
Big Data Management 

Graph Data
Mining:
Algorithm,
Security and
Application

Qi Xuan
Zhongyuan Ruan
Yong Min  Editors

Big Data Management

Editor-in-Chief

Xiaofeng Meng, School of Information, Renmin University of China, Beijing, China

Editorial Board Members

Daniel Dajun Zeng, University of Arizona, Tucson, AZ, USA

Hai Jin, School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan, Hubei, China

HaixunWang, Facebook Research, USA

Huan Liu, Arizona State University, Tempe, AZ, USA

X. Sean Wang, Fudan University, Shanghai, China

Weiyi Meng, Binghamton University, Binghamton, NY, USA

Advisory Editors

Jiawei Han, Dept Comp Sci, University Illinois at Urbana-Champaign, Urbana,
IL, USA

Masaru Kitsuregawa, National Institute of Informatics, University of Tokyo,
Chiyoda, Tokyo, Japan

Philip S. Yu, University of Illinois at Chicago, Chicago, IL, USA

Tieniu Tan, Chiense Academy of Sciences, Bejing, China

Wen Gao, Room 2615, Science Buildings, Peking University Room 2615, Science
Buildings, Beijing, China

The big data paradigm presents a number of challenges for university curricula
on big data or data science related topics. On the one hand, new research, tools
and technologies are currently being developed to harness the increasingly large
quantities of data being generated within our society. On the other, big data
curricula at universities are still based on the computer science knowledge systems
established in the 1960s and 70s. The gap between the theories and applications is
becoming larger, as a result of which current education programs cannot meet the
industry’s demands for big data talents.

This series aims to refresh and complement the theory and knowledge framework
for data management and analytics, reflect the latest research and applications
in big data, and highlight key computational tools and techniques currently in
development. Its goal is to publish a broad range of textbooks, research monographs,
and edited volumes that will:

– Present a systematic and comprehensive knowledge structure for big data and data
science research and education

– Supply lectures on big data and data science education with timely and practical
reference materials to be used in courses

– Provide introductory and advanced instructional and reference material for
students and professionals in computational science and big data

– Familiarize researchers with the latest discoveries and resources they need to
advance the field

– Offer assistance to interdisciplinary researchers and practitioners seeking to learn
more about big data

The scope of the series includes, but is not limited to, titles in the areas of
database management, data mining, data analytics, search engines, data integration,
NLP, knowledge graphs, information retrieval, social networks, etc. Other relevant
topics will also be considered.

More information about this series at http://www.springer.com/series/15869

http://www.springer.com/series/15869

Qi Xuan • Zhongyuan Ruan • Yong Min
Editors

Graph Data Mining
Algorithm, Security and Application

Editors
Qi Xuan
Institute of Cyberspace Security
Zhejiang University of Technology
Hangzhou, China

Zhongyuan Ruan
Institute of Cyberspace Security
Zhejiang University of Technology
Hangzhou, China

Yong Min
Institute of Cyberspace Security
Zhejiang University of Technology
Hangzhou, China

ISSN 2522-0179 ISSN 2522-0187 (electronic)
Big Data Management
ISBN 978-981-16-2608-1 ISBN 978-981-16-2609-8 (eBook)
https://doi.org/10.1007/978-981-16-2609-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-2609-8

Preface

Things interact with each other, and our beautiful world emerges. Many real-world
systems, natural or artificial, are more naturally expressed as graphs/networks,
rather than coordinates in Euclidean space, to capture their topological properties.
In biology, proteins regulate each other, and such physiological interactions make
up the so-called interactomics of the organism; neurons connect to each other to
process signals in brains, leading to the emergence of intelligence; and species
depend on each other so as to form the complex ecosystem. Besides, modern
transportation systems connect different cities across different countries, largely
facilitating our travel and making the whole world a true global village. Nowadays,
networking seems to be on the rise as we are entering the cyberspace. People are
connected closely and share their viewpoints and personal interests through social
media platforms such as Facebook, Wechat, Twitter, Weibo, and others. We can
search our interests using search engines such as Google, Baidu, and Yahoo, the
kernel of these systems being a huge network of webpages. We can also transfer
money easily through e-banking or blockchain-based platforms such as Ethereum.
Moreover, some powerful data mining or artificial intelligence technologies, such
as knowledge graph and deep neural networks, are also networks! Although these
networks facilitate information exchange among individuals, making our lives much
easier than before, they may also facilitate the spread of virus and cause privacy
leaks, e.g., particular kind of relationships could be inferred just based on individual
ego social networks [1]. Therefore, it is necessary and urgent to develop methods to
better understand the topological structure of these networks, so as to predict, and
further influence, their evolution to a certain extent.

Fortunately, graph theory, as a branch of mathematics, has been well established
since Euler’s creative study on the Seven Bridges of Königsberg in 1736 [2].
In this big data era, more and more systems are described as networks, and the
corresponding graph data capturing their structure are released for research. These
graphs attract numerous researchers of different domains to contribute their talents
to observe and further measure them from micro (node and link) and meso (motif
and community) to macro (whole network) views by proposing a series of structural
properties [3]. In industry, many famous search engines and recommender systems

v

vi Preface

are essentially ranking nodes based on their structural significance in the corre-
sponding networks, e.g., the well-known pagerank [4] and collaborative filtering
algorithms [5]. On the other hand, in academia, Strogatz et al. [6] characterized
small-world networks based on their short average distance together with large
average clustering coefficient, while Barabási et al. [7] defined scale-free networks
by power-law degree distribution. These studies triggered the development of
complex network. Subsequently, various mathematical models are being proposed,
with different kinds of dynamics, such as epidemic and synchronization, being
carefully simulated and analyzed [8]. Quite recently, graph embedding technologies,
such as deepwalk [9] and node2vec [10], were proposed to bridge between network
space and Euclidean space; therefore, machine learning algorithms can be adopted
to analyze graphs automatically. Soon, deep learning frameworks, such as graph
convolutional network (GCN) [11, 12], were proposed to further facilitate the
analysis of networks.

In this book, we mainly focus on typical supervised learning on graph data. In
particular, the first three chapters introduce state-of-the-art graph data mining algo-
rithms on node classification, link prediction, and graph classification, followed by
a chapter that introduces the graph augmentation for further enhancement of those
existing graph data mining algorithms. Chapters 5 and 6 analyze the vulnerability of
these algorithms under adversarial attacks and the ways to increase their robustness,
respectively. Note that we also analyze the vulnerability of community detection as
unsupervised learning in Chap. 5 for a comprehensive review. Next, we provide brief
reviews for node classification, link prediction, and graph classification, followed by
the brief introduction of our own chapters.

Node classification helps to predict the labels of unknown nodes by attribute
and structure information, which has been widely used in social network analysis.
In some cases, nodes of the same category have similar topological properties, then
we can use the basic structural features [13], including degree centrality, closeness
centrality, betweenness centrality, eigenvector centrality, clustering coefficient, H-
index, coreness, and PageRank of the target nodes, to distinguish them. We
may either use one of them or a collection of them together with a machine
learning algorithm to make the classification. Such models are relatively simple
and interpretable, since we can easily know which feature is more significant in the
model, and almost all of these handcraft features are of physical or social meaning.
Although such simple models are feasible in certain cases, they may lose their effect
in some others, especially when real-world networks may contain tens of thousands
of nodes with irregular network topology. Graph embedding techniques are then
developed to convert the graph data into a distinguishable vector representation
while preserving the intrinsic graph properties. Common embedding techniques are
based on random walk, matrix factorization, and neural network. And the typical
graph embedding algorithms include: DeepWalk [9], which is based on skip-gram
model [14] and uses the co-occurrence relationship information between nodes in
the network to get the embedding vector of nodes; GraRep [15], which preserves
the high-order proximity of graphs in the embedding space by matrix factorization;
and LINE [16], which retains the first-order and second-order similarity between

Preface vii

nodes, so as to present the local and global structure information of the network
at the same time. Moreover, as the development of deep learning, a series of
graph neural networks (GNN) were proposed to realize node classification end-to-
end. Since Bruna [17] proposed the first spectral-based graph convolution neural
network (GCN), which extends graph and convolution operation to spectral domain
through Fourier transform, ChebNet [11] and CayleyNet [18] simplified the graph
filter by Chebyshev and Cayley polynomials, respectively. Kipf and Welling [12]
further simplified the operation by the first-order approximation of Chebyshev
polynomials, which bridges the gap between spectral-based approaches and spatial-
based approaches. These studies largely promote the development of spatial-based
approaches and significantly improve the node classification performance. However,
such deep models are highly nonlinear and complex, making them difficult to
understand and increase the potential vulnerability.

In Chap. 1, Shu, Yu, Ruan, Zhang, and Xuan design a two-channel GNN to locate
the source of an epidemic on a network, which can be considered as a typical node
classification problem. Therein, node channel leverages the network structure to
represent each node as an embedding vector, while edge channel transforms the
original network into a line graph, and extracts feature vectors of nodes in line graph
as representations of original edges. The features of two channels are then integrated
to make the better estimation.

Link prediction aims to predict missed or future relationships based on currently
observed connections [19], which has been widely adopted in social networks and
biological networks. In social networks, link prediction is used to recommend prob-
able friendships, leading to a more satisfactory user experience [20]. In biological
networks, link prediction is adopted to predict previously unknown interactions
between proteins, significantly reducing the costs of empirical approaches [21]. In
addition, the data used to construct social and biological networks may contain inac-
curate information, leading to spurious links [22, 23], which can also be identified
by link prediction algorithms [24]. Similarly, link prediction can be realized just
based on the predefined similarity between pairwise nodes. Such similarity indices
may be either local or global [25]. For example, common neighbors, preferential
attachment [7], Adamic-Adar, and resource allocation [26] are local indices since
they only involve one-hop or two-hop neighbors of the target pair of nodes; Katz,
rooted PageRank [27], and SimRank [28] are global indices, requiring to know the
structure of entire network. A collection of these similarity indices may then be
input to a machine learning model to get higher link prediction performance, by
comparing with only one of them. This performance can be further improved by
adopting graph embedding and GNN technologies, since the embedding vector of
an edge can be easily obtained by combining those of the corresponding terminal
nodes via a binary operator, i.e., Average, Hadamard, Weighted-L1, and Weighted-
L2.

In Chap. 2, Zhang, Chen, and Xuan propose a hyper-substructure enhanced link
predictor (HELP), as an end-to-end deep learning framework, for link prediction.
HELP utilizes local topological structures from the neighborhood of the given node
pairs, and learns features from hyper-substructure network for further exploiting

viii Preface

higher-order structural information. Such method has relatively high efficiency and
effectiveness, achieving state-of-the-art link prediction performance.

Graph classification focuses on classifying different networks through their
structural differences. In chemistry, we may want to classify each compound as
being either toxic or nontoxic [29] based on their structure. And this may be
helpful in drug research and development [30], since the traditional discovery of
new drugs is very expensive. In social networks, we may use a graph to capture
individual behaviors, e.g., we can establish mobility networks [31] or focus shifting
networks [32] for human beings based on their mobility or working traces, so
that we can group them based on the structural properties of these networks.
We can also classify teams based on their inside communication patterns. Again,
we can simply use the graph statistics, such as degree distribution and average
shortest path length, to classify different networks [33, 34]. Moreover, the entire
graph can be processed to get the count of different graphlets or subgraphs,
and one can also use these frequency statistics to produce a feature vector for
graph classification [35, 36]. Another popular approach is defining graph kernel to
measure the similarity between graphs, which can be plugged into a kernel machine.
Numerous graph kernels have been proposed, including Shortest-Path kernel [37],
Graphlet kernel [38], Random-Walk kernel [39], Weisfeiler-Lehman kernels [40],
and Deep Graph Kernels [41]. Meanwhile, graph embedding techniques, e.g.,
Graph2Vec [42], and GNN techniques, e.g., DiffPool [43] and Graph Attention
Network (GAT) [44], are also proposed for graph classification, achieving good
performance.

In Chap. 3, Wang, Chen, Xie, Shan, Xuan, and Chen introduce the method to
establish subgraph network (SGN), and further the sampling subgraph network
(S2GN) of higher scalability and diversity, by integrating different sampling strate-
gies. They use both SGN and S2GN to expand the structural feature space of the
target networks, which, together with broad learning, significantly enhance the
performance of a number of graph classification algorithms.

In Chap. 4, Zhou, Shen, Shan, Xuan, and Chen further introduce a novel iterative
technique, namely M-Evolve, for graph data augmentation. M-Evolve includes
subgraph augmentation, data filtration, and model retraining, which is applied for
multi tasks including node classification, link prediction, and graph classification.
Experiments validate that this method can help to overcome overfitting to certain
extent, and significantly enhance a series of graph data mining algorithms.

Algorithm security mainly focuses on analyzing the vulnerability of graph
data mining algorithms under certain kind of perturbation on network structure,
and further proposing the corresponding defense strategies. Recent studies indicate
that many artificial intelligence (AI) algorithms could be quite vulnerable under
adversarial attacks, e.g., tiny perturbations can pollute an image and thereby
reduce the classification performance significantly. Such adversarial attacks can also
threaten graph data mining algorithms, i.e., their performance could be significantly
reduced by slightly changing network structure. On the other hand, we can also
design certain methods to detect and further defend against such attacks, so as to
improve the robustness of graph data mining algorithms.

Preface ix

In Chap. 5, Shan, Zhu, Xie, Wang, Zhou, Zhou, and Xuan give a brief review on
adversarial attacks for graph data mining. They briefly classify the existing attack
methods, which could be heuristic, gradient, or reinforcement learning based. Then,
for each graph mining task, one or two adversarial attack methods are introduced in
detail. The experimental results show that most graph algorithms could be largely
influenced by slightly modifying the structure or features of the graph.

In Chap. 6, Xu, Gan, Zhou, Wang, Chen, and Xuan on the other hand give a brief
review on defense strategies against malicious attacks for graph data mining. They
classify these strategies into five categories: adversarial training, graph purification,
certifiable robustness, attention mechanism, and adversarial detection. Different
kinds of strategies have different application scenarios. We hope this kind of
research can remind researchers and engineers that the robustness of algorithms
could be crucial in many real-world applications.

Applications are the driving force of the algorithm development. The rest six
chapters introduce various applications of graph data mining algorithms in finance,
social networks, transportation, communication, and epidemics. And we hope to
draw the attention of the scientists and researchers in data mining, knowledge
discovery, artificial intelligence, network science, as well as the related application
domains. These chapters are briefly introduced as follows.

In Chap. 7, Xie, Zhou, Wang, Zhang, Sheng, Wu, and Xuan introduce a time-
series snapshot network to model Ethereum transaction records as a spatial-temporal
network, and define temporal biased walk to effectively embed accounts. Based on
these, they use node classification and link prediction techniques to detect phishing
and track transaction, respectively. Such study can help to better understand
Ethereum transaction as a whole system from a network perspective.

In Chap. 8, Zhang, Xia, Li, Shen, Wang, and Xuan establish a friend network
based on Yelp dataset and recommend friends through random forest and variational
graph auto-encoder methods. The former takes multiple handcraft node similarity
indices as input, while the latter automatically learns network structural features
through a deep learning framework. They further construct a co-foraging network
and recommend potential meal pals to users, validating the potential application of
link prediction approaches to Yelp data analysis.

In Chap. 9, Xu and Dai introduce a graph convolutional recurrent neural network
to predict traffic flow. They build a traffic network and then employ GCN model to
learn the interactions between the roadways to capture the spatial dependence and
use the long short-term memory (LSTM) neural network to learn traffic dynamic
changes to capture temporal dependence. They make the prediction on a Hangzhou
transportation network, validating the effectiveness of this method.

In Chap. 10, Qiu, Zhou, Cui, Chen, Zheng, and Xuan introduce circular lim-
ited penetrable visibility graph (CLPVG), mapping time series to graphs, which
outperforms the traditional limited penetrable visibility graph (LPVG) method.
Moreover, they also introduce the first end-to-end time series classification method
based on GNN. The experimental results on several time-series datasets validate the
outstanding performance of their methods.

x Preface

In Chap. 11, Min, Zhou, Jiang, and Wu introduce the concept of social bots,
including its definition, usage, and potential influence. They also introduce the
related technologies to deploy social bots on social networks and summarize several
methods to detect such social bots. In the future, various social bots could be
increasingly deployed online as the development of AI technologies, which may
pollute the Internet ecosystem and raise cyberspace security issues. Meanwhile,
social bots, as artificial noise, may mislead graph data mining algorithms to a certain
extent, which is worth to attract more attention from researchers in various areas.

Hangzhou, China Qi Xuan

References

1. Backstrom, L., Kleinberg, J.: Romantic partnerships and the dispersion of social
ties: a network analysis of relationship status on facebook. In: Proceedings
of the 17th ACM Conference on Computer Supported Cooperative Work and
Social Computing, pp. 831–841 (2014)

2. Biggs, N., Lloyd, E., Wilson, R.: Graph Theory, pp. 1736–1936 (Oxford
University, Oxford, 1986)

3. Costa, L.D.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization
of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242
(2007)

4. Rogers, I.: The Google Pagerank Algorithm and how it Works (2002)
5. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering

recommendation algorithms. In: Proceedings of the 10th International Confer-
ence on World Wide Web, pp. 285–295 (2001)

6. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks.
Nature 393(6684), 440–442 (1998)

7. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

8. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex
networks: Structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

9. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

10. A. Grover, J. Leskovec, node2vec: scalable feature learning for networks.
In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 855–864 (2016)

11. M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks
on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst.
29, 3844–3852 (2016)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907 (2016)

Preface xi

13. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev.
Mod. Phys. 74(1), 47 (2002)

14. McCormick, C.: Word2vec Tutorial-the Skip-gram Model (2016)
15. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global

structural information. In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, pp. 891–900 (2015)

16. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale
information network embedding. In: Proceedings of the 24th International
Conference on World Wide Web, pp. 1067–1077 (2015)

17. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

18. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: Cayleynets: graph convolu-
tional neural networks with complex rational spectral filters. IEEE Trans. Signal
Process. 67(1), 97–109 (2018)

19. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social net-
works. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

20. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Syst. 151, 78–94 (2018)

21. Martínez, V., Cano, C., Blanco, A.: Prophnet: a generic prioritization method
through propagation of information. BMC Bioinf. 15(S1), S5 (2014)

22. Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S.,
Bork, P.: Comparative assessment of large-scale data sets of protein–protein
interactions. Nature 417(6887), 399–403 (2002)

23. Butts, C.T.: Network inference, error, and informant (in) accuracy: a bayesian
approach. Social Netw. 25(2), 103–140 (2003)

24. Guimerà, R., Sales-Pardo, M.: Missing and spurious interactions and the
reconstruction of complex networks. Proc. Natl. Acad. Sci. 106(52), 22073–
22078 (2009)

25. Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A:
Stat. Mech. Appl. 390(6), 1150–1170 (2011)

26. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information.
Eur. Phys. J. B 71(4), 623–630 (2009)

27. Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web
search engine. Comput. Netw. 56(18), 3825–3833 (2012)

28. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 538–543 (2002)

29. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for
chemical compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–
375 (2008)

30. Jing, Y., Bian, Y., Hu, Z., Wang, L., Xie, X.-Q.S.: Deep learning for drug design:
An artificial intelligence paradigm for drug discovery in the big data era. AAPS
J. 20(3), 58 (2018)

31. Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of predictability in human
mobility. Science 327(5968), 1018–1021 (2010)

xii Preface

32. Xuan, Q., Okano, A., Devanbu, P., Filkov, V.: Focus-shifting patterns of oss
developers and their congruence with call graphs. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 401–412 (2014)

33. Li, G., Semerci, M., Yener, B., Zaki, M.J.: Effective graph classification based
on topological and label attributes. Stat. Anal. Data Min. ASA Data Sci. J. 5(4),
265–283 (2012)

34. X. Sun, S. Wandelt, Network similarity analysis of air navigation route systems.
Transp. Res. Part E Logist. Transp. Rev. 70, 416–434 (2014)

35. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex
networks. Science 353(6295), 163–166 (2016)

36. Nguyen, D., Luo, W., Nguyen, T.D., Venkatesh, S., Phung, D.: Learning graph
representation via frequent subgraphs. In: Proceedings of the 2018 SIAM
International Conference on Data Mining, pp. 306–314 (SIAM, New York,
2018)

37. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Proceed-
ings of the Fifth IEEE International Conference on Data Mining (ICDM’05),
pp. 8–pp (IEEE, New York, 2005)

38. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt,
K.: Efficient graphlet kernels for large graph comparison. In: Artificial Intelli-
gence and Statistics, pp. 488–495 (2009)

39. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled
graphs. In: Proceedings of the 20th International Conference on Machine
Learning (ICML-03), pp. 321–328 (2003)

40. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12, 25392561
(2011)

41. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1365–1374 (ACM, New York, 2015)

42. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: graph2vec: learning distributed representations of graphs. In: International
Workshop on Mining and Learning with Graphs (2017)

43. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Advances in
Neural Information Processing Systems, pp. 4800–4810 (2018)

44. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.:
Graph attention networks. In: International Conference on Learning Represen-
tations (2018)

Acknowledgment

We would like to thank Professor Guanrong Chen and Associate Professor Qing-
peng Zhang at City University of Hong Kong, Associate Professor Jiajing Wu
at Sun Yat-sen University, Associate Researcher Shilian Zheng at Science and
Technology on Communication Information Security Control Laboratory, Professor
Ye Wu at Beijing Normal University, Professor Jinyin Chen and Associate Professor
Dongwei Xu at Zhejiang University of Technology, and all the other contributors.
We also thank all the members in the IVSN Research Group, Zhejiang University
of Technology, for the valuable discussions about the ideas and technical details
presented in this book. This work was partially supported by the National Natural
Science Foundation of China under Grant Nos. 61973273 and 61903334, and by
the Zhejiang Provincial Natural Science Foundation of China under Grant Nos.
LR19F030001, LY21F030017, and LGF21G010003.

xiii

Contents

1 Information Source Estimation with Multi-Channel Graph
Neural Network . 1
Xincheng Shu, Bin Yu, Zhongyuan Ruan, Qingpeng Zhang,
and Qi Xuan

2 Link Prediction Based on Hyper-Substructure Network 29
Jian Zhang, Jinyin Chen, and Qi Xuan

3 Broad Learning Based on Subgraph Networks for Graph
Classification . 49
Jinhuan Wang, Pengtao Chen, Yunyi Xie, Yalu Shan, Qi Xuan,
and Guanrong Chen

4 Subgraph Augmentation with Application to Graph Mining 73
Jiajun Zhou, Jie Shen, Yalu Shan, Qi Xuan, and Guanrong Chen

5 Adversarial Attacks on Graphs: How to Hide Your
Structural Information . 93
Yalu Shan, Junhao Zhu, Yunyi Xie, Jinhuan Wang, Jiajun Zhou,
Bo Zhou, and Qi Xuan

6 Adversarial Defenses on Graphs: Towards Increasing the
Robustness of Algorithms . 121
Huiling Xu, Ran Gan, Tao Zhou, Jinhuan Wang, Jinyin Chen,
and Qi Xuan

7 Understanding Ethereum Transactions via Network Approach 155
Yunyi Xie, Jiajun Zhou, Jinhuan Wang, Jian Zhang,
Yunxuan Sheng, Jiajing Wu, and Qi Xuan

8 Find Your Meal Pal: A Case Study on Yelp Network 177
Jian Zhang, Jie Xia, Laijian Li, Binda Shen, Jinhuan Wang,
and Qi Xuan

xv

xvi Contents

9 Graph Convolutional Recurrent Neural Networks: A Deep
Learning Framework for Traffic Prediction . 189
Dongwei Xu, Hongwei Dai, and Qi Xuan

10 Time Series Classification Based on Complex Network 205
Kunfeng Qiu, Jinchao Zhou, Hui Cui, Zhuangzhi Chen,
Shilian Zheng, and Qi Xuan

11 Exploring the Controlled Experiment by Social Bots 223
Yong Min, Yuying Zhou, Tingjun Jiang, and Ye Wu

Chapter 1
Information Source Estimation
with Multi-Channel Graph Neural
Network

Xincheng Shu, Bin Yu, Zhongyuan Ruan, Qingpeng Zhang, and Qi Xuan

Abstract The highly connectivity of modern society has led to the easy diffusion
of harmful information, such as rumors, computer viruses, and infectious diseases,
which brings great troubles to our society. Thus, estimating and timely quarantining
the source of an epidemic or a rumor is highly critical. In this chapter, based on
GNN, we propose a multi-channel graph neural network framework to efficiently
locate information source. Different from previous methods, we turn this task
into a learning problem and design two channels of feature inputs as a solution.
Specifically, node channel leverages the network structure to represent each node
as an embedding vector, which captures the important structural information of the
node. Edge channel transforms the original network into a line graph, and extract
feature vectors of nodes in line graph as representations of original edges. Finally,
the features of two channels are aggregated together to estimate the probability of
each node to be the source node. We evaluate our method on both synthetic and real-
world networks. Extensive experiments demonstrate the effectiveness of our method
on the task of identifying the information source.

1.1 Introduction

The spreading phenomena in our daily life is universal, such as the diffusion
of innovations, news, computer viruses, and rumors. The propagation of harmful
information or diseases, however, may bring great political and economic losses.
For example, during the widely spread of COVID-19 virus around the world,

X. Shu · B. Yu · Z. Ruan (�) · Q. Xuan
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: zyruan@zjut.edu.cn

Q. Zhang
School of Data Science, City University of Hong Kong, Hong Kong SAR, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_1&domain=pdf
mailto:zyruan@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_1

2 X. Shu et al.

Fig. 1.1 Finding the information source aims to identify or detect by reversing information
propagation in the network. The basic idea is to reversely estimate the location of the information
source through the observed infection subgraph at a certain snapshot

both the disease and the related rumors on the Internet cause great troubles to
us. Thus, how to control the spreading processes is of great importance in reality.
To achieve this aim, one possible way is to model these spreading processes and
understand the underlying mechanisms. So far, many epidemic and information
diffusion models have been developed, such as the classical Susceptible-Infection
(SI) model, the Susceptible-Infected-Recovered (SIR) model and the Susceptible-
Infected-Susceptible (SIS) model etc. Based on these models, a large number of
works have been focusing on the study of the range, the speed and the outbreak
threshold of the information/epidemic spreading in networks [35, 38–40]. A reverse
problem is how to locate the source nodes according to a given diffusion subgraph
as shown in Fig. 1.1, which is extremely useful in controlling the information or
epidemic spreading processes in practice.

Nevertheless, source inference is a difficult problem to solve due to a number
of reasons. First, information diffusion process is highly dynamic and generally
displays different patterns even starting from the same source. Second, in real
cases, the underlying contagion mechanisms are usually unclear. While most of the
existing source location methods assume a specific contagion model in advance.
For example, Shah and Zaman first studied the problem on tree-like networks and
assumed that the information diffusion process is characterized by the Susceptible-
Infected (SI) model. Later works considered more realistic models such as the
SIR and SIS models. However, some real spreading processes are much more
complicated and thus can not be simply characterized by these models. Third,
the existing mainstream methods are considered inadequate because of their high
computational complexity and the prior knowledge (such as the subgraph structure
and the propagation probability) they used may not correspond to the reality. For
example, Lokhov et al. proposed the dynamic message passing (DMP) method to

1 Information Source Estimation with Multi-Channel Graph Neural Network 3

estimate the source, which uses all nodes in the network to calculate the marginal
probability of a given node in a given state. However, DMP has low efficiency
and is too time-consuming. Chang et al. [10] proposed a maximum a posteriori
(MAP) estimator named as greedy search bound approximation (GSBA) to detect
the information source with other methods (i.e., rumor center or Jordan center) as
the prior. Both DMP and GSBA need to know the propagation probability between
any two nodes for obtaining the maximum likelihood estimation. While in the real
cases, the propagation probability is hard to exactly estimate. The aforementioned
shortcomings greatly limit the application of the current algorithms in practical
scenarios.

Consider an example as shown in Fig. 1.2, where the orange node indicates the
source of the information, the red and blue nodes represent individuals who have
received the information (infected). Note that the blue nodes are at the edge of
the diffusion subgraph, connecting the non-infected nodes and the core infected
nodes (red nodes). The aim is to identify the source node among the red and blue
nodes given the diffusion subgraph. For a node which has received the information,
it is logical to judge whether it is the source based on the states of its neighbor
nodes. For example, node 2 has two non-infected neighbor nodes (i.e., node 3

Fig. 1.2 The decomposition diagram of single information source detection problem. (a) After
propagation model simulation, we can obtain the infection status of each node on the global
structure topology. Moreover, nodes in the infected state can be extracted to form a diffusion
subgraph and used to infer the true source. In general, the true source has a high node centrality.
(b) Diffusion process is highly dynamic, and previous work do not consider higher-order network
characteristics for inferring source nodes (i.e., edge importance). For example, obviously, the
relationship between importance of edges e1, e2, e3 is e1 > e2 > e3

4 X. Shu et al.

and 4). Therefore, node 2 is unlikely to be the source of the information, since
intuitively, if node 2 is the source, its neighbor nodes are likely to be infected. Ali
et al. [1] adopted the above idea and proposed a novel algorithm called Exoneration
and Prominence based Age (EPA), which calculates the age of an infected node
by considering the characteristics of both infected and non-infected neighbors.
Moreover, from the diffusion subgraph (Fig. 1.2), we see that the source node is
always in a core position, which can be reflected by various importance indicators of
nodes. Recently, centrality-based methods have been widely used in the information
source detection and achieve good performance. Moreover, the diffusion process
has a character of temporality as shown in Fig. 1.2. In the diffusion subgraph,
the importance of directed edges will increase with the distance from the source
decreases. For example, obviously, the relationship between importance of edges
e1, e2, e3 is e1 > e2 > e3. However, as far as we know, there is no combination of
edge features and high-order structural features for information source detection.

In this chapter, we study the single information source detection problem (SISD)
in which the underlying model of diffusion is assumed to be the heterogeneous SI
model. This problem can be regarded as an end-to-end problem. The input is an
undirected network topology and the features of each node (i.e., infection status and
node centrality measures), and the output is the possibility of each node to be the
source node. In recent years, graph neural network has been widely used in various
tasks and practical scenarios on graph structured data because of its convincing
performance and high interpretability. To solve SISD, Shah et al. [46] used graph
neural networks (GNNs) to infer the information source without the knowledge of
the underlying dynamics and its parameters. Yet [46] did not extract high-order
structural features from diffusion subgraphs to infer information sources. Therefore,
the major contributions of this chapter can be summarized as follows:

• First, based on GNN, we propose a multi-channel (node channel and edge
channel) graph neural network framework (MCGNN) to efficiently locate the
information source. The two channels leverage the network structure to extract
the features of nodes and edges, respectively. By adopting feature fusion, the
precision of the source detection is improved.

• Second, for each node in the diffusion subgraph, we construct the structural
features and the prior knowledge features as the input of GNN to help estimate
the source node. The prior knowledge features include the infection states of the
nodes and the probability as the source for each node calculated by some previous
approaches.

• Third, we conduct extensive experiments on synthetic networks and real-world
datasets, demonstrating both the effectiveness and efficiency of our proposed
model.

The rest of this chapter is organized as follows: Sect. 1.2 provides a brief review
of related works. Section 1.3 introduces some preliminaries of single information
source detection. Section 1.4 shows the architecture and details of our proposed
model MCGNN. Experimental results are reported in Sect. 1.5. Finally, Sect. 1.6
concludes this chapter.

1 Information Source Estimation with Multi-Channel Graph Neural Network 5

1.2 Related Work

Information source detection has attracted great attention and has been extensively
studied over the past decade. In this section, we mainly review the relevant
research from the following three categories: (1) information diffusion modeling.
(2) information source detection and (3) graph neural network.

1.2.1 Information Diffusion Modeling

Modeling the spreading processes is of great significance for controlling the
epidemics or rumors in social networks. It has attracted researchers from different
fields like computer science, epidemiology, sociology and physics [52]. A large
number of models have been proposed, such as the SI model, SIS model, SIR
model, and linear threshold model (LT). In the SI model, individuals have two
states: Suspected, Infected. A susceptible individual will be infected with a certain
probability if he/she encounters an infected individual, and the infected agents
will keep their state until the end of the dynamics. In the SIS model, however,
the infected nodes will recover to the susceptible state with a certain probability,
thereafter, participating in the infection process again. Differently, in the SIR model,
the infected nodes will turn into removed state, and never be infected or infect
others again. LT model assumes that a node can be infected only if the fraction
of infected neighbors of the node is greater than a threshold. In this chapter, we
use the heterogeneous SI model to generate the diffusion subgraph, in which the
infection probabilities on different links are heterogeneous.

1.2.2 Information Source Detection

The problem studied in this chapter can be regarded as the reverse reasoning process
of information diffusion modeling. Various methods have been proposed to identify
a single source under the SI model. For example, Shah and Zaman [44, 45]
studied the single source detection problem with the popular SI model for the first
time and constructed an estimator for the information source, which is termed as
Rumor Centrality (RC). For each node, RC represents the number of permuted
propagation paths and their corresponding probabilities. However, the authors only
considered a simple case that the underlying network is unweighted. Luo et al. [31]
studied the problem, and proposed an algorithm with quadratic complexity to
estimate the actual number and identities of the infection sources. Meanwhile,
Luo et al. [32] also considered the problem of estimating an infection source with
Limited Observations. Dong et al. [13] constructed a maximum a posteriori (MAP)
estimator to identify the rumor source with different settings of the prior. To handle

6 X. Shu et al.

the analysis of the MAP estimator, they also developed a key concept of local
rumor center, which originates from RC. Wang et al. [48] addressed the problem
of rumor source detection with multiple observations under the SI model. For tree
networks, the authors found that multiple independent observations can dramatically
improve the detection probability. Jain et al. [22] proposed a heuristic method
based on the hitting time statistics of a surrogate random walk process that can be
used to approximate the maximum likelihood estimator of the rumor source. Chang
et al. [10] proposed a maximum a posteriori (MAP) estimator named as greedy
search bound approximation (GSBA) to detect the information source with other
methods as the prior. Choi et al. [11] studied the problem by querying the individuals
under the SI model, given a sample snapshot of the information diffusion graph.
They proposed two practical estimation algorithms, each of non-adaptive (NA) and
adaptive (AD) types, and for each algorithm, the authors quantitatively analyzed the
budget which ensures 1 − δ detection accuracy.

Besides, researchers also studied the problem under more general epidemic
models, such as SIR and SIS models. Zhu et al. [56] developed a sample path
based approach to detect the information source in tree graphs under the SIR model
and proposed the Reverse Infection (RI) algorithm to find the source in general
graphs which is proved to be its Jordan center (JC) [24]. The estimator of the
information source is chosen to be the root node associated with the sample path
according to the observed diffusion subgraph. Luo et al. [30] derived an estimator
based on estimating the most likely infection source associated with the most likely
infection path, assuming that the infection process follows the SIS model. Moreover,
considering the SIR model, Lokhov et al. [29] introduced a new algorithm based on
the dynamic message passing (DMP) equations for the estimation of the source
by given the network topology and the snapshot of some nodes at a certain
time. It used a mean-field-like approximation to compute the probability of the
observed snapshot as a product of the marginal probabilities, which is the basis
of node ranking. Whereas DMP method is too time-consuming to be applied to real
scenarios, and the propagation probability which is used to calculate the marginal
probabilities is extremely hard to capture. Unlike the most existing methods,
Altarelli et al. [4] performed Bayesian inference for the information source detection
under the SIR model. They derived the Belief Propagation (BP) equations which can
accurately calculate the posterior distribution of each node state by time evolution.
Furthermore, they also generalized the problem with noisy observations [3].

In addition, many researchers focused on the problem of detecting multiple infor-
mation sources. Prakash et al. [36] proposed to employ the Minimum Description
Length (MDL) principle to identify the best set of seed nodes and virus propagation
ripple, which describes the infected graph most succinctly. They proposed a highly
efficient algorithm, namely Netsleuth, to identify likely sets of seed nodes given a
snapshot. Given these seed nodes, the authors showed that Netsleuth can optimize
the virus propagation ripple in a principled way by maximizing likelihood. Fioriti et
al. [16] introduced a dynamic age method to identify multiple diffusion sources

1 Information Source Estimation with Multi-Channel Graph Neural Network 7

in general networks. They claimed that the oldest nodes, which are associated
to those with largest eigenvalues of the adjacency matrix, are the sources of the
diffusion. Zhu et al. [57] proposed a new source localization algorithm, named
Optimal-Jordan-Cover (OJC). The algorithm first extracts a subgraph using a
candidate selection algorithm which selects source candidates based on the number
of observed infected nodes in their neighborhoods. Considering the heterogeneous
SIR model in the ER random graph, they proved that OJC can locate all sources with
probability one asymptotically with partial observations. Jiang et al. [23] proposed a
novel method, i.e., K-center method, to identify multiple diffusion sources in general
networks, which can address the question of how many sources there are and where
the diffusion emerges. Wang et al. [49] proposed Label Propagation based Source
Identification (LPSI) algorithm, which exploits the idea of source prominence to
find multiple sources without any information of the underlying propagation model
using label propagation mechanism. Ali et al. [1] proposed a novel algorithm called
Exoneration and Prominence based Age (EPA), which calculates the age of an
infected node by considering the characteristics of both infected and non-infected
neighbors.

1.2.3 Graph Neural Network

Graph neural networks (GNN) [8, 18, 51, 53] have received considerable attention
from various fields, such as social science [20, 27], physics [7, 41], biology [17],
knowledge graphs [19, 34] and many other research areas [26].

The concept of GNN was first proposed in [42], which extends the existing
neural networks for processing the data represented in graph domains. Kipf and
Welling [27] proposed a spectral approach, called GCN, which employs a localized
first-order approximation of graph convolutions. More recently, Veličković et al.
[47] proposed graph attention networks (GATs) to aggregate localized neighbor
information based on attention mechanism. For the problem of information source
detection, Dong et al. [14] proposed a deep learning based model, namely GCNSI,
to locate multiple rumor sources without prior knowledge of underlying propagation
model. Futhermore, Shah et al. [46] revisited this problem using graph neural
networks (GNNs) to learn Patient Zero (P0). They established a theoretical limit for
the identification of P0 in a class of epidemic models. Our work is also based on the
graph convolution network architecture, we consider the node importance features
and the prior knowledge of each infected node in the diffusion subgraph, and set up
multiple channels to extend this architecture to learn the information source from
multiple perspectives.

8 X. Shu et al.

Table 1.1 Notation summarization

Symbols Descriptions

G = (V ,E,W) An undirected and weighted social network.

GI An diffusion subgraph of G.

ηij Probability of propagation between node i and j .

V Set of vertexes in G.

E Set of edges in G.

Y = (Y1, · · · , Y|V |)T Infection state of social network

Yi → {1, 0} Infection state of a single node i.

s Predictable information source.

s∗ Ground-truth of information source.

λ Weight of L2 regularization.

y′ Output of MCGNN.

y Ground-truth vector of information sources.

1.3 Preliminaries

In this section, we introduce the basic knowledge and relevant techniques that are
necessary for understanding MCGNN. Frequently used notations are summarized
in Table 1.1.

1.3.1 Problem Definition

Let’s consider an undirected and weighted social network G = (V ,E,W), where
V is the node set, E is the edge set, and W = [ηij] (ηij ∈ [0, 1]) is the information
propagation probability from node i to j . Let Y = (Y1, · · · , Y|V |)T be the infection
state of all nodes in G. The state of each node Yi ∈ {1, 0} denotes the infection
state of node vi ∈ V , in which Yi = 1 and Yi = 0 indicate that vi is infected and
uninfected, respectively. In this chapter, we assume the source consists of a single
node s, and apply the heterogeneous SI model to characterize the diffusion process.

The heterogeneous SI model is a variant of the popular SIR model [25]. It
assumes that each node has two possible states: (1) susceptible and (2) infected.
Once a node i is infected (or receives the information), it will remain in the state until
the end of the dynamics. Meanwhile, the infected node i will spread the information
to its susceptible neighboring node j with probability ηij . The infections along
different edges are supposed to be independent. After the information spreads on
the network for some time, there will be a group of infected nodes, denoted by
VI , which includes the source node s. These nodes and their interconnections EI

can span a diffusion subgraph GI (VI ,EI) of G(V,E), which are referred to as GI

and G, respectively. GI is connected because every susceptible node can only be
infected by its neighbors.

1 Information Source Estimation with Multi-Channel Graph Neural Network 9

Fig. 1.3 Diffusion subgraph under the SI model, where red and brown nodes are infected and
others are susceptible. Numbers on edges are the information propagation probability between two
adjacent nodes

As an example, Fig. 1.3 shows a graph in which nodes 1, 2, 6, and 10 are infected
(forming a diffusion subgraph), and other nodes are susceptible. In our experimental
setup, the data that we can observe include only the graph structure and a snapshot
of the spreading process (i.e., the state of each node at a given time is known),
while the time for each infection event and the propagation probability between
each node pair are unknown. The question is how to locate the source node based
on these information. To solve this problem, let’s start by introducing the following
definitions:

Definition 1 (Global Graph) Global graph G(V,E,W) is the original network
over which the information spreads, where V is the set of nodes and E is the set of
edges. W = [ηij] is the information propagation probability between nodes i and j .

Definition 2 (Diffusion Subgraph) Diffusion Subgraph GI (VI ,EI) is a con-
nected subgraph of G, consisting of the infected nodes VI ⊆ V , and the
corresponding edges EI ⊆ E.

Definition 3 (Source) A source s∗ is the node from which the information starts
on the global graph G.

Definition 4 (Single Information Source Detection) Given a diffusion subgraph
GI and its corresponding global graph G, the problem undertaken in this study is
to identify the infection source s∗ in GI , assuming that GI has been infected by a
single source under the heterogeneous SI diffusion model.

Definition 5 (Line Graph) Given a network G(V,E), the line graph, denoted
by G∗ = L(G), is a mapping from G to G∗(V ∗, E∗), in which V ∗ =
{v∗

1 , v∗
2 , · · · , v∗|E|} and E∗ ⊆ (V ∗ × V ∗) represent the set of nodes and links,

respectively. The mapping process is as follows: As shown in Fig. 1.4, if two
nodes vi and vj are connected in the original network, the link between them

10 X. Shu et al.

Fig. 1.4 The process of building line graph from a given network: (a) the original network (i.e.,
diffusion subgraph in our task), (b) extracting lines as nodes and establishing connections among
these lines, and (c) forming line graph

is transformed as a node, and two nodes in the line graph are connected if the
corresponding links share the same terminal node in the original network.

1.4 Multi-Channel Graph Neural Network

In this section, based on GNN, we introduce a multi-channel graph neural network
framework to efficiently locate the information source. Different from the previous
methods, we turn this task into a learning problem and design two channels (i.e.,
node channel and edge channel) of feature inputs as a solution. Specifically, node
channel leverages the network structure to represent each node as an embedding
vector, which captures the important structural information of the node. Edge
channel transforms the original network into a line graph, and extract feature vector
of the line graph as representations of original edges. Finally, the features of two
channels are aggregated together to estimate the probability of each node to be the
source node. In terms of that, our framework MCGNN combining node level vector
with high-order edge features can enhance the performance of information diffusion
source reasoning.

1.4.1 Feature Indices of Input

In this work, we extract two sets of features: node features (e.g., structural features
or priori knowledge) on diffusion subgraph and edge features on line graph. Node
features in diffusion subgraph are often used for information source detection
[2, 12]. However, in the previous studies of single information source detection,
the importance of edges is largely ignored. We here try to fill this gap. To proceed,
we first convert the original global graph to line graph, then calculate the node

1 Information Source Estimation with Multi-Channel Graph Neural Network 11

centrality indices of the line graph to directly define the edge importance in the
original network. In addition, the features of uninfected nodes in the global graph
are set to zero, to distinguish from the infected nodes.

1.4.1.1 Structural Features

In particular, the structural features in diffusion graph and the line graph include:

• Degree Centrality (D). It is defined as

DCi = ki

N − 1
, (1.1)

where ki is the degree of node i and N is the total number of nodes in the
corresponding graph (i.e., diffusion subgraph or line graph).

• Closeness Centrality (CC). It is defined as

CCi = N
∑N

j=1 dij

, (1.2)

where dij denotes the shortest path length between nodes i and j in the
corresponding graph. The shorter the distances between node i and the rest nodes
are, the more central the node i is, and thus the larger CCi index is.

• Betweenness Centrality (BC). It is defined as

BCi =
∑

s �=i �=t

ni
st

gst

, (1.3)

where gst is the total number of shortest paths between nodes s and t in the
corresponding graph, and ni

st represents the number of shortest paths between
nodes s and t that pass through node i.

• Eigenvector Centrality (EC). Eigenvector Centrality is also known as eigencen-
trality. It is defined as

ECi = α

N∑

j=1

aijECj , (1.4)

where aij is the element of the adjacency matrix of the corresponding graph, i.e.,
aij = 1 if nodes i and j are connected and aij = 0 otherwise, and α should be
less than the reciprocal of the maximum eigenvalue of the adjacency matrix.

12 X. Shu et al.

• Clustering Coefficient (C). In this study, we consider the local clustering
coefficient. It is defined as

Ci = 2Li

ki(ki − 1)
, (1.5)

where Li is the number of links between the ki neighbors of node i.
• H-index (H). H-index is a popular metric which is used to measure both the

productivity and citation impact of a scholar or scientist [21]. Sorting the degree
of node i ′s neighbors by decreasing order, the H-index can be calculated as
following:

Hi = max
j∈N (i)

min(ki, j), (1.6)

where N (i) denotes the set of neighbors of node i.
• Coreness (CO). The coreness is defined based on k-core. The k-core of a network

is defined as the maximal subnetwork in which each node has at least degree k

[6, 43]. If a node belongs to k-core but not (k + 1)-core, it has coreness k [9].
• PageRank (PR). PageRank is a popular way of measuring the importance of

website pages [33]. The underlying assumption is that more important webpages
tend to have more links from other webpages. Its iterative formula is defined as

PRi(t) = (1 − c)

N∑

j=1

aji

PRj (t − 1)

kj

+ c

N
, (1.7)

where c is a free parameter between zero and one. In this study, we set c = 0.15.

1.4.1.2 Prior Knowledge Features

There have been many methods to study the information source inferring problem,
such as Distance Centrality, Jordan Centrality, Rumor Centrality, LPSI [49] and
EPA [1]. We here combine these methods with GNN to improve the detection
precision. In particular, based on these methods, the importance value of each
infected node in the diffusion subgraph will be calculated and input into our
MCGNN framework as the features of each node. In the following, we will
introduce these methods briefly.

• The most basic measure for node i being the information source is the distance
centrality D(i), which is defined as

D(i) =
∑

j∈GI

dis(i, j), (1.8)

1 Information Source Estimation with Multi-Channel Graph Neural Network 13

where dis(i, j) is the shortest path length between node i and node j in the
graph GI .

• Jordan centrality J (i) is defined as the maximum distance from node i to other
infected nodes [55]:

J (i) = max
j∈GI

dis(i, j), (1.9)

The node i with minimal J (i) is known as a “Jordan center” of GI .
• Rumor Centrality was proposed to detect the source with maximum likelihood

estimation under the homogeneous SI model which assumes the propagation
probability along each edge is equal. RC is defined as the number of permitted
permutations starting with i:

RC(i) =
∏

j∈GI

N !
T i

j

, (1.10)

where j is a node in GI and T i
j is the number of nodes in the subtree rooted at j

with i being the source.
• Label Propagation based Source Identification (LPSI) was first proposed in

[49], which was inspired by a label propagation based semi-supervised learning
method [54]. In LPSI, the iteration formulation and the convergent state are
defined as follows:

G t+1
i = α

∑

j∈N (i)

SijG
t
j + (1 − α)Yi, (1.11)

G ∗ = (1 − α)(I − αS)−1Y. (1.12)

In Eq. (1.11), α ∈ (0, 1) is the parameter used to control the influence from the
neighbors to node i. Gt

i is the infection state of node i at time t . Sij is the (i, j)-
th element of the regularized Laplace matrix S of GI . Yi is the given infection
state of node i. In Eq. (1.12), G ∗ is the convergence state of the network. I is
the identity matrix. S = D−1/2WD−1/2 is the regularized Laplace matrix of GI ,
where D is a diagonal matrix with its (i, i)-th element equaling to the sum of the
i-th row of W , and W is the adjacency matrix of graph GI .

• Exoneration and Prominence based Age (EPA) was proposed by Ali et al. [1],
which exploits the concepts of exoneration effect and local prominence. Starting
from any node i, the authors applied the BFS (Breath-First Search) algorithm to
traverse the diffusion subgraph. Since the nodes generated by BFS in iteration
l are l hops away from i, these nodes are considered to belong to level l. For a
node j at level l, the prominence is defined as

P l
j = (

Ij

Oj

)/(
1

1 + ln Oj

), (1.13)

14 X. Shu et al.

where Ij and Oj are the corresponding degree of node j in the diffusion subgraph
and in the global graph, respectively. Therefore, the age of node i will be the sum
of the prominence of each level starting from level 0–r − 1.

A(i) =
∑r−1

l=0
∑

v∈Vl
P l

j

ECC(i)
, (1.14)

where r denotes the radius of the subgraph GI , and ECC(i) is the eccentricity
of node i in the subgraph GI .

1.4.2 Graph Convolutional Networks

Graph Convolutional Network (GCN) [27] is an extension of Convolutional
Neural Network (CNN) on graph data, which generates local permutation-invariant
aggregation on the neighborhood of a node in a graph such that the features of a
graph can be efficiently captured. The GCN model is built by stacking multiple
GCN layers. The input to each GCN layer is a vertex feature matrix, H ∈ RN×F ,
where N is the number of vertices, and F is the number of features. Each row of H ,
denoted by hT

i , is associated with a vertex. Generally speaking, the essence of the
GCN layer is the nonlinear transformation that outputs H ′ ∈ RN×f :

H ′ = GCN(H) = σ(A(G)HWT + b), (1.15)

where W ∈ Rf ×F , b ∈ Rf are model parameters, σ is a non-linear activation
function, A(G) is an n × n matrix that captures structural information of graph G.
GCN instantiates A(G) to be a static matrix closely related to the normalized graph
Laplacian matrix:

A(G) = D−1/2ÃD−1/2. (1.16)

where Ã = A + I is the adjacency matrix of G, I is the identity matrix, and Dii =∑
j Ãij represents the degree matrix of G.

1.4.3 Architecture of MCGNN

By applying the GCN framework, we here study the single information source
detection (SISD) problem. The input is a number of features of the nodes in a
given network, and the output is the possible information sources. According to
the nature of SISD, it can be considered as a variant of the multi-label classification
problem that aims to assign a two-valued label (0, 1) to each node in G. In our

1 Information Source Estimation with Multi-Channel Graph Neural Network 15

model, we consider both the node importance and edge importance. The latter one
has been largely ignored in the previous studies, while may be of great importance
in detecting the source. To test our assumption, we extract the feature of each node
in the line graph as the extended feature of the original diffusion subgraph. The
results show that extracting both the node and edge features can effectively improve
the accuracy of information source detection. As GCN can effectively capture the
features of vertex domain and spectral domain for a graph, it is therefore proper to
adopt GCN for expressing complicated neighborhood information.

As shown in Fig. 1.5, the architecture of our model (called MCGNN) can be
divided into two main channels, i.e., node-level channel and edge-level channel.
First, the set of training samples are generated by the heterogeneous SI model under
global graph G. Second, we construct the features of each node in the simulated
diffusion subgraph, including structural features and rumor-related features, which
are input to GCN layers as the feature matrix W . Meanwhile, we sample the 2-hop
ego network of each node in the diffusion subgraph, and extract the global structure
features of the corresponding line graph as the importance of edges. Finally, the
output matrix of GCN and the features matrix of line graph are aggregated as the
final matrix, which include node-level part and edge-level part. In addition, we
adopt a dense (full connected) layer and sigmoid function to transform the output
matrix into a probability vector, where each value represents the probability that
the corresponding node is an information source node. The prediction output of
MCGNN is denoted by y ′.

1.4.4 Loss Function

We denote a training sample for MCGNN as (x, y), where the input is x and the
output is y. For a given input x, the corresponding output y is the true label of each
node (regarding whether it is the information source or not). As mentioned before,
SISD is a variant of the multi-label classification problem and we need to predict
whether each node is an information source at the same time. Therefore, we adopt a
Sigmoid cross entropy loss as the loss function. In addition, we use L2 regularization
in the loss function to reduce overfitting. The loss function is described as follows:

L (y ′, y) = − log σ(y ′) × y − log(1 − σ(y ′)) × (1 − y) + λ‖w‖2, (1.17)

where y ′ is the output of MCGNN with the input x, y is the true label and σ is the
Sigmoid function. w represents all of the weights in MCGNN and ‖w‖2 is the L2
regularization item, companied by a weight coefficient λ.

16 X. Shu et al.

F
ig
.1

.5
A

rc
hi

te
ct

ur
e

of
M

C
G

N
N

.W
e

im
pr

ov
e

th
e

ac
cu

ra
cy

of
es

ti
m

at
in

g
in

fo
rm

at
io

n
so

ur
ce

no
de

s
by

ex
tr

ac
ti

ng
th

e
ed

ge
im

po
rt

an
ce

fe
at

ur
es

of
di

ff
us

io
n

su
bg

ra
ph

1 Information Source Estimation with Multi-Channel Graph Neural Network 17

1.5 Experiment

In this section, we first introduce the experimental settings, including the datasets,
baselines and evaluation metrics. Then, we explore the detection effect of our
method on both small and large scale diffusion subsgraphs, and compare our method
with baselines on different synthetic and real-world networks.

1.5.1 Datasets and Experimental Setup

We evaluate the performance of our proposed method for single information source
detection on six different networks, including three synthetic networks (i.e., ER
random [15], BA scale-free [5] and 4-regular network) and real-world networks (i.e.,
Email-univ [37], Facebook [28], US Power Grid (USPG) [50]). The basic statistics
of these networks are presented in Table 1.2. In order to analyze the universality
of our proposed method, we consider two different diffusion subgraph sizes (small
scale and large scale). The number of nodes in the small scale experiments ranges
from 20 to 60 with an interval of 5, and the number of nodes in the large scale
experiments ranges from 400 to 600 with an interval of 100 (see the last two columns
in Table 1.2).

1.5.2 Baselines and Evaluation Metrics

In order to verify the performance of our method MCGNN, we compare it with
the following methods. In the experiments, we use the same settings, for example,
keeping the number of independent experiments the same, and applying the SI
model for all experiments.

• Distance Centrality (DC): DC selects the infected node with the smallest
distance centrality as the source after ranking. Distance centrality is the sum of
the shortest distances from a node to others [44].

Table 1.2 Dataset statistics

Netowrk # Node # Edge # Degree Small scale Large scale

BA scale-free 1000 2991 5.982 20–60 400–600

ER random 1000 4000 8.0 20–60 400–600

4-regular 1000 2000 4.0 20–60 400–600

Email-univ 1133 5451 9.622 20–60 400–600

Facebook 4039 88,234 43.961 20–60 400–600

US Power Grid (USPG) 4941 6594 2.669 20–60 400–600

18 X. Shu et al.

• Jordan Centrality (JC): Jordan center is the node which minimizes the
maximum distance to others. JC selects the Jordan center as the source [24].

• Rumor Centrality (RC): Rumor center is the node with the maximal rumor
centrality, which is selected as the source. RC is defined as the number of
permitted permutations starting with one node [44].

• Reverse Infection (RI): RI is a low complexity algorithm to find the sample
path based estimator in general graphs. It allows each infected node to broadcast
a message containing its identity to its neighbors. Each node, after receiving
messages from its neighbors, will record the arriving time and repeat the above
process. The node with the minimum sum of arriving times will be selected as
the source [56].

• Dynamic Message Passing (DMP): The algorithm uses DMP equations to
estimate the source by given the network topology and the snapshot of some
nodes at a certain time. It uses a mean-field-like approximation to compute the
probability of the observed snapshot as a product of the marginal probabilities,
and selects the node with the maximum probability, as the source [29].

• Dynamic Importance (DI): DI selects an infected node, which has the maximal
reduction of the largest eigenvalue of the adjacent matrix after being removed
from the network as the source [16].

• Greedy Search Bound Approximation (GSBA): GSBA is an approximate
maximum a posteriori (MAP) estimator. It exploits a strategy of greedy search to
find a surrogate upper bound of the likelihood of a permitted permutation [10].
In this chapter, we select Rumor Centrality as its prior knowledge.

• Exoneration and Prominence based Age (EPA): EPA calculates the age of an
infected node by considering its prominence in terms of its both infected and
non-infected neighbors. The oldest node is selected as the source [1].

We repeat 1000 independent experiments on the small-scale diffusion subgraphs
to achieve the statistically meaningful results. While for large-scale diffusion
subgraphs, some algorithm (e.g., DMP) is too time-consuming, thus we repeat
100 independent experiments on them. For MCGNN, we generate 1000 diffusion
subgraphs for each network, then use 90–10 train-test split and 10-fold cross
validation. Finally, we report the average result for all trials.

To evaluate our proposed method quantitatively, we use the following three
widely adopted performance metrics:

• Precision (Prec.): Precision denotes the proportion of times that the information
source is correctly detected in Q independent repeated experiments. It is defined
as

P = QT

Q
, (1.18)

where QT is the number of detection experiments in which the information
source is located correctly.

1 Information Source Estimation with Multi-Channel Graph Neural Network 19

• Error Distance (ED): Error Distance is the shortest topological distance
between the ground truth s and the estimated source s∗ in all trials. Formally, ED
is defined as

ED = dis(s, s∗), (1.19)

where dis(s, s∗) is the distance between the actual source s and the estimated
source s∗ in each detection experiment.

• Normalized Ranking (NR): For each method, we sort the probability or
centrality value of each infection node as the source in descending order, and
then normalize the ranking of the true source. NR is defined as

NR = R(s∗) − 1

NI

, (1.20)

where NI is the size of the diffusion subgraph, and R(s∗) denotes the ranking of
the ground truth s∗. Clearly, smaller NR means the estimation result is better.

1.5.3 Results on the Synthetic Networks

In this subsection, we compare our method, namely MCGNN, with other baseline
methods, i.e., DC, JC, RC, RI, DMP, DI, GSBA, EPA and GCN. Among these
baselines, DC, JC RC, RI, DI, EPA, GCN are designed based on the topological
characteristics of the diffusion subgraph, while DMP and GSBA are based on the
probabilistic likelihood estimation, which require the prior knowledge, i.e., the
propagation probability on each edge in advance. In the following, we will evaluate
the source detection performance of each baseline and our method on the BA
scale-free networks, ER random networks and 4-regular networks, respectively. For
each kind of networks, we perform experiments on both small and large diffusion
subgraphs, which are generated under the heterogeneous SI model.

First, we perform extensive experiments on small diffusion subgraphs of which
the size ranges from 20 to 60 with an interval of 5. Figure 1.6 shows the precision,
error distance and normalized ranking across all the three synthetic networks. In
general, our method achieves better performance in most cases under all the three
metrics.

As shown in Fig. 1.6a–c, we see that for BA scale-free networks, DI and RI
algorithms perform poorly, which, for example, only achieve less than 20 % average
precision. The probabilistic likelihood estimation based methods (GSBA and DMP)
perform much better due to the prior knowledge. Other methods like DC, JC, RC and
EPA, which estimate the source based on the topological structure, achieve around
40 % precision, worse than GSBA and DMP. The reason is clear: For example, if
the source node in BA scale-free networks has a very small degree, the centrality
based methods may probably fail, meaning that it is usually not reliable to estimate

20 X. Shu et al.

the source based on single topological measures in heterogeneous networks. Our
method, which extracts the features of both nodes and edges can improve the
estimation results and perform the best.

The results of ER random networks are reported in Fig. 1.6d–f, where we see that
all the methods can achieve good performance. For example, compared to the case
of scale free networks, the average precision increases for each method. Specifically,
the precision of MCGNN almost reaches to 100% (Fig. 1.6d). Furthermore, the
overall error distance decreases. Even for DI, which performs worst, the error
distance is below 0.7 (Fig. 1.6e), indicating that the shortest path length between
the estimated and the real source is less than 1. Finally, the normalized ranking also
decreases significantly. The key point here is that the ER random network can be
approximately regarded as a regular tree [56], which is a network structure with

(a) Scale-free, Prec. (b) Scale-free, ED (c) Scale-free, NR

(d) ER random, Prec. (e) ER random, ED (f) ER random, NR

(g) 4-regular, Prec. (h) 4-regular, ED (i) 4-regular, NR

Fig. 1.6 The performance of different methods under all the three metrics on the synthetic
networks. We test all the algorithms 1000 times and report the results on average. Synthetic
networks include (a)–(c) BA scale-free network, (d)–(f) ER random network and (g)–(i) 4-regular
network

1 Information Source Estimation with Multi-Channel Graph Neural Network 21

a high inference precision according to the centrality based and probability based
methods.

Finally, we repeat the above experiments on 4-regular networks. As shown in
Fig. 1.6g–i, we find that MCGNN, GCN and EPA algorithms perform well on all
the three metrics—the average precision is high, the error distance is small, and the
normalized ranking is at top, meaning that these methods are relatively robust. While
DMP performs abnormally, corresponding to high values of normalized ranking.
In addition, the results for DI, DC, JC and RC are unsatisfactory (Fig. 1.6g, h),
since for 4-regular networks where each node has the same degree, it is difficult for
the methods which only extract single topological property to estimate the source
accurately.

Next, we also conduct experiments on large diffusion subgraphs which at least
400 nodes have been infected. Here, we consider three different sizes of subgraphs,
NI = {400, 500, 600}. The results are shown in Table 1.3. In general, our method
achieves better performance in most cases under all the three metrics, although there
are some exceptions. For example, in ER random networks, RC performs the best
in Normalized Ranking. Moreover, in 4-regular networks, DMP performs the best
in Precision and Error Distance when the diffusion subgraph is large. These results
suggest that the methods which combine multi-features of the underlying network
can more accurately detect the source node, while it is still a challenging task on
large-scale graphs.

To summarize, our method always achieves the best performance on the three
synthetic networks, especially with respect to Precision and Error Distance. The
reason is that MCGNN can extract features from different levels, i.e., node level
and edge level. The above results suggest that our method has great advantage,
which can infer the source node without the propagation probability, and have a
good performance both on small and large diffusion subgraphs.

1.5.4 Results on the Real-World Networks

Next, we will show the experimental results on the real-world networks. Different
from the synthetic networks, the structure of diffusion subgraphs generated from
different sources on a real network may be significantly different. This makes
it much more difficult to infer the source node, especially for those algorithms
which only consider one-dimension feature, e.g., DC, JC, RC and so on. While
our proposed method, MCGNN, can capture the structural features from different
levels, and can significantly improve the detection accuracy.

We first consider the case of small diffusion subgraphs. Figure 1.7a–c show
the results on Email-univ networks. We see that MCGNN and GCN noticeably
outperform other baseline methods on Precision and Error Distance (Fig. 1.7a, b).
The similar results can also be found in Facebook and US Power Grid networks. It
should be noticed that the phenomena observed here are quite complicated. First,
for different real-world networks, sometimes the probabilistic likelihood estimation

22 X. Shu et al.

Table 1.3 The performance of single source detection on the synthetic networks under three
metrics, the bold values represent the best results

Precision Error distance Normalized ranking

400 500 600 400 500 600 400 500 600

Scale-free

DC 0.0 0.01 0.0 2.08 2.07 2.03 0.5536 0.5561 0.5445

JC 0.0 0.0 0.0 2.51 2.65 2.62 0.5318 0.4936 0.4487

RC 0.01 0.01 0.0 2.09 2.14 2.62 0.4852 0.4987 0.5106

DI 0.0 0.01 0.0 2.14 2.11 2.17 0.6283 0.6006 0.5885

RI 0.0 0.01 0.0 2.36 2.2 2.3 0.5592 0.5441 0.5272

DMP 0.39 0.25 0.18 1.22 1.84 1.87 0.2331 0.2693 0.3571

GSBA 0.0 0.0 0.0 2.84 2.86 2.9 0.6427 0.5974 0.6103

EPA 0.0 0.01 0.0 2.11 2.12 2.12 0.4949 0.5078 0.5149

GCN 0.41 0.33 0.29 1.02 1.57 1.78 0.1789 0.2219 0.2732

MCGNN 0.45 0.37 0.31 0.89 1.23 1.60 0.1543 0.2071 0.2415
ER random

DC 0.16 0.13 0.02 1.31 1.62 1.75 0.0899 0.112 0.2317

JC 0.0 0.0 0.02 2.88 3.04 3.11 0.3134 0.3691 0.4355

RC 0.69 0.56 0.3 0.41 0.72 1.56 0.0106 0.0387 0.0439
DI 0.09 0.09 0.04 1.55 1.79 2.38 0.1093 0.1291 0.2462

RI 0.03 0.05 0.02 2.4 2.59 2.91 0.3236 0.4041 0.4441

DMP 0.62 0.4 0.35 0.73 1.06 1.02 0.1829 0.2141 0.203

GSBA 0.01 0.0 0.0 3.63 3.74 3.74 0.4888 0.5622 0.5628

EPA 0.5 0.37 0.11 0.81 1.2 2.04 0.0375 0.0631 0.1631

GCN 0.63 0.54 0.48 0.47 0.77 1.13 0.0128 0.0379 0.0512

MCGNN 0.73 0.61 0.54 0.28 0.43 0.72 0.0117 0.0329 0.0443

4-regular

DC 0.31 0.23 0.2 1.09 1.4 1.75 0.0171 0.0198 0.0316

JC 0.07 0.06 0.04 2.74 3.57 4.23 0.074 0.118 0.158

RC 0.43 0.33 0.18 0.78 1.04 1.61 0.0107 0.0112 0.0238

DI 0.21 0.19 0.15 1.45 1.78 1.88 0.0214 0.0244 0.0288

RI 0.24 0.07 0.06 1.38 2.06 2.69 0.0244 0.0337 0.0801

DMP 0.42 0.43 0.55 0.72 0.75 0.67 0.01487 0.0199 0.0176

GSBA 0.0 0.0 0.0 6.01 5.9 5.88 0.5039 0.5258 0.4842

EPA 0.45 0.44 0.23 0.75 0.94 1.64 0.0097 0.0115 0.0188

GCN 0.51 0.47 0.41 0.59 0.71 0.87 0.0082 0.01375 0.01598

MCGNN 0.67 0.53 0.47 0.43 0.62 0.78 0.0063 0.0097 0.0145

And we repeat 100 independent experiments on the large diffusion subgraphs and report the
average result

1 Information Source Estimation with Multi-Channel Graph Neural Network 23

(a) Email-univ, Prec. (b) Email-univ, ED (c) Email-univ, NR

(d) Facebook, Prec. (e) Facebook, ED (f) Facebook, NR

(g) US Power Grid, Prec. (h) US Power Grid, ED (i) US Power Grid, NR

Fig. 1.7 The performance of different methods under all the three metrics on the real-world
networks. We test all the algorithms 1000 times and report the results on average. Real-world
networks include (a)–(c) Email-univ, (d)–(f) Facebook and (g)–(i) US Power Grid

based methods perform better (e.g., DMP, GSBA on Email-univ and US Power
Grid), and sometimes the topological feature based methods perform better (e.g.,
EPA on Facebook). That means it is impossible to accurately infer the location
of the source by following a single feature. Second, Normalized Ranking behaves
very steadily as the number of infected nodes increases, as shown in Fig. 1.7c,
f, i, and our proposed method can not perform the best in this case. Third, on
Email-univ and Facebook, our method can achieve an average Precision of 70 %.
However, on US Power Grid, although our method still performs the best, the overall
average Precision is only 30% (as shown in Fig. 1.7g). These results indicate that
the detection of the source in real networks is a difficult task, which requires more
robust estimation algorithms in the future.

Similarly, we perform the experiments on large diffusion subgraphs with the
same settings. Table 1.4 reports the results on the three real-world networks. Our
method still can obtain the relative optimal results. However, we can see that the

24 X. Shu et al.

Table 1.4 The performance of single source detection on the real-world networks under three
metrics, the bold values represent the best results

Precision Error distance Normalized ranking

400 500 600 400 500 600 400 500 600

Email-univ

DC 0.0 0.0 0.02 2.07 2.17 2.26 0.5187 0.5504 0.5787

JC 0.02 0.0 0.0 2.46 2.75 2.74 0.477 0.4947 0.5096

RC 0.13 0.08 0.04 1.63 1.9 2.1 0.1464 0.2149 0.2661
DI 0.0 0.0 0.0 2.39 2.53 2.57 0.5784 0.5942 0.6141

RI 0.01 0.01 0.0 2.85 2.91 2.88 0.515 0.5507 0.468

DMP 0.3 0.27 0.29 1.49 1.61 1.68 0.4245 0.3807 0.3343

GSBA 0.0 0.01 0.0 3.02 3.09 3.06 0.662 0.6724 0.6271

EPA 0.08 0.12 0.04 1.86 1.92 2.15 0.4048 0.4624 0.4895

GCN 0.42 0.34 0.24 0.83 0.93 1.21 0.2138 0.2712 0.3126

MCGNN 0.43 0.36 0.27 0.76 0.89 1.07 0.1531 0.2382 0.2835

Facebook

DC 0.0 0.0 0.0 1.19 1.33 1.29 0.5388 0.5066 0.51

JC 0.0 0.0 0.0 1.36 1.33 1.29 0.4399 0.4558 0.4491

RC 0.0 0.0 0.0 1.23 1.31 1.27 0.4901 0.4588 0.4841

DI 0.0 0.0 0.0 1.17 1.18 1.19 0.5257 0.4579 0.455

RI 0.0 0.0 0.0 1.43 1.42 1.36 0.4779 0.5215 0.4836

DMP 0.17 0.07 0.08 1.33 1.62 1.71 0.3102 0.3385 0.4137

GSBA 0.01 0.0 0.0 2.19 2.11 2.36 0.5764 0.5338 0.5338

EPA 0.0 0.0 0.0 1.11 1.25 1.23 0.3865 0.4011 0.4129

GCN 0.16 0.12 0.09 0.92 1.23 1.57 0.2891 0.3327 0.3573

MCGNN 0.21 0.15 0.11 0.87 1.19 1.32 0.2132 0.2934 0.3427
US Power Grid

DC 0.0 0.0 0.0 5.19 5.53 5.48 0.48 0.4712 0.4359

JC 0.0 0.0 0.0 5.85 5.72 5.77 0.4373 0.3927 0.4016

RC 0.01 0.0 0.0 5.91 6.25 6.12 0.4728 0.5106 0.4471

DI 0.0 0.0 0.0 6.99 7.07 7.55 0.524 0.502 0.5019

RI 0.0 0.0 0.01 5.41 5.81 5.51 0.4521 0.4673 0.3851

DMP 0.10 0.06 0.07 3.42 4.57 4.98 0.3146 0.3568 0.3971

GSBA 0.0 0.01 0.0 9.16 9.28 10.29 0.4838 0.4453 0.4948

EPA 0 0.01 0 4.91 5.06 5.17 0.4371 0.4234 0.3807
GCN 0.11 0.07 0.02 3.71 4.23 4.68 0.3218 0.3568 0.3913

MCGNN 0.15 0.1 0.05 3.02 3.84 4.19 0.3014 0.3316 0.3893

We repeat 100 independent experiments on the large diffusion subgraphs and report the average
result here

1 Information Source Estimation with Multi-Channel Graph Neural Network 25

performance is lower than that on the synthetic networks, and other comparison
methods can not effectively detect the source node. Therefore, it is still a big
challenge to improve the detection precision for large-scale networks in the actual
scenario.

1.6 Conclusion

In this chapter, we reviewed the problem of single information source detection on
complex networks, and designed a multi-channel graph neural network framework
to solve this problem. Experiments on both synthetic and real-world networks
demonstrate the superiority of our method, which extracts features from different
dimensions, i.e., node and edge channels.

In the future work, we may improve our method from the following three direc-
tions. First, we can extend the framework to multiple sources detection problem, to
adapt more complex scenarios under unknown diffusion models. Second, in reality,
we often lack the global information of the propagation path, thus we can exploit
more robust GNN based algorithms to infer single or multiple sources under limited
observation. Third, we can employ the real spreading data instead of the simulation
data, to make our method potentially useful in practice.

References

1. Ali, S.S., Anwar, T., Rastogi, A., Rizvi, S.A.M.: EPA: Exoneration and prominence based age
for infection source identification. In: Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, pp. 891–900 (2019)

2. Ali, S.S., Anwar, T., Rizvi, S.A.M.: A revisit to the infection source identification problem
under classical graph centrality measures. Online Soc. Netw. Media 17, 100061 (2020)

3. Altarelli, F., Braunstein, A., DallAsta, L., Ingrosso, A., Zecchina, R.: The patient-zero problem
with noisy observations. J. Stat. Mech: Theory Exp. 2014(10), P10016 (2014)

4. Altarelli, F., Braunstein, A., DallAsta, L., Lage-Castellanos, A., Zecchina, R.: Bayesian
inference of epidemics on networks via belief propagation. Phys. Rev. Lett. 112(11), 118701
(2014)

5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

6. Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decomposition of networks. arXiv
preprint cs/0310049 (2003)

7. Battaglia, P., Pascanu, R., Lai, M., Rezende, D.J., et al.: Interaction networks for learning about
objects, relations and physics. In: Advances in Neural Information Processing Systems (2016),
pp. 4502–4510

8. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning:
going beyond Euclidean data. IEEE Signal Process Mag. 34(4), 18–42 (2017)

9. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet topology using
k-shell decomposition. Proc. Natl. Acad. Sci. 104(27), 11150–11154 (2007)

10. Chang, B., Chen, E., Zhu, F., Liu, Q., Xu, T., Wang, Z.: Maximum a posteriori estimation for
information source detection. IEEE Trans. Syst. Man Cybern.: Syst. 50(6), 2242–2256 (2018)

26 X. Shu et al.

11. Choi, J., Moon, S., Woo, J., Son, K., Shin, J., Yi, Y.: Information source finding in networks:
Querying with budgets. IEEE/ACM Trans. Networking 28(5), 2271–2284 (2020)

12. Comin, C.H., da Fontoura Costa, L.: Identifying the starting point of a spreading process in
complex networks. Phys. Rev. E 84(5), 056105 (2011)

13. Dong, W., Zhang, W., Tan, C.W.: Rooting out the rumor culprit from suspects. In: Proceedings
of the 2013 IEEE International Symposium on Information Theory, pp. 2671–2675. IEEE, New
York (2013)

14. Dong, M., Zheng, B., Quoc Viet Hung, N., Su, H., Li, G.: Multiple rumor source detection with
graph convolutional networks. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 569–578 (2019)

15. ERDdS, P., R&wi, A.: On random graphs i. Publ. Math. Debrecen 6(290–297), 18 (1959)
16. Fioriti, V., Chinnici, M., Palomo, J.: Predicting the sources of an outbreak with a spectral

technique. Appl. Math. Sci. 8(135), 6775–6782 (2014)
17. Fout, A., Byrd, J., Shariat, B., Ben-Hur, A.: Protein interface prediction using graph convo-

lutional networks. In: Advances in Neural Information Processing Systems, pp. 6530–6539
(2017)

18. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: A survey.
Knowledge-Based Syst. 151, 78–94 (2018)

19. Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for out-of-
knowledge-base entities: a graph neural network approach. In: Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pp. 1802–1808 (2017)

20. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

21. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad.
Sci. 102(46), 16569–16572 (2005)

22. Jain, A., Borkar, V., Garg, D.: Fast rumor source identification via random walks. Social
Network Anal. Mining 6(1), 62 (2016)

23. Jiang, J., Wen, S., Yu, S., Xiang, Y., Zhou, W.: K-center: An approach on the multi-source
identification of information diffusion. IEEE Trans. Inf. Forensics Secur. 10(12), 2616–2626
(2015)

24. Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math 70(185), 81 (1869)
25. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics II.

the problem of endemicity. Proc. R. Soc. London Ser. A, Containing Papers of a Mathematical
and Physical Character 138(834), 55–83 (1932)

26. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization
algorithms over graphs. In: Advances in Neural Information Processing Systems, pp. 6348–
6358 (2017)

27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907 (2016)

28. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances
in Neural Information Processing Systems, pp. 539–547 (2012)

29. Lokhov, A.Y., Mézard, M., Ohta, H., Zdeborová, L.: Inferring the origin of an epidemic with a
dynamic message-passing algorithm. Phys. Rev. E 90(1), 012801 (2014)

30. Luo, W., Tay, W.P.: Finding an infection source under the sis model. In: Proceedings of the
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2930–
2934. IEEE, New York (2013)

31. Luo, W., Tay, W.P., Leng, M.: Identifying infection sources and regions in large networks. IEEE
Trans. Signal Process. 61(11), 2850–2865 (2013)

32. Luo, W., Tay, W.P., Leng, M.: How to identify an infection source with limited observations.
IEEE J. Sel. Top. Signal Process. 8(4), 586–597 (2014)

33. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order
to the web. Technical report, Stanford InfoLab (1999)

34. Park, N., Kan, A., Dong, X.L., Zhao, T., Faloutsos, C.: Multiimport: inferring node importance
in a knowledge graph from multiple input signals. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 503–512 (2020)

1 Information Source Estimation with Multi-Channel Graph Neural Network 27

35. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in
complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

36. Prakash, B.A., Vreeken, J., Faloutsos, C.: Spotting culprits in epidemics: how many and which
ones? In: Proceedings of the 2012 IEEE 12th International Conference on Data Mining, pp.
11–20. IEEE, New York (2012)

37. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and
visualization. In: AAAI (2015). http://networkrepository.com

38. Ruan, Z., Iniguez, G., Karsai, M., Kertész, J.: Kinetics of social contagion. Phys. Rev. Lett.
115(21), 218702 (2015)

39. Ruan, Z., Tang, M., Gu, C., Xu, J.: Epidemic spreading between two coupled subpopulations
with inner structures. Chaos: An Interdiscip. J. Nonlinear Sci. 27(10), 103104 (2017)

40. Ruan, Z., Yu, B., Shu, X., Zhang, Q., Xuan, Q.: The impact of malicious nodes on the spreading
of false information. Chaos: An Interdiscip. J. Nonlinear Sci. 30(8), 083101 (2020)

41. Sanchez-Gonzalez, A., Heess, N., Springenberg, J.T., Merel, J., Riedmiller, M.A., Hadsell, R.,
Battaglia, P.: Graph networks as learnable physics engines for inference and control. In: ICML
(2018)

42. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

43. Seidman, S.B.: Network structure and minimum degree. Social Netw. 5(3), 269–287 (1983)
44. Shah, D., Zaman, T.: Detecting sources of computer viruses in networks: theory and experi-

ment. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pp. 203–214 (2010)

45. Shah, D., Zaman, T.: Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory 57(8),
5163–5181 (2011)

46. Shah, C., Dehmamy, N., Perra, N., Chinazzi, M., Barabási, A.L., Vespignani, A., Yu, R.:
Finding patient zero: learning contagion source with graph neural networks. arXiv preprint
arXiv:2006.11913 (2020)

47. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention
networks. arXiv preprint arXiv:1710.10903 (2017)

48. Wang, Z., Dong, W., Zhang, W., Tan, C.W.: Rooting our rumor sources in online social
networks: the value of diversity from multiple observations. IEEE J. Sel. Top. Signal Process.
9(4), 663–677 (2015)

49. Wang, Z., Wang, C., Pei, J., Ye, X.: Multiple source detection without knowing the underlying
propagation model. In: Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence (2017)

50. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684),
440–442 (1998)

51. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph
neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2021)

52. Zhang, Z.K., Liu, C., Zhan, X.X., Lu, X., Zhang, C.X., Zhang, Y.C.: Dynamics of information
diffusion and its applications on complex networks. Phys. Rep. 651, 1–34 (2016)

53. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng.
(2020)

54. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global
consistency. In: Advances in Neural Information Processing Systems, pp. 321–328 (2004)

55. Zhu, K., Ying, L.: Information Theory and Applications Workshop (ITA), San diego, CA
(2013)

56. Zhu, K., Ying, L.: Information source detection in the sir model: a sample-path-based approach.
IEEE/ACM Trans. Netw. 24(1), 408–421 (2014)

57. Zhu, K., Chen, Z., Ying, L.: Catch’em all: Locating multiple diffusion sources in networks with
partial observations. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI 2017), pp. 1676–1682. AAAI press, New York (2017)

http://networkrepository.com

Chapter 2
Link Prediction Based
on Hyper-Substructure Network

Jian Zhang, Jinyin Chen, and Qi Xuan

Abstract Link prediction has long been the focus in the analysis of network-
structured data. Though straightforward and efficient, heuristic approaches like
Common Neighbors perform link prediction with pre-defined assumptions and only
use superficial structural features. While it is widely acknowledged that a node could
be characterized by a bunch of neighbor nodes, network embedding algorithms
and newly emerged graph neural networks still exploit structural features on the
whole network, which may inevitably bring in noises and limits the scalability of
those methods. In this chapter, we propose an end-to-end deep learning framework,
namely hyper-substructure enhanced link predictor (HELP), for link prediction.
HELP utilizes local topological structures from the neighborhood of the given
node pairs, avoiding useless features. For further exploiting higher-order structural
information, HELP also learns features from hyper-substructure network (HSN).
Extensive experiments on five benchmark datasets have shown the state-of-the-art
performance of HELP on link prediction.

2.1 Introduction

As a representative network analysis task, link prediction infers the linkage status
of a given pair of nodes in a network. Due to its practicability, link prediction has
been widely applied in various areas, such as commodity recommendation on e-
commerce platforms and friends recommendation in online social networks. In the
study of biological networks, such as protein-protein interaction (PPI) network,
it would be costly to find an underlying interaction between proteins through
laboratorial experiments since there are countless candidates. Link prediction offers

J. Zhang · J. Chen · Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_2&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_2

30 J. Zhang et al.

a list of the interactions that most likely exist, which could effectively reduce
economic and time costs.

There have been a bunch of works that focus on link prediction. Heuristic
link prediction approaches, such as Common Neighbors (CN), Resource Allocation
Index (RA) and Katz Index, use either local or global similarity scores to make
prediction [17]. For instance, in OSN like Weibo, candidate friends would be
recommended according to the common friends one has with other users. Though
straightforward and efficient, the pre-defined assumption of heuristic methods
maybe fail sometimes. For instance, researcher assumes that the users with more
common friends are more likely to form friendship in social networks. However, the
assumption fails when it comes to PPI networks. It has been proved that proteins
sharing more common neighbors have less interactions [15]. Heuristic approaches
only learn superficial structural features but fail to characterize the complexity of
networks. Later developed network embedding algorithms, such as DeepWalk [21]
and node2vec [7], focus on the contexts of nodes in the sequences generated by
random walk or its variants. The random walk-based algorithms, however, need to
learn embeddings over the whole network, which limits the scalability to large-scale
networks even with parallelized computation. Apart from the need for plenty of pre-
defined parameters, they are gradually exceeded by newly emerged graph neural
networks (GNNs).

With graph convolution network (GCN) [14] as the representative, the newly
developed GNNs have shown their power on many tasks. Despite the perfor-
mance, most GNNs make inference over the whole network, which leads to
high computational complexity and might bring in noise since not all nodes are
useful for downstream tasks. Though graph attention network (GAT) [27] and
GraphSAGE [8] try to learn embeddings over the neighborhood of nodes, they
still focus on superficial features. And so does SEAL [32]. In social networks,
a few individuals may consists of a group for some purposes. And similar cases
like pairwise programming are also common in open source software development.
The interactions between the groups could characterize the higher-order structural
features of the network. However, few existing methods pay attention to such
information.

To tackle the limitations of existing algorithms, we propose an end-to-end deep
learning framework, namely hyper-substructure enhanced link predictor (HELP),
for link prediction. And part of the work has been published in [34]. Converting
link prediction problem to graph classification, HELP infers linkage status of a
given pair of nodes based on their neighborhood rather than the whole network.
The neighborhood selected by personalized PageRank (PPR) [3] consists of the
nodes closest to the given nodes, avoiding useless structural features. Neighbor-
hood learning enables HELP with scalability to large-scale networks. And node
feature vectors characterizing the relative position of the node in the network are
constructed to improve the accuracy. To utilize higher-order topological structures,
networks constructed by substructures of the subgraph, namely hyper-substructure
network (HSN), are also used for link prediction. And we use second-order HSN
to validate its advantage in this paper. The obtained networks are finally fed into a

2 Link Prediction Based on Hyper-Substructure Network 31

GNN to make prediction. The main contributions of the paper are summarized as
follows:

• We propose an end-to-end deep learning framework, namely hyper-substructure
enhanced link predictor (HELP), for link prediction. And its outstanding perfor-
mance has been proved by extensive experiments.

• We convert link prediction problem to graph classification and infer linkage sta-
tus based on subgraphs rather than the whole network, expending the scalability
of HELP.

• We creatively introduce HSN into link prediction to utilize higher-order structural
information, which offers insights of network structure mining.

2.2 Existing Link Prediction Methods

2.2.1 Heuristic Methods

Heuristic link prediction approaches define similarity indices representing the
likelihood that a link exist between a node pair. The indices could be local or
global. Local similarity indices use local structures, such as first-order neighbors,
to measure the similarity of nodes. Among all the heuristic approaches, Common
Neighbors (CN) [19] is the simplest. CN assumes that the target node pair u and v

are more likely to form a link if they have more common neighbors which is defined
as

sCN
u,v = |Γ (u) ∩ Γ (v)|, (2.1)

where Γ (u) and Γ (v) represent the first-order neighbors of u and v, respectively. In
social networks, the amount of common neighbors between the nodes with higher
degrees may be hundreds times of it between the nodes of small degrees. However,
we could not justify that the probability of link between the nodes of higher degrees
is higher due to the large mount of neighbors they have. To overcome this shortage,
Jaccard Index [9] proposes to normalize CN by the total amount of neighbors, which
is defined as

sJaccard
u,v = |Γ (u) ∩ Γ (v)|

|Γ (u) ∪ Γ (v)| . (2.2)

From another perspective, Salton Index [23] divides CN by the square root of the
product of the degrees of u and v. Its definition goes as

sSalton
u,v = |Γ (u) ∩ Γ (v)|√

ku × kv

, (2.3)

32 J. Zhang et al.

where ku denotes the degree of u. Both Jaccard Index and Salton Index are devel-
oped form CN. And many other approaches, such as Hub Promoted Index (HPI) [22]
and Hub Depressed Index (HDI), are also associated with CN but with different
normalization methods. Motivated by the resource allocation dynamics on networks,
Resource Allocation Index (RA) [35] regards the neighbors as transmitters which
send some resource from u to v. The definition is given by

sRA
u,v =

∑

z∈Γ (u)∩Γ v

1

kz

. (2.4)

Local similarity indices characterize the closeness between nodes by local
structures, while most global similarity indices are associated with network paths.
Katz Index [11] ensembles all paths between u and v. The mathematical expression
of Katz Index reads

skatz
u,v =

inf∑

l=1

βl |paths〈l〉
u,v| = βAu,v + β2A2

u,v + · · · , (2.5)

where paths
〈l〉
u,v represents all the paths between u and v of length l and β is the

damping weight of paths of different lengths. And A denotes the adjacent matrix
of the network. There are many other path-based similarity indices, such as Leicht-
Holme-Newman Index (LHN2) [16] and SimRank [10], whose effectiveness has
been proved under some particular scenarios. PageRank [4], as a representative of
path-based method, has been widely applied in online web search engine. And it is
defined as

PR(u) = c
∑

v∈Bu

PR

L(v)
+ 1 − c

N
, (2.6)

where Bu represents the nodes that points to u, L(v) denotes the number of nodes
that v points to and N is the number of nodes. PR(u) defines the influence of u

and also gives the probability whether u will form links with other nodes. Though
heuristic link prediction approaches are simple and efficient, they may fail for some
networks since they cannot fully utilize the complex network structure.

2.2.2 Embedding-Based Methods

To learn complex network structural features, DeepWalk [21] creatively introduces
Word2Vec [18] into network representation that mapping random walk sequences
to vectors. It first samples a certain amount of node sequences by applying random
walk starting at different nodes and then uses skip-gram to embed each node
into vector space. Node2vec [7] extends DeepWalk by incorporating depth-first

2 Link Prediction Based on Hyper-Substructure Network 33

u BFS

DFS

Fig. 2.1 The walking strategies for node2vec

Table 2.1 Binary operators for feature transformation

Operator Symbol Definition

Average � [f (u) � f (v)]i = fi (u)+fi(v)
2

Hadamard � [f (u) � f (v)]i = fi(u) ∗ fi(v)

Weighted-L1 || · ||1̃ ||fi(u) · fi(v)||1̃i
= |fi(u) − fi(v)|

Weighted-L2 || · ||2̃ ||fi(u) · fi(v)||2̃i
= |fi(u) − fi(v)|2

search (DFS) and breadth-first search (BFS) to learn both local and global structural
features. As is shown in Fig. 2.1, the walk starts at u and the preference of DFS or
BFS is controlled by two parameters, p and q . Apparently, node2vec will degenerate
to DeepWalk when p = q = 1.

DeepWalk and node2vec are two typical examples developed from random
walk. Later developed random walk-based methods, such as metapath2vec [6]
and netwalk [31], are designed for heterogeneous networks or dynamic networks.
The approaches above map nodes from non-Euclidean space into vector space.
To perform link prediction, the node embeddings should be transformed into
link representations. Table 2.1 presents four common operators to transfer node
embeddings to link vectors. Researchers could also define other operators, such
as concatenation, to meet their own needs. After obtaining link vectors, machine
learning algorithms like logistic regression and SVM could be applied to solve the
link prediction problem.

Instead of describing network structure in node sequences generated by random
walk, LINE [26] jointly optimizes the first-order and second-order proximity to
learn network embeddings. And the proximity is defined as,

O1 = d(p̂1(·, ·), p1(·, ·)),
O2 =

∑

vi∈V

λid(p̂1(·, c·), p1(·, c·)), (2.7)

where O1 and O2 represent the first-order and second-order proximity, respectively.
In Eq. (2.7), p1(·, ·) denotes the joint distribution of the latent embeddings while
p̂1(·, ·) is the empirical distribution. And d(·, ·) is the distance between two
distributions.

34 J. Zhang et al.

u

v u

v

Enclosed subgraph
extraction

Double-Radius
Node Labeling

DGCNN
Prediction

result

Fig. 2.2 The overall framework of SEAL

2.2.3 Deep Learning-Based Models

To automatically capture structural features, a bunch of graph neural networks
are proposed. Earlier approaches mainly employ multi-layer perceptrons to build
GAEs for network embedding learning. Deep Neural Network for Graph Repre-
sentations (DNGR) [5] uses a stacked denoising autoencoder [28] to encode and
decode the PPMI matrix via multi-layer perceptrons. Concurrently, Structural Deep
Network Embedding (SDNE) [29] uses a stacked autoencoder to preserve the node
first-order proximity and second-order proximity jointly. Rather than processing
networks in spatial domain, Kipf et al. [14] analyze networks in Fourier domain
and propose graph convolutional network (GCN) to solve the node classification
problem. An extension of GCN, graph auto-encoder (GAE) [13], makes predictions
in an end-to-end way. From spatial perspective, GCN aggregates several specific
nodes to represent a target node. GraphSage [8] and graph attention network [27]
which introduce attention mechanism into network representation learning also
follow the idea but address the problem in different manners. Learning over the
whole network limits the scalability of algorithms. Diffusion Convolutional Neural
Network (DCNN) [1] regards graph convolutions as a diffusion process. It assumes
information is transferred from one node to one of its neighboring nodes with a
certain transition probability so that information distribution can reach equilibrium
after sevenral rounds. To overcome the existing drawback, SEAL [32] first extracts
an enclosed subgraph for the target node pair and then makes prediction based
on the subgraph. To characterize the relative positions and importance with the
subgraph, Double-Radius Node Labeling (DRNL) is proposed to assign each node
with a label of which the one-hot encoding vector is regarded as the feature of the
corresponding node. The final link prediction result is given by a graph classification
called DGCNN [33] (Fig. 2.2).

2.3 Methodology

Heuristic approaches as well as random walk-based algorithms have suggested that
node structural features could be characterized by its neighborhood. Motivated by
this potential, we introduce an end-to-end link prediction model based on hyper-

2 Link Prediction Based on Hyper-Substructure Network 35

substructure network of which the effectiveness will be proved in Sect. 2.4. In this
section, we first give a detailed description of the problem and then introduce the
HELP model in three parts: neighborhood normalization, HSN construction and the
graph neural network used for link prediction.

2.3.1 Problem Formulation

Suppose we have a graph G = 〈V,E〉 where V = {vi |i = 0, 1, · · · , N − 1} denotes
the set of N nodes and E ⊆ V × V represents the edge set. Given a pair of nodes
u and v, our goal is to infer the linkage status between u and v based on their
neighborhood Γ (u, v). These neighbors of u and v consist of a subgraph centered
at (u, v). And the HSN of (u, v) is constructed subsequently. Then we transfer the
link prediction problem into graph classification problem.

2.3.2 Neighborhood Normalization

Before performing link prediction, we need to extract a subgraph of G for the target
node pair (u, v). It is an intuitive idea to use the first-order or second-order neighbors
to represent the node pair, since these nodes are close to the target nodes from the
perspective of topology. But the size of such kind of subgraph varies when it comes
to different nodes, making it difficult for HSN construction. And not all first-order
or second-order neighbors could contribute to link prediction. Rather than directly
using the topologically close neighbors of u and v, we propose to use personalized
PageRank (PPR) to extract key neighbors for (u, v).

As powerful as GNNs are, researchers may find it difficult to apply them
to large-scale networks due to the high computation complexity. Bojchevski et
al. [3] propose to employ PPR to approximate GCN and significantly improve the
efficiency of the model without loss of accuracy. In the model, PPR assigns each
node pair with a probability that one node would travel to the other. The higher the
probability is, the closer the two nodes are. Likewise, we apply PPR to obtain the
neighbors that closest to the target nodes. The definition of PPR goes as

Πppr = α(In − (1 − α)D−1A)−1, (2.8)

where A is the adjacent matrix of G, D is the degree matrix and α represents the
restart probability. Each row π(i) = Π

ppr

(i) is the PPR vector for node i and the
element π(i)j reflects the closeness between node i and node j . We then sort π(i)

in descending order of the element value and choose the first Nnb nodes to construct
the subgraph which is denoted by G(u, v). For the nodes with same PPR values, we
make random selections among them, ensuring that the number of neighbors reaches
Nnb . Following the steps, we obtain Γ (u) and Γ (v) for nodes u and v, respectively.
Figure 2.3 gives an example of the selection of Γ (u) in which Nnb = 4.

36 J. Zhang et al.

Fig. 2.3 An example of selecting neighbors according to PPR

2.3.3 HSN Construction

After obtaining Γ (u) and Γ (v), we then need to transform them into one unified
subgraph to characterize the structural feature of the target node pair (u, v). Firstly,
we link the nodes in Γ (u) if they are originally linked in G, which constructs Gu.
And we could get Gv following the same operation. Gu and Gv characterize the
structural features of nodes u and v, respectively. To present the closeness of nodes
u and v, we also link the nodes in Gu and Gv if they are connected in G. If Gu and
Gv contain the same nodes, we consider them as different nodes and then connect
them in G(u, v). The operation leads to virtual nodes and virtual links in G(u, v) but
keeps the size of G(u, v) always the same. And the more virtual links, the stronger
Γ (u) and Γ (v) are connected, implying that u and v are more likely to form a link.
Also, we construct a feature matrix for G(u, v). For node i in G(u, v), the feature
vector is defined as the concatenation of one-hot encoded LSP(i, u) and LSP(i, v)

on G(u, v), where LSP(i, u) denotes the length of shortest path between i and u

on G(u, v). Such definition of node feature describes the relative position between
neighbors and (u, v), which could improve the accuracy of HELP.

G(u, v) characterizes the local structural features of (u, v) but do not describes
the interactions between small groups in the network. To exploit higher-order
structural information, we propose HSN to characterize the interactions of the
substructures in G(u, v). Kth order HSN, denoted by HSN(K), is constructed by
following steps:

1. Node Grouping. Group the nodes in G(u) and make sure that each node is
grouped with arbitrary node at least once. The groups are represented by p(u) =
{p(u)

1 , · · · , p
(u)
M } where M = CK

Nnb
and p

(u)
i consists of K nodes randomly

selected from G(u). Also, we can obtain p(v) following the same procedure.
The nodes in each group are connected if they are connected in G(u, v).

2. Node Group Sorting. Sort p(u) in ascending order of distance d which is defined
as

d
(
p

(u)
i |G(u, v)

)
=

K∑

j=0

LSP
(
p

(u)
i (j), v

)
. (2.9)

2 Link Prediction Based on Hyper-Substructure Network 37

The definition of d is the sum of LSP between the nodes in p
(u)
i and v in G(u, v).

And we process p(v) in the same way but with

d
(
p

(v)
i |G(u, v)

)
=

K∑

j=0

LSP
(
p

(v)
i (j), u

)
. (2.10)

3. Node Group Wiring. We consider each group as a node of HSN. After sorting,
we select the first NH groups from p(u) and p(v), respectively. Given p

(u)
i and

p
(u)
j , there exists an edge between them if

∣
∣
∣p

(u)
i ∩ p

(u)
j

∣
∣
∣ <

∣
∣
∣p

(u)
i

∣
∣
∣ +

∣
∣
∣p

(u)
j

∣
∣
∣;

Given p
(u)
i and p

(v)
i , they are connected if there is at least one pair of nodes(

p
(u)
i (a), p

(v)
i (b)

)
is connected on G(u, v) (a and b are arbitrary node indices in

corresponding group).

Following the above steps, we could obtain HSN(K). And we could also
construct node features for the nodes in HSN(K) just as the way of the node feature
construction in G(u, v). Figure 2.4 gives an example of HSN

(2)
u,v construction with

Nnb = 5, K = 2 and NH = 2. The groups with small d , such as (4, 5) and (6, 7),
are used for the construction of HSN(2), which enhances the interactions between
G(u) and G(v).

Fig. 2.4 Illustration of HSN
(2)
u,v’s construction. The red nodes represent the nodes in G(u) and

those of yellow are the nodes in G(v). The blue lines denote the interactions between G(u) and
G(v)

38 J. Zhang et al.

Fig. 2.5 The framework of HELP

2.3.4 HELP

After obtaining G(u, v) and HSN(K) for (u, v), we then use an end-to-end deep
learning framework, namely HELP, to infer whether there exists an edge between u

and v or not.
The overall framework is given in Fig. 2.5. HELP consists of multiple one-

channel predictors and each of them processes one HSN (G(u, v) could be
considered as HSN(0)). We incorporate graph convolution network (GCN) [14] into
one-channel predictor to learn node embeddings. One layer GCN is defined as

GCN(A,X) = σ(D̃− 1
2 ÃD̃− 1

2 XW), (2.11)

where Ã = A + I and D̃ is the normalized degree matrix. W is the weight matrix
and σ refers to the activation function. Here we use σ ≡ ReLU(·) = max(0, ·).
One-channel predictor processes G(u), G(v) and the interactions between them
separately, instead of processing G(u, v) in its entirety. With the incorporation of
GCN, the one-channel predictor is described in Eq. (2.12):

eu = GCNs(Ãu,Xu),

ev = GCNs(Ãv,Xv),

ou = FLAT T EN(eu),

ov = FLAT T EN(ev),

hu = Fg(eu), (2.12)

2 Link Prediction Based on Hyper-Substructure Network 39

hv = Fg(ev),

hu×v = Fiter(Au×v)

h = CONCAT (hu, hv, hu×v)

ŷ0 = sof tmax(Wouth + b),

where Ãu and Xu represent the normalized adjacency matrix and the feature matrix
of G(u), respectively. One-channel predictor first embeds the nodes in G(u) and
G(v) with a two-layer GCN separately and then encode the embeddings with a
multi-layer perception Fg . As for eu and ev , they represent the node embeddings
of G(u) and G(v), respectively. And ou as the rows’ concatenation of eu denotes
the embedding vector of G(u) and so does ov . The interaction between G(u) and
G(v), denoted by Au×v , is also encoded by Fiter . The prediction result ŷ0 is given
by a softmax classifier. To integrate higher-order structural features, we also make
prediction on HSN

(2)
u,v with one-channel predictor and obtain the corresponding

prediction result ŷ1. The final result ŷ is given by

ŷ = 1

2
(ŷ0 + ŷ1). (2.13)

It’s worth noticing that we use the concatenation of eu and ev generated based
on G(u, v) as the features when we make inference based on HSN

(2)
u,v . And the

framework can be easily extended with higher-order HSN.
The model then is optimized with Adam [12]. And the objective function Ltotal

mainly contains two parts: cross-entropy error Lc and embedding similarity error
Ls . The minimization of Lc directly ensures the link prediction performance of the
model. And we also minimize KL-divergence to measure the similarity of ou and
ov if there exists an edge between u and v, which could shorten the distance of the
features of connected nodes. Consisting of the two parts, Ltotal is define as

Lc = −y log ŷ + (1 − y) log(1 − ŷ)

Ls = 1

d

d−1∑

i=0

yi(o
u
i log(ou

i) − ou
i log(ov

i))

Ltotal = γLc + (1 − γ)Ls + βLreg,

(2.14)

where γ is the coefficient used for balancing Lc and Ls . Lreg represents L2
regularization term and β is the weight decay coefficient.

40 J. Zhang et al.

2.4 Experiment

2.4.1 Datasets

We compare different link prediction algorithms on 8 benchmark datasets:

• C.elegans [30] is an network which models the neural interactions of the
nematode worm C.elegans. The nodes represent the neurons and the links are
the metabolic reactions. The original network is directed and weighted but we
simplify it to an undirected and unweighted one in the experiments.

• USAir [2] is a network of US air transportation in which the nodes denote
the airports and the links represent flights between different airports. Also, we
transfer the original network to an undirected and unweighted one.

• HP is an undirected network which models the interactions between human
proteins.

• NetScience [20] contains the collaborations between the scientists in network
science area. The nodes are researchers and the links represent the co-authorship.

• Power [30] is an undirected network of power grid network where a vertex either
represents a generator, a transformer or a substation and an edge is a power supply
line.

• Router [25] is a network of router-level Internet in which the nodes are routers
and the links represent the data transmission between routers.

• Cora and Citeseer [24] are networks modeling citation relationships between
scientific papers.

In this chapter, we focus on the networks without direction and weights and the
basic statistics are summarized in Table 2.2.

2.4.2 Link Prediction Methods for Comparison

We compare the proposed method with five baselines, including heuristic methods,
random walk-based methods and deep learning-based methods.

• Heuristic methods: RA, Jaccard Index and PR. The definitions of the three
similarity indices have been introduced in Sect. 2.2.

Table 2.2 Basic statistics of the datasets

C.elegans USAir HP NetScience Power Router Citeseer Cora

N 297 332 1706 1461 4941 5022 3279 2708
|E| 2148 2126 3191 2754 6594 6258 4552 5278

〈k〉 14.46 12.81 3.72 3.75 2.67 2.49 2.78 3.90

〈k〉 represents the average degree of the network

2 Link Prediction Based on Hyper-Substructure Network 41

• Embedding-based method: node2vec and LINE. We first use node2vec and
LINE to capture node structural features and then generate link features through
Hardmard product. Finally, a logistic regression model is applied to make
prediction.

• Deep learning-based method: SEAL. To ensure a fair comparison, we only use
the subgraphs to make prediction when applying SEAL.

2.4.3 Evaluation Metrics

We employ Area Under the Curve (AUC) and Average Precision (AP) to evaluate
the performance of different link prediction methods. And the definition of the two
metrics are listed as follows.

• AUC: AUC could be regarded as the probability that a higher score would be
assigned to a randomly chosen node pair if they form a link in the original
network. And its definition is given as

AUC = n′ + 0.5n′′

n
, (2.15)

where n is the number of times that node pairs belonging to existing links get
higher scores and n′′ the number of times that the node pairs that do not form
links. And n is total number of comparison times.

• AP: AP takes the average of the precision at each threshold, with its definition
goes as

AP =
∑

t

(Rt − Rt−1)Pt , (2.16)

where Pt and Rt are the precision and recall at threshold t , respectively.

2.4.4 Experimental Settings

In the experiments, each dataset is split into training and testing sets at the ratio
of 4:1. Specifically, we choose 80% links as positive samples of training set
and randomly sample the same number of nonexistent edges as negative training
samples. The remaining 20% links are positive testing data and the same amount of
nonexistent links are sampled as negative testing data. And the positive testing links
are removed from the original network.

As for the baselines, heuristic methods need no training and pre-defined parame-
ters. Thus we could make predictions directly according to the similarity indices. For

42 J. Zhang et al.

node2vec, we fix the embedding dimension as 128 and the optimal key parameters
p and q are obtained through grid search over {0.50, 0.75, 1.00, 1.25, 1.50}. After
obtaining the embedding vectors of each node, we use Hardamard product to
generate link features for each node pair. And then, an LR model is applied to
make prediction. SEAL uses auto subgraph selection which means that 1-hop or
2-hop subgraphs will be automatically selected to achieve better performance. For
the proposed model, HELP, we set Nnb = NH = 35 for the construction of subgraph
and HSN(2).

2.4.5 Link Prediction Results

All the experiments are conducted 10 times and the average performance is recorded
to avoid contingency. As reported in Tables 2.3 and 2.4, HELP outperforms
other baselines in most cases considering both AUC and AP, which shows the
effectiveness and practicability of HELP. As expected, heuristic methods based
on local structural similarities are not as good as other methods, especially on
sparser networks like NS, HP and Router. It is because that first-order and second-

Table 2.3 Performance of different link prediction methods with regard to AUC (The best results
are in bold.)

Dataset RA Jaccard PR node2vec LINE SEAL HELP

C.elegans 0.8484 0.7761 0.8517 0.8547 0.7920 0.8371 0.8553
USAir 0.9405 0.8923 0.9169 0.9094 0.8352 0.9473 0.9482
HP 0.5190 0.5193 0.6567 0.6446 0.7182 0.8850 0.8952
NS 0.9096 0.9110 0.9221 0.8776 0.9717 0.9844 0.9912
Power 0.5750 0.5749 0.5951 0.8007 0.6796 0.8603 0.8838
Router 0.5537 0.5528 0.6479 0.5705 0.8246 0.9121 0.9423
Cora 0.6993 0.7014 0.8049 0.9091 0.8098 0.9181 0.9291
Citeseer 0.6539 0.6530 0.7323 0.8797 0.8269 0.8754 0.8802

Table 2.4 Performance of different link prediction methods with regard to AP (The best results
are in bold.)

Dataset RA Jaccard PR node2vec LINE SEAL HELP

C.elegans 0.8437 0.7321 0.8453 0.8399 0.7602 0.8371 0.8445
USAir 0.9468 0.8670 0.9345 0.9000 0.8141 0.9450 0.9364

HP 0.5204 0.5128 0.7284 0.6501 0.7396 0.8962 0.9060
NS 0.9097 0.9109 0.9261 0.9286 0.9780 0.9851 0.9927
Power 0.5745 0.5744 0.7377 0.8453 0.7222 0.8603 0.8855
Router 0.5536 0.5465 0.7577 0.6114 0.8497 0.8956 0.9416
Cora 0.7005 0.6978 0.8638 0.9274 0.8452 0.9298 0.9404
Citeseer 0.6539 0.6525 0.7858 0.8842 0.8657 0.8874 0.9093

2 Link Prediction Based on Hyper-Substructure Network 43

order neighbors could not characterize the structural features of the target node.
However, the local structure are capable of describing the features for the nodes
in dense networks, making RA and Jaccard achieving relatively good performance
on C.elegans and USAir. The subgraph-based methods show their superior perfor-
mance in link prediction. SEAL and HELP outperform other methods no matter
the graph is sparse or dense. It is because that subgraph extraction selects the
neighborhood that could contribute to link prediction and reduces noise in graphs.
Moreover, HELP performs slightly better than SEAL with the help of HSN. On
sparse networks like Router, HSN could reserve more structural information and
thus makes HELP better than SEAL. It is worth noticing that PR has better link
prediction ability on the five datasets than node2vec does despite that it is a
similarity-based method. A possible reason is that node2vec needs a bunch of pre-
defined parameters which maybe significantly influences its node representation
capability. And the subsequent machine algorithms could also be another factor.

In machine learning, researchers investigate whether a method will still be
useful if only given a small amount of training data. Sometimes, it is called
semi-supervised learning. We would also like to compare the performances of
different methods under different amount of training samples. Figure 2.6 presents
the performance of the baselines as well as HELP when the ratio of test links
changes from 0.2 to 0.6. In most cases, the link prediction performance drops as
the decrease of training data no matter which method is applied. In dense networks
like C.elegans and USAir, the performance decline of SEAL and HELP is not
so significant by comparing with other methods. The smooth polylines indicate
the robustness of the two subgraph-based methods. Nevertheless, AUC and AP
of nearly all methods have a significant decrease on sparse networks. The drop
is especially obvious when the amount of training data reduced to 60%. RA and
Jaccard have poor performance on HP and Router, making the drop of AUC and AP
unconspicuous. It is interesting that SEAL outperforms HELP when only 50% data
are used to train the models.

2.4.6 Parameter Sensitivity

Like other deep learning methods, the performance of HELP is also affected by
many factors, such as model structure and α. Nnb , which determines the size of
subgraphs and HSNs, is the most important one among all the factors. How many
neighbors does HELP need to make accurate link prediction? We investigate into the
problem by varying Nnb from 15 to 45. Figure 2.7 shows the performance of HELP
as the Nnb changes. In the majority cases, the performance gets improved when Nnb

increases from 15 to 45. And when Nnb = 15, HELP could achieve comparable
performance as Nnb = 45. It indicates that only part of the neighbors of the target
node pair could largely contributes to link prediction. And further increasing the

44 J. Zhang et al.

number of neighbors may be not so helpful. For instance, in USAir and Router, the
performance of HELP becomes relatively stable when Nnb reaches 35. Also, the
performance may become worse as Nnb increases, due to the introduction of useless
nodes into the subgraphs in this process.

(a)

(b)

(c)

(d)

Fig. 2.6 (continued)

2 Link Prediction Based on Hyper-Substructure Network 45

(g)

(h)

(e)

(f)

Fig. 2.6 The performance of different link prediction methods as the number of training samples
changes on the five benchmark datasets. (a) C.elegans. (b) Usair. (c) HP. (d) NetScience. (e) Power.
(f) Router. (g) Cora. (h) Citeseer

46 J. Zhang et al.

Fig. 2.7 The performance of HELP as Nnb changes

2.5 Conclusion

In this chapter, we present hyper-substructure enhanced link predictor (HELP)
which performs link prediction over the neighborhood of given node pair. Learn-
ing from subgraphs as well as their higher-order structural information modeled
by hyper-substructure network (HSN), HELP outperforms other state-of-the-art
baselines, which have been proved by extensive experiments. And we also applied
HELP as well as other link prediction methods on Yelp dataset, which is presented
in Chapter 8. Our future research will focus on optimizing the neighborhood
normalization and HSN construction process to further compress the runtime
without loss of accuracy.

References

1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural
Information Processing Systems, pp. 1993–2001 (2016)

2. Batagelj, V., Mrvar, A.: Pajek Datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/mix.
USAir97.net (2006)

3. Bojchevski, A., Klicpera, J., Perozzi, B., Blais, M., Kapoor, A., Lukasik, M., Günnemann, S.:
Is pagerank all you need for scalable graph neural networks? In: Proceedings of the 15th MLG
(2019)

4. Brin, S., Page, L.: The Anatomy of a Large-scale Hypertextual Web Search Engine (1998)
5. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: AAAI,

vol. 16, pp. 1145–1152 (2016)
6. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning for

heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

7. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of
the 22nd SIGKDD, pp. 855–864. ACM, New York (2016)

8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Proceedings of the 31st NeuralPS, pp. 1024–1034 (2017)

9. Jaccard, P.: Bulletin de la société vaudoise des sciences naturelles. Etude Comparative de la
Distribution Florale dans une Portion des Alpes et des Jura 37, 547–579 (1901)

http://vlado.fmf.uni-lj.si/pub/networks/data/mix

2 Link Prediction Based on Hyper-Substructure Network 47

10. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 538–543 (2002)

11. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43
(1953)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308
(2016)

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In:
Proceedings of 5th ICLR. OpenReview.net (2017)

15. Kovács, I.A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W., Kim, D.K.,
Kishore, N., Hao, T., et al.: Network-based prediction of protein interactions. Nature Commun.
10(1), 1–8 (2019)

16. Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E 73(2),
026120 (2006)

17. Lü, L., Zhou, T.: Link prediction in complex networks: A survey. Physica A: Stat. Mech. Appl.
390(6), 1150–1170 (2011)

18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781 (2013)

19. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E
64(2), 025102 (2001)

20. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices.
Phys. Rev. E 74(3), 036104 (2006)

21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In:
Proceedings of the 20th SIGKDD, pp. 701–710 (2014)

22. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organiza-
tion of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

23. Salton, G., McGill, M.: Introduction to Modern Information Retrieval (1983)
24. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classifica-

tion in network data. AI Mag. 29(3), 93–93 (2008)
25. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with rocketfuel. ACM

SIGCOMM Comput. Commun. Rev. 32(4), 133–145 (2002)
26. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information

network embedding. In: Proceedings of the 24th International Conference on World Wide Web,
pp. 1067–1077 (2015)

27. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention
networks. In: Proceedings of the 6th ICLR (2018)

28. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust
features with denoising autoencoders. In: Proceedings of the 25th International Conference
on Machine Learning, pp. 1096–1103 (2008)

29. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd
SIGKDD, pp. 1225–1234. ACM, New York (2016)

30. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684),
440–442 (1998)

31. Yu, W., Cheng, W., Aggarwal, C.C., Zhang, K., Chen, H., Wang, W.: Netwalk: A flexible
deep embedding approach for anomaly detection in dynamic networks. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 2672–2681 (2018)

32. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Proceedings of 32nd
NeurIPS, pp. 5171–5181 (2018)

33. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. In: AAAI, vol. 18, pp. 4438–4445 (2018)

48 J. Zhang et al.

34. Zhang, J., Zheng, J., Chen, J., Xuan, Q.: Hyper-substructure enhanced link predictor. In:
Proceedings of the 29th ACM International Conference on Information and Knowledge
Management, pp. 2305–2308 (2020)

35. Zhou, T., Lü, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B
71(4), 623–630 (2009)

Chapter 3
Broad Learning Based on Subgraph
Networks for Graph Classification

Jinhuan Wang, Pengtao Chen, Yunyi Xie, Yalu Shan, Qi Xuan,
and Guanrong Chen

Abstract Many real-world systems can be naturally represented by networks, such
as biological networks, collaboration networks, software networks, social networks,
etc., where subgraphs or motifs can be considered as network building blocks with
particular functions to capture mesoscopic structures. Most existing studies ignored
the interaction between these subgraphs, which could be of particular importance
to represent the global structure at the subgraph level. In this chapter, the concept
of subgraph network (SGN) is introduced and applied to network models, with
algorithms designed for constructing the 1st-order and 2nd-order SGNs, which can
be easily extended to build higher-order ones. Furthermore, these SGNs are used to
expand the structural feature space of the underlying network, beneficial for network
classification. The experiments demonstrate that the structural features of SGNs can
complement that of the original network for better network classification. However,
SGN model lacks diversity and is of high time-complexity, making it difficult to
be widely applied in practice. Then, sampling strategies are introduced into SGNs
and a novel sampling subgraph network (S2GN) model is designed, which is scale-
controllable and of higher diversity. Further, a broad learning system (BLS) is
introduced into graph classification, which fully utilizes the information provided by
the S2GNs of different sampling strategies and thus can capture various aspects of
the network structure more efficiently. Extensive experiments demonstrate that, by
comparing with the SGN model, the S2GN model has much lower time-complexity,
which together with BLS can enhance various graph classification methods.

J. Wang · P. Chen · Y. Xie · Y. Shan · Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

G. Chen
Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_3&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_3

50 J. Wang et al.

3.1 Introduction

Studying the substructure of a large-scale network, e.g., its subgraphs, is an efficient
way to understand and analyze the network. Recently, a number of studies on
network subgraphs for various network applications have been reported. Ugander
et al. [1] treated subgraph frequency as a local property in social networks and
found that subgraph frequency can provide deep insights for identifying both social
structure and graph structure in a large network. Except for subgraph frequency
statistics, Benson et al. [2] developed a corresponding embedding representation
through Laplacian matrix analysis method. Moreover, Wang et al. [3] designed
an incremental subgraph join feature selection algorithm, which forces graph
classifiers to join short-pattern subgraphs so as to generate long-pattern subgraph
features. Deep learning methods for graphs achieve remarkable performance on
many network analysis tasks. Yang et al. [4] proposed a NEST method, which
combines the motifs and convolutional neural network. Recently, Alsentzer et
al. [5] introduced a SUB-GNN to learn disentangled subgraph representations by
embedding subgraphs into the GNNs, which achieves considerable performance
gains on subgraph classification.

The studies mentioned above try to reveal subgraph-level patterns, which can
be considered as network building blocks with particular functions, to capture
mesoscopic structures. However, most of them ignored the interactions among these
subgraphs, which could be of particular importance to represent the global structure
at the subgraph level. In order to address this issue, Xuan et al. [6] proposed a
method to establish Subgraph Networks (SGNs) of different orders. It is expected
that such SGNs can capture the structural features in different aspects and thus
may benefit the follow-up tasks, such as network classification. The details of
constructing SGNs will be further discussed in Sect. 3.3. Conceptually, the SGN
extracts the representative parts of the original network and then assembles them to
reconstruct a new network that preserves the relationship among subgraphs. Thus,
this method implicitly maintains the higher-order structures while preserving the
information of local structures.

Notably, the network structure of SGN can complement the original network
and the integration of SGNs’ features will benefit the subsequent structure-based
algorithms design and applications. However, this model can be further improved.
It is observed that the rule to establish SGN is deterministic, i.e., users can generate
only one SGN of each order for a network. This lack of diversity will limit the
capacity of SGN to expand the latent structure space. Besides, when the number of
subgraphs exceeds the number of nodes in a network, the generated SGN can be
even larger than the original network, which makes it extremely time consuming to
process higher-order SGNs, hindering further applications of the SGN algorithm.
On the other hand, it is noted that network sampling can increase the diversity by
introducing randomness, and meanwhile control the scale, providing an effective
and inexpensive solution for network analysis. This feature is complementary to
the SGN model. Wang et al. thus introduce Sampling Subgraph Networks (S2GNs)
through combining sampling strategy and SGN.

3 Broad Learning Based on Subgraph Networks for Graph Classification 51

Broad Learning System (BLS) [7] is a single-layer incremental neural network,
which has a good performance in training speed and classification accuracy
therefore offers an alternative way of learning in deep structure. In this chapter,
BLS will be adopted to fully utilize the structural information captured by S2GN, so
as to enhance the performance of graph classification. The experiments demonstrate
the effectiveness of the method. The main contents of this chapter are summarized
as follows:

• SGN and S2GN are utilized to expand the structural feature space, which
provides more significant and potential features for the analysis of the original
network and benefits the associated algorithms.

• The broad learning system is employed for the first time to fully utilize
the structural information extracted from S2GNs generated by different sam-
pling strategies, to enhance various graph classification algorithms based on
Graph2Vec and CapsuleGNN.

• The new models are tested on three real-world network datasets, and the
experimental results demonstrate that S2GN together with BLS can indeed
significantly improve the algorithm efficiency.

The rest of this chapter is organized as follows. In Sect. 3.2, some related work
about subgraph networks, network representation, and the broad learning system are
introduced. In Sect. 3.3, the SGN is described and the algorithms for constructing the
1st-order and 2nd-order SGNs are designed. In Sect. 3.4, three sampling strategies
are developed and the construction methods of S2GN are presented. In Sect. 3.5,
BLS is used as the classifier for the classification framework. In Sect. 3.6, two
feature extraction methods are introduced, and then combined with SGNs and
S2GNs, which are then applied to classify graphs in three real-world datasets. In
Sect. 3.7, the computational complexities of SGNs and S2GNs models are analyzed
and compared. Finally, Sect. 3.8 concludes the chapter, with a future research
outlook.

3.2 Related Work

In this section, some necessary background information is provided on subgraph
networks and graph representation methods in graph mining and network science,
with a brief overview of related research on the broad learning system.

3.2.1 Subgraph Networks

Subgraph is a key component in complex networks and graph mining. The structural
interaction among subgraphs also plays an important role in network analysis.
Subgraph network (SGN) [6] is the first model to introduce the notion of subgraph

52 J. Wang et al.

interaction, which can capture the latent high-order structural features in the
original network. However, its construction is of high time-complexity. On the
other hand, network sampling is an important part of network mining. Sampling
methods in graph mining have two main tasks: generating node sequences for
subsequent network representation [8–10] and limiting the scale of the network to
simplify graphs and achieve faster graph algorithms [11, 12]. Sampling methods
can simplify the network while preserving significant structural information, which
is of extreme importance in graph mining. In view of this, as a variant of the SGN,
sampling subgraph network (S2GN) combined with different sampling strategies
was introduced, which can enhance the performance of graph classification and
reduce the time complexity of the SGN. In this chapter, SGN and S2GN are utilized
to expand the structural space for enhancing the performance of graph classification.

3.2.2 Network Representation

Network representation has received considerable attention in recent years, which
allows the relational knowledge of interacting entities to be stored and accessed
efficiently. The most naive network representation method is to calculate graph
attributes according to certain typical topological metrics [13]. Early graph embed-
ding methods were significantly affected by Natural Language Processing (NLP).
For example, as graph-level embedding algorithms, Narayanan et al. developed
Subgraph2Vec [14] and Graph2Vec [15], which achieve good performances on
graph classification. Graph kernel methods [16, 17] are popular tools to capture the
similarity between graphs where the kernel is equivalent to an internal product in
the associated feature space. Although representing networks well, they generally
have relatively high computational complexity [13], which makes it unrealizable
to process large-scale networks. Graph Convolutional Networks (GCN) process the
obtained information without weighting, i.e., the information of important neighbors
and non-important neighbors will be put into the convolution layer in an unbiased
manner. Later, Graph Attention Networks (GAT) [18] overcome this shortage by
supplementing a self-attention coefficient before the convolution layer. Based on
the newly proposed capsule network architecture, Zhang et al. [19] designed a
CapsuleGNN to generate multiple embeddings for each graph, thereby capturing
the classification-related information and the potential information with respect to
the graph properties at the same time, which achieved good performance.

3.2.3 Broad Learning System

Broad Learning System (BLS) [7, 20, 21] is a single-layer incremental neural
network based on the random vector function-link neural network (RVFLNN),
which aims to offer an alternative way of learning in deep structure. Chen et al. [7]

3 Broad Learning Based on Subgraph Networks for Graph Classification 53

showed that BLS outperforms the existing deep structure neural networks in terms of
training speed. Indeed, compared with other multi-layer perceptron (MLP) training
methods, BLS has a promising performance in classification accuracy and learning
speed. In view of this advantages, BLS has found many applications in various
fields. For example, Gao et al. [22] presented an incremental BLS for event-
based object classification, which demonstrated that increasing the broad network
by adding feature nodes and enhancement nodes is effective for asynchronous
event-based data and provides an alternative way to deal with neuromorphic
cameras. Chen et al. [23] designed a deep-broad learning system for traffic flow
prediction, which increases the accuracy of traffic flow prediction, and maintains
low complexity and running time. To date, BLS has been widely applied in the filed
of computer vision but rarely in graph data mining. In this chapter, BLS is used
for network analysis task in combination with S2GNs. It will be shown that BLS
achieves good performances in graph classification.

3.3 Subgraph Networks

To be self-contained, SGN is first reviewed, followed by the 1st-order SGN (SGN(1))
and 2nd-order SGN (SGN(2)) construction algorithms.

Subgraph network (SGN) maps the links in the original network into the nodes in
the SGN, thereby transforming the node-level original network into a subgraph-level
network.

Definition 1 (Network) Let G(V,E) be an undirected network, where V and
E ⊆ (V , V) respectively denote the nodes and links in the network. The element
(vi , vj) ∈ E denotes an unordered pair of nodes vi and vj , i.e.,(vi, vj) = (vj , vi),
for i, j = 1, 2, 3, . . . , N , where N is the number of nodes in the network.

Definition 2 (Subgraph) For a network G(V,E) and a subgraph gi = (Vi, Ei),
where gi ⊆ G if and only if Vi ⊆ V and Ei ⊆ E. Denote the sequence of subgraphs
as g = {gi ⊆ G|i = 1, 2, . . . , n}, n ≤ N .

Definition 3 (Subgraph Network) Consider an undirected network G(V,E), and
a SGN G∗ = f (G), which is a mapping from G to G∗(V ∗, E∗), with the nodes and
links denoted by V ∗ = {gi |j = 0, 1, . . . , n} and E∗ ⊆ (V ∗, V ∗), respectively. Two
subgraphs gi and gj are connected if they share some common nodes or links in the
original graph, i.e., Vi ∩Vj �= ø or Ei ∩Ej �= ø. Moreover, an element (gi , gj) ∈ E∗
is an unordered pair of subgraphs gi and gj , i.e., (gi, gj) = (gj , gi), i = 1, 2, . . . , n,
with n ≤ N .

According to the above definitions [6], one can actually find that SGN is derived
from a higher-order mapping of the original network. Agarwal et al. [24] discussed
the problem of graph representation in the domain with higher-order relations,
where the node set is constructed as a p-chain, corresponding to points (0 chain),
lines (1 chain), triangles (2-chain) and so on. Here, similarly, the SGN constructs

54 J. Wang et al.

the subgraphs as 1st-order, 2st-order, etc. For clarity, the following are three steps
in building a SGN:

• Extract subgraphs. The first step is extracting subgraphs from the original
network. The network has rich subgraph structures, some of which appear
frequently, such as motifs [25].

• Choose subgraph blocks. The second step is choosing appropriate subgraph
blocks. Generally, a subgraph should not be too large, otherwise the SGN may
only contain a very small number of nodes, which makes subsequent analysis
less significant.

• Construct the SGN. The final step is constructing the SGN by utilizing the
subgraph blocks. After extracting enough subgraphs from the original network,
the key issue is to define rules for building SGN and establish connections
between these blocks. Here, for simplicity, consider two subgraphs, which are
connected if they share the same node or link in the original network.

In this chapter, the most basic subgraphs (that is, lines and open triangles) are
selected as subgraphs because they are simple and common in most networks.

3.3.1 First-Order SGN

From the 1st-order SGN, denoted as SGN(1), one can select a line namely a link
as the subgraph to construct the SGN. The 1st-order SGN is also called a line
graph [26].

The process of constructing SGN(1) from a given network is shown in Fig. 3.1.
In this example, the original graph has 6 nodes connected by 6 links. First, one
extracts lines as subgraphs and labels them with their corresponding terminal nodes.
Then, one treats these lines as nodes in SGN, and connects them according to their
labels, i.e., two lines are connected if they share the same terminal node, as shown
in Fig. 3.1b. Finally, one obtains the structure of SGN with 6 nodes and 9 links as

3

4

2

1

5

6

3

4

2

1

5

6

3 | 5

1 | 4

3 | 5

1 | 4

(a) (b) (c)

Fig. 3.1 The process to build SGN(1) from the original network: (a) the original graph, (b) extract-
ing lines and establishing connection among these lines, (c) the structure of SGN(1)

3 Broad Learning Based on Subgraph Networks for Graph Classification 55

Algorithm 1: Constracting first-order SGN
Input: A network G(V,E) with node set V and link set E ⊆ (V × V).
Output: First-order SGN, denoted by G1(V1, E1).

1 Initialize a node set V1 and a link set E1;
2 for each node u ∈ V do
3 Obtain the neighbors set Γ of u;
4 for each node v ∈ V do
5 A temporary link L = sorted pair of nodes set(u, v);
6 Regard link L as a new node in the first-order SGN;
7 Append L to node set V̂ ;
8 end
9 for i, j ∈ V̂ and i �= j do

10 Append the link (i, j) to E1;
11 end
12 Append V̂ to V1;
13 end
14 return G1(V1, E1);

shown in Fig. 3.1c. The pseudocode for constructing SGN(1) is given in Algorithm 1.
The input of the algorithm is the original network G(V,E), and the output is the
constructed SGN(1), denoted as G1(V1, E1), where V1 and E1 represent the nodes
and links in SGN(1), respectively.

3.3.2 Second-Order SGN

Compared with lines, triangles can provide more insights about the local structure of
the network. For example, Schiöberg et al. [27] studied the evolution of triangles in
the Google+ online social network, where some valuable information was obtained
during the appearance and pruning of various triangles.

Now, construct a higher-order subgraph by considering the connection pattern
between three nodes. Compared with two nodes, the connection mode between three
nodes is more diverse. Here, only the connected subgraphs are considered, and the
subgraphs with less than two links are ignored. Here, the open triangle is defined as
a subgraph to establish a 2nd-order SGN, denoted by SGN(2). Second order means
that there are two links in each open triangle, and if two open triangles share the
same link, the two open triangles are connected in SGN(2). Note that the same link
instead of the same node is used here to avoid getting a very dense SGN(2). This is
because, usually, dense networks with higher connection probability of each node
pair tend to provide less discriminative information for local structures.

The construction process from SGN(1) to SGN(2) is illustrated by Fig. 3.2. In
the line graph SGN(1), further extract lines to obtain hollow triangles as subgraphs,
and mark them with the corresponding three nodes, as shown in Fig. 3.2b. Finally, an
SGN(2) with 8 nodes and 15 links is obtained, as shown in Fig. 3.2c. The pseudocode

56 J. Wang et al.

3 | 5

1 | 4

4 | 5 | 6

3 | 5

1 | 4

1
| 2

 |
3 4 | 5 | 6

(b) (c) (a)

Fig. 3.2 The process to build SGN(2) from the first-order subgraph network: (a) SGN(1) in
Fig. 3.1, (b) extracting lines and establishing connections among these lines, (c) the structure of
SGN(2)

Algorithm 2: Constracting second-order SGN
Input: A network G(V,E) with node set V and link set E ⊆ (V × V).
Output: Second-order SGN, denoted by G2(V2, E2).

1 Initialize a node set V2 and a link set E2;
2 for each node u ∈ V do
3 Obtain the neighbors set Γ of u;
4 The set of all node pairs in the neighbor collection Γ̂ ;
5 for each node pair (v1, v2) ∈ Γ̂ do
6 A temporary link L = sorted pair of nodes set(u, v1, v2);
7 Regard link L as a new node in the first-order SGN;
8 Append L to node set V̂ ;
9 end

10 for i, j ∈ V̂ and i �= j do
11 Append the link (i, j) to E2;
12 end
13 Append V̂ to V2;
14 end
15 return G2(V2, E2);

for constructing SGN(2) is given in Algorithm 2. The input of the algorithm is the
original network G(V,E), and the output is the constructed SGN(2), represented
by G2(V2, E2), where V2 and E2 represent the node and link sets in SGN(2),
respectively.

As SGN gradually maps to the higher-order network, one can obtain more and
richer feature information. SGN(1) can reveal the topological interaction between
the links of the original network. Fu et al. [28] adopted SGN to predict the link
weights of given networks. SGN(2) is obtained by further iterative mapping based
on SGN(1), so the second-order information of the nodes can be captured. Higher-
order SGNs will contain more hidden information, but these hidden information
may play a smaller role in subsequent applications. Therefore, here the focus is on
the SGNs of the first two orders.

3 Broad Learning Based on Subgraph Networks for Graph Classification 57

3.4 Sampling Subgraph Networks

Next, the S2GN is reviewed. S2GN is proposed as a variant of SGN through
introducing sampling strategies into the SGN algorithm. In this section, several
sampling strategies are described, and the construction of S2GN is discussed.

3.4.1 Sampling Strategies

Network sampling can simplify a graph while preserving its significant structural
information, which is of extreme importance in graph data mining. Here, three
sampling algorithms are reviewed: biased walk, spanning tree and forest fire.

3.4.1.1 Biased Walk (BW)

Biased walk sampling is a very common sampling strategy. Here, the walking
mechanism of Node2Vec [29] is adopted to preserve the homogeneity and structure
of nodes by integrating depth-first search (DFS) and breadth-first search (BFS) (as
shown in Fig. 3.3a). In the mechanism of Node2Vec, it defines a 2nd-order random
walk, which is guided by the two parameters p and q (as shown in Fig. 3.3b). To
start, assume that one walks from node A to node B and then needs to determine the
next step. The transition probability P from node B to node C is then defined as

P(B,C) = fpq(A,C) =

⎧
⎪⎨

⎪⎩

1
p
, d(A,C) = 0

1, d(A,C) = 1
1
q
, d(A,C) = 2

1

3

8

7

9

5

2

064

BFS DFS

B

A

C1 C2

C3P=1/p

P=1
P=1/q

P=1/q

(a) (b)

Fig. 3.3 (a) BFS and DFS walk strategies from node 3. (b) Illustration of evaluating the next step
out of node B. Edge labels indicate search biases P

58 J. Wang et al.

where dA,C represents the shortest distance between nodes A and C, and its value
must be in {0, 1, 2}. The pseudocode for biased walk is given in Algorithm 3.

Algorithm 3: Biased walk sampling
Input: A network G(V,E) with node set V and link set E ⊆ (V × V).
Output: The substructure Gb(Vb,Eb).

1 Initialize a source node v0 ∈ V , added into Vb;
2 Append v0 to Vb;
3 while walk length L do
4 v = Vb[-1];
5 Vv = GetNeighbors(v, G);
6 vnext = AliasSample(Vv , π);
7 Append vnext to Vb;
8 Append (v, vnext) to Eb;
9 end
10 return Gb(Vb,Eb);

3.4.1.2 Spanning Tree (ST)

A spanning tree [30] is defined as a subgraph of a connected tree graph G, which
connects all the nodes together with minimum possible number of edges. Here, since
the datasets used are all unweighted networks, the largest spanning tree is equivalent
to the smallest spanning tree. In this chapter, the classical Kruskal algorithm [31] is
used to generate spanning trees (as shown in Fig. 3.4) and the weight values of the
links are all set to one.

The Kruskal algorithm is a greedy algorithm for generating spanning tree as
follow:

• Step 1. Create a set of trees F where each node in the graph belongs to a tree;
• Step 2. Create a set of edges E including all edges of the graph;

1

4
6

5

3

7

82

1

4
6

5

3

7

82

Fig. 3.4 Obtaining a spanning tree. (a) Original network. (b) Spanning tree structure

3 Broad Learning Based on Subgraph Networks for Graph Classification 59

• Step 3. While E �= ∅ and |F | �= 1

– select any edge from E ;
– if this edge connects two different trees, then combine it with the two trees to

generate a new tree and add it into F ;
– otherwise discard this edge;

• Step 4. The F has a minimum spanning tree at the termination of the iteration.

3.4.1.3 Forest Fire (FF)

Forest fire sampling was first proposed by Leskovec and Faloutsos in 2006 [11].
Here, a specific algorithm is introduced for forest fire sampling. Given a network,
first randomly select a node v0, and then generate a random number X, following
the geometric distribution with mean pf /(1−pf). Here, the parameter pf is called
the forward burning probability (set to 0.2 [11]). Then, X edges with node v0 as
terminal node will be selected, where the another terminal node of each edge has
not been visited. One can use any method of generating random numbers to find
the unvisited nodes with the current burning nodes as source nodes, one by one,
until enough nodes are burned. To avoid duplication, nodes cannot be visited twice
during the forest fire sampling method. If the fire dies, select a node randomly to
restart again. The pseudocode for forest fire sampling is given in Algorithm 4.

Algorithm 4: Forest fire sampling
Input: A network G(V,E) with node set V and link set E ⊆ (V × V), the forward burning

probability pf .
Output: The substructure Gs(Vs , Es).

1 Initialize a neighbor list N and a temporary variable Gs(Vs, Es);
2 Randomly choose the first node v0;
3 Generate X following the geometric distribution with mean pf /(1 − pf);
4 n = The number of v0’ neighbor;
5 if X ≤ n then
6 N← Sort the neighbors of v0 according to the degree and choose the top X neighbors;
7 end
8 for node T in N do
9 if T in Vs then

10 continue;
11 else
12 Append the node T to Vs ;
13 Append the link (T , v0) to Es ;
14 Forest fire recursive function(G,pf , T);
15 end
16 end
17 return Gs(Vs , Es);

60 J. Wang et al.

Using any of the above three sampling strategies, one can map the original
network into many substructures. As a result, more characteristic information in
the network can be abstracted, which also provides favorable preconditions for
downstream algorithms.

3.4.2 Construction of S2GN

Most networks in the real world have complex structures. Therefore, the generated
SGNs are typically of large-scale and even denser than the original networks. This
will not only reduce the efficiency of the algorithms, but also introduce some
“noise” into structures, which will reduce the accuracy of the algorithms. In view
of this, the original SGN model is optimised to construct S2GN. In particular,
multiple sampling strategies are introduced, filtering the original complex network
as substructures, thereby establishing a new SGN. The pseudocode for constructing
S2GN is given in Algorithm 5. Generally, the S2GN algorithm is divided into
three parts: selecting source node, sampling substructure and constructing subgraph
network. The algorithm steps are described as follows:

• Selecting source node. There are many ways to select the source node: (i)
randomly selecting a node as the source node; (ii) selecting an initial node
according to the importance of the node. In this chapter, the second method is
adopted to better capture the key structure of a network.

• Sampling substructures. After determining the initial source node, a sub-
structure can be obtained by performing a certain sampling strategy to extract
the main context of the current network. According to different sampling strate-
gies, various sampling substructures can be generated, and the rich structural
information in the current network can be obtained.

• Constructing S2GN. The sampling substructure is used as input to construct
a subgraph network. Note that sampling and SGN construction are repeated
interactively, so as to obtain higher-order S2GNs. That is, each time the current
network is mapped to a subgraph network, and then a sampling operation is
performed to obtain various relatively simple sampling substructures.

3.5 BLS Classifier Based on S2GN

3.5.1 BLS Classifier

BLS [7, 20] is proposed as an alternative method of deep learning network. It is
designed such that mapping features are input into RVFLNN. As shown in Fig. 3.5,
a specific illustration of BLS is given, which will be used as the classifier of the
network.

3 Broad Learning Based on Subgraph Networks for Graph Classification 61

Fig. 3.5 The framework of BLS classifier

Algorithm 5: Constracting sampling subgraph network
Input: A network G(V,E) with node set V and link set E ⊆ (V × V), the order of SGN T ,

sampling strategy fs(·), sampling walks L.
Output: Sampling subgraph network, denoted by G′(V ′, E′).

1 Initialize a temporary variable G′ = G;
2 while T do
3 G′ = GetMaxSubstracture(G′);
4 Source node o = NodeRanking(V ′);
5 Initial sampling vi = o,Wv ← [o],We ← ∅ ;
6 for i = 1 to L − 1 do
7 Sampling link ei = fs(vi);
8 Update current node vi = dst (ei);
9 Append vi to Wv , ei to We;

10 end
11 Vs ← Wv , Es ← We;
12 Gsgn =SGN Algorithms(Gs);
13 G′ ← Relabel (Gsgn);
14 T = T − 1;
15 end
16 return G′(V ′, E′);

In this process, we treat the training features as the graph input X, and then
transform X into n random feature spaces by feature mapping:

Zi = φ(XWzi + βzi), i = 1 . . . n (3.1)

where the weights Wzi and the bias term βzi are generated randomly with appropri-
ate dimensions, n is the number of groups of mapped features, and φ(·) indicates
the linear mapping.

62 J. Wang et al.

Here, denote the feature space of training samples by Zn = [Z1, Z2, . . . , Zn].
Then, the j th group of enhancement nodes is defined by

Hj = ξ(ZnWrj + Brj), j = 1, 2, . . . ,m (3.2)

where Wrj is the enhancement weight, Brj is the bias term, and ξ(·) is a nonlinear
activation function.

Similarly, denote the enhancement layer by Hm = [H1,H2, . . . , Hm]. Thus, the
form of output Ŷ is as follows:

Ŷ = [Zn,Hm]W = AW (3.3)

where A = [Zn,Hm] are the features, combining the enhancement nodes and
feature nodes, and W is the weight matrix that connects the feature nodes and
enhancement nodes to the output layer. The W should be optimized by

minW ||Y − AW ||22 + λ||W ||22 (3.4)

where λ is a regularization coefficient. Then, through a simple equivalent transfor-
mation [7], one finally gets the following formula:

W = (AT A + λI)−1AT Y (3.5)

Now, one has the trained model with the weight matrix W , therefore can test its
performance using the rest of the dataset. In fact, there are several hyperparameters
in this model, such as the number of feature nodes k, the number of enhancement
nodes m, the regularization coefficient λ and the shrink coefficient s of ξ(·). In the
experiment, the regularization coefficient λ is set to 2−10 and shrink coefficient s to
0.8. For MUTAG, PTC, and PROTEINS, set the number of feature nodes k as 50, 80,
and 100, and the number of enhancement nodes m as 40, 60, and 80, respectively.
For different samples, the optimal parameters are set near the above parameters.

3.5.2 Classification Framework

According to the above setting, one can design a framework for graph classification
by combining S2GN with the BLS classifier, as shown in Fig. 3.6.

To begin with, construct three S2GNs according to the method described in
Sect. 3.4.2, i.e., S2GN(0), S2GN(1) and S2GN(2), and then map them into different
feature spaces. By graph feature extraction methods, one can get the feature
representations of S2GNs and then fusion them into X = [X0||X1||X2], where
[a||b] means to merge vector a and vector b. The fused vector X can be regarded as
the input of the BLS classifier as shown in Fig. 3.5. Here, the same sampling strategy
and feature extraction method are adopted for conducting classification. Since the

3 Broad Learning Based on Subgraph Networks for Graph Classification 63

… ……

… … …

…

… …

2 2
1

2
2

2

X
0

X
1

X
2

X

F
ig
.3

.6
T

he
ov

er
al

lf
ra

m
ew

or
k

w
it

h
B

L
S

of
th

e
S2

G
N

al
go

ri
th

m
fo

r
gr

ap
h

cl
as

si
fic

at
io

n

64 J. Wang et al.

same original network can generate various S2GNs by different sampling strategies,
X contains abundant structural information of different aspects. Therefore, this
framework combining S2GNs with BLS can enhance the performance of the original
network classification.

3.6 Experiment

3.6.1 Graph Classification

The performance of the above framework on graph classification is evaluated
by simulation. Graph classification is one of the most important data mining
tasks, which has been widely used in the field of biochemistry, such as protein
classification and molecular toxicity classification. Typically, graph classification
focuses on transforming discrete graphs into numerical features. One can use some
machine learning algorithms to effectively classify various graphs.

Consider graph G = (V ,E) from the set G = {Gi}, where i = 1, 2, 3 . . . , N .
The node and edge collections are V = {v1, v2, v3, . . . , vn} and E =
{e1, e2, e3, . . . , en} ⊆ (V × V), respectively. Each graph G has a corresponding
category label y ∈ C , where C = {1, 2, 3, . . . , k} is the set containing k different
labels. The aim of graph classification is to find a mapping function f : G → C
to predict the label of each graph in G . Generally, one can train the model using
the training set with known category labels and evaluate its performance using the
test set with unknown labels. By comparing the output ŷ = f (G) with the true test
label y, one can evaluate the classification algorithm by accuracy.

To date, a large number of graph classification methods have been proposed, like
graph embedding method Graph2Vec and deep learning method CapsuleGNN. In
this section, a brief introduction of these two network representation methods is
given, and then some experiments on three datasets are performed for evaluating the
performances of both SGN and S2GN models.

3.6.2 Datasets

Three datasets, MUTAG, PTC and PROTEINS, will be used for graph classification
experiments. The basic statistics of these datasets are presented in Table 3.1.

• MUTAG [32] dataset is about heteroaromatic nitro and mutagenic aromatic
compounds, with nodes and links representing atoms and the chemical bonds
between them, respectively. They are labeled according to whether there is a
mutagenic effect on a special bacteria.

• PTC [33] dataset includes 344 chemical compound graphs whose labels are
determined by their carcinogenicity for rats.

3 Broad Learning Based on Subgraph Networks for Graph Classification 65

Table 3.1 Basic statistics of the 3 datasets. #Graphs is the number of graphs. #Classes is the
number of classes. #Positive and #Negative are the numbers of graphs in the two different classes

Dataset #Graphs #Classses #Positive #Negative

MUTAG 188 2 125 63

PTC 344 2 152 192

PROTEINS 1113 2 663 450

• PROTEINS [34] dataset comprises of 1113 graphs. The nodes are Secondary
Structure Elements (SSEs) and the links are neighbors in the amino-acid
sequence or in the 3D space. These graphs represent either enzyme or non-
enzyme proteins.

3.6.3 Network Representation

Network representation is a method of mapping graphs into vectors while retaining
as many topological features as possible. Here, two network representation methods
are used to extract graph features, including graph embedding method Graph2Vec
and deep learning method CapsuleGNN.

• Graph2Vec: This is the first unsupervised embedding approach for an entire net-
work, which is based on the extending word-and-document embedding technique
that has shown great advantages in NLP. Graph2Vec establishes the relationship
between a network and the rooted subgraphs using a similar model to Doc2Vec.
Graph2Vec first extracts rooted subgraphs and provides corresponding labels into
the vocabulary, and then trains a skipgram model to obtain a representation of the
entire network.

• CapsuleGNN: This method is inspired by CapsNet [35], which utilizes the
concept of capsules to overcome the shortcoming of existing GNN-based graph
representation algorithms. CapsuleGNN extracts node features in the form of
capsules and uses routing mechanisms to capture important information at the
graph level. The model generates multiple embeddings for each graph in order to
capture graph properties from different aspects.

For Graph2Vec, the embedding dimension is adopted following [15]. Graph2vec
is based on the rooted subgraphs adopted in the WL kernel. The parameter height
of the WL kernel is set to 3. Since the embedding dimension is predominant
for learning performances, a commonly-used value of 1024 is adopted. The other
parameters are set to defaults: the learning rate is set to 0.5, the batch size is set to
512 and the epochs is set to 1000. The default parameters are used for CapsuleGNN
and the multiple embeddings of each graph are flattened as the input.

66 J. Wang et al.

3.6.4 SGN for Graph Classification

As described in Sect. 3.3, the proposed SGNs can be used to expand structural
feature spaces. In order to study the effectiveness of the 1st-order and 2nd-order
SGNs, i.e., SGN(1) and SGN(2), the classification results were compared based on
different numbers of networks, i.e., SGN(0), SGN(1), SGN(2) SGN(0,1), SGN(0,2)

and SGN(0,1,2). Without loss of generality, the well-known logistic regression is
chosen as the classification model. Meanwhile, for each feature extraction method,
the feature space is first expanded by using SGNs, and then the dimension of the
feature vectors is reduced to the same value as that of the feature vector obtained
from the original network using PCA in the experiments, for a fair comparison. Each
dataset is randomly split into ninefolds for training and onefold for testing. Here, the
F1-Score is adopted as the metric to evaluate the classification performance:

F = 2PR

P + R
, (3.6)

and the Gain can be calculated by

Gain = F (0,1,2) − F (0)

F (0)
× 100% (3.7)

where P and R are the precision and recall, respectively. To exclude the random
effect of the fold assignment, experiment is repeated for 500 times and then
the average F1-Score and its standard deviation are recorded. The results for
Graph2Vec and CapsuleGNN methods are shown in Tables 3.2 and 3.3, respectively.

From Tables 3.2 and 3.3, one can see that the original network appears to
provide more structural information. The classification model based on SGN(0)

performs better, with a higher F1-Score, than those based on SGN(1) or SGN(2).
This is reasonable because there is information loss in the processes of constructing
SGNs. More interestingly, the performance of the classification model based on two
networks i.e., SGN(0,1) and SGN(0,2), is better than the classification model based on

Table 3.2 Classification results on MUTAG, PTC and PROTEINS, in terms of F1-Score, based
on Graph2Vec method with the combinations of SGNs of different orders, the bold values are the
best results

Dataset MUTAG PTC PROTEINS

Original 83.15 ± 9.25 60.17 ± 6.86 73.30 ± 2.05

SGN(1) 63.16 ± 4.68 56.80 ± 5.39 60.27 ± 2.05

SGN(2) 68.95 ± 8.47 57.35 ± 3.83 59.82 ± 4.11

SGN(0,1) 83.42 ± 5.40 59.03 ± 3.36 74.12 ± 1.57

SGN(0,2) 81.32 ± 3.80 61.76 ± 3.73 73.09 ± 1.28

SGN(0,1,2) 86.84 ± 5.70 63.24 ± 6.70 74.44 ± 3.09
Gain 4.44% 5.10% 1.56%

3 Broad Learning Based on Subgraph Networks for Graph Classification 67

Table 3.3 Classification
results on MUTAG, PTC and
PROTEINS, in terms of
F1-Score, based on
CapsuleGNN method with
the combinations of SGNs of
different orders, the bold
values are the best results

Dataset MUTAG PTC PROTEINS

Original 86.32 ± 7.52 62.06 ± 4.25 75.89 ± 3.51

SGN(1) 83.68 ± 8.95 61.76 ± 5.00 74.64 ± 3.55

SGN(2) 82.63 ± 7.08 58.82 ± 3.95 73.39 ± 6.03

SGN(0,1) 87.37 ± 8.55 63.53 ± 4.40 76.25 ± 3.53

SGN(0,2) 87.89 ± 5.29 62.20 ± 6.14 73.00 ± 3.17

SGN(0,1,2) 89.47 ± 7.44 64.12 ± 3.67 76.34 ± 4.13
Gain 3.65% 2.19% 0.59%

a single network in most cases, which prove that SGNs can indeed provide the latent
and significant structural information. Furthermore, when the three single networks
are considered together, i.e., SGN(0,1,2), they can achieve the best performance in
the classification.

3.6.5 S2GN for Graph Classification

In this experiment, the network in the dataset is divided to ten equal parts, two of
which are selected as the test set, and the remaining eight are used as the training
set. The above algorithms are used to generate S2GNs of different orders, and then
Graph2Vec and CapsuleGNN methods are adopted to learn the feature representa-
tions of S2GNs. Finally, the BLS method is applied for classification and to calculate
the F1-Score. In order to avoid accidental sampling, each sampling strategy was
carried out 10 sampling averaging. Based on Graph2Vec and CapsuleGNN methods,
the obtained experimental results are shown in Tables 3.4 and 3.5, respectively.

The influence of each sampling method on the model is compared between the
two feature extraction methods. It is found that, under the same feature extraction
method, each sampling strategy has different advantages and disadvantages, which
may be related to the specific network structure in the dataset. With the two feature
extraction algorithms, the dataset MUTAG has the best classification effect under
biased walk. Here, the results based on three sampling methods are compared
with those based on the original method. It is found that the improved sampling
subgraph network algorithm can maintain the original accuracy and even outperform

Table 3.4 Classification
results of three sampling
strategies in MUTAG, PTC
and PROTEINS, in terms of
F1-Score, based on
Graph2Vec method, the bold
values are the best results

Dataset MUTAG PTC PROTEINS

Original 83.15 ± 9.25 60.17 ± 6.86 73.30 ± 2.05

S2GN-BW 86.80 ± 5.02 62.90 ± 2.19 75.44 ± 3.85

S2GN-ST 82.03 ± 3.76 62.39 ± 6.36 74.33 ± 2.86

S2GN-FF 83.33 ± 6.13 62.46 ± 5.17 73.77 ± 2.15

BLS-S2GN 83.63 ± 6.84 63.28 ± 6.06 74.92 ± 2.58
Gain 0.58% 5.17% 2.21%

68 J. Wang et al.

Table 3.5 Classification
results of three sampling
strategies in MUTAG, PTC
and PROTEINS, in terms of
F1-Score, based on
CapsuleGNN method, the
bold values are the best
results

Dataset MUTAG PTC PROTEINS

Original 86.32 ± 7.52 62.06 ± 4.25 75.89 ± 3.51

S2GN-BW 91.84 ± 5.00 66.06 ± 3.34 77.47 ± 2.35

S2GN-ST 89.21 ± 5.05 63.50 ± 3.71 76.85 ± 2.54

S2GN-FF 86.10 ± 5.32 65.77 ± 4.42 76.37 ± 1.90

BLS-S2GN 91.63 ± 2.89 66.10 ± 6.37 78.32 ± 2.94
Gain 6.39% 6.50% 3.20%

the optimal result of the original algorithm. Experiments show that the variance
of all accuracy on the dataset is reduced. For example, under the condition
of CapsuleGNN feature extraction for the MUTAG dataset, the highest average
accuracy is around 86.32%, and the variance is 0.0752. While using BLS-S2GN, the
highest average accuracy can reach 91.84%, and the variance is reduced to 0.0289.
All cases show that the newly proposed classification model can be combined with
different feature extraction methods, which can further improve the accuracy and
stability of classification.

3.7 Computational Complexity

Now, it is to analyze the computational complexity in building SGNs. Denote by
|V | and |E| the numbers of nodes and links, respectively, in the original network.
The average degree of the network is calculated by

K = 1

|V |
|V |∑

i=1

ki = 2|E|
|V | , (3.8)

where ki is the degree of node vi . Based on Algorithm 1, the time complexity in
transforming the original network to SGN(1) is

T1 = O(K|V | + |E|2) = O(|E|2 + |E|) = O(|E|2) . (3.9)

Then, the number of nodes in SGN(1) is equal to |E| and the number of links is
∑|V |

i=1 k2
i − |E| ≤ |E|2 − |E| [26]. Similarly, one can get the time complexity in

transforming SGN(1) to SGN(2), as

T2 ≤ O((|E|2 − |E|)2) = O(|E|4) . (3.10)

Meanwhile, the computational complexity of these methods is evaluated in terms
of the average computational time of SGN and S2GN generated by the three
sampling strategies on the three datasets. The results are presented in Table 3.6,
where one can see that, overall, the computational time of S2GN is much less than

3 Broad Learning Based on Subgraph Networks for Graph Classification 69

Table 3.6 Average
computational time to
establish SGN and S2GNs by
the three sampling strategies
on the three datasets

S2GN

Time (Seconds) SGN BW ST FF

MUTAG 1.58 × 102 0.252 0.090 0.382

PTC 1.93 × 103 0.804 0.607 0.985

PROTEINS 3.20 × 103 1.161 1.625 3.697

that of SGN for each sampling strategy on each dataset, decreasing from hundreds
of seconds to less than 4 s. These results suggest that, by comparing with SGN, the
S2GN model can indeed largely increase the efficiency of the network algorithms.

In fact, it is possible to estimate the time complexity of S2GN model in theory.
For biased walk, consider the 2nd random walk mechanism of Node2Vec, where
each step of a random walk is based on the transition probability α, which can be
precomputed, so the time consumption of each step using alias sampling is O(1).
The Kruskal algorithm used to generate spanning trees is a greedy algorithm, which
has O(|E|log(|E|)) time complexity. Fire forest is an exploration-based method.
The difference between this method and the random walk method is that, when
a node is visited, it will no longer be visited again in the fire forest. It is known
that the computational complexity of SGN(1) is O(|E|2) and that of constructing
SGN(2) is O(|E|4). The S2GN model constrains the expansion of the network scale
and reduces the cost of constructing SGNs to the fixed O(|E|2). Thus, the time
computational complexity T of the S2GN model can be calculated as

T ≤ O(|E|log|E| + |E|2|) (3.11)

Combining with the different sampling strategies, one can see that the time
complexity of S2GN is much lower than that of SGN.

3.8 Conclusion

In this chapter, after reviewing the notions of SGN and S2GN, the BLS is introduced
to graph data mining. Moreover, a classification framework is introduced that
combines S2GN, feature representation, and BLS to enhance the performance of
graph classification task. SGN and S2GN can generate different higher-order graphs
to capture latent structural information of the original network from various aspects
and expand the feature space. Experiments on three datasets demonstrate that BLS
can fully utilize these latent features to achieve significant improvement in graph
classification. In addition, it is found that, compared with SGN, S2GN has much
lower time complexity, which was reduced by almost two orders of magnitude.
More significantly, combined with BLS, it has competitive performances on graph
classification.

70 J. Wang et al.

References

1. Ugander, J., Backstrom, L., Kleinberg, J.: Subgraph frequencies: mapping the empirical and
extremal geography of large graph collections. In: Proceedings of the 22nd International
Conference on World Wide Web, pp. 1307–1318. ACM, New York (2013)

2. Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks.
Science 353(6295), 163–166 (2016)

3. Wang, H., Zhang, P., Zhu, X., Tsang, I.W.-H., Chen, L., Zhang, C., Wu, X.: Incremental
subgraph feature selection for graph classification. IEEE Trans. Know. Data Eng. 29(1), 128–
142 (2017)

4. Yang, C., Liu, M., Zheng, V.W., Han, J.: Node, motif and subgraph: leveraging network func-
tional blocks through structural convolution. In: 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), pp. 47–52. IEEE, Piscataway
(2018)

5. Alsentzer, E., Finlayson, S.G., Li, M.M., Zitnik, M.: Subgraph neural networks. Preprint.
arXiv:2006.10538 (2020)

6. Xuan, Q., Wang, J., Zhao, M., Yuan, J., Fu, C., Ruan, Z., Chen, G.: Subgraph networks with
application to structural feature space expansion. IEEE Trans. Knowl. Data Eng. 33(6), 2776–
2789 (2021)

7. Philip Chen, C.L., Liu, Z.: Broad learning system: an effective and efficient incremental
learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst.
29(1):10–24 (2017)

8. Kurant, M., Markopoulou, A., Thiran, P.: On the bias of BFS (breadth first search). In: 2010
22nd International Teletraffic Congress (lTC 22), pp. 1–8. IEEE, Piscataway (2010)

9. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 701–710 (2014)

10. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information
network embedding. In: Proceedings of the 24th International Conference on World Wide Web,
pp. 1067–1077 (2015)

11. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636
(2006)

12. Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification for scalable clustering. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’11, New York, pp. 721732 (2011)

13. Li, G., Semerci, M., Yener, B., Zaki, M.J.: Graph classification via topological and label
attributes. In: Proceedings of the 9th International Workshop on Mining and Learning with
Graphs (MLG), San Diego, USA, vol. 2 (2011)

14. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: subgraph2vec: learning
distributed representations of rooted sub-graphs from large graphs. In: International Workshop
on Mining and Learning with Graphs (2016)

15. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec:
learning distributed representations of graphs. In: International Workshop on Mining and
Learning with Graphs (2017)

16. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.:
Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 25392561 (2011)

17. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, New York (2015)

18. Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Li, P., Bengio, Y.: Graph attention
networks. In: International Conference on Learning Representations (2018)

3 Broad Learning Based on Subgraph Networks for Graph Classification 71

19. Zhang, X., Chen, L.: Capsule graph neural network. In: International Conference on Learning
Representations (2019)

20. Philip Chen, C.L., Liu, Z.: Broad learning system: a new learning paradigm and system without
going deep. In: 2017 32nd Youth Academic Annual Conference of Chinese Association of
Automation (YAC), pp. 1271–1276. IEEE, Piscataway (2017)

21. Jin, J.-W., Philip Chen, C.L.: Regularized robust broad learning system for uncertain data
modeling. Neurocomputing 322, 58–69 (2018)

22. Gao, S., Guo, G., Philip Chen, C.L.: Event-based incremental broad learning system for object
classification. In: Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 2989–2998 (2019)

23. Chen, M., Wei, X., Gao, Y., Huang, L., Chen, M., Kang, B.: Deep-broad learning system for
traffic flow prediction toward 5g cellular wireless network. In: 2020 International Wireless
Communications and Mobile Computing (IWCMC), pp. 940–945. IEEE, Piscataway (2020)

24. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: Proceedings of
the 23rd International Conference on Machine Learning, pp. 17–24. ACM, New York (2006)

25. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol. Bioin-
form. (TCBB) 3(4), 347–359 (2006)

26. Harary, F., Norman, R.Z.: Some properties of line digraphs. Rendiconti del Circolo Matematico
di Palermo 9(2), 161–168 (1960)

27. Schiöberg, D., Schneider, F., Schmid, S., Uhlig, S., Feldmann, A.: Evolution of directed
triangle motifs in the google+ OSN. Preprint. arXiv:1502.04321 (2015)

28. Fu, C., Zhao, M., Fan, L., Chen, X., Chen, J., Wu, Z., Xia, Y., Xuan, Q.: Link weight prediction
using supervised learning methods and its application to Yelp layered network. IEEE Trans.
Knowl. Data Eng. 30(8), 1507–1518 (2018)

29. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 855–864. ACM, New York (2016)

30. Dey, A., Broumi, S., Bakali, A., Talea, M., Smarandache, F., et al.: A new algorithm for finding
minimum spanning trees with undirected neutrosophic graphs. Granular Comput. 4(1), 63–69
(2019)

31. Najman, L., Cousty, J., Perret, B.: Playing with kruskal: algorithms for morphological trees
in edge-weighted graphs. In: International Symposium on Mathematical Morphology and Its
Applications to Signal and Image Processing, pp. 135–146. Springer, Berlin (2013)

32. Debnath, A.K.., de Compadre, R.L.L., Debnath, R.L.L., Shusterman, A.J., Hansch, C.:
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–
797 (1991)

33. Toivonen, H., Srinivasan, A., King, R.D., Kramer, S., Helma, C.: Statistical evaluation of the
predictive toxicology challenge 2000–2001. Bioinformatics 19(10), 1183–1193 (2003)

34. Nguyen, D., Luo, W., Nguyen, T.D., Venkatesh, S., Phung, D.: Learning graph representation
via frequent subgraphs. In: Proceedings of the 2018 SIAM International Conference on Data
Mining, pp. 306–314. SIAM, Philadelphia (2018)

35. Sabour, S., Frosst, N., Hinton, G.: Matrix capsules with EM routing. In: 6th International
Conference on Learning Representations, ICLR, pp. 1–15 (2018)

Chapter 4
Subgraph Augmentation
with Application to Graph Mining

Jiajun Zhou, Jie Shen, Yalu Shan, Qi Xuan, and Guanrong Chen

Abstract Graph classification, which aims to identify the category labels of graphs,
plays a significant role in drug classification, toxicity detection, protein analysis etc.
However, the limitation of the general scale of benchmark datasets makes easily
causes graph classification models to fall into overfitting and undergeneralization.
In this chapter, the M-Evolve framework is introduced for graph classification (Zhou
et al., Data augmentation for graph classification. In: Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 2341–
2344, 2020; Zhou et al., M-evolve: structural-mapping-based data augmentation for
graph classification. In: IEEE Transactions on Network Science and Engineering,
pp. 1–1, 2020), a novel technique for expanding graph structured data spaces and
optimizing graph classifiers. Typical graph tasks such as node classification and link
prediction are unified to generate graph classification patterns, demonstrating some
applications to multiple tasks in graph mining. One of the main contributions of
this chapter is to apply the technique of subgraph augmentation for various tasks.
The M-Evolve is general and flexible, which can be easily combined with existing
graph classification models. Extensive experiments are conducted on real datasets
to illustrate the effectiveness of our framework.

J. Zhou · J. Shen · Y. Shan · Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

G. Chen
Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_4&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_4

74 J. Zhou et al.

4.1 Introduction

Graph classification, or network classification, has recently attracted considerable
attention from different scientific and engineering communities such as bioinfor-
matics [1] and chemoinformatics [2]. In bioinformatics, proteins or enzymes can
be represented as labeled graphs, in which nodes are atoms and edges represent
chemical bonds that connect atoms. The task of graph classification is to classify
these molecular graphs according to their chemical properties like carcinogenicity,
mutagenicity and toxicity.

However, in bioinformatics and chemoinformatics, the scale of the known
benchmark graph datasets is generally in the range of tens to thousands, which is far
from the scale of real-world social network datasets like COLLAB and IMDB [3].
Despite the advances of various graph classification methods, from graph kernels,
graph embedding to graph neural networks, the limitation of data scale makes them
easily fall into overfitting and undergeneralization. Overfitting refers to a modeling
error that occurs when a model learns a function with high variance to perfectly fit
the limited data. A natural idea to address overfitting is data augmentation, which is
widely applied in computer vision (CV) and natural language processing (NLP).
Data augmentation encompasses a number of techniques that enhance both the
scale and the quality of training data such that the models of higher performance
can be learnt satisfactorily. In CV, image augmentation methods include geometric
transformation, color depth adjustment, neural style transfer, adversarial training,
etc. However, different from image data, which have a clear grid structure, graphs
have irregular topological structures, making it hard to generalize some basic
augmentation operations to graphs.

To solve the above problem, we take an effective approach to study data
augmentation on graphs and develop a subgraph augmentation method, called motif-
similarity mapping. The idea is to generate more virtual data for small datasets
via heuristic modification of graph structures. Since the generated graphs are
artificial and treated as weakly labeled data, their validity remains to be verified.
Therefore, we introduce a concept of label reliability, which reflects the matching
degree between examples and their labels, to filter fine augmented examples
from generated data. Furthermore, we introduce a model evolution framework,
named M-Evolve [4, 5], which combines subgraph augmentation, data filtration and
model retraining to optimize classifiers. We demonstrate that M-Evolve achieves a
significant improvement of performance on graph classification.

We further explore the transferability of M-Evolve to other graph tasks such as
node classification and link prediction. Motivated by recent works of graph neural
networks (GNNs) [6, 7], we show that GNNs achieve node classification/link pre-
diction by extracting a local subgraph around each target node/link, and by learning
a function mapping the subgraph patterns to node labels/link existence. Hence,
we unify both node classification and link prediction into graph classification, i.e.,
we achieve node classification or link prediction via local subgraph classification.
We demonstrate that M-Evolve can be transferred to these graph tasks and achieve
significant improvement of performance.

4 Subgraph Augmentation with Application to Graph Mining 75

The rest of this chapter is organized as follows. In Sect. 4.2, we briefly review
some related work on graph classification and data augmentation in graph mining.
In Sect. 4.3, we introduce the subgraph augmentation technique and the model
evolution framework. In Sect. 4.4, we discuss the application of the new framework
to graph classification, node classification and link prediction, which involve a
comparison between the results obtained from the original datasets and those
obtained from subgraph augmentation. We conclude the chapter in Sect. 4.5.

4.2 Related Work

4.2.1 Graph Classification

4.2.1.1 Graph Kernel Methods

Graph kernels perform graph comparison by recursively decomposing pairwise
graphs from the dataset into atomic substructures and then using a similarity
function among these substructures. Intuitively, graph kernels can be understood
as functions measuring the similarity of pairwise graphs. Generally, the kernels can
be designed by considering various structural properties like the similarity of local
neighborhood structures (WL kernel [8], propagation kernel [9]), the occurrence
of certain graphlets or subgraphs (graphlet kernel [10]), the number of walks in
common (random walk kernel [11–14]), and the attributes and lengths of the shortest
paths (SP kernel [15]).

4.2.1.2 Embedding Methods

Graph embedding methods [16–19] capture the graph topology and derive a fixed
number of features, ultimately achieving vector representations for the whole
graph. For prediction on the graph level, this approach is compatible with any
standard machine learning classifier such as support vector machine (SVM), k-
nearest neighbors and random forest. Widely used embedding methods include
graph2vec [20], structure2vec [21], subgraph2vec [22], etc.

4.2.1.3 Deep Learning Methods

Recently, increasing attention is drawn to the application of deep learning to graph
mining and a wide variety of graph neural network (GNN) frameworks have been
proposed for graph classification, including methods inspired by convolutional
neural network (CNN), recurrent neural network (RNN), etc. One typical approach
is to obtain a representation of the entire graph by aggregating the node embeddings
that are the output of GNNs [2, 23]. Some sequential methods [24–26] handle these

76 J. Zhou et al.

graphs with varying sizes by transforming them into sequences of fixed-length
vectors and then feeding them to RNN. In addition, some hierarchical clustering
methods [27–29] are used to learn hierarchical graph representations by combining
GNNs with clustering algorithms. Notably, some recent works design universal
graph pooling modules, which can learn the hierarchical representations of graphs
and are compatible with various GNN architectures, e.g., DiffPool [30] learns a
differentiable soft cluster assignment for vertices and then maps them to a coarsened
graph layer by layer, and EigenPool [31] compresses the node features and local
structures into coarsened signals via graph Fourier transform.

4.2.2 Data Augmentation in Graph Learning

Data augmentation, which aims to improve generalization of machine learning
models, has been broadly studied in different fields such as computer vision (CV)
and natural language processing (NLP). However, data augmentation for graph
data remains under-explored. This is mainly due to the complex non-Euclidean
structure of graphs, which limits possible manipulation operations. Recently, Zhao
et al. [32] proposed a graph data augmentation framework named GAUG, which
improves performance in GNN-based node classification via link prediction, based
on these techniques that link prediction can effectively encode class-homophilic
structure to promote intra-class edges and demote inter-class edges in given graph
structure. Wang et al. [33] presented a node-parallel augmentation (NodeAug)
strategy, which conducts data augmentation by changing both the node attributes
and the graph structure, to improve the performance of GCN on semi-supervised
node classification. Spinelli et al. [34] proposed a data augmentation strategy based
on the application of GINN [35], in which a similarity graph is constructed using
both labeled and unlabeled data and then a customized graph autoencoder is applied
to augment new data. These studies focus on semi-supervised node classification
task. While the work to be presented in this chapter is similar in motivation, it mainly
tackles augmentation in the graph classification task.

4.3 The Model Evolution Framework for Graph
Classification

4.3.1 Problem Formulation

Let G = (V ,E) be an undirected and unweighted graph, which consists of a
node set V = {vi | i = 1, . . . , n} and an edge set E = {ei | i = 1, . . . ,m}. The
topological structure of graph G is represented by an n×n adjacency matrix A with
Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. Dataset that contains a series of graphs

4 Subgraph Augmentation with Application to Graph Mining 77

Fig. 4.1 An illustration of data augmentation application in graph (Subgraph Augmentation)

is denoted as D = {(Gi, yi) | i = 1, . . . , t}, where yi is the label of graph Gi . For
D, an upfront split will be applied to yield disjoint training, validation and testing
set, denoted as Dtrain, Dval and Dtest , respectively. The original classifier C will be
pre-trained on Dtrain and Dval .

We further explore data augmentation technique for graph classification from a
heuristic approach and consider optimizing graph classifier. Figure 4.1 demonstrates
the application of data augmentation to graph structured data, which consists of two
phases: subgraph augmentation and data filtration. Specifically, we aim to update a
classifier with augmented data, which are first generated via subgraph augmentation
and then filtered in terms of their label reliability. During subgraph augmentation,
our purpose is to map the graph G ∈ Dtrain to a new graph G′ with the formal
format: f : (G, y) �→ (G′, y). We treat the generated graphs as weakly labeled
data and classify them into two groups via a label reliability threshold θ learnt from
Dval . Then we merge the augmented set D′

t rain, filtered from generated graph pool
Dpool, with Dtrain to produce the training set:

Dnew
train = Dtrain + D′

t rain , D′
t rain ⊂ Dpool . (4.1)

Finally, we finetune or retrain the classifier with Dnew
train, and evaluate it on the testing

set Dtest .

4.3.2 Subgraph Augmentation

Subgraph augmentation aims to expand training data via artificially creating more
reasonable virtual data from a limited set of graphs. In this chapter, we consider
augmentation as a topological mapping, which is conducted via heuristic modi-
fication of the graph structure. In order to ensure the approximate reasonability

78 J. Zhou et al.

of the generated virtual data, our subgraph augmentation method will follow two
principles: (1) edge modification, where G′ is a partially modified graph with
some of the edges added/removed from G; (2) structural property preservation,
where augmentation operation keeps the graph connectivity and the number of
edges constant. During edge modification, those edges removed from the graph are
sampled from the candidate edge set Ec

del, while the edges added to the graph are
sampled from the candidate pairwise nodes set Ec

add. The construction of candidate
sets varies for different methods, as further discussed below.

4.3.2.1 RandomMapping

Here, consider random mapping as a simple baseline. The candidate sets are
constructed as follows:

Ec
del = E , Ec

add = {(vi, vj) | Aij = 0; i �= j }. (4.2)

Notably, in a random scenario, Ec
del is the edge set of graph, and Ec

add is the set of
virtual edges, which consist of unlinked pairwise nodes. Then, one can get the set
of edges added/removed from G via sampling from the candidate sets randomly:

Edel = {ei | i = 1, . . . , �m · β�} ⊂ Ec
del ,

Eadd = {ei | i = 1, . . . , �m · β�} ⊂ Ec
add ,

(4.3)

where β is the budget of edge modification and �x� = ceil(x). Finally, based on
the random mapping, the connectivity structure of the original graph is modified to
generate a new graph:

G′ = (V , (E ∪ Eadd)\Edel) . (4.4)

4.3.2.2 Motif-Similarity Mapping

Graph motifs are subgraphs that repeat themselves in a specific graph or even
among various graphs. Each of these sub-graphs, defined by a particular pattern
of interactions between nodes, may describe a framework, in which particular
functions are achieved efficiently. Here, for simplicity, only consider open-triad
motifs with chain structures. As shown on the left of Fig. 4.2, open-triad ∧a

ij is
equivalent to length-2 paths emanating from the head node vi that induce a triangle.

The motif-similarity mapping aims to finetune these motifs to be approximately
equivalent ones via edge swapping. During edge swapping, edge addition takes
effect between the head and the tail nodes of the motif, while edge deletion removes
an edge in the motif via weighted random sampling. For all open-triad motifs ∧ij ,
which has head node vi and tail node vj , the candidate set of pairwise nodes is

4 Subgraph Augmentation with Application to Graph Mining 79

edge swap

Original motif Augmented motif

O
pe

n-
tri

ad

Fig. 4.2 Open-triad motif and heuristic edge swapping

denoted as

Ec
add = {(vi, vj) | Aij = 0, A2

ij �= 0; i �= j } . (4.5)

Then, we get Eadd , the set of edges added to G, via weighted random sampling from
Ec

add . For each ∧ij involving pairwise nodes (vi , vj) in Eadd , we remove one edge
from it via weighted random sampling, and all of these removed edges constitute
Edel .

Note that we assign all entries in Ec
add and ∧ij with relative sampling weights

that are associated with the node similarity scores. Specifically, before sampling, we
compute the similarity scores over all entries in Ec

add using the Resource Allocation
(RA) index, which has superiority among several local similarity indices [36]. For
each entry (vi, vj) in Ec

add , the RA score sij and addition weight wadd
ij can be

computed as follows:

sij =
∑

z∈Γ (i)∩Γ (j)

1

dz

,

S = {sij | ∀(vi , vj) ∈ Ec
add},

wadd
ij = sij

∑
s∈S s

,

Wadd = {wadd
ij | ∀(vi , vj) ∈ Ec

add},

(4.6)

where Γ (i) denotes the one-hop neighbors of vi and dz denotes the degree of node
z. Weighted random sampling means that the probability for an entry in Ec

add to be
selected is proportional to its addition weight wadd

ij . Similarly, during edge deletion,

the probability of edge sampled from ∧ij is proportional to the deletion weight wdel
ij ,

as follows:

wdel
ij = 1 − sij

∑
s∈S s

,

Wdel = {wdel
ij | ∀(vi , vj) ∈ ∧ij },

(4.7)

80 J. Zhou et al.

ℎ
select the candidate motifs

and compute addition
weights

sample edges to add according
to , compute deletion
weights

sample edges to remove
according to

augmented graph

original graph

Fig. 4.3 An example of subgraph augmentation via motif-similarity mapping; red lines is the
candidates and black lines is the modified edges

which means that edges with smaller RA scores have more chance to be removed.
It is worth noting that many other similarity indices such as Common Neighbors
(CN) and Katz [36] can also be applied into this scheme. Finally, the augmented
graph can be obtained via Eq. (4.4). The example of subgraph augmentation using
motif-similarity mapping is shown in Fig. 4.3.

Algorithm 1: Motif-similarity mapping
Input: Target network G, length of motif l, proportion of modification β.
Output: Augmented graph G′

1 Get Ec
add via Eq. (4.5) ;

2 Compute the addition weights Wadd via Eq. (4.6) ;
3 Eadd ← weightRandomSample(Ec

add , �m · β�,Wadd) ;
4 Initialize Ec

del = ∅ ;
5 for each(vi , vj) ∈ Eadd do
6 Get the length-l motif hl

ij via path search: hl
ij ← pathSearch(i, j, l) ;

7 Compute the deletion weights Wdel via Eq. (4.7) ;
8 edel ← weightRandomSample(hl

ij , 1,Wdel) ;

9 Add edel to Ec
del ;

10 end
11 Get augmented graph G′ via Eq. (4.4) ;
12 end ;
13 return G′;

4 Subgraph Augmentation with Application to Graph Mining 81

4.3.3 Data Filtration

Due to the topological dependency of graph structured data, the examples generated
via subgraph augmentation may lose some original semantics. By assigning the label
of the original graph to the generated graph during subgraph augmentation, one
cannot determine whether the assigned label is reliable. Therefore, the concept of
label reliability is employed here to measure the matching degree between examples
and labels.

Each graph Gi in Dval will be fed into classifier C to obtain the prediction
vector pi ∈ R

|Y |, which represents the probability distribution as how likely an
input example belongs to each possible class. Here, |Y | is the number of classes for
labels. Then, a probability confusion matrix Q ∈ R

|Y |×|Y |, in which the entry qij

represents the average probability that the classifier classifies the graphs of the i-th
class to the j -th class, is computed as follows:

qk = 1

Ωk

∑

yi=k

pi ,

Q = [q1,q2, . . . ,q|Y |] ,

(4.8)

where Ωk is the number of graphs belonging to the k-th class in Dval and qk is the
average probability distribution of the k-th class.

The label reliability of an example (Gi, yi) is defined as the product of example
probability distribution pi and class probability distribution qyi as follows:

ri = pi
�qyi . (4.9)

A threshold θ used to filter the generated data is defined as

θ = arg min
θ

∑

(Gi,yi)∈Dval

Φ[(θ − ri) · g(Gi, yi)] , (4.10)

where g(Gi, yi) = 1 if C(Gi) = yi and g(Gi, yi) = −1 otherwise, and Φ(x) = 1
if x > 0 and Φ(x) = 0 otherwise.

4.3.4 Model Evolution Framework

Model evolution aims to iteratively optimize classifiers via subgraph augmentation,
data filtration and model retraining, and ultimately improve the performance of
graph classification. Figure 4.4 and Algorithm 2 demonstrate the workflow and the
procedure of M-Evolve, respectively. Here, a variable, number of iterations T , is
introduced for repeating the above workflow to continuously augment the dataset
and optimize the classifier.

82 J. Zhou et al.

Classifier

Sampling

Threshold

Label reliability

No Ye
s

Graph pool
Fine data

augmentedRough data

RetrainTraining set Validation
set

G
ra

ph
 a

ug
m

en
ta

tio
n

3

4

5

6

1
Pre-training

2

Tag

Fig. 4.4 The architecture of the model evolution. The complete workflow proceeds as follows: (1)
pre-train graph classifier using training set; (2) apply subgraph augmentation to generate data pool;
(3) compute the label reliability threshold using validation set; (4) compute the label reliability of
examples sampled from graph pool; (5) filter data and obtain augmented set using threshold; (6)
retrain graph classifier using the union of training set and augmented set

Algorithm 2: M-Evolve
Input: Training set Dtrain, validation set Dval , subgraph augmentation f , number of

iterations T .
Output: Evolutive model C′

1 Pre-training classifier C using Dtrain and Dval ;
2 Initalize iteration = 0;
3 for iteration < T do
4 Graph augmentation: Dpool ← f (Dtrain) ;
5 For all graphs Gi in Dval classified by C, get pi ;
6 Get probability confusion matrix Q via Eq. (4.8) ;
7 For all graphs Gi in Dval classified by C, get ri via Eq. (4.9);
8 Get the label reliability threshold θ via Eq. (4.10) ;
9 For all samples (Gi, yi) in Dpool classified by C, compute ri , if ri > θ ,

Dtrain.append((Gi , yi)) ;
10 Get evolutive classifier: C′ ← retrain(C,Dtrain) ;
11 iteration ← iteration + 1 ;
12 C ← C′ ;
13 end
14 end ;
15 return C′;

4.4 Application of Subgraph Augmentation

The M-Evolve framework is compatible with different graph classification models.
In order to explore the transferability of M-Evolve to other graph tasks, we unify
both node classification and link prediction into graph classification pattern, as
shown in Fig. 4.5. For node classification/link prediction, we first extract the local
subgraph around each target node/link, and all the extracted subgraphs are treated
as dataset to train a graph classifier, which learns a function mapping the subgraph
patterns to node labels/link existence. In this chapter, we choose a recent deep neural
architecture DGCNN [37] as the default graph classifier.

4 Subgraph Augmentation with Application to Graph Mining 83

A
C

A
C ?

?

Subgraph
extraction

Dataset for
different tasks

Build subgraph
dataset

Graph
classification

Graph Classification

Subgraph of
target link/node

N
od

e
C

la
ss

ifi
ca

tio
n

Li
nk

 P
re

di
ct

io
n

Fig. 4.5 Unify multiple tasks into graph classification. For link prediction, extract the local
subgraph of target pairwise nodes, and the labels of subgraphs reflect the link existence. For node
classification, extract the local subgraph of target nodes. The subgraph labels are equivalent to the
corresponding node labels

4.4.1 Graph Classification

Graph classification focuses on identifying the category labels of graphs in a
dataset, and plays a significant role in drug classification, toxicity detection, protein
analysis etc. Widely used methods concentrate on graph kernels [8, 9, 14], graph
embedding [16–18] and graph pooling [30, 31].

4.4.1.1 Experimental Setting

Data We evaluate the proposed methods on two benchmark datasets: Mutag [38]
and PTC-MR [39]. The two datasets represent the graph collections of chemical
compounds, in which nodes correspond to molecular structures and edges indicate
chemical bonds between them. The specifications of datasets are given in Table 4.1.

Table 4.1 Dataset properties, where |D| is the number of graphs in dataset, |Y | is the number of
classes for labels, Avg.|V | / Avg.|E| is the average number of nodes/edges, bias is the proportion
of the dominant class and Attri is the feature dim of the node in dataset

Task Dataset |D| |Y | Avg. |V | Avg. |E| bias (%) Attri

Graph classification MUTAG 188 2 17.93 19.79 66.5 –

PTC-MR 344 2 14.29 14.69 55.8 –

Link prediction Router 3822 2 50.00 50.15 50 –

Celegans 2964 2 90.11 225.25 50 –

Node classification BlogCatalog 5196 6 67.11 359.57 16.7 8189

Flickr 7575 9 64.30 1139.25 11.1 12,047

84 J. Zhou et al.

Parameter Settings We first split each dataset into training, validation and testing
sets with a proportion of 7:1:2. We re-split the experimental dataset 25 times and
report the average accuracy across all trials. We use the default setting of DGCNN
architecture, i,e., four graph convolution layers with 32,32,32,1 channels and a dense
layer with 128 neurons.

4.4.2 Link Prediction

Link prediction, which aims to uncover missing links or predicting future inter-
actions between pairwise nodes based on observable links and other external
information, has been applied to friend recommendation [40], knowledge graph
completion [41] and network reconstruction [42]. Widely used methods concen-
trate on similarity-based algorithms [36], maximum likelihood methods [43, 44],
probabilistic models [45, 46] and graph autoencoder (GAE) [47, 48].

4.4.2.1 Subgraph Extraction

For an original graph G = (V ,E), given target pairwise nodes vi, vj ∈ V , the h-hop
subgraph for (vi, vj) is the Gh

i,j induced from G by the set of nodes {vk | d(vk, vi) ≤
h or d(vk, vj) ≤ h}, where d(a, b) is the length of shortest path between nodes a

and b. The subgraph Gh
i,j describes the “h-hop surrounding environment” of the

target link (vi , vj).

Node Importance Labeling Since the size of a subgraph is constrained by the
radiation order of the target link, nodes with different relative positions to the target
link have different structural importance, i.e., having different contributions to the
prediction of link existence. Empirically, in a graph, pairwise nodes that are close
to each other generally have higher influence than those that are far apart, so the
natural to set the node importance label based on the distance of nodes from the
central pairwise nodes (target link) in the subgraph. We set the node importance
label using the Double-Radius Node Labeling (DRNL) criterion [7]:

flp(k) = 1 + min
(
di, dj

)+ (d/2)[(d/2) + (d%2) − 1] (4.11)

where di := d(k, i), dj := d(k, j), d := di + dj , (d/2) and (d%2) are the integer
quotient and remainder of d divided by 2. And for those nodes with d(k, i) = ±∞
or d(k, j) = ±∞, we give them a null label 0. Figure 4.6 shows an example of
node importance labeling via DRNL. These node importance labels are uniquely
hot-coded and followed by the node’s own attribute features as node features for
subsequent graph classification tasks.

4 Subgraph Augmentation with Application to Graph Mining 85

A 1
1

4
2

A
4

2

2

A + 2 2 +

Distance Based Importance Label

A + 2 2 +

Fig. 4.6 An example for node importance labeling in link prediction

4.4.2.2 Experimental Setting

Data We evaluate the proposed methods on two benchmark datasets: Router [49]
and Celegans [50]. Router is router-level Internet and Celegans is the neural network
of Celegans. The specifications of datasets are given in Table 4.1.

Baselines To verify the effectiveness of DGCNN in solving link prediction prob-
lem, we compare DGCNN with GNN-based link prediction methods: graph autoen-
coder (GAE) and variational graph autoencoder (VGAE) [47].

Parameter Settings We split each dataset into training, validation and testing sets
with a proportion of 1:1:3. We re-split the experimental dataset 25 times and report
the average accuracy across all trials. We adjust the setting of DGCNN architecture,
i,e., four graph convolution layers with 32,32,32,1 channels and a dense layer with
256 neurons. For subgraph extraction, we set the neighborhood hop counts h to 2.

4.4.3 Node Classification

Node classification is typically a semi-supervised learning task, in which only a few
nodes’ labels are known for predicting the labels of other nodes in graph datasets.
It is widely used for recommendation, entity alignment of knowledge graphs,
etc. Common methods include walk-based embedding methods [51, 52], spectral
domain convolution methods [53], and spatial domain convolution methods [54].

86 J. Zhou et al.

4.4.3.1 Subgraph Extraction

For an original graph G = (V ,E), given a target node vi ∈ V , the h-hop subgraph
for vi is the Gh

i induced from G by the set of nodes {vk | d(vk, vi) ≤ h}.
Node Importance Labeling Similar to the node importance labeling in link
prediction task, we set the importance label of nodes by their distances from the
target node:

fnc(k) = d(k, i) . (4.12)

4.4.3.2 Experimental Setting

Data We evaluate the proposed methods on two social datasets: BlogCatalog
and flickr [55], in which the posted keywords or tags are used as node attribute
information. The specifications of datasets are given in Table 4.1.

Baseline To verify the effectiveness of DGCNN in solving link prediction problem,
we compare DGCNN with popular node classification deep models: graph convolu-
tion network (GCN) [6] and graph attention network (GAT) [56].

Parameter Settings We also split each dataset into training, validation and testing
sets with a proportion of 1:2:7, We re-split the experimental dataset 25 times and
report the average accuracy across all trials. We adjust the setting of DGCNN
architecture, i,e., two graph convolution layers with 32,1 channels and a dense layer
with 256 neurons. For subgraph extraction, we set the neighborhood hop counts h

to 1.

4.4.4 Experimental Results

We unify multiple tasks into graph classification pattern, and use DGCNN archi-
tecture to complete all tasks by graph classification. Tables 4.2, 4.3 and 4.4 report
the results of performance comparison among baselines, DGCNN and the evolutive
models for different tasks.

First, from the comparison between DGCNN and the evolutive models, one
can see that there is a boost in classification performance across all six datasets,
indicating that our M-Evolve can effectively improve the performance of graph
classification model. We speculate that the original DGCNN models trained with
limited training data are overfitting, and on the contrary, M-Evolve enriches the
scale of training data via subgraph augmentation and optimizes graph classifiers via
iterative retraining, therefore can improve the generalization and avoid overfitting to
a certain extent.

4 Subgraph Augmentation with Application to Graph Mining 87

Table 4.2 Graph classification results of original and evolutive models. The best results are
marked in bold. The far-right column gives the average relative improvement rate (Avg. RIMP) in
accuracy

Budget

Dataset Mapping 0.10 0.15 0.20 Avg. RIMP

MUTAG DGCNN 0.8447 –

DGCNN + random 0.8447 0.8533 0.8458 +0.38%

DGCNN + m-s 0.8450 0.8547 0.8436 +0.36%

PTC_MR DGCNN 0.5775 –

DGCNN + random 0.5739 0.5764 0.5860 +0.22%

DGCNN + m-s 0.5849 0.5962 0.5733 +1.26%

Table 4.3 Link prediction results in baselines, DGCNN and evolutive models. The best results
are marked in bold. The far-right column gives the average relative improvement rate (Avg. RIMP)
in accuracy

Budget

Dataset Mapping 0.10 0.15 0.20 Avg. RIMP

Router GAE 0.5130 –

VGAE 0.4999 –

DGCNN 0.6721 –

DGCNN + random 0.6430 0.6512 0.6694 −2.6%

DGCNN + m-s 0.6858 0.6852 0.6854 +1.7%

Celegans GAE 0.5256 –

VGAE 0.5053 –

DGCNN 0.6323 –

DGCNN + random 0.6170 0.6125 0.6176 −2.6%

DGCNN + m-s 0.6353 0.6379 0.6379 +0.7%

Table 4.4 Node classification results in baselines, DGCNN and evolutive models. The best results
are marked in bold. The far-right column gives the average relative improvement rate (Avg. RIMP)
in accuracy

Budget

Dataset Mapping 0.10 0.15 0.20 Avg. RIMP

Blog GCN 0.7200 –

GAT 0.6630 –

DGCNN 0.7453 –

DGCNN + random 0.7502 0.7493 0.7483 +0.53%

DGCNN + m-s 0.7589 0.7560 0.7457 +1.10%

Flickr GCN 0.5460 –

GAT 0.3590 –

DGCNN 0.4192 –

DGCNN + random 0.4471 0.4499 0.4505 +7.15%

DGCNN + m-s 0.4888 0.4884 0.5014 +17.57%

88 J. Zhou et al.

Now, we define the relative improvement rate (RIMP) in accuracy as follows:

RIMP = Accen − Accori

Accori
, (4.13)

where Accen and Accori refer to the accuracy of the evolutive and the original
models, respectively. In Tables 4.2, 4.3 and 4.4, the far-right column gives the
average relative improvement rate (Avg. RIMP) in accuracy, from which one can
see that the M-Evolve combined with motif-similarity (m-s) mappings obtains better
results overall. These results indicate that both similarity and motif mechanisms
play positive roles in enhancing graph classification. As a reasonable explanation,
similarity mechanism tends to link nodes with higher similarity and is capable
of optimizing topological structure legitimately, which is similar to the finding
method in [57]. And the motif mechanism achieves edge modification via local edge
swapping, which has subtle effect on both the degree distribution and the clustering
coefficient of the graph.

We further investigate the effectiveness of unifying both link prediction and node
classification tasks into graph classification patterns. Specifically, we compare the
performances of DGCNN and baselines. Notably, we use small training set that only
accounts for 20%/10% of the entire dataset on link prediction/node classification.
For link prediction, DGCNN significantly outperforms baselines since both GAE
and VGAE have poor performances when being trained with extremely sparse
graphs. For node classification, DGCNN outperforms baselines on Blog, but has
poorer performance than GCN. As a reasonable explanation, when constructing the
subgraph dataset, we extract 1-hop subgraph in order to reduce the running cost
of the algorithm, while GCN aggregates the 2-hop neighborhoods and uses more
neighborhood information. Overall, DGCNN achieves competitive performances
against baselines in both link prediction and node classification tasks, indicating
that the idea of unifying both link prediction and node classification tasks into graph
classification is effective.

4.5 Conclusion

In this chapter, we unify node classification and link prediction tasks into graph clas-
sification patterns, and introduce a concept of subgraph augmentation to generate
weakly labeled data for small benchmark datasets through heuristic transformations
of graph structures. In addition, we propose a general model evolution framework
that combines subgraph augmentation, data filtering, and model retraining, to
optimize a pre-trained graph classifier. Experiments on six datasets show that our
proposed framework performs well and helps existing graph classification models
mitigate the overfitting problem when being trained on small-scale benchmark
datasets, and achieve significant improvement in classification performance.

4 Subgraph Augmentation with Application to Graph Mining 89

References

1. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.-P.:
Protein function prediction via graph kernels. Bioinformatics 21(suppl_1), i47–i56 (2005)

2. Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik,
A., Adams, R.P.: Convolutional networks on graphs for learning molecular fingerprints. In:
Advances in Neural Information Processing Systems, pp. 2224–2232 (2015)

3. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374
(2015)

4. Zhou, J., Shen, J., Xuan, Q.: Data augmentation for graph classification. In: Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pp. 2341–
2344 (2020)

5. Zhou, J., Shen, J., Yu, S., Chen, G., Xuan, Q.: M-evolve: structural-mapping-based data aug-
mentation for graph classification. In: IEEE Transactions on Network Science and Engineering,
pp. 1–1 (2020)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In:
International Conference on Learning Representations (ICLR) (2017)

7. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances in Neural
Information Processing Systems, pp. 5165–5175 (2018)

8. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.:
Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

9. Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels: efficient graph
kernels from propagated information. Mach. Learn. 102(2), 209–245 (2016)

10. Shervashidze, N., Vishwanathan, S.V.N., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient
graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–
495 (2009)

11. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient alternatives.
In: Learning Theory and Kernel Machines, pp. 129–143 (Springer, Berlin, 2003)

12. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In:
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 321–
328 (2003)

13. Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., Vert, J.-P.: Extensions of marginalized graph
kernels. In: Proceedings of the twenty-first International Conference on Machine Learning,
p. 70 (2004)

14. Sugiyama, M., Borgwardt, K.: Halting in random walk kernels. In: Advances in Neural
Information Processing Systems, pp. 1639–1647 (2015)

15. Borgwardt, K.M., Kriegel, H.-P.: Shortest-path kernels on graphs. In: Fifth IEEE International
Conference on Data Mining (ICDM’05), p. 8. IEEE, Piscataway (2005)

16. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: problems,
techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

17. Chen, F., Wang, Y.-C., Wang, B., Jay Kuo, C.-C.: Graph representation learning: a survey. In:
APSIPA Transactions on Signal and Information Processing, vol. 9 (2020)

18. Fu, C., Zheng, Y., Liu, Y., Xuan, Q., Chen, G.: Nes-tl: network embedding similarity-based
transfer learning. IEEE Trans. Netw. Sci. Eng. 7(3), 1607–1618 (2019)

19. Guo, W., Shi, Y., Wang, S., Xiong, N.N.: An unsupervised embedding learning feature
representation scheme for network big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 115–
126 (2019)

20. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec:
learning distributed representations of graphs. Preprint. arXiv:1707.05005 (2017)

21. Dai, H., Dai, B., Song, L.: Discriminative embeddings of latent variable models for structured
data. In: International Conference on Machine Learning, pp. 2702–2711 (2016)

90 J. Zhou et al.

22. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: subgraph2vec: learning
distributed representations of rooted sub-graphs from large graphs. Preprint. arXiv:1606.08928
(2016)

23. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for
quantum chemistry. Preprint. arXiv:1704.01212 (2017)

24. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks.
Preprint. arXiv:1511.05493 (2015)

25. Jin, Y., JaJa, J.F.: Learning graph-level representations with recurrent neural networks. Preprint.
arXiv:1805.07683 (2018)

26. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: generating realistic
graphs with deep auto-regressive models. Preprint. arXiv:1802.08773 (2018)

27. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs
with fast localized spectral filtering. In: Advances in Neural Information Processing Systems,
pp. 3844–3852 (2016)

28. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural
networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3693–3702 (2017)

29. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with
continuous b-spline kernels. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 869–877 (2018)

30. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph repre-
sentation learning with differentiable pooling. In: Advances in Neural Information Processing
Systems, pp. 4800–4810 (2018)

31. Ma, Y., Wang, S., Aggarwal, C.C., Tang, J.: Graph convolutional networks with eigenpooling.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 723–731 (2019)

32. Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., Shah, N.: Data augmentation for graph
neural networks. Preprint. arXiv:2006.06830 (2020)

33. Wang, Y., Wang, W., Liang, Y., Cai, Y., Liu, J., Hooi, J.: NodeAug: semi-supervised node
classification with data augmentation. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 207–217 (2020)

34. Spinelli, I., Scardapane, S., Scarpiniti, M., Uncini, A.: Efficient data augmentation using
graph imputation neural networks. In: Progresses in Artificial Intelligence and Neural Systems,
pp. 57–66 (Springer, Berlin, 2020)

35. Spinelli, I., Scardapane, S., Uncini, A.: Missing data imputation with adversarially-trained
graph convolutional networks. Neural Netw. 129, 249–260 (2020)

36. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B
71(4), 623–630 (2009)

37. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

38. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.:
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–
797 (1991)

39. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000–
2001. Bioinformatics 17(1), 107–108 (2001)

40. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)
41. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for

knowledge graphs. Proc IEEE 104(1), 11–33 (2015)
42. Oyetunde, T., Zhang, M., Chen, Y., Tang, Y., Lo, C.: BoostGAPFILL: improving the fidelity

of metabolic network reconstructions through integrated constraint and pattern-based methods.
Bioinformatics 33(4), 608–611 (2017)

43. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing
links in networks. Nature 453(7191), 98–101 (2008)

4 Subgraph Augmentation with Application to Graph Mining 91

44. White, H.C., Boorman, S.A., Breiger, R.L.: Social structure from multiple networks. I. Block-
models of roles and positions. Am. J. Soc. 81(4), 730–780 (1976)

45. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In:
Relational Data Mining, pp. 307–335. Springer, Berlin (2001)

46. Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models, PRMS, and
plate models. In: Introduction to Statistical Relational Learning, pp. 201–238 (2007)

47. Kipf, T.N., Welling, M.: Variational graph auto-encoders. Preprint. arXiv:1611.07308 (2016)
48. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph

autoencoder for graph embedding. Preprint. arXiv:1802.04407 (2018)
49. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring ISP topologies with rocket-

fuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)
50. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684),

440–442 (1998)
51. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In:

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 701–710 (2014)

52. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 855–864 (2016)

53. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
Preprint. arXiv:1609.02907 (2016)

54. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

55. Wu, J., He, J., Xu, J.: Demo-net: degree-specific graph neural networks for node and
graph classification. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, New York (2019)

56. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention
networks. In: International Conference on Learning Representations (2018). A poster

57. Zheng, M., Allard, A., Hagmann, P., Alemán-Gómez, Y., Serrano, M.Á.: Geometric renormal-
ization unravels self-similarity of the multiscale human connectome. Proc. Natl. Acad. Sci.
117(33), 20244–20253 (2020)

Chapter 5
Adversarial Attacks on Graphs:
How to Hide Your Structural Information

Yalu Shan, Junhao Zhu, Yunyi Xie, Jinhuan Wang, Jiajun Zhou, Bo Zhou,
and Qi Xuan

Abstract Deep learning has enjoyed the status of crown jewels in artificial
intelligence, showing an impressive performance in various fields, especially in
computer vision. However, most deep learning models are vulnerable and easy to
be fooled by some slight disturbances in the input, which are called adversarial
attacks. As the deep learning models are extended to graphs, adversarial attacks also
threaten various graph data mining tasks, e.g., node classification, link prediction,
community detection, and graph classification. One can modify the topology or
features of graphs, such as manipulating a few edges or nodes, to downgrade
the performance of graph algorithms. The vulnerability of these algorithms may
largely hinder their applications and thus receives tremendous attention. In the
current chapter, we overview the existing researches on graph adversarial attacks.
In particular, we briefly summarize and classify the existing graph adversarial
attack methods, e.g., heuristic, gradient and reinforcement learning, and then choose
several classic adversarial attack methods on different graph tasks for detailed
introduction. And finally, we also summarize the challenges in this area.

We begin with the background of the adversarial attack in Sect. 5.1 and then
introduce some basic concepts of adversarial attacks in Sect. 5.2. After that, we
discuss some cases of adversarial attack to node classification, link prediction,
community detection, and graph classification in Sect. 5.3. Finally, we summarize
the challenges and outline several future research directions in Sect. 5.4.

Y. Shan · J. Zhu · Y. Xie · J. Wang · J. Zhou · B. Zhou · Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_5

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_5&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_5

94 Y. Shan et al.

5.1 Background

The past few years have witnessed the growing prevalence of deep learning on
applications such as image recognition, object detection, and natural language pro-
cessing. Meanwhile, increasing attention has been paid to several security scenarios
like autonomous driving, in which deep learning shows excellent performance.
However, the deep learning models frequently used in recent years have been proved
unstable and unreliable since they are vulnerable to perturbations. Szegedy et al. [1]
first noticed the existence of adversarial examples in image classification, i.e., slight
about deliberate perturbations can pollute an image and thereby reduce the clas-
sification performance. Such unreliability seriously limits the applicability of the
deep learning models. Extensive studies on adversarial attack have been presented to
verify the vulnerability of deep learning models. For example, Goodfellow et al. [2]
proposed a gradient-based method (FGSM) to generate adversarial image samples,
which can significantly degrade the performance of deep learning models. Szegedy
et al. [1] proposed an untargeted attack algorithm called DeepFool. DeepFool
misclassifies the model by projecting an image to the closest separating hyperplane
according to the least distortion (in the sense of Euclidean distance). Carlini and
Wagner et al. [3] proposed the Carlini and Wagner (C&W) attack strategy, which
is an optimization-based method. C&W method takes advantage of the internal
configurations of a targeted DNN for attack guidance and uses the L2 norm (e.g.,
Euclidean distance) to quantify the difference between adversarial examples and
original examples.

Despite adversarial attack methods have made significant progress from the
heuristic and gradient-based methods to optimization-based methods, researchers
mainly focused on computer vision tasks and remained under-explored for graph
learning. As a powerful representation, graphs can model diverse data in different
areas, such as biology (protein interaction networks), chemistry (molecules), and
society (social networks). Adversarial attacks on graph data mining algorithms also
make sense in reality. Take the online social networks as an example. The fake
account reduces its suspiciousness by following normal accounts and publishing
daily content to avoid being detected and blocked. A malicious user may manipulate
his profile or connect to targeted users on purpose to mislead the model. Similarly,
adding fake comments to specific products can fool the recommender systems of a
website.

Here, we briefly review the existing adversarial attack methods on graphs. Zügner
et al. [4] first proposed an attack method on the graph data, named NETTACK,
against the graph convolutional network (GCN) for node classification. They crafted
the adversarial graphs by utilizing incremental computations. After that, Zügner et
al. [5] designed a highly scalable adversarial attack algorithm named FASTTACK.
FASTTACK successfully creates adversarial perturbations which are effective
across models and datasets by exploiting the statistically significant patterns in
adversarial perturbations of NETTACK.

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 95

Among the existing adversarial attack strategies, gradient-based attack methods
have attracted the most attention due to their simplicity and outstanding perfor-
mance. Zügner et al. [6] proposed the meta attack, which decreases the GCN
performance by treating input data as a hyperparameter. Chen et al. [7] developed
the Momentum Gradient Attack (MGA) strategy since the momentum gradient
can not only stabilize the updating direction but also make the model jump out
of poor local optimum. In order to solve the problem caused by the discreteness
on graphs, Wu et al. [8] introduced integrated gradients, which can accurately
reflect the effect of attack operation. On link-level task, Chen et al. [9] used
the Iterative Gradient Attack (IGA) to mislead the GAE model. As for dynamic
network link prediction, Chen et al. [10] developed Time-aware Gradient Attack
(TGA) and crafted adversarial examples by exploiting the gradient information
generated by a deep dynamic network. Tang et al. [11] proposed an attack strategy
against Hierarchical Graph Pooling Neural Networks for graph classification. They
designed a surrogate model which consists of convolutional and pooling operators
and set the preserved nodes by the pooling operator as the attack targets. Li et
al. [12] introduced the Simplified Gradient-based Attack (SGA), which served the
Simplified Graph Convolution Network (SGC) as the surrogate model. This method
solves the problem of the high complexity of time and space when gradient-based
attack strategies are applied to the large scale graph. Ma et al. [13] proposed a black-
box attack strategy, which is adapted from the white-box setup gradient-based, and
then they corrected the attacker’s loss with a misclassification rate. Finkelshtein et
al. [14] developed a white-box gradient-based approach and a black-box approach
relied on graph topology only, and then they demonstrated that the effect of a single
node attack is similar to that of a multi-node attack.

In addition to gradient-based methods, the Genetic Algorithm (GA), as another
optimization method, is also applied to adversarial attack. Chen et al. [15] used a
(GA)-based Q-Attack to destroy the community structure of a graph. Yu et al. [16]
considered attacking node classification and community detection and introduced a
GA-based Euclidean Distance Attack (EDA) strategy for graph embedding. Besides,
Dai et al. [17] and Ma et al. [18] used reinforcement learning to learn the attack
strategy against node classification and graph classification, respectively. Fan et al.
[19] exploited reinforcement learning to develop a black-box attack strategy against
dynamic network link prediction. What’s more, GAN is applied to adversarial
attacks on graph data [20, 21]. Chen et al. [21] adjusted the traditional GAN
and considered an adaptive graph adversarial attack (AGA-GAN), which contains
a multi-strategy generator, similarity discriminator, and attack discriminator, and
used subgraph to reduce the cost of attack. There are also other attack algorithms,
such as heuristic algorithms [22, 23]. For example, Yu et al. [22] proposed three
heuristic strategies by rewiring. Zhou et al. [23] focused on two broad classes of
such approaches, one uses only local information about target links, and the other
uses global network information.

96 Y. Shan et al.

5.2 Adversarial Attack

According to the existing studies, we first introduce a general definition of adver-
sarial attack against graph data mining algorithms. Then, we classify these attack
strategies from different perspectives.

5.2.1 Problem Definition

The adversarial attack tries to degrade graph data mining models by slightly
modifying a graph’s topology or features. In the following, we will summarize and
give a general formulation for the adversarial attack on graphs.

Denote a graph as G = (A,X), where A is the adjacency matrix and X is
the feature matrix of nodes. Let f represent a learning model for a graph task
and let yi denote the label/ground truth of the graph or node. The attacker aims
to maximize the attack loss Latk by crafting an adversarial example Ĝ = (Â, X̂)

with imperceptible perturbations in Â or X̂.

maximize
Ĝ∈Ψ(G)

∑

i∈T

Latk(fθ∗(Ĝi), yi)

s.t.θ∗ = argmin
θ

∑

j∈L

Lt rain(fθ (G
′j), yj), (5.1)

where Ψ (G) indicates the space of the perturbations on G, and G′ can be G or Ĝ,
representing the original graph and the perturbed one, respectively. T represents the
test set and L is the training set. In order to make the attack as imperceptible as
possible, we set a fixed budget Δ for limiting the size of the perturbations in the
adversarial samples:

Q(Ĝi,Gi) < Δ

s.t.Ĝi ∈ Ψ (G), (5.2)

where Q(·) denotes the likelihood ratio function, such as the number of common
neighbors of given nodes, cosine similarity, Jaccard similarity, and so on.

5.2.2 Taxonomies of Attacks

We briefly introduce the main taxonomies of adversarial attacks on graph data
and then classify them into different categories based on the attacker’s capability,
attacker’s knowledge, attack strategy, and attack goals.

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 97

Attacker’s Capability There are two settings for an attack, i.e., evasion attack and
poisoning attack. The main difference between them is the attackers’ capacity to
insert adversarial perturbations.

• Poisoning Attack: Attacking happens when the learning model is trained.
Attackers focus on the training phase of a learning model, aiming to make the
trained model have malfunctioned.

• Evasion Attack: The model is fixed, which is trained with clean graphs. The
attacker attacks during the test time. Moreover, they cannot change the model
parameters and the structure.

Attacker’s Knowledge To conduct attacks on the target system, attackers will
possess specific knowledge about the target models and the datasets, which helps
them achieve the adversarial goal. Accordingly, we can classify them into three
settings, i.e., white-box attack, gray-box attack, and black-box attack.

• White-box Attack: The attacker has all the information about the target model,
including the model architecture, the parameters, and the gradient information,
i.e., the target model is transparent to the attacker. However, white-box attacks
are challenging to apply in real scenarios since it is almost impossible for the
attacker to obtain all the information about the model.

• Gray-box Attack: This case is more realistic since attackers have limited
knowledge about the target model. For example, attackers can only get the labels
of training data, which can be used to train a surrogate model for conducting
an attack, rather than the parameters. Therefore, comparing with the white-box
attack, gray-box attack is less effective but more realistic.

• Black-box Attack: Under this setting, attackers know nothing about the target
model and only allow queries on limited samples. Therefore, it is easiest to
conduct a black-box attacks which is however least effective comparing with
the other two other kinds of attacks.

Attack Strategy For attacking a target model on graph data, attackers may have var-
ious choices on strategies. Most studies mainly focus on modifying the topology or
change the node/edge features. Accordingly, the existing works can be categorized
as topology attack, feature attack, and hybrid attack.

• Topology Attack: Attackers mainly focus on attacking algorithms by manipulat-
ing the graph structure, i.e., adding edges/nodes, deleting edges/nodes, rewiring
edges. Typically, adding nodes/edges will increase the network’s size, while
deleting edges/nodes increases the risk of network disconnection.

• Feature Attack: Graph data mining algorithms, especially some GNNs, utilize
the topology and exploit the node/edge features. Therefore, attackers can also
conduct an attack by changing these node/edge features. Unlike graph structure,
the node/edge features could be either binary or continuous. Thus, different
operations can be performed on the features, e.g., flipping them for binary
features or adding a small value for continuous features.

98 Y. Shan et al.

• Hybrid Attack: In most cases, attackers will conduct both of the above attack
strategies at the same time to make the attack more effective.

Attack Goal Generally, there are two different scenarios according to the attackers’
purpose: only decreasing the target node/edge prediction or degrading the model
performance on the whole test set. Thus, we can divide the attack strategies into the
following categories.

• Targeted Attack: Attackers mainly focus on evasion attacks since they aim to
let the well-trained model misclassify a few target samples. According to the
attacker’s knowledge, we can further divide the target attack into: (1) direct
attack, where attackers perform operations on the target node directly, and (2)
influencer attack where attackers can only manipulate other nodes, e.g., neighbor
nodes, to influence the target node prediction.

• Untargeted Attack: To degrade the model’s performance in the whole test set,
attackers prefer to poison the trained model by putting poisons into the training
set. Obviously, compared to the targeted attack, the untargeted attack has a wider
influence and thus could be more dangerous.

5.3 Attack Strategy

There are four typical tasks on graph data mining: node classification, link predic-
tion, community detection and graph classification. Next, we will introduce attack
strategies on these four tasks and give the details for one or two classical attack
strategies.

5.3.1 Node Classification

Node classification is one of the most common tasks in graph data mining. Given
a graph and a set of labeled nodes, the purpose of the task is to predict the label
of the unlabeled nodes. Node classification is widely applied in different fields.
For example, we can use node classification to classify the role of a protein in the
biological network or predict the customer type of a user in e-commerce networks.
However, the vulnerability of graph algorithms hinders the development of node
classification. Zügner et al. [4] considered both the test phase and training phase
and generated the adversarial graphs by performing perturbations on node features
and graph structure. Dai et al. [17] developed two effective attack strategies for
node classification and graph classification by utilizing reinforcement learning
and genetic algorithm. However, they restricted their attacks on edge deletions
only and did not evaluate the transferability. Moreover, Bojchevski et al. [24]
performed the poisoning attack by exploiting perturbation theory, which is used to
maximize the loss obtained after training DeepWalk. Most works [6, 8, 20, 25, 26]

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 99

were concentrated on gradient-based strategies and crafted adversarial examples
by adding/deleting edges according to the gradient information. Here, we mainly
introduce NETTACK and Meta attack in detail.

5.3.1.1 NETTACK

Zügner et al. [4] proposed an efficient algorithm named NETTACK to generate
adversarial samples with imperceptible perturbation. NETTACK, a sequential
approach, uses the surrogate model to generate adversarial graphs. Relevant exper-
iments showed that the attack method can significantly degrade the performance of
models on node classification task.

NETTACK adopted the classical GCN model as the surrogate model. Tradition-
ally, a GCN model with a single hidden layer can be represented as follow:

Z = fθ (A,X) = softmax(Âσ (ÂXW(1))W(2)), (5.3)

where Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A + IN is the adjacency matrix of graph G after
adding self-loops via the identity matrix IN , W(l) is the trainable weight matrix of
layer l, σ(·) is an activation function like ReLU. To simplify the model, Zügner et
al. used linear activation function and the surrogate model could be represented as

Z′ = softmax(ÂÂXW(1)W(2)) = sof tmax(Â2XW), (5.4)

where Â2XW is the log-probabilities of the nodes, which can affect the classifier
performance. To downgrade the classification accuracy of the target node, attackers
should calculate the log-probability of the target node and craft the adversarial
graphs that have a significant difference from the original one in the node log-
probability. Accordingly, the attacker’s loss is denoted as

Latk(A,X; W, v0) = max
y �=yold

[Â2XW]v0,y − [Â2XW]v0,yold , (5.5)

where y is the adversarial label and yold is the clean label, both of them are predicted
by the surrogate model. The goal of attackers is to maximize the attacker’s loss
which is represented as

arg max
(A′,X′)

Latk(A
′,X′; W, v0), (5.6)

where A′ = A ± e and X′ = X ± f are modified adjacency matrix and feature
matrix, respectively. e is a modified edge and f is a modified feature.

To design the perturbation better, i.e., degrading the node classification model
performance as much as possible, two scoring functions sstruct and sf eat are defined

100 Y. Shan et al.

to evaluate the impact of the perturbation of edges and features, respectively:

sstruct (e; G, v0) := Latk(A
′,X; W, v0), (5.7)

sf eat (f ; G, v0) := Latk(A,X′; W, v0). (5.8)

The adversarial graphs are crafted according to the scoring functions. Attackers
calculate the scoring function for the entry in the candidate set of the features and
edges, and then they pick the perturbation with the highest score. This process is
repeated until it exceeds the budget.

Imperceptible perturbation is easy to be verified visually in computer vision,
while it is hard in the graph setting, because of the discreteness and poor visibility.
If only consider the budget Δ, it could be of a high risk that the adversarial examples
are easily detected. Therefore, how to design an imperceptible perturbation is a new
challenge in the graph adversarial attack. In particular, NETTACK only considers
the perturbations preserving specific inherent properties of the input.

Graph Structure Preserving Perturbation Undoubtedly, the degree distribution
is the most prominent characteristic of the graph structure and it often follows a
power-law distribution for real networks. The adversarial graph will be easily found
if its degree distribution changes a lot. Therefore, the adversarial graph is expected to
have similar power-law behavior as the original one. Attackers utilize the likelihood
ratio test to estimate the similarity of the adversarial graph degree distribution and
the original one. The details of the operations are as follows:

First, estimate the scaling parameter α of the power-law distribution p(x) ∝ x−α .

αG ≈ 1 + |DG| · [
∑

di∈DG

log
di

dmin − 1
2

]−1, (5.9)

where dmin denotes the minimum degree needs to be considered in the power-law
test and DG = {dG

v |v ∈ V , dG
v ≥ dmin} is a set of node degrees, where dG

v denotes
the degree of the node v in graph G. According to Eq. (5.9), one can estimate αG

and αG′ of the original graph and the adversarial graph, respectively. αcomb also can
be estimated by using the combined samples Dcomb = DG ∪ DG′ .

Second, calculate the log-likelihood for the sample Dx according to the parame-
ter αx :

l(Dx) = |Dx | · log αx + |Dx | · αx · log dmin + (αx + 1)
∑

di∈Dx

log di. (5.10)

Third, set up the significance test to determine whether two samples DG, DG′
come from the same power-law distribution (null hypothesis H0) or not (H1):

l(H0) = l(Dcomb); l(H1) = l(DG) + l(DG′). (5.11)

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 101

Following the likelihood ratio test, the final test statistic is

Λ(G,G′) = −2 · l(H0) + 2 · l(H1), (5.12)

which for large sample sizes follows a χ2 distribution with one degree of freedom.
The adversarial graph G′ = (A′,X′) is accepted when the p-value> 0.95 in the χ2.
Thereby, the degree distribution should fulfill

Λ(G,G′) < τ ≈ 0.004. (5.13)

Feature Statistic Preserving Perturbation It will be noticeable if two features,
which never appear together in the original graph, appear together in the adversarial
graph. Thus, the deterministic test is used to design the feature statistic preserving
perturbation.

To select the promising feature for modifying, a co-occurrence graph C =
(F , F) is defined for features from G, where F represents the set of features
and F ⊆ F × F denotes features which appear together in the clean graph. For
example, (f1, f2) ∈ F means the features f1 and f2 co-occur in the graph. The rule
of selecting the promising features is that larger the probability of reaching a feature
by a random walker is, the more unnoticeable such a feature is modified. Formally,
Su = {j |Xuj �= 0} is the set of all features presenting for node u. The addition of
feature i /∈ Su to node u is considered unnoticeable if

p(i|Su) = 1

|Su|
∑

j∈Su

1

dj

· Fij > σ. (5.14)

All the perturbations must come from the graph structure preserving perturbation
set or the feature statistic preserving perturbation set.

5.3.1.2 Meta Attack

Although the poisoning attack achieves better results than the evasion attack, the
poisoning attack’s bilevel optimization problem limits its wide application. Zügner
et al. [6] explicitly tackled the problem by using meta learning and proposed the
meta attack method. The key is that attackers turn the gradient-based optimization
procedure of node classification models upside down and treat the input data as a
hyperparameter to learn.

Meta attack [6] performed the adversarial attack on the classic GCN model. In
the training phase, the parameters θ of the model is learned by minimizing the loss
function Lt rain (e.g., cross-entropy):

θ∗ = arg min
θ

Lt rain(fθ (G)), (5.15)

102 Y. Shan et al.

where fθ (·) denotes the model function. The goal of the attackers is to minimize the
attacker’s loss Latk:

min
Ĝ∈Ψ(G)

Latk(fθ∗(Ĝ)), (5.16)

where Ψ (G) indicates the space of the perturbations on G, and G and Ĝ represent
the original graph and the adversarial one, respectively. The bilevel optimization
problem can be defined as

min
Ĝ∈Ψ (G)

Latk(fθ∗(Ĝ)) s.t. θ∗ = arg min
θ

Lt rain(fθ (Ĝ)). (5.17)

Zügner et al. introduced two attacker’s loss function, and the details are as
following. Attackers cannot optimize the test loss to craft adversarial graphs since
the labels of the test set are not available. Given that a model will have a poor
generalization performance when it has a high training error in the training phase,
Zügner et al. [6] adopted the training loss Lt rain to solve the problem that one can
not treat the test loss as the attacker’s loss, that is, let Latk = −Lt rain, this method
is named as meta-train attack.

On the other hand, attackers learn the model by using the training set and predict
the label cu of the unlabeled node vu. And then they can calculate the attacker’s loss
Latk by using the test set and the predicted labels, that is Latk = −Lself , which
is only used to evaluate the generalization loss after training. This method names as
meta-self attack.

After instantiating the attacker’s loss function, Zügner et al. then used meta
gradient method to handle the bilevel optimization problem, treating the graph
structure matrix as a hyperparameter and calculate the gradient of the Latk after
training:

∇meta
G := ∇GLatk(fθ∗(G)) s.t. θ∗ = optθ (Lt rain(fθ (G))), (5.18)

where opt (·) is a differentiable optimization procedure. One instantiates opt (·) with
vanilla gradient descent with learning rate α starting from some initial parameters
θ0. The parameter θt+1 can be calculated as following:

θt+1 = θt − α∇θtLt rain(fθt (G))). (5.19)

The meta-gradient can be expressed by unrolling the training procedure:

∇meta
G = ∇GLatk(fθT

(G)) = ∇f Latk(fθT
(G)) · [∇GfθT

(G) + ∇θT
fθT

(G) · ∇GθT],
(5.20)

where ∇Gθt+1 = ∇Gθt − α∇G∇θtLt rain(fθ (G)), Latk(fθT (G))) denotes the
attacker’s loss after training for T steps.

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 103

Since the parameter θt is related to the initial parameter θ0 and changes with the
graph structure, therefore, the attackers can modify the graph structure according to
the meta-gradient and then perform a meta update M on the data to minimize the
attacker’s loss function Latk:

G(k+1) ← M(G(k)). (5.21)

The final adversarial sample G(K) is obtained after K rounds of attacks. Here, a
straightforward way to instantiate M is meta gradient descent with some step size
β, that is M(G) = G − β∇GLatk(fθT (G)).

Similar to common gradient attack strategies, the meta attack method is subject
to two limitations: (1) the discrete of the graph; (2) the large solution space. In order
to solve the above problems, a greedy method is adopted. Attackers can use graph
structure matrix A to replace the parameter G in the meta gradient formulation, since
the feature matrix is fixed. What’s more, a score function S is defined to estimate
the modification impact of the graph S(u, v) = ∇meta

au,v
· (−2 · auv + 1), where auv

is the entry at the position (u, v) in the adjacency matrix A. Attackers greedily pick
the perturbation e′ = (u′, v′) with the highest score at a time, that is

e′ = arg max
e=(u,v):M(A,e)∈Ψ(G)

S(u, v), (5.22)

where M(A, e) ∈ Ψ (G) ensures that the changes performed are compliant with the
attack constraints. Repeat the above operations until modified edges exceeding the
budget. Finally, the adversarial graphs can be obtained.

5.3.1.3 Experiment of Results

We evaluate the performance of the above attack methods on the Cora dataset.
Cora dataset consists of 2708 machine learning papers, which is one of the most
popular datasets in graph data mining. Each node in the network represents a
paper. All nodes are divided into seven categories: the paper based on the case,
genetic algorithm, neural network, probability method, reinforcement learning, rule
learning, and theory. As shown in Fig. 5.1, nodes of the same category have the
same color. Every paper references at least one other paper or is referenced by other
papers, which constitutes the edges. Cora dataset contains a total of 5278 edges.
We perform the NETTACK and meta attack on the Cora dataset, As illustrated in
Fig. 5.2, the target node is marked with a red box in the subgraphs. The prediction
result of the original graph is green while it is blue after adding three edges
according to the NETTACK or meta attack method. The results show that, both
the two attack methods successfully fool the classifier model. The difference is that
NETTACK method aims to change the classifier performance on the target node,
while the meta attack method reduces the overall classification performance of the
model.

104 Y. Shan et al.

Fig. 5.1 Visualization of Cora dataset

5.3.2 Link Prediction

Link prediction is another important topic in graph data mining. For example, link
prediction can be utilized to improve the success rate of biochemical experiments
and reduce the cost of experiments in biology, and also recommend friends and
products in social networks. However, recent studies suggest that link prediction
is also vulnerable under adversarial attacks. Link prediction can also be used for
friend recommendations and personalized product recommendations. Recently, the
studies on link prediction adversarial attack also emerge. Waniek et al. [27] and
Yu et al. [22] proposed heuristic attacks to craft adversarial graphs by rewiring
links, respectively. Chen et al. [9] put forward a novel IGA method based on a
graph auto-encoder framework. On dynamic network link prediction (DNLP), Chen
et al. [10] mainly focused on the gradient method, and Fan et al.[19] adopted
reinforcement learning, both of which can degrade the model performance. Here
we mainly introduce two attack strategies, (1) The heuristic strategy proposed by
Yu [22]; (2) The gradient-based strategy proposed by Chen [9].

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 105

original subgraph

NETTACK

meta attack

Fig. 5.2 The result of different attack methods on Cora dataset: (a) the NETTACK subgraph and
(b) the meta attack subgraph. The target node has been marked with a red box in the subgraphs,
and the red lines represent the added edges

5.3.2.1 Heuristic Attack

Although heuristic attack strategies may not be as effective as other optimization-
based methods, they can usually reduce the computational complexity. Yu et al. [22]
proposed a heuristic attack strategy based on RA index, a metric to measure the
similarity between pairwise nodes, which stands out from several local similarity-
based indices. It is defined as

RAij =
∑

k∈Γ (i)∩Γ (j)

1

dk

, (5.23)

106 Y. Shan et al.

where Γ (i) denotes the one-hop neighbors of node i and dk denotes the degree of
node k. In order to decrease the RA value of the target node pair, one can reduce the
number of common neighbors or increase the degree of their common neighbors.
Accordingly, Yu et al. [22] proposed the heuristic attack strategy and the details of
the method are as following.

First, classify all the node pairs into three cases, (1) node pairs for training, (2)
node pairs for test, and (3) node pairs which have no edges between them. Then,
calculate each node pair’s RA index and sort them in descending order according
to their RA values. Finally, one can traverse the ordered node pairs and conduct
different operations by deleting or adding edges for each case. The rules of each
case are as follows:

• Node pairs for training: Delete the edge directly. In the training phase, the high
RA value in the existing edge can help the model have a promising performance.
If the edge in the node pairs for training is deleted, the high RA value of the
target node pairs, which have no edge, will fool the model and destroy the model
performance.

• Node pairs for test: Considering the node pair (i, j), there are two operations for
it: select the common neighbor node k with the smallest degree, and then delete
the edge (i, k) or (j, k); Or select the first two nodes k and l among the common
neighbor sequence with increasing degree, and add the edge (k, l) into training
set. The goal of the above operations is to reduce the RA value of the edge (i, j).

• Node pairs without edges: From the set, in which the nodes are in the neighbor
set of node i but not in the neighbor set of node j , select a node k with the smallest
degree and add the edge (j, k). The purpose of this procedure is to increase the
RA value of the node pairs without edges.

The above operations are shown in Fig. 5.3. One can craft the adversarial
examples by conducting the above operations.

5.3.2.2 Gradient-Based Attack

Intuitively, gradient-based attack methods are simple but effective. The basic idea
is to fix the trained model and regard the input as a hyperparameter to optimize.

i j
ldel i j

k
ladd

i j

k
ldel

i j

k

ladd

l

node pairs for training node pairs
without edges node pairs for test

Fig. 5.3 The overview of the heuristic attack strategy

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 107

Fig. 5.4 The framework of the gradient-based method

Similar to the training process, attackers could use the partial derivative of Latk to
craft the adversarial graph. Figure 5.4 shows the framework of the gradient-based
method, and the details of the method are as follows:

GAE Model for Link Prediction Before the attack, the classical GAE model
can be trained to have a good performance. The GAE model contains two parts,
encoding model and decoding model. The encoding model adopts the classical
GCN model, merges the nodes’ information, and gets the embedding vector-matrix
Z ∈ RN×F of each node:

Z(A) = Âσ (ÂINW(0))W(1), (5.24)

where A is the adjacency matrix of the graph, Â = D̃−1/2(A + IN)D̃−1/2 is the
normalized adjacency matrix, IN is the identity matrix, and D̃ii = ∑

j (A + IN)ij

is the diagonal degree matrix. W(0) ∈ RN×H and W(1) ∈ RH×F represent the
weight matrices of the first and second layers of GCN, respectively. N represents
the number of nodes, and H and F represent the feature dimensions of the first
and the second layers of GCN, respectively. σ is the ReLu activation function. The
decoding model calculates the similarity of each node pair:

Ã = s(ZZT), (5.25)

where s is the sigmoid function, and Ã ∈ RN×N is the score matrix. The values of
all elements in Ã are between 0 and 1. We set the threshold to 0.5, which is used
to determine the link prediction results. If the score of an edge is larger than the
threshold, we consider the edge exists in the graph.

Gradient Extraction The adversarial sample is the original clean graph with
perturbations generated according to the extracted gradient from GAE. For the target
edge Et , we construct the target loss function as

Latk = −ωYt ln(Ãt) − (1 − Yt)ln(1 − Ãt), (5.26)

108 Y. Shan et al.

where Yt ∈ {0, 1} is the ground-truth label of target edge Et and Ãt is the probability
of the existence of Et calculated by GAE. According to this loss function, one
can calculate the partial derivative of Latk to adjacency matrix A, which can be
represented as

gij = ∂Latk

∂Aij

. (5.27)

The gradient matrix is usually not symmetrical. Here, for an undirected graph,
the attacker will only keep the upper triangular matrix after symmetrizing

ĝij = ĝj i =
{

gij +gji

2 i < j

0 otherwise.
(5.28)

Generate Adversarial Graph The gradient matrix’s value could be positive or
negative, and the positive/negative gradient means that the direction of maximizing
the target loss is to increase/decrease the value in the corresponding position of the
adjacency matrix. However, gradients could not be applied directly to the input data
due to the discreteness of graphs. Instead, attackers will choose the greatest absolute
gradient and manipulate it to a proper value. The selection of these edges depends
on the gradient’s magnitude, which indicates how significant the edge affects the
loss function. The larger the magnitude is, the more significantly the edge affects
the target loss. Due to the discreteness of graph data, no matter how large the
magnitude is, attackers cannot modify the existing/nonexistent edge whose gradient
is positive/negative. These edges are regarded as not attackable, and one needs to
skip them for the next attackable edge.

5.3.2.3 Experiment of Results

To evaluate the performance of the attack method, we use the well-known Cora
dataset. The network contains 2708 nodes and 5208 edges, which is too large to
visualize accurately. Therefore, we use a subgraph, which contains the target node
pair and the modified edges, to show the details of adversarial attack. As shown in
Fig. 5.5, the two graphs denote the original subgraph and the adversarial subgraph,
respectively. The red nodes in the subgraphs are the target node pair, and the red
edges are added according to the gradient matrix. The link prediction result shows
that after adding two inconspicuous edges, the edge exists in the original network
will be predicted incorrectly. We randomly choose 100 edges for testing, and the
results show that modifying only ten edges on average will make the link prediction
model have a bad prediction performance.

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 109

Fig. 5.5 The result of gradient-based attack method for link prediction on the Cora dataset. The
left and right graphs indicate the subgraphs before and after the attack, respectively. The two red
nodes make up the targeted node pair, and the red edges are added according to gradients of the
adjacency matrix

5.3.3 Graph Classification

Graph classification is a task which aims to predict the class label for an entire graph.
It has wide applications in different areas, for example, fraud detection [28–31],
malware detection [32–35], and protein analysis [36]. There are few studies about
the adversarial attacks on graph classification. For instance, Dai et al. [17] used
reinforcement learning to attack GNNs by rewiring edges. Zhang et al. [37] and Xi
et al. [38] proposed backdoor-based methods and achieved good performance. In
this section, we will mainly introduce reinforcement learning attack in detail.

5.3.3.1 Hierarchical Reinforcement Learning Attack

The attack method based on reinforcement learning proposed by Dai et al. [17] is not
only effective for graph classification, but also can destroy node classification tasks.
Here, we mainly introduce the attack method against graph classification tasks.
Dai et al. [17] selected edges for adding by leveraging reinforcement learning. The
selection process is modeled as a Finite Horizon Markov Decision Process (MDP)
as shown in Fig. 5.6 and the details of MDP are as follows:

• Action: For each time step t , a single action is denoted as at ∈ V × V , which is
viewed as the manipulating edge in the graph, where V denotes the nodes set.

• State: The state st at time t is denoted by Ĝ, and Ĝ is an adversarial graph after
executing the action at .

110 Y. Shan et al.

Re

Lu

GN
N

M
od

ul
e

(e
.g

. S
2V

)
∗ va

lu
e

∗

⋯

∗ va
lu

e
GN

N
M

od
ul

e
(e

.g
. S

2V
)

∗

⋯⋯

∗

∗

F
ig
.5

.6
Il

lu
st

ra
ti

on
of

hi
er

ar
ch

ic
al

re
in

fo
rc

em
en

t
le

ar
ni

ng
at

ta
ck

[1
7]

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 111

• Reward: Reward conduces to attackers to fool the link prediction model, so one
can receive the non-zero reward at the end of MDP, and the reward is defined as
follows:

r(Ĝ) =
{

1 f (Ĝ) �= y

−1 f (Ĝ) = y.
(5.29)

Note that no reward can be received in the intermediate steps of MDP. In addition
to this reward, attackers can also use classifier loss L (Ĝ, y) as a reward.

• Terminal: The process keeps running until m edges are modified. If fewer edges
are needed to modify, the procedure won’t stop working, and it will modify
dummy edges.

This process starts with the original graph, i.e., s1 = G. The whole trajectory
can be represented by (s1, a1, r1, · · · , sm, am, rm, sm+1), and sm+1 is the end state,
denoting an adversarial graph with m modification. Note that the last step will
receive the reward rm, and all other intermediate rewards are zero, rt = 0,∀t ∈
{1, 2, . . . ,m − 1}. Besides, Q-learning is used to learn MDP since the process is a
discrete optimization problem with a finite horizon.

Q-learning is an off-policy optimization and fits the Bellman optimization
equation as below:

Q∗(st , at) = r(st , at) + max
a′ Q∗(st+1, a

′). (5.30)

This implicitly suggests a greedy policy:

π(at |st ; Q∗) = arg max
at

Q∗(st , at). (5.31)

Obviously, selecting a node pair needs O(|V |2) complexity which is too expensive.
To handle this problem, the action is decomposed into at = (a

(1)
t , a

(2)
t), where

a
(1)
t , a

(2)
t ∈ V. That is, one action is split into two steps, i.e., selecting two nodes

respectively. The hierarchical Q-function is then modeled as below:

Q∗(1)(st , a
(1)
t) = max

a
(2)
t

Q∗(2)(st , a
(1)
t , a

(2)
t) (5.32)

Q∗(2)(st , a
(2)
t , a

(2)
t) = r(st , at = (a

(1)
t , a

(2)
t)) + max

a
(1)
t

Q∗(1)(st , a
(1)
t+1). (5.33)

In this case, the computational complexity is decreased to O(|V |).
The above mentioned process is for one graph. However, in graph classification,

a dataset containing N graphs D = (Gi, yi)
N
i=1, which means N MDPs should be

112 Y. Shan et al.

designed. In order to solve the problem caused by high computation complexity,
Dai et al. [17] introduces a more practical and challenging setting: just let one Q∗
be learned, and transfer it to all the MDPs.

max
θ

N∑

i=1

Et,a=arg maxat
Q∗(at |st ;θ)[r(Ĝi)], (5.34)

where Q∗ is parameterized by θ . Then present the parameterization for Q∗ that
generalizes over all MDPs.

The most flexible parameterization would be implementing 2N time-dependent
Q function, while two distinct parameterizations are enough for the challenging
setting. For example, at every time step, Q

∗(1)
t = Q∗(1),Q

∗(2)
t = Q∗(2). Attackers

get a generalized Q function to score the node by leveraging the GNN model, and
the Q function parameterized by GNN model is represented as

Q∗(1) = W
(1)
Q1

σ(W
(2)�
Q1

[μ
a

(1)
t

, μ(st)]), (5.35)

where μ
a

(1)
t

represents node embedding vector of node a
(1)
t at the state st and

μ(st) = ∑
v∈V̂

μv . Q∗(2) can be calculated by

Q∗(2)(st , a
(1)
t , a

(2)
t) = W

(1)
Q2

σ(W
(2)�
Q1

[μ
a

(1)
t

, μ
a

(2)
t

, μ(st)]). (5.36)

5.3.3.2 Experimental Result

To test the effect of reinforcement learning attack, we generate 15,000 synthetic
graphs by utilizing Erdos-Renyi random graph model, and label them according to
the structural characteristics of the graphs. We take the random attack method as
the baseline and conduct experiments on graphs of different sizes. The experimental
results are shown in Table 5.1. It can be seen that the reinforcement learning attack
is more effective than the random attack. Besides, as the graph size becomes larger,
the attack success rate decreases under the same restrictions.

Table 5.1 The results of the
clean graphs and adversarial
graphs crafted by random
attack and reinforcement
learning attack

Attack method 15–20 nodes 40–50 nodes 90–100 nodes

(Unattacked) 94.67% 94.67% 96.67%

Rand attack 78.00% 75.33% 69.33%

RL-S2V 44.00% 58.67% 62.67%

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 113

5.3.4 Community Detection

Community detection has drawn great attention nowadays. With the rapid develop-
ment of community detection algorithms in recent years, a new challenging problem
arises, i.e., information over-mined. People realize that some privacy information
will be over-mined by those social network analysis tools. In order to protect
our privacy information from being over-mined, we can use adversarial attack
methods to degrade the deep model performance. There are several adversarial
attack methods [15, 39, 40], and then we will introduce one of them, namely Q-
Attack, in detail [15].

5.3.4.1 GA-Based Q-Attack

Genetic algorithm is a typical optimization algorithm that has been widely used in
reality. It is mainly designed according to the genetic process in biology. Inspired
by the principle of survival and inferiority in Darwin’s biological theory, genetic
algorithms obtain relatively good solution by using selection, crossover, mutation
and other operations. The genetic algorithm can search for the optimal solution
globally and avoid falling into local optimal solutions. Moreover, the genetic
algorithm has a large expansibility, and it is easy to combine other algorithms
to solve problems. With its inherent parallelism, it can conveniently perform
distributed computing. Before introducing the attack method, we first introduce
the coding method and fitness function, which will greatly affect the computational
complexity

• Coding: Each individual consists of two chromosomes, i.e., edges for deleting or
adding. The length of theses chromosomes must be consistent because attackers
craft adversarial graphs by rewiring edges, which ensures that the graph size is
not changed.

• Fitness Function: Modularity is an important evaluation to assess the quality of
a particular partition for the graph. Here, the fitness function as is defined as:

f = e−Q, (5.37)

which indicates that individuals of lower modularity will have larger fitness.

The overview of the GA-based Q-attack is shown in Fig. 5.7. In the following,
a specific illustration of a community detection attack based on GA is given as
follows.

• Initialization: A initial population of fixed size is randomly generated. Note that
attackers should avoid the conflict of deleting edges or adding edges, i.e., do not
delete or add an edge repeatedly. Each individual represents a solution to attacks.

114 Y. Shan et al.

co
di

ng

in
iti

al
iz

at
io

n

fit
ne

ss

m
ut

at
io

n

cr
os

so
ve

r

se
le

ct
io

n

de
le

tin
g

ed
ge

(2
3,

32
)

(2
7,

24
)

(8
,4

7)
(3

3,
32

)

ad
di

ng
 e

dg
e

(2
3,

10
)

(2
7,

12
)

(8
,1

7)
(3

3,
21

)
in

di
vi

du
al

de
le

tin
g

ed
ge

(2
3,

32
)

(2
7,

24
)

(8
,4

7)

ad
di

ng
 e

dg
e

(2
3,

10
)

(2
7,

12
)

(8
,1

7)
…

…

in
di

vi
du

al
1

in
di

vi
du

a2
de

le
tin

g
ed

ge
(3

1,
33

)
(2

9,
33

)
(2

4,
25

)

ad
di

ng
 e

dg
e

(3
1,

30
)

(2
9,

8)
(2

4,
39

)

de
le

tin
g

lin
k

(2
3,

32
)

(2
7,

24
)

(8
,4

7)
(2

4,
25

)

ad
di

ng
 li

nk
(2

3,
10

)
(2

7,
12

)
(8

,1
7)

(2
4,

39
)

de
le

tin
g

ed
ge

ad
di

ng
 e

dg
e

re
w

ri
ng

ed
ge

de
le

tin
g

ed
ge

(2
7,

24
)

(8
,4

7)
(3

3,
32

)
(1

8,
6)

ad
d

ed
ge

(2
7,

12
)

(8
,1

7)
(3

3,
21

)
(1

8,
54

)

de
le

tin
g

ed
ge

(2
9,

33
)

(2
4,

25
)

(1
5,

74
)

(1
,3

)

ad
di

ng
 e

dg
e

(2
9,

8)
(2

4,
39

)
(1

5,
69

)
(1

,5
)

pa
re

nt
1

pa
re

nt
2

of
fs

pr
in

g1

of
fs

pr
in

g2

1
n

2

…
…

or
ig

in
al

 in
di

vi
du

al

…
…

ro
ul

et
te

 a
lg

or
ith

m

1,
2

...
n

re
pr

es
en

ts
an

in
di

vi
du

al
,

th
e

gr
ea

te
r

th
e

fit
ne

ss
fu

nc
tio

n
va

lu
e

of
th

e
in

di
vi

du
al

,
th

e
m

or
e

th
e

ar
ea

oc
cu

pi
ed

de
le

tin
g

lin
k

(2
3,

32
)

(2
7,

20
)

(8
,4

7)
(2

4,
25

)

ad
di

ng
 li

nk
(2

3,
10

)
(2

7,
12

)
(8

,1
7)

(2
4,

39
)

de
le

tin
g

lin
k

(2
3,

32
)

(2
7,

24
)

(8
,4

7)
(2

4,
25

)

ad
di

ng
 li

nk
(2

3,
10

)
(2

7,
10

)
(8

,1
7)

(2
4,

39
)

de
le

tin
g

lin
k

(2
3,

32
)

(3
1,

33
)

(8
,4

7)
(2

4,
25

)

ad
di

ng
 li

nk
(2

3,
10

)
(3

1,
30

)
(8

,1
7)

(2
4,

39
)

de
le

tin
g

lin
k

(2
7,

24
)

(8
,4

7)
(1

5,
74

)
(1

,3
)

ad
di

ng
 li

nk
(2

7,
12

)
(8

,1
7)

(1
5,

69
)

(1
,5

)

de
le

tin
g

lin
k

(2
9,

33
)

(2
4,

25
)

(3
3,

32
)

(1
8,

6)

ad
di

ng
 li

nk
(2

9,
8)

(2
4,

39
)

(3
3,

21
)

(1
8,

54
)

F
ig
.5

.7
T

he
fr

am
ew

or
k

of
th

e
G

A
-b

as
ed

Q
-a

tt
ac

k

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 115

• Selection: Roulette wheel is adopted as a selection method. Therefore, the
probability of the individual is proportional to its fitness and is represented by

pi = f (i)
∑n

j=1 f (j)
. (5.38)

• Crossover: Attackers generate new solutions by arranging and combining the
existing gene. The one-point crossover method, as the most simple crossover
method, is used in the attack, i.e., creating a breakpoint randomly and then
exchanging the genes after the breakpoint to obtain two offsprings.

• Mutation: Mutation try to solve the problem of falling into local optimal
solutions. There are three types of mutation operators: (1) deleting edge; (2)
adding edge; (3) rewiring edges.

• Elitism: Over the course of evolution, individuals with high fitness in the parent
may be destroyed. Elitism strategy has been proposed to solve this problem. For
example, attackers can replace the worst 10% of the offsprings with the best 10%
of the parents to maintain excellent genes.

• Termination Criteria: Set the evolutionary generation as a constant and the
algorithm stops when the condition is fulfilled.

In summary, GA-based Q-Attack mainly involves the encoding, fitness function,
and the design of genetic operators.

5.3.4.2 Experiment Result

We first briefly introduce the metrics for the community structure used in the
experiment.

• Modularity: It is widely used to measure the quality of divisions of a graph,
especially for graphs with unknown community structure. Modularity Q mea-
sures the difference between the actual fraction of within-community edges and
the expected value of the same quantity with random connections and it is
mathematically defined as:

Q =
∑

(eii − a2
i), (5.39)

where eii represents the fraction of edges with two terminals both in cluster Ci ,
ai =

∑
j eij represents the fraction of edges that connect to the nodes in cluster

Ci .
• NormalizedMutual Information (NMI): It is another commonly used criterion

to assess the quality of clustering results in analyzing network community
structure. The value of NMI indicates the similarity between the two partitions.
When NMI is equal to 1, the two partitions are the same. For two partitions X

116 Y. Shan et al.

and Y , the mutual information I (X, Y) is defined as the relative entropy between
the joint distribution P(XY) and the production distribution P(X)P(Y)

I (X, Y) = D(P(X, Y))||P(X)P(Y) =
∑

x,y

p(x, y)log
p(x, y)

p(x)p(y)
. (5.40)

A noticeable problem for mutual information alone being a similarity measure is
that subpartitions derived from Y by splitting some of its clusters into small ones
would have the same mutual information with Y . Thus, NMI is proposed to deal
with this problem and is defined by

Inorm(X, Y) = 2I (X, Y))

H(X) + H(Y)
. (5.41)

We perform the GA-based attack method on the polbooks dataset with 105 nodes
and 441 edges, which is constructed based on American politics-related books
sold on Amazon. The nodes represent American politics-related books sold on
Amazon online bookstores, and the edges indicate that the same consumer purchases
them. Informap algorithm, which is based on network maps and coding theory,
is utilized to detect the community. As shown in Fig. 5.8, the Informap algorithm
is fooled by modifying 9 edges. The original graph is divided into six categories
with NMI = 0.503,Q = 0.523 and the adversarial one is divided into eight
categories with NMI = 0.471,Q = 0.486. The red edges in the original graph
will be deleted, and those in the adversarial one will be added. As expected, the
value of Q is declined because the fitness is designed to minimize Q. The value
of NMI decreases, indicating that the GA-based attack method is effective. It can
weaken the strength of community structure and reduce the similarity between the
community detection results and the true labels.

5.4 Conclusion

Recently, graph adversarial attack has attracted considerable attention in the field
of graph data mining. Driven by both the industrial and academic requests for
algorithm security, there are many problems worth studying in graph adversarial
attack. We summarize the main challenges as follows:

• Unified and specified formulation: At present, there are no clear mathematical
formulas for the adversarial attack on graphs. Most of the existing researches do
not have clear explanations, which makes subsequent researches more difficult.

• Related evaluation metrics: The evaluation system of the adversarial attack is
not yet sound. Most researches use attack success rate and perturbation size to
evaluate the performance of the adversarial attack. These two metrics can not
fully evaluate the attack performance. Thus, more metrics are needed in the future
to evaluate the performance of the attack strategy.

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 117

Fig. 5.8 The result of the GA-based Q-attack on polbooks dataset. The top one is the original
network and the bottom one represents the adversarial one. The red edges in the original network
are deleted and those on the adversarial one are added

• Real network attack: Existing researches rely on ideal assumptions and it is
hard to apply them to real complex scenarios. For instance, we may modify
the important edges to make the attack work. According to the existing attack
metrics, this attack method is promising, but it could be easily detected in real

118 Y. Shan et al.

applications. Besides, current attack strategies mainly focus on static networks,
but a majority of real networks change over time. Therefore, we should propose
more adversarial attack methods against dynamic networks in the future.

• The definition of imperceptible: In computer vision, it can be considered
imperceptible, if one can not distinguish the difference between the original
image and the adversarial one by naked eyes. Moreover, one can use some special
distance functions to evaluate, such as Lp norm distance. However, in graphs,
how to define imperceptible or subtle perturbation requires further investigation.

• The interpretability of adversarial attacks: A number of adversarial attacks
have been proposed to destroy graph data mining algorithms, but we still don’t
understand why they work by only modifying a few edges in networks. In other
words, there are few works on the interpretability of GNNs and the related
adversarial attacks.

It is hoped that a sound evaluation system of adversarial attacks can be built in
the future. Existing adversarial attack methods can be applied to real networks to
protect personal privacy. The research on adversarial attacks can also bring some
insights to better understand graph data mining methods, which could promote the
further development.

References

1. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and Fergus, R.:
Intriguing properties of neural networks. Preprint. arXiv:1312.6199 (2013)

2. Goodfellow, I.J., Shlens, J. and Szegedy, C.: Explaining and harnessing adversarial examples.
Preprint. arXiv:1412.6572 (2014)

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE
Symposium on Security and Privacy (sp), pp. 39–57. IEEE, Piscataway (2017)

4. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph
data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2847–2856 (2018)

5. Zügner, D., Borchert, O., Akbarnejad, A., Guennemann, S.: Adversarial attacks on graph
neural networks: Perturbations and their patterns. ACM Trans. Knowl. Discov. Data (TKDD)
14(5), 1–31 (2020)

6. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta learning.
Preprint. arXiv:1902.08412 (2019)

7. Chen, J., Chen, Y., Zheng, H., Shen, S., Yu, S., Zhang, D., Xuan, Q.: MGA: Momentum
gradient attack on network. Preprint. arXiv:2002.11320 (2020)

8. Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., Zhu, L. : Adversarial examples on
graph data: Deep insights into attack and defense. Preprint. arXiv:1903.01610 (2019)

9. Chen, J., Lin, X., Shi, Z., Liu, Y.: Link prediction adversarial attack via iterative gradient
attack. IEEE Trans. Comput. Soc. Syst. 7(4), 1081–1094 (2020)

10. Chen, J., Zhang, J., Chen, Z., Du, M. and Xuan, Q. Time-aware gradient attack on dynamic
network link prediction. Preprint. arXiv:1911.10561 (2019)

11. Tang, H., Ma, G., Chen, Y., Guo, L., Wang, W., Zeng, B., Zhan, L.: Adversarial attack on
hierarchical graph pooling neural networks. Preprint. arXiv:2005.11560 (2020)

12. Li, J., Xie, T., Chen, L., Xie, F., He, X., Zheng, Z.: Adversarial attack on large scale graph.
Preprint. arXiv:2009.03488 (2020)

5 Adversarial Attacks on Graphs: How to Hide Your Structural Information 119

13. Ma, J., Ding, S., Mei, Q.: Black-box adversarial attacks on graph neural networks with limited
node access. Preprint. arXiv:2006.05057 (2020)

14. Finkelshtein, B., Baskin, C., Zheltonozhskii, E., Alon, U.: Single-node attack for fooling graph
neural networks. arXiv e-prints, pages arXiv–2011 (2020)

15. Chen, J., Chen, L., Chen, Y., Zhao, M., Yu, S., Xuan, Q., Yang, X.: Ga-based q-attack on
community detection. IEEE Trans. Comput. Soc. Syst. 6(3), 491–503 (2019)

16. Yu, S., Zheng, J., Chen, J., Xuan, Q., Zhang, Q.: Unsupervised euclidean distance attack
on network embedding. In: 2020 IEEE Fifth International Conference on Data Science in
Cyberspace (DSC), pp. 71–77. IEEE, Piscataway (2020)

17. Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., Song, L.: Adversarial attack on graph
structured data. Preprint. arXiv:1806.02371 (2018)

18. Ma, Y., Wang, S., Derr, T., Wu, L., Tang, J.: Attacking graph convolutional networks via
rewiring. Preprint. arXiv:1906.03750 (2019)

19. Fan, H., Wang, B., Zhou, P., Li, A., Pang, M., Xu, Z., Fu, C., Li, H., Chen, Y.: Reinforcement
learning-based black-box evasion attacks to link prediction in dynamic graphs. Preprint.
arXiv:2009.00163 (2020)

20. Wang, X., Cheng, M., Eaton, J., Hsieh, C.-J., Wu, F.: Attack graph convolutional networks by
adding fake nodes. Preprint. arXiv:1810.10751 (2018)

21. Chen, J., Zhang, D., Lin, X.: Adaptive adversarial attack on graph embedding via GAN. In:
International Symposium on Security and Privacy in Social Networks and Big Data, pp. 72–84.
Springer, Singapore (2020)

22. Yu, S., Zhao, M., Fu, C., Zheng, J., Huang, H., Shu, X., Xuan, Q., Chen, G.: Target defense
against link-prediction-based attacks via evolutionary perturbations. IEEE Trans. Knowl. Data
Eng. 33(2), 754–767 (2021)

23. Zhou, K., Michalak, T.P., Rahwan, T., Waniek, M., Vorobeychik, Y.: Attacking similarity-based
link prediction in social networks. Preprint. arXiv:1809.08368 (2018)

24. Bojchevski, A., Günnemann, S.: Adversarial attacks on node embeddings via graph poisoning.
In: International Conference on Machine Learning, pp. 695–704. PMLR (2019)

25. Chen, J., Wu, Y., Xu, X., Chen, Y., Zheng, H., Xuan, Q.: Fast gradient attack on network
embedding. Preprint. arXiv:1809.02797 (2018)

26. Xu, K., Chen, H., Liu, S., Chen, P.-Y., Weng, T.-W., Hong, M., Lin, X.: Topology attack and
defense for graph neural networks: An optimization perspective. Preprint. arXiv:1906.04214
(2019)

27. Waniek, M., Zhou, K., Vorobeychik, Y., Moro, E., Michalak, T.P., Rahwan, T.: Attack tolerance
of link prediction algorithms: How to hide your relations in a social network. Preprint.
arXiv:1809.00152 (2018)

28. Huang, J., Xie, Y., Yu, F., Ke, Q., Abadi, M., Gillum, E., Mao, Z.M.: Socialwatch: detection
of online service abuse via large-scale social graphs. In: Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, pp. 143–148 (2013)

29. Gong, N.Z., Frank, M., Mittal, P.: Sybilbelief: A semi-supervised learning approach for
structure-based sybil detection. IEEE Trans. Inf. Forens. Secur. 9(6), 976–987 (2014)

30. Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., Bellei, C., Robinson, T., Leiserson,
C.E.: Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for
financial forensics. Preprint. arXiv:1908.02591 (2019)

31. Wang, B., Jia, J., Gong, N.Z.: Graph-based security and privacy analytics via collective
classification with joint weight learning and propagation. Preprint. arXiv:1812.01661 (2018)

32. Kong, D., Yan, G.: Discriminant malware distance learning on structural information for
automated malware classification. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1357–1365 (2013)

33. Nikolopoulos, S.D., Polenakis, I.: A graph-based model for malware detection and classifica-
tion using system-call groups. J. Comput. Virol. Hack. Tech. 13(1), 29–46 (2017)

34. Hassen, M., Chan, P.K.: Scalable function call graph-based malware classification. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy,
pp. 239–248 (2017)

120 Y. Shan et al.

35. Yan, J., Yan, G., Jin, D.: Classifying malware represented as control flow graphs using deep
graph convolutional neural network. In: 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 52–63. IEEE, Piscataway (2019)

36. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

37. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. Preprint.
arXiv:2006.11165 (2020)

38. Xi, Z., Pang, R., Ji, S., Wang, T.: Graph backdoor. Preprint. arXiv:2006.11890 (2020)
39. Chen, Y., Nadji, Y., Kountouras, A., Monrose, F., Perdisci, R., Antonakakis, M., Vasiloglou, N.:

Practical attacks against graph-based clustering. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1125–1142 (2017)

40. Chen, J., Chen, Y., Chen, L., Zhao, M., Xuan, Q.: Multiscale evolutionary perturbation attack
on community detection. Preprint. arXiv:1910.09741 (2019)

Chapter 6
Adversarial Defenses on Graphs:
Towards Increasing the Robustness
of Algorithms

Huiling Xu, Ran Gan, Tao Zhou, Jinhuan Wang, Jinyin Chen, and Qi Xuan

Abstract Graph Neural Networks (GNNs) have achieved tremendous development
on perceptual tasks in recent years, such as node classification, graph classification,
link prediction, community detection and so on. However, recent studies show that
GNNs are incredibly vulnerable to adversarial attacks, so enhancing the robustness
of such models remains a significant challenge. This chapter will introduce some
of the latest typical defensive measures on graph-structured data to defend against
malicious attacks. More specifically, we will elaborate on the existing defensive
work from the following five categories: adversarial training, graph purification,
certifiable robustness, attention mechanism, and adversarial detection. We will
also make a comparison and summary of this existing defense methods. Different
kinds of defense methods have different application scenarios and corresponding
limitations.

6.1 Introduction

Recently, artificial neural network has been a hot topic in the field of artificial
intelligence and made great achievements in data mining, machine translation,
natural language processing, and other related fields. As a powerful form of
expression, graph plays an increasingly important role in the real world and has
been widely used [1]. More and more researchers have studied graph structure
data through various means to excavate more value of graph, and brought many
convenient and practical results to social network [2], e-commerce network [3] and
recommendation system [4]. On the other hand, Graph Neural Networks (GNNs)
have also attracted extensive research interest and achieved remarkable results in

H. Xu · R. Gan · T. Zhou · J. Wang · J. Chen · Q. Xuan (�)
Institute of Cybersapace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_6

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_6&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_6

122 H. Xu et al.

various graph analysis tasks such as node classification [5, 6], graph classification
[7–10], etc.

Despite their remarkable performance, recent researches have clarified that
GNNs are powerless against tiny but malicious attacks [11–15]. Zügner et al. [12]
proposed a greedy algorithm to attack the semi-supervised node classification task.
This method deliberately tries to modify the graph structure and node features
such that the label of a targeted node can be changed. Dai et al. [16] proposed
a reinforcement-learning based algorithm to attack both node classification and
graph classification tasks by only modifying the graph structure. Further, Zügner
and Günnemann [14] studied the poisoning attack based on the GNNs in node
classification task, and the core of which is to use meta gradient to solve the two-
layer optimization problem of poisoning attack. With the development of adversarial
attack and defense on graph structured data, more and more researchers begin to
pay attention to the robustness of the graph-classification model. Tang et al. [17]
explored the Hierarchical Graph Pooling (HGP) neural networks’ vulnerability and
designed a surrogate model consisting of convolutional and pooling operators to
generate adversarial samples and fool the hierarchical GNN-based graph classifica-
tion models. RL-S2V [16] and ReWatt [18] are two reinforcement-learning based
attack strategies, they both use the Markov Decision Process (MDP) as the attack
strategies. Zhang et al. [19] proposed the graph based backdoor attack method
inspired by the image field and introduced it into the graph classification. For more
adversarial attack strategies, please see Chap. 5.

In order to defend the attacker’s malicious attack and improve the robustness of
the model, different promising methods of defense have been proposed. Bojchevski
et al. [20] combined PageRank with the MDP to verify the features containing
the GNNs and transmission structure to demonstrate the certified robustness. Zhu
et al. [21] proposed a Robust GCN (RGCN) model which strengthens the GCN
algorithms by adopting Gaussian distribution in the hidden layer and introduced
variance-based recognition weights into neighboring nodes. Tang et al. [22] pro-
posed a model of PA-GNN for defending against poisoning attacks, which relies
on the punishment mechanism to directly limit the negative impact on the attack
edge by assigning a low distribution coefficient. Moreover, combined with the
optimization algorithm, the training of PA-GNN uses a clean graph and the
corresponding adversarial graph to punish the disturbance, improving PA-GNN
robustness against the poisoned graph. Some other works did not aim to harden or
change the models but rather detected adversarial samples during operation. These
adversarial detection models protect the GNN models by exploring the intrinsic
difference between adversarial edges/nodes and the clean edges/nodes. Xu et al. [23]
first proposed the detection approaches to find adversarial examples on graph data.
Besides, the study of [24] introduced a graph-based random sampling approach to
detect various anomaly generation models and adversarial attacks. Although these
detection methods can effectively detect abnormal nodes, they are incompatible
when facing graph-level adversarial attacks on graph classification tasks.

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 123

After careful research and exploration, we mainly divided all the existing meth-
ods of adversarial defense into the following five categories: adversarial training
[25–28], graph purification [29, 30], certifiable robustness [20, 31, 32], attention
mechanism [21, 22] and adversarial detection [23, 24, 33]. And we will introduce
the above five types of adversarial defense in turn from Sects. 6.2 to 6.6, in which
two examples are selected for each type. Then, we will make a comparative analysis
of the current defense work and summarize its contribution in Sect. 6.7. In Sect. 6.8,
we will show the experimental work and data analysis of the two defenses. And
finally, we conclude the current chapter in Sect. 6.9.

6.2 Adversarial Training

Adversarial training (AT) has been widely used in the field of image attack and
defense. The core idea of adversarial training is to mix the adversarial samples into
training samples during the normal training to improve the robustness of the trained
model. In recent years, several defense methods based on adversarial training have
emerged. Inspired by this, some studies have introduced adversarial training into the
network field and achieved good performances. In the following, we will introduce
two representative adversarial training methods: Graph Adverse Training [34] and
SAT [28].

6.2.1 Graph Adversarial Training

Although graph neural network has good performance, Feng et al. [34] considered
that graph neural networks are vulnerable to small but intentional perturbations on
the input features. Figure 6.1 gives a simple but intuitive example to illustrate how
the perturbation affects the classification results of nodes and their neighbors.

Adversarial Training (AT) is a dynamic regularization method that proactively
simulates the perturbations during the training phase [25]. At present, adversarial
training has been proved to be able to stabilize neural networks and enhance their
robustness to standard classification tasks [26, 27]. However, because the traditional
adversarial training does not take into account the influence of the connected
examples, it is not enough to use traditional adversarial training directly in the graph
neural network training process.

Therefore, Feng et al. proposed a new adversarial training method called Graph
Adversarial Training (GraphAT), which learns to resist perturbations by taking the
graph structure into account during adversarial training. In essence, GraphAT can
be considered as a dynamic regularization scheme based on the graph structure.
They applied the GraphAT to Graph Convolutional Network (GCN) and proved
that the GCN model with adversarial training has higher classification accuracy
and robustness than the standard trained GCN. In the following, we first introduce

124 H. Xu et al.

Fig. 6.1 How does perturbations to node features affect the graph neural network prediction [34].
(a) Standard training. (b) Adversarial training applying perturbations

the definition of GraphAT and then show the GraphVAT combined with virtual
adversarial regularization which is considered as an extension of GraphAT.

Graph Adversarial Training (GraphAT) Inspired by the standard AT, Feng et
al. developed graph adversarial training, which trains the graph neural network
model by generating adversarial examples and optimizing regularization terms of
adversarial examples, to prevent the adverse effects of perturbations. What makes
it unique is that GraphAT aims to prevent perturbations propagating through node
connections. Figure 6.2 describes the GraphAT’s training process. The formula of
GraphAT is:

min : ΓGraphAT = Γ + β
∑N

i=1
∑

j∈nei
d
(
f
(
xi + r

origin

i ,G | θ
)

, f
(
xj ,G | θ

))
,

max : r
origin

i = arg maxr i‖r i‖≤ξ

∑
j∈nei

d
(
f
(
xi + r i , G | θ̂

)
, f
(
xj ,G | θ̂

)) ,

(6.1)

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 125

Fig. 6.2 Schematic of the GraphAT training process, with the standard objective function term on
the left and the new regularization term on the right [34]

where ΓGraphAT is the training objective function with two terms: (1) standard
objective function of the model based on the original graph and (2) graph adversarial
regularization. The second term encourages the graph adversarial examples to be
classified similarly as connected examples, where θ denotes the model parameters
to be learned, and d is a nonnegative function that measures the divergence (e.g.,
Kullback-Leibler divergence [35]) between two predictions. xi denotes the features
of node i, r

origin
i denotes the adversarial perturbation of the original graph, which

is established by perturbing the features of the node i.
The graph adversarial perturbation is calculated by maximizing the graph

adversarial regularization under the current value of model parameters. ξ is a
hyperparameter controlling the magnitude of perturbations. Usually, a smaller value
is used to make the feature distribution of the adversarial sample close to that of the
normal sample.

Calculating the perturbation r
origin
i is not an easy task. Inspired by the linear

approximation method proposed in [25] for standard adversarial training, Feng et
al. also designed a linear approximation method to calculate the graph adversarial
perturbations in GraphAT, of which the formula is:

r
origin
i ≈ ξ

g
‖g‖ , where g = ∇xi

∑

j∈nei

D
(
f
(
xi,G | θ̂

)
, f
(
xj ,G | θ̂

))
, (6.2)

where g is the gradient of the input xi . Since the gradient of the GNN model can
be effectively calculated through a back-propagation, such approximate calculation
provides a more efficient method of perturbation calculation. θ̂ is a constant set
denoting the current model parameters.

126 H. Xu et al.

Virtual Graph Adversarial Training (GraphVAT) Feng et al. further devised an
extended version of GraphAT (GraphVAT), which is inspired by the idea of virtual
adversarial training[36]. The formula of GraphVAT is:

min : ΓGraphVAT =Γ + α

N∑

i=1

d
(
f
(
xi + rv

i ,G | θ
)
, ỹi

)

+ β

N∑

i=1

∑

j∈nei

d
(
f
(
xi + r

origin

i ,G | θ
)

, f
(
xj ,G | θ

))
,

max : rv
i = arg max

r ′
i‖r ′

i‖≤ξ ′
d
(
f
(
xi + r ′

i ,G | θ̂
)
, ỹi

)
, (6.3)

where r ′
i denotes the virtual adversarial perturbation, the direction that leads to the

largest change on the model prediction of xi . For labeled nodes and unlabeled nodes,
ỹi denotes truth label and model prediction, as shown below:

ỹi =
{

ŷi , i ≤ M (labeled node),

f
(
xi ,G | θ̂

)
, M < i ≤ N (unlabeled node).

(6.4)

During the GraphVAT train process, in each iteration, two types of perturbations and
the associated adversarial examples are generated: (1) the smoothness of prediction
around the individual clean example and (2) the smoothness of connected examples.

For the consideration of efficiency, they calculated rv
i via the power iteration

approximation as blow.

rv
i ≈ ξ ′ g

‖g‖ , where g = ∇r i d
(
f
(
xi + r i ,G | θ̂ , ỹi

))∣
∣
ri=ξd , (6.5)

where d is a random vector. Detailed derivation of the method is referred to [36].
The advantage of GraphAT is that it does not affect the convergence speed of the

GCN training process. At the same time, the model after adversarial training has
smoother predictions of graph structure, so it has stronger generalization ability and
robustness.

6.2.2 SAT

Most of the current algorithms based on adversarial training only focus on global
defense through global adversarial training. At the same time, it is still a challenge
for the existing adversarial training methods to defend against the attack of target
nodes. Therefore, Chen et al. [28] proposed smooth adversarial training to improve
the robustness of GNN.

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 127

We adopted their adversarial training method to enhance the defensive capability
of the GCN model. In particular, we proposed two adversarial training strategies:
global adversarial training (Global-AT) to protect all the nodes and target-label
adversarial training (Target-AT) to protect the nodes of the target label, which are
introduced in the following.

Generally speaking, our work mainly includes two kinds of adversarial training
methods: Global-AT and Target-AT. Besides, two smoothing strategies are pro-
posed: Smoothing distillation (SD) and Smoothing cross-entropy (SCE). These
methods are described in detail below.

Global Adversarial Training (Global-AT) The process of Global-AT is to gen-
erate the adversarial network iteratively. The adversarial links are selected by
adversarial attack methods on the training node set Strain = [v1, · · · , vm]. In
particular, for all nodes in Strain, generate the adjacency matrix Ât iteratively
according to the following steps:

• Selecting the adversarial links. First, the adversarial attack method is used to
select adversarial links to maximize the negative cross-entropy loss of the training
decoder in Strain. These adversarial links will be saved as a matrix Λ, and their
size will be the same as the adjacency matrix A. Its element Λij ∈ {−1, 0, 1}
indicates the modification of links. If Λij = 1, add an adversarial link between
nodes vi and vj . If Λij = −1, delete the relationship between vi and vj . If
Λij = 0, the relationship between vi and vj will not be modified.

• Updating adversarial network. After generating the adversarial links matrix Λ,
update the (t − 1)th adversarial network. The specific update process is defined
as:

Ât
ij = Ât−1

ij + Λij , (6.6)

where Ât
ij , Ât−1

ij and Λij denote the elements of Ât , Ât−1 and Λ, respectively.

Target-label Adversarial Training (Target-AT) Different from Global-AT, the
goal of Target-AT is only to protect those nodes with specific labels. That is to
say, given a target label τp, the attack method only generates adversarial links for
the set of these labels Sτp . The remaining steps of Target-AT are no different from
Global-AT.

Smoothing Distillation (SD) As suggested by Hinton et al. [37], the distilled
model is trained on a transferred dataset. The labels of the set come from soft
label prediction under a high-temperature model. More specifically, the proposed
distillation model consists of two modules: The first module is used to label those
unlabeled nodes through the normally trained model, and the obtained labels are
called soft labels; the second is the distillation module, which uses the soft labels of
the data instead of the ground truth to train the classifier. The proposed distillation
model can effectively improve the robustness of the classifier.

128 H. Xu et al.

Fig. 6.3 The illustration of smoothing distillation. At first, training the initial GCN with a softmax
output layer at temperature T . Then, encode training nodes by soft label. Finally, train the distilled
GCN with its training objective function, the objective function is composed of soft loss function
and original loss function

Inspired by the distillation model, Chen et al. proposed smoothing distillation
(SD) to improve the robustness of GCN against adversarial perturbations. Compared
with the original GCN classification, our distillation GCN model has higher
classification accuracy and is beneficial for transplantation. At the same time, the
information extracted by distillation will help filter the perturbations deliberately
added to the network, thereby improving the robustness of the model. The SD
framework is shown in Fig. 6.3. Different from the original distillation method,
SD maintains the same model structure of GCN model and distillation model. The
specific training procedures are as follows:

• Training the initial GCN model. Given the training set Strain = [v1, · · · , vm]
and its hard label matrix Y , at first training the initial GCN model with a softmax
output layer at temperature T to obtain Y ′ as the output confidence of the model.

• Encoding nodes by soft label. Using the soft label Y ′ to encode the confidence
probability on the labels of all training nodes.

• Training the distilled GCN model. A distillation model is jointly trained based
on the soft label matrix Y ′ and the real label matrix Y , and a new soft loss is
added to the objective function. The objective function Lall is composed of the
soft loss function Ls and original loss function L, defined as:

Lall = T 2Ls

T 2 + 1
+ L

T 2 + 1
, (6.7)

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 129

with

Ls = −
|Strain|∑

l=1

K∑

k=1

Y ′
lk ln(Y ′′

lk), (6.8)

where Y ′′ denotes the output of the distilled GCN model. Note that, in the soft
loss Ls , we also use a softmax function with temperature T .

Smoothing Cross-Entropy Inspired by the model regularization method [38],
we further proposed a Smoothing Cross-entropy Loss (SCEL) function. SCEL
encourages the GCN model to return high confidence values for the true labels
while giving each node a smooth distribution of confidence values on the wrong
labels. The SCEL function is defined as:

Lsmooth = −
|Strain|∑

l=1

K∑

k=1

Ŷlk ln(Y ′
lk), (6.9)

where Ŷ is a smoothing matrix with Ŷlk = 1 if node vl belongs to category τk

and Ŷlk = 1
K

otherwise, C = [τ1, · · · , τK] is the category set for the nodes in the
network, K denotes the number of categories, and Y ′ is the output of the model.

Generally speaking, the advantage of the above defense methods is that gradient
hiding can be carried out under global attack or target attack. At the same time, the
defense mechanism is very flexible, the adversarial training methods and smoothing
strategies can be combined according to the specific situation, but it will sacrifice
some embedding performance of the original network to a certain extent.

6.3 Graph Purification

Unlike other defense methods such as adversarial training, graph purification usually
aims at defending against poison attack. That is, it hopes that the attacked graph can
be purified to restore the clean graph as much as possible for model retraining. Next,
we will elaborate on graph purification defense through the following two specific
methods: GCN-Jaccard [29] and GCN-SVD [30].

6.3.1 GCN-Jaccard

Wu et al. [29] thought that since the GCN model strongly relies on graph structure
and local aggregation, GCN is vulnerable to attack. Therefore, the model trained on
the attacked graph will be affected by the attack surface of the model made by the
adversarial graph.

130 H. Xu et al.

Their defense was inspired by the observation of the characteristics of current
attack methods. First, modifying edges is a more effective attack method than
modifying features. Furthermore, the attacker is more inclined to add edges rather
than delete; Second, the more neighbors a node has, the harder it is usually to be
attacked. Last, most attackers tend to connect the target node to another node with
different features and labels.

Based on the above observations, Wu et al. believed that observing the feature
similarity between nodes can assess the possibility of being attacked. They mainly
introduced and used the Jaccard similarity score to evaluate the similarity of node
features between nodes. Given two nodes u and v with n binary features, the Jaccard
similarity score measures the overlap that u and v share with their features. Each
feature of u and v can either be 0 or 1. The total number of each combination of
features for both u and v are specified as follows.

M11 is the number of features where both nodes u and v have a value of 1. M01 is
the number of features where the value of the feature is 0 in node u but 1 in node v.
Similarly, M10 is the number of features where the value of the feature is 1 in node
u but 0 in node v, and M00 represents the total number of features which are 0 for
both nodes. The Jaccard similarity score is given as:

Ju,v = M11

M01 + M10 + M11
. (6.10)

To verify their point of view, they trained a two-layer GCN on the cora-ml dataset
and to observe whether the nodes can be classified correctly with high probability.
For these nodes, by observing the histogram of the Jaccard similarity score of the
connected nodes before and after the FGSM attack, it was found that the number
of neighbors with a lower similarity score of the target node significantly increases
by the attack. What’s more interesting is that other attack methods also show such
characteristics, such as Nettack [12].

Based on the above findings, considering the efficiency of defense, Wu et al.
proposed a simple and effective defense method. The core idea of this defense model
is that a clean node is usually not connected to a node that is not similar to it.

The defense process is as follows: for the adjacency matrix A, calculating the
edge similarity score between the connecting nodes in the graph, and then remove
the edges with a similarity score less than a certain value. The entire defense
process is shown in Fig. 6.4. The Jaccard similarity score is used to measure the
similarity scores. Note that different similarity evaluation methods could be adopted
for different data to get a better effect of defense.

It can achieve a good defense effect by removing only the edges with a Jaccard
similarity score of 0. Besides, the time overhead of the defense mechanism is
almost negligible. They used this defense mechanism in the GCN model, and the
training time on the cora-ml and citeseer datasets only increased by 7.52 s and 3.79 s,
respectively. Another advantage is that enabling this defense mechanism does not
damage the classification accuracy of normal samples.

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 131

Fig. 6.4 Use the Jaccard similarity score for the defense process of the GCN model, which we
call GCN-jaccard

6.3.2 GCN-SVD

In recent years, some studies show that many graph attack methods have the same
characteristics. Entezari et al. [30] found that some of the attack methods, such
as Nettack [12], can be considered as a high-rank attack. They found that Nettack
demonstrates a very specific behavior in the spectrum of the graph: only high-
rank (low-valued) singular components of the graph are affected. Therefore, they
showed that a low-rank approximation of the graph, which uses only the top singular
components for its reconstruction, can greatly reduce the effects of Nettack and
boost the performance of GCN when facing adversarial attacks. In their study, they
explored poisoning attacks on graph data and proposed a mechanism to defend
against the attacks called GCN-SVD. This is another graph purification defense
method.

Singular Value Decomposition (SVD) is one of the most popular matrix decom-
position techniques. SVD can decompose a matrix into the sum of rank-1 matrices
and is currently widely used. Let A ∈ RI×J be a real-valued matrix, the SVD of
A is computed as follows:

A = UΣV T , (6.11)

where U ∈ RI×I is the left singular matrix and the V ∈ RJ×J is the right singular
matrix. Σ ∈ RI×J is a non-negative diagonal matrix such that Σi , i = σi , where
σi is the i th singular value and σ1 ≥ σ2 ≥ · · · ≥ σmin(I, J).

The rank-r approximation of A can be computed as follows:

Ar = UrΣrV
T
r =

r∑

i=1

uiσiv
T
i , (6.12)

132 H. Xu et al.

where Ar is the rank-r approximation of A derived from SVD of A. Ur and Vr are
the matrices containing the top r singular vectors and �r is the diagonal matrix
containing only the r singular values.

The perturbation imposed by Nettack can be regarded as a high-rank perturba-
tion. By observing the singular value decomposition of the adjacency matrix of
the clean graph and the adversarial graph, they found that singular values are very
close at lower ranks but vary at higher ranks. This means that when we decompose
the adjacency matrix, the low-rank approximation of the adversarial sample is not
much different from the clean sample. To discard the high-rank perturbations, they
computed the low-rank approximation of the adjacency and feature matrices derived
from their SVD decomposition according to Eq. (6.12), and then retrained GCN
with the low-rank approximation matrices. With a proper choice of r , the rank-r
approximation of the attacked graph can boost the performance of GCN and achieve
the performance close to that on the clean graph. Figure 6.5 describes how GCN-
SVD uses singular value decomposition to purify the adversarial graph.

They gave the derivation that SVD uses a low-rank approximation to purify those
nodes whose degree is less than a certain value. In general, the rank-r approximation
can detect attacks on target nodes with a degree less than σ 2

r −2. Entezari et al. used
different values of r to evaluate the defensive effect. Usually, r = 10 has better
defensive performance. More proof details are available in [30].

The GCN-SVD defense model can achieve effective defense only by singular
value decomposition of adjacency matrix, and does not need to adjust too many
parameters. However, it will reduce the classification accuracy of normal samples
to a certain extent.

Fig. 6.5 Low-rank approximation of graph structure and feature matrices to vaccinate the node
classification method and discard perturbations [30]

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 133

6.4 Robustness Certification

Robustness Certification is an effective way to defend against adversarial attacks,
based on which it can be proved that certain nodes or edges will not be attacked
successfully under certain perturbation, and then we can use the robustness Certi-
fication for training to improve the robustness of the model. It can prevent small
changes in data from causing completely different predictions in GNN, and certify
whether a given GNN is robust.

In this section, we focus on certifiable robustness. Several works proposed in
[20, 31, 32] have considered the safety of GNN and tried to certify robustness.
Zügner et al.[32] considered the perturbations on node attributes. Bojchevski et
al.[20] dealt with the case when the attacker only change the graph structure. It
derives the robustness certifications as a linear function of personalized PageRank,
which makes the optimization tractable. Jia et al. [31] studied certifiable robustness
on GNN’s other applications such as community detection. In the rest of this section,
we will focus on the above mentioned three strategies.

6.4.1 Certifying Robustness for Graph Structure Perturbations

Bojchevski et al.[20] proposed a new method for provable robustness regarding
perturbations of the graph structure. Their approach is applicable to graph neural
network and label/feature propagation model whose predictions are a linear function
of personalized PageRank. They are the first to propose a robust certification
problem in the field of node classification. In addition, they also proposed a robust
training method that can simultaneously improve the robustness and accuracy of the
model.

Robustness Certifications Bojchevski et al.[20] designed two strategies, one for
the local budget and the other for both the local budget and the global budget. The
local budget limits the number of additions and deletions to a single node, and the
global budget limits the number of additions and deletions to the entire graph.

They designed an algorithm for the local budget, whose main idea is starting
from a random policy: in each iteration they first compute the mean reward before
teleportation for the current policy, and then greedily select the top local budget
edges that improve the policy. This algorithm is guaranteed to converge to the
optimal policy, and thus to the optimal configuration of fragile edges.

In view of the global budget and local budget at the same time, they developed
a three-step method: (1) Based on the auxiliary graph, an unconstrained Markov
decision process(MDP) alternative is proposed, which can reduce the operation
set from exponential to binary level only by adding auxiliary nodes; (2) Augment
the corresponding linear program with quadratic constraints to enforce the global
budget; (3) Apply the Reformulation Linearization Technique (RLT) relaxation to
the resulting Quadratically Constrained Linear Program (QCLP).

134 H. Xu et al.

Robust Training Bojchevski et al. optimize the robust cross-entropy loss proposed
by Wong and Kolter [39]:

LRCE = LCE

(
y∗
v ,−m∗

yv
(v)
)

, (6.13)

where LCE is the standard cross-entropy loss operating on the logits, and y∗
v is the

predicted label for v, and m∗
yv

(v) is a vector such that at index c we have m∗
yv,c

(v),
m∗

yv,c
(v) represents the worst-case margin between class y∗

v and class c. They
studied the alternative robust loss of the hinge to avoid LRCE , which encourages
high certainty under the worst-case perturbations. The purpose of the attacker is
to minimizes the worst-case margin m∗

yv,∗(v) (or its lower bound), so the robust
training adds a hinge loss penalty term to the standard cross-entropy loss, and tries
to maximize it during training:

LCEM =
∑

v∈VL

⎡

⎣LCE

(
y∗
v ,H diff

v,:
)

+
∑

c∈C,c �=y∗
v

max
(

0,M − m∗
yv,c

(v)
)
⎤

⎦ ,

(6.14)

where VL is a subset labeled nodes, if m∗
yv,c

(v) < M and zero, H diff
v,: is a weighted

combination of the logits of all nodes, the second term for a single node v is positive,
otherwise the node v is certifiably robust with a margin of at least M .

The work of Bojchevski et al.[20] has shown good results, but they only consider
graph structure disturbances. In fact, many real-world disturbances are of multiple
types. In the future, we could consider the robustness of both node features and
graph structure disturbances on the basis of their work.

6.4.2 Certifying Robustness for Node Attributes Perturbations

Zügner et al. [32] considered the perturbation of node attributes. They asked the
question: Which nodes will not be changed in the range of allowable disturbance.
To answer this question, they first conducted research on graph convolutional neural
networks and node attribute disturbances.

Certifying Robustness for Graph Convolutional Networks Let G = (A,X)

be an attributed graph, where A ∈ {0, 1}N×N is the adjacency matrix and
X ∈ {0, 1}N×D represents the nodes’ features. We assume the node-ids to be
V = {1, . . . , N}.Given a subset VL ⊆ V of labeled nodes, with class labels from
C = {1, 2, . . . ,K}, the goal of node classification is to learn a function f : V → C

which maps each node v ∈ V to one class in C. Due to the particularity of the
graph, the attributes of a node depend on the attributes of its surrounding nodes and
edges, so the perturbations of this node are also restricted. Therefore, they sliced
the adjacency matrix A ∈ {0, 1}N×N and node features X ∈ {0, 1}N×D to calculate

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 135

the output of the target node t . The latent representations H(l) at layer L are of the
form:

Ĥ (l) = Ȧ(l−1)H (l−1)W(l−1) + b(l−1) for l = 2, . . . , L, (6.15)

H
(l)
nj = max

{
Ĥ

(l)
nj , 0

}
for l = 2, . . . , L − 1, (6.16)

where H(1) = Ẋ. The output of this sliced GNN is denoted as f t
θ (Ẋ, Ȧ) = Ĥ (L) ∈

R
K . Here θ is the set of all parameters, i.e. θ =

{
W (·), b(·)}.

According to the above operation, the maximum loss constraint can be defined:
Given a graph G, a target node t , and an GNN with parameters θ . Let y and y∗
denote the class of node t(e.g. given by the ground truth or predicted). In the worst
case, the margin between classes y∗ and y achievable under some set Xq,Q(Ẋ) of
admissible perturbations to the node attributes is given by

mt
(
y∗, y

) := minimizeX̃ f t
θ (X̃, Ȧ)y∗ − f t

θ (X̃, Ȧ)y

subject to X̃ ∈ Xq,Q(Ẋ),
(6.17)

where q represents the local perturbation budget, Q represents the global perturba-
tion budget, if mt (y∗, y) > 0 for all y �= y∗, the GNN is certifiably robust.

Perturbations Definition According to the actual research situation in the field
of graphs, they defined the permissible disturbance set by limiting the number of
changes to the original attribute. The attribute of the node in the vicinity of the L-
1 jump can be modified to change the prediction of the target node, and limit the
number of local perturbations:

Xq,Q(Ẋ) =
{
X̃ | X̃nj ∈ {0, 1} ∧ ‖X̃ − Ẋ‖0 ≤ Q

∧
∥
∥
∥X̃n: − Ẋn:

∥
∥
∥

0
≤ q∀n ∈ NL−1

}
.

(6.18)

Robust Training of GNNs Zügner et al. also considered using the credential
suggested in the previous section to enhance the robustness of the GNN model.
In order to enhance the robustness of the model, they considered the training target
normally used to train GNN for node classification and used the following methods
to optimize the model:

minimize
θ,{Ωt,k}t∈VL,1≤k≤K

∑

t∈VL

L
(
pt

θ

(
y∗
t ,Ωt,·) , y∗

t

)
(6.19)

where L is the cross-entropy function (operating on the logits) and VL is the set
of labeled nodes in the graph, Ω is a variable have only simple element-wise
constraints (e.g. clipping between [0, 1]), p indicates those elements which are

136 H. Xu et al.

perturbed. To facilitate true robustness and not false certainty in models’ predictions,
they therefore proposed an alternative robust loss that refer to as robust hinge loss:

L̂M

(
p, y∗) =

∑

k �=y∗
max

{
0,pk + M

}
. (6.20)

This loss is positive if −pt
θk = gt

q,Q

(
Ẋ, ck,Ωk

)
< M; and zero otherwise. The

node t is certifiably robust if the loss is zero, even ensuring a margin of at least M

to the decision boundary in this situation. Importantly, it is not rewarded to consider
even greater margins (for the worst-case). They combined the robust hinge loss with
standard cross-entropy to obtain the following robust optimization problem:

min
θ,Ω

∑

t∈VL

L̂M

(
pt

θ

(
y∗
t ,Ωt,·) , y∗

t

)+ L
(
f t

θ (Ẋ, Ȧ), y∗
t

)
, (6.21)

min
θ,Ω

∑

t∈VL

L̂M1

(
pt

θ

(
y∗
t , Ωt,·) , y∗

t

)+ L
(
f t

θ (Ẋ, Ȧ), y∗
t

)+
∑

t∈V \VL

L̂M2

(
pt

θ

(
ỹt , Ω

t,·) , ỹt

)
.

(6.22)

The above Eq. (6.21) is to train the GNN on the marked nodes until it converges,
and the following equation Eq. (6.22) is to train all nodes until it converges. The
robust training method they proposed is more effective than the original training
method. According to the experimental results given in the paper, using robust
training can increase original robustness by four times under the best conditions.

The work of Zügner et al.[32] can train a very robust model, but it can not
improve the accuracy of the model. If they can consider the disturbance at the
structural level at the same time, referring to the work of Bojchevski et al.[20], it
may be possible to further improve the effect of robust training.

6.4.3 Certifiable Robustness in Community Detection

Community detection is a very important algorithm in the field of graphs, but it is
vulnerable to adversarial structural perturbation. For example, by adding or deleting
some key edges in the graph, attackers can change the results of community detec-
tion. Jia et al.[31] developed the first certifiable robustness algorithm in community
detection. Given an arbitrary community detection method, they used random graph
structure perturbation to construct a new smooth community detection method.
Their method can prove that the predicted community of a given set of nodes will
not change when the number of edges added/removed by an attacker is bounded,
and they also evaluated their method on multiple real-world graphs with ground
truth communities.

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 137

Attacks to Community Detection Jia et al.[31] referred to the main attack meth-
ods of current community detection algorithms[40–44] and used two typical attack
methods (Splitting attack and Merging attack) to verify their certified robustness of
community detection.

Computing Certified Perturbation Size Jia et al.[31] theoretically derived the
certified perturbation size of the smoothed function g. Their results can be summa-
rized into the following two theorems:

Theorem 1 Given a graph structure binary vector x, a community detection
algorithm A, and a set of victim nodes Vvict im. Assume there exists p ∈ [0, 1] such
that:

Pr(f (x ⊕ ε) = y) ≥ p > 0.5, (6.23)

where p is a lower bound of the probability Pr(f (x ⊕ ε) = y) that f outputs
y under the random noise ε, and f is a function which models the splitting and
merging attacks. The function f outputs 1 if the nodes in Vvict im are grouped into
the same community detected by community detection A and outputs 0 otherwise.
Pr is the noise distribution in the discrete space {0, 1}n.

Theorem 2 For any perturbation δ with ‖δ‖0 > M(certified perturbation size),
there exists a community detection algorithm A ∗(and thus a function f �) consistent
with Eq. 6.23 such that g(x ⊕ δ) �= y or there exists ties. For detailed derivation,
please refer to the original paper.

Based on these two theorems, they designed an algorithm to calculate the
magnitude of the disturbance. Given a graph-structure binary vector x, a community
detection algorithm A , and a set of victim nodes Vvict im, the goal of the algorithm
is to compute the certified perturbation size in practice. Algorithm 1 shows their
complete certification algorithm. The function SampleUnderNoise randomly
samples N noise from the noise distribution, adds each noise to the graph structure,
and computes the frequency that the function f outputs 0 and 1, respectively.
Then, their algorithm estimates y∗ and p, y∗ is the predicted label for the target
node. Based on p, the function CertifiedPerturbationSize computes the certified
perturbation size by solving the optimization problem M = argmax‖δ‖0. Their
algorithm returns (y∗,M) if p > 0.5 and ABSTAIN otherwise. The following
proposition shows the probabilistic guarantee of our certification algorithm.

The method of Jia et al.[31] can detect the same community (for splitting attacks)
or different communities (for merging attacks) when the number of edges which
attacker adds or removes to a group of nodes is not greater than a certain threshold.
And their method verified its effectiveness on three real-world datasets. However,
their methods cannot cope with all situations, more exploration is needed in the
future.

138 H. Xu et al.

Algorithm 1: Certify
Input: f, β, x,N, α

Output: ABSTAIN or (y∗,M)

1 m0,m1 = SAMPLEUNDERNOISE(f, β, x,N, α) ;
2 y∗ = argmaxi∈{0,1} mi ;
3 p = B

(
α; my∗ , N − my∗ + 1

)
;

4 if p > 0.5 then
5 M = Certif iedP erturbationSize(p);
6 return(y∗ ,M)

7 end
8 else
9 returnABSTAIN

10 end

6.5 Structure Based Defense

Different from the graph purification which tries to eliminate the interference, the
structure based defense method aims to train a robust GNN model by punishing the
model weight on the adversarial edges or nodes. These methods basically learn a
kind of attention mechanism, which can distinguish the malicious edges and nodes
from the clean edges and nodes, so as to reduce the impact of malicious interference
on GNN training aggregation process. Zhu et al. [21] first assumed that hostile nodes
may have high prediction uncertainty, because hostile nodes tend to connect the
targeted node with the nodes from other communities. The work [22] showed that
it is beneficial to add information of other clean graphs with similar topological
distribution and node attributes to the target graph. We will introduce the following
two methods in detail below: The Penalized Aggregation GNN [22] and the Robust
Graph Convolutional Network [21].

6.5.1 Penalized Aggregation GNN

When the adversarial samples are fed into GNN, the aggregation function will
treat the false neighbors as normal neighbors and continue to propagate their error
messages to update other nodes so that the model will produce an error output.
Therefore, if the messages passing through the perturbed edge are successfully
filtered, the model will be hardly affected by malicious attacks.

Based on the above observation, Tang et al. [22] studied a framework Penal-
ized Aggregation GNN (PA-GNN), aiming to improve GNN’s robustness against
poisoning attack by exploring a clean graph. Since the clean graphs in the real
world are usually available, they created supervised knowledge to train the ability of
adversarial detection by disturbing these clean graphs. Then the PA-GNN relies on
a penalty aggregation mechanism, which directly limits the adversarial disturbance

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 139

1

… … 1′

′Target
Poisoned

GraphPA-GNN

Meta-
Optimization

∇ℒ1∇ℒ2∇ℒ
′ 2′

1′∗

Clean
Graphs Train

Fine-tune

Perturb

Transfer ∗
:example node --:adversarial edge

Fig. 6.6 Overall framework of PA-GNN. Thicker arrows indicate higher attention coefficients. θ∗
denotes the model initialization from meta-optimization [22]

by assigning a lower attention coefficient to the perturbed edge. Besides, they
also combined with the meta optimization algorithm to achieve effective defense
against the target poisoning attack. Figure 6.6 shows the framework of PA-GNN.
First, the clean graphs G1, . . . , GM are introduced to generate the perturbed edges.
Then the generated disturbance is used as the supervision knowledge, and the
initialization of PA-GNN is trained by meta optimization. Finally, the initialization
of the target poison graph is fine tuned to get the best performance. In essence, the
meta optimization is used to retain the negative effects of adversarial attacks after
adapting to the target poisoned graph G .

Specifically, inject the perturbed edges into the clean graph using the adversarial
attack method at first, and then use these adversarial examples to train the ability to
punish the disturbed edges. That is to say, by allocating a lower attention coefficient
to the disturbed edge, only little information is transmitted to its neighbors, so that
the negative impact of the adversarial disturbance can be reduced. However, because
graphs have different data distribution, it is far from enough to use only supervision
knowledge and punishment mechanism. Therefore, they further introduced the
meta-learning algorithm, whose goal is to train a model for various learning tasks
and have the capacity to meet the requirements of tasks with little or no supervised
knowledge. In particular, each graph is assigned a meta optimization learning task,
which not only correctly classifies the target nodes but also allocates a lower
attention coefficient score to the disturbed edges of the corresponding graph.

140 H. Xu et al.

In short, using the meta-learning algorithm, PA-GNN can resist malicious attacks
when the available training data is limited. PA-GNN has been proved to be effective
against three kinds of poisoning attacks based on node classification tasks: random
attack, non-targeted attack and targeted attack.

6.5.2 Robust Graph Convolutional Network

Zhu et al. [21] proposed a new robust graph convolution network (RGCN) to
enhance the robustness of GCNs against malicious attacks. Different from the
existing defense methods, they used the Gaussian distribution as the hidden
representation of nodes in the convolution layer and allocated attention weights
according to the variance of nodes’ neighborhood. At the same time, RGCN
explicitly considers the mathematical correlation between mean and variance vector
through the sampling process and regularization (Fig. 6.7).

They defined H(l) = [h(l)
1 , h

(l)
2 , . . . , h

(l)
N] = N(μ

(l)
i , diag(σ

(l)
i)) as the hidden

representations of nodes in the lth layer for a deep learning model, where h
(l)
1 is

the representation of node vi . Applying hierarchical parameters W(l) and nonlinear
activation functions ρ to the mean vector μ

(l)
i and variance vector diag(σ

(l)
i) of

node vi respectively, the formula of Gauss based graph convolution matrix is as
follows:

M(l+1) = ρ(D̃− 1
2 ÃD̃− 1

2 (M(l) # B(l))W(l)
μ), (6.24)

Σ(l+1) = ρ(D̃−1ÃD̃−1(Σ(l) # B(l) # B(l))W(l)
σ), (6.25)

where Wμ, Wσ are respectively denoted as the parameters of the mean vector and

variance vector. M(l) = [μ(l)
1 , . . . , μ

(l)
N] and Σ(l) = [σ (l)

1 , . . . , σ
(l)
N] denote the

matrix of means and variances for all nodes, respectively. Ã = A+IN , D̃ = D+IN

and B(l) = exp (−γΣ(l)). Furthermore, Since the input feature is a vector rather
than a Gaussian distribution, the first layer can be represented by the full connection
layer as follow:

M(1) = ρ(H (0)W(0)
μ),Σ(1) = ρ(H (0)W(0)

σ). (6.26)

By using a Gaussian distribution as a hidden representation and assigning
variance-based attention weights to the neighborhood, RGCN can reduce the effects
of adversarial edges, thereby reducing the sensitivity to this adverse information. On
the one hand, RGCN can improve the robustness of GCNs under non-target attack;
on the other hand, the performance of RGCN is always better than the baseline
regardless of the attack intensity, which indicates that its architecture can protect
GCNs from various targeted attack strategies.

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 141

Ta
sk

 S
pe

ci
fic

L
os

s F
un

ct
io

n

A
dj

ac
en

cy
M

at
ri

x

Fe
at

ur
e

M
at

ri
x

Μ1 Σ1

Μ2 Σ2

Μ Σ
G
G
C
L

G
G
C
L

G
G
C
L

…
Va

ri
an

ce
-b

as
ed

A
tt

en
tio

n
Va

ri
an

ce
-b

as
ed

A
tt

en
tio

n

sa
m

pl
e

F
ig
.6

.7
T

he
fr

am
ew

or
k

of
R

G
C

N
[2

1]

142 H. Xu et al.

6.6 Adversarial Detection

In many contemporary applications, it is vital to detect anomalies in graph data,
such as marking fake news, exposing malicious users in social networks, preventing
spam users in e-mail networks, and discovering suspicious transactions in finance.

Pezeshkpour et al. [45] automatically detected the influence of adding/deleting
edges through the adversarial modification of knowledge graphs. Besides, they
also studied the interpretability of knowledge graph representation. Xu et al. [23]
proposed a new detection mechanism using link prediction and its variants to
detect potential malicious edges. Zhang et al. [46] proposed a method to detect
enemy attacks by calculating the Kullback-Leibler divergence (K − L divergence)
[35] average between the softmax probability of a node and its adjacent nodes.
Ioannidis et al. [24] proposed a graph-based random sampling and consistency
method to effectively detect abnormal nodes in large-scale graphs. Although the
above detection methods can effectively find out abnormal nodes, they have strong
incompatibility when facing graph-level adversarial attacks on graph classification
tasks. Chen et al. [33] developed a model to detect adversarial samples on graph
classification, which is based on the subgraph network (SGN). In the following, we
will respectively introduce the adversarial detection methods on node classification
and graph classification tasks.

6.6.1 Adversarial Detection on Node Classification

Zhang et al. [46] studied the influence of the recently proposed attack method
on the GCN model and developed a detection method to detect the adversarial
nodes. Specifically, they first studied the random attack and Nettack [12] on graph
deep learning model and found that these attack methods interfere with the graph
structure. Secondly, they also studied the statistical differences between undisturbed
and disturbed graphs and further proved that topological perturbation is more
important than characteristic perturbation. Therefore, this work assumes that there
is no characteristic disturbance.

Essentially, the prediction logic used for classification is similar to the node
embedding. Since the Nettack uses the logits of the node vi , they expected Nettack
to produce differences between the first-order neighbor information of vi and that
of the neighbors of vi . They measured this difference by averaging the K − L

divergence difference between the softmax probabilities of vi and its neighbors:

pr1(i) = 1

|ne(i)|
∑

j∈ne(i)

DKL(pi ||pj), (6.27)

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 143

where pi is the softmax probabilities of GCN output for the ith node. In addition,
K − L divergence between the softmax probabilities of neighborhood pairs is used
to calculate the second-order proximity information:

pr2(i) = 1

|ne(i)|(|ne(i)| − 1)

∑

j∈ne(i)

∑

k∈ne(i)

DKL(pj ||pk). (6.28)

The authors defined straightforward detection tests by setting thresholds τ1 and τ2
for pr1 and pr2, respectively. Given a node that may be interfered, if pr1 exceeds τ1 or
pr2 exceeds τ2, the node is marked as the adversarial. They further utilized Neyman-
Pearson lemma [47] to set the different detection thresholds for each dataset.

The null hypothesis distribution is modeled as a normal distribution. Moreover,
the maximum likelihood method is used to fit the Gaussian distribution of the
undisturbed training data. Matching the tail probability with the false positive rate
of a specific target is to find the appropriate detection threshold. In particular, the
threshold is calculated by the inverse Cumulative Distribution Function (CDF).

6.6.2 Adversarial Detection on Graph Classification

For graph classification, we also propose an adversarial detection model based on
SGN. The overall framework is shown in Fig. 6.8. In particular, our method detects
adversarial samples by evaluating the original input features and the transformed
features of SGNs. If the difference between the predicted value of the original
input sample and the input sample after subgraph transformation exceeds a certain
threshold, the discriminator will recognize the input as malicious samples, otherwise
it will be clean samples. Note that the detailed description of SGN is provided in
Chap. 3, and we will not introduce it here.

Input
Sample

Model

Model

Model

SGN-1

SGN-2

P1

d1

d2

Legitimate/
Adversarial

P2

P3

Discrimi-
nator

Fig. 6.8 The framework for SGN based adversarial detection [33]

144 H. Xu et al.

6.6.2.1 SGN Based Adversarial Detection

The basic idea behind our SGN based adversarial detection algorithm is to find
out the key points to distinguish the adversarial samples from the clean ones by
comparing the sample characteristics before and after the mapping of subgraph
networks. In other words, The prediction and reconstructed version of the model
for a legitimate example should be similar. Conversely, if the original example and
the reconstructed example produce very different predictions, the input is likely to
be adversarial. SGN is able to make accurate model predictions for many adversarial
examples, while the prediction accuracy for legal examples is hardly reduced.

The prediction vector generated by graph classifier usually represents the proba-
bility distribution that the input samples belong to each possible class. Therefore, the
original prediction value of the model is compared with the predicted value of the
reconstructed sample, in other words, the corresponding two probability distribution
vectors are compared. In this work, we choose the L1 norm of the original prediction
vector and the reconstructed prediction vector as the difference measure between the
adversarial sample and the clean sample:

d(x,xsgn) = ||P(x) − P(xsgn)||1. (6.29)

We can also try L2 norm and K − L divergence to measure the difference of
probability distribution. p(x) is the output vector generated by the input samples in
the softmax layer of the graph classifier. The higher the d is, the more significant
the difference between the original prediction and the SGN based reconstruction
prediction. In fact, the value of d is expected to be as low as possible under the input
of legal samples and as high as possible under the input of adversarial samples. In
this way, it is easy to find the most appropriate and optimal threshold to distinguish
between adversary and legal samples.

6.6.2.2 Joint Adversarial Detection

In the real world, even if we can choose the appropriate effective SGN based
adversarial detection model for a specific type of attack, we can’t predict which
attack strategies the attacker will use to pollute the sample. In order to meet this
challenge, we use multi-order SGN to construct a joint adversarial detection model.
More specifically, we use the maximum distance between d(x,xsgn1) and d(x,xsgn2) as
a measure of the adversarial sample:

djoint = max(d(x,xsgn1), d(x,xsgn2), . . .). (6.30)

At present, joint adversarial sample detection can effectively detect the over-
whelming majority of adversarial samples generated for graph classification task. In
the actual joint adversarial samples detection model, SGN(1) and SGN(2) are mainly
used to transform the sample features, since compared with the high-order SGNs,

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 145

they are simpler to construct, easier to implement, and has lower time complexity.
However, the introduction of Max operator often leads to the most destructive
feature reconstruction of legal input samples, which will greatly improve the False
Positive Rates (FPR).

6.7 Summary of Defenses

In this chapter, we will compare the various defense methods and summarize the
advantages and disadvantages.

Recently, the relatively mature defense methods to improve the robustness of
GNNs mainly include adversarial training, graph purification and structure based
defense methods, while robustness certification and adversarial detection are still
in vigorous development. Compared with the other defense methods, the structure
based defense method mostly uses attention mechanism to optimize and improve
the robustness of model. In addition, the biggest difference between the adversarial
detection and other defense methods is that it does not directly improve the
robustness of GNNs, but attempts to detect the disturbed sample.

As shown in Table 6.1, most of the existing defense work [20–22, 28–30, 32, 46]
focus on the node classification task, and the research of other important graph data
mining tasks is still very scarce. In detail, only a few papers have done research
on model robustness of community detection [28, 31] and graph classification [33]
recently. Therefore, it is of great significance and value to improve the robustness
of the model for various tasks or to transfer the existing defense methods to other
tasks.

Time complexity is of high significance in real applications. Therefore, how
to limit the training cost and meanwhile improve the robustness of the model is
also a valuable research direction. However, the current defense methods rarely
consider the space-time efficiency of their algorithms. Some studies [32, 48] have
used different dimensionality reduction methods to reduce costs and achieve higher
efficiency, but their experiments did not involve large-scale graphs. Another work
[49] is to discretize the regularized adjacency matrix in the training process, which
can effectively improve the efficiency.

6.8 Experiment and Analyze

6.8.1 Adversarial Training

In order to verify the effectiveness of SAT algorithm, we test it in two common graph
data mining tasks: node classification and community detection. The experiment
uses three networks: PolBlogs, Cora and Citeseer. We adopt FGA [11], and Nettack

T
ab

le
6.
1

C
at

eg
or

iz
at

io
n

of
re

pr
es

en
ta

tiv
e

de
fe

nd
m

et
ho

ds

M
et

ho
d

Ty
pe

Ta
rg

et
ta

sk
Ta

rg
et

m
od

el
B

as
el

in
e

M
et

ri
c

D
at

as
et

R
G

C
N

[2
1]

St
ru

ct
ur

e
ba

se
d

N
od

e
cl

as
si

fic
at

io
n

G
C

N
G

C
N

,G
A

T
A

cc
ur

ac
y

C
it

es
ee

r,
C

or
a,

Pu
bm

ed

PA
-G

N
N

[2
2]

St
ru

ct
ur

e
ba

se
d

N
od

e
cl

as
si

fic
at

io
n

G
N

N
G

C
N

,G
A

T,
Pr

eP
ro

ce
ss

,
R

G
C

N
,V

PN

A
cc

ur
ac

y
Pu

bm
ed

,R
ed

di
t,

Y
el

p-
Sm

al
l,

Y
el

p-
L

ar
ge

G
A

T,
G

A
T

v[
34

]
A

dv
er

sa
ri

al
tr

ai
ni

ng
N

od
e

cl
as

si
fic

at
io

n
G

C
N

D
ee

pW
al

k,
G

C
N

,
G

ra
ph

SG
A

N
,.

..

A
cc

ur
ac

y
C

it
es

ee
r,

C
or

a,
N

E
L

L

G
lo

ba
l-

A
T,

Ta
rg

et
-A

T,
SD

,S
C

E
L

[2
8]

A
dv

er
sa

ri
al

tr
ai

ni
ng

,
C

om
m

un
it

y
D

et
ec

ti
on

N
od

e
cl

as
si

fic
at

io
n

G
N

N
A

T,
G

ra
ph

D
ef

en
se

A
D

R
,A

C
D

C
it

es
ee

r,
C

or
a,

Po
lB

lo
gs

G
C

N
-J

ac
ca

rd
[2

9]
G

ra
ph

Pu
ri

fic
at

io
n

N
od

e
cl

as
si

fic
at

io
n

G
C

N
G

C
N

A
cc

ur
ac

y,
C

la
ss

ifi
ca

ti
on

m
ar

gi
n

C
it

es
ee

r,
C

or
a-

M
L

,
Po

lB
lo

gs

G
C

N
-S

V
D

[3
0]

G
ra

ph
Pu

ri
fic

at
io

n
N

od
e

cl
as

si
fic

at
io

n
G

C
N

,t
-P

IN
E

G
C

N
,t

-P
IN

E
A

cc
ur

ac
y

C
it

es
ee

r,
C

or
a-

M
L

,
Po

lB
lo

gs

[2
0]

R
ob

us
tn

es
s

C
er

ti
fic

at
io

n
N

od
e

cl
as

si
fic

at
io

n
Pa

ge
ra

nk
Pa

ge
ra

nk
F1

sc
or

e,
A

cc
ur

ac
y

C
it

es
ee

r,
C

or
a-

M
L

[3
1]

R
ob

us
tn

es
s

C
er

ti
fic

at
io

n
C

om
m

un
it

y
D

et
ec

ti
on

L
ou

va
in

’s
m

et
ho

d
L

ou
va

in
’s

m
et

ho
d

ce
rt

ifi
ed

ac
cu

ra
cy

E
m

ai
l,

D
B

L
P,

A
m

az

[3
2]

R
ob

us
tn

es
s

C
er

ti
fic

at
io

n
N

od
e

cl
as

si
fic

at
io

n
G

C
N

G
C

N
A

cc
ur

ac
y

C
it

es
ee

r,
C

or
a-

M
L

,
Pu

bm
ed

[3
3]

A
dv

er
sa

ri
al

D
et

ec
ti

on
gr

ap
h

cl
as

si
fic

at
io

n
D

N
N

D
N

N
F1

sc
or

e,
SA

R
,F

A
R

,
FP

,A
U

C
M

U
TA

G
,D

H
FR

,
B

Z
R

[4
6]

A
dv

er
sa

ri
al

D
et

ec
ti

on
N

od
e

cl
as

si
fic

at
io

n
G

C
N

,G
A

T
–

A
cc

ur
ac

y,
C

la
ss

ifi
ca

ti
on

m
ar

gi
n,

R
O

C
,A

U
C

C
it

es
ee

r,
C

or
a,

Po
lB

lo
gs

G
ra

ph
SA

C
[2

4]
A

dv
er

sa
ri

al
D

et
ec

ti
on

A
no

m
al

y
D

et
ec

ti
on

A
no

m
al

y
m

od
el

G
A

E
D

eg
re

e,
C

ut
ra

ti
o,

..
.

A
U

C
C

it
es

ee
r,

Po
lB

lo
gs

,
C

or
a,

Pu
bm

ed

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 147

[39] as the adversarial attacks, where FGA is a gradient-based attack method, and
Nettack is a score-based attack method. Both of these adversarial attack methods
achieve good attack success rates on GNN models.

We use the following metrics to measure the defense effectiveness on the attacked
nodes, where the nodes are classified correctly before attacked in the test set.

• Average Defense Rate (ADR). ADR indicates the relative difference between
the ASR of attack on GCN with and without defense. It can be calculated as:

ADR = ASRatk − ASRdef , (6.31)

where ASRatk is the ASR without defense methods, and ASRdef is the ASR
with defense methods. The higher ADR corresponds to the better defense effect.

• Average Confidence Different (ACD). The average confidence difference, i.e,
the average difference between the confidences of the nodes in nsuc before and
after attack, which is defined as follow:

ACD = 1

nsuc

∑

t∈Ns

CDi(Ât) − CDi(A), (6.32)

CDi(A) = max
c �=y

Y ′
i,c(A) − Y ′

i,y(A), (6.33)

where Ât is the adversarial network of target node t , y is the real label of target
node t , Y ′ is the output of the model. The lower ACD corresponds to the better
defense effect.

First, we use GCN as the basic model and verify the effectiveness of the defense
method in the node classification task. The ADR and ACD of the four defense
methods are reported, respectively. Figure 6.9a and b shows the average ACR% (a)
and ACD (b) of the two attack methods in each dataset. It can be seen that Target-
AT has the highest ADR% and the lowest ACD in most cases, so it is the optimal
defense strategy. The defense effects of Global-AT and SCEL defense strategies are
not much different, while SD behaves the worst among all defense methods.

Besides, we combine two adversarial training strategies to extend four combined
defense mechanisms. G-SD stands for the combined defense of Global-AT and
SD technology, T-SCEL stands for the combined defense of target-at and SCEL
technology, and other combined defenses are the same. Figure 6.9c and d reports
the defense results of these four combined defenses and an advanced defense
mechanism, GraphDefense. It can be seen that these combined defense mechanisms
combining adversarial training and smoothing strategy can improve the defense
effect. We believe that this is because the two defenses have complementary
effects. At the same time, for the four combination strategies, the T-SCEL defense
mechanism has the highest ADR and the lowest ACD. SCEL has more obvious
improvement than SD in these two adversarial training methods. Finally, almost all

148 H. Xu et al.

F
ig
.6

.9
T

he
de

fe
ns

e
re

su
lt

s
of

th
e

fo
ur

de
fe

ns
e

m
et

ho
ds

an
d

th
e

fo
ur

co
m

bi
ne

d
de

fe
ns

e
m

et
ho

ds
in

th
e

no
de

cl
as

si
fic

at
io

n
ta

sk

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 149

combined defense methods are superior to GraphDefense, which fully demonstrates
the effectiveness of the combined defense.

Next, we verify the defensive effect of several types of defense methods on
community detection tasks. The datasets we used are PloBook and Dolphins. The
PloBook is the joint purchase dataset of co-purchasing of books about US politics
sold by the online bookseller and the Dolphins is the social network among 62
dolphins in New Zealand. We also use the FGA and Nettack attack methods to attack
the three community detection algorithms: DeepWalk, Node2Vec, and Louvain
respectively. Furthermore, we show the defense effect of eight defense methods:
four independent defense and four combined defense, and compare them with
GraphDefense as shown in Fig. 6.10. Note that we just show the average ADR of
three community detections algorithm. It can be found that independent defense
usually cannot achieve good performance. At the same time, T-SCEL can obtain the
optimal defense effect in most cases, which is consistent with the results in node
classification.

6.8.2 Adversarial Detection

We use the following three most commonly used datasets for graphs classification
adversary detection: MUTAG, DHFR and BZR. Furthermore, random attack and
gradient attack are used to attack graph-classification model. Each dataset is
randomly divided into two groups: one is used to train the adversarial detection
model, and the other is used to verify the detection results. We use the original
training dataset to generate the same number of adversarial samples, and use these
two kinds of sample sets to train the detection model. After the training, the test
datasets (half clean samples, half adversarial samples) were input to testify the
accuracy of the joint detection model.

In essence, the training phase of our detector is to select an optimal threshold to
distinguish clean and adversarial samples. For a legitimate example, the predicted
and reconstructed versions of the model should be similar. Conversely, if the original
and reconstructed examples produce very different predictions, the input is hostile.
Figure 6.11 visually demonstrates this by comparing the predicted d values between
the original and the attacked samples. Because the expected distribution of samples
is unbalanced, and most of them are benign, the detector with high precision but
high false alarm rate is useless for many security sensitive tasks. Therefore, we need
to select the false positive rate below 7% as the target threshold, in other words,
select the threshold value of a legal sample not exceeding 7%. After the training,
we use the selected threshold to test, and measure the Detection Rate of Successful
Adversarial Sample (SADR) and the Detection Rate of Failed Adversarial Sample
(FADR), respectively.

150 H. Xu et al.

F
ig
.6

.1
0

T
he

av
er

ag
e

de
fe

ns
e

re
su

lt
s

of
th

e
fo

ur
de

fe
ns

e
m

et
ho

ds
an

d
th

e
fo

ur
co

m
bi

ne
d

de
fe

ns
e

m
et

ho
ds

in
th

e
co

m
m

un
it

y
de

te
ct

io
n

ta
sk

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 151

0.01

0.1

1

10

100

1000

10000

100000

0 0 50 100 20015010 20 30 40 50

g
va

lu
e

(a)

0.001

0.01

0.1

1

10

100

1000

10000

(b)

Adversarial graph Clean graph

Fig. 6.11 The d value measuring clean and adversarial input. (a) MUTAG examples. (b) BZR
examples

Table 6.2 Detection results for different kinds of the adversarial detectors on different datasets

Random attack Grad attack

Dataset Detector SADR FADR ROC-AUC SADR FADR ROC-AUC

MUTAG SGN-1 detector 86.30% 12.13% 89.10% 88.53% 12.52% 90.92%

Joint detector 93.65% 13.77% 95.32% 95.28% 14.07% 97.25%
DHFR SGN-1 detector 82.13% 10.65% 84.23% 85.83% 11.53% 87.26%

Joint detector 82.13% 10.65% 84.23% 86.20% 11.82% 88.52%
BZR SGN-1 detector 89.64% 16.37% 92.36% 87.33% 13.01% 91.42%

Joint detector 96.58% 18.57% 98.22% 94.25% 13.57% 96.74%

the bold value indicates the relative optimal detector with the best detection index under the
corresponding data set and attack method

As shown in Table 6.2, it can be seen that the overall detection performance of
the joint detector is generally better than that of the SGN(1) detector, because it
is actually a comprehensive detector of the first-order and second-order SGNs. In
some cases, SGN(1) detector can directly meet the requirements of gradient attack
on DHFR dataset and reinforcement learning on BZR dataset. But in most other
cases, it is necessary to establish a joint detection system because the subgraph
networks of different orders have different matching degrees for different attack
methods and different dataset structures, and model operators are unlikely to know
in advance what attacks will be used. Secondly, the detection rate of successful
adversarial samples in all datasets is above 80%. Although SADR is high, FADR
value is very low. In fact, FADR does not affect the normal detection work, because
the failed attack samples will not interfere with the task of graph classification. In
addition, the ROC-AUC score of our model is high, proving the effectiveness of our
detection model.

152 H. Xu et al.

6.9 Conclusion

In this chapter, we conducted a comprehensive review of adversarial learning,
including defense strategies and corresponding evaluation indicators. Specifically,
we introduced the latest developments in this field and the arms race between
the offensive and the defensive. In addition, we classified the defense methods
reasonably, and give a unified problem expression to make it clear and easy
to understand. In various typical scenarios, we also summarize and discuss the
main contributions and limitations of existing defense methods, as well as the
open issues worthy of exploration in this field. Our work also covers most of the
relevant assessment indicators in the field of graph adversarial learning to provide
a better understanding of these methods. We proposed two adversarial training
strategies and two smoothing strategies in order to defend against malicious attacks
of node classification and community detection. Moreover, we also addressed the
challenge of the robustness of graph classification, especially to find adversarial
samples. Through extensive experiments, the effectiveness of adversarial training
and adversarial detection method is proved. In the future, we will focus on
other more effective and less time-consuming defense methods to defend against
increasingly complex and diverse attack methods.

References

1. Ahmed, A., Al-Masri, N., Abu Sultan, Y.S., Akkila, A.N., Almasri, A., Mahmoud, A.Y.,
Zaqout, I.S. and Abu-Naser, S.S. Knowledge-based systems survey International Journal of
Academic Engineering Research (IJAER) 3(7), 1–22 (2019)

2. Pei, Y., Chakraborty, N., Sycara, K.: Nonnegative matrix tri-factorization with graph
regularization for community detection in social networks. In: Twenty-Fourth International
Joint Conference on Artificial Intelligence (2015)

3. Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., Lee, D.L.: Billion-scale commodity
embedding for e-commerce recommendation in alibaba. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 839–848
(2018)

4. Xie, F., Chen, L., Ye, Y., Zheng, Z., Lin, X.: Factorization machine based service recommen-
dation on heterogeneous information networks. In: 2018 IEEE International Conference on
Web Services (ICWS), pp. 115–122. IEEE, Piscataway (2018)

5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
Preprint. arXiv:1609.02907 (2016)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

7. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected
networks on graphs. Preprint. arXiv:1312.6203 (2013)

8. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with
fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp.
3844–3852 (2016)

6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms 153

9. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph
representation learning with differentiable pooling. In: Advances in Neural Information
Processing Systems, pp. 4800–4810 (2018)

10. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

11. Chen, J., Wu, Y., Xu, X., Chen, Y., Zheng, H., Xuan, Q.: Fast gradient attack on network
embedding. Preprint. arXiv:1809.02797 (2018)

12. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph
data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2847–2856 (2018)

13. Yu, S., Zhao, M., Fu, C., Zheng, J., Huang, H., Shu, X., Xuan, Q., Chen, G.: Target defense
against link-prediction-based attacks via evolutionary perturbations. IEEE Trans. Knowl. Data
Eng. 33(2), 754–767 (2021)

14. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta learning.
Preprint. arXiv:1902.08412 (2019)

15. Chen, J., Zhang, J., Chen, Z., Du, M., Li, F., Xuan, Q.: Time-aware gradient attack on dynamic
network link prediction. Preprint. arXiv:1911.10561 (2019)

16. Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., Song, L.: Adversarial attack on graph
structured data. Preprint. arXiv:1806.02371 (2018)

17. Tang, H., Ma, G., Chen, Y., Guo, L., Wang, W., Zeng, B., Zhan, L.: Adversarial attack on
hierarchical graph pooling neural networks. Preprint. arXiv:2005.11560 (2020)

18. Ma, Y., Wang, S., Derr, T., Wu, L., Tang, J.: Attacking graph convolutional networks via
rewiring. Preprint. arXiv:1906.03750 (2019)

19. Zhang, Z., Jia, J., Wang, B., Gong, N.Z.: Backdoor attacks to graph neural networks. Preprint.
arXiv:2006.11165 (2020)

20. Bojchevski, A., Günnemann, S.: Certifiable robustness to graph perturbations. In: Advances
in Neural Information Processing Systems, pp. 8319–8330 (2019)

21. Zhu, D., Zhang, Z., Cui, P., Zhu, W.: Robust graph convolutional networks against adversarial
attacks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1399–1407 (2019)

22. Tang, X., Li, Y., Sun, Y., Yao, H., Mitra, P. and Wang, S.: Transferring robustness for graph
neural network against poisoning attacks. In: Proceedings of the 13th International Conference
on Web Search and Data Mining, pp. 600–608 (2020)

23. Xu, X., Yu, Y., Li, B., Song, L., Liu, C., Gunter, C.: Characterizing malicious edges targeting
on graph neural networks (2019) https://openreview.net/forum?id=HJxdAoCcYX

24. Ioannidis, V.N., Berberidis, D., Giannakis, G.B.: Graphsac: Detecting anomalies in large-scale
graphs. Preprint. arXiv:1910.09589 (2019)

25. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
Preprint. arXiv:1412.6572 (2014)

26. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. Preprint.
arXiv:1611.01236 (2016)

27. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-supervised text
classification. Preprint. arXiv:1605.07725 (2016)

28. Chen, J., Lin, X., Xiong, H., Wu, Y., Zheng, H., Xuan, Q.: Smoothing adversarial training for
GNN IEEE Trans. Comput. Soc. Syst. 1–12 (2020)

29. Wu, H., Wang, C., Tyshetskiy, Y., Docherty, A., Lu, K., Zhu, L.: Adversarial examples on
graph data: Deep insights into attack and defense. Preprint. arXiv:1903.01610 (2019)

30. Entezari, N., Al-Sayouri, S.A., Darvishzadeh, A., Papalexakis, E.E.: All you need is low (rank)
defending against adversarial attacks on graphs. In: Proceedings of the 13th International
Conference on Web Search and Data Mining, pp. 169–177 (2020)

31. Jia, J., Wang, B., Cao, X., Gong, N.Z.: Certified robustness of community detection against
adversarial structural perturbation via randomized smoothing. In: Proceedings of The Web
Conference 2020, pp. 2718–2724 (2020)

https://openreview.net/forum?id=HJxdAoCcYX

154 H. Xu et al.

32. Zügner, D., Günnemann, S.: Certifiable robustness and robust training for graph convolutional
networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 246–256 (2019)

33. Chen, J., Xu, H., Wang, J., Xuan, Q., Zhang, X.: Adversarial detection on graph structured data.
In: Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice,
pp. 37–41 (2020)

34. Feng, F., He, X., Tang, J., Chua, T.S.: Graph adversarial training: Dynamically regularizing
based on graph structure. IEEE Trans. Knowl. Data Eng. 33(6), 2493–2504 (2021)

35. Van Erven, T., Harremos, P.: Rényi divergence and kullback-leibler divergence. IEEE Trans.
Inf. Theory 60(7), 3797–3820 (2014)

36. Miyato, T., Maeda, S.I., Koyama, M. and Ishii, S.: Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell.
41(8), 1979–1993 (2018)

37. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. Preprint.
arXiv:1503.02531 (2015)

38. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2818–2826 (2016)

39. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex outer
adversarial polytope. In: International Conference on Machine Learning, pp. 5286–5295.
PMLR (2018)

40. Chen, J., Chen, L., Chen, Y., Zhao, M., Yu, S., Xuan, Q., Yang, X.: GA-based Q-attack on
community detection. IEEE Trans. Comput. Soc. Syst. 6(3), 491–503 (2019)

41. Chen, Y., Nadji, Y., Kountouras, A., Monrose, F., Perdisci, R., Antonakakis, M., Vasiloglou, N.:
Practical attacks against graph-based clustering. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1125–1142 (2017)

42. Fionda, V., Pirro, G.: Community deception or: How to stop fearing community detection
algorithms. IEEE Trans. Knowl. Data Eng. 30(4), 660–673 (2017)

43. Nagaraja, S.: The impact of unlinkability on adversarial community detection: effects
and countermeasures. In: International Symposium on Privacy Enhancing Technologies
Symposium, pp. 253–272. Springer, Berlin (2010)

44. Waniek, M., Michalak, T.P., Wooldridge, M.J., Rahwan, T.: Hiding individuals and communi-
ties in a social network. Nat. Hum. Behav. 2(2), 139–147 (2018)

45. Pezeshkpour, P., Tian, Y., Singh, S.: Investigating robustness and interpretability of link
prediction via adversarial modifications. Preprint. arXiv:1905.00563 (2019)

46. Zhang, Y., Khan, S., Coates, M.: Comparing and detecting adversarial attacks for graph deep
learning. In: Proceedings of Representation Learning on Graphs and Manifolds Workshop,
International Conference Learning Representations, New Orleans, LA (2019)

47. Series, A: Containing papers of a mathematical or physical character. Vol. CLXXIX (1888)
48. Wang, S., Chen, Z., Ni, J., Yu, X., Li, Z., Chen, H., Yu, P.S.: Adversarial defense framework

for graph neural network. Preprint. arXiv:1905.03679 (2019)
49. Wang, X., Liu, X., Hsieh, C.-J.: Graphdefense: Towards robust graph convolutional networks.

Preprint. arXiv:1911.04429 (2019)

Chapter 7
Understanding Ethereum Transactions
via Network Approach

Yunyi Xie, Jiajun Zhou, Jinhuan Wang, Jian Zhang, Yunxuan Sheng,
Jiajing Wu, and Qi Xuan

Abstract Ethereum, which is one of the largest public blockchain-based platforms,
provides an unprecedented opportunity for data mining. However, the analysis of
Ethereum transaction records remains under-explored. In this chapter, we model
Ethereum transaction records as a complex network and further study the problem
of phishing detection and transaction tracking via node classification and link
prediction, respectively, which provides a deeper understanding of Ethereum trans-
actions from a network perspective. Specifically, we introduce time-series snapshot
network (TSSN) to model Ethereum transaction records as a spatial-temporal
network and present temporal biased walk (TBW) to effectively embed accounts
via their transaction records, which integrates temporal and structural information
of the proposed network. Furthermore, we provide a detailed and systematic analysis
of various graph embedding models and compare our proposed method with these
embedding technologies on realistic Ethereum transaction records. Experimental
results demonstrate the superiority of our TBW in learning more informative
representations, and is essential for Ethereum network analysis.

Y. Xie · J. Zhou · J. Wang · J. Zhang · Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

Y. Sheng
School of Computer Science, Faculty of Science and Engineering, University of Nottingham
Ningbo China, Ningbo, China

J. Wu
School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_7

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_7&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_7

156 Y. Xie et al.

7.1 Introduction

Blockchain is an open distributed ledger, which can effectively, verifiably, and
permanently record transactions among peers [1]. As the largest public blockchain-
based platform enabling smart contracts, Ethereum provides available transaction
records that contain rich historical information and can be used to study Ethereum
matters. However, with the rapid development of blockchain technology, Ethereum
has become a hotbed of various cybercrimes [2]. Taking advantage of the anonymity
of blockchain, criminals attempt to evade supervision and engage in illegal activities
by injecting funds into the blockchain system. It’s reported that Ethereum has
suffered from a variety of scams, such as hacks, phishing, and Ponzi schemes [3],
showing that cybercrimes have become a critical issue in Ethereum. In order to
create a favorable investment environment and preserve the sustainable development
of blockchain-based systems, it’s imperative to formulate effective supervision.

In this chapter, we focus on the solution of two illegal activities on Ethereum, i.e.,
phishing detection and transaction tracking. Recent years have witnessed the rise
of online business, phishing scams emerge as the main threat to trading security,
and thus an effective method for detection and prevention of phishing scams is
urgently needed. Transaction tracking, which focuses on maintaining transaction
security, is capable of identifying fraud groups, tracing capital flows, retrieving
stolen money, and improving the regulatory system. Besides, transaction tracking
helps ordinary investors or cryptocurrency companies check whether certain funds
or transactions are associated with illegal entities or contaminated by suspicious
paths. In a word, it is necessary to formulate effective regulatory measures to
prevent crime. The issues of phishing detection and transaction tracking have been
widely discussed and many methods have been proposed. However, compared
with traditional scenarios, illegal activities on Ethereum behave very differently.
Traditional illegal activities generally rely on phishing emails and websites to obtain
users’ sensitive information, which leads to existing methods focusing on how to
detect emails or websites containing phishing fraud information [4], so existing
methods cannot be directly applied to illegal activities problem on Ethereum.

Fortunately, all the historical transaction records of Ethereum are publicly
accessible, which may help to address the illegal problem. Here, we model
Ethereum transaction records as a transaction network for further understanding
and study phishing detection and transaction tracking on Ethereum from a network
perspective. Generally speaking, a network (or graph) is adopted as a standard repre-
sentation of data, which occurs in various real-world scenarios. More recently, graph
embedding, an effective method to represent node features in a low dimensional
space for network analysis, has been widely applied to graph analytics problem.
In this way, the graph structural information and graph properties are maximumly
preserved and thus can benefit a lot of useful downstream machine learning tasks
such as node classification [5], link prediction [6], community detection [7], etc.
Intuitively, the huge Ethereum transaction records can be modeled as a transaction
network, where a node represents an account and an edge connecting two nodes

7 Understanding Ethereum Transactions via Network Approach 157

corresponds to the existence of at least one transaction between them. Specifically,
the problem of phishing detection on Ethereum can be modeled as a binary
classification problem, while tracing and predicting transactions on the transaction
network is a link prediction task.

The study of transaction network has recently attracted considerable attention
from different applications like graph analysis [8], price prediction [9], and anti
market manipulation [10]. By building a monthly trading network, Liang et
al. [11] tracked the dynamics of three representative cryptocurrencies over time,
namely Bitcoin, Ethereum, and Namecoin. Wu et al. [12] proposed the concept of
Attributed Temporal Heterogeneous motifs and further addressed the issue of mixing
detection using a detection model. More recently, they presented a graph embedding
model named trans2vec for transaction networks, which incorporate the transaction
amount values and timestamps. It is worth noting that the model makes contributes
to phishing detection [13, 14], and transaction tracking [15], and can be applied to
other similar scenarios on transaction networks. Our method, however, is different
from trans2vec. We define a temporal-spatial network named time-series snapshot
network (TSSN) to model the Ethereum transaction records and make the successive
snapshots connect to reduce temporal loss. Furthermore, we introduce temporal
biased walk (TBW) to learn the representations of accounts. For each account, a
unique searching strategy is adopted. The searching strategy depends on the number
of transactions, structural transition probability, and temporal transition probability.
Various experiments conducted on real-world Ethereum datasets demonstrate that
our approach can efficiently learn informative account representation, and solve the
problem of phishing detection and transaction tracking.

The rest of this chapter is organized as follows. In Sect. 7.2, we introduce
Ethereum transaction dataset and construct networks needed for subsequent experi-
ments. In Sect. 7.3, we summarize the related work on graph embedding. In Sect. 7.4
we give the basic definitions and present our method. In Sect. 7.5, we conduct
extensive experiments on real-world Ethereum datasets and compare our method
with several graph embedding techniques. Finally, we conclude this chapter in
Sect. 7.6.

7.2 Ethereum Transaction Dataset

As the largest public blockchain-based platform, Ethereum’s [16] transaction
records are completely public, which brings unprecedented opportunities for trans-
action network analysis. Ethereum introduces account which is an address allo-
cating storage space for recording account balances, transactions, codes, etc. [17].
Accounts can be divided into two categories, i.e., external owned accounts (EOAs)
and smart contracts [18]. The main difference between them is that smart contracts
contain executable code files. Both smart contracts and EOAs can participate
in transactions, whereas EOA participates in transactions just like general bank

158 Y. Xie et al.

K-in=2
K-out=3

Fig. 7.1 A schematic depiction of K-order subgraph. The central node and its local neighbors are
marked in blue and orange, respectively

accounts. In this chapter, we focus on the transactions among EOAs. Note that those
with zero amount value are removed for that we do not consider such records here.

Thanks to the openness of blockchain, researchers can independently access
Ethereum transaction records and easily obtain the historical transaction data of the
target account through the API of Etherscan (https://etherscan.io). The size of the
total transaction records is extremely large and the majority of accounts in Ethereum
transactions are not always active, which may result in extremely large and sparse
Ethereum transaction networks when processing the whole Ethereum transaction
records [19]. Therefore, we select several target accounts and obtain their trans-
actions from Ethereum transaction records to make subgraphs for subsequent
experiments. As shown in Fig. 7.1, we randomly sample a centered account to obtain
its local structure information and then extract K-order subgraph [20]. K-in and K-
out are two parameters to control the depth of sampling inward and outward from
the center, respectively. The visualization of real Ethereum transactions constructed
by the K-order subgraph is shown in Fig. 7.2.

We study the problem of phishing detection and transaction tracking via machine
learning tasks: link prediction and node classification. In the following experiments,
we collect four subgraphs with different sizes from the whole Ethereum transaction
records, three for link prediction, and one for node classification. We randomly
select different center accounts and collect three subgraphs with K-in = 1, K-out = 3
for link prediction task. As for node classification task, we assume that the previous
account of the phishing account may be a victim, and the next three accounts
may be the bridge accounts with money laundering behavior. Therefore, we collect
subgraphs with K-in = 1, K-out = 3 for each of 445 labeled phishing accounts and
445 unlabeled accounts (treated as non-phishing accounts), and then splice them into
a large-scale network. The basic topological features of these networks are listed in
Table 7.1.

https://etherscan.io

7 Understanding Ethereum Transactions via Network Approach 159

Fig. 7.2 Visualization of the network collected from real Ethereum transactions constructed by
the K-order subgraph

Table 7.1 Basic topological
features of networks. |V | and
|E| are the numbers of nodes
and edges, respectively, 〈K〉
is the average degree, and 〈C〉
is the clustering coefficient

|V | |E| 〈K〉 〈C〉
EthereumG1 2100 6995 6.662 0.211

EthereumG2 5762 9098 3.158 0.112

EthereumG3 10,269 28,431 5.537 0.147

EthereumG 86,622 104,322 2.409 0.038

7.3 Graph Embedding Techniques

Generally speaking, graph embedding methods convert nodes in the graph into
low dimensional vector representations, in which the structural information and
topology properties of nodes are preserved as much as possible [21, 22]. In this
section, we provide a detailed and systematic review of various graph embedding
methods and divide these embedding methods into four categories: (1) factorization
methods, (2) random walk based methods, (3) deep learning, and (4) other mis-
cellaneous strategies. Below we explain the characteristics of these categories and
provide a summary of some representative methods for each category.

160 Y. Xie et al.

7.3.1 Factorization Based Methods

Factorization based graph embedding represents the connections between nodes in
the form of a matrix and obtains the node embedding by factorizing this matrix.
There are several kinds of matrices used to represent the connections between nodes,
such as node transition probability matrix, node adjacency matrix, Laplacian matrix,
and so on. Factorization based methods vary with the matrix properties. One can use
eigenvalue decomposition for a positive semidefinite matrix such as the Laplacian
matrix. But for unstructured matrices, one can obtain the embedding in linear time
by employing gradient descent methods.

• Graph Factorization (GF) [23] is the first method to obtain a graph embedding
in O(|E|) time. To obtain the embedding, GF factorizes the graph’s adjacency
matrix by minimizing the loss function: f (Y, λ) = 1

2

∑
(i,j)∈E(Wij −〈Yi, Yj 〉)2+

λ
2

∑
i ‖Yi‖2, where W is the weight matrix, Y is the reconstructed embedding

matrix, and λ is a regularization coefficient. The summation is the edges that
can be observed rather than all possible edges, which is an approximation for
scalability and may introduce noise. The adjacency matrix is generally not
positive semidefinit, thus the minimum of loss function is greater than 0 even
if the dimensionality of embedding is |V |.

• HOPE [24] preserves higher order proximity by minimizing ‖S − YsY
T
t ‖2

F ,
where S is the similarity matrix, e.g., katz index, rooted page rank, common
neighbors, and adamic-adar score. The similarity measure can be represented
as S = M−1

g Ml , where Mg and Ml are matrix polynomials, which correspond
to the network information of global and local respectively, and both of them
are sparse. This enables HOPE to get the embedding efficiently by generalized
singular value decomposition (SVD) [25].

7.3.2 Random Walk Based Methods

Random walks can be used for approximating many properties in the graph such
as node centrality [26] and similarity [27]. Besides, they are especially available
to observe the graph completely. It’s also useful when the graph is too large to
measure in its entirety. Most random walk based methods adopt a neural language
model (Skip-Gram) [28] for graph embedding. DeepWalk and Node2vec are two
classic examples using random walks on graphs to obtain node representation.

• DeepWalk [29] samples a set of paths from graph using truncated random
walk, i.e., uniformly sample the neighbors of the last visited node until the
maximum length is reached. Each path sampled from the graph corresponds to a
sentence from the corpus, where a node corresponds to a word. Then the Skip-
Gram model is applied on the paths to maximize the probability of observing
a node’s neighborhood conditioned on its embedding. Therefore, nodes with
similar neighborhoods are likely to share similar embedding.

7 Understanding Ethereum Transactions via Network Approach 161

• Node2vec [30] preserves higher-order proximity between nodes by maximizing
the probability of occurrence of subsequent nodes in fixed length random walks.
Node2vec employs biased random walks that balance breadth-first (BFS) and
depth-first (DFS) sampling. Therefore, it can produce higher quality and more
informative embeddings than DeepWalk. And it’s important to choose a proper
balance between BFS and DFS to preserve community structure based on
homophily as well as structural equivalence between nodes.

7.3.3 Deep Learning Based Methods

Deep learning has shown outstanding performance in a wide variety of research
fields and there is a deluge of deep neural networks based methods designed
for graph embedding graph [31–33]. Graph convolutional networks (GCNs) can
tackle the problem of computation expensive for large sparse graphs by defining
convolution operators on the graph. In particular, GCN based autoencoder has
been widely used, which aims to minimize the reconstruction error of the output
and input by its encoder and decoder. The idea of adopting autoencoder for
graph embedding is similar to node proximity matrix factorization in terms of
neighborhood preservation. In this chapter, we focus on GCN based autoencoder
model.

• GAE [34] is a non-probabilistic autoencoder using GCN as encoder to obtain the
latent representations of nodes, which can be expressed as Z = GCN(X,A).
Then a simple inner product decoder is used to reconstruct the original graph,
which is able to be described as Â = σ(ZZT). In order to make the constructed
adjacency matrices as similar as possible to the original adjacency matrices, L =
Eq(Z|X,A)[logp(A|Z)] is defined to demonstrate the similarity.

• VGAE [34] is similar to GAE, which utilizes GCN encoder and inner product
decoder. The two models rely on GCN to learn the higher-order dependencies
between nodes, and their inputs are adjacency matrices. Besides, VAGE defines
the lost function as L = Eq(Z|X,A)[logp(A|Z)] − KL[q(Z|X,A)||p(Z)] to
demonstrate the similarity between the constructed adjacency matrices and the
original adjacency matrix. The results empirically show that using variational
autoencoders can improve performance compared to GAE.

7.3.4 Other Methods

• LINE [35] preserves both the local and global network structures modeling node
co-occurrence probability and conditional probability. It defines two functions
for both first-order and second-order proximity and minimizes the combination
of the two. The objective function designed for first-order proximity is similar to

162 Y. Xie et al.

the function of Graph Factorization (GF) [23]. For each pairwise nodes, LINE
defines two joint probability distributions separately using adjacency matrix
and embedding. Then LINE minimizes the Kullback–Leibler (KL) divergence
of these two distributions to make the adjacency matrix and dot product of
embeddings close. Similarly, the second-order proximity also defines probability
distributions and objective function.

7.4 The Proposed Method

7.4.1 Basic Definition

Intuitively, as illustrated in Sect. 7.2, the Ethereum transaction records can be
modeled as a graph G = (V ,E), where V denotes the set of accounts (nodes)
and E represents the transaction records (edges) with transaction time. The temporal
network can be divided into several snapshots on the basis of time span ε. Therefore,
in order to grasp the evolution information of the network structure, it’s crucial to
consider not only the snapshot at the current time but also the nearby snapshots in
time. If using single snapshot information of a graph separately, this simple method
can not capture the correlation information of the two snapshots next to each other,
resulting in temporal loss. Hence, we define TSSN to formulate our solution and
further propose TBW to capture the evolution of the whole network. The detailed
description of TSSN is shown in Fig. 7.3. Then, we introduce several significant
definitions to facilitate the introduction of TBW in Sect. 7.4.2.

Definition 1 (Time-Series Snapshot Network (TSSN)) Given a graph G = (V ,E)

with timestamps, it can be divided into several independent snapshots G1, · · · ,GT ,
where Gt = (Vt , Et). Let Vt and Et be a set of nodes and edges of snapshot Gt ,
respectively, in the timespan [tε, (t + 1)ε), where ε is the time interval, with time
order t ∈ {0, 1, 2, · · · }. All snapshots are sorted by time (ascending), and the same
nodes in the successive snapshots are connected in order namely self-connections.

Self-connections in TSSN can connect two consecutive snapshots so that random
walk can traverse successive snapshots and capture the relevant information between
different snapshots, thus obtaining more informative embeddings. In addition, we
provide time accessibility for the edge between each pairwise nodes and every two
time slices linked nodes. For each edge in TSSN, we define e = (u, v,w, t): ∀e ∈ E,
Src(e) = u, Dst(e) = v, W(e) = w, T (e) = t , where u is the source node, v is
the target node, w is the edge’s weight (number of transactions) and t is the edge’s
time accessibility. Let η+ : R → Z

+ be a function that maps each node to an
index according to the time order t , e.g., for a given node u in snapshot Gi , we have
η+(u) = i. Therefore, the time accessibility of each edge (u, v) can be expressed
as T (e) = η+(v) − η+(u), where v is the target node and u is the source node, i.e.,
v is accessible from u if and only if the corresponding T (e) ≥ 0. Then, we define
successive edges as follows.

7 Understanding Ethereum Transactions via Network Approach 163

Fig. 7.3 The detailed description of TSSN. The original network is divided into multiple
independent snapshots according to time span. And the same nodes in the successive snapshots are
connected in TSSN. Dashed lines denote the self-connections, and solid lines denote the connection
of node pair in the same snapshot

Definition 2 (Successive Edges) Given a graph G = (V ,E), the set of successive
edges for a node v is defined as follows:

Lt (v) = {e | Src(e) = v, T (e) ≥ 0}

Figure 7.4 shows an example of successive edge. Consider a random walk that
just traversed edge ei−1 and is now stopping at node vi . The next node vi+1 of
the random walk is decided by selecting a valid successive edge ei ∈ L(vi). The
set of successive edges plays the role of a candidate for walkers to select possible
successors. Therefore, we propose a joint transfer probability for each successive
edge e ∈ Lt (v), which is composed of the static edge weight, the structural
transition probability, and the temporal transition probability. According to the
particularity of the dataset, we can expand the transition probability. For instance, in
open source software (OSS), the role-based transition probability can be proposed
according to the role’s real identity.

164 Y. Xie et al.

Fig. 7.4 The blue block represents a walk path starting in node u in G1. The set of node z’s
accessible edges is denoted as Lt (z)

7.4.2 Temporal Biased Walk

Based on the above definitions, we design a second-order neighborhood sampling
strategy s to select accessible edges for each node. A unique search strategy is
adapted for each node in the network according to its static link weights, node label
tendency, structural transition probability, and temporal information probability.

Traditionally, we can perform a simple random walk for an initial node v. Let
ni denote the ith node in the walk sequence Ns(v), starting with n0 = v and each
successive edge e ∈ Lt (ni) can be assigned the selection probability:

P(e) = W(e)
∑

e′∈Lt (c)
W(e′)

(7.1)

where W(e) is the weight value between node c and x, and Lt (c) denotes the valid
successive edges of node c. The number of transactions (edge weight) exhibits some
differences per account in the Ethereum transaction network. Therefore, we can use
this simplest way to bias our temporal random walk, which is to sample the next
node based on the static edge weight W(e).

The simplest way to bias our random walks would be to sample the next node
according to the static edge weight W(e). However, this simplest random walk fails
in explaining the network structure and exploring different types of neighbors in
the whole network. Moreover, when the links are relatively sparse in the network,
this strategy may get affected easily. The Node2vec [30] method develops a random
walk that can explore neighbors in a mixed fashion of BFS and DFS. However, this
strategy ignores important time information, which may contain the evolution of the
network structure. And it further leads to incomplete network representations.

Intuitively, for a given node v we can divide its first-order neighbors into three
categories: inward nodes, outward nodes, and return node. The return node denotes
the last selected node. An inward (or outward) node indicates whether there is a link
with the return node. If the node has a link with the return node, it is an inward node,
otherwise an outward node. Different types of nodes play an important role in the

7 Understanding Ethereum Transactions via Network Approach 165

network, thus we need to consider nodes’ roles for each node’s next walk. Besides,
when performing walks, the time accessibility of each node pair is significant which
can reflect the evolution of the network structure. Therefore, we propose a second-
order random walk method as follows.

Structural Transition Probability We define the structural transition probability
with return parameter r and in-out parameter q similar to Node2vec [30]. For
successive edges e ∈ Lt (c), we set the unnormalized structural transition probability
to PS(e) = α(e) · W(e) with

α(e) = P(ni+1 = x | ni = c) =
⎧
⎨

⎩

1/q, dtx = 2
1, dtx = 1

1/r, dtx = 0
(7.2)

where dtx denotes the shortest path distance between last selected nodes t and
next selected node x, and dtx must be one of {0,1,2}. It is worth noticing that the
initial in-out parameter q and return parameter r jointly determine every node’s
search direction. Our method, like [30, 36], uses the return parameter r and in-out
parameter q to control how fast the walk explores and leaves the neighborhood of
starting node v. Therefore, our method can explore more different types of nodes to
improve representation ability.

Temporal Transition Probability Besides structural features, the temporal infor-
mation also counts for a lot in the node representation learning. When we divide
the whole network into different time slices according to the time span, each time
slice represents a part of the network structure and the gradual change of time slice
reflects the evolution process of the network. Ignoring the correlation information
that exists between two snapshots at consecutive time steps may cause the loss of
temporal information. Hence, we propose temporal transition probability to capture
node’s behavior changes in different snapshots. In this case, the probability of
selecting each edge e ∈ Lt (c) can be given as:

PT (e) = ϕ(e)
∑

e′∈Lt (c)
ϕ(e′)

(7.3)

where ϕ(e) is expressed as

ϕ(e) =
{

α, T (e) > 0
1 − α, T (e) = 0

(7.4)

Here, the temporal bias α(0.1 ≤ α ≤ 0.9) decides whether the temporal walk
resides on the current snapshot or transfer to the next.

Joint Transition Probability Furthermore, we normalize the aforementioned
structural transition probability and temporal transition probability and then com-
bine them as one. We set the unnormalized transition probability to P(e), and then

166 Y. Xie et al.

normalize it to the final transition probability for each edge e ∈ Lt(c), where

P(e) = PS(e) PT (e). (7.5)

We propose a second-order neighborhood sampling strategy s which can help each
node find a suitable search direction and get its optimal temporal successive edges.
In joint transition probability, in-out parameter q , return parameter r , and temporal
bias α jointly determine the search direction.

The return parameter r mainly controls the probability of the source node
revisiting the return node. When r is low, it would keep the walk close to the source
node. On the other hand, setting it to a high value ensures that the walk is less
likely to the already visited node. The parameter q prefers to consider searching
for different types of inward and outward nodes. When q > 1, the next walk of
the source node is more inclined to return to the source node, which is more like
a local exploration like the BFS behavior. When q < 1, the source node is more
likely to walk away from the source node. This method can make the source node
explore a wider range of nodes, which is a kind of approximate DFS behavior. By
adjusting the parameter q , we allow our search process to combine BFS with DFS.
On the whole, the in-out parameter q and return parameter r control the search
direction in spatial domain simultaneously. Temporal bias α decides the temporal
search orientation: reside on current snapshot or move to the next snapshot. If α is
small, the temporal walk is more inclined to stay in the current snapshot, otherwise
favors edges appearing in the future snapshot. This is helpful to explore the changes
of node interaction in very different time periods with the development of networks.
These samplings help to search for various nodes both in the spatial and temporal
domains.

7.4.3 Learning Temporal Graph Embeddings

Our goal is to obtain a mapping function Φ : V → R
d , which maps a given node

to a d-dimensional representation. For a node v ∈ V , let Ns(v) denote the set of
temporal neighbors that are generated according to the search strategy s, and Φt(v)

is the representation of node v in snapshot Gt . Our objective function is to obtain
a d-dimensional representation for a given node v and the function maximizes the
log-probability of observing Ns(v) and historical embedding Φt(v) for the node v

conditioned on its representation:

max
Φ

∑

v∈V

log(P r(Ns(v),Φt (v) | Φ(v))). (7.6)

7 Understanding Ethereum Transactions via Network Approach 167

We assume that the temporal neighbors in Ns(v) and the nodes’ historical
representations Φt(v) are independent of each other. Accordingly, we factorize the
formula:

log(P r(Ns(v),Φt (v) | Φ(v)))

= log(
∏

ui∈Ns(v)

P r(ui | Φ(v))) + log(P r(Φt (v) | Φ(v))).
(7.7)

Based on the network analysis, we can see that the likelihood of observing a
source node is independent of observing any other and the definition of neighbor-
hood nodes is symmetric [30]. Therefore, we factorize the likelihood of observing
temporal neighbors and model the likelihood of every source-neighborhood node
pair as a softmax unit that is parametrized by a dot product of their mapping features.
Learning representations using random walk has proved to measure better graph
proximity, and thereby improving the performance [21, 37]. Hence, we use random
walk to learn the conditional probability of observing a node ui given the learned
representation Φ(v) as follows:

Pr(ui | Φ(v)) = exp(Φ(ui) Φ(v))
∑

n∈V exp(Φ(n) Φ(v))
, (7.8)

where ui ∈ Ns(v) is the ith neighbor of node v. With the above hypothesis, the
objective function in Eq. (7.6) is simplified to:

max
f

∑

v∈V

log(
∏

ui∈Ns(v)

exp(Φ(ui) Φ(v))
∑

n∈V exp(Φ(n) Φ(v))
)

+ log(P r(ft (v) | f (v))).

(7.9)

While the above seems to just consider the process of network topological proper-
ties, it actually takes into account the structure of network at different times and thus
reflects the evolution process of network topology properties. Due to the nonlinear
nature of real-world networks, we define a novel search strategy s that samples
different temporal neighbors of a given source node v. The temporal neighbors
Ns(v) are not restricted to just the nearest neighbors but also have vastly structural
similarity with the source node in spatial and temporal domains simultaneously.
Considering the complexity of the objective function, we use negative sampling
strategy to approximate it [38]. The stochastic gradient descent (SGD) [39] method
is used to iteratively update the objective function.

The pseudocode for time-preserving embeddings in TSSN is given in Algo-
rithms 1. We summarize the second-order random walk strategy (TBW) in Algo-
rithm 2. Our procedure in Algorithm 1 generalizes the Skip-Gram architecture
to learn embeddings in TSSN. The three phases of TBW, i.e., preprocessing to
compute joint transition probability, random walk simulations, and optimization

168 Y. Xie et al.

using SGD, are executed sequentially. Each phase is parallelizable and can be
executed asynchronously, which contributes to the overall scalability of TBW. In
addition, since the temporal walks can be used as the input vector of the neural
network, TBW can be easily used in deep graph models. There are many random
walk methods in TSSN that can be adapted because it does not depend on any
specific method.

Algorithm 1: Time-preserving embedding framework
Input: temrpoal graph G = (V ,E), return r , in-out q, temporal bias α,
time span ε, dimension d, walks per node w, walk length l, window size k

Output: f (v) for ∀v ∈ V

1 Initialize set of temporal walks Ns to ∅
2 G′ = CreateTSSN(G, ε)
3 for iter=1 to w do
4 for all node v ∈ V do
5 P = PrecomputeTransitionProbability(G′ , r , q, α)
6 walk = TemporalBiasedWalk(G′ , v, l, P)
7 Append walk to Ns

8 end
9 end

10 f = StochasticGradientDescent(k, d, Ns)
11 return Φ ∈ R

|V |×d

Algorithm 2: Temporal biased walk
Input: time-series snapshot network G′, start node u,
walk length l, transition probability P

Output: temporal walk walk

1 Initialize walk to [u]
2 for iter=1 to l do
3 curr = walk[-1]
4 e = AliasNodeSample(curr , P)
5 Append Dst(e) to walk

6 end
7 return walk

7.5 Experiment

7.5.1 Node Classification

Phishing scam is a new type of cybercrime with the emergence of blockchain
technology. It is reported to account for more than 50% of all cyber-crimes in
Ethereum since 2017 [40]. Therefore, it’s important to find out phishing accounts
to maintain the security of online business. In this subsection, we conduct node

7 Understanding Ethereum Transactions via Network Approach 169

classification experiment on Ethereum to classify labeled phishing nodes and
unlabeled nodes (treated as non-phishing nodes). We compare the effectiveness
of embedding methods by using the generated embeddings as node features to
classify the nodes. The node features are input to a one-vs-rest logistic regression
using the LIBLINEAR library. Experiments are repeated 5 times and the mean with
confidence interval is reported.

7.5.1.1 Evaluation Metrics

• F1-Score is a measure of the test’s accuracy and the harmonic mean of precision
and recall. The highest possible value of F1 is 1, indicating perfect precision and
recall, and the lowest possible value is 0 if either the precision or the recall is
zero. It is defined as:

F1 = 2PR

P + R

where P and R are the precision and recall, respectively. The precision is the
number of correctly identified positive results divided by the number of all
positive results, including those not identified correctly, and the recall is the
number of correctly identified positive results divided by the number of all
samples that should have been identified as positive.

7.5.1.2 Experimental Results

We randomly sample 10% to 90% of nodes as training data and evaluate the
performance on the remaining nodes. Figure 7.5a shows the performance, from
which one can see that our method TBW significantly outperforms baselines varying
different test ratio. And TBW and Node2vec have similar performance curves since
both of them preserve homophily as well as structural equivalence between nodes,
suggesting their effectiveness in node classification. We further investigate the
impact of embedding dimensions on node classification, as shown in Fig. 7.5b, from
which one can observe that classification performance often saturates or deteriorates
with the increase of embedding dimension. This may be because with a higher
dimension these embedding methods overfit on the labeled nodes and are unable
to predict the label of remaining nodes. With a couple of exceptions, as the number
of dimension increases, the F1-Score value increases. This is intuitive as higher
number of dimension is capable of storing more information. We also observe that
LINE achieves the best performance with 16 dimension. This may be because the
embedding model overfits in higher-order proximity.

170 Y. Xie et al.

Fig. 7.5 Performance of node classification. (a) F1-Score of node classification varying the train-
test split ratio (dimension of embedding is 128). (b) F1-Score of node classification varying the
number of dimension (the train-test split is 50%)

7.5.2 Link Prediction

The task of link prediction aims to predict the occurrence of links in a given
graph based on observed information. In this subsection, we treat the predictive
account transactions as a link prediction task in Ethereum. Before the experiments,
we hide a certain fraction of accounts’ connections in the network, and our goal
is to trace these missing connections via link prediction. We first randomly hide
20% of links in the original network as the ground truth and use the remaining
to train all graph embedding models. The test set consists of two parts, one of
which is all the hidden edges, and the other is the unconnected pairwise nodes
sampled randomly as the negative samples. After learning embedding for each
node, we use hadamard1 operation on the learned embedding vectors of pairwise
nodes to compute the feature vector for the corresponding edge. For all embedding
techniques, we implement experiments by using a one-vs-rest logistic regression
classifier. Experiments are repeated for 5 random seed initializations and the average
performance is reported.

7.5.2.1 Evaluation Metrics

• AUC can be interpreted as the probability that a randomly chosen missing link
is given a higher score than a randomly chosen nonexistent link. If among n

independent comparisons, there are n′ times that the missing link gets a higher

1[f (u) · f (v)]i = fi(u) ∗ fi(v).

7 Understanding Ethereum Transactions via Network Approach 171

score and n′′ times they get the same score, the AUC value is

AUC = n′ + 0.5n′′

n

If all the scores are generated from an independent and identical distribution, the
AUC value should be about 0.5. Therefore, the degree to which the value exceeds
0.5 indicates how much better the algorithm performs than pure chance.

• Precision is defined as the ratio of relevant items selected to the number of
items selected. That is to say, if we take the top-L links as the predicted ones,
among which Lr links are right, then the Precision equals Lr/L. Clearly, higher
precision means higher prediction accuracy.

7.5.2.2 Experimental Results

The experimental results of link prediction with 128-dimensional embeddings
are given in Table 7.2. Besides, Fig. 7.6 shows the average precision and AUC
results for link prediction for each dimension, from which one can see that the
performance of embedding methods highly depends on the dataset and embedding
dimension. Specifically, HOPE achieves good performance when dimension is small
but performs poorly when dimension increases. A reasonable explanation is that the
model overfits on the observed links and fails in predicting unobserved links. GF
and LINE achieve poor performance on most networks, indicating that preserving
higher-order proximity is not conducive to predicting unobserved links. Here, the
random walk based method outperforms other methods, indicating that random
walks are especially useful when approximate node centrality and similarity in
Ethereum transaction networks.

Typically, similarity indices are used for link prediction to estimate the likelihood
of a link being present. Basic similarity indices include: Common Neighbors, Jac-
card Index, Adamic-Adar Index, Resource Allocation Index. These indicators are
detailed in Appendix 7.7. Similarly, GCN based methods have shown outstanding
performance in link prediction. However, comparing with similarity-based link pre-

Table 7.2 Performance for link prediction with 128 dimensional embeddings. The best results
are marked in bold

EthereumG1 EthereumG2 EthereumG3

Metrics AP AUC AP AUC AP AUC

GF 0.7827 0.6821 0.7377 0.7050 0.7946 0.6662

HOPE 0.7698 0.6578 0.8300 0.7580 0.8714 0.8089

LINE 0.7761 0.7521 0.8627 0.8237 0.6371 0.6370

DeepWalk 0.6159 0.6637 0.6138 0.6307 0.7755 0.8024

Node2vec 0.6877 0.7149 0.6939 0.6990 0.8239 0.8501

TBW 0.8553 0.8700 0.8898 0.8818 0.8622 0.8687

172 Y. Xie et al.

F
ig
.7

.6
Pe

rf
or

m
an

ce
of

li
nk

pr
ed

ic
ti

on
fo

r
di

ff
er

en
t

da
ta

se
ts

w
it

h
va

ry
in

g
di

m
en

si
on

s

7 Understanding Ethereum Transactions via Network Approach 173

Table 7.3 The results of comparison with similarity-based and GCN based methods for link
prediction. The best results are marked in bold

EthereumG1 EthereumG2 EthereumG3

Metrics AP AUC AP AUC AP AUC

CN 0.6907 0.6848 0.5134 0.4921 0.6826 0.6881

Jaccard 0.5088 0.6097 0.4523 0.4588 0.6234 0.6800

AA 0.7367 0.7002 0.5909 0.5099 0.6979 0.6912

RA 0.7378 0.7007 0.5909 0.5099 0.6986 0.6914

GAE 0.7911 0.6752 0.5828 0.3729 0.8703 0.7885

VGAE 0.8179 0.7184 0.6683 0.4719 0.8934 0.8278

TBW 0.8553 0.8700 0.8898 0.8818 0.8622 0.8687

diction methods and GCN based methods, the effectiveness of our proposed method
is yet to be verified. To study the competitiveness of our proposed method, we
conduct experiments of various similarity-based link prediction methods and GCN
based methods with 128-dimensional embeddings. The average precision and AUC
results are presented in Table 7.3. We can observe that TBW achieves consistently
and significantly better performance over similarity-based link prediction methods,
which is reasonable since our method with flexible walking strategies are able to
learn the similarity between nodes more effectively.

7.6 Conclusion

In this chapter, we construct TSSN to retain both temporal and structural informa-
tion of Ethereum transaction network as much as possible and present temporal
biased walk (TBW) to make phishing detection and transaction tracking by lever-
aging embeddings learned from structural properties and temporal information.
Particularly, we transform phishing detection and transaction tracking into node
classification and link prediction from a network perspective. Furthermore, we
implement the proposed embedding method on realistic Ethereum transaction
network for node classification and link prediction with practical relevance. We
compare our method with a number of graph embedding techniques. The experi-
mental results demonstrate the effectiveness of the proposed TBW and indicate that
TSSN can more comprehensively represent the temporal and structural properties
of the Ethereum transaction network.

Though Ethereum transaction records are publicly available, it’s still relatively
unexplored till now. And the effects of our proposed method on other realistic
downstream tasks remain to be verified. For future work, we plan to apply deep
learning methods to expand our methods or extend the current framework to analyze
more illegal activities on Ethereum and create a safe trading environment for
Ethereum.

174 Y. Xie et al.

7.7 Appendix

7.7.1 Similarity Indices

• Common Neighbours (CN)
It is defined as [6]:

sCN
ij = |Γ (i) − Γ (j)|

where Γ (i) denotes the set of neighbors of i and |x| is the cardinality of the set
x. In common sense, two nodes i and j are more likely to have a link if they
have many common neighbors. It is obvious that sij = (A2)ij , where A is the
adjacency matrix: Aij = 1 if i and j are directly connected otherwise Aij = 0.

• Jaccard Index (Jaccard)
It is defined as [41]:

sJaccard
ij = |Γ (i)

⋂
Γ (j)|

|Γ (i)
⋃

Γ (j)|
Jaccard is a classical statistical parameter used to compare the similarity or
diversity of sample sets.

• Adamic-Adar Index (AA)
It is defined as [42]:

sAA
ij =

∑

z∈Γ (i)
⋂

Γ (j)

1

log kz

This index refines the simple counting of common neighbors by assigning the
less-connected neighbors more weight. For example, most individuals may know
a famous man, but they themselves may not know each other.

• Resource Allocation Index (RA)
It is defined as [43]:

sRA
ij =

∑

z∈Γ (i)
⋂

Γ (j)

1

kz

RA index is close to AA, but punish more on their common neighbors of higher
degree and this is motivated by the resource allocation dynamics on complex
networks. In some cases, RA performs better than AA in link prediction.

7 Understanding Ethereum Transactions via Network Approach 175

References

1. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc., Sebastopol (2015)
2. Holub, A., O’Connor, J.: Coinhoarder: tracking a Ukrainian bitcoin phishing ring DNS

style. In: 2018 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–5. IEEE,
Piscataway (2018)

3. Russon, M.A.: Ethereum under siege: scammers make $700000 in 6 days from slack and Reddit
phishing attacks (2017)

4. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. IEEE Commun. Surv.
Tut. 15(4), 2091–2121 (2013)

5. Rossi, R., Neville, J.: Time-evolving relational classification and ensemble methods. In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 1–13. Springer, Berlin
(2012)

6. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl.
390(6), 1150–1170 (2011)

7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
8. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: International

Conference on Financial Cryptography and Data Security, pp. 6–24. Springer, Berlin (2013)
9. Jiang, Z., Liang, J.: Cryptocurrency portfolio management with deep reinforcement learning.

In: 2017 Intelligent Systems Conference (IntelliSys), pp. 905–913. IEEE, Piscataway (2017)
10. Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting Ponzi schemes on

ethereum: Towards healthier blockchain technology. In: Proceedings of the 2018 World Wide
Web Conference, pp. 1409–1418 (2018)

11. Liang, J., Li, L., Zeng, D.: Evolutionary dynamics of cryptocurrency transaction networks: an
empirical study. PLoS One 13(8), e0202202 (2018)

12. Wu, J., Liu, J., Chen, W., Huang, H., Zheng, Z., Zhang, Y.: Detecting mixing services via
mining bitcoin transaction network with hybrid motifs. Preprint. arXiv:2001.05233 (2020)

13. Wu, J., Yuan, Q., Lin, D., You, W., Chen, W., Chen, C., Zheng, Z.: Who are the phishers?
Phishing scam detection on ethereum via network embedding. IEEE Trans. Syst. Man Cyber.
Syst. 1–11 (2020)

14. Yuan, Q., Huang, B., Zhang, J., Wu, J., H. Zhang, Zhang, X.: Detecting phishing scams on
ethereum based on transaction records. In: 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5. IEEE, Piscataway (2020)

15. Wu, J., Lin, D., Zheng, Z., Yuan, Q.: T-edge: temporal weighted multidigraph embedding for
ethereum transaction network analysis. Preprint. arXiv:1905.08038 (2019)

16. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper 151(2014), 1–32 (2014)

17. Weili, C., Zibin, Z.: Blockchain data analysis: a review of status, trends and challenges. J.
Comput. Res. Develop. 55(9), 1853 (2018)

18. Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., Wang, F.-Y.: Blockchain-enabled smart
contracts: architecture, applications, and future trends. IEEE Trans. Syst. Man Cyber. Syst.
49(11), 2266–2277 (2019)

19. Chen, T., Zhu, Y., Li, Z., Chen, J., Li, X., Luo, X., Lin, X., Zhange, X.: Understanding
ethereum via graph analysis. In: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pp. 1484–1492. IEEE, Piscataway (2018)

20. Lin, D., Wu, J., Yuan, Q., Zheng, Z.: Modeling and understanding ethereum transaction records
via a complex network approach. IEEE Trans. Circuits Syst. Express Briefs 67(11), 2737–2741
(2020)

21. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey.
Knowl. Based Syst. 151, 78–94 (2018)

22. Cai, H., Zheng, V.W., Chang, K.C.-C.: A comprehensive survey of graph embedding: Prob-
lems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

176 Y. Xie et al.

23. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed
large-scale natural graph factorization. In: Proceedings of the 22nd International Conference
on World Wide Web, pp. 37–48 (2013)

24. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embed-
ding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1105–1114 (2016)

25. Van Loan, C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13(1),
76–83 (1976)

26. Newman, M.E.J.: A measure of betweenness centrality based on random walks. Soc. Net.
27(1), 39–54 (2005)

27. Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE Trans.
Knowl. Data Eng. 19(3), 355–369 (2007)

28. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in
vector space. Preprint. arXiv:1301.3781 (2013)

29. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 701–710 (2014)

30. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 855–864 (2016)

31. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1225–1234 (2016)

32. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 16, pp. 1145–1152 (2016)

33. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In:
International Conference on Machine Learning, pp. 2014–2023 (2016)

34. Kipf, T.N., Welling, M.: Variational graph auto-encoders. Preprint. arXiv:1611.07308 (2016)
35. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information

network embedding. In: Proceedings of the 24th International Conference on World Wide Web,
pp. 1067–1077 (2015)

36. Chen, J., Wu, Y., Xu, X., Zheng, H., Ruan, Z., Xuan, Q.: Pso-ane: adaptive network embedding
with particle swarm optimization. IEEE Trans. Comput. Soc. Syst. 6(4), 649–659 (2019)

37. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and
applications. Preprint. arXiv:1709.05584 (2017)

38. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information Processing
Systems, pp. 3111–3119 (2013)

39. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, Berlin (2010)

40. Conti, M., Kumar, E.S., Lal, C., Ruj, S.: A survey on security and privacy issues of bitcoin.
IEEE Commun. Surv. Tutorials 20(4), 3416–3452 (2018)

41. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura.
Bull. Soc. Vaudoise Sci. Nat. 37, 547–579 (1901)

42. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)
43. Zhou, T., L. Lü, Zhang, Y.-C.: Predicting missing links via local information. Euro. Phys. J. B

71(4), 623–630 (2009)

Chapter 8
Find Your Meal Pal: A Case Study
on Yelp Network

Jian Zhang, Jie Xia, Laijian Li, Binda Shen, Jinhuan Wang, and Qi Xuan

Abstract Yelp is an online website for reviewing restaurants, stores and so on.
Users can grade restaurants and share their dining experiences through text and
photos. Along with the social relationships between users, Yelp enables a recom-
mendation engine to make precise restaurants recommendations, which improves
the user experience of the website and promote the revenues of restaurants. In this
chapter, we focus on the Yelp friend network to make friends recommendation
through random forest (RF) and variational graph auto-encoder (VGAE). The
former method assembles multiple handcraft node similarity indices while the
latter one could automatically learn network structural features. Moreover, we
construct a co-foraging network to analyze the co-foraging patterns on Yelp and
recommend potential meal pals to users. The experiments show the effectiveness of
the recommendation methods and reveal the possibility of applying link prediction
approaches to Yelp data analysis.

8.1 Introduction

Founded in 2004, Yelp1 is a website where users grade restaurants and share
dining experiences. Not only limited to restaurants’ information, Yelp also offers the
information of shopping centers, hotels and tourist attractions, covering the major
aspects of daily life. More than 178 millions visitors per month across different

1https://www.yelp.com.

J. Zhang · J. Wang · Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

J. Xia · L. Li · B. Shen
College of Information Engineering, Zhejiang University of Technology, Hangzhou, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_8

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_8&domain=pdf
https://www.yelp.com
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_8

178 J. Zhang et al.

platforms and 184 million reviews worldwide make Yelp the 44th most visited
website in the US based on the data collected by Alexa. Customers give ratings and
detailed reviews to businesses according to their own offline experiences, helping
other users to make decisions based on their preferences. And businesses could
present their features like special flavors on the website to attract more customers.
Connecting users and local businesses, many other websites, such as Foursquare,
UrbanSpoon and Dianping, also offer similar services.

The website, Yelp.com, is enriched with data of the basic information of busi-
nesses as well as users, including reviews of businesses and interactions between
users. Motivated by such numerous data, Yelp enables a recommendation engine
to aid users to find their preferred services and promote the sales of registered
merchants. Moreover, Yelp itself has held 12 rounds of competitions, namely Yelp
Dataset Challenge, to encourage researchers to make academic contributions. A
bunch of researches have been carried out on Yelp dataset and many of them focus
on the reviews. Yang et al. [1] find the length and readability of a textual review
affect its usefulness and the aspects of a graphical review have a positive influence
on its enjoyment. And Huang et al. [2] propose to improve restaurants according the
subtopics of their reviews.

Apart from diverse text and image data, the interactions between users as well
as the interactions between users and restaurants are also valuable. By modeling
the interactions as different networks, network analysis techniques could be applied
in various applications. Cervellini et al. [3] propose to find trendsetters on Yelp by
ranking the nodes in the Yelp social network. Trendsetters are those who reviewed
restaurants before they reach their peak popularity [4]. They have great influence
on their friends and thus making the identification of trendsetters contribute to the
popularity of restaurants. Not limited to friendship networks, there are various kinds
of networks modeling different kinds of relations. Using the geographical data of
restaurant reviews, Xuan et al. [5] construct a geographical foraging network and
a taste foraging network which could characterize a patron’s foraging behaviors.
And Fu et al. [6] model the friendship and co-foraging behaviors of users as a
two-layer network and infer the possibility whether two users will have meals
together. If restaurants, reviews, ratings and locations are also considered as nodes,
the complex relationships between different kinds of entities could be modeled as
a heterogeneous network. Meta-Path [7] is then proposed to make personalized
recommendation.

In fact, making recommendations on Yelp can be considered as predicting links
between two entities. In this chapter, we focus on two networks, a friendship
network and a co-foraging network, to make friends and meal pals recommendations
in the way of link prediction. As we have briefly reviewed in Chap. 2, link
prediction could be achieved by similarity index-based methods [8] and random
walk-based approaches [9]. And newly emerged graph neural networks [10–12]
are also applicable to solve the problem. In the experiments, we assembles 11
similarity indices by random forest (RF) to predict links in the above two networks.
Also, we compare its performance with different link prediction methods, including
node2vec, variational graph auto-encoder (VGAE) and hyper-substructure enhanced

8 Find Your Meal Pal: A Case Study on Yelp Network 179

link predictor (HELP) introduced in Chap. 2. And due to the interpretability of RF,
we then further investigate into the importance of each similarity index to compare
the effectiveness of different indices. The results presented in Sect. 8.4 prove the
practicability of link prediction in making recommendation on Yelp dataset.

In the following of the chapter, we first give a detailed description of Yelp dataset
and the construction of networks in Sect. 8.2. In Sect. 8.3, we introduce the link
prediction methods used in this chapter. And the experiments of friends and meal
pals recommendation are presented in Sect. 8.4. We conclude the chapter with future
works in Sect. 8.6.

8.2 Data Description and Preprocessing

On Yelp, each restaurant is advertised with its name, location, contact information
and opening hours. And each one comes with several tags to show their features
and an average score denoted by stars which reflects the quality of food and service.
The average score is based on all the reviews given by customers. The merchants
may also highlight some useful information on their pages. In Fig. 8.1, a restaurant
named Milk Jar Cookies is tagged with Desserts, Bakeries and Coffee & Tea. And
it has 4.5 stars and 1,575 reviews in total.

As for the reviews, they are posted by customers right on the pages of restaurants.
Figure 8.2 gives an example review of Milk Jar Cookies. The review contains a
detailed description of the corresponding consumer’s experience. The text detailedly
describes the reviewer’s feeling about the food and the services. Also, a rating
denoted by stars is given to the restaurant. Along with the text, the reviewer may
also attach several pictures of the surroundings and the food of the restaurant. Other
users interested in the restaurant could have a better knowledge about the restaurant
based on the review, not just based on the information provided by the restaurant.
And they would tag the review with Useful, Funny or Cool according to the content
of the review. Apart from the information of restaurants and the reviews, the profiles
of users and their social relationships are also provided on Yelp. And the friendships
between users are what we focus on here.

Fig. 8.1 An overview of a restaurant on Yelp

180 J. Zhang et al.

Fig. 8.2 An example review on Yelp

We extract the data published by Yelp Dataset Challenge2 which contains part of
the businesses, reviews, and user data on Yelp. In more than six million friendship
records, we filter out the users with fewer than 50 history reviews and 500 friends to
avoid the affection of inactive users. Then we sample part of the users by breadth-
first search and construct an undirected and unweighted network as an example
network in this chapter. The final friend network, denoted as Gf , consists of 4030
users connected by 37,493 edges which is visualized in Fig. 8.3.

Based on the friendship network, we further construct a foraging network whose
edges represent the co-foraging behavior between the users in Gf . We collect all the
31,959 restaurants that the 4,030 users have ever reviewed. With the assumption that
the users who are geographically close are more likely to have meals together, we
adopt the density-based spatial clustering of applications with noise (DBSCAN) to
divide those restaurants into 11 clusters according to their longitudes and latitudes.
Within each cluster, we further divide the restaurants by K-means to ensure that the
restaurants within a cluster are geographically close to each other. Finally we get
71 clusters of restaurants. Given two users u and v, they are connected if they are
friends in Gf and have ever reviewed at least 10 restaurants in one cluster. It is more
reasonable to recommend meal pals within a patron’s friends. In this way, we obtain

2https://www.yelp.com/dataset.

https://www.yelp.com/dataset

8 Find Your Meal Pal: A Case Study on Yelp Network 181

Fig. 8.3 The friendship network of 4030 users on Yelp

the Yelp co-foraging network, denoted by Gc. Apparently, Gc is a subgraph of Gf

but the edges have different meanings. Gc consists of 4,030 nodes and 13,014 edges
in total.

8.3 Link Prediction Methods

In this section, we briefly introduce the methods we adopt on the Yelp dataset.
Apart from the similarity index-based methods and node2vec we have reviewed
in previous chapters, we propose to use assemble a plenty of similarity indices to
perform link prediction. Also, we use VGAE and HELP to present the application
of link prediction on Yelp dataset.

8.3.1 Similarity Indices Assembly

As we have introduced in previous chapters, local/global similarity indices could be
used to infer potential links. For example, we could justify whether there is a link
between two users according to the common friends they have. In this chapter, we

182 J. Zhang et al.

Table 8.1 The definition of similarity indices

Similarity index Definition

Common Neighbors (CN) sCN
ij = |Γ (i) ∩ Γ (j)|

Salton Index (SA) sSA
ij = |Γ (i)∩Γ (j)|√

ki×kj

Jaccard Index (JAC) sJAC
ij = |Γ (i)∩Γ (j)|

|Γ (i)∪Γ (j)|
Hub Promoted Index (HPI) sHPI

ij = |Γ (i)∩Γ (j)|√
ki×kj

Hub Depressed Index (HDI) sHDI
ij = |Γ (i)∩Γ (j)|

max(ki×kj)

SΦrensen Index (SI) sSI
ij = |Γ (i)∩Γ (j)|

ki+kj

Leicht-Holme-Newman Index (LHN) sLHN
ij = |Γ (i)∩Γ (j)|

ki×kj

Adamic-Adar Index (AA) sAA
ij = ∑

z∈Γ (i)∩Γ (j)
1

log(kz)

Resource Allocation Index (RA) sAA
ij = ∑

z∈Γ (i)∩Γ (j)
1
kz

Preferential Attachment Index (PA) sPA
ij = ki × kj

Friends-Measure (FM) sFM
ij = ∑

u∈Γ i

∑
v∈Γ (j) δ(u, v)

Local Path Index (LP) sLP
ij = (A2)ij + ε(A3)ij

assembles several similarity indices and adopt random forest to infer the linkage
status. In detail, the similarity indices we use are listed in Table 8.1. Given a
network, we first calculate the 11 similarity indices for each node pair and then
concatenate them together into one vector as the features of corresponding node
pair. Afterwards, we adopt the RF model which assembles the 11 similarity indices
to perform link prediction.

8.3.2 Variational Graph Auto-Encoder

Variational Graph Auto-Encoder [13] automatically learns network structures with-
out pre-defined heuristics. Different from auto-encoder, it regularizes the distri-
bution of the hidden representations and then generates data from the estimated
distribution instead of reconstructing directly from the hidden features. With the
assumption that the hidden representations of the network subject to Gauss distribu-
tion, VGAE first encodes the input network into lower dimensional representations
by applying GCN and then learns the distribution, μ and σ , of the network. μ

and σ are the mean and standard variance matrices of the hidden representations,
respectively. Mathematically, the process could be modeled as

h = GCN(X,A),

μ = GCNμ(h,A),

logσ = GCNσ (h,A),

(8.1)

8 Find Your Meal Pal: A Case Study on Yelp Network 183

where A ∈ R
N×N is the adjacent matrix of the network consisting of N nodes and

X ∈ R
N×D denotes the node feature matrix in which the node feature dimension

is D. After obtaining the distribution, VGAE draws feature vectors, denoted by Z,
fromN (μ, σ 2). Z is regarded as the embeddings of the network in low dimensional
space. Finally, the network is constructed by

Â = sigmoid(ZZT). (8.2)

The model is optimized with a cross-entropy loss to ensure the prediction accuracy
and Kullback-Leibler divergence to keep the embeddings obeying Gaussian distri-
bution. The total objective function is defined as

Ltotal = Lc − KL(Z,Zn)

= log(sigmoid(Âij)) −
∑

i

∑

j

Zij log(
Zij

Zn
ij

),
(8.3)

where Zn is the noise drew from N (0, 1).

8.4 Experiments

8.5 Experiment Setup

We adopt the two methods introduced in Sect. 8.3 as well as HELP proposed in
Chap. 2 to make friends and meal pals recommendations on Yelp dataset. Also, we
would like to compare the performance of those methods with similarity index-
based methods and node2vec. For node2vec, we set the embedding dimension to
128 and the hyper-parameters, p and q , are obtained through gird search over
{0.50, 0.75, 1.00, 1.25, 1.50}. For VGAE, the number of units of the first GCN layer
is 128 and the number of units of GCNμ and GCNσ are set as 64. The learning rate
is set as 0.01 and the training iteration is taken as 200. And we set the number of
neighbors of HELP as 35.

8.5.1 Friends Recommendation

Modeling the friendship on Yelp as a network, we regard the friends recommenda-
tion problem as a case of link prediction. We randomly remove a certain number of
edges in the network which are considered as the potential friendship and the rest
of the edges are used for training models. Tables 8.2 and 8.3 report the performance
of the 9 link prediction methods on Yelp friendship network. All the methods

184 J. Zhang et al.

Table 8.2 The performance of friends recommendation with respect to AUC (The best results are
in bold.)

40% 50% 60% 70% 80% 90%

CN 0.6769 0.8252 0.7642 0.7962 0.8230 0.8406

SA 0.6728 0.7254 0.7568 0.7891 0.8174 0.8228

AC 0.6748 0.7238 0.7612 0.7886 0.8162 0.8312

HPI 0.7903 0.8067 0.8122 0.8239 0.8351 0.8363

HDI 0.8126 0.8142 0.8188 0.8238 0.8266 0.8212

SI 0.8185 0.8312 0.8346 0.8401 0.8435 0.8379

LHN 0.8393 0.8426 0.8430 0.8492 0.8523 0.8473

AA 0.6728 0.7260 0.7628 0.7980 0.8189 0.8438

RA 0.6719 0.7279 0.7650 0.7992 0.8256 0.8314

FM 0.6744 0.7261 0.7646 0.7955 0.8233 0.8445

LP 0.8052 0.8434 0.8639 0.8846 0.8990 0.9091

RF 0.8000 0.8446 0.8686 0.8867 0.9000 0.9015

N2V 0.8604 0.8732 0.8845 0.8965 0.9057 0.9078

VGAE 0.8900 0.9262 0.9144 0.9031 0.9062 0.8986

HELP 0.8801 0.9016 0.9178 0.9289 0.9350 0.9396

Table 8.3 The performance of friends recommendation with respect to AP (The best results are
in bold.)

40% 50% 60% 70% 80% 90%

CN 0.6750 0.7227 0.7610 0.7944 0.8209 0.8388

SA 0.6566 0.7044 0.7334 0.7668 0.7942 0.8102

JAC 0.6612 0.7047 0.7415 0.7689 0.7922 0.8144

HPI 0.7859 0.8059 0.8135 0.8277 0.8390 0.8446

HDI 0.8004 0.8045 0.8096 0.8157 0.8196 0.8131

SI 0.8220 0.8271 0.8305 0.8369 0.8409 0.8350

LHN 0.8412 0.8462 0.8446 0.8508 0.8554 0.8499

AA 0.6703 0.7243 0.7622 0.7982 0.8190 0.8443

RA 0.6707 0.7284 0.7663 0.8008 0.8246 0.8330

FM 0.6750 0.7273 0.7647 0.7955 0.8215 0.8436

LP 0.8041 0.8438 0.8652 0.8865 0.8994 0.9131

RF 0.7989 0.8452 0.8691 0.8863 0.9032 0.9037

N2V 0.8738 0.8835 0.8921 0.9032 0.9169 0.9141

VGAE 0.9082 0.9464 0.9344 0.9283 0.9213 0.9201

HELP 0.9020 0.9189 0.9321 0.9410 0.9451 0.9497

have relatively good performance when 90% edges are used for training. Not
surprisingly, similarity index-based methods are not competitive as random walk-
based approaches and deep learning models due to the lack of higher order network
structures. Though RF assembles 11 similarity indices and improve the performance
compared with single similarity index, it is still not as good as N2V, VGAE and
HELP, especially when only a small number of edges are used for training. Further,

8 Find Your Meal Pal: A Case Study on Yelp Network 185

Fig. 8.4 Similarity index importance of Gf in RF model

the performance of all the methods improves as the amount of training edges
gets larger. The improvement is particularly obvious in the similarity index-based
methods while the performance of N2V, VGAE and HELP is relatively stable.
Again, it proves the effectiveness of the threes methods. And we find that VGAE
performs better than HELP when the percentage of training edges is smaller than
50% while HELP has better performance than VGAE when the amount of training
edges increases. We argue that HELP needs more neighbor nodes to construct hyper-
substructure network in sparser network. However, VGAE learns network structure
features over the whole network and thus do not suffer the problem. When 90% of
edges are used for training, the ability of network feature characterization enables
HELP to outperforms other methods.

Besides the comparison of link prediction performance, we also investigate into
the importance of the 11 similarity indices assembled by RF to see which similarity
index matters the most. Figure 8.4 shows that LP is of the most significance in the
prediction of links in Gf and it is also the most effective similarity index. And we
find that FM which has poor performance but is the second major features in RF
model, indicating that it is complementary to LP to certain extent.

8.5.2 Co-foraging Prediction

In this experiment, we investigate into the Yelp co-foraging network Gc to make
meal pals recommendation. The same methods are adopted as we does in Sect. 8.5.1.
As is shown in Tables 8.4 and 8.5, the similarity index-based methods are still not
so effective but SA ranks the top in the link prediction of Gc. Yet, LP weights the
most in the similarity indices assembly and SA takes the second place, which is
recorded in Fig. 8.5. It is surprising to find that the performance of VGAE drops
compared with other methods and RF performs the best under some circumstances.
It might be due to that the change of network structures enhances the functionality

186 J. Zhang et al.

Table 8.4 The performance of co-foraging prediction with respect to AUC (The best results are
in bold.)

40% 50% 60% 70% 80% 90%

CN 0.6619 0.7266 0.7642 0.7756 0.8007 0.8636

SA 0.8970 0.9064 0.7568 0.9112 0.9053 0.9117

JAC 0.8679 0.8737 0.7612 0.8775 0.8725 0.8777

HPI 0.8586 0.8687 0.8842 0.8882 0.8942 0.9025

HDI 0.8526 0.8583 0.8571 0.8562 0.8504 0.8621

SI 0.8744 0.8776 0.7720 0.8763 0.8713 0.8821

LHN 0.8975 0.9011 0.9028 0.9034 0.9003 0.9069

AA 0.6649 0.7306 0.7628 0.7719 0.8041 0.8539

RA 0.6676 0.7282 0.7650 0.7764 0.8032 0.8392

FM 0.6682 0.7265 0.7705 0.8020 0.8020 0.8479

LP 0.8045 0.8529 0.8748 0.8950 0.8950 0.9078

RF 0.9150 0.9254 0.8686 0.9296 0.9379 0.9431

N2V 0.8880 0.9032 0.8845 0.9085 0.9221 0.9328

VGAE 0.7933 0.8242 0.9144 0.8557 0.8772 0.8954

HELP 0.9146 0.9254 0.9178 0.9335 0.9412 0.9497

Table 8.5 The performance of co-foraging prediction with respect to AP (The best results are in
bold.)

40% 50% 60% 70% 80% 90%

CN 0.6610 0.7249 0.7746 0.7995 0.8300 0.8626

SA 0.8954 0.9052 0.9107 0.9082 0.9183 0.9161

JAC 0.8550 0.8668 0.8699 0.8654 0.8747 0.8753

HPI 0.8384 0.8545 0.8735 0.8790 0.8860 0.8967

HDI 0.8526 0.8429 0.8458 0.8441 0.8387 0.8557

SI 0.8744 0.8679 0.8703 0.8693 0.8648 0.8794

LHN 0.8975 0.8978 0.9015 0.9001 0.8986 0.9053

AA 0.6628 0.7294 0.7709 0.8038 0.8249 0.8534

RA 0.6680 0.7284 0.7764 0.8031 0.8346 0.8414

FM 0.6682 0.7273 0.7714 0.8000 0.8347 0.8484

LP 0.8045 0.8521 0.8751 0.8943 0.9077 0.9086

RF 0.9218 0.9306 0.9372 0.9461 0.9513 0.9508
N2V 0.9022 0.9135 0.9148 0.9250 0.9328 0.9372

VGAE 0.8561 0.8787 0.9002 0.9142 0.9215 0.9265

HELP 0.8959 0.9066 0.9163 0.9273 0.9332 0.9376

of specific similarity indices like SA and LHN. The two indices weight more in the
link prediction in Gc compared with their importance in the link prediction in Gf .

Assembling similarity indices, RF is not only effective but also explainable.
Unlike VGAE and HELP which could not account for the prediction results, RF
is able to interpret why the model makes such a decision.

8 Find Your Meal Pal: A Case Study on Yelp Network 187

Fig. 8.5 Similarity index importance of Gc in RF model

8.6 Conclusion

In this chapter, we present the application of link prediction on Yelp friendship
network and co-foraging network. The results show that network analysis has
great potential in dealing with social commerce data. Friends and meal pals
recommendation could improve the user experience and engagement of Yelp and
thus leads to the promotion of revenues of the website and even the restaurants.
Introducing network analysis techniques into recommendation on websites like Yelp
has broad technical prospect and of high commercial value. In this basic application,
we mainly use the network structures to make link prediction. Many other attributes
like the reviews and users’ profile s could also be integrated into the methods we
present in Sect. 8.3, which may lead to better performance. And modeling Yelp as a
heterogeneous network or a temporal network may be a more proper way to analyze
such daedal data, which could be further studied in future works.

References

1. Yang, S.B., Hlee, S., Lee, J., Koo, C.: An empirical examination of online restaurantreviews on
yelp.com: A dual coding theory perspective. International Journal of Contemporary Hospitality
Management, Emerald Publishing Limited (2017)

2. Huang, J., Rogers, S., Joo, E.: Improving restaurants by extracting subtopics from yelp reviews.
In: iConference 2014 (Social Media Expo) (2014)

3. Cervellini, P., Menezes, A.G., Mago, V.K.: Finding trendsetters on yelp dataset. In: 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE, Piscataway (2016)

4. Sáez-Trumper, D., et al.: Finding relevant people in online social networks. Ph.D. Thesis,
Universitat Pompeu Fabra (2014)

5. Xuan, Q., Zhou, M., Zhang, Z.Y., Fu, C., Xiang, Y., Wu, Z., Filkov, V.: Modern food foraging
patterns: geography and cuisine choices of restaurant patrons on yelp. IEEE Trans. Comput.
Soc. Syst. 5(2), 508–517 (2018)

188 J. Zhang et al.

6. Fu, C., Zhao, M., Fan, L., Chen, X., Chen, J., Wu, Z., Xia, Y., Xuan, Q.: Link weight prediction
using supervised learning methods and its application to yelp layered network. IEEE Trans.
Knowl. Data Eng. 30(8), 1507–1518 (2018)

7. Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han, J.: Personalized
entity recommendation: A heterogeneous information network approach. In: Proceedings of
the 7th ACM International Conference on Web Search and Data Mining, pp. 283–292 (2014)

8. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A Stat. Mech. Appl.
390(6), 1150–1170 (2011)

9. Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data
Eng. 31(5), 833–852 (2018)

10. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Proceedings of 32nd
NeurIPS, pp. 5171–5181 (2018)

11. Salha, G., Limnios, S., Hennequin, R., Tran, V.A., Vazirgiannis, M.: Gravity-inspired graph
autoencoders for directed link prediction. In: Proceedings of the 28th CIKM, pp. 589–598
(2019)

12. Zhang, J., Zheng, J., Chen, J., Xuan, Q.: Hyper-substructure enhanced link predictor. In:
Proceedings of the 29th ACM International Conference on Information & Knowledge Man-
agement, pp. 2305–2308 (2020)

13. Kipf, T.N., Welling, M.: Variational graph auto-encoders. Preprint. arXiv:1611.07308 (2016)

Chapter 9
Graph Convolutional Recurrent Neural
Networks: A Deep Learning Framework
for Traffic Prediction

Dongwei Xu, Hongwei Dai, and Qi Xuan

Abstract Road traffic state prediction is a challenging task for urban traffic control
and guidance due to the complicated spatial dependencies on the roadway network
and the time-varying traffic flow data. In this work, a novel traffic flow prediction
method named the graph convolutional recurrent neural network (GCRNN) is
proposed to tackle this challenge. First, we address the problem on a graph and
build the model with graph embedding techniques. Second, the proposed model
employs the GCN model to learn the interactions of the roadways to capture the
spatial dependence and uses the long short-term memory (LSTM) neural network
(NN) to learn dynamic changes of traffic data to capture temporal dependence. An
experiment is conducted on a Hangzhou transportation network with several typical
intersections under the Sydney coordinated adaptive traffic system (SCATS), the
results of which indicate that our model yields excellent performance in terms of
different prediction error measures.

9.1 Background

Accurate traffic prediction is a key part of an advanced traffic management system
because traffic conditions have direct effects on the sustainable development of
modern cities[1, 2]. For example, traffic congestion is usually resulted from the
gathering of people and influences the outdoor activities. Therefore, high-accuracy
traffic prediction can help control a serious of traffic accidents in advance[3, 4].
Thus, the Sydney Coordinated Adaptive Traffic System (SCATS) is widely used in
the world, and the efficient prediction of traffic flow has received much attention.

Traffic data contain spatial location and temporal dynamics information. Since
a road’s traffic data is influenced by its upstream and downstream roadways, we

D. Xu, H. Dai, Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_9

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_9&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_9

190 D. Xu et al.

need to consider spatial factor into traffic prediction. In addition, traffic data at a
certain time is dependent on the traffic state during the previous and the latter time
interval. Thus traffic data have spatiotemporal correlation, and traffic prediction has
spatiotemporal characteristics.

Traffic state prediction has been studied for decades. There are quite many
approaches for traffic state prediction. Statistical models, such as autoregressive
integrate moving average (ARIMA) model[5], Kalman filter (KF)[6], and their
variants[7–9], have been applied to predict future traffic flow based on previously
observed values using time-series analysis.

However, the traditional statistical models typically depend on the assumption
of stationary, which cannot fit the nonstationary and uncertainty characteristics of
traffic data. In comparison with the statistical models, machine learning models are
free of assumptions on traffic data distribution and only require enough traffic data
to learn the regularity automatically. The common machine learning models include
Bayesian networks model[10], k-nearest neighbor (KNN) algorithm[11–15], and
support vector machine (SVM) model[16, 17], all of which yield good prediction
results.

Recently, with the rapid development of deep learning, the deep neural network
models have been applied widely and successfully to predict traffic flow, such as
deep belief networks (DBNs)[18], stacked autoencoders (SAEs)[19], convolutional
neural networks (CNNs)[20, 21], and recurrent neural networks (RNNs)[22–24],
which have been proven to be efficient in traffic flow prediction. Till date, CNNs are
effective in recognizing spatial patterns. The RNNs and its variants (long short-term
memory (LSTM)[22] and the gated recurrent unit (GRU)[25]) can capture nonlinear
traffic dynamics effectively and learn temporal dependence well.

However, there are some limitations in the existing traffic prediction methods for
urban road networks. (1) In the process of traffic prediction, temporal-spatial cor-
relation is an important factor that has to be considered. Temporal correlations[26]
denote the correlations between the current traffic state and past traffic state with
a temporal span, whereas spatial correlations mean the correlations of the selected
road segment and those of its upstream and downstream road segments at the same
time interval. Thus, we must take full advantage of spatial features. (2) For traffic
state prediction, traffic flow data are obtained from the loop detectors. The loop
detector is a device that identifies the passing or presence of a vehicle. However,
road traffic state prediction for urban road networks needs specific traffic flow data.
In the SCATS, the obtainable information is the traffic flow at the entrance[27] of
each roadway in the intersections, rather than the traffic flows of the road segments,
which makes the traditional traffic flow prediction of an urban road network difficult
to achieve.

In this chapter, to overcome the shortage of methods mentioned above, we
represent the traffic network as a graph and take the topology of the road network
into account. This paper proposes a novel scheme, named the graph convolutional
recurrent neural network (GCRNN), to model the dynamics of the traffic flow and
make the prediction more accurate. The contributions of this work mainly include
the following points:

9 Graph Convolutional Recurrent Neural Networks: A Deep Learning. . . 191

• A complex network of the urban road network is constructed based on a directed
weighted network, which can make full use of the data collected from the loop
detectors of the SCATS and obtain more useful information of the intersections.

• GCRNN uses the graph convolutional network(GCN) model to learn structural
regularities presented within convolution operation and builds robust representa-
tions which are suitable for capture spatial features.

• The LSTM neural network is used to learn dynamic temporal dependencies
presented in traffic data based on vector representations we learned.

• We evaluate our scheme using the traffic data of Hangzhou. The experimental
results demonstrate the advantages of the new scheme that we proposed com-
pared with other baselines.

9.2 Related Work

9.2.1 Graph Analysis

Graphs have been used to represent information in various areas including
biology[28], social sciences[29], and linguistics[30]. Graph analysis are also applied
to traffic domain since traffic networks can be represented by nodes and edges.
Graph-structured data appear frequently in the transportation field. In the road
traffic complex network, the most recent state and the next state of the road traffic
network could be constrained by a certain regulation. Graph embedding can capture
abundant significative information from the complex network. In recent years, the
graph convolutional network (GCN)[31] is popular in traffic field. The GCN model
can tackle the traffic prediction problem because it can learn irregular matrix. The
GCN model uses the convolution operation in the Fourier domain to capture the
topological structure of traffic network.

9.2.2 Traffic State Prediction

Traffic state prediction is a typical time-series prediction problem. The aim of traffic
forecasting is to learn a function h(·) from previous traffic observations to predict
future traffic state. We define a traffic state vector Xt ∈ R

N to represent the traffic
state information of N roadways in the road network at the time step t . Given the
historical time series until time step t , the predicted traffic state can be defined as:

[Xt−T , . . . , Xt−1,Xt]
h(·)−→ X̃t+1, (9.1)

where X̃t+1 represents the predicted value at the next time step, and T is the length
of historical time series.

192 D. Xu et al.

In network-wide traffic prediction, road segments have a series of characteristics
that can be carried by the node in the graph, which often include the average speed,
occupancy, vehicle volume, and so on. Under the SCATS system, only the entrance
roadways have traffic state data. So, a directed road network can be described as
follows:

G = (V ,E,A). (9.2)

where, V = {v1, v2, . . . , vN } is a finite set of nodes, N = |V | is the number of nodes;
E = {ei,j |i, j ∈ N} is the set of edges, ei,j �= ej,i . In this chapter, a node represents
a roadway, and an edge represents that two roadways are connected. A ∈ R

N×N is
an adjacent matrix of the traffic network G. The elements in the adjacent matrix
represent the connectedness of nodes. Ai,j = 1 denotes that there is a roadway
along the driving direction connecting node i and node j , and Ai,j = 0 otherwise.
Specifically, Ai,i = 0.

Thus, the traffic state prediction problem on the road network G can be
formulated as

[Xt−T , . . . , Xt−1,Xt ; G]
h(·)−→ X̃t+1. (9.3)

9.3 Model

To capture the spatial and temporal dependencies from traffic data jointly, we
propose a graph convolutional recurrent neural network (GCRNN) model that
combines spatial dependency modeling and temporal dynamics modeling. The
architecture of the proposed model is shown in Fig. 9.1.

In the figure, we take the historical time series {Xt−n, . . . , Xt−1,Xt } and the
adjacent matrix A as input of GCRNN. GCRNN first utilizes GCN to capture spatial
features of network structure from the graph-structural traffic data of each time
step, which can be expressed as f (X,A). f (X,A) denotes the output and d is the
number of hidden layer unit of GCN. Second, the time series with obtained features
[f (Xt−n,A), . . . , f (Xt−1, A), f (Xt ,A)] are fed into the LSTM model to extract
the temporal features. Finally, we get predictions with prediction length T through
a fully connected layer.

9.3.1 Graph Convolutional Network

In the proposed method, we use GCN to capture the spatial features of the road
network. The architecture of GCN is shown in Fig. 9.2. Schematic depiction of
regression task on graph with T input channels and F features map in output layer.

9 Graph Convolutional Recurrent Neural Networks: A Deep Learning. . . 193

Fig. 9.1 The architecture of the proposed model

Fig. 9.2 The architecture of GCN

GCN model constructs a filter in the Fourier domain. The filter operates on each
node and its first-order neighborhood to extract the spatial features.

A multi-layer GCN model with the layer-wise propagation rule is shown as
follow:

H(l+1) = F
(
D̃−1/2ÃD̃−1/2H(l)W(l)

)
, (9.4)

194 D. Xu et al.

where Ã = A+IN is the adjacency matrix with added self-connections; IN ∈ R
N×N

is is an identity matrix; D̃ ∈ R
N×N is the degree matrix, D̃ = ∑

j Ãij ; H(l) is the

output of l layer, H(0) = X ∈ R
N×T ; W(l) is the trainable parameters of that layer;

and F (·) is the activation function such as ReLU.
For example, a 2-layer GCN model can be expressed as:

f (X,A) = F
(
D̃−1/2ÃD̃−1/2ReLU

(
D̃−1/2ÃD̃−1/2XW(0)

)
W(1)

)
. (9.5)

Here, W(0) ∈ R
T ×H is an input-to-hidden weight matrix; W(1) ∈ R

H×F is a
hidden-to-output weight matrix; and H is the hidden units of hidden layer.

In this chapter, we introduce a spectral convolution on graphs defined as the
multiplication of a signal X with a filter gθ =diag(θ) parameterized by θ ∈ R

N in
the Fourier domain[32]. The diag(θ) is the diagonalized matrix given θ . The spectral
graph convolution operation can be defined as

gθ∗G X = UgθU
T X = Udiag (θ) UT X, (9.6)

where ∗G is the spectral graph convolution operator; U is the matrix of eigenvectors

of the normalized graph Laplacian L = IN−D− 1
2 AD− 1

2 = UΛUT , with a diagonal
matrix of its eigenvalues Λ = diag([λ0, λ1, . . . , λN]) ∈ R

N×N ; and UT X being
the graph Fourier transform of X. We can consider gθ as a learnable convolutional
kernel weight. However, the eigenvalue decomposition of the Laplacian matrix is
computationally expensive. Therefore, Chebyshev polynomials apply to solve this
problem:

gθ (Λ) =
K∑

k=0

θkTk

(
Λ̃
)

X, (9.7)

where Λ̃ = 2
λmax

Λ − IN , λmax denotes the largest eigenvalue of L, and θk ∈ R
k×N

is trainable parameter. The recursive definition of the Chebyshev polynomial is
denoted as Tk(x) = 2xTk−1(x) − Tk−2(x), where Tk(L̃) ∈ R

N×N is the Chebyshev
polynomial of order k, T0(x) = 1, and T1(x) = x.

Then the definition of a convolution of a signal X with a filter gθ is shown as:

gθ∗G X =
K∑

k=0

θkTk

(
L̃
)

X, (9.8)

where L̃ = 2
λmax

L − IN . Approximate expansion of Chebyshev polynomials can
solve this formulation corresponding to extract information of surrounding 0 to
(K − 1)th -order neighbors centered on each node in the graph by the convolution
kernel gθ .

9 Graph Convolutional Recurrent Neural Networks: A Deep Learning. . . 195

To reduce the computational complexity, a two-layer GCN model can be defined
by stacking multiple localized graph convolutional layers with only first-order
approximation. We can assume λmax ≈ 2 in scale during training, Eq. 9.5 can be
simplified to:

gθ∗G X ≈ θ0x + θ1 (L − IN) X = θ0x − θ1

(
D− 1

2 AD− 1
2

)
X, (9.9)

where θ0, θ1 are two shared kernel parameters. In order to constrain the number of
parameters further to address overfitting and to minimize the number of operations
per layer, the graph convolution can be expressed as:

gθ∗G X = θ
(
IN + D− 1

2 AD− 1
2

)
X, (9.10)

where θ0, θ1 are replaced by a single parameter θ by letting θ0 = θ1 = θ .
Thus, the output f (X,A) of the GCN model on the spectral convolution on

graphs can be defined as:

f (X,A) = F

(
K∑

k=0

θkTk

(
L̃
)
X

)

. (9.11)

9.3.2 Long Short-Term Memory

With the ability to capture temporal dependencies, the recurrent NN is usually
applied in time-series analysis. RNNs were initially used for language models,
due to its ability to memorize long-term dependencies. When time lags increase,
gradients of RNNs may vanish through unfolding RNNs into very deep feed forward
neural networks. To address the gradient vanishing problem, a representative variant
of RNNs, like LSTM[33], is designed to give the memory cells ability to determine
when to forget certain information, thus determining the optimal time lags.

The LSTM neural network has a complex structure named LSTM cell in its
hidden layer. The architecture of the LSTM model is shown in Fig. 9.3. A typical
LSTM cell is composed mainly of three gates, namely, input gate, forget gate, and
output gate, which control the information flow through the cell and the neural
network. Input gate takes a new input point from outside and processes newly
coming data. Memory cell gets input from the output of the LSTM cell in the last
iteration. Forget gate decides when to forget the output results and thus selects the
optimal time lag for the input sequence. At time t , the input historical traffic state is
Xt ∈ R

N , the hidden layer output is ht and its former output is ht−1, the cell input
state is c̃t , and the output state is ct and its former state is ct−1. The states of the
three gates are it , ft , and ot . The input gate can determine how many new candidate
cell can be added to the cell state.

196 D. Xu et al.

Fig. 9.3 The architecture of LSTM

The structure of the LSTM cell indicates that both ct and ht are transmitted to the
next neural network. The calculation procedures of ct and ht are shown as follows:

it = σ (WiXt + Uiht−1 + bi) , (9.12)

ft = σ
(
Wf Xt + Uf ht−1 + bf

)
, (9.13)

c̃t = tanh (WcXt + Ucht−1 + bc) , (9.14)

ct = ft # ct−1 + it # c̃t , (9.15)

ot = σ (WoXt + Uoht−1 + bo) , (9.16)

ht = ot # tanh (ct) , (9.17)

where Wi , Wf and Wo are weight matrices of the input gate, the forget gate and
the output gate, respectively; Ui , Uf and Uo are weight matrices for the preceding
hidden state; bi , bf and bo are their bias vectors; σ(·) denotes the activation function
of the gate; and # stands for the scalar product of two vectors or matrices.

9 Graph Convolutional Recurrent Neural Networks: A Deep Learning. . . 197

9.3.3 Graph Convolutional Recurrent Neural Network

In summary, the GCRNN model can deal with the spatial dependence and temporal
dynamics. First, GCN is used to capture the topological structure of the road network
to receive the spatial dependence. The input historical traffic state Xt is fed into the
GCN function, and the output f (Xt ,A) ∈ R

K is shown as:

f (Xt ,A) = F

(
K∑

k=0

θkTk

(
L̃
)
Xt

)

, (9.18)

Second, the LSTM is used to learn the dynamic change from time series to obtain
the temporal dependencies. The calculation process is shown below:

it = σ (Wi · f (Xt ,A) + Uiht−1 + bi) , (9.19)

where f (Xt ,A) is the input of input gate it ∈ [0, 1]; Wi ∈ R
K×d and bi ∈ R

d are
weight matrix and bias vector, respectively; and Ui denotes the weight matrix for
the preceding hidden state.

ft = σ
(
Wf · f (Xt ,A) + Uf ht−1 + bf

)
, (9.20)

where f (Xt ,A) is the input of forget gate ft ∈ [0, 1]; Wf ∈ R
K×d and bf ∈ R

d

are weight matrix and bias vector of forget gate, respectively; and Uf denotes the
weight matrix for the preceding hidden state. The next step is to update the cell state:

c̃t = tanh (Wc · f (Xt ,A) + Ucht−1 + bc) , (9.21)

where f (Xt ,A) is the input of new cell state c̃t ; Wc ∈ R
K×d and bc ∈ R

d are
weight matrix and bias vector of forget gate; and Uc denotes the weight matrix
for the preceding hidden state. The cell state ct can be updated by the forget gate
ft ∈ [0, 1], the input gate it ∈ [0, 1] and the candidate cell c̃t ∈ [−1, 1].

ct = ft # ct−1 + it # c̃t , (9.22)

The updated cell layer information can not only have long-term information, but
also selectively filter out some useless information. The output gate ot can decide

198 D. Xu et al.

what information can be the output:

ot = σ (Wo · f (Xt ,A) + Uoht−1 + bo) , (9.23)

ht = ot # tanh (ct) , (9.24)

where f (Xt ,A) is the input of output gate at time t ; Wo ∈ R
K×d and bo ∈ R

d are
weight matrix and bias vector of forget gate; and Uo denotes the weight matrix for
the preceding hidden state, and ht ∈ R

d is the output of the LSTM model which
contains the spatiotemporal information at time t .

Finally, the output vectors of the GCRNN are used as the input into the fully
connected layer to realize the traffic prediction as shown below:

X̃t+1 = σ
(
Wf cht + bf c

)
, (9.25)

where X̃t+1 are the prediction results corresponding to N nodes; Wf c ∈ R
d×N and

bf c ∈ R
N are weight matrix and bias vector of fully connected network for linear

transformation, respectively; and σ(·) denotes the sigmoid function in this chapter.
In the training process, the goal is to minimize the error between the true values

and the predicted values. The loss during the training process is defined as:

Loss = L
(
Yt , Ỹt

)
=

M∑

t=1

(
Yt − Ỹt

)2
, (9.26)

where L(·) is a loss function to calculate the error between Yt and Ỹt ; Yt and Ỹt

are represent the true traffic data and the predicted data, respectively; Yt = Xt+1,
Ỹt = X̃t+1; and M is the number of time samples. In this chapter, we use the mean
square error (MSE) as the loss function.

9.4 Experiment

9.4.1 Dataset

In this study, the dataset was obtained from the SCATS of 17 intersections in
Hangzhou. The map of these intersections (red) is shown in the left of Fig. 9.4.
We numbered the road segments of the selected intersections. The spatial topology
of the road network is shown in the right of Fig. 9.4. The traffic volume data are
extracted from June 1 to 30, 2017 for this experiment. The collected dataset is
divided into the training set (80% of the overall data) and the testing set (the
remaining data). The time horizon of records is 00:00–24:00, and the traffic state
data collection interval is 15 min. So a roadway has 96 data points per day.

9 Graph Convolutional Recurrent Neural Networks: A Deep Learning. . . 199

Fig. 9.4 Left: The map of the selected intersections (red). Right: The spatial topology of the road
network based on the selected area

9.4.2 Baselines

In this subsection, the proposed model is compared with the following models: (1)
KNN: k-nearest neighbors, (2) FNN: feed forward neural network, (3) LSTM: long
short-term memory recurrent neural network, and (4) GCN: graph convolutional
network. FNN and LSTM are implemented based on keras, GCN and GCRNN are
built by tensorflow, and KNN is implemented with scikit-learn.

9.4.3 Evaluation

In this experiment, the performances of the proposed and the compared models are
evaluated by two commonly used metrics in traffic prediction, including (1) root
mean squared error (RMSE) and (2) mean absolute error (MAE).

RMSE =
(

1

M

M∑

i=1

(
Yt − Ỹt

)
) 1

2

, (9.27)

MAE = 1

M

M∑

i=1

∣
∣
∣Yt − Ỹt

∣
∣
∣. (9.28)

200 D. Xu et al.

9.4.4 Evaluation

The aforementioned baseline models and the GCRNN model have the same
hyperparameters, such as the batch size, the training epoch, and the learning rate. In
this experiment, we manually adjust and set the batch size to 64, the training epoch
to 100, and the learning rate to 0.001. We set the number of the LSTM layer to 2 and
hidden units d in each layer to 256. All the tests use 60 min as the historical time
window, which means that 4 observed data points are used to predict traffic states in
the next 15 min.

9.4.5 Results of Experiments and Analyses

K is a very important hyperparameter because the K-order Chebyshev polynomial
approximates the graph convolution. Thus, the GCRNN model can utilize the
information of the node which are at the largest K hop from the central node. When
K = 1, only the information of the central node is considered. When K = 2,
the relation of information of the first-order neighbor nodes of the central node are
considered. When K = 3, the information on the first-order neighbor nodes and
second neighbor nodes of the central node are additionally considered. The larger
K is that the more additional structure information from the neighbor nodes of the
central node can be considered, but the computation complexity is greatly increased.
Normally, K is set to 3.

We predict all the roadways and give the comparison between our model and
baselines with metrics RMSE and MAE as shown in Table 9.1.

In our experiment, different number of hidden units d in GCRNN may greatly
affect the prediction performance. To choose the suitable hyperparameter d , we do
experiments with different number of hidden unit and select the optimal value by
comparing the predictions. Generally, the number of hidden units d is selected from
{16, 32, 64, 128, 256, 512}. The result is shown in Table 9.2.

As shown in Table 9.2, the errors reach a minimum when the number is 256. In
practice, the larger N is, the more hidden units we need to use in the model. When
the number of hidden units is more than 256, the prediction precision decreases.
This is mainly because when the hidden units are larger than a certain degree, the

Table 9.1 The prediction
results of the GCRNN model
and other baseline methods

Model RMSE MAE

KNN 15.76 10.20

FNN 14.76 7.05

LSTM 13.73 6.70

GCN 13.76 6.98

GCRNN 12.30 6.46

9 Graph Convolutional Recurrent Neural Networks: A Deep Learning. . . 201

Table 9.2 The prediction
results of the GCRNN model
under different hidden units d

d RMSE MAE

16 14.80 6.96

32 14.70 6.89

64 13.89 6.46

128 12.63 6.32

256 12.30 6.13

512 12.38 6.21

model complexity is increased and as a result, overfitting occurs. Thus, we set the
number of hidden units to 256 in our experiments.

The proposed method outperforms other models with different metrics. The
traditional machine learning algorithm KNN shows the weakness when compared
with other deep learning methods. This is mainly due to the KNN is difficult to
handle complex, nonstationary time series data. Deep learning methods generally
acquires better prediction results than the traditional machine learning models. FNN
does not perform well on forecasting spatial-temporal sequence. The LSTM model
outperforms the KNN method and the FNN method because it can capture the
temporal correlations of traffic flow data. However, the LSTM only considers the
temporal features and ignore the spatial features. The GCN model have a better
performance than the LSTM model, indicating that the spatial features is great
important in traffic flow prediction. However, the GCN only considers the spatial
features and ignore the temporal features. Because network-wide traffic prediction
has the spatial-temporal correlations, the GCRNN model has the lowest RMSE error
and MAE error compare the LSTM method and the GCN method. The GCRNN
model achieve best results, verifying that graph convolution is a reasonable method
to learn the interaction between the roadways in traffic prediction problem.

Figure 9.5 visualizes the predicted traffic flow series and the truth of two
locations selected from the dataset. We can clearly obverse that the GCRNN model
generates smooth prediction and is usually better at predicting the start and the end
of peak hours. Due to the stronger influence between the intersections in the morning
peak and evening rush hours, the increasing volume on a roadway could cause
traffic congestion in other roadways. GCRNN can capture the spatial relationships
of the traffic network. It indicates that our proposed method prefers the peak hours
with the big data and the traffic spatial correlation is not significant in low volume
condition. These results demonstrate the superiority of our GCRNN model over
other baselines, which show promising potential in road traffic state prediction.

9.5 Conclusion

In this study, a GCRNN approach is proposed to tackle the challenge of traffic
flow prediction in the SCATS. We represent the traffic road network as a graph and
employ graph embedding to capture the topological structure of the graph to receive

202 D. Xu et al.

Fig. 9.5 Traffic flow prediction visualization on two randomly selected days

the spatial features, which cannot be accomplished by previously utilized methods.
The LSTM model can get a stable performance in time-series traffic forecasting.
The experimental results demonstrate that the GCRNN model outperforms other
baseline models.

In the future, we will consider the other factors as features, such as weather,
events and periodicity. In addition, more traffic flow theories also can be integrated
into the model.

9 Graph Convolutional Recurrent Neural Networks: A Deep Learning. . . 203

References

1. Xu, D., Dong, H., Jia, L., Qin, Y.: Virtual speed sensors based algorithm for expressway traffic
state estimation. Sci. Chin. Technol. Sci. 55(5), 1381–1390 (2012)

2. Xu, D.-w., Dong, H.-h., Jia, L.-m., Tian, Y.: Road traffic states estimation algorithm based on
matching of regional traffic attracters. J. Central South Univ. 21(5), 2100–2107 (2014)

3. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and
applications. ACM Trans. Intel. Syst. Technol. 5(3), 38 (2014)

4. Xu, D., Dong, H., Li, H., Jia, L., Feng, Y.: The estimation of road traffic states based on
compressive sensing. Transportmetrica B Trans. Dyn. 3(2), 131–152 (2015)

5. Hamed, M.M., Al-Masaeid, H.R., Bani Said, Z.M.: Short-term prediction of traffic volume in
urban arterials. J. Transp. Eng. 121(3), 249–254 (1995)

6. Okutani, I., Stephanedes, Y.J.: Dynamic prediction of traffic volume through kalman filtering
theory. Transp. Res. B Methodol. 18(1), 1–11 (1984)

7. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal arima
process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

8. Guo, J., Huang, W., Williams, B.M.: Adaptive kalman filter approach for stochastic short-term
traffic flow rate prediction and uncertainty quantification. Trans. Res. C Emer. Technol. 43,
50–64 (2014)

9. Xu, D.-w., Wang, Y.-d., Jia, L.-m., Qin, Y., Dong, H.-h.: Real-time road traffic state prediction
based on arima and kalman filter. Front. Inf. Technol. Elect. Eng. 18(2), 287–302 (2017)

10. Fusco, G., Colombaroni, C., Isaenko, N.: Short-term speed predictions exploiting big data on
large urban road networks. Trans. Res. C Emer. Technol. 73, 183–201 (2016)

11. Zhang, Y., Zhang, Y., Haghani, A.: A hybrid short-term traffic flow forecasting method based
on spectral analysis and statistical volatility model. Trans. Res. C Emer. Technol. 43, 65–78
(2014)

12. Cai, P., Wang, Y., Lu, G., Chen, P., Ding, C., Sun, J.: A spatiotemporal correlative k-nearest
neighbor model for short-term traffic multistep forecasting. Trans. Res. C Emer. Technol. 62,
21–34 (2016)

13. Xu, D., Wang, Y., Jia, L., Zhang, G., Guo, H.F.: Real-time road traffic states estimation based on
kernel-KNN matching of road traffic spatial characteristics. Journal of Central South University
23(9), 2453–2464 (2016)

14. Xu, D., Wang, Y., Peng, P., Beilun, S., Deng, Z., Guo, H.: Real-time road traffic state prediction
based on kernel-KNN. Transportmetrica A Trans. Sci. 1–15 (2018)

15. Lin, L., Li, Y., Sadek, A.: A k nearest neighbor based local linear wavelet neural network
model for on-line short-term traffic volume prediction. Procedia. Soc. Behav. Sci. 96, 2066–
2077 (2013)

16. Lin, L., Wang, Q., Sadek, A.W.: Short-term forecasting of traffic volume: evaluating models
based on multiple data sets and data diagnosis measures. Transp. Res. Rec. 2392(1), 40–47
(2013)

17. Castro-Neto, M., Jeong, Y.-S., Jeong, M.-K., Han, L.D.: Online-SVR for short-term traffic flow
prediction under typical and atypical traffic conditions. Exp. Syst. Appl. 36(3), 6164–6173
(2009)

18. Huang, W., Song, G., Hong, H., Xie, K.: Deep architecture for traffic flow prediction: deep
belief networks with multitask learning. IEEE Trans. Intel. Transp. Syst. 15(5), 2191–2201
(2014)

19. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.Y.: Traffic flow prediction with big data: a deep
learning approach. IEEE Trans. Intel. Transp. Syst. 16(2), 865–873 (2015)

20. Ma, X., Dai, Z., He, Z., Ma, J., Wang, Y., Wang, Y.: Learning traffic as images: a deep
convolutional neural network for large-scale transportation network speed prediction. Sensors
17(4), 818 (2017)

21. Liu, Q., Wang, B., Zhu, Y.: Short-term traffic speed forecasting based on attention convolu-
tional neural network for arterials. Comput. Aided Civ. Inf. Eng. 33(11), 999–1016 (2018)

204 D. Xu et al.

22. Ma, X., Tao, Z., Wang, Y., Yu, H., Wang, Y.: Long short-term memory neural network for
traffic speed prediction using remote microwave sensor data. Trans. Res. C Emer. Technol. 54,
187–197 (2015)

23. Van Lint, J.W.C., Hoogendoorn, S.P., van Zuylen, H.J.: Freeway travel time prediction with
state-space neural networks: modeling state-space dynamics with recurrent neural networks.
Transp. Res. Rec. 1811(1), 30–39 (2002)

24. Cui, Z., Ke, R., Wang, Y.: Deep bidirectional and unidirectional LSTM recurrent neural
network for network-wide traffic speed prediction. arXiv preprint arXiv:1801.02143 (2018)

25. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural
networks on sequence modeling. Preprint. arXiv:1412.3555 (2014)

26. Wang, Y., Xu, D., Lu, Y., Shen, J., Zhang, G.: Compression algorithm of road traffic data in
time series based on temporal correlation. IET Intel. Trans. Syst. 12(3), 177–185 (2018)

27. Xu, D.W., Wang, Y.D., Li, H.J., Qin, Y., Jia, L.M.: The measurement of road traffic states under
high data loss rate. Measurement 69, 134–145 (2015)

28. Theocharidis, A., Van Dongen, S., Enright, A.J., Freeman, T.C.: Network visualization and
analysis of gene expression data using biolayout express 3d. Nat. Prot. 4(10), 1535 (2009)

29. Freeman, L.: Visualizing social networks. Soc. Netw. Data Anal. 6(4), 411–429 (2000)
30. Cancho, R.F.I., Solé, R.V.: The small world of human language. Proc. R. Soc. Lond. Ser. B

Biol. Sci. 268(1482), 2261–2265 (2001)
31. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907 (2016)
32. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with

fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)
33. Zhao, Z., Chen, W., Wu, X., Chen, P.C.Y., Liu, J.: LSTM network: a deep learning approach

for short-term traffic forecast. IET Intel. Trans. Syst. 11(2), 68–75 (2017)

Chapter 10
Time Series Classification Based
on Complex Network

Kunfeng Qiu, Jinchao Zhou, Hui Cui, Zhuangzhi Chen, Shilian Zheng,
and Qi Xuan

Abstract Time series classification plays an important role in various tasks such as
electroencephalogram (EEG) classification, electrocardiogram (ECG) classification,
human activity recognition and radio signal modulation identification. At present,
some promising methods have been proposed to transform time series classification
into graph classification by mapping time series to graphs. However, these trans-
formation methods with fixed mapping rules may lack of flexibility, leading to the
loss of information, so as to decrease the classification accuracy. In this chapter, we
introduce circular limited penetrable visibility graph (CLPVG), a new method of
mapping time series to graphs. Furthermore, in order to map time series to graphs
more flexibly through deep learning, we also introduce an automatic visibility graph
(AVG) based on graph neural network (GNN), a framework which can transform
time series into graphs and realize classification end-to-end. Finally, we carry out
experiments on some common datasets to prove the effectiveness of our methods.

10.1 Introduction

Time series are ubiquitous in almost all tasks requiring human cognitive pro-
cesses [1], as a result, the classification of time series is a significant task in data
mining [2]. For example, in the medical and health field, the EEG signals of
epilepsy patients and autistic children are typical time series. By classifying the
EEG signals of patients in different states, we can judge whether the patients are
in a transitional state (from the normal moment to the onset moment), so as to take

K. Qiu · J. Zhou · H. Cui · Z. Chen · Q. Xuan (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: xuanqi@zjut.edu.cn

S. Zheng
Science and Technology on Communication Information Security Control Laboratory,
Jiaxing, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_10

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_10&domain=pdf
mailto:xuanqi@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_10

206 K. Qiu et al.

corresponding measures in time to keep patients away from danger [3–7]. The ECG
signals of patients with heart disease are also time series. By real-time monitoring
and classification of the ECG signals of patients, emergency measures can be taken
in time to protect patients before they have a heart attack. What’s more, in radio
signal modulation recognition, the received modulated signals are time series, and
it is important to classify the modulation mode of the signals, which enables us to
demodulate the modulated signals to obtain meaningful original signals from which
some information can be obtained.

The traditional methods for time series classification can be divided into two
processes, i.e., feature extraction and recognition. For example, in order to classify
EEG signals and radio modulation signals, Soliman and Hsue [8] and Subasias [9]
used Fourier transform [10] and wavelet transform [11] etc. to preprocess these
signals, and then extract the high-order cycle spectrum, high-order cumulant, cyclo-
stationary characteristics, power spectrum [12] and other characteristics of signals.
Based on these features, traditional classification methods in machine learning, such
as decision trees [13], random forest [14] and Support Vector Machine (SVM) [15],
can be used to classify the time series. In general, the above mentioned process of
analyzing the original signals requires much manpower and material resources [9],
while the final classification accuracy is relatively low.

Recently, some advanced deep learning algorithms are also used to classify time
series. For example, Hochreiter and Schmidhuber [16] proposed the Long Short-
Term Memory (LSTM), a framework based on Recurrent Neural Network (RNN),
which can classify time series with satisfactory accuracy. Based on Convolutional
Neural Network (CNN), Wang et al. [17] proposed a time series classification
model called Fully Convolutional Networks (FCN), while O’Shea et al. [18] used a
residual neural network model for radio signal modulation recognition. Generally,
the methods based on RNN and CNN give full play to the capability of deep
learning models and can greatly improve the classification performance. However,
RNN-based methods generally have high time complexity and require a lot of
computation [19–21], while CNN-based methods ignore the temporal information
in time series, which may lead to lower classification accuracy.

What’s more, there are some methods based on fixed mapping rules to classify
time series by transforming them into graphs. Lacasa et al. [22] first put forward the
concept of Visibility Graph (VG), a novel idea of mapping time series to graphs.
Since then, there have been some other mapping methods proposed based on VG,
such as Horizontal Visibility Graph (HVG) [23] and Limited Penetrable Visibility
Graph (LPVG) [24], etc. After converting time series into graphs, it is convenient
for us to classify them with the help of graph classification methods. However, the
above mapping methods are rigid, which can only convert each signal sample into
a single graph. The original time series may not be well represented by the graphs
derived by the fixed transformation rules.

In order to solve the above problem, we propose a more flexible transforma-
tion method based on LPVG, called circular limited penetrable visibility graph
(CLPVG), which is able to map time series into suitable graphs that can better
represent the corresponding signal samples. Furthermore, we propose an automatic

10 Time Series Classification Based on Complex Network 207

visibility graph (AVG) based on graph neural network (GNN) to realize end-to-
end time series classification. This method can generate and update graphs from
time series by means of convolution operation and particular permutation, and can
retain as much important information as possible from the original time series, thus
further improving the classification accuracy. The corresponding experiments in this
chapter prove that our two methods can effectively learn the graphs to represent
time series, which are more flexible than the existing methods based on complex
networks, leading to higher classification accuracy. And in theory, AVG can be more
flexible and suitable to represent signals with graphs, since the mapping process can
be adjusted automatically when it is integrated into the deep learning model.

The rest of this chapter is organized as follows. In Sect. 10.2, we briefly describe
the related work on time series classification and graph classification, and then
introduce the LVPG, a typical mapping method for converting time series to
graphs. In Sect. 10.3, we introduce our two methods CLPVG and AVG in detail. In
Sect. 10.4, we give the experiments to validate the effectiveness of our two methods.
Finally, we give the conclusion in Sect. 10.5.

10.2 Related Work

10.2.1 Time Series Classification

Time series classification is increasingly important in data mining and other fields,
which has been applied to automatic speech recognition (ASR) [25], electrocardio-
gram (ECG) classification and chemical engineering [2, 26]. Suppose a time series
sample Y of length n:

Y = {y1, y2, · · · , yk, · · · , yn} (10.1)

where yk represents the value corresponding to time point k. Let (k, yk) represent
a signal sampling point (k, yk). And the purpose of time series classification is
to predict the category labels of new time series by the model established on the
training data with class labels.

Before the rise of deep learning, traditional time series classification methods
were mainly based on the handcraft features together with the typical machine
learning methods. For example, Nanopoulos et al. [27] extracted statistical features
such as the mean value and the variance of time series, and then completed
classification with Multilayer Perceptron (MLP). Deng et al. [28] proposed Time
Series Forest (TSF) which combines entropy gain and distance metric. What’s more,
there are also some distance-based classification methods to predict the category of
a test sample. These methods first use distance function to calculate the similarity
between the current sample and all training samples, and then the label of the
training sample with the smallest distance value is considered to be the category

208 K. Qiu et al.

of the current test sample. The distance function used in these methods generally
includes Dynamic Time Warping (DTW) [29], Edit Distance (ED) [30] and Longest
Common Sub-sequence (LCS) [31], etc. In general, the features extracted by these
classification methods are representative and can represent the original signals well.
However, it is also obvious that these methods require a solid level of expertise.

With the rapid development of deep learning, neural networks have been widely
used in time series classification and achieved gratifying results. Wang et al. [32]
proposed Fully Convolutional Neural Networks (FCN), a CNN-based classification
model, simple but effective, which can classify time series without complex feature
extraction process. Karim et al. [33] proposed LSTM-FCN and ALSTM-FCN, two
end-to-end models for time series classification, which combine CNN and RNN.
Compared with the traditional methods, the classification algorithms based on deep
learning make use of big data to learn features and can better capture rich internal
information of time series.

10.2.2 Mapping Methods

As is known to all, CNN model is originally designed to deal with images, but
it is surprising that its performance in time series classification is also excellent.
Inspired by this, some researchers tried to map time series to graphs, and then use
the technologies in complex network to analyze time series. With the advent of
Visibility Graph (VG) [22], a method that maps time series to graphs, more and
more similar mapping methods emerge, among which Limited Penetrable Visibility
Graph (LPVG) [24] is a well-known one that can be combined with commonly used
classifiers to classify time series with good performance. At first, LPVG changes the
time series Y to the form of a vertical line diagram. In order to ensure that the height
of each vertical line is positive, the original time series Y is processed as follows:

Y ′ = {y1 + a, y2 + a, · · · , yk + a, · · · , yn + a} , a > | min(Y)|, (10.2)

where the minimum value in time series Y is denoted as min(Y), and a is a number
greater than the absolute value of min(Y). Take the n time points as the abscissa,
and the processed signal values corresponding to the time points as the ordinate
to construct the vertical line diagram. And then, according to the obtained vertical
lines, LPVG judges whether every two points Yi and Yj can constitute an edge
in turn, where 1 ≤ i ≤ j ≤ n. The specific operation is to connect the tops of the
vertical lines corresponding to the sampling points Yi and Yj to obtain a line Lij . The
number of intersections between the line Lij and the vertical lines corresponding
to the sampling points Ym is denoted as L, where m = i + 1, . . . , j − 1. Given
a hyperparameter b, if L is less than or equal to b, then it is considered that the
sampling points Yi and Yj can form an edge in the graph. According to the above
rule, the time series Y with length n can finally be mapped into a graph G with n

nodes. Take a time series of length 5 as an example, and set the hyperparameter

10 Time Series Classification Based on Complex Network 209

LPVG
{3, 1, 3, 4, 2}

Time series Vertical line diagram
Time point

Si
gn

al
 v

al
ue

1 2 3 4 5
Graph

4

5

3

1

2

Extracted nodes and edges

Fig. 10.1 The vertical line diagram of time series with length 5 and the graph obtained by LPVG

b to 1, the constructed vertical line diagram and the mapped graph are shown in
Fig. 10.1.

10.2.3 Graph Classification

After mapping time series to graphs, the problem of time series classification is
naturally transformed into graph classification. At present, the advanced methods for
graph classification mainly include graph embedding and graph neural network [34–
37]. In graph classification, graph embedding is used to represent a graph with
a low-dimensional vector, and then some existing machine learning classification
algorithms are adopted to realize the classification. On the one hand, we can
artificially extract some attributes of a graph to form a low-dimensional vector,
such as calculating the number of nodes, the number of edges and clustering
coefficient of the network and so on [38]. On the other hand, some unsupervised
algorithms can also be used to automatically extract feature vectors of networks,
such as Graph2vec [39], which is a typical graph embedding method. Graph2vec
is the first unsupervised embedding method for the entire network. Note that
graph2vec uses a model similar to doc2vec [40] which is based on extended text and
embedding technology and shows great advantages in Natural Language Processing
(NLP). Similarly, graph2vec establishes a relationship between the network and
the rooted subgraph. Graph2vec first extracts the rooted subgraph and provides the
corresponding label into the vocabulary, and then trains the Skip-Gram model to
obtain the representation of the entire network. This method performs well in graph
classification tasks, outperforming most manually feature extraction methods.

In addition, with the development of deep learning, there emerges many end-to-
end GNN models that can accomplish graph classification, such as Graphsage [41]
and Diffpool [42]. The GNN can embed the nodes based on their local neighborhood
information, i.e., aggregating the information of each node and its surrounding
nodes. In particular, the process of aggregating information can be optimized
through neural networks. In our AVG, we use Diffpool as the basic graph classi-
fication model. Diffpool coarsens graph based on the output of operation layer in

210 K. Qiu et al.

GNN, and then maps the nodes into some clusters which are inputs of the next
operation layer in GNN. As a differentiable graph-level pooling module, Diffpool is
able to generate hierarchical representation of graphs to classify them [42].

10.3 Methods

In this section, we mainly introduce our two time series classification methods based
on graphs, CLPVG and AVG, and discuss the differences between them and LPVG.

10.3.1 Circular Limited Penetrable Visibility Graph

There are some methods to analyze time series by converting them into graphs, such
as Visibility Graph (VG) [22], Limited Penetrable Visibility Graph (LPVG) [24]
and so on. Experiments [22, 24] have proved that these methods of building graphs
from time series can retain and extract some basic features of time series. However,
the graphs obtained by these algorithms are relatively simple, and it is almost
impossible for them to construct graphs containing more effective information from
the time series according to different tasks or user requirements. Therefore, based on
the existing LPVG method, we propose a new method, circular limited penetrable
visibility graph (CLPVG), to convert time series to graphs. This method is more
flexible and can extract more effective information from time series, so as to achieve
better classification results.

In this section, we mainly introduce the specific process of time series clas-
sification by means of CLPVG. In general, it is an adjustable nonlinear graph
construction algorithm, and it is also a visibility graph construction algorithm that
uses arcs instead of straight lines in LPVG when constructing graphs, with the
aim to completing time series classification task better. The overall process of time
series classification through method CLPVG is shown in Fig. 10.2. In this process,
time series are first converted into graphs by CLPVG, then the first-order subgraph
networks [43] are extracted. After that, all graphs are processed by Graph2vec [39]
to obtain corresponding feature vectors, which are then concatenated and classified
by a classifier in the field of machine learning.

10.3.1.1 Circle System Equation

In mathematics, a set of circles meeting certain conditions are called a circle system,
and the equations describing a circle system are called circle system equations. As
shown in Fig. 10.3, given any two different data points (t1, y1) and (t2, y2), we can

10 Time Series Classification Based on Complex Network 211

GI

SGN

CLPVG

Channel I

Channel Q Graph2vec Concatenate Classifier

Label

GQ

1
ISGN

1
QSGN

Fig. 10.2 The overall process of time series classification through CLPVG

(t2,y2)

(t1,y1)

Time point

Si
gn

al
 v

al
ue

t1 t2

(t2,y2)

(t1,y1)

Time point

Si
gn

al
 v

al
ue

t1 t2

(t2,y2)

(t1,y1)

Time point

Si
gn

al
 v

al
ue

t1 t2

Fig. 10.3 Schematic diagram of circle system. When LPVG is used to transform time series into
graphs, the blue line is used to connect every two data points so as to judge whether the two points
can form edge. When using CLPVG, we use one of the orange arcs instead of the blue line to build
graph. As for the orange arcs, we can choose either the shorter arc line part or the longer arc line
part, as shown in the center and the right picture, respectively

get many different circles, and the circle system equation can be expressed as:

f (t, y) = (t − ti)(t − tj) + (y − yi)(y − yj)

+ a[(t − ti)(yj − yi) − (y − yi)(tj − ti)] = 0,
(10.3)

where a is a hyperparameter that controls the size of the circle. Obviously, the two
points (t1, y1) and (t2, y2) divide the circle formed by them into two parts, one is
the longer arc line part, and the other is the shorter part. In the subsequent work
of constructing the network, we choose the shorter arc line to replace the line of
method LVPG.

212 K. Qiu et al.

10.3.1.2 Graph Construction through CLPVG

Similar to method LPVG, CLPVG only changes straight line segments to shorter
arcs, and keeps the other rules the same. Finally, the time series can be mapped
into graphs. Take the time series shown in Fig. 10.1 as an example, assuming
the hyperparameter b = 1, the graph construction through CLPVG is shown in
Fig. 10.4.

The pseudocode of mapping time series Y to graph G = 〈V,E〉 by CLPVG is
shown in Algorithms 1. We treat all time points in Y as nodes of graph G at first.
And then, we determine whether every two nodes can form an edge in G.

Algorithm 1: Map time series to graph through CLPVG
Input: The time series Y as shown in Eq. (10.1), length n of Y , hyperparameter a shown in

Eq. (10.3), hyperparameter b mentioned in Sect. 10.2.2.
Output: Graph G = 〈V,E〉 formed by CLPVG.

1 Set the value of the hyperparameter a and b

2 for ln=1 to n-1 do
3 Append node ln to V

4 add = 0
5 for rn=ln+1 to n do
6 for mn=ln to rn do
7 Compute the y

′
mn when t = mn via Eq. (10.3)

8 add = add + 1 if ymn ≥ y
′
mn

9 Append edge (ln, rn) to E if add ≤ b

10 Append node n to V

11 return G = 〈V,E〉

Vertical line diagram
Time point

Si
gn

al
 v

al
ue

CLPVG
{3, 1, 3, 4, 2}

Time series
1 2 3 4 5

Graph

4

5

3

1

2

Extracted nodes and edges

Fig. 10.4 The graph obtained by CLPVG. Here we use the same time series in Fig. 10.1 for
comparison

10 Time Series Classification Based on Complex Network 213

5

1

4 3

2

G

5

1

4 3

2

(3,4)

5

1

4 3

2

(3,4)

SGN1
(3,4)

(1,4)

(1,2)

(2,3)

Extract lines Establish edges

(3,5)

Fig. 10.5 The process of build SGN(1) from the original graph G

10.3.1.3 Subgraph Network

After mapping time series into graphs, we can use certain technologies in the
network field to improve the final classification accuracy. Here we adopt subgraph
network (SGN) [43] to expand feature space and further enhance the graph
classification algorithms, which is carefully introduced in Chap. 3. Given a graph
G = 〈V,E〉, where V and E respectively represent the sets of nodes and edges of
graph G, we extract the first-order subgraph networks SGN(1) from G, as shown
in Fig. 10.5. At first, we map the edges in the original graph G into the nodes
in SGN(1). Then, if the two edges in G share the same terminal node, then the
two corresponding nodes in SGN(1) mapped from these two edges are connected.
Certainly, we can use a similar way to get SGN of higher orders iteratively. In
general, SGN can dig out some deeper features in the original graph, which helps to
improve the graph classification accuracy. However, extracting subgraph networks
of higher order could significantly increase the consumption of resources and time,
but may not do much to improve the accuracy, so we only use SGN(1) in the
experiments.

We further use Graph2vec [39] to extract features of the generated graphs, as well
as the corresponding first-order SGNs, and then use random forest [14] to realize the
classification.

10.3.2 Automatic Visibility Graph based on GNN

In this section, we mainly introduce our automatic visibility graph (AVG) based on
GNN, an end-to-end deep learning framework. Different from the above-mentioned
methods of mapping time series into graphs according to fixed rules, AVG can obtain
graphs through self-learning and realize time series classification by classifying the
obtained graphs in a deep learning framework.

214 K. Qiu et al.

… …

Conv1D

Time series

ReLU

Classification

Combine

Graph

Pool Pool

Diffpool
Feature matrix

…
… …

… …
… …

…
……

……
……

GNN model for graph classification

Fig. 10.6 The overall framework of AVG. Here, we choose the Diffpool model as our classifier

10.3.2.1 The Overall Framework

The idea of this method is to process the time series by multiple one-dimensional
convolution layers with different convolution kernel sizes to obtain the processed
feature sequences, and then to sort them into a feature matrix according to certain
rules which can represent a graph. Finally, the graph classification model in the field
of GNN is used to classify the obtained graphs. In this chapter, we choose the typical
GNN model Diffpool [42] to classify the graphs. Note that other GNN models for
graph classification, such as GraphSage [41], could also be used in the future. In
particular, the processing of time series by one-dimensional convolution layers can
be trained together with the graph classification model. This transformation method
of mapping time series into graphs thus is very flexible and not limited to fixed
rules, so it has universal applicability to time series of different fields. The overall
framework of AVG is shown in Fig. 10.6.

10.3.2.2 Feature Extraction

Firstly, suppose that each sample in a given time series dataset can be expressed as:

t1×N = [t1, t2, . . . , tN], (10.4)

where N represents the number of time points in the time series, tN represents the
value corresponding to the N-th time point, and t1×N represents the time series
sample of length N . And then, the original time series are processed by one-
dimensional convolution layers with multiple convolution kernels of different sizes
to obtain the corresponding processed feature sequences. The specific convolution
process is as follows:

φm = Conv1Dm(t1×N) = [xm
1 , xm

2 , . . . , xm
N+1−m], 2 ≤ m ≤ k, (10.5)

10 Time Series Classification Based on Complex Network 215

where k is used to control the number of one-dimensional convolutional layers,
Conv1Dm(·) denotes the one-dimensional convolution layer with convolution
kernel size m and step size 1. φm represents the feature sequence of length
N + 1 − m obtained after processing the original time series with one-dimension
convolutional layer Conv1Dm(·), where the i-th feature is expressed as xm

i . Then,
all the obtained feature sequences are processed with ReLU activation function to
obtain the processed feature sequences whose feature elements are all non-negative
numbers.

ϕm = ReLU(φm) = [ym
1 , ym

2 , · · · , ym
N+1−m], 2 ≤ m ≤ k, (10.6)

10.3.2.3 Feature Matrix of Graph

After extracting the feature sequences, we process these features to obtain the
feature matrices of graphs. The obtained non-negative feature sequences are sorted
according to a certain rule to obtain the feature matrix M that can represent the
network of size N × N . The sorting rule is to place the non-negative feature value
ym
i in the i-th row and the (i + m − 1)-th column, as well as the (i + m − 1)-th row

and the i-th column of M , and the other positions of matrix M are 0. The resulting
feature matrix M is as follows:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 y2
1 · · · yk

1 0 0

y2
1 0 y2

2 · · · . . . 0
... y2

2 0 y2
3

. . . yk
N+1−k

yk
1

... y2
3 0

. . .
...

0
. . .

. . .
. . .

. . . y2
N−1

0 0 yk
N+1−k · · · y2

N−1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10.7)

Especially, because there is no self-connection, the diagonal element values in
the feature matrix of the graph are all equal to 0. It is obvious that the feature
sequence obtained by processing the original time series with the one-dimensional
convolution layer with kernel length 1 will be placed on the diagonal of the matrix
M , therefore, the convolution kernel length of the one-dimensional convolution
layer needs to be greater than 1. And this shows that the graphs constructed by
method AVG are weighted and un-directed graphs. We summarize the process of
mapping time series N to graph G = 〈V,E〉 in Algorithm 2. At first, we use some
one-dimensional convolutional layers with different kernel sizes and the activation
function ReLU to process the original time series. After obtaining the corresponding
feature vectors, we combine them into a feature matrix. Finally, it is easy for us to
transform the symmetric feature matrix into a graph.

216 K. Qiu et al.

Algorithm 2: Map time series to graph by AVG
Input: The time series t1×N as shown in Eq. (10.4), length N of t1×N , hyperparameter k

shown in Eq. (10.5).
Output: Graph G = 〈V,E〉 formed in AVG.

1 Create a zero matrix M with shape N × N

2 for m=2 to k do
3 Define an one-dimensional convolutional layer Conv1Dm(·) with convolution kernel
4 size m and step size 1
5 Compute the feature sequence φm via Eq. (10.5)
6 Compute the non-negative feature sequence ϕm = [ym

1 , ym
2 , · · · , ym

N+1−m] via
Eq. (10.6)

7 for i=1 to N+1-m do
8 M(i, i + m − 1) = M(i, i + m − 1) = ym

i where M(r, c) represents the element in
the r-th row and the c-th column of M

9 Construct the weighted undirected graph according to M

10 return G =< V,E >

10.3.2.4 Classification of Graphs

After the weighted un-directed graphs are obtained from the time series, the
neural network model used for graph classification, such as GraphSage [41] and
Diffpool [42], can be used to classify the obtained graphs, so as to achieve the
purpose of time series classification. In particular, the one-dimensional convolution
operation that maps the time series into graphs can be trained with the used GNN
model, so as to get the most suitable graphs.

10.3.3 Comparison with LPVG

The only difference between CLPVG and LPVG is that we use arc rather than line
to build graphs, as shown in Figs. 10.4 and 10.1. Arcs are more flexible than lines,
since different arc bending degrees can be set up to construct different graphs, i.e.,
the graphs that mostly represent the original time series can be obtained by choosing
the appropriate arc bending degree.

In addition, AVG does not map time series to graphs according to fixed rules, but
rather designs a mapping by a self-learning mechanism, which is even more flexible
than CLPVG. From the point of mapping rules for constructing graphs by LPVG,
when determining whether there is an edge between two nodes Yi = (i, Yi) and
Yj = (j, Yj), it is necessary to construct a line Lij passing through these two points
in the vertical line graph. The line Lij is represented as:

f (t) = yj − yi

j − i
× (t − i) + yi, (10.8)

10 Time Series Classification Based on Complex Network 217

then the value ym of each time point m between i and j and the value f (m) of
the linear function Lij at time m are compared to determine whether Yi = (i, yi)

and Yj = (j, yj) can be connected in the graph. To some extent, this method
ignores the specific time series values, which results in the loss of some hidden
information in the original time series when the time series are mapped into
graphs, and finally affects the classification accuracy. Unlike LPVG, AVG uses one-
dimensional convolution layer to process the relationship between every two nodes,
and calculate the correlation degree of these two nodes and the nodes between them.
It makes full use of the specific time series value corresponding to each time point
and can retain more information of the original time series. In addition, the graphs
constructed by LPVG are unweighted, while our AVG can construct the weighted
networks. Therefore, more features in the original time series can be extracted and
the classification accuracy thus can be improved.

10.4 Experiments

In this section, we mainly introduce the specific implementation processes and the
results of CLPVG and AVG, and compare with those obtained by LPVG on some
public datasets, to validate the effectiveness of our methods.

10.4.1 Datasets

The datasets used in the experiments include time series in wireless radio modula-
tion (RML2016.10a [44]) and medical field (EEG [45]), and three typical UCR time
series (Adiac, ElectricDevices and Herring) [46].

RML2016.10a is a high-quality radio signal simulation dataset generated based
on the GNU Radio environment. It contains 11 modulation types. Each signal of
each modulation type contains 20 kinds of signal-to-noise ratios (SNRs), each SNR
has 1000 signal samples, each sample has two channels I and Q, and the signal
length of each channel is 128. We divide the SNR data of each modulation type by
a ratio of 4:1 to get the training set and the test set.

As for the EEG dataset, it is composed of 5 sub-datasets A, B, C, D, and E,
among which subsets A and B are the EEG signals of healthy people with eyes open
and closed respectively. Subsets C, D, and E are collected in patients with epilepsy.
Especially, we divide the EEG dataset into EEG1 and EEG2, where EEG1 regards
the subset E as a single category, the remaining four subsets as another category,
and EEG2 regards each subset as a separate category.

Moreover, we also choose time-series datasets from UCR database [46] to testify
our methods as well as LPVG. Specifically, we use the Adiac, ElectricDevices and
Herring datasets here.

The basic statistics of the above datasets are presented in Table 10.1.

218 K. Qiu et al.

Table 10.1 The basic statistics of the datasets adopted in the experiments

Dataset # Training samples # Testing samples # Classes Length

RML2016.10a 176,000 44,000 11 128

EEG1 450 50 2 4097

EEG2 450 50 5 4097

Adiac 390 391 37 176

ElectricDevices 8926 7711 7 96

Herring 64 64 2 512

10.4.2 The Experimental Settings

When verifying the method CLPVG, since each sample of dataset RML2016.10a
has two channels, we process it as shown in Fig. 10.2. At first, we process the
I channel and Q channel data of each signal to obtain the graphs GI and GQ

respectively. Then, we extract the first-order subgraph networks SGN(1)
I and SGN(1)

Q

of the graphs GI and GQ, respectively, so as to represent a signal sample with four

graphs GI , GQ, SGN(1)
I and SGN(1)

Q . Then, we use the graph embedding method
Graph2vec to extract four feature vectors of length L for these graphs. We further
combine them to get a single vector of length 4L to represent a signal sample.
Finally, we use the random forest [14] to process the feature matrix composed of
all feature vectors extracted form all signals to complete the classification. As for
the other datasets, since they are all univariate time series, we only need to convert
each sample into a graph, get the corresponding SGN(1), and then use two, instead
of four, graphs to represent each signal sample. The other settings are also the same.

As for the method AVG, it is easy for us to process the univariate time series
EEG, Adiac, ElectricDevices and Herring according to the process shown in
Fig. 10.6. However, we can not directly process the multivariate time series dataset
RML2016.10a, because Diffpool requires that the number of graphs for each input
sample is 1. As a result, we delete the last fully connected layer of the Diffpool
model, and then use this incomplete Diffpool model to process the graphs that
obtained by the I channel and Q channel separately and get the corresponding two

Table 10.2 The classification accuracy of LPVG, CLPVG and AVG on different datasets. The
bold values are the best results

Dataset LPVG LPVG+SGN(1) CLPVG CLPVG+SGN(1) AVG

RML2016.10a 47.68% 48.48% 49.40% 50.07% 55.36%
EEG1 97.75% 97.60% 97.80% 97.80% 100%
EEG2 64.82% 72.62% 67.40% 73.42% 76.00%
Adiac 42.20% 44.05% 69.05% 72.12% 64.45%

ElectricDevices 64.42% 64.80% 65.82% 66.54% 71.49%
Herring 70.31% 64.06% 70.31% 65.63% 71.88%

10 Time Series Classification Based on Complex Network 219

feature vectors. After concatenating these two vectors into a single one, we then use
a fully connected layer for classification.

Since our methods CLPVG and AVG are both inspired by LPVG, here we simply
use LPVG as the baseline for comparison.

10.4.3 The Experimental Results

The results of using LPVG, CLPVG and AVG to classify the time series are shown in
Table 10.2. In order to see the impact of SGN on the methods LPVG and CLPVG,
we divide the two methods into the cases of using SGN and not using SGN. In
particular, we give the accuracy of different methods under different signal-to-noise
ratios of the RML2016.10a dataset in Table 10.3. The purpose of proposing CLPVG
is to map time series to graphs more flexibly than LPVG to cope with specific

Table 10.3 The accuracy under different signal-to-noise ratios of the RML2016.10a dataset. The
bold values are the best results

SNR LPVG LPVG+SGN(1) CLPVG CLPVG+SGN(1) AVG

18 dB 78.77% 80.77% 79.77% 79.77% 83.82%
16 dB 77.05% 79.50% 78.50% 79.27% 83.86%
14 dB 74.32% 78.86% 78.09% 79.77% 82.59%
12 dB 75.73% 80.41% 78.09% 77.77% 83.09%
10 dB 75.45% 79.36% 77.18% 78.05% 85.23%
8 dB 74.18% 77.05% 74.68% 76.09% 82.45%
6 dB 69.27% 74.82% 73.68% 72.73% 81.23%
4 dB 66.68% 66.55% 67.59% 70.23% 82.82%
2 dB 57.09% 55.86% 59.36% 62.36% 79.82%
0 dB 52.77% 46.55% 53.18% 56.45% 76.00%
−2 dB 43.68% 42.32% 42.55% 48.55% 66.64%
−4 dB 39.95% 41.55% 37.14% 42.09% 55.50%
−6 dB 33.64% 38.45% 37.09% 36.95% 45.05%
−8 dB 28.41% 29.05% 30.91% 28.55% 32.68%
−10 dB 21.64% 19.45% 24.09% 23.14% 24.23%
−12 dB 18.64% 17.59% 21.73% 19.59% 16.68%

−14 dB 16.86% 15.91% 20.32% 17.64% 14.91%

−16 dB 16.45% 14.86% 18.05% 17.55% 10.00%

−18 dB 16.77% 15.32% 18.14% 18.14% 10.45%

−20 dB 16.27% 15.36% 17.77% 16.68% 10.14%

Total 47.68% 48.48% 49.40% 50.07% 55.36%
≥0 dB 70.13% 71.97% 72.01% 73.25% 82.09%
>5 dB 74.97% 78.68% 77.14% 77.64% 83.18%
> − 5 dB 65.41% 66.97% 66.65% 68.59% 78.59%

220 K. Qiu et al.

classification tasks, such as improving the classification accuracy of a specific
signal-to-noise ratio or a specific range of signal-to-noise ratio signals. And the
intention of designing AVG is to get a even better graph representation of the time
series, leading to much better classification accuracy.

It can be seen from the Tables 10.2 and 10.3 that the classification accuracy
obtained by CLPVG is indeed slightly higher than that of LPVG by comparing the
results in the second and fourth columns. Similarly, by comparing the results in
the third and the fifth columns, we can also get the same conclusion. Such results
validate that, thanks to CLPVG’s ability to control the bending degree of the arc,
the graphs obtained by this mapping method can represent the original time series
better than those obtained by LPVG. Moreover, in most cases, SGN has a positive
effect on improving the classification accuracy, for both CLPVG and LPVG.

Besides, it is obvious that AVG significantly outperforms CLPVG and LPVG
on all the considered datasets except for Adiac, no matter whether SGN is adopted
or not. This result is quite reasonable since AVG based on GNN is much more
flexible to establish graphs for time series. In other words, these graphs obtained by
AVG are somewhat optimized to classify time series, and thus can better capture the
hidden features of the original time series. More interestingly, it seems that CLPVG
perform surprisingly better than AVG and LPVG for the signals of low SNR, as
shown in Table 10.3, which suggest that CLPVG may be good candidate to process
the time series containing a lot of noises to get robust results.

10.5 Conclusion

In this chapter, we focus on mapping time series to graphs, and propose two novel
mapping methods, CLPVG and AVG, which are more flexible than the well-known
LPVG and the graphs generated by these two methods thus can better capture the
latent features of original time series. In particular, we replace the lines in LPVG
by arcs in CLPVG through introducing a hyperparameter to control the arc bending
degree, which makes CLPVG more flexible than LPVG to process different kinds
of time series. For AVG, we further use GNN to generate graphs for time series
automatically and finish time series classification end-to-end, achieving the state-
of-the-art performance. Moreover, the SGN method introduced in Chap. 3 is also
used here to expand the feature space, and enhance the performance of LPVG and
CLPVG to certain extent. In the future, we will try to develop more methods to
map time series to graphs, so as to facilitate the analysis of time series by utilizing
advanced graph data mining algorithms.

10 Time Series Classification Based on Complex Network 221

References

1. Wong, M.D., Nandi, A.K.: Automatic digital modulation recognition using artificial neural
network and genetic algorithm. Signal Process. 84(2), 351–365 (2004)

2. Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W.: Survey of automatic modulation classification
techniques: classical approaches and new trends. IET Commun. 1(2), 137–156 (2007)

3. Ahmadlou, M., Adeli, H., Adeli, A.: Improved visibility graph fractality with application for
the diagnosis of autism spectrum disorder. Physica A: Stat. Mech. Appl. 391(20), 4720–4726
(2012)

4. Wang, J., Yang, C., Wang, R., Yu, H., Cao, Y., Liu, J.: Functional brain networks in alzheimer’s
disease: Eeg analysis based on limited penetrable visibility graph and phase space method.
Physica A: Stat. Mech. Appl. 460, 174–187 (2016)

5. Gao, Z.-K., Cai, Q., Yang, Y.-X., Dang, W.-D., Zhang, S.-S.: Multiscale limited penetrable
horizontal visibility graph for analyzing nonlinear time series. Sci. Rep. 6, 35622 (2016)

6. Pei, X., Wang, J., Deng, B., Wei, X., Yu, H.: WLPVG approach to the analysis of EEG-based
functional brain network under manual acupuncture. Cogn. Neurodyn. 8(5), 417–428 (2014)

7. Supriya, S., Siuly, S., Wang, H., Cao, J., Zhang, Y.: Weighted visibility graph with complex
network features in the detection of epilepsy. IEEE Access 4, 6554–6566 (2016)

8. Soliman, S.S., Hsue, S.-Z.: Signal classification using statistical moments. IEEE Trans.
Commun. 40(5), 908–916 (1992)

9. Subasi, A.: Eeg signal classification using wavelet feature extraction and a mixture of expert
model. Expert Syst. Appl. 32(4), 1084–1093 (2007)

10. Bracewell, R.N., Bracewell, R.N.: The Fourier Transform and its Applications, vol. 31999
(McGraw-Hill, New York, 1986)

11. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform.
IEEE Trans. Image Process. 1(2), 205–220 (1992)

12. B. Mollow, Power spectrum of light scattered by two-level systems. Phys. Rev. 188(5), 1969–
1975 (1969)

13. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
14. Liaw, A., Wiener, M. et al.: Classification and regression by randomforest. R news 2(3), 18–22

(2002)
15. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural.

Process. Lett. 9(3), 293–300 (1999)
16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780

(1997)
17. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks:

A strong baseline. In: Proceedings of the 2017 International Joint Conference on Neural
Networks (IJCNN), pp. 1578–1585 (IEEE, New York, 2017)

18. O’Shea, T.J., Corgan, J., Clancy, T.C.: Convolutional radio modulation recognition networks.
In: International Conference on Engineering Applications of Neural Networks, pp. 213–226
(Springer, Berlin, 2016)

19. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329 (2014)

20. Hüsken, M., Stagge, P.: Recurrent neural networks for time series classification. Neurocom-
puting 50, 223–235 (2003)

21. Malhotra, P., TV, V., Vig, L., Agarwal, P., Shroff, G.: Timenet: Pre-trained deep recurrent neural
network for time series classification. arXiv preprint arXiv:1706.08838 (2017)

22. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex
networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008)

23. Xie, W.-J., Han, R.-Q., Zhou, W.-X.: Tetradic motif profiles of horizontal visibility graphs.
Commun. Nonlinear Sci. Numer. Simul. 72, 544–551 (2019)

24. Cai, L., Wang, J., Cao, Y., Deng, B., Yang, C.: LPVG analysis of the EEG activity in
alzheimer’s disease patients, in Proceedings of the 2016 12th World Congress on Intelligent
Control and Automation (WCICA) (2016)

222 K. Qiu et al.

25. Lee, K.-F.: Automatic Speech Recognition: The Development of the SPHINX System, vol. 62
(Springer, Berlin, 1988)

26. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series
classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019)

27. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-series
data. Int. J. Comput. Res. 10(3), 49–61 (2001)

28. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature
extraction. Inf. Sci. 239, 142–153 (2013)

29. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD
Workshop, vol. 10, pp. 359–370, Seattle, WA, USA (1994)

30. Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE Trans. Pattern Anal. Mach.
Intell. 20(5), 522–532 (1998)

31. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences.
Commun. ACM 20(5), 350–353 (1977)

32. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks:
A strong baseline. In: Proceedings of the 2017 International Joint Conference on Neural
Networks (IJCNN), pp. 1578–1585 (2017)

33. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time
series classification. IEEE Access 6, 1662–1669 (2017)

34. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. In: Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

35. Lee, J.B., Rossi, R., Kong, X.: Graph classification using structural attention. In: Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1666–1674 (2018)

36. Riesen, K., Bunke, H.: Graph classification based on vector space embedding. Int. J. Pattern
Recognit. Artif. Intell. 23(06), 1053–1081 (2009)

37. Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to graph classification. In:
Advances in Neural Information Processing Systems, pp. 729–736 (2005)

38. Costa, L.d.F., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of Complex
Networks: A Survey of Measurements (2005)

39. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec:
learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

40. Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into
document embedding generation. arXiv preprint arXiv:1607.05368 (2016)

41. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

42. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical graph repre-
sentation learning with differentiable pooling. In: Advances in Neural Information Processing
Systems, pp. 4800–4810 (2018)

43. Xuan, Q., Wang, J., Zhao, M., Yuan, J., Fu, C., Ruan, Z., Chen, G.: Subgraph networks with
application to structural feature space expansion. IEEE Trans. Knowl. Data Eng. 33(6), 2776–
2789 (2021)

44. O’Shea, T.J., Corgan, J., Clancy, T.C.: Convolutional radio modulation recognition networks.
In: International Conference on Engineering Applications of Neural Networks, pp. 213–226
(Springer, Berlin, 2016)

45. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications
of nonlinear deterministic and finite-dimensional structures in time series of brain electrical
activity: Dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)

46. Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.-C.M., Zhu, Y., Gharghabi, S., Ratanamahatana,
C.A., Keogh, E.: The UCR time series archive. IEEE/CAA J. Automat. Sin. 6(6), 1293–1305
(2019)

Chapter 11
Exploring the Controlled Experiment
by Social Bots

Yong Min, Yuying Zhou, Tingjun Jiang, and Ye Wu

Abstract With the continuous development of digital media, people receive more
and more information on the Internet. The emergence and development of social
bots, on the one hand, serve human beings, on the other hand, cause the pollution of
the network environment. Therefore, more and more researches begin to focus on
social bots. In this chapter, we first introduce the concept of social bots, including the
definition, application and influence. Then we introduce the needed technologies to
deploy social bots on social networks and summarize four methods to detect social
bots. We mainly analyze the feasibility of social bot as a controlled experiment to
study social network, and review some existing research results.

11.1 Introduction

Nowadays, with the development of digital media, social bots are widely used in
various networks. With the gradual maturity of artificial intelligence, social bots
become more and more “smart” to assist “masters” to complete various tasks. The
original purpose of social bots is to serve human beings and society. But there
are also malicious social bots that disrupt the stability of networks for a particular
purpose. Because of the increasing proportion of digital media, most of people’s
information comes from the online network, the influence of these malicious bots is

Y. Min (�)
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China

College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
e-mail: myong@zjut.edu.cn

Y. Zhou · T. Jiang
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou,
China

Y. Wu
Beijing Normal University, Zhuhai, China

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
Q. Xuan et al. (eds.), Graph Data Mining, Big Data Management,
https://doi.org/10.1007/978-981-16-2609-8_11

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-2609-8_11&domain=pdf
mailto:myong@zjut.edu.cn
https://doi.org/10.1007/978-981-16-2609-8_11

224 Y. Min et al.

becoming more and more powerful. However, we can not ignore the good side of
social bots as tools for proper use.

There are more and more researches on social bots. Some studies have studied the
influence of social bots on information dissemination in the network environment.
The representative ones are the research on the correlation between robots and false
news published by Shao et al. [1] in Nature Communication and the research on
the role of social bots during the independence referendum in Catalonia, Spain
published by Stella et al. [2] in PNAS.

Some researchers have proposed some detection algorithms for malicious social
bots. Liu et al. [3] analyzed community structure and used community similarity
to separate malicious social bots from humans. Mehrotra et al. [4] proposed an
approach to detect fake followers using centrality measures of the nodes in the
graph. Moreover, Davis et al. [5] used a feature-based detection method. They
evaluated the similarity between a Twitter account and the known characteristics
of social bots by more than one thousand features. Wang et al. [6] explored the
feasibility of a crowdsourced Sybil detection system for OSNs.

In recent years, intelligent social bot technology is used for carrying out
controlled experiments in real social networks and media environment, which is
a good application. Murthy et al. [7] tracked and measured the impact of bots
on public opinion related to political events by putting social bot accounts on
Twitter during the 2015 British election. Monsted et al. [8] deployed social bots
on Twitter to analyze label propagation, and verified the effectiveness of different
information dissemination models. Min et al. [9] carried out the first controlled
experiment by social bots on Weibo in China. In January 2020, Ledford et al. [10]
published a paper in Nature in which clearly pointed out how to use social
bots to research. Meanwhile, they proposed that combat existing recommendation
algorithms and malicious bots was a frontier problem in the field of Internet
information dissemination.

Thus it can be seen that social bots have become an important role on the Internet.
This chapter summarizes some related knowledge of social bots. Section 11.2 of
this chapter introduces the definition of social bots; Sect. 11.3 describes the use and
influence of social bots; Sect. 11.4 introduces some related technologies; Sect. 11.5
summarizes some popular malicious bots detection algorithms; Sect. 11.6 is the
application of social bots in the controlled experiment; finally, it puts forward the
prospect and some existing problems of social bots in experiment.

11.2 Definition of Social Bots

So what is social bot? Although social bot has been widely discussed and studied,
there is still no accepted definition so far. Journalists and reports have given their
own understanding. There are quite different and may even contradict to some extent
among definition. Some definitions may focus on the technology of social bots,
while others may focus on what bots do.

11 Exploring the Controlled Experiment by Social Bots 225

Woolley et al. [11] define social bots as a particular type of automated software
agent written to gather information, make decisions, and both interact with and
imitate real users online. The definition is similar to “A social bot is a computer
algorithm that automatically produces content and interacts with humans on social
media, trying to emulate and possibly alter their behavior” given by Ferrara [12].

Howard et al. [13] state that social bots are able to rapidly deploy messages,
replicate themselves, and pass as human users whatever their uses. They can perform
legitimate tasks like delivering news and information, or undertake malicious
activities like spamming, harassment and hate speech.

Weedon et al. [14] highlight that automation is a key symbol of social bots.
Hwang et al. [15] define that social bots are programs that operate autonomously
on social networking sites while Wagner et al. [16] think social bots are automatic
or semi-automatic computer programs that mimic humans and human behavior in
online social networks.

Grimme et al. [17] give social bot a more detailed definition as a high concept.
Their definition covers five aspects: (1) fully automated as well as partly human-
steered bot action; (2) autonomous action (agent-like); (3) an orientation toward
a goal, (4) multiple modes of communication; (5) a wider ecosystem (all online
media). Then they list several examples of social bots, such as chat bot-“a software
system, which can interact or chat with a human user in natural language such
as English” [18], spam bot, political bots–“spread political content or participate
political discussions” [11], mobile phone assistants and so on. In this chapter, we
adopt the definition given by Grimme.

11.3 Application and Influence of Social Bots

Social bots are complex. They act like a human, but think like a bot [12]. Actually,
they were born to serve humanity. They can do many things on social networks.
However, the emergence of any technology may be accompanied by abuse and
social bots are no exception.

11.3.1 Application

Although social bots aim to provide services, the emergence of technology is always
accompanied by abuse. Nowadays, although some social bots are used to serve
society, most of them have been used to carry out malicious acts. In this chapter,
we divide social bots applications into five categories.

(1) Dissemination of information: it aims to automatically publish the latest news,
blogs, emergencies, or collect a lot of content (such as weather updates,
constellation luck, etc.) for human consumption and use.

226 Y. Min et al.

(2) Scientific experimental tools: social bots can be used as tools for scientific
experiments on social networks. This content will be detailed in Sect. 11.6.

(3) Advertising marketing: in a short period of time, social bots can publish a large
number of almost the same content to achieve advertising marketing.

(4) Phishing: the malicious link is embedded in the information to cheat human
users and steal privacy.

(5) Public opinion guidance: in the process of forming various opinions on social
networks, bots aim to guide public opinion and change the formation of public
opinions.

11.3.2 Influence

Some social bots that have been maliciously designed, which are used to deliberately
do “bad things”. So the impact we are discussing here is negative. Social bots can
be used to intervene in politics, deliberately guide public opinion in the election
process and influence the political election results. Stella et al. [2] analyzed the
influence of social bots on the Catalan referendum for independence on October
1, 2017. By using nearly 4 million Twitter posts generated by almost 1 million
users, they quantified the structural and emotional roles played by social bots.
They claimed that bots increased exposure to negative and inflammatory content
in online social systems. A framework to detect a potentially dangerous behavior
promoted by bots was proposed. They found that humans and bots had similar time
behavior patterns by analyzing the observed social interactions in mentions, replies
and retweets. And the sentiment analysis revealed that social bots had almost no
emotional deviation when forwarding robot messages, but it had obvious positive
or negative emotional trends when forwarding human messages. The result showed
that bots choose influential humans, assaulting Independentists with violent content,
making Independentists’ narratives negative. Then it would aggravate social conflict
online.

Ferrara et al. [19] analyzed the influence of social bots on the MacronLeaks dis-
information campaign before the 2017 French presidential election. They collected
a massive Twitter dataset of nearly 17 million posts that occurred between April
27 and May 7, 2017. They combined machine learning with cognitive behavioral
modeling techniques to separate humans from bots and analyze the two groups.
They thought the cause of the failure of the campaign was that the users who
engaged with MacronLeaks are mostly foreigners with a preexisting interest in
alt-right topics and alternative news media, rather than French users with diverse
political views. Bessi et al. [20] studied how the social bots influenced political
discussion around the 2016 U.S. Presidential election. They discovered about 20%
of the entire conversation might not be generated by humans. They analyzed
political partisanships for humans and bots and the impact mechanism of the degree
of network embeddedness of the bots.

11 Exploring the Controlled Experiment by Social Bots 227

It may also be used to spread some false news, resulting in the widespread of false
news. Shao et al. [1] analyzed the spread of low-credibility content by social bot.
By collecting and analyzing 14 million messages including 400 thousand articles
on Twitter for 10 months during 2016 and 2017, they found that social bots played
a disproportionate role in spreading articles from low-credibility sources. At the
beginning of spreading, bots exaggerated the content. Meanwhile, bots attracted
followers by replies and mentions. And humans could easily believe and reshare the
content.

Social bot can be used to steal personal privacy illegally. Boshmaf et al. [21]
designed and analyzed a social botnet to evaluate how vulnerable online social
networks were to an attack by social bots. They put a group of coordinated
programmable social bots on Facebook for 8 weeks and collected data about human
behavior in response. The results showed that social bots could attack successfully
with a rate of up to 80% and more private data might be exposed because of user
profile settings.

Besides, there are still many dangers of social bots, such as manipulating the
stock market, being a tool to destroy a person or a company’s reputation, disrupting
the social network environment, spreading negative emotions on online social
networks and so on.

Many social bots are used to destroy the network environment and affect
social stability. But as long as they are used properly, they can still provide some
efficient and intelligent services and promote social progress, such as search news,
automatic reply, intelligent chat and so on. They can also be used for scientific
research, and nowadays many researchers have discovered the benefits of social
bots as scientific research tools. Their intelligence can replace manpower, even more
efficient and flexible. For example, in recent years, some studies have begun to use
social bots to conduct controlled experiments, explore the rules of human-computer
interaction and the structure and characteristics of social networks, then explore new
technologies of public opinion intervention and guidance. This part will be carried
out in Sect. 11.6.

11.4 Development Technology of Social Bots

To deploy social bots on the network, first of all, Internet access technology is
needed to enable bots to move freely on the network. Then we need to use artificial
intelligence technology, so that social bots can realize and simulate human behavior.
At the same time, it also needs the knowledge of network science, so that social bots
can master the network structure, and “socialize” faster and more directly to achieve
the goal. The following summarizes some mainstream technologies.

228 Y. Min et al.

11.4.1 Internet Access Technology

Internet access refers to connecting computers, mobile devices and other electronic
devices to the Internet, so as to realize the information transmission between
devices, so that users can use various services provided on the Internet.

11.4.1.1 PC Side

• HttpClient HttpClient is a client programming toolkit that supports Http proto-
col, and it supports the latest version and suggestion of Http protocol. HttpClient
has been used in many projects, such as Cactus and HtmlUnit, two famous open
source projects on Apache Jakarta.

11.4.1.2 Browser-based Access

• Selenium WebDriver WebDriver, also known as Selenium2, is the most impor-
tant component in the Selenium suite. WebDriver directly invokes the browser
through the local interface of the browser automation and performs some
automatic operations on the browser, such as opening a specified webpage,
obtaining the source code of the current webpage, clicking a certain location
in the webpage, simulated browsing, etc. It can automatically simulate human
web browsing behavior and avoid JavaScript anti-climbing checks on some
websites. And it supports most of the commonly used programming languages,
such as Java, Python, etc., which is conducive to multi-platform and multi-thread
development. At the same time, you can use a no-interface browser to save
machine resources.

• Puppeteer Puppeteer is a Node library that controls Chrome or Chromium
through the DevTools Protocol. The puppeteer can generate page screenshots or
PDFs, grab SPA, generate pre-rendered content, submit the form automatically,
etc.

• Chrome plugins Chrome plugins can automatically control chrome to make
network requests. A chrome plugin is a software developed with web technology
to enhance browser functions. It is a .crx suffix compressed package composed
of resources such as HTML, CSS, JS, and pictures. The chrome plugin provides
many useful APIs, including window control, label control, network request
control, various event monitoring, complete communication mechanisms, etc.
The chrome plugin can avoid JavaScript’s anti-crawling technology and modify
the attribute value of WebDriver when chrome loads web pages.

11 Exploring the Controlled Experiment by Social Bots 229

11.4.1.3 Mobile

• ADB(Android Debug Bridge) ADB is an Android tool that can be used to
connect to an emulator or actual mobile device. ADB can monitor all connected
devices (including simulators). At the same time, many commands are provided
to control the device.

• Appium Appium is an open source and cross-platform test automation frame-
work. Like selenium webdriver, it is also based on the Http protocol and
packaged with Node.js. It processes HTTP requests in the same way as Selenium
Webdriver; that is, the server receives the Http requests that follow the JSON
protocol sent by the client. Appium supports application automation across
various platforms such as iOS, android, and windows. Each platform is supported
by one or more “drivers” that know how to automate a particular platform.

• Macaca Macaca is an open-source automation test solution. It is cross-platform.
The application scenario supports the mainstream mobile technology platforms
OS, Android, the hybrid runtime Webview of the two platforms, and also supports
the previous desktop browsers.

11.4.2 Artificial Intelligence Foundation

Social bots also involve natural language processing, a branch of artificial intelli-
gence. Natural language processing is the study of mathematical and computational
modeling of various aspects of language and the development of a wide range
of systems [22]. Social bots can interact with humans using natural language
processing. Text classification is a branch of natural language processing. In
the running process of social bots, text classification is needed, including topic
recognition, emotion analysis, intention recognition, etc.

11.4.3 Network Science Theory

Each social network has a unique structure and characteristics. Since robots act on
the network, analysis of network structure and transmission is also essential. The
knowledge of this part can refer to the book “Network Science”.

11.5 Social Bots Detection

Social networks have a large user base. More and more people begin to use
various social platforms to integrate their daily lives with social platforms closely.
Subsequently, the popularity of social networks also leads to the rise of social bots.

230 Y. Min et al.

Fig. 11.1 Taxonomy for social bots detection methods

Part of bots steal the private information of users, send spam, spread fake news, and
even manipulate social media discourse, which has already endangered the security
of cyberspace. Therefore, more and more researchers are engaged in studying how
to distinguish social bots from legitimate users in social networks. Generally, the
methods are divided into four categories [12]: graph-based detection, feature-based
detection, crowdsourcing detection, and mixed use of multiple ways, as shown in
Fig. 11.1.

11.5.1 Graph-based Detection Method

The graph-based method involves using the structure of the graph formed by users
to detect malicious social bots. Mainstream graph-based algorithms are typically
based on the assumption that malicious users may be difficult to connect with a
large number of legitimate users in social networks, and thus tend to form their own
communities [12]. Based on this assumption, two types of graph-based methods are
typically proposed, which are the trust propagation method and the graph clustering
method [23].

The general process of trust propagation method is to identify some trusted seed
nodes firstly, and then spread the trust according to the connection between the
trusted nodes and the unknown nodes. For example, SybilGuard [24], Gatekeeper
[25], SybilLimit [26], SybilRank [27], and SybilRadar [28] use random walk
technique to propagate trust outwards.

The graph clustering method focuses on the detection of communities to identify
malicious group. Liu et al. [3] proposed a community-based method, which
contained two major steps. They first adopted the BIGCLAM [29] community

11 Exploring the Controlled Experiment by Social Bots 231

detection algorithm to recognize communities and assigned an initial label for each
user based on the features exhibited by users. Secondly, they iteratively refined a
user’s label by combining his/her initial label and his/her community friends.

11.5.2 Feature-based Detection Method

The feature-based method utilizes various account features to train classifiers to
detect malicious accounts. Mehrotra et al. [4] proposed an approach to detect
fake followers using only network measures of the nodes in the graph. In their
work, six network centrality measures were used as features (including Betweenness
Centrality, Eigenvector Centrality, Indegree Centrality, Outdegree Centrality, Katz
Centrality, and Load Centrality). They applied three classifiers, Artificial Neural
Networks, Decision Tree as well as Random Forest, and get the highest accuracy of
95%, with the precision of 88.99%, and recall of 100%.

In contrast to Mehrotra’s work, John et al. [30] analyzed the semantic feature
of tweet sentiment of legitimate and bot accounts. They proposed SentiBot, a
framework for detecting social bots. SentiBot makes use of four categories of
features: tweet syntax, tweet semantics, user behavior, and user neighborhood. The
results suggest that sentiment plays a significant role in the identification of the bots.

BotOrNot [5] is a feature-based social bot detection architecture, which is a
publicly-available service for Twitter and published in 2014. The system leverages
more than one thousand features and groups them into six classes which are
summarized in Table 11.1. BotOrNot uses Random Forest as the classifier. They
collect a dataset of 15k manually verified social bots and 16k legitimate accounts
and use the dataset consisting of more than 5.6 million tweets to train the models.
After ten-fold cross-validation, it achieves a performance of 0.95 AUC.

Table 11.1 Classes of Features Employed by Feature-Based System for detecting social bots

Class Description Feature examples

Network Network features include various
dimensions of information diffusion
patterns

Degree distribution, clustering
coefficient, centrality measures

User User features are meta-data related to an
account

language, geographic locations,
account creation time

Friends Friend features involve descriptive statistics
relative to the social contacts of an account

the distributions of the numbers of
followers or followings

Temporal Timing features reflect temporal patterns of
content generation and consumption

Average number of postings per day

Content Content features are related with the
message of the postings of an account

Number of words in a postings,
Number of hashtags

Sentiment Sentiment features are the emotion of the
postings of an account

Emotions

232 Y. Min et al.

11.5.3 Crowdsourcing Detection Method

Crowdsourcing refers to the assignment of tasks to non-specific people in a free and
voluntary manner. The crowdsourcing method for social bot detection mainly relies
on human intelligence and sensitivity. Wang et al. [6] explored the feasibility of
applying human effort (crowdsourcing) like Amazon’s Mechanical Turk to detect
social bots. They believed that careful users could understand subtle conversational
nuances and capture even slight inconsistencies in account profiles and postings.
In addition, they designed an experiment that employed both experts and workers
to detect social bots simply from the information on their profiles and analyzed
the results, which verified their insight. They designed a crowdsourced social bot
detection system with two layers. The first layer is filtering layer, in which they
can use automated techniques from prior work, such as graph-based detection
and feature-based detection, to label the suspicious profiles. The second layer is
crowdsourcing layer. The input of this layer is the suspicious profiles recognized by
the filtering layer and then a group of workers classifies them as legitimate or fake.

However, there are some drawbacks of the crowdsourcing strategy. First, adopt-
ing this method need to hire some experts and large workers, which may lead to
a high cost. Second, the exposure of personal information of the users to external
crowd workers may cause the issue of privacy. Third, due to the anonymity of crowd
workers, some members may accept the task just to get paid, but don’t accomplish
it seriously and misled the accuracy of detection results.

11.5.4 Mixed Use of Multiple Ways

Advise et al. [31] first proposed the need to build an ever more sophisticated
detection system, which combined several detection techniques to effectively detect
social bots. The Renren Sybil detector [32, 33] is a hybrid system that combines
multiple detection techniques. The system shares the advantages of network graph
structure and feature-based detection in some ways. Cao et al. [34] proposed an
aggregate behavioral pattern to uncover malicious accounts. Their work was based
on the found proposed by Wang et al. [32] that the Http requests from social bots
differed from those from legitimate accounts and clustered accounts according to
the similarity of their request actions. Secondly, they use pre-labeled accounts to
uncovers the clusters of malicious accounts.

11.6 Social Bots and Social Network Control Experiment

At present, the research on online social networks mainly relies on the observation
method, which means that researchers can not intervene in the research object, but
can only process and analyze the data passively obtained. However, large open

11 Exploring the Controlled Experiment by Social Bots 233

Fig. 11.2 Comparison of social network analyzing methods

data contains a lot of noise and the risk of privacy leakage. In order to overcome
the shortcomings of purely observational research, some researchers skillfully
use natural experiments or quasi experiments to make comparative analyses and
causal inference from available data sets. However, uncontrolled methods limit
the research. The comparison of social network analysis methods is shown in
Fig. 11.2. Recently, controlled experiments on social networks have deepened
our understanding of information sharing and dissemination. Moreover, compared
with the big data method, the controlled experiment can effectively control the
influencing factors, and the sample set is relatively small [35]. Social bot is being
used in controlled experiment research, which may be a new application direction
of social bot. With the continuous development of artificial intelligence technology
and the rise of big data and social computing technology, social bots can more
accurately simulate part of human behavior, which provides a new tool for online
social network controlled experimental research.

234 Y. Min et al.

11.6.1 Online Social Network Controlled Experiment

Controlled experiment refers to the scientific test under controlled conditions, that
is, in each experiment, only one or a few factors change, while other factors remain
unchanged. Compared with the observation data analysis, the research objects in
the controlled experiment are controlled by the experimental designer. Therefore,
the causal relationship between the controlled factors and the experimental results
can be explored through a small number of factors. Due to the high requirements of
controlled experiments, the complex online social network environment, the large
number of users and the wide distribution, the controlled experiment method is
not common in the research of large-scale online social networks. However, almost
all the research results of controlled experiments have a high theoretical level and
practical value.

Currently, there are two main modes of online social network controlled experi-
ments (as shown in Fig. 11.2). The first mode can be called the “embedded” mode,
which presents the evolution process from the theoretical analysis of complexity
science and big data observation research to the controlled experiment. It inherits
the abstract model and simulation research ideas in complexity theory analysis and
the requirements of real-time and authenticity of big data observation research. The
embedded mode is usually directly tested on real large-scale social networks (such
as Facebook and Twitter). The scale of the experiment is huge, usually involving
tens of thousands or even tens of millions of users. For example, in the experiment
of Robert et al. [36], a total of about 61 million Facebook users were involved. Due
to the large scale, the control measures taken by this model are usually relatively
simple, with only a small amount of intervention in user operations, information and
interfaces. At the same time, this model usually requires the cooperation or support
of relevant social network service providers. The embedded model takes the real
online social network service as the research object, and embeds the experimental
intervention into the real network for scientific research.

Another model can be called the “platform” model, which presents an evolution
from traditional offline social networks to online social networks. The scale of
this model is between traditional offline network experiments and the “embedded”
model experiments, usually on the order of a thousand people. At the same
time, this model uses Internet technology to create its own experimental social
network or application, and does not rely on real social network service providers.
Therefore, the platform model is a model that transfers traditional offline controlled
experiments to online platform execution. It makes full use of the Internet and
computer technology to expand the scale of offline experiments, while being able
to control and simulate more complex impact factors. It can simulate the operation
and characteristics of some online social networks, and is more convenient for the
structural evolution of social networks and psychological experimental research.

In online social network controlled experimental research, the most widely used
experimental methods and tools mainly include email services, self developed
of social networks/applications, social network customization, and crowdsourcing

11 Exploring the Controlled Experiment by Social Bots 235

services. In social network research, the earliest Internet tool to be used is the
email service. Classical social network theories such as the small world all rely on
email. Self-developed social network application refers to the research on controlled
experiments conducted by researchers who independently develop small online
experimental social network services or embedded applications developed by using
official application interfaces of real social network service providers (such as
microdisks on microblog platform). For example, Deters et al. [37] let participants
add a Facebook account as their friend, so that they can dynamically obtain all kinds
of information authorized by users or regulate user behavior through the account,
and carry out analysis and research. Social network customization is led by online
social network providers, which directly modifies some functions and displays of
existing social network service platforms (such as Microblog, Wechat, Twitter,
Facebook, etc.), so as to control the information acquisition or behavior of users.
Using social network customization to perform controlled experiments is the most
natural method, but at the same time, due to the limitation of service providers, it is
also a method with the highest access threshold. For example, during the 2010 U.S.
Congress election, Robert et al. [36] conducted a randomized controlled experiment
to control whether users could see the voting dynamics of their friends through
a customized Facebook interface, and verified the great potential value of online
social networks in political mobilization. Crowdsourcing refers to the practice that
organizations allocate the tasks which are previously performed by fixed personnel
to non-specific mass network users in a free and voluntary manner. The current
crowdsourcing platform allows researchers to customize the specific experimental
task system by using Internet technology, and open it to the public volunteers for
cooperation. For example, Li et al. [38] conducted a social dilemma experiment
on the crowdsourcing platform Mturk, and they tested the effects of two networks
reciprocity mechanisms and costly punishment mechanisms from the perspective of
controlled experiments. The following is a comparison table of these patterns and
methods (Table 11.2).

The development of artificial intelligence technology provides a new opportunity
for the experimental research of online social network. Social bot based on natural
language processing technology has been applied to controlled experiments.

11.6.2 Application of Social Bots in Controlled Experiment

Social bots provide a brand-new tool and model for online social network controlled
experimental research, and a new perspective for social network analysis. This
model uses real social networks as the experimental environment, using simulation
software robots with intelligent behaviors as the subject of the experiment, taking
into account the flexibility and controllability of pure numerical simulation analysis,
the authenticity of real social network services, and the relatively low standard entry
barriers and experimental costs.

236 Y. Min et al.

Table 11.2 Schema and tool of control experiments in online social network

Experimental
methods and tools Experimental mode Merits Demerits

Emails Platform mode Low entry threshold;
Reflect the real
network

Low controllability;
Small scope of
application; Lack of
features of modern
social network
services

Self developed social
networks
Applications

Platform/ Embedded
mode

High controllability;
Reflect part of the
real social network

Difficult to develop;
High cost

Crowdsourcing
service

Platform mode Good inheritance; Be
able to use laboratory
scale tools directly;
High controllability

Small scope of
application; Low
social relations and
content authenticity

Social networking
customization

Embedded mode Reflect the real
network; Wide range
of application

High entry threshold;
High legal and moral
risks

Mønsted et al. [8] deployed social bots on Twitter to realize tag propagation,
and verified the effectiveness of different information propagation models. They
proposed two Bayesian statistical models describing simple and complex contagion
dynamics, and tested the competing hypotheses. Their experiment showed that
the complex infection model could describe the observed information diffusion
behavior more accurately than the simple infection model. Munger, a political
scientist at Pennsylvania State University, using social bots with different user
attributes and number of fans to attack accounts with racist comments [39], aimed
at reducing white racist speech. It is found that accounts attacked by bots Who have
a profile picture of a white man with a large number of fans will significantly reduce
their racist comments. The experiment expanded from the laboratory environment
to the real network environment, using objective, behavioral results measurement
and two consecutive months of data collection period, which is a great progress in
behavioral research. Murthy et al. [7] artificially put social bots on Twitter to track
and measured the effect of the robot on public opinion related to political events
(2015 British election), and measure the degree value of the bots in promoting the
formation of topic network and spreading specific tag information. The result shows
that the effect of robot is not significant. Chen et al.[40] deployed neutral social
bots on Twitter to probe biases that may emerge from interactions between users,
platform mechanisms, and manipulation by inauthentic actors. They found evidence
of bias affecting the news and information to which U.S. Twitter users were likely
to be exposed, depending on their own political alignment.

Min et al. [9] deployed 128 microblog social bots in Weibo (the most famous
twitter-like service in China, with 430 million active users per month). By analyzing
the data generated by those bots, they clarified the pathway from selective exposure
to polarization, especially the structure and function of filter bubbles. This method

11 Exploring the Controlled Experiment by Social Bots 237

Fig. 11.3 Design of neutral social bot. Based on the operating interface of Weibo (middle), the
authors use the flowchart (left) and the schematic diagram (right) to illustrate the main workflow
of the social robot, including the automated process (1–4) and the manual assistant process (5)

is limited to the use of data generated by these bots, without any data about actual
personnel. Therefore, this is a privacy protection method.

The robot’s workflow including five steps is shown in Fig. 11.3. (1) Initially, each
bot is assigned two or three default followings, and most of these followings publish
or republish messages consistent with the bot’s topic. (2) The bot will wake up
from the idle state at regular intervals. After the bot is awakened, it can view the
latest news published or republished by its followings. In this process, all messages
are re-ranked according to the descending order of release time, so as to eliminate
the influence of algorithm ranking and recommendation system on information
exposure. (3) After viewing the public messages, the bot only selects the messages
consistent with the topic. In this step, they first run FastText text classification
algorithm to obtain preliminary classification results and then verifies by at least
experimenters to ensure the accuracy. Although manual supervision is required,
the algorithm can filter out a large number of inconsistent messages. (4) If there
are reposted messages in selected messages, according to directed triadic closure,
according to directed triadic closure, the bot will randomly select a republished
message and follow the direct source of the republished message. (5) If the following

238 Y. Min et al.

values reach the upper limit, the bot will stop running; otherwise, the robot will
become idle and wait to wake up again.

In order to avoid legal and moral hazards, the bot will not generate, modify or
repost any information in the experiment. In all the processes, all the social bots
deployed have no direct interaction with existing users and can only follow them.
All the data collected is directly exposed to them and can be publicly accessed. All
network connections are restricted to the bot and its direct followings, and the entire
social relationship of all followings is not used. In other words, the experiment will
not interfere with the user’s behavior or the dissemination of information, and all
the data used is publicly visible. Therefore, this method avoids the risk of violating
user privacy.

They adopted two most active topics in Weibo: entertainment and sci-
tech(science and technology), and designed two experimental treatments: topic
group and random group for each topic. In the topic group, the bot chooses the
preferred content to expand its social network, but in the random group, the bot
randomly selects new information sources from all exposed content, regardless of
the preferred topic. As a result, they set four experimental social bot groups with
30–34 bots: topic entertainment group (EG), topic sci-tech group (STG), random
entertainment group (REG), and random sci-tech group (RSTG). The experiment
ran for at least 2 months and they recorded about 1.3 million messages exposed to
these bots and their social networks.

By comparing the data received by bots in the topic group(EG,STG) and the
random group(REG,RSTG) respectively, they found that the link between selective
exposure and information polarization. Figure 11.4 showed that the entertainment
topic is more polarized than the sci-tech topic initially. Compared to the initial state,
they were more concerned about the diversity of messages consumed by social bots
after their social networks have formed. At the end of the bots, the preferred topic
ratio of REG decreased more than the preferred topic ratio of EG, which showed
that selective exposure was important, but not enough to lead to polarization. On the
other hand, the preferred topic ratio of RSTG and STG was similar, both greatly less

REG / EG RSTG / STG
0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

ra
tio

(A)

EG REG STG RSTG

(B)

EG REG STG RSTG

(C)

Fig. 11.4 The polarization of exposed content and followings. (a) The preferred topic ratio in the
initial state (R0). Because the topic group and the random group have the same initial followings,
they also have the same R0 for each topic. (b) The preferred topic ratio in the final state R1. (c)
Proportion of followings with the same preferred topic (P) in four treatments

11 Exploring the Controlled Experiment by Social Bots 239

Fig. 11.5 Motifs of personal social networks, distinguish between the central and the peripheral
node

than the initial ratio. The difference between the two themes suggested that whether
selective exposure led to polarization depends on the topic.

They analyzed all possible motifs between two nodes (i.e., followings of bots)
in the networks and there were five possible configurations by considering the
centrality of nodes within degree (i.e., the number of followers of nodes). For two
nodes of a directed arc, they distinguished two nodes into a peripheral node and a
central node if the difference between centralities was larger than a threshold T =
10, such as motif 2A and 2B in Fig. 11.5. Figure 11.6a showed that EG networks
contained more non-reciprocal arcs from peripheral nodes to central nodes, whereas
STG networks had more reciprocal arcs between peripheral and central nodes.
Second, Fig. 11.6b showed that STG networks contained more closed triangles with
at least two reciprocal arcs.

Finally, they visualized the evolution of personal social networks. As shown
in Fig. 11.7, the STG networks still had a high connection density after removing
all the non-reciprocal arcs, while EG networks were the opposite, with the sparse
connection. As a result, an STG network was typically a bidirectional clustering
structure, while an EG network was typically a unidirectional star-like structure with
a few high-degree nodes. The star-like social structure, in which the central nodes
played only the role of the information source, and rarely received information
from other nodes. The nodes of the bidirectional clustering structure can efficiently
exchange information and realize a complementary effect with their friends with
distinct preferences, which can promote the diversity of information. The two
different structures formed by the EG networks and STG networks led to the
different polarization levels.

240 Y. Min et al.

Fig. 11.6 The statistical results of different motifs, the red color represents the EG group and the
blue color represents the STG group

Fig. 11.7 Visualization of the evolution of personal social networks. In this demonstration, Social
bot 05 in EG (EG05) and bot 02 in STG (STG02) display a similar growth process from initialized
two followings to the end of running. However, STG02 obtains more reciprocal edges than EG05.
The triangles represent the nodes with high in-degree, that is, the corresponding users have a large
number of followers. The visualization is based on the radial layout with in-degree centrality; thus
the node with higher in-degree is closer to the centre of the plot

11 Exploring the Controlled Experiment by Social Bots 241

It can be seen that social bots are a good tool for the development of network
control experiments, and at the same time, they can also develop the use of bots in
a positive way.

11.6.3 Problems in Controlled Experiments by Social Bots

11.6.3.1 High Technical Threshold

Using social bots to do controlled experiments has high technical requirements.
Bots need to make social bots that adapt to different social network structures. For
example, the information interaction between Twitter and Weibo is quite different.
Social bots on Twitter cannot be applied directly to Weibo, and vice versa. At
the same time, all software platforms will be updated, and bots need to make
real-time changes. Because of the universality of social bots, the current network
needs human-computer verification. Complex text and graphic captcha make the
bot unable to run smoothly on the network. Bots are not real people after all, so it
still needs a high technical threshold to make bots run on the network like human
beings.

11.6.3.2 Legal and Moral Issues

Using social bots for controlled experiments may lead to legal and moral problems.
When social bots run on the Internet, it is likely to interfere with the user’s behavior,
and even produce a series of problems, such as public opinion guidance, invasion of
privacy and so on. Scientific research should not infringe on users’ privacy, or even
interfere in national political activities. When doing experiments, researchers need
to pay attention to that the process is only used for scientific research, and cannot
cause improper control and intervention, and cause social disputes.

11.7 Conclusion

Nowadays, the negative effects of social bots far outweigh the positive ones. When it
comes to social bots, people instinctively associate them with a series of bad words,
such as “water army” and “spray”. They are influencing and changing the direction
of public opinion, political election and so on. Online networks are full of all kinds
of malicious social bots. Therefore, it is necessary to detect malicious bots. Section
11.5 summarizes the detection methods of malicious robots from four categories. At
the same time, we can make some scientific innovations according to the flexibility
and effectiveness of social bots. SEC 6 focuses on the application of social bots in

242 Y. Min et al.

controlled experiments, which provides some inspiration for the future development
of social bots.

References

1. Shao, C., Ciampaglia, G.L., Varol, O., Yang, K.-C., Flammini, A., Menczer, F.: The spread of
low-credibility content by social bots. Nature Commun. 9(1), 1–9 (2018)

2. Stella, M., Ferrara, E., De Domenico, M.: Bots increase exposure to negative and inflammatory
content in online social systems. Proc. Natl. Acad. Sci. 115(49), 12435–12440 (2018)

3. Liu, D., Mei, B., Chen, J., Lu, Z., Du, X.: Community based spammer detection in social
networks. In: International Conference on Web-Age Information Management, pp. 554–558
(Springer, Berlin, 2015)

4. Mehrotra, A., Sarreddy, M., Singh, S.: Detection of fake twitter followers using graph centrality
measures. In: Proceedings of the 2016 2nd International Conference on Contemporary
Computing and Informatics (IC3I), pp. 499–504 (IEEE, New York, 2016)

5. Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: Botornot: A system to evaluate
social bots. In: Proceedings of the 25th International Conference Companion on World Wide
Web, pp. 273–274 (2016)

6. Wang, G., Mohanlal, M., Wilson, C., Wang, X., Metzger, M., Zheng, H., Zhao, B.Y.: Social
turing tests: Crowdsourcing sybil detection. arXiv preprint arXiv:1205.3856 (2012)

7. Murthy, D., Powell, A.B., Tinati, R., Anstead, N., Carr, L., Halford, S.J., Weal, M.: Automation,
algorithms, and politics| bots and political influence: a sociotechnical investigation of social
network capital. Int. J. Commun. 10, 20 (2016)

8. Mønsted, B., Sapieżyński, P., Ferrara, E., Lehmann, S.: Evidence of complex contagion of
information in social media: an experiment using twitter bots. PloS One 12(9), e0184148
(2017)

9. Min, Y., Jiang, T., Jin, C., Li, Q., Jin, X.: Endogenetic structure of filter bubble in social
networks. R. Soc. Open Sci. 6(11), 190868 (2019)

10. Ledford, H.: Social scientists battle bots to glean insights from online chatter. Nature
578(7793), 17–17 (2020)

11. Woolley, S.C.: Automating power: social bot interference in global politics. First Monday 21(4)
(2016)

12. Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun.
ACM 59(7), 96–104 (2016)

13. Howard, P.N., Kollanyi, B., Woolley, S.: Bots and automation over twitter during the US
election. In: Computational Propaganda Project: Working Paper Series (2016)

14. Weedon, J., Nuland, W., Stamos, A.: Information operations and facebook. In:
Retrieved from Facebook. https://fbnewsroomus.files.wordpress.com/2017/04/facebook-and-
information-operations-v1.pdf (2017)

15. Hwang, T., Pearce, I., Nanis, M.: Socialbots: voices from the fronts. Interactions 19(2), 38–45
(2012)

16. Wagner, C., Mitter, S., Körner, C., Strohmaier, M.: When social bots attack: Modeling
susceptibility of users in online social networks. In: # MSM, pp. 41–48 (2012)

17. Grimme, C., Preuss, M., Adam, L., Trautmann, H.: Social bots: human-like by means of human
control? Big Data 5(4), 279–293 (2017)

18. Shawar, B.A., Atwell, E.: Chatbots: are they really useful? In: Ldv Forum, vol. 22, pp. 29–49
(2007)

19. Ferrara, E.: Disinformation and social bot operations in the run up to the 2017 French
presidential election. arXiv preprint arXiv:1707.00086 (2017)

20. Bessi, A., Ferrara, E.: Social bots distort the 2016 US presidential election online discussion.
First Monday 21(11-7), 14 (2016)

https://fbnewsroomus.files.wordpress.com/2017/04/facebook-and-information-operations-v1.pdf
https://fbnewsroomus.files.wordpress.com/2017/04/facebook-and-information-operations-v1.pdf

11 Exploring the Controlled Experiment by Social Bots 243

21. Boshmaf, Y., Muslukhov, I., Beznosov, K., Ripeanu, M.: Design and analysis of a social botnet.
Comput. Networks 57(2), 556–578 (2013)

22. Reshamwala, A., Mishra, D., Pawar, P.: Review on natural language processing. IRACST Eng.
Sci. Technol. An Int. J. (ESTIJ) 3(1), 113–116 (2013)

23. Adewole, K.S., Anuar, N.B., Kamsin, A., Varathan, K.D., Razak, S.A.: Malicious accounts:
Dark of the social networks. J. Netw. Comput. Appl. 79, 41–67 (2017)

24. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: Sybilguard: defending against sybil attacks
via social networks. In: Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pp. 267–278 (2006)

25. Tran, N., Li, J., Subramanian, L., Chow, S.S.M.: Optimal sybil-resilient node admission
control. In: 2011 Proceedings IEEE INFOCOM, pp. 3218–3226 (IEEE, New York, 2011)

26. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: a near-optimal social network
defense against sybil attacks. In: Proceedings of the 2008 IEEE Symposium on Security and
Privacy (SP 2008), pp. 3–17 (IEEE, New York, 2008)

27. Cao, Q., Sirivianos, M., Yang, X., Pregueiro, T.: Aiding the detection of fake accounts in
large scale social online services. In: Presented as part of the 9th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI}12), pp. 197–210 (2012)

28. Mulamba, D., Ray, I., Ray, I.: Sybilradar: a graph-structure based framework for sybil detection
in on-line social networks. In: IFIP International Conference on ICT Systems Security and
Privacy Protection, pp. 179–193 (Springer, New York, 2016)

29. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix
factorization approach. In: Proceedings of the Sixth ACM International Conference on Web
Search and Data Mining, pp. 587–596 (2013)

30. Dickerson, J.P., Kagan, V., Subrahmanian, V.S.: Using sentiment to detect bots on twitter:
are humans more opinionated than bots? In: Proceedings of the 2014 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), pp. 620–
627 (IEEE, New York, 2014)

31. Alvisi, L., Clement, A., Epasto, A., Lattanzi, S., Panconesi, A.: Sok: the evolution of sybil
defense via social networks. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, pp. 382–396 (IEEE, New York, 2013)

32. Wang, G., Konolige, T., Wilson, C., Wang, X., Zheng, H., Zhao, B.Y.: You are how you click:
Clickstream analysis for sybil detection. In: Proceedings of the 22nd {USENIX} Security
Symposium ({USENIX} Security 13), pp. 241–256 (2013)

33. Yang, Z., Wilson, C., Wang, X., Gao, T., Zhao, B.Y., Dai, Y.: Uncovering social network sybils
in the wild. ACM Trans. Knowl. Discov. Data (TKDD) 8(1), 1–29 (2014)

34. Cao, Q., Yang, X., Yu, J., Palow, C.: Uncovering large groups of active malicious accounts in
online social networks. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 477–488 (2014)

35. C. Jin, Jiang, T., Min, Y., Jin, X., Ge, Y., Chang, J.: Review of control experiments on online
social networks. J. Zheijang Univ. (Science Edition) 47(1), 1–11 (2020)

36. Bond, R.M., Fariss, C.J., Jones, J.J., Kramer, A.D.I., Marlow, C., Settle, J.E., Fowler, J.H.: A
61-million-person experiment in social influence and political mobilization. Nature 489(7415),
295–298 (2012)

37. Deters, F.G., Mehl, M.R.: Does posting facebook status updates increase or decrease lone-
liness? an online social networking experiment. Soc. Psychol. Personal. Sci. 4(5), 579–586
(2013)

38. Li, X., Jusup, M., Wang, Z., Li, H., Shi, L., Podobnik, B., Stanley, H.E., Havlin, S., Boccaletti,
S.: Punishment diminishes the benefits of network reciprocity in social dilemma experiments.
Proc. Natl. Acad. Sci. 115(1), 30–35 (2018)

39. Munger, K.: Tweetment effects on the tweeted: Experimentally reducing racist harassment.
Polit. Behav. 39(3), 629–649 (2017)

40. Chen, W., Pacheco, D., Yang, K.-C., Menczer, F.: Neutral Bots Reveal Political Bias on Social
Media (2020)

	Preface
	References

	Acknowledgment
	Contents
	1 Information Source Estimation with Multi-Channel Graph Neural Network
	1.1 Introduction
	1.2 Related Work
	1.2.1 Information Diffusion Modeling
	1.2.2 Information Source Detection
	1.2.3 Graph Neural Network

	1.3 Preliminaries
	1.3.1 Problem Definition

	1.4 Multi-Channel Graph Neural Network
	1.4.1 Feature Indices of Input
	1.4.1.1 Structural Features
	1.4.1.2 Prior Knowledge Features

	1.4.2 Graph Convolutional Networks
	1.4.3 Architecture of MCGNN
	1.4.4 Loss Function

	1.5 Experiment
	1.5.1 Datasets and Experimental Setup
	1.5.2 Baselines and Evaluation Metrics
	1.5.3 Results on the Synthetic Networks
	1.5.4 Results on the Real-World Networks

	1.6 Conclusion
	References

	2 Link Prediction Based on Hyper-Substructure Network
	2.1 Introduction
	2.2 Existing Link Prediction Methods
	2.2.1 Heuristic Methods
	2.2.2 Embedding-Based Methods
	2.2.3 Deep Learning-Based Models

	2.3 Methodology
	2.3.1 Problem Formulation
	2.3.2 Neighborhood Normalization
	2.3.3 HSN Construction
	2.3.4 HELP

	2.4 Experiment
	2.4.1 Datasets
	2.4.2 Link Prediction Methods for Comparison
	2.4.3 Evaluation Metrics
	2.4.4 Experimental Settings
	2.4.5 Link Prediction Results
	2.4.6 Parameter Sensitivity

	2.5 Conclusion
	References

	3 Broad Learning Based on Subgraph Networks for Graph Classification
	3.1 Introduction
	3.2 Related Work
	3.2.1 Subgraph Networks
	3.2.2 Network Representation
	3.2.3 Broad Learning System

	3.3 Subgraph Networks
	3.3.1 First-Order SGN
	3.3.2 Second-Order SGN

	3.4 Sampling Subgraph Networks
	3.4.1 Sampling Strategies
	3.4.1.1 Biased Walk (BW)
	3.4.1.2 Spanning Tree (ST)
	3.4.1.3 Forest Fire (FF)

	3.4.2 Construction of S2GN

	3.5 BLS Classifier Based on S2GN
	3.5.1 BLS Classifier
	3.5.2 Classification Framework

	3.6 Experiment
	3.6.1 Graph Classification
	3.6.2 Datasets
	3.6.3 Network Representation
	3.6.4 SGN for Graph Classification
	3.6.5 S2GN for Graph Classification

	3.7 Computational Complexity
	3.8 Conclusion
	References

	4 Subgraph Augmentation with Application to Graph Mining
	4.1 Introduction
	4.2 Related Work
	4.2.1 Graph Classification
	4.2.1.1 Graph Kernel Methods
	4.2.1.2 Embedding Methods
	4.2.1.3 Deep Learning Methods

	4.2.2 Data Augmentation in Graph Learning

	4.3 The Model Evolution Framework for Graph Classification
	4.3.1 Problem Formulation
	4.3.2 Subgraph Augmentation
	4.3.2.1 Random Mapping
	4.3.2.2 Motif-Similarity Mapping

	4.3.3 Data Filtration
	4.3.4 Model Evolution Framework

	4.4 Application of Subgraph Augmentation
	4.4.1 Graph Classification
	4.4.1.1 Experimental Setting

	4.4.2 Link Prediction
	4.4.2.1 Subgraph Extraction
	4.4.2.2 Experimental Setting

	4.4.3 Node Classification
	4.4.3.1 Subgraph Extraction
	4.4.3.2 Experimental Setting

	4.4.4 Experimental Results

	4.5 Conclusion
	References

	5 Adversarial Attacks on Graphs: How to Hide Your Structural Information
	5.1 Background
	5.2 Adversarial Attack
	5.2.1 Problem Definition
	5.2.2 Taxonomies of Attacks

	5.3 Attack Strategy
	5.3.1 Node Classification
	5.3.1.1 NETTACK
	5.3.1.2 Meta Attack
	5.3.1.3 Experiment of Results

	5.3.2 Link Prediction
	5.3.2.1 Heuristic Attack
	5.3.2.2 Gradient-Based Attack
	5.3.2.3 Experiment of Results

	5.3.3 Graph Classification
	5.3.3.1 Hierarchical Reinforcement Learning Attack
	5.3.3.2 Experimental Result

	5.3.4 Community Detection
	5.3.4.1 GA-Based Q-Attack
	5.3.4.2 Experiment Result

	5.4 Conclusion
	References

	6 Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms
	6.1 Introduction
	6.2 Adversarial Training
	6.2.1 Graph Adversarial Training
	6.2.2 SAT

	6.3 Graph Purification
	6.3.1 GCN-Jaccard
	6.3.2 GCN-SVD

	6.4 Robustness Certification
	6.4.1 Certifying Robustness for Graph Structure Perturbations
	6.4.2 Certifying Robustness for Node Attributes Perturbations
	6.4.3 Certifiable Robustness in Community Detection

	6.5 Structure Based Defense
	6.5.1 Penalized Aggregation GNN
	6.5.2 Robust Graph Convolutional Network

	6.6 Adversarial Detection
	6.6.1 Adversarial Detection on Node Classification
	6.6.2 Adversarial Detection on Graph Classification
	6.6.2.1 SGN Based Adversarial Detection
	6.6.2.2 Joint Adversarial Detection

	6.7 Summary of Defenses
	6.8 Experiment and Analyze
	6.8.1 Adversarial Training
	6.8.2 Adversarial Detection

	6.9 Conclusion
	References

	7 Understanding Ethereum Transactions via Network Approach
	7.1 Introduction
	7.2 Ethereum Transaction Dataset
	7.3 Graph Embedding Techniques
	7.3.1 Factorization Based Methods
	7.3.2 Random Walk Based Methods
	7.3.3 Deep Learning Based Methods
	7.3.4 Other Methods

	7.4 The Proposed Method
	7.4.1 Basic Definition
	7.4.2 Temporal Biased Walk
	7.4.3 Learning Temporal Graph Embeddings

	7.5 Experiment
	7.5.1 Node Classification
	7.5.1.1 Evaluation Metrics
	7.5.1.2 Experimental Results

	7.5.2 Link Prediction
	7.5.2.1 Evaluation Metrics
	7.5.2.2 Experimental Results

	7.6 Conclusion
	7.7 Appendix
	7.7.1 Similarity Indices

	References

	8 Find Your Meal Pal: A Case Study on Yelp Network
	8.1 Introduction
	8.2 Data Description and Preprocessing
	8.3 Link Prediction Methods
	8.3.1 Similarity Indices Assembly
	8.3.2 Variational Graph Auto-Encoder

	8.4 Experiments
	8.5 Experiment Setup
	8.5.1 Friends Recommendation
	8.5.2 Co-foraging Prediction

	8.6 Conclusion
	References

	9 Graph Convolutional Recurrent Neural Networks: A Deep Learning Framework for Traffic Prediction
	9.1 Background
	9.2 Related Work
	9.2.1 Graph Analysis
	9.2.2 Traffic State Prediction

	9.3 Model
	9.3.1 Graph Convolutional Network
	9.3.2 Long Short-Term Memory
	9.3.3 Graph Convolutional Recurrent Neural Network

	9.4 Experiment
	9.4.1 Dataset
	9.4.2 Baselines
	9.4.3 Evaluation
	9.4.4 Evaluation
	9.4.5 Results of Experiments and Analyses

	9.5 Conclusion
	References

	10 Time Series Classification Based on Complex Network
	10.1 Introduction
	10.2 Related Work
	10.2.1 Time Series Classification
	10.2.2 Mapping Methods
	10.2.3 Graph Classification

	10.3 Methods
	10.3.1 Circular Limited Penetrable Visibility Graph
	10.3.1.1 Circle System Equation
	10.3.1.2 Graph Construction through CLPVG
	10.3.1.3 Subgraph Network

	10.3.2 Automatic Visibility Graph based on GNN
	10.3.2.1 The Overall Framework
	10.3.2.2 Feature Extraction
	10.3.2.3 Feature Matrix of Graph
	10.3.2.4 Classification of Graphs

	10.3.3 Comparison with LPVG

	10.4 Experiments
	10.4.1 Datasets
	10.4.2 The Experimental Settings
	10.4.3 The Experimental Results

	10.5 Conclusion
	References

	11 Exploring the Controlled Experiment by Social Bots
	11.1 Introduction
	11.2 Definition of Social Bots
	11.3 Application and Influence of Social Bots
	11.3.1 Application
	11.3.2 Influence

	11.4 Development Technology of Social Bots
	11.4.1 Internet Access Technology
	11.4.1.1 PC Side
	11.4.1.2 Browser-based Access
	11.4.1.3 Mobile

	11.4.2 Artificial Intelligence Foundation
	11.4.3 Network Science Theory

	11.5 Social Bots Detection
	11.5.1 Graph-based Detection Method
	11.5.2 Feature-based Detection Method
	11.5.3 Crowdsourcing Detection Method
	11.5.4 Mixed Use of Multiple Ways

	11.6 Social Bots and Social Network Control Experiment
	11.6.1 Online Social Network Controlled Experiment
	11.6.2 Application of Social Bots in Controlled Experiment
	11.6.3 Problems in Controlled Experiments by Social Bots
	11.6.3.1 High Technical Threshold
	11.6.3.2 Legal and Moral Issues

	11.7 Conclusion
	References

