px |y,Ω(x |y,Ω)

px |Ω(x |Ω)

)}

= E

{
E

{
log2

(
px |y,Ω(x |y,Ω)

px |Ω(x |Ω)

) �����Ω
}}
, (C.19)
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Figure C.2. Uplink Point-to-Point MIMO channel.

where in (a) we used that x andΩ are independent. The right-hand side of (C.19) comprises

an outer expectation with respect to Ω; everything inside is as in Section C.2.4. Hence,

for every value of Ω we can lower-bound the conditional expectation using the chain of

inequalities in (C.16). This yields, irrespective of the distribution of x,

E

{
log2

(
px |y,Ω(x |y,Ω)

px |Ω(x |Ω)

) �����Ω
}

≥h {x} − log2

(
πeE {Var {x |y,Ω}|Ω})

≥h {x} − log2

(
πeE

{
|x − E {x |y,Ω}|2���Ω})

(a)≥ h {x} − log2

(
πeVar {x} − πe

ρ |E {g |Ω}|2 (Var {x})2

ρ |E {g |Ω}|2 Var {x} + ρVar {g |Ω}E {|x |2} + Var {w |Ω}

)
,

(C.20)

where in (a) we used (2.45), and when computing the mean-square error of the linear

MMSE estimate conditioned on Ω, we wrote y in (2.41) in terms of a term comprising a

deterministic gain multiplied by x plus two mutually uncorrelated terms:

y =
√
ρE {g |Ω}x + √ρ(g − E {g |Ω})x + w. (C.21)

By taking x to be CN(0, 1), the constraint E
{
|x |2

}
≤ 1 is satisfied and h {x} = log2(πe).

The expectation of the right-hand side of (C.20) with respect to Ω and its subsequent

simplification gives (2.46).
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C.3 Point-to-Point MIMO Channel

With reference to Section 1.1, the Point-to-Point MIMO channel arises when both the base

station and the terminal use arrays of phase-coherent cooperating antennas. For the sake of

argument, consider the uplink, that is, the transmission from a terminal with K antennas to

a base station with M antennas; see Figure C.2. The signal model is formally identical to

that of uplink Multi-User MIMO (Section 2.2.1):

y =
√
ρGx + w, (C.22)

with the crucial difference that now a central entity creates the vector of transmitted signals:

y =
[
y1, . . . , yM

]T
is a vector of receive signals, x � [x1, . . . , xK ]T is a vector of transmit

signals, w = [w1, . . . ,wM]T comprises i.i.d. CN(0, 1) noise, and

G =

⎡⎢⎢⎢⎢⎢⎢⎣
g

1
1
· · · g

1
K

...
. . .

...

g
M
1
· · · g

M
K

⎤⎥⎥⎥⎥⎥⎥⎦ , (C.23)

where g
m
k

is the channel gain between terminal antenna k and base station antenna m.

C.3.1 Deterministic MIMO Channel

We first consider the case that G is a deterministic constant, and hence is known to both

the terminal and the base station. The capacity is obtained by maximizing the mutual

information between x and y with respect to px (·), under a constraint on the total emitted

power,

E
{
‖x‖2

}
≤ 1. (C.24)

Similarly to Section C.2.3, for any px (·),

I {y; x} = h {y} − h {y |x}
= h {y} − h

{
y − √ρGx |x}

= h {y} − h {w}
= h {y} − log2 |πeIM |
(a)≤ log2

���πe
(
IM + ρGQGH

) ��� − log2 |πeIM |
= log2

���IM + ρGQGH��� , (C.25)

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.012
https:/www.cambridge.org/core


184 Capacity and Capacity Bounding Tools Appendix C

where we defined

Q = Cov {x}, (C.26)

and where in (a) we have equality if y is circularly symmetric Gaussian – see Section C.2.2

– which is the case if x is circularly symmetric Gaussian. Note that x must have zero

mean; if not, then its mean could be subtracted, which would reduce E
{
‖x‖2

}
but not affect

I {y; x}. Consequently,

Tr {Q} = E
{
‖x‖2

}
. (C.27)

Maximization of the right-hand side of (C.25) with respect to Q under the constraint (C.24)

gives the capacity,

C = max
Q�0

Tr{Q}≤1

log2
���IM + ρGQGH��� . (C.28)

Performing the optimization in (C.28) entails performing a simple procedure called

waterfilling [3, 29]. The optimal Q is positive semi-definite, Q � 0, and hence there

exists a random vector x with covariance matrix Q. The eigenvectors of the optimal Q

coincide with the right singular vectors of G or, equivalently, the eigenvectors of GHG.

This means that the transmitter should transmit a superposition of signals beamformed by

these singular vectors.

In order to achieve the capacity C in (C.28), the transmitter must know GHG. The optimum

transmit covariance Q will change as the channel matrix changes, and the acquisition of

this channel information requires some expenditure of resources. To construct a transmit

scheme that works reasonably well (but is not optimal) for any G, it is common to take

Q =
1

K
IK . (C.29)

Note that Q in (C.29) satisfies the power constraint (C.24). Under the constraint that Q has

the form (C.29), the capacity is

C = log2

����IM +
ρ

K
GGH���� . (C.30)

To achieve a rate equal to C in (C.30), the transmitter does not need to know G, but it must

still know the value of C so that it can select a codebook with an appropriate rate.

At first glance, Point-to-Point MIMO with CSI available at both ends of the link would

appear extremely attractive by virtue of its optimality and simplicity, since it permits an
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effective diagonalization of the channel through joint application of the singular value

decomposition. But on further inspection, the benefits would almost never justify the effort

required to obtain the CSI. If all of the singular values of G were equal, then the optimized

value of (C.28) would be equal to that of (C.30). Conversely, the regime where (C.28) most

outperforms (C.30) is when G has a rank of one, in which case the MIMO link has been

deployed in the most unfavorable possible propagation environment.

C.3.2 Fading MIMO Channel with Perfect CSI at the Receiver

Next we consider the case that G is random, and that the encoding at the transmitter is done

over a block that spans many realizations of the channel and the noise, as in Section 2.3.3

for the scalar case. Then in (C.22), G is random and a new realization of G is drawn

for each new transmitted vector x. The relevant mutual information is I {y, G; x} and an

argument similar to that in Section C.2.5 shows that if G is known to the receiver but not to

the transmitter, the capacity is

C = max
Q�0

Tr{Q}≤1

E
{
log2

���IM + ρGQGH���} . (C.31)

The capacity-achieving distribution of x is circularly symmetric Gaussian with zero mean

and the covariance matrix Q that solves (C.31).

Since the transmitter does not know G, Q must be deterministic and not depend on G. One

can show that in i.i.d. Rayleigh fading, where {gm
k
} are independent CN(0, 1), the optimal

covariance matrix Q is given by (C.29); see [3]. Intuitively, since the singular vectors of

G are isotropically distributed, the channel does not favor any direction over any other, and

therefore the transmit covariance should not have any special structure either.

C.4 Multiuser MIMO Channel

The Multiuser MIMO scenario arises when a multiple-antenna base station communicates

with a multiplicity of terminals simultaneously in the same time-frequency resource; see

Section 1.2. Here we treat only the case of single-antenna terminals, although capacity

results are known also for the general case of multiple antennas at the terminals.

There are two cases of principal interest: the uplink (see Figure 1.3(a)) and the downlink

(see Figure 1.3(b)). Detailed models are given in Section 2.2.1. In information-theoretic

analysis, the uplink channel is often called a multiple-access channel and the downlink

channel is called a broadcast channel. We stress that in the broadcast channel, each

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.012
https:/www.cambridge.org/core


186 Capacity and Capacity Bounding Tools Appendix C
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Figure C.3. Rate region for the case of two terminals, K = 2.

terminal receives different data; the special case when the same data are transmitted to all

terminals is referred to as a “multicast” channel and is not of interest here. Also, in practice,

there may be multiple base stations, each one serving a different set of terminals associated

with it. Such a setup is known as a (MIMO) interference channel and is not treated here.

In both the uplink and the downlink, there are K simultaneously active communication

links in each time-frequency resource. Suppose that at some operating point, the K links

collectively achieve the rate K-tuple (R1, . . . , RK ). The set of rate tuples {(R1, . . . , RK )}
that is achieved for some permissible choice of operating parameters (e.g., coding scheme,

and transmit powers) is called an achievable rate region; see Figure C.3.

In many cases, the rate region is difficult to characterize or not even of interest. One can

then define a scalar measure that acts as a proxy for the whole region. Two common such

measures are:

• The sum rate, Rsum. This is the largest value of
∑K

k=1 Rk for any point in the region.

It is clear that the corresponding rate tuple(s) (R1, . . . , RK ) must be located on the

outer boundary of the region (known as the Pareto boundary). For the special case

of K = 2, Rsum corresponds to the outermost boundary point that osculates a straight

line with slope −1.

• The max-min rate, Rmax-min. This is the value of
∑K

k=1 Rk at the boundary point where

R1 = . . . = RK , corresponding to a “fair” (in the egalitarian sense) operating point.

In the case of K = 2, Rmax-min corresponds to the point where the outer boundary

intersects a straight line that goes through the origin and has slope +1.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.012
https:/www.cambridge.org/core


Section C.4 Multiuser MIMO Channel 187

The largest possible rate region that can be obtained under the given power constraint (to

be discussed in more detail shortly) is called the capacity region. The capacity region is

always convex. This is so because if A and B are two points in the capacity region, then any

point on the line segment AB can be expressed as τA + (1 − τ)B for some τ, 0 ≤ τ ≤ 1,

and can be achieved by operating at A a fraction τ of the time and at B a fraction 1 − τ of

the time. For a given capacity region, the sum capacity, Csum, and the max-min capacity,

Cmax-min, are defined analogously to Rsum and Rmax-min.

An important distinction between the Point-to-Point MIMO channel (see Sections 1.1 and

C.3) and the Multiuser MIMO channel is that of cooperation. In the point-to-point case,

the antennas in the array cooperate by jointly and phase-coherently processing all signals,

both at the transmitter and at the receiver. By contrast, in the multiuser case, while the base

station antennas cooperate, each terminal performs coding and decoding independently;

different terminals do not cooperate. Another distinction is that of power constraints: in the

multiple-access (uplink) channel, each terminal is subject to an individual power constraint,

whereas in the point-to-point and the broadcast (downlink) channel, the power constraint is

specified in terms of the total radiated power summed over all antennas. Many equations

are formally similar or identical between the Point-to-Point MIMO and Multiuser MIMO

cases, but their operational meanings are different.

The following two sections are only an introduction to multiuser information theory. The

intention is to give the interested reader some intuition as to how optimal performance can

be achieved, and in so doing to impart first, a sense for the complexity of the subject and,

second, an appreciation of the comparative simplicity of the linear precoding and decoding

that Massive MIMO employs.

C.4.1 Multiple-Access Channel (Uplink)

We first consider the multiple-access channel. Referring to Section 2.2.1, the model is

y =
√
ρulGx + w, (C.32)

where x is transmitted, y is received, G represents the channel, and w is noise with

independent CN(0, 1) elements. As before, ρul quantifies the SNR. The power constraint is

defined individually for each terminal,

E
{
|xk |2

}
≤ 1, (C.33)

for all k (inequality because the kth terminal could, in principle, opt for not spending its

maximum allowed power). The constraint (C.33) can be easily modified to the case that

the terminals have different power constraints – such a change could simply be absorbed by

scaling the columns of G.
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Sum Capacity

The sum capacity is [22, 150]:

Csum = log2
���IM + ρulGGH��� . (C.34)

To achieve the sum capacity in (C.34), the base station must know G and each terminal

must know at what rate to transmit.

Formally, (C.34) is identical to the capacity of the Point-to-Point MIMO uplink channel,

(1.1), under the constraint that all antennas emit independent streams with unit power.

However, this similarity is superficial since in the model considered here, the transmit

antennas (terminals) cannot cooperate, whereas in the point-to-point case they can.

Proof of (C.34) for K = 2

In what follows, we give a simple proof that (C.34) is the sum capacity, for the special

case of K = 2 terminals. To simplify notation, we set ρul = 1. (A different value of ρul

can be handled by simply scaling G.) Suppose the terminals use Gaussian codebooks and

transmit with the maximum permitted power, and that the base station operates as follows.

First, x1 is decoded by treating the quantity w + g2x2 as noise, albeit correlated over its M

components. We process the received signal by multiplying by a whitening operator,

(
IM + g2g

H
2

)−1/2
y =
(
IM + g2g

H
2

)−1/2
g1x1 + w′, (C.35)

where the components of w′ are independent CN(0, 1). Hence, we have the equivalent

of a single-input multiple-output AWGN channel, a special case of the channel treated in

Section C.3.1. Its rate is

R1 = log2

(
1 + gH

1

(
IM + g2g

H
2

)−1
g1

)
. (C.36)

The rate in (C.36) can be achieved without any knowledge of what terminal 2 transmitted;

hence, whatever terminal 1 transmitted – once decoded – can be subtracted from y. This

results in the following interference-free effective received signal:

y′ = g2x2 + w, (C.37)

from which x2 can be decoded by multiplying with gH
2
/��g2

��2. The SNR in the filter output

is ��g2
��2

and hence the rate is

R2 = log2

(
1 + ��g2

��2
)
. (C.38)
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R1

R2

A A′

B′

B

(C.40)

(C.41)

(C.42)

Figure C.4. Capacity region for the multiple-access channel (uplink), in the special case of

K = 2 terminals.

We take the sum of (C.36) and (C.38) as follows:

R1 + R2 = log2

(
1 + ��g2

��2
)
+ log2

(
1 + gH

1

(
IM + g2g

H
2

)−1
g1

)
(a)
= log2

���IM + g2g
H
2
��� + log2

����IM +

(
IM + g2g

H
2

)−1/2
g1g

H
1

(
IM + g2g

H
2

)−1/2����
= log2

���IM + g2g
H
2
��� + 2 log2

����(IM + g2g
H
2

)−1/2���� + log2
���IM + g2g

H
2 + g1g

H
1
���

= log2
���IM + GGH���, (C.39)

which is equal to Csum in (C.34). In (a), we used Sylvester’s determinant theorem. Hence,

this strategy, known as MMSE decoding with successive interference cancellation, achieves

the sum rate (C.34).

Since performance cannot be decreased by allowing the terminals to cooperate, the capacity

of a Point-to-Point MIMO link with Q = IK provides an upper bound on the multiple-access

channel sum capacity. Hence, (C.34) is the sum capacity (for K = 2). It should be apparent

that in the above calculation the roles of the two terminals can be reversed without changing

the sum rate, however, the individual rates of the terminals are changed.
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Capacity Region

For K = 2, the capacity region has the shape of a polygon, specified by the three linear

constraints,

R1 ≤ log2

(
1 + ρul

��g1
��2
)

(C.40)

R1 + R2 ≤ log2
���IM + ρulGGH��� (C.41)

R2 ≤ log2

(
1 + ρul

��g2
��2
)
, (C.42)

as illustrated in Figure C.4. To see why the region in (C.40)–(C.42) is achievable, note first

that the successive interference cancellation strategy as described above results in the point

A′ in Figure C.4, defined by (C.36) and (C.38). By an entirely symmetric argument, we

find that the point B′ is also achievable, where R1 and R2 are given by (C.36) and (C.38) but

with g1 and g2 interchanged – here, the data of terminal 2 are the decoded first and the data

of terminal 1 second. Hence, by using time-sharing, any point on the line segment A′B′
can also be reached. Note that any point on this line segment achieves the sum rate Csum in

(C.34). Finally, it is clear that the points A and B can be achieved by activating only one

of the terminals, and, hence, any points on the lines AA′ and BB′ are achievable too. Since

any point outside of the region given by (C.40)–(C.42) would either yield a higher sum rate

than Csum or violate (C.40) respectively (C.42) in case only one terminal is transmitting, it

is clear that (C.40)–(C.42) must be the capacity region.

C.4.2 Broadcast Channel (Downlink)

Next we consider the broadcast (downlink) channel. The model is (see Section 2.2.1),

y =
√
ρdlG

Tx + w, (C.43)

where x is transmitted, G represents the channel, y is received, ρdl is the SNR, and w is

noise with independent CN(0, 1) elements. The power constraint is defined in terms of the

total radiated power,

E
{
‖x‖2

}
≤ 1. (C.44)

Sum Capacity

The sum capacity is known to be the solution of the following optimization problem:

Csum = max
νk≥0∑
K

k=1
νk≤1

log2
���IM + ρdlGDνG

H��� , (C.45)
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where ν = [ν1, . . . , νK ]T. Achieving the sum capacity in (C.45) requires that the base station

and the terminals know G.

Note that formally (C.45) is reminiscent of the expression (1.2) for the capacity of the

Point-to-Point MIMO downlink channel, with the additional restriction that all emitted

streams be independent. However, this similarity is only superficial; while (1.2) requires

that the receive antennas cooperate, (C.45) does not. In fact, in the broadcast channel, the

terminals cannot cooperate. Equation (C.45) is a much stronger result than (1.2).

The general, compact formula (C.45) for the sum capacity was derived in [21, 151].

Expressions for the whole capacity region are also available [152]. A result that is equivalent

to (C.45) for the special case of K = 2 was first given in [20].

Proof of Achievability of (C.45) for K = 2

In what follows, we give a succinct proof of achievability in the special case of K = 2. We

set ρdl = 1 for simplicity; any non-unity ρdl can easily be absorbed by scaling G.

Suppose the base station transmits

x =
√
η1a1u1 +

√
η2a2u2, (C.46)

where {u1, u2} are unit-energy (independent) symbols aimed at the two terminals, {a1, a2}
are beamforming vectors (to be chosen shortly) normalized such that

‖a1‖ = ‖a2‖ = 1, (C.47)

and {η1, η2} are relative powers spent on the transmission to terminal 1 and 2 respectively;

η1 ≥ 0 and η2 ≥ 0. For x in (C.46) to satisfy (C.44), we require that

η1 + η2 ≤ 1. (C.48)

When encoding the data aimed at terminals 1 and 2, resulting in the symbols {u1, u2}, a

technique known as dirty-paper coding [153] is used. With this technique, the information

aimed at terminal 1 is coded in such a way that it can be decoded without any degradation

caused by the interference from the concurrent transmission to terminal 2. The dirty-paper

coding theorem that makes this possible states that the capacity of an AWGN channel,

under a given power constraint, is unaffected by the presence of interference, as long as

the transmitter knows this interference and can duly take it into account in the coding. If

dirty-paper coding is applied, terminal 1 receives, after dirty-paper decoding,

y1 =
√
η1g

T
1 a1u1 + w1, (C.49)
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and terminal 2 receives

y2 =
√
η1g

T
2 a1u1 +

√
η2g

T
2 a2u2 + w2, (C.50)

where w1 and w2 are independent CN(0, 1) noises. Note that dirty-paper coding can only

be applied when encoding the information to terminal 1; operationally, in the transmitter,

u2 is decided before u1.

The SNR in the signal seen by terminal 1 is

SNR1 = η1
���gT

1 a1
���2 , (C.51)

and if interference is treated as noise, then the SINR in the signal seen by terminal 2 is

SINR2 =

η2
���gT

2
a2
���2

η1
���gT

2
a1
���2 + 1

. (C.52)

The sum rate is found by summing up the corresponding rates,

log2 (1 + SNR1) + log2 (1 + SINR2)

= log2

(
1 + η1

���gT
1 a1

���2) + log2


���1 +
η2

���gT
2
a2
���2

η1
���gT

2
a1
���2 + 1

����. (C.53)

We need to show that (C.53) can reach the optimum in (C.45). We accomplish this by

showing that for any {ν1, ν2} such that ν1 + ν2 ≤ 1, there exist (i) {η1, η2} such that

η1 + η2 ≤ 1, and (ii) vectors {a1, a2} that satisfy (C.47) such that (C.53) is equal to the

objective function in (C.45).

First, we first use a calculation entirely analogous to that in (C.39), to rewrite the objective

function in (C.45) as follows:

log2
���IM + GDνG

H���
= log2

(
1 + ν1g

H
1

(
IM + ν2g2g

H
2

)−1
g1

)
+ log2

(
1 + ν2��g2

��2
)
. (C.54)

Then, we equate the SNR and SINR that appear in (C.54) and (C.53),

ν1g
H
1

(
IM + ν2g2g

H
2

)−1
g1 = η1

���gT
1 a1

���2 , (C.55)

ν2��g2
��2
=

η2
���gT

2
a2
���2

η1
���gT

2
a1
���2 + 1

. (C.56)
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From (C.55) and (C.56), for any {ν1, ν2}, we have

η1 =

ν1g
H
1

(
IM + ν2g2g

H
2

)−1
g1���gT

1
a1
���2 , (C.57)

η2 =

ν2��g2
��2
(
η1

���gT
2
a1
���2 + 1

)
���gT

2
a2
���2 . (C.58)

By selecting {a1, a2} as follows:

a1 =

(
IM + ν2g

∗
2
gT

2

)−1
g∗

1����(IM + ν2g
∗
2
gT

2

)−1
g∗

1

����, (C.59)

a2 =
g∗

2��g2
��, (C.60)

it follows that

gH
1

(
IM + ν2g2g

H
2

)−1
g1 =

����gH
1

(
IM + ν2g2g

H
2

)−1
g1

����2
gH

1

(
IM + ν2g2g

H
2

)−1
g1

=

����gH
1

(
IM + ν2g2g

H
2

)−1
g1

����2
gH

1

(
IM + ν2g2g

H
2

)−1 (
IM + ν2g2g

H
2

) (
IM + ν2g2g

H
2

)−1
g1

=

����gH
1

(
IM + ν2g2g

H
2

)−1
g1

����2����(IM + ν2g2g
H
2

)−1
g1

����2

+ ν2
����gH

2

(
IM + ν2g2g

H
2

)−1
g1

����2
(a)
=

���gT
1
a1
���2

1 + ν2
���gT

2
a1
���2 , (C.61)

where in (a) we used (C.59). Also,

��g2
��2
=
���gT

2 a2
���2 . (C.62)
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Upon substituting (C.61) and (C.62) into (C.57) and (C.58), we obtain

η1 =
ν1

1 + ν2
���gT

2
a1
���2 , (C.63)

η2 = ν2

(
η1

���gT
2 a1

���2 + 1

)

(a)
=

ν1ν2
���gT

2
a1
���2

1 + ν2
���gT

2
a1
���2 + ν2, (C.64)

where in (a) we used (C.63). Therefore, η1 + η2 = ν1 + ν2. This implies that for any {ν1, ν2}
such that ν1 + ν2 ≤ 1, there exist {η1, η2} with η1 + η2 ≤ 1 such that (C.55) and (C.56) are

satisfied. This concludes the proof.

Note that our demonstration that the sum rate (C.45) is achievable does not prove that this

constitutes the maximum possible sum rate. A proof of this fact is considerably more

involved.

C.4.3 Fading and Imperfect CSI

For the fading Multiuser MIMO channel, assuming that the requirements on availability of

CSI as described above for a deterministic channel are satisfied, (ergodic) capacities can be

defined similarly to the scalar case, by taking expectation with respect to G.

If only imperfect CSI is available, then general expressions for the capacity region and the

sum capacity are unknown. The linear processing bounds of Chapter 3 are exceedingly

useful because they incorporate channel estimation errors, and they can closely approach

the performance of the as-yet unknown optimal nonlinear processors.
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Appendix D

ALTERNATIVE SINGLE-CELL CAPACITY

BOUNDS

The capacity bounds derived in Chapter 3 were chosen for their utility and tractability.

However, these are not the only possible bounds. In this appendix, we derive alternative

bounds that, in some cases, may be tighter than their counterparts in Chapter 3.

D.1 Uplink Zero-Forcing

In the uplink, the variances of the effective noises in (3.23) and (3.32) depend on the

channel estimate, which itself is known by the base station. As a result, the corresponding

capacity bounds entail inconvenient expectations of logarithms of stochastic quantities. In

Chapter 3, we circumvented this difficulty via the “use and forget CSI” trick,which converted

the problem into one that was amenable to the bounding technique of Section 2.3.2. We

point out that the same issue does not occur in the case of the downlink, where the terminal

is ignorant of the channel estimate.

D.1.1 Capacity Lower Bound via Jensen’s Inequality

Jensen’s inequality – see Section C.1 – circumvents the difficulty of taking the expectation

of a logarithm by bringing the expectation inside the logarithm. We apply Jensen in two

ways: first to produce a lower bound on the expectation, second to produce an upper bound.
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The application of Jensen’s inequality to (3.26), in the form (C.3), yields

Czf,ul

inst.,k
≥ log2


�������
1 +


������

(
1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

)
E

{ [(
ZHZ

)−1
]

kk

}

ρulγkηk

�������

−1��������
= log2


�����
1 +

(M − K )ρulγkηk

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

������
, (D.1)

where we have used the identity (B.1). This argument merely reproduces the earlier “use

and forget CSI” bound in (3.28), but it is interesting that radically different approaches yield

the same bound.

D.1.2 Tightness of the Lower Bound (3.28)

We now show that the expression (3.28) is typically an excellent approximation to (3.26),

by finding an upper bound on the expectation of the logarithm (3.26). To this end, we apply

Jensen’s inequality in the form (C.2) to (3.26),

E

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
log2


������
1 +

ρulγkηk(
1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

) [(
ZHZ

)−1
]

kk

�������
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

≤ log2


�����
1 +

ρulγkηk

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1[(

ZHZ
)−1

]
kk

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
������

= log2


�����
1 +

(M + 1 − K )ρulγkηk

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

������
, (D.2)
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where we have also used the identity (B.2). Together (3.28) and (D.2) imply that

log2


�����
1 +

(M − K )ρulγkηk

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

������
≤ E

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
log2


������
1 +

ρulγkηk(
1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

) [(
ZHZ

)−1
]

kk

�������
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

≤ log2


�����
1 +

(M + 1 − K )ρulγkηk

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′

������
. (D.3)

If M � K , the gap between the left-hand side and the right-hand side of (D.3) is small,

so both inequalities are tight. In the worst case, where M = 2 and K = 1, there is a

factor-of-two gap between the lower and upper effective SINRs.

D.2 Uplink Maximum-Ratio

For uplink maximum-ratio processing, the application of Jensen’s inequality produces an

entirely new bound.

D.2.1 Capacity Lower Bound via Jensen’s Inequality

The expression (3.35) contains two random quantities, zk and zH
k
zk ′/‖ zk ‖ which are

statistically independent. The independence follows from the fact that zk and zk ′ are

independent, the quantity zk/‖ zk ‖ has unit norm, and conditioned on this unit-norm vector,

the quantity zH
k
zk ′/‖ zk ‖ is a CN(0, 1) random variable.
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We apply the inequality (C.3) to (3.35),

C
mr,ul

inst.,k
≥ E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
log2


����������
1 +

ρulγkηk ‖ zk ‖2

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′ + ρul

K∑
k ′=1
k ′�k

γk ′ηk ′

������
zH

k
zk ′

‖ zk ‖
������
2

�����������

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
≥ log2


�����������
1 +


����������
E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′ + ρul

K∑
k ′=1
k ′�k

γk ′ηk ′

������
zH

k
zk ′

‖ zk ‖
������
2

ρulγkηk ‖zk ‖2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�����������

−1������������
(a)
= log2


���������
1 +


��������

1 + ρul

K∑
k ′=1

(
βk ′ − γk ′

)
ηk ′ + ρul

K∑
k ′=1
k ′�k

γk ′ηk ′

(M − 1)ρulγkηk

���������

−1����������
= log2


��������
1 +

(M − 1)ρulγkηk

1 + ρul

K∑
k ′=1
k ′�k

βk ′ηk ′ + ρul

(
βk − γk

)
ηk

���������
, (D.4)

where in (a) we exploited the independence between zk and zH
k
zk ′/‖ zk ‖, and the fact that

E
{
‖ zk ‖−2

}
= 1/(M − 1); see (B.1).

D.2.2 Comparison of the Bounds (3.41) and (D.4)

An inspection of the two bounds (3.41) and (D.4) discloses that the latter bound has smaller

coherent beamforming gain than the former, but reduced intra-cell interference. In the

following, we assume that the same power control coefficients are used within the two
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bounds. We let

SINR(3.41) =
M ρulγkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′

, and

SINR(D.4) =
(M − 1)ρulγkηk

1 + ρul

K∑
k ′=1
k ′�k

βk ′ηk ′ + ρul

(
βk − γk

)
ηk

(D.5)

be the effective SINRs in (3.41) respectively (D.4). Then we have that

SINR(D.4) − SINR(3.41) =
ρulγkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′ − ρulγkηk

(
SINR(3.41) − 1

)
. (D.6)

Hence, (D.4) is a better capacity lower bound than (3.41) precisely when SINR(3.41) > 1.

To determine the possible gap between the two bounds, we divide both sides of (D.6) by

SINR(3.41),

SINR(D.4)

SINR(3.41)

= 1 +
ρulγkηk

1 + ρul

K∑
k ′=1
βk ′ηk ′ − ρulγkηk

(
1 − 1

SINR(3.41)

)

< 1 +
ρulγkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′ − ρulγkηk

. (D.7)

If SINR(D.4) > SINR(3.41), we have

0 < log2(1 + SINR(D.4)) − log2(1 + SINR(3.41))

= log2

(
1 + SINR(D.4)

1 + SINR(3.41)

)

< log2

(
SINR(D.4)

SINR(3.41)

)

< log2


�����
1 +

ρulγkηk

1 + ρul

K∑
k ′=1
βk ′ηk ′ − ρulγkηk

������
. (D.8)
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200 Alternative Single-Cell Capacity Bounds Appendix D

Conversely, if SINR(D.4) ≤ SINR(3.41), from (D.6) we know that SINR(3.41) ≤ 1. Thus,

0 < log2(1 + SINR(3.41)) − log2(1 + SINR(D.4))

< log2(1 + SINR(3.41))

≤ log2(2)

= 1. (D.9)

The combination of (D.8) and (D.9) yields

��log2(1 + SINR(3.41)) − log2(1 + SINR(D.4))��
< max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, log2


�����
1 +

ρulγkηk

1 + ρul

K∑
k ′=1

βk ′ηk ′ − ρulγkηk

������
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (D.10)

This shows that for any M > 1, the difference between the capacity bounds (3.41) and (D.4)

is less than a constant that does not depend on M .

Interestingly, even though the difference between the two capacity bounds is bounded, the

difference between the corresponding SINRs can be arbitrarily large. In fact, from (D.6),

we see that the difference SINR(D.4) − SINR(3.41) can become arbitrarily large as M grows,

since SINR(3.41) → ∞ when M → ∞.

D.3 Downlink Maximum-Ratio

For maximum-ratio processing in the downlink, it is possible to use an alternative

normalization when constructing the precoding matrix A. In particular, let

ak =

√
M − 1

z∗
k

‖ zk ‖2
(D.11)

in lieu of (3.57). Using (B.1) in Appendix B, we find that E
{
‖ak ‖2

}
= 1, so the power

constraint E
{
‖x‖2

}
=

∑K
k=1 ηk is satisfied. A now-familiar derivation from Chapter 3 yields

a new effective SINR within the capacity bound (3.63) but with SINRmr,dl

k
replaced with

SINRmr,dl

k

���alternative
=

(M − 1)ρdlγkηk

1 + ρdl βk

K∑
k ′=1
k ′�k

ηk ′ + ρdl(βk − γk )ηk

. (D.12)
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Upon comparing (D.12) to (3.64), we see that this new bound reduces the coherent

beamforming gain proportionately from M to M − 1, and reduces the beamforming gain

uncertainty from ρdl βkηk to ρdl(βk − γk )ηk . In practice, the difference in performance

between these two variants of maximum-ratio processing is marginal.

The new equivalent SINR (D.12) eliminates a discrepancy between the K = 1 zero-forcing

SINR and the K = 1 maximum-ratio SINR seen in Table 3.1, since, for the special case of

K = 1, the normalization (D.11) is mathematically equivalent to zero-forcing.

There are several additional, nearly equivalent, possibilities to normalize the precoder A –

for example, dividing by a constant proportional to ‖ zk ‖, Tr
{
ZZH

}
or

√
Tr
{
ZZH

}
instead

of ‖ zk ‖2.

The above bounding technique can be applied to the uplink by employing the modified

decoder, ak = zk/‖ zk ‖2, combined with the “use and forget CSI” trick. The resulting

bound, however, turns out to be identical to (D.4).
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Appendix E

ASYMPTOTIC SINR IN MULTI-CELL

SYSTEMS

Reference [26] took a non-Bayesian approach to precoding and decoding that requires no

knowledge of the large-scale fading. On the uplink, every terminal transmits data at full

power, so ηl′k = 1, which yields the following asymptotic SINR:

lim
M→∞

SINRul
lk =

γl
lk∑

l′∈Pl\{l}
γl

l ′k

(a)
=

τpρul

(
βl

lk

)2
1 + τpρul

∑
l′′∈Pl

βl
l′′k

∑
l′∈Pl\{l}

τpρul

(
βl

l′k

)2
1 + τpρul

∑
l′′∈Pl

βl
l′′k

=

(
βl

lk

)2
∑

l′∈Pl\{l}

(
βl

l′k

)2 , (E.1)

where, in (a), we used (4.4).
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On the downlink, the de-spread pilot signals, (4.1) are used directly for maximum-ratio

processing, so implicitly the power control coefficient is proportional to the variance of the

de-spread pilot signal,

ηl′k ∝ E

{���[Y ′pl′
]

k

���2
}

= 1 + τpρul

∑
l′′∈P′

l

βl′
l′′k . (E.2)

This gives the following asymptotic SINR:

lim
M→∞

SINRdl
lk =

γl
lk
ηlk∑

l′∈Pl\{l}
γl′

lk
ηl′k

=

γl
lk

(
1 + τpρul

∑
l′′∈Pl

βl
l′′k

)

∑
l′∈Pl\{l}

γl′
lk

�1 + τpρul

∑
l′′∈P′

l

βl′
l′′k

��

=

⎡⎢⎢⎢⎢⎢⎢⎣
τpρul

(
βl

lk

)2
1 + τpρul

∑
l′′∈Pl

βl
l′′k

⎤⎥⎥⎥⎥⎥⎥⎦
(
1 + τpρul

∑
l′′∈Pl

βl
l′′k

)

∑
l′∈Pl\{l}

⎡⎢⎢⎢⎢⎢⎢⎢⎣
τpρul

(
βl′

lk

)2
1 + τpρul

∑
l′′∈Pl′

βl′
l′′k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

�1 + τpρul

∑
l′′∈P′

l

βl′
l′′k

��
=

(
βl

lk

)2
∑

l′∈Pl\{l}

(
βl′

lk

)2 . (E.3)

The SINRs in (E.1) and (E.3) are equal to those obtained in [26].
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Appendix F

LINK BUDGET CALCULATIONS

The nominal uplink SNR ρul, in dB, for a terminal with unit pathloss (β = 1) can be

calculated as follows:

ρul = [uplink radiated power (dBm)]

+ [antenna gain (dB)]base station

+ [antenna gain (dB)]terminal

− [effective noise power at the base station receiver (dBm)], (F.1)

where

[effective noise power at the base station (dBm)] = [BN0 (dBm)]base station

+ [noise figure (dB)]base station . (F.2)

In (F.2), BN0 is the receiver noise power, where

N0 = kBTnoise (F.3)

is the noise power spectral density, B is the system bandwidth in Hz,

kB ≈ 1.38 × 10−23 (Joule/Kelvin) (F.4)

is the Boltzmann constant and Tnoise is the noise temperature in Kelvin.

As an example, with a system bandwidth of B = 20 MHz, an uplink radiated power of 1 W,

a base station receiver noise figure of 9 dB, a noise temperature of 300 K, a 6 dBi terminal

antenna gain, and a 0 dBi base station antenna gain, we have ρul = 128 dB.

The nominal downlink SNR ρdl is calculated analogously.
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Appendix G

UNIFORMLY DISTRIBUTED POINTS IN A

HEXAGON

This appendix shows how to generate uniformly distributed points in a hexagon. This

method is used in the numerical results in Chapter 6.

As shown in Figure G.1, a hexagon consists of three rhombuses – labeled 1, 2, and 3 in

the figure. These rhombuses can be obtained by mapping the unit square in the (u, v)-plane

onto the (x, y)-plane using the following three linear mappings:

F1 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x =

√
3

2
u

y = −1

2
u + v

, F2 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = −

√
3

2
u +

√
3

2
v

y = −1

2
u − 1

2
v

, and F3 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x = −

√
3

2
v

y = u − 1

2
v

. (G.1)

Since a linear mapping has a constant Jacobian, a point (u, v) that is uniformly distributed

in the unit square will be mapped onto a point (x, y) that is uniformly distributed in each

rhombus. Hence, K uniformly distributed points in a hexagon can be generated as follows:

1. Generate K uniformly distributed points in the interval (0, 1).

2. Let K1 be the number of points in the interval (0, 1/3), let K2 be the number of points

in the interval [1/3, 2/3), and let K3 be the number of points in the interval [2/3, 1).

We have K1 + K2 + K3 = K .

3. For n = 1, 2, 3, generate Kn uniformly distributed points in the unit square, and map

them to rhombus n via the linear mapping Fn.
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u

v

x

y

F1

F3

F2

1

2

3

Figure G.1. Linear mappings from the unit square to the rhombuses that constitute a

hexagon.
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Appendix H

SUMMARY OF ABBREVIATIONS AND

NOTATION

Abbreviations

AWGN additive white Gaussian noise

CSI channel state information

DL (dl) downlink

FDD frequency-division duplexing

i.i.d. independent and identically distributed

LoS line-of-sight

MIMO multiple-input multiple-output

MMSE minimum mean-square error

MR (mr) maximum-ratio

OFDM orthogonal frequency-division multiplexing

QAM quadrature amplitude modulation

QPSK quadrature phase shift keying

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

TDD time-division duplexing

UL (ul) uplink

UR-LoS uniformly random line-of-sight

ZF (zf) zero-forcing
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210 Summary of Abbreviations and Notation Appendix H

Mathematical Notation and Operators

i
√
−1

(·)∗ complex conjugate

(·)T transpose

(·)H conjugate transpose

[·]k the kth element of a vector

[·]kl the (k, l)th element of a matrix

IN N × N identity matrix

Dx diagonal matrix with the elements of x on its diagonal

px (·) probability density function of random variable x

px |y (·|·) probability density function of random variable x, conditioned on y

E {x} expected value of the random variable x

E {x |y} expected value of the random variable x, conditioned on y

Var {x} variance of the random variable x, E
{
|x − E {x}|2

}
Var {x |y} variance of x conditioned on y, E

{
|x − E {x |y}|2��� y}

Cov {x} covariance matrix of the random vector x

Cov {x |y} covariance matrix of x conditioned on y

|x | absolute value of the scalar x

‖x‖ Euclidean norm of the vector x

|X | determinant of the square matrix X

Tr {X } trace of the square matrix X

sinc(x) (normalized) sinc function: sinc(x) = sin(πx)/(πx)

h {x} differential entropy of x

h {y |x} conditional differential entropy of y, given x

I {y; x} mutual information between x and y

χ2
N

chi-square random variable with N degrees of freedom

CN(0, σ2) circularly sym. Gaussian variable with zero mean and variance σ2

CN(0,Λ) circularly sym. Gaussian vector with zero mean and covariance Λ(
N
n

)
binomial coefficient:

(
N
n

)
=

N!
(N−n)!n!

X � 0 the matrix X is positive semi-definite
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Symbols With a Specific Meaning Throughout the Book

M number of base station antennas

m antenna index

K number of terminals1

k, k′, k′′ terminal index

Tc coherence time (seconds)

Bc coherence bandwidth (Hz)

τc length of coherence interval in samples

τp number of pilot samples per coherence interval

τul number of uplink payload samples per coherence interval

τdl number of downlink payload samples per coherence interval

ρul uplink SNR

ρdl downlink SNR

fc carrier frequency

λ carrier wavelength

c speed of light (3 × 108 m/s)

Single-Cell Systems

hm
k

small-scale fading between terminal k and base station antenna m

βk large-scale fading between terminal k and the base station

g
m
k

channel between terminal k and base station antenna m

gk channel vector between the kth terminal and the base station

G channel matrix between all terminals and the base station

ĝ
m
k

estimate of the channel gm
k

ĝk estimate of the channel gk

Ĝ estimate of the channel G

Z normalized channel estimate Ĝ

g̃
m
k

channel estimation error, defined as ĝm
k
− gm

k

g̃k channel estimation error, defined as ĝk − gk

G̃ channel estimation error, defined as Ĝ − G

γk mean-square channel estimate ĝk
m (independent of m)

ηk power control coefficient for the kth terminal

SINRk effective SINR for the kth terminal

1Exceptionally, in Sections 1.1 and C.3, K represents the number of antennas at the terminal.
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SINR common SINR with max-min fairness power control

Multi-Cell Systems

L number of cells

l, l′, l′′ cell index

nreuse pilot reuse factor

Pl indices of the cells that use same pilot sequences as the lth cell (incl. cell l)

hlm
l ′k small-scale fading between terminal k in cell l′ and antenna m in cell l

βl
l′k large-scale fading between terminal k in cell l′ and the base station in cell l

g
lm
l ′k channel between terminal k in cell l′ and antenna m in cell l

gl
l′k channel between terminal k in cell l′ and base station l

Gl
l′ channel between the terminals in cell l′ and base station l

ĝ
lm
l ′k estimate of the channel glm

l ′k
ĝl

l′k estimate of the channel gl
l′k

Ĝ
l

l′ estimate of the channel Gl
l′

g̃
lm
l ′k channel estimation error, defined as ĝlm

l ′k − glm
l ′k

g̃l
l′k channel estimation error, defined as ĝl

l′k − gl
l′k

G̃
l

l′ channel estimation error, defined as Ĝ
l

l′ − Gl
l′

Z l normalized channel estimate Ĝ
l

l′ (independent of l′)
γl

l ′k mean-square channel estimate glm
l ′k (independent of m)

ηlk power-control coefficient for the kth terminal in the lth cell

SINRlk effective SINR for the kth terminal in the lth cell

SINRl common SINR with max-min fairness power control, in the lth cell

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.017
https:/www.cambridge.org/core


REFERENCES

[1] E. F. W. Alexanderson, “Transoceanic radio communication,” Presented at a joint meeting of the American

Institute of Electrical Engineers and the Institute of Radio Engineers, New York, NY, Oct. 1919.

[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using

multiple antennas,” Wireless Pers. Commun., vol. 6, pp. 311–335, Mar. 1998.

[3] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. on Telecommun., vol. 10,

no. 6, pp. 585–596, Nov. 1999.

[4] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,” IEEE Trans.

Commun., vol. 46, no. 3, pp. 357–366, Mar. 1998.

[5] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications. Cambridge

University Press, 2003.

[6] J. C. Guey, M. P. Fitz, M. R. Bell, and W. Y. Kuo, “Signal design for transmitter diversity wireless

communication systems over Rayleigh fading channels,” IEEE Trans. Commun., vol. 47, no. 4, pp. 527–537,

Apr. 1999.

[7] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE

Trans. Inf. Theory, vol. 45, no. 5, pp. 1456–1467, July 1999.

[8] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communica-

tions: performance criterion and code construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765,

Mar. 1998.

[9] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas

Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

[10] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE Trans.

Commun., vol. 51, no. 3, pp. 389–399, Mar. 2003.

[11] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-antenna communication link in

Rayleigh flat fading,” IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 139–157, Jan. 1999.

[12] J. H. Winters, “Optimum combining in digital mobile radio with cochannel interference,” IEEE J. Sel.

Areas Commun., vol. 2, no. 4, pp. 528–539, July 1984.

[13] ——, “Optimum combining for indoor radio systems with multiple users,” IEEE Trans. Commun., vol. 35,

no. 11, pp. 1222–1230, Nov. 1987.

213

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


214 References

[14] S. C. Swales, M. A. Beach, D. J. Edwards, and J. P. McGeehan, “The performance enhancement of

multibeam adaptive base-station antennas for cellular land mobile radio systems,” IEEE Trans. Veh. Technol.,

vol. 39, no. 1, pp. 56–67, Feb. 1990.

[15] R. Roy and B. Ottersten, “Spatial division multiple access wireless communication systems,” US Patent

No. 5,515,378, 1991.

[16] B. V. Veen and K. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Mag.,

vol. 5, no. 2, pp. 4–24, Apr. 1988.

[17] S. Anderson, M. Millnert, M. Viberg, and B. Wahlberg, “An adaptive array for mobile communication

systems,” IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 230–236, Feb. 1991.

[18] A. Paulraj and T. Kailath, “Increasing capacity in wireless broadcast systems using distributed transmis-

sion/directional reception (DTDR),” US Patent No. 5,345,599, 1994.

[19] S. Anderson, U. Forssén, J. Karlsson, T. Witzschel, P. Fischer, and A. Krug, “Ericsson/Mannesmann

GSM field-trials with adaptive antennas,” in Proc. IEE Colloquium on Advanced TDMA Techniques and

Applications, London, UK, Oct. 1996.

[20] G. Caire and S. Shamai, “On the achievable throughput of a multi-antenna Gaussian broadcast channel,”

IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691–1706, July 2003.

[21] P. Viswanath and D. Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink-downlink

duality,” IEEE Trans. Inf. Theory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.

[22] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J.

Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, June 2003.

[23] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate capacity of Gaussian

MIMO broadcast channels,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[24] D. Gesbert, M. Kountouris, R. W. Heath, Jr., C.-B. Chae, and T. Sälzer, “From single-user to multi-user

communications: shifting the MIMO paradigm,” IEEE Signal Process. Mag., vol. 24, no. 5, pp. 36–46, Sept.

2007.

[25] T. L. Marzetta, “How much training is required for multiuser MIMO?” in Proc. 40th Asilomar Conference

on Signals, Systems and Computers (ACSSC), Pacific Grove, CA, USA, Nov. 2006.

[26] ——, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans.

Wireless Commun., vol. 9, no. 11, pp. 3590–3600, Nov. 2010.

[27] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-approaching irregular

low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, 2001.

[28] T. L. Marzetta and B. M. Hochwald, “Fast transfer of channel state information in wireless systems,”

IEEE Trans. Signal Process., vol. 54, no. 4, pp. 1268–1278, Apr. 2006.

[29] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.

[30] E. Björnson, M. Bengtsson, and B. Ottersten, “Optimal multiuser transmit beamforming: A difficult

problem with a simple solution structure,” IEEE Signal Process. Mag., vol. 31, no. 4, pp. 142–148, July 2014.

[31] T. S. Rappaport, Wireless Communications. Prentice-Hall, 2002.

[32] V. H. M. Donald, “The cellular concept,” Bell Labs Technical Journal, vol. 58, no. 1, pp. 15–41, Jan.

1979.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


References 215

[33] D. C. Cox, “Cochannel interference considerations in frequency reuse small-coverage-area radio systems,”

IEEE Trans. Commun., vol. 30, no. 1, pp. 135–142, Jan. 1982.

[34] A. Gamst, “Homogeneous distribution of frequencies in a regular hexagonal cell system,” IEEE Trans.

Veh. Technol., vol. 31, no. 3, pp. 132–144, Aug. 1982.

[35] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: 10 myths and one critical question,”

IEEE Commun. Mag., vol. 54, no. 2, pp. 114–123, Feb. 2016.

[36] 3GPP, Digital cellular telecommunications system (Phase 2+); Radio network planning aspects. 3GPP

ETSI TR, 2010.

[37] A. L. Moustakas, H. U. Baranger, L. Balents, A. M. Sengupta, and S. H. Simon, “Communication through

a diffusive medium: Coherence and capacity,” Science, vol. 287, no. 5451, pp. 287–290, 2000.

[38] R. Couillet and M. Debbah, Random Matrix Methods for Wireless Communications. Cambridge

University Press, 2011.

[39] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Aspects of favorable propagation in massive MIMO,” in

Proc. European Signal Processing Conf. (EUSIPCO), Lisbon, Portugal, Sept. 2014.

[40] A. M. Sayeed, “Deconstructing multi-antenna fading channels,” IEEE Trans. Signal Process., pp. 2563–

2579, 2002.

[41] W. Feller, An Introduction to Probability Theory and Its Applications, 2nd edn. New York: Wiley, 1957,

vol. 1.

[42] X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, “Massive MIMO performance evaluation based on

measured propagation data,” IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3899–3911, July 2015.

[43] J. Hoydis, C. Hoek, T. Wild, and S. ten Brink, “Channel measurements for large antenna arrays,” in Proc.

Int. Symp. of Wireless Communication Systems (ISWCS), Paris, France, Aug. 2012.

[44] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up

MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp.

40–60, Jan. 2013.

[45] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, “Massive MIMO for next generation wireless

systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

[46] A. O. Martinez, E. D. Carvalho, and J. Ø. Nielsen, “Towards very large aperture massive MIMO: A

measurement based study,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 2014.

[47] X. Gao, O. Edfors, F. Tufvesson, and E. G. Larsson, “Massive MIMO in real propagation environments:

do all antennas contribute equally?” IEEE Trans. Commun., vol. 63, no. 11, pp. 3917–3928, Nov. 2015.

[48] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser

MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[49] H. Yang and T. L. Marzetta, “Performance of conjugate and zero-forcing beamforming in large-scale

antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 172–179, Feb. 2013.

[50] S. Wagner, R. Couillet, D. T. M. Slock, and M. Debbah, “Large system analysis of linear precoding in

MISO broadcast channels with limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4509–4537,

July 2012.

[51] R. Couillet and M. Debbah, “Signal processing in large systems: a new paradigm,” IEEE Signal Process.

Mag., vol. 30, no. 1, pp. 24–39, Jan. 2013.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


216 References

[52] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular networks: How many

antennas do we need?” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[53] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell

TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640–2651, Aug. 2011.

[54] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “The multicell multiuser MIMO uplink with very large

antenna arrays and a finite-dimensional channel,” IEEE Trans. Commun., vol. 61, no. 6, pp. 2350–2361, June

2013.

[55] E. Björnson and E. G. Larsson, “Three practical aspects of massive MIMO: Intermittent user activity,

pilot synchronism, and asymmetric deployment,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM),

San Diego, CA, Dec. 2015.

[56] A. Lozano, R. W. Heath, Jr., and J. G. Andrews, “Fundamental limits of cooperation,” IEEE Trans. Inf.

Theory, vol. 59, no. 9, pp. 5213–5226, Sept. 2013.

[57] F. Fernandes, A. Ashikhmin, and T. L. Marzetta, “Inter-cell interference in noncooperative TDD large

scale antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 192–201, Feb. 2013.

[58] I. Atzeni, J. Arnau, and M. Debbah, “Fractional pilot reuse in massive MIMO systems,” in Proc. IEEE

Int. Conf. on Commun. (ICC), London, UK, June 2015.

[59] X. Zhu, Z. Wang, L. Dai, and C. Qian, “Smart pilot assignment for massive MIMO,” IEEE Commun.

Lett., vol. 19, no. 9, pp. 1644–1647, Sept. 2015.

[60] J. H. Sørensen and E. de Carvalho, “Pilot decontamination through pilot sequence hopping in massive

MIMO systems,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 2014.

[61] E. Björnson, E. G. Larsson, and M. Debbah, “Massive MIMO for maximal spectral efficiency: How many

users and pilots should be allocated?” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1293–1308, Feb.

2016.

[62] W. Mahyiddin, P. A. Martin, and P. J. Smith, “Performance of synchronized and unsynchronized pilots in

finite massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 12, pp. 1536–1276, Dec. 2015.

[63] J.-C. Shen, J. Zhang, and K. B. Letaief, “Downlink user capacity of massive MIMO under pilot

contamination,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 3183–3193, June 2015.

[64] S. Jin, X. Wang, Z. Li, K.-K. Wong, Y. Huang, and X. Tang, “On massive MIMO zero-forcing transceiver

using time-shifted pilots,” IEEE Trans. Veh. Technol., vol. 65, no. 1, pp. 59–74, Jan. 2016.

[65] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale

multiple-antenna systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 264–273, Feb. 2013.

[66] H. Huh, G. Caire, H. C. Papadopoulos, and S. A. Ramprashad, “Achieving "Massive MIMO" spectral

efficiency with a not-so-large number of antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp.

3226–3239, Sept. 2012.

[67] L. You, X. Gao, X.-G. Xia, N. Ma, and Y. Peng, “Pilot reuse for massive MIMO transmission over

spatially correlated Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 3352–3366,

June 2015.

[68] H. Q. Ngo and E. G. Larsson, “EVD-based channel estimations for multicell multiuser MIMO with very

large antenna arrays,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), Kyoto,

Japan, Mar. 2012.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


References 217

[69] D. Neumann, M. Joham, and W. Utschick, “Channel estimation in massive MIMO systems.” [Online].

Available: http://arxiv.org/abs/1503.08691

[70] J. Ma and L. Ping, “Data-aided channel estimation in large antenna systems,” IEEE Trans. Signal Process.,

vol. 62, no. 12, pp. 3111–3124, June 2014.

[71] R. R. Müller, L. Cottatellucci, and M. Vehkaperä, “Blind pilot decontamination,” IEEE J. Sel. Topics

Signal Process., vol. 8, no. 5, pp. 773–786, Oct. 2014.

[72] D. Hu, L. He, and X. Wang, “Semi-blind pilot decontamination for massive MIMO systems,” IEEE Trans.

Wireless Commun., vol. 15, no. 1, pp. 525–536, Jan. 2016.

[73] A. Ashikhmin, T. Marzetta, and L. Li, “Interference reduction in multi-cell massive MIMO systems

I: Large-scale fading precoding and decoding,” IEEE Trans. Inf. Theory, to appear. [Online]. Available:

arxiv.org/abs/1411.4182

[74] L. Li, A. Ashikhmin, and T. Marzetta, “Interference reduction in multi-cell massive MIMO systems II:

Downlink analysis for a finite number of antennas,” IEEE Trans. Inf. Theory, to appear. [Online]. Available:

arxiv.org/abs/1411.4183

[75] S. Lakshminaryana, M. Debbah, and M. Assaad, “Coordinated multi-cell beamforming for massive

MIMO: A random matrix theory approach,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3387–3412, June

2015.

[76] M. Mazrouei-Sebdani and W. A. Krzymien, “Massive MIMO with clustered pilot contamination

precoding,” in Proc. IEEE Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2013.

[77] Z. Jiang, A. F. Molisch, G. Caire, and Z. Niu, “Achievable rates of FDD massive MIMO systems with

spatial channel correlation,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2868–2882, May 2015.

[78] J. Choi, Z. Chance, D. J. Love, and U. Madhow, “Noncoherent trellis coded quantization: A practical

limited feedback technique for massive MIMO systems,” IEEE Trans. Commun., vol. 61, no. 12, pp. 5016–

5029, Dec. 2013.

[79] J. Choi, D. J. Love, and T. Kim, “Trellis-extended codebooks and successive phase adjustment: A path

from LTE-advanced to FDD massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 14, no. 4, pp.

2007–2016, Apr. 2015.

[80] J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for FDD massive MIMO systems:

Open-loop and closed-loop training with memory,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp.

802–814, Oct. 2014.

[81] X. Rao, V. K. Lau, and X. Kong, “CSIT estimation and feedback for FDD multiuser massive MIMO

systems,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), Florence, Italy, May

2014.

[82] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and multiplexing – the large-scale

array regime,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6441–6463, Oct. 2013.

[83] J. Chen and V. K. Lau, “Two-tier precoding for FDD multi-cell massive MIMO time-varying interference

networks,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1230–1238, June 2014.

[84] D. Kim, G. Lee, and Y. Sung, “Two-stage beamformer design for massive MIMO downlink by trace

quotient formulation,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2200–2211, June 2015.

[85] J. Park and B. Clerckx, “Multi-user linear precoding for multi-polarized massive MIMO system under

imperfect CSIT,” IEEE Trans. Wireless Commun., vol. 14, no. 5, pp. 2532–2547, May 2015.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


218 References

[86] C. Sun, X. Gao, S. Jin, M. Matthaiou, Z. Ding, and C. Xiao, “Beam division multiple access transmission

for massive MIMO communications,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2170–2184, June 2015.

[87] M. Matthaiou, C. Zhong, M. R. McKay, and T. Ratnarajah, “Sum rate analysis of ZF receivers in distributed

MIMO systems,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 180–191, Feb. 2013.

[88] A. Yang, Y. Jing, C. Xing, Z. Fei, and J. Kuang, “Performance analysis and location optimization for

massive MIMO systems with circularly distributed antennas,” IEEE Trans. Wireless Commun., vol. 14, no. 10,

pp. 5659–5671, Oct. 2015.

[89] M. Sadeghi, C. Yuen, and Y. H. Chew, “Sum rate maximization for uplink distributed massive MIMO

systems with limited backhaul capacity,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Austin,

TX, Dec. 2014.

[90] Y. Huang, C. W. Tan, and B. D. Rao, “Efficient SINR fairness algorithm for large distributed multiple-

antenna networks,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), Vancouver,

Canada, May 2013.

[91] J. Joung, Y. K. Chia, and S. Sun, “Energy-efficient, large-scale distributed-antenna system (L-DAS) for

multiple users,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 930–941, Oct. 2014.

[92] K. Hosseini, W. Yu, and R. S. Adve, “Large-scale MIMO versus network MIMO for multicell interference

mitigation,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 930–941, Oct. 2014.

[93] K. T. Truong and R. W. Heath, Jr., “The viability of distributed antennas for massive MIMO systems,” in

Proc. IEEE Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, USA, Nov. 2013.

[94] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-Free Massive MIMO:

Uniformly great service for everyone,” in Proc. IEEE Workshop on Signal Processing Adv. in Wireless

Commun. (SPAWC), Stockholm, Sweden, June 2015.

[95] Y.-G. Lim, C.-B. Chae, and G. Caire, “Performance analysis of massive MIMO for cell-boundary users,”

IEEE Trans. Wireless Commun., vol. 14, no. 12, pp. 6827–6842, Dec. 2015.

[96] J. Zuo, J. Zhang, C. Yuen, W. Jiang, and W. Luo, “Multi-cell multi-user massive MIMO transmission

with downlink training and pilot contamination precoding,” IEEE Trans. Veh. Technol., to appear.

[97] A. Khansefid and H. Minn, “Achievable downlink rates of MRC and ZF precoders in massive MIMO

with uplink and downlink pilot contamination,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4849–4864, Dec.

2015.

[98] H. Q. Ngo and E. G. Larsson, “Blind estimation of effective downlink channel gains in massive MIMO,”

in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process. (ICASSP), Brisbane, Australia, Apr. 2015.

[99] A. Kammoun, A. Müller, E. Björnson, and M. Debbah, “Linear precoding based on polynomial expansion:

Large-scale multi-cell MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 861–875, Oct.

2014.

[100] M. Wu, B. Yin, A. Vosoughi, C. Studer, J. R. Cavallaro, and C. Dick, “Approximate matrix inversion

for high-throughput data detection in the large-scale MIMO uplink,” in IEEE International Symposium on

Circuits and Systems (ISCAS), 2013, pp. 2155–2158.

[101] J. Hoydis, M. Debbah, and M. Kobayashi, “Asymptotic moments for interference mitigation in correlated

fading channels,” in Proc. IEEE Int. Symp. on Inf. Theory (ISIT), Saint Petersburg, Russia, July 2011.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


References 219

[102] H. Prabhu, J. Rodrigues, O. Edfors, and F. Rusek, “Approximative matrix inverse computations for

very-large MIMO and applications to linear pre-coding systems,” in Proc. IEEE Wireless Commun. Network.

Conf. (WCNC), Shanghai, China, Apr. 2013.

[103] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Conjugate gradient-based soft-output detection and

precoding in massive MIMO systems,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX,

Dec. 2014.

[104] A. Liu and V. K. N. Lau, “Phase only RF precoding for massive MIMO systems with limited RF chains,”

IEEE Trans. Signal Process., vol. 62, no. 17, pp. 4505–4515, Sept. 2014.

[105] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in massive multiuser MIMO systems,”

IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 653–656, Dec. 2014.

[106] A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, Jr., “Channel estimation and hybrid precoding for

millimeter wave cellular systems,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct. 2014.

[107] J. Zhang, X. Yuan, and L. Ping, “Hermitian precoding for distributed MIMO systems with individual

channel state information,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 241–250, Feb. 2013.

[108] X. Li, E. Björnson, E. G. Larsson, S. Zhou, and J. Wang, “A multi-cell MMSE detector for massive

MIMO systems and new large system analysis,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM),

Dec. 2015.

[109] ——, “A multi-cell MMSE precoder for massive MIMO systems and new large system analysis,” in

Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2015.

[110] S. K. Mohammed and E. G. Larsson, “Per-antenna constant envelope precoding for large multi-user

MIMO systems,” IEEE Trans. Commun., vol. 61, no. 3, pp. 1059–1071, Mar. 2013.

[111] ——, “Constant-envelope multi-user precoding for frequency-selective massive MIMO systems,” IEEE

Wireless Commun. Lett., vol. 2, no. 5, pp. 547–550, Oct. 2014.

[112] C. Studer and E. G. Larsson, “PAR-aware large-scale multi-user MIMO-OFDM downlink,” IEEE J. Sel.

Areas Commun., vol. 31, no. 2, pp. 303–313, Feb. 2013.

[113] J. Pan and W.-K. Ma, “Constant envelope precoding for single-user large-scale MISO channels: Efficient

precoding and optimal designs,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 982–995, Oct. 2014.

[114] E. G. Larsson and H. V. Poor, “Joint beamforming and broadcasting in massive MIMO,” IEEE Trans.

Wireless Commun., vol. 15, no. 4, pp. 3058–3070, Apr. 2016.

[115] J. Zhu, R. Schober, and V. Bhargava, “Secure transmission in multicell massive MIMO systems,” IEEE

Trans. Wireless Commun., vol. 13, no. 9, pp. 4766–4781, Sept. 2014.

[116] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive MIMO systems with non-ideal

hardware: Energy efficiency, estimation, and capacity limits,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp.

7112–7139, Nov. 2014.

[117] E. Björnson, M. Matthaiou, and M. Debbah, “Massive MIMO with non-ideal arbitrary arrays: Hardware

scaling laws and circuit-aware design,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4353–4368, Aug.

2015.

[118] U. Gustavsson, C. Sanchéz-Perez, T. Eriksson, F. Athley, G. Durisi, P. Landin, K. Hausmair, C. Fager,

and L. Svensson, “On the impact of hardware impairments on massive MIMO,” in Proc. IEEE Global

Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 2014.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


220 References

[119] A. Hakkarainen, J. Werner, K. R. Dandekar, and M. Valkama, “Widely-linear beamforming and RF

impairment suppression in massive antenna arrays,” J. Commun. Netw., vol. 15, no. 4, pp. 383–397, Aug.

2013.

[120] S. Zarei, W. Gerstacker, J. Aulin, and R. Schober, “I/Q imbalance aware widely-linear channel estimation

and detection for uplink massive MIMO systems,” in Proc. Int. Symp. of Wireless Communication Systems

(ISWCS), Brussels, Belgium, Aug. 2015.

[121] L. Fan, S. Jin, C.-K. Wen, and H. Zhang, “Uplink achievable rate for massive MIMO with low-resolution

ADC,” IEEE Commun. Lett., vol. 19, no. 12, pp. 2186–2189, Dec. 2015.

[122] C. Mollén, U. Gustavsson, T. Eriksson, and E. G. Larsson, “Out-of-band radiation measure for MIMO

arrays with beamformed transmission,” in Proc. IEEE Int. Conf. on Commun. (ICC), Kuala Lumpur, Malaysia,

May 2016.

[123] A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson, “Uplink performance of time-reversal MRC in

massive MIMO systems subject to phase noise,” IEEE Trans. Wireless Commun., vol. 14, no. 2, pp. 711–723,

Feb. 2015.

[124] R. Krishnan, M. R. Khanzadi, N. Krishnan, Y. Wu, A. G. Amat, T. Eriksson, and R. Schober, “Linear

massive MIMO precoders in the presence of phase noise – a large-scale analysis,” IEEE Trans. Veh. Technol.,

vol. 65, no. 5, pp. 3057–3071, May 2016.

[125] M. R. Khanzadi, G. Durisi, and T. Eriksson, “Capacity of SIMO and MISO phase-noise channels with

common/separate oscillators,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3218–3231, Sept. 2015.

[126] F. Kaltenberger, J. Haiyong, M. Guillaud, and R. Knopp, “Relative channel reciprocity calibration in

MIMO/TDD systems,” in Proc. Future Network and Mobile Summit, Florence, Italy, June 2010.

[127] P. Zetterberg, “Experimental investigation of TDD reciprocity-based zero-forcing transmit precoding,”

EURASIP J. on Advances in Signal Processing, Jan. 2011.

[128] R. Rogalin, O. Y. Bursalioglu, H. Papadopoulos, G. Caire, A. Molisch, A. Michaloliakos, V. Balan, and

K. Psounis, “Scalable synchronization and reciprocity calibration for distributed multiuser MIMO,” IEEE

Trans. Wireless Commun., vol. 13, no. 4, pp. 1815–1831, Apr. 2014.

[129] J. Vieira, F. Rusek, and F. Tufvesson, “Reciprocity calibration methods for massive MIMO based on

antenna coupling,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 2014.

[130] J. Choi, “Downlink multiuser beamforming with compensation of channel reciprocity from RF

impairments,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2158–2169, June 2015.

[131] H. Wei, D. Wang, H. Zhu, and J. Wang, “Mutual coupling calibration for multiuser massive MIMO

systems,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 606–619, Jan. 2016.

[132] C. Shepard, H. Yu, N. Anand, L. E. Li, T. L. Marzetta, R. Yang, and L. Zhong, “Argos: Practical

many-antenna base stations,”in Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Istanbul,

Turkey, Aug. 2012.

[133] W. Zhang, H. Ren, C. Pan, M. Chen, R. de Lamare, B. Du, and J. Dai, “Large-scale antenna systems

with UL/DL hardware mismatch: Achievable rates analysis and calibration,” IEEE Trans. Commun., vol. 63,

no. 4, pp. 1216–1229, Apr. 2015.

[134] D. Liu, W. Ma, S. Shao, and Y. Shen, “Performance analysis of TDD reciprocity calibration for massive

MU-MIMO systems with ZF beamforming,” IEEE Commun. Lett., vol. 20, no. 1, pp. 113–116, Jan. 2016.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


References 221

[135] E. Björnson, E. de Carvalho, E. G. Larsson, and P. Popovski, “Random access protocol for massive

MIMO: Strongest-user collision resolution (SUCR),” in Proc. IEEE Int. Conf. on Commun. (ICC), Kuala

Lumpur, Malaysia, May 2016.

[136] J. H. Sørensen, E. de Carvalho, and P. Popovski, “Massive MIMO for crowd scenarios: A solution based

on random access,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 2014.

[137] E. de Carvalho, E. Björnson, E. G. Larsson, and P. Popovski, “Random access for massive MIMO

systems with intra-cell pilot contamination,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal

Process. (ICASSP), Shanghai, China, Mar. 2016.

[138] X. Meng, X.-G. Xia, and X. Gao, “Constant-envelope omni-directional transmission with diversity in

massive MIMO systems,” in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Austin, TX, Dec. 2014.

[139] M. Karlsson, E. Björnson, and E. G. Larsson, “Broadcasting in massive MIMO using OSTBC with

reduced dimension,” in Proc. Int. Symp. of Wireless Communication Systems (ISWCS), Brussels, Belgium,

Aug. 2015.

[140] H. V. Cheng, E. Björnson, and E. G. Larsson, “Uplink pilot and data power control for single cell

massive MIMO systems with MRC,” in Proc. Int. Symp. of Wireless Communication Systems (ISWCS),

Brussels, Belgium, Aug. 2015.

[141] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation in OFDMA systems with

large numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 11, no. 9, pp. 3292–3304, Sept.

2012.

[142] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multi-user

MIMO systems: Is massive MIMO the answer?” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp.

3059–3075, June 2015.

[143] Y. Hu, B. Ji, Y. Huang, F. Yu, and L. Yang, “Energy-efficiencyresource allocation of very large multi-user

MIMO systems,” Wireless Netw., vol. 20, no. 6, pp. 1421–1430, Aug. 2014.

[144] H. Yang and T. L. Marzetta, “Total energy efficiency of cellular large scale antenna system multiple

access mobile networks,” in Proc. IEEE Online Conference on Green Commun., Oct. 2013.

[145] S. K. Mohammed, “Impact of transceiver power consumption on the energy efficiency of zero-forcing

detector in massive MIMO systems,” IEEE Trans. Commun., vol. 62, no. 11, pp. 3874–3890, Nov. 2014.

[146] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience, 2006.

[147] R. Gallager, Information Theory and Reliable Communication. John Wiley & Sons, 1968.

[148] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?”

IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 951–963, Apr. 2003.

[149] M. Médard, “The effect upon channel capacity in wireless communications of perfect and imperfect

knowledge of the channel,” IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 933–946, May 2000.

[150] M. K. Varanasi and T. Guess, “Optimum decision feedback multiuser equalization with successive

decoding achieves the total capacity of the Gaussian multiple-access channel,” in Proc. IEEE Asilomar Conf.

Signals, Systems, and Computers, Pacific Grove, CA, Nov. 1997.

[151] W. Yu, “Uplink-downlink duality via minimax duality,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp.

361–374, Feb. 2006.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


222 References

[152] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity region of the Gaussian multiple-input

multiple-output broadcast channel,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sept. 2006.

[153] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 439–441, May 1983.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895.018
https:/www.cambridge.org/core


INDEX

95% likely throughput, 118, 130

base station assignment, 124

base station cooperation, 11, 160

beamforming gain uncertainty, 56, 61, 64–67

capacity

bounds, 36–41

ergodic, 39

max-min, 187

sum, 187

capacity region, 187

channel

broadcast, 185, 190–194

multiple-access, 185, 187–190

nullspace, 160

point-to-point, 36–41, 176–185

scalar, 36–41, 176–182

singular values, 142–143, 147

stationary, 117

channel capacity, 36

instantaneous, 51

instantaneous ergodic, 51

channel estimation, 45–48, 78

error, 47

estimation error, 79

MMSE, 47, 78

channel hardening, 11–15, 40, 154

channel non-orthogonality, 54, 55, 61, 64–67

channel state information, 6

circularly symmetric Gaussian, 19, 163–167

linear transformation, 166

moments, 167

coherence bandwidth, 21–22, 129, 130

coherence interval, 15, 22–29, 41, 45

coherence time, 19–21, 129, 130

coherent beamforming gain, 52, 55, 56, 62,

63, 81, 85, 90, 92, 96, 146

contaminating cell, 77

deterministic equivalent, 157

dirty-paper coding, 191

downlink, 200–201

multi-cell, 34–35, 85–90

single-cell, 32–33, 56–62

duplexing

frequency-division (FDD), 15–16, 159

time-division (TDD), 15–16, 24, 159

effective noise, 39, 50

energy efficiency, 162

entropy, 176–185

fading

correlated, 157

large-scale, 29–31, 34

Rayleigh, 29

i.i.d., 146–148, 151

independent, 6, 31, 35, 143–148

small-scale, 29–31, 34

favorable propagation, 139–155

approximate, 139

asymptotic, 140

capacity, 140–141

linear processing, 141–142

hardware imperfections, 161

223

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895
https://www.cambridge.org/core


224 Index

Hata-COST231 model, 129

Hata model, 117

home cell, 16, 77, 123

I/Q imbalance, 161

interference

coherent, 16, 77, 82, 92, 107

inter-cell, 33

intra-cell, 53, 57, 60, 62–67, 90, 92

non-coherent, 77, 81, 85, 92, 133

isotropic scattering, 6, 143–144, 154

Jensen’s inequality, 41, 175, 178, 195

keyhole channel, 153

large-scale fading ratio, 125

line-of-sight, 6, 10, 11, 145

uniformly random, 143, 145–151, 154

urns-and-balls model, 148

linear processing, 11, 67–69

linear programming, 100–101

link budget, 118, 205

maximum-ratio processing, 14, 53–56, 59–62,

82–85, 88–90, 157, 197–201

MIMO, 5

Massive, 10

cell-free, 159–160

Multiuser, 8–10, 185–194

Point-to-Point, 6–7, 183–185

MMSE processing, 142, 157

mobile access, 128–135

dense urban, 128–129

suburban, 128–130

multi-cell system, 33–35, 77–96, 122–135

mutual information, 176–185

noise

Gaussian, 179

non-Gaussian, 179–182

Nyquist sampling interval, 23–24

OFDM, 25–29, 129

cyclic prefix, 25–26

slot, 26

phase noise, 161

pilot assignment, 126

pilot contamination, 16, 77, 78, 94–95, 158–

159

pilot reuse, 77, 122–123

pilots

downlink, 24, 160

non-synchronous, 94–95

uplink, 24, 45–48

power control

coefficient, 49, 57, 79, 85

comparison, 134–135

given SINR targets, 99–101

max-min, 101–111, 121–122, 127–129

multi-cell, 100–101, 105–111, 127–129

pilots, 162

single-cell, 100–105

pseudo-covariance matrix, 164

QAM constellation, 48

quantization noise, 161

quasi-linear programming, 101–102, 105–106

rate, 36

achievable, 36

max-min, 186

sum, 186

rate region, 186

reciprocity, 11, 32, 34

calibration, 161

rural access, 115–122

scalability, 11, 15–16

side information, 40

single-cell system, 31–33, 45–75, 115–122

SINR

effective, 13, 52, 56, 59, 62, 97–99

target, 100

SNR, 30, 33

spectral efficiency, 5, 6, 36

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895
https://www.cambridge.org/core


Index 225

net, 69–72

sum, 69–72

successive interference cancellation, 189

two-path model, 19–22

uniformly good service, 11, 48, 112, 117

uplink, 195–200

multi-cell, 33–34, 79–85

single-cell, 31–32, 48–56

use and forget CSI, 51–52, 54–56

zero-forcing processing, 50–53, 58–59, 80–

82, 87–88, 157, 195–197

implementation, 160

regularized, 157

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316799895
https://www.cambridge.org/core

	Title Page
	Copyright
	Contents
	List of Figures
	List of Tables
	Preface
	1 Introduction
	2 Models and Preliminaries
	3 Single-Cell Systems
	4 Multi-Cell Systems
	5 Power Control Principles
	6 Case Studies
	7 The Massive MIMO Propagation Channel
	8 Final Notes and Future Directions
	Appendix A: Circularly Symmetric Complex Gaussian Random Vectors
	Appendix B: Useful Random Matrix Results
	Appendix C: Capacity and Capacity Bounding Tools
	Appendix D: Alternative Single-Cell Capacity Bounds
	Appendix E: Asymptotic SINR in Multi-Cell Systems
	Appendix F: Link Budget Calculations
	Appendix G: Uniformly Distributed Points in a Hexagon
	Appendix H: Summary of Abbreviations and Notation
	References
	Index


 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: before current page
     Number of pages: 1
     Page size: same as current
      

        
     D:20180223114331
      

        
     Blanks
     1
     1
     1
     650
     1046
    
     0
     1
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     BeforeCur
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0c
     Quite Imposing Plus 4
     1
      

        
     0
     1
      

   1
  

 HistoryList_V1
 qi2base





