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Abstract

Lateral Gene Transfer refers to the transfer of genes from one organism to

another other in lateral fashion. The regions that are exchanged between the

genomes as a result of such events are known as Mobile genetic elements. These

elements include transposons, integron, prophage, genomic islands, and insertion

sequence elements. Genomic islands (GIs) are large regions of the chromosomes

that constitute a flexible gene pool. These are the regions of the DNA that are

transferred from one organism to another by other mobile genetic elements. Such

genomic regions encode genes that confers adaptability and versatility

advantages to a bacterium. If such regions confer virulent properties to the

bacterium, these are called

pathogenicity islands (PAIs). Characterizing GIs gives insights into the nature of

bacterial species as to why some of the strains could tolerate extreme living

conditions while others do not, why some of the strains are resistant towards a

particular antibiotic while, others do not. Focus of this study is on PAIs which

facilitate to give insight into the pathogenic nature of the bacterial species

concerning why even within the same species, some of the bacterial strains are

pathogenic in nature while, others are not. Therefore, identification of PAIs

constitutes one of the critical tasks for understanding the nature of pathogenic

species benefitting biomedical research. Identification of PAIs can lead towards

better diagnosis and antibiotics designing, ultimately, contributing to human

health. As the biological experiments only contributes a meager fraction of

information for PAIs in the sequenced genome, computational approaches seem

to be the better option. Currently, two computational approaches are available

for the identification of GIs i.e. sequence-based and comparative genomics-based

pipelines. Each of the two available approaches have their own limitations

resulting in false predictions limiting the accuracy of these approaches.

Therefore, in this study an integrated approach has been proposed which could

overcome the short-comings of each approach while identifying PAIs in

particular, with improved accuracy. Proposed integrated approach is based on

the existing pipelines with certain modifications that suggest broadening up the
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subset of genomic signatures leading to the application of more stringent criteria

in decision making. This study has focused on organisms which comparatively

weaker known basis of pathogenicity by selecting an opportunistic pathogen

Streptococcus sanguinis SK36 as a case, suggesting the application of k-means

clustering approach for determining the non-pathogenic strains leading to better

selection of subject genome and comparative genome set. Suggested integrated

approach has led to more accurate identification of GIs/PAIs and has shown

better prediction results as compared to the other conventional pipelines.
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Chapter 1

Introduction

Microbes are the most diverse organisms that accounts for 60% of Earth biomass

[1]. Among microbes, bacteria are the most widely spread organisms that are

found nearly everywhere. This ubiquity is due to the adaptive nature of the

bacteria towards various environments. Besides the bacterial conventional mode

of gene transfer, bacterial cells also have the ability of transferring genes laterally.

This lateral transfer of genes makes a strain adaptive in comparison to others

within a same species and induces strains specific properties.

1.1 Lateral Gene Transfer

Adaptive bacterial nature is due to the ability of bacteria to acquire genes of

horizontal origin from various sources including prokaryotes, viruses and even

eukaryotes via a process called Lateral Gene Transfer (LGT). LGT refers to

genes transfer from an organism to another in a lateral fashion. LGT facilitates

evolution and has been accepted as one of the important evolutionary mechanism

of life [2]. LGT takes place by following processes: conjugation, transformation

and transduction (Figure 1.1).

Transformation involves direct uptake, incorporation and expression of an

exogenous DNA by a bacterium from its external environment [3]. A cell that is

capable of up-taking a DNA is known as competent. Such state of competency is

1
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usually inducible by external stimuli such as pulse heat shock etc. The process of

transformation initiates with the attachment of DNA (double stranded) with the

specific binding sites present on cell surface. Followed by conversion of foreign

DNA into single stranded form by the action of series of proteins such type IV

pili and type II secretion system proteins, it is then translocated into the cell [4].

In contrast to that, conjugation is the transfer of exogenous DNA by establishing

a physical link (mating pillus) between recipient and a donor. Transferred

genetic material is usually a plasmid or a transposon. Elements encoding

conjugation machinery are considered self-transmissible whereas, those that rely

upon externally encoded conjugation systems are referred to as mobilizable. This

activity takes place by the projection of sex pillus directing towards recipient cell

from donor cell at considerable distance. The single stranded DNA is then

transferred into the recipient cell by forming a replicating rolling circle by the

action of secretion systems such as type IV [4].

Transduction refers to DNA transfer carried via a virus infecting a prokaryotic

cell called phage. Phages are categorized broadly based on their infection follow

up strategy i.e. whether they enter lytic phase or become dormant. The dormant

or temperate phages integrates their own DNA within a bacterial genome

becoming a prophage and keeps on replicating for many generations along with

the host’s genome. Induction (spontaneous or environmental change) helps a

temperate phage to come out of dormancy and enter a complete lytic cycle.

Transduction can be generalized as well as specialized. Generalized transduction

includes a phage particle packaging host’s DNA fragments randomly during its

lytic phase of the cycle. While, specialized transduction takes place when host

DNA having an integrated is replicated during phage induction and becomes

integrated into the phage particle [4].

These LGT events facilitates the transfer of genetic material causing genomic

alteration via gene loss and gain and are major source of evolution. Such

acquisition of genes plays a crucial role in the adaptive evolution of prokaryotes

conferring beneficial traits to bacteria under particular growth and

environmental conditions [2].
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Figure 1.1: Bacterial modes of horizontal gene transfer

1.2 Mobile Genetic Elements

Regions exchanged between the genomes as a result of LGT events are known

as Mobile Genetic Elements (MGEs) and are described as the blocks of DNA

that can translocate on a chromosome and can be exchanged between different

chromosomes and even different species [5]. MGE includes transposons, integron,

prophage, genomic islands (GIs), and insertion sequence (IS) elements [4].

Genomes of both the prokaryotes and eukaryotes contains a large amount of

repeated DNA sequences which are mobile in nature and are referred as

transposons (TNs). TNs greatly affect the genomes in positive or negative

manner due to their mobility. They have a crucial part in genome evolution by
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promoting inactivation of genes, managing the gene expression levels through

recombination which results in the change in genome size during evolution [6].

The size of transposons is about 5kb, containing approximately 38 to 40 bps with

inverted repeats at both ends from which 5 bp of repeated DNA sequences is

generated during insertion [7].

Integrons on other hand, are the hereditary elements that permit the start and

stop of gene expression They are generally known due to their important role in

the development of drug resistance, especially among Gram-negative bacteria.

Clinically, integron are a most common portion of bacterial genomes occurring in

all environmental conditions, can move among species and easily pass to lineages

through evolution, and they have access to a huge pool of novel genes whose

functions are not known [8]. All integron consists of three primary components

to capture exogenous genes: a gene (intI) that encodes integrase

(tyrosine-recombinase family), a primary recombination site (attI), and an

outward-orientated promoter (Pc) for initiation of transcription of exogenously

acquired genes [9].

Interplay between lysogenic and lytic cycle of phage during transduction is

considered as the major source of variations in genomic sequence pattern of

bacterial strains. Prophage’s genome could account for 10-20 % of genes in

bacterial genomes. Number of virulence factors contributing towards bacterial

pathogenesis is mobilized by phages and is considered as principal factor in the

evolution emerging pathogens. Prophage regions usually includes an integrase

and certain phage related genes. To identify the prophage integration, flanking

direct repeats or presence of tRNA is considered as a supportive evidence [4].

Insertion Elements (IEs) are yet another kind of MGEs that are the small

segments of DNA usually less than 2.5-kb, with a simple organization of genetic

sequence and ability to insert at more than one space in a genome at a time.

These constitutes components with RNA as intermediates, for example, the

retroviruses, retrotransposons, DNA components including conjugative

transposons and components of bacteriophage Mu, Tn7, and transposons of the

Tn554 type, many IEs have complex structure and show multiple drug resistance

[10]. Number of IEs increases or decreases due to inactivation of genes and
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decay, genome modification and reduction in genome, therefore, affects the life of

host [11].

Genomic Islands are the blocks of genes that are being transferred laterally as a

result of LGT events and are the focal point of this study. GIs usually range from

5 to 500 kb [12] [4] and encode various genes that confer adaptability advantages

of medical and ecological importance [12]. Depending upon the type of genes, a

GI could be defined as Antimicrobial Island or Pathogenicity Islands etc [13].

1.3 Genomic Islands (GI)

GIs are large regions of the chromosomes constituting a flexible gene pool. These

are the regions of the DNA that are transferred from one organism to another by

other MGEs. Such genomic regions are possessed by certain bacteria and are

absent from its closely related strains. GIs encode genes that confers adaptability

and versatility advantages to a bacterium and are associated with tRNA and

flanked direct repeats structures. They are also characterized by mobility genes

encoding integrases or transposases necessary to integrate and excise the

chromosome. They have a significant part in the dynamic character of bacterial

chromosomes and can be excised and transferred from one chromosome to other

[14].

Research on GIs have remained an area of extensive interest due to its role in

genomic variability and evolution of pathogenic bacteria. The concept of GI was

originated for pathogenic bacteria and was associated with pathogenicity, but later

on due to the observation of these region in related non-pathogenic bacteria and

the different ecological context-based functions GIs play in genome leads to more

relaxed term- the GIs. This generalization differentiates the term pathogenicity

island (PAIs) from GIs while merely correlating it with the pathogenesis. On the

other hand, depending upon the types of adaptability advantages they confer GIs

get classified as pathogenicity, symbiosis, fitness, metabolic and resistance islands

[14].
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GIs play a crucial role in bacterial survival and fitness. Bacterial fitness is

defined as the resultant of properties that intensify its survival and transmission

in a particular niche. In context to that, GIs confer one evolutionary advantage

in a way that large blocks of genes can be exchanged between two organisms

conferring new traits to the recipient. Another advantage is the maintenance of

genetic flexibility while shifting parts of host chromosomal DNA when it is

excised from the host genome, thus, transferring parts of host chromosomes to

recipient results in successful adaptation and enhanced fitness to a specific niche

[14][15]. In addition to that, along with the facilitation in translocation of GIs

and GIs- encoded products, it also aids in exchange of host’s chromosomal DNA.

Genetic variability is another role it plays, as it undergoes recombination with

the host’s chromosome that has a crucial impact on the host-bacterium

evolution. Irrespective of genes these genomic regions have the potential to

drastically alter the life styles of the bacterium due to its acquisition or rapid

loss from a genome facilitating evolution by “quantum leaps”. It should also be

noted that along with many known GI-encoded genes, these regions also possess

many of the novel and hypothetical proteins with unknown functions that have

no traceable homologues in other species, however, sometimes confer selective

advantage to the host [15].

Keeping in view the magnificent role of GIs, it is highly significant to detect

and identify the locations and contents of GIs as such finding will greatly benefit

the biomedical research and are of clinical importance. For example, design and

production of GI- based identification of antibiotics. While on the other side,

GIs containing beneficial metabolites can be subjected to large-scale production

[13],[15].

With the rapid increase in the genomic sequence data, huge amount of information

regarding genomic structures needs to be validated. In context to that, biological

experiments contribute only meagre amount of information for GIs in all sequenced

genomes, therefore, identification of such regions through computational means is

a quick and best suitable solution available [13].

Due to the fact that GIs originate from different bacterial lineage, sequence

composition of the GIs differs significantly from the host genome. This difference
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is exploited by the computational approaches for the detection of GIs. Following

are the characteristics of GIs which marks the detection of GIs (Figure 1.2).

Uneven distribution is the most prominent property of genomic islands. Such

genomic sequences are of diverse origin and their phyletic pattern is different than

rest of the host genome. GIs are present in few isolates of a respective species or

strain. They are unstable and are reported to be excised sporadically even within

a specific strain [16].

GIs also differ in G+C content in terms of percentage and oligonucleotide lengths

(2-9 nucleotides). For example, dinucleotide bias is measured via counting on pairs

of nucleotides and analyzing if there is any change in the number of each pair as

compared to expected in certain region (probability of one-sixteenth per pair) or

is compared to the average of a genome [16].

On the other hand, codon usage also varies for GIs. It is a measure of

oligonucleotide of length three. Such calculations are also compared to the

average sequence composition of the host genome, as an approach to predict GIs

and to detect LGT events [16].

As far as the size of GIs has been proposed as a GI predictor, typical threshold of

8 genes or 8 kb is suggested by many methods as minimum size of a GI though

this minimum threshold lacks biological evidences [16].

Studies show presence of some genomic elements associated with GIs. These

elements include tRNA and flanking direct repeats. Thus, these elements could

be utilized as markers while identifying GIs. Transfer RNA genes represent

phage integration sites whereas direct repeats appear as a consequence when a

phage is inserted into tRNA gene. Certain types of tRNA genes, such as transfer

messenger RNA (tmRNA) gene and the genes encoding tRNASer, tRNAArg,

tRNALeu, tRNAThr and tRNASec, are favorably exploited as insertion sites for

the phages. However, flanking tRNA could not always be used as GI predictor as

significant number of GIs does not possess them [16].

GIs also contain certain types of protein encoding region that could be used as

markers for their identification. Most of these genes are associated with mobility of

MGE and includes integrases and transpoases. Such genes are termed as “mobility
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genes” and show whether a GI is self- mobilized or is leftover of other embedded

MGEs which are frequently found in GIs such as insertion elements (IS). Specific

classes of functional genes are also found over-expressed in GIs. These classes

include genes that encode cell surface proteins, host interaction proteins, DNA-

binding proteins, phage-related proteins and those associated to the mobility of

MGE. The strongest indicator of GI counts disproportionate presence of proteins

encoding genes, that have no homologues or have unknown functions [16].

Figure 1.2: Structure of genomic island [15]

GI is flanked by direct repeats and possesses integrase, transposases and insertion

sequences. Graph in Figure 1.2 is illustrating difference in G+C content between

core genome and GI region.

All of the above- mentioned features characterize a region as a GI, though, it is not

necessary that each GI contains all of these features, the simultaneous existence of

a subset of these features could provide strong evidence for LGT event. However,

some recent research suggests most important feature as, sequence composition

bias, length of the region and the presence of integrase and phage-related genes,

apart from phylogeny-based methods, whereas gene density, tRNA genes and the

presence of flanking direct repeats could also be identified [16].
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1.4 Pathogenicity Islands (PAIs)

Pathogenicity corresponds to the disease-causing expression of factors that exist

in the pathogenic bacteria while being absent from non-pathogens. Usually a

bacterial genome has a “core” or conserved region encoding basic cellular

functioning information and a “flexible” gene pool encoding supplementary traits

that are useful under specific conditions. This variable gene pool contains

resistance, toxins and virulence encoding genes. The organization of core genome

remains conserved among the closely related organisms whereas, variable genome

represents variable chromosomal regions including certain MGEs like

bacteriophages, plasmids, pathogenicity islands, insertion sequence elements,

transposons and integron. In pathogenic bacteria, genome plasticity is a

significant feature as it allows acquisition of multiple genes by LGT facilitating

the single-step inheritance of complex disease-related characteristics [15].

Virulence factors in a pathogenic bacterium are usually located on MGEs including

the pathogenicity islands [15]. Pathogenicity Islands (PAIs) refers to the distinct

genetic elements present on the chromosomes of pathogenic bacteria [17]. PAIs

are considered as the large continuous segments of genes that exist only in the

pathogenic bacterial strains while being absent in other related strains of the

same species [17]. Identification of such regions is of great medical interest as such

regions carry multiple genes which contribute to the pathogenic virulence as well

as potential vaccine candidates could also be located within PAIs [2].

PAIs may differ in structure and function but some of the features remain same.

They include one or more virulent genes and covers large area on the chromosomes.

These PAIs vary in size and may range from 10-100 kb. Sometimes, a bacterial

genome harbors smaller pieces of DNA referred to as “pathogenicity islets”. PAIs

vary from the host genome in terms of G+C content as well as the codon usage.

PAIs can be identified by flanking tRNA or direct repeats (DR) on one side.

Furthermore, PAIs, frequently encodes factors responsible for genetic mobility i.e.

integrases, transposases, phage genes and origins of replication [17]. The general

structure of PAI is shown in Figure 1.3.
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Notable characteristics of PAIs includes variation in the G+C content. G+C

content refers to the percentage of the bases guanine and cytosine and usually

varies between the host genome and PAIs [18]. These PAIs not only differ in

their base composition but also vary in codon usage. Reason for such discrepancy

is not yet known, however, the conservation of a genus- or species-specific base

composition is a remarkable bacterial characteristic [19].

Figure 1.3: General structure of PAI flanked by direct repeats.

K-mer frequency is another such feature which is used to differentiate the two

genomes. Such measurement of dinucleotide or high-order nucleotide frequencies

has been extensively used for detecting PAIs. K-mer frequency is also used as a

parameter for PAIs prediction by different tools such as AlienHunter and Centroid

[18].

Presence of virulence genes is the most significant feature of PAIs. Such genes are

functionally categorized as adherence factors, siderophores, exotoxins, invasion

genes and type III and IV secretion systems. Adherence factors empower bacteria

to get attached to the host surfaces and aid the process of infection such as P-

related pilli, S-fimbriae, vibrio cholerae toxin coregulated pilus (TCP) and intimin.

Siderophores like aerobactin are used to deliver essential iron into microbial cells.

Exotoxins including alpha-haemolysin, and enterotoxins are the compounds that
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can have impact on the function of eukaryotic cell. Invasion genes facilitates the

bacterial cell entry into eukaryotic epithelial cells such as inv genes of Salmonella

spp. Type III and IV secretion system are needle like structures that aids delivery

of bacterial effector proteins (to modulates host functions) into the host cells.

Type III (T3SS) and Type IV secretion systems (T4SS) are present in Salmonella,

Agrobacterium tumefaciens respectively [17],[18]. Findings indicate presence of

more aggressive virulence determinants in PAI regions of pathogens as compared

to non-pathogenic bacterial species. PAI can be detected for virulence genes by

using tools like VirulentPred or manually using BLAST search [18].

Transfer RNA genes depict the ideal site for the exogenous DNA integration,

including PAIs. The tRNA genes are usually identical to the attachment sites of

bacteriophages at their 3’ end, hence serves as ideal integration site for certain

plasmids and phages in various bacteria. Example of PAIs insertion into tRNA

specific loci includes PAI I and PAI II of UPEC 536. PAI II is incorporated into the

locus of the leucine tRNA gene (leuX), wheras, PAI I was found to be integrated

into the tRNA gene of selenocysteine (selC). However, in case of some pathogens,

insertion of PAIs can be found as much frequently as other tRNA sites [17].

PAIs often encode functional mobility or cryptic genes which includes phage-like

integrase genes, referred as int, or genes for transposases. Some other PAIs possess

genes homologous to the integrase and transposons resolvase genes of phages.

Products of such genes are responsible for integrating and excising out the DNA

regions by recombination between flanking DRs, IS elements, or within regions of

homologous sequences. Hence, subsets of PAIs for some pathogenic bacteria may

get deleted spontaneously, making genome unstable. Whereas, in some cases PAIs

becomes integrated into the chromosomes permanently [17].

PAIs are characterized by flanking Direct Repeats (DR) regions that are described

as sequences of DNA comprising of 16-20 bp with absolute or nearly absolute

sequence repetition. These repeats are usually homologous to phages attachment

sites and have been originated during the chromosomal integration of MGEs at

hosts site via specific recombination yielding duplicated integration site. DRs

serve as the recognition sites for the enzymes taking part in excision of MGEs,

ultimately, enhancing the genomic instability of the island [17].
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Insertion Sequences (IS) are the small mobile genetic elements that keep on

transposing themselves, within and between prokaryotic genomes. IS offers sites

for inverted repeats for homologous recombination and can mediate integration

of MGEs into the chromosomes yielding PAIs. These IS elements can bring

excision or instability to PAIs. For example, in Yersinia pestis, the pgm PAI is

flanked by DRs of IS100. IS100 has approximately 30 copies in the genome of

Yersinia and can mediate the integration of plasmids into the chromosomes [17].

As phage transduction and integration are the key processes of LGT events,

abundance of phage-related genes is observed in PAIs. Thus, presence of

phage-related genes is also used as a parameter to identify PAIs. Phage-related

genes can be searched in protein databases such as Pfam using HMMER3 [18].

When compared to host genome, PAIs are characterized by the presence of

relatively higher number of proteins with unknown functions. The reason for

their unknown nature is the unavailability of cultured and sequenced donor

genomes along with functional annotation. Hypothetical proteins can be

detected by the acquisition of Open Reading Frames (ORFs) with the aid of

gene-detecting tools such as GeneMark and Glimmer followed by the subtraction

of proteins with known functions determined by NCBI-nr/nt, Pfam, UniprotKB,

or COG database. Interestingly, it has also been found that inter-genic distance

of island regions is longer as compared to the core regions [18].

Above mentioned properties of PAIs forms the basis of their computational

identification. Most of the features, if not all, have been made basis for detecting

PAIs in pathogenic species following computational approach providing efficient

and accurate results in less time.

1.5 Purpose

As the number of sequenced genome is increasing, role of GIs in prokaryotic

evolution is becoming more revealing, whereas, identifying such DNA blocks

utilizing bioinformatics approach is becoming a fundamental aspect of the

microbial evolution and functions [4],[18]. Characterizing GIs gives insights into
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the nature of bacterial species as to why some of the strains could tolerate

extreme living conditions while others do not, why some of the strains are

resistant towards a particular antibiotic while, others do not whereas, focus of

this study is on PAIs which facilitate to get insight into the pathogenic nature of

the bacterial species concerning why even within the same species, some of the

bacterial strains are pathogenic in nature while, others are not. Therefore,

identification of PAIs constitutes one of the critical tasks for understanding the

nature of pathogenic species benefitting biomedical research.Better identification

of PAIs leads towards better diagnosis and antibiotics designing, ultimately,

contributing to the human health [3],[4].

As the biological experiments only contributes a meager fraction of information for

PAIs in the sequenced genome [13] computational approaches seem to be the better

option. Currently, computational approaches for identifying GIs fall into two

major categories i.e. sequence based and comparative genomics-based pipelines,

whereas, surprisingly, no special pipeline has been designed for the identification

of PAIs in particular which stimulated our interest in this area. Moreover, each

of the two available approaches has its own limitations (discussed in detail in the

literature review section) resulting in false positive results, therefore, the aim of

this study is to design an integrated pipeline minimizing the limitations of each

approach while identifying PAIs in particular, with more precision and accuracy.

1.6 Problem Statement

Pathogenicity islands are repeatedly found to contain virulence genes in bacteria

that holds medical importance. Therefore, prediction of such regions is of

significant interest. Computational identification of such regions is preferred over

biological methods because of time constraints.Existing computational

approaches focuses on the identification of GIs in general and not specifically on

PAIs. Moreover, both the existing GI prediction approaches faces limitation that

reduces the prediction accuracies of the existing approaches yielding false results.

Prevailing approaches also fail to predict GIs/PAIs for a pathogen with closest

neighbors of unknown pathogenicity.Therefore, there is a need of designing an
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approach that can minimize the limitations faced by both of the existing

approaches achieving improved prediction accuracy and is applicable to every

pathogen irrespective of the unknown pathogenic nature of its closely related

strains minimizing high rates of false results which misleads the identification of

these critical areas.

1.7 Proposed Solution

Designing an integrated approach to minimize the limitations faced by existing

two approaches has been proposed which would predict PAIs with more accuracy,

specificity and sensitivity.

1.8 Scope

This study has a wide range of scope as it deals with designing a new approach

for the identification of PAIs which would help in determining the pathogenic

nature of the bacterial species along with their transmission in human.

Moreover, it will also provide an insight into the bacterial evolution and

emergence of new pathogens helping in the identification of new antibacterial

drug targets. This research also focuses on the pathogenic nature of the

opportunistic pathogen Streptococcus sanguinis which persists to be confusing.

Streptococcus sanguinis is a member of oral microflora and one of the leading

causes of dental plaques and infective endocarditis in humans. Identifying PAIs

in Streptococcus sanguinis will help in understanding the patho-mechanism of IE

suggesting the potential drug targets.

1.9 Aims and Objectives

This research aims at designing an integrated approach for the prediction of PAIs

while evaluating the existing approaches with respect to prediction accuracy. The

objectives are stated as follow:



Introduction 15

1. Accuracy analysis of the two available computational approaches for PAIs

identification.

2. Derivation of an integrated approach for the identification of PAIs.

3. Evaluation of the designed integrated approach.

4. Application of the designed integrated approach to the case study of

Streptococcus sanguinis.

5. Comparison of designed integrated approach and the available two

approaches in terms of prediction accuracy.



Chapter 2

Literature Review

This section deals with the review of the literature following computational

pipelines established for the prediction of genomic islands. It broadly includes

the pipelines established for the GI predictions along with the enumeration of

the existing tools based on these pipelines. The chapter also provides insight into

the limitations associated with each approach leading towards the gap analysis.

A point that is worth mentioning here is the availability of the tools for GI

prediction in general rather than PAIs in specific.

2.1 Computational Identification of GIs

Currently, there are two approaches for the identification of the GIs, broadly

classified as sequence composition-based and comparative genomics-based

approach. The former method relies upon the differences in the genome of host

and GIs sequence composition whereas, later relies on detecting unique regions

that are absent from the genome of several related isolates.

2.1.1 Sequence Composition Based Approach

This approach relies upon the differences in the sequence composition between the

host genome and the GIs. All the genomic regions belonging to the host genome

16
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tends to share some genomic signatures and are supposed to be different from the

exogenous genomic regions acquired laterally. Therefore, detecting any genomic

region with different gene signatures or content represents lateral mode of transfer

defining that region as GI. This approach enables to compare the genomic regions

within a single genome to determine various genomic markers. These genomic

markers consist of G+C content, dinucleotide frequency, codon usage, tRNA genes,

mobility genes, virulence factors, flanking direct repeats, and other characteristics

of GIs and PAIs (discussed in section 1.3 and 1.4). This approach provides with

the benefit of relying only on query genome sequence and does not require a

comparative set of closely-related genomes [13], [18]. Tools based on the sequence

composition approach are summarized in Table 2.1. It is worth mentioning here

that most of the available tools predicts GIs generically whereas only few such as

PIPS identifies PAIS in particular.

AlienHunter is one of the GI prediction tool but its utility is limited to newly

sequenced genomes as it relies upon genomic sequences instead of existing

annotation or gene position information. It includes highly expressed genes,

which results in higher IVOM values and hence the high rate of false-positive

results.Underlying principles state a direct relation between IVOM score and GI

segments [18].

Centroid employs word frequencies to identify distinct genomic regions within a

genome. This program works by dividing the query genome into non-overlapping

groups of equal lengths. For each of the given group, centroid calculates the

frequencies of all possible words (A, T, G, C) with the given length “m”. Average

frequency of the whole genome sequence is then calculated and is taken as centroid.

Based on these frequencies, outlier regions are detected by estimating the distance

between the centroids and the genomic regions considering them to be the GIs

[18].

EGID is an ensemble-based algorithm for the identification of GIs. This tool gets

output from multiple GI prediction tools (such as AlienHunter, IslandPath, SIGI-

HMM, INDeGenIUS, and PAI-IDA), simultaneously, and then generate consensus

result based on voting algorithm. Use of multiple tools makes ensemble algorithm
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and EGID comparatively better than other GI prediction software in terms of

prediction accuracy and precision [18].

Genomic Island Suite of Tools (GIST) is a suite of tools developed with the purpose

to provide a user-friendly interface to the researchers. It facilitates third-party

programs to get embedded in different GI prediction tools such as EGID. It also

provides the users with the facility to download genomic sequences automatically

using FTP server of National Center for Biotechnology Information (NCBI)[18].

GIDetector is another ensemble algorithm-based GI prediction tool. It uses J48-

based decision tree-bagging model for island prediction. Bagging model was found

out to be best fit classifier after testing various similar algorithms such as adaBoost,

bagging, multi-boost, and random forest. The model was trained by using IVOM

scoreing method, size, and insertion point of the genomic region, genes number per

kb, repeats, integrase, phage and non-coding RNA. GIDetector also enables the

user to download genome sequences available in public repositories and predicts

the GIs by using its training model [18].

Genomic Island Genomic Profile Scanning (GI-GPS) is another GI prediction

model and is based on Support Vector Machines (SVMs). This SVM is designed

based parameter’s information such as codon usage frequency, dinucleotide

frequency, codon adaption index; and GC content. GI-GPS trims the whole

genome into the specified sized segments and classified them as candidate regions

for GIs utilizing SVMs. It then integrates these small segments into one large

segment. Several filtering steps are then carried depending upon the segment

length and presence of mobile genetic elements. GI-GPS refines predicted GIs

boundaries, as final step, by identifying the tRNA genes and repeat elements

positions [18].

GIHunter predicts GI by exploiting gene information along with sequence

information and inter-genic distances. This tool is modeled over the training set

of 113 genomes and a decision tree-based bagging model that predicts GIs.

Parameters such as gene information (such as highly expressed genes), phage

genes, mobility genes, tRNAs, gene density and inter-genic distance have been

utilized to further refine the GIs prediction accuracy [18].
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Improved N-mer based Detection of Genomic Islands Using Sequence-clustering

(INDeGenIUS) is a hierarchical-clustering based approach for GI detection. It

employs the principle of hierarchical clustering to determine the “centroid” by

splitting the query genome into “n” overlapping segments of same length. For

each of the segment, frequencies of word length “k” are calculated and a vector

of 4k words is estimated. The word enumeration process for each group, thus,

can generate “n” clusters. Distances for all the possible pairs are then calculated

from the centroid utilizing hierarchical clustering approach and groups are merged

iteratively into certain number of clusters. Cluster fulfilling the threshold criteria

is referred as “major” else “minor” cluster. Relying on the members of “major

cluster”, the algorithm determines the exact centroid for the host genome and

utilizes it for GI identification [18].

IslandPath utilizes DNA signals and genome annotation features for GI prediction.

It incorporates certain additional features to improve the prediction accuracy.

These features include such as % G+C content for predicted open reading frames,

dinucleotide bias for gene-clusters, location of known or probable mobility genes

and the location of tRNAs [18].

PAI-IDA utilizes the genomic signature’s differences to determine GIs. This tool

considers a region as GI if it is different from the host genome in terms of three

parameters: G+C content, dinucleotide frequency and codon usage. PAI-IDA

contains a small database of known PAI from seven genomes and utilizes this

resource to build up the training dataset. Constructed dataset generates list of

parameters of linear functions that fetch the different region from the rest of the

genome. The discriminant function is improved through iteration by taking

additional predicted anomalous regions into account [18].

Pathogenicity Island Prediction Software (PIPS) is the only software targeting

the prediction of PAIs in particular. This tool utilizes multiple PAIs signatures

for the prediction. These PAIs signatures include G+C content, codon usage

deviation, virulence factors, hypothetical proteins, transposases, flanking tRNA,

and its absence in nonpathogenic organisms [18].

SIGI-HMM utilizes the fact that each genome prefers different codon usage and

as the GIs are of external origin, they can be easily detected. This approach is
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called codon bias. The backend algorithm of this tool analyzes the codon usage

for each gene and assigns it a score, thus separating the alien genes. Such way of

detecting GIs that is codon score-biased, is termed as SIGI. Later on, researchers

employ Hidden Markov Model (HMM) approach to SIGI improving the prediction

accuracy and approach got the name of SIGI-HMM. While the GIs commonly

have a specified length, HMM was utilized to predict GIs on the gene level. Such

technique is specifically accurate for the prediction microbial GIs [18].

GIPSy is a standalone GI prediction tool which provides researchers with

user-friendly interface. It is based on PIPS, the PAI prediction tool. It exploits

commonly used shared genomic signatures such as G+C content, codon usage,

presence of transposase genes, virulence factors, metabolism related genes,

antibiotics-related genes, flanking tRNA genes and absence of region in other

closely-related species, to predict GIs [20].

Zisland explorer is non-supervised algorithm- based tool. It divides the whole

genome sequence into fragments by implementing G+C profile tool for further

analysis. It exploits homogeneity of sequences within each island and heterogeneity

in different regions of genome. As an output, Zisland explorer yields a static plot

depicting G+C content throughout the genome, spotlighting the potential GIs

entailing their size and total no. of genes present in them [12].

PredictBias predicts PAIs and GIs based on sequence composition-based approach.

It analyses the genomic signatures such as presence of insertion elements and

virulent genes in order to predict GIs. Virulent genes are predicted by utilizing

an internal database called VFDB which searches the database for presence of

virulent genes via executing RPS-BLAST (Reversed Position Specific- Basic Local

Alignment Search Tool) in the candidate GI regions. Predict Bias uses annotation

approach for detecting tRNA and mobility genes like integrases and transposases

[12].

GIDetector is based on J48 decision-bagging model for island detection. This

model has been trained on the basis of certain features such as IVOM score,

insertion point, size of the genomic region, number of genes per kb, repeats,

integrase, phage, and non-coding RNA. This tool collects the open source

genomic sequences from the websites and detect GIs based on its training model.
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In addition to the above discussed tools, number of other tools are also available

that follows sequence composition approach and are summarized in Table 2.1.

Table 2.1: Overview of the currently used tools based on sequence
composition-based approach for GI prediction

No Tool
Sequence
Composition
Bias

Type URL Year Ref

1
Alien
Hunter

G+C content and
oligonucleotides
composition

Desktop
https://www.sanger.ac.
uk/science/tools/alien-
hunter

2006 [12],[16]

2 Centroid
G+C content and
oligonucleotides
composition

Desktop
http://eraplatform.virt
usa.com/tools/centroid

2007 [12],[16]

3 EGID

G+C content,
dinucleotide
frequencies,
trinucleotide
frequencies,
oligonucleotide
frequencies, codon
usage

Desktop
http://www5.esu.edu/
cpsc/bioinfo/software
/EGID/

2011 [16]

4 GIST
Dinucleotide,
codon usage,
k-mers, IVOM

Desktop
http://www5.esu.edu/
cpsc/bioinfo/software/
GIST/

2012 [16],[21]

5
GI
Detector

G+C content,
dinucleotide
frequencies,
codon usage,
tRNA, repeat
elements, region
length

Desktop
https://omictools.com
/gidetector-tool

2010 [16]

6 GIHunter

Inter-genic
distance, mobile
genes, phage
genes, tRNA,
gene density

Desktop
http://www5.esu.edu
/cpsc/bioinfo/software
/ GIHunter/

2014 [16],[13]

7
INDeG
enIUS

k-mers Desktop Available on request 2010 [16]

8
Island
Path

G+C content,
dinucleotide,
mobile genes,
codon usage

Desktop
https://github.com/
brinkmanlab/island
path

2005 [12],[16]

9 PAI-IDA

G+C content,
dinucleotide
frequencies,
codon usage

Desktop Available on request 2003 [12],[16]
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10 PIPS

G+C content,

codon usage

deviation,

virulence factors,

hypothetical

proteins,

transposases,

flanking tRNA,

and absence in

non-pathogenic

organisms

Desktop
http://www.genoma.

ufpa.br/lgcm/pips
2012 [16],[22]

11
SIGI-

HMM

HMM on codon

usage
Desktop

http://www.uni-

goettingen.de/en

/research/185810.html

2006 [12],[16]

12 GIPSy

G+C content,

codon usage

deviation,

transposases

genes, class

specific factors,

tRNA genes,

absence in related

organisms

Desktop

http://www.bioinforma

tics.org/groups/?%20

groupid=1180

2015 [19]

13
Zisland

explorer

G+C content,

codon usage,

amino acid

Desktop
http://tubic.tju.edu.cn

/ZislandExplorer/
2016 [12]

14
Predict

Bias

Virulent genes,

mobility genes,

tRNA genes

Online

http://www.bioinforma

tics.org/sachbinfo/pred

ictbias.html

2008 [12]

15
PAI-

Finder

G+C content,

codon usage

deviation

Online

http://www.paidb.

re.kr/paifinder.php

?m=f

2015 [23]

16
MTGI

pick
Tetranucleotide Desktop

http://bioinfo.zstu.

edu.cn/MTGI/softwa

re.html

2016 [23]



Literature Review 23

17 MSGIP Oligonucleotide Desktop
https://github.com/

msgip/msgip
2016 [23]

18 GI-SVM k-mer frequency Desktop
https://github.com/

icelu/GIPrediction
2015 [23]

19 Sighunt Tetranucleotide Desktop

https://www.iba.mun

i.cz/index-en.

php?pg=research

–data-analysis-

tools–sighunt

2014 [23]

20
GC-

profile
G+C content Online

http://tubic.tju.edu.

cn /GC-Profile/ and

http://www.zcurve.

net/

2014 [23]

21

SVM-

AGP

(HGT)

GC,

oligonucleotide,

codon usage,

amino acid,

position-based

frequency

Desktop

http://svm-

agp.bioinf.mpi-

inf.mpg.de/

2014 [23]

22 GI-POP

GC,

oligonucleotide,

codon usage,

codon adaptation

index

Online
http://gipop.life.nthu.

edu.tw
2013 [23]

23
CGS

(HGT)
k-mers Desktop available on request 2012 [23]

24 IGIPT

k-mers (2–6),

codon usage,

amino acid

Online
http://bioinf.iiit.ac.in

/IGIPT/
2011 [23]

25 MJSD k-mers Desktop
http://cbio.mskcc.org/

aarvey/mjsd/
2009 [23]

26
Design-

Island

GC,

oligonucleotide
Desktop

http://www.isical.ac.in

/rchatterjee/Design-

Island.htm

2008 [23]
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27 RVM k-mers, IVOM N/A
no implementation

available
2008 [23]

28

SIGI-

CRF

(HGT)

Tetranucleotide Desktop

http://www.uni-

goettingen.de/en

/research/185810.html

2006 [23]

29

Wn-

SVM

(HGT)

k-mers Desktop available on request 2005 [23]

2.1.2 Comparative Genomics Based Approach

Comparative genomics-based method relies upon the comparison of multiple

genome sequences in order to predict GIs. It contrasts the variation of the

genetic tree with the respective species tree. This approach works on the

principle of detecting a cluster of genes in one genome that is absent from several

closely-related genomes. Such regions can easily be detected exploiting whole

genome sequence alignment software including MUAVE and Mummer etc. The

regions that get aligned over multiple genome sequences are said to be conserved

with possibly vertical origin of transfer whereas, regions that are distinctive to a

specific isolate is considered to potentially have lateral mode of transfer [4]. This

hypothesis is defended by the uneven distribution of GIs within closely related

species as shown by degree of sequence divergence in 16S rRNA or other

orthologs [12]. This implies that this pipeline relies heavily on the choice of the

query genome as well as the availability of subject genomes being tested [4], [18].

Currently, there are two tools available that have specifically been designed for

GI prediction based on the comparative genomics approach and are as follow:

MobilomeFINDER is a tool that predicts GIs that are bounded by tRNA - the

site of integration for most of the GIs. The algorithm identifies tRNAs that are

shared among related genomes and exploits these findings using Mauve tool to

detect GIs lying upstream and downstream regions of these orthologous tRNAs.

Utilizing this approach makes MobilomeFINDER limited to predicting GIs that

are present in the vicinity of the tRNA. Whereas, not all GIs have tRNAs as their
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insertion points making such GIs unable to be detected by this tool. Moreover,

this tool entails manually inputting the query genome and the subject genome

that is vulnerable to inconsistent selection of genomes due to lack of knowledge

about intra-genera phylogenetic distances [4], [12], [23].

IslandPick uses method of comparative genomics for the prediction of GIs. It looks

for a genomic region that exists in query genome but is absent from several other

related species or strains. To detect such regions this tool uses muaveAligner and

then BLAST to look for unique region’s present in other related genomes. The

tool also uses an in-house database named MicroDB at the backend [4].

DarkHorse detects GIs by identifying horizontally acquired proteins and subject

them to BLAST analysis. BLAST compares these protein sequences with NCBI

non-redundant database while calculating phylogenetic difference between the

query and the subject genome. This tool followed combined approach by

employing comparative genomics approach along with phylogenetics to identify

LGT candidates at various taxonomic levels [23], [24].

Table 2.2: Overview of the existing tools based on comparative genomics
approach

No Tool Type URLs Year Ref

1
MOBILOME
Finder

Desktop
http://db-
mml.sjtu.edu.cn/
MobilomeFINDER

2006 [4], [12]

2 IslandPick Online
http://www.brinkman
.mbb.sfu.ca/ mlangill
/islandpick/

2008 [4]

3
DarkHorse
(HGT)

Desktop
http://darkhorse.ucsd
.edu/

2007 [23]

2.2 Databases and Other Computational

Resources

Other than the above discussed tools and software, several databases and genome

viewers are also available that facilitates the identification of the GIs. These
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resources are as follow:

MOSAIC is a whole genome alignments database that contains pre-computed

alignments. It facilitates the user to browse the required downloadable

alignments and analyze the conserved and variable regions, where variable

regions are considered as candidate GIs [4]. Using this resource as GI predictor

could be tricky as MOSAIC when identifies variable regions do not consider the

condition of insertion into tRNA which deals inversions and translocations

between genomes as strain specific regions and hence false positive GI detection

[12].

IslandPath is GI viewer which facilitates the users with the graphical user interface

for manual detection of GIs. It represents each gene with a small color-coded

circle where color assignment is based on the significant level of deviation from

the G+C content of the host genome. Genes possessing atypical dinucleotide bias

are represented by strikethrough symbol. This tool also illustrates tRNA and

mobility genes with different shapes. On the whole, it yields a clickable graphical

view of genome spotlighting different genomic signatures related to GIs facilitating

manual detection of GIs [4].

Islander is another GI database that consists of 84 GIs along with integration

sites for 106 genomes. GIs have been predicted based on tRNA and tmRNA

where tRNA and tmRNA are predicted via tRNAscan-SE and BRUCE in a

BLAST search. This search filters out the regions that do not possess integrase

genes. Islander facilitates researchers to browse GI by name, organisms or site of

integration [4].

PAIDB is a database that works on simple principle of homology. It identifies GIs

based on their available information provided that is homologous to known PAIs

and consider these GIs as potential PAIs. These candidate PAIs are labeled as

cPAIs based on their G+C %. This resource allows users to browse GIs based on

species, text search or BLAST search [4].

Virulence Factor Database (VFDB) is virulence factors repository that holds

curated list of virulence genes as well as PAIs related information about several

species. It also enlists candidate virulence genes based on their homology with
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known virulence factors which can be searched by species names, text or BLAST

and PSI-BLAST search [4].

GIV is Genomic Island Visualization Tool and is customized version of Circos

which is one of the eminent genomic information visualization tools. GIV displays

the location of the GIs along with the corresponding feature values in genome

making study of GIs easier and meaningful [25].

IslandViewer is one of widely used servers for GI predictions and visualizations. It

follows an integrated approach by integrating three of the available tools named

GIST, SIGI-HMM and IslandPick (as summarized in Table 2.1 and Table 2.2). It

is the only integrated webserver to provide integrated results [26].

ICEberg is a database featuring ICEs in 363 bacterial isolates that are extracted

either from with the experimental data via literature or directly from GenBank

or is predicted using bioinformatics approaches. The browser of ICEberg displays

detailed information on 460 ICEs along with genome context view, sequence

information as well as respective publications [23].

2.3 Challenges with Current Approaches

2.3.1 Limitations of Sequence Composition Based

Approach

Despite of the wide availability of the sequence composition-based tools and

techniques designed for GI prediction, the prediction accuracy has still not

reached the desirable level. Analysis reveals that sequence composition-based

tools predict GIs with accuracy of 82-86% [12]. Causes for this low prediction

accuracy are the challenges being faced by this approach that hinder the

prediction of all existing GIs. These challenges include:

Amelioration of genomes: Sometimes, sequence composition of PAIs and core

genome becomes similar over a period of time known as amelioration of genome.

Though the bacterial genomes illustrate deviation in G+C contents, genes within
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single species have similar base composition [13]. For example, gen. Salmonella

lineage showed that former genes acquired via LGT show more similarity in

sequence composition with the host genome as compared to recently acquired

genes depicting genes amelioration over time [1].

Extremity in the variations of GI: Although, it seems easy to differentiate GIs from

rest of the host genome based on the genomic signatures, all genome signatures

are not present in each GI. Thus, the mosaic and extremely variable nature of the

GIs makes them complex to detect, leading to false negative results. With the

advent of evolutionary events, GIs undergo various transformations such as gene

loss or rearrangements, consequently, composition, structure and functions of the

GIs vary. This variation in the nature of GIs hinder the integration of multiple

genomic signatures to be used as predictors [1], [2].

Lack of benchmark datasets: Despite of the availability of multiple GI prediction

tools, there still lies lacking in setting up the benchmark datasets for validation of

the prediction methods. Though, a few databases, such as Islander, PAIDB and

ICEberg etc., are available but they provide information limited to specific types

of GI, such as, tDNA-borne GIs (GIs that are inserted at tRNA or tmRNA genes

sites) PAIs and ICEs (Integrative and Conjugating Elements) [2].

Uncertain nature of origin: As the GIs adapt their genomic signatures over the

period of time, it is complex to determine their origin by comparing them with

genomic signatures of other organisms. Likewise, two distantly related organisms

may share same codon usage because of tRNA bioavailability [1].

Demarcating the boundaries of GIs: It is difficult to mark the boundaries of GI,

as, some of the GIs consists of several kilo bases (kb) while others cover region of

hundreds of kb(s), which makes setting up the standard size of GIs, complex [13].

Existence of abnormal sequence composition: Sometimes, the host genomes

contain abnormal sequence composition such as ribosomal regions and taking

sequence composition-based approach into account, it can lead to the false

positive detection of the GI [13].
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2.3.2 Limitations of Comparative Genomics Based

Approach

Comparative genomics approach relies heavily on the genome in question and the

related genomes. Inclusion of distantly related genomes could make the

alignment complex yielding false positive predictions. Likewise, including more

recently diverged genome in the analysis could yield more robust results.

Moreover, including too closely related specie results in un-identification of GIs

that has been inserted prior to divergence of the genomes. As the approach is

based on multiple related sequenced genomes, it becomes unsuccessful for a

specie that has no closely related sequenced genomes to perform the comparison

[4].



Chapter 3

Material and Methods

This chapter provides an overview of the methodology adopted for analysis of

the existing approaches as well as for designing an integrated approach for the

prediction of genomic islands.

3.1 Identification of Computational Approaches

for Prediction of GIs/PAIs

Research on the computational prediction of GIs have made substantial progress.

There are number of techniques and tools that have been proposed and designed

for identifying GIs and can be found in the published literature (summarized in

Table 2.1 and Table 2.2 in literature review section). Literature survey has been

performed in order to figure out the computational approaches using literature

searching platforms like Google Scholar, PubMed and Polysearch2. Keywords like

“computational identification of GIs”, “Genomic islands”, “Pathogenicity islands”,

“Horizontal gene transfer”, “Genome plasticity” were used.

30
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3.2 Extraction of Pipelines from Existing Tools

To extract a pipeline for the sequence composition-based as well as the comparative

genomics-based identification of GIs, analysis of the existing tools and techniques

was performed. Analysis yielded that most of the tools available for the sequence

composition-based approach exploits a set of maximum four genomic signatures

to predict GIs (summarized in Table 2.1 in literature review section). Whereas,

GIPSY is the only tool that follows detailed pipeline and analyzes seven to eight

genomic signatures before it predicts GIs and PAIs [20]. Besides GIPSY, PIPS

is another detailed analysis tool that solely exists for the prediction of PAIs in

specific. Later on, in 2016, GIPSY was revised and integrated features of PIPS

[20],[27], enabling GIPSY to predict GIs and PAIs both. Therefore, the pipeline for

sequence composition-based analysis was extracted by keeping GIPSY as reference.

On the other hand, literature represents several different approaches for

performing comparative genome analysis for the identification of GIs. Most of

the cited work utilizes MuaveAligner followed by BLAST search to identify the

“conserved” and “unique” regions of the query genome by comparing it with

closely related organisms. In case of PAIs, the query genome is compared with

the closely related non-pathogenic species to identify the unique regions

responsible for causing pathogenicity, hence, PAIs [2], [12], [18].

3.3 Accuracy Analysis of Existing Approaches

3.3.1 Selection of Organism for Case Study

For the evaluation of prediction accuracy of the existing computational

approaches, Streptococcus sanguinis was chosen as a case. Among S. sanguinis

strain SK36 was selected because of its important role as an opportunistic

pathogen of infective endocarditis. S. sanguinis SK36 is a gram-positive

bacterium, normally constituting the oral microflora in human [28], [29] and is an

active colonizer of dental plaques [30]. It follows the route of mouth and if gets

enter into the blood stream through a minor cut or a wound causing infective
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endocarditis (IE). IE is a life-threatening endovascular infection caused by

adherence of bacteria from the bloodstream to the damaged heart valve [28]. It

is characterized by the vegetative growth embedded by infection-causing

microorganisms along with fibrin and platelets at the site of infection [31], [32],

[33]. This vegetation provides microorganisms with a site to embed and multiply,

disrupting normal patterns of blood circulation within the heart, whereas, the

intensity and destruction of the tissue depends upon the bacterial species [34],

[35]. In spite of the recent advancements in the medical, surgical and critical care

interventions, IE continues to remain a leading cause of morbidity and mortality,

not only in West but also in Asian countries like Pakistan where it has the

mortality rate of 27.3% [36]. Higher incidence rate between IE and isolation of S.

sanguinis has been reported in patients undergoing dental procedures [30], [37].

While the world of literature is rich in research spotlighting various aspects of IE

with S. sanguinis SK36 being the most well-known pathogen, the

patho-mechanism of this opportunistic pathogen remains to be revealed.

Moreover, no information is reported about the occurrence of LGT events and

the presence of PAIs in the genome. Therefore, there is a need to investigate the

origin of pathogenicity in the strain by identifying and investigating the PAIs it

possesses.

3.3.2 Sequence Composition-Based Approach

Sequence composition-based method exploits different sequence based genomic

features (discussed in section 2.2.1). It is the most widely used approach for

genomic islands prediction as it claims to be independent of the related genome

selection. After the extraction of the pipeline for this approach, a tool (PIPS)

was identified that can perform all of the mentioned steps. Steps for the pipeline

followed for sequence composition-based approach is summarized in Figure 4.1

(results and discussion section). This pipeline has been extracted from the two

most commonly used GI prediction tools named GIPSY and PIPS. These two

tools were ideal for extracting pipeline as both of these tools use maximum of the

documented GI and PAI properties. Therefore, GIPSY tool(http://www.

bioinformatics.org/groups/?% 20groupid=1180) was exploited along with the
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standard parameter settings for the implementation of the pipeline as it already

has integrated multiple tools for the detection of the genomic features and hence

provides identification of multiple genomic signatures via one platform. GIPSY

accommodate two genome annotation files as input in either Genbank or

ensemble format. One genome is required as query genome, whereas, the other

one is used as subject genome. For the identification of the PAIs specifically, the

subject genome needs to be most closely related non-pathogenic strain of the

query genome [20]. S. sanguinis has 62 strains, among which only 6 are

complete. Among these 6 strains, 3 strains (SK36, NCTC11085, NCTC10904)

have confirmed pathogenicity, whereas rest of the 3 (NCTC11086, NCTC7863

and NCTC3168) are newly identified strains with unknown pathogenicity.

Therefore, we used NCTC11086, NCTC7863 and NCTC3168 strains as subject

genomes one by one and identified PAIs generating True Positive and False

Positive datasets.

3.3.3 Comparative Genomics-Based Approach

Very few tools employ comparative genomics-based approach. Among the tools

summarized in Table 2.2 in literature review section, DarkHorse was not

available due to maintenance purpose (from April 2019 to date),

MobilomeFINDER has become obsolete, whereas, IslandPick was the only choice

left. IslandPick has recently been integrated into IslandViewer, therefore, the

putative GIs in SK36 were predicted by the IslandViewer4 software tool which

has the highest prediction accuracy i.e. 88% [23] and involves three different GI

identification approaches: sequence composition-based approaches using

SIGI-HMM and IslandPath-DIMOB, and the comparative genomics approach

using IslandPick. As the focus is on the comparative genomics- based approach,

results from only IslandPick method were considered.

As the comparative genomics-based approach for the identification of PAIs is

based on the selection of multiple genomes to perform comparative analysis with

respect to query genome, selection of comparative genome set is an important

aspect. IslandPick (http://www.brinkman.mbb.sfu.ca/ mlangill/islandpick/)

does not allow the user to select comparison genomes by choice and choses
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genome set by default. Therefore, analysis was continued with its default

selection. IslandPick, by default makes inter-specie selection of comparison

genomes based on minimum phylogenetic distance from the query genome. For

this analysis, the selected comparison genomes were all complete genomes and

included Streptococcus gordonii strain KCOM 1506 (ChDC B679), Streptococcus

constellatus subsp. pharyngis C232, Streptococcus constellatus subsp. pharyngis

C818, Streptococcus sp. oral taxon 431, Streptococcus parasanguinis FW213 and

Streptococcus pneumoniae AP200 with distances 0.116, 0.194, 0.194, 0.209, 0.211

and 0.213 respectively.

For Streptococcus sanguinis SK36, the pre-computed GI analysis as well as the

manually predicted GIs were taken into account. Inclusion of both manual and

pre-computed results is supported by the reason that the system was last updated

two years back (2017) and has not undergone any recent up-gradation event and

therefore, may include variable results now.

Furthermore, the predicted GIs were then further filtered by removing GIs with

genomic length less than 10 kb. Likewise, the predicted putative GIs from

IslandViewer4 (http://www.pathogenomics.sfu.ca/islandviewer/)were further

inspected manually using PAIDB (http://www.paidb.re.kr/about-paidb.php)

[38].

3.4 Proposing an Integrated Approach for PAIs

Prediction

An integrated approach was proposed based on the survey of previous studies on

GI prediction in various bacterial species. Studies included in the survey were

mandatory to have followed computational means of prediction. These studies

majorly include the reviews conducted to compare and evaluate the performance

of the existing tools and techniques available for GIs prediction [20], [27], [38], [40],

[43], [44].

An integrated approach refers to integrating both of the existing approaches i.e.

sequence composition as well as comparative genomics-based approach such that
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limitations of one approach gets compensated by the other and vice versa.

Previously, such simple integration of approaches is implemented in

IslandViewer4 (http://www.pathogenomics.sfu.ca/islandviewer/). It is the only

tool that follows integrated pipeline by integrating 2 sequence composition

(SIGI-HMM and IslandPath-DIMOB) and 1 comparative genomics-based

(IslandPick) tools [23]. Though this software has highest prediction accuracy, it

faces two general limitations. Firstly, for sequence composition-based approach,

it exploits only four genomic signatures i.e. G+C content deviation, codon

usage, presence of tRNA and frequency of dinucleotides which narrow downs the

decision criteria for GIs. Second is the auto-selection of comparative genome set

by IslandPick (https://www.brinkman.mbb.sfu.ca/mlangill/islandpick/index.

html) for comparative genome based approach.IslandPick was designed initially

to allow the users to chose comparative genome set of their own choice as well as

to use auto-selections but currently, the server does not provide the facility of

genome selection anymore and the user is compelled to work with auto-selection

thus limiting the analysis.

In this study, a modified integrated approach was proposed with two basic

modifications minimizing the limitations caused by existing approaches. First

modification was proposed in sequence composition-based approach based on the

observation that different tools uses different genomic signatures to make

decision about a GI. This deduces that different tools vary in stringency criteria

for decisions making. It was also observed that, maximum number of genomic

signatures exploited by any sequence composition-based tool except GIPSY is

four (as shown in Table 2.1). Decision based on such smaller number of genomic

signatures is proportional to lose stringency criteria resulting in higher

probability of false prediction results. Broadening up the subset of genomic

features, could therefore be looked upon as a way to increase the stringency on

decision making, minimizing the probability of false predictions.

Second modification was proposed in comparative genomics approach, based on

the fact that for an organism with related strains of unknown pathogenicity,

k-means clustering approach could be used to cluster pathogenic and

non-pathogenic strains. This clustering is based on the related known virulence

genes found in an organism. The selection of comparative genome set or the
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subject genome based on such clustering method provides more accurate

selection of comparative genomes rather than assumption or brute force

selections as this approach is greatly influenced by the selected comparison

genome set.

Such modified integrated approach helps to minimize the currently faced challenges

by the GI prediction pipelines, minimizing the false prediction results and solves

the problem of predicting GIs/PAIs for organisms that do not have a completely

known pathogenic basis. The proposed integrated approach is shown in Figure

4.6.

3.5 Application of Integrated Pipeline to Case

Organism S. sanguinis SK36

Proposed integrated approach was applied to the case organism S. sanguinis

SK36 with the aim to predict GIs and PAIs more precisely, while, validating the

results obtained by sequence composition as well as comparative genomics-based

approaches in parallel. Application of pipeline and generation of results was

followed by manual validation to counter-check the positive and negative results.

In order to identify the PAIs, virulence genes related to IE were determined

through VFDB (http:// www.mgc.ac.cn/VFs/) and published literature.

Resultant PAIs were then scanned for these pre-determined virulence genes.

PAIs containing the searched virulence genes were considered as confirmed PAIs,

while, those missing these genes were removed from the list of PAIs and were

condiered as GIs. Results obtained from both approaches were taken into

account and compared to ensure non-redundant results. Previously generated

datasets were re-evaluated for validation purpose. Integrated dataset is then

validated using the computational resource PAIDB (http://www.paidb.

re.kr/about-paidb.php).
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3.5.1 Determining Non-Pathogenic Group of S. sanguinis

Strains

3.5.1.1 Enlisting Virulence Determinants

Reported virulence determinants were enlisted with the help of previously

published literature [15],[29],[30],[32],[34],[41],[42],[43],[44],[45],[46] and VFDB

(http:// www.mgc.ac.cn/VFs/main.htm). Information was collected exploiting

Polysearch2 (http://polysearch.ca/) and PubMed (https://www.ncbi.nlm.nih.

gov/pubmed/) platforms using multiple keywords such as infective endocarditis,

endocarditis, bacteremia, dental plaque, oral microbiome and biofilms.

3.5.1.2 Clustering of S. sanguinis Strains

Applying comparative genomics approach requires selection of comparative

genome set. In order to find out the PAIs, it is worth comparing a pathogenic

strain with a set of non-pathogenic strains within a specie so that the unique

regions causing pathogenicity could be identified.

With the selected case organism S. sanguinis SK36, several strains are available

but pathogenic nature of many of the strains is unknown which makes it difficult

to select an accurate genome set for comparison. Whereas, selection of

in-accurate genome set for comparison can lead to highly false results. Therefore,

in the proposed integrated approach, pre-processing for such organisms is

suggested which states adopting the patho-genomic comparison approach to

determine the non-pathogenic strains of the respective specie.

In the discussed case, IE virulent determinants are critical for S. sanguinis specie

for its pathogenicity. Therefore, a search of pre-enlisted virulent factors among

S. sanguinis strains could differentiate pathogens from non-pathogens. Hence, a

patho-genomic comparison approach was used to examine the conservation of the

virulent factors within S. sanguinis species. 62 strains of S.sanguinis are

publicly available in NCBI genome database (https://www.ncbi.

nlm.nih.gov/genome/genomes/1345). Out of these 62 strains, 6 are complete, 22

are scaffold and 34 are contigs. For the study, only complete strains have been
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used and were compared through Nucleotide BLAST [47] and UniProt [48] to

check the presence of the enlisted virulent factors.These strains included

NCTC11085, NCTC11086, NCTC7863, NCTC10904, NCTC3168 and the query

genome SK36. These strains were then clustered into two group i.e. pathogenic

strains and non-pathogenic strains, using k-mean clustering approach, provided

that a strain is IE pathogen only if it possesses majority of the enlisted virulent

factors whereas strains which are void of the virulent determinants were

considered non-pathogenic. Pathogenic cluster of strains was further divided into

sub-clusters of “severe” and “moderate” pathogens depending on the criteria

defined as follow: severe pathogens - least distance a strain has with reference

strain SK36, more pathogenic it would be. Moderate pathogens – more the

distance a strain has with the reference strain, more moderate pathogen it would

be. Distance was determined based on the number of virulence determinants a

strain possess in reference to SK36 and the criteria was developed based on the

idea of Euclidean distance shown in equation 3.1.

d(i, j) = Sqrt(|xi1 − xj1|2 + |xi2 − xj2|2 + ... + |xip − xjp|2) (3.1)

[48], where xi and xj refers to the total number of virulence determinants

possessed by SK36 and other strains respectively. SK36 was fixed as centroid

object for clustering, thus xi remained fixed, and the number of desired clusters

was two.Strains included were NCTC11085, NCTC11086, NCTC7863,

NCTC10904 and NCTC3168.

3.5.1.3 Selection of Subject Genome and Integration of Results

Once, the non-pathogenic cluster of the S. sanguinis strains was identified, it

became easier to choose one non-pathogenic genome from the cluster and use it

as subject genome for sequence composition-based analysis. This determination

of non-pathogenic strains could also be exploited when predicting GIs/PAIs by

comparative genomics approach depending upon the context of the study as if the

comparison is needed to be carried out at inter-specie or intra-specie level.
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From the previous step (section 3.5.1.2), NCTC7863 was chosen as most closely

non-pathogenic strain because as compared to other strains, it is a complete

genome, so GIs/PAIs set predicted using NCTC7863 in section 4.3.1 was selected

and integrated with the set of GIs/PAIs acquired by comparative genomics

approach. Resultant dataset was then processed and evaluated for accuracy.

3.6 Accuracy Evaluation of Approaches Under

Study

In order to evaluate the accuracy of discussed pipelines for the identification of

GIs/PAIs (section 3.3), statistical measure of accuracy was chosen. Accuracy refers

to how close a measured value is to the actual value. This statistical measures is the

indicative of the correctness of the designed model i.e. sensitivity and specificity.

Higher the value of accuracy, more accurate are the results. It is measured as

follow [50]:

Accuracy =
TP + TN

Total
(3.2)

Where, TP refers to true positive results and are indicative of truly predicted

PAIs, FN stands for false negative results and refers to the GIs that were actually

PAIs but have been predicted falsely. Likewise, FP stands for false positive results

that refers to those falsely predicted PAIs that do not contain any virulence gene

and are actually GIs.

For the accuracy evaluation of the approaches, positive and negative datasets were

constructed. Constructing datasets for a genome with no GI/PAI information in

literature or GI database was a challenging task for which a simple yet insightful

approach was adopted. For dataset constructions, genome viewer PAIDB was

exploited. Proposed approach for dataset construction was based on the most

significant characteristics of PAIs i.e. presence of virulence genes as virulence

genes make a PAI different from a GI.

GIs and PAIs predicted by the existing approaches were used as the basis for

this search. Detected GIs and PAIs for the virulence genes were examined , as
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a GI must contain at-least one virulence genes in order to be considered as PAI

[51], if a putative GI showed presence of virulence gene or its homolog, it has been

considered as “False Negative”, else, “True Negative”. Likewise, if a PAI contained

virulence gene, it has been considered as “True Positive” else “True Negative”.

Figure 3.1: Methodology pipeline for designing an integrated approach to
predict PAIs



Chapter 4

Results and Discussions

This chapter covers the results obtained and discussion in context of aims and

objectives of the study. The study aims at evaluating the existing approaches for

the identification of GIs and proposing an integrated approach for the

identification of the PAIs in special reference to the case of Streptococcus

sanguinis SK36. The integrated approach is proposed to minimize the inherited

limitations of the sequence composition as well as comparative genomics-based

approaches while supporting the idea via the case of an opportunistic pathogen

with no identified PAIs in the literature. Set objectives included identification of

the existing approaches for GIs identification, their analysis and extraction of the

methodology pipelines, applying these pipelines to the case study while

evaluating their accuracy and finally heading towards integrated approach.

4.1 Identification of Computational Approaches

for Prediction of GIs/PAIs

The literature survey revealed that number of tools and techniques are available

for identifying GIs (summarized in table 2.1 in literature review section). It was

found out that existing tools usually exploit two most indicative features of

horizontal origin of GIs; the distinctive sequence composition and the sporadic

phylogenetic distribution. Based on these two features, the prediction approaches

41
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fall into two broad categories; sequence composition-based approach and

comparative genomics-based approach [2],[4],[12],[18],[15],[17],[23],[27],[52].It was

further found out that in-spite of the wide availability of the computational

resources known for detecting GIs, very limited are available for the

identification of PAIs in particular [52].

4.2 Extraction of Pipelines from Existing Tools

In order to understand the pipeline followed by the sequence composition as well

as comparative genomics-based tools, different tools were analyzed and the

implemented approaches were extracted. The extracted pipeline for sequence

composition-based approach is seven step method. Step 1 deals with the

calculation of G+C content deviation of different genes of query genome while

keeping another genome as subject. Step 2 deals with codon usage deviations,

differentiating two genomic regions of diverse origin. Step 3 detects presence of

transposases in the query genome. Step 4 searches for virulence determinants in

the query genome. Step 5 looks for the unique genomic regions in query genome

such that such regions are absent from same genus or related species using

BLAST. Step 6 detects presence of tRNA genes which act as insertion sites for

PAIs. Whereas, step 8 deals with analysis of the results acquired from all

previous steps while taking decision on GIs and PAIs identification. Extracted

pipeline is shown in Figure 4.1.

Contrary to that, pipeline extracted for comparative genomics tool is simpler. It

requires acquisition of whole genome sequences from group of closely related

organisms as step no 1. Step 2 requires performing whole genome multiple

alignments such that the unique and conserved regions are detectable. In the last

step, such unique regions that are present in query genome while being absent in

other related genome are identified as putative PAIs and are subjected to further

analysis. Extracted pipeline for comparative genomics-based approach is shown

in Figure 4.2.
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Figure 4.1: Manual pipeline for sequence composition-based approach of PAIs
identification
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Figure 4.2: Extracted pipeline followed by comparative genomics-based
approach

4.3 Accuracy Analysis of Existing Approaches

Streptococcus sanguinis SK36 has a circular genome comprising of 2,388,435 bp

whereas, the G+C content of the genome has been mentioned to be 43.4% which

is higher as compared to other gen. streptococcal species. The genome encodes

2,274 proteins along with 61tRNA and four rRNA [53]. Certain LGT events have

also been reported in the genome via PAIDB. The circular genome map of the

organism is shown in Figure 4.3.

Streptococcus sanguinis being the member of oral microflora experiences significant

fluctuations in the environmental factors such as pH level, oxygen concentration

or osmolarity especially when growing in dental plaque. When this bacterium

enters blood stream thorough a minor cut or a wound, it encounters even greater
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shift in the external environment i.e. bloodstream environment. This study has

hypothesized that the adaptability and evolution of streptococci in response to the

ever-changing environments within the human body might have been interceded

via the LGT events resulting in GIs transfers. GIs in bacteria can configure various

advantages to the bacterium depending upon the genes they harbor, whereas focus

of this study is on the virulence factors harboring GIs- the PAIs [38]. Therefore,

horizontally transferred GIs and particularly PAIs in the genomes of S. sanguinis

SK36 were predicted using the most widely cited approaches one by one.

Figure 4.3: Circular genome map of the Streptococcus sanguinis SK36

Starting from the outside, the tracks show (i) position of genomic islands; (ii &

iii) ORF on positive and negative strands; (iv) tRNA; (v) rRNA; (vi) G+C

content; (vii) GC skew.

4.3.1 Predicting PAI by Sequence Composition-Based

Approach

For the prediction of PAIs in S. sanguinis SK36 by sequence composition-based

approach, three different non-pathogenic strains of S. sanguinis were used as
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subject genomes and different results were obtained. Retrieval of different results

each time the subject genome is changed indicates that contrary to what this

approach claims (being independent of related genome), it significantly depends

upon the subject genome.

Using GIPSY, the total G+C content of S. sanguinis reveals to be 1036586.0 with

the genome size of 2388435.0 bp whereas G+C content in percentage determines

to be 43.4%. However,the genome statistics of the subject genomes is summarized

in Table 4.1 and Figure 4.4.

Table 4.1: Summary of results observed by keeping NCTC11086, NCTC7863
and NCTC3168 as subject genome

Genomic

Features

Results with

NCTC11086

Results with

NCTC7863

Results with

NCTC3168

G+C content

Deviation
248 genes 248 genes 248 genes

Codon Usage

Deviation
242 genes 242 genes 242 genes

No. of

Transposases
17 genes 17 genes 17 genes

No. of tRNA 62 genes 62 genes 62 genes

No. of Virulence

Genes
717 genes 717 genes 717 genes

No. of putative

GI
7 10 21

No. of Putative

PAI
1 2 7

Using the sequence composition-based approach, 32 GIs and 9 PAIs were predicted

in total. Out of these 32 GIs, 4 GIs (GI1, GI2, GI3 and GI7) and 1 PAI (PAI1)

remained conserved while keeping NCTC11086 and NCTC7863 as subject genome

(Table 4.2). Whereas, 2 GIs were found conserved in SK36 when NCTC7863 and

NCTC3168 were kept as subject genome.
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Figure 4.4: Genome statistics of query and subject genomes

Table 4.2: Summary of predicted GIs and PAIs in the genome of S. sanguinis
SK36 by following sequence composition-based approach

Genomic

Island
Size (bp)

With

NCTC11086

With

NCTC7863

With

NCTC3168

Putative

GI1
6671 * *

Putative

GI2
11196 * *

Putative

GI3
8805 * *

Putative

GI4
8174 #

Putative

GI5
9365 #

Putative

GI6
7405 #

Putative

GI7
8496 * *

Putative

GI8
10717 #

Putative

GI9
12677 * *

Putative

GI10
5647 #
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Putative

GI11
14041 * *

Putative

GI12
9115 #

Putative

GI13
6627 #

Putative

GI14
6864 #

Putative

GI15
10556 #

Putative

GI16
14792 #

Putative

GI17
16658 #

Putative

GI18
8257 #

Putative

GI19
7662 #

Putative

GI20
9872 #

Putative

GI21
5596 #

Putative

GI22
14305 #

Putative

GI23
15498 #

Putative

GI24
11335 #

Putative

GI25
8805 #

Putative

GI26
8538 #
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Putative

GI27
10133 #

Putative

GI28
13886 #

Putative

GI29
17251 #

Putative

GI30
19309 #

Putative

GI31
15756 #

Putative

GI32
7430 #

Putative

PAI1
10106 * *

Putative

PAI2
11043 #

Putative

PAI3
13227 #

Putative

PAI4
18207 #

Putative

PAI5
32944 #

Putative

PAI7
6374 #

Putative

PAI8
32944 #

Putative

PAI9
12011 #

Conserved GIs and PAIs identified by using different subject genome are marked

with ’*’ whereas subject specific are marked with #.
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4.3.1.1 Calculating G+C Content Deviations

G+C content deviations for the query genome were calculated. G+C content

deviation is a significant genomic signature as it distinguishes the PAIs from the

host genome [18]. On average G+C content ranges from 25-75% for bacterial

species whereas it is reduced to 40-60% in case of pathogenic species. As PAIs are

laterally transferred, they retain base composition of their donor species, which

accounts for the variation in G+C content. However, reason for such variation

remains unknown [19]. With all the three subject genomes, SK36 showed similar

deviations which validated the results. Out of total 2270 genes, SK36 shows no

deviation for 2022 genes whereas 248 genes with deviated G+C contents have been

observed. Out of the total 248 genes, 201 genes reached the lower limit of set value

for standard deviation whereas 47 reaches the higher limit threshold. Reference

values for upper and lower limit were set by using standard deviation of 1.5 for

both query and subject genomes and were defined as 50.56 and 36.23 respectively.

4.3.1.2 Codon Usage Analysis

Codon usage was determined for SK36 via integrated SIGI/HMM approach. As

each genome prefers different codon usage and the PAI and host genome have

heterogenous origin, the codon usage for the two genomes vary. Therefore, this

genomic signature could be exploited as reliable parameter to detect PAIs [16].

For calculating codon usage deviations, the sensitivity parameter was set to 0.95

standard value i.e. highest possible standard value [20]. Again, for all three subject

genomes, SK36 show similar results where 2022 genes showed normal codon usage

and 248 showed deviations indicating the possibility of LGT events.

4.3.1.3 Detection of Transposase Genes

After the codon usage analysis, transposase genes were searched in the genome.

Transposases belongs to the category of functional mobility genes and are

required for the excision or insertion of DNA regions into the genome [17].

Transposases were searched via HMMER3 tool which searches the genome profile
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against transposase database. The e-value used in the analysis was set to

standard 1E-04 [20]. During the prediction, 17 transposases genes were found in

SK36 with sequence reported threshold of E-value less than 0.0001. Presence of

transposases in SK36 supports the concept of LGT events in the genome.

4.3.1.4 Detection of Virulence Genes

Detection of virulence genes in the genome is critival for identifying PAIs. PAIs in

pathogenic bacteria encodes virulence genes that greatly differentiate them from

non-pathogenic bacteria. These virulence genes fall into multiple functional groups

such as adherence factors, siderophores, exotoxins, invasion genes and type III

and IV secretion systems [17], [18]. Therefore, detection of virulence genes can

be exploited as clue for detecting PAIs [18].Virulence determinants were detected

based on the protein similarity searches performed by blastp algorithm against

mVIRdb [20]. With all three subject genomes, total 717 virulence factors were

determined in the SK36. Standard value used for analysis was set to 0.000001.

4.3.1.5 Detection of Unique Regions

Unique genomic regions in a query genome are indicative of LGT events. These

regions were determined in comparison to subject genomes by performing

reciprocal BLASTs between CDSs of the two genomes. Approach followed to

predict LGT events and inferring gene synteny includes predicting commonly

shared orthologous genes [20]. In view of this, 301 unique genes were detected in

SK36 that do not have orthologs in NCTC3168. Whereas, 214 and 220 unique

genes were detected in comparison to NCTC7863 and NCTC11086 respectively.

Presence of these unique genomic regions further validated the occurrence of

HGT events.

4.3.1.6 Detection of tRNA Genes

Transfer RNAs are known to be the landmarks for the integration of exogenous

DNA. Extrachromosomal genetic elements usually carry tRNA or part of them
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and is therefore suggestive of extrachromosomal elements integration into the host

genome by homologous recombination between tRNA genes of the chromosome

and their extrachromosomal counterparts [17], [19]. Presence of tRNA genes was

detected via integrated HMMER3 tool which perform query genome searching

against database of bacterial tRNA genes named tRNAdb. Standard value was

set to 0.0001 during the analysis [20]. This analysis revealed 62 tRNAs in the

query genome which includes 1 broken tRNA which is indicative of LGT event.

4.3.1.7 Summarizing Results

At the end, results from all previous steps (1-6) were summarized and analyzed

in order to determine the PAIs. One PAI was detected in SK36 by keeping

NCTC11086 as subject genome. Whereas, 2 and 7 PAIs were identified when

NCTC7863 and NCTC3168 were kept as subject genome respectively. This

analysis also yielded some GIs, details of which are summarized in Table 4.3 to

4.5.

Table 4.3: GIs and PAIs observed by selecting NCTC11086 as subject genome

Putative
GIs and
PAIs

G+C
Dev.

Codon
Usage

Virulence
Factors

Hyp.
Proteins

Gene
Comp.

Putative
GI 1

57% 42% 0% 85%
SSA 0228-
SSA 0234

Putative
GI 2

38% 76% 7% 76%
SSA 0553-
SSA 0565

Putative
GI 3

54% 100% 0% 100%
SSA 1284-
SSA 1296

Putative
GI 4

75% 100% 0% 83%
SSA 1327-
SSA 1338

Putative
PAI 1

0% 20% 50% 30%
SSA 1359-
SSA 1368

Putative
GI 5

50% 58% 16% 41%
SSA 2288-
SSA 2295

Putative
GI 6

33% 26% 13% 26%
SSA 2288-
SSA 2295

Putative
GI 7

50% 87% 25% 50%
SSA 2288-
SSA 2295
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Table 4.4: GIs and PAIs observed by selecting NCTC7863 as subject genome

Putative

GIs and

PAIs

G+C

Dev.

Codon

Usage

Virulence

Factors

Hyp.

Proteins

Gene

Comp.

Putative

GI 1
62% 50% 12% 75%

SSA 0228-

SSA 0235

Putative

GI 2
38% 76% 7% 76%

SSA 0553-

SSA 0565

Putative

PAI 1
28% 14% 42% 28%

SSA 1099-

SSA 1105

Putative

GI 3
14% 28% 14% 14%

SSA 1143-

SSA 1149

Putative

GI 4
30% 100% 0% 90%

SSA 1246-

SSA 1255

Putative

GI 5
54% 100% 0% 100%

SSA 1284-

SSA 1296

Putative

PAI 2
0% 20% 50% 30%

SSA 1359-

SSA 1368

Putative

GI 6
85% 100% 0% 100%

SSA 1387-

SSA 1393

Putative

GI 7
46% 60% 13% 40%

SSA 1812-

SSA 1821

Putative

GI 8
45% 45% 18% 36%

SSA 2025-

SSA 2032

Putative

GI 9
16% 50% 8% 58%

SSA 2269-

SSA 2276

Putative

GI 10
50% 87% 25% 50%

SSA 2288-

SSA 2295
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Table 4.5: GIs and PAIs observed by selecting NCTC3168 as subject genome

Putative

GIs and

PAIs

G+C

Dev.

Codon

Usage

Virulence

Factors

Hyp.

Proteins

Gene

Comp.

Putative

GI1
40% 20% 10% 20%

SSA 0044-

SSA 0051

Putative

PAI 1
12% 0% 50% 50%

SSA 0201-

SSA 0207

Putative

GI 2
55% 44% 22% 66%

SSA 0227-

SSA 0235

Putative

PAI 2
6% 0% 50% 50%

SSA 0393-

SSA 0410

Putative

GI 3
31% 62% 18% 62%

SSA 0553-

SSA 0568

Putative

GI 4
4% 18% 27% 27%

SSA 0915-

SSA 0934

Putative

PAI 3
44% 66% 55% 66%

SSA 0947-

SSA 0957

Putative

GI 5
28% 42% 28% 57%

SSA 1166-

SSA 1172

Putative

GI 6
33% 66% 0% 50%

SSA 1229-

SSA 1234

Putative

GI 7
30% 100% 0% 90%

SSA 1246-

SSA 1255

Putative

GI 8
40% 90% 0% 90%

SSA 1286-

SSA 1297

Putative

GI 9
33% 0% 16% 50%

SSA 1312-

SSA 1317

Putative

GI 10
60% 80% 6% 66%

SSA 1326-

SSA 1340

Putative

GI 11
26% 34% 8% 78%

SSA 1378-

SSA 1400

Putative

GI 12
28% 21% 7% 21%

SSA 1435-

SSA 1449
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Putative

GI 13
30% 40% 30% 40%

SSA 1472-

SSA 1481

Putative

GI 14
66% 66% 16% 66%

SSA 1594-

SSA 1599

Putative

GI 15

(islet)

0% 62% 12% 37%
SSA 1630-

SSA 1638

Putative

PAI 4
5% 7% 36% 52%

SSA 1643-

SSA 1683

Putative

PAI 5
36% 63% 36% 63%

SSA 1750-

SSA 1760

Putative

GI 16
46% 60% 13% 40%

SSA 1812-

SSA 1821

Putative

GI 17
50% 37% 25% 62%

SSA 1881-

SSA 1891

Putative

GI 18
0% 26% 26% 20%

SSA 1982-

SSA 1994

Putative

GI 19
29% 35%7% 17% 41%

SSA 2020-

SSA 2032

Putative

GI 20
20% 20% 26% 40%

SSA 2121-

SSA 2135

Putative

PAI 6
37% 25% 37% 50%

SSA 2147-

SSA 2153

Putative

PAI 7
66% 66% 50% 66%

SSA 2247-

SSA 2252

Putative

GI 21
42% 28% 14% 28%

SSA 2284-

SSA 2290
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4.3.2 Predicting PAIs by Comparative Genomics-Based

Approach

Using the comparative genomics-based approach, 10 GIs were predicted, out of

which, 4 were identified exploiting manual approach, while, 6 were found

pre-computed in the database. Afterwards, all predicted GIs were checked

manually for three most important genomic signatures i.e. hypothetical proteins,

virulence genes and homolog of virulence genes in order to validate the findings.

For the classification of GIs as PAIs, presence of virulence gene or its homology

was exploited. A GI was considered as PAI if it contained virulence gene or its

homolog and vice versa. Out of the total 10 predicted GIs, 3 GIs (GI2, GI7 and

GI8) contain virulence genes and were identified as PAIs with strong prediction

score whereas, 3 GIs (GI3, GI5 and GI10) were found to contain a homolog of

virulence gene and were identified as PAIs with relatively weak prediction score.

All these 6 GIs were considered as “False Negatives” with respect to PAIs as

they are actually the PAIs that are negatively identified. Furthermore, three GIs

(GI1, GI6 and GI8) were truly identified as GIs as they do not contain any

virulence factor and thus were considered as “True negative” with respect to

PAIs. Whereas, one GI (GI4) did not contain any hypothetical protein or

virulence factor, thus, was not considered as PAI or GI at all, as presence of

hypothetical proteins is one of the crucial markers of an LGT event. Therefore,

GI4 was found to be “False Positive” prediction as this region of the genome and

does not seem to have arisen in result of an LGT event. Summary of the GIs

obtained by this approach is given in Table 4.6.

Table 4.6: Summary of GIs predicted in the genome of Streptococcus sanguinis
SK36 by following comparative genomics approach

Putative
GIs and
PAIs

Start Stop Size
Pred.
Model

hyp.
vir.
genes

Vir.
genes
homo.

Putative
GI1

160,317 165,657 5,340 Manual *

Putative
GI2

1,116,985 1,122,526 5,541 Manual *
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Putative

GI3
1,171,147 1,179,963 8,816 Manual * *

Putative

GI4
2,084,670 2,090,408 5,738 Manual

Putative

GI5
145,552 150,100 4,548

DB

prediction
* *

Putative

GI6
1,037,302 1,041,509 4,207

DB

prediction
*

Putative

GI7
1,115,016 1,120,426 5,410

DB

prediction
* *

Putative

GI8
1,315,090 1,320,601 5,511

DB

prediction
*

Putative

GI9
2,298,588 2,305,638 7,050

DB

prediction
* *

Putative

GI10
2,305,761 2,312,880 7,119

DB

prediction
* *

4.4 Designing an Integrated Approach for PAIs

Prediction

Importance of GI prediction cannot be denied as it serves as the primary step for

bacterial genome characterization. Due to the growing interest of the researchers

in the study of GI inferred characteristics, bioinformatics approaches for its

prediction have been formulated at rapid pace. Development of new and efficient

computational methods with improved prediction accuracies still remains to be

the hot research area. Different existing tools uses different GI features for their

identification. As a result, each of the most accurate methods have high precision

but low recall, leading to variations in results predicted by different tools.

A literature survey shows different researches that have predicted GIs using

different bioinformatics tools predicting GIs in different bacterial species. Some

of these studies are summarized below:



Results and Discussions 58

In a study by Ali et al ; (2012), PAIs have been identified in Campylobacter fetus

subspecies by exploiting sequence composition-based approach using PIPS tool.

The organisms included C.fetus subsp. Venerealis NCTC10354T (Cfv) and

C.fetus subsp. 82-40 (Cff). As PIPS require a most closely related

non-pathogenic organism in order to predict PAIs, Campylobacter hominis was

chosen in the study as subject genome. Further validations were done manually

by using tools like ACT and BLAST Ring Image Generator (BRIG). Results

yielded 12 PAIs in Cfv and 10 in Cff [54].

Whereas, Soares et al ; (2016), exploited sequence composition-based approach

using GIPSY for the identification of PAIs in Escherichia coli CFT073. This

study has used E. coli K12 as subject non-pathogenic genome and have predicted

23 putative PAIs and 9 GIs. To our knowledge, GIPSY is the only software

that exploits maximum number of genomic signatures and is the most accurate

sequence-composition based tool. In support to its highest accuracy, Soares et al ;

found 11 additional PAIs in E. coli CFT073 which were not reported previously

in literature but were revealed when detected using GIPSY [20].

Zheng et al ; (2017), conducted comparative genomics analysis on 14 strains of

Streptococcus gordonii and 5 strains of Streptococcus sanguinis to predict GIs.

This study found 13 putative GIs in S. sanguinis and S. gordonii collectively, out

of which, 6 GIs were possessed uniquely by S. gordonii and 5 GIs were identified in

S. sanguinis, whereas, two GIs were revealed to be conserved in both organisms.

This study used 14 strains of S. gordonii (PV40, Blackburn, Channon, FSS2,

FSS3, FSS8, M5, M99, MB666, MW10, PK488, SK12, SK120 and SK184) and 5

strains of S. sanguinis (NCTC 7863, FSS4, FSS9, MB451 and PJM8) [38].

Guo et al ; (2017) uesd an integrated approach to identify GIs in Burkholderia

cenocepacia AU 10. The adopted integrated methodology exploited four features of

sequence composition-based approach along with comparative genomics approach.

The features subset of sequence composition-based approach included frequency of

dinucleotides, G+C content deviation, codon usage and presence of tRNA. Eight

strains of B. cenocepacia used as comparative genome set included AU 1054, J2315,

H2424, HI11, MC0-3, DDS 22E-1, DWS 37E-2 and K56-2. This study resulted in
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identification of 14 putative GIs on chromosome I and 7 GIs on chromosome II of

B. cenocepacia [55].

Klein et al ; (2018) used G+C content as a basis to identify GI and PAIs in

Vibrio parahaemolyticus TS-8-11-4, Vibrio vulnificus WR-2-BW and Vibrio

diabolicus JBS-8-11-1. This study exploited TUBIC (Tiajin University

Bioinformatics Center) to determine GIs and successfully identified 1 PAI in V.

parahaemolyticus TS 8-11-4, 2 PAIs in V. vulnificus WR-2-BW and 1 GI in

Vibrio diabolicus referred to as fitness island [51].

Filho et al ; (2018) used the sequence based approach to identify GIs in

Escherichia coli CFT073 using multiple sequence composition-based tools which

included GIPSY, Alien Hunter, IslandViewer, PredictBias, and Zisland Explorer.

This study identified 16 GIs in E. coli CFT07. Out of these 16 GIs, 8 were

predicted to be GIs whereas, rest of 8 were identified as PAIs [27].

In the light of the above survey, it is observed that most of the GI studies utilize

one of the two existing approaches i.e. either sequence composition or comparative

genomics-based approach in order to predict GIs. This reflects that in-spite of the

limitations with both the approaches mentioned in literature review (section 2.3),

researchers continue to make use of any one of these approaches resulting in high

rates of false results (low accuracy and precision) while identifying GIs [2]. There

is also a possibility that these studies might not have depicted the complete picture

of GIs in studied genomes due to the hindrance caused by limitations inherited by

both approaches.

Very few studies included in the survey have used integrated approach proposing

to minimize the challenges faced by the existing pipelines [44]. The integrated

approach has been implemented by utilizing IslandViewer4

(http://www.pathogenomi cs.sfu.ca/islandviewer/) which is the only tool that

incorporates both the approaches side by side. This integrated approach also

faces certain chellanges that are discussed in detail in section 3.4.The integrated

approach followed by IslandViewer4 (http://www.pathogenomics.sfu.ca/

islandviewer/) is depicted in Figure 4.5.
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Figure 4.5: Integrated approach followed by IslandViewer4

Keeping in view the limitations of the existing approaches, this study has proposed

an integrated approach that broadens up the genomic features subset. These

features include presence of transposases, virulent genes, hypothetical proteins and

unique regions identification in addition to G+C content deviations, codon usage,

and presence of tRNA along with the utility of comparative genomics approach in

parallel. The approach is then followed by the integration of results acquired by

both approaches, preceded by manual validation to classify GIs as PAIs. Proposed

integrated approach is shown in Figure 4.6.

With such integrated approach, more stringent criteria is applied for a region to

be classified as GI that will minimize probability of False positive and negative

results. With this approach, for a region to be qualified as a GI, it must possess

3-4 mentioned genomic signatures as it is not possible most of the time to possess

all the genomic features [16].
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Figure 4.6: Integrated approach proposed by this study

4.5 Application of Integrated Approach to Case

of Streptococcus sanguinis SK36

For the application of sequence composition as well as comparative genomics-

based approach, importance of selection of reference genome has already been

discussed in section 3.3. For a specie like S. sanguinis that has unknown basis

of pathogenecity,determination of non-pathogenic strain is proposed by k-means

clustering method preceded to determination of virulence factors.
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4.5.1 Virulence Factors of Streptococcus sanguinis SK36

45 virulent factors associated with S. sanguinis SK36 were retrieved from VFDB

(summerized in Table 4.7). These virulence factors majorly belong to the group of

adherence proteins, enzymes, immune evasion, manganese uptake and proteases.

Adherence related factors include antigens, cell surface hydrophobicity proteins,

collagen binding proteins, laminin binding proteins ,fibronectin binding protein,

serine-rich surface glycoprotein, sortase A, glycosyltransferases, plasmin receptor

and rslrA islets. Among these factors, cell surface proteins mediates attachment

to the host cell and is required for initial stages of the IE [43] whereas,

fibronectin binding proteins aids in binding to fibronectin which exist in the

extracellular matrix of most tissues in hosts [50]. Collagen binding proteins are

identified as mediators of IE and includes CpbA of S. sanguinis. CbpA is

recognized as a mediator of platelet aggregation in vitro [39], [43].

Laminin-binding proteins aids in attachment to human-laminin and is significant

for bacterial colonization [53]. Serine- rich glycoproteins mediates the adhesion

to platelets [ref2] whereas, sortase A aids bacterium in invading human immune

system [55]. Extracellular production of glucan polymers has also been linked to

IE infectivity. The extracellular glucans are synthesized by bacterially encoded

glucosyltransferase (Gtf) enzymes from a sucrose substrate and enhance

colonization in the development of IE. Studies suggest that glucan production

enhance streptococcal survival post-phagocytosis putatively mediating adherence

to vegetation-like matrices and includes gtfD [34], [39]. Plasmin receptors also

known as Streptococcal surface dehydrogenase are marked essential for evasion

from neutrophils [56]. rlrA islets are the transcriptional regulators which

mediates proper temporal expression of virulence genes during infection [57].

Enzyme related virulence factor includes Streptococcal enolase. Enolase is found

abundantly on the surface of streptococcal groups and shows great affinity to

bind plasmin that plays crucial role in host defense system [58]. In addition to

that, 25 capsule genes were also identified as virulence genes in S.sanguinis.

These genes provides resistance to complement deposition and masks cell

wall-associated complement from being recognized by the complement receptors

on phagocytes [59]. In addition to these, manganese uptake genes like solC also
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play their role in virulence casuing endocarditis. sloC is required for the

expression of Lral operon which is responsible for encoding components of

ATP-binding cassettes [60]. Proteases like C3-degradation protease, igA1

protease and trigger factor also constitutes the set of virulence factors in SK36.

Table 4.7: IE virulence genes catalog along with the patho-comparison within
five sanguinis strains

S.
No

VF Class
Locus
tag

NCTC
11085

NCTC
11086

NCTC
7863

NCTC
10904

NCTC
3168

Adherence

1 Antigen I/II SSA 0956 * * * *
SSA 0303 * * * *

2
Cell surface
hydrophobi-
city proteins

SSA 0904 * * * *

SSA 0905 * * * *
SSA 0906 * * * *

3
Collagen
binding
proteins

SSA 1663 * * * *

4
Fibronectin
binding
proteins

SSA 0907 * * * *

5
Laminin-
binding
protein

SSA 1990 * * * *

6
Serine-
rich surface
glycoproteins

SSA 0829 * * * *

7 Sortase A
SSA 1219

* * * *

8
Streptococcal
glucosyl-
transferases

SSA 0613 * * * *

9
Streptococcal
plasmin
receptor

SSA 2108 * * * *
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10 rlrA islet SSA 1632 *

SSA 1633 *

SSA 1634 *

SSA 1631 *

Enzymes

11
Streptococcal

enolase
SSA 0886 * * * *

Immune

evasion

12 Capsule SSA 1511 * * * * *

SSA 0858 * * * *

SSA 1411 * * * *

SSA 2217 * * * *

SSA 1510 * * * *

SSA 1519 * *

SSA 2223 * * * *

SSA 1410 * * * *

SSA 1518 * *

SSA 1517 * *

Manganese

uptake

13 SSA 0206 ssaB * * *

Protease

14

C3-

degrading

protease

SSA 0331 * * * *

15
IgA1

protease
SSA 1106 * * * *

16
Trigger

factor
SSA 1998 * * * * *
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4.5.2 Clustering of Streptococcus sanguinis Strains

Pre-enlisted virulent factors were scanned in the genome of the strains for the

first round of clustering. Results indicated the presence of most of the virulent

determinants in 4 out of 5 sanguinis strains and absence of majority of the

factors from 1 strain. Strains that possess virulent genes include NCTC11085,

NCTC11086, NCTC7863, and NCTC10904, whereas, NCTC3168 was found to

possess only 2 virulent factors. Therefore, based on the acquired results 4 strains

were clustered as pathogenic and 1 as non-pathogenic.

Pathogenic cluster was further divided into the sub-clusters of severe and moderate

pathogens based on the distance of these strains from the centroid strain i.e. SK36.

2 strains of the pathogenic cluster showed distance of 5 with the centroid and hence

clustered as severe pathogens. These strains include NCTC11085 and NCTC10904

and possess 40 out of total 45 virulent genes of SK36 which makes them hyper-

virulent. Whereas, distance of the rest of the 2 pathogenic strains in reference to

the centroid was ¿8 which indicates absence of atleast 10 virulence determinant

that makes these strains moderate pathogens.

Results revealed absence of rlrA islets in most of the strains. These islets include

surface protein, FimA, heme-utilization adhesion exo-proteins and sortase C which

are involved in the initial binding to the blood vessels. These genes were found

missing in NCTC11086, NCTC7863, NCTC10904 and NCTC3168 strains. Thus,

these strains have reduced ability to cause IE as studies have indicated strains

with mutant FimA reduces the ability of S.sanguinis to cause IE [44].

On the second highest frequency, strains lacked Cps9H, zn-porter lipoprotein,

teichoic acid transporter, rgpE, capD, gtfP, Cps9G and Cpsla. These genes were

found in any 2 of the 5 strains. These genes majorly involves glucosyltransferases

or the transporter proteins.

Rest of the genes were present in all four strains i.e. NCTC11085, NCTC11086,

NCTC7863 and NCTC10904. However, tig and glucosyltransferase SSA 1511 were

the only virulent factors found to be possessed by NCTC3168.

As a result of clustering approach, NCTC11085 and NCTC10904 were clustered

as ”severe pathogens”, NCTC11086 and NCTC7863 were clustered as ”moderate



Results and Discussions 66

pathogens” whereas, NCTC3168 was determined as ”non-pathogen”. Resulted

clustering is shown in Figure 4.7.

Figure 4.7: Classification of S. sanguinis strains based on their pathogenic
association with IE. Pathogenic cluster includes strains that possess IE virulent

genes whereas non-pathogenic strains do not.

4.5.3 Validation of Clustering and Selection of Reference

Genome

With the use of k-mean clustering approach, out of total 5 strains of S. sanguinis,

only NCTC3168 was determined as non-pathogenic. To validate the results of

clustering approach, all 5 strains were compared with the query strain SK36 using

BLAST pairwise alignment. The results of pairwise alignment shows NCTC3168

as to be 90% similar with the query strain, whereas rest of the four strains are

yielded to be more than 90%. Distance tree of the results in Figure 4.8 show that

NCTC7863 and NCTC11085 are clustered close together based on their nucleotide
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homology and because of their greater similarity with the genome. This cluster

is then close together with NCTC10904 and NCTC11086. On the whole all these

four strains are closer in distance to the query strain SK36 which supports the

clustering results that have clustered all these four strains as pathogenic. Whereas,

NCTC3168 is shown to be at maximum distance from the query strain, reflecting

its least nucleotide homology with SK36 and hence supports the selection of this

strain as reasonable subject/reference strain for the prediction of GI based on

sequence composition-based approach.

Figure 4.8: Distance tree of selected sanguinis strains

When the nucleotide sequences of all 5 strains were compared with reference to

SK36 using BLAST, NCTC10904 show 94% similarity with SK36, NCTC7863,

NCTC11085 and NCTC11086 show 96% homology, whereas, NCTC3168 show 90%

homology which again validates the clustering results and our selection of reference

genome. In Figure 4.9 genome map comparison between the chosen strains of SK36

is shown representing gene organization with genome synteny breaks referred to

as GIs. In the light of the above results and validation support, NCTC3168 was

chosen as the subject genome for the identification of GIs exploiting sequence

composition approach. This finding could also be used in another way, depending

upon the objectives of the study. Such non-pathogenic cluster could be used as a

comparative genome set as a whole to predict GIs in the query genome. Using such

un-ambiguous comparative genome set will obviously minimize the false results and

will be time efficient as it will prevent brute force efforts.
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Figure 4.9: Genome map comparison of S. sanguinis strains S. sanguinis
strains plotted using SK36 as reference, representing GIs in SK36

4.5.4 Integration of Results

For the acquisition of final GIs/PAIs, results obtained from both the approaches

were integrated. For the results from sequence composition-based approach, as

NCTC3168 was chosen as a reference genome, GIs/PAIs from Table 4.5 were

taken into account whereas, Table 4.3 and Table 4.4 were dropped. It is also to

be noted here that PAIs identified by keeping NCTC3168 has strong prediction

scores as compared to the PAIs predicted by using other two strains. This

observation again validates the selection of NCTC3168 as reference genome.

Along with these, results of comparative genomics-based approach from Table
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4.6 were selected for integration purpose and a new dataset was constructed.

The newly constructed dataset now reflects integrated results. Examining this

dataset, surprisingly reveals, no GI has remained conserved while being predicted

by both approaches, which supports the use of integrated approach. This

variation of results from both approaches suggests that use of any one of the

approaches for GI/PAIs prediction is not valid in every case.

4.6 Prediction’s Accuracy Evaluation of Under

Study Approaches

For evaluating the accuracy of sequence composition, comparative genomics as

well as the proposed integrated approach, datasets were created by determining

whether the GIs and PAIs predicted by the existing approaches represents true

negative, false negative, true positive or false positive results.

Approach adopted to determine negative or positive result is discussed in

methodology section 3.3.4. When sequence composition-based pipeline was

applied to the case organism SK36 with reference to all three randomly selected

subject genomes 32 GIs and 10 PAIs were predicted in total. Out of these

results, 8 PAIs turns out to be true positive, as these PAIs have truly been

predicted as PAIs because of the presence of either the virulent gene or its

homolog. Whereas, only 2 PAIs turns out to be false positively predicted, as

those PAIs were actually GIs but have been predicted as PAIs when they did not

contain any virulence gene. On the other hand,14 GIs were predicted accurately

and turns out to be true negative in the dataset whereas, 18 GIs were actually

the PAIs but have been predicted as GIs thus turns out to be false negative

entries in Table 4.8. With this dataset, accuracy for the sequence

composition-based approach turns out to be 52%. Whereas, after the selection of

NCTC3168 as most closely related non-pathogenic subject genome, accuracy of

sequence composition-based approach increases to 53.5%.
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Table 4.8: Positive and Negative dataset construction of predicted GIs and
PAIs for sequence composition-based approach

True Positive True Negative False Negative False Positive

PAI1 GI1 GI5 PAI10

PAI2 GI2 GI6 PAI3

PAI4 GI3 GI7

PAI5 GI4 GI8

PAI6 GI10 GI9

PAI7 GI14 GI11

PAI8 GI16 GI12

PAI9 GI21 GI13

GI22 GI15

GI25 GI17

GI26 GI18

GI27 GI19

GI28 GI20

GI32 GI23

GI24

GI29

GI30

GI31

Accuracy of sequence composition-based approach = 22/42 = 0.52

=52%

While during the application of comparative genomics approach, out of total 10

predicted GIs, 4 turns out to be true positive as these GIs were truly predicted

whereas, rest of the 6 GIs were actually the PAIs but were predicted as GIs,

thus counted as false positive entries of Table 4.9. Whereas, no true negative

entries could have been generated. Accuracy, when computed for the comparative

genomics-based approach turned out to be 40%.
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Table 4.9: Positive and negative dataset construction of predicted GIs for
comparative genomics-based approach

True Negative False Negative

GI33 GI34

GI36 GI35

GI38 GI37

GI40 GI39

GI41

GI42

Accuracy of comparative genomics-based approach = 4+0/10= 0.4 =

40%

With the proposed integrated approach, dataset (shown in Table 4.10) is

constructed integrating the resultant GIs from Table 4.5 and Table 4.6. Among

this dataset, out of total 31 GIs and 7 PAIs, 6 PAIs and 5 GIs were truly

predicted, hence true positive entries, 7 GIs were truly identified as not being

PAIs and therefore, true negative entries whereas, 12 GIs were falsely predicted

as GIs when they were PAIs in actual, hence false positive results. Accuracy of

integrated approach when calculated, turns out to be 47% which is better then

the accuracy of comparative genomics based-approach but less then that of

sequence composition-based approach. It is to be noted here, that all of the

predicted GI/PAIs are the putative ones and are not confirmed. Based on the

presence of virulence factors (mentioned in Table 4.7) in GIs/PAIs, they were

again evaluated to be either true positive or true negative islands. This

re-evaluation revealed 19 GIs to be true negative as they do not contain any of

the virulence factor (from Table 4.7), 4 PAIs (PAI4, PAI6,PAI7,PAI9) were

found to be true positive because of the presence of the respective virulent

determinants (SSA 0206 in PAI4, SSA 0956 in PAI6, SSA 1663 in PAI7 and

SSA 2217 in PAI9), 1 GI (GI26) was found false negative as it contained 4

virulent genes (SSA 1631,SSA 1632, SSA 1633, SSA 1634 constituting rlrA islet),

whereas, 2 PAIs (PAI8 and PAI10) were found to be false positive because of the

absence of any known virulence factor. Re-evaluating the accuracy based on
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confirmed and putative GIs/PAIs, it increases to 71% which is comparatively

better than the accuracy of both the approaches. It concludes that designed

integrated approach has the tendency to identify confirmed GIs and PAIs with

71% accuracy even for the pathogens that do not have complete information of

pathogenesis.

Table 4.10: Dataset constructed for proposed integrated approach

True Negative False Negative True Positive

GI14 GI9 PAI4

GI16 GI11 PAI5

GI21 GI15 PAI6

GI22 GI17 PAI7

GI25 GI18 PAI8

GI26 GI19 PAI9

GI27 GI20

GI28 GI23

GI32 GI24

GI33 GI29

GI38 GI30

GI40 GI31

GI34

GI35

GI37

GI39

GI41

GI42

Accuracy of proposed integrated approach = 18/38= 0.47=47%



Chapter 5

Conclusion and Future

Recommendations

Existing approaches for the prediction of GIs are grouped into two major

categories i.e. sequence composition-based approach and comparative

genomics-based approach. Both of these approaches inherit certain limitations

which effects the accuracy of predicting GIs. Keeping in view the challenges

faced by these approaches, this study has proposed an integrated approach which

could minimize the short comings of the existing approaches. The proposed

integrated approach suggests certain modifications in both of the existing

approaches and then integrating the results. In sequence composition-based

approach, broadening up of genomic set of features is proposed with the aim to

increase the stringency on decision making, minimizing the probability of false

predictions. In comparative genomics approach, based on the fact that for an

organism with related strains of unknown pathogenicity, k-means clustering

approach is suggested to cluster pathogenic and non-pathogenic strains. This

clustering is based on the identified virulence genes found in organism. The

selection of comparative genome set or the subject genome based on such

clustering method could provide more accurate selection of comparative genomes

rather than assumption or brute force selections as this approach is greatly

influenced by the selected comparison genome set. The generated non-pathogenic

cluster could also be used as a comparative genome set as a whole to predict GIs

in the query genome. Using such un-ambiguous comparative genome set will

73
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obviously minimize the false results and will be time efficient as it will prevent

brute force efforts. Such novel integrated approach would help to highly

minimize the challenges faced by the existing GI prediction approaches,

minimizing the false prediction results and solves the problem of predicting

GIs/PAIs for organisms that do not have a complete picture of pathogenicity.
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