

Handbook of Computer
 Programming with Python

This handbook provides a hands-on experience based on the underlying topics, and assists students
and faculty members in developing their algorithmic thought process and programs for given com-
putational problems. It can also be used by professionals who possess the necessary theoretical and
computational thinking background but are presently making their transition to Python.

Key Features:

• Discusses concepts such as basic programming principles, OOP principles, database pro-
gramming, GUI programming, application development, data analytics and visualization,
statistical analysis, virtual reality, data structures and algorithms, machine learning, and
deep learning.

• Provides the code and the output for all the concepts discussed.
• Includes a case study at the end of each chapter.

This handbook will benefit students of computer science, information systems, and information
technology, or anyone who is involved in computer programming (entry-to-intermediate level), data
analytics, HCI-GUI, and related disciplines.

https://taylorandfrancis.com

Handbook of Computer
 Programming with Python

Edited by

Dimitrios Xanthidis
Christos Manolas

Ourania K. Xanthidou
Han-I Wang

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 selection and editorial matter, Dimitrios Xanthidis, Christos Manolas, Ourania K. Xanthidou, Han-I Wang;
individual chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
 copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been
 acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including
 photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
 permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

ISBN: 978-0-367-68777-9 (hbk)
ISBN: 978-0-367-68778-6 (pbk)
ISBN: 978-1-003-13901-0 (ebk)

DOI: 10.1201/9781003139010

Typeset in Times
by codeMantra

Access the Support Material: https://www.routledge.com/9780367687779

https://doi.org/10.1201/9781003139010
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://www.routledge.com/9780367687779

v

Contents
Editors ..vii
Contributors ..ix

Chapter 1 Introduction ..1

Dimitrios Xanthidis, Christos Manolas, Ourania K. Xanthidou,
and Han-I Wang

Chapter 2 Introduction to Programming with Python ..9

Ameur Bensefia, Muath Alrammal, and Ourania K. Xanthidou

Chapter 3 Object-Oriented Programming in Python .. 59

Ghazala Bilquise, Thaeer Kobbaey, and Ourania K. Xanthidou

Chapter 4 Graphical User Interface Programming with Python .. 107

Ourania K. Xanthidou, Dimitrios Xanthidis, and Sujni Paul

Chapter 5 Application Development with Python .. 161

Dimitrios Xanthidis, Christos Manolas, and Hanêne Ben-Abdallah

Chapter 6 Data Structures and Algorithms with Python ..207

Thaeer Kobbaey, Dimitrios Xanthidis, and Ghazala Bilquise

Chapter 7 Database Programming with Python ... 273

Dimitrios Xanthidis, Christos Manolas, and Tareq Alhousary

Chapter 8 Data Analytics and Data Visualization with Python ... 319

Dimitrios Xanthidis, Han- I Wang, and Christos Manolas

Chapter 9 Statistical Analysis with Python .. 373

Han- I Wang, Christos Manolas, and Dimitrios Xanthidis

Chapter 10 Machine Learning with Python ...409

Muath Alrammal, Dimitrios Xanthidis, and Munir Naveed

Chapter 11 Introduction to Neural Networks and Deep Learning ...449

Dimitrios Xanthidis, Muhammad Fahim, and Han-I Wang

vi Contents

Chapter 12 Virtual Reality Application Development with Python ...485

Christos Manolas, Ourania K. Xanthidou, and Dimitrios Xanthidis

Appendix: Case Studies Solutions .. 527

Index .. 617

vii

Editors

Dimitrios Xanthidis holds a PhD in Information Systems from University College London. For the
past 25 years, he has been teaching computer science subjects with a focus on programming and
software development, and data structures and databases in various tertiary education institutions.
Currently, he is working in Higher Colleges of Technology in Dubai, U.A.E. Dimitrios’ research
interests and work revolve around the topics of data science, machine learning/deep learning,
 virtual/augmented reality, and emerging technologies.

Christos Manolas holds a PhD in Stereoscopic 3D Media (University of York, UK), and degrees
and qualifications in Postproduction (MA), Music Technology (MSc), Music Performance, Software
Development, and Media Production. Christos’ career includes work as a software developer, musi-
cian, audio producer, and educator for over 20 years. His research interests include multimodal
(audiovisual) perception, spatial audio, interactive and immersive media (VR/AR/XR), and gener-
ally the impact and role of digital technologies on media production.

Ourania K. Xanthidou is a PhD researcher at Brunel University, London. She holds an MSc in
Computer Science from the University of Malaya, Kuala Lumpur, Malaysia. She has more than
15 years of involvement with the IT industry in the form of supporting IT departments of SMEs
and more than 5 years of teaching experience in tertiary education. Ourania’s research interests are
in the areas of eHealth, smart health, databases, web application development, and object-oriented
programming with a focus on application development for VR/AR/XR.

Han-I Wang holds a PhD in Health Economics from the University of York, UK. Han-I has been
working as a research fellow for over 10 years, starting at the Epidemiology & Cancer Statistics
Group (ECSG) before joining the Mental Health and Addiction Research Group (MHARG) at the
University of York, UK. Her area of expertise spans across cost analysis, health outcome research,
and decision modeling using complex patient-level data, and her main research interests are related
with the exploration of different decision-modeling techniques and their application to predict
healthcare expenditure, patients’ quality of life, and life expectancy.

https://taylorandfrancis.com

ix

Contributors
Tareq Alhousary
Business Information Systems
University of Salford
Manchester, United Kingdom
and
Department of Management Information

Systems
Dhofar University, College of Commerce and

Business Administration
Salalah, Oman

Muath Alrammal
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates
and
LACL (Laboratoire d’Algorithmique,

Complexité et Logique)
University Paris-Est (UPEC)
Créteil, France

Hanêne Ben-Abdallah
Computer and Information Science
University of Pennsylvania
Philadelphia, PA

Ameur Bensefia
Department of Genie Informatique
University of Rouen Normandy
Laboratoire d’Informatique de Traitement de

l’Information et des Systèmes (LITIS)
Rouen, France
and
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

Ghazala Bilquise
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

Muhammad Fahim
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

Thaeer Kobbaey
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

Christos Manolas
Department of Theatre, Film, Television and

Interactive Media
The University of York
York, United Kingdom
and
Department of Media Works
Ravensbourne University London
London, United Kingdom

Munir Naveed
Department of Computer Science
University of Huddersfield
Huddersfield, United Kingdom
and
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

Sujni Paul
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

Han-I Wang
Department of Health Sciences
The University of York
York, United Kingdom

x Contributors

Dimitrios Xanthidis
School of Library, Archives, and Information

Sciences
University College London
London, United Kingdom
and
Department of Computer and Information

Sciences
Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

Ourania K. Xanthidou
Department of Computer Science
Brunel University of London
Uxbridge, United Kingdom

1

1 Introduction

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

Christos Manolas
The University of York
Ravensbourne University London

Ourania K. Xanthidou
Brunel University of London

Han-I Wang
The University of York

1.1 INTRODUCTION

Undoubtedly, at the time of writing, Python is among the most popular computer programming
languages. Alongside other common languages like C# and Java, it belongs to the broader family of
C/C++-based languages, from which it naturally borrows a large number of packages and modules.
While Python is the youngest member in this family, it is widely adopted as the platform of choice
by academic and corporate institutions and organizations on a global scale.

As a C++-based language, Python follows the structured programming paradigm, and the asso-
ciated programming principles of sequence, selection, and repetition, as well as the concepts of
functions and arrays (as lists). A thorough presentation of such concepts is both beyond the scope
of this book and possibly unnecessary, as this was the subject of the seminal works of computer
science giants like Knuth, Stroustrup, and Aho (Aho Alfred et al., 1983; Knuth, 1997; Stroustrup,
2013). Readers interested in an in-depth understanding of these concepts on a theoretical basis are
encouraged to refer to such works that form the backbone of modern programming. As an Object-
Oriented Programming (OOP) platform, it provides all the facilities and tools to support the OOP
paradigm. Unlike its counterparts (i.e., C++, C#, and Java), Python does not provide a streamlined,
centralized IDE to support GUI programming, but it does offer a significant number of related mod-
ules that cover most, if not all, of the various GUI requirements one may encounter. It includes a
number of modules that allow for the implementation of database programming, web development,

CONTENTS

1.1 Introduction ..1
1.2 Audience ...2
1.3 Getting Started with Jupyter Notebook ..2
1.4 Creating Standalone, Executable Files ...4
1.5 Structure of this Book ...6
References ..6

DOI: 10.1201/9781003139010-1

https://doi.org/10.1201/9781003139010-1

2 Handbook of Computer Programming with Python

and mobile development projects, as well as platforms, modules, and methods that can be used for
machine and deep learning applications and even virtual and augmented reality project develop-
ment. Nevertheless, one of the main reasons that made Python such a popular option among com-
puter science professionals and academics is the wealth of modules and packages it offers for data
science tasks, including a large variety of libraries and tools specifically designed for data analyt-
ics, data visualization, and statistical analysis tasks.

Arguably, there is an abundance of online resources and tutorials and printed books that address
most of the aforementioned topics in great detail. On the technical side, such resources may seem
too complicated for someone who is currently studying the subject or approaches it without prior
programming knowledge and experience. In other cases, resources may be structured more like
reference books that may focus on particular topics without covering the introductory parts of
computing with Python that some readers may find useful. This book aims at covering this gap
by exploring how Python can be used to address various computational tasks of introductory to
intermediate difficulty level, while also providing a basic theoretical introduction to the underlying
concepts.

1.2 AUDIENCE

This book focuses on students of computer science, information systems, and information technol-
ogy, or anyone who is involved in computer programming, data analytics, HCI-GUI, and related
disciplines, at an entry-to-intermediate level. This book aims to provide a hands-on experience
based on the underlying topics, and assist students and faculty members in developing their algo-
rithmic thought process and programs for given computational problems. It can also be used by
professionals who possess the necessary theoretical and computational thinking background but are
presently making their transition to Python.

Considering the above, this book includes a wealth of examples and the associated Python
code and output, presented in a context that also discusses the underlying concepts and their
applications. It also provides key concepts in the form of quick access observations, so that the
reader can skim through the various topics. Observations can be used as a reference and naviga-
tion tool, or as reminders for points for discussion and in-class presentation in the case of using
this book as a teaching resource. Chapters are also accompanied by related exercises and case
studies that can be used in this context, and their solutions are provided in the Appendix at the
end of this book.

1.3 GETTING STARTED WITH JUPYTER NOTEBOOK

Ample information and support are available through online community channels and the
 official documentation and guides in terms of installing and running Python programming envi-
ronments. Nevertheless, this section provides a brief and straightforward guide on how to use
Anaconda Navigator and Jupyter Notebook in order to interpret and execute Python code, as
the majority of examples in this book have been implemented and tested using this particular
configuration.

Once Anaconda Navigator is launched, a number of different editors and environments are
 presented in the home page (Figure 1.1).

Launching the Jupyter Notebook (i.e., clicking the Launch button) initiates a web interface based
on the file directory of the local machine (Figure 1.1). To create a new Python program, the user
can select New from the top right corner and the Python 3 notebook menu option (Figure 1.2). This
action will launch a new Python file under Jupyter with a default name. This can be changed by
clicking on the file name.

3Introduction

Jupyter editor is organized in cells. The user can add each line of code to a separate cell or add
multiple lines to the same cell (Figure 1.3). The Run button in the main toolbar is used to execute
the code in the selected cell. If the code is free from errors, the interpreter moves to the next
cell; otherwise, an error message is displayed immediately after the cell where the error occurred
(Figure 1.4).

FIGURE 1.2 Create a new Python file in Jupyter Notebook.

FIGURE 1.1 Anaconda IDE homepage.

4 Handbook of Computer Programming with Python

1.4 CREATING STANDALONE, EXECUTABLE FILES

With the exception of Chapter 12: Virtual Reality Application Development with Python that dis-
cusses applications that demand specific and highly specialized development platforms, the Python
scripts and examples presented in this book were implemented and tested natively in the Anaconda
Jupyter environment. In this context, the process of developing and testing software solutions is a rather
straightforward and intuitive process. However, when it comes to the actual deployment of applica-
tions in more realistic scenarios, things become slightly more complex. This is mainly due to the fact
that the Python code one develops is usually dependent on a number of external libraries, packages,
and files of various formats. These are automatically provided in the background when working within
the Anaconda environment, but this is not necessarily the case when scripts are exported as stand-
alone files. The required libraries and resources may be located on numerous different places within
the file structures of the computer and/or network systems used during development.

In the context of application deployment, references to such external files and objects are gener-
ally referred to as application dependencies. Dependencies form a crucial and essential part of the
developed application, and the underlying files must be provided alongside the final deliverable
program (e.g., a standalone, executable application), as their absence will prevent the program from

FIGURE 1.3 Jupyter’s editor.

FIGURE 1.4 Run a Python program on Jupyter.

5Introduction

running correctly in machines lacking the necessary libraries and file structures. Fortunately, the
latter are automatically selected and packaged by special routines and processes during the deploy-
ment phase of the development cycle. This way, once the final deployment package is created, one
can run the application on other computers, irrespectively of whether these include the necessary
files and libraries or not.

Many SDKs and programming environments provide built-in routines (i.e., wizards) for the gen-
eration of the deployment packages and standalone executable files. In the case of Anaconda Jupyter,
although there is no automated, built-in wizard for such tasks, one can resort to a number of external
helper applications. A detailed, step-by-step tutorial of this process is beyond the scope of this book.
However, some basic, introductory examples are provided below, in order to assist readers with mini-
mal or no previous experience with command line environments in familiarizing with such tasks.

At the moment of writing, two of the most widely used third-party applications for generat-
ing standalone executable files from Python scripts are PyInstaller for Windows (PyInstaller
Development Team, 2019) and Py2app for Windows/Mac OS (Oussoren & Ippolito, 2010). Both
applications can handle dependencies and linking, and the decision on which one should be used
comes down to the operating system at hand and personal preference. In broad terms, the steps one
needs to follow when creating standalone executable files are summarized below:

• Step 1: Irrespectively of what program and procedure one choses to generate the stand-
alone application, the original script(s) must be firstly exported from Anaconda Jupyter,
as one or more Python.py file(s). This will be the file(s) used as input to the deployment
application.

• Step 2: Another essential task is to ensure that the application is installed on the system.
This can be achieved in a number of ways that are detailed in the numerous associated
online guides and tutorials (Apple Inc, 2021; Cortesi, 2021; Microsoft, 2021a, 2021b;
Oussoren & Ippolito, 2010; PyInstaller Development Team, 2019). For the purposes of this
example, one possibility is to install PyInstaller using a Command Prompt/PowerShell
window (Microsoft, 2021a, b) using the following command:
• pip install pyinstaller

• Step 3a (Windows): Once PyInstaller is installed, and given that the associated files and
the command line environment are set up appropriately, the generation of the standalone
file could be as simple as the following command:
• pyinstaller yourprogram.py

Alternatively, the user can refer to the PyInstaller official documentation, in order to exe-
cute more specific and complex commands with appropriate parameters and flags, as nec-
essary. For instance, using the same command with the --onefile flag would force the
generated executable file to be packaged in a single file rather than in a folder structure
containing multiple files:
• pyinstaller --onefile yourprogram.py

• Step 3b (Mac OS): The same basic idea also applies when using the Py2app (Oussoren &
Ippolito, 2010), although the procedure and commands may be slightly different. For
instance, when used on a Mac OS system, Py2app generates application bundles instead of
an executable file. As an example, users of Mac OS systems can use the Terminal window
(Apple Inc, 2021) to firstly install Py2app:
• pip install -U py2app

Py2app can be then used to create a setup file:
• py2applet --make-setup yourprogram.py

Finally, the setup file can be used to generate the standalone application bundle:
• python setup.py py2app

In both cases, the standalone application is usually placed at a specified directory structure
according to the settings and parameters used.

6 Handbook of Computer Programming with Python

In order to be able to successfully execute the example commands provided here, the reader may
have to execute a number of other necessary commands and set up tasks and navigate to the correct
 directories using the command line environment. Detailed information on how to use both PyInstaller
and Py2app can be found on the official documentation pages (Cortesi, 2021; Oussoren & Ippolito,
2010) and on the large variety of associated online resources. It must be noted that the third-party
applications mentioned here are just two of the tools one may choose to use for creating standalone
executable files based on Python scripts, and they are not the only way of dealing with such tasks.

The development and deployment processes vary depending on the characteristics of the devel-
oped application, the chosen development platform, and the targeted operating system(s). As most
chapters of this book utilize the Anaconda Jupyter environment, most of the examples and program-
ming scripts can be developed and tested within the development platform (or even other platforms)
without the need to generate standalone executable files. However, the information provided here
can be used as a general guide for the deployment procedure and the necessary conversions, should
the reader choose to create standalone versions of the various examples.

1.5 STRUCTURE OF THIS BOOK

This book is divided into three main parts, based on the knowledge field, character, and objective
of the presented topics.

The first part (Chapters 2–5) covers classic computer programming topics like introduction to
programming, Object-Oriented Programming, Graphical User Interface (GUI) programming, and
application development. It is meant to assist readers with little or no prior programming experi-
ence to start learning computer programming using Python and the Anaconda Jupyter platform.
The related concepts, techniques, and algorithms are discussed and explained with examples of the
necessary code and the expected output.

The second part (Chapters 6–9) covers concepts related to data structures and organization, the
algorithms used to manipulate these structures, database programming (SQL), data analysis and
visualization, and the basics of statistical analysis. These concepts cover most of the topics, algo-
rithms, and applications that make up what is collectively referred to as data science. The structure
of this part of this book provides a potential entry point for readers with no prior knowledge in data
science, as well as a reference point for those who would like to focus on the implementation of
specific data science tasks using Python.

The third part (Chapters 10–12) covers machine and deep learning concepts, while also provid-
ing a brief introduction to using Python in contexts not traditionally linked with the language like
virtual reality (VR) application development. This part introduces concepts that are potentially
more advanced from a contextual perspective, but not necessarily more challenging when it comes
to their implementation using Python. For instance, while a deeper understanding of the principles
and algorithms behind machine and deep learning may be out of scope for many of the readers of
this book, the development of applications using the various related modules and methods provided
by Python may be something that is of interest. Similarly, while video game and VR/AR application
development is certainly a topic that falls outside the scope of a Python textbook in the strict sense,
a basic understanding of how such applications could be developed using the Python language may
provide a useful insight to the most adventurous of the readers.

All the scripts and case studies presented in this book, as well as the related data and files neces-
sary for their execution, are included as supplementary material in Appendix A.

REFERENCES

Aho, A.V., Hopcroft, J.E., Ullman, J.D., Aho, A.V., Bracht, G.H., Hopkin, K.D., Stanley, J.C., Jean-Pierre, B.,
Samler, B.A., & Peter, B.A. (1983). Data Structures and Algorithms. USA: Addison-Wesley.

7Introduction

Apple Inc. (2021). Terminal User Guide. Support.Apple.Com. https://support.apple.com/en-gb/guide/terminal/
welcome/mac/.

Cortesi, D. (2021). PyInstaller Documentation. PyInstaller 4.5. https://pyinstaller.readthedocs.io/_/downloads/
en/stable/pdf/.

Knuth, D.E. (1997). The Art of Computer Programming (Vol. 3). Pearson Education.
Microsoft. (2021a). Installing Windows PowerShell. https://docs.microsoft.com/en-us/powershell/scripting/

windows-powershell/install/installing-windows-powershell?view=powershell–7.1.
Microsoft. (2021b). Windows Command Line. https://www.microsoft.com/en-gb/p/windows-command-line/9

nblggh4xtkq?activetab=pivot:overviewtab.
Oussoren, R., & Ippolito, B. (2010). py2app – Create Standalone Mac OS X Applications with Python. https://

py2app.readthedocs.io/en/latest/.
PyInstaller Development Team. (2019). PyInstaller Quickstart. https://www.pyinstaller.org/.
Stroustrup, B. (2013). The C++ Programming Language. India: Pearson Education.

https://support.apple.com
https://support.apple.com
https://pyinstaller.readthedocs.io
https://pyinstaller.readthedocs.io
https://docs.microsoft.com
https://docs.microsoft.com
https://www.microsoft.com
https://py2app.readthedocs.io
https://py2app.readthedocs.io
https://www.pyinstaller.org
https://www.microsoft.com
http://Apple.Com

https://taylorandfrancis.com

9

2 Introduction to Programming
with Python

Ameur Bensefia
University of Rouen Normandy
Higher Colleges of Technology

Muath Alrammal
Higher Colleges of Technology
University Paris-Est (UPEC)

Ourania K. Xanthidou
Brunel University of London

CONTENTS

2.1 Introduction .. 10
2.2 Algorithm vs. Program ... 11

2.2.1 Algorithm.. 11
2.2.2 Program .. 12

2.3 Lexical Structure .. 12
2.3.1 Case Sensitivity and Whitespace .. 13
2.3.2 Comments ... 13
2.3.3 Keywords .. 13

2.4 Punctuations and Variables .. 14
2.4.1 Punctuations ... 14
2.4.2 Variables ... 14

2.5 Data Types .. 15
2.5.1 Primitive Data Types ... 15
2.5.2 Non-Primitive Data Types .. 16
2.5.3 Examples of Variables and Data Types Using Python Code 16

2.6 Statements, Expressions, and Operators ... 21
2.6.1 Statements and Expressions .. 21
2.6.2 Operators .. 21

2.6.2.1 Arithmetic Operators ...22
2.6.2.2 Comparison Operators ...23
2.6.2.3 Logical Operators ..24
2.6.2.4 Assignment Operators ...25
2.6.2.5 Bitwise Operators ..26
2.6.2.6 Operators Precedence ..28

2.7 Sequence: Input and Output Statements ... 29
2.8 Selection Structure ...30

2.8.1 The if Structure ..30
2.8.2 The if…else Structure ... 32
2.8.3 The if…elif…else Structure ... 33
2.8.4 Switch Case Structures ...34

DOI: 10.1201/9781003139010-2

https://doi.org/10.1201/9781003139010-2

10 Handbook of Computer Programming with Python

2.1 INTRODUCTION

It is hard to find a programming language that does not follow the norms of how a computer pro-
gram should look like, as the underlying structures have been established for over 50 years. These
norms, widely known as the basic programming principles, are broadly accepted by the academic,
scientific and professional communities, something also reflected in the approaches of legendary
figures in the field like (Dijkstra et al., 1976; Knuth, 1997; Stroustrup, 2013).

The three basic programming principles refer to the concepts of sequence, selection, and repeti-
tion or iteration. Sequence is the concept of executing instructions of computer programs from top
to bottom, in a sequential form. Selection refers to the concept of deciding among different paths of
execution that can be followed based on the evaluation of certain conditions. Repetition is the idea
of repeating a particular block of instructions as long as a condition is evaluated to True (i.e., non-
zero). The concept of computer programming in its most basic form can be defined as the integration
of these programming principles with variables that store and manipulate data through programs
and methods or functions that facilitate the fundamental idea of divide and conquer.

The aim of this chapter is not to propose any innovative ideas of how to change the above logic
and structures. Nevertheless, although it is unlikely that these concepts can be changed or redefined
in a major way, they can be fine-tuned and put into the context of new and developing programming
languages. From this perspective, this chapter can be viewed as an effort to present how these fun-
damental principles of computer programming are applied to Python, one of the most popular and
intuitive modern programming languages, in a comprehensive and structured way. To accomplish
this, a number of related basic concepts are presented and discussed in detail in the various sections
of this chapter:

 1. Algorithms and Programs, Lexical Structures.
 2. Variables & Data Types, Primitive and Non-primitive.

2.8.5 Conditional Expressions ... 35
2.8.6 Nested if Statements ... 35

2.9 Iteration Statements ...36
2.9.1 The while Loop ..36
2.9.2 The for Loop ...40
2.9.3 The Nested for Loop... 42
2.9.4 The break and continue Statement .. 45
2.9.5 Using Loops with the Turtle Library .. 47

2.10 Functions ...50
2.10.1 Function Definition ...50
2.10.2 No Arguments, No Return ..50
2.10.3 With Arguments, No Return .. 51
2.10.4 No Arguments, With Return .. 51
2.10.5 With Arguments, With Return ... 52
2.10.6 Function Parameter Passing.. 52

2.10.6.1 Call/Pass by Value ... 52
2.10.6.2 Call/Pass by Reference .. 53

2.11 Case Study ..54
2.12 Exercises ... 55

2.12.1 Sequence and Selection .. 55
2.12.2 Iterations – while Loops...56
2.12.3 Iterations – for Loops ...56
2.12.4 Methods .. 57

References .. 58

11Introduction to Programming with Python

 3. Statements, Expressions, Operators & Punctuations.
 4. Sequence: Input, Basic Operations, and Output Statements.
 5. Selection Structures: if, if…else, if…elif…else, Conditional Expressions.
 6. Iteration structures: for Loops, while Loops, Nested Loops.
 7. Functions.

It should be noted that this chapter introduces the Turtle library, which is used to demonstrate some
of the uses of iteration structures.

2.2 ALGORITHM VS. PROGRAM

The demand for developing a program always originates from a problem that must be addressed by
means of computer-based automation. However, an intermediate essential step exists between the
problem and the actual program, namely the algorithm.

2.2.1 Algorithm

The term algorithm was firstly proposed by mathematician Mohamed Ibn Musa Al-Khwarizmi dur-
ing the ninth century. It was defined as a set of ordered and finite mathematical operations designed
to solve a specific problem. Nowadays, this term is being adopted in various fields and disciplines,
most notably in Computer Science and Engineering, in which it is defined as a set of ordered opera-
tions executed by a machine (computer).

The first step in program development is where a
problem is defined. At this point, a solution is formulated
as a clear and unambiguous set of steps. This solution is
the algorithm. The steps described in the algorithm are
later translated into a program using a specific a pro-
gramming language (Figure 2.1).

The benefit of starting off with the formulation of an algorithm rather than directly implement-
ing the actual program is that it allows the programmer to focus on how to solve the problem logi-
cally, free from any constraints or considerations related to the specifics of any given programming
language. Indeed, algorithms are written in a format incorporating natural human language called
pseudo-code, and follow particular formal rules. Ultimately, such approaches ensure a certain level
of clarity and detail that reduces or eliminates ambiguity without having to deal with the technicali-
ties of the implementation.

The examples below provide two cases of algorithms demonstrating the clarity and simplicity
that should characterize the solution to the problem at hand before it comes to translating this solu-
tion into an actual program. Both algorithms are in the form of pseudo-code and, thus, independent
of any particular programming languages used for the implementation of the solutions:

Observation 2.1 – Algorithm: A set
of ordered operations that can be
executed by a machine (computer
system).

FIGURE 2.1 Phases of program development.

12 Handbook of Computer Programming with Python

Algorithm 1: Calculate the Area of a Rectangle

 Start
 Read the length of the rectangle
 Read the width of the rectangle
 Assign width*length to Area
 Display Area
 End

Algorithm 2: Draw a Square of 50 Pixels Length

 Start
 Draw a line of 50 pixels length
 Turn the pen right by 90 degrees
 Draw a line of 50 pixels length
 Turn the pen right by 90 degrees
 Draw a line of 50 pixels length
 Turn the pen right by 90 degrees
 Draw a line of 50 pixels length
 Turn the pen right by 90 degrees
 Display Area
 End

2.2.2 ProgrAm

Once the algorithm is formed, the next step is to write
the program in a specific programming language. Each
programming language has its own rules and conven-
tions. However, they all have a common core structure
consisting of inputs, processing, and outputs. They are
all implemented using some form of code, the format
and structure of which could vary depending on the
scope and purpose of each given language and program:

 1. Input: Statements dedicated to collecting data
from external input sources (e.g., input from the
user through the keyboard and mouse), opening and reading files, or accepting input from
other programs. In most instances, input is managed at the beginning of the program exe-
cution, but this may vary between different languages and programs.

 2. Processing: Processing lies at the core of the program and represents statements respon-
sible for the manipulation of the information received at input. The length of this section
can vary greatly, from a few simple statements to thousands of lines of code organized in
numerous files and packages.

 3. Output: Output statements are used in order for the outcome of the processing to be com-
municated outside the program. This can take many forms and includes, but is not limited
to, sending visual information to a display unit, exporting to a file, or exporting to another
program. In most cases, this is the last step of the sequence in a program.

2.3 LEXICAL STRUCTURE

Lexical structure refers to the basic conventions and restrictions in terms of the format and syntax
of the text used in the programming environment, in this case Python. This is an important aspect
of any programming language, as incorrect format or syntax may lead to compiling errors and code
that is difficult to read and debug.

Observation 2.2 – Input, Processing,
Output: The basic structure of all pro-
grams irrespectively of the program-
ming language used. Input represents
any statement written to collect data
from an external source. Output rep-
resents any statement that sends the
outcome of the processing to a display
unit, file, or another program.

13Introduction to Programming with Python

2.3.1 Case sensitivity and WhitespaCe

Python is a case-sensitive programming language, which means that it distinguishes between key-
words and variables written in capital and lower-case letters. Thus, if and IF are considered to be
different words, with the first being recognized as a Python keyword and the second processed as a
variable (see: Variables 2.4.2).

2.3.2 Comments

A program is a set of instructions written in a specific
language that can be translated and processed by a
computer. In real life scenarios, programs can become
quite sizable, with hundreds or even thousands of lines
of code required. This can make it quite difficult for
the programmer to remember the meaning, functional-
ity, and purpose of each line of code. As such, good
programming practice involves the use of comments in
the program itself. Comments function as useful and
intuitive reminders and descriptions to the program-
mer or anyone who may have direct access to the source code of the program. The comment is
expressed in a natural human language and is ignored by the interpreter during runtime. Python
allows the use of two main types of comments:

• Single Line Comment: Starts with the # symbol and continues until the end of the current
line:

This statement displays the sentence Hello World
print ("Hello World")

• Multiple Lines Comment: Starts with the """ symbols and ends when the same symbol
combination occurs again:

""" The statement below displays
the sentence Hello World """
print("Hello World")

2.3.3 KeyWords

Python reserves a number of keywords that are used
by the interpreter to trigger specific actions when the
code is compiled. As these keywords are reserved, the
programmer is not allowed to use them as variable,
function, method, or class names. A list of these key-
words is provided in Table 2.1.

Observation 2.3 – Comments: Natural
language statements ignored by the
interpreter, used to explain the pur-
pose of the different parts of the code.
Start a single line comment with #, or
start and end a multiple line com-
ment with """. Note that Python is
case-sensitive.

Observation 2.4 – Keywords: Reserved
words that cannot be used as names
for variables, functions, methods, or
classes.

TABLE 2.1
Python Keywords
and continue except global lambda pass while

as def False if None raise with

assert del finally import nonlocal return yield

break elif for in not True

class else from is or try

14 Handbook of Computer Programming with Python

2.4 PUNCTUATIONS AND VARIABLES

Punctuations and variables are special types of symbols and text that dictate specific functional-
ity. As such, when these symbols or text are encountered, the interpreter performs specific, pre-
determined tasks instead of treating them as common text.

2.4.1 PunCtuAtions

Python programs may contain punctuation characters that are combined with other symbols to
denote specific functionality. These characters are divided into two main categories: separators and
operators (Table 2.2).

2.4.2 vAriAbles

A variable describes a memory location used by a
program to store data. Indeed, from a hardware stand-
point, it is expressed as a binary or hexadecimal num-
ber that represents the memory location and another
number that represents the actual data stored in it.

Since working directly with hexadecimal numbers is arguably impractical and counter-produc-
tive from a programming perspective, a variable is expressed as a combination of an identifier that
replaces the actual memory location, a data type identifying the kind of data that can be stored in
it, and a value that represents the actual data stored. Each programming language has its own rules
when it comes to naming variables. In Python, a variable name has to conform to the following
rules:

• It should start with a letter of the Latin alphabet ('a', 'b', …, 'z', 'A', 'B', …, 'Z').
• It may contain numbers.
• It may contain (or start with) the special character " _ ".
• It cannot contain any other character.
• It cannot be a Python keyword.

In line with the above, examples of allowed variable names include the following:

 Salary, Name, Child1, Email_address, firstName, _ID

Similarly, examples of invalid variable names include the following:

 print, 1Child, Email#address

Observation 2.5 – Variable: Designated
memory location used by the program
to store values.

TABLE 2.2
Separators and Operators in Python
Separators: () {} [] : " ,

Operators: & | < <= >= > ==
− + * ** / // %

<> != = += −+ *= /=
%= //= **= &= |= ^= >>= <<=

15Introduction to Programming with Python

2.5 DATA TYPES

As stated previously, the purpose of a variable is to hold
a value of a specified type. This value can be a num-
ber (e.g., decimal, real, octal, hexadecimal), text (i.e.,
a string of characters), a single character, or a Boolean
value (i.e., one out of two possible values: True or
False). More complex structures that consist of any of
the aforementioned types may be also used. In general, Python supports two main different data
types of variables in this context: primitive and non-primitive (Figure 2.2).

2.5.1 Primitive dAtA tyPes

There are four primitive data types that are used when the variable is to hold pure, simple values
of data:

• String or Text: In Python, a string variable is declared with the str keyword. It can hold
any set of characters, including letters, numbers, or other symbols, enclosed in double
quotation marks:
• "This is a text."
• "Do you accept the proposal (Yes/No)?."

• Numeric: Since there are different types of numbers, Python provides variables suitable
for different numerical formats and representations:
• int represents integer number (e.g., +24509129)
• float represents real numbers (e.g., −123.0968)
• complex represents complex numbers (e.g., +45−33.6j)
• 0o represents octal numbers (e.g., 0o7652001)
• 0x represents hexadecimal numbers (e.g., 0x34EF1C3)

• Boolean: A Boolean variable is used to represent only two possible values: True or
False.

Observation 2.6 – Data Types: The
type of the value stored in a variable
could be primitive (i.e., integer, string,
float, Boolean) or non-primitive (i.e.,
a collection of primitive data types).

FIGURE 2.2 Python’s data types. (See Jaiswal, 2017.)

16 Handbook of Computer Programming with Python

2.5.2 non-Primitive dAtA tyPes

Non-primitive data types are complex types consisting of two or more other data types. Such struc-
tures are convenient when one needs to manipulate collections of values of different types. A list of
non-primitive variables is provided below:

• Sequence: This type is suitable to use when different values have to be stored and grouped
together. It can be further divided into the following categories:
• List: This category represents a collection of any primitive data types where the ele-

ments of the list can be accessible through an index and can be modified (mutable).
• Tuple: This category represents a collection of any primitive data types where

the elements of the list can be accessible through an index but cannot be modified
(immutable).

• Set: This category represents a collection of distinct, unique objects. It is useful when
creating lists that hold strictly unique values in the dataset, and are especially relevant
when this dataset is large. The data is unordered and mutable.

• Range: This category represents a series of numbers starting at 0 and ending at a
specified number.

Examples:

• Dictionary or Mapping: In cases where it is necessary to associate a pair of data (com-
monly known as key and value), dictionary or mapping types can be used. These types are
labeled as dict. The declaration begins with curly brackets, followed by the set of pairs
separated by commas. Each pair is represented with the key and the value separated by a
colon. To access any value, the key name should be provided between brackets:

{"name": "Steve", "age":20} # This is a mapping variable

More information on this topic can be found in Chapter 6.

2.5.3 exAmPles of vAriAbles And dAtA tyPes using Python Code

This section includes a number of practical examples that demonstrate typical uses and structures
of variables and data types in Python.

The first example is related to the string/text data type, one of the fundamental and most com-
monly used data types in computer programming. In this rather simple example, the reader can
find a number of coding conventions and commands relating to this data type. For instance, the
string values that are being passed to the firstName variable are enclosed in single quotes.

["car", "bike", "truck"] # This is a list of strings

[200, 6423, −709, 1205] # This is a list of integers

("car", "bike", "truck") # This is a tuple of strings

(20.1, +23, −1.9, 12.5) # This is a tuple of floats

{'O', 'E', 'K', 'C', 'I'} # This is a set of unique strings
range(5) # This will generate the numbers 0 1 2 3 4
range(3) # This will generate the numbers 0 1 2

17Introduction to Programming with Python

This is also the case when a string is used directly as an argument of the print() function, used
to display the information of its arguments on screen. It must be also noted that good program-
ming practice dictates that variables start with lower-case letters, (e.g., firstName instead of
FirstName).

This example also highlights that, in addition to simple arguments like strings in quotation marks,
functions like print() may accept multiple arguments of different types or formats, such as other
variables, or calls to functions (e.g., .format(firstName)). The format() function takes a float
value as an argument and loads it in the brackets {} of the preceding string (e.g., 'firstName is
{}'.format(firstName)). Note the use of the type() function that returns the data type of the
value stored in the provided variable (i.e., firstName).

In the Jupyter Notebook editor, if the output is text, it is provided immediately after the current
code cell when the program is executed.

Last but not least, the reader should note that comments are included before every distinct piece
of code that performs a particular task. While this is not a strict coding requirement, it is an impor-
tant aspect of good programming practice.

Output 2.5.3.a:

firstName is Steve
<class 'str'>

Variables of the integer data type are non-decimal numbers (e.g., numberOfStudents = 20):

Output 2.5.3.b:

Number of students is 20
<class 'int'>

Variables of the float data type are floating-point numbers that require a decimal value. Note that
the inclusion of the decimal value is mandatory even if it is zero:

1 # Declare a variable named firstName and assign its value to Steve
2 firstName = 'Steve'
3
4 # Print the value of variable firstName
5 print('firstName is {}'.format(firstName))
6
7 # Print the data type of variable firstName
8 print(type(firstName))

1 # Declare a variable named numberOfStudents and assign its value to 20
2 numberOfStudents = 20
3
4 # Print the value of variable numberOfStudents
5 print('Number of students is {}'.format(numberOfStudents))
6
7 # Print the data type of variable numberOfStudents
8 print(type(numberOfStudents))

18 Handbook of Computer Programming with Python

Output 2.5.3.c:

Salary is 20000.0
<class 'float'>

Variables of the complex data type are in the form of an expression containing real and imaginary
numbers, such as +x−y.j (e.g., complexNumber = +45−33.6j):

Output 2.5.3.d:

complexNumber is (45-33.6j)
<class 'complex'>

Values of the octal data type start with 0o (e.g., octalNumber = 0o7652001). In this particular
example, the reader should also note the use of comments stretching across multiple lines. As men-
tioned, comments of this type start and end with three double quotation marks ("""):

Output 2.5.3.e:

octalNumber is 2053121
<class 'int'>

1 # Declare variable complexNumber; assing its value to +45-33.6j
2 complexNumber = +45−33.6J
3
4 # Print the value of variable complexNumber
5 print('complexNumber is {}'.format(complexNumber))
6
7 # Print the data type of variable complexNumber
8 print(type(complexNumber))

1 # Declare a variable named octalNumber and assign its value to 0o7652001
2 octalNumber = 0o7652001
3
4 # Print the value of variable octalNumber
5 print('octalNumber is {}'.format(octalNumber))
6
7 """Print the data type of variable octalNumber: notice that the type
8 is octal integer; this is why a class int text appears in the result"""
9 print(type(octalNumber))

1 # Declare a variable named salary and assign its value to 20000.0
2 salary = 20000.0
3
4 # Print the value of variable salary
5 print('Salary is {}'.format(salary))
6
7 # Print the data type of variable salary
8 print(type(salary))

19Introduction to Programming with Python

Boolean variables can only take two different values: True or False. In the following code, vari-
able married is True, but the only other possible value this variable could take would be False:

Output 2.5.3.f:

married is True
<class 'bool'>

Mapping variables are always enclosed in curly brackets (e.g., mappingVariable = {'name':
'Steve', 'age': 20}):

Output 2.5.3.g:

mappingVariable is {'name': 'Steve', 'age': 20}
<class 'dict'>

List variables are enclosed in square brackets (e.g., listVariable = [200, 6423, −709,
1205]):

Output 2.5.3.h:

listVariable is [200, 6423, -709, 1205]
<class 'list'>

1 # Declare a variable named married and assign its value to True
2 married = True
3
4 # Print the value of variable married
5 print('married is {}'.format(married))
6
7 # Print the data type of variable married
8 print(type(married))

1 # Declare a variable named mappingVariable and assign its
2 # value to {'name':'Steve', 'age':20}
3 mappingVariable = {'name':'Steve', 'age':20}
4
5 # Print the value of variable mappingVariable
6 print('mappingVariable is {}'.format(mappingVariable))
7
8 # Print the data type of variable mappingVariable
9 print(type(mappingVariable))

1 # Declare a variable named listVariable and assign
2 # its value to [200, 6423, −709, 1205]
3 listVariable = [200, 6423, −709, 1205]
4
5 # Print the value of variable listVariable
6 print('listVariable is {}'.format(listVariable))
7
8 # Print the data type of variable listVariable
9 print(type(listVariable))

20 Handbook of Computer Programming with Python

Tuple variables are enclosed in parentheses (e.g., tupleVariable = ('car', 'bike', 'truck')):

Output 2.5.3.i:

tupleVariable is ('car', 'bike', 'truck')
<class 'tuple'>

Range variables hold integers ranging from 0 up to a specified number (e.g., rangeVari-
able = range(5)). Note that the specified number is not inclusive, so rangeVariable in this
example will hold values 0, 1, 2, 3, and 4:

Output 2.5.3.j:

rangeVariable is range(0, 5)
<class 'range'>

Set variables hold sets of unique values of primitive data types. In the following code, command
set('cookie') allocates unique values 'i', 'c', 'o', 'e', 'k' to variable setVariable:

1 # Declare a variable named tupleVariable and assign
2 # its value to ('car', 'bike', 'truck')
3 tupleVariable = ('car', 'bike', 'truck')
4
5 # Print the value of variable tupleVariable
6 print('tupleVariable is {}'.format(tupleVariable))
7
8 # Print the data type of variable tupleVariable
9 print(type(tupleVariable))

1 # Declare a variable named rangeVariable and assign its value to a
2 # range of integers from 0 to 4 (i.e., 0 1 2 3 4)
3 rangeVariable = range(5)
4
5 # Print the value of variable rangeVariable
6 print('rangeVariable is {}'.format(rangeVariable))
7
8 # Print the data type of variable rangeVariable
9 print(type(rangeVariable))

1 # Declare a variable named setVariable and assign its value to
2 # the set of unique letter in the word 'cookie'
3 setVariable = set('cookie')
4
5 # Print the value of variable setVariable
6 print('setVariable is {}'.format(setVariable))
7
8 # Print the data type of variable setVariable
9 print(type(setVariable))

21Introduction to Programming with Python

Output 2.5.3.k:

setVariable is {'i', 'e', 'c', 'k', 'o'}
<class 'set'>

2.6 STATEMENTS, EXPRESSIONS, AND OPERATORS

Statements and expressions refer to specific syntactical structures that provide instructions to the
interpreter in order to execute specific tasks. They can be simple structures executing a simple
task, like printing a message on screen, or more complicated ones that perform a number of tasks
and generate multiple threads of information and results.
Operators refer to special symbols that perform particu-
lar, pre-determined tasks, and can be used as building
blocks for building logical statements and expressions.
This section introduces basic concepts related to these
fundamental programming elements.

2.6.1 stAtements And exPressions

A statement is a unit/line of code (i.e., an instruction)
that the Python interpreter can execute. So far, two kinds
of statements have been presented in this chapter, assign-
ment and print:

Output 2.6.1:

Name is: Steve

A script usually contains a sequence of statements. When there are more than one statements, the
results appear one at a time, as each statement is executed.

An expression is a combination of values, variables, operators, and calls to functions resulting in
a clear and unambiguous value upon execution.

2.6.2 oPerAtors

Operators are tokens/symbols that represent com-
putations, such as addition, multiplication and divi-
sion. The values an operator acts upon are called
operands.

Let us consider the simple expression x = 3*2.
The reader should note the following:

• x is a variable.
• 3 and 2 are the operands.
• * is the multiplication operator.
• 3*2 is considered an expression since it results in a specific value.

Observation 2.7 – Statement: A line
of code that can be executed by the
Python interpreter.

Observation 2.8 – Expression: Any
combination of values, variables,
operators, and/or calls to functions
that result in an unambiguous value.

1 # Assignment statement produces no output
2 name = 'Steve'
3
4 # Print function
5 print('Name is:', name)

Observation 2.9 – Operators/Operands:
Operators are symbols representing com-
putations like additions, multiplications,
divisions. Operands are the values that
the operators act upon.

22 Handbook of Computer Programming with Python

Python supports many operators for combining data into
expressions. These can be divided into arithmetic, com-
parison, logical, assignment, and bitwise:

2.6.2.1 Arithmetic Operators
These operators can be used with integers, floating-point
numbers, or even characters (i.e., they can be used with
any primitive type other than Boolean). Table 2.3 lists
the arithmetic operators supported by Python, and the example that follows presents a script that
applies a number of these operators. It is worth noting that the arithmetic expressions are not sepa-
rate statements in the script. Instead, they appear as arguments in the print() function. Both
options are correct, although it is advisable to follow a syntax similar to the script in order to write
shorter, and thus more efficient, scripts.

Observation 2.10 – Efficient Script
Writing: Include expressions that dis-
play results inside the print function
to avoid multiple instructions. Use a
single statement to declare and assign
values to multiple variables.

1 a = 5
2 b = 4
3
4 # Addition expression
5 print('a+b=', a + b)
6
7 # Subtraction expression
8 print('a−b=', a − b)
9
10 # Multiplication expression
11 print('a*b=', a * b)
12
13 # Division expression
14 print('a/b=', a / b)
15
16 # Exponent expression
17 print('a raised to the power of b =', a ** b)

TABLE 2.3
Python Arithmetic Operators

Operator Example Name Description

+ (unary) +a Unary positive a
+ (binary) a + b Addition Sum of a and b. The + operator adds two numbers. It

can be also used to concatenate strings. If either operand
is a string, the other is converted to a string too.

− (unary) −a Unary negation It converts a positive value to its negative equivalent and
vice versa.

− (binary) a − b Subtraction b subtracted from a.
* a * b Multiplication Product of a and b.
/ a / b Division The division of a by b. The result is always of type

float.
% a % b Modulo The remainder when a is divided by b.
// a // b Floor division (also

called integer division)
The division of a by b, rounded to the next smallest
integer.

** a ** b Exponentiation a raised to the power of b.

23Introduction to Programming with Python

Output 2.6.2.a:

a+b= 9
a-b= 1
a*b= 20
a/b= 1.25
a raised to the power of b = 625
a negated is = -5
The remainder of the integer division between a and b is: 1
Floor division of a and b is: 1

2.6.2.2 Comparison Operators
These operators compare values for equality or inequality, (i.e., the relation between the two oper-
ands, be it numbers, characters, or strings). They yield a Boolean value as a result. The comparison
operators are typically used with some type of conditional statement (see: 2.8 Selection Structures)
or within an iteration structure (see: 2.9 Iteration Structures), determining the branching or looping
directions to follow. Table 2.4 lists the comparison operators supported by Python, and the code that
follows provides some relevant example cases using a Python script.

An interesting point about this particular script is that the variables are all declared and assigned
with values in one statement separated by commas. The script also demonstrates the use of a mix of
strings and arithmetic expressions as arguments of the print function, separated by commas:

18
19 # Unary negation expression
20 print('a negated is =', − a)
21
22 # Modulus expression
23 print('The remainder of the integer division between a and b is:', a % b)
24
25 # Floor division
26 print('Floor division of a and b is:', a // b)

TABLE 2.4
Python Comparison Operators

Operator Example Name Description

== a == b Equal to True if the value of a is equal to that of b; False otherwise
!= a != b Not equal to True if a is not equal to b; False otherwise
< a < b Less than True if a is less than b; False otherwise
<= a <= b Less than or equal to True if a is less than or equal to b; False otherwise
> a > b Greater than True if a is greater than b; False otherwise
>= a >= b Greater than or equal to True if a is greater than or equal to b; False otherwise

1 a, b, c, d, e = 5, 4, 5, 'Dubai', 'Abu Dhabi'
2
3 # Test for equality and print directly the result of the expression
4 print(a == b, 'and', a == c)

24 Handbook of Computer Programming with Python

Output 2.6.2.b:

False and True
True and False
False and False
True and True
False and True

2.6.2.3 Logical Operators
As mentioned, comparison operators compare their operands and produce a Boolean output. This
type of output is commonly used in branching and looping statements. Boolean operators are used
to combine multiple comparison expressions into a more complex, singular expression. The Boolean
operators require their operands to be Boolean values. Table 2.5 lists the logical operators supported
by Python and the following script demonstrates some of their indicative applications:

5
6 # Test for inequality and print directly the result of the expression
7 print(a != b, 'and', a != c)
8
9 # Test for 'less than' and for 'less than' or 'equal to' and
10 # print directly the result of the expression
11 print(a < b, 'and', a <= b)
12
13 # Test for 'greater than' and for 'greater than or equal to' and
14 # print directly the result of the expression
15 print(a > b, 'and', a >= b)
16
17 # Test for equality and 'less than' between strings
18 print(d == e, 'and', d > e)

1 # Apply the 'not' logical operator Output 2.6.2.c:

False
True
True
False
True
False
True
True

2 x = 5
3 print(not (x < 10))
4 print(not (x < 3))
5
6 # Apply the 'or' logical operator
7 x, y = 5, 7
8 print((x > 3) or (y < 6))
9 print((x < 3) or (y < 6))
10
11 # Apply the 'and' logical operator
12 x, y = 5, 7
13 print((x > 3) and (y > 6))
14 print((x < 3) and (y > 6))
15

16 # Combine 'not', and 'and or' operators

17 x, y = 5, 7
18 print(not (x < 3) and (y > 6))
19 print((x < 3) or (y > 6) and (x < 10))

25Introduction to Programming with Python

2.6.2.4 Assignment Operators
These quite significant operators allow the manipulation of variables by saving or updating their
values. Table 2.6 and the code that follows summarize the use of the different assignment operators
in Python:

TABLE 2.5
Python Logical Operators

Operator Example Description

not not a True if a is False; False if a is True
or a or b True if either a or b is True; False otherwise
and a and b True if both a and b are True; False otherwise

1 # Assign the result of the expression on the right side of
2 # the assignment operator to the variable on the left side
3 a, b = 12, 10
4 c = a + b
5 print('The value of c is:', c)
6
7 # Use +=, −+, *=, /= in assignments
8 a, c = 2, 12
9 c += a
10 print('The value of c is:', c)
11
12 a, c = 2, 12
13 c −= a
14 print('The value of c is:', c)
15
16 a, c = 2, 12
17 c *= a
18 print('The value of c is:', c)
19
20 a, c = 2, 12
21 c /= a
22 print('The value of c is:', c)

TABLE 2.6
Python Assignment Operators

Operator Example Description

= c = a + b Assigns the result of the expression on the right side of the assignment
operator to the variable on the left side.

+=, −= c += a,
c −= b

Equivalent to c = c + a or c = c − a

*=, /= c *= a, c /= b Equivalent to c = c * a or c = c / b
//= c //= a Equivalent to c = c // a
%= c %= a Equivalent to c = c % a
**= c **= a Equivalent to c = c ** a

26 Handbook of Computer Programming with Python

Output 2.6.2.d:

The value of c is: 22
The value of c is: 14
The value of c is: 10
The value of c is: 24
The value of c is: 6.0
The value of c is: 2
The value of c is: 10000

2.6.2.5 Bitwise Operators
These are considered to be low-level operators. They treat operands as sequences of binary digits
and operate on them bit by bit. Table 2.7 details the bitwise operators supported by Python and
the example that follows demonstrates their application within a script. The reader should note
that when assigning values to variables in the binary system, the values must be preceded by 0b,
followed by the value in the binary form. Likewise, when variable values must be displayed in the
binary form, the form {:04b} must be used in order to display the binary value with four digits.

23
24 # Use the %= and **= in assignments
25 a, c = 4, 10
26 c %= a
27 print('The value of c is:', c)
28
29 a, c = 4, 10
30 c **= a
31 print('The value of c is:', c)

1 # Bitwise 'and'
2 a, b = 0b1100, 0b1010
3 print('0b{:04b}'.format(a & b))
4
5 # Bitwise 'and'
6 a, b, c, = 12, 10, 0 # 12 = 0b1100, 10 = 0b1010
7 C = a & b # 8 = 0b1000
8 print('Value of c is', c)
9

TABLE 2.7
Python Bitwise Operators

Operator Example Name Description

&. | a & b, a | b bitwise AND, OR Each bit position in the result is the logical AND (or OR) of
the bits in the corresponding position of the operands; 1 if
both are 1, otherwise 0 for AND; 1 if either is 1, otherwise 0.

~ ~a bitwise negation Each bit position in the result is the logical negation of the bit
in the corresponding position of the operand; 1 if 0, 0 if 1.

^ a ^ b bitwise XOR
(exclusive OR)

Each bit position in the result is the logical XOR of the bits in
the corresponding position of the operands; 1 if the bits in the
operands are different, 0 if they are the same.

>>, << a >> n, a << n Shift right or left
n places

Each bit is shifted right or left by n places.

27Introduction to Programming with Python

Output 2.6.2.e:

0bl000
Value of c is 8
0blll0
Value of c is 14
0b-1101
Value of b is -13
0b0ll0
Value of c is 6
0b00ll
Value of c is 3
0bll0000

10 # Bitwise 'or'
11 a, b = 0b1100, 0b1010
12 print('0b{:04b}'.format(a | b))
13
14 # Bitwise 'or'
15 a, b, c, = 12, 10, 0 # 10 = 0b1100, 12 = 0b1010
16 c = a | b # 14 = 0b1110
17 print('Value of c is', c)
18
19 # Bitwise negation
20 a = 0b1100
21 b = ~a
22 print('0b{:04b}'.format(b))
23
24 # Bitwise negation
25 a, b = 12, ~(a) # 12 = 0b1100, −13 = 0b−1101
26 print('Value of b is', b)
27
28 # Bitwise XOR (exclusive OR)
29 a, b = 0b1100, 0b1010
30 print('0b{:04b}'.format(a ^ b))
31
32 # Bitwise XOR (exclusive OR)
33 a, b, c = 12, 10, a ^ b # 12 = 0b1100, 10 = 0b1010, 6 = 0b0110
34 print ('Value of c is', c)
35
36 # Shift right 'n' places
37 a = 0b1100
38 print('0b{:04b}'.format(a >> 2))
39
40 # Shift right 'n' places
41 a, b, = 12, a >> 2 # 3 = 0b0011
42 print('Value of c is', b)
43
44 # Shift left 'n' places
45 a = 0b1100
46 print('0b{:04b}'.format(a << 2))

28 Handbook of Computer Programming with Python

2.6.2.6 Operators Precedence
Python, like other programming languages, uses the
standard algebraic procedure to evaluate expressions.
All operators are assigned a precedence:

• Operators with the highest precedence are applied
first.

• Next, the results of their expression are used to
determine those with the next highest precedence.

• In case of operators with equal precedence their application starts from left to right.
• This pattern continues until the full expression is calculated.

Table 2.8 lists the operator precedence for Python, from lowest to highest. The code following this
provides some examples of their application. It is essential for the reader to keep in mind the order of
precedence of the various operators, since failure to do so will most certainly lead to inconsistencies
in the way the complex expressions are calculated by the system:

Observation 2.11 – Order of
Precedence: The order of precedence
of operator execution determines
the result of complex expressions.
Inconsistencies can lead to incorrect
scripts.

TABLE 2.8
Python Precedence Operators

Precedence Operator Description

Lowest or Boolean OR

and Boolean AND
not Boolean NOT
==, != , <, <=, >, >=,
is, is not

Comparisons, identity

| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<< , >> Bit shifts
+ , − Addition, subtraction
*, /, //, % Multiplication, division, floor division, modulo
+x, −x, ~x Unary positive, unary negation, bitwise negation

Highest ** Exponentiation

1 # The order of execution is exponentiation first,
2 # then multiplication: 2 * 2 = 4, then, 4 * 5 = 20
3 a = 5 * 2 ** 2
4 print('The value of a is:', a)
5
6 # The order of execution is multiplication first,
7 # then addition: 2 * 3 = 6, then 2 + 6 = 8
8 a = 2 + 2 * 3
9 print('The value of a is:', a)
10
11 # Parentheses have the highest precedence,
12 # then everything else: (2 + 2) = 4, then, 4 * 3 = 12
13 a = (2 + 2) * 3
14 print('The value of a is:', a)
15

29Introduction to Programming with Python

Output 2.6.2.f:

The value of a is: 20
The value of a is: 8
The value of a is: 12
The value of a is: 12

2.7 SEQUENCE: INPUT AND OUTPUT STATEMENTS

Similarly to most other contemporary programming languages, Python is organized around
 functions, reusable programming routines that can be attached to an object of a class or used as
standalone pieces of code that perform specific tasks. Python has a quite extensive array of func-
tions, both predefined ones that are inherently built in the core of the language itself, or as part of
the various classes used by it.

An example of a Python function that has already
appeared in several of the exercises presented in this
chapter is the print() function. As the name sug-
gests, this is a function used to display output on screen.
To invoke it one simply has to call it with an argument
(e.g., print(<argument>)).

Another frequently used Python function is input(),
used to get input from the keyboard. This function
prompts the user to provide input in the form of text. The
function stops the program execution until the text input
has been provided and resumes only when the user
presses the designated key (i.e., Enter or Return). The following example demonstrates the use of
both print() and input() in a single Python script:

Output 2.7.a & 2.7.b:

Insert your full name

Observation 2.12 – Input/Output:
Use the print() function to display
output on screen. Output is passed
to the function as an argument. Use
the input() function to receive
input from the keyboard. Ensure that
input() is assigned to a variable,
as Python may treat it as memory
garbage.

1 # Call the 'input' function to accept the user's input from
2 # the keyboard and assign the provided data to a variable
3 fullName = input('Insert your full name\n')
4
5 # Print the contents of the variable fullName on screen
6 print('The name you entered is', fullName)

16 # Addition and subtraction have the same precedence,
17 # hence, they are evaluated from left to right.
18 # This is also the case between arithmetic operators
19 # with equal precedence: 2 + 2 = 4, then 4 − 3 = 1
20 print('The value of a is:', a)

30 Handbook of Computer Programming with Python

Insert your full name
Rania
The name you entered is Rania

It is important to point out the following in regard to this particular script:

• Any value received as input must be assigned to a suitable variable. If input data are unal-
located, there is a serious risk that Python will treat them as memory garbage.

• Escape character \n should be used to force the display of the next output of the program
to the next line.

• The input() function treats all input streams as text regardless of whether numeric val-
ues are provided. If an input stream is meant to be treated as a numerical value, further
processing is required.

2.8 SELECTION STRUCTURE

One of the three principles of computer programming is to make a decision of the next block of
statements to execute, based on the result of the evaluation of a certain condition. Such a condition,
and the statements to execute based on it, is referred to as a selection. There are three main types of
selection statements: if, if…else, and if…elif…else.

2.8.1 the if struCture

The if structure is used to determine whether a cer-
tain statement or block of statements will be executed
or not, based on a simple or complex condition. If the
condition is True (or non-zero), then the block of state-
ments is executed, otherwise it is not executed and the
program flow continues from the next statement outside
the if structure. This means that the evaluation of the condition must yield a Boolean or arithmetic
(i.e., zero/non-zero) value. The syntax of the basic if statement is provided below:

 if (condition):
 Block of statements to execute if condition is True
 Statements to execute outside the if statement

Similarly, Figure 2.3 illustrates a simple if statement in the form of a flowchart.
Most high-level programming languages, such as C++ or Java, use brackets {} to mark a block

of statements. Since Python does not have any type of designated markers for such purpose, it uses
indentation to identify these blocks. Under this scheme, the block starts with the indentation and
ends at the first non-indented line of code. Consider the following script:

Observation 2.13 – Condition: A
True/False or zero/non-zero value
expression used to determine the flow
of program execution.

1 # Simple 'if' statement
2 a = int(input('Enter the first integer to continue: '))
3 b = int(input('Enter the second integer to continue: '))
4 if (a > b):
5 print("The first integer is larger than the second")

31Introduction to Programming with Python

Output 2.8.1:

Enter the first integer to continue: 5
Enter the second integer to continue: 3
The first integer is larger than the second

In this example, the user is prompted to enter two inte-
ger values assigned to two different, corresponding vari-
ables. Next, the variables are compared based on their
values. This is done with a simple if statement that,
when True, displays a message on screen. Both the
input() and print() functions are used in the script.
The reader should note that, since the input() func-
tion treats every input as text, it is necessary to convert
this value into a suitable primitive type for the required
calculations or processing to take place. This is the idea
behind casting. In this particular example, the input
value is cast into an integer using the int() function.
Also, the reader should note that it is possible to use one
function call inside another, in this case the input()
function call inside the int() cast call.

Observation 2.14 – if Statement:
Used to determine whether a state-
ment or block of statements will be
executed or not, based on a simple or
complex condition.

Observation 2.15 – Indentation:
Use indentation to mark a block of
statements.

Observation 2.16 – Casting: Convert
input values to appropriate primitive
data type, as required for calculations
or processing.

FIGURE 2.3 Flowchart of the if statement.

32 Handbook of Computer Programming with Python

2.8.2 the if…else struCture

It is possible to write the if statement in a way that it
executes a block of statements when the condition is
True and another when it is not. This is the concept
behind the if…else statement:

 if (condition):
 Block of statements to execute if

condition is True
 else:
 Block of Statements to execute if

condition is False

Figure 2.4 illustrates an if…else structure as a flow-
chart and the following code provides an example of
its application. This particular script prompts the user
to enter two integers (note that input is treated as text
by default), converts the input to actual integers, com-
pares the two values, and displays one of the two out-
puts, depending on the result of the comparison. In this
example, there is only one statement to execute, as the
condition of the if statement will be either True or
False. However, the user can add multiple instruc-
tions within the block of statements, while it is also
possible to have another if statement nested inside the
block. Such cases are discussed at later sections of this
chapter.

Observation 2.17 – Selection:

• Use the if statement for the
execution of one block of
statements if the condition is
True.

• Use the if…else statement
for the execution of either of
two possible blocks of state-
ments depending on a par-
ticular condition.

• Use the if…elif…else
statement for the execution
of multiple possible blocks of
statements depending on a
number of conditions.

• Use dictionary/mapping struc-
tures in place of the switch
structure of C++, Java, etc.

• Use conditional expression in
place of the conditional opera-
tor used in C++, Java, etc.

• Use nested if structures in
more complex cases.

FIGURE 2.4 Flowchart of the if…else statement.

33Introduction to Programming with Python

Output 2.8.2:

Enter the first integer to continue: 13
Enter the second integer to continue: 20
Second integer holds a value greater than the first

2.8.3 the if…elif…else struCture

Python allows the execution of more than two blocks of statements in a single if structure. If one
of the conditions controlling the if structure is True, the block associated with that structure is
executed. The remaining blocks are just ignored and the program execution continues at the first
line after the if structure. If none of the conditions are True, then the else statement is executed.
The syntax of the if…elif…else structure is provided below, and its flowchart can be found in
Figure 2.5:

1 # The 'if…else…' statement
2 a = int(input('Enter the first integer to continue: '))
3 b = int(input('Enter the second integer to continue: '))
4 if (a > b):
5 print('First integer holds a value greater than the second')
6 else:
7 print('Second integer holds a value greater than the first')

FIGURE 2.5 Flowchart of the if…elif…else statement.

34 Handbook of Computer Programming with Python

 if (condition1):
 Block to execute if condition1 is True
 elif (condition2):
 Block to execute if condition2 is True
 …
 else:
 Block to execute if none of the conditions are True

The following script demonstrates the application of an if…elif…else structure. The script
prompts the user to enter an integer between 0 and 100. Depending on the input value, a particular
block of code is executed based on the conditions of the various if…elif…else structures:

Output 2.8.3:

Enter a grade for the course between 0 and 100: 92
Excellent performance. Congratulations.

2.8.4 sWitCh CAse struCtures

A switch case structure is used as an alternative to long if structures that compare a variable
against several values. Unlike other programming languages, Python does not have a dedicated
switch case statement. To get around the lack of such statements, programmers may use an if…
elif…else structure, as described in the previous section. Alternatively, dictionary/mapping can
be used as shown in the script below:

1 # The 'if…elif…else…' statement
2 a = int(input('Enter a grade between 0 and 100: '))
3
4 if (a < 60):
5 print('I am sorry but you failed the course.\n'\
6 'Please try harder next semester')
7 elif (a < 70):
8 print('Task completed! You passed the course')
9 elif (a < 80):
10 print('Well done! You did well in the course')
11 elif (a < 90):
12 print('Very good job. Keep up the good work')
13 elif (a < 100):
14 print('Excellent performance. Congratulations.')
15 else:
16 print('I am sorry but an integer between 0 and 100 was expected')

1 # Dictionary mapping used to check against a range of options
2 numberToTextSwitcher = {
3 1: 'One',
4 2: 'Two',
5 3: 'Three'
6 }
7
8 number = input('Insert 1, 2, or 3: ')

35Introduction to Programming with Python

Output 2.8.4:

Insert 1, 2, or 3: 3
The string value of 3 is Three

The reader should note some interesting points in relation to this script:

• The dictionary/mapping variable type, in this example numberToTextSwitcher, can
be used to substitute the functionality of the missing switch statement.

• When a statement is long and difficult to include in a single line, the programmer can use the \
symbol to inform the Python interpreter that the statement continues in the next line.

• Apply the get() function of the dictionary/mapping variable with the key (i.e., the first
part of the pair) to get access to the value (i.e., the second part of the pair).

2.8.5 ConditionAl exPressions

Another expression that can be used in Python instead of the missing conditional operator of C++
or Java, is what is often called the conditional expression. The syntax is the following:

 Statement 1 if condition else Statement 2

In this case, the first part of the expression that is executed is the if condition. If this is True, the
first statement is executed; otherwise, the second statement is executed. The following code pro-
vides an example of the application of the conditional expression:

Output 2.8.5:

Enter the first integer (a): 3
Enter the second integer (b): 6
b is greater than a

2.8.6 nested if stAtements

As already implied, it is possible to have an if structure nested inside another. In fact, such a prac-
tice could go to as much depth as the programmer wishes, although it is not advisable to go deeper
than three levels since it will be difficult to conceptually control the resulting structure. A possible
syntax for the nested if structure is presented below:

 if (condition 1):
 if (condition 2):
 Block 1 executes

1 # Use of 'conditional expression' instead of the 'if…else' statement
2 a = int(input('Enter the first integer (a): '))
3 b = int(input('Enter the second integer (b): '))
4
5 print('a is greater than b') if (a > b) else print('b is greater than a')

9 intNumber = int(number)
10 print('The string value of', intNumber, \
11 'is', numberToTextSwitcher.get(intNumber))

36 Handbook of Computer Programming with Python

 else:
 Block 2 executes
 else:
 Block 3 to execute if
 condition 1 is False

Block 1 will be executed if condition 2 is True. Condition 1 is not considered at this point, as it is
True by default. Note that if this was not the case, the program flow would never reach the nested
if(<condition 2>) statement. Also, the first else statement is an alternative to the
if(<condition 2>) part of the structure and not to the if(<condition 1>) part. The latter
is taken care of by the second else statement. The code that follows is an example of a nested if,
based on a simple variation of a previously used script:

Output 2.8.6:

Enter your grade between 0 and 100: 50
Sorry, you failed the course

2.9 ITERATION STATEMENTS

Application developers and programmers always look
to optimize their programs using appropriate, efficient
statements and minimizing the lines of code in order
to create an easy to maintain program. A common way
to reduce the lines of code is the concept of iteration.
Indeed, iteration, alongside sequence (i.e., sequential
execution of statements) and selection (see previous sec-
tions) constitute what is known in computer program-
ming as the three basic principles of programming. The iteration concept applies to cases where a
block of statements has to be repeated several times. There are three possible iteration alternatives
offered in Python: the while loop, the for loop, and the nested loops.

2.9.1 the while looP

The while loop is suitable for cases where the number of iterations is unknown and depends on
certain conditions. These conditions need to be specified explicitly, similarly to the various forms

1 # A script with a basic nested 'if' structure
2 inputGrade = int(input('Enter your grade between 0 and 100: '))
3
4 if (inputGrade >= 80):
5 if (inputGrade >= 90):
6 print('Excellent performance')
7 else:
8 print('Very good. Keep up the good work')
9 else:
10 if (inputGrade >= 60):
11 print('You did well')
12 else:
13 print('Sorry, you failed the course')

Observation 2.18 – Loop: A block of
statements that is executed repeatedly
while a certain condition is True.
There are three possible forms of
loops: while loops, for loops, and
nested loops.

37Introduction to Programming with Python

of selection statements. The block of statements inside
the loop is repeated as long as the specified conditions
are satisfied. Once the conditions become False the
Python interpreter exits the loop and proceeds with the
rest of the program. The block of statements within the
loop structure needs to be indented. The syntax of the
basic while loop and its flowchart (Figure 2.6) are pro-
vided below:

while loop with one condition
while (condition):
 Block of statements
…

while loop with two conditions;
op can be any logical operator
while (condition) op (condition2):
 Block of statements
…

If the condition before the beginning of the loop is not met, the block of statements will not be exe-
cuted and/or repeated. It is also possible that the conditions inside the while loop are not updated,
in which case the block will be executed indefinitely resulting in an undesirable infinite loop. In
order to avoid the latter, it is essential for the conditions to be updated inside the while loop.

The following script provides a basic example of the while loop. The program starts by prompt-
ing the user to decide whether the message should be displayed or not. This is done by entering
either ‘Y’/‘y’ or ‘N’/‘n’. Any other input is considered as not ‘Y’/‘y’. In this arrangement, the flow
goes into the block that belongs to the while loop only when the user enters ‘Y’ or ‘y’. Note that
the same prompt for input is given to the user inside the loop. This is because it is necessary to
change this value in order to determine the while condition. As mentioned, if this value is not
modified inside the loop (i.e., if the statement showMessage = input ('Do you want to

Observation 2.19 – while Loop:
Repeatedly executes a block of state-
ments while a certain condition is
True. If the condition is never True,
the block is never executed. If the
condition never changes to False,
the block is executed indefinitely,
causing an infinite loop.

FIGURE 2.6 Flowchart of the while loop.

38 Handbook of Computer Programming with Python

show the message again (Y/N)?)' is missing) the program execution would lead into an
infinite loop. The program will continue to run as long as the user enters ‘Y’ or ‘y’:

Output 2.9.1.a:

Do you want to show the message again (Y/N)? Y
Hello world
Do you want to show the message again (Y/N)? Y
Hello world
Do you want to show the message again (Y/N)? N

Another example of a while loop can be seen in the script below, which introduces the use of the
end = '' clause in the print() function. This results in the program stopping and waiting for new
output at the end of the same print without proceeding to the next line:

Output 2.9.1.b:

Enter the starting integer: 5
Enter the ending integer: 10
5 6 7 8 9 10

The next script is a classic example of adding together two integers, the values of which are entered
by the user at runtime. The reader should note how the loop control variable (i.e., currentInt-
eger) is being modified inside the block of statements. Also, it should be noted how the two
print() functions are used and connected through the end = '' clause, in order to display the
results in a single line:

1 # Use of 'while' loop to show the message 'Hello world'
2 # as long as the user enters 'Y' or 'y'
3 showMessage = input('Do you want to show the message again (Y/N)? ')
4
5 while (showMessage == 'Y' or showMessage == 'y'):
6 print('Hello world')
7 showMessage = input('Do you want to show the message again (Y/N)? ')

1 # Use the 'while' loop to display all integers
2 # between two values provided by the user
3
4 numberToShow = int(input('Enter the starting integer: '))
5 endInteger = int(input('Enter the ending integer: '))
6
7 while (numberToShow <= endInteger):
8 print(numberToShow, ' ', end = '')
9 numberToShow += 1

1 # Use the 'while' loop to add all integers between two values
2 # provided by the user
3
4 currentInteger = int(input('Enter the starting integer:'))
5 endingInteger = int(input('Enter the ending integer:'))

39Introduction to Programming with Python

Output 2.9.1.c:

Enter the starting integer:1
Enter the ending integer:5
currentInteger value is 1 and sumOfValues currently is 1
currentInteger value is 2 and sumOfValues currently is 3
currentInteger value is 3 and sumOfValues currently is 6
currentInteger value is 4 and sumOfValues currently is 10
currentInteger value is 5 and sumOfValues currently is 15

In addition to the above, it is also possible to have an if structure of any type nested inside the
while loop. The following code provides an example of a script that repeatedly accepts integers
from the keyboard, and displays the integers plus a calculation of the even and odd numbers present.
What is noteworthy in this script is the use of an if…else structure inside the while loop:

1 """ Use of the 'while' loop to count the number of even and
2 odd numbers from an input stream provided by the user.
3 Stop the loop and display the results when the user enters 0 """
4
5 # Declare the counters for even and odd numbers
6 countEven, countOdd = 0, 0
7
8 # Declare a variable to temporarily store current input value
9 userInput = int(input('Enter an integer, \
10 or 0 to display the results and exit: '))
11
12 # The 'while' loop that repeatedly executes the main block of code
13 while (userInput != 0):
14 if (userInput % 2 == 0):
15 countEven += 1
16 else:
17 countOdd += 1
18
19 # Repeatedly accept new input from the user until 0 is entered
20 userInput = int(input('Enter an integer, or 0 to display \
21 the results and exit: '))
22
23 # Display the results of the program
24 print('You entered', countEven,'even and', countOdd,'odd numbers')

6 sumOfValues = 0
7
8 while (currentInteger <= endingInteger):
9 print('currentInteger value is', currentInteger, end = '')
10 sumOfValues += currentInteger
11 currentInteger += 1
12 print(' and sumOfValues currently is', sumOfValues)

40 Handbook of Computer Programming with Python

Output 2.9.1.d:

Enter an integer, or 0 to display the results and exit: 2
Enter an integer, or 0 to display the results and exit: 3
Enter an integer, or 0 to display the results and exit: 4
Enter an integer, or 0 to display the results and exit: 5
Enter an integer, or 0 to display the results and exit: 6
Enter an integer, or 0 to display the results and exit: 0
You entered 3 even and 2 odd numbers

Programmers can also use a logically modified version of the while loop in place of the do…until
(or repeat…until) loop, another classic programming language loop structure that is not directly
available in Python. When using the while loop to replace the do…until functionality, the pro-
grammer should make sure that the while condition is True during the first iteration, and that its
value is repeatedly updated at the end of the block of statements inside the loop.

2.9.2 the for looP

The for loop structure allows for the execution of a block
of statements for a predefined number of iterations. The
loop controls the number of iterations using a counter
(i.e., a variable declared locally in the loop), within a spe-
cific range defined by two numbers: start and end. The
range can be also specified by just one end number, in
which case the start will be considered to be 0 by default.
Additionally, it is possible to include an incremental or
decremental step inside the for header. Each repeated
statement is placed within the block of statements, inside the for loop. The syntax for each of the
three types of the for loop is provided below, while Figure 2.7 showcases the associated flowchart:

Number of iterations is end-start
for counter in range (start, end):
 Block of statements

Number of iterations is end and starts from 0
for counter in range (end):
 Block of statements

""" Number of iterations is (end-start)/step; counter increases/
decreases by step """
for counter in range (start, end, step):
 Block of statements

The next script showcases a script used to display the list of names stored in a tuple. The block of
statements inside the for loop is executed four times with the i index starting at 0 and increasing
up to 3 (inclusive):

Observation 2.20 – for Loop:
Repeatedly executes a block of state-
ments for a predefined number of
times. The end of the loop must be
defined, the start can be omitted,
and the step can be specified in the
header.

1 # Declare a variable as a 'tuple' of immutable string elements
2 myFriends = ('John', 'Ali', 'Steven', 'Catherine')
3
4 # Use a 'for' loop to read the elements in the 'tuple', first to last
5 for i in range (0, 4):
6 print('Happy New Year:', myFriends[i])
7 print('Done.')

41Introduction to Programming with Python

Output 2.9.2.a:

Happy New Year: John
Happy New Year: Ali
Happy New Year: Steven
Happy New Year: Catherine
Done.

A similar example is provided in the following script, where instead of a tuple variable a list is used.
The user is prompted to enter four names into the empty list, which are subsequently displayed on
screen:

FIGURE 2.7 Flowchart of the for loop.

1 # Declare a 'list' variable that will accept names provided by the user
2 nameList = []
3
4 # Declare a 'dictionary' mapping numbers 1–4
5 # to text values 'first', 'second', 'third', 'fourth', respectively
6 numberToText = {
7 1: 'first',
8 2: 'second',
9 3: 'third',
10 4: 'fourth'
11 }

42 Handbook of Computer Programming with Python

Output 2.9.2.b:

Enter the first name to insert in the dictionary: Hellen
Enter the second name to insert in the dictionary: Steven
Enter the third name to insert in the dictionary: Ahmed
Enter the fourth name to insert in the dictionary: Catherine
Hellen
Steven
Ahmed
Catherine
Done.

The reader should note the following:

• A list is declared using square brackets instead of the parentheses used for tuples. By leav-
ing the square brackets empty, an empty list is created.

• Use a dictionary mapping to convert numeric values into the corresponding text (e.g.,
numberToText).

• Use the str() function to convert a numeric value into a string.
• Use the concatenation operator (+) to combine strings.
• Use the insert() function to populate the list. The first argument is the index of the new

element and the second is the actual value.
• If the start number is omitted in the for loop header, zero is assumed as a default value.

2.9.3 the nested for looP

As with if statements, it is possible to embed a for
loop (i.e., inner loop) into another (i.e., outer loop) to
create a nested for loop. This is particularly convenient
when dealing with non-primitive data types of two or
more dimensions, or with more complex problems. The
syntax is provided below, and the associated flowchart is
presented in Figure 2.8:

Observation 2.21 – Nested Loops:
Use nested loops of any type to
address complex situations like math-
ematical problems, drawing shapes,
searching or shorting, or dealing
with multi-dimensional non-primitive
data types.

12
13 # Use 'for' loop to accept 4 names; store them in dictionary
14 for i in range (0, 4):
15 message = ('Enter the ' + str(numberToText.get(i + 1)) + \
16 ' name to insert in the dictionary: ')
17 newName = input(message)
18 nameList.insert(i, newName)
19
20 # Use a 'for' loop to display the newly created name list
21 for i in range (4):
22 print(nameList[i])
23
24 print('Done.')

43Introduction to Programming with Python

 for counter1 in range (start1, end1):
 Block of statements 1
 ...
 for counter2 in range (start2, end2):
 Block of statements 2
 ...
 for counter3 in range (start3, end3):
 Block of statements 3
 ...

Nested loops are commonly used for the implementation of programs that deal with various types
of non-primitive data types, such as lists, tuples, or sets. The following script provides an example
of a nested for loop structure, in which a two-dimensional list variable (i.e., languages) is dis-
played on screen. This particular variable stores six different elements (i.e., names of programming
languages) in two different dimensions (i.e., three elements on each dimension). The reader should
note how the counters of the nested loops are used as indices for the displayed items of the list:

FIGURE 2.8 Flowchart of the nested for loop.

1 # Define a two-dimensional list with 3 programming languages
2 # as its elements (per dimension)
3 languages=[['Python','Java','C++'],['PhP','HTML','Java Script']]
4
5 # A nested 'for' loop prints the 2 different dimensions of the list
6 for i in range(2):
7 print(i, 'Set of programming languages:')
8 for j in range(3):
9 print('Happy new year:', languages[i][j])
10 print('All languages displayed')

44 Handbook of Computer Programming with Python

Output 2.9.3.a:

0 Set of programming languages:
Happy new year: Python
Happy new year: Java
Happy new year: c++
1 Set of programming languages:
Happy new year: PhP
Happy new year: HTML
Happy new year: Java Script
All languages displayed

Another common use of nested loops relates to the implementation of various sorting or searching
algorithms (see: Chapter 6). The following script provides another example of a nested for loop
structure that implements a classic sorting algorithm referred to as the Bubble Sort. This script does
the following:

• It declares two lists, one to accept the original list of integers and the other to store the
sorted list.

• It runs a for loop that accepts a number of integers as input from the user and transfers
them to the first list.

• It runs a second for loop that reads from the original list and transfers to into the second
one (sorted list).

• It runs a nested for loop that utilizes the Bubble Sort algorithm.
• Finally, it runs two more for loops: one that displays the original list of integers and one

that displays the sorted one.

It should be noted that the code presented in this script is not an example of the most efficient or
complete sorting algorithm, but a more simplistic implementation of it, as the main purpose was to
help the reader gain a better understanding of the use of nested loops:

1 originalList, sortedList = [], []
2
3 # The first 'for' loop accepts a number
4 # of integers and populate the 'originalList'
5 sizeOfList = int(input('Total number of integers in the list? '))
6 for i in range (sizeOfList):
7 tempValue = int(input('Add an integer to the list: '))
8 originalList.insert(i, tempValue)
9
10 # The second 'for' loop copies the 'originalList' into the
11 # 'sortedListed' in preparation for sorting the latter
12 for i in range (sizeOfList):
13 sortedList.insert(i, originalList[i])
14
15 # Use a nested 'for' loop to sort the 'originalList' into the
16 # 'sortedList' using the Bubble Sort algorithm
17 for i in range (sizeOfList − 1):
18 for j in range (sizeOfList):
19 if (sortedList[i] > sortedList [i + 1]):

45Introduction to Programming with Python

Output 2.9.3.b:

Total number of integers in the list? 3
Add an integer to the list: 2
Add an integer to the list: 1
Add an integer to the list: 4
The original list is: 2 1 4
The sorted list is: 1 2 4

2.9.4 the break And continue stAtement

Another common use of nested loops is related to the
implementation of algorithms for the solution of math-
ematical problems. The following script presents an
implementation of a program calculating the prime
numbers. In this particular case, the user is prompted to
enter the last integer of the prime numbers list the pro-
gram should calculate. Next, a for loop nested inside a
while loop determines whether this integer is a prime
number or not.

The script introduces the break statement, which
forces the interpreter to skip all the remaining statements and iterations, and exit the current itera-
tion. As shown in the script, break is generally combined with a selection statement:

Observation 2.22 – break and con-
tinue: Use the break statement
combined with a selection statement
in a loop, to permanently interrupt
loop execution. Use the continue
statement combined with a selection
statement in a loop to skip the current
iteration.

20 temp = sortedList[i]
21 sortedList[i] = sortedList[i + 1]
22 sortedList[i + 1] = temp
23
24 # Use two 'for' loops to successively display the two lists
25 print('The original list is: ', end = '')
26 for i in range (sizeOfList):
27 print(originalList[i], '', end = '')
28
29 print('\nThe sorted list is: ', end = '')
30 for i in range (sizeOfList):
31 print(sortedList[i], '', end = '')

1 # Use a nested 'for' loop inside a 'while' loop to find primary numbers.
2 # Variable 'endInteger' stores the last integer of the sequence
3 endInteger = int(input('Enter the last integer \
4 of the sequence of primary numbers: '))
5
6 # Print default prime integers 1 and 2. This is subsequently followed
7 # by the rest of the sequence on the same line
8 print('1 2 ', end = '')
9
10 # The 'counter' variable is used to evaluate
11 # whether a number within the range is prime
12 counter, flag = 3, 'true'
13

46 Handbook of Computer Programming with Python

Output 2.9.4.a:

Enter the last integer of the sequence of primary numbers: 100
1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

The following example provides a more direct demonstration of how the break statement is used.
The code instructs the interpreter to read from a non-primitive data type list, but breaks just after
reading its first element:

Output 2.9.4.b:

Happy new year: Ahmed
Done

Another statement that is commonly used in loops, and particularly in nested loops, is the continue
statement. It is used when there is a need to skip one or more particular iterations, and continue with
the rest of the program. It is worth noting that this statement is frequently combined with selec-
tion statements. The main difference between the continue and the break statements is that
the former stops the active iteration without completely interrupting the loop. The following script
demonstrates the use of the continue statement:

1 # Declare variable 'myFriends' and populate with a list of names
2 myFriends = ('Ahmed', 'John', 'Emma', 'Hind')
3
4 # Use a 'for' loop to read the elements of the list
5 for i in range (4):
6 # Use an 'if' statement to stop reading the list once
7 # the second element (i.e., index 1) is reached
8 if (i == 1):
9 break
10 print('Happy new year:', myFriends[i])
11
12 print('Done')

14 # 'while' loop controls the counter variable used for evaluation
15 while (counter <= endInteger):
16
17 # 'for': check current 'counter' value against the integers
18 # in the list up to itself to determine if it is a prime number
19 for i in range (2, counter):
20 if ((counter % i) == 0):
21 flag = 'false'
22 break
23 if (flag == 'true'):
24 print(counter, '', end = '')
25 flag = 'true'
26 counter += 1

47Introduction to Programming with Python

Output 2.9.4.c:

Happy new year: Ahmed
Happy new year: Emma
Happy new year: Rania
Done.

2.9.5 using looPs With the turtle librAry

In addition to a multitude of other uses, loops are also convenient when using code for drawing
shapes. Among the most important programming tools for such tasks is the Turtle library. The fol-
lowing script provides an example of how to draw a basic shape of four squares (100 pixels in
length). The reader should note the use of the forward(length) function of the t object (turtle
class), which draws a straight line of 100 pixels. Next, the script uses the left(degrees) function
on the t object to turn the drawing pen 90 degrees left and repeat the 100-pixel drawing. At the end
of the script it is necessary to use the mainloop() function on the t object to ensure that the draw-
ing process is completed promptly. The output of this example shows the four squares drawn as a
result of the for loop:

1 # Import the 'turtle' library
2 import turtle as t
3
4 # Use a 'for' loop to draw 4 squares with sides of 100 pixels
5 for i in range (4):
6 t.forward(100)
7 t.left(90)
8 t.forward(100)
9 t.left(90)
10 t.forward(100)
11 t.left(90)
12 t.forward(100)
13
14 # Use the mainloop() function of the 'turtle' class
15 t.mainloop()

1 # Declare variable 'myFriends' and populate with a list of names
2 myFriends = ('Ahmed', 'John', 'Emma', 'Rania')
3
4 # Use a 'for' loop to read the elements of the list
5 for i in range (4):
6 # Use an 'if' statement to skip the second element
7 # (i.e., the element with index 1)
8 if (i == 1):
9 continue
10 print('Happy new year:', myFriends[i])
11
12 print('Done.')

48 Handbook of Computer Programming with Python

Output 2.9.5.a:

Nested loops can be also used with Turtle to draw more complex shapes. The following script dem-
onstrates this by building on the previous example and forcing the drawing process to be repeated
three more times with the use of a nested loop. In each repetition, the rectangular shape is rotated
by 30 degrees to the left:

1 # Import the 'turtle' library
2 import turtle as t
3
4 # Nested 'for' to draw a complex of squares with sides of 100 pixels
5 for i in range (3):
6 for j in range (4):
7 t.forward(100)
8 t.left(90)
9 t.forward(100)
10 t.left(90)
11 t.forward(100)
12 t.left(90)
13 t.forward(100)
14 t.left(30)
15
16 # Use the mainloop() function of the 'turtle' class
17 t.mainloop()

49Introduction to Programming with Python

Output 2.9.5.b:

The Turtle library comes with a rich set of functions that support a large variety of drawing
tasks. Table 2.9 provides a sample based on this set, including some of the most important of its
functions.

TABLE 2.9
Methods Available in the Turtle Class

Method or
Command

Required
Parameters Description

forward Length in pixels Moves the Turtle pen forward by the specified amount
backward Length in pixels Moves the Turtle pen backward by the specified amount
right Angle in degrees Turns the Turtle pen a number of degrees clockwise
left Angle in degrees Turns the Turtle pen a number of degrees counter-clockwise
penup None Picks up the Turtle pen
pendown None Puts down the Turtle pen to start drawing
pensize Thickness of pen The thickness of the Turtle pen
color, pencolor Color name Changes the color of the Turtle pen
fillcolor Color name Changes the fill color for the drawing
begin_fill,
end_fill

None Defines the start and the end of the application of the fillcolor() method

setposition None Set the current position
goto x, y coordinates Moves the Turtle pen to coordinate position x, y
shape Shape name Can accept values ‘arrow’, ‘classic’, ‘turtle’, or ‘circle’.
speed Time delay Dictates the speed of the Turtle pen (i.e., slow (0) to fast (10+)).
circle Radius, arc, steps Draws a circle counter-clockwise with a pre-set radius. If arc is used, it will

draw an arc from 0 up to a given number in degrees. If steps is used, it will
draw the shape in pieces resembling a polygon.

50 Handbook of Computer Programming with Python

2.10 FUNCTIONS

A function is a block of statements that performs a spe-
cific task. It allows the programmer to reuse parts of
their code, promoting the concept of modularity. The
main idea behind this approach is to divide a large block
of code into smaller, and thus more manageable, sub-
blocks. There are two types of functions in Python:

• Built-in: The programmer can use these functions
in the program without defining them. Several functions of this type were used in the pre-
vious sections (e.g., print() and input()).

• User-defined: Python allows programmers to create their own functions. The following
section focuses on this particular function type.

2.10.1 funCtion definition

The main rules for defining functions in Python are the
following:

• The function block begins with the keyword def,
followed by the function name and parentheses.
Note that, as Python is case-sensitive, the pro-
grammer must use def instead of Def.

• Similar to variable names, function names can
include letters or numbers, but no spaces or spe-
cial characters, and cannot begin with a number.

• Optional input parameters, called arguments,
should be placed within the parentheses. It is
also possible to define the parameters inside the
parentheses.

• The block of statements within a function starts with a colon and is indented.
• A function that returns data must include the keyword return in its block of code.

The syntax for a function declaration is as follows:

 def functionName (var1, var2, … etc.):
 Statements

Depending on the presence or absence of arguments, and on the presence of input and/or return
values, functions can be classified under four possible types. These types are presented in detail in
the following section.

2.10.2 no Arguments, no return

This is a type in which the function does not accept variables as arguments, and does not return any
data. This is demonstrated in the following script that merely prints a predefined string on screen.
The reader should note that there are no arguments inside the parameters and no return statement
inside the block of statements. The structure simply invokes the print() function displaying the
desired message. Invoking such a function inside the main program is a rather simple and straight-
forward task:

Observation 2.23 – Function: A
defined structure of statements that
can be called repeatedly. It has a
unique name, and may take argu-
ments and/or return values to the
caller.

Observation 2.24 – Four Types of
Functions:

 1. No arguments, no return
value.

 2. With arguments, no return
value.

 3. No arguments, with return
value.

 4. With arguments, with return
value.

51Introduction to Programming with Python

Output 2.10.2:

Hello world

2.10.3 With Arguments, no return

Another type of a function is one in which the function accepts variables as arguments, but does not
return any data. In the following script, the function is invoked by declaring its name while also
including a number of values in the parentheses. These values are passed to the main body of the
function, and can be treated as normal variables:

Output 2.10.3:

Enter your first name: Alex
Enter your last name: Fora
Your name is: Alex Fora

2.10.4 no Arguments, With return

The third type involves a function that does not accept arguments, but returns data. It is important
to remember that since this type of function returns a value to the calling code, this value must be
assigned to a variable before being used or processed:

1 # Define a function that accepts arguments but does not return values
2 def printMyName(fName, lName):
3 print('Your name is:', fName, lName)
4
5 # Prompt user to input their name
6 firstName = input('Enter your first name: ')
7 lastName = input('Enter your last name: ')
8
9 # Call the function from the main program
10 printMyName(firstName, lastName)

1 # Define a function that does not accept arguments but returns values
2 def returnFloatNumber():
3 inputFloat = float(input('Enter a real number ' \
4 'to return to the main program: '))
5 return inputFloat
6
7 # Call the function from the main program to display the input
8 x = returnFloatNumber()
9 print('You entered:', x)

1 # Define function that neither accepts arguments nor returns values
2 def printSomething():
3 print('Hello world')
4
5 # Call the function from the main program
6 printSomething()

52 Handbook of Computer Programming with Python

Output 2.10.4:

Enter a real number to return to the main program: 5.7
You entered: 5.7

2.10.5 With Arguments, With return

The fourth type involves a function that both accepts arguments and returns values back to the call-
ing code. The following script demonstrates this. In this case, the call of the function must include
a list of arguments and assign the return value to a specific variable for later use:

Output 2.10.5:

Enter the first number: 3
Enter the second number: 5
Calculate the sum of the two numbers.
The sum for the two numbers is: 8.0

2.10.6 funCtion PArAmeter PAssing

There are two different ways to pass parameters to functions. Determining which of the two should
be chosen depends on whether the value of the original variables should be changed within the
function or not. These two ways for passing parameter values to a function are commonly referred
to as call/pass by value and call/pass by reference.

2.10.6.1 Call/Pass by Value
In this case, the value of the argument (parameter) is
processed as a copy of the original variable. Hence, the
original variable in the caller’s scope will be unchanged
when program control returns to the caller. In Python,
if immutable parameters (e.g., integers and strings) are
passed to a function, the common practice is to call/pass
parameters by value. The example below illustrates such
a case by introducing the id() function. It accepts an
object as a parameter (i.e., id(object)) and returns
the identity of this particular object. The return value of

1 # Function accepts arguments & returns values to the caller
2 def calculateSum(number1, number2):
3 print('Calculate the sum of the two numbers.')
4 return(number1 + number2)
5
6 # Accept two real numbers from the user
7 num1 = float(input('Enter the first number: '))
8 num2 = float(input('Enter the second number: '))
9
10 # Call the function to calculate the sum for the two numbers
11 addNumbers = calculateSum(num1, num2)
12
13 # Print the sum for the numbers
14 print('The sum for the two numbers is:', addNumbers)

Observation 2.25 – Passing Values to
Argument:

 1. By Value: Argument is a
copy of the original variable,
which remains unchanged.

 2. By Reference: Changes apply
directly to the original vari-
able, thus, changing its value.

53Introduction to Programming with Python

id() is an integer, which is unique and permanent for this object during its lifetime. As shown in the
example, the id of variable x before calling the checkParamemterID function is 4564813232.
It should be noted the id of x is not changed within the function as long as the value of x is not
updated. However, once the value is updated to 20, its corresponding id is changed to 4564813552.
The most important thing to note is that the id of x does not change after calling the function, and
its original value is maintained (4564813232). That means that the change of the value of x was
applied on a copy of the variable, and not the original one within the caller’s scope:

Output 2.10.6.a:

The value of x before calling the method checkParameterID is 10
and its id is 140715021772880
The value of x inside checkParameterID before value change is 10
and its id is 140715021772880
The value of x inside checkParameterID after value change is 20
and its id is 140715021773200
The value of x after calling the method checkParameterID is 10
and its id is 140715021772880

2.10.6.2 Call/Pass by Reference
In this case, the function gets a reference to the argument (i.e., the original variable) rather than a
copy of it. The value of the original variable in the caller’s scope will be modified if a change occurs
within the function. In Python, if mutable parameters (e.g., a list) are passed to a function, the call/
pass is by reference. As shown below, updateList appends a value of 5 to the list named y. The
fact that the value of the original mutable variable x changes demonstrates the functionality of argu-
ment call/pass by reference:

1 # Define function 'checkParameterID' that accepts a parameter (by value)
2 def checkParameterID(x):
3 print('The value of x inside checkParameterID',\
4 'before value change is', x, '\nand its id is', id(x))
5
6 # Change the value of parameter 'x' within the scope of the function
7 x = 20
8 print('The value of x inside checkParameterID',\
9 'after value change is', x, '\nand its id is', id(x))
10
11 # Declare variable 'x' in the main program and assign initial value
12 x = 10
13
14 print('The value of x before calling the function ',\
15 'checkParameterID is', x, '\nand its id is', id(x))
16
17 # Call function 'checkParameterID'
18 checkParameterID(x)
19
20 # Display info about 'x' in the main program after function call
21 print('The value of x after calling the function checkParameterID '\
22 'is', x, '\nand its id is', id(x))

54 Handbook of Computer Programming with Python

1 # Define function 'upDateList' that changes values within the list
2 def updateList(y):
3 y = y.append(5)
4 return y
5
6 # Declare list 'x' with 4 elements and assign values
7 x = [1, 2, 3, 4]
8 print('The content of x before calling the function updateList is:', x)
9
10 # Call function 'updateList'
11 print('Call the function updateList')
12 updateList(x)
13 print('The content of x after calling the function updateList is:', x)

Output 2.10.6.b:

The content of x before calling the method updateList is: [1, 2, 3, 4]
Call the method updateList
The content of x after calling the method updateList is: [1, 2, 3, 4, 5]

2.11 CASE STUDY

Write a Python application that displays the following menu and runs the associated functions
based on the user’s input:

• Body mass index calculator.
• Check customer credit.
• Check a five-digit for palindrome.
• Convert an integer to the binary system.
• Initialize a list of integers and sort it.
• Exit.

Specifics on the components of the application:

• Body Mass Index Calculator: Read the user’s weight in kilos and height in meters, and
calculate and display the user’s body mass index. The formula is: BMI = (weightKilos)/
(heightMeters × heightMeters). If the BMI value is less than 18.5, display the message
“Underweight: less than 18.5”. If it is between 18.5 and 24.9, display the message “Normal:
between 18.5 and 24.9”. If it is between 25 and 29.9, display the message “Overweight:
between 25 and 29.9”. Finally, if it is more than 30, display the message “Obese: 30 or
greater”.

• Check Department-Store Customer Balance: Determine if a department-store customer
has exceeded the credit limit on a charge account. For each customer, the following facts
are to be entered by the user:
• Account number.
• Balance at the beginning of the month.
• Total of all items charged by the customer this month.
• Total of all credits applied to the customer’s account this month.
• Allowed credit limit.

55Introduction to Programming with Python

The program should accept input for each of the above from as integers, calculate the new
balance (= beginning balance + charges − deposits), display the new balance, and determine
if the new balance exceeds the customer’s credit limit. For customers whose credit limit is
exceeded, the program should display the message “Credit limit exceeded”.

• A palindrome is a number or a text phrase that reads the same backward as forward (e.g.,
12321, 55555). Write an application that reads a five-digit integer and determines whether
or not it is a palindrome. If the number is not five digits long, display an error message
indicating the issue to the user. When the user dismisses the error dialog, allow them to
enter a new value.

• Convert Decimal to Binary: Accept an integer between 0 and 99 and print its binary
equivalent. Use the modulus and division operations, as necessary.

• List Manipulation and Bubble Sort: Write a script that does the following:
 a. Initialize a list of integers of a maximum size, where the maximum value is entered by

the user.
 b. Prompt the user to select between automatic or manual entry of integers to the list.
 c. Fill the list with values either automatically or manually, depending on the user’s

selection.
 d. Sort the list using Bubble Sort.
 e. Display the list if it has less than 100 elements.

The above should be implemented using a single Python script. Avoid adding statements
in the main body of the script unless necessary. Try to use functions to run the various
tasks of the application. Have the application/menu run continuously until the user enters
the value associated with exiting.

2.12 EXERCISES

2.12.1 sequenCe And seleCtion

 1. Write a script that displays numbers 1–4 on the same line and in one output, separated by
one space.

 2. Write a script that accepts three integers and calculates and displays their sum, average,
product, lowest, and highest.

 3. Write a script that accepts five integers and prints how many of them are odd and even.
(Hint: An even number leaves a remainder of zero when divided by 2. Use the modulus
operator.)

 4. Write a script that accepts five numbers and calculates and prints the number of negatives,
positives, and zeros.

 5. Write a script that accepts two integers and determines and prints whether the first is a
multiple of the second.

 6 Write a script that accepts one number consisting of five digits, separates the number into
the individual digits, and prints each digit separated by three spaces from each other. (Hint:
use both division and modulus operations to break down the number.)

 7. Write a script that accepts the radius of a circle as an integer and prints the circle’s diam-
eter, circumference, and area. (Hint: Use the constant value 3.1459 for π. Calculate the
diameter as radius*2, the circumference as 2π*radius, and the area as π*radius2.)

 8. Write a script that accepts the first and the last name from the user as two separate inputs,
concatenates them separated by one space character, and displays the result.

 9. Write a script that accepts a character and displays it in the ASCII format. (Hint: use the
ord() function.)

 10. Write a script that accepts an ASCII value between 50 and 255 and displays its character.
(Hint: use the chr() function.)

56 Handbook of Computer Programming with Python

2.12.2 iterAtions – while looPs

 1. Drivers are concerned with the accumulated mileage of their automobiles. One particular
driver has been monitoring trips by recording miles driven and petrol gallons used. Write
a script that uses a while statement to accept the miles and petrol gallons used for each
trip. The script should calculate and display the miles per gallon obtained for each trip, and
the combined, total miles per gallon obtained up to date.

 2. Write a script that accepts integers within the range of 1–30. For each number entry, the
script should print a line containing adjacent asterisks of the same number (e.g., for number
7 it should display: “7: *******”). The script should run until the user enters a predefined
exit value.

 3. A company pays its employees partially based on commissions. The employees receive
$200 per week, plus 9% of their gross sales for the week. Write a script that accepts the
items sold for a week by a single employee and calculates and displays their earnings.
There is no limit to the number of items that can be sold by an employee.

 4. Write a script that uses a while statement to determine and print the largest number entered
by the user. The user is allowed to enter numbers until a predefined exit value is entered.

 5. Write a script that uses a while statement and the tab escape sequence (\t) to print the tabu-
lar form of: a number, its multiple by 2, its multiple by 10, the square, and its cube number.

 6. Armstrong numbers represent the sum of their digits to the power of the total number of
digits. Therefore, for a three-digit Armstrong number, the sum of the cube roots of each
digit should equal to the number itself (e.g., 153 = 1 ^ 3 + 5 ^ 3 + 3 ^ 3 = 1 + 125 +27 = 153).
Based on the above, write a script that displays all three-digit Armstrong numbers between
130 and 140, as well as their breakdown.

 7. The factorial of a non-negative integer is written as n! and is defined as n! =
n*(n−1)*(n−2)*…*1 for values of n greater than or equal to 1, and as n! = 1 for n = 0. Write
a script that accepts a non-negative integer and computes and prints its factorial.

 8. Write a script that converts Celsius temperatures to Fahrenheit. The program should print
a table displaying all the Celsius temperatures and their Fahrenheit equivalents. (Hint: the
formula for the conversion is: F = 9/5C + 32.)

 9. A company wants to send data over the Internet and has requested a script that will encrypt
this data. The desired encryption function is the following: each digit should be replaced
by a value calculated by adding 7 to it and getting the remainder after dividing the new
value by 10. Next, the first digit should be swapped with the third and the second with the
fourth. The program should print the resulting encrypted integer.

 10. Write a script that reads an encrypted four-digit integer, decrypts it by reversing the encryp-
tion scheme of the previous exercise, and prints the result.

2.12.3 iterAtions – for looPs

 1. Write a script that uses a for statement to display the following patterns:

(a) (b) (c) (d)

* ********** ********** *

** ********* ********* **

*** ******** ******** ***

**** ******* ******* ****

***** ****** ****** *****

****** ***** ***** ******

******* **** **** *******

******** *** *** ********

57Introduction to Programming with Python

 2. Write a script that prompts the user to enter a number of integer values and calculate their
average. Use a for statement to receive and add up to the sequence of integers, based on
user input.

 3. A mail order house sells five different products with the following codes and retail prices:
001 = $2.98, 002 = $4.50, 003 = $9.98, 004 = $4.49, and 005 = $6.87. Write a script that
accepts the following two values from the user: product number and quantity sold. This
process must be repeated as long as the user enters a valid code. The script should use a
mapping technique to determine the retail price for each product. Finally, the script should
calculate and display the total value of all products sold.

2.12.4 methods

 1. Write a script that uses methods to do the following: (a) continuously accept integers into
a two-dimensional list of integers until the user enters an exit value (e.g., 0), (b) find and
display the min value for each row and/or column of the list and of the whole list, (c) find
and display the max value for each row and/or column of the list and of the whole list,
and (d) find and display the average value for each row and/or column of the list and of the
whole list.

 2. Write a script that uses methods to continuously accept the following details for a series of
books: ISBN number, title, author, publication date, and publication company. The details
of each book must be stored in five lists associated with the book information categories.
The script should accept books until the user enters an ISBN number of 0. Before exiting,
the script must print the details of the books.

 3. Write a script that uses different methods to print a box, an oval, an arrow, and a diamond
on screen. Use the Turtle library for this purpose.

 4. Using the Olympic Games logo as a reference, write a Python script that uses the Turtle
library and appropriate methods to draw the logo rings, matching the color order and position.

 5. Using only the Turtle library methods fillcolor(), begin _ color(), end _
color(), color(), penup(), pendown(), and goto(), write a Python script that uses
various methods to draw Figure Exercise 5.

 6. Write a Python script that uses appropriate methods and the Turtle library to draw a regu-
lar polygon of N sides. The script should use a method to prompt the user to enter the
number of sides (N). (Hint: a regular polygon of N sides is the combination of N equilateral
triangles.) The figure drawn should look like Figure Exercise 6.

 Figure Exercise 5. Figure Exercise 6.

58 Handbook of Computer Programming with Python

REFERENCES

Dijkstra, E. W., Dijkstra, E. W., Dijkstra, E. W., & Dijkstra, E. W. (1976). A Discipline of Programming
(Vol. 613924118). New Jersey: Prentice-Hall Englewood Cliffs.

Jaiswal, S. (2017). Python Data Structures Tutorial. DataCamp. https://www.datacamp.com/community/
tutorials/data-structures-python.

Knuth, D. E. (1997). The Art of Computer Programming (Vol. 3). Pearson Education.
Stroustrup, B. (2013). The C++ Programming Language. India: Pearson Education.

https://www.datacamp.com
https://www.datacamp.com

59

3 Object-Oriented
Programming in Python

Ghazala Bilquise and Thaeer Kobbaey
Higher Colleges of Technology

Ourania K. Xanthidou
Brunel University London

CONTENTS

3.1 Introduction ..60
3.2 Classes and Objects in Python.. 62

3.2.1 Instantiating Objects ... 63
3.2.2 Object Data (Attributes) .. 63

3.2.2.1 Instance Attributes ... 63
3.2.2.2 Class Attributes ..64

3.2.3 Object Behavior (Methods) ...66
3.2.3.1 Instance Methods ...66
3.2.3.2 Constructor Methods ...68
3.2.3.3 Destructor Method ... 71

3.3 Encapsulation .. 72
3.3.1 Access Modifiers in Python .. 72
3.3.2 Getters and Setters .. 72
3.3.3 Validating Inputs before Setting ... 73
3.3.4 Creating Read-Only Attributes ... 75
3.3.5 The property() Method ... 76
3.3.6 The @property Decorator ..77

3.4 Inheritance .. 78
3.4.1 Inheritance in Python ... 78

3.4.1.1 Customizing the Sub Class .. 79
3.4.2 Method Overriding ... 81

3.4.2.1 Overriding the Constructor Method .. 82
3.4.3 Multiple Inheritance ... 83

3.5 Polymorphism – Method Overloading ...85
3.5.1 Method Overloading through Optional Parameters in Python86

3.6 Overloading Operators ...87
3.6.1 Overloading Built-In Methods ..90

3.7 Abstract Classes and Interfaces in Python ... 91
3.7.1 Interfaces ..94

3.8 Modules and Packages in Python ...94
3.8.1 The import Statement ...95
3.8.2 The from…import Statement ..95
3.8.3 Packages..96
3.8.4 Using Modules to Store Abstract Classes ...97

3.9 Exception Handling ..98

DOI: 10.1201/9781003139010-3

https://doi.org/10.1201/9781003139010-3

60 Handbook of Computer Programming with Python

3.1 INTRODUCTION

The Object-Oriented Programming (OOP) paradigm is a powerful approach that involves problem
solving by means of programming components called classes, and the associated programming
objects contained in these classes. This approach aims at the creation of an environment that reflects
method structures from the real world. Within the OOP paradigm, variables, and the associated
data and methods (see: Chapter 2), are logically grouped into reusable objects belonging to a parent
class. This enables a modular approach to programming. Some of the most significant benefits of
developing software using this paradigm is that it is easier to implement, interpret, and maintain.

OOP is developed around two fundamental pillars of programming, and four basic principles of
how these could be used efficiently. The two pillars are the class and its objects. The four principles
are the concepts of encapsulation, abstraction, inheritance, and polymorphism. Although it is true
that various other programming techniques and approaches are also applied within the OOP para-
digm, they all share the above core components and concepts.

A real-life analogy that demonstrates the class and object relationship is that of a recipe of a
cake. The recipe provides information about the ingredients and the method of how to bake it. Using
the recipe, several cakes may be baked. In this context, the recipe represents the class, and each
cake that is baked using the recipe represents the object. Similarly, in software development, if it is
required to store the data of numerous employees, a class that describes the general specifications
of an employee is created. This class defines what types of data are required for employees (class
properties) and what actions can be performed on the data (class methods). New employees are then
created using the class. What is important to note is that the class does not hold any data. It is simply
a template used as a model for the container of employees of the same kind, alongside any related
actions that can be performed on the data. The relation between these two fundamental elements
(i.e., class and objects) is illustrated in Figure 3.1.

In OOP terminology, the process of creating an object based on a specific class is known as
instantiation. During instantiation, the created object inherits the properties described in the class.
For example, an object named car1 may have properties like make, model, and color, while

3.9.1 Handling Exceptions in Python ..98
3.9.1.1 Handling Specific Exceptions .. 100

3.9.2 Raising Exceptions ... 101
3.9.3 User-Defined Exceptions in Python .. 102

3.10 Case Study .. 103
3.11 Exercises ... 104

FIGURE 3.1 Using class Employee to generate the objects Employee1 and Employee2.

61Object-Oriented Programming

book1 may have ISBN, title, price and publication _ year. Similarly, the methods of
the object are the actions or tasks it can perform. Using the same object examples, a car may
perform actions like startEngine(), stopEngine() and moveCar(), and a book update-
Price() and calculateDiscount().

In terms of communicating complex OOP structures and ideas, programmers use the Unified
Modelling Language (UML), a tool that allows them to draw standardized diagrams that visualize
the structure of programs independently of the programming language used for the implementa-
tion. The basic building block of UML is the class diagram, a graphical representation of a class as
a rectangle with three sections, namely the class name, the class attributes, and the class methods.
The basic structure of a class diagram is illustrated in Figure 3.2, and a related example is provided
in Figure 3.3.

The top section of the class diagram contains the class name, which should adhere to the follow-
ing naming conventions:

• It must be a noun.
• It must be written in singular form.
• It must start with an upper-case letter (upper camel case should be used for multiple words

in the class name).

FIGURE 3.2 Syntax of a class diagram.

FIGURE 3.3 A simple class with its attributes and methods.

62 Handbook of Computer Programming with Python

The middle section of the class diagram consists of the
class attributes. These should be written using lower-
case letters, with compound words separated by an
underscore. Optionally, the data type of each attribute
can be specified after its name, separated by a colon.

The last section of the class diagram contains the operations or methods of the class. Method
names should be verbs and follow the lower camel case naming convention (i.e., the first word is
in lower case and the first letters of all subsequent words are in upper case). Similar to attributes,
the input and output parameters of the method can be specified. The input parameters are written
within the parentheses following the method name. The output parameters are specified at the end
of the method, separated by a colon.

Finally, access modifiers, represented with a plus or minus symbol, are used to specify the scope
of access of an attribute or method. The plus symbol indicates that the attribute or method is public
and can be accessed by any object of any class outside the current one, whereas the minus symbol
indicates that the method or attribute is private and can only be accessed from within the current
class or its objects.

This chapter covers basic concepts related to the usage of classes and objects, and the four main
principles of OOP, namely:

• Encapsulation: The process of wrapping the attributes and methods of the objects of a
class in one unit, and managing the access to these attributes and methods.

• Abstraction: The technique used to hide the implementation details of a class, by provid-
ing a more abstract view. This allows for the development of a simpler interface, by focus-
ing on what the object does rather than how it does it.

• Inheritance: The mechanism used for the creation of a parent-child relationship between
classes, where the child (or sub) class acquires the attributes and the methods of the par-
ent (or super) class, thus, eliminating redundant code and facilitating reusability and
maintainability.

• Polymorphism: A feature of OOP languages that enables methods to perform different
tasks based on the context of the variables used. This is achieved through designated pro-
cesses like method overriding and overloading.

3.2 CLASSES AND OBJECTS IN PYTHON

Contextualizing the concepts of classes and methods and
their relationship is frequently easier through the use of
working examples. Consider the common case of devel-
oping a simple application that must store employees’
data. Every employee is likely to have an employee ID, a
first name, a last name, a basic salary, and allowances.
The first step toward the implementation of such an
application in OOP would be to define a class that holds
the appropriate, general specification for all employees.
This will be used as a blueprint to create a record for
each employee in the application.

In Python, a class is created simply by using the
class keyword followed by the name of the class. The
name must follow the same naming rules that also apply
to variables. However, for clarity purposes, it is recom-
mended that the name of the class is capitalized using
the CapWords notation (i.e., the first letter of each word
in the class name should be capitalized).

Observation 3.2 – pass: The pass
keyword is a line of code that does
nothing. It is necessary when defin-
ing an empty class since it is required
that every class has at least one line
of code.

Observation 3.3 – class keyword:
Create a class simply by using the
class keyword followed by the
name of the class. The class name
must adhere to the naming conven-
tions of Python for variables and
should have the first letter in capital.

Observation 3.1 – Camel Case: The
practice of starting each word of a
sentence in capital.

63Object-Oriented Programming

The example below creates an empty class with no attributes or methods, and thus no
functionality:

3.2.1 instAntiAting objeCts

To instantiate an object means to create a new object
using a class as a template. An object is instantiated by
passing the class name (followed by parentheses) to a
variable. In the script example provided below emp1
and emp2 are instances of the Employee class. Note
that, in the output of the script, each object reserves a
different memory location, as the attributes of the two employees will be stored separately:

Output 3.2.1:

<__main__.Employee object at 0x0000026242C487F0>
<__main__.Employee object at 0x0000026242C483D0>

3.2.2 objeCt dAtA (Attributes)

Object data, also known as attributes, are stored in
variables. There are two types of attributes in a class,
namely instance and class attributes.

3.2.2.1 Instance Attributes
An instance attribute contains data associated with
each instantiated object, and is therefore unique to that
object. Instance attributes are created using the dot
notation syntax (obj.attribute = value) and are only accessible by the object associated
with them. In the example below, class Employee is used to instantiate objects emp1 and emp2.
These objects will store the first and last names, the basic salary, and the allowance of two different
employees.

1 # Define a class with no functionality
2 class Employee:
3 Pass

Observation 3.4 – Creating/
Instantiating Objects: An object is
created by using the name of the class
it belongs followed by parentheses.

1 # Define the class
2 class Employee:
3 Pass
4
5 # Create two instances/objects based on the class
6 emp1 = Employee()
7 emp2 = Employee()
8
9 # Print the memory address of instances 'emp1' and 'emp2'
10 print(emp1)
11 print(emp2)

Observation 3.5 – Object Data
(Attributes): Data that is associated
with each instantiated object and is
unique to that object. Use the dot
notation syntax to call it (e.g., obj.
attribute = value).

64 Handbook of Computer Programming with Python

The reader should note the use of the dot notation to assign values to the instance/object attri-
butes, and how the print() method is used to show the first and last names of the two Employee
instances/objects:

Output 3.2.2.1:

Maria Rena
Alex Flora

3.2.2.2 Class Attributes
While instance attributes are specific to each individual
object, class attributes belong to the class itself, and are
thus shared among all instances of the class. In the fol-
lowing example, the class attribute bonusPercent is
defined within the scope of the Employee class. Unlike
instance attributes firstName and lastName, which
take unique values for each of the two employees
(i.e., emp1 and emp2), class attribute bonusPercent
is common to both employees:

1 # Define the class
2 class Employee:
3 Pass
4
5 # Create two instances/objects based on the class
6 emp1 = Employee()
7 emp2 = Employee()
8
9 # Provide attributes and assign values to the instances
10 emp1.firstName = "Maria"
11 emp1.lastName = "Rena"
12 emp1.basicSalary = 12000
13 emp1.allowance = 5000
14 emp2.firstName = "Alex"
15 emp2.lastName = "Flora"
16 emp2.basicSalary = 15000
17 emp2.allowance = 5000
18
19 # Print the objects and their attributes
20 print(emp1.firstName, emp1.lastName)
21 print(emp2.firstName, emp2.lastName)

Observation 3.6 – Class Attribute:
Data that belongs to the class and has
its values shared among each object
instantiated through the class. Define
it the same way as a simple variable.

Observation 3.7: It is recommended
to use lower-case letters when nam-
ing attributes. If an attribute name has
more than one word, use lower case
for the first word and capital first letters
for the rest, all combined in one word.

65Object-Oriented Programming

Output 3.2.2.2:

0.2
Maria Rena 0.2
Alex Flora 0.2
0.3
0.3
0.3
{'firstName': 'Maria', 'lastName': 'Rena'}
{'firstName': 'Alex', 'lastName': 'Flora'}
{'__module__': '__main__', 'bonusPercent': 0.3, '__dict__': <attribute '__dict__' of 'Employe
e' objects>, '__weakref__': <attribute '__weakref__' of 'Employee' objects>, '__doc__': None}

In terms of declaration and value assignments, a class attribute is treated as any other regular vari-
able within the class, in contrast to instance attributes where the dot notation is used. It is accessed
by using the name of the class to which it belongs followed by the attribute name:

<className>.<attribute_name> = value

When a class attribute is associated with an instantiated object name, Python firstly checks if that
attribute is available in that particular object, and if not, whether it is available in the associated
class or any super class the object inherits from (see Section: 3.4.1 Inheritance in Python).

1 class Employee:
2 # Define the class attribute
3 bonusPercent = 0.2
4
5 # Define and create the 'emp1' instance
6 emp1 = Employee()
7 emp1.firstName = "Maria"
8 emp1.lastName = "Rena"
9
10 # Define and create the 'emp2' instance
11 emp2 = Employee()
12 emp2.firstName = "Alex"
13 emp2.lastName = "Flora"
14
15 # Print class attribute
16 print(Employee.bonusPercent)
17 # Each instance is associated with the same class attribute value
18 print(emp1.firstName, emp1.lastName, emp1.bonusPercent)
19 print(emp2.firstName, emp2.lastName, emp2.bonusPercent)
20
21 # Accessing the class attribute by using the class name
22 Employee.bonusPercent = 0.3
23 print(Employee.bonusPercent)
24 # Accessing the class attribute by using the instance name
25 print(emp1.bonusPercent)
26 print(emp2.bonusPercent)
27
28 # Accessing the dictionary of the class and its objects
29 print(emp1.__dict__)
30 print(emp2.__dict__)
31 print(Employee.__dict__)

66 Handbook of Computer Programming with Python

There is a simple way to determine whether an attri-
bute belongs to an object or to the class used to instanti-
ate it. Every Python object contains a special attribute
called __dict__ (i.e., dictionary), which includes refer-
ences to all the attributes within this object. Using the
previous example, if __dict__ is called for emp1 and
emp2 it will not include the bonusPercent class attribute. On the contrary, this will be the case
if it is called for the Employee class.

3.2.3 objeCt behAvior (methods)

A method is a structured block of code that is associated with an object. It is defined in a class and
contains code that performs specific tasks using data from either the class itself or the instantiated
objects inheriting from the class. Methods must have a distinct name, and may or may not take
parameters or return values. All methods in a class must include an essential parameter, usually
named self, that references the current object instance. It is important to note that self is not
a reserved word. Any variable name may be used to reference the object, as long as it follows the
Python variable naming rules.

3.2.3.1 Instance Methods
An instance method, just like an instance attribute, is
specific to a particular object rather than the class used
to instantiate it. It is, thus, invoked for each separate
object, and uses the data of the object that invoked it.
Instance methods are defined within a class and include
the mandatory self parameter. However, passing the
self parameter to the method is not required when calling the method.

In the following Python example, instance method printDetails(self) is defined in the
Employee class and called twice to print each of the two employees’ data (i.e., firstName,
lastName, and salary). It does not accept any arguments and it displays the required infor-
mation utilizing the attributes of the particular object it is associated with. Instance method
calculateBonus(self, bonusPercent) collects data from the attribute of the associated
object, calculates the bonus for the employee, and displays the result. The reader should note that
defining and calling instance and class methods is similar, with the exception of the use of dot nota-
tion to associate the instance method with the super class:

Observation 3.9 – Instance Method:
Defined as any other method but
includes the self parameter as one of
its arguments.

Observation 3.8: Call the __dict__
attribute on any object to find the
attributes that belong to that particu-
lar object.

1 # Define the class
2 class Employee:
3
4 # Define the 'printDetails' method
5 def printDetails(self):
6 print("Employee Name", self.firstName, self.lastName,
7 "earns", self.salary)
8
9 # Define the 'calculateBonus' method
10 def calculateBonus(self, bonusPercent):
11 return self.salary * bonusPercent
12 # Create the two objects and print their attributes
13 emp1 = Employee()
14 emp1.firstName = "Maria"

67Object-Oriented Programming

Output 3.2.3.1.a:

Employee Name Maria Rena earns 15000
Bonus amount is 3000.0
Employee Name Alex Flora earns 18000
Bonus amount is 3000.0

From a structural and logical viewpoint, class and instance methods can be used strategically to
further improve the efficiency and clarity of the code. For instance, the class used in the previous
examples can be further improved by introducing the following change. Since bonusPercent is
the same for both employees, its value can be stored in a class attribute and be shared among all
the instances of the class. In this case, calling the instance method is simplified, as it is no longer
necessary to pass any parameters as method arguments. Instead, instance or class attributes can be
accessed directly, as shown in the example below:

15 emp1.lastName = "Rena"
16 emp1.salary = 15000
17 emp1.printDetails()
18 print("Bonus amount is", emp1.calculateBonus(0.2))
19
20 emp2 = Employee()
21 emp2.firstName = "Alex"
22 emp2.lastName = "Flora"
23 emp2.salary = 18000
24 emp2.printDetails()
25 print("Bonus amount is", emp1.calculateBonus(0.2))

1 # Define the class
2 class Employee:
3
4 # Define a class attribute common for all objects
5 bonusPercent = 0.2
6 # Define an instance method that takes no arguments
7 def calculateBonus(self):
8 return self.salary * Employee.bonusPercent
9
10 # Create two objects and an instance attribute
11 emp1 = Employee()
12 emp1.salary = 15000
13 emp2 = Employee()
14 emp2.salary = 18000
15
16 # Print using the instance method and the class attribute
17 print("Bonus amount is", emp1.calculateBonus(),
18 "calculated at", Employee.bonusPercent)
19 print("Bonus amount is", emp2.calculateBonus(),
20 "calculated at", Employee.bonusPercent)
21
22 # Change the value of the class attribute

68 Handbook of Computer Programming with Python

Output 3.2.3.1.b:

Bonus amount is 3000.0 calculated at 0.2
Bonus amount is 3600.0 calculated at 0.2
Bonus amount is 4500.0 calculated at 0.3
Bonus amount is 4500.0 calculated at 0.3

3.2.3.2 Constructor Methods
A constructor is a special method used to initialize the
data of an object. In Python, constructors are imple-
mented using the __init__() method. This method is
automatically invoked whenever a new instance of the
class is created. If not explicitly defined, the compiler
assumes a default constructor with no implementation
details. It is important to note that a constructor does not
return any value.

The programmer can optionally define constructors
other than the default one. A user-defined constructor is
created by defining the __init__() method within the
class. Like all methods in a class, it takes a self argu-
ment that references the current object. The syntax of the __init__() method is the following:

def __init__ (self [, arguments])

User-defined constructors can be one out of three different types, depending on whether they take
arguments or not. The first is the simple constructor, which takes no arguments. The following
Python script presents such a case, where the constructor takes no arguments and prints a default
text message. Notice that every time a new object is instantiated the message is displayed:

Observation 3.10 – Constructor
Method: Defined either automatically
or by using the __init__() method.
It is invoked automatically when a
new instance of a class is created. It
can be used to initialize the data of
the new object or to perform any
other task necessary. It can take argu-
ments with or without default values.
It does not return any value.

1 # Define the class
2 class Employee:
3
4 # Default constructor takes no arguments, prints message
5 def __init__ (self):
6 print("Object created")
7
8 # Every time a new object is created the constructor is called and
9 # the message is displayed
10 emp1 = Employee()
11 emp3 = Employee()

23 Employee.bonusPercent = 0.3
24
25 # Print again using the instance method and the changed class attribute
26 print("Bonus amount is", emp1.calculateBonus(),
27 "calculated at", Employee.bonusPercent)
28 print("Bonus amount is", emp1.calculateBonus(),
29 "calculated at", Employee.bonusPercent)

69Object-Oriented Programming

Output 3.2.3.2.a:

Object created
Object created

The default constructor may be also used to initialize instance attributes with default values. In the
following example, when a new Employee object is created, instance attributes salary and
allowances are set to a default value of 0:

Output 3.2.3.2.b:

15000 0
15000 3000

The second constructor type accepts parameters as arguments. It is used when initialization of the
attributes of the new object involves the assignment of specific values rather than the default ones.
To highlight this, in the following example, a list of the arguments used to initialize the attributes of
the object is provided after the default self attribute:

1 # Define the class
2 class Employee:
3
4 """ Define the default constructor that takes no arguments
5 but initializes the values of the instance attributes """
6 def __init__ (self):
7 self.salary = 0
8 self.allowances = 0
9
10 """ Every time a new object is created the constructor is called
11 and the instance attributes are set to 0 """
12 emp1 = Employee()
13 emp1.salary = 15000
14
15 """ Print the instance attributes of the objects. The default
16 allowances value is printed """
17 print(emp1.salary, emp1.allowances)
18
19 # Change the value of the allowances attribute
20 emp1.allowances = 3000
21
22 # Print the instance attribute of the object after the value
23 # of allowances is changed
24 print(emp1.salary, emp1.allowances)

1 # Define the class
2 class Employee:
3
4 # Define the constructor with four arguments
5 def __init__ (self, first, last, salary, allowances):
6 # Initialize instance attributes: use values of arguments

70 Handbook of Computer Programming with Python

Output 3.2.3.2.c:

Maria Rena 15000 3000

For simplicity reasons, Python does not support method overloading and, thus, the definition of
multiple constructors is not allowed. Additionally, if a user-defined constructor is provided, it is no
longer possible to use the default constructor in order to create a new object with no parameters.
This limitation can be overcome by means of the third constructor type, which is used to accept
arguments with default values. This allows the programmer to initialize the associated object with
or without values. This constructor type is illustrated in the following example. When emp1 is
instantiated, the constructor is invoked without any parameter values. In contrast, in the case of
emp2, it is invoked with predefined parameter values, which are assigned to the respective instance
attributes. Once both objects are instantiated, the instance attributes of both emp1 and emp2 are
accessed and printed using regular dot notation:

7 self.firstName = first
8 self.lastName = last
9 self.salary = salary
10 self.allowances = allowances
11
12 # Create a new object with specific instance attribute values
13 emp1 = Employee("Maria", "Rena", 15000, 3000)
14
15 # Print the object's attributes
16 print(emp1.firstName, emp1.lastName, emp1.salary, emp1.allowances)

1 # Define the class
2 class Employee:
3
4 """ Define a constructor that takes four arguments with
5 default empty values (None) if no values are passed """
6 def __init__ (self, first = None, last = None, salary = None,
7 allowances = None):
8 if first!= None and last!= None and salary!= None \
9 and allowances!= None:
10 self.firstName = first
11 self.lastName = last
12 self.salary = salary
13 self.allowances = allowances
14 print("Object initialized with supplied values")
15 else:
16 self.salary = 0
17 self.allowances = 0
18 print("Object initialized with default values")
19
20 # Create a new object invoking the constructor with no parameters
21 emp1 = Employee()

71Object-Oriented Programming

Output 3.2.3.2.d:

Object initialized with default values
Alex Flora 0 0
Object initialized with supplied values
Maria Rena 15000 5000
Maria Rena 20000 5000

3.2.3.3 Destructor Method
Destructors are special methods invoked at the end of the
lifecycle of objects, when they must be deleted. In Python,
destructors are implemented using the __del__()
method, and are invoked when all references to an object
have been deleted. The following Python script provides
an example of two objects (i.e., emp1 and emp2) firstly
being created and then destroyed:

Observation 3.11 – Destructor
Method: Defined by using the
__del__() method. It is used to delete
an instance/object when it is not
needed anymore. The method takes
no arguments, and returns no values.

1 # Define the class
2 class Employee:
3
4 # Define the default constructor that only prints a message
5 def __init__(self):
6 print("Employee created")
7
8 # Destructor deletes the object and prints a message
9 def __del__(self):
10 print("Employee deleted")
11
12 # Constructor automatically invoked to create ‘emp1’ and ‘emp2’
13 emp1 = Employee()
14 emp2 = Employee()
15
16 # Destroy objects 'emp1' and 'emp2'. Destructor method is called
17 del emp1
18 del emp2

22 emp1.firstName = "Alex"
23 emp1.lastName = "Flora"
24 print(emp1.firstName, emp1.lastName, emp1.salary, emp1.allowances)
25 # Create a new object invoking the constructor with parameters
26 emp2 = Employee("Maria", "Rena", 15000, 5000)
27 print(emp2.firstName, emp2.lastName, emp2.salary, emp2.allowances)
28 # Change and reprint the value of instance attribute of ‘emp2’
29 emp2.salary = 20000
30 print(emp2.firstName, emp2.lastName, emp2.salary, emp2.allowances)

72 Handbook of Computer Programming with Python

Output 3.2.3.3:

Employee created
Employee created
Employee deleted
Employee deleted

3.3 ENCAPSULATION

Encapsulation is one of the pillars of Object-Oriented
Programming. It is based on the idea of wrapping up the
attributes and methods in a class and controlling access
when instantiating new objects/instances. Instead,
access modifiers are used to dictate and control how the
instance attributes can be accessed.

3.3.1 ACCess modifiers in Python

As mentioned, objects store data in attributes.
Appropriate protective measures ensure that this data is
accessed and modified in a controlled way. In general,
OOP languages provide access modifiers that specify
how an attribute or method can be accessed. There are
three main types of access modifiers:

• Public: Attribute/method can be accessed by any
class or program without any restrictions.

• Private: Attribute/method can be accessed only
within the container class.

• Protected: Attribute/method can be accessed within the container class and its sub-classes.

By default, all attributes and methods in Python are public. Instead of using special keywords to
specify whether an attribute is public, private, or protected, Python uses a special naming conven-
tion to control access. An attribute with an underscore prefix (_) denotes a protected attribute, while
a double underscore prefix (__) a private attribute. As mentioned, the absence of a prefix denotes
the default, public modifier.

3.3.2 getters And setters

When defining a class, it is good programming practice
to control the access to instance attributes by means
of two special types of methods commonly referred to
as getters and setters. Many OOP languages use such
methods to implement the principle of encapsulation. A
getter is a method that reads (gets) the value of an attri-
bute, while a setter writes (sets) it. Using getters and set-
ters to access object attributes ensures that the data is protected (i.e., encapsulated). The benefits of
using these special methods are the following:

Observation 3.12 – Encapsulation:
Wrapping up the attributes and meth-
ods in a class and controlling access
when instantiating new objects/
instances.

Observation 3.13 – Access Modifiers:
Access modifiers control how the
instance attributes can be accessed.
Access modifiers can be public with
no special notation needed, private
denoted by double underscore (__),
or protected denoted by single under-
score (_).

Observation 3.14 – Getters and
Setters: Used to implement encapsu-
lation. Setters are used to store data
into private instance attributes whereas
getters are used to read that data.

73Object-Oriented Programming

• Ensuring validation when reading or writing attribute data.
• Setting different access levels for the class attributes.
• Preventing direct manipulation of the attribute data.

In the Python example below, the Employee class uses setFirstName(), a setter method, to
store data in a protected attribute of the object (denoted by the double underscore symbol), while
getter method getFirstName() is used to read and print the employee’s first name. As the attri-
bute is protected, it is accessible using the methods within the class, and within the object created
using the class. Getter and setter methods should be used for all instance attributes defined in the
class. In other words, for every instance attribute, it is recommended that the associated getter and
setter methods are provided. The reader should also notice the use of the self parameter with all
methods, as it provides the reference to the current object being used:

In this context, if the print(emp1.getFirstName()) command is replaced by
print(emp1.__first) in an attempt to access the private instance attribute directly, an error
will occur:

Output 3.3.2:

George

3.3.3 vAlidAting inPuts before setting

As discussed, getter and setter methods shield the data values of private instance attributes. In addi-
tion, they also provide data validation functionality. As an example, if the value of private instance
attribute __firstName should not exceed 15 characters in length, and __salary should be a

1 # Define the class
2 class Employee:
3
4 # Define the getter method to read private attribute__first
5 def getFirstName(self):
6 return self.__first
7
8 # Setter method writes to private attribute__first
9 def setFirstName(self, value):
10 self.__first = value
11
12 # Create object emp1
13 emp1 = Employee()
14
15 # Use the setter to store new data in the private attribute
16 emp1.setFirstName("George")
17
18 # Getter reads the data from the private attribute and prints it
19 print(emp1.getFirstName())

74 Handbook of Computer Programming with Python

number between 0 and 20,000, the associated valida-
tion code can be added to the setter methods of the attri-
butes. Similarly, if it is necessary to format the output in
a particular way, the associated code could be added to
the getter methods. The following script provides a class
example demonstrating this concept:

Observation 3.15 – Validating Data:
Use getters and setters to validate data
stored in the private attributes and for-
mat data appropriately before used as
output.

1 # Define the class
2 class Employee:
3
4 # Define a setter for private attribute '__firstName'.
5 # Check the attribute value and store it if it is lower than 15
6 def setFirstName(self, value):
7 if len(value) < 15:
8 emp1.__firstName = value
9
10 # Define a getter for private attribute '__firstName'.
11 # Print the data with an appropriate message
12 def getFirstName(self):
13 return "The first name is :", self.__firstName
14
15 # Define a setter for private attribute '__salary'.
16 # Check attribute value; store it if it is between 0 and 20000
17 def setSalary(self, value):
18 if (value > 0 and value < 20000):
19 emp1.__salary = value
20
21 # Define a getter for private attribute '__salary'.
22 # Print the data with an appropriate message
23 def getSalary(self):
24 return "The salary is ", self.__salary
25
26 # Create a new object and call its setters
27 # to validate and store values in its attributes
28 emp1 = Employee()
29 emp1.setFirstName("John")
30 emp1.setSalary(17000)
31
32 # Attribute getters print stored values and associated messages
33 print(emp1.getFirstName(), emp1.getSalary())
34
35 # Repeat the previous tasks with an invalid first name entry.
36 # Notice: no change takes place in the ‘__firstName’ attribute
37 emp1.setFirstName("Check to see if more than 15 characters are stored")
38 emp1.setSalary(19000)
39 print(emp1.getFirstName(), emp1.getSalary())

75Object-Oriented Programming

Output 3.3.3:

('The first name is :', 'John') ('The salary is ', 17000)
('The first name is :', 'John') ('The salary is ', 19000)
('The first name is :', 'George') ('The salary is ', 19000)

3.3.4 CreAting reAd-only Attributes

Getter and setter methods may be also used to control read-only or write-only attributes. For exam-
ple, attribute age may be designated as read only, since it should be calculated using the value of
attribute dateOfBirth. In this case, age will require a getter but no setter method, allowing thus
the user to read the age value but not to update it.

In the following example, class Employee defines
instance attributes for employees’ first and last names,
and the corresponding getter and setter methods. The
class also defines attributes for the employees’ emails
and full names, which as read-only attributes do not
have setter methods. In this case, the values of these
attributes are constructed when they are being read
using the getter method:

Observation 3.16 – Creating Read-
Only Attributes: Use getters with no
setters to create and output the values
of read-only attributes, whose data
are calculated using private attributes.

40
41 # Repeat the previous tasks with invalid salary entry.
42 # Notice: there is no change taking place in the ‘__salary’ attribute
43 emp1.setFirstName("George")
44 emp1.setSalary(21000)
45 print(emp1.getFirstName(), emp1.getSalary())

1 # Define the class
2 class Employee:
3
4 # The getter and setter methods for the first name
5 def getFirstName(self):
6 return self.__first
7
8 def setFirstName(self, value):
9 self.__first = value
10
11 # The getter and setter methods for the last name
12 def getLastName(self):
13 return self.__last
14 def setLastName(self, value):
15 self.__last = value
16
17 # Read-only attributes with only a getter method
18 def getEmail(self):
19 return self.__first + "." + self.__last + "@company.com"
20 def getFullName(self):
21 return self.__first + " " + self.__last

http://company.com

76 Handbook of Computer Programming with Python

Output 3.3.4:

George Davies George.Davies@company.com

3.3.5 the ProPerty() method

In the example presented below, methods getFirst-
Name() and setLastName() are used to read from,
and write to, private attribute __first. In order to
make this particular example more user-friendly, the
getter and setter methods could be automatically called
when accessing the attribute, using the dot notation (i.e.,
<obj>.<property>). The property() method pro-
vides the necessary interface by encapsulating the getter
and setter methods, which are invoked when reading from, or writing to it. The method syntax is
the following:

property_name = property(gettermethod, settermethod)

After defining the property method, the attribute is accessed using the dot notation on the property
name (<obj>.<property>) instead of invoking the getter and setter methods directly:

Observation 3.17 – Property
Method: Use it to encapsulate the
getter and setter methods in a single
interface that facilitates access to a
private attribute using simply the dot
notation.

22
23 # Create a new ‘Employee’ object
24 emp1 = Employee()
25
26 # Setter stores value to the ‘__private’ instance attributes
27 emp1.setFirstName("George")
28 emp1.setLastName("Davies")
29
30 # Print the read-only attributes
31 print(emp1.getFullName(), emp1.getEmail())

1 # Define the class
2 class Employee:
3
4 # Define the getter method
5 def getFirstName(self):
6 return self.__first
7
8 # Define the setter method
9 def setFirstName(self, value):
10 self.__first = value
11
12 """ Use the property method to encapsulate the getter and setter
13 in a single method interface """
14 firstName = property(getFirstName, setFirstName)
15

mailto:George.Davies@company.com

77Object-Oriented Programming

Output 3.3.5:

George

3.3.6 the @property deCorAtor

Another way to define attributes in Python is to use the
@property decorator, which is built in the prop-
erty() method. In the example below, @property
defines the firstName attribute by using two different
methods with the property name. The firstName(self)
method is decorated with the @property decorator, indicating that the method is a getter. Accordingly,
the firstName(self, value) method is decorated with @firstName.setter, indicating that
this is a setter. With this structure in place, the attribute can be accessed by using its property name
with the dot notation, without explicitly calling the getter and setter methods:

Output 3.3.6:

George

Observation 3.18 – The @property
Decorator: It allows the extension of
the property method in a similar way.

1 # Define the class
2 class Employee:
3
4 # Use the property decorator to define the getter method
5 @property
6 def firstName(self):
7 return self.__first
8
9 # Use the property decorator to define the setter method
10 @firstName.setter
11 def firstName(self, value):
12 self.__first = value
13
14 # Create the 'emp1' object
15 emp1 = Employee()
16
17 # Access private attribute '__first' through property name 'firstName'
18 emp1.firstName = "George"
19 print(emp1.firstName)

16 # Create the 'emp1' object
17 emp1 = Employee()
18
19 """ Use dot notation to invoke the setter and getter methods through
20 the property interface """
21 emp1.firstName = "George"
22 print(emp1.firstName)

78 Handbook of Computer Programming with Python

3.4 INHERITANCE

Inheritance is one of the four main principles of OOP.
It allows the programmer to extend the functionality of
a class by creating a parent-child relationship between
classes. In such a relationship, the child (also called sub
or derived class) inherits from the parent (also called
super or base class). The reader should note that these
terms may be used interchangeably in this chapter, based
on the context of each discussion. Inheritance is extremely useful, as it facilitates code reusability,
thus minimizing code and making it easier to maintain. An important concept relating to child
classes is that they may have their own new attributes and methods, and can optionally override the
functionality of the respective parent class.

3.4.1 inheritAnCe in Python

The Python syntax for implementing the concept of inheritance is the following:

 Class Parent:
 Parent class definition
 Class Child(Parent):
 Child class definition

As a practical example of inheritance, the reader can consider two classes, a super class named
Employee and a sub class named SalesEmployee (Figure 3.4). Instead of creating the general
attributes of SalesEmployee (e.g., first name, last name, salary, or allowances) from scratch, they
can be inherited from Employee. Accordingly, the sub class can also inherit the setters and getters,
and generally all the functionality of the Employee class. Additional attributes that may be unique to
SalesEmployee (e.g., commission rate) can be also added to the inherited ones, as required.

The implementation of this particular example of super class Employee and sub class
SalesEmployee is presented in the Python script examples below. In the first script, Employee
class is defined with private attributes __first, __last, __salary, and __ allowances, and
class method getTotalSalary(). In the second, SalesEmployee class is created as an empty
class, hence the use of the pass keyword. Private attributes and the method are inherited from the
Employee class. Note that the name of super class Employee is passed to SalesEmployee as
an argument:

Observation 3.19 – Inheritance:
Allows the extension of the function-
ality of a parent/super/base class, by
creating a child/sub/derived class that
inherits its attributes and behavior.

FIGURE 3.4 Parent-child relationship between classes.

79Object-Oriented Programming

Output 3.4.1.a:

21200

Output 3.4.1.b:

16000

When the semp1 object is instantiated, Python scans SalesEmployee for an initialization method
(i.e., __init__()). If this is not found, it scans and executes the initialization method of the super
class (i.e., Employee), with the parameters associated with the current object. Similarly, when get-
TotalSalary() is invoked for object semp1, the method is called from the super class, since it does
not exist in the sub class. The same order of resolution is
followed for all methods and attributes in the sub class.

3.4.1.1 Customizing the Sub Class
As mentioned, sub classes can be further customized by
adding new attributes and methods. For instance, in the
case of sub class SalesEmployee this can be done
by adding attribute commission _ percent. The
reader should note that attempting to use the added attri-
bute for an object that belongs to the Employee class
will raise an error. This is because there is no such

Observation 3.20 – Customize Sub
Classes: Add attributes and/or meth-
ods to sub classes to extend their
behavior beyond that of the super
class. Using the added behavior on
objects of the super class will raise an
error. Attributes of the super class that
will be used in the sub class need to
be declared as protected.

1 # Define class 'Employee' and its private attributes and method
2 class Employee():
3
4 def __init__(self, first, last, salary, allowances):
5 self.__first = first
6 self.__last = last
7 self.__salary = salary
8 self.__allowances = allowances
9
10 def getTotalSalary(self):
11 return self.__salary + self.__allowances
12
13 # Create object 'emp1' and print the total salary of the current employee
14 emp1 = Employee("George", "White", 16000, 5200)
15 print(emp1.getTotalSalary())

1 # Define sub class 'SalesEmployee' based on super class 'Employee'
2 class salesEmployee(Employee):
3 pass
4
5 """ Create a new object of the sub class that inherits
6 attributes and behavior from the super class """
7 semp1 = salesEmployee("Alex", "Flora", 12000, 4000)
8 print(semp1.getTotalSalary()) # Method of the superclass is invoked

80 Handbook of Computer Programming with Python

attribute or method in the super class. It is also worth noting that in order to be able to use super
class attributes salary and allowances, they must be declared as protected instead of private.
The following scripts demonstrate these concepts:

1 # Define class 'Employee'
2 class Employee():
3
4 """ Define the constructor of the class with parameters.
5 Define the attributes of the class """
6 def __init__(self, first, last, salary, allowances):
7 self.__first = first
8 self.__last = last
9 self._salary = salary
10 self._allowances = allowances
11
12 # Define a derived attribute
13 def getTotalSalary(self):
14 return self._salary + self._allowances
15
16 # Define the 'SalesEmployee' sub class
17 class salesEmployee(Employee):
18
19 # Use the property decorator to define the getter method
20 @property
21 def commissionPercent(self):
22 return self.__comm
23
24 # Use the property decorator to define the setter method
25 @commissionPercent.setter
26 def commissionPercent(self, value):
27 self.__comm = value
28
29 # Create and use object 'emp1' based on super class ‘Employee’
30 emp1 = Employee("Maria", "Rena", 15000, 5000)
31 print(emp1.getTotalSalary())
32
33 # Create and use object 'semp1' based on sub class 'SalesEmployee'
34 semp1 = salesEmployee("Alex", "Flora", 16000, 6000)
35 # The attribute is set in the sub class
36 semp1.commissionPercent = 0.05
37
38 print(semp1.commissionPercent)
39
40 """ The next line generates an error since its
41 attribute only exists in the sub class """
42 print(emp1.commissionPercent)
43
44 # Print the attributes of objects 'emp1' and 'semp1'
45 print(semp1.__dict)
46 print(emp1.__dict)

81Object-Oriented Programming

Output 3.4.1.1:

20000
0.05

AttributeError Traceback (most recent call last)
<ipython-input-9-0e8e58d5eaf8> in <module>

40 """ The next line generates an error since its
41 attribute only exists in the sub class """

---> 42 print(empl.commissionPercent)
43
44 # Print the attributes of objects 'empl' and 'sempl'

AttributeError: 'Employee' object has no attribute 'commissionPercent'

3.4.2 method overriding

Method overriding is another important programming feature that is common in OOP languages. It
allows a sub class to contain a method with a different implementation than the one inherited from the
super class. In the context of the previous examples, the programmer may wish to compute the total
salary of a sales employee by adding commissions to their salary and allowances. In this case, sub
class method getTotalSalary() must be implemented differently to the original one inherited
from Employee. As shown in the following example, super class method getTotalSalary()
has to be called in the implementation of sub class method getTotalSalary():

1 # Define class 'Employee'
2 class Employee():
3
4 # Define the constructor and the attributes of the super class
5 def __init__(self, first, last, salary, allowances):
6 self.__first = first
7 self.__last = last
8 self._salary = salary
9 self._allowances = allowances
10
11 # Define 'getTotalSalary'
12 def getTotalSalary(self):
13 return self._salary + self._allowances
14
15 # Define sub class 'salesEmployee'
16 class salesEmployee(Employee):
17
18 # Use the property decorator to define the getter method
19 @property
20 def commissionPercent(self):
21 return self.__comm
22
23 # Use the property decorator to define the setter method
24 @commissionPercent.setter
25 def commissionPercent(self, value):
26 self.__comm = value
27

82 Handbook of Computer Programming with Python

Output 3.4.2:

20000
23100.0

3.4.2.1 Overriding the Constructor Method
The concept of method overriding is also used to create
customized constructors in the sub class. In this case,
the super() method is used to invoke the __init__()
method of the super class, as shown in the following
script:

Observation 3.21 – Constructor
Overriding: Call the __init__()
method of the super class to access
the constructor and add attributes to
extend it.

28 # Super class getter overrides the parent class method
29 def getTotalSalary(self):
30 return super().getTotalSalary() + (super().getTotalSalary()
31 *self.__comm)
32
33 # Create and use object 'emp1' based on super class 'Employee'
34 emp1 = Employee("Maria", "Rena", 15000, 5000)
35 print(emp1.getTotalSalary())
36
37 # Create and use object 'semp1' based on sub class 'salesEmployee'
38 semp1 = salesEmployee("Alex", "Flora", 16000, 6000)
39
40 # Set the attribute in the sub class
41 semp1.commissionPercent = 0.05
42
43 # Invoke the overridden getter method from the sub class
44 print(semp1.getTotalSalary())

1 # Define class 'Employee'
2 class Employee():
3
4 # Define the constructor of the super class and its attributes
5 def __init__(self, first, last, salary, allowances):
6 self.__first = first
7 self.__last = last
8 self._salary = salary # Protected attribute
9 self.__allowances = allowances
10
11 # Define the getter of the class
12 def getTotalSalary(self):
13 return self._salary + self.__allowances
14
15 # Define sub class 'salesEmployee'
16 class salesEmployee(Employee):
17
18 """ Define the constructor of the sub class adding the ‘comm’
19 attribute. Call the ‘init’ method of the super class """
20 def __init__(self, first, last, salary, allowances, comm):

83Object-Oriented Programming

Output 3.4.2.1:

20000
22800.0

3.4.3 multiPle inheritAnCe

Sub classes can inherit attributes and methods from
multiple super classes, a concept known as multiple
inheritance. In Python, this can be implemented using
the following syntax:

class Parent1
pass

class Parent2
pass

class Child (Parent1, Parent2):
pass

As an example of multiple inheritance, Figure 3.5 presents a structure consisting of two super
classes (Person and Employee) and one sub class (Manager) that inherits from both super
classes.

Observation 3.22 – Multiple
Inheritance: The concept of having
a sub class inheriting from more than
one super classes.

21 super().__init__(first, last, salary, allowances)
22 self.__comm = comm
23
24 # Access protected attribute '_salary' from the sub class
25 def getTotalSalary(self):
26 return super().getTotalSalary() + (self._salary *
27 self.__comm)
28
29 # Create and use object 'emp1' based on the super class
30 emp1 = Employee("Maria", "Rena", 15000, 5000)
31 print(emp1.getTotalSalary())
32
33 # Create and use object 'semp1' based on the sub class
34 semp1 = salesEmployee("Alex", "Flora", 16000, 6000, 0.05)
35 print(semp1.getTotalSalary()) # Method of the child class is invoked

FIGURE 3.5 A representation of multiple inheritance between three classes.

84 Handbook of Computer Programming with Python

The following Python scripts implement this structure. The reader should note that the construc-
tor in the Manager class calls the respective constructors of both super classes during initializa-
tion. Methods getFullName and getContact are inherited from super class Person, while
getAnnualSalary and getDepartment are inherited from Employee:

1 # Define the first super class ('Person')
2 class Person():
3
4 # Define class constructor and attributes
5 def __init__(self, firstName, lastName, contact):
6 self.__firstName = firstName
7 self.__lastName = lastName
8 self.__contact = contact
9
10 # Getter for the first & last name of the first super class
11 def getFullName(self):
12 return "Employee name is: " + self.__firstName +" " \
13 + self.__lastName
14
15 # Define the getter for the contact of the first parent
16 def getContact(self):
17 return "Contact number is: " + self.__contact
18
19 # Define the second Parent base class Employee
20 class Employee():
21 # The constructor & the attributes of the second super class
22 def __init__(self, salary, dept):
23 self.__salary = salary
24 self.__dept = dept
25
26 # Define the getter for the salary of the second super class
27 def getAnnualSalary(self):
28 return "The annual salary is: " + str(self.__salary * 12)
29
30 # The getter for the department of the 2nd super class
31 def getDepartment(self):
32 return "The employee belongs to the department: " +\
33 self.__dept
34 # Define subclass 'Manager' inheriting from both 'Person' and 'Employee'
35 class Manager(Person, Employee):
36 def __init__(self, firstName, lastName, contact, salary, dept):
37 Person.__init__(self, firstName, lastName, contact)
38 Employee.__init__(self, salary, dept)

85Object-Oriented Programming

Output 3.4.3:

Employee name is: Maria Rena
Contact number is: 0123456789
The annual salary is: 174000
The employee belongs to the department: Marketing

3.5 POLYMORPHISM – METHOD OVERLOADING

Another powerful feature of OOP languages is the sup-
port of method overloading. This is a fundamental ele-
ment of polymorphism, the option of defining and using
two or more methods with the same name but differ-
ent parameter lists or signatures. Overloading a method
improves code readability and maintainability, as imple-
mentation is divided into multiple methods instead of
being concentrated into a single, complex one.

While method overloading is a prominent feature in many OOP languages, such as Java and C++,
it is not entirely supported in Python. Python is a dynamically typed language and datatype bind-
ing occurs at runtime. This is known as late binding and it differs from the static binding used in
languages like Java and C++, in which overloaded methods are invoked at compile time based on the
arguments they are supplied with. In Python, when multiple methods with the same name are defined,
the last definition overrides all previous ones. As an example, consider method calculateTotal-
Salary() in the Employee class. The method computes the annual salary of the employee without
the bonus. A second method that calculates the total salary plus the bonus can be implemented with
the same name, thus, overloading calculateTotalSalary(). In this case, the first method will be
ignored and any reference to it will raise an error, as shown in the following example:

Observation 3.23 – Polymorphism/
Method Overloading: The concept of
using method overloading to imple-
ment two or more methods with the
same name but different signatures.

39
40 # Create and use a new instance of the 'Manager' class
41 mgr1 = Manager("Maria", "Rena", "0123456789", 14500, "Marketing")
42
43 # Call inherited behaviour from super class 'Person'
44 print(mgr1.getFullName())
45 print(mgr1.getContact())
46
47 # Call inherited behaviour from super class 'Employee'
48 print(mgr1.getAnnualSalary())
49 print(mgr1.getDepartment())

1 # Define class 'Employee'
2 class Employee:
3
4 # Define method 'calculateTotalSalary'
5 def calculateTotalSalary(self):
6 return(self.salary + self.allowances)
7 # Define a method overloading 'calculateTotalSalary'
8 def calculateTotalSalary (self, bonus):
9 return(self.salary + self.allowances) + bonus

86 Handbook of Computer Programming with Python

Output 3.5:

Total salary is 22000

TypeError Traceback (most recent call last)
<ipython-input-8-517bl73547e9> in <module>

22
23 # This method ca11 wi11 generate an error

---> 24 print("Tota1 sa1ary is ", emp2.calculateTotalSalary())

TypeError: calculateTotalSalary() missing 1 required positional argument: 'bonus'

3.5.1 method overloAding through oPtionAl PArAmeters in Python

Although Python does not directly support method
overloading in the same form as other OOP languages, it
offers an alternative approach to achieve the same func-
tionality. Instead of resorting to the creation of multiple
methods, it allows methods to take optional parameters
with default values. When a method is invoked in the
code, the programmer can choose whether to provide
the parameter values or not. This, in turn, dictates which
block of statements would be executed within the method. Commonly, the None value is used to
assign a default null value to the attribute.

In the example below, constructor method calculateTotalSalary() is defined with
optional parameter bonus. The implementation subsequently returns different values, depending
on whether a new value has been assigned to the optional parameter. If this is not the case, the
default None value is used.

Observation 3.24 – Method
Overloading in Python: In Python,
use optional method parameters
to emulate the method overload-
ing feature available in other OOP
languages.

10
11 # Create and use the 'emp1' object
12 emp1 = Employee()
13 emp1.salary = 15000
14 emp1.allowances = 5000
15 print("Total salary is ", emp1.calculateTotalSalary(2000))
16
17 # Create and use the 'emp2' object
18 emp2 = Employee()
19 emp2.salary = 18000
20 emp2.allowances = 4000
21 # This method call will generate an error
22 print("Total salary is ", emp2.calculateTotalSalary())

1 class Employee:
2
3 def calculateTotalSalary(self, bonus = None):
4 # None statement supports both 'is' and '==' comparison operators
5 if bonus is None:
6 return(self.salary + self.allowances)
7 else:

87Object-Oriented Programming

Output 3.5.1:

Total salary is 24000
Total salary is 20000

3.6 OVERLOADING OPERATORS

Operator overloading refers to the process of changing
the default behavior of an operator based on the oper-
ands being used. A classic case of operator overloading
in Python is the modification of the behavior of the addi-
tion (+) and multiplication (*) operators based on the
input type. For instance, when the addition operator is
used on two numbers it performs regular numerical
addition, but when it is used with strings it concatenates them. Similarly, when the multiplication
operator is used on numbers it multiplies them, while when it is used on a string and an integer it
repeats the string. The reader should note that this fundamental operator overloading functionality
works on operands of primitive data types, like in the following example:

Output 3.6.a:

3
2
Python is fun
Python is fun is fun is fun

Observation 3.25 – Operator
Overloading: Apply the + and *
operators on operands of different
primitive data types to yield different
results.

1 a = 1
2 b = 2
3 print(a + b) # Adds the two numbers
4 print(a * b) # Multiplies the two numbers
5
6 a = 'Python'
7 b = ' is fun'
8 print(a + b) # Concatenates the two strings
9 print(a + b * 3) # Concatenates and repeats the string

8 return(self.salary + self.allowances) + bonus
9
10 emp1 = Employee()
11 emp1.salary = 15000
12 emp1.allowances = 5000
13 emp2 = Employee()
14 emp2.salary = 18000
15 emp2.allowances = 4000
16
17 print("Total salary is ", emp2.calculateTotalSalary(2000))
18 print("Total salary is ", emp1.calculateTotalSalary())

88 Handbook of Computer Programming with Python

If the addition operator is used on user-defined objects it raises a TypeError, since it does not
support the instance type, as shown below:

Output 3.6.b:

TypeError Traceback (most recent call last)
<ipython-input-11-527139aab026> in <module>

11
12 # Attempting the following print will generate a TypeError

---> 13 print(empl + emp2)

TypeError: unsupported operand type(s) for +: 'Employee' and 'Employee'

This issue can be bypassed by utilizing the built-in
magic or dunder methods, which can be invoked by
means of the respective operators. For instance, in the
case of the addition operator the associated __add__()
method is firstly extended in terms of its functionality
and, subsequently, invoked as shown in the following
script:

1 # Define class 'Employee'
2 class Employee:
3
4 salary = 0
5
6 # Create and use two objects of the 'Employee' class
7 emp1 = Employee()
8 emp1.salary = 15000
9 emp2 = Employee()
10 emp2.salary = 22000
11
12 # Attempting the following print will generate a TypeError
13 print(emp1 + emp2)

Observation 3.26 – Magic or Dunder
Methods: Special methods invoked
when a basic operator is called, with
a double underscore as a prefix and a
suffix. They are used to overload oper-
ators with the object type of operands.

1 # Define class 'Employee'
2 class Employee:
3
4 # Overload the + operator to add the 'salary' of two objects
5 def __add__(self, other):
6 return self.salary + other.salary
7
8 # Create the two objects of the 'Employee' class
9 emp1 = Employee()
10 emp1.salary = 15000
11 emp2 = Employee()
12 emp2.salary = 22000
13
14 # Invoke the overloaded + operator by extending the '__add__' method
15 print(emp1 + emp2)

89Object-Oriented Programming

Output 3.6.c:

37000

In order to implement operator overloading, the programmer has to define the appropriate magic
method according to the operator in the class definition.

Tables 3.1–3.4 provide a list of magic methods corresponding to the respective binary,
 comparison, unary, and assignment operators. Changing the implementation of the magic method
associated with the respective operator can provide a different meaning to that particular operator.
For example, the plus (+) operator can be used with the Employee objects to add their salaries (i.e.,
emp1 + emp2). Similarly, the less than (<) operator can be used to compare which employee was
hired first, or which is older. Conceptually, the idea is to use operator overloading in order to define
and implement the functionality of operators in a way that is logical and appropriate in the context
of the overall program structure and requirements.

TABLE 3.1
List of Binary Operators and Their
Corresponding Magic Method

Operator Magic Method

+ __add__(self, other)
− __sub__(self, other)
* __mul__(self, other)
// __floordiv__(self, other)
/ __div__(self, other)
% __mod__(self, other)
** __pow__(self, other)
<< __lshift__(self, other)
>> __rshift__(self, other)
& __and__(self, other)
^ __xor__(self, other)
| __or__(self, other)

TABLE 3.2
List of Comparison Operators and Their
Corresponding Magic Method

Operator Magic Method

< __lt__(self, other)
> __gt__(self, other)
<= __le__(self, other)
>= __ge__(self, other)
== __eq__(self, other)
!= __ne__(self, other)

90 Handbook of Computer Programming with Python

3.6.1 overloAding built-in methods

While Python does not support overloading of custom
methods in a class, it does so for built-in methods. This
allows the programmer to change the default behavior of
an existing method within the context of a class. For
example, in the case of the print() method, the default
behavior is to print a string if the input is text or an
object reference if the argument is an object, as shown in
the following example:

Observation 3.27 – Overloading
Built-In Methods: It is possible to
overload built-in methods (e.g.,
print, len, bool) by extending the
functionality of their respective magic
methods.

1 # Define class 'Employee'
2 class Employee:
3 Pass
4
5 # Create a new 'emp1' object based on the class
6 emp1 = Employee()
7 emp1.firstName = "George"
8 emp1.lastName = "Comma"
9
10 # Use the print method to show the object's reference
11 print(emp1)

TABLE 3.3
List of Unary Operators and Their
Corresponding Magic Method

Operator Magic Method

– __neg__(self, other)
+ __pos__(self, other)
~ __invert__(self, other)

TABLE 3.4
List of Assignment Operators and Their
Corresponding Magic Method

Operator Magic Method

+= __iadd__(self, other)
−= __isub__(self, other)
*= __imul__(self, other)
/= __ifloordiv__(self, other)
//= __idiv__(self, other)
%= __imod__(self, other)
**= __ipow__(self, other)
<<= __ilshift__(self, other)
>>= __irshift__(self, other)
&= __iand__(self, other)
^= __ixor__(self, other)
|= __ior__(self, other)

91Object-Oriented Programming

Output 3.6.1.a:

<__main__.Employee object at 0x000002A2140033D0>

Nevertheless, when an object is used as an argument, it can be overloaded. Using the usual
Employee example, overloading the appropriate magic method, in this particular instance
__str__(), allows the program to print the respective employee’s details (e.g., firstName,
lastName) instead of the object reference as in the following example:

Output 3.6.1.b:

Employee name: George Comma Salary: 15000

3.7 ABSTRACT CLASSES AND INTERFACES IN PYTHON

An abstract class is a class that cannot be instantiated. It
serves as a blueprint or template for creating sub classes,
but it cannot be used to create objects. An abstract class
contains declarations of abstract methods. Declarations
of this type include the names and parameter lists of
the methods, but no implementation. The latter must be
defined in the corresponding sub class.

In order to create abstract classes and methods, mod-
ules ABC and abstractmethod must be imported to
the program. The syntax for doing so is the following:

from abc import ABC, abstractmethod

ABC stands for Abstract Base Classes. Newly created abstract classes inherit from ABC and
must include at least one abstract method using the @abstractmethod built-in decorator,

1 # Define class 'Employee'
2 class Employee:
3
4 # Define and extend the constructor of the class
5 def __init__(self, first, last, salary):
6 self.firstName = first
7 self.lastName = last
8 self.salary = salary
9
10 # Overload print: extend the functionality of ‘__str__’
11 def __str__(self):
12 return "Employe name: " + self.firstName + " " + \
13 self.lastName + " Salary: " = str(self.salary)
14
15 # Create and use the 'emp1' object based on the 'Employee' class
16 emp1 = Employee("George", "Comma", 15000)
17
18 # Use the overloaded print method
19 print(emp1)

Observation 3.28 – Abstract Class: A
class that cannot be instantiated, but
serves as a template for sub classes.
Abstract classes contain declara-
tions of abstract methods (i.e., meth-
ods whose implementation must be
defined in the sub classes or non-
abstract methods).

92 Handbook of Computer Programming with Python

with no implementation. The following script provides an example of an abstract class (i.e.,
Employee) with one abstract method (i.e., getTotalSalary()). Running this script raises an
error, since abstract classes cannot instantiate objects:

Output 3.7.a:

TypeError Traceback (most recent call last)
<ipython-input-16-47belb52dd97> in <module>

11
12 # Abstract classes cannot instantiate objects

---> 13 empl = Employee()

TypeError: can't instantiate abstract class Employee with abstract methods getTotalSalary

Once the abstract class is implemented, it can be used as a super class for deriving sub classes. Sub
classes of this type must implement the abstract method of the abstract class as a minimum require-
ment. In this context, as shown in the first of the following scripts, sub class FullTimeEmployee
will raise an error, since it does not implement the abstract method (i.e., getTotalSalary()) of
its super abstract class (i.e., Employee). On the contrary, the second script presents the implemen-
tation of abstract method getTotalSalary() that resolves this issue:

1 # Import ABC
2 from abc import ABC, abstractmethod
3
4 # Define abstract class 'Employee'
5 class Employee(ABC):
6
7 # Define abstract method 'getTotalSalary', which must be empty
8 @abstractmethod
9 def getTotalSalary(self):
10 Pass
11
12 # Abstract classes cannot instantiate objects
13 emp1 = Employee()

1 # Import ABC
2 from abc import ABC, abstractmethod
3
4 # Define abstract class 'Employee'
5 class Employee(ABC):
6
7 # Define abstract method 'getTotalSalary'
8 @abstractmethod
9 def getTotalSalary(self):
10 Pass
11
12 # Define class 'fullTimeEmployee' based on the abstract class
13 class fullTimeEmployee(Employee):
14
15 # Define the constructor of the sub class and its attributes
16 def __init__(self, first, last, salary, allowances):

93Object-Oriented Programming

Output 3.7.b:

TypeError Traceback (most recent call last)
<ipython-input-12-7e5c51df1210> in <module>

21
22 # Error will be raised as the sub class does not implement the abstract method

---> 23 ftl = fullTimeEmployee("Maria", "Rena", 15000, 6000)

TypeError: Can't instantiate abstract class fullTimeEmployee with abstract methods getTotalSalary

Output 3.7.c:

21000

17 self.__first = first
18 self._last = last
19 self.__salary = salary
20 self.__allowances = allowances
21
22 # Error will be raised as the sub class does not implement
23 # the abstract method
24 ftl = fullTimeEmployee("Maria", "Rena", 15000, 6000)

1 # Import ABC
2 from abc import ABC, abstractmethod
3
4 # Define abstract class 'Employee'
5 class Employee(ABC):
6
7 # Define abstract method 'getTotalSalary'
8 @abstractmethod
9 def getTotalSalary(self):
10 Pass
11
12 # Define class 'fullTimeEmployee' based on the abstract class
13 class fullTimeEmployee(Employee):
14
15 # Define the constructor of the sub class and its attributes
16 def __init__(self, first, last, salary, allowances):
17 self.__first = first
18 self._last = last
19 self.__salary = salary
20 self.__allowances = allowances
21
22 # Implement the abstract method of the abstract class
23 def getTotalSalary(self):
24 return self.__salary + self.__allowances
25
26 # Create and use a new 'fullTimeEmployee' object
27 ftl = fullTimeEmployee("Maria", "Rena", 15000, 6000)
28 print(ftl.getTotalSalary())

94 Handbook of Computer Programming with Python

Abstract classes may include both abstract and non-abstract methods with implementations. Sub
classes that inherit from the abstract class also inherit the implemented methods. If required, the
latter can be overridden, but in all cases, implementations must include the abstract method.

3.7.1 interfACes

In OOP, an interface refers to a class that serves as a template for the creation of other classes. Its
main purpose is to improve the organization and efficiency of the code by providing blueprints
for prospective classes. As such, interfaces describe the behavior of inherited classes, similarly
to abstract classes. However, contrary to the latter, they
cannot contain non-abstract methods. Python does not
support the explicit creation of interfaces. However,
since it does support multiple inheritance, the program-
mer can mimic the interface functionality by utilizing
abstract class inheritance, limited to the exclusive use of
abstract methods.

3.8 MODULES AND PACKAGES IN PYTHON

Modules and packages refer to structures used for orga-
nizing code in Python. Modules are files containing
Python code structures (e.g., classes, methods, attributes,
or simple variables) signified by the .py file extension.
Instead of rewriting particular blocks of code, modules
can be imported into other Python files or applications,
thus allowing for a modular programming approach
based on reusable code.

Abstract classes and interfaces are two of the pro-
gramming structures commonly stored in modules, from where they can be imported on demand.
In the example provided in the following script, the entire definition of class Employee is stored
in a module named employee.py:

Observation 3.29 – Interface: A class
that cannot be instantiated but serves
as a template for sub classes. Unlike
abstract classes, interfaces cannot
have non-abstract methods.

Observation 3.30 – Module: A mod-
ule provides a way of organizing code
in Python. Modules can host classes,
methods, attributes, or even simple
variables that can be imported and
reused in other classes. Modules are
commonly used with abstract classes.

1 # 'Employee' module saved in 'employee.py' file
2 class Employee:
3
4 # Define the constructor and private attributes of the class
5 def __init__(self, first, last, salary):
6 self.__firstName = first
7 self.__lastName = last
8 self.__salary = salary
9
10 # Define the getter for annual salary
11 def getAnnualSalary(self):
12 return self.__salary * 12
13
14 # Define the getter for fullName
15 def getFullName(self):
16 return self.__firstName + " " + self.__lastName

95Object-Oriented Programming

3.8.1 the imPort stAtement

Python module files are imported using the import statement. The statement may include one or
more modules. The syntax is the following:

import module1, [module2, module3…]

Once a module is imported, its classes and methods can
be referenced using its name as a prefix (i.e., module.
classname). The following example imports the
Employee class from the associated employee.py
 module, and accesses its attributes and methods from
the main body of the program:

Output 3.8.1:

Maria Rena

3.8.2 the FROM…IMPORT stAtement

A Python module may contain several classes, methods, attributes, or variables. The from…
import statement allows the programmer to selectively import specific components from a
 module. The syntax is the following:

from module import name1, [name2, name3…]

Note that the names used in this example (e.g., name1, name2, name3) represent names of classes,
methods, or attributes.

To import all objects from a module the following syntax can be used:

from module import *

The reader should note that if a specific class is imported explicitly, it can be referenced without a
prefix, like in the next example:

Observation 3.31 – The import
Statement: Used to import either spe-
cific methods and attributes or entire
classes stored in modules.

1 # Import the 'employee.py' file as a module
2 import employee
3
4 # Use the module to create and use a new object
5 emp1 = employee.Employee("Maria", "Rena", 15000)
6 print(emp1.getFullName())
7 print()

1 # Import class ‘Employee’ from ‘employee’ module in ‘employee.py’
2 from employee import Employee
3
4 # Use the imported class to create and use a new object
5 emp1 = Employee("Alex", "Flora", 18000)
6 print(emp1.getFullName())
7 print(emp1.getAnnualSalary())

96 Handbook of Computer Programming with Python

Output 3.8.2:

Alex Flora
216000

3.8.3 PACKAges

A package is a collection of modules grouped together
in a common folder. The package folder must contain
a file with the designated name __init__.py, which
indicates that the folder is a package. The __init__.py
file can be empty, but it must be always present in the
package folder. Once the package structure is created,
Python modules can be added as required. The example in Figure 3.6 illustrates the structure of a
package named hr, containing the mandatory __init__.py file, and a module named employee.py.

Modules contained in packages can be imported to an application using the package name as a
prefix in the import statement, as shown in the following scripts:

Output 3.8.3.a:

Alex Flora
216000

Observation 3.32 – Package: A
mechanism used to store a number of
different modules in the same folder
for better code organization.

1 # Import the employee module from the 'hr' package
2 import hr.employee
3
4 # Use ‘Employee’ class stored in the module to create & use an object
5 emp1 = hr.employee.Employee("Alex", "Flora", 16000)
6 print(emp1.getFullName())
7 print(emp1.getAnnualSalary())

1 # Import ‘Employee’ class in the employee module from ‘hr’ package
2 from hr.employee import Employee
3
4 # Use the 'Employee' class of the module to create and use an object
5 emp2 = Employee ("Alex", "Flora", 15000)
6 print(emp2.getFullName())
7 print(emp2.getAnnualSalary())

FIGURE 3.6 Package hr contains the __init__.py file and the employee.py module.

97Object-Oriented Programming

Output 3.8.3.b:

Alex Flora
180000

3.8.4 using modules to store AbstrACt ClAsses

Modules may be also used to store abstract classes or interfaces. In the following example, abstract
class IEmployee is stored in module employee.py, which is contained in the hr package named:

The following script demonstrates how the programmer can import the IEmployee class to the
application, and use it to create a sub class (FullTimeEmployee):

1 # Use ‘abc’ module to create an abstract class: store it as a module
2 # ('employee.py') in the hr package
3 from abc import ABC, abstractmethod
4
5 # Define abstract class 'IEmployee' and its behavior
6 class IEmployee(ABC):
7 @abstractmethod
8 def getTotalSalary(self):
9 Pass
10 @abstractmethod
11 def getFullName(self):
12 Pass

1 # Import the 'IEmployee' class from the employee module ('hr' package)
2 from hr.employee import IEmployee
3
4 # Define a new sub class inheriting from the 'IEmployee' super class
5 class fullTimeEmployee(IEmployee):
6
7 # The constructor, attributes & behavior of the sub class
8 def __init__(self, first, last, salary, allowances):
9 self.__first = first
10 self.__last = last
11 self.__salary = salary
12 self.__allowances = allowances
13
14 def getTotalSalary(self):
15 return self.__salary + self.__allowances
16
17 def getFullName(self):
18 return self.__first + " " + self.__last
19
20 # Create and use a new object
21 ftl = fullTimeEmployee("Maria", "Rena", 15000, 6000)
22 print(ftl.getFullName())
23 print(ftl.getTotalSalary())

98 Handbook of Computer Programming with Python

Output 3.8.4:

Maria Rena
21000

3.9 EXCEPTION HANDLING

When writing programs in Python, or in any other pro-
gramming language for that matter, the code may include
errors. Depending on their nature and significance, these
errors may lead to a number of issues, such as prevent-
ing the program from executing, generating incorrect
output, or causing the program to crash. It is, thus, the
responsibility of the programmer to provide error iden-
tification and handling solutions, whenever possible.
Errors can be classified into three main categories:

• Compile Time Errors: They occur due to incor-
rect syntax, datatype use, or parameters in a
method call among others. Whenever the compiler
encounters a compile error in the program it will
stop execution. Compile time errors are the easiest
to handle and can be fixed easily by correcting the
problematic code line(s).

• Logical Errors: They occur due to incorrect pro-
gram logic. A program containing logical errors
may run normally without crashing, but will gen-
erate incorrect output. Logical errors are handled by testing the application with various
different input values, and making corrections to the program logic as necessary.

• Runtime Errors: They occur during the execution of a program, due to external factors
not necessarily related to the code. For example, a user may provide an invalid input that
the application is not expecting, or the code is attempting to read a file that does not exist
in the system. In Python, these types of errors raise exceptions and cause the program to
crash and terminate abruptly. To prevent this, the programmer should catch these excep-
tions by adding appropriate error handling code to the program.

3.9.1 hAndling exCePtions in Python

In Python, when a runtime error occurs, the pro-
gram crashes and a built-in exception is raised. The
exception provides information about the error. For
example, running the following script will cause a
ZeroDivisionError exception as it attempts to
divide a value by 0. The exception provides information
about the nature of the issue (i.e., division by zero).

Observation 3.33 – Types of Errors:
There are three types of errors that
may be encountered:

 1. Compile Time: This is due
to incorrect syntax and will
not allow the program to
execute.

 2. Logical: This error type will
allow execution of the pro-
gram but may produce incor-
rect output.

 3. Runtime: Raised because of
unexpected external issues,
wrong input, or wrong
expressions. This error
type will cause the program
to crash.

Observation 3.34 – Handling
Exception: Use the try…exception…
[else:]…[finally] syntax to identify
possible errors that might be encoun-
tered during execution and handle
them appropriately, avoiding abnormal
termination of the program.

1 a = 10
2 b = 0
3 print(a / b)

99Object-Oriented Programming

Output 3.9.1.a:

ZeroDivisionError Traceback (most recent call last)
<ipython-input-2-dd04aeeae314> in <module>

1 a = 10
2 b = 0

----> 3 print(a / b)

ZeroDivisionError: division by zero

Exceptions can be handled using a try/except block of statements. As the name suggests, this
structure consists of two distinct blocks: try and except. The try block includes critical state-
ments that are most likely to cause an exception. When the exception occurs within the try block,
the execution of the program jumps to the except block. This part contains code that handles the
exception appropriately. For example, it may display a related user message, close an open file, or
log the error to a file. If no exception is raised in the try block, the program skips the except
block and execution continues as normal.

Two optional blocks may also be added to the excep-
tion handling code, namely else and finally. The
else block contains statements that are executed in
case no exception occurs. The finally block contains
code that must be executed irrespectively of whether an
exception occurs or not, and is mainly used for releasing
external resources, such as closing an open file.

The main Python syntax for catching exceptions is shown below:

try:
 critical statement
except[ExceptionClass as err]:
 exception handling statements
[else:
 statements to execute when exception has not occurred
finally:
 statements to execute whether an exception has occurred or not]

The ExceptionClass is optional, and refers to the type of exception being handled. If omitted,
all types of exceptions are handled by the except block.

The following example is an improved version of the code used in previous examples, since in
this occasion the program will not crash abruptly. Instead, it will terminate with a user-friendly
error message:

1 # Declare variables 'a' and 'b'
2 a, b = 10, 0
3
4 """ Try to divide the variables and if an exception is raised
5 execute the alternative statement in the ‘except’ block """
6 try:
7 print(a / b)
8 except:
9 print("An error has occurred")

Observation 3.35 – Raising Exceptions:
Instead of using built-in exceptions, it is
possible to define user-defined excep-
tion to address specific errors in the
program execution.

100 Handbook of Computer Programming with Python

Output 3.9.1.b:

An error has occurred

3.9.1.1 Handling Specific Exceptions
Trying to catch all types of errors within a single try/except block is not considered good pro-
gramming practice, as it does not allow the programmer to handle exceptions on a case-by-case
basis. Python provides various different built-in exception classes that are raised automatically,
according to the type of error being encountered. These specific exceptions can be utilized by refer-
ring to their designated names. Table 3.5 lists a number of common built-in exception classes in
Python.

The example presented below demonstrates how a specific error can be handled using the
ZeroDivisionError exception class:

Output 3.9.1.1:

An error has occurred
division by zero

A try block may also contain multiple except blocks. This is useful when the programmer wants
to handle various different types of errors. However, only one of these blocks will be executed when

1 # Declare variables 'a' and 'b'
2 a, b = 10, 0
3
4 # Attempt to print the result of the division of 'a' by 'b'
5 try:
6 print(a / b)
7
8 # If a specific 'ZeroDivisionError' occurs print a relevant message
9 except ZeroDivisionError as err:
10 print("An error has occurred")
11 print(err)

TABLE 3.5
Common Exception Classes in Python

Exception Class Description

ArithmeticError Raised when arithmetic operations fail. Includes the following exception sub
classes: OverflowError, ZeroDivisionError, FloatingPointError

OverflowError The result of an arithmetic operation is out of range
ZeroDivisionError Attempting to divide by zero
FloatingPointError Floating-point operation failure
IndexError An array index is invalid
AttributeError A non-existing attribute is referenced for an instance
TypeError An operator or method is applied to an inappropriate type of object
FileNotFoundError A file is not found
ValueError The parameter of a method is of an inappropriate type

101Object-Oriented Programming

an exception occurs. When multiple except blocks are used, the code structure must start with the
more specific exception classes and end with the more generic ones. In this case, the latter are used
as an added measure of trying to handle unexpected errors that are not accounted for explicitly. The
syntax of a multiple exceptions block is provided below:

try:
 # critical statements
 pass
except FileNotFoundError:
 # handle FileNotFound exception
 pass
except (IndexError, ArithmeticError):
 # except block with multiple exceptions
 # index out of range in an array and arithmetic error
 pass
except:
 # must be placed at end. Handles all other errors
 pass

3.9.2 rAising exCePtions

In Python, built-in exceptions are raised automatically when a corresponding runtime error occurs.
However, it also allows raising exceptions defined by the programmer. This is achieved by using the
raise keyword followed by the exception name. When raising user-defined exceptions, it is also
possible to provide a string parameter that describes the reason for raising the exception. The next
example demonstrates such a case, where if the user input (i.e., user’s age) is less than 18, a user-
defined exception (i.e., ValueError) is raised:

Output 3.9.2.a:

Enter your age: 17

ValueError Traceback (most recent call last)
<ipython-input-6-de16dc8d8553> in <module>

4 # If the input is an integer less than 18 raise an error
5 if age < 18:

----> 6 raise ValueError("Age cannot be below 18")

ValueError: Age cannot be below 18

In the example below, built-in exception AttributeError is raised when the value of private
attribute __first is invalid.

1 # Accepts the user's age
2 age = int(input("Enter your age: "))
3
4 # If the input is an integer less than 18 raise an error
5 if age < 18:
6 raise ValueError("Age cannot be below 18")

102 Handbook of Computer Programming with Python

Output 3.9.2.b:

First name must be less than 15 characters

Raising exceptions is also a convenient way of handling invalid values passed to an attribute setter
method. However, in this case, instead of raising built-in exceptions, it is preferable to create cus-
tom, in-class ones.

3.9.3 user-defined exCePtions in Python

As mentioned, Python raises built-in exceptions whenever a runtime error occurs. However, for
custom errors, Python also allows the creation of custom exceptions that can be raised from within
the code. For example, instead of raising built-in exception AttributeError, the programmer
can create a user-defined exception by deriving a new class from the Exception base class, as
shown below:

class NewExceptionName (Exception):
 pass

In the following script, user-defined exception FirstNameException is created and subse-
quently raised in the setter method, when the length of the first name exceeds the limit of 14
characters:

1 # Define class 'Employee'
2 class Employee:
3
4 # Define the getter method
5 def getFirstName(self):
6 return self.__first
7
8 # Define the setter method
9 def setFirstName(self, value):
10 if len(value) < 15:
11 self.__first = value
12 else: # Raise error if the input exceeds 14 characters
13 raise AttributeError(“First name must be less than 15 \
14 characters”)
15
16 # Attempt to create a new object and set the first name
17 try:
18 emp1 = Employee()
19 emp1.setFirstName("Maria Rena White") # Exception raised
20
21 # Raise the ‘AttributeError’ exception if the first name exceeds 14
22 # characters
23 except AttributeError as err:
24 print(err)
25 except:
26 print("An error has occurred")

103Object-Oriented Programming

Output 3.9.3:

First name should be less than 15 characters

3.10 CASE STUDY

Sherwood real estate requires an application to manage properties. There are two types of proper-
ties: apartments and houses. Each property may be available for rent or sale.

Both types of properties are described using a reference number, address, built-up area, number
of bedrooms, number of bathrooms, number of parking slots, pool availability, and gym availabil-
ity. A house requires extra attributes such as the number of floors, plot size and house type (villa
or townhouse). An apartment requires additional attributes such as floor and number of balconies.

Each type of property (house or apartment) may be available for rent or sale.
A rental property should include attributes such as deposit amount, yearly rent, furnished (yes or

no), and maids’ room (yes or no). A property available for sale has attributes such as sale price and
estimated annual service charge.

1 # Define the new exception class based on the built-in exceptions
2 class FirstNameException(Exception):
3
4 def __init__(self, message):
5 super().__init__(message)
6
7 # Define class 'Employee'
8 class Employee:
9
10 # Getter method
11 def getFirstName(self):
12 return self.__first
13
14 # Setter method
15 def setFirstName(self, value):
16 if len(value) < 15:
17 self.__first = value
18 else:
19 # Raise an extended exception 'FirstNameException' if
20 # the first name exceeds 14 chars
21 raise FirstNameException(
22 # Raise error
23 “First name should be less than 15 characters”)
24
25 # Create and use the new object handling possible user-defined
26 # exceptions
27 try:
28 emp1 = Employee()
29 emp1.setFirstName("Maria Rena White") # Exception raised
30 except FirstNameException as err:
31 print(err)
32 except:
33 print("An error has occurred")

104 Handbook of Computer Programming with Python

All properties include a fixed agent commission of 2%. Both types of sale properties have a fixed
tax of 4%.

All properties require a method to display the details of the property.
All properties should include a method to compute the agent commission. For rental properties,

agent commission is calculated by using the yearly rental amount, whereas for purchase properties
it is calculated using the sale price.

Both types of purchase properties should include a method to compute the tax amount. Tax
amount is computed based on the sale price.

Design and implement a Python application that creates the four types of properties (e.g.,
RentalApartment, RentalHouse, SaleApartment, SaleHouse) by using multiple
inheritance and abstract classes. Implement class attributes and instance attributes using encapsula-
tion. All numeric attributes, such as price, should be validated for inputs with a suitable minimum
and maximum price.

Define the methods in the abstract class and implement it in the respective classes. Override the
print method to display each property details.

Test your application by creating new properties of each type and calling the respective methods.

3.11 EXERCISES

 1. Using the diagram shown below, write Python code for the following:

 a. Create a class named Student.
 b. Create appropriate getters and setters using the @property decorator for Student_

Name and GPA attributes. The Student_ID and Email attributes are read only.
Create only getter methods for these attributes.

 c. Add a private class attribute named MAX_ID and set it to 0.

105Object-Oriented Programming

 d. Add a default constructor method to the Student class. The default constructor
should initialize the GPA attribute to 0 and Student_ID to MAX_ID + 1.

 e. Add an overloaded constructor that takes Student_Name and GPA as arguments
and initializes private data variables with the values provide. In addition, it should set
the Student_ID to MAX_ID + 1 and the email attribute to first_name.last_name@
university.edu.

 f. Modify the setter method of the GPA attribute to check if the provided value is between
0 and 4 before storing it.

 g. Add a destructor method to the Student class. The method should print the message
“All student records destroyed”.

 h. Instantiate two new objects called std1 and std2, using the default and the
 overloaded constructors, respectively.

 i. Print the data values stored in each object’s attributes.
 j. Delete objects std1 and std2.

mailto:first_name.last_name@university.edu
mailto:first_name.last_name@university.edu

https://taylorandfrancis.com

107

4 Graphical User Interface
Programming with Python

Ourania K. Xanthidou
Brunel University London

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

Sujni Paul
Higher Colleges of Technology

CONTENTS

4.1 Introduction .. 108
4.1.1 Python’s GUI Modules ... 109
4.1.2 Python IDE (Anaconda) and Chapter Scope .. 109

4.2 Basic Widgets in Tkinter .. 109
4.2.1 Empty Frame .. 110
4.2.2 The Label Widget ... 111
4.2.3 The Button Widget .. 119
4.2.4 The Entry Widget ... 120
4.2.5 Integrating the Basic Widgets ... 121

4.3 Enhancing the GUI Experience .. 126
4.3.1 The Spinbox and Scale Widgets inside Individual Frames 126
4.3.2 The Listbox and Combobox Widgets inside LabelFrames 131
4.3.3 GUIs with CheckButtons, RadioButtons and SimpleMessages 138

4.4 Basic Automation and User Input Control .. 146
4.4.1 Traffic Lights Version 1 – Basic Functionality ... 146
4.4.2 Traffic Lights Version 2 – Creating a Basic Illusion .. 148
4.4.3 Traffic Lights Version 3 – Creating a Primitive Automation 149
4.4.4 Traffic Lights Version 4 – A Primitive Screen Saver with a Progress Bar 151
4.4.5 Traffic Lights Version 5 – Suggesting a Primitive Screen Saver 156

4.5 Case Studies .. 159
4.6 Exercises ... 159

DOI: 10.1201/9781003139010-4

https://doi.org/10.1201/9781003139010-4

108 Handbook of Computer Programming with Python

4.1 INTRODUCTION

In modern day software development, creating an application with an intuitive Windows style
Graphical User Interface (GUI) is a must in order to make it attractive for the user. There are four
essential concepts related to this, and the associated programming tools:

• Widgets: The different components used to cre-
ate an application GUI. These are relatively sim-
ple, pre-defined objects available through Python
libraries. In this chapter, the libraries and modules
used include tkinter and PIL, providing visual
attributes that supply the necessary windows
object aesthetic. The associated objects can be as
simple as labels, texts, and buttons or as complex
as frames and grids.

• Options: Characteristics or attributes of a widget/
object that dictate the way the latter looks and
behaves (e.g., the object color, text, position, or
alignment). Value changes, usually integrated
with interactions between the user and the GUI,
control aspects like the visual appearance or for-
mat of the application and its behavior.

• Methods: Pre-defined or newly developed snip-
pets of Python code, aiming to affect the widgets
by changing the values of their properties/attri-
butes. There is a wealth of method in the various
packages offered by Python, such as tkinter and
PIL. They can be as simple or complex as the
developer intends.

• Events: The interaction between the user of a
GUI-based Windows style application and the
various widgets of the application is expressed
through the various available events that trigger
the execution of particular commands or blocks
of code. There are numerous such events offered
by Python, some of them applicable to several dif-
ferent widgets. Examples are the click or double-
click of a mouse, pressing the enter key in the
keyboard, hovering over a widget, or changing the
text of a text widget.

Event-driven (or visual) programming is the process during which one or more of the properties/
attributes of a widget/object changes state or value. This is done through the use of specific methods
and is triggered through interactions between the user and the widget/object, caught by the associ-
ated event.

The focus of this chapter is to introduce the concept of event-driven (or visual) programming by
presenting some of the most popular widgets and the associated methods and properties/attributes/
options, and the most commonly used events for the creation of a GUI experience.

Observation 4.1 – Widget: A graphi-
cal component used to create the
interface of the Python application.
This is provided as a pre-defined class
of the tkinter or PIL packages.

Observation 4.2 – Option: An attri-
bute of the widget that controls its
look and behavior.

Observation 4.3 – Method: A spe-
cific structure of code that changes
the value of an option of a particular
widget. It can be either pre-defined or
newly developed.

Observation 4.4 – Event: An inter-
action between the user and an
object that causes a change in terms
of the object’s appearance and/or
value. Many types of interactions are
available.

Observation 4.5 – Event-Driven (or
Visual) Programming: The concept
of handling events, through the use
of methods in order to change the
options of an object and, thus, their
look and actions.

109Graphical User Interface Programming

4.1.1 Python’s gui modules

Python provides a rather complete set of widgets (pre-
sented as classes) to create objects for user-friendly
applications, a comprehensive and developer-friendly set
of methods available through these widgets, a rich set
of attributes of these widgets, and an adequate number of
well-defined programmable events that can be triggered
through user interactions. There are two basic modules
that define the components and functionality of these widgets, namely the tkinter and the PIL modules.

The tkinter module provides a number of classes, including the fundamental Tk class, as well as
numerous other classes associated with GUIs. It consists of the following:

• Tk/Tcl: A toolkit that includes widgets for GUI applications.
• Tkinter.Tix: An extension of tkinter including more advanced GUI widgets (e.g., spin

boxes, trees).
• tkinter.ttk: a collection of widgets, some of which are part of the original tkinter module

(e.g., combo boxes, progress bars).

Although it is not possible to describe all the widgets, methods, properties, and events available
through all these modules in detail in this chapter, an effort is made to present the most commonly
used ones and provide examples of their application. This chapter gradually moves from simpler to
more sophisticated cases of increasing complexity.

4.1.2 Python ide (AnACondA) And ChAPter sCoPe

In line with the approach taken in previous chapters, the Jupyter Notebook (Anaconda) is the
 platform of choice for the code developed in this chapter. Detailed download and installation
instructions are provided in the introductory Chapter 1.

It is worth noting that when writing programs in Python, or any other language indeed, it is
useful following good programming practices. It is a good habit and a helpful strategy in the long
run to use pseudocode in the form of comments before lines or blocks of code that are written to
accomplish a specific and well-defined task. This allows the reader or the owner of the program to
understand the underlying algorithm, making the program more readable and user-friendly.

It is beyond the scope of this chapter to write “highly intelligent” Python programs that create com-
plex and sophisticated GUI applications, as this would make this chapter content difficult to digest.
Instead, this chapter aims at presenting the tools and their suggested uses for the creation of common
tasks and applications, without trying to offer the most efficient or optimal solution for such tasks.

4.2 BASIC WIDGETS IN TKINTER

Arguably, when creating a GUI, there are four basic
widgets that intuitively come to mind. These are the
actual frame, and the label, the button, and the entry
widgets (the latter is commonly referred to as textbox
in other programming languages). In this section, these
particular widgets will be presented and utilized to cre-
ate simple GUI applications.

Observation 4.6 – Python GUI
Modules: The most important and
frequently used modules for GUI
programming in Python are Tk/Tcl,
Tkinter.Tix, and tkinter.ttk.

Observation 4.7 – Basic Widgets:
The basic widgets of any GUI in
Python are the form, and the label,
the button, and the entry widgets.

110 Handbook of Computer Programming with Python

4.2.1 emPty frAme

The basic frame is the initial parent object that a Python GUI application requires in order to sup-
port the GUI interface and functionality. The following Python code creates a basic, empty frame
titled “Python Basic Window Frame”:

Output 4.2.1.a:

A few things are worth noting in this example:

• Every frame is an object of the tk class, initiated by the Tk() constructor. The object must
have a name.

• It is common practice to give a title to every frame using the title() method.
• The mainloop() method runs the frame and puts tkinter in a wait state, which inter-

nally monitors user-generated events, such as keyboard and mouse activity.

By default, the basic frame is resizable and its size is
determined automatically. If there is a requirement
for specifically defining and controlling whether it
should be resizable, two methods can be used, namely:
resizable() and geometry(). If it is preferred to
have a non-resizable frame, one can just pass Boolean
value False to both parameters of the resizable()
method. Accordingly, passing True would result in a
resizable frame. The geometry() method is used to
pass the initial size of the frame as a string. It is also
possible to define the maximum and minimum sizes of
the window frame, as well as its background color. The
aforementioned methods and their application are dem-
onstrated in the following example:

1 # Import the necessary library
2 import tkinter as tk
3
4 # Create the frame using the tk class
5 winFrame = tk.Tk()
6 winFrame.title("Python Basic Window Frame")
7
8 winFrame.mainloop()

Observation 4.8 – The mainloop()
Method: Use the mainloop()
method to monitor and control any
type of interaction between the user
and the application.

Observation 4.9 – Frame Methods: Use
the title(), resizable(), geome-
try(), maxsize(), minsize(), con-
fig() methods to configure the basic
content, size, geometry, flexibility, and
look of the main window frame.

111Graphical User Interface Programming

Output 4.2.1.b:

Once the basic frame is set, the actual GUI can be created by adding the desired widgets.

4.2.2 the lAbel Widget

The label widget is a basic widget class from the tkinter
module. It is used to display a message or image on
screen. As it does not accept input from the keyboard its
value cannot be changed directly during runtime, but
this can be done indirectly through the code. The widget
comes with several methods and the associated param-
eters and options that can be used to change its

Observation 4.10 – Labels: Basic wid-
gets used to display a message or an
image. They do not accept input and,
thus, their value cannot be changed
directly by the user. Label widgets
must be attached to a frame or win-
dow through the pack() or grid()
methods.

1 # Import the necessary library
2 import tkinter as tk
3
4 # Create the frame using the tk object
5 winFrame = tk.Tk()
6
7 # Provide a title for the frame
8 winFrame.title("Python Controlled Frame")
9
10 # The frame is resizable if the method parameters are set
11 # to True or non-zero; if set to False, it is not resizable
12 winFrame.resizable(True, True)
13
14 # The frame will have initial dimensions of 500 by 200
15 winFrame.geometry('500x200')
16
17 # The frame can be resized up to a maximum of 1500 by 600
18 winFrame.maxsize(1500, 600)
19
20 # The frame can be resized down to a minimum of 250 by 100
21 winFrame.minsize(250, 100)
22
23 # The background colour of the frame can be changed with
24 # the use of the configure method and the bg option
25 winFrame.configure(bg = 'dark grey')
26 winFrame.mainloop()

112 Handbook of Computer Programming with Python

appearance and functionality. The following script is an example showcasing the use of some of the
available options:

Output 4.2.2.a:

The script creates a window frame containing a basic label widget, used to display a text mes-
sage. The label widget (winLabel) is derived from the tk.Label class, by means of the related
tk.Label() constructor. This call takes a minimum of two parameters, namely the parent frame
(winFrame) and the text that assigns the label with a message to display. The label widget is tied
to the parent frame through the pack() method. Finally, the mainloop() method activates the
application.

An extension of this basic use of the label widget could involve the use of the grid() method,
in order to control its placement within the parent frame more efficiently:

1 # Import the tkinter library
2 import tkinter as tk
3
4 # Define the parent frame
5 winFrame = tk.Tk()
6 winFrame.title("Labels in Python")
7 winFrame.resizable(True, True)
8 winFrame.geometry('300x100')
9
10 # Create a label object based on the tk.Label class
11 winLabel = tk.Label(winFrame, text = "Hello Python programmer")
12
13 # Associate the label object with the parent frame
14 winLabel.pack()
15
16 # Run the interface
17 winFrame.mainloop()

1 # Import the tkinter library
2 import tkinter as tk
3
4 # Define the parent frame
5 winFrame = tk.Tk()
6 winFrame.title("Python Label using the Grid")
7
8 # Create a label and place it in the Grid
9 winLabel = tk.Label(winFrame, text = \
10 "Use the Grid method to \nplace the label in a static position")
11 # Specify the row and column the label

113Graphical User Interface Programming

Output 4.2.2.b:

A couple of things are noteworthy in this case:

• For clarity purposes, if the statement is lengthy, it
can be broken by inserting the backslash special
character (“\”). This character informs Python
that the statement continues on the next line.

• Using the grid() method instead of pack()
ensures that the label widget will be placed in the
respective grid cell, in this case in the first row
(row = 0) and first column (column = 0), and
that its position will not be directly adjusted based
on the size of the frame or parent widget.

It is possible to further enhance the appearance of a label
by changing its foreground and background colors, its
alignment, and its expandability, as shown in the following script. This example demonstrates the
behavior of the alignment of labels before and after resizing the window frame:

Observation 4.11 – The Backslash
Special Character (“\”): Use the
backslash special character (“\”) to
break a lengthy line.

Observation 4.12 – expand, fore-
ground, background, font, anchor:
Use the expand, foreground, back-
ground, font, and anchor options to
improve the appearance of widgets.

12 # is to be placed, regardless of the size of the parent frame
13 winLabel.grid(column = 0, row = 0)
14
15 winFrame.mainloop()

1 # Import the relevant library
2 import tkinter as tk
3
4 # The basic frame with the tk.Tk() constructor and provide a title
5 winFrame = tk.Tk()
6 winFrame.title('More options for label widgets')
7
8 # Create the 1st label and place it in the middle of the parent window
9 winLabel1 = tk.Label(winFrame, fg = 'green', font = "Arial 24",
10 text = 'A green label of Arial 24, that does not expand')
11 winLabel1.pack(expand = 'N')
12
13 # The second label that expands vertically when the frame is resized
14 winLabel2 = tk.Label(winFrame, bg = 'red', fg = 'white',
15 text = 'A label in red background that expands only vertically')
16 winLabel2.pack(expand = 1, fill = tk.Y)
17
18 # The third label that expands horizontally when the frame is resized
19 winLabel3 = tk.Label(winFrame, bg = 'blue', fg = 'yellow',
20 text = 'A label in blue background that expands only horizontally')

114 Handbook of Computer Programming with Python

Output 4.2.2.c:

A number of key observations can be made based on this example:

 1. The expand option can be used to control whether a label widget will expand in line with
its parent widget. If the value is 0 or “N”, the label will not expand.

 2. If the expand option is set to ‘Y’ or non-zero, the label widget can expand in line with its
parent widget. It can be also specified whether the expansion will be horizontal, vertical, or
both. In this case, one can use the fill option with the following arguments: X for horizontal
expansion only; Y for vertical expansion only, and BOTH for a simultaneous expansion in
both directions.

 3. The fg and bg options can be used to define the color of the foreground and background
of the label widget, respectively.

 4. The font option can be used to set up the font name and size of the text in the label widget.
 5. The anchor option can be used to ensure that the label widget will not relocate if the par-

ent widget does.

Ultimately, label widgets can provide additional functionality and can be further enhanced in terms
of their appearance. Indeed, they can be loaded with image objects with or without associated text,
and can function as buttons (covered in a later section of this chapter). If images are to be used, the
PIL module must be imported, as it provides the necessary methods to support such processes. The
following Python program uses image objects as buttons that change the text-related properties of
the main label:

21 winLabel3.pack(expand = 1, fill = tk.X)
22
23 # The fourth label 'anchored' (i.e., align always to the right/east)
24 winLabel4 = tk.Label(winFrame, anchor = 'e', bg = 'green',
25 text = 'A right, i.e., east, aligned label')
26 winLabel4.pack(expand = 1, fill = tk.BOTH)
27
28 winFrame.mainloop()

1 # Import the relevant library
2 import tkinter as tk
3 # Import the necessary image processing classes from PIL
4 from PIL import Image, ImageTk
5
6 global photo1, photo2, photo3, photo4, photo5, photo6
7
8 # Declare the methods to control the click events from each of the
9 # labels and change the settings of the main label

115Graphical User Interface Programming

10 def changeBorders(a, b):
11 winLabel5.config(relief = a, borderwidth = b)
12 def changeText(a):
13 winLabel5.config(text = a)
14 def changeAlignment(a):
15 winLabel5.config(anchor = a)
16
17 # Declare the method that will open the various images
18 def photos():
19 global photo1, photo2, photo3, photo4, photo5, photo6
20
21 image1 = Image.open('LabelsDynamicWithImageGoodMorning.gif')
22 image1 = image1.resize((100, 50), Image.ANTIALIAS)
23 photo1 = ImageTk.PhotoImage(image1)
24
25 image2 = Image.open('LabelsDynamicWithImageGoodAfternoon.gif')
26 image2 = image2.resize((100, 50), Image.ANTIALIAS)
27 photo2 = ImageTk.PhotoImage(image2)
28
29 image3 = Image.open('LabelsDynamicWithImageGoodEvening.gif')
30 image3 = image3.resize((100, 50), Image.ANTIALIAS)
31 photo3 = ImageTk.PhotoImage(image3)
32
33 image4 = Image.open('LabelsDynamicWithImageAlignLeft.gif')
34 image4 = image4.resize((100, 50), Image.ANTIALIAS)
35 photo4 = ImageTk.PhotoImage(image4)
36
37 image5 = Image.open('LabelsDynamicWithImageAlignRight.gif')
38 image5 = image5.resize((100, 50), Image.ANTIALIAS)
39 photo5 = ImageTk.PhotoImage(image5)
40
41 image6 = Image.open('LabelsDynamicWithImageAlignCenter.gif')
42 image6 = image6.resize((100, 50), Image.ANTIALIAS)
43 photo6 = ImageTk.PhotoImage(image6)
44
45 # Declare the method that will create the first row of labels
46 # that will shape the main label
47 def firstRow():
48 winLabel1a = tk.Label(winFrame, text = "Left click to \
49 \n change to raised label \nwith border width of 4",
50 relief = "raised")
51 winLabel1a.grid(column = 1, row = 0)
52 winLabel1a.bind("<Button-1>", lambda event, a = "raised",
53 b = 4: changeBorders(a, b))
54 winLabel1b = tk.Label(winFrame, text = "Left click to \n change \
55 to sunken label \nwith border width of 6", relief = "raised")
56 winLabel1b.grid(column = 2, row = 0)
57 winLabel1b.bind("<Button-1>", lambda event, a = "sunken",
58 b = 6: changeBorders(a, b))
59 winLabel1c=tk.Label(winFrame, text = "Left click to \n change \
60 to flat label \nwith border width of 8", relief = "raised")
61 winLabel1c.grid(column = 3, row = 0)

116 Handbook of Computer Programming with Python

62 winLabel1c.bind("<Button-1>", lambda event, a = "flat",
63 b = 8: changeBorders(a, b))
64
65 # Declare the method that will create the second row of labels
66 # that will shape the main border
67 def secondRow():
68 winLabel2a = tk.Label(winFrame, text = "Left click to \n change \
69 to ridge label \nwith border width of 10", relief = "raised")
70 winLabel2a.grid(column = 1, row = 4); winLabel2a.bind("<Button-1>",
71 lambda event, a = "ridge", b = 10: changeBorders(a, b))
72 winLabel2b = tk.Label(winFrame, text="Left click to \nchange to \
73 solid label \nwith border width of 12", relief = "raised")
74 winLabel2b.grid(column = 2, row = 4); winLabel2b.bind("<Button-1>",
75 lambda event, a = "solid", b = 12: changeBorders(a, b))
76 winLabel2c = tk.Label(winFrame, text="Left click to \n change to \
77 groove label \nwith border width of 14", relief = "raised")
78 winLabel2c.grid(column = 3, row = 4); winLabel2c.bind("<Button-1>",
79 lambda event, a = "groove", b = 14: changeBorders(a, b))
80
81 # Declare the method that will create the third row of labels
82 # that will change the text of the main label
83 def thirdRow():
84 global photo1, photo2, photo3, photo4, photo5, photo6
85
86 winLabel3a = tk.Label(winFrame,
87 text="Double left click to\n change to",
88 image = photo1, compound = 'left', relief = "raised")
89 winLabel3a.grid(column = 0, row = 1)
90 winLabel3a.bind("<Double-Button-1>", lambda event,
91 a = "Good morning": changeText(a))
92 winLabel3b = tk.Label(winFrame, image = photo2, relief = "raised")
93 winLabel3b.grid(column = 0, row = 2)
94 winLabel3b.bind("<Double-Button-1>", lambda event,
95 a = "Good afternoon": changeText(a))
96 winLabel3c=tk.Label(winFrame, image=photo3, compound="center",
97 text="Double click to\n change the text to", relief="raised")
98 winLabel3c.grid(column = 0, row = 3)
99 winLabel3c.bind("<Double-Button-1>", lambda event,
100 a = "Good evening": changeText(a))
101
102 # Declare the method that will create the fourth row of labels
103 # that will adjust the alignments of the text of the main label
104 def fourthRow():
105 winLabel4a = tk.Label(winFrame, image = photo4,
106 text = "Right click to \n left align the text\nof the label",
107 compound = "center", relief = "raised")
108 winLabel4a.grid(column = 4, row = 1)
109 winLabel4a.bind("<Button-3>", lambda event,
110 a = "w": changeAlignment(a))
111 winLabel4b = tk.Label(winFrame, image = photo5, relief = "raised",
112 text = "Right click to \nright align the text\nof the label")
113 winLabel4b.grid(column = 4, row = 2)

117Graphical User Interface Programming

Output 4.2.2.d:

As mentioned, the PIL module provides the necessary classes to support processes related with
images, in this case Image and ImageTk.

The photos() method includes six sets of three lines/steps, and deals with the opening and
reading of the images, as well as their preparation in order to be loaded to the respective labels. In
the first step (i.e., the first line of each set) the Image class and the open() method are used to read
the images and create an image object. Next, the script uses the resize() method with the

114 winLabel4b.bind("<Button-3>", lambda event,
115 a = "e": changeAlignment(a))
116 winLabel4c = tk.Label(winFrame, image = photo6, compound = "right",
117 text = "Right click to \ncenter align the text\nof the label",
118 relief = "raised")
119 winLabel4c.grid(column = 4, row = 3)
120 winLabel4c.bind("<Button-3>", lambda event, a = "center":
121 changeAlignment(a))
122
123 # The basic frame with the tk.Tk() constructor and provide a title
124 winFrame = tk.Tk()
125 winFrame.title("Playing with Label options at runtime")
126
127 photos()
128 firstRow()
129 secondRow()
130 thirdRow()
131 fourthRow()
132
133 # Create the main label
134 winLabel5=tk.Label(winFrame, text = "...", font= "Arial 18", width= 30)
135 winLabel5.grid(column = 2, row = 2)
136
137 winFrame.mainloop()

118 Handbook of Computer Programming with Python

preferred dimensions for the image and the ANTIALIAS option in order to ensure that quality is
maintained when downsizing an image to fit the label. This applies to all six cases. During the final
step, a new image object is created based on the previously processed image. This is accomplished
by using PhotoImage method from the ImageTk class for each of the six cases. It is worth noting
that this process applies to images with a gif file type. The reader should check the Python docu-
mentation to find the exact classes, methods, and options that should be used when working with
other types of images, as well as the exact process that must be followed. Nevertheless, the latter
should not differ significantly from the process presented above.

The next part of the script involves the use of four
methods (firstRow(), secondRow(), thirdRow(),
and fourthRow()) to create the twelve labels of the
application (i.e., three labels for each row). For each
label, three statements are used. The first statement cre-
ates the label widget and sets its text property to show
the associated message, and the relief property to
enhance the widget appearance to raised. The second
statement places the label in the desired position within
the grid of the current frame. The third statement calls
the bind method in order to associate the particular
widget with an event.

There are a number of events that can be associated
with the various widgets. This example involves three
basic events, namely: <Button-1> that is triggered
when the user left-clicks on the parent widget (label in
this case), <Button-3> that is triggered when the user
right-clicks, and <Double-Button-1> that is trig-
gered when the parent widget is double left-clicked.

Whenever an event is triggered, a method is usually
called in order to execute a set of statements. If the
method is to accept arguments from the calling state-
ment, the lambda event expression must be also called in
order to define the arguments before they are passed to
the method.

There are a number of options offered for the purpose
of changing the appearance of the border of a label wid-
get. These include options such as raised, sunken,
flat, ridge, solid, and groove and have to be set
through the relief property. Property borderwidth,
used with an integer argument, is used to change the
default border width of a label.

Finally, it is possible to have both a text and an image
appearing in a label widget. In such cases, it is neces-
sary to combine the two elements using the compound
expression. The expression accepts different alignment
values, namely left when the image is to be placed
before the text, right when the image is to be placed
after the text, and center when both objects are to be
placed at the same position, one over the other.

Observation 4.13 – resize(),
ANTIALIAS: Use the resize()
method to set the preferred dimen-
sions of the image, and the
ANTIALIAS option to ensure that the
highest quality is maintained when
resizing an image.

Observation 4.15 – lambda: Use
the lambda event expression to define
the arguments passed by an event to
a method.

Observation 4.16 – relief, bor-
derwidth: Use the relief and
borderwidth properties to adjust
the visual attributes of the label.

Observation 4.17 – compound,
left, right, center: Use the
compound filter to combine text and
image objects in a label. Options
include left, right, and center.

Observation 4.14 – <button-1>,
<button-3>, <Double-Button-1>:
Use the <Button-1>, <Button-3>,
and <Double-Button-1> events
to catch when the parent wid-
get is left-clicked, right-clicked or
double-left-clicked.

119Graphical User Interface Programming

4.2.3 the button Widget

As mentioned previously, the label widget is not meant
to be used to trigger events initiated by the user interac-
tion with the GUI. In such cases, the button widget can
be used instead. This widget also belongs to the tkinter
module, although it can be also found in the ttk module,
where button objects can be created by defining the but-
ton class. The following script demonstrates the possible
output of five different user interactions through the use of
a simple button widget. The script also provides user feedback depending on the type of interaction,
by displaying relevant messages through a label widget:

Observation 4.18 – The Button
Widget: Use the button widget to
create objects that are responsive to
various types of events (e.g., click,
double-click, right-click), and the cor-
responding options or properties to
modify its appearance.

1 # Import the relevant library
2 import tkinter as tk
3
4 # Define the method that controls the mouse click events
5 def changeText(a):
6 winLabel.config(text = a)
7
8 # The basic frame with the tk.Tk() constructor and provide a title
9 winFrame = tk.Tk()
10 winFrame.title("A simple button and label application")
11
12 # Create the label
13 winLabel = tk.Label(winFrame, text = "...")
14 winLabel.grid(column = 1, row = 0)
15
16 # Create the button widget and bind it with the associated events
17 winButton=tk.Button(winFrame, text="Left, right, or double left Click "\
18 "\nto change the text of the label", font = "Arial 16", fg = "red")
19 winButton.grid(column = 0, row = 0)
20 winButton.bind("<Button-1>", lambda event, \
21 a = "You left clicked on the button": changeText(a))
22 winButton.bind("<Button-3>", lambda event, \
23 a = "You right clicked on the button": changeText(a))
24 winButton.bind("<Double-Button-1>", lambda event, \
25 a = "You double left clicked on the button": changeText(a))
26 winButton.bind("<Enter>", lambda event, \
27 a = "You are hovering above the button": changeText(a))
28 winButton.bind("<Leave>", lambda event, \
29 a = "You left the button widget": changeText(a))
30
31 winFrame.mainloop()

120 Handbook of Computer Programming with Python

Output 4.2.3:

As shown, the process of creating a button widget object and assigning values to its basic options
or properties (e.g., text, font, fg) is not different to the one used in the case of the label widget.
Accordingly, binding the button widget to an event and calling a method (with or without argu-
ments) is also following the same syntax and logic as in the label widget case.

4.2.4 the entry Widget

The entry widget is a basic widget from the ttk module
(tkinter package), which allows input from the keyboard
as a single line. The widget offers several methods and
options that allow the control of its appearance and/or
functionality. The widget must be placed in a parent
widget, usually the current frame, through the .pack()
or .grid() methods. The following script introduces
the basic use of the entry widget, and its output:

Observation 4.19 – Entry/Text: Use
the entry and/or text widgets from the
ttk module (tkinter package) to allow
the user to enter text as a single line
or multiple lines respectively. When
using the text widget, specify the num-
ber of text lines through the height =
<number of lines> option.

1 # Import the necessary library
2 import tkinter as tk
3 from tkinter import ttk
4
5 # Create the frame using the tk object
6 winFrame = tk.Tk()
7 winFrame.title("Python GUI with text")
8
9 # Create a StringVar object to accept user input from the keyboard
10 textVar = tk.StringVar()
11
12 # Set the initial text for the StringVar
13 textVar.set('Enter text here')
14
15 # Create an entry widget and associate it to the StringVar object
16 winText = ttk.Entry(winFrame, textvariable = textVar, width = 40)
17 winText.grid(column = 1, row = 0)
18
19 winFrame.mainloop()

121Graphical User Interface Programming

Output 4.2.4:

In line with common GUI development practice, the frame is created first and any child objects
(in this case the entry widget) are created and placed in it subsequently. Finally, the mainloop()
method is called to run the application and monitor its interactions. The width property specifies
the number of characters the widget can display. The reader should note that this is not necessarily
the total number of accepted characters, rather the number of displayed characters. It must be also
noted that if it is necessary to have multiple lines entered, it would be preferable to use the text wid-
get (tk module, tkinter library) and specify the number of lines through the height = <number
of lines> option.

The script also introduces a method that helps the programmer monitor the execution of the
application: the StringVar() constructor from the tk class. When associated with relevant wid-
gets, such as the entry widget, its functionality is to create objects that accept text input. Once such
an object is created it can have its content set through the .set() method. If no content is set, the
object will remain empty until the user provides input through the associated widget. The entry
widget and the StringVar object are associated via the textvariable.

4.2.5 integrAting the bAsiC Widgets

Having introduced the syntax and functionality of the basic Python widgets included in the tkinter,
PIL, and ttk modules/libraries, it would be useful to attempt to create an interface that integrates
all of them in one application. The following Python script displays a message to the user, accepts
a text input from the keyboard, and uses a number of buttons to change the various attributes of the
text, through the integration of label, entry, and button widgets:

1 # Import the necessary library
2 import tkinter as tk
3 from tkinter import ttk
4
5 # The tempText variable will store the contents of the entry widget
6 global tempText
7 # The textVar object will associate the entry widget with the input
8 global textVar
9 # Define the winText widget
10 global winText
11
12 # ===
13 # Declare the methods that will run the application
14 def showHideLabelEntry(a):
15 if (a == 's'):
16 winText.grid()
17 elif (a == 'h'):

122 Handbook of Computer Programming with Python

18 winText.grid_remove()
19
20 def showHideEntryContent(a):
21 global tempText
22 global textVar
23 if (a == 's'):
24 if (tempText!= ''):
25 textVar.set(tempText)
26 if (a == 'h'):
27 tempText = textVar.get()
28 textVar.set('')
29
30 def enableLockDisableEntryWidget(a):
31 if (a == 'e'):
32 winText.config(state = 'normal')
33 elif (a == 'l'):
34 winText.config(state = 'disabled')
35
36 def boldContentsOfEntryWidget(a):
37 if (a == 'b'):
38 winText.config(font = 'Arial 14 bold')
39 elif (a == 'n'):
40 winText.config(font = 'Arial 14')
41
42 def passwordEntryWidget(a):
43 if (a == 'p'):
44 winText.config(show = '*')
45 elif (a == 'n'):
46 winText.config(show = '')
47
48 # ===
49 # Declare the method that will create the application GUI
50 def createGUI():
51 createLabelEntry()
52 showHideButton()
53 showHideContent()
54 enableDisable()
55 boldOnOff()
56 passwordOnOff()
57
58 # Create a label and an entry widget to prompt for input and
59 # associate it with a StringVar object
60 def createLabelEntry():
61 global textVar
62 global winText
63
64 winLabel = tk.Label(winFrame, text = 'Enter text:', bg = 'yellow',
65 font = 'Arial 14 bold', relief = 'ridge', fg = 'red', bd = 8)

123Graphical User Interface Programming

66 winLabel.grid(column = 0, row = 0)
67
68 # A StringVar object to accept user input from the keyboard
69 textVar = tk.StringVar()
70 winText = ttk.Entry(winFrame, textvariable = textVar, width = 20)
71 winText.grid(column = 1, row = 0)
72
73 # Create two button widgets to show/hide the label and entry widgets
74 def showHideButton():
75 winButtonShow = tk.Button(winFrame, font='Arial 14 bold',
76 text = 'Show the\nentry widget', fg='red',
77 borderwidth=8, height=3, width=20)
78 winButtonShow.grid(column = 0, row = 1)
79 winButtonShow.bind('<Button-1>',lambda event,
80 a = 's': showHideLabelEntry(a))
81 winButtonHide = tk.Button(winFrame, font = 'Arial 14 bold',
82 text = 'Hide the\nentry widget',
83 fg = 'red', borderwidth = 8, height = 3, width = 20)
84
85 winButtonHide.grid(column = 1, row = 1)
86 winButtonHide.bind('<Button-1>', lambda event, \
87 a = 'h': showHideLabelEntry(a))
88
89 # Two button widgets to show/hide the contents of the entry widget
90 def showHideContent():
91 winButtonContentShow = tk.Button(winFrame, font = 'Arial 14 bold',
92 text = 'Show the contents\nof the entry widget',
93 fg = 'blue', borderwidth = 8, height = 3, width = 20)
94 winButtonContentShow.grid(column = 0, row = 2)
95 winButtonContentShow.bind('<Button-1>', lambda event,
96 a = 's': showHideEntryContent(a))
97 winButtonContentHide = tk.Button (winFrame,
98 text = 'Hide the contents\nof the entry widget',
99 font = 'Arial 14 bold', fg = 'blue', borderwidth = 8,
100 height = 3, width = 20)
101 winButtonContentHide.grid (column = 1, row = 2)
102 winButtonContentHide.bind ('<Button-1>', lambda event,
103 a = 'h': showHideEntryContent(a))
104
105 # Button widgets to enable/disable & lock/unlock the entry widget
106 def enableDisable():
107 winButtonEnableEntryWidget = tk.Button(winFrame,
108 text = 'Enable the\nentry widget', font = 'Arial 14 bold',
109 fg = 'green', borderwidth = 8, height = 3, width = 20)
110 winButtonEnableEntryWidget.grid(column = 0, row = 3)
111 winButtonEnableEntryWidget.bind('<Button-1>', lambda event,
112 a = 'e': enableLockDisableEntryWidget(a))
113 winButtonDisableEntryWidget = tk.Button(winFrame,

124 Handbook of Computer Programming with Python

114 text = 'Lock the\nentry widget', font = 'Arial 14 bold',
115 fg = 'green', borderwidth = 8, height = 3, width = 20)
116 winButtonDisableEntryWidget.grid(column = 1, row = 3)
117 winButtonDisableEntryWidget.bind('<Button-1>', lambda event,
118 a = 'l': enableLockDisableEntryWidget(a))
119
120 # Create two button widgets to switch the "bold" property
121 # of the entry widget content on or off
122 def boldOnOff():
123 winButtonBoldEntryWidget = tk.Button (winFrame,
124 text = 'Bold contents of\nthe entry widget',
125 font = 'Arial 14 bold',
126 fg = 'brown', borderwidth = 8, height = 3, width = 20)
127 winButtonBoldEntryWidget.grid (column = 0, row = 4)
128 winButtonBoldEntryWidget.bind ('<Button-1>', lambda event,
129 a = 'b': boldContentsOfEntryWidget(a))
130 winButtonNoBoldEntryWidget = tk.Button (winFrame,
131 text = 'No bold contents of \nthe entry widget',
132 font = 'Arial 14 bold', fg = 'brown', borderwidth = 8,
133 height = 3, width = 20)
134 winButtonNoBoldEntryWidget.grid (column = 1, row = 4)
135 winButtonNoBoldEntryWidget.bind ('<Button-1>', lambda event,
136 a = 'n': boldContentsOfEntryWidget(a))
137
138 # Button widgets to convert the entry widget text to a password
139 def passwordOnOff():
140 winButtonPasswordEntryWidget = tk.Button(winFrame,
141 text ='Show entry widget \ncontent as password', borderwidth=8,
142 font = 'Arial 14 bold', fg = 'grey', height = 3, width = 20)
143 winButtonPasswordEntryWidget.grid(column = 0, row = 5)
144 winButtonPasswordEntryWidget.bind('<Button-1>', lambda event,
145 a = 'p': passwordEntryWidget(a))
146 winButtonNormalEntryWidget = tk.Button(winFrame,
147 font = 'Arial 14 bold',
148 text = 'Show entry widget \ncontent as normal text',
149 fg = 'grey', borderwidth = 8, height = 3, width = 20)
150 winButtonNormalEntryWidget.grid(column = 1, row = 5)
151 winButtonNormalEntryWidget.bind('<Button-1>', lambda event,
152 a = 'n': passwordEntryWidget(a))
153
154 # ===
155 # Create the frame using the tk object and run the application
156 winFrame = tk.Tk()
157 winFrame.title("Wrap up the basic widgets")
158 createGUI()
159 winFrame.mainloop()

125Graphical User Interface Programming

Output 4.2.5.a–4.2.5.f:

126 Handbook of Computer Programming with Python

There are some noteworthy ideas presented in this script,
relating to the need to hide, disable, and lock the text of
a widget, or make it appear as a password. For example,
sometimes it is required to hide, and subsequently
unhide, a widget. This is often referred to as adjusting
its visibility. In Python this is achieved with the use
of the grid() and grid _ remove() methods. It
should be stated that when the widget is invisible it is
not deleted, but merely removed from the grid.
Method showHideLabelEntry() implements this
functionality.

In a similar fashion, the method showHideEntry-
Content() implements the functionality of hiding and
displaying the contents of the same entry widget using
the set() and get() methods. The reader should note
that the content of the entry widget should be stored in
a variable, since tampering with the set() and get()
methods may accidentally delete it. Likewise, method
enableLockDisableEntryWidget() implements
the functionality of locking/disabling the entry widget
using the state option and its normal and disabled values.

Finally, if it is required to utilize text font properties, such as bold or italic, one can use the
font option as shown in the boldContentsOfEntryWidget() method. It is also possible to
make the content of the entry widget appear as a password. Method passwordEntryWidget()
uses option show to replace each character with a chosen placeholder character, in this case an
asterisk (“*”).

The rest of the methods are assigned with the creation of the application GUI.

4.3 ENHANCING THE GUI EXPERIENCE

The widgets, methods, options, and events presented in the previous sections should provide a good
enough basis to create a GUI application for a basic system, as they cover all the fundamental
aspects of basic interaction. However, they do not address two major requirements in computer
programming: validation and efficiency. In the case of numbers, specific widgets like spinbox and
scale are frequently used for the purposes of validation and improvement of visual appearance. In
the case of text, for tasks requiring optimized and synchronized organization, widgets like listbox
and combobox can be used. Checkbuttons and radiobuttons are used frequently in cases where
improved selection options are required. Finally, in order to improve the organization of the GUI
and avoid accidental repositioning of the widgets at runtime, the various objects can be placed in
individual frames within the main frame of the application.

4.3.1 the sPinbox And sCAle Widgets inside individuAl frAmes

One of the main challenges in programming is to identify and highlight the user’s mistakes when
entering numbers as part of their interaction with an application. It is often the case that either
numeric values entered are outside the allowed range or they are alphanumeric sequences consist-
ing of both text and numbers. In order to validate that a number is entered correctly two different
approaches are followed: (a) code is written to ensure the correct, acceptable form of the input
number, and (b) widgets like spinbox and scale are used to restrict the user’s options when selecting
numbers. The following Python script makes use of such widgets to implement a small applica-
tion in which the user may enter the speed limit, the current speed, and the fine per km/h over the

Observation 4.22 – show: Use the
show option to replace the text with
a password-like text, based on a pre-
ferred character/symbol.

Observation 4.20 – grid(): Use
the grid() method to position a
widget on the grid; use the grid _
remove() method to remove it with-
out deleting it.

Observation 4.21 – state, nor-
mal, disabled: Use the state
option with the normal or dis-
abled flags to enable or disable
(lock) the functionality of a widget.

127Graphical User Interface Programming

speed limit. Once these numbers are entered, the fine is calculated based on the following formula:
fine = (current speed − speed limit) × fine per km/h. For improving the organization of the GUI,
the script uses a frame widget, which the various other widgets are placed upon:

1 # Import the necessary modules
2 import tkinter as tk
3 from tkinter import ttk
4
5 # Declare and initialise the global variables and widgets
6 # and define the associated methods
7 currentSpeedValue, speedLimitValue, finePerKmValue = 0, 0, 0
8 global speedLimitSpinbox
9 global finePerKmScale
10 global currentSpeedScale
11 global fine
12
13 # ===
14 # Define the methods to run the control speed application
15 # Define the method to control the Current Speed Scale widget change
16 def onScale(val):
17 global currentSpeedValue
18 v = float(val)
19 currentSpeedValue.set(v)
20 calculateFine()
21
22 # Define the method to control the Speed Limit Spinbox widget change
23 def getSpeedLimit():
24 global speedLimitValue
25 v = float(speedLimitSpinbox.get())
26 speedLimitValue.set(v)
27 calculateFine()
28
29 # Define the method to control the Fine per Km Spinbox widget change
30 def getFinePerKm(val):
31 global finePerKmValue
32 v = int(float(val))
33 finePerKmValue.set(v)
34 calculateFine()
35
36 # Define the method to calculate the Fine given the 3 user parameters
37 def calculateFine():
38 global currentSpeedValue, speedLimitValue, finePerKmValue
39 global fine
40 diff = float(currentSpeedValue.get())-float(speedLimitValue.get())
41 finePerKm = float(finePerKmValue.get())
42 if (diff <= 0):
43 fine.config(text = 'No fine')
44 else:
45 fine.config(text = 'Fine in USD: '+ str(diff * finePerKm))
46
47 # ===

128 Handbook of Computer Programming with Python

48 # Define the methods that will create the interface of the application
49 def createGUI():
50 currentSpeedFrame()
51 speedLimitFrame()
52 finePerKmFrame()
53 fineFrame()
54
55 # Create the frame to include the Current Speed widgets
56 def currentSpeedFrame():
57 global currentSpeedValue
58
59 CurrentSpeedFrame = tk.Frame (winFrame, bg = 'light grey', bd = 2,
60 relief = 'sunken')
61 CurrentSpeedFrame.pack()
62 CurrentSpeedFrame.place(relx = 0.05, rely = 0.05)
63 currentSpeed = tk.Label(CurrentSpeedFrame, text = 'Current speed:',

 width = 24)
64 currentSpeed.config(bg = 'light blue', fg = 'red', bd = 2,
65 font = 'Arial 14 bold')
66 currentSpeed.grid(column = 0, row = 0)
67
68 # Create Scale widget; define variable to connect to scale widget
69 currentSpeedValue = tk.DoubleVar()
70 currentSpeedScale = tk.Scale (CurrentSpeedFrame, length = 200,
71 from_ = 0, to = 360)
72 currentSpeedScale.config(resolution = 0.5,
73 activebackground = 'dark blue', orient = 'horizontal')
74 currentSpeedScale.config(bg = 'light blue', fg = 'red',
75 troughcolor = 'cyan', command = onScale)
76 currentSpeedScale.grid(column = 1, row = 0)
77 currentSpeedSelected = tk.Label(CurrentSpeedFrame, text = '...',
78 textvariable = currentSpeedValue)
79 currentSpeedSelected.grid(column = 2, row = 0)
80
81 # Create the frame to include the Speed Limit widgets
82 def speedLimitFrame():
83 global speedLimitValue
84 global speedLimitSpinbox
85
86 SpeedLimitFrame = tk.Frame(winFrame, bg = 'light yellow', bd = 4,
87 relief = 'sunken')
88 SpeedLimitFrame.pack()
89 SpeedLimitFrame.place(relx = 0.05, rely = 0.30)
90 # Create the prompt label on the Speed Limit frame
91 speedLimit=tk.Label(SpeedLimitFrame, text='Speed limit:', width=24)
92 speedLimit.config(bg = 'light blue', fg = 'yellow', bd = 2,
93 font = 'Arial 14 bold')
94 speedLimit.grid(column = 0, row = 0)
95 # Create the Spinbox widget; define variable to connect to Spinbox
96 speedLimitValue = tk.DoubleVar()

129Graphical User Interface Programming

97 speedLimitSpinbox = ttk.Spinbox(SpeedLimitFrame,
98 from_ = 0, to = 360, command = getSpeedLimit)
99 speedLimitSpinbox.grid(column = 1, row = 0)
100 speedLimitSelected = tk.Label(SpeedLimitFrame, text = '...',
101 textvariable = speedLimitValue)
102 speedLimitSelected.grid(column = 2, row = 0)
103
104 # Create the frame to include the Fine per Km widgets
105 def finePerKmFrame():
106 global finePerKmValue
107
108 FinePerKmFrame = tk.Frame(winFrame, bg = 'light blue',
109 bd = 4, relief = 'sunken')
110 FinePerKmFrame.pack()
111 FinePerKmFrame.place (relx = 0.05, rely = 0.55)
112 # Create the prompt label on the Fine per Km frame
113 finePerKm=tk.Label(FinePerKmFrame, text='Fine/Km overspeed (USD):',
114 width = 24)
115 finePerKm.config(bg = 'light blue', fg = 'brown', bd = 2,
116 font = 'Arial 14 bold')
117 finePerKm.grid(column = 0, row = 0)
118 # Create Scale widget; define variable to connect to Scale widget
119 finePerKmValue = tk.IntVar()
120 finePerKmScale = ttk.Scale(FinePerKmFrame, orient = 'horizontal',
121 length = 200, from_ = 0, to = 100, command = getFinePerKm)
122 finePerKmScale.grid(column = 1, row = 0)
123 finePerKmSelected = tk.Label(FinePerKmFrame, text = '...',
124 textvariable = finePerKmValue)
125 finePerKmSelected.grid(column = 2, row = 0)
126
127 # Create the frame to include the Fine for speeding
128 def fineFrame():
129 global fine
130
131 FineFrame = tk.Frame(winFrame, bg='yellow', bd=4, relief='raised')
132 FineFrame.pack()
133 FineFrame.place(relx = 0.05, rely = 0.80)
134 # Create the label that will display the fine on the Fine frame
135 fine = tk.Label(FineFrame, text = 'Fine in USD:...', fg = 'blue')
136 fine.grid(column = 0, row = 0)
137 # ===
138 # Create the main frame for the application and run it
139 winFrame = tk.Tk()
140 winFrame.title("Control speed")
141 winFrame.config(bg = 'light grey')
142 winFrame.resizable(False, False)
143 winFrame.geometry('500x170')
144 createGUI()
145 winFrame.mainloop()

130 Handbook of Computer Programming with Python

Output 4.3.1:

Conceptually, the script may be divided into three parts.
The first part involves the declaration of the global vari-
ables and their initialization, so that they can be used
in runtime when the user interacts with the program
(line 7). This is important since the methods imple-
menting the interaction will be using the same variables
dynamically. At this stage, the main frame is also ini-
tialized and formed (lines 139–145), although this is
done outside the initial phase. Eventually, a frame is
created with a single label placed in it, with the sole
purpose of displaying the calculated fine for speeding
(lines 128–137).

The second part includes the creation of the four dif-
ferent frames inside the main frame, and the placement
of the relevant widgets in each of them. These frames
are created by means of a call to the relevant methods,
through the createGUI() method (lines 49–54).

In the first case, (lines 56–80), the frame is placed
inside the main window frame in a particular position
(relx and rely options). Next, a label and a scale
widget are placed in the frame. The reader should note
the use of the config() method that defines the back-
ground (bg), foreground (fg), borderwidth (bd), and
font name and size (font) of the label. It must be also
noted that the label is placed in column 0 and row 0 of
the current frame, and not of the main window frame.

In addition to the label, the scale widget is also placed
in the frame. It is set to have a length (length) of 200
pixels, and its values are restricted within a lower bound-
ary of 0 and upper boundary of 360. The reader should
also observe the use of the config() method that sets the resolution option of the widget,
allowing for user-defined increments (including decimals) of the values, the activebackground
option that sets the color of the widget when it is active, and the orientation (orient) that can take one
of two values: horizontal or vertical. For clarity reasons, the config() method is used for
a second time to set some more options for the widget, such as the background (bg), the foreground
(fg), and the troughcolor that sets the color of the trough. Additionally, another label is placed
in the frame in order to display the current value of the scale widget, as an optional visual aid.

The second frame and the associated label introduce the spinbox widget (lines 82–103). This is
also used to control user input when entering numeric values. It is very similar to the scale widget,
allowing for the setting of the lower and upper boundaries of the accepted values, with two main
differences: (a) it is visually different, and (b) the user may directly enter a value to the textual part
of the widget, and/or control it with the increase/decrease arrows. As in the previous case, another
label is added to the frame as an extra visual aid.

Observation 4.23 – frames, relx,
rely: Use frames for improved con-
trol of the interface. Contain the vari-
ous widgets of the interface in the
relevant frames. Use options relx and
rely to place the frames in specified
positions, relative to the main window.

Observation 4.24 – scale: Use the
scale widget to create a controlled
mechanism that will accept numeri-
cal user input. The tkinter widget
has more visual options than the ttk
alternative.

Observation 4.25 – Options: Use the
required options, such as active-
background, troughcolor, bg,
fg, to modify the visual attributes of
the widget. Use the resolution
option to specify the increment and
decrement steps. Use the orient
option to specify its orientation (i.e.,
horizontal or vertical). Use the
from _ = and to = options to set the
numerical boundaries of the widget.

131Graphical User Interface Programming

The third frame introduces another scale widget
(lines 105–126). This is different to the one used in the
first frame in that (a) it is visually different and restricted
as to its visual attributes (i.e., it is not offering several of
the tk widget options), and (b) it belongs to the ttk class/
library instead of tk. The reader should notice the dis-
tinctly different visual results of the two scale widgets.

The third part defines the four methods used to control the interaction between the user and the
application (lines 16–46). The reader should note that three of the methods (i.e., onScale(val),
getSpeedLimit(), and getFinePerKm(val)) are directly associated with widgets cur-
rentSpeedScale, speedLimitSpinbox, and finePerKmScale, respectively. This is done
through the command option. More specifically, when the user interacts with a particular widget, the
resulting values are captured and the respective methods are called for the calculation of the fine. In
the case of the scale widget, the value is passed with the call to the method. This is the case for both
tk and ttk. The reader should observe (a) the use of the set and get methods applied to the objects
of the widgets in order to tamper with the widget values, (b) the use of the casing operators (i.e.,
float(), int(float())) to control the type of numerical values used in the calculation, and (c) the
declaration of the global variables that must be called and used in the methods. At the end of each
of these methods the calculateFine() method is called to perform the associated calculation.

4.3.2 the listbox And Combobox Widgets inside lAbelfrAmes

Two of the most well-known widgets used in program-
ming are the listbox and the combobox. These widgets
are used to present the user with lines of text as a list,
with the purpose of allowing them to make a selection.
This selection can be also used to synchronize the con-
tents between multiple instances of different widgets.
The programmer can be creative as to the appearance
of the widgets, as it is possible to manipulate their visual
attributes, despite the fact that the basic form cannot be
modified. The main difference between the two wid-
gets is that the former provides an open list whereas
the latter is a collapsed list that opens upon the user’s
click. Another widget which can help further enhanc-
ing the appearance of an application is the labelframe
widget. This widget is similar to the frame widget, but
it allows for a label to be specified on the frame itself,
thus, removing the need for the creation of an extra label
widget into the frame. Some of the visual attributes of
this widget (including those related to the label font) can
be manipulated.

In this section, two additional libraries are intro-
duced: random and time. The former is introduced in
order to use method randint() that generates random
numbers, and the latter in order to use process _
time() that records the starting and/or ending time of
a particular process.

The following Python script allows the user to select
a number of randomly generated integers in order to
populate a listbox. Subsequently, it sorts this list into a

Observation 4.27 – listbox, combobox:
Use the listbox and combobox widgets
to display lists of lines of text, select one
or more of these lines and, synchronize
their contents as necessary.

Observation 4.28 – labelframe: As
with the frame widget, one can use the
labelframe widget without the need to
create an extra label for descriptions.
The same options as with the frame
and label widgets apply.

Observation 4.26: Use the spinbox
widget to create a controlled mecha-
nism that will accept numerical user
input, while also allowing direct input.

Observation 4.29 – randint():
Use the randint() method of the
random library to generate random
 numbers within a specified range.

Observation 4.30 – process _
time(): Use the process _
time() method of the time library to
mark a particular moment in time and
use it to count the time elapsed for a
given process.

132 Handbook of Computer Programming with Python

second listbox before displaying the size of the list, the sum of the numbers and their average, and
the processing time for completing the sorting process:

1 # Import the necessary modules
2 import tkinter as tk
3 from tkinter import ttk
4 from tkinter import *
5 import random
6 import time
7
8 # Initialise various lists used by the listboxes, comboboxes, & methods
9 unsortedL = []; sortedL = []; statisticsData = [];
10 sizes = [5, 20, 100, 1000, 10000, 20000]
11 global UnsortedList, SortedList
12 global startTime, endTime, ListSizeSelection, size
13 global UnsortedListScrollBar, SortedListScrollBar
14 global EntryFrame, UnsortedFrame, SortedFrame
15
16 # Populate the unsorted list with random numbers and
17 # the unsorted listbox
18 def populateUnsortedList():
19 global size
20 global UnsortedListScrollBar
21 global UnsortedList
22 global ListSizeSelection
23
24 # Read the number of elements as they are selected from the combobox
25 size = int(ListSizeSelection.get())
26
27 # randint() method of the random class generates random integers
28 for i in range (size):
29 n = random.randint(-100, 100)
30
31 # Enter the generated random integer to the relevant place in the
32 # unsorted list
33 unsortedL.insert(i, n)
34
35 # Populate the listbox with the elements of the unsorted list
36 for i in range (0, size):
37 UnsortedList.insert(i, unsortedL[i])
38 UnsortedListScrollBar.config(command = UnsortedList.yview)
39
40 # Use Bubble sort to sort the list & record the statistics for later use
41 def sortToSortedList():
42 global size, startTime, endTime
43 global SortedListScrollBar
44 global SortedList
45
46 # Load the unsorted list and listbox to the sorted list and listbox
47 for i in range (0, size):
48 sortedL.insert(i, unsortedL[i])

133Graphical User Interface Programming

49
50 # Start the timer
51 startTime = time.process_time()
52
53 # The Bubble sort algorithm
54 for i in range (0, size-1):
55 for j in range (0, size-1):
56 if (sortedL[j] > sortedL[j+1]):
57 temp = sortedL[j]
58 sortedL[j] = sortedL[j+1]
59 sortedL[j+1] = temp
60
61 # End the timer
62 endTime = time.process_time()
63
64 # Load the sorted list to the relevant listbox
65 for i in range (0, size):
66 SortedList.insert(i, sortedL[i])
67 SortedListScrollBar.config(command = SortedList.yview)
68
69 # Clear all lists, listboxes, & comboboxes, & the global size variable
70 def clearLists():
71 global size
72 sortedL.clear()
73 unsortedL.clear()
74 UnsortedList.delete('0', 'end')
75 SortedList.delete('0', 'end')
76 statisticsData.clear()
77 StatisticsCombo.delete('0', 'end')
78
79 # Calculate and report the statistics from the sorting process
80 def statistics():
81 global size, startTime, endTime
82 statisticsData.clear()
83 statisticsData.insert(1, 'The size of the lists is ' + str(size))
84 statisticsData.insert(2,'The sum of the lists is '+str(sum(sortedL)))
85 statisticsData.insert(3, 'The time passed to sort the list was ' \
86 + str(round(endTime - startTime, 5)))
87 statisticsData.insert(4, 'The average of the sorted list is: ' \
88 + str(round(sum(sortedL) / size, 2)))
89 StatisticsCombo['values'] = statisticsData
90
91 # ===
92 # Define the methods that will create the GUI of the application
93 def createGUI():
94 unsortedFrame()
95 entryFrame()
96 entryButton()
97 sortButton()
98 sortedFrame()
99 clearButton()
100 statisticsButton()

134 Handbook of Computer Programming with Python

101 statisticsSelection()
102
103 # Create the labelframe & place the Unsorted Array Listbox widgets in it
104 def unsortedFrame():
105 global unsortedList
106 global UnsortedListScrollBar
107 global UnsortedList
108 global winFrame
109 global UnsortedFrame
110
111 UnsortedFrame = tk.LabelFrame (winFrame, text = 'Unsorted Array')
112 UnsortedFrame.config(bg='light grey',fg='blue',bd=2, relief='sunken')
113 # Create a scrollbar widget to attach to the UnsortedList
114 UnsortedListScrollBar = Scrollbar (UnsortedFrame, orient = VERTICAL)
115 UnsortedListScrollBar.pack(side = RIGHT, fill = Y)
116 # Create the listbox in the Unsorted Array frame
117 UnsortedList = tk.Listbox(UnsortedFrame, bg='cyan', width=13, bd=0,
118 height = 12, yscrollcommand = UnsortedListScrollBar.set)
119 UnsortedList.pack(side = LEFT, fill = BOTH)
120 # Associate the scrollbar command with its parent widget,
121 # i.e., the UnsortedList yview
122 UnsortedListScrollBar.config(command = UnsortedList.yview)
123 # Place the Unsorted frame and its parts into the interface
124 UnsortedFrame.pack(); UnsortedFrame.place(relx = 0.02, rely = 0.05)
125
126 # Create the labelframe to include the Entry widget
127 def entryFrame():
128 global unsortedList
129 global UnsortedListScrollBar
130 global ListSizeSelection
131 global EntryFrame
132 global winFrame
133
134 EntryFrame = tk.LabelFrame(winFrame, text = 'Actions')
135 EntryFrame.config(bg='light grey', fg='red', bd=2, relief = 'sunken')
136 EntryFrame.pack(); EntryFrame.place(relx = 0.25, rely = 0.05)
137 # Create the label in the Entry frame
138 EntryLabel = tk.Label(EntryFrame,
139 text='How many integers\nin the list', width = 16)
140 EntryLabel.config(bg = 'light grey', fg='red', bd = 3,
141 relief = 'flat', font = 'Arial 14 bold')
142 EntryLabel.grid(column = 0, row = 0)
143 # Create the combobox to select the number of elements in the lists
144 ListSizeSelection = tk.IntVar()
145 ListSizeCombo = ttk.Combobox(EntryFrame,
146 textvariable=ListSizeSelection, width = 10)
147 ListSizeCombo['values'] = sizes
148 ListSizeCombo.current(0)
149 ListSizeCombo.grid(column = 1, row = 0)
150
151 # Create button to insert new entries into the unsorted array & listbox
152 def entryButton():

135Graphical User Interface Programming

153 global EntryFrame
154
155 EntryButton = tk.Button(EntryFrame, text = 'Populate\nUnsorted list',
156 relief = 'raised', width = 16)
157 EntryButton.bind('<Button-1>', lambda event: populateUnsortedList())
158 EntryButton.grid(column = 0, row = 2)
159
160 # Create the button that will sort the numbers and display them
161 # in the sorted array and listbox
162 def sortButton():
163 global EntryFrame
164
165 SortButton=tk.Button(EntryFrame,text='Sort numbers\nwith BubbleSort',
166 relief = 'raised', width = 16)
167 SortButton.bind('<Button-1>', lambda event: sortToSortedList())
168 SortButton.grid(column = 1, row = 2)
169
170 # Create the labelframe to include the Sorted Array Listbox widgets
171 def sortedFrame():
172 global sortedList
173 global SortedListScrollBar
174 global SortedList
175 global winFrame
176 global SortedFrame
177
178 SortedFrame = tk.LabelFrame(winFrame, text = 'Sorted Array')
179 SortedFrame.config(bg='light grey', fg='blue', bd=2, relief='sunken')
180 # Create a scrollbar widget to attach to the SortedList
181 SortedListScrollBar = Scrollbar (SortedFrame)
182 SortedListScrollBar.pack(side = RIGHT, fill = Y)
183 # Create the listbox in the Sorted Array frame
184 SortedList = tk.Listbox (SortedFrame, bg='cyan', width=13, height=12,
185 yscrollcommand = SortedListScrollBar.set, bd = 0)
186 SortedList.pack(side = LEFT, fill = BOTH)
187 # Associate the scrollbar command with its parent widget,
188 # i.e., the SortedList yview
189 SortedListScrollBar.config(command = SortedList.yview)
190 # Place the Unsorted frame and its parts into the interface
191 SortedFrame.pack(); SortedFrame.place(relx = 0.75, rely = 0.05)
192
193 # Create the button that will clear the two listboxes and the two lists
194 def clearButton():
195 global EntryFrame
196
197 ClearButton = tk.Button(EntryFrame, text = 'Clear lists',
198 relief = 'raised', width = 16)
199 ClearButton.bind('<Button-1>', lambda event: clearLists())
200 ClearButton.grid(column = 0, row = 3)
201
202 # Create the button that will display the statistics for the sorting
203 def statisticsButton():
204 global EntryFrame

136 Handbook of Computer Programming with Python

Output 4.3.2:

Initially, the necessary libraries are imported (i.e., tkinter, time, and random, lines 2–6). Next, the
various lists, variables, and listboxes are initialized (lines 9–14). Note that the lists are not defined as
global, since they are accessed by reference by all methods in the script by default. It must be also
noted that different types of objects and/or variables must be declared as global in separate lines,
since declaring them together may raise errors. After initialization, the main frame is created and
configured in lines 227–229.

The next step is to create the application interface. In this case, the interface consists of two
distinct parts. The first includes two listboxes created and placed inside the associated labelframes
(lines 103–124 and 170–191). The use of labelframes makes the creation of additional labels obso-
lete. The visual properties of the listboxes can be configured through their options, which are almost

205
206 StatisticsButton = tk.Button(EntryFrame, text = 'Show statistics',
207 relief = 'raised', width = 16)
208 StatisticsButton.bind('<Button-1>', lambda event: statistics())
209 StatisticsButton.grid(column = 1, row = 3)
210
211 # Create the option menu that will show the statistical results
212 # from the sorting process
213 def statisticsSelection():
214 global EntryFrame
215 global StatisticsCombo
216
217 StatisticsSelection = tk.StringVar()
218 statisticsData = ['The statistics will appear here']
219 StatisticsSelection.set(statisticsData[0])
220 StatisticsCombo = ttk.Combobox(EntryFrame, width = 30,
221 textvariable = StatisticsSelection)
222 StatisticsCombo['values'] = statisticsData
223 StatisticsCombo.grid(column = 0, columnspan = 2, row = 4)
224 # ===
225
226 # Create the main frame for the application
227 winFrame = tk.Tk()
228 winFrame.title("Bubble Sort"); winFrame.config(bg = 'light grey')
229 winFrame.resizable(True, True); winFrame.geometry('650x300')
230
231 createGUI()
232
233 winFrame.mainloop()

137Graphical User Interface Programming

identical to those of an entry widget. The listboxes can
be populated at run time using the insert(index,
value) method, and cleared at run time using the
delete(index, index) method. Likewise, the
properties/options of the labelframes are similar to those
of regular frames and labels.

The second part is to create the labelframe that hosts
the comboboxes and the buttons required in the appli-
cation. The purpose of the first combobox is to display
the number of random integers in the unsorted list. The
second one displays basic statistics related to the sort-
ing process, the size of the lists, the sum and average of
the integers, and the time required to sort the list. There
are three notable observations related to the creation and
use of the comboboxes (lines 143–149 and 211–223).
Firstly, they must include a [“values”] list which will
take its values from an associated list. The latter can be
initially empty or populated. Secondly, their selection
value (e.g., textvariable), must be associated with
an object of the IntVar() class (or any similar alterna-
tive) that will store it for further use, since the selected
combobox value is not directly accessible. Thirdly, the
currently selected value must be defined through the
current(index) method.

The last step is to create the interaction between the
user and the application. For this purpose, four but-
tons are created and bound with click events to trig-
ger the respective methods. This populates, sorts, and
clears the relevant lists, and displays the basic statis-
tics. The populateUnsortedList() method uses
the randint() method to generate random integers,
and the insert() method populates the unsorted
list (lines 16–38). It is worth noting the declaration of
global variable size, and the use of the get() method
to read the value from the private attribute of the
ListSizeSelection object (line 25). The sort-
ToSortedList() method (lines 40–67) declares
global variables size, startTime and endTime,
uses the process_time() method to mark the
start and end of the sort process, and utilizes a com-
mon Bubble Sort algorithm to sort the list and populate
the sortedList. The clearLists() method uses
methods clear() to clear the values of the lists and
delete() to delete the values of the listboxes (lines
69–77). Finally, the statistics() method uses meth-
ods sum() and round() to produce the basic statistics
that will be displayed (lines 79–89).

The reader should observe the use of the scrollbar widget introduced in this script. The idea
behind, and the use of, this particular widget is intuitive and quite straightforward. Firstly, the
 labelframe inside which the scrollbar operates is created. Next, the scrollbar is created and con-
nected (packed) to the parent widget (i.e., in this case the associated labelframe), specifying its

Observation 4.33 – textvari-
able: Use the textvariable
option of the combobox to associate
it with an IntVar() object that will
store the selected value.

Observation 4.34 – current():
Use the current() method to
define the currently selected value of
the combobox.

Observation 4.35 – get(): It is nec-
essary to use the get() method to
read from the IntVar() object, as
it is private and, hence, not directly
accessible.

Observation 4.36 – clear(): Use
the clear() method to clear the val-
ues of the lists.

Observation 4.37 – xview, yview,
xscrollcommand, yscrollcom-
mand: Use the scrollbar widget to
attach a scrollbar to the associated
widget (usually a listbox). Use xview
or yview to control its orientation
(i.e., horizontal or vertical). Use the
xscrollcommand or the yscroll-
command to activate it.

Observation 4.31 – insert(),
delete(): Use the insert() and
delete() methods to populate or
clear a listbox.

Observation 4.32 – [“values”]: Use
the [“values”] property to popu-
late a combobox with an initial list of
values.

138 Handbook of Computer Programming with Python

orientation and positioning. Lastly, the widget/object that will make use of the scrollbar is cre-
ated and associated with the scrollbar through either yscrollcommand or xscrollcommand
(depending on whether the scrollbar orientation is vertical or horizontal respectively), and config-
ured to scroll the contents of the attached widget (lines 38, 120–124, and 67, 187–191).

4.3.3 guis With CheCKbuttons, rAdiobuttons And simPlemessAges

In addition to listboxes and comboboxes, there are two more widgets that users of windows-based
applications are familiar with, namely checkbuttons and radiobuttons. These widgets allow the user
to make one or more selections from a set of different available options/actions. Their main differ-
ence is that while in the case of checkbuttons the user may select more than one option at any given
time, radiobuttons only allow a single selection from the set of available options. Finally, another
handy widget available in Python the reader should be familiar with is the message widget. In this
section the most basic form of this widget will be introduced and explained.

The following script implements an interface that includes two listboxes with associated, attached
vertical scrollbars. The listboxes are populated with the names of various countries and their capital
cities. It also includes two entry boxes for accepting new entries to the listboxes. Insertions are trig-
gered using the associated button-click events. The contents of all listboxes are synchronized with
the user’s click on any listbox. The interface also includes four buttons that handle the interaction
between the application and the user, allowing for the insertion and deletion of particular entries, the
clearance of all entries from all three containers, and exiting the application. Finally, two checkbut-
tons control whether the relevant containers are enabled or not, and two radiobuttons whether they
are visible:

1 import tkinter as tk
2 from tkinter import *
3 from tkinter import ttk
4 from tkinter import messagebox
5
6 countries = ['E.U.', 'U.S.A.', 'Russia', 'China', 'India', 'Brazil']
7 Capital = ['Brussels', 'Washinghton', 'Moscow', 'Beijing', 'New Delhi',

'Brazilia']
8
9 global newCountry, newCapital
10 global CountriesFrame, CapitalFrame
11 global checkButton1, checkButton2
12 global radioButton
13 global CountriesList, CapitalList
14 global CountriesScrollBar, CapitalScrollBar
15
16 # Create the interface for the listboxes
17 def drawListBoxes():
18 global CountriesList, CapitalList
19 global CountriesFrame, CapitalFrame
20 global CountriesScrollBar, CapitalScrollBar
21
22 # Create CountriesFrame labelframe; place CountriesList widget in it
23 CountriesFrame = tk.LabelFrame(winFrame, text = 'Countries')
24 CountriesFrame.config(bg = 'light grey', fg = 'blue', bd = 2,

139Graphical User Interface Programming

25 width = 15, relief = 'sunken')
26 # Create a scrollbar widget to attach to the CountriesList
27 CountriesScrollBar = Scrollbar(CountriesFrame, orient = VERTICAL)
28 CountriesScrollBar.pack(side = RIGHT, fill = Y)
29 # Create the listbox in the CountriesFrame
30 CountriesList = tk.Listbox(CountriesFrame, bg = 'cyan', width = 15,
31 height = 8, yscrollcommand = CountriesScrollBar)
32 CountriesList.pack(side = LEFT, fill = BOTH)
33 # Associate the scrollbar command with its parent widget,
34 # (i.e., the CountriesList yview)
35 CountriesScrollBar.config(command = CountriesList.yview)
36 # Place the Countries frame and its parts on the interface
37 CountriesFrame.pack(); CountriesFrame.place(relx = 0.03, rely = 0.05)
38 CountriesList.bind('<Double-Button-1>',
39 lambda event: alignList('countries'))
40 # Create the CapitalFrame labelframe; place CapitalList widget on it
41 CapitalFrame = tk.LabelFrame(winFrame, text = 'Countries Capital')
42 CapitalFrame.config(bg = 'light grey', fg = 'blue', bd = 2,
43 width = 13, relief = 'sunken')
44 # Create a scrollbar widget to attach to the CapitalFrame
45 CapitalScrollBar = Scrollbar(CapitalFrame, orient = VERTICAL)
46 CapitalScrollBar.pack(side = RIGHT, fill = Y)
47 # Create the listbox in the CapitalFrame
48 CapitalList = tk.Listbox(CapitalFrame, bg = 'cyan',
49 yscrollcommand = CapitalScrollBar, width = 16, height = 8, bd = 0)
50 CapitalList.pack(side = LEFT, fill = BOTH)
51 # Associate the scrollbar command with its parent widget,
52 # (i.e., the CapitalList yview)
53 CapitalFrame.pack(); CapitalFrame.place(relx = 0.70, rely = 0.05)
54 CapitalList.bind('<Double-Button-1>',
55 lambda event: alignList('capital'))
56 # Create the interface for the new entries
57 def drawNewEntries():
58 global newCountry, newCapital
59
60 # Create the labelframe and place the newCountry entry widget on it
61 NewCountryFrame = tk.LabelFrame(winFrame, text = 'New Country')
62 NewCountryFrame.config(bg = 'light grey', fg = 'blue', bd = 2,
63 width = 13, relief = 'sunken')
64 NewCountryFrame.pack(); NewCountryFrame.place(relx= 0.03, rely = 0.75)
65 newCountry = tk.StringVar(); newCountry.set('')
66 NewCountryEntry = tk.Entry(NewCountryFrame, textvariable = newCountry,
67 width = 15)
68 NewCountryEntry.config(bg= 'dark grey', fg = 'red', relief = 'sunken')
69 NewCountryEntry.grid(row = 0, column = 0)
70
71 # Create the labelframe and place the newCapital entry widget on it
72 NewCapitalFrame = tk.LabelFrame(winFrame, text = 'New Capital')
73 NewCapitalFrame.config(bg = 'light grey', fg = 'blue', bd = 2,
74 width = 13, relief = 'sunken')

140 Handbook of Computer Programming with Python

75 NewCapitalFrame.pack(); NewCapitalFrame.place(relx= 0.70, rely = 0.75)
76 newCapital = tk.StringVar(); newCapital.set('')
77 NewCapitalEntry = tk.Entry(NewCapitalFrame, textvariable = newCapital,
78 width = 15)
79 NewCapitalEntry.config(bg= 'dark grey', fg = 'red', relief = 'sunken')
80 NewCapitalEntry.grid(row = 0, column = 0)
81
82 # Create the interface for the action buttons
83 def drawButtons():
84 # Create the labelframe that will host the buttons
85 ButtonsFrame = tk.Frame(winFrame)
86 ButtonsFrame.config(bg= 'light grey', bd=2, width=14, relief='sunken')
87 ButtonsFrame.pack(); ButtonsFrame.place(relx = 0.30, rely = 0.07)
88
89 newRecordButton = tk.Button(ButtonsFrame, text = 'Insert\nnew record',
90 width = 11, height = 2)
91 newRecordButton.grid(row = 0, column = 0)
92 newRecordButton.bind('<Button-1>', lambda event,
93 a = 'insertRecord': buttonsClicked(a))
94
95 deleteRecordButton = tk.Button (ButtonsFrame,
96 text = 'Delete\n record', width = 11, height = 2)
97 deleteRecordButton.grid (row = 0, column = 1)
98 deleteRecordButton.bind('<Button-1>', lambda event,
99 a = 'deleteRecord': buttonsClicked(a))
100
101 clearRecordsButton = tk.Button (ButtonsFrame,
102 text = 'Clear\n records', width = 11, height = 2)
103 clearRecordsButton.grid (row = 1, column = 0)
104 clearRecordsButton.bind('<Button-1>', lambda event,
105 a = 'clearAllRecords': buttonsClicked(a))
106
107 exitButton = tk.Button(ButtonsFrame, text='Exit', width=11, height=2)
108 exitButton.grid (row = 1, column = 1)
109 exitButton.bind('<Button-1>', lambda event : winFrame.destroy())
110 exit()
111
112 # Create the interface for the checkbuttons
113 def drawCheckButtons():
114 global checkButton1, checkButton2
115
116 # Create the labelframe that will host the checkbuttons
117 CheckButtonsFrame = tk.Frame(winFrame)
118 CheckButtonsFrame.config(bg = 'light grey', bd = 2, relief = 'sunken')
119 CheckButtonsFrame.pack();CheckButtonsFrame.place(relx=0.34, rely=0.43)
120
121 checkButton1 = IntVar(value = 1)
122 CountriesCheckButton = tk.Checkbutton (CheckButtonsFrame,
123 variable = checkButton1, text = 'Countries \nenabled/disabled',
124 bg = 'light blue', onvalue = 1, offvalue = 0, width = 15,

141Graphical User Interface Programming

125 height = 2, command = checkClicked).grid(row = 0, column = 0)
126
127 checkButton2 = IntVar(value = 1)
128 CapitalCheckButton = tk.Checkbutton (CheckButtonsFrame,
129 variable = checkButton2, onvalue = 1, offvalue = 0,
130 text = 'Capitals \nenabled/disabled', width = 15, height = 2,
131 bg = 'light blue', command = checkClicked).grid (row=1, column=0)
132
133 # Create the interface for the radiobuttons
134 def drawRadioButtons():
135 global radioButton
136
137 # Create the labelframe that will host the radiobuttons
138 RadioButtonsFrame = tk.Frame(winFrame)
139 RadioButtonsFrame.config(bg = 'light grey', bd = 2, relief = 'sunken')
140 RadioButtonsFrame.pack();RadioButtonsFrame.place(relx=0.31, rely=0.78)
141
142 radioButton = IntVar()
143 visibleRadioButton = tk.Radiobutton (RadioButtonsFrame,
144 text = 'Containers \nvisible', width = 8, height = 2,
145 bg = 'light green', variable = radioButton, value = 1,
146 command = radioClicked).grid(row = 0, column = 0)
147
148 invisibleRadioButton = tk.Radiobutton (RadioButtonsFrame,
149 text = 'Containers \ninvisible', width = 8, height = 2,
150 bg = 'light green', variable = radioButton, value = 2,
151 command = radioClicked).grid(row = 0, column = 1)
152
153 radioButton.set(1)
154
155 # Define method alignList that will identify the selected row
156 # in any of the listboxes and align it with the corresponding row others
157 def alignList(a):
158 global CountriesList, CapitalList
159 global selectedIndex
160
161 if (a == 'countries'):
162 selectedIndex = int(CountriesList.curselection()[0])
163 CapitalList.selection_set(selectedIndex)
164
165 if (a == 'capital'):
166 selectedIndex = int(CapitalList.curselection()[0])
167 CountriesList.selection_set(selectedIndex)
168
169 # Define checkClicked method to control the state of the containers
170 def checkClicked():
171 global checkButton1, checkButton2
172
173 # Control the state of the containers as NORMAL or DISABLED
174 # based on the state of the checkbuttons

142 Handbook of Computer Programming with Python

175 if (checkButton1.get() == 1):
176 CountriesList.config(state = NORMAL)
177 else:
178 CountriesList.config(state = DISABLED)
179
180 if (checkButton2.get() == 1):
181 CapitalList.config(state = NORMAL)
182 else:
183 CapitalList.config(state = DISABLED)
184
185 # Define the radioClicked method that will display or hide the frames
186 # of the containers
187 def radioClicked():
188 global CountriesFrame, CapitalFrame
189 global radioButton
190
191 # Use the destroy() method to destroy the frames of the containers.
192 # The lists are not destroyed
193 CountriesFrame.destroy()
194 CapitalFrame.destroy()
195
196 if (radioButton.get() == 1):
197 drawListBoxes()
198 populate()
199
200 # Populate the listboxes
201 def populate():
202 global CountryList, CapitalList
203 global selectedIndex
204
205 for i in range (int(len(countries))):
206 CountriesList.insert(i, countries[i])
207
208 for i in range (int(len(capital))):
209 CapitalList.insert(i, capital[i])
210
211 # Define method buttonsClicked that will trigger the corresponding code
212 # when any of the buttons is clicked
213 def buttonsClicked(a):
214 global CountriesList, PopulationCombo, CapitalList
215 global newCountry, newPopulation, newCapital, populationSelection
216 global selectedIndex
217
218 if (a == "insertRecord"):
219 if (newCountry!= '' and newCapital!= ''):
220 countries.append(newCountry.get()); CountriesList.delete('0',

'end')
221 capital.append(newCapital.get());CapitalList.delete('0','end')
222 # Call method populate() to re-populate the containers

143Graphical User Interface Programming

223 # with the renewed lists
224 populate()
225
226 if (a == 'deleteRecord'):
227 # Use messagebox.askyesno() to pop a confirmation message
228 # for deleting the elements
229 deleteElementOrNot=messagebox.askokcancel(title="Delete element",
230 message="Are you ready to delete the elements?", icon='info')
231 if (deleteElementOrNot == True):
232 # Use the pop() method to remove selected elements from the lists
233 countries.pop(selectedIndex); capital.pop(selectedIndex)
234 CountriesList.delete('0', 'end'); CapitalList.delete('0', 'end')
235 # Call method populate() to re-populate the containers
236 # with the renewed lists
237 populate()
238
239 if (a == 'clearAllRecords'):
240 # Use messagebox.askyesno() to pop a confirmation message
241 # for clearing the lists
242 clearListsOrNot=messagebox.askokcancel(title="Clear all elements",
243 message = "Are you ready to clear the lists?", icon = 'info')
244 if (clearListsOrNot == True):
245 countries.clear(); capital.clear()
246 CountriesList.delete('0', 'end'); CapitalList.delete('0', 'end')
247 # Call method populate() to re-populate the containers
248 # with the renewed lists
249 populate()
250
251 # Create the frame for the Countries program and configure its size
252 # and background color
253 winFrame = tk.Tk()
254 winFrame.title ('Countries')
255 winFrame.geometry("500x250")
256 winFrame.config (bg = 'light grey')
257 winFrame.resizable(False, False)
258
259 # Create the Graphical User Interface
260 drawListBoxes()
261 drawNewEntries()
262 drawButtons()
263 drawCheckButtons()
264 drawRadioButtons()
265
266 # Call populate()to populate the listboxes and comboboxes
267 populate()
268
269 winFrame.mainloop()

144 Handbook of Computer Programming with Python

Output 4.3.3:

As in previous examples, the first part of the appli-
cation deals with drawing the interface. In this
particular case this task is assigned to methods drawL-
istBoxes(), drawNewEntries(), drawButtons(),
drawCheckButtons(), and drawRadioBut-
tons(). Method drawListBoxes() (lines 16–55)
creates the relevant frames and containers. The reader
should note the call to method alignList() that
causes the contents of the two containers to be aligned,
and the use of the relx and rely options that posi-
tion the respective frames in the appropriate places
within the interface. The drawNewEntries()
method (lines 56–80) creates the entry widgets that will
accept the user’s input for new entries. Observe how
the entry widgets are associated with the respective
StringVar() objects that allow the use of the input
through the appropriate set() and get() methods.
Similarly, the drawButtons() method (lines 82–110)
creates the frame and places the buttons that perform
the basic actions of the application (i.e., insert a new
entry, delete a selected entry, clear all contents of the
 containers, and exit the application). In the case of
the Exit button in particular, one should note the use
of the destroy() method that destroys the interface
of the main window, and the exit() method that exits
the application.

The drawCheckButtons() method (lines 112–
131) creates the frame for the checkbutton widgets.
Notice how each of the checkbuttons is associated (bound) with a separate IntVar() object to
monitor its state (i.e., onvalue = 1 if it is checked or offvalue = 0 if it is unchecked).
The reader should also notice that when the user checks/unchecks the checkbutton the

Observation 4.39 – checkbutton,
onvalue, offvalue: Use the
checkbutton widget to offer selection
options. Each option is represented
by a separate widget. If an option
is selected, the widget is given an
onvalue, otherwise it is given an
offvalue through the associated
IntVar() object.

Observation 4.40 – radiobutton:
Use the radiobutton widget to offer
a number of mutually exclusive
options. Each option is represented
by a different widget. If an option is
selected, the widgets are given a par-
ticular value through the associated
IntVar() object.

Observation 4.38 – destroy(),
exit(): Use methods destroy() to
destroy the interface (i.e., the widgets
of the particular frame it applies) and
exit() to exit the application.

145Graphical User Interface Programming

checkClicked() method is triggered through
the command option. This is in order to control the
appearance of the respective container. Likewise, in
the case of drawRadiobuttons() (lines 133–153),
two of them are placed in the relevant frame and trigger
the radioClicked() method through the command
option. This controls the appearance of the containers
as a whole. It is important to note that in such cases
where multiple radiobuttons are associated/bound with
the same IntVar() object, only one can be selected.

The second part of the application deals with the
interactions that take place between the interface and
the user and their results, through the use of methods
alignList(), checkClicked(), radioClicked(),
populate(), and buttonsClicked(). In the case of
alignList() (lines 155–167), the curselection()
method is applied to the relevant container (listbox) to
identify the element of the container that was selected.
Since the method results to a tuple, it is necessary to
limit the result to the first element of the tuple (i.e., the
[0] value). Once the element of the container is identified
through its index, the selection _ set() method is
executed. This allows the other container to align the
two listboxes based on the selections. Ultimately, this process synchronizes the two containers.

In the case of the checkClicked() method (lines 169–183) the reader should note the
following:

• The use of the state option and its two possible values (i.e., NORMAL and DISABLED),
which determine whether the associated widget will be enabled or not. More specifically,
NORMAL dictates that the user is allowed to click in the relevant container and select one
or more of its elements and DISABLED the opposite.

• The use of the get() method to access the value of objects checkButton1 and check-
Button2. The reader is reminded that accessing the values of these objects is only possible
through such methods, since the objects and their values are private. The checkButton1
and checkButton2 widgets are declared as global to ensure that they are used by refer-
ence, taking their values from the original objects in the main application.

In the case of the radioClicked() method
(lines 185–198), frames CountriesFrame and
CapitalFrame are destroyed alongside their containers/
listboxes (i.e., CountriesList and CapitalList)
and are only recreated and repopulated if the user selects
the appropriate visibleRadioButton from the
interface (i.e., assigning a value of 1 to the radioBut-
ton object).

Finally, the buttonsClicked() method (lines
211–249) has three main tasks. Firstly, it inserts a new element in each of the listboxes when the
user clicks the Insert button. In this case, the values of the newCountry and newCapital entry
widgets are checked and, if not empty, used to append the relevant lists. Notice that it is preferable
to append the lists and not the listboxes, as the former host the actual values. The listboxes are
repopulated only after this task is completed.

Observation 4.44 – append(),
delete(), clear(): Use meth-
ods append() to append a list (i.e.,
insert a new element at the end of the
list), delete() to delete a selected
element from a list, and clear() to
clear all the elements of a list.

Observation 4.41 – command,
checkbutton, radiobutton:
Use the command option to trigger
a particular action when any of the
checkButton or radioButton
widgets are selected.

Observation 4.42 – curselec-
tion(): Use methods curselec-
tion() to identify the selected
element from a listbox and selec-
tion _ set() to select a particular
indexed element.

Observation 4.43 – state,
NORMAL, DISABLED: Use the
state option to determine whether
a particular listbox is enabled
(NORMAL) or disabled (DISABLED).

146 Handbook of Computer Programming with Python

Secondly, the method has the task of deleting the selected elements from the listboxes when
the user clicks the Delete button. In this case, as long as an element of the listboxes is selected,
a simple messagebox pops up to confirm the user’s choice. Notice that the askyesno() method
provides one of the simplest available forms of messages, and results in either True or False.
The programmer can use these values to determine further actions. The reader should note that the
messagebox module is part of the tkinter library. It is also noteworthy that the delete() method
is used in the code to initially clear the listboxes from their contents, and subsequently re-populate
them with the refreshed, appended lists. This particular method accepts the first and the last index
in the range of elements that should be deleted from the lists as arguments. Similarly, a third task
is to completely clear the listboxes from their contents. For this purpose, the clear() method is
applied to both lists (but not the listboxes), given that
confirmation is provided by the user through another
simple messagebox interaction.

In all the cases discussed above, the populate()
method (lines 200–209) is responsible for reading the
lists and using their contents to populate the listboxes.

4.4 BASIC AUTOMATION AND USER INPUT CONTROL

A common characteristic of visual programming is the creation of the illusion that the applica-
tion objects/widgets change shape, content, or status, either automatically or based on the user’s
input or automatically. If an object/widget is to be activated and put in operation automatically, the
programmer needs to associate it with a respective time-controlled event. The latter enables the
programmer to change the properties of the object/widget at run time, through the activation and
execution of appropriate blocks of code that are based on the time-controlled event.

In this section, the reader will have the opportunity to get some exposure to the creation of
 applications that manipulate objects/widgets without the user’s input, or with interactions of a differ-
ent type than direct written input or button-click events. Throughout the section, a basic Traffic Lights
application is gradually developed toward a primitive, but informative, automated user experience.

4.4.1 trAffiC lights version 1 – bAsiC funCtionAlity

The Traffic Lights sample project can start by creating a very basic application that uses three
images (loaded in labels) displaying a green, a yellow, and a red traffic light, respectively. The
three images can be programmed to appear and disappear based on user’s selection. The following
Python script creates this interface and implements the related interactions:

Observation 4.45 – askyesno():
Use the appropriate messagebox
module method (e.g., askyesno())
to confirm the user’s choice.

1 # Import libraries
2 import tkinter as tk
3 from tkinter import *
4 # Import the necessary image processing classes
5 from PIL import Image, ImageTk
6
7 global radioButton
8 global image1, image2, image3
9 global photo1, photo2, photo3
10 global winLabel1, winLabel2, winLabel3
11 global winFrame
12
13 # Create the main frame
14 winFrame = tk.Tk()

147Graphical User Interface Programming

15 winFrame.title("Traffic Lights v1")
16
17 # Create the interface with the images and labels
18 def photos():
19 global radioButton
20 global image1, image2, image3
21 global photo1, photo2, photo3
22
23 image1 = Image.open("TrafficLightsGreen.gif")
24 image1 = image1.resize((50, 100), Image.ANTIALIAS)
25 photo1 = ImageTk.PhotoImage(image1)
26
27 winLabel1=tk.Label(winFrame,text='', image=photo1, compound='left')
28 winLabel1.grid(row = 0, column = 0)
29
30 image2 = Image.open("TrafficLightsYellow.gif")
31 image2 = image2.resize((50, 100), Image.ANTIALIAS)
32 photo2 = ImageTk.PhotoImage(image2)
33
34 winLabel2 = tk.Label(winFrame,text='',image=photo2,compound='left')
35 winLabel2.grid(row = 0, column = 1)
36
37 image3 = Image.open("TrafficLightsRed.gif")
38 image3 = image3.resize((50, 100), Image.ANTIALIAS)
39 photo3 = ImageTk.PhotoImage(image3)
40
41 winLabel3 = tk.Label(winFrame,text='',image=photo3,compound='left')
42 winLabel3.grid(row = 0, column = 2)
43
44 # Control active traffic lights based on the radio button selection
45 if (radioButton.get() == 1):
46 winLabel2.destroy()
47 winLabel3.destroy()
48
49 if (radioButton.get() == 2):
50 winLabel1.destroy()
51 winLabel3.destroy()
52
53 if (radioButton.get() == 3):
54 winLabel1.destroy()
55 winLabel2.destroy()
56
57 # Create the radio button interface
58 def drawRadioButtons():
59 global radioButton
60
61 visibleGreenRadioButton = tk.Radiobutton (winFrame, text = 'Green',
62 width=17, height=1, bg = 'light grey', variable = radioButton,
63 value = 1, command = photos).grid(row = 1, column = 0)
64
65 visibleYellowRadioButton = tk.Radiobutton(winFrame, text='Yellow',
66 width= 17, height= 1, bg= 'light grey', variable = radioButton,

148 Handbook of Computer Programming with Python

Output 4.4.1:

The output demonstrates the two main parts of the application. In the first part, the photos()
method loads the three images and controls their visibility within the interface (lines 17–55). The
reader will notice that part of the method is the destruction of two of the images, in order to leave
only one on display (lines 44–56). For this task, the reader might also consider to use the grid _
remove() method (covered in previous sections), which will have the same result.

The second part controls which of the three images will be displayed. Once the desired radiobut-
ton has been clicked upon, the corresponding image stays on display and the other two are hidden
(lines 57–71). It is worth noting that all three radio buttons are associated with the same variable.
This is reflected on the fact that they cancel each other when selected, as the value of the common
associated object is altered.

4.4.2 trAffiC lights version 2 – CreAting A bAsiC illusion

Taking things one step further, the application is changed in such a way as to make only one image
appearing instead of three. The impression that there is only one image is of course illusory, as it
is essentially caused by manipulating the visual properties of the associated widget and/or its posi-
tion in the interface. In this case, the traffic images are stacked upon each other using the same grid
coordinates, and, subsequently, two of them are being removed from the interface.

This version is almost identical to the original one, with the exception of the positioning of the
widgets and the slightly modified title. The proposed modification only requires the replacement
of lines 15, 35, 42, 62, 66–67, and 70–71 with the ones provided below, which are only different in
terms of their grid coordinates and width:

15 winFrame.title ("Traffic Lights v2"); winFrame.geometry("200x180")
[...]

35 winLabel2.grid(row = 0, column = 0)
[...]

42 winLabel3.grid(row = 0, column = 0)
[...]

67 value = 2, command = photos).grid(row = 1, column = 1)
68
69 visibleRedRadioButton = tk.Radiobutton (winFrame, text = 'Red',
70 width= 17, height= 1, bg= 'light grey', variable = radioButton,
71 value = 3, command = photos).grid(row = 1, column = 2)
72
73 radioButton = IntVar()
74 photos()
75 drawRadioButtons()
76
77 winFrame.mainloop()

149Graphical User Interface Programming

Output 4.4.2

4.4.3 trAffiC lights version 3 – CreAting A Primitive AutomAtion

In this version of the sample application, there is no need for the user to click on the respective radio
buttons in order to cause the traffic light images to appear/disappear. The change happens automati-
cally after 5 seconds from the time one of the images is turned on (and the other two turned off).
In order to enable timed functionality, in addition to the libraries used in the previous versions, the
time library must be imported to the script.

This version differs from the previous ones in a number of ways:

• The radio buttons that were dealing with the interaction are removed, and a new manage-
Labels() function is introduced to control the automated process of traffic light changes.

• Every time there is a change of the displayed image, the time.sleep() function (time
library) is used to freeze the execution of the application for a given period of time (in this
case 3 seconds).

• Since there are no radiobuttons, the application uses another object (trafficLight), to
control which image is displayed. This is accomplished by setting its value through the
set() method.

• The update() function is applied to the main frame in order to refresh the interface based
on the latest status update.

The complete script is provided below:

62 width = 20, height = 1, bg = 'light grey', variable = radioButton,
[...]

66 width = 20, height = 1, bg = 'light grey', variable = radioButton,
67 value = 2, command = photos).grid(row = 2, column = 0)

[...]
70 width = 20, height = 1, bg = 'light grey', variable = radioButton,
71 value = 3, command = photos).grid(row = 3, column = 0)

1 # Import libraries
2 import tkinter as tk
3 from tkinter import *
4 # Import the necessary image processing classes

150 Handbook of Computer Programming with Python

5 from PIL import Image, ImageTk
6 # Import the timer threading library
7 import time
8
9 global image1, image2, image3
10 global photo1, photo2, photo3
11 global winLabel1, winLabel2
12 global winFrame
13 global trafficLight
14
15 # Open the traffic images and create the relevant pointers
16 def photos():
17 global image1, image2, image3
18 global photo1, photo2, photo3
19
20 image1 = Image.open("TrafficLightsGreen.gif")
21 image1 = image1.resize((50, 100), Image.ANTIALIAS)
22 photo1 = ImageTk.PhotoImage(image1)
23
24 image2 = Image.open("TrafficLightsYellow.gif")
25 image2 = image2.resize((50, 100), Image.ANTIALIAS)
26 photo2 = ImageTk.PhotoImage(image2)
27
28 image3 = Image.open("TrafficLightsRed.gif")
29 image3 = image3.resize((50, 100), Image.ANTIALIAS)
30 photo3 = ImageTk.PhotoImage(image3)
31
32 # Manage label visibility based on time.
33 def manageLabels():
34 global winLabel1, winLabel2
35 global Photo1, Photo2, Photo3
36 global winFrame
37 global trafficLight
38
39 if (trafficLight.get() == 1):
40 winLabel1.config(image = photo1)
41 winLabel1.grid(row = 0, column = 0)
42 winLabel2.config(text = 'Green')
43 time.sleep(3)
44
45 if (trafficLight.get() == 2):
46 winLabel1.config(image = photo2)
47 winLabel1.grid(row = 0, column = 0)
48 winLabel2.config(text = 'Yellow')
49 time.sleep(3)
50
51 if (trafficLight.get() == 3):
52 winLabel1.config(image = photo3)
53 winLabel1.grid(row = 0, column = 0)
54 winLabel2.config(text = 'Red')
55 time.sleep(3)
56

151Graphical User Interface Programming

Output 4.4.3:

4.4.4 trAffiC lights version 4 – A Primitive sCreen sAver With A Progress bAr

Having introduced the concept of timed events and how they can be used to control the flow of
events in an application, it is rather straightforward to expand the same idea to the creation of an
illusory movement of particular objects inside a frame. A good example of this is the creation of a
primitive screen saver using the existing Traffic Lights application as a basis.

In addition to the existing widgets, an additional widget that can be used in this scenario is the
progressbar widget. This will assist in making the screen saver a bit more informative, by provid-
ing clues about the elapsed and remaining time in any particular condition (i.e., green, yellow,
and red traffic light). The widget belongs to the ttk library and can take several parameters that
control its appearance and functionality, with the most important ones being length, orient,

57 winFrame.update()
58
59 # Create the main frame
60 winFrame = tk.Tk()
61 winFrame.title ("Traffic Lights v3"); winFrame.geometry("200x180")
62
63 photos()
64
65 winLabel1 = tk.Label(winFrame, text='', image=photo1, compound='left')
66 winLabel1.grid(row = 0, column = 0)
67 winLabel2=tk.Label(winFrame,text='...'); winLabel2.grid(row=1,column=0)
68
69 trafficLight = IntVar()
70 trafficLight.set(1)
71
72 while (True):
73 if (trafficLight.get() == 1):
74 trafficLight.set(2)
75 elif (trafficLight.get() == 2):
76 trafficLight.set(3)
77 elif (trafficLight.get() == 3):
78 trafficLight.set(1)
79 manageLabels()
80
81 winFrame.mainloop()

152 Handbook of Computer Programming with Python

and mode. Length determines the size (i.e., length) of
the progress bar, orient the orientation of the widget
(i.e., VERTICAL or HORIZONTAL), and mode if the
displayed value is predetermined (“ determinate”) or
indetermined (“intederminate”). In the case of the
former, the bar will appear moving toward one end of
the widget until the specified value is reached, while in
the case of the latter the bar will appear moving continu-
ously from one end to the other and back.

The following script implements a related implemen-
tation example, where the three traffic lights are controlling the movement of a car image (embed-
ded in a label widget). When the green light is on, the car is moving at a particular speed and when
yellow is on at half that speed. Similarly, when the red light is on, the car appears to stop and the
progressbar appears to be loading to reflect the elapsed time in this particular condition (i.e., red
light) and remaining time until the next condition is triggered (i.e., green light). The car image
appears to be bouncing across the frame, moving toward a different direction every time it reaches
the edges of the parent frame. The movement of the car image is always diagonal, and follows four
different directions. The program stops when the user interrupts (closes) the application. The associ-
ated Python script is provided below:

Observation 4.46 – progressbar: Use
the progressbar widget to display the
progress of an event or task that takes a
particular amount of time to complete.
Progressbars can be horizontal or
vertical, and can have a predeter-
mined (determinate) or undeter-
mined (interminate) value.

1 # Import libraries
2 import tkinter as tk
3 from tkinter import ttk
4 from tkinter import *
5 # Import the necessary image processing classes
6 from PIL import Image, ImageTk
7 # Import threading libary for the timer threading
8 import time
9
10 global trafficLight
11 global image1, image2, image3
12 global photo1, photo2, photo3
13 global winLabel1, winLabel2, winLabel3
14 global direction
15 global posx, posy
16 global winFrame
17 global progressBar
18
19 # Open the traffic and car images and create the relevant pointers
20 def photos():
21 global image1, image2, image3, image4
22 global photo1, photo2, photo3, photo4
23
24 image1 = Image.open("TrafficLightsGreen.gif")
25 image1 = image1.resize((50, 100), Image.ANTIALIAS)
26 photo1 = ImageTk.PhotoImage(image1)
27
28 image2 = Image.open("TrafficLightsYellow.gif")
29 image2 = image2.resize((50, 100), Image.ANTIALIAS)
30 photo2 = ImageTk.PhotoImage(image2)
31

153Graphical User Interface Programming

32 image3 = Image.open("TrafficLightsRed.gif")
33 image3 = image3.resize((50, 100), Image.ANTIALIAS)
34 photo3 = ImageTk.PhotoImage(image3)
35
36 image4 = Image.open("Car.gif")
37 image4 = image4.resize((30, 15), Image.ANTIALIAS)
38 photo4 = ImageTk.PhotoImage(image4)
39
40 # Manage label visibility based on time
41 def manageLabels():
42 global trafficLight
43 global winLabel1, winLabel2
44 global Photo1, Photo2, Photo3
45 global winFrame
46
47 if (trafficLight.get() == 1):
48 winLabel1.config(image=photo1)
49 winLabel2.config(text='Green'); a=1
50 elif (trafficLight.get() == 2):
51 winLabel1.config(image=photo2)
52 winLabel2.config(text='Yellow'); a=2
53 elif (trafficLight.get() == 3):
54 winLabel1.config(image = photo3)
55 winLabel2.config(text = 'Red'); a = 3
56
57 winLabel1.pack(); winLabel1.place(x = 1, y = 1)
58 winLabel2.pack(); winLabel2.place(x = 1, y = 100)
59 winFrame.update
60
61 # Call method moveCar()to move the image within the interface
62 moveCar(a)
63
64 # Control the direction of the movement
65 def checkDirection():
66 global direction
67 global posx, posy
68
69 if (posx >= 400 and direction == 1):
70 direction = 2
71 elif (posx >= 400 and direction == 4):
72 direction = 3
73 elif (posx <= 0 and direction == 2):
74 direction = 1
75 elif (posx <= 0 and direction == 3):
76 direction = 4
77 elif (posy <= 0 and direction == 3):
78 direction = 2
79 elif (posy <= 0 and direction == 4):
80 direction = 1
81 elif (posy >= 200 and direction == 1):
82 direction = 4
83 elif (posy >= 200 and direction == 2):

154 Handbook of Computer Programming with Python

84 direction = 3
85
86 # Manage the movement of the car
87 def moveCar(a):
88 global direction
89 global posx, posy
90 global winLabel3
91 global winFrame
92 global progressBar
93
94 progressBar['value'] = 0
95
96 for i in range(10):
97 # Call checkDirection() to control the movement direction
98 checkDirection()
99
100 if (a == 1):
101 move = 10
102 elif (a == 2):
103 move = 5
104 else:
105 move = 0
106 progressBar['value'] = int((i/(10 - 1)) * 100)
107
108 if (direction == 1):
109 posy += move; posx += move
110 elif (direction == 2):
111 posy += move; posx -= move
112 elif (direction == 3):
113 posy -= move; posx -= move
114 elif (direction == 4):
115 posy -= move; posx += move
116 winLabel3.pack(); winLabel3.place(x = posx, y = posy)
117
118 winFrame.update()
119 time.sleep(0.3)
120
121 # Create the main frame
122 winFrame = tk.Tk()
123 winFrame.title ("Traffic Lights v4"); winFrame.geometry("400x200")
124
125 photos()
126
127 winLabel1 = tk.Label(winFrame, text='', image=photo1, compound='left')
128 winLabel1.pack(); winLabel1.place(x = 1, y = 1)
129
130 winLabel2 = tk.Label(winFrame, text = '...')
131 winLabel2.pack(); winLabel2.place(x = 1, y = 100)
132
133 winLabel3 = tk.Label(winFrame, text='', image=photo4, compound='left')
134 winLabel3.pack(); winLabel3.place(x = 1, y = 1)
135 posx = 0; posy = 0

155Graphical User Interface Programming

Output 4.4.4:

A number of new methods, options and computational ideas are introduced in this script. First, the
reader will notice the use of the update _ idletasks() method, which ensures that objects
or methods not being currently used are still updated every time the while loop is executed
(line 132). This safeguards from unwanted garbage collection processes that might occur for the,

136
137 progressBar = ttk.Progressbar(winFrame, length=100, orient = VERTICAL,
138 mode = 'determinate')
139 progressBar.place(relx = 0.13, rely = 0.02)
140
141 trafficLight = IntVar()
142 trafficLight.set(3)
143 direction = 1
144
145 while (True):
146 winFrame.update_idletasks()
147 if (trafficLight.get() == 1):
148 trafficLight.set(2)
149 elif (trafficLight.get() == 2):
150 trafficLight.set(3)
151 elif (trafficLight.get() == 3):
152 trafficLight.set(1)
153 manageLabels()
154
155 winFrame.mainloop()

156 Handbook of Computer Programming with Python

seemingly unused, objects. Second, it is worth noting the use of absolute coordinates x and y
to continuously position the relevant widgets on the interface, instead of the relative ones (relx
and rely) used in previous examples. This is especially
relevant in the case of the moving car in order to trace
and handle its movement when reaching the edges of the
interface.

In terms of the actual movement of the car, the compu-
tational idea is quite simple. For instance, when it reaches
the east edge of the interface, (a) if it is moving southeast
(i.e., direction = 1) it should bounce toward the southwest
(i.e., direction = 2), and (b) if it is moving northeast (i.e.,
direction = 4) it should bounce toward the northwest
(i.e., direction = 3). The checkDirection() method
(lines 59–79) takes care of the rest of the movements of
the car. Once the step and directions are set, the actual
movement takes place in method movecar() (lines
81–109). The method recalculates the current placement
coordinates of the car based on the actual coordinates,
given both the intended direction and the state of the
traffic light.

4.4.5 trAffiC lights version 5 – suggesting A Primitive sCreen sAver

As a conclusion of this automation-related series of scripts based on the Traffic Lights sample appli-
cation, it is useful to introduce the idea of using designated keyboard input commands to achieve a
certain level of control over the automated events. The following script introduces functionality that
allows the user to move the car dynamically at run time using the up, down, left, and right keys on
the keyboard, as well as the esc key to exit:

Observation 4.47 – update_idle-
tasks(): Use the update _ idle-
tasks() method to ensure that idle
widgets/objects are not being destroyed
when not being used for extended peri-
ods of time.

Observation 4.48 – x, y coordinates:
It is often preferable to use the x and
y coordinates when placing a widget
on an interface, in order to ensure its
absolute placement in pixels instead
of the relative positions (i.e., using
relx and rely).

1 # Import libraries
2 import tkinter as tk
3 from tkinter import *
4 # Import the necessary image processing classes
5 from PIL import Image, ImageTk
6 # Import the timer threading libary
7 import time
8
9 global trafficLight
10 global posx, posy
11 global image1, image2, image3
12 global photo1, photo2, photo3
13 global winLabel1, winLabel2
14 global winFrame
15
16 # Open the traffic and car images and create the relevant pointers
17 def photos():
18 global image1, image2, image3, image4
19 global photo1, photo2, photo3, photo4
20
21 image1 = Image.open("TrafficLightsGreen.gif")

157Graphical User Interface Programming

22 image1 = image1.resize((50, 100), Image.ANTIALIAS)
23 photo1 = ImageTk.PhotoImage(image1)
24
25 image2 = Image.open("TrafficLightsYellow.gif")
26 image2 = image2.resize((50, 100), Image.ANTIALIAS)
27 photo2 = ImageTk.PhotoImage(image2)
28
29 image3 = Image.open("TrafficLightsRed.gif")
30 image3 = image3.resize((50, 100), Image.ANTIALIAS)
31 photo3 = ImageTk.PhotoImage(image3)
32
33 image4 = Image.open("Car.gif")
34 image4 = image4.resize((30, 15), Image.ANTIALIAS)
35 photo4 = ImageTk.PhotoImage(image4)
36
37 # Manage the movement based on the traffic light
38 def keyPressed (event):
39 global trafficLight
40 global posx, posy
41 global winFrame
42 global winLabel3
43
44 # Set the moving step based on the traffic light
45 if (trafficLight == 1):
46 move = 10
47 elif (trafficLight == 2):
48 move = 5
49 elif (trafficLight == 3):
50 move = 0
51
52 print(event.keycode)
53
54 # Prepare the moving step (up, down, left, right, esc)
55 # Mac codes: (8320768,8255233, 8124162, 8189699, 3473435)
56 # The user pressed 'up'. Move the car accordingly
57 if (event.keycode == 38):
58 if (move == 10 and posy >= 20):
59 posy -= 10
60 elif (move == 5 and posy >=20):
61 posy -= 5
62 # The user pressed 'down'. Move the car accordingly
63 elif (event.keycode == 40):
64 if (move == 10 and posy <= 270):
65 posy += 10
66 elif (move == 5 and posy <= 270):
67 posy += 5
68 # The user pressed 'right'. Move the car accordingly
69 elif (event.keycode == 39):
70 if (move == 10 and posx <= 570):
71 posx += 10
72 elif (move == 5 and posx <= 570):

158 Handbook of Computer Programming with Python

73 posx += 5
74 # The user pressed 'left'. Move the car accordingly
75 elif (event.keycode == 37):
76 if (move == 10 and posx >= 20):
77 posx -= 10
78 elif (move == 5 and posx >= 20):
79 posx -= 5
80 # The user pressed 'escape'. Close the program
81 elif (event.keycode == 27):
82 winFrame.destroy()
83 exit()
84
85 winLabel2.pack(); winLabel2.place(x = posx, y = posy)
86 winFrame.update()
87
88 def trafficLightsLoop():
89 global trafficLight
90 global winFrame
91 global winLabel1
92
93 winFrame.update_idletasks()
94 if (trafficLight == 1):
95 trafficLight = 2; winLabel1.config(image = photo2)
96 elif (trafficLight == 2):
97 trafficLight = 3; winLabel1.config(image = photo3)
98 elif (trafficLight == 3):
99 trafficLight = 1; winLabel1.config(image = photo1)
100
101 winLabel1.pack(); winLabel1.place(x = 1, y = 1)
102 winFrame.update
103
104 winFrame.after(3000, trafficLightsLoop)
105
106 # Create the main frame
107 winFrame = tk.Tk()
108 winFrame.title ("Traffic Lights v5"); winFrame.geometry("600x300")
109 winFrame.bind('<Key>', keyPressed)
110
111 photos()
112
113 winLabel1 = tk.Label(winFrame, text='', image=photo1, compound='left')
114 winLabel1.pack(); winLabel1.place(x = 1, y = 1)
115
116 winLabel2 = tk.Label(winFrame, text='', image=photo4, compound='left')
117 winLabel2.pack(); winLabel2.place(x = 1, y = 1)
118 trafficLight = 1; posx = 0; posy = 0
119
120 winFrame.after(3000, trafficLightsLoop)
121
122 winFrame.mainloop()

159Graphical User Interface Programming

Output 4.4.5:

The script introduces some new ideas and techniques aiming to make the user experience more
engaging, and to encourage further enhancements. Firstly, it must be noted that, in the main pro-
gram, the main frame is bound to the keypressed() method through the <Key> event (line 102).
It must be stressed that the naming of the event is important and that any deviations (e.g., <key>)
may not be translated correctly by Python. The use of the binding results in the user being able to
press any of the up, down, left, and right directional keys in order to move the car to the relevant
direction. This is achieved by checking the values of the
event.keycode produced based on the user’s input.
It is worth noting that these values may vary between
different systems, so the code should include appropriate
controls and solutions for such variations (lines 37–73).

Secondly, the reader should note the avoidance of a
loop and its replacement by the after() method, which
is applied to the main frame (winFrame). The reason
for this decision was that since the program activates
the monitoring of the <Key> event, the presence of a
second monitoring event like a loop would cause con-
flicts in the internal threading of the application. The
after() method serves the purpose of creating a loop-
like behavior without causing such a conflict (lines 97,
113). Finally, the reader should note the use of the esc
code in the keypressed() method (line 76) to exit the
application in a controlled way.

4.5 CASE STUDIES

Enhance the Countries application in order to include the following functionality:

• Add one more listbox to display more content for each country (e.g., size, population, etc.).
• Add a combobox to allow the user to select the font name of the contents of the listboxes.
• Add a combobox to allow the user to select the font size of the contents of the listboxes.
• Add a combobox to change the background color of the content in the listboxes.

4.6 EXERCISES

Enrich the Traffic Lights application by including one more car. The new car must be controlled
by another set of keys on the keyboard, using the same traffic lights as those on the original
application.

Observation 4.49 – <key>, event.
keycode: Use the <Key> event to
bind a particular frame or widget to
a key press event. Once the key input
is captured, use event.keycode to
determine the appropriate action.

Observation 4.50 – after(): Use
the after() method to call a method
or execute a command after a pre-
determined number of seconds has
elapsed since the initiation of the cur-
rent method. This can be used as an
alternative to for or while loops.

https://taylorandfrancis.com

161

5 Application Development
with Python

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

Christos Manolas
The University of York
Ravensbourne University London

Hanêne Ben-Abdallah
University of Pennsylvania

5.1 INTRODUCTION

Application development can be viewed as a process that is both scientific and creative. Scientific
because it follows the systematic process of the software development life-cycle. This covers all
development steps, from requirement analysis and implementation to deployment and maintenance.
Creative as it calls for the creativity of the developer to design a system that incorporates features
that make it suitable and efficient for the task at hand, while also being attractive to the end user.

The previous chapter introduced and discussed some of the key objects for the development of an
appealing user interface. In this chapter, the concept of application development is examined more

CONTENTS

5.1 Introduction .. 161
5.2 Messages, Common Dialogs, and Splash Screens in Python ... 162

5.2.1 Simple Message Boxes ... 162
5.2.2 Message Boxes with Options .. 164
5.2.3 Message Boxes with User Input .. 166
5.2.4 Splash Screen/About Forms .. 168
5.2.5 Common Dialogs .. 169

5.3 Menus.. 171
5.3.1 Simple Menus with Shortcuts ... 171
5.3.2 Toolbar Menus with Tooltips .. 175
5.3.3 Popup Menus with Embedded Icons .. 178

5.4 Enhancing the GUI Experience .. 181
5.4.1 Notebooks and Tabbed Interfaces .. 181
5.4.2 Threaded Applications.. 185
5.4.3 Combining Multiple Concepts and Applications in a Multithreaded System 190

5.5 Wrap Up .. 199
5.6 Case Study ..205

DOI: 10.1201/9781003139010-5

https://doi.org/10.1201/9781003139010-5

162 Handbook of Computer Programming with Python

thoroughly, by introducing ideas and tools that call for the integration of multiple functions within
a single application. These include:

• Dialogs, Messages, and the Splash Screen: Simple and intuitive objects that most users
of Windows style applications are quite familiar with. Each of these objects serves a par-
ticular function and is part of the Python API (Application Programming Interface), thus,
requiring only minimal coding.

• Menus, Toolbar Menus, Popup Menus: Variations of the well-known menu object allow-
ing the user to select different functions available in the application. Menus are usually
accompanied by extra functionality options like hot keys, shortcuts, and tooltips, in order
to enhance their attractiveness and efficiency.

• Tabs: Tabs provide an effective way to optimize the use of the real estate of the running
interface, allowing the inclusion of more than one application in the same space. This idea
is simple, but intuitive and effective. Tabs are commonly used to separate a single notebook
into various sections and load various independent applications.

• Threads: Threading involves the simultaneous execution of code relating to multiple
instances of the same process, class or application. Different threads can be executed simul-
taneously, either in parallel or in explicitly defined time slots. Each thread can have its own
widgets (if it is GUI based) and attributes. Threaded objects do not necessarily communicate
with each other, although this is possible and can be implemented when and if necessary.

The focus of this chapter is on discussing and illustrating key underlying concepts and mechanisms
associated with these tools and structures.

5.2 MESSAGES, COMMON DIALOGS, AND SPLASH SCREENS IN PYTHON

Messageboxes, common dialogs, and splash screens are some of the most understated, but useful
objects that can help in enhancing the functionality of an application without adding lengthy code to
it. They are user-friendly and multifunctional, and provide instant, and strictly restricted and man-
aged input from the user during the execution of an application. Several types of these components
are available with varied and diverse functions, such as the display of user messages, the creation of
menus of options/choices, the acceptance and verification of user input, the management of display
parameters and options (e.g., colors), and the management of files, file structures and directories.
Each of the above can be called and implemented with relatively simple Python code commands, as
described in the following sections.

5.2.1 simPle messAge boxes

The simple message box displays a message to the user
and stays on display until the corresponding (OK) button
is clicked, at which point the application resumes execu-
tion. As there is no input to be received, the user reaction
to the message is irrelevant and the only possible choice
is to click the OK button. The object has three distinct
forms represented by methods showinfo(), shower-
ror(), and showwarning(), which are embedded in
the messagebox object (tkinter library). These
methods do not change any fundamental aspects of the message box, but modify the icon that
accompanies it according to the type of information provided to the user. The following Python
script presents a basic example of the use of each of the three methods:

Observation 5.1 – Simple Message
Box: Methods showinfo(), show-
error(), and showwarning()
(members of the messagebox
object, tkinter library) are used to
display a simple message box with a
respective info, error, or warning icon.

163Application Development

Output 5.2.1:

1 # Import libraries
2 import tkinter as tk
3 from tkinter import messagebox
4
5 # Declare simpleMessage() function, invoked upon button click
6 def simpleMessage(a):
7 if (a == 1):
8 messagebox.showinfo("Simple Info Message",
9 "You clicked for the info message")
10 elif (a == 2):
11 messagebox.showerror("Simple Error Message",
12 "You clicked for the error message")
13 elif (a == 3):
14 messagebox.showwarning("Simple Warning Message",
15 "You clicked for the warning message")
16
17 # Create a non-resizable Windows frame using the tk object
18 winFrame = tk.Tk()
19 winFrame.title("Simple Messageboxes")
20 winFrame.resizable(False, False)
21 winFrame.geometry('290x180')
22 winFrame.configure(bg = 'dark grey')
23
24 # Create button that triggers an info message
25 winButton1 = tk.Button(winFrame, width = 25,
26 text = "Click to display \na simple info messagebox")
27 winButton1.pack(); winButton1.place(x = 50, y = 20)
28 winButton1.bind('<Button-1>', lambda event: simpleMessage(1))
29
30 # Create button that triggers an error message
31 winButton2 = tk.Button(winFrame, width = 25,
32 text = "Click to display \na simple error messagebox")
33 winButton2.pack(); winButton2.place(x = 50, y = 70)
34 winButton2.bind('<Button-1>', lambda event: simpleMessage(2))
35
36 # Create button that triggers a warning message
37 winButton3 = tk.Button(winFrame, width = 25,
38 text = "Click to display \na simple warning messagebox")
39 winButton3.pack(); winButton3.place(x = 50, y = 120)
40 winButton3.bind('<Button-1>', lambda event: simpleMessage(3))
41
42 winFrame.mainloop()

164 Handbook of Computer Programming with Python

The reader should note that the first parameter passed to the message box is the title, whereas the
second is the content. The program output provided above illustrates the resulting messages for each
of the three simple types of message boxes.

5.2.2 messAge boxes With oPtions

Message boxes are commonly used to receive user con-
firmation for processes that take place at run-time. In
such cases, instead of merely displaying information, the
object must prompt the user to confirm their approval (or
lack of) regarding the execution of particular processes.
As in the case of simple messages, several options are
available for message boxes with options, depending
on the type of confirmation that is requested. However,
there are two major differences between the two types of
messages. Firstly, in the case of messages with options,
the user makes a choice that may alter the execution
order of the processes that follow, in contrast to the
simple message box. The type and format of the input
depends on the type of the message (e.g., OK-Cancel, Retry-Cancel, Yes-No). Secondly, the user’s
choice has a tangible value that can be stored in a variable and checked against other pre-defined
values to determine the flow of execution. These values are True or False (no quotes and case-
sensitive) in the case of OK-Cancel, Retry-Cancel, and Yes-No, and ‘Yes’ or ‘No’ (in single
quotation marks and case-sensitive) in the case of a question message box.

The following Python script provides a simple example that integrates all four different types of
messages with options. The script also makes use of the showinfo() and showerror() meth-
ods of the simple message box:

Observation 5.2 – Message Box with
Options: Methods askokcancel(),
askretrycancel(), askyesno(),
and askquestion() (members of
the messagebox object, tkinter
library) are used to display a mes-
sage, while also requesting some sort
of confirmation from the user. The
responses can be True or False for
the first three and ‘Yes’ or ‘No’ for
the last one.

1 # Import libraries
2 import tkinter as tk
3 from tkinter import messagebox
4
5 # Declare optionMessage()function, invoked upon button click
6 def optionMessage(a):
7 if (a == 1):
8 response = messagebox.askokcancel(title = "ok-cancel Message",
9 message = "Clicked the OK-Cancel message", icon = 'info')
10 if (response == True):
11 messagebox.showinfo("Info Message", "Clicked OK")
12 elif (response == False):
13 messagebox.showerror("Error Message", "Clicked Cancel")
14 elif (a == 2):
15 response = messagebox.askquestion(title = "question Message",
16 message = "Clicked the question message", icon = 'info')
17 if (response == 'yes'):
18 messagebox.showinfo("Info Message", "Clicked Yes")
19 elif (response == 'no'):

165Application Development

20 messagebox.showerror("Error Message", "Clicked No")
21 elif (a == 3):
22 response=messagebox.askretrycancel(title="retry-cancel Message",
23 message = "Clicked the Retry-Cancel message", icon = 'info')
24 if (response == True):
25 messagebox.showinfo("Info Message", "Clicked Retry")
26 elif (response == False):
27 messagebox.showerror("Error Message", "Clicked Cancel")
28 elif (a == 4):
29 response = messagebox.askyesno(title = "yes-no Message",
30 message = "Clicked the Yes-No message", icon = 'info')
31 if (response == True):
32 messagebox.showinfo("Info Message", "Clicked Yes")
33 elif (response == False):
34 messagebox.showerror("Error Message", "Clicked No")
35
36 # Create a non-resizable Windows frame using the tk object
37 winFrame = tk.Tk()
38 winFrame.title("Messageboxes with options")
39 winFrame.resizable(False, False)
40 winFrame.geometry('320x220')
41 winFrame.configure(bg = 'grey')
42
43 # Create button that triggers an OK-Cancel message
44 winButton1 = tk.Button(winFrame, width = 20,
45 text = "Click to display \na OK-Cancel messagebox")
46 winButton1.pack(); winButton1.place(x = 85, y = 20)
47 winButton1.bind('<Button-1>', lambda event: optionMessage(1))
48
49 # Create button that triggers a question message
50 winButton2 = tk.Button(winFrame, width = 20,
51 text = "Click to display \na Question messagebox")
52 winButton2.pack(); winButton2.place(x = 85, y = 70)
53 winButton2.bind('<Button-1>', lambda event: optionMessage(2))
54
55 # Create button that triggers a Retry-Cancel message
56 winButton3 = tk.Button(winFrame, width = 20,
57 text = "Click to display \na Retry-Cancel messagebox")
58 winButton3.pack(); winButton3.place(x = 85, y = 120)
59 winButton3.bind('<Button-1>', lambda event: optionMessage(3))
60
61 # Create button that triggers a Yes-No message
62 winButton3 = tk.Button(winFrame, width = 20,
63 text = "Click to display \na Yes-No messagebox")
64 winButton3.pack(); winButton3.place(x = 85, y = 170)
65 winButton3.bind('<Button-1>', lambda event: optionMessage(4))
66
67 winFrame.mainloop()

166 Handbook of Computer Programming with Python

Output 5.2.2:

5.2.3 messAge boxes With user inPut

Occasionally, message boxes are used instead of regular
entry or text widgets, to prompt user input of various dif-
ferent data types (i.e., string, integer, float). This is a via-
ble choice when the interface is heavily loaded or when
the use of widgets is not desirable. When message boxes
are used for this purpose, the following methods can be
used: (a) askstring() for string input, (b) askinte-
ger() for integer numbers input, and (c) askfloat()
for float numbers (real numbers) input. These methods
are members of the simpledialog class of the tkinter library. As they return a particular data type
value, it must be stored in a suitable variable declared for this purpose.

As shown in the following Python script, the title and the message of the message box must be
also specified:

Observation 5.3 – Message Box with
User Input: Methods askstring(),
askinteger(), and askfloat()
(members of the simpledialog
object, tkinter library) are used to
display a message requesting input of
a specific data type from the user.

1 # Import libraries
2 import tkinter as tk
3 from tkinter import simpledialog
4 from tkinter import messagebox
5
6 global name; global birthyear; global gpa
7
8 # Declare optionMessage() function, invoked upon button click
9 def inputMessage(a):
10 global name; global birthyear; global gpa
11
12 # Accept student name, year of birth, and GPA
13 # and display it through a simple message box
14 if (a == 1):
15 name = simpledialog.askstring("Name", "What is your name?")
16 elif (a == 2):
17 birthyear = simpledialog.askinteger("Year of birth",

167Application Development

Output 5.2.3:

18 "What is the year of your birth?")
19 elif (a == 3):
20 gpa = simpledialog.askfloat("GPA",
21 "What is your GPA (out of 4 with one decimal)?")
22 elif (a == 4):
23 message="Student's name: "+name+"\nStudent's year of birth: "+\
24 str(birthyear) + "\nStudent's GPA: " + str(gpa)
25 messagebox.showinfo("Student's info", message)
26
27 # Create a non-resizable Windows frame using the tk object
28 winFrame = tk.Tk()
29 winFrame.title("Inputboxes")
30 winFrame.resizable(False, False)
31 winFrame.geometry('260x220')
32 winFrame.configure(bg = 'grey')
33
34 # Create buttons that will trigger the associated messages
35 winButton1 = tk.Button(winFrame,
36 text = "Click to ask \nthe student's name", width = 20)
37 winButton1.pack(); winButton1.place(x = 30, y = 20)
38 winButton1.bind('<Button-1>', lambda event: inputMessage(1))
39 winButton2 = tk.Button(winFrame, width = 20,
40 text = "Click to ask \nthe student's year of birth")
41 winButton2.pack(); winButton2.place(x = 30, y = 70)
42 winButton2.bind('<Button-1>', lambda event: inputMessage(2))
43 winButton3 = tk.Button(winFrame,
44 text = "Click to ask \nthe student's GPA", width = 20)
45 winButton3.pack(); winButton3.place(x = 30, y = 120)
46 winButton3.bind('<Button-1>', lambda event: inputMessage(3))
47 winButton4 = tk.Button(winFrame,
48 text = "Click to show \nthe student's info", width = 20)
49 winButton4.pack(); winButton4.place(x = 30, y = 170)
50 winButton4.bind('<Button-1>', lambda event: inputMessage(4))
51
52 name = ""; birthyear = 0; gpa = 0.0
53
54 winFrame.mainloop()

168 Handbook of Computer Programming with Python

5.2.4 sPlAsh sCreen/About forms

A frequently underestimated type of object is the so-
called splash screen or about form. It is most commonly
used to provide information about application execution
and processes, development details and dates, copy-
rights, and contacting the development team. The object
does not follow a formal design and, therefore, it is not
offered as a template by most well-known programming
languages.

Among its various uses, the splash screen/about form can be used to give time to the main appli-
cation to load its components. This is especially relevant if significant amounts of data need to be
loaded, such as sizable databases or graphics, and heavy objects in general. The following script
is a basic example of a splash screen with no apparent functionality. The form disappears after 8
seconds to give its place to the main application window:

Observation 5.4 – Splash screen: A
splash screen can be used in cases
of excessive loading times of a win-
dow/widget or when there is a need
to display information related to the
application.

1 # Import libraries
2 import tkinter as tk
3 import time
4
5 global winSplash
6
7 # Create the Splash screen
8 def splash():
9 global winSplash
10
11 winSplash = tk.Tk()
12 winSplash.title("Splash screen")
13 winSplash.resizable(False, False)
14 winSplash.geometry('250x100')
15 winSplash.configure (bg = 'dark grey')
16 winLabel1 = tk.Label(winSplash,
17 text = "Display the Splash screen \nfor 8 seconds")
18 winLabel1.grid(row = 0, column = 0)
19
20 # Use the update function to display the splash screen
21 # before the mainloop (main window) takes over
22 winSplash.update()
23
24 # Call the splash screen for 8 seconds
25 splash()
26 time.sleep(8)
27
28 # Destroy the splash screen before the mainloop
29 winSplash.destroy()
30
31 # Create the main window
32 winFrame = tk.Tk()
33 winFrame.title("Main Window")
34 winFrame.resizable(False, False)

169Application Development

Output 5.2.4:

The user should note the use of the time.sleep() method after the splash() method is invoked.
This delays the splash screen before the main window (winFrame) is loaded. It is also worth noting
the use of the update() method on the winSplash object. This method ensures that the widget is
displayed, although it is not the main window and, thus, the mainloop() method cannot be used
with it.

5.2.5 Common diAlogs

It is frequently the case that the programmer needs to utilize the API (Application Programming
Interface) of the operating system in order to avoid writing code that is already provided as pre-
packaged, essential functionality. Some of the most important GUI-related API elements can be
found under the broader category of dialogs. Different versions of dialogs exist, such as Color, Open
File, Save File, Directory, Font Dialog, and Print. These dialogs allow programmers to circumvent
extensive GUI programming by offering instant access to basic, repetitive functional tasks.
These are the common dialog objects that appear in various types of widely used GUI applications
(e.g., MS Office or Adobe Creative Suite).

With the exception of the color dialog (askcolor),
which is included in the colorchooser library,
the aforementioned dialogs are all included in the
 filedialog library under the associated keywords
(e.g., filedialog.askopenfile(), filedia-
log.asksaveasfile(), filedialog.askdirec-
tory()). The syntax for invoking these API methods is
simple and rather intuitive, and it allows a two-way com-
munication with the user in order to obtain their selec-
tion. In the case of askcolor(), one should note that the
result is a set of two values: an rgb (red, green, blue) value
and a particular color selection. The color values selected
can be stored in a variable for further use. The following Python script illustrates the use of the four
API methods mentioned above:

Observation 5.5 – API methods:
The API methods offered by Python
can be used to perform basic repeti-
tive tasks across many platforms and
operating systems. These methods
include askcolor() from the col-
orchooser library and asksaves-
asfile(), askopenfile(), and
askdirectory() from the file-
dialog library.

35 winFrame.geometry('250x100')
36 winFrame.configure(bg = 'grey')
37
38 winLabel2 = tk.Label(winFrame, text = "Entered the main window")
39 winLabel2.grid(row = 0, column = 0)
40
41 winFrame.mainloop()

170 Handbook of Computer Programming with Python

1 # Import libraries
2 import tkinter as tk
3 from tkinter import filedialog
4 from tkinter import colorchooser
5
6 # Define openDialogs() function, invoked upon button click
7 def openDialogs(a):
8 if (a == 1):
9 # Assign user color selection to a set of variables
10 (rgbSelected, colorSelected) = colorchooser.askcolor()
11 # Use the color element from the variable set to change
12 # the color of the form
13 winFrame.config(background = colorSelected)
14 elif (a == 2):
15 filedialog.askopenfile(title = "Open File Dialog")
16 elif (a == 3):
17 filedialog.askdirectory(title = "Directory Dialog")
18 elif (a == 4):
19 filedialog.asksaveasfilename(title = "Save As Dialog")
20
21 # Create a non-resizable Windows frame using the tk object
22 winFrame = tk.Tk()
23 winFrame.title("Common Dialogs")
24 winFrame.resizable(False, False)
25 winFrame.geometry('280x220')
26 winFrame.configure(bg = 'grey')
27
28 # Create button that triggers the Color dialog
29 winButton1 = tk.Button(winFrame,
30 text = "Click to open \nthe Color dialog", width = 20)
31 winButton1.pack(); winButton1.place(x = 60, y = 20)
32 winButton1.bind('<Button-1>', lambda event: openDialogs(1))
33
34 # Create button that triggers the Open File dialog
35 winButton2 = tk.Button(winFrame,
36 text = "Click to open \nthe File Dialog", width = 20)
37 winButton2.pack(); winButton2.place(x = 60, y = 70)
38 winButton2.bind('<Button-1>', lambda event: openDialogs(2))
39
40 # Create button that triggers the Directory dialog
41 winButton3=tk.Button(winFrame,
42 text="Click to open \nthe Directory Dialog", width = 20)
43 winButton3.pack(); winButton3.place(x = 60, y = 120)
44 winButton3.bind('<Button-1>', lambda event: openDialogs(3))
45
46 # Create button that triggers the Save As dialog
47 winButton3=tk.Button(winFrame,
48 text = "Click to open \nthe Save As Dialog", width = 20)
49 winButton3.pack(); winButton3.place(x = 60, y = 170)
50 winButton3.bind('<Button-1>', lambda event: openDialogs(4))
51
52 winFrame.mainloop()

171Application Development

Output 5.2.5:

5.3 MENUS

It is quite rare for a desktop or mobile application to offer singular functionality. Developers usu-
ally create systems capable of performing numerous tasks and functions. An example of this are
the scripts developed in the previous sections, where multiple, although quite simplistic, tasks were
performed using a series of corresponding buttons. In reality, in most cases, access to different
functions within an application is provided through menus. These can take different forms, such as
simple menus, single-layered menus, menus with nested sub-menus, toolbars, and pop-up menus.
These types of menus can be used in isolation, but are also frequently used in conjunction. This sec-
tion covers basic menu concepts, as well as a number of particular options that can be used to further
enhance menu functionality.

5.3.1 simPle menus With shortCuts

In all windows style applications, simple menus follow
the same basic, but rather intuitive, style. They include
a top-level list of items, usually displayed just below the
title of the application. This top-level menu layer sits on
top of sub-menus that are hidden in subsequent layers.
Such basic menus are created using the constructor of
the Menu class from the tkinter library. The idea is
quite straightforward indeed. Firstly, the menu object
is created using the Menu() constructor. Additional
menu objects can be also created and attached to the
main menu object, as necessary. Next, any required
sub-menus can be added to the main menu. This can
be accomplished with the add _ command() method
for simple items or the add _ checkbutton() and
add _ radiobutton() methods for check button and
radio button items, respectively. For nested menus, these steps can be repeated as many times as
necessary, although one should avoid going deeper than two levels of menus for clarity reasons.
Finally, the add _ cascade() method is used to tie together the various menu pieces and activate
the menu system.

Observation 5.6 – Menu class: Use
the constructor of the Menu class
to create a menu object. The main
menu choices can be added using
the constructor (Menu()), while sim-
ple menu items can be added using
the add _ command() method and
radio and check buttons using the
add _ checkbutton() and add _
radiobutton()methods, respec-
tively. Use add _ cascade() to put
all pieces of the menu together and
display them on the menu bar.

172 Handbook of Computer Programming with Python

In addition to creating the basic menu structure, developers often choose to extend its function-
ality by means of menu shortcuts. This can take the form of either hot letters using the underline
option, or combinations of special keys (e.g., the control key) and letters through the accelerator
option. In both cases, it is essential to remember that while these options may appear on the menu,
they do not automatically trigger the relevant functionality. For this purpose, the main window
form should be bound to the relevant event in order to trigger the respective functionality. This is
achieved with the bind() method. The following application uses the functionality of the previous
section, but with the implementation of a two-level deep basic menu instead of buttons:

1 # Import libraries
2 import tkinter as tk
3 from tkinter import filedialog
4 from tkinter import colorchooser
5 from tkinter import messagebox
6 from tkinter import Menu
7
8 # Define functions colorDialog, openDialog, saveAsDialog, quit, askyesno
9 # and askokcancel, invoking the relevant dialogs or message boxes
10 def colorDialog():
11 # Assign user color selection to a set of variables
12 (rgbSelected, colorSelected) = colorchooser.askcolor()
13 # Change the form color; use the color element from the variable set
14 winFrame.config(background = colorSelected)
15
16 def openDialog():
17 filedialog.askopenfile(title = "Open File Dialog")
18
19 def saveAsDialog():
20 filedialog.asksaveasfilename(title = "Save As Dialog")
21
22 def quit():
23 winFrame.destroy()
24 exit()
25
26 def askyesno():
27 messagebox.askyesno("YesNo message",
28 "Click on Yes or No to continue")
29
30 def askokcancel():
31 messagebox.askokcancel("OKCancel message",
32 "Click on OK or Cancel to continue")
33
34 # Define keypressedEvent() function that will invoke
35 # the associated function based on key press
36 def keypressedEvent(event):
37 if (event.keycode == 67 or event.keycode == 99):
38 colorDialog()
39 if (event.keycode == 70 or event.keycode == 102):
40 openDialog()
41 if (event.keycode == 83 or event.keycode == 115):
42 saveAsDialog()
43

173Application Development

44 # Create non-resizable Windows frame using the tk object
45 winFrame = tk.Tk()
46 winFrame.title("Menus")
47 winFrame.resizable(False, False)
48 winFrame.geometry('260x220')
49
50 # Create the menu widget on the main window
51 menubar = tk.Menu(winFrame)
52
53 # Create the first series of sub-menus with dialogs
54 # and underline the shortcut letters
55 dialogs = tk.Menu(menubar, tearoff = 0)
56 dialogs.add_command(label = "Color dialog", command = colorDialog,
57 underline = 0)
58 dialogs.add_command(label = "Open File dialog", command = openDialog,
59 underline = 5)
60 dialogs.add_command(label = "Save As dialog", command = saveAsDialog,
61 underline = 0)
62 menubar.add_cascade(label = "Dialogs", menu = dialogs)
63
64 # Create the second series of sub-menus with messages
65 mssgs = tk.Menu(menubar, tearoff = 0)
66
67 # Create sub-menu inside the Yes/No, OK/Cancel message
68 mssgs1 = tk.Menu(mssgs, tearoff = 0)
69 mssgs1.add_command(label = "Yes/No Message", command = askyesno,
70 accelerator = 'Ctrl-Y')
71 mssgs1.add_command(label = "OK/Cancel Message", command = askokcancel,
72 accelerator = 'Ctrl-O')
73 mssgs.add_cascade(label = "Yes/No, OK/Cancel", menu = mssgs1)
74
75 mssgs.add_separator()
76 mssgs.add_command(label= "Exit", command = quit, accelerator = 'Ctrl-X')
77 menubar.add_cascade(label = "Messages", menu = mssgs)
78
79 # Create the third series of menus with check buttons and radio buttons
80 buttonmenus = tk.Menu(menubar, tearoff = 0)
81 buttonmenus.add_checkbutton(label = "Checkmenu1", onvalue=1, offvalue=0)
82 buttonmenus.add_checkbutton(label = "Checkmenu2", onvalue=1, offvalue=0)

83 buttonmenus.add_separator()
84 buttonmenus.add_radiobutton(label = "Radiomenu1")
85 buttonmenus.add_radiobutton(label = "Radiomenu2")
86 menubar.add_cascade(label = "Button menus", menu = buttonmenus)
87
88 # Bind the main window frame with the event/shortcut that will trigger
89 # the relevant function
90 winFrame.bind('<Key>', lambda event: keypressedEvent(event))
91 winFrame.bind('<Control-Y>', lambda event: askyesno())
92 winFrame.bind('<Control-O>', lambda event: askokcancel())
93 winFrame.bind('<Control-X>', lambda event: quit())
94
95 winFrame.config(menu = menubar)
96 winFrame.mainloop()

174 Handbook of Computer Programming with Python

Output 5.3.1:

In addition to the necessary library calls, the script
is split into three main parts. In the first part, the
main window frame is created and configured (lines
44–48). Next, a menu object (menubar) is created
(lines 50–51) and two main menu items (dialogs
and mssgs) are attached to it (lines 55, 65). Notice the
tearoff option, which prevents the menu from being
detached from the main menu bar. Once the main menu
components are in place, the various sub-menu items
are created and associated with their parent menu item
through the add _ command() method (lines 55–62
and 69–73). The command option binds particular menu items with the relevant methods. The
underline option accepts the index of the text of the underlying object (starting at 0) and
displays the associated character as a hot key. As in the case of hot keys in previous menu item
examples, this is not enough by itself to trigger the relevant method or command, so a relevant
event must be bound to the hot key character (lines 55–62 and 69–73). This is unlike the case of
the command option.

When sub-menus are required as part of a menu item, the same process can be utilized. The
only difference in this case would be that the referenced object should be the menu item instead of
the main menu item (line 68). If it is preferred to use combinations of special keys (i.e., Control,
Shift, or Alt) and characters, one can use the accelerator option instead of underline (lines
69–72, 76). As with underline, additional code should be written in order to trigger the function,
method, or command associated with the menu item.

In cases where check or radio buttons are required instead of simple menu items, one can use
methods add _ checkbutton() and add _ radiobutton(), respectively. These methods are
used as alternatives to the add _ command() method (lines 81–82 and 84–85). When there is a
need to separate the various menu items in groups, one can use the add _ separator() method

Observation 5.7 – add_separa-
tor(), underline, accelerator:
Use the add _ separator() method
to add a line separating the various items
of a menu. Use the underline option
to create hot keys, or the accelerator
option to create ctrl-, shift-, or alt-keys,
and to associate them with the desired
functionality and events.

175Application Development

(line 83). As mentioned, the add _ cascade() method ties together and activates the various
items of the menu system.

In the second part of the script, the bindings between the menu item shortcuts (hot keys or
 control characters) and the associated commands are established (lines 90–93 and 36–42).
The third part of the script involves the methods that perform the various functionality tasks
(lines 8–32). Should the reader experience difficulties to follow through this example, the main
coding concepts and commands used in the script are discussed in more detail in previous sec-
tions and/or chapters.

It is important to note that there is a difference in terms of how a menu is displayed in Windows
(the menu bar is inside the running application window) and in Mac OS (the menu is displayed at
the main system menu bar, detached from the running application window).

5.3.2 toolbAr menus With tooltiPs

An alternative form of presenting menu options to the
user is the toolbar menu. It could either supplement the
simple menu system or be used as a stand-alone compo-
nent. The idea is rather straightforward: creating a col-
lection of buttons (on a frame) and attaching it to the
main window frame. The buttons are then bound to the
respective commands.

Buttons can display either images or text, or a combination of both. In order to improve clarity
and make the interface more user-friendly, button text is often replaced by appropriate tooltips.
The following Python script provides the same functionality as the one in the previous section,
but is using a toolbar instead of a menu. The implementation also embeds tooltips to the toolbar
buttons:

Observation 5.8 – toolbar menu:
Use a toolbar menu system in addi-
tion to (or instead of) simple menus, to
improve the GUI of a multi-functional
application.

1 # Import libraries
2 import tkinter as tk
3 from tkinter import filedialog
4 from tkinter import colorchooser
5 from tkinter import Menu
6 from tkinter import *
7 # Import the necessary image processing classes from PIL
8 from PIL import Image, ImageTk
9
10 global openFileToolTip, saveAsToolTip, colorsDialogToolTip, exitToolTip
11 global photo1, photo2, photo3, photo4
12 global openFileButton, saveAsButton, colorsButton, exitButton
13
14 #---
15 # Open and resize images - load images to buttons
16 def images():
17 global photo1, photo2, photo3, photo4
18
19 image1 = Image.open("OpenFile.gif")
20 image1 = image1.resize((24, 24), Image.ANTIALIAS)
21 photo1 = ImageTk.PhotoImage(image1)
22 image2 = Image.open("SaveAs.gif")
23 image2 = image2.resize((24, 24), Image.ANTIALIAS)
24 photo2 = ImageTk.PhotoImage(image2)

176 Handbook of Computer Programming with Python

25 image3 = Image.open("ColorsDialog.gif")
26 image3 = image3.resize((24, 24), Image.ANTIALIAS)
27 photo3 = ImageTk.PhotoImage(image3)
28 image4 = Image.open("Exit.gif")
29 image4 = image4.resize((24, 24), Image.ANTIALIAS)
30 photo4 = ImageTk.PhotoImage(image4)
31 #--
32 # Define the colorDialog, openDialog, saveAsDialog, and quit functions
33 # that will invoke the relevant dialogs or quit the application
34 def colorDialog():
35 # Assign user color selection to a set of variables
36 (rgbSelected, colorSelected) = colorchooser.askcolor()
37 # Change the form color; use the color element from set variable
38 winFrame.config(background = colorSelected)
39
40 def openDialog():
41 filedialog.askopenfile(title = "Open File Dialog")
42
43 def saveAsDialog():
44 filedialog.asksaveasfilename(title = "Save As Dialog")
45
46 def quit():
47 winFrame.destroy()
48 exit()
49 #--
50 # showToolTips function displays relevant message when hovering over a
51 # button; hideToolTips() function destroys/hides the tooltip
52 def showToolTips(a):
53 global openFileToolTip, saveAsToolTip
54 global colorsDialogToolTip, exitToolTip
55 if (a == 1):
56 openFileToolTip = tk.Label(winFrame, relief = FLAT,
57 text = "Open the Open File dialog", background = 'cyan')
58 openFileToolTip.place(x = 25, y = 30)
59 if (a == 2):
60 saveAsToolTip = tk.Label(winFrame, bd = 2, relief = FLAT,
61 text = "Open the Save As Dialog", background = 'cyan')
62 saveAsToolTip.place(x = 50, y = 30)
63 if (a == 3):
64 colorsDialogToolTip = tk.Label(winFrame, bd = 2, relief = FLAT,
65 text = "Open the Colors Dialog", background = 'cyan')
66 colorsDialogToolTip.place(x = 75, y = 30)
67 if (a == 4):
68 exitToolTip = tk.Label(winFrame, bd = 2, relief = FLAT,
69 text = "Click to exit the application", background = 'cyan')
70 exitToolTip.place(x = 100, y = 30)
71
72 def hideToolTips(a):
73 global openFileToolTip, saveAsToolTip
74 global colorsDialogToolTip, exitToolTip
75 if (a == 1):

177Application Development

76 openFileToolTip.destroy()
77 if (a == 2):
78 saveAsToolTip.destroy()
79 if (a == 3):
80 colorsDialogToolTip.destroy()
81 if (a == 4):
82 exitToolTip.destroy()
83 #--
84 # Defing the bindButtons function to bind the buttons with the
85 # various events
86 def bindButtons():
87 global openFileButton, saveAsButton, colorsButton, exitButton
88
89 openFileButton.bind('<Button-1>', lambda event: openDialog())
90 openFileButton.bind('<Enter>', lambda event: showToolTips(1))
91 openFileButton.bind('<Leave>', lambda event: hideToolTips(1))
92 saveAsButton.bind('<Button-1>', lambda event: saveAsDialog())
93 saveAsButton.bind('<Enter>', lambda event: showToolTips(2))
94 saveAsButton.bind('<Leave>', lambda event: hideToolTips(2))
95 colorsButton.bind('<Button-1>', lambda event: colorDialog())
96 colorsButton.bind('<Enter>', lambda event: showToolTips(3))
97 colorsButton.bind('<Leave>', lambda event: hideToolTips(3))
98 exitButton.bind('<Button-1>', lambda event: quit())
99 exitButton.bind('<Enter>', lambda event: showToolTips(4))
100 exitButton.bind('<Leave>', lambda event: hideToolTips(4))
101 #--
102 # Create non-resizable Windows frame using the tk object
103 winFrame = tk.Tk()
104 winFrame.title("Menus")
105 winFrame.resizable(False, False)
106 winFrame.geometry('260x220')
107
108 # Invoke the images function
109 images()
110
111 # Create toolbar with images and bind to related click event
112 toolbar = tk.Frame(winFrame, bd = 1, relief = RAISED)
113 toolbar.pack(side=TOP, fill=X)
114 # Create the toolbar buttons and invoke the bindButton function to bind
115 # them with the relevant events
116 openFileButton = tk.Button(toolbar, image = photo1, relief = FLAT)
117 saveAsButton = tk.Button(toolbar, image = photo2, relief = FLAT)
118 colorsButton = tk.Button(toolbar, image = photo3, relief = FLAT)
119 exitButton = tk.Button(toolbar, image = photo4, relief = FLAT)
120 bindButtons()
121 openFileButton.pack(side=LEFT, padx=0, pady=0)
122 saveAsButton.pack(side=LEFT, padx=0, pady=0)
123 colorsButton.pack(side=LEFT, padx=0, pady=0)
124 exitButton.pack(side=LEFT, padx=0, pady=0)
125
126 winFrame.mainloop()

178 Handbook of Computer Programming with Python

Output 5.3.2:

The script is similar to the previous versions in structure
but with some notable differences. Firstly, a toolbar
frame is created and populated with four buttons instead
of creating a menu structure. Images are added to the
buttons (lines 16–30) and activated through the associ-
ated pack() method calls (lines 121–124). Secondly,
the buttons are associated with three events, namely
Button-1, Enter, and Leave (lines 86–100, 120). Button-1 is triggered when the left mouse
button is pressed, Enter when the mouse pointer hovers over the button, and Leave when the
mouse pointer exits the boundaries of the button.

Another key point in this script is the way tooltips are
created and triggered. At the time of writing, Python did
not provide an automatic method to create and trigger
a tooltip. As such, developers wishing to use a tooltip
should implement this functionality through coding.
Nevertheless, the concept for doing so is rather simple:
creating a label object that is displayed when the mouse
hovers over the button. This can be accomplished by creating separate labels for each button or
by creating a single label and changing its text and location coordinates depending on the mouse
pointer position. As mentioned, once the mouse pointer exits the boundaries of the button, the label
can be hidden (destroyed). This implementation of tooltip functionality is illustrated in methods
showToolTips() and hideToolTips() (lines 52–82).

5.3.3 PoPuP menus With embedded iCons

A third way to create menus in Python is through pop-
up menus. Pop-up menus are quite similar to simple
menus, with the difference that they are not attached to
any particular, pre-defined position, but are floating on
top of the application window. The creation and con-
figuration of pop-up menus follow the same structure as
simple menus; however, they are triggered in a slightly
different way (e.g., left or right click on a designated
space within the application window). Pop-up menus,
similarly to simple menus, can include items of various
forms like text, images, combinations of both text and images, or shortcuts. They are often used in
combination with menus of other types, like simple menus and toolbars, in order to improve applica-
tion efficiency and make it more appealing to the user.

Observation 5.9 – Enter, Leave:
Use the Enter and Leave events to
trigger the desired actions when the
mouse hovers over or moves away
from an object.

Observation 5.10 – tooltip: To add a
tooltip to a particular object, associ-
ate a label with it and display or hide
the label as the mouse hovers over or
moves away from an object.

Observation 5.11 – pop-up: Use a
pop-up menu to provide menu func-
tionality without having to perma-
nently display the menu within the
application. Pop-up menus can be
used as stand-alone menu options or
in combination with simple menus
and/or toolbars.

179Application Development

The following script implements the same functionality as the previous two examples, but
uses pop-up menus instead of simple menus and/or toolbars. In this example, menu items include
 combinations of images and text:

1 # Import libraries
2 import tkinter as tk
3 from tkinter import filedialog
4 from tkinter import colorchooser
5 from tkinter import Menu
6 from tkinter import *
7 # Import the necessary image processing classes from PIL
8 from PIL import Image, ImageTk
9
10 global photo1, photo2, photo3, photo4
11 global popupmenu
12
13 # Open and resize images - load images to the buttons
14 def images():
15 global photo1, photo2, photo3, photo4
16
17 image1 = Image.open("OpenFile.gif")
18 image1 = image1.resize((24, 24), Image.ANTIALIAS)
19 photo1 = ImageTk.PhotoImage(image1)
20 image2 = Image.open("SaveAs.gif")
21 image2 = image2.resize((24, 24), Image.ANTIALIAS)
22 photo2 = ImageTk.PhotoImage(image2)
23 image3 = Image.open("ColorsDialog.gif")
24 image3 = image3.resize((24, 24), Image.ANTIALIAS)
25 photo3 = ImageTk.PhotoImage(image3)
26 image4 = Image.open("Exit.gif")
27 image4 = image4.resize((24, 24), Image.ANTIALIAS)
28 photo4 = ImageTk.PhotoImage(image4)
29
30 # Define the colorDialog, openDialog, saveAsDialog, and quit functions
31 # to invoke the relevant dialogs or quit the application
32 def colorDialog():
33 # Assign the user's selection of the color to a set of variables
34 (rgbSelected, colorSelected) = colorchooser.askcolor()
35 # Change the form color using the color part of the set of variables
36 winFrame.config(background = colorSelected)
37
38 def openDialog():
39 filedialog.askopenfile(title = "Open File Dialog")
40
41 def saveAsDialog():
42 filedialog.asksaveasfilename(title = "Save As Dialog")
43
44 def quit():
45 winFrame.destroy()
46 exit()

180 Handbook of Computer Programming with Python

Output 5.3.3:

47
48 def popupMenu(event):
49 global popupmenu
50 popupmenu.tk_popup(event.x_root, event.y_root)
51 #---
52 # Create non-resizable Windows frame using the tk objec,
53 winFrame = tk.Tk()
54 winFrame.title("Menus")
55 winFrame.resizable(False, False)
56 winFrame.geometry('260x220')
57
58 # Invoke the images function
59 images()
60
61 # Create the popup menu
62 popupmenu = tk.Menu(winFrame, tearoff = 0)
63 popupmenu.add_command(label = "Color dialog", image = photo1,
64 compound = LEFT, command = colorDialog)
65 popupmenu.add_command(label = "Exit", image = photo4, compound = LEFT,
66 command = quit)
67 popupmenu.add_separator()
68 popupmenu.add_command(label = "Open File dialog", image = photo2,
69 compound = LEFT, command = openDialog)
70 popupmenu.add_command(label = "Save As dialog", image = photo3,
71 compound = LEFT, command = saveAsDialog)
72
73 winFrame.bind('<Button-1>', lambda event: popupMenu(event))
74
75 winFrame.mainloop()

181Application Development

The reader should pay attention to two particular
aspects of this script. Firstly, the add _ cascade()
method that was used in previous scripts to tie together
the various menu items to the main menu system is miss-
ing. In this instance, the tk _ popup() method is used
instead. The method is called as a member of the pop-
upmenu object (i.e., inside the popupmenu(event)
method), and casts the pop-up menu at the current posi-
tion of the mouse cursor (line 50). Secondly, it must
be noted how the text and the picture are combined
on the menu items. Hot keys and other types of short-
cuts can be also used, as described in previous sections
(lines 63–71).

5.4 ENHANCING THE GUI EXPERIENCE

Three additional concepts can be utilized in order to further enhance the GUI experience. What
these concepts have in common is that they can be used to improve the efficiency of real estate and
memory usage of an application. Ultimately, good programming practice supports the creation of
separate, autonomous GUIs and their ability to be reused in various programs by simple calls from
the corresponding objects. This section examines these three concepts and provides some examples
of their application.

5.4.1 notebooKs And tAbbed interfACes

As information systems grow larger in size, the manage-
ment of real estate of the related applications (i.e., the
creation of space that will host and display these appli-
cations) becomes increasingly important. The idea of
using a menu system in its various different forms was
introduced and explained in detail in previous sections.
Menus offer a quite efficient way of addressing the man-
agement of real estate. An alternative way of doing so is
through the use of tabbed interfaces. This approach is
based on the creation of separate sub-sections inside a
single window (i.e., tabs). Tabs are opened and run sepa-
rately, but at the same time, they are parts of the same
GUI structure. Tab-based implementations are commonly used in web browsers, where the various
different web pages can be opened in separate tabs.

The following script combines two of the scripts covered in Chapter 4 (i.e., Buttons and Text and
Speed Control) in a single application, utilizing a tab-based implementation:

Observation 5.14 – Notebook(),
Frame(): Use the Notebook() con-
structor (ttk module) to create the
main object of a tabbed interface.
Use the Frame() constructor (ttk
module) to create each tab sepa-
rately and to add them to the main
object. Finally, pack() all the pieces
together and load the applications in
the respective tabs.

Observation 5.13: Use combinations
of text, images, and hot keys to make
the pop-up menu items more appeal-
ing and self-explanatory.

Observation 5.12 – tk_popup(),
add_cascade(): Use the tk _
p o p u p(e v e n t.x _ r o o t,
event.y _ root) method to dis-
play the pop-up menu at the current
mouse location. Note that the add _
cascade() method should not be
used in this occasion, in contrast to
the creation of simple menus.

1 # Import libraries
2 import tkinter as tk
3 from tkinter import ttk
4
5 # Declare and initialise the global variables and widgets
6 # for use with the functions
7 currentSpeedValue, speedLimitValue, finePerKmValue = 0, 0, 0
8 global speedLimitSpinbox

182 Handbook of Computer Programming with Python

9 global finePerKmScale
10 global currentSpeedScale
11 global fine
12 global tab1, tab2
13 global winLabel
14 global winButton
15
16 # ===
17 # Functions related to the tab2 application of Speed Control
18 # ===
19 # Define the functions that will create the application interface
20 def createGUITab2():
21 currentSpeedFrame()
22 speedLimitFrame()
23 finePerKmFrame()
24 fineFrame()
25
26 # Define function to control changes in the Current Speed Scale widget
27 def onScale(val):
28 global currentSpeedValue
29 currentSpeedValue.set(float(val))
30 calculateFine()
31
32 # Define function to control changes in the Speed Limit Spinbox widget
33 def getSpeedLimit():
34 global speedLimitValue
35 speedLimitValue.set(float(speedLimitSpinbox.get()))
36 calculateFine()
37
38 # Define function to control changes in the Fine per Km Spinbox widget
39 def getFinePerKm(val):
40 global finePerKmValue
41 finePerKmValue.set(int(float(val)))
42 calculateFine()
43
44 # Define function to calculate Fine based on user input
45 def calculateFine():
46 global currentSpeedValue, speedLimitValue, finePerKmValue
47 global fine
48 diff = float(currentSpeedValue.get()) – float(speedLimitValue.get())
49 finePerKm = float(finePerKmValue.get())
50 if (diff <= 0):
51 fine.config(text = 'No fine')
52 else:
53 fine.config(text = 'Fine in USD: '+ str(diff * finePerKm))
54
55 # Add the Current Speed widgets to tab2
56 def currentSpeedFrame():
57 global currentSpeedValue
58
59 # Create the prompt label for the Current Speed tab
60 currentSpeed = tk.Label(tab2, text = 'Current speed:', width = 24)

183Application Development

61 currentSpeed.config(bg = 'light blue', fg = 'red', bd = 2,
62 font = 'Arial 14 bold')
63 currentSpeed.grid(column = 0, row = 0)
64 # Create Scale widget and define connection variable
65 currentSpeedValue = tk.DoubleVar()
66 currentSpeedScale=tk.Scale (tab2, length = 200, from_ = 0, to = 360)
67 currentSpeedScale.config(resolution = 0.5,
68 activebackground = 'dark blue', orient = 'horizontal')
69 currentSpeedScale.config(bg = 'light blue', fg = 'red',
70 troughcolor = 'cyan', command = onScale)
71 currentSpeedScale.grid(column = 1, row = 0)
72 currentSpeedSelected = tk.Label(tab2, text = '...',
73 textvariable = currentSpeedValue)
74 currentSpeedSelected.grid(column = 2, row = 0)
75
76 # Add the Speed Limit widgets to tab2
77 def speedLimitFrame():
78 global speedLimitValue
79 global speedLimitSpinbox
80
81 # Create the prompt label for the Speed Limit tab
82 speedLimit = tk.Label (tab2, text = 'Speed Limit:', width = 24)
83 speedLimit.config(bg = 'light blue', fg = 'yellow', bd = 2,
84 font = 'Arial 14 bold')
85 speedLimit.grid(column = 0, row = 1)
86 # Create the Spinbox widget and define variable to connect
87 # to Spinbox widget
88 speedLimitValue = tk.DoubleVar()
89 speedLimitSpinbox = ttk.Spinbox(tab2, from_ = 0, to = 360,
90 command = getSpeedLimit)
91 speedLimitSpinbox.grid(column = 1, row = 1)
92 speedLimitSelected = tk.Label(tab2, text = '...',
93 textvariable = speedLimitValue)
94 speedLimitSelected.grid(column = 2, row = 1)
95
96 # Add the Fine per Km widgets to tab2
97 def finePerKmFrame():
98 global finePerKmValue
99
100 # Create the prompt label for the Fine per Km tab
101 finePerKm=tk.Label(tab2, text='Fine/Km overspeed (USD):', width=24)
102 finePerKm.config(bg = 'light blue', fg = 'brown', bd = 2,
103 font = 'Arial 14 bold')
104 finePerKm.grid(column = 0, row = 2)
105 # Create Scale widget and define variable to connect to Scale widget
106 finePerKmValue = tk.IntVar()
107 finePerKmScale=ttk.Scale(tab2, orient = 'horizontal', length = 200,
108 from_ = 0, to = 100, command = getFinePerKm)
109 finePerKmScale.grid(column = 1, row = 2)
110 finePerKmSelected = tk.Label(tab2, text = '...',

textvariable = finePerKmValue)
111 finePerKmSelected.grid(column = 2, row = 2)

184 Handbook of Computer Programming with Python

112
113 # Add the Fine for speeding label to tab2
114 def fineFrame():
115 global fine
116
117 # Create the label that will display the fine on the Fine tab
118 fine = tk.Label(tab2, text = 'Fine in USD:...', fg = 'blue')
119 fine.grid(column = 0, row = 3)
120 # ===
121 # The functions related to the tab1 application (button and text)
122 # ===
123 # Define the function that will control the mouse click events
124 def changeText(a):
125 global winLabel
126 winLabel.config(text = a)
127
128 # Define the function that will create the GUI for the tab1
129 def createGUITab1():
130 global winButton
131 global winLabel
132
133 winLabel = tk.Label(tab1, text = "...")
134 winLabel.grid(column = 1, row = 0)
135
136 # Create the button widget and bind it with the associated events
137 winButton=tk.Button(tab1, text="Left, right, or double left Click "
138 "\nto change the text of the label", font="Arial 16", fg="red")
139 winButton.grid(column = 0, row = 0)
140 winButton.bind("<Button-1>", lambda event, \
141 a = "You left clicked on the button": changeText(a))
142 winButton.bind("<Button-2>", lambda event, \
143 a = "You right clicked on the button": changeText(a))
144 winButton.bind("<Double-Button-1>", lambda event, \
145 a = "You double left clicked on the button": changeText(a))
146 winButton.bind("<Enter>", lambda event, \
147 a = "You are hovering above the button": changeText(a))
148 winButton.bind("<Leave>", lambda event, \
149 a = "You left the button widget": changeText(a))
150 # ===
151 # Create non-resizable Windows frame using the tk object
152 winFrame = tk.Tk()
153 winFrame.title("Tabs")
154 winFrame.resizable(True, True)
155 winFrame.geometry('500x180')
156
157 # Create notebook with tab pages
158 tabbedInterface = ttk.Notebook(winFrame)
159 tab1 = ttk.Frame(tabbedInterface)
160 tabbedInterface.add(tab1, text = "Buttons and Text")
161 tab2 = ttk.Frame(tabbedInterface)
162 tabbedInterface.add(tab2, text = "Speed control")
163 tabbedInterface.pack()

185Application Development

Output 5.4.1:

As shown in the output, the application implements an interface with two tabs, one hosting the
Buttons and Text application and the other the Speed Control application. In this example, it is
worth to raise some key points. Firstly, the tabs allow for a more efficient use of the real estate, since
the two separate applications run simultaneously in a single window, but are displayed indepen-
dently from each other. Secondly, the creation of the tabbed interface is through the Notebook()
constructor of the ttk module (line 158). The two tabs are created using the Frame() constructor
of the ttk module (lines 159 and 161) and are associated with the main notebook object by being
added to it (lines 160 and 162). All the components are packed together in line 163. Ultimately, the
tabs are created by means of the relevant GUI calls in lines 166 and 167.

There are two main differences between the way the applications are used in this example and in
the original implementations presented in Chapter 4. The first is that, in both cases, the applications
are converted to a completely procedural format, making full use of methods for all the required
functionality and without any statements being added to the main body of the program. The second
is that the Speed Control application is somewhat simplified, as the control variables associated
with the Scale and Spinbox widgets and their respective labels are removed in order to avoid
possible referencing issues between the various methods.

5.4.2 threAded APPliCAtions

One of the most important concepts in programming, and arguably among the most effective tools
when creating real-life applications, is that of threads and threading. The idea behind threads is
rather straightforward: multiple instances of an application can be run as independent processes.
One way to conceptualize threads is to view them as different objects of the same class. Indeed,
this is a rather accurate description, with the additional element of utilizing different processes
of the operating system. One of the main characteristics of threaded applications is that they are
meant to run in parallel. In reality, even in the case of using multi-core computer systems, this is

164
165 # Invoke the 2 functions to create the different GUIs for the 2 tabs
166 createGUITab1()
167 createGUITab2()
168
169 winFrame.mainloop()

186 Handbook of Computer Programming with Python

not entirely feasible, but this is a rather specialized com-
puter architecture consideration that exceeds the scope
of this book.

In the following example, the SpeedControl applica-
tion from Chapter 4 is converted to a class, for the pur-
pose of demonstrating the implementation of threads.
The script creates two objects of the SpeedControl class,
and runs them separately on two different threads:

Observation 5.15 – threads: Create
different threads of the same objects
of a class. Threads are separate and
independent, and can run in paral-
lel or sequentially. They use separate
processes and allocated memory
space.

1 # Import modules tk and ttk
2 import tkinter as tk
3 from tkinter import ttk
4 import threading
5
6 class SpeedControl(threading.Thread):
7
8 # Create and run the main window frame for the application
9 def __init__(self, winFrame):
10 super(SpeedControl, self).__init__()
11 self.winFrame = winFrame
12 self.winFrame.title("Control speed")
13 self.winFrame.config(bg = 'light grey')
14 self.winFrame.resizable(False, False)
15 self.winFrame.geometry('500x170')
16
17 # Create the frame, label and scale widgets for currentSpeed
18 self.currentSpeedFrame = tk.Frame (self.winFrame,
19 bg = 'light grey', bd = 2, relief = 'sunken')
20 self.currentSpeedFrame.pack()
21 self.currentSpeedFrame.place(relx = 0.05, rely = 0.05)
22 self.currentSpeed = tk.Label(self.currentSpeedFrame,
23 text = 'Current speed:', width = 24)
24 self.currentSpeed.config(bg = 'light blue', fg = 'red', bd = 2,
25 font = 'Arial 14 bold')
26 self.currentSpeed.grid(column = 0, row = 0)
27 self.currentSpeedScale = tk.Scale (self.currentSpeedFrame,
28 length = 200, from_ = 0, to = 360)
29 self.currentSpeedScale.config(resolution = 1,
30 orient = 'horizontal', activebackground = 'dark blue')
31 self.currentSpeedScale.config(bg = 'light blue', fg = 'red',
32 troughcolor = 'cyan', command = self.onScale)
33 self.currentSpeedScale.grid(column = 1, row = 0)
34 self.currentSpeedSel = tk.Label(self.currentSpeedFrame,
35 text='...')
36 self.currentSpeedSel.grid(column = 2, row = 0)
37 # Create the frame, label, & spinbox widget for the speedLimit
38 self.speedLimitFrame = tk.Frame(self.winFrame,
39 bg = 'light yellow', bd = 4, relief = 'sunken')
40 self.speedLimitFrame.pack()
41 self.speedLimitFrame.place(relx = 0.05, rely = 0.30)
42 self.speedLimit = tk.Label (self.speedLimitFrame,
43 text = 'Speed limit:', width = 24)

187Application Development

44 self.speedLimit.config(bg= 'light blue', fg = 'yellow', bd = 2,
45 font = 'Arial 14 bold')
46 self.speedLimit.grid(column = 0, row = 0)
47 self.speedLimitSpinbox = ttk.Spinbox(self.speedLimitFrame,
48 from_ = 0, to = 360, command = self.getSpeedLimit)
49 self.speedLimitSpinbox.grid(column = 1, row = 0)
50 self.speedLimitSel=tk.Label(self.speedLimitFrame, text='...')
51 self.speedLimitSel.grid(column = 2, row = 0)
52
53 # Create the frame, label, and scale widget for finePerKm
54 self.finePerKmFrame = tk.Frame(self.winFrame,
55 bg = 'light grey', bd = 2, relief = 'sunken')
56 self.finePerKmFrame.pack()
57 self.finePerKmFrame.place (relx = 0.05, rely = 0.55)
58 self.finePerKm = tk.Label(self.finePerKmFrame,
59 text = 'Fine/Km overspeed (USD):', width = 24)
60 self.finePerKm.config(bg = 'light blue', fg = 'red', bd = 2,
61 font = 'Arial 14 bold')
62 self.finePerKm.grid(column = 0, row = 0)
63 self.finePerKmScale = tk.Scale(self.finePerKmFrame,
64 length = 200, from_ = 0, to = 100)
65 self.finePerKmScale.config(resolution = 1,
66 activebackground = 'dark blue', orient = 'horizontal')
67 self.finePerKmScale.config(bg = 'light cyan', fg = 'red',
68 troughcolor = 'light blue', command = self.getFinePerKm)
69 self.finePerKmScale.grid(column = 1, row = 0)
70 self.finePerKmSel = tk.Label(self.finePerKmFrame, text='...')
71 self.finePerKmSel.grid(column = 2, row = 0)
72
73 # Create the frame for the fine and the related label
74 self.fineFrame = tk.Frame(self.winFrame, bg = 'yellow', bd = 4,
75 relief = 'raised')
76 self.fineFrame.pack()
77 self.fineFrame.place(relx = 0.05, rely = 0.80)
78 self.fine = tk.Label(self.fineFrame, text = 'Fine in USD:...',
79 fg = 'blue')
80 self.fine.grid(column = 0, row = 0)
81 # Define function to control changes in Current Speed Scale widget
82 def onScale(self, val):
83 v = int(float(val))
84 self.currentSpeedSel.config(text = v)
85 self.calculateFine()
86
87 # Define function to control changes in Speed Limit Spinbox widget
88 def getSpeedLimit(self):
89 v = self.speedLimitSpinbox.get()
90 self.speedLimitSel.config(text = v)
91 self.calculateFine()
92
93 # Define function to control changes in Fine per Km Spinbox widget
94 def getFinePerKm(self, val):
95 v = int(float(val))
96 self.finePerKmSel.config(text = v)

188 Handbook of Computer Programming with Python

Output 5.4.2:

97 self.calculateFine()
98
99 # Define function to calculate the Fine based on user input
100 def calculateFine(self):
101 currentSpeed, speedLimit, finePerKm = 0, 0.0, 0
102
103 # Ensure relevant objects are initiated & assigned with values
104 if (self.currentSpeedScale.get()!= ''
105 and self.speedLimitSpinbox.get()!= ''
106 and self.finePerKmScale.get()!= ''):
107 currentSpeed = self.currentSpeedScale.get()
108 speedLimit = float(self.speedLimitSpinbox.get())
109 finePerKm = self.finePerKmScale.get()
110 else:
111 currentSpeed, finePerkKm = 0, 0; speedLimit = 0.0
112
113 # Calculate the fine and display it on the associated label
114 diff = currentSpeed - speedLimit
115 if (diff <= 0):
116 self.fine.config(text = 'No fine')
117 else:
118 self.fine.config(text='Fine in USD: '+str(diff*finePerKm))
119
120 # Create two different GUI frames
121 winFrame1 = tk.Tk()
122 winFrame2 = tk.Tk()
123
124 # Create two different threads - one for each GUI frame
125 speedControl1 = SpeedControl(winFrame1)
126 speedControl2 = SpeedControl(winFrame2)
127
128 # Start each thread/frame and run it separately
129 speedControl1.start()
130 winFrame1.mainloop()
131
132 speedControl2.start()
133 winFrame2.mainloop()

189Application Development

The output illustrates how this particular application runs the two different objects in separate
threads. It must be noted that the threads are running simultaneously. The term in parallel should
be avoided in this context, as it is uncertain whether the threads are indeed running in parallel. This
is also something that can be affected by the operating system, the hardware and software settings,
and the associated behaviors. Nevertheless, from the perspective of the user, this is of purely aca-
demic interest. As shown in the example above, the two threaded objects appear to run in parallel
indeed, but at the same time they function independently and use different inputs as if they were run
sequentially.

The order of statements between lines 121 and 133
is also important. Firstly, the two GUI window frames
are created as normal. If the first GUI frame was to be
created directly followed by the first threaded object,
and before the second GUI frame and threaded object,
the user would only get access to the first window
frame. The second window frame would only appear
once the first one was closed and stopped. The reader
should also notice that the threading module needs
to be inserted before the calls to the start methods of
the threaded objects (i.e., speedControl1 and
speedControl2).

It must be noted that each threaded object is assigned
to a separate window frame and has a dedicated main-
loop() method to monitor its GUI and the associated
events (lines 125–130 and 126–133). This assignment is
taking place in lines 125–126, where the window frame
for each threaded object is called as a parameter, and
used on the specific, independent GUI for the underly-
ing object.

Another notable aspect of the script is the explicit
definition of the __ init __ (self, win-
Frame): super(SpeedControl, self). __ init __ () that loads the GUI widgets onto
the window frames of each of the threaded objects. The reader should be reminded here that the
__ init __ () method is provided by Python to automatically initialize basic and necessary wid-
gets and attributes in preparation of launching the object. The self parameter is necessary in
order for the Python interpreter to distinguish which object is running and what widgets and attri-
butes belong to it. This is the reason why each widget and attribute, and even simple variables, are
preceded by the self parameter.

Another key point in this particular script is that, since the object that is being created is threaded,
it inherits from the Thread class of the threading module (line 6) and is implemented on that
class (line 10). These two lines that essentially create the threaded object are called each time a new
threaded object is initiated.

Finally, the reader should note that the control variables (e.g., IntVar()) are missing from this
version of the code. This was done on purpose, as their inclusion could cause unnecessary conflicts
between the threaded objects and the cross-method operations within any single threaded object,
without offering any particular benefits to the application. In general, it is advisable that control
variables on widgets are avoided, especially when implementing object-oriented and/or threaded
object applications.

Observation 5.16 – Threads: Use the
Thread class from the threading
module to create threaded objects.
Use the start() method to start
the threads and the stop()method
to stop them. Always use the self
parameter on all widgets and attri-
butes to refer to the specific object
they belong to.

Observation 5.17: Avoid using control
variables (e.g., IntVar()) in threaded
objects.

Observation 5.18: In cases of GUI-
based threaded objects, use the
mainloop() method for monitoring
each object.

190 Handbook of Computer Programming with Python

5.4.3 Combining multiPle ConCePts And APPliCAtions in A multithreAded system

Chapters 2–5 of this book provide a gradual progression from basic programming skills to more
advanced application development concepts. Although there are certainly many more concepts and
layers of depth to be explored when it comes to programming in Python, Chapters 2–5 should pro-
vide a solid basis for the aspiring programmer, as they cover the necessary building blocks required
to make functional and well-structured applications. As a conclusion to this conceptual sub-section
of this book, it was deemed necessary to provide an overview of how the concepts, mechanisms,
and practices presented so far can be integrated into a coherent, centralized solution. Ultimately,
this should provide an idea of how a multithreaded and multi-functional information system can
be built, resembling the scenarios and challenges one may face in real life. The example presented
below combines two of the applications developed earlier (Speed Control and Bubble Sort)
into a multithreaded system that can be launched and operated as a single, unified platform. In order
for this to be possible, two changes are required:

 a. Each of the two individual applications (Speed Control and Bubble Sort) must be
adjusted according to the object-oriented paradigm. This is done by separating and
extracting the main code that is responsible for the GUI creation and all related meth-
ods, and save the remaining code as separate text files in Jupyter. By doing so, the origi-
nal applications cannot be run separately, as there is no actual object being created in the
remaining code. Instead of creating the object within the main body of each application,
this is done through a call from another application, which now functions as the main
application.

 b. The code that was extracted from the original applications must be imported to this newly
created application.

The code examples presented and discussed in the following pages provide a practical illustration
of these changes:

Chapter5SpeedControl.py

1 # Import modules tk and ttk
2 import tkinter as tk
3 from tkinter import ttk
4 import threading
5
6 class SpeedControl(threading.Thread):
7
8 # Create and run the main window frame for the application
9 def __init__(self, winFrame):
10 super(SpeedControl, self).__init__()
11 self.winFrame = winFrame
12 self.winFrame.title("Control speed")
13 self.winFrame.config(bg = 'light grey')
14 self.winFrame.resizable(False, False)
15 self.winFrame.geometry('500x170')
16
17 # Create frame for currentSpeed & its label and scale widgets
18 self.currentSpeedFrame = tk.Frame(self.winFrame,

191Application Development

19 bg = 'light grey', bd = 2, relief = 'sunken')
20 self.currentSpeedFrame.pack()
21 self.currentSpeedFrame.place(relx = 0.05, rely = 0.05)
22 self.currentSpeed = tk.Label(self.currentSpeedFrame,
23 text = 'Current speed:', width = 24)
24 self.currentSpeed.config(bg = 'light blue', fg = 'red', bd = 2,
25 font = 'Arial 14 bold')
26 self.currentSpeed.grid(column = 0, row = 0)
27 self.currentSpeedScale = tk.Scale(self.currentSpeedFrame,
28 length = 200, from_ = 0, to = 360)
29 self.currentSpeedScale.config(resolution = 1,
30 activebackground = 'dark blue', orient = 'horizontal')
31 self.currentSpeedScale.config(bg = 'light blue', fg = 'red',
32 troughcolor = 'cyan', command = self.onScale)
33 self.currentSpeedScale.grid(column = 1, row = 0)
34 self.currentSpeedSel = tk.Label(self.currentSpeedFrame,
35 text = '...')
36 self.currentSpeedSel.grid(column = 2, row = 0)
37 # Create frame for speedLimit & its label and spinbox widgets
38 self.speedLimitFrame = tk.Frame(self.winFrame,
39 bg = 'light yellow', bd = 4, relief = 'sunken')
40 self.speedLimitFrame.pack()
41 self.speedLimitFrame.place(relx = 0.05, rely = 0.30)
42 self.speedLimit = tk.Label(self.speedLimitFrame,
43 text = 'Speed limit:', width = 24)
44 self.speedLimit.config(bg = 'light blue', fg = 'yellow',
45 bd = 2, font = 'Arial 14 bold')
46 self.speedLimit.grid(column = 0, row = 0)
47 self.speedLimitSpinbox = ttk.Spinbox(self.speedLimitFrame,
48 from_ = 0, to = 360, command = self.getSpeedLimit)
49 self.speedLimitSpinbox.grid(column = 1, row = 0)
50 self.speedLimitSel=tk.Label(self.speedLimitFrame,text='...')
51 self.speedLimitSel.grid(column = 2, row = 0)
52
53 # Create frame for finePerKm and its label and scale widgets
54 self.finePerKmFrame = tk.Frame(self.winFrame,
55 bg = 'light grey', bd = 2, relief = 'sunken')
56 self.finePerKmFrame.pack()
57 self.finePerKmFrame.place(relx = 0.05, rely = 0.55)
58 self.finePerKm = tk.Label(self.finePerKmFrame,
59 text = 'Fine/Km overspeed (USD):', width = 24)
60 self.finePerKm.config(bg = 'light blue', fg = 'red', bd = 2,
61 font = 'Arial 14 bold')
62 self.finePerKm.grid(column = 0, row = 0)
63 self.finePerKmScale = tk.Scale(self.finePerKmFrame,
64 length = 200, from_ = 0, to = 100)
65 self.finePerKmScale.config(resolution = 1,
66 activebackground = 'dark blue', orient = 'horizontal')
67 self.finePerKmScale.config(bg = 'light cyan', fg = 'red',
68 troughcolor = 'light blue', command = self.getFinePerKm)

192 Handbook of Computer Programming with Python

69 self.finePerKmScale.grid(column = 1, row = 0)
70 self.finePerKmSel=tk.Label(self.finePerKmFrame, text = '...')
71 self.finePerKmSel.grid(column = 2, row = 0)
72
73 # Create the frame for Fine and its label
74 self.fineFrame = tk.Frame(self.winFrame, bg = 'yellow', bd = 4,
75 relief = 'raised')
76 self.fineFrame.pack()
77 self.fineFrame.place(relx = 0.05, rely = 0.80)
78 self.fine = tk.Label(self.fineFrame, text = 'Fine in USD:...',
79 fg = 'blue')
80 self.fine.grid(column = 0, row = 0)
81
82 # Define function to control changes in CurrentSpeedScale widget
83 def onScale(self, val):
84 v = int(float(val))
85 self.currentSpeedSel.config(text = v)
86 self.calculateFine()
87
88 # Define function to control changes in SpeedLimitSpinbox widget
89 def getSpeedLimit(self):
90 v = self.speedLimitSpinbox.get()
91 self.speedLimitSel.config(text = v)
92 self.calculateFine()
93
94 # Define function to control changes in FineperKm Spinbox widget
95 def getFinePerKm(self, val):
96 v = int(float(val))
97 self.finePerKmSel.config(text = v)
98 self.calculateFine()
99
100 # Define the function to calculate the Fine based on user input
101 def calculateFine(self):
102 currentSpeed, speedLimit, finePerKm = 0, 0.0, 0
103
104 # Make sure the objects are initiated and assigned with values
105 if (self.currentSpeedScale.get()!= ''
106 and self.speedLimitSpinbox.get()!= ''
107 and self.finePerKmScale.get()!= ''):
108 currentSpeed = self.currentSpeedScale.get()
109 speedLimit = float(self.speedLimitSpinbox.get())
110 finePerKm = self.finePerKmScale.get()
111 else:
112 currentSpeed, finePerkKm = 0, 0; speedLimit = 0.0
113
114 # Calculate the fine and display it on the associated label
115 diff = currentSpeed - speedLimit
116 if (diff <= 0):
117 self.fine.config(text = 'No fine')
118 else:
119 self.fine.config(text='Fine in USD: '+str(diff*finePerKm))

193Application Development

In the class presented above, the statements that create and run the GUI have been already sepa-
rated and extracted, ready to be imported to the main application that will eventually create the
multithreaded objects. Apart from extracting these particular statements, the class implements the
SpeedControl application as discussed in the previous section. The class needs to be saved as a text
file with the .py extension.

Chapter5BubbleSort.py

1 # Import modules tk, random and time
2 import tkinter as tk
3 from tkinter import ttk
4 from tkinter import *
5 import random
6 import time
7 import threading
8
9 class BubbleSort(threading.Thread):
10
11 # Initialise the various lists used by the objects of the class
12 unsortedL = []; sortedL = []; statisticsData = [];
13 sizes = [5, 20, 100, 250, 500, 750, 1000, 2000, 5000, 10000, 20000]
14
15
16 # Create and run the main window frame for the application
17 def __init__(self, winFrame):
18 super(BubbleSort, self).__init__()
19 self.winFrame = winFrame
20 self.winFrame.title("Bubble Sort");
21 self.winFrame.config(bg = 'light grey')
22 self.winFrame.resizable(True, True);
23 self.winFrame.geometry('650x300')
24 self.listSize = 0
25 self.createGUI()
26
27 # Define the functions that will create the application GUI
28 def createGUI(self):
29 self.unsortedFrame()
30 self.entryFrame()
31 self.entryButton()
32 self.sortButton()
33 self.sortedFrame()
34 self.clearButton()
35 self.statisticsButton()
36 self.statisticsSelection()
37
38 # Create labelframe; populate with Unsorted Array Listbox widgets
39 def unsortedFrame(self):
40 self.UnsortedFrame=tk.LabelFrame(self.winFrame,

text='Unsorted Array')
41 self.UnsortedFrame.config(bg = 'light grey', fg = 'blue',
42 bd = 2, relief = 'sunken')

194 Handbook of Computer Programming with Python

43 # Create a scrollbar widget to attach to UnsortedList
44 self.UnsortedListScrollBar = Scrollbar(self.UnsortedFrame,
45 orient = VERTICAL)
46 self.UnsortedListScrollBar.pack(side = RIGHT, fill = Y)
47 # Create a listbox in the Unsorted Array frame
48 self.UnsortedList = tk.Listbox(self.UnsortedFrame,
49 yscrollcommand = self.UnsortedListScrollBar.set,
50 bg = 'cyan', width = 13, height = 12, bd = 0)
51 self.UnsortedList.pack(side = LEFT, fill = BOTH)
52 # Associate the scrollbar command with its parent widget
53 # (i.e., the UnsortedList yview)
54 self.UnsortedListScrollBar.config(command =

self.UnsortedList.yview)
55 # Place the Unsorted frame & its components into the interface
56 self.UnsortedFrame.pack()
57 self.UnsortedFrame.place(relx = 0.02, rely = 0.05)
58
59 # Create the labelframe that will contain the Entry widget
60 def entryFrame(self):
61 self.EntryFrame = tk.LabelFrame(self.winFrame, text= 'Actions')
62 self.EntryFrame.config(bg = 'light grey', fg = 'red', bd = 2,
63 relief = 'sunken')
64 self.EntryFrame.pack(); self.EntryFrame.place(relx=0.25,

rely=0.05)
65 # Create the label in the Entry frame
66 self.EntryLabel = tk.Label(self.EntryFrame,
67 text = 'How many integers\nin the list', width = 16)
68 self.EntryLabel.config(bg = 'light grey', fg = 'red', bd = 3,
69 relief = 'flat', font = 'Arial 14 bold')
70 self.EntryLabel.grid(column = 0, row = 0)
71 # Create combo box to select the number of elements in lists
72 self.ListSizeCombo = ttk.Combobox(self.EntryFrame, width = 10)
73 self.ListSizeCombo['values'] = self.sizes
74 self.ListSizeCombo.current(0)
75 self.ListSizeCombo.grid(column = 1, row = 0)
76
77 # Create the button that will insert new entries into the unsorted
78 # array and list box
79 def entryButton(self):
80 self.EntryButton = tk.Button(self.EntryFrame, relief= 'raised',
81 text = 'Populate\nUnsorted list', width = 16)
82 self.EntryButton.bind('<Button-1>',
83 lambda event: self.populateUnsortedList())
84 self.EntryButton.grid(column = 0, row = 2)
85
86 # Populate the unsorted list with random numbers and populate
87 # the unsorted list box
88 def populateUnsortedList(self):
89 self.listSize = int(self.ListSizeCombo.get())

195Application Development

90
91 # Generate random integers with randint() from the random class
92 for i in range (self.listSize):
93 n = random.randint(-100, 100)
94 # Enter the generated random integer to the relevant place
95 # in the unsorted list
96 self.unsortedL.insert(i, n)
97 # Populate UnsortedList with the unsorted list elements
98 for i in range (0, self.listSize):
99 self.UnsortedList.insert(i, self.unsortedL[i])
100 self.UnsortedListScrollBar.config(command=

self.UnsortedList.yview)
101
102 # Create the button that will sort the numbers and display them
103 # in the sorted array and list box
104 def sortButton(self):
105 self.SortButton = tk.Button(self.EntryFrame, relief = 'raised',
106 text = 'Sort numbers\nwith BubbleSort', width = 16)
107 self.SortButton.bind('<Button-1>',lambda event:

self.sortToSortedList())
108 self.SortButton.grid(column = 1, row = 2)
109
110 # Create the labelframe to include the Sorted Array Listbox widgets
111 def sortedFrame(self):
112 self.SortedFrame=tk.LabelFrame(self.winFrame,

text='Sorted Array')
113 self.SortedFrame.config(bg = 'light grey', fg = 'blue', bd = 2,
114 relief = 'sunken')
115 # Create a scrollbar widget to attach to the SortedList
116 self.SortedListScrollBar = Scrollbar (self.SortedFrame)
117 self.SortedListScrollBar.pack(side = RIGHT, fill = Y)
118 # Create the list box in the Sorted Array frame
119 self.SortedList = tk.Listbox (self.SortedFrame,
120 yscrollcommand = self.SortedListScrollBar.set,
121 bg = 'cyan', width = 13, height = 12, bd = 0)
122 self.SortedList.pack(side = LEFT, fill = BOTH)
123 # Associate the scrollbar command with its parent widget
124 # (i.e., the SortedList yview)
125 self.SortedListScrollBar.config(command =

self.SortedList.yview)
126 # Place the Unsorted frame and its parts into the interface
127 self.SortedFrame.pack(); self.SortedFrame.place(relx = 0.75,

rely = 0.05)
128
129 # Bubble Sort sorts the list & records information for later use
130 def sortToSortedList(self):
131 # Load unsorted list & list box to the sorted list & list box
132 for i in range (0, self.listSize):
133 self.sortedL.insert(i, self.unsortedL[i])

196 Handbook of Computer Programming with Python

134
135 # Start timer
136 self.startTime = time.process_time()
137
138 # The Bubble sort algorithm
139 for i in range (self.listSize-1):
140 for j in range (self.listSize-1):
141 if (self.sortedL[j] > self.sortedL[j+1]):
142 temp = self.sortedL[j]
143 self.sortedL[j] = self.sortedL[j+1]
144 self.sortedL[j+1] = temp
145
146 # End timer
147 self.endTime = time.process_time()
148
149 # Load the sorted list to the relevant list box
150 for i in range (0, self.listSize):
151 self.SortedList.insert(i, self.sortedL[i])
152 self.SortedListScrollBar.config(command=self.SortedList.yview)
153
154 # Create button that will clear the two list boxes & the two lists
155 def clearButton(self):
156 self.ClearButton = tk.Button(self.EntryFrame,
157 text = 'Clear lists', relief = 'raised', width = 16)
158 self.ClearButton.bind('<Button-1>',

lambda event: self.clearLists())
159 self.ClearButton.grid(column = 0, row = 3)
160
161 # Clear all lists, list & combo boxes, & related global variable
162 def clearLists(self):
163 self.sortedL.clear()
164 self.unsortedL.clear()
165 self.UnsortedList.delete('0', 'end')
166 self.SortedList.delete('0', 'end')
167 self.statisticsData.clear()
168 self.StatisticsCombo.delete('0', 'end')
169 self.listSize = 0
170
171 # Create the button that will display sorting information
172 def statisticsButton(self):
173 self.StatisticsButton = tk.Button(self.EntryFrame,
174 text = 'Show statistics', relief = 'raised', width = 16)
175 self.StatisticsButton.bind('<Button-1>',

lambda event: self.statistics())
176 self.StatisticsButton.grid(column = 1, row = 3)
177
178 # Create the option menu that will show the statistical results
179 # from the sorting process
180 def statisticsSelection(self):
181 self.StatisticsSelection = tk.StringVar()

197Application Development

As with the SpeedControl class discussed previously, the class presented above is the modified
version of the Bubble Sort application. The object-oriented paradigm is adopted by separating and
extracting the statements that would create and run the GUI. The remaining code is saved as a .py
text file in Jupyter, in order to be accessible by the main application.

The following class implements the main application that imports the two classes and runs them
as threaded objects. The classes are imported in lines 5–6, and the main GUI object is created
in lines 47, 49, and 51. The interface offers a single method: the display of a popup menu when
a left-click event takes place. The menu allows for the creation of two threaded objects based on
SpeedControl and Bubble Sort (line 30). The reader should note how the statements separated and
extracted from the imported classes were added to the main application in lines 32–37 and 39–44
respectively:

182 self.statisticsData = ['The statistics will appear here']
183 self.StatisticsSelection.set(self.statisticsData[0])
184 self.StatisticsCombo = ttk.Combobox(self.EntryFrame,
185 textvariable = self.StatisticsSelection, width = 30)
186 self.StatisticsCombo['values'] = self.statisticsData
187 self.StatisticsCombo.grid(column = 0, columnspan = 2, row = 4)
188
189 # Calculate and report the statistics from the sorting process
190 def statistics(self):
191 self.statisticsData.clear()
192 self.statisticsData.insert(1,
193 'The size of the list is ' + str(self.listSize))
194 self.statisticsData.insert(2,
195 'The sum of the list is ' + str(sum(self.sortedL)))
196 self.statisticsData.insert(3, 'The time passed to sort the ' +
197 'list was ' + str(round(self.endTime - self.startTime, 5)))
198 self.statisticsData.insert(4, 'The average of the sorted list '
199 +'is: ' + str(round(sum(self.sortedL) / self.listSize, 2)))
200 self.StatisticsCombo['values'] = self.statisticsData

1 # Import libraries
2 import tkinter as tk
3 from tkinter import Menu
4 from tkinter import *
5 import Chapter5SpeedControl
6 import Chapter5BubbleSort
7 import threading
8
9 class Application:
10
11 # Create main window frame for the application with the popup menu
12 def __init__(self, winFrame):
13 self.winFrame = winFrame
14 self.winFrame.title("Application with threads")
15 self.winFrame.config(bg = 'light grey')
16 self.winFrame.resizable(False, False)

198 Handbook of Computer Programming with Python

17 self.winFrame.geometry('260x220')
18
19 self.popupmenu = tk.Menu(self.winFrame, tearoff = 0)
20 self.popupmenu.add_command(label = "Speed Control",
21 command = self.speedControlThread)
22 self.popupmenu.add_command(label = "Bubble Sort",
23 command = self.bubbleSortThread)
24 self.winFrame.bind('<Button-1>',

lambda event: self.popupMenu(event))
25 self.winFrame.config(menu = self.popupmenu)
26
27 self.winFrame.mainloop()
28
29 def popupMenu(self, event):
30 self.popupmenu.tk_popup(event.x_root, event.y_root)
31
32 def speedControlThread(self):
33 # Prepare the Speed Control GUI
34 speedControlFrame = tk.Tk()
35 speedControl1 =

Chapter5SpeedControl.SpeedControl(speedControlFrame)
36 speedControl1.start()
37 speedControlFrame.mainloop()
38
39 def bubbleSortThread(self):
40 # Prepare the Bubble sort GUI
41 bubbleSortFrame = tk.Tk()
42 bubbleSort1 = Chapter5BubbleSort.BubbleSort(bubbleSortFrame)
43 bubbleSort1.start()
44 bubbleSortFrame.mainloop
45
46 # Prepare the application GUI
47 winFrame = tk.Tk()
48
49 application = Application(winFrame)
50
51 winFrame.mainloop()

199Application Development

Output 5.4.3:

5.5 WRAP UP

Chapters 4 and 5 provided a step-by-step, systematic walkthrough of Graphical User Interface
(GUI) programming with Python, and an introduction to GUI objects like menus, tabs, and threads.
Key Python widgets were introduced alongside their most common uses and options. This was
done through a series of straightforward examples and applications that progressed gradually from
simpler to more challenging implementations. Although a detailed coverage of all the available
widgets is beyond the scope of this chapter, Table 5.1 provides widget lists with descriptions, and

200 Handbook of Computer Programming with Python

TABLE 5.1
Frequently Used Widgets and the Module They Belong to

Widget Name Brief Description Module/Constructor

Windows frame The main object of a windows-based application,
acting as a container for all other widgets in order to
create the Graphical-User-Interface.

tkinter, tk.Tk()

Label Displays a short message to the user. Its content is not
expected to change significantly in the program
lifecycle and it is not meant to be used for interaction.
Nevertheless, it is possible to write code that will
enhance its functionality.

tkinter, tk.Label()

Button Used to handle basic interaction between the user and
the application. This is usually implemented through
movement or click-based events.

tkinter, tk.Button()

Entry A basic widget used to accept a single line of text from
the keyboard. As with most other widgets, it can be
modified in terms of functionality and appearance.

ttk, ttk.Entry()

Scale A controlled mechanism for accepting numerical user
input. Two different implementations of the widget
are available, with the one found in tkinter offering
more options than that in ttk.

tkinter/ttk, tk.Scale()/
ttk.Scale()

Spinbox A controlled mechanism for accepting numerical user
input from the ttk library.

ttk, ttk.Spinbox()

Frame Used for improved control of the GUI. It can contain
various other widgets.

tkinter, tk.Frame()

Labelframe Similar to the frame widget, but with the inclusion of a
label.

tkinter, tk.LabelFrame()

Listbox Used to display separate lines of text, allowing the user
to make a selection. The contents of multiple listboxes
can be synchronized.

tkinter, tk.ListBox()

Combobox Similar to the list box, but instead of being
permanently expanded it is in a collapsed state and
only opens when clicked upon. The selected line of
text is displayed on the top level (i.e., the displayed
text box when the list is collapsed).

ttk, ttk.Combobox()

ScrollBar Used to improve the appearance and use of associated
multiline widgets (e.g., list boxes) when they are
populated with a large number of entries.

tkinter, ScrollBar()

CheckButton Used to offer selection options. It allows for the
selection of multiple options at any given time.

tkinter, tk.CheckButton()

RadioButton Used to offer selection options. Options are mutually
exclusive.

tkinter, tk.RadioButton()

Progressbar Used to inform the user about the state of a particular
running method. It can be determinate, in which case
the widget presents the actual state of the method, or
indeterminate, where the widget provides a scrolling
message indicating that the method is still in progress.

ttk, ttk.Progressbar()

Text Similar to the entry widget, but allowing multiple lines
of text.

tk, tk.Text()

Canvas A widget that provides a space to place graphics, text,
or other objects.

tk, tk.Canvas()

Notebook Provides the supporting object for tabbed frames. ttk, ttk.Notebook()

201Application Development

the modules/libraries they belong to as a quick reference. This information can be also used as a
reference for constructors when creating objects from the respective classes. Additional details on
the listed widgets (including tkinter) can be found in the official Python documentation.

In addition to the aforementioned widgets, a number of other objects are frequently used to
improve the GUI experience. Although many of these are not standalone objects, their use in con-
junction with other objects is rather common. Table 5.2 lists some of these objects:

The above objects make use of a number of methods that contribute to the creation of the over-
all user experience. Table 5.3 lists some of the most important of the methods used in the various
scripts and applications developed in this chapter:

TABLE 5.2
Notable Objects and Their Modules

Object Brief Description Module

Image Used to load and display an image. It supports different
file types (e.g., gif, jpg, png). Various different
methods are available, depending on the file type.

PIL

tk.StringVar(), tk.IntVar(),
tk.DoubleVar(), etc.

Used to host text or numbers. tkinter

askyesno(), askokcancel(),
askretrycancel(),
askquestion()

Used to display different types of pre-defined message
boxes.

messagebox

showinfo(), showerror(),
showwarning()

Used to display a simple message box with an info,
error, or warning icon.

messagebox

askopenfile(),
asksaveasfilename(),
askdirectory(), askcolor()

Used to display the common windows-based dialogs,
ranging from file dialogs to color chooser modules.

filedialog,
colorchooser

menu, popup menu Used to display regular windows-based or popup
menus.

tkinter,
tk.Menu()

Thread Used to create threaded objects. threading

TABLE 5.3
Frequently Used Methods and Their Respective Widgets (in Alphabetical Order with
Constructors First)

Method Brief Description

.add_command(), .add_
checkbutton(), .add_
radiobutton(), .add_cascade(),
.add_separator()

Adds the various components of a menu object.

.after() Invokes a method after a set amount of time has elapsed.

.append() Appends a new element to the end of a list.

.askyesno(), askokcancel(),
.askretrycancel(),
.askquestion()

Offers a set of different types of pre-defined message boxes.

.askopenfile(),
.asksaveasfilename(),
.askdirectory(), .askcolor()

Offers a set of different types of pre-defined dialogs.

.bind() Binds the widget with a user interaction event.

.clear() Clears the values from a list.

(Continued)

202 Handbook of Computer Programming with Python

For most methods listed on Table 5.3, there exists a number of options/parameters that may be
also used for the improvement of the GUI. These are applicable to a variety of widgets/objects.
Table 5.4 provides a list of some of the most important ones. The list is not exhaustive, but it is based
on cases described in detail in the various examples in this chapter.

TABLE 5.3 (Continued)
Frequently Used Methods and Their Respective Widgets (in Alphabetical Order with
Constructors First)

Method Brief Description

.config() Allows the configuration of the widget in terms of its characteristics
(e.g., color, font properties).

.current() Identifies the current selection from a combo box.

.curselection() Identifies the current selection from a list box.

.delete() Deletes values from a list box.

.destroy() Destroys the current frame/interface.

.exit() Exits the current frame/interface (or the entire application).

.geometry() Accepts the initial dimensions of the frame in the form of a string
(i.e., ‘length x width’).

.grid() Places the widget on the grid of the parent widget and at a specific column
and row. It can span across multiple columns/rows.

.grid_remove() Temporarily hides the widget from the grid of the parent without deleting
or destroying it.

int(), float(), str() Converts the specified values to integer, float, or string values respectively.
.insert() Inserts values to a list box.
.mainloop() Puts the frame in an idle state, and monitors possible interactions. The

latter can take the form of defined events between the user and the GUI.
.maxsize(), .minsize() Defines the minimum/maximum size of the associated frame.
.open() Reads an image/picture based on its full path, assigned as an argument.
.pack() Attaches the widget to the parent, allowing coordinates to be calculated

either on a relative or absolute basis.
.PhotoImage() Creates a memory pointer to a processed image object, by means of the

open() method.
.place() Places the widget at specific coordinates on the parent frame, either on a

relative or absolute basis.
.process_time() Counts the time needed for a particular process to execute.
.randit() Generates random numbers in the specified range.
.resizable() Specifies whether the object is resizable based on a Boolean value

(True/False) that is provided as a parameter.
.resize() Specifies the size of the image/picture. It is usually accompanied by the

ANTIALIAS expression to ensure the quality of the image is maintained
when downsizing.

round(), sum(), len() Basic mathematical methods.
.selection_set() Selects a particular indexed element in a list box.
.set (),.get () Sets or gets the value of an object.
.showinfo(), .showerror(),
.showwarning()

Offer different types of pre-defined message boxes.

.start(), .stop() Starts or stops a threaded object.

.title() Provides a title to the windows frame.

.update_idletasks() Ensures that a widget/object that has been idle for extended periods of
time is not destroyed.

203Application Development

TABLE 5.4
Frequently Used Properties and Their Descriptions

Properties/Expressions Brief Description

activebackground,
activeforeground

The background or foreground color when the cursor hovers over the widget.

anchor Ensures that the particular element it applies to (i.e., text or image) is placed on a
position within the parent widget that will remain unchanged.

borderwidth, bd The width of the border around the widget (e.g., borderwidth = 12) as an integer.
command The method called when the widget is clicked.
compound Combines two objects in the same position (e.g., an image and a text) in a parent label

widget. It can take different values (e.g., left, center, right) that specify the
order of the two objects.

expand Specifies whether the underlying widget is expandable (value is “Y” or non-zero) or
not (value is “N” or zero) when the parent widget is resized.

fg (or foreground),
bg (or background)

The color of the foreground/background (fg/bg) or the text a particular widget will
display (see Table 4.6).

fill Specifies whether the widget it applies to will expand horizontally (fill = tk.X),
vertically (fill = tk.Y) or both (fill = tk.BOTH).

font Sets/gets the font name and the size of the text to be displayed by the widget
(e.g., font = 'Arial 24').

from_ =, to = Sets the numerical boundaries of the widget.
height, width The height or width of the widget in characters (for text widgets) or pixels (for image

widgets).
highlightcolor The color of the text of the widget when the widget is in focus.
image Defines an image to be displayed on the widget instead of text.
justify Determines how multiple lines of text will be justified in respect to each other. Values

are LEFT, CENTER, or RIGHT.
lambda expression Sets the parameters to be passed on to a method or method when an event is triggered.
onvalue, offvalue The values assigned to a check button depending on whether it is selected or not.
orient Specifies the orientation of the widget (horizontal or vertical).
padx, pady Additional padding left/right (padx) or above/below (pady) in relation to the widget.
relief Causes the widget to be displayed with a particular visual effect in terms of its border

appearance (see Table 4.6 for available values).
resolution The incremental or decremental step of the scale widget.
relx, rely The position of the widget relative to the parent object.
show Replaces the text of the current widget with the specified character(s).
side Specifies the position of the content of the widget (Left, Center, or Right).
state The state of responsiveness and/or accessibility of the widget. Values can be NORMAL,

ACTIVE, DISABLED.
text The textual content to be displayed.
textvariable The textual content of the text-based widget.
troughcolor The color of the trough of the scale widget.
value The value assigned to a radio button, depending on the selection/state.
["values"] Associates/populates a combo box with a particular list of values.
underline If −1, no character of the button’s text will be underlined. If a non-zero value is

provided, the corresponding character(s) will be underlined.
wraplength If non-zero, the text lines of the widget will be wrapped to fit the length of the parent

widget.
yscrollcommand,
xscrollcommand

Used to activate the scrollbar.

yview, xview Specifies the orientation of a scrollbar (yview for vertical or xview for horizontal).

204 Handbook of Computer Programming with Python

It should be evident by the examples provided in this chapter that one of the most important con-
cepts in GUI programming is the user’s interaction with the widgets, as this is how events are used
to trigger specific tasks. Such interactions usually take the form of mouse clicks or keyboard events.
Table 5.5 lists some of the most important methods of interactions as a quick reference.

Finally, some common values of the options mentioned previously are provided on Table 5.6
below.

TABLE 5.5
Frequently Used Events and Their Descriptions

Event Brief Description

<Button-1>, <Button-2>, <Button-3> Triggered when the left, middle, or right button of the
mouse is clicked upon the widget.

<Double-Button-1>, <Double-Button-2>,
<Double-Button-3>

Triggered when the left, middle, or right mouse button is
double clicked upon the widget.

<Enter> Triggered when the mouse is hovering across the widget.
<Key> Triggered when any key on the keyboard is pressed. Use

the event.keycode option to check the key that was
pressed. Note that the values of the keyboard keys vary
between operating systems.

<Leave> Triggered when the mouse leaves the parent widget.

TABLE 5.6
Possible Values for the Various Different Options

Option Values Available

Color related It is possible to set the color of the widget, text, or object, either in the form of a hexadecimal string
(e.g., “#000111”), or by using color names (e.g., “white”, “black”, “red”, “green”, “blue”,
“cyan”, “yellow”, and “magenta”).

Font related The font of a text can be set just after the text is specified, using the following sub-options:
• Family: The font family names as a string.
• Size: The font height in points (n) or pixels (−n).
• Weight: The attributes of the text (“bold” for bold, or “normal” for regular text).
• Slant: The attributes of the text (“italic” for italic, or “roman” for unslanted).
• Underline: The attributes of the text (1 for underlined or 0 for normal text).
• Overstrike: The attributes of the text (1 for overstruck or 0 for normal text).

Anchor related The possible values for the anchor justification are: NW, N, NE, W, CENTER, E, SW, S, SE.

Relief styles After specifying the text of a widget, the possible values for the relief option are: raised, sunken,
flat, groove, ridge.

Bitmap styles Possible bitmap styles include the following: error, gray75, gray50, gray25, gray12,
hourglass, info, questhead, question, warning. These can be used in combination
with, or instead of, text.

Cursor styles Possible cursor styles include the following: arrow, circle, clock, cross, dotbox,
exchange, fleur, heart, man, mouse, pirate, plus, shuttle, sizing, spider,
spraycan, star, target, tcross, trek, watch. These can be used after the text is specified.

Pack options There are 4 options in terms of placing a particular widget in respect to the parent widget through the
pack() method. Use the side option with values: TOP (default), BOTTOM, LEFT, or RIGHT.

There are 3 options to determine whether and how a particular widget should expand when the parent
widget expands. Use the fill option with values: NONE (default), X (fill only horizontally), Y (fill only
vertically), or BOTH (fill both horizontally and vertically).

(Continued)

205Application Development

5.6 CASE STUDY

Complete the integration of the Basic Widgets Python script from Chapters 4 with a full menu
 system in an object-oriented application, using all three types of menus (i.e., regular, toolbar,
popup), as described in this chapter. The menu system should include the following options: Color
dialog, Open File dialog, Separator, Basic Widgets, Save As, Open Directory, Separator, About,
and Exit.

TABLE 5.6 (Continued)
Possible Values for the Various Different Options

Option Values Available

Grid options When placing widgets on the interface using the grid() method, the following options are available:
• columnrow: The column and row the widget will be placed in. The leftmost column (0) and the

first row are the defaults.
• columnspan, rowspan: The number of columns or rows a widget will span across. 1 is the

default value.
• ipadx, ipady: The number of pixels to pad the widget (horizontally and vertically) within its

borders.
• padx, pady: The number of pixels to pad the widget (horizontally and vertically) outside its

borders.
• sticky: Determines how the widget will be aligned if its size is smaller than its cell in the grid.

The default value is centered. Other possible values are N, E, S, W, NE, NW, SE, and SW.

https://taylorandfrancis.com

207

6 Data Structures and
Algorithms with Python

Thaeer Kobbaey
Higher Colleges of Technology

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

Ghazala Bilquise
Higher Colleges of Technology

CONTENTS

6.1 Introduction ..208
6.2 Lists, Tuples, Sets, Dictionaries ..209

6.2.1 List ..209
6.2.2 Tuple ... 214
6.2.3 Sets .. 214
6.2.4 Dictionary ... 215

6.3 Basic Sorting ... 217
6.3.1 Bubble Sort ... 217
6.3.2 Insertion Sort ..220
6.3.3 Selection Sort .. 222
6.3.4 Shell Sort ..225
6.3.5 Shaker Sort ... 227

6.4 Recursion, Binary Search, and Efficient Sorting with Lists ...230
6.4.1 Recursion ..230
6.4.2 Binary Search ... 233
6.4.3 Quicksort .. 235
6.4.4 Merge Sort .. 238

6.5 Complex Data Structures ..242
6.5.1 Stack ...242
6.5.2 Infix, Postfix, Prefix ..245
6.5.3 Queue ..248
6.5.4 Circular Queue ..250

6.6 Dynamic Data Structures ... 253
6.6.1 Linked Lists ..254
6.6.2 Binary Trees ... 261
6.6.3 Binary Search Tree ... 262
6.6.4 Graphs ... 267
6.6.5 Implementing Graphs and the Eulerian Path in Python ...269

6.7 Wrap Up .. 271
6.8 Case Studies .. 271
6.9 Exercises ... 272
References .. 272

DOI: 10.1201/9781003139010-6

https://doi.org/10.1201/9781003139010-6

208 Handbook of Computer Programming with Python

6.1 INTRODUCTION

Data is defined as a collection of facts. In raw form, data
is difficult to process and, thus, in need of further struc-
turing in order to be useful. In computer science, a data
structure refers to the organization, storage, and man-
agement of data in a way that allows its efficient pro-
cessing and retrieval. In simple terms, a data structure
represents the associated data on a computer in a specific format, while preserving any underlying
logical relationships, and it provides storage and efficient access to the data based on set of perfor-
mance-enhancing rules.

As an example, one can consider the real-life scenario of searching for a particular name in a
phone book. The search is being made easy by organizing the names in the phone book and sorting
them in alphabetical order. In this rather primitive example, one is not required to go through the
phone book page by page to find the desired name. Other relevant examples include the history of
web pages visited through the web browser (implemented as a linked-list structure), the undo/redo
mechanism available in many applications (implemented as stack structure), the queue structures
used by operating systems for scheduling the various CPU tasks, and the tree structure used in
many artificial intelligence-based games to track the player’s actions.

In a broader context, there are two different types of data structures:

• Basic data structures that are usually available in every modern programming language.
In Python, these include structures like the list, the dictionary, the tuple, and the set. Lists
and tuples allow the programmer to work with data that is ordered sequentially. Sets are
unordered collections of values with no duplicates.

• Complex data structures, like stacks, queues, and various types of trees, that are built on
basic data structures. In terms of the way these structures organize data, stacks and queues
are classified as linear (i.e., the data elements are ordered), whereas trees and graphs as
non-linear (i.e., the elements do not follow a particular order).

This chapter covers the following topics:

• Basic data structures (i.e., lists, tuples, sets, and dictionaries) and their operations.
• Basic Sorting Algorithms: bubble sort, insertion sort, selection sort, shell sort, shaker

sort.
• The concept of recursion and its application to binary search, and the merge sort and quick

sort algorithms.
• Complex data structures (i.e., stacks and queues).
• Dynamic data structures like singly and doubly linked lists, binary trees/binary search

trees, and graphs.

The focus is both on the computational thinking behind these topics, and on a detailed look
into the programming concepts used for their implementation. Nevertheless, it must be stated
that this chapter aims to provide a thorough introduction of the underlying ideas rather than to
cover the aforementioned data structures exhaustively. Fundamental and critically important
data structures and the associated algorithms like the heap tree and the heap sort or hashing
structures and hashing tables, are not covered here. The reader can find more details on related
subjects in the seminal works of Dijkstra et al. (1976), Knuth (1997), and Stroustrup (2013), to
whom the modern computer science and information systems and technology community owes
much of its existence.

Observation 6.1 – Data Structures: A
way of representing, organizing, stor-
ing, and accessing data based on a set
of well-defined rules.

209Data Structures and Algorithms

6.2 LISTS, TUPLES, SETS, DICTIONARIES

This section explores the four built-in data structures provided by Python, namely lists, tuples, sets
and dictionaries. These structures are also briefly discussed in Chapter 2, where they are referred
to as non-primitive data types. Their main use is to store a collection of values and provide tools for
its manipulation.

6.2.1 list

A list is a data structure that stores a collection of items in specified, and frequently successive,
memory locations. Each item in the list has a location number called an index. The index starts from
zero and follows a sequential order. This does not refer to the values of the stored data being ordered
in a particular way (e.g., alphabetically), but the index values. To access an item at a particular loca-
tion, the programmer can simply use the index number corresponding to this location. The concept
of the list is analogous to a to-do list that contains things that must be accomplished. In terms of
functionality, Python provides various operations, such as adding items to, and removing from, a
list. Since items in a list can be modified, it is considered
to be mutable.

At a practical level, lists in Python are denoted by
square brackets (i.e., []). The list can be populated by
adding items within the brackets, separated by commas.
The following script creates a list, and then prints both the
list items and the number of items in the list. It also asks
the user to specify the index of an item to print (starting
from zero), a range of items to print from the start of the
list to a user-specified index, and a range of items to print
from a user-specified index to the end of the list:

Observation 6.2 – List: A list is a data
structure that stores a collection of
items in specified, usually successive,
memory locations. It is indexed by a
sequential index that always starts at
zero. The items do not have to be in
a particular order. A list is a mutable
object, meaning that each item can
be modified.

1 # Create the list
2 cars = ["BMW", "Toyota", "Honda", "Mercedes"]
3
4 # Print the list items
5 print("The list of the cars is the following: ", cars)
6
7 # Use the len() function to print the number of items in the list
8 print("The number of items in the list is: ", len(cars))
9
10 # Ask the user for the index number of an item for printing
11 singleIndex = int(input("Enter the index \
12 of the item to print (indexes start from 0): "))
13 print("Your selection for display is: ", cars[singleIndex])
14
15 # Ask the user for the starting index of the print range
16 startingIndex = int(input("Enter the starting index of the range \
17 of items to print (index starts from 0): "))
18 print("Your selected range of items to display is: ",
19 cars[startingIndex:len(cars)-1])
20
21 # Ask the user for the ending index of the print range
22 endingIndex = int(input("Enter the ending index of the range of items \

210 Handbook of Computer Programming with Python

Output 6.2.1.a:

The list of the cars is the following: ['BMW', 'Toyota', 'Honda', 'Mercedes']
The number of items in the list is: 4
Enter the index of the item to print (indexes start from 0): 0
Your selection for display is: BMW
Enter the starting index of the range of items to print (index starts from 0): 1
Your selected range of items to display is: ['Toyota', 'Honda']
Enter the ending index of the range of items to print (index starts from 0): 2
Your selected range of items to display is: ['BMW', 'Toyota']
The last item in the list is: Mercedes

In this script, the reader will notice that the syntax for calling a range of items is list[start:end],
with start denoting the position of the starting index (inclusive) and end the ending index (not
 inclusive). It must be stressed that the start and end parameters are optional. For instance, expres-
sion cars[0: endingIndex] could be replaced by cars[:endingIndex] and, similarly, expres-
sion cars[startingIndex:len(cars)-1] could be replaced by cars[startingIndex:].

The reader should also note that if the user tries to access a list item using an index that does not
exist, an IndexError exception will be raised, as illustrated in the example below:

Output 6.2.1.b:

The list of the cars is the following: ['BMW', 'Toyota', 'Honda',
'Mercedes']
The number cf items in the list is: 4
Enter the index of the item to print (indexes start from 0): 4

IndexError Traceback (most recent call last)
<ipython-input-5-695ecl33b0e9> in <module>

11 singleIndex = int(input("Enter the index \
12 of the item to print (indexes start from 0): "))

---> 13 print("Your selection for display is: ", cars[singleIndex])
14
15 # Ask the user for the starting index of a range of items in the
 list to print

IndexError: list index out of range

In addition to the basic functions discussed above, Python also provides a number of additional
functions that can be used to manipulate a list (Table 6.1):

23 to print (index starts from 0): "))
24 print("Your selected range of items to display is: ",

cars[0:endingIndex])
25
26 # Use a negative index to start printing the list from the end
27 print("The last item in the list is: ", cars[–1])

211Data Structures and Algorithms

The script below is a modified version of the previously created one, demonstrating the use of
append(), insert(), extend(), remove(), and pop() (Table 6.1). The script performs the
tasks of adding items at the end of a list (line 9), inserting an item in a particular position specified
by an index value (line 11), extending the list by adding items from a second list (lines 16–17),
removing a particular item from the list (line 22), and removing the last item of the list (line 26):

1 # Create the list
2 cars = ["BMW", "Toyota", "Honda", "Mercedes"]
3
4 # Print the list size and its items
5 print("The list of the cars has ", len(cars),
6 " items which are the following: ", cars)
7
8 # Append/add an item to the end of the list
9 cars.append("Nissan")
10 # Insert an item to position 1 of the list
11 cars.insert(1,"Suzuki")
12 # Print the updated list
13 print("The updated list after the append and insert is: ", cars)
14
15 # Extend the list by adding the items of a second list
16 cars2 = ["Renault", "Audi"]
17 cars.extend(cars2)
18 print("The updated list after extending it with items from "
19 "a second list is: ", cars)
20
21 # Remove a specific item from the list
22 cars.remove("Toyota")
23 print(cars)
24
25 # Remove the last item from the list
26 cars.pop()
27 print(cars)

TABLE 6.1
Most Important Functions for List Manipulation

Functions Description

append(item) Adds an element at the end of the list
clear() Removes all the elements from the list
copy() Returns a copy of the list
count() Returns the number of elements with the specified value
extend(list2) Adds the elements of a second list (e.g., list2) to the end of the current list
index(item) Returns the index of the first item with the specified value
insert(pos, item) Adds an element at the specified position
pop() Removes and returns the last element of the list
remove(item) Removes the item with the specified value
reverse() Reverses the order of the list
sort() Sorts the list in ascending order

212 Handbook of Computer Programming with Python

Output 6.2.1.c:

The list of the cars has 4 items which are the following: ['BMW',
'Toyota', 'Honda', 'Mercedes']
The updated list after the append and insert is: ['BMW', 'Suzuki',
'Toyota', 'Honda', 'Mercedes', 'Nissan']
The updated list after extending it with items from a second list is: ['BMW',
'Suzuki', 'Toyota', 'Honda', 'Mercedes', 'Nissan', 'Renault', 'Audi']
['BMW', 'Suzuki', 'Honda', 'Mercedes', 'Nissan', 'Renault', 'Audi']
['BMW', 'Suzuki', 'Honda', 'Mercedes', 'Nissan', 'Renault']

The following variation of the same script showcases the use of reverse(), sort(),
sort(reverse = True), and index() in order to reverse the items of the list (line 9), sort them
in ascending order (line 13), sort them in descending/reverse order (line 17), and find and return the
index of a particular item (line 21). Notice that none of the results of these functions have a perma-
nent effect on the original list:

Output 6.2.1.d:

The list of the cars has 4 items which are the following:
['BMW', 'Toyota', 'Honda', 'Mercedes']
['Mercedes', 'Honda', 'Toyota', 'BMW']
['BMW', 'Honda', 'Mercedes', 'Toyota']
['Toyota', 'Mercedes', 'Honda', 'BMW']
3

1 # Create the list
2 cars = ["BMW", "Toyota", "Honda", "Mercedes", "Toyota"]
3
4 # Print the list size and its items
5 print("The list of the cars has ", len(cars),
6 " items which are the following: ", cars)
7
8 # Print the items of the list in reverse order
9 cars.reverse()
10 print(cars)
11
12 # Sort the items of the list and print them
13 cars.sort()
14 print(cars)
15
16 # Sort the items of the list in reverse order and print them
17 cars.sort(reverse = True)
18 print(cars)
19
20 # Find and return the index of a specific item in the list
21 print(cars.index("BMW"))

213Data Structures and Algorithms

Finally, with the use of in <list>, copy(), count(), and clear(), the programmer can exam-
ine in run-time whether a particular item belongs in a list (lines 8–11 and 13–16), copy the contents
of a list (line 23), count the occurrences of an item in the list (line 19), and clear the list (line 27):

Output 6.2.1.e:

The list of the cars is the following: ['BMW', 'Toyota', 'Honda',
'Mercedes', 'Toyota']
Toyota is in the list
Nissan is not in the list
Occurences of the particular item in the list is: 2
The contents of the new list are: ['BMW', 'Toyota', 'Honda',
'Mercedes', 'Toyota']
The newCars list of items is now empty: []

1 # Create the list
2 cars = ["BMW", "Toyota", "Honda", "Mercedes", "Toyota"]
3
4 # Print the list items
5 print("The list of the cars is the following: ", cars)
6
7 # Print True or False depending on whether an item is included in

the list
8 if ("Toyota" in cars):
9 print("Toyota is in the list")
10 else:
11 print("Toyota is not in the list")
12
13 if ("Nissan" in cars):
14 print("Nissan is in the list")
15 else:
16 print("Nissan is not in the list")
17
18 # The number of occurrences of an item in the list
19 occurrences = cars.count("Toyota")
20 print("Occurrences of the particular item in the list is: ",

occurrences)
21
22 # Copy the contents of a list into another
23 newCars = cars.copy()
24 print("The contents of the new list are: ", newCars)
25
26 # Clear the list
27 newCars.clear()
28 print("The newCars list of items is now empty: ", newCars)

214 Handbook of Computer Programming with Python

6.2.2 tuPle

Tuples are a special type of list, with items being orga-
nized in a particular order and accessed by referencing
index values. The difference between a normal list and a
tuple is that the latter is immutable, meaning that its
items cannot be modified. As such, tuples do not offer
some of the extended functionality of a list described in
the previous section. In terms of syntax, tuples are cre-
ated using parentheses instead of square brackets. The following script demonstrates the basics of
tuple creation and usage:

Output 6.2.2:

The items in the tuple are: ('BMW', 'Toyota', 'Honda', 'Mercedes')
The first item in the tuple is: BMW

TypeError Traceback (most recent call last)
<ipython-input-1-3c3eee3a45c8> in <module>

9
8

Raises a TypeError exception since the item in the tuple cannot be
modified

---> 10 cars[0] = "Tesla"

TypeError: 'tuple' object does not support item assignment

6.2.3 sets

A set is a collection of unordered and unique items. It is
created using curly braces (i.e., {}) (Hoare, 1961). When
the print() function is used to display the contents of
a set, the duplicates are removed from the output and its
contents are not presented in a particular order. In fact,
every time the code is executed the order of the elements
is different.

There are four particular operators/functions used on
sets:

 1. The in Operator: Examines whether an item is
included in the set.

Observation 6.3 – Tuple: A special
type of list that is immutable (i.e., its
items cannot be modified). Tuples are
created using parentheses instead of
square brackets.

1 # Create a tuple
2 cars = ("BMW", "Toyota", "Honda", "Mercedes")
3
4 # Display all items in the tuple
5 print("The items in the tuple are: ", cars)
6 # Display the first item in the tuple
7 print("The first item in the tuple is: ", cars[0])
8
9 # Raises TypeError exception as the tuple item can't be modified
10 cars[0] = "Tesla"

Observation 6.4 – Set: A collection
of unordered, unique items. Use the
in operator to examine if an item
belongs to a set. Use the inter-
section() function to find the com-
mon items between two sets. Use the
difference() function to retrieve
items from the first set that are not
found in the second. The union()
function combines the items of two
sets, removing any duplicates.

215Data Structures and Algorithms

 2. The intersection() Function: Identifies the common items between two sets.
 3. The difference() Function: Retrieves items from a set that do not exist in another set.
 4. The union() Function: Combines the items of two sets and returns a new one after

removing any duplicates.

The following script demonstrates the basic use of sets and their main operations:

Output 6.2.3:

The cars set includes the following items: {'Honda', 'Mercedes',
'BMW', 'Toyota'}
Honda is in the cars set
The german cars set includes the following items: {'Mercedes',
'Porsche', 'BMW', 'Audi'}
The intersection, i.e., the common items of the two sets, is:
{'Mercedes', 'BMW'}
The different items between the two sets are: {'Honda', Toyota'}

The union of the two sets is: {'Audi', 'Porsche', 'Honda',
'Mercedes', 'BMW', 'Toyota'}

6.2.4 diCtionAry

A dictionary is a collection of items that stores values in key-value pairs. The key is a unique identi-
fier and the value is the data associated with it. The dictionary is analogous to a phone book that
stores the contact name and telephone of a person. The contact name would be the key that is used

1 # Create the set
2 cars = {"BMW", "Toyota", "Honda", "Mercedes", "Toyota"}
3 # Print the set
4 print("The cars set includes the following items: ", cars)
5
6 # Check whether a particular item exists in the set
7 if ("Honda" in cars):
8 print("Honda is in the cars set")
9 else:
10 print("Honda is not in the cars set")
11
12 # Create and print an additional set
13 german_cars = {"BMW", "Mercedes", "Audi", "Porsche"}
14 print("The german cars set includes the following items: ", german_cars)
15
16 # Find and print the intersection (i.e., common items of the two sets)
17 print("The intersection, i.e., the common items of the two sets, is: ",
18 cars.intersection(german_cars))
19
20 # Find and print the difference of the two sets
21 print("The different items between the two sets are: ",
22 cars.difference(german_cars))
23
24 # Find and print the union of the two sets
25 print("The union of the two sets is: ", cars.union(german_cars))

216 Handbook of Computer Programming with Python

to look up the telephone number (i.e., the value). In a dic-
tionary, keys must be unique and of an immutable data
type, such as strings or integers, while values can be of
any type (e.g., strings, integers, lists).

The Python syntax for creating a dictionary is the
following:

dictionary = {key1: value1, key2: value2}

Table 6.2 lists the available dictionary functions
The following script presents an example involving a dictionary named employee that holds

the employees’ names, salaries, and job titles:

Observation 6.5 – Dictionary: A col-
lection of items stored in a key-value
pair format. The keys must use immu-
table data types. The values can be of
any type and are mutable. The syntax
is the following:
dictionary = {key1: value1,
key2: value2}

TABLE 6.2
Functions of a Dictionary

Function Description

clear() Removes all the elements from the dictionary
copy() Returns a copy of the dictionary
get(key) Gets an item by the key
has_key(key) Returns a Boolean value based of whether the key is in the dictionary or not
items() Returns a list of (key, value) tuples
keys() Returns a list of keys
values() Returns a list of values
pop(key) Removes an item given the key and returns the value
popitem() Removes the next item, and returns the key/value
update() Adds or overwrites items from another dictionary

1 # Create the dictionary
2 employee = {"name": "Maria", "salary": 15000, "job": "Sales Manager"}
3
4 # Print the dictionary
5 print("The employee dictionary is: ", employee)
6 # Access a specific key and print the paired value
7 print("The pair value for the <name> key is: ", employee["name"])
8
9 # Use the get() method to print a pair based on a given key
10 print("The value pair of the <name> key is: ", employee.get("name"))
11 # If the key value does not exist the get() method will return
12 # None (empty)
13 print("The value pair of the <name> key is: ",
14 employee.get("department"))
15
16 # Add a new pair to the dictionary
17 employee["department"] = "Sales"
18 print("The value pair of the new <department> key is: ",
19 employee.get("department"))
20
21 # Modify the value of a given key
22 employee["salary"] = "20000"
23 print("The new employee dictionary includes the following pairs: ",

217Data Structures and Algorithms

Output 6.2.4:

The employee dictionary is: {'name': 'Maria', 'salary': 15000, 'job':
'Sales Manager'}
The pair value for the <name> key is: Maria
The value pair of the <name> key is: Maria
The value pair of the <name> key is: None
The value pair of the new <department> key is: Sales
The new employee dictionary includes the following pairs: {'name': 'Maria',
'salary': '20000', 'job': 'Sales Manager', 'department': 'Sales'}
{'name': 'Alex', 'salary': '20000', 'job': 'Sales Manager', 'department':
'Sales'}
The original employee dictionary is: {'name': 'Alex', 'salary': '20000',
'department': 'Sales'}
The new empjob dictionary is: Sales Manager

The reader should note that it is possible to access the value of a dictionary key either directly
(line 7) or through the get() function (line 10). If access to a value of a key that does not exist in
the dictionary is requested, get() returns an empty value (line 13 and 14). It is also worth noting
that it is possible to add a new pair of values through the update() function (line 27). Finally, line
32 demonstrates how to remove a particular pair from a dictionary through the pop() function and
how to create a new dictionary from it.

6.3 BASIC SORTING

Sorting is a major task in computer science and information systems/technology, with as much as
30% of the total computer processing time of everyday business activity allegedly being devoted to
it. In a broader context, sorting is the computational process of arranging data in a particular order.
As different sorting algorithms can result in differences of minutes, hours, or even days, efficiency
is an important factor in terms of sorting time. Efficiency is measured by counting the number of
comparisons and exchanges/swaps required to sort a given list of data. A comparison takes place
when an element of the list is compared with another, whereas exchanges/swaps happen when two
elements of the list switch their positions.

6.3.1 bubble sort

The bubble sort is one of the most well-known sorting algorithms. It is also covered in Chapter 4 of
this book, under the topic of listboxes. The main idea of the algorithm is to have the element with
the highest (or lowest) value in a list moved to the last (or first) place during each iteration. At each

24 employee)
25
26 # Use the update() method to modify the dictionary
27 employee.update({"name":"Alex","department":"Sales"})
28 print(employee)
29
30 # Pop/remove a pair based on a given key, assign it to a new
31 # dictionary and print it
32 emp_job = employee.pop("job")
33 print("The original employee dictionary is: ", employee)
34 print("The new emp_job dictionary is: ", emp_job)

218 Handbook of Computer Programming with Python

iteration, the program repeats this process, moving the
next highest (lowest) number in the list to the appropri-
ate place. The number of the main iteration corresponds
to the number of the elements of the list. During each
main iteration there are as many comparisons (and
potentially exchanges/swaps) as the total number of ele-
ments in the list. Thus, the time complexity of the bubble
sort is O(n2). The detailed explanation of time complexi-
ties and the Big O/Theta/Omega notation is beyond the scope of this book, but the reader can find
related information in most of the essential computer science sources and bibliography. For the
purposes of this chapter, it should suffice to claim that the bubble sort is not particularly efficient in
terms of time. In order to examine the low efficiency of the algorithm, the reader could assume that
each comparison takes 1 nanosecond to complete (1 nanosecond = 1.0e−9 seconds). This would
translate to the following rough estimates:

• n = 10: n2 = 81 comparisons → approximate time 3e−4 seconds.
• n = 100: n2 = 9.8e3 comparisons → approximate time 5e−3 seconds.
• n = 1,000: n2 = 9.98e5 comparisons → approximate time 0.4 seconds.
• n = 10,000: n2 = 9.998e7 comparisons → approximate time 46 seconds.
• n = 20,000: n2 = 4e7 comparisons → approximate time 188 seconds

As these calculations are estimates, they are largely dependent on the system at hand, the type of
data of the list, and the conditions of the programming platform used. However, the crude assump-
tions and numbers used here could provide a rough idea of the increasing inefficiency of the bubble
sort in line with an increasing size of the list. Indeed, bubble sort works well as long as n is not
higher than approximately 10,000. After this point, it becomes heavy and its inefficiency starts to
show.

It is possible to slightly improve the efficiency of the algorithm by avoiding unnecessary
 comparisons. As an example, one could use the following eight-element list: 3, 5, 4, 2, 3, 1, 6, 7.
The algorithm will execute n−1 times (i.e., seven iterations) during each of the main iterations. The
inner iterations are then responsible to bring each element to the corresponding place successively
(Table 6.3).

The reader should note that, firstly, it is not necessary that an exchange/swap of elements will
take place in every iteration of the inner loop and, secondly, at the end of the main outer iteration the
highest element is pushed to the end of the list. In this case, in the first main outer iteration, element
7 is pushed to the end of the list. The last line is the result of the first main outer iteration, after all
seven inner loops are completed. Subsequent iterations will repeat the same process, ensuring that
the next highest element moves to the appropriate position, until all elements have taken the correct
place in the list.

Observation 6.6 – Bubble Sort: Use
two nested for loops during the
inner iterations to successively move
the highest/lowest value element to
the end of the list until the entire list
is sorted.

TABLE 6.3
The Inner Loop inside the First Main Iteration
3 5 4 2 3 1 6 7

3 5 4 2 3 1 6 7

3 4 5 2 3 1 6 7

3 4 2 5 3 1 6 7

3 4 2 3 5 1 6 7

3 4 2 3 1 5 6 7

3 4 2 3 1 5 6 7

219Data Structures and Algorithms

Table 6.4 presents the results after each of the outer iterations/loops.
A Python implementation of a basic bubble sort and its output is provided below:

1 # Import the random module to generate random numbers
2 import random
3 import time
4
5 comparisons = 0
6 list = []
7
8 # Enter the number of list elements
9 size = int(input("Enter the number of list elements: "))
10 # Use the randint() function to generate random integers
11 for i in range (size):
12 newNum = random.randint(-100, 100)
13 list.append(newNum)
14 print("The unsorted list is: ", list)
15
16 # Bubble sorts the list & records the stats for later use
17 # Start the timer
18 startTime = time.process_time()
19
20 # The bubble sort algorithm
21 for i in range (size-1):
22 for j in range (size-1):
23 comparisons += 1
24 if (list[j] > list[j+1]):
25 temp = list[j]
26 list[j] = list[j+1]
27 list[j+1] = temp
28
29 # End the timer
30 endTime = time.process_time()
31
32 # Display the basic info for the bubble sort
33 print("The sorted list is: ", list)
34 print("The number of comparisons is: ", comparisons)
35 print("The elapsed time in seconds is: ", (endTime - startTime))

TABLE 6.4
The Results of the Outer Loops
After the 1st pass 3 4 2 3 1 5 6 7

After the 2nd pass 3 2 3 1 4 5 6 7

After the 3rd pass 2 3 1 3 4 5 6 7

After the 4th pass 2 1 3 3 4 5 6 7

After the 5th pass 1 2 3 3 4 5 6 7

After the 6th pass Comparisons are made with no swaps

After the 7th pass Comparisons are made with no swaps

220 Handbook of Computer Programming with Python

Output 6.3.1:

Enter the number of elements in the list:7
The unsorted list is: [33, -16, -57, -17, 95, 5, 15]
The sorted list is: [-57, -17, -16, 5, 15, 33, 95]
The number of comparisons is = 36
The elapsed time in seconds = 0.0

6.3.2 insertion sort

Insertion sort is another basic sorting algorithm, similar
to bubble sort but somewhat improved. The basic idea
is that on the ith pass the algorithm inserts the ith ele-
ment into the appropriate place (i.e., L[i]) at the end of
the L[1], L[2], …, L[i-1] sequence, the elements of which
have been previously placed in sorted order. As a result,
after the insertion, the elements occupying the L[1],
L[2], …, L[i] sequence are in sorted order. In simple
terms, the algorithm sorts increasingly larger subsets of
the original list until the whole list is sorted.

As an example, assume that the insertion sort is applied to the following seven-element list: 3,
5, 4, 2, 3, 1, 6, thus executing n−1 (i.e., 6) outer iterations/loops. The big difference between this
algorithm and bubble sort is that each of the main iterations will not require the same number as
the inner iterations, but an increasing iteration number starting from 1 and up to n−1. During each
inner iteration, the highest element is moved to the last location of the current subset of the list. The
following section describes in detail each of the main iterations.

The inner iteration of the first main iteration will put the two elements of the subset in order:

The two-iteration loop of the second main iteration will put the three elements of the subset in order:

The three-iteration loop of the third main iteration will put the four elements of the subset in order:

Observation 6.7 – Insertion Sort:
Use a while loop nested inside a
for loop to find the highest/lowest
value element in the subset of the list
in each ith pass. The subset starts with
the first two elements (index extends
up to i + 1) and is increased by 1 in
each pass.

3 5

3 5

3 5 4

3 4 5

3 4 5

3 4 5 2

3 4 2 5

3 2 4 5

2 3 4 5

221Data Structures and Algorithms

The four-iteration loop of the fourth main iteration will put the five elements of the subset in order:

The five-iteration loop of the fifth main iteration will put the six elements of the subset in order:

The six-iteration loop of the sixth main iteration will put the seven elements of the subset in order:

The algorithm relies on the introduction of a temporary element (e.g., temp) and a temporary
location (i.e., loc), which are assigned with values L[1] and 1 respectively. The following script
provides an implementation of the insertion sort algorithm in Python:

2 3 4 5 3

2 3 4 3 5

2 3 3 4 5

2 3 3 4 5

2 3 3 4 5

2 3 3 4 5 1

2 3 3 4 1 5

2 3 3 1 4 5

2 3 1 3 4 5

2 1 3 3 4 5

1 2 3 3 4 5

1 2 3 3 4 5 6

1 2 3 3 4 5 6

1 2 3 3 4 5 6

1 2 3 3 4 5 6

1 2 3 3 4 5 6

1 2 3 3 4 5 6

1 2 3 3 4 5 6

1 import random
2 import time
3
4 list = []
5 comparisons = 0
6
7 # Enter the number of list elements
8 size = int(input("Enter the number of list elements: "))
9 # Use the randint() function to generate random integers
10 for i in range (size):
11 newNum = random.randint(–100, 100)
12 list.append(newNum)
13 print("The unsorted list is: ", list)
14
15 startTime = time.process_time() # Start the timer
16
17 # The insertion sort algorithm
18 for i in range(1, size):

222 Handbook of Computer Programming with Python

Output 6.3.2:

Enter the number of elements in the list:7
The unsorted list is: [2, -8, 69, 20, -56, -32, -81]
The sorted list is: [-81, -56, -32, -8, 2, 20, 69]
The number of comparisons is = 16
The elapsed time in seconds = 0.0

There are a couple of characteristics that make insertion sort significantly more efficient compared
to bubble sort. First, since each subset of the list includes fewer elements than the entire list, it
performs fewer comparisons. Second, as each pass secures that the subset is in order, fewer swaps
are required. However, on average, the algorithm falls under the same time efficiency bracket as
bubble sort (i.e., O(n2)), and only shows improvement on the best case, where it becomes linear and
achieves a time complexity of O(n).

An approximation of the time efficiency improvements of the insertion sort over the bubble sort
is provided in the list below (assume 1 comparison takes 1 nanosecond or 1.0e−9 seconds; where
Cs stands for Comparisons):

• n = 10: ~40 Cs (n2 = 81 in Bubble S.) → approx. 2.0e−4 seconds (3e−4 in Bubble S.)
• n = 100: ~4.0e3 Cs (n2 = 9.8e3 in Bubble S.) → approx. 2.5e−3 seconds (4.5e−3 in Bubble S.)
• n = 1,000: ~5.0e5 Cs (n2 = 9.98e5 in Bubble S.) → approx. 0.16 seconds (3.7e−1 in Bubble S.)
• n = 10,000: ~4.0e7 Cs (n2 = 9.998e7 in Bubble S.) → approx. 15 seconds (46 in Bubble S.)
• n = 20,000: ~9.8e7 Cs (n2 = 2.0e8 in Bubble S.) → approx. 57 seconds (188 in Bubble S.)

6.3.3 seleCtion sort

Selection sort, also considered one of the fundamen-
tal sorting algorithms, is similar to insertion sort, but
provides some improvements in terms of efficiency as
it reduces the number of required swaps. The basic idea
is that, on the ith pass, the algorithm selects the element
with the lowest (or highest) value within a given range
(i.e., A[j], …, A[n]), and swaps it with the current posi-
tion (i.e., A[j]). Thus, after the ith pass, the ith lowest ele-
ments will occupy A[1], A[2], …, A[i] in sorted order.

Observation 6.8 – Selection Sort:
Use a for loop nested inside another
for loop to find and replace the
highest/lowest value element with
the original, ith item in the list. In each
successive pass, the subset of the
searchable list is reduced by one.

19 temp = list[i]
20 loc = i
21 while ((loc > 0) and (list[loc-1] > temp)):
22 comparisons += 1
23 list[loc] = list[loc-1];
24 loc = loc -1
25 list[loc] = temp
26
27 endTime = time.process_time() # End the timer
28
29 # Display the basic info for the insertion sort
30 print("The sorted list is: ", list)
31 print("The number of comparisons is: ", comparisons)
32 print("The elapsed time in seconds is: ", (endTime - startTime))

223Data Structures and Algorithms

The algorithm utilizes subsets of a list to sort it, moving from the whole list to end up with the small-
est divisions of it. In a sense, it is almost the opposite of insertion sort. The algorithm requires one
additional variable in order to store the location (index) of the lowest value element within the list.

Using the list from the previous example (i.e., 3, 5, 4, 2, 3, 1, 6), during the 1st outer iteration of
the selection sort, the inner iterations will determine that the lowest value element is in index 5.
Therefore, the elements in list[0] and list[5] will be swapped, and the element in list[0] will not be
involved in any further processing from this point on:

By the end of the 1st outer iteration, the list has the following structure:

Given that the 2nd outer loop will move the index to the 2nd element of the list (i.e., i = 1), the 2nd inner
iterations will only deal with the subset of the original list, excluding the sorted part (i.e., list[0]).
This means that in the unsorted subset of the list, the element with the lowest value will be in index
3. Thus, the elements in list[1] and list[3] will be swapped, while the element in list[1] will not be
involved in any further processing:

By the end of the 2nd outer iteration the list will be the following:

Once again, the 3rd outer loop will move the index to the 3rd element of the list (i.e., i = 2) and the 3rd
inner iterations will only deal with the subset of the original list, excluding the sorted part (i.e.,
list[0], list[1]). As in the previous two iterations, this will result in the element with the lowest value
in the unsorted subset of the list being found in index 4, and thus the elements in list[2] and list[4]
will be swapped:

By the end of the 3rd outer iteration the list will be the following:

Repeating the outer loop for a 4th time will further move the index to the 4th element of the list and
the 4th inner iterations will deal with the remaining subset of the list. The inner loop will find the
lowest value element to be in index 5 of that subset, and the elements in list[3] and list[5] will be
swapped:

list[0] = 3 list[1] = 5 list[2] = 4 list[3] = 2 list[4] = 3 list[5] = 1 list[6] = 6

list[0] = 1 list[1] = 5 list[2] = 4 list[3] = 2 list[4] = 3 list[5] = 3 list[6] = 6

list[0] = 1 list[1] = 5 list[2] = 4 list[3] = 2 list[4] = 3 list[5] = 3 list[6] = 6

list[0] = 1 list[1] = 2 list[2] = 4 list[3] = 5 list[4] = 3 list[5] = 3 list[6] = 6

list[0] = 1 list[1] = 2 list[2] = 4 list[3] = 5 list[4] = 3 list[5] = 3 list[6] = 6

list[0] = 1 list[1] = 2 list[2] = 3 list[3] = 5 list[4] = 4 list[5] = 3 list[6] = 6

list[0] = 1 list[1] = 2 list[2] = 3 list[3] = 3 list[4] = 4 list[5] = 5 list[6] = 6

224 Handbook of Computer Programming with Python

The algorithm will continue until there is no subset left unprocessed. By that time, the list will have
been sorted. The following script showcases an implementation of selection sort in Python and its
output:

1 # Import the random module to generate random numbers
2 import random
3 import time
4
5 comparisons = 0
6 list = []
7
8 # Enter the number of list elements
9 size = int(input("Enter the number of list elements: "))
10 # Use the randint() function to generate random integers
11 for i in range (size):
12 newNum = random.randint(-100, 100)
13 list.append(newNum)
14 print("The unsorted list is: ", list)
15
16 # Selection sorts the list & records the stats for later use
17 # Start the timer
18 startTime = time.process_time()
19
20 # The selection sort algorithm
21 for i in range(size):
22 locOfMin = i
23
24 # Find the smallest element in the
25 # remaining subset of the list
26 for j in range(i+1, size):
27 comparisons += 1
28 if (list[locOfMin] > list[j]):
29 locOfMin = j
30
31 # Swap the minimum element with
32 # the first element of the subset
33 list[i], list[locOfMin] = list[locOfMin], list[i]
34
35 # End the timer
36 endTime = time.process_time()
37
38 # Display the basic info for the selection sort
39 print("The sorted list is: ", list)
40 print("The number of comparisons is: ", comparisons)
41 print("The elapsed time in seconds: ", (endTime - startTime))

225Data Structures and Algorithms

Output 6.3.3:

Enter the number of elements in the list:7
The unsorted list is: [32, 81, -76, -88, 62, -53, -17]
The screed list is: [-88, -76, -53, -17, 32, 62, 81]
The number of comparisons is = 21
The elapsed time in seconds = 0.0

Selection sort is a bit heavier than insertion sort, but it becomes comparatively faster as the list
grows larger. Nevertheless, for lists containing between approximately 1,000 and 50,000 elements,
both algorithms perform similarly in terms of their efficiency. Their most important difference is
that the efficiency of selection sort is quite similar across the best, average, and worst cases, with a
time complexity of O(n2), whereas insertion sort has a complexity that in the best case might even
reach O(n). In practice, both algorithms are suitable for relatively small lists.

The following list provides approximate comparative figures highlighting the performance dif-
ferences between the two algorithms (assume 1 comparison takes 1 nanosecond or 1.0e−9 seconds;
Cs stands for Comparisons):

• n = 10: 45 Cs (up to 40 in Insertion S.) → approx. 6.0e−4 seconds (2.0e−4 in Insertion S.)
• n = 100: 4.9e3 Cs (up to 4.0e3 in Insertion S.) → approx. 8.0 e−3 seconds (2.5e−3 in

Insertion S.)
• n = 1,000: 5.0e5 Cs (up to 5.0e5 in Insertion S.) → approx. 0.18 seconds (0.16 seconds in

Insertion S.)
• n = 10,000: 5.0e7 Cs (4.0e7 Cs in Insertion S.) → approx. 17 seconds (15 seconds in

Insertion S.)
• n = 20,000: 2.0e8 Cs (9.8e7 Cs in Insertion S.) → approx. 62 seconds (57 seconds in

Insertion S.)
• n = 30,000: 4.5e8 Cs (2.2e8 Cs in Insertion S.) → approx. 142 seconds (125 seconds in

Insertion S.)

6.3.4 shell sort

In order to improve the performance of sorting larger
lists, the reader can use the shell sort (also referred to
as the diminishing-increment sort). The main problem
with previously discussed algorithms like insertion,
selection and bubble sort, is their time performance of
O(n2), making them extremely slow when sorting big
lists. Shell sort, while being based on insertion sort, is
using smaller distances between elements. Initially, ele-
ments within a specifically defined distance in the list
are sorted. The algorithm then starts working with elements of decreasing distances until all sub-
sequent elements have been processed. The key point in this algorithm is that every pass deals with
a relatively small number of elements, or with already sorted elements, and every pass secures
an increasing part of the list is ordered. The sequence of the distances can change, provided that
the last distance must be 1. It is mathematically proven that the algorithm has a time complexity
of O(n1,2).

Observation 6.9 – Shell Sort: An
improved variation of the bubble
sort, sorting subsets of a list based
on the distance between the various
list elements. The process starts with
a defined number that is reduced in
each iteration (usually by one).

226 Handbook of Computer Programming with Python

As an example, let us consider the following list: 3, 5, 2, 4, 6, 1, 7, 9, 8. In the 1st pass, the list is
split into three subsets, each of which is processed using the insertion sort. In this particular case,
the three subsets have a distance of three between each element:

• 1st Pass/Subset 1: 3, 4, 7. Result after insertion sort: 3, 4, 7
• 1st Pass/Subset 2: 5, 6, 9. Result after insertion sort: 5, 6, 9
• 1st Pass/Subset 3: 2, 1, 8. Result after insertion sort: 1, 2, 8

After the end of the 1st pass the list will be in the following order: 3, 5, 1, 4, 6, 2, 7, 9, 8.
In the 2nd, the list is split into two subsets, with each one being processed again using the inser-

tion sort. In this case, the two subsets have a distance of two between each element:

• 2nd Pass/Subset 1: 3, 1, 6, 7, 8. Result after insertion sort: 1, 3, 6, 7, 8
• 2nd Pass/Subset 2: 5, 4, 2, 9. Result after insertion sort: 2, 4, 5, 9

After the end of the 2nd pass, the complete list will be in the following order: 1, 2, 3, 4, 6, 5, 7, 9, 8.
Finally, in the 3rd pass, the list is dealt with as a whole, again using the insertion sort. Given that

the previous passes ensured that the list is close to being fully sorted, this pass does require multiple
swaps but only the necessary comparisons. The following script implements the aforementioned
algorithm:

1 # Import the random module to generate random numbers
2 import random
3 import time
4
5 comparisons = 0
6 list = []
7
8 # Enter the number of elements for the list
9 size = int(input("Enter the number of list elements: "))
10 # Use the randint() function to generate random integers
11 for i in range (size):
12 newNum = random.randint(-100, 100)
13 list.append(newNum)
14 print("The unsorted list is: ", list)
15
16 # Start the timer
17 startTime = time.process_time()
18
19 # Use shell sort to sort the list and record the statistics for later use
20 # Start with a big distance and reduce it successively
21 distance = int(size/2)
22
23 # Insertion sorts each of the list subsets divided by distance
24 while distance >= 0:
25
26 # The insertion sort algorithm
27 for i in range(size):
28 temp = list[i]

227Data Structures and Algorithms

Output 6.3.4:

Enter the number of elements in the list:10
The unsorted list is: [-47, 79, -79, 94, -79, -97, -7, -3, 49, 88]
The sorted list is: [-97, -79, -79, -47, -7, -3, 49, 79, 88, 94]
The number of comparisons is = 10
The elapsed time in seconds = 0.0

While the efficiency of the algorithm may not be instantly noticeable, it does make a difference
when examined more closely. The following list of approximate results showcases the performance
difference between insertion sort and shell sort (assume 1 comparison takes 1 nanosecond or
1.0e−9 seconds; Cs stands for Comparisons):

• n = 10: 8 Cs (up to 40 in Insertion S.) → approx. 3.8e−4 seconds (2.0e−4 in Insertion S.)
• n = 100: 4e2 Cs (up to 4.0e3 in Insertion S.) → approx. 3.8e−3 seconds (2.5e−3 in Insertion S.)
• n = 1,000: 1.5e4 Cs (up to 5.0e5 in Insertion S.) → approx. 0.27 seconds (0.16 seconds in

Insertion S.)
• n = 10,000: 1.7e5 Cs (4.0e7 Cs in Insertion S.) → approx. 26 seconds (15 seconds in

Insertion S.)
• n = 20,000: 3.4e5 Cs (9.8e7 Cs in Insertion S.) → approx. 99 seconds (57 seconds in

Insertion S.)
• n = 30,000: 5 e5 Cs (2.2e8 Cs in Insertion S.) → approx. 215 seconds (125 seconds in

Insertion S.)

6.3.5 shAKer sort

The shaker sort algorithm is based on the bubble sort, but
instead of the list being read always on the same direction,
consequent readings occur in opposite directions. This
ensures that both the highest and lowest value elements
of the list move to the correct positions faster. The main
disadvantage of this algorithm is that, since it is based on
bubble sort, its time complexity is bound to O(n2).

Observation 6.10 – Shaker Sort:
Use two separates for loops nested
inside a while loop to read a list of
elements in opposite directions. This
ensures that the elements will be posi-
tioned to the correct places in the list
faster than with bubble sort.

29 loc = i
30 while ((loc >= distance) and (list[loc-distance] > temp)):
31 comparisons += 1
32 list[loc] = list[loc-distance]
33 loc = loc - distance
34 list[loc] = temp
35
36 distance -= 1
37
38 # End the timer
39 endTime = time.process_time()
40
41 # Display basic info for the shell sort
42 print("The sorted list is: ", list)
43 print("The number of comparisons is: ", comparisons)
44 print("The elapsed time in seconds is: ", (endTime - startTime))

228 Handbook of Computer Programming with Python

The following list provides approximate comparisons between the shaker and the bubble sort.
The examples support the argument that it is not worth using this algorithm unless the size of the list
falls within the approximate range of 1,000–50,000 elements. For lists with more elements than the
upper threshold of this range (50,000), using the shaker sort is impractical (as in previous examples,
1 comparison takes 1 nanosecond to complete and 1 nanosecond = 1.0e−9 seconds):

• n = 10: ~40 Cs (n2 = 81 in Bubble S.) → approx. 7.7e−4 seconds (3e−4 in Bubble S.)
• n = 100: ~4.2e3 Cs (n2 = 9.8e3 in Bubble S.) → approx. 3.2e−3 seconds (4.5e−3 in Bubble S.)
• n = 1,000: ~3.9e5 Cs (n2 = 9.98e5 in Bubble S.) → approx. 0.28 seconds (0.37 in Bubble S.)
• n = 10,000: ~3.8e7 Cs (n2 = 9.998e7 in Bubble S.) → approx. 28 seconds (46 in Bubble S.)
• n = 20,000: ~1.5e8 Cs (n2 = 2.0e8 in Bubble S.) → approx. 110 seconds (188 in Bubble S.)

In general, the time complexity of the algorithm for the average and worst cases are O(n2), while
slight improvements can potentially lead to a running time complexity of O(n) at best.

As an example, let us consider the same list as the one used with bubble sort: 2, 3, 1, 6, 7. During
the 1st outer loop, shaker sort will execute two inner iterations successively, with one iteration pro-
cessing the list to the right and one to the left. Each time an inner loop processes the list to the right,
the pointer at the end of the list is reduced by one. Similarly, each time it processes the list to the left,
the pointer at the start of the list is increased by one. Starting with the 1st outer iteration, the inner
loop presented in Table 6.5 (processing the list to the right) will take place.

Likewise, in the 1st outer iteration, the inner loop presented in Table 6.6 will process the list to
the left.

The reader should note that, at the end of each outer iteration, the highest value element of the
current sub-list is pushed to the end of the sub-list and the lowest is pushed to the start. Table 6.7
presents the results of each of the outer iterations. Note that the algorithm will stop at the end the
first inner iteration of the 3rd outer pass, as there are no more swaps to be made:

TABLE 6.5
The First Inner Loop within the First Main Iteration, Reading the List to the Right
3 5 4 2 3 1 6 7

3 5 4 2 3 1 6 7

3 4 5 2 3 1 6 7

3 4 2 5 3 1 6 7

3 4 2 3 5 1 6 7

3 4 2 3 1 5 6 7

3 4 2 3 1 5 6 7

TABLE 6.6
The Second Inner Loop within the First Main Iteration, Reading the List to the Left
3 4 2 3 1 5 6 7

3 4 2 3 1 5 6 7

3 4 2 3 1 5 6 7

3 4 2 1 3 5 6 7

3 4 1 2 3 5 6 7

3 1 4 2 3 5 6 7

1 3 4 2 3 5 6 7

229Data Structures and Algorithms

The following script demonstrates an implementation of the shaker sort and its output:

TABLE 6.7
The Results of the Outer Loops
After the 1st pass 1 3 4 2 3 5 6 7

After the 2nd pass 1 2 3 3 4 5 6 7

After the 1st inner of the 3rd outer pass 1 2 3 3 4 5 6 7

1 # Import the random module to generate random numbers
2 import random
3 import time
4
5 comparisons = 0
6 list = []
7
8 # Enter the number of list elements
9 size = int(input("Enter the number of list elements: "))
10 # Use the randint() function to generate random integers
11 for i in range (size):
12 newNum = random.randint(-100, 100)
13 list.append(newNum)
14 print("The unsorted list is: ", list)
15
16 # Start the timer
17 startTime = time.process_time()
18
19 # The shaker sort algorithm
20 swapped = True; start = 0; end = size -1
21
22 # Keep running the shaker sort while swaps are taking place
23 while (swapped == True):
24 # Set swap to false to start the new loop
25 swapped = False;
26
27 # Loop from left to right using bubble sort
28 for i in range(start, end):
29 comparisons += 1
30 if (list[i] > list[i + 1]):
31 temp = list[i]; list[i] = list[i+1]; list[i+1] = temp
32 swapped = True;
33 # If there were no swaps, the list is sorted
34 if (swapped == False):
35 break
36 # If at least one swap, then reset swap to false and continue
37 else:
38 swapped = False
39

230 Handbook of Computer Programming with Python

Output 6.3.5:

Enter the number of elements in the list:15
The unsorted list is: [98, -23, -29, 17, -11, 2, 77, -20, -53, 66, -2, 33,
63, 33, 68]
The sorted list is: [-53, -29, -23, -20, -11, -2, 2, 17, 33, 33, 63, 66, 68,
77, 98]
The number of comparisons is = 77
The elapsed time in seconds = 0.0

6.4 RECURSION, BINARY SEARCH, AND EFFICIENT SORTING WITH LISTS

On a broader context, any attempt to find an algorithm that addresses the problem of sorting a list
efficiently is subject to certain restrictions. This is due to the fact algorithms generally fall within
the same time complexity of O(n2), as a result of their inherent nested loop structures. As shown in
the previous sections, this is true even when improved and optimized versions of the algorithms are
used. In order to improve the efficiency of sorting algorithms further, recursion must be adopted.
This section presents and discusses the concept of recursion, and uses it as a base to implement
some common related algorithmic ideas like binary search and factorial. Subsequently, two notable
algorithms that address the problem of sorting large lists in an efficient way are presented: merge
sort and quick sort.

6.4.1 reCursion

By definition, a recursive function is one that calls itself. The basic idea is to break a large problem
into several smaller parts that are equivalent to the original. These are further broken down succes-
sively into even smaller parts, until the problem is small enough for its solution to become evident.

40 # Decrease the end of the list to -1, since largest element moved
41 # to the right
42 end –= 1
43
44 # Loop from right to left using bubble sort
45 for i in range (end, start, -1):
46 comparisons += 1
47 if (list[i] < list[i-1]):
48 temp = list[i]; list[i] = list[i-1]; list[i-1] = temp
49 swapped = True
50
51 # Increase the start of the list by 1 since smallest element moved
52 # to the left
53 start += 1
54
55 # End the timer
56 endTime = time.process_time()
57
58 # Display the sorted list
59 print("The sorted list is: ", list)
60 print("The number of comparisons is: ", comparisons)
61 print("The elapsed time in seconds: ", (endTime - startTime))

231Data Structures and Algorithms

This final point is called a terminal or base case. The
condition that must be met in order to achieve the termi-
nal case is called the terminal condition. The associated
step followed to break down the problem into smaller
parts is called the basic step.

In order to contextualize the idea of recursion, one
needs to break down what happens on a recursive func-
tion call:

• Firstly, the compiler/interpreter passes a param-
eter to the function.

• The called function and its parameter is pushed to the program stack (stacks are discussed
in Section 6.5.5), a separate place in memory where the local variables are stored until this
particular function call is completed.

• The compiler/interpreter records the return address, which will be used as a return to the
calling function when the current function call is complete.

• When the current function call is complete, the compiler/interpreter records the value to be
returned to the calling function (if applicable).

In terms of its results, recursion is similar to the iteration explained in Chapter 2, but differs in terms
of the functions used. An iterative algorithm uses a looping construct whereas a recursive algorithm
uses a branching structure. In terms of both time and memory usage, recursive solutions are often
less efficient than their iterative counterpart. However, in many occasions they are the only solutions
available. Their main advantage is that by simplifying the solution to a single problem they often
result in shorter and more readable source code.

The following script presents a basic recursive function that calls itself continuously and
 indefinitely, printing a particular message:

Output 6.4.1.a:

This is a recursive function
This is a recursive function
This is a recursive function
This is a recursive function

RecursionError Traceback (most recent call last)
<ipython-input-l-e0c7cc045453> in <module>

To prevent the function from falling into this infinite call loop, the number of repetitions must be
controlled. This can be achieved by incorporating the following two steps:

• A dividing step must be applied to a subset of the original values in each repetition.
• The terminal or basic case must be defined and calculated (if applicable).

1 def message():
2 print("This is a recursive function")
3 message()
4
5 message()

Observation 6.11 – Recursion: A
recursive function is one that calls
itself. It takes a large problem and
breaks it into smaller ones succes-
sively, following a step. The step is
repeated until the smaller parts are so
small that the solution is evident. The
final and smallest part is referred to as
the terminal or base case.

232 Handbook of Computer Programming with Python

The following script is a modified version of the message() function presented above. It passes an
integer argument that dictates the number of times the function will call itself before the terminal
case:

Output 6.4.1.b:

Message called with times = 3
This is a recursive function.

Message called with times = 2
This is a recursive function.

Message called with times = 1
This is a recursive function.

Message called with times = 0
Message returning with times = 0

Message returning with times = 1

Message returning with times = 2

Message returning with times = 3

The application of recursion can be also considered in the context of a purely mathematical func-
tion, that of the factorial. The complete definition of the factorial is f(n) = n * f(n−1) for n > 1, and
f(1) = 1 for n = 1. According to this definition, for f(4) the result would be calculated as follows:

f(4) = 4 * f(3) = 4 * 3 * f(2) = 4 * 3 * 2 *f(1) = 4 * 3 * 2 * 1 = 24.

Notice that in the case of f(1) there is no further breakdown of the function, as this is considered
the terminal or base case with a result of f(1) = 1. The following script implements the solution of
the factorial:

1 # The recursive function
2 def message(times):
3 print("Message called with times = ", times)
4
5 # Define the dividing step through an if statement
6 if (times > 0):
7 print("\tThis is a recursive function.\n")
8 message(times -1)
9
10 # The terminal or base case stops recursion & "roll back"
11 print("Message returning with times = ", times, "\n")
12
13 # Start the recursion by calling the recursive function
14 message(3)

233Data Structures and Algorithms

Output 6.4.1.c:

Enter the number to find its factorial: 1
The factorial for 1 is 1

Enter the number to find its factorial: 3
3 * f(2)
2 * f(1)
The factorial for 3 is 6

Enter the number to find its factorial: 7
7 * f(6)
6 * f(5)
5 * f(4)
4 * f(3)
3 * f(2)

The factorial for 7 is 5040
2 * f(1)

6.4.2 binAry seArCh

One of the most well-known applications of recursion is
the binary search. The main idea behind binary search
is to find whether a word exists in a dictionary. The nec-
essary precondition is to use it on a sorted list, regard-
less of the algorithm used for the sorting. The concept is
rather simple:

• Initially, the algorithm checks whether the word in the middle element of the list exists.
• If it does not and the middle element value is larger than the search value, the list is split

into two halves and the middle element of the first half is checked; otherwise, the middle
element of the second half is checked.

• The algorithm continues until the desired element is found, in which case the element and
its position in the list are reported. If the search element is not found, a relevant message
is generated.

Observation 6.12 – Binary Search: A
recursive algorithm applied to sorted
lists in order to find the location of a
particular element.

1 # The factorial function using recursion
2 def factorial(n):
3 # The terminal or base case
4 if (n == 1):
5 return 1
6 # The recursive step
7 else:
8 print(n, "* f(", n-1, ")")
9 return n * factorial(n-1)
10
11 num = int(input("Enter the number to find its factorial: "))
12 print("The factorial for", num, "is ", factorial(num))

234 Handbook of Computer Programming with Python

An implementation of the binary search algorithm is provided below:

The recursive function for binary search
binarySearch(word, startPage, endPage)
 # if the dictionary consists of one page (base case) search for it in
 # that page
 if startPage = endPage
 search the word in the startPage
 else
 # get to the middle of the dictionary
 middlePage = (endPage + startPage)/2
 # determine which half of the dictionary might contain
 # the chosen word
 # if the word is in the first half
 if the word is located before the middlePage
 # find the word in the first half of the dictionary
 binarySearch(word, startPage, middlePage)
 else
 # find the word in the second half of the dictionary
 binarySearch(word, middlePage+1, endPage)

In this particular algorithm, function binarySearch calls itself recursively. At each call, the problem
gets smaller as the size is halved. The base case is the startPage = endPage statement that dictates
that either the word is found or it does not exist in the dictionary.

The following script implements the algorithm:

1 # The list of numbers to search in
2 listOfNumbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3
4 # The recursive function for binary search
5 def binarySearch(number, startPage, endPage):
6 # If the list consists of one page (base case) search for it
7 # in that page
8 if (startPage == endPage):
9 if (listOfNumbers[startPage] == number):
10 print("The number was found in the list in "
11 "position: ", startPage)
12 else:
13 print("The number was not found in the list")
14 else:
15 # Split the list using the middle point as a reference
16 middlePage = int((endPage + startPage)/2)
17 # Determine which half of the list might contain the number
18 # If the number is in the first half
19 if (number <= listOfNumbers[middlePage]):
20 # Find the number in the first half of the list
21 binarySearch(number, startPage, middlePage)
22 else:
23 # Find the number in the second half of the list
24 binarySearch(number, middlePage + 1, endPage)
25
26 num = int(input("Enter the number to find in the list: "))

235Data Structures and Algorithms

Output 6.4.2:

Enter the number to find in the list: 7
The number was found in the list in position: 6

Enter the number to find in the list: 23
The number was not found in the list

6.4.3 quiCKsort

Quicksort is considered as one of the more advanced sorting algorithms for lists (i.e., static objects),
with a better average performance than insertion, selection, and shell sort. It was presented by
Hoare in 1962 (Hoare, 1961). Quicksort belongs to a well-known and highly regarded family of
algorithms adopting the divide and conquer strategy.

The algorithm sorts a list of n elements by picking a
key value k in the list as a pivot point, around which the
list elements are then rearranged. Finding or calculat-
ing the ideal pivot point is key, although not absolutely
necessary. The pivot point should be either the median
or close to the median key value, so that the numbers
of preceding and succeeding elements in the list are
balanced.

Once this pivot key (k) is decided, the elements of the
list are rearranged so that those with lower values appear
before it and those with higher values after it. Once this
process is completed, the list is partitioned into two sub-
lists: one containing all values lower than k and one containing k itself (in its original position in
the list) plus all values higher than k. This process is applied recursively to the two sub-lists and all
subsequent sub-lists created based on them until there are no lists to divide. Once this process is
complete, the list is sorted by definition.

As an example, let us consider the following list: 37, 2, 6, 4, 89, 8, 10, 12, 68, 45. The first element
(i.e., list[0]: 37) is taken as the pivot element (k). The process will start with the rightmost element
of the list, moving in a decremental order from that point on (i.e., list[9]: 45, list[8]: 68, list[7]: 12).
Each element is compared with k until an element with a lower value is found. In this instance, the
process will stop at list[7]: 12 and this element will be swapped with k (Table 6.8).

Observation 6.13 – Quicksort: Select
an element in the list as the pivot k
element and rearrange the rest so that
lower value elements precede it and
higher succeed it (or the opposite).
Apply the same process to the two
resulting sub-lists repeatedly, until
there are no more lists to divide. By
definition, at the end of this process
the list will be sorted.

27
28 # Call the binarySearch function
29 binarySearch(num, 0, 9)

TABLE 6.8
The First Round of Comparisons at the Right of the List and Towards the Pivot Element
37 2 6 4 89 8 10 12 68 45
37 2 6 4 89 8 10 12 68 45

37 2 6 4 89 8 10 12 68 45

12 2 6 4 89 8 10 37 68 45

236 Handbook of Computer Programming with Python

Next, the k (37) will be compared with the elements on its left, beginning after 12. The compari-
sons will continue in an increasing order until an element greater than 37 is found. This will happen
for value 89, so 37 and 89 will be swapped (Table 6.9).

After the swap, the process will resume at the left of the previously swapped element (89) and at
the right of pivot element k. The first element that will be considered is 10, which is smaller than the
pivot element, thus, the two elements will be swapped. The rearranged list is shown in Table 6.10
below.

Finally, the process will start again at the left of the sub-list with 37 as the pivot, and begin with
the element after 10. This time, the only remaining element to compare (8) is lower than 37 so no
swap will take place between the two elements. This first round of comparisons will end with the 1st
pivot element (37) placed in its final place in the list, leaving two unsorted sub-lists on its left and
right sides (Table 6.11).

This is the first partitioning of the list into the first two unsorted sub-lists. The exact same
comparison process will be next applied to both the left and right sub-lists recursively. When all
comparisons and partitions are complete there will be no further sub-lists left to sort and the entire
list will be sorted.

The algorithm may seem rather complicated and its efficiency difficult to gauge. Nevertheless, it
is indeed much more efficient than all the previously discussed algorithms. A script implementing
the quicksort algorithm is provided below:

TABLE 6.9
The First Round of Comparisons at the Left of the List and Towards the Pivot Element
12 2 6 4 89 8 10 37 68 45

12 2 6 4 89 8 10 37 68 45

12 2 6 4 89 8 10 37 68 45

12 2 6 4 89 8 10 37 68 45

12 2 6 4 37 8 10 89 68 45

TABLE 6.10
The First Round of Comparisons Resumes at the Right of the Pivot Element
12 2 6 4 37 8 10 89 68 45

12 2 6 4 10 8 37 89 68 45

TABLE 6.11
The First Round of Comparisons Resumes and Finishes at the Left
12 2 6 4 37 8 10 89 68 45

12 2 6 4 10 8 37 89 68 45

1 # Import the random and time modules
2 # to generate random numbers and keep time
3 import random
4 import time
5 global comparisons
6 list = []

237Data Structures and Algorithms

7
8 # The quicksort algorithm
9 def quickSortReadings(list, start, end):
10 global comparisons
11 pivot = list[start]
12 low = start + 1
13 high = end
14
15 while (True):
16 # Compare elements from the right to find one
17 # that is smaller than the pivot. Stop when one is found
18 while (low <= high and list[high] >= pivot):
19 high -= 1; comparisons += 1
20
21 # Compare elements from the left to find one
22 # that is larger than the pivot. Stop when one is found
23 while (low <= high and list[low] <= pivot):
24 low += 1; comparisons += 1
25
26 # If an element larger or smaller than the pivot is found
27 # swap elements to put things in order & continue the process
28 if (low <= high):
29 list[low], list[high] = list[high], list[low]
30 # Stop and exit if the low index moved beyond the high index
31 else:
32 Break
33
34 list[start], list[high] = list[high], list[start]
35
36 return high
37
38 def quickSortPartition(list, start, end):
39 if start >= end:
40 Return
41
42 p = quickSortReadings(list, start, end)
43 quickSortPartition(list, start, p -1)
44 quickSortPartition(list, p + 1, end)
45
46 # Enter the number of list elements
47 size = int(input("Enter the number of list elements:"))
48 # Use the randint() function to generate random integers
49 for i in range (size):
50 newNum = random.randint(-100, 100)
51 list.append(newNum)
52 print("The unsorted list is: ", list)
53
54 comparisons = 0
55
56 # Start the timer
57 startTime = time.process_time()

238 Handbook of Computer Programming with Python

Output 6.4.3:

Enter the number of elements in the list:10
The unsorted list is: [-94, -1, -35, 13, -73, 18, 4, 29, 46, -62]
The sorted list is: [-94, -73, -62, -35, -1, 4, 13, 18, 29, 46}
The number of comparisons is = 26
The elapsed time in seconds = 0.0

The following estimates provide a rough comparison between quicksort and bubble sort, high-
lighting the fact that the former operates at a completely different efficiency level and, thus, being
capable of processing much larger lists. The only possible restrictions in relation to its use have to
do with the power of the computer system used and the available memory, as these are determining
factors when running recursive calls on lists larger than 100,000 elements (a comparison takes 1
nanosecond to complete and 1 nanosecond = 1.0e−9 seconds):

• n = 10: ~30 Cs (n2 = 81 in Bubble S.) → approx. 1.8e−4 seconds (3e−4 in Bubble S.)
• n = 100: ~6.2e2 Cs (n2 = 9.8e3 in Bubble S.) → approx. 4e−4 seconds (4.5e−3 in Bubble S.)
• n = 1,000: ~1e4 Cs (n2 = 9.98e5 in Bubble S.) → approx. 9.7e−3 seconds (3.7e−1 in Bubble S.)
• n = 10,000: ~3e5 Cs (n2 = 9.998e7 in Bubble S.) → approx. 0.1 seconds (46 in Bubble S.)
• n = 20,000: ~1e6 Cs (n2 = 2.0e8 in Bubble S.) → approx. 0.3 seconds (188 in Bubble S.)
• n = 30,000: ~3e6 Cs (n2 = 2.0e8 in Bubble S.) → approx. 0.6 seconds (Not practical in

Bubble S.)
• n = 100,000: ~2e7 Cs (n2 = 2.0e8 in Bubble S.) → approx. 5.6 seconds (Not practical in

Bubble S.)
• n = 300,000: ~1.8e8 Cs (n2 = 2.0e8 in Bubble S.) → approx. 48 seconds (Not practical in

Bubble S.)

In terms of time complexity, while the worst cases run at O(n2), the average and best cases run at the
much more efficient level of O (n log(n)).

6.4.4 merge sort

Merge sort is another advanced algorithm for efficient
sorting of large lists, falling into the same divide and
conquer approach as quicksort. Merge sort is an excel-
lent choice for sorting data that cannot be kept on the
computer memory all at once and are, thus, kept in sec-
ondary storage.

The essential idea behind merge sort is to split
lists into two halves continuously until all sub-lists

Observation 6.14 – Merge Sort: A
divide and conquer algorithm for
sorting static lists. The basic idea is
to divide the list into two sub-lists
repeatedly, until all sub-lists consist of
a single element. The divided lists are
then merged again following a par-
ticular sorting procedure.

58
59 quickSortPartition(list, 0, size -1)
60
61 # End the timer
62 endTime = time.process_time()
63
64 # Display the sorted list
65 print("The sorted list is: ", list)
66 print("The number of comparisons is = ", comparisons)
67 print("The elapsed time in seconds = ", (endTime - startTime))

239Data Structures and Algorithms

consist of a single element and, subsequently, merge the sub-lists while also ordering their elements.
Algorithmically, the process is rather straightforward, particularly for the split part. The process the
programmer must follow for merging each given set of two sub-lists is summarized below:

• Check if the first sub-list is empty.
• If not, check if the second sub-list is empty.
• If not, compare the first available element in the first sub-list with the first available element

in the second sub-list.
• Whichever of the two elements has a lower value must be placed in the first available slot

of a new merged list.
• This process should be repeated for all remaining elements of the two sub-lists.
• If all the elements of one of the sub-lists have been used, place the remaining elements of

the other sub-list to the new merge list, in the order they appear in the sub-list.
• Recursively repeat this process until all the sub-lists are merged into one ordered merged list.

As an example, let us consider the following list: 25, 13, 9, 32, 17, 5, 33, 25, 43, 21. Firstly, the list is
split into the required set of sub-lists:

Next, the lists are merged on a bottom-up basis, as shown below:

240 Handbook of Computer Programming with Python

The following script provides an implementation of the merge sort algorithm:

1 # Random and time modules generate random numbers & keep time
2 import random
3 import time
4 global comparisons, i, j, k
5 global list
6
7 # Merge two sub-lists, list[first, middle] and list[middle+1, last]
8 def merge(first, middle, last):
9 global list
10 global i, j, k, comparisons
11 size1 = middle - first + 1; size2 = last - middle
12
13 # Create temporary lists
14 leftList = []; rightList = []
15
16 # Copy original list to temporary lists leftList & rightList
17 for i in range(0, size1):
18 leftList.append(list[first + i])
19 for j in range(0, size2):
20 rightList.append(list[middle + 1 + j])
21
22 # Merge temp lists leftList & rightList into original list
23 # until one of the sub-lists is empty
24 i = 0; j = 0; k = first
25 while (i < size1 and j < size2):
26 if (leftList[i] <= rightList[j]):
27 list[k] = leftList[i]; i += 1; comparisons += 1
28 else:
29 list[k] = rightList[j]; j += 1; comparisons += 1
30 k += 1
31
32 # If list becomes empty, copy remaining elements to original
33 while (i < size1):
34 list[k] = leftList[i]; i += 1; k += 1
35
36 # If list becomes empty, copy remaining elements to original
37 while (j < size2):
38 list[k] = rightList[j]; j += 1; k += 1
39
40 # The merge sort algorithm
41 def mergesort(first, last):
42 global list
43
44 # The recursive step
45 if (first <= last-1):
46 middle = (first + last)//2

241Data Structures and Algorithms

Output 6.4.4:

Enter the number of elements in the list:15
The unsorted list is: [83, -3, 89, 64, -5, 65, 78, 17, 8, -3, 82, 89, -80, 23, 64]
The sorted list is: [-80, -5, -3, -3, 8, 17, 23, 64, 64, 65, 78, 82, 83, 89, 89]
The number of comparisons is = 42
The elapsed time in seconds = 0.0

The efficiency of the algorithm in sorting static lists is comparable to that of quicksort (a compari-
son takes 1 nanosecond to complete; 1 nanosecond = 1.0e−9 seconds):

• n = 10: ~20 Cs (30 in Quicksort) → approx. 2e−4 seconds (1.8e−4 in Quicksort)
• n = 100: ~5.4e2 Cs (6.2e2 Cs in Quicksort) → approx. 0.0012 seconds (1.2e−2 in Quicksort)
• n = 1,000: ~8.6e3 Cs (1e4 Cs in Quicksort) → approx. 0.015 seconds (9.7e−3 seconds in

Quicksort)
• n = 10,000: ~1.2e5 Cs (3e5 Cs in Quicksort) → approx. 0.15 seconds (0.1 seconds in

Quicksort)
• n = 30,000: ~4e5 Cs (3e6 in Quicksort) → approx. 0.44 seconds (0.6 seconds in Quicksort)
• n = 100,000: ~1.5e6 Cs (2e7 in Quicksort) → approx. 1.6 seconds (5.6 seconds in Quicksort)
• n = 300,000: ~5e6 Cs (1.8e8 in Quicksort) → approx. 5.5 seconds (48 seconds in Quicksort)

47 mergesort(first, middle)
48 mergesort(middle + 1, last)
49 merge(first, middle, last)
50
51 list = []
52 # Initialize the indices of the sub-lists
53 i, j, k = 0, 0, 0
54
55 # Enter the number of list elements
56 size = int(input("Enter the number of list elements: "))
57 # Use the randint() function to generate random integers
58 for i in range (size):
59 newNum = random.randint(-100, 100)
60 list.append(newNum)
61 print("The unsorted list is: ", list)
62
63 comparisons = 0
64
65 # Start the timer
66 startTime = time.process_time()
67
68 mergesort(0, size-1)
69
70 # End the timer
71 endTime = time.process_time()
72
73 # Display the sorted list
74 print("The sorted list is: ", list)
75 print("The number of comparisons is = ", comparisons)
76 print("The elapsed time in seconds = ", (endTime - startTime))

242 Handbook of Computer Programming with Python

In general, merge sort is more efficient than quicksort as it runs on O(n logn) time complexity in all
cases (i.e., best, average, and worst case). Most importantly, it becomes significantly better as the
size of the list grows larger (e.g., lists consisting of hundreds of thousands of elements or higher)
depending on the power, memory, and settings of the system it runs on.

6.5 COMPLEX DATA STRUCTURES

In the previous sections, the focus was on the implementation of sorting by means of relatively
simple, static data structures, like lists. When it comes to more advanced, real-life applications
more complex data structures may be required. This section addresses such data structures, which
can take both linear and non-linear forms (Figure 6.1).

In linear structures, such as stacks, queues, and linked lists, each element occupies a position
that is relative to that of previous and succeeding elements within the structure. Consequently, the
structure is traversed (i.e., read) sequentially. In non-linear structures, such as trees and graphs, the
items are not arranged in a particular, hierarchical order, thus, sequential traverse is not feasible.
Non-linear structures are more complex to implement, but they are also more powerful. As such,
they are used extensively in real-life applications.

6.5.1 stACK

A stack is an ordered list with two ends, the top and the
base. New items are always inserted at the top end in
an operation called push. Items are also removed from
the top end, in what is referred to as pop. In a stack, the
last item to push is always the first to pop, hence a stack
is also called a last in, first out (LIFO) list. Besides the
item at the top, other items in the stack are not directly
accessible. As an analogy, one can think of a stack as a
pile of plates stacked upon each other. Each new plate is
placed at the top of the pile. In order to be used, a plate
is also taken from the top of the pile.

Observation 6.15 – Stack: An
ordered, linear list structure with two
ends: top and base. Items are pushed
to and popped from the top, and the
last item pushed in the stack is the
first to be popped out (LIFO). The
operations performed on the stack
are the following: initialize, push, pop,
isEmpty, top, and size.

FIGURE 6.1 Classification of data structures.

243Data Structures and Algorithms

From a more formal, technical perspective, the stack ADS (Abstract Data Structure) consist of
the following:

• An index pointing at the top item in the stack, with values ranging from 0 to its maximum
size −1.

• The body of the stack that stores the values (i.e., the actual data of the list).
• Initialize – init(s): A function that initializes the stack (i.e., creating an empty list).
• Empty – isEmpty(s): A function that checks whether the stack (s) is empty.
• Push – push(x, s): A function that pushes a new item (x) onto the stack (s).
• Pop – pop(x, s): A function that deletes the top item (x) from the stack (s).
• Top – top(s): A function that returns the item at the top of the stack.
• Size – size(s): A function that returns the total number of items in the stack.

The following Python class (filename: Chapter6Stack.py) defines the stack structure (stack ADS):

class Stack:
 def __init__(self):
 self.items = []
 def push(self, item):
 self.items.append(item)
 def pop(self):
 return self.items.pop()
 def isEmpty(self):
 return self.items == []
 def top(self):
 if (not self.isEmpty()):
 return self.items[-1]
 def size(self):
 return len(self.items)
 def show(self):
 return self.items

Since the class in this form is rather generic, it can be used for a variety of stack-based applications.
The following script imports the stack class from Chapter6Stack.py in order to implement a simple
example of the functionality of the stack:

1 import Chapter6Stack
2
3 fruits = Chapter6Stack.Stack()
4
5 # Confirm that the stack is empty
6 if (fruits.isEmpty() == True):
7 print ("The stack is empty")
8
9 # Push elements to the stack
10 fruits.push('apple')
11 fruits.push('orange')
12 fruits.push('banana')
13

244 Handbook of Computer Programming with Python

Output 6.5.1.a:

The stack is empty
The stack is not empty: It's size is: 3
The contents of the stack are: ['apple', 'orange', 'banana']
The top item of the stack is: banana
Remove the top item of the stack: banana
The top item of the stack is now: orange
The contents of the stack now are: ['apple', 'orange']

Stacks are used extensively in computer programs. A rather common example is storing page visits
on a web browser. Every page that is visited is added to a stack and when the user clicks on the back
button the last page visited is retrieved from the stack. A similar use can be found in the undo func-
tion included in most computer applications. A stack is used to store all the tasks performed in the
application and when the user clicks on the respective button, the last action is retrieved from the
stack and its action is reversed. Stacks are also useful in evaluating expressions, backtracking, and
implementing recursive function calls.

As an example of a practical use of the stack, let us consider the common utility task of convert-
ing a decimal number into binary. The algorithm is quite simple: repeatedly divide the decimal
number by 2 until the result is 0, while pushing the remainder of the integer division to the stack. At
the end of the process, all the items are popped from the stack to get the binary representation of the
decimal number. Assuming that the integer to be converted is number 21, the above procedure will
result in binary number 10101 (Figure 6.2).

14 # Confirm that the stack is not empty and print its contents
15 if (fruits.isEmpty()!= True):
16 print("The stack is not empty: It's size is: ", fruits.size())
17 print("The contents of the stack are: ", fruits.show())
18
19 # Return the top item of the stack
20 print("The top item of the stack is: ", fruits.top())
21 # Remove the top item of the stack, print the new top item and the stack
22 print("Remove the top item of the stack: ", fruits.pop())
23 print("The top item of the stack is now: ", fruits.top())
24 print("The contents of the stack now are: ", fruits.show())

FIGURE 6.2 Decimal to binary number conversion.

245Data Structures and Algorithms

The following script implements the stack structure, utilizing Stack ADS (Chapter6Stack.py) as
in the previous example:

Output 6.5.1.b:

Enter the integer to convert to binary: 56
The stack is not empty: It's size is: 6
The contents of the stack are: [0, 0, 0, 1, 1, 1]
The binary form of the number is: 111000

6.5.2 infix, Postfix, Prefix

Another application of a stack that is particularly important in computer science is the evaluation
of arithmetic expressions. In general, the reader should be aware of the fact that there are three
kinds of arithmetic notations, namely infix, prefix, and postfix. Infix is what humans are mostly
used to, as it involves a binary operator appearing between two operands and determining the type
of operation that will take place between them (e.g., 3 + 5). In a prefix notation, the same expres-
sion would be converted to + 3 5, where the operator precedes both operands. Likewise, the postfix
notation would take the form 3 5 +, with the operator succeeding the two operands. It must be
noted that the postfix notation is the one used by compil-
ers when evaluating an arithmetic expression. As such,
the conversion of an infix expression that humans would
understand more easily to a postfix expression that can
be evaluated by compilers is a rather important task in
computer science. The implementation of such a conver-
sion poses three main problems that must be addressed:

Observation 6.16 – Infix, Postfix,
Prefix: Three different kinds of nota-
tions used to evaluate arithmetic
expressions by humans or computers.

1 import Chapter6Stack
2
3 # decimal object implements the conversion using the stack
4 decimal = Chapter6Stack.Stack()
5
6 # Accept an integer to convert to binary form
7 userInput = int(input("Enter the integer to convert to binary: "))
8
9 # Repeatedly divide by 2; keep pushing the remainder to the stack
10 while (userInput > 0):
11 decimal.push(userInput % 2)
12 userInput = userInput//2
13
14 # Confirm that the stack is not empty and print its contents
15 if (decimal.isEmpty()!= True):
16 print("The stack is not empty: It's size is: ", decimal.size())
17 print("The contents of the stack are: ", decimal.show())
18
19 # Return the number in binary form
20 print("The binary form of the number is: ", end = '')
21 for i in range (decimal.size()):
22 print(decimal.pop(), end = '')

246 Handbook of Computer Programming with Python

• In an infix expression, the operation precedence is forcing multiplication/division to apply
before the additions/subtractions, whereas in a postfix expression there is no operator
priority.

• When translating an infix to a postfix expression, only the placement of the operators is
different. An algorithm that translates from infix to postfix only needs to shift the opera-
tors to the right, and possibly reorder them.

• Postfix expressions do not take parentheses.

The following algorithm uses a stack to temporarily store the operators until they can be inserted to
the right position into the postfix expression:

• Initialize the stack.
• Scan the infix expression from left to right.
• While the scanned character is valid:

• If the character is an operand, move it directly to the postfix expression.
• If the character is an operator, compare it with the operator at the top of the stack.

• While the operator at the top of the stack is of higher or equal priority than the
character just encountered, and is not a left parenthesis character, pop the operator
from the stack and move it to the postfix expression. Once all the operators are
popped, push the current character/operator to the stack.

• If the character is a left parenthesis, push the character onto the stack.
• If the character is a right parenthesis, pop and move the operators off the stack to the

postfix expression. Pop the left parenthesis and ignore it.
• If the operator at the top of the stack is of a lower priority than the character just

encountered or if the stack is empty, push the character that was just encountered to
the stack.

• After the entire infix expression has been scanned, pop any remaining operators from the
stack and move them to the postfix expression.

As an example, Figure 6.3 illustrates the use of a stack to convert infix expression 2 + 3 x 5 + 4 into
postfix.

• 2 + 3 = 5 → 2 3 + = 5
• 2 x 5 + 3 = 13 → 2 5 x 3 + = 13
• 2 + 5 x 3 = 17 → 2 5 3 x 3 = 17
• 2 x 3 + 5 x 4 = 26 → 2 3 x 5 4 x + = 26
• 2 + 3 x 5 + 4 = 21 → 2 3 5 x + 4 + = 21

FIGURE 6.3 Infix expression remaining to be evaluated.

247Data Structures and Algorithms

Figures 6.4 and 6.5 demonstrate a more complex case of an infix to postfix expression conversion
that includes operators in parentheses: 2 x (7 + 3 x 4) + 6.

The evaluation of a postfix expression utilizes the steps described in the algorithm below:

• Scan the postfix expression from left to right.
• If an operand is encountered, push it to the stack.
• If an operator is encountered, apply it to the top two operands of the stack and replace the

two operands with the result of the operation.
• After scanning the entire postfix expression, the stack should have one item, which is the

value of the expression.

Figure 6.6 illustrates how expression 1 6 + 5 2 – x is evaluated using a stack.

FIGURE 6.4 Infix to postfix with parenthesis – Part A.

FIGURE 6.5 Infix to postfix with parenthesis – Part B.

248 Handbook of Computer Programming with Python

6.5.3 queue

A queue is also a linear structure in which items are
added at one end through a process called enqueue, but
removed from the other end through what is referred
to as dequeue. The two ends are called rear and front.
Unlike the stack, in a queue the items that are added
first are also removed first, hence it is also described as
a first in, first out (FIFO) structure. A queue is analogous
to people waiting in line to purchase a ticket or pay a
bill. The person first in line is the first one to be served.

The following is a visual illustration of the queue
structure:

Figure 6.7 below illustrates the execution of a simple queue:

Observation 6.17 – Queue: An
ordered, linear list structure with
two ends: rear and front. Items are
enqueued at one end and dequeued
at the other. The first enqueued
item is also the first to be dequeued
(FIFO). The operations performed on
the queue are the following: initialize,
enqueue, dequeue, isEmpty, peek,
and size.

FIGURE 6.6 Evaluating a postfix expression.

FIGURE 6.7 Execution of a simple queue.

249Data Structures and Algorithms

In computer science, queues are used extensively to schedule tasks, such as printing or managing
CPU processes. When multiple users submit print jobs, the printer queues all the jobs and prints
them in a first-come-first-served basis. Similarly, when multiple processes require to use the CPU,
the order of execution is scheduled and performed through a queue structure.

The queue ADS consists of the following:

• An index that points to the front item of the queue.
• An index that points to the rear item of the queue.
• The body of the queue that stores its values (i.e., the actual data in the list).
• Initialize – init(q): A function that initializes the queue (i.e., creates the empty list).
• Empty – isEmpty(q): A function that checks whether the queue is empty.
• Enqueue – enqueue(x, q): A function that adds an item to the rear end of the queue.
• Dequeue – dequeue(x, q): A function that returns the item at the front end of the queue

and removes it from the queue.
• Front – peek(q): A function that returns the item at the front of the queue.
• Size – size(q): A function that returns the number of items in the queue.

The Python class provided below (filename: Chapter6Queue.py) is an implementation of the queue
ADS:

class Queue:
 # Initialize the queue
 def __init__(self):
 self.items = []

 # Check whether the queue is empty
 def isEmpty(self):
 return self.items == []

 # Add an item to the queue
 def enqueue(self, item):
 self.items.insert(0,item)

 # Delete an item from the queue
 def dequeue(self):
 if not self.isEmpty():
 return self.items.pop()

 def peek(self):
 if not self.isEmpty():
 return self.items[-1]

 def size(self):
 return len(self.items)
 def show(self):
 return self.items

The following script (filename: Chapter6QueueExample) imports and runs a simple queue ADS:

1 import Chapter6Queue
2
3 q = Chapter6Queue.Queue()
4 print(q.isEmpty())
5 q.enqueue('Task A')

250 Handbook of Computer Programming with Python

Output 6.5.3:

True
['Task A']
['Task B', 'Task A']
['Task C', 'Task B', 'Task A']
Task A
['Task C', 'Task B']
Task B
['Task C']
1

6.5.4 CirCulAr queue

A circular queue is essentially the same as a regular
queue, but with two major differences. First, the size
of the circular queue does not change. This size restric-
tion can be viewed as the main weakness of the circular
queue. Second, its front and rear are continuously mov-
ing in a circular form based on the demand for enqueue
and dequeue, provided that there is available empty
space and that they do not clash with each other (i.e., the
front cannot be in the same list index as the rear). This is
an important observation, as it is possible that the front
item is stored before the rear one on the circular queue. Because of these qualitative differences,
a circular queue ADS needs to check whether the queue is full before enqueuing a new item in it.
Figure 6.8 provides an illustration of the circular queue operation.

The following script (filename: Chapter6CircularQueue) imports and runs an implementation
of the queue ADS:

Observation 6.18 – Circular Queue:
A structure similar to a queue with
the difference that its size does not
change and the front and rear are
movable. This is based on the demand
for enqueue and dequeue in a circu-
lar form, allowing for the front item to
be stored before the rear.

6 print(q.show())
7 q.enqueue('Task B')
8 print(q.show())
9 q.enqueue('Task C')
10 print(q.show())
11 print(q.dequeue()) # removes Task A
12 print(q.show())
13 print(q.dequeue()) # removes Task B
14 print(q.show()) # q has only one task left
15 print(q.size())

251Data Structures and Algorithms

FIGURE 6.8 Example of circular queue.

1 class CircularQueue():
2
3 # Initialize the circular queue to the preferred size
4 # with all its items empty and the front and rear starting at -1
5 def __init__(self, maxSize):
6 self.cqSize = maxSize
7 self.queue = [None] * self.cqSize
8 self.front = self.rear = -1
9
10 # Insert an item into the circular queue
11 def enqueue(self, data):
12 # Insert the first item to the queue, start the front and rear
13 if (self.front == -1):
14 self.front = self.rear = 0
15 self.queue[self.rear] = self.queue[self.front] = data
16 # Insert items to the queue
17 else:
18 # Only be concerned with the front item; use % and the size
19 # of the queue to move the front in a circular manner
20 self.front = (self.front + 1) % self.cqSize
21 self.queue[self.front] = data
22 print("Queue size: ", self.cqSize, "Queue front: ", self.front,
23 "Queue rear: ", self.rear)
24
25 # Delete an item from the circular queue

252 Handbook of Computer Programming with Python

26 def dequeue(self):
27 if (self.front == -1):
28 print("The circular queue is empty\n")
29 # If the front item is the same as the rear the queue has only
30 # one item; empty the queue
31 elif (self.front == self.rear):
32 self.front = self.rear = -1
33 else:
34 # Only be concerned with the rear item; use % and the size
35 # of the queue to move the rear in a circular form
36 self.queue[self.rear] = [None]
37 self.rear = (self.rear + 1) % self.cqSize
38 print("Queue size: ", self.cqSize, "Queue front: ", self.front,
39 "Queue rear: ", self.rear)
40
41 # The printCQueue will display the contents of the circular queue
42 def printCQueue(self):
43 # If the front value is -1 the circular queue is still empty
44 if(self.rear == -1):
45 print("No element in the circular queue")
46 # If front index is larger than rear then queue is still valid
47 elif (self.front >= self.rear):
48 for i in range(self.rear, self.front + 1):
49 print(self.queue[i], end = " ")
50 # If front less than rear, queue has completed a circle
51 else:
52 for i in range(self.front + 1):
53 print(self.queue[i], end = " ")
54 for i in range(self.rear, self.cqSize):
55 print(self.queue[i], end = " ")
56 print()
57
58 # Check whether the circular queue is full
59 def isFull(self):
60 if ((self.front + 1) % self.cqSize == self.rear):
61 return True
62 else:
63 return False
64
65 # Ask the user for the preferred size for the circular queue
66 maxSize = int(input("Enter the size of the circular queue:"))
67 cq = CircularQueue(maxSize)
68
69 # Keep working on the circular queue until input is not E or D
70 while (True):
71 # Ask the user for the next move, enqueue or dequeue
72 choice = input("(E)nqueue or (D)equeue or (Q)uit?")
73 if (choice == "E"):
74 if (cq.isFull()!= True):
75 newItem= int(input("Enter the next item of the circular

queue:"))
76 cq.enqueue(newItem)

253Data Structures and Algorithms

Output 6.5.4:

Enter the size of the circular queue:3
(E)nqueue or (D)equeue or (Q)uit?E
Enter the next item of the circular queue:10
Queue size: 3 Queue front: 0 Queue rear: 0
The updated Queue is: 10
(E)nqueue or (D)equeue or (Q)uit?E
Enter the next item of the circular queue:20
Queue size: 3 Queue front: 1 Queue rear: 0
The updated Queue is: 10 20
(E)nqueue or (D)equeue or (Q)uit?E
Enter the next item of the circular queue:30
Queue size: 3 Queue front: 2 Queue rear: 0
The updated Queue is: 10 20 30
(E)nqueue or (D)equeue or (Q)uit?E
The queue is full. Cannot insert a new item
The updated Queue is: 10 20 30

(E)nqueue or (D)equeue or (Q)uit?
D

(E)nqueue or (D)equeue or (Q)uit?D
Queue size: 3 Queue front: 2 Queue rear: 1
The updated Queue is: 20 30
(E)nqueue or (D)equeue or (Q)uit?D
Queue size: 3 Queue front: 2 Queue rear: 2
The updated Queue is: 30
(E)nqueue or (D)equeue or (Q)uit?E
Enter the next item of the circular queue:40
Queue size: 3 Queue front: 0 Queue rear: 2
The updated Queue is: 40 30

(E)nqueue or (D)equeue or (Q)uit?

6.6 DYNAMIC DATA STRUCTURES

The data structures described in the previous sections are characterized as static, since they all use
inherently static list structures. To some extent, issues like restrictions associated with the require-
ment for large amounts of memory, generally weak performance due to the heavy nature of the
tasks, and a certain inflexibility, can be traced in all of these structures. The previously discussed
cases have demonstrated that the execution of even the most advanced algorithms tends to become
impractical as the size of the structures increases. In order to address this issue, there is a need for
more effective data structures that allocate the available computer memory only as and when neces-
sary, and in the most efficient way possible. Structures that fall under this category are collectively
known as dynamic data structures. Some of the most important of these structures are introduced
and briefly discussed in the following sections.

77 else:
78 print("The queue is full. Cannot insert a new item")
79 elif (choice == "D"):
80 cq.dequeue()
81 else:
82 break
83 print("The updated Queue is: ", end = " ")
84 cq.printCQueue()

254 Handbook of Computer Programming with Python

6.6.1 linKed lists

A linked list is a collection of nodes linked to each other
through pointers. The structure is recursive by defini-
tion. Each node includes a data value and a pointer to
the first node of a subsequent linked list, or to null if
the latter is empty. In order to navigate a linked list, it is
necessary to create a separate object, called head, that
always points to the first node of the list. Subsequent
nodes are accessed via the associated pointers, stored in
each node. If the list is empty, the head will simply point
to a null value. In a similar fashion, the link pointer of
the last node is set to null to mark the end of the list. There is only one head, and it is always point-
ing to the first node of the linked list. Similarly, there is only one tail (i.e., the last node), pointing
to null. All other nodes are called intermediate nodes and have both a predecessor and a succes-
sor. Traversing (i.e., moving through) intermediate nodes towards the tail starts at the first node of
the list, pointed to by the head. For this purpose, it is best to create another object, usually called
 current, that is used to move between the intermediate nodes in the list.

The strength of the linked list is that its data are stored dynamically, with new nodes created only
if and when necessary, and unwanted nodes deleted if they are not in use. Separately from the data,
the pointer of every newly created node is set to point to null. Nodes can store any data type, but all
nodes of a linked list need to store the same data type.

Figure 6.9 illustrates the structure of a linked list. Notice how the head points to the first node
and that the last node points to null:

The implementation of a linked list requires two classes. The first is the node class that contains
a data and a pointer to the next item. For any new node that is created, next will point to null.
The second, is the linked list itself that contains the head pointer to the first item in the list and
the current_node that is used to move through the list. Both the head and the current_node will
 initially point to null since there are no items in the list.

The linked list ADS (Abstract Data Structure) includes the following operations:

• Instantiating & initializing the list: This function is used to create the head and the cur-
rent object that initially point to null (i.e., the empty list; Figure 6.10). The Python code for
this function is the following:

 def __init__(self):
 self.head = self.current_node = None

Observation 6.19 – Linked List: A
structure of connected nodes. Each
node contains a data value and a
pointer to the first node of the sub-
sequent list. A head pointer is always
pointing to the first node. The last
node points to null. The rest of the
nodes are defined as intermediate.

FIGURE 6.9 Linked list.

FIGURE 6.10 New linked list.

255Data Structures and Algorithms

• Checking if the list is empty: This function checks whether the linked list is empty, in
which case no more nodes can be deleted and any newly inserted node must be the first in
the list. The Python code is the following:

 def isEmpty(self):
 current_node = self.head
 if (current_node == None):
 return True

• Reading and printing the list: It is often useful to print the nodes of the list and provide
information about its size (i.e., the number of nodes it contains). In order to do this, it is
necessary to traverse (i.e., read through) the list starting at the first node. While the cur-
rent_node value is not null, current node values are read/printed successively as the list is
traversed. Figure 6.11 illustrates this process diagrammatically. The related Python code
is presented below:

 def readList(self):
 count = 0
 current_node = self.head
 print("The current list is: ", end = " ")
 while (current_node):
 count += 1
 print(current_node.data, " ", end = "")
 current_node = current_node.next
 print("\nThe size of the linked list is: ", count)

• Inserting a new node in the list: A new node can be either inserted as a first element
when the list is empty or as the last element appended to the list. In the former case, a new
node is created (including the associated data) and its next element is set to point to null.
Finally, the head is set to point to the new node (Figure 6.12). In the case of appending a
new element to the list, after the new node is created, the list is traversed until the last node
is reached. Once this is done, the next element of the last node is set to point to the newly
created node (Figure 6.13). The related Python code is presented below:

 def append(self, data):
 # Create the newNode to append the linked list
 newNode = Node(data)

 # Case 1: List is empty
 if (self.head == None):
 self.head = newNode
 Return

 # Case 2: If the list is not empty start the
 # current node at the head of the list
 current_node = self.head

 # Loop through the linked list untill the current node
 # has Next pointing to None
 while (current_node.next):
 current_node = current_node.next

 # Add new node to the end of the list
 current_node.next = newNode

256 Handbook of Computer Programming with Python

• Deleting a node: This operation starts by checking if the linked list is empty. If not, it
searches for the data that must be deleted. If the data are not found, the list remains as is.
If the data are found, the node they belong to is deleted and the list is updated accordingly.
There are two cases to consider in relation to this process. The first case is that the node to
be deleted is the first one in the list. In this case, the process simply involves the allocation
of the head to the next node, and the assignment of the pointer that points to the deleted
node to null. The second case is that the node to be deleted is not the first one in the list. In
this case, it is necessary to also find the nodes before and after the deleted, and keep refer-
ences to them. With this information at hand, the next pointer of the node preceding the
deleted one is made to point to the node succeeding it. Finally, the pointers of the deleted
node are removed. Figure 6.14 illustrates this process diagrammatically.

FIGURE 6.12 Inserting the first node.

FIGURE 6.11 Traversing the linked list.

257Data Structures and Algorithms

The following Python script demonstrates the deletion process:

 def delete(self, data):
 if (self.isEmpty()):
 print("There is no node available to delete. "
 "The linked list is empty.")
 else:
 current_node = self.head
 # Case 1: If the node to be deleted is the first node
 if (current_node and current_node.data == data):
 # Set the head of the list of the next item
 self.head = current_node.next
 # Set the current item’s pointer to null
 current_node.next = None
 Return

FIGURE 6.13 Appending a node to the list.

FIGURE 6.14 Deleting a node from a linked list.

258 Handbook of Computer Programming with Python

 # Keep track of the previous node while searching
 # for the node to be deleted
 previous_node = None

 while (current_node and current_node.data != data):
 previous_node = current_node
 current_node = current_node.next

 # Check if the node was found
 if (current_node is None):
 return
 previous_node.next = current_node.next
 current_node = None

• Destroying the list: Since building a linked list involves the dynamic allocation of mem-
ory in the form of pointers, it is advisable that before the underlying application stops,
any pointers and memory allocated during its lifecycle are freed and released back to the
system. The following Python code demonstrates a possible implementation of this task:

 def destroyList(self):
 temp = self.head
 if (temp is None):
 print("\n The linked list is deleted")
 while (temp):
 self.head = temp.next
 temp = None
 temp = self.head
 self.readList()

The reader can merge the above functions and commands as in the code example provided below
(the code is arranged into two classes, stored in file Chapter6LinkedList.py):

class Node:
 def __init__(self, data):
 self.data = data
 self.next = None
class LinkedList:
 def __init__(self):
 ...
 def append(self,data):
 ...
 def delete(self, data):
 ...
 def destroyList(self):
 ...
 def readList(self):
 ...
 def isEmpty(self):
 ...

259Data Structures and Algorithms

The following script (filename: Chapter6LinkedListExample) implements the class, as discussed
above:

Output 6.6.1:

[A]: Append a new node
[D]: Delete a particular node
[Q]: Clear all list and exit
[P]: Print the current list
Enter your choice: A
Enter the new node value to append the list: 5

[A]: Append a new node
[D]: Delete a particular node
[Q]: Clear all list and exit
[P]: Print the current list
Enter your choice: A
Enter the new node value to append the list: 3

[A]: Append a new node
[D]: Delete a particular node
[Q]: Clear all list and exit
[P]: Print the current list
Enter your choice: A
Enter the new node value to append the list: 7

1 import Chapter6LinkedList
2
3 ll = Chapter6LinkedList.LinkedList()
4
5 while (True):
6 print("[A]: Append a new node")
7 print("[D]: Delete a particular node")
8 print("[Q]: Clear all list and exit")
9 print("[P]: Print the current list")
10 choice = input("Enter your choice: ")
11 if (choice == "A"):
12 newNode = int(input("Enter the new node value to append the

list: "))
13 ll.append(newNode)
14 elif (choice == "D"):
15 deleteNode = int(input("Enter the node to delete: "))
16 ll.delete(deleteNode)
17 elif (choice == "P"):
18 ll.readList()
19 else:
20 ll.destroyList()
21 break

260 Handbook of Computer Programming with Python

[A]: Append a new node
[D]: Delete a particular node
[Q]: Clear all list and exit
[P]: Print the current list
Enter your choice: P
The current list is: 5 3 7
The size of the linked list is: 3

[A]: Append a new node
[D]: Delete a particular node
[Q]: Clear all list and exit
[P]: Print the current list
Enter your choice: D
Enter the node to delete: 3

[A]: Append a new node
[D]: Delete a particular node
[Q]: Clear all list and exit
[P]: Print the current list
Enter your choice: P
The current list is: 5 7
The size of the linked list is: 2

In addition to the operations discussed above, the effectiveness of the linked list could be also
improved by:

• Inserting a new node before/after an existing node based on its data.
• Searching for a node using key data, and retrieving the data and the positional index of

the node.
• Modifying the data of a particular node within the list.
• Sorting the linked list.

Some key points when implementing linked lists or related structures are summarized in the list
below:

• To access the nth node of a linked list, it is necessary to pass through the first n−1 nodes.
• If nodes are added at a particular position instead of just being appended, the insertion will

result in a node index change.
• Deletion of nodes will result in a node index change.
• Trying to store the node indices in a linked list is of no use, since they are constantly

changing (indeed, there are no actual indices in such a list).
• To append a node, one has to traverse the whole list and reach the last node.
• In addition to the head and current_node pointers, adding a tail pointer to the last node of

the list makes appending easier and more efficient.
• To delete the last node, one has to traverse the whole list and find the two last positions.
• If for any reason the head pointer is lost, the linked list cannot be read and retrieved.

A particular variation of the linked list is the circular linked list, in which the last node is linked to
the first. It is used when the node next to the last corresponds to the first one, such as in the cases
of the weekdays or the ring network topology. The advantage of the circular linked list is that it can
be traversed starting at any node and is able to reach the node it has started with again in a circular
manner. Figure 6.15 provides an illustration of a simple circular linked list.

261Data Structures and Algorithms

6.6.2 binAry trees

The previous section focused in the singly linked list, in which the pointer of each node points to the
next node. The main problem with this type of linked
list is that it does not offer direct access to the previ-
ous node. This can make the process of deleting nodes
from the list rather complicated. Doubly linked lists can
address this problem. As the name implies, the main dif-
ference between singly and doubly linked lists is that
the latter consist of two pointers instead of one, with the
additional pointer pointing to the previous node. Despite
the obvious functional advantage of this additional pointer, it tends to make operations more com-
plicated and causes additional overhead, as an extra pointer is added to every node. Figure 6.16
provides an illustration of the inner structure of a doubly linked list node and an example of a three-
node doubly linked list connections:

Among the most important types of doubly linked lists is the binary tree (Figure 6.17), a rooted
tree in which every node has at most two children (i.e., degree 2). Its recursive definition declares
that a binary tree is either an external node (leaf) or an internal node (root/parent) and up to two
sub-trees (a left subtree and a right subtree). In simple terms, if a node is a root, it has one or two
children nodes but no parent, if it is a leaf, it has a parent node but no children, and every node is an
element that contains data. The number of levels in the tree is defined as its depth.

Observation 6.20 – Doubly Linked
List: A structure similar to a singly
linked list, but containing two pointers
pointing to both the next and previous
nodes instead of just one (next).

FIGURE 6.15 A circular linked list.

FIGURE 6.16 A NODE of a double linked list.

FIGURE 6.17 Binary trees.

262 Handbook of Computer Programming with Python

Example 1 in Figure 6.17 shows an unfinished binary
tree with degree 2 and a depth of three levels. The tree
has 76 as its root, 26 and 85 as children nodes, and 27,
24, and 18 as leaf nodes. Example 2 shows a completely
unbalanced binary tree and Example 3 a mixed case.

Binary trees are commonly used in decision tree
structures (Figure 6.18), although this may often go
unnoticed.

6.6.3 binAry seArCh tree

A particular type of a binary tree is the binary search
tree. Its definition is the same as that of the regular
binary tree, but with the following additional properties:

• All elements rooted at the right child of a node
have higher values than that of the parent node.

• All elements rooted at the left child of a node have
lower values than that of the parent node.

In the example provided in Figure 6.19 the reader would notice that every node on the left subtree
of the root has a lower value than 43, while every node on the right subtree has a higher value. The
reader should also notice that this is recursively applied to the internal nodes too (e.g., as in the case
of node with value 56). This could be potentially reversed by having the smaller values on the right
and the larger on the left subtrees respectively, but the logic of the binary tree structure remains
the same.

There are three systematic ways to visit all the nodes of a binary search tree: preorder, inorder,
and postorder. If the left subtree contains values that are lower than the root node, all three of these
will traverse the left subtree before the right subtree. Their only difference lies on when the root
node is visited and read (Table 6.12).

The implementation of a linked list requires two classes. The first is the node class, containing
the data and a pointer to the next item. For any new node that is created, next will point to null. The
second is the linked list itself, and contains the head pointer (pointing to the first item in the list)
and the current_node that is used to move through the list. Both the head and the current_node will
initially point to null since there are no items in the list.

Observation 6.22 – Binary Search
Tree: A structure based on a binary
tree with the difference that all ele-
ments rooted at the right child of a
node are greater and those rooted at
its left child lower than the value of
the parent node.

Observation 6.21 – Binary Tree: A
rooted tree in which every node is
either an external node (leaf) or an
internal node (root/parent), with up
to two sub-trees (a left subtree and a
right subtree).

FIGURE 6.18 Decision trees.

263Data Structures and Algorithms

In its most basic form, the binary search tree ADS includes the following operations:

• Instantiating & initializing the Binary Search Tree (BST): This function is used to cre-
ate each new node in the BST, allocating the necessary memory and initializing its point-
ers to both the left and right subtrees to null. Figure 6.20 provides a visual representation
of the new node and the following code excerpt illustrates its implementation:

 def __init__(self, key):
 self.left = None
 self.right = None
 self.data = key

FIGURE 6.19 Binary search tree.

TABLE 6.12
Searching a Node in a Binary Search Tree

Inorder Traversal Preorder Traversal Postorder Traversal

Traverse the left subtree.
Visit/read the root node.
Traverse the right subtree.

Visit/read the root node.
Traverse the left subtree.
Traverse the right subtree.

Traverse the left subtree.
Traverse the right subtree.
Visit/read the root node.

Resulting list: 20, 28, 31, 33,
40, 43, 47, 56, 59, 64, 89

Resulting list: 43, 31, 20, 28,
40, 33, 64, 56, 47, 59, 89

Resulting list: 28, 20, 33, 40,
31, 47, 59, 56, 89, 64, 43

FIGURE 6.20 New node for the BST.

264 Handbook of Computer Programming with Python

• Inorder traversal of the BST: The inorder function, one of the most well-known func-
tions associated with dynamic data structures, happens to be also among the easiest ones.
The following Python code and Figure 6.21 illustrate its operation:

 def traverseInorderBST(root):
 # If the BST current node is not a leaf traverse
 # the left subtree. If it is, print its data and
 # then traverse the right subtree
 if (root):
 traverseInorderBST(root.left)
 print(root, root.data)
 traverseInorderBST(root.right)

• Inserting a new node to the list: The goal of this function is to place the newly imported
data to the desired place in the BST. When the BST is empty, the new node simply initial-
izes it. In all other cases, the function recursively checks whether the data value in the new
node is lower, equal to, or higher than the data in the current node, and keeps on moving to
the respective subtree accordingly until the current node is empty. At that point, it finally
assigns the new node. Figure 6.22 illustrates this process by inserting nodes from the fol-
lowing list to a BST: 43, 31, 64, 56, 20, 40, 59, 28, 33, 47, 89. The Python code for this
function is the following:

 def insert(root, key):
 # If there is no BST create its first node
 if (root is None):
 return BinarySearchTree(key)
 else:

FIGURE 6.21 Traversing the BST inorder.

265Data Structures and Algorithms

 # If the current node's data is less than or equal
 # to the new key, move into the right subtree;
 # otherwise, move to the right subtree recursively
 if (root.data <= key):
 root.right = insert(root.right, key)
 else:
 root.left = insert(root.left, key)
 return root

• Searching for a key value in the BST: This function searches the BST for a key value
provided by the user. As with the previous functions, it recursively calls itself on either
the left or right subtree in an effort to find a match for the key value. If the key value is
not found after all the BST has been searched, an empty BST is returned. This raises an
error and crashes the application unless it is handled by the calling function. Figure 6.23
illustrates both a case where the key is being found and one where it is not. The following
Python code provides an implementation of this function:

 def search(root, key):
 # Recursively visit the left and right subtrees to find
 # the node that matches the key searched for
 if (root.data == key):
 return root
 if (root.data < key):
 return search(root.right,key)
 else:
 return search(root.left,key)

FIGURE 6.22 Inserting nodes to the BST.

FIGURE 6.23 Data search in a BST.

266 Handbook of Computer Programming with Python

 # If the key is not found, return the empty BST
 if (root is None):
 return None

• Deleting a node from the BST: Arguably, this is the most complex function in the BST
ADS. If the current root is empty, which may be because the key was not found, there
is nothing to be done and the current BST is returned as is. In any other case, the key is
found in the current node, or its left or right subtree. If the key is found in the current node
and the right subtree is empty, the function replaces the current node with its left subtree.
Accordingly, if the left subtree is empty it is replaced with the right subtree. If none of
these are empty, the function finds the minimum data in the right subtree, replaces the data
in the current node, and the current node with the right subtree, while also deleting the
node of the subtree with the lowest value data. If the key is not found in the current node,
the function is called recursively on the left and the right subtrees, depending on whether
the key value is lower or higher than the current node data. Figure 6.24 illustrates this
process and the related Python script is provided below:

 def delete_Node(root, key):
 """ If the root is empty, return it; if not, if the key is
 larger than the current root, find it in the right subtree;
 Otherwise, if it is smaller, find it in the left subtree
 If the key is matched, delete the current root """
 if (root == None):
 return root
 elif (root.data > key):
 root.left = delete_Node(root.left, key)
 elif (root.data < key):
 root.right= delete_Node(root.right, key)
 """ If the key is matched, then, if there is no right
 subtree just replace the current node with the left
 subtree; similarly in this case, if there is no left
 subtree just replace the current node with the right
 subtree."""
 elif (root.data == key):
 if (root.right == None):
 return root.left
 if (root.left == None):
 return root.right
 """ If none of the left or right subtrees is empty
 replace the data in the current node with the minimum
 data in the right subtree and delete the node with
 that minimum data from the right subtree"""
 temp = root.right

FIGURE 6.24 Deleting a node from a BST.

267Data Structures and Algorithms

 mini_data = temp.data
 while (temp.left):
 temp = temp.left
 mini_data = temp.data
 root.data = mini_data
 root.right = delete_Node(root.right,root.data)
 return root

• Destroying the BST: As with most structures occupying computer memory space, it is
advisable that the BST is deleted (i.e., destroyed) when exiting the application. The follow-
ing Python code excerpt provides a possible implementation of this task:

 def destroyBST(root):
 if (root):
 destroyBST(root.left)
 destroyBST(root.right)
 print("Node destroyed before exiting: ", root, root.data)
 root = None

Finally, it must be noted that the performance of the BST in terms of searching, inserting, or delet-
ing depends on how balanced it is. In the case of well-balanced BSTs, the performance is always
O(logn), while in extremely unbalanced cases the performance can be improved to O(n).

6.6.4 grAPhs

A graph is a non-linear data structure consisting of
nodes, also called vertices, which may or may not be
connected to other nodes. The line or path connecting
two nodes is called an edge. If edges have particular flow
directions, the graph is said to be directed. Graphs with
no directional edges are referred to as undirected graphs
(Figure 6.25).

A directed graph consists of a set of vertices and a
set of arcs. The vertices are also called nodes or points.

Observation 6.23 – Graph: A non-lin-
ear structure of nodes/vertices inter-
connected through edges. Edges may
have a particular direction (directed
graphs) or not (undirected graphs).
Graphs can be presented as static
adjacency matrices or as dynamic
adjacency lists.

FIGURE 6.25 An undirected graph.

268 Handbook of Computer Programming with Python

An arc is an ordered pair of vertices (V, W); V is called the tail and W is called the head of the arc.
Function arc (V, W) is often expressed as V → W (Figure 6.26).

A path in a directed graph can be described as a sequence of vertices V1, V2, …Vn, thus V1 → V2,
V2 → V3, …, Vn−1 → Vn can be viewed as arcs. In this occasion, the path from vertex V1 to vertex Vn,
passes through vertices V2, V3, …, Vn−1, and ends at vertex Vn. The length of the path is the number
of arcs on the path, in this particular case n−1. A path is simple if all vertices, except possibly the
first and last, are distinct. A simple cycle is a simple path of a length of at least one that begins and
ends at the same vertex. A labeled graph is one in which each arc and/or vertex can have an associ-
ated label that carries some kind of information (e.g., a name, cost, or other values associated with
the arc/vertex).

There are two ways to represent a directed graph: as a static adjacency matrix or as a dynamic
adjacency list. The prefix static refers to the use of a static structure (i.e., a list), whereas the pre-
fix dynamic refers to the use of a dynamic structure in the form of a linked list. In the case of the
former, assuming that V = {1, 2, …, N}, the adjacency matrix of G is an NxN matrix A of booleans,
where A[i, j] is true if and only if there is an arc from vertex i to j. An extension of this scheme is
what is called a labelled adjacency matrix, where A[i, j] is the label of the arc going from vertex i
to vertex j; if there is no arc from i to j, it is not possible to have an associated value referring to it.
The main disadvantage of the adjacency matrix is that it requires storage in the region of O(n2). In
contrast, in the case of the adjacency list, which is essentially a list of pointers representing every
vertex of the graph that is adjacent to vertex i, the whole structure is dynamic and, therefore, can
have its memory size increased or decreased on demand.

Figure 6.27 presents examples of an adjacency matrix and an adjacency list.
An undirected graph consists of a set of vertices and a set of arcs. As in the case of the directed

graph, the vertices are also called nodes or points. Its main difference from a directed graph is that
edges are unordered, implying that (V, W) = (W, V).

The applications of graphs, both directed and undirected, are numerous. Examples include, but
are not limited to, the airlines industry, the logistics and freight industries, or the various GPS and
navigation systems. In all these cases, the solution to most of their operational problems is a form of
the famous shortest path algorithm. The idea behind this algorithm is pretty simple.

FIGURE 6.26 Arc (V, W).

FIGURE 6.27 Adjacency matrix vs. adjacency list.

269Data Structures and Algorithms

• A directed graph G = (V, E) is drawn, in which each arc has a non-negative label and a
vertex is specified as the source.

• The cost of the shortest path from the source back to itself is calculated through every
other vertex in V (i.e., the length of the path).

Dijkstra’s famous greedy algorithm, also called the Eulerian path, provides the solution to this prob-
lem. The algorithm can be summarized in the following steps:

• Step 1: Determine if the solution is feasible, which is true only if every vertex is connected
to an even number of other vertices.

• Step 2: Start with the source vertex and move to the first next available vertex in the adja-
cency matrix (or adjacency list).

• Step 3: Print/store the identified vertex and delete it from the adjacency matrix (or adja-
cency list).

• Step 4: Repeat Steps 2 and 3 until there are no more connections to use.

6.6.5 imPlementing grAPhs And the euleriAn PAth in Python

Implementing an undirected graph implies the implementation of either an adjacency matrix or an
adjacency list. Although the implementations may differ, the algorithm is basically the same in both
cases: the Eulerian path (Dijkstra’s algorithm) is used to find and display the shortest path between
the vertices.

Based on the undirected graph provided in Figure 6.28, the following script offers three dif-
ferent scenarios (i.e., scenarios can be selected by enabling/disabling the associated commented
statements). The scenario firstly prompts the user to enter the number of vertices in the graph. Next,
it accepts the connections in the form of an adjacency matrix as 0s or 1s (fillAdjacencyMa-
trix()), checks whether the Eulerian path algorithm can be applied to this particular matrix, and
traverses the graph and displays the shortest path. Note that this process may result in one path
being inside another. In this case, in the second round, the vertex that opens the path must also close
it. The reader should also notice that, in order to merge two paths, the vertex that opens and closes

FIGURE 6.28 An undirected graph.

270 Handbook of Computer Programming with Python

the second path is the one that associates the two separate cases, in the form of a zoom-in path resid-
ing inside another. The second and third scenarios involve two different, pre-defined matrices that
represent graphs and are addressed accordingly:

1 def fillAdjacencyMatrix(matrix, vertices):
2 for i in range(vertices):
3 col = []
4 for j in range (vertices):
5 print("Enter 1 if there is a connection between ", i, \
6 " and ", j, " or 0 if not: ", end = " ")
7 connectionExists = int(input())
8 col.append(connectionExists)
9 matrix.append(col)
10 return matrix
11
12 def displayAdjacencyMatrix(matrix, vertices):
13 for i in range(vertices):
14 print(matrix[i])
15
16 def checkEulerian(matrix, vertices):
17 newStartVertex = -1
18 for i in range(vertices-1, -1, -1):
19 sumPerCol = 0
20 for j in range (vertices):
21 sumPerCol = sumPerCol + matrix[i][j]
22 if (sumPerCol != 0):
23 newStartVertex = i
24 return newStartVertex
25
26 # Ask the user for the number of graph vertices
27 numVertices = int(input("Number of graph vertices: "))
28 #graph = []
29 graph =[[0,1,1,1,1], [1,0,1,1,1], [1,1,0,1,1], [1,1,1,0,1], [1,1,1,1,0]]
30 #graph = [[0,1,0,0,0,1], [1,0,1,0,1,1], [0,1,0,1,1,1], [0,0,1,0,1,0],
31 [0,1,1,1,0,1], [1,1,1,0,1,0]
32
33 # Fill the adjacency matrix
34 # graph = fillAdjacencyMatrix(graph, numVertices)
35 # Display the adjacency matrix before running the Eulerian Path
36 displayAdjacencyMatrix(graph, numVertices)
37 # Check if the Eulerian Path algorithm can be applied in this case
38 startVertex = checkEulerian(graph, numVertices)
39 endVertex = vertex = startVertex
40 col = 0
41
42 if (startVertex == -1):
43 print("Eulerian Path cannot be applied in this case")
44 else:
45 print("The first round: ", graph[vertex][0], end = "")
46 while (vertex < numVertices and col < numVertices):

271Data Structures and Algorithms

Output 6.6.5:

How many vertices in the graph? 5
[0, 1, 1, 1, 1]
[1, 0, 1, 1, 1]
[1, 1, 0, 1, 1]
[1, 1, 1, 0, 1]
[1, 1, 1, 1, 0]
The first round: 0-> 1-> 2-> 0-> 3-> 1-> 4-> 0
Zoom into 2 for the round: 2 -> 3-> 4-> 2
Path closed

6.7 WRAP UP

In this chapter an effort was made to briefly explain some of the most important data structures
in programming and the algorithms to support those. The various scripts were showcasing how
Python can be utilized to implement those." Apparently, there are several other data structures
available and, perhaps, more efficient algorithms to implement those which was beyond the scope
of this chapter.

6.8 CASE STUDIES

 1. Create an application that implements the algorithms and tasks specified below. The appli-
cation should use a GUI interface in the form of a tabbed notebook, using one tab for each
 algorithm. The application requirements are the following:

 a. Implement the following static sorting algorithms: bubble sort, insertion sort, shaker
sort, merge sort.

 b. Ask the user to enter a regular arithmetic expression in a form of a phrase, with each
of the operators limited to single-digit integer numbers. Convert the infix expression
to postfix.

 c. Ask the user to enter a sequence of integers, insert them into a binary search tree and
implement the BST ADS algorithm with both inorder and postorder traversals.

47 if (graph[vertex][col] == 0):
48 col += 1
49 if (col == numVertices or vertex == numVertices):
50 startVertex = checkEulerian(graph, numVertices)
51 if (startVertex == -1):
52 print("\nPath closed")
53 else:
54 endVertex = startVertex
55 vertex = startVertex; col = 0
56 print("\nZoom into", startVertex,
57 "for the round: ", startVertex, end = " ")
58 elif (graph[vertex][col] == 1):
59 print("->", col, end = "")
60 graph[vertex][col] = graph[col][vertex] = 0
61 vertex = col; col = 0

272 Handbook of Computer Programming with Python

6.9 EXERCISES

 1. Use a notebook GUI to implement the selection sort, the shell sort and the quicksort (one
on each tab).

 2. Use a stack to implement the following tasks:
 a. Reversing a string.
 b. Calculating the sum of integers 1…N.
 c. Calculating the sum of squares 1 ^ 2 +…+ N ^ 2.
 d. Checking if a number or word is a palindrome.
 e. Evaluating a postfix expression by using a stack.
 3. Implement a deque structure with an example to test it. A deque is a linear structure of

items similar to a queue in the sense that it has two ends (i.e., front and rear). However, it
can enqueue and dequeue from both ends of the structure. Deque supports the following
operations:

 a. add _ front(item): Adds an item to the front of the deque.
 b. add _ rear(item): Adds an item to the rear of the deque.
 c. remove _ front(item): Removes an item from the front of the deque.
 d. remove _ rear(item): Removes an item from the rear of the deque.
 e. isEmpty(): Returns a Boolean value indicating whether the deque is empty or not.
 f. peek _ front(): Returns the item at the front of the deque without removing it.
 g. peek _ rear(): Returns the item at the rear of the deque without removing it.
 h. size(): Returns the number of items in the deque.
 4. Using a graph do the following:
 a. Ask the user to enter the number of vertices in the undirected graph.
 b. Ask the user to enter the name of each of the vertices in the undirected graph.
 c. Ask the user to enter the connected vertices to each of the edges in the undirected

graph.
 d. Determine whether the Eulerian Path solution (Dijkstra’s algorithm) is feasible.
 e. In case it is not, ask the user to add new connections to the missing ones.
 f. Create the adjacency matrix for the graph and display it.
 g. Create the adjacency list for the graph and display it.
 h. Run the Dijkstra’s algorithm to find the shortest path, starting from a source entered by

the user.
 i. Display the solution of the shortest path.

REFERENCES

Dijkstra, E. W., Dijkstra, E. W., Dijkstra, E. W., & Dijkstra, E. W. (1976). A Discipline of Programming (Vol.
613924118). Prentice-Hall: Englewood Cliffs.

Hoare, C. A. R. (1961). Algorithm 64: Quicksort. Communications of the ACM, 4(7), 321.
Knuth, D. E. (1997). The Art of Computer Programming (Vol. 3). Pearson Education.
Stroustrup, B. (2013). The C++ Programming Language. India: Pearson Education.

273

7 Database Programming
with Python

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

Christos Manolas
The University of York
Ravensbourne University London

Tareq Alhousary
University of Salford
Dhofar University

7.1 INTRODUCTION

Most IT professionals and scholars may agree on what makes computers special and useful: they
can perform operations at lightning speed and on large volumes of data. Stemming from these two
fundamental computational thinking elements are the notions of algorithms and programs as a
means to process and manipulate data. In the scope of computer science, information systems, and
information technology, the logical and physical organization of data falls under the broader context
of databases. A thorough analysis of the various concepts related to databases and their structural

CONTENTS

7.1 Introduction .. 273
7.2 Scripting for Data Definition Language ... 274

7.2.1 Creating a New Database in MySQL ... 276
7.2.2 Connecting to a Database ... 279
7.2.3 Creating Tables ...280
7.2.4 Altering Tables.. 289
7.2.5 Dropping Tables ..294
7.2.6 The DESC Statement ...296

7.3 Scripting for Data Manipulation Language ..296
7.3.1 Inserting Records ..296
7.3.2 Updating Records ... 301
7.3.3 Deleting Records ..303

7.4 Querying a Database and Using a GUI ..305
7.4.1 The SELECT Statement ..306
7.4.2 The SELECT Statement with a Simple Condition ..307
7.4.3 The SELECT Statement Using GUI ... 310

7.5 Case Study .. 316
7.6 Exercises ... 316
References .. 317

DOI: 10.1201/9781003139010-7

https://doi.org/10.1201/9781003139010-7

274 Handbook of Computer Programming with Python

design is outside the scope of this book. The reader can
find relevant information on Elmasri & Navathe (2017).
The focus of this chapter is on the crossroads between
computer programming with Python and a common
type of database structure: the relational database.

In relational databases, there are three main types of
scripting techniques and/or languages that are used to
perform the various associated tasks, namely Data
Definition Language (DDL), Data Manipulation
Language (DML), and Queries. DDL is used to create,
display, modify, or delete the database and its structures
and tables, and it is associated with the database schema
or metadata. DML is used to insert data into the various
tables, and modify or delete this data as required. It
relates to the database instance or state. Queries are
used to display the data in various different ways. Most
commercially available Database Management Systems
(DBMS) incorporate facilities and tools that utilize these three mechanisms.

The DBMS of choice for this chapter is MySQL (2021). This is part of a package that includes
both the DBMS and a local server solution called Apache (2021). The package supports both
Windows and Mac OS systems, and the two associated versions come under the name MAMP. The
packages are free for download from MAMP (2021) and Oracle (2021b) and the installation is pretty
intuitive and straightforward. While it is always beneficial for one to study and understand the tools
and technologies of any given system to a good extent, it must be noted that no prior knowledge or
practical experience with MAMP is needed in order to practice and execute the examples presented
in this chapter. While the examples make use of the MySQL DBMS and the Apache Server, this
is just a matter of simply logging in and activating them, and accessing the created databases. The
scripts provided in this chapter will do all the necessary work, while the results will appear in the
relevant MySQL database.

This chapter will cover the following topics:

• DDL (Data Definition Language): Creating a database and connecting to it. Modifying,
deleting, or displaying DB tables, structures, and attributes.

• DML (Data Manipulation Language): Inserting, modifying, and deleting records in a table.
• Queries: Displaying the records of one or more tables in various different ways.
• Using GUI programming, and in particular the Grid widget, to create presentable data-

base applications with Python.

It should be noted that while expertise in databases is not essential, a good understanding of the
concepts and techniques introduced in Chapter 4: Graphical User Interface Programming with
Python and Chapter 5: Application Development with Python may be required. Ideally, the reader
should be comfortable with the major concepts introduced in all the previous introductory chapters,
as many of these concepts will be utilized or integrated in the examples presented here.

7.2 SCRIPTING FOR DATA DEFINITION LANGUAGE

As mentioned, MAMP will provide some of the tools that are necessary for the examples presented
in this chapter. The MAMP packages must be downloaded and installed, as required. Once instal-
lation is complete, the MAMP application must be launched. This will start the Apache local server
and the MySQL DBMS, both of which are required in order to run a client-server application.
Figures 7.1 and 7.2 illustrate the MAMP server and the MySQL DBMS interfaces, respectively:

Observation 7.2 – Database Schema,
Database Instance: The structure of
a database, including table metadata,
is also referred to as the database
schema. The data stored on the tables
at any given time are called the data-
base instance or state.

Observation 7.1 – Types of Scripting
in Relational Databases: There are
three types of scripts addressing rela-
tional databases: Data Definition
Language (DDL), Data Manipulation
Language (DML), and Queries.

275Database Programming with Python

FIGURE 7.2 MySQL phpMyAdmin.

FIGURE 7.1 MAMP server.

276 Handbook of Computer Programming with Python

Once these services are launched, the libraries related to MySQL connectivity and script-
ing must be also installed in the Anaconda environment. The libraries can be found under the
Environments tab in Anaconda Navigator. If the reader has already installed the necessary librar-
ies in previous chapters of this book, installing the new libraries ensures that the import state-
ments related to MySQL will not raise errors. If some of the libraries used here have not been
previously installed, the reader should refer to the scripts of the previous chapters and amend the
installation and scripts presented here accordingly. Figures 7.3 and 7.4 illustrate the Environments
tab with lists of the installed libraries, as well as those that are not installed but needed for run-
ning the examples.

7.2.1 CreAting A neW dAtAbAse in mysql

A database can be formally defined as an organized col-
lection of related data the processing of which can pro-
vide a particular, explicit meaning. A database includes
a number of tables, also called relations, hence the rela-
tional prefix. Each table/relation consists of attributes,
also referred to as fields or columns. Typically, one or
more of these attributes serve as unique record identi-
fiers called primary keys and are often organized using
indices. These structural elements of the database are
collectively referred to as the database metadata. As
mentioned, the creation and control of metadata can be handled using the DDL.

Observation 7.3 – Database: An
organized collection of related data
which are processed to provide
explicit meaning. A database includes
a number of tables, each with its own
attributes. Tables may be organized
using a unique primary key and make
use of indices.

FIGURE 7.3 Installed libraries in environments tab.

277Database Programming with Python

It goes without saying that the database itself needs to be created prior to the creation of the
metadata. In MySQL, the creation of a new database is as simple as clicking on the New option on
the left panel of phpMyAdmin (Figure 7.2). When creating a new database, the user must specify a
name, the database format (usually GuiDB) and the default character set (usually utf8). In Python,
the creation process involves a number of steps:

• Obtaining the log-in credentials for the MySQL environment. These can be found in the
Welcome page in the Example area in MySQL.

• Using the config object (list) to set the credentials in the dictionary form:
 config = {‘user’: ‘root’, ‘password’: ‘root’, ‘host’: ‘localhost’}.

• Writing the statements to connect to the database, setting the SQL statement, and execut-
ing the commands.

Writing a Python script to create a database may be as simple as writing the basic statements in
a command-prompt mode or as sophisticated as offering a full GUI environment. The following
Python script is an example of the latter. Notice that, upon execution, the application should not
produce an output, which simply means that no problems were encountered while connecting to
MySQL. Instead of an output, the program should display the newly created database as an avail-
able database. It must be also stressed that SQL statements are simply treated as strings that are not
case sensitive. As such, they can be written with capital or lower-case letters, or a combination of
both. In this chapter, it was decided to use capital letters for the keywords of the statements, in line
with the style adopted in the official MySQL documentation (Oracle, 2021a). This decision had to
do mainly with distinguishing the SQL keywords from the SQL database table and attribute names
and from the Python code, thus improving clarity and readability:

FIGURE 7.4 Not installed but necessary libraries.

278 Handbook of Computer Programming with Python

Output 7.2.1:

1 import tkinter as tk
2 from tkinter import ttk
3 import mysql.connector
4
5 config = {'user': 'root', 'password': 'root', 'host': 'localhost'}
6
7 def createDB(dbName):
8 GUIDB = 'GuiDB'
9
10 connect = mysql.connector.connect(**config)
11 cursor = connect.cursor()
12 sqlString = "CREATE DATABASE " + dbName.get() + \
13 "DEFAULT CHARACTER SET utf8"
14 cursor.execute(sqlString.format(GUIDB))
15
16 # Create the basic window frame and give it a title
17 winFrame = tk.Tk()
18 winFrame.title("Create a new database")
19 # Create the interface
20 winLabel = tk.Label(winFrame,
21 text = "Enter the name of the new database", bg = "grey")
22 winLabel.grid(column = 0, row = 0)
23 # Create the StringVar object that will accept user input from the
24 # keyboard,and initialize it
25 textVar = tk.StringVar()
26 textVar.set("Enter the name here")
27 winText = ttk.Entry(winFrame, textvariable = textVar, width = 30)
28 winText.grid(column = 0, row = 1)
29 winButton = tk.Button(winFrame, font = "Arial 16",
30 text = "Click to create the new DB\nin the localhost")
31 winButton.bind("<Button-1>", lambda event, a = textVar: createDB(a))
32 winButton.grid(column = 0, row = 2)
33
34 winFrame.mainloop()

279Database Programming with Python

The part of the script specifically relating to the database is in lines 3–13. In line 3, the mysql.
connector function that handles the connection with MySQL is imported. A standard connection
configuration is implemented in line 5. Once the GUI is built, a click button event calls the creat-
eDB() function that assigns the most frequently used database format (GuiDB) to the relevant vari-
able (line 8). Next, it connects to MySQL using the mysql.connector.connect(**config)
adaptor (line 10), prepares the pending execution statement in the form of a sqlString (line 12),
and executes the statement (line 13).

7.2.2 ConneCting to A dAtAbAse

As in the previous example, once the database is cre-
ated a connection must be established. Connecting to a
database involves the creation of a link to it inside the
relevant DMS (e.g., MySQL) through a server, such as
Internet Information Server (ISS) or Apache. Once the
connection is established, the database must be opened
and a link must be created and attached to it. This usually
requires some credentials, including login username,
password, the host address (i.e., the network address of
the server that hosts the database), and the name of the
database itself. In the case of databases stored and used
from within a local computer system and a local server
(e.g., MySQL through Apache), the host address is usu-
ally “localhost”.

The following Python script connects to the newly
created database. It sets the configuration string
(config) that holds the credentials for the connection
to the database (lines 2–3). Next, it links the execution
statement with the MySQL database through mysql.
connector (line 5). Once the connection is success-
fully established, the results are loaded to the cursor
object, which always receives the results of all executed
SQL statements (line 6). Lastly, the database tables are
displayed by executing the cursor.execute("SHOW
TABLES") (line 7) and cursor.fetchall() (line 8)
commands.

In this example the reader should note the use of the
try…except statement (lines 4 and 10) to display the
appropriate messages in the cases of both successes
and failures. This ensures that statements execution
that may return incorrect or unexpected values will
not cause the application to crash. As an example, run-
ning this script with newDB as the database name will
display the tables as expected. However, if the data-
base name were to be changed to a non-existing one (e.g., newDB1), the exception handling code
in lines 9 and 10 would be executed, launching an error message. It is worth mentioning that the
execution of the except segment of the script will be triggered for any reason that might cause
a failure in connecting to the database. Nevertheless, if the database is empty, an empty set of
tables will be displayed:

Observation 7.4 – Connecting to a
Database:

1. Import the mysql.connector
library.

2. Use the cursor object
and the mysql.connector.
connect(**config) function to
connect to the database.

3. Prepare the SQL statement.
4. Execute the SQL statement using

the cursor.execute() function.

Observation 7.5 – The SHOW TABLES
Statement: Use the SHOW TABLES
statement to locate tables in the data-
base. If successful, use the cursor.
fetchall() function to load the
results to the cursor object for later
use.

Observation 7.6 – Exception
Handling: It is highly advisable that
the try…except exception handling
structure is used for each statement
related to SQL scripts, as it is likely
that the execution of such statements
will frequently cause errors that can
lead to the abnormal termination
(crash) of the application.

280 Handbook of Computer Programming with Python

Output 7.2.2.a:

[('STUDENT',), ('Table1',)]

Output 7.2.2.a shows the results for a database including tables Student and Table 1.

Output 7.2.2.b:

There is an error with the connection

Output 7.2.2.b shows the results for an empty database. In this case, the exception handling mecha-
nism is activated and the corresponding error message is displayed. Returning an empty cursor
after the execution of the SHOW TABLES statement is considered an internal error, and it is thus
raising an exception.

7.2.3 CreAting tAbles

The first action needed once a new database is created is
the creation of its table(s). This is accomplished by the
execution of the CREATE TABLE statement in SQL. The
CREATE TABLE statement is very similar or identical
across different DBMS. A detail description of the small
syntax variations between different DBMS systems is
beyond the scope of this chapter, but the basic structure
remains the same.

Assuming the commonly used relational model,
seven particular elements need to be specified when cre-
ating a table:

 1. The table name (i.e., the name of each structure
that will store data in its columns or fields, also
called attributes).

 2. The number of attributes of the table.
 3. The name of each attribute, preferably as a single, descriptive word.
 4. The data type for each of the attributes (e.g., CHAR, INT, or DATE).
 5. The length/size of the data for each attribute in bytes.
 6. Whether any of the attributes is the primary key, or part of a combined primary key of the table.
 7. Whether any of the attributes is a foreign key, referencing a corresponding attribute in

another table.

Observation 7.7 – The CREATE
TABLE Statement: Use the CREATE
TABLE statement to create a table,
define its attributes, data types, and
sizes, and set possible primary and
foreign keys.

Observation 7.8 – Create Tables with
No Primary or Foreign Key: Use the
following statement to create a table
with no primary or foreign keys:

CREATE TABLE (<attribute1>
<DATA TYPE>(<size>),...,
<attributeN> <DATA
TYPE>(<size>))

1 import mysql.connector
2 config = {'user': 'root', 'password': 'root',
3 'host': 'localhost', 'database': 'newDB'}
4 try:
5 link = mysql.connector.connect(**config)
6 cursor = link.cursor()
7 cursor.execute("SHOW TABLES")
8 print(cursor.fetchall())
9 except:
10 print("There is an error with the connection")

281Database Programming with Python

Provided that these seven elements are specified, there are three possible cases when creating a
table:

 1. The table does not have a primary key and does not have any of its attributes referencing
the attributes of another table. In this case, the table is part of a single-table database or it
is a parent table for other tables to refer to.

 2. The table has one or more of its attributes designated as a primary key, ensuring that each
of its records is unique.

 3. There are more than one tables in the database and they are somehow related to each
other. This occurs when one or more of the attributes reference an identical column in
another table within the same database.

Python provides support for all three cases. Starting with the first case, one could create a table
with a number of attributes, but no primary or foreign keys. This can be done either statically
or dynamically. A static approach entails pre-defined statements and pre-determined results. A
dynamic approach allows the programmer to determine the table structure at run-time. The follow-
ing script and output is an example of the latter:

1 import mysql.connector
2
3 # The database config details
4 config = {'user': 'root', 'password': 'root',
5 'host': 'localhost', 'database': 'newDB'}
6
7 # The name of the table and its attributes
8 tableName = input("Enter the name of the table to create: ")
9 sqlString = "CREATE TABLE " + tableName + "("
10 numOfAt = int(input("Enter the number of attributes in the table"))
11 atName = [""]*numOfAt
12 atType = [""]*numOfAt
13 atSize = [0]*numOfAt
14
15
16 # Define the table structure (i.e., attribute details)
17 for i in range(numOfAt):
18 atName[i] = input("Enter the attribute " + str(i) + ": ")
19 atType[i]=str(input("Enter 'char' for char, 'int' for int type: "))
20 atSize[i] = int(input("Enter the size of the attribute: "))
21 sqlString += atName[i]+ " " + atType[i]+"("+str(atSize[i])+")"
22
23 if (i < numOfAt-1):
24 sqlString += ","
25 else:
26 sqlString += ")"
27
28 # The SQL statement and exception handling mechanism
29 print("The SQL statement to run is: ", sqlString)

282 Handbook of Computer Programming with Python

Output 7.2.3.a:

Enter the name of the table to create: Student
Enter the number of attributes in the table: 3
Enter the attribute 0: Name
Enter 'char' for char type, 'int' for int type: char
Enter the size of the attribute: 10
Enter the attribute 1: Address
Enter 'char' for char type, 'int' for int type: char
Enter the size of the attribute: 15
Enter the attribute 2: Year
Enter 'char' for char type, 'int' for int type: int
Enter the size of the attribute: 4
The SQL statement to run is: Create Table Student(Name char(10),
Address char(15),Year int(4))
The metadata for the new table Student are:
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')

The script consists of three distinct parts. In the first part (lines 7–13), the user is prompted to enter a
name for the new table and the number of its attributes. The SQL string that is subsequently used for
the creation of the table is also constructed. In the second part (lines 15–25), the user is prompted
to enter the required details for each attribute (e.g., name, data type, size), and the SQL string is
updated accordingly. The third part involves code that connects to the database and executes the
SQL string. As mentioned, this is wrapped in an exception handling block in order to prevent a
possible uncontrolled termination of the program due to failures of database-related activities (lines
30–42). This is one the most straightforward cases of creating tables using Python scripts. Indeed,
this implementation simply involves the incorporation and execution of SQL statements through the
Python script wrapper, similarly to what one would do
with any other modern programming language.

In the output of this particular example, the user
enters the rather trivial and common example of a
Student table with three basic attributes: Name,
Address, and Year (of birth). After execution, the

Observation 7.9 – Primary Key: An
attribute or a combination of attri-
butes with values that uniquely iden-
tify each particular record in the table.

30
31 try:
32 link = mysql.connector.connect(**config)
33 cursor = link.cursor()
34 cursor.execute(sqlString)
35 sqlString = "DESC " + tableName
36 cursor.execute(sqlString)
37 attributes = cursor.fetchall()
38 # Desc/show the metadata of the new table
39 print("The metadata for the new table "+str(tableName)+" are: ")
40 for row in attributes:
41 print(row)
42 except:
43 print("There is an error with the connection")

283Database Programming with Python

reader should be able to verify that the table has been
created with the desired structure (e.g., with no pri-
mary or foreign keys) by checking database newDB in
MySQL.

The second case involves the addition of primary
keys to the table. As a reminder, a formal definition
of the primary key is that of an attribute of a table
the value of which identifies records uniquely. Simply
put, the primary key designation ensures that there
are no duplicate values for the related attribute(s). It
must be stressed again that two distinct possibilities
exist in relation to primary keys. The first is that it
consists of a single attribute. In this case the syntax is
the following:

CREATE TABLE <table name> (<attribute1>
<DATA TYPE>(<size>) PRIMARY KEY,...,
<attributeN> <DATA TYPE>(<size>))

The second is that the primary key consists of a combi-
nation of two or more attributes. In this case the syntax
is slightly different:

CREATE TABLE <table name> (<attribute1>
<DATA TYPE>(<size>),..., <attributeN>
<DATA TYPE>(<size>), PRIMARY KEY
(<attributeX>,... <attributeY>))

The following script is another version of the one
presented previously, modified in order to addresses
the creation of a table with a single primary key
(lines 15–31):

Observation 7.11 – Create a Table
with a Single Primary Key but No
Foreign Key:

CREATE TABLE <table name>
(<attribute1> <DATA
TYPE>(<size>) PRIMARY KEY,
..., <attributeN> <DATA
TYPE>(<size>))

Observation 7.12 – Create a Table
with Combined Primary Key but No
Foreign Key:

CREATE TABLE <table name>
(<attribute1> <DATA
TYPE>(<size>),...,
<attributeN> <DATA
TYPE>(<size>), PRIMARY KEY
(<attributeX>,...
<attributeY>))

Observation 7.10 – Foreign Key: An
attribute that references the values of
a corresponding attribute on another
table of the same database that is also
the primary key for the referenced table.

1 import mysql.connector
2
3 # The database config details
4 config = {'user': 'root', 'password': 'root',
5 'host': 'localhost', 'database': 'newDB'}
6
7 # The name of the table and its attributes
8 tableName = input("Enter the name of the table to create: ")
9 sqlString = "CREATE TABLE " + tableName + "("
10 numOfAt = int(input("Enter the number of attributes in the table: "))
11 atName = [""]*numOfAt
12 atType = [""]*numOfAt
13 atSize = [0]*numOfAt
14
15 key = 0
16 # Define the structure of the table (i.e., attribute details)
17 for i in range(numOfAt):

284 Handbook of Computer Programming with Python

Output 7.2.3.b:

Enter the name of the table to create: Customers
Enter the number of attributes in the table: 3
Enter the attribute 0: CustomerID
Enter 'char' for char, 'int' for int type: int
Enter the size of the attribute: 3
Is this a primary key (Y/N)? Y
Enter the attribute 1: CustLastName
Enter 'char' for char, 'int' for int type: char
Enter the size of the attribute: 15
Enter the attribute 2: CustFirstName
Enter 'char' for char, 'int' for int type: char
Enter the size of the attribute: 10
The SQL statement to run is:
Create Table Customers(CustomerID int(3) Primary key, CustLastName
char(15), CustFirstName char(10))
There is an error with the connection

18 atName[i] = input("Enter the attribute " + str(i) + ": ")
19 atType[i]=str(input("Enter 'CHAR' for char, 'INT' for int type: "))
20 atSize[i] = int(input("Enter the size of the attribute: "))
21 sqlString += atName[i] + " " + atType[i] + \
22 "(" + str(atSize[i]) + ")"
23 if (key == 0):
24 primaryKey = str(input("Is this a primary key (Y/N)? "))
25 if (primaryKey == "Y"):
26 sqlString += " PRIMARY KEY"
27 key = 1
28 if (i < numOfAt-1):
29 sqlString += ", "
30 else:
31 sqlString += ")"
32
33 # The SQL statement to run using exception handling
34 print("The SQL statement to run is: \n", sqlString)
35 try:
36 link = mysql.connector.connect(**config)
37 cursor = link.cursor()
38 cursor.execute(sqlString)
39 sqlString = "DESC " + tableName
40 cursor.execute(sqlString)
41 columns = cursor.fetchall()
42 print("The structure/metadata of the table ",str(tableName),"is:")
43 for row in columns:
44 print(row)
45 except:
46 print("There is an error with the connection")

285Database Programming with Python

Output 7.2.3.c:

Enter the name of the table to create: Items
Enter the number of attributes in the table: 3
Enter the attribute 0: ItemID
Enter 'char' for char, 'int' for int type: char
Enter the size of the attribute: 6
Is this a primary key (Y/N)? Y
Enter the attribute 1: ItemDesc
Enter 'char' for char, 'int' for int type: char
Enter the size of the attribute: 25
Enter the attribute 2: ItemPrice
Enter 'char' for char, 'int' for int type: int
Enter the size of the attribute: 5
The SQL statement to run is:
Create Table Items(ItemID char(6) Primary key, ItemDesc char(25),
ItemPrice int(5))
The structure/metadata of the table Items is:
('ItemID', 'char(6)', 'NO', 'PRI', None, '')
('ItemDesc', 'char(25)', 'YES', '', None, '')
('ItemPrice', 'int(5)', 'YES', '', None, '')

The output demonstrates the creation of two of the three
tables (i.e., Customers and Items) from Table 7.1.

The third case involves the connection of more than
one tables connecting to each other through a common
attribute. In this case, this common attribute is usually
designated as a primary key in one of the tables and a
foreign key in the others, although this is not the only
possible arrangement. This practice is often termed as
referencing, as the foreign key of the child table refer-
ences the primary key of the parent table. The syntax
for the creation of the table and the key designation is
the following:

CREATE TABLE <table name> (
<attribute1> <DATA TYPE>(<size>), FOREIGN KEY (<attribute name>)
REFERENCES <table name> (<attribute name>),...
<attributeN> <DATA TYPE>(<size>) FOREIGN KEY (<attribute name>) REFERENCES
<table name> (<attribute name>))

Observation 7.13 – Create a Table
with One or More Foreign Keys:

CREATE TABLE <table name>
(<attribute1> <DATA
TYPE>(<size>), FOREIGN KEY
(<attribute name>) REFERENCES
<table name> (<attribute
name>),..., <attributeN>
<DATA TYPE>(<size>), FOREIGN
KEY (<attribute name>)
REFERENCES <table name>
(<attribute name>))

TABLE 7.1
Customers – Items – Orders

Customers Items Orders

Attribute Type Attribute Type Attribute Type

CustomerID INT(3) PK ItemID CHAR(6) PK OrderID INT(3) PK
CustLastName CHAR(15) ItemDesc CHAR(25) CustID INT(3) FK
CustFirstName CHAR(10) ItemPrice INT(5) ItemID INT(6) FK

OrderYear INT(4)
OrderQuantity INT(3)

286 Handbook of Computer Programming with Python

The following Python script is another amendment to the previously developed script, allowing for
the specification of a foreign key attribute, and the corresponding tables and reference attributes.
It is beyond the scope of this chapter to discuss the numerous possibilities of such tasks in detail,
and to provide safety measures against the multitude of cases of incorrect entries that could cause
abnormal termination of the program. The goal of this example is to demonstrate how to use Python
to facilitate the creation of such relationships in their simplest form using database table Orders
from Table 7.1:

1 import mysql.connector
2
3 # The database config details
4 config = {'user': 'root', 'password': 'root',
5 'host': 'localhost', 'database': 'newDB'}
6
7 # The name of the table and its attributes
8 tableName = input("Enter the name of the table to create: ")
9 sqlString = "CREATE TABLE " + tableName + "("
10 numOfAt = int(input("Enter the number of attributes in the table: "))
11 atName = [""]*numOfAt
12 atType = [""]*numOfAt
13 atSize = [0]*numOfAt
14
15 pkey = 0
16 # Define the structure of the table (i.e., attribute details)
17 for i in range(numOfAt):
18 atName[i] = input("\nEnter the attribute " + str(i) + ": ")
19 atType[i]=str(input("Enter 'CHAR' for char, 'INT' for int type: "))
20 atSize[i] = int(input("Enter the size of the attribute: "))
21 sqlString += atName[i] + " " + atType[i] + \
22 "(" + str(atSize[i]) + ")"
23 if (pkey == 0):
24 primaryKey = input("Is this a primary key (Y/N)? ")
25 if (primaryKey == "Y"):
26 sqlString += " PRIMARY KEY"
27 pkey = 1
28 foreignKey = input("Is this a foreign key (Y/N)? ")
29 if (foreignKey == "Y"):
30 availableTables = "SHOW TABLES"
31 link = mysql.connector.connect(**config)
32 cursor = link.cursor()
33 cursor.execute(availableTables)
34 tables = cursor.fetchall()
35 print(tables)
36 refTable = input("Select the table to reference: ")
37 availableAttributes = "DESC " + str(refTable)
38 link = mysql.connector.connect(**config)
39 cursor = link.cursor()
40 cursor.execute(availableAttributes)

287Database Programming with Python

Output 7.2.3.d:

Enter the name of the cable to create: Orders
Enter the number of attributes in the table: 5

Enter the attribute 0: OrderiD
Enter 'char' for char type, 'int. for int type: int
Enter the size of the attribute: 3
Is this a primary key (Y/N)? Y
Is this a foreign key (Y/N)? n

Enter the attribute 1: CustID
Enter 'char' for char type, 'int. for int type: int
Enter the size of the attribute: 3
Is this a foreign key (Y/N)? Y
[('customers',), ('items',), ('student',), ('table1',)]
Select the table to reference: Customers
[('CustomerID', 'int(3)', 'NO', 'PRI', None, ''), ('CustLastName',
'char(15)', 'YES', '', None, ''), ('CustFirstName', 'char(10)', 'YES', '',
None, '')]
Select the attribute to reference: CustomerID

Enter the attribute 2: ItemID
Enter 'char' for char type, 'int' for int type: char
Enter the size of the attribute: 6
Is this a foreign key (Y/N)? Y
[('customers',), ('items',), ('student',), ('table1',)]
Select the table to reference: Items
[('ItemID', 'char(6)', 'NO', 'PRI', None, ''), ('ItemDesc', 'char(25)',
'YES', '', None, ''), ('ItemPrice', 'int(5)', 'YES', '', None, '')]
Select the attribute to reference: ItemID

Enter the attribute 3: OrderYear
Enter 'char' for char type, 'int. for int type: int
Enter the size of the attribute: 4
Is this a foreign key (Y/N)? N

Enter the attribute 4: OrderQty
Enter 'char' for char type, 'int' for int type: int
Enter the size of the attribute: 3
Is this a foreign key (Y/N)? N

The SQL statement to run is:
Create Table Orders(OrderID int(3) Primary key, CustID int(3), Foreign
Key (CustID) References Customers(CustomerID), ItemID char(6), Foreign
Key (ItemID) References Items(ItemID), OrderYear int(4), OrderQty int(3))

The structure/metadata of the table Orders is:
('OrderID', 'int(3)', 'NO', 'PRI', None, '')
('CustID', 'int(3)', 'YES', 'MUL', None, '')
('ItemID', 'char(6)', 'YES', 'MUL', None, '')
('OrderYear', 'int(4)', 'YES', '', None, '')
('OrderQty', 'int(3)', 'YES', '', None, '')

41 columns = cursor.fetchall()
42 print(columns)
43 refAt = input("Select the attribute to reference: ")
44 sqlString += ", FOREIGN KEY (" + atName[i]
45 sqlString += ") REFERENCES " + str(refTable) + "(" + \
46 str(refAt) + ")"
47 if (i < numOfAt-1):
48 sqlString += ", "
49 else:
50 sqlString += ")"
51
52 # The SQL statement and the exception handling mechanism
53 print("\nThe SQL statement to run is: \n", sqlString)
54 try:
55 link = mysql.connector.connect(**config)
56 cursor = link.cursor()
57 cursor.execute(sqlString)
58 sqlString = "DESC " + tableName
59 cursor.execute(sqlString)
60 columns = cursor.fetchall()
61 print("\nThe structure/metadata of the table ",
62 str(tableName), "is:")
63 for row in columns:
64 print(row)
65 except:
66 print("There is an error with the connection")

288 Handbook of Computer Programming with Python

Enter the name of the cable to create: Orders
Enter the number of attributes in the table: 5

Enter the attribute 0: OrderiD
Enter 'char' for char type, 'int. for int type: int
Enter the size of the attribute: 3
Is this a primary key (Y/N)? Y
Is this a foreign key (Y/N)? n

Enter the attribute 1: CustID
Enter 'char' for char type, 'int. for int type: int
Enter the size of the attribute: 3
Is this a foreign key (Y/N)? Y
[('customers',), ('items',), ('student',), ('table1',)]
Select the table to reference: Customers
[('CustomerID', 'int(3)', 'NO', 'PRI', None, ''), ('CustLastName',
'char(15)', 'YES', '', None, ''), ('CustFirstName', 'char(10)', 'YES', '',
None, '')]
Select the attribute to reference: CustomerID

Enter the attribute 2: ItemID
Enter 'char' for char type, 'int' for int type: char
Enter the size of the attribute: 6
Is this a foreign key (Y/N)? Y
[('customers',), ('items',), ('student',), ('table1',)]
Select the table to reference: Items
[('ItemID', 'char(6)', 'NO', 'PRI', None, ''), ('ItemDesc', 'char(25)',
'YES', '', None, ''), ('ItemPrice', 'int(5)', 'YES', '', None, '')]
Select the attribute to reference: ItemID

Enter the attribute 3: OrderYear
Enter 'char' for char type, 'int. for int type: int
Enter the size of the attribute: 4
Is this a foreign key (Y/N)? N

Enter the attribute 4: OrderQty
Enter 'char' for char type, 'int' for int type: int
Enter the size of the attribute: 3
Is this a foreign key (Y/N)? N

The SQL statement to run is:
Create Table Orders(OrderID int(3) Primary key, CustID int(3), Foreign
Key (CustID) References Customers(CustomerID), ItemID char(6), Foreign
Key (ItemID) References Items(ItemID), OrderYear int(4), OrderQty int(3))

The structure/metadata of the table Orders is:
('OrderID', 'int(3)', 'NO', 'PRI', None, '')
('CustID', 'int(3)', 'YES', 'MUL', None, '')
('ItemID', 'char(6)', 'YES', 'MUL', None, '')
('OrderYear', 'int(4)', 'YES', '', None, '')
('OrderQty', 'int(3)', 'YES', '', None, '')

Once the table is created and references to tables Customers and Items are established, the fol-
lowing Entity Relationship Diagram (ERD) should appear in MySQL Designer (Figure 7.5):

FIGURE 7.5 Entity relationship diagram for the customers-items-orders database.

289Database Programming with Python

7.2.4 Altering tAbles

As discussed, the CREATE TABLE statement cre-
ates new tables and defines their attributes and char-
acteristics. In other words, it is used to create and
specify the metadata of the table. This metadata is
not expected to change frequently; indeed, the better
the design of the database the lower the possibility of
metadata modification being required. Nevertheless,
when necessary, the most drastic way to do so is to
destroy and re-create the entire table. This is also the
easiest solution provided that the table contains no
data. However, the feasibility of using this function
is inversely related to the amount of existing data,
as destroying the table would also lead to permanent
data loss.

This is where the ALTER TABLE statement comes
into play. The statement has numerous variations, but
they all serve the purpose of altering the structure and
metadata of an existing table. The most important and
frequently used of these variations cover the following:

 1. Adding/deleting/modifying an attribute in an existing table.
 2. Adding/deleting a primary key constraint.

The first set of statements relates to the manipulation of simple attributes. For instance, if
a new attribute is to be added to an existing table, the ALTER TABLE syntax would be the
following:

ALTER TABLE <table name> ADD <new attribute> <DATA TYPE>(<size>)

Accordingly, to delete an existing attribute from a table the statement can be used with following
syntax:

ALTER TABLE <table name> DROP <attribute name>

Modifications of the data type and/or size of an attribute would take the following form:

ALTER TABLE <table name> CHANGE <attribute name> <attribute new name>
<attribute new DATA TYPE>(<new size>)

The second set of statements involves the addition of a new attribute that also serves as a (composite)
primary key or the deletion of the primary key function of an attribute. In the first case, the follow-
ing syntax should be used:

ALTER TABLE <table name> ADD <new attribute> <DATA TYPE>(<size>) PRIMARY KEY

In the case of the latter, the syntax would be the following:

ALTER TABLE <table name> DROP PRIMARY KEY

Observation 7.14 – The ALTER
TABLE Statement:

ALTER TABLE <name> ADD <new
attribute> <DATA TYPE>(<size>)
ALTER TABLE <name> DROP
<attribute name>
ALTER TABLE <name> CHANGE
<attribute name><attribute
new name> <attribute new DATA
TYPE>(<new size>)
ALTER TABLE <name> ADD (new
attribute) <DATA TYPE>(<size>)
PRIMARY KEY
ALTER TABLE <name> DROP
PRIMARY KEY

290 Handbook of Computer Programming with Python

The following Python script demonstrates the use of all the aforementioned cases in a single
application:

1 import mysql.connector
2
3 # The database config details
4 config = {'user': 'root', 'password': 'root',
5 'host': 'localhost', 'database': 'newDB'}
6
7 # Show the available tables
8 availableTables = "SHOW TABLES"
9 link = mysql.connector.connect(**config)
10 cursor = link.cursor()
11 cursor.execute(availableTables)
12 tables = cursor.fetchall()
13 print(tables)
14
15 # Select the table to alter and show its attributes
16 selectedTable = input("Select the table to alter: ")
17 availableAttributes = "DESC " + str(selectedTable)
18 link = mysql.connector.connect(**config)
19 cursor = link.cursor()
20 cursor.execute(availableAttributes)
21 columns = cursor.fetchall()
22 for row in columns:
23 print(row)
24
25 # Decide to add a column in the selected table, modify it, or drop it
26 alterType = input("(A)dd a new column\n(M)odify its size\n(D)rop one?\
27 \n(APK)Add Primary Key\n(DPK)Drop Primary Key?\
28 n\Select preferred task: ")
29 if (alterType == "A"):
30 atName = input("\nEnter the attribute name: ")
31 atType = input("Enter 'char' for char type, 'int' for int type: ")
32 atSize = int(input("Enter the size of the attribute: "))
33 if (alterType == "D"):
34 atName = input("\nEnter the name of the attribute to drop: ")
35 if (alterType == "M"):
36 atName = input("\nEnter the name of the attribute to change: ")
37 atNewName = input("\nEnter the new name of the attribute: ")
38 atNewType=input("Enter 'char' for char type, 'int' for int type: ")

291Database Programming with Python

39 atNewSize = int(input("Enter the size of the attribute: "))
40 if (alterType == "APK"):
41 atName = input("\nEnter the name of the attribute to \
42 convert to Primary Key: ")
43 atNewType=input("Enter 'char' for char type, 'int' for int type: ")
44 atNewSize = int(input("Enter the size of the attribute: "))
45
46 # Prepare and execute the alter statement
47 if (alterType == "A"):
48 sqlString = "ALTER TABLE " + str(selectedTable) + " ADD " + \
49 atName + " " + str(atType) + "(" + str(atSize) + ")"
50 elif (alterType == "D"):
51 sqlString = "ALTER TABLE " + str(selectedTable) + \
52 " DROP COLUMN " + str(atName)
53 elif (alterType == "M"):
54 sqlString = "ALTER TABLE " + str(selectedTable) + " CHANGE " + \
55 atName + " " + atNewName + " " + atNewType + \
56 "(" + str(atNewSize) + ");"
57 elif (alterType == "APK"):
58 sqlString="ALTER TABLE "+str(selectedTable)+" ADD "+atName + \
59 " " + atNewType + "(" + str(ateNewSize) + ") PRIMARY KEY"
60
61 elif (alterType == "DPK"):
62 sqlString="ALTER TABLE "+str(selectedTable)+" DROP PRIMARY KEY"
63
64 print(sqlString)
65 try:
66 link = mysql.connector.connect(**config)
67 cursor = link.cursor()
68 cursor.execute(sqlString)
69 print(cursor)
70 sqlString = "DESC " + selectedTable
71 cursor.execute(sqlString)
72 columns = cursor.fetchall()
73 print("\nThe structure/metadata of the table ",
74 str(selectedTable), "is:")
75 for row in columns:
76 print(row)
77 except:
78 print("There is an error with the connection")

292 Handbook of Computer Programming with Python

Output 7.2.4.a: Adding a new attribute

[('customers',), ('items',), ('orders',), ('student',), ('table1',)]
Select the table to alter: Student
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
(A)dd a new column
(M)odify its size
(D)rop one?
(APK)Add Primary Key
(DPK)Drop Primary Key?
Select preferred task: A

Enter the attribute name: MobileNumber
Enter 'char' for char type, 'int' for int type: char
Enter the size of the attribute: 15
Alter table Student add MobileNumber char(15)
MySQLCursor: Alter table Student add MobileNumber cha..

The structure/metadata of the table Student is:
('Name', 'char(13)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('MobileNumber', 'char(15)', 'YES', '', None, '')

Output 7.2.4.b: Modifying an attribute

[('customers',), ('items',), ('orders',), ('student',), ('table1',)]
Select the table to alter: Student
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('MobileNumber', 'char(15)', 'YES', '', None, '')
(A)dd a new column
(M)odify its size
(D)rop one?
(APK)Add Primary Key
(DPK)Drop Primary Key?
Select preferred task: M

Enter the name of the attribute to change: MobileNumber

Enter the new name of the attribute: PhoneNumber
Enter 'char' for char type, 'int' for int type: char
Enter the size of the attribute: 20
Alter table Student change MobileNumber PhoneNumber char(20);
MySQLCursor: Alter table Student change MobileNumber ..

The structure/metadata of the table Student is:
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('PhoneNumber', 'char(20)', 'YES', '', None, '')

293Database Programming with Python

Output 7.2.4.c: Deleting/Dropping an attribute

[('customers',), ('items',), ('orders',), ('student',), ('table1',)]
Select the table to alter: Student
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('PhoneNumber', 'char(20)', 'YES', '', None, '')
(A)dd a new column
(M)odify its size
(D)rop one?
(APK)Add Primary Key
(DPK)Drop Primary Key?
Select preferred task: D

Enter the name of the attribute to drop: PhoneNumber
Alter table Student drop column PhoneNumber
MySQLCursor: Alter table Student drop column PhoneNum..

The structure/metadata of the table Student is:
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')

Output 7.2.4.d: Adding a primary key

[('customers',), ('items',), ('orders',), ('student',), ('tablel',)]
Select the table to alter: student
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
(A)dd a new column
(M)odify its size
(D)rop one?
(APK)Add Primary Key
(DPK)Drop Primary Key?
Select preferred task: APK

Enter the name of the attribute to convert to Primary Key: StudentID
Enter 'char' for char type, 'int' for int type: char
Enter the size of the attribute: 10
Alter table student add StudentID char(10) Primary key
MySQLCursor: Alter table student add StudentID char(1..

The structure/metadata of the table student is:
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('StudentID', 'char(10)', 'NO', 'PRI', None, '')

294 Handbook of Computer Programming with Python

Output 7.2.4.e: Dropping a primary key

[('customers',), ('items',), ('orders',), ('student',), ('table1',)]
Select the table to alter: student
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('StudentID', 'char(10)', 'NO', 'PRI', None, '')
(A)dd a new column
(M)odify its size
(D)rop one?
(APK)Add Primary Key
(DPK)Drop Primary Key?
Select preferred task: DPK
Alter table student Drop Primary Key
MySQLCursor: Alter table student Drop Primary Key

The structure/metadata of the table student is:
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('StudentID', 'char(10)', 'NO', '', None, '')

The script allows the user to select the table the metadata of which must be altered. The user is pre-
sented with a simple menu that can be used for choosing the type of the execution statement. Upon
execution the result is displayed on screen, but can be also verified in MySQL. As the concepts
related to the programming aspects of the script have been covered in previous sections, they are not
discussed here. The outputs showcase some testing cases based on the developed script.

7.2.5 droPPing tAbles

The deletion of an entire table, and especially of one that
contains data, is not something that one should resort
to frequently. Nevertheless, there are occasions that this
may be necessary. Assuming that there are no referential
integrity relationships between the table in question and
any other tables, the deletion can be implemented with
the DROP TABLE statement and a simple reference to
the name of the table:

DROP TABLE <table name>

The following Python script demonstrates this by displaying the available tables to the user and
offering a mechanism for table selection and deletion to the user:

Observation 7.15 – The DROP TABLE
Statement: Destroys (deletes) a table
and all the data contained in it, as in
the example below.
DROP TABLE <table name>

1 import mysql.connector
2
3 # The database config details
4 config = {'user': 'root', 'password': 'root',
5 'host': 'localhost', 'database': 'newDB'}
6
7 # Show the available tables

295Database Programming with Python

Output 7.2.5:

[('customers',), ('items',), ('orders',), ('student',), ('table1',), ('test',)]
Select the table to drop: test
('test1', 'char(10)', 'NO', 'PRI', None, '')
('test2', 'char(10)', 'YES', '', None, '')
Are you sure you want to drop the table (Y/N)? Y
Drop table test
[('customers',), ('items',), ('orders',), ('student',), ('table1',)]

The output shows how to use the DROP TABLE statement to delete/destroy a table and its data. Note
that before trying to drop a table (in this instance table Test), one has to ensure that the table has
been created and is in existence.

8 def showTables():
9 availableTables = "SHOW TABLES"
10 link = mysql.connector.connect(**config)
11 cursor = link.cursor()
12 cursor.execute(availableTables)
13 tables = cursor.fetchall()
14 print(tables)
15
16 # Show the available tables
17 showTables()
18
19 # Select the table to drop and show its attributes
20 selectedTable = input("Select the table to drop: ")
21 availableAttributes = "DESC " + str(selectedTable)
22 link = mysql.connector.connect(**config)
23 cursor = link.cursor()
24 cursor.execute(availableAttributes)
25 columns = cursor.fetchall()
26 for row in columns:
27 print(row)
28
29 # Confirm the decision to drop the table
30 dropConfirmation = input("Are you sure you want to drop \
31 the table (Y/N)? ")
32 if (dropConfirmation == "Y"):
33 sqlString = "DROP TABLE " + str(selectedTable)
34
35 print(sqlString)
36 try:
37 link = mysql.connector.connect(**config)
38 cursor = link.cursor()
39 cursor.execute(sqlString)
40 # Show the available tables
41 showTables()
42 except:
43 print("There is an error with the connection")

296 Handbook of Computer Programming with Python

7.2.6 the DESC stAtement

In previous sections, there were instances where the
structure or metadata of a table had to be displayed. The
statement used in such cases was the following:

DESC <table name>

This statement returns a list of tuples with the attributes of the table and the associated details, such
as its name, size, and primary key designation. The reader can refer to the scripts provided in previ-
ous sections as practical examples of its functionality and use.

7.3 SCRIPTING FOR DATA MANIPULATION LANGUAGE

The previous sections introduced the various DDL statements used to create, alter, and drop the
metadata of the tables in a database. This is often called the database schema. As mentioned, it is
not expected nor desired that this schema changes frequently. Once the schema is finalized, one can
start working on its state or instance. A database instance contains all the data stored in the data-
base at any particular moment in time. The statements used for working with the database instance
are usually referred to as the Data Manipulation Language (DML). As in DDL and the database
schema, DML statements are used to create or insert new records to a table, modify and amend data,
or delete existing records from a table. The following sections introduce the most basic and common
uses of these statements.

7.3.1 inserting reCords

The INSERT statement is used to insert a single record
(row) to a table. The general syntax of the statement is
the following:

INSERT INTO <table name>
VALUES (<attribute1 value>... <attributeN
value>)

If the user is allowed to insert data to a table in a dif-
ferent order than the one specified in the corresponding
table metadata or to enter data selectively to a subset of
the table attributes, the following syntax could be used:

INSERT INTO <table name>
(<attributeX name>... <attributeZ name>)
VALUES (<attributeX value>... <attributeZ
value>)

The following Python script demonstrates the use of the
INSERT statement, using a case where the user is also allowed to select the table to which the state-
ment applies first:

Observation 7.16 – The DESC
Statement: Returns the metadata of a
table as in the example below.

DESC <table name>

Observation 7.17 – Insert Records:

INSERT INTO <table name>
VALUES (<attribute1 value>...
<attributeN value>)

If the data order is different than that
of the table attributes, or if some attri-
butes are not supposed to receive
data, the following syntax can be
used:

INSERT INTO <table name>
(<attributeX name>...
<attributeZ name>)
VALUES (<attributeX value>...
<attributeZ value>)

1 import mysql.connector
2
3 # Provide the established database config
4 GUIDB = 'GuiDB'

297Database Programming with Python

5 config = {'user': "root", 'password': "root",
6 'host': "localhost", 'database': "newDB"}
7
8 # Connect to the newDB database
9 connect = mysql.connector.connect(**config)
10 cursor = connect.cursor()
11
12 try:
13 # Attempt to show the tables of the newDB database
14 cursor.execute("SHOW TABLES")
15 tables = cursor.fetchall()
16 print("DB tables are: " + str(tables))
17 except:
18 print("There was a problem showing tables")
19
20 tableName = input("Enter the table selected: ")
21 try:
22 # Show the table metadata
23 cursor.execute("DESC " + tableName)
24 columns = cursor.fetchall()
25 print("Selected table is: ", tableName)
26 print("Its attributes are: ")
27 for row in columns:
28 print(row)
29
30 # Show the current instance of the table
31 cursor.execute("SELECT * FROM " + str(tableName))
32 records = cursor.fetchall()
33 print("The records in the table are: ")
34 for row in records:
35 print(row)
36 except:
37 print("There was a problem showing the table attributes")
38
39 # Prepare the insert statement
40 numColumns = len(columns)
41 attributes = [""]*numColumns
42 sqlString = "INSERT INTO " + tableName + " VALUES ("
43
44 # Invite user's input for each attribute
45 for i in range(numColumns):
46 attributes[i] = input("Enter data for attribute " + str(i) + ": ")
47 if (columns[i][1][0] == "c"):
48 sqlString += "\"" + attributes[i] + "\""
49 elif (columns[i][1][0] == "i"):
50 sqlString += attributes[i]
51 if (i < numColumns-1):
52 sqlString += ", "
53 sqlString += ")"
54
55 # Execute the prepared insert statement

298 Handbook of Computer Programming with Python

Output 7.3.1.a: Inserting a new record to Student

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: student
Selected table is: student
Its attributes are:
('Name', 'char(10)', 'YES', '', None, '')
('Address', 'char(15)', 'YES', '', None, '')
('Year', 'int(4)', 'YES', '', None, '')
('StudentlD', 'char(10)', 'NO', '', None, '')
The records in the table are:
Enter data for attribute 0: Alex
Enter data for attribute 1: Westwood 7
Enter data for attribute 2: 2002
Enter data for attribute 3: 001
SQL statement to execute is:
Insert into student values ("Alex", "Westwood 7", 2002, "001")
The records in the student table are:
('Alex', 'Westwood 7', 2002, '001')

Upon execution, the script displays the tables in the current database and prompts the user to select
one of them. Once a selection is made, the user is provided with both the metadata and the instance
of the table. Next, the user is invited to enter values for each of the attributes of the table, one at a
time. In this case, the more generic, basic syntax is adopted, so the user must enter values for all
the attributes of the table in the order dictated when the table was created. After all values are col-
lected, the related INSERT statement is prepared and executed, and its result is committed. Finally,
the script provides the new instance of the table.

The following observations are also noteworthy in relation to the script and its output. Firstly,
any text value that is inserted to a table always takes single quotes, while numbers do not. Dates
also have a particular, unique format. Secondly, in this particular example, the user attempts to
insert a record to the Student table, which has no primary key attribute, and is neither refer-
encing nor being referenced by another table. As this is a rather straightforward case, should
any issues arise with the statement these should be likely related to technical connectivity issues
between the database, the server, and the connections in the script. Thirdly, when committing the
results of the INSERT statement, it is important that the newly inserted data are indeed stored in
the table.

One could use the Customers, Items, and Orders tables as a working example. Firstly, the
user would enter a new record to the Customers table (note that the table has an attribute that

56 print("SQL statement to execute is: ")
57 print(sqlString)
58 cursor.execute(sqlString)
59 # Commit the results to ensure they are permanently stored
60 connect.commit()
61
62 # Show the new instance of the table
63 print("The records in the " + str(tableName) + " table are: ")
64 sqlString = "SELECT * FROM " + tableName
65 cursor.execute(sqlString)
66 records = cursor.fetchall()
67 for row in records:
68 print(row)

299Database Programming with Python

serves as a primary key). The following output illustrates this with the following data: 001, “John”,
and “Good”:

Output 7.3.1.b: Inserting a new record to Customers

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: customers
Selected table is: customers
Its attributes are:
('CustomerID', 'int(3)', 'NO', 'PRI', None, '')
('CustLastName', 'char(15)', 'YES', '', None, '')
('CustFirstName', 'char(10)', 'YES', '', None, '')
The records in the table are:
Enter data for attribute 0: 001
Enter data for attribute 1: John
Enter data for attribute 2: Good
SQL statement to execute is:
Insert into customers values (001, "John", "Good")
The records in the customers table are:
(1, 'John', 'Good')

Next, let us assume that the user attempts to enter a new record with the following data: 001,
“Maria”, and “Green”. The problem in this case is that the user is attempting to insert a new record
with the same value for the primary key (i.e., 001). This will raise an internal error, since MySQL
does not allow duplicate values for this attribute. The output shows the error that would be raised
in such a case:

Output 7.3.1.c: Attempting to insert a new record to Customers with duplicate primary key

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: customers
Selected table is: customers
Its attributes are:
('CustomerID', 'int(3)', 'NO', 'PRI', None, '')
('CustLastName', 'char(15)', 'YES', '', None, '')
('CustFirstName', 'char(10)', 'YES', '', None, '')
The records in the table are:
(1, 'John', 'Good')
Enter data for attribute 0: 001
Enter data for attribute 1: Maria
Enter data for attribute 2: Green
SQL statement to execute is:
Insert into customers values (001, "Maria", "Green")

~\anaconda3\lib\site-packages\mysq1\connector\connection.py in_handle_
result(self, packet)

571 return self._handle eof(packet)
572 elif packet[4] == 255:

--> 573 raise errors.get_exception(packet)
574
575 # We have a text result set

IntegrityError: 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

300 Handbook of Computer Programming with Python

Following up on the same example, let us assume that the user attempts to insert a record in the
Items table, as displayed on the output below:

Output 7.3.1.d: Inserting a record to Items

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: items
Selected table is: items
Its attributes are:
('ItemID', 'char(6)', 'NO', 'PRI', None, '')
('ItemDesc', 'char(25)', 'YES', '', None, '')
('ItemPrice', 'int(5)', 'YES', '', None, '')
The records in the table are:
Enter data for attribute 0: 100
Enter data for attribute 1: Refrigerator
Enter data for attribute 2: 600
SQL statement to execute is:
Insert into items values ("100", "Refrigerator", 600)
The records in the items table are:
('100', 'Refrigerator', 600)

The user may also attempt to insert a record in the Orders table. Firstly, let us assume that the user
correctly inputs data that correspond to the other two tables (i.e., Customers and Items). The
following output illustrates a successful attempt:

Output 7.3.1.e: Inserting a record to Orders

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: orders
Selected table is: orders
Its attributes are:
('OrderID', 'int(3)', 'NO', 'PRI', None, '')
('CustID', 'int(3)', 'YES', 'MUL', None, '')
('ItemID', 'char(6)', 'YES', 'MUL', None, '')
('OrderYear', 'int(4)', 'YES', '', None, '')
('OrderQty', 'int(3)', 'YES', '', None, '')
The records in the table are:
Enter data for attribute 0: 1
Enter data for attribute 1: 1
Enter data for attribute 2: 100
Enter data for attribute 3: 2021
Enter data for attribute 4: 15
SQL statement to execute is:
Insert into orders values (1, 1, "100", 2021, 15)
The records in the orders table are:
(1, 1, '100', 2021, 15)

In contrast, if we assume that the user attempts to insert another record to Orders with no consid-
eration towards the corresponding Customers table, an error will be raised:

301Database Programming with Python

Output 7.3.1.f: Violating a referential integrity constraint in an INSERT statement

IntegrityError: 1452 (23000): Cannot add or update a child row: a foreign
 key constraint fails ('newdb'.'orders', CONSTRAINT
 'orders_ibfk_1' FOREIGN KEY ('CustID') REFERENCES
 'customers' ('CustomerID'))

DB tables are: (('custorers',), ('items',), ('orders',), ('student',)]
Enter the table selected: orders
Selected table is: orders
Its attributes are:
('OrderID', 'int(3)', 'NO', 'PRI', None, '')
('CustID', 'int(3)', 'YES', 'MUL', None, '')
('ItemID', 'char(6)', 'YES', 'MUL', None, '')
('OrderYear', 'int(4)', 'YES', '', None, '')
('OrderQty', 'int(3)', 'YES', '', None, '')
The records in the table are:
(1, 1, '100', 2021, 15)
Enter data for attribute 0: 2
Enter data for attribute 1: 2
Enter data for attribute 2: 100
Enter data for attribute 3: 2021
Enter data for attribute 4: 10
SQL statement to execute is:
Insert into orders values (2, 2, "100", 2021, 10)

IntegrityError Traceback (most recent call last)
~\anaconda3\lib\site-packages\mysql\connector\connection.py in _handle_
result(self, packet)

571 return self._handle_eof(packet)
572 elif packet[4] == 255:

-->
574
575 # We have a text result set

573 raise errors.get_exception(packet)

These examples provide a basic demonstration of various cases of data insertion to tables, and of
potential violations of important constraints like primary and foreign keys. Of course, this is not an
exhaustive collection of all possible cases, but it should provide some clarity in terms of working
with INSERT statements in Python. Ideally, exception handling should be employed to control as
many violation scenarios as possible.

7.3.2 uPdAting reCords

Contrary to data definition statements, where the
case of changing the metadata of a table after its cre-
ation is generally undesirable and quite rare, when
it comes to data manipulation it is necessary to be
able to change the data of particular records rather
frequently. This is accomplished with the use of the
UPDATE statement:

Observation 7.18 – The UPDATE
Statement:

UPDATE <table name>
SET <attribute1> = <value1>,...,
<attributeN> = <valueN>
WHERE <condition that involves
one or more attributes>

302 Handbook of Computer Programming with Python

UPDATE <table name>
SET <attribute1> = <value1>,..., <attributeN> = <valueN>
WHERE <condition that involves one or more attributes>

The following Python script is based on the examples developed in the previous sections, and adopts
the same user prompts and table selection functions in order to showcase the use of the UPDATE
statement, using the Customers table:

1 import mysql.connector
2
3 # Provide the established database config
4 GUIDB = 'GuiDB'
5 config = {'user': "root", 'password': "root",
6 'host': "localhost", 'database': "newDB"}
7
8 # Connect to the newDB database
9 connect = mysql.connector.connect(**config)
10 cursor = connect.cursor()
11
12 try:
13 # Attempt to show the tables of the newDB database
14 cursor.execute("SHOW TABLES")
15 tables = cursor.fetchall()
16 print("DB tables are: " + str(tables))
17 except:
18 print("There was a problem showing tables")
19
20 tableName = input("Enter the table selected: ")
21 try:
22 # Show the table metadata
23 cursor.execute("DESC " + tableName)
24 columns = cursor.fetchall()
25 print("Selected table is: ", tableName)
26 print("Its attributes are: ")
27 for row in columns:
28 print(row)
29
30 # Show the current instance of the table
31 cursor.execute("SELECT * FROM " + str(tableName))
32 records = cursor.fetchall()
33 print("The records in the table are: ")
34 for row in records:
35 print(row)
36 except:
37 print("There was a problem showing the table attributes")
38
39 # Prepare the update statement
40 attributeSelected = input("Select the attribute to change its values: ")
41 newValue = input("Enter the new value")
42 oldValue = input("Enter the old value")
43 sqlString = "UPDATE " + tableName + " SET " + attributeSelected + \

303Database Programming with Python

Output 7.3.2: Updating a record in Customers

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: customers
Selected table is: customers
Its attributes are:
('CustomerID', 'int(3)', 'NO', 'PRI', None, '')
('CustLastName', 'char(15)', 'YES', '', None, '')
('CustFirstName', 'char(10)', 'YES', '', None, '')
The records in the table are:
(1, 'John', 'Good')
Select the attribute to change its values: CustLastName
Enter the new valueJames
Enter the old valueJohn
SQL statement to execute is:
Update customers set CustLastName = 'James' where CustLastName = 'John'

In addition to the UPDATE statement and its execution, the reader should pay close attention to
the requirement to commit the results of the execution. The commit() function ensures that the
results are permanently stored in the table. It must be also noted that there are several variations
of the UPDATE statement, the detailed coverage of which is out of the scope of this chapter.
For more detailed information on this topic, the reader is advised to refer to the official MySQL
documentation.

7.3.3 deleting reCords

In DML, the deletion of one or more records from a table
is handled through the DELETE statement. The general
syntax of the statement is the following:

DELETE <table name> WHERE <condition>

Observation 7.19 – The DELETE
Statement:

DELETE <table name> WHERE
<condition>

44 " = " + "\'" + newValue + "\'" + " WHERE " +
attributeSelected + \

45 " = " + "\'" + oldValue + "\'"
46
47 # Execute the prepared Update statement
48 print("SQL statement to execute is: ")
49 print(sqlString)
50 cursor.execute(sqlString)
51 # Commit the results to ensure they are permanently stored
52 connect.commit()
53
54 # Show the new instance of the table
55 print("The records in the " + str(tableName) + " table are: ")
56 sqlString = "SELECT * FROM " + tableName
57 cursor.execute(sqlString)
58 records = cursor.fetchall()
59 for row in records:
60 print(row)

304 Handbook of Computer Programming with Python

If the WHERE clause is omitted, all the records of the table are deleted. Nevertheless, the empty table
will be still in existence, as the table deletion is a task achieved only through the DROP statement. It
must be also noted that the <condition> part is quite flexible and can include various expressions
and parameters, such as one or more attributes of the same table, queries related to the same table, or
queries from different tables. Finally, it is important to remember that the DELETE statement cannot
be executed if the result is violating referential integrity constraints.

Using the same example as in previous sections, the following Python script demonstrates a
simple use of the DELETE statement:

1 import mysql.connector
2
3 # Provide the established database config
4 GUIDB = 'GuiDB'
5 config = {'user': "root", 'password': "root",
6 'host': "localhost", 'database': "newDB"}
7
8 # Connect to the newDB database
9 connect = mysql.connector.connect(**config)
10 cursor = connect.cursor()
11
12 try:
13 # Attempt to show the tables of the newDB database
14 cursor.execute("SHOW TABLES")
15 tables = cursor.fetchall()
16 print("DB tables are: " + str(tables))
17 except:
18 print("There was a problem showing tables")
19
20 tableName = input("Enter the table selected: ")
21 try:
22 # Show the table metadata
23 cursor.execute("DESC " + tableName)
24 columns = cursor.fetchall()
25 print("Selected table is: ", tableName)
26 print("Its attributes are: ")
27 for row in columns:
28 print(row)
29
30 # Show the current instance of the table
31 cursor.execute("SELECT * FROM " + str(tableName))
32 records = cursor.fetchall()
33 print("The records in the table are: ")
34 for row in records:
35 print(row)
36 except:
37 print("There was a problem showing the table attributes")
38
39 # Prepare the Delete statement
40 attributeSelected = input("Select the attribute based on \
41 which to delete a record(s): ")
42 deleteValue = input("Enter the data to delete: ")

305Database Programming with Python

Output 7.3.3: Updating a record in Customers

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: orders
Selected table is: orders
Its attributes are:
('OrderID', 'int(3)', 'NO', 'PRI', None, '')
('CustID', 'int(3)', 'YES', 'MUL', None, '')
('ItemID', 'char(6)', 'YES', 'MUL', None, '')
('OrderYear', 'int(4)', 'YES', '', None, '')
('OrderQty', 'int(3)', 'YES', '', None, '')
The records in the table are:
(1, 1, '100', 2021, 15)
Select the attribute based on which to delete a record(s): 100
Enter the data to delete: 100
SQL statement to execute is:
Delete from orders where 100 = '100'
The records in the orders table are:

In the example illustrated in the output, the user selects the only record that has a value of 100 for
attribute ItemID in the Orders table. The reader should note how DELETE is prepared based on
the user’s selections, and how the result is committed using the commit() function.

7.4 QUERYING A DATABASE AND USING A GUI

Querying and reporting data from database tables is arguably the most useful part of database man-
agement from the perspective of the user. Thus, it should come as no surprise that the remaining
SQL statements are specifically used for these purposes. The available clauses are numerous, and
the possibilities for nested queries and for conditional query execution render the potential combi-
nations virtually limitless. As such, an exhaustive coverage of every possible case of querying and
reporting is not only outside the scope of this chapter, but also a rather futile attempt in general. The
focus of this section is to showcase some basic ways to execute querying and reporting tasks, and to
demonstrate how GUIs could be utilized for presentation purposes.

43 sqlString = "DELETE FROM " + tableName + " WHERE " + \
44 attributeSelected + " = " + "\'" + deleteValue + "\'"
45
46 # Execute the prepared Update statement
47 print("SQL statement to execute is: ")
48 print(sqlString)
49 cursor.execute(sqlString)
50 # Commit the results to ensure they are permanently stored
51 connect.commit()
52
53 # Show the new instance of the table
54 print("The records in the " + str(tableName) + " table are: ")
55 sqlString = "SELECT * FROM " + tableName
56 cursor.execute(sqlString)
57 records = cursor.fetchall()
58 for row in records:
59 print(row)

306 Handbook of Computer Programming with Python

7.4.1 the SELECT stAtement

The SELECT statement is used to query and report data
from tables. Its most basic and generic syntax does not
involve any clauses that dictate additional functionality
or selection criteria:

SELECT * FROM <table name> WHERE *

Such a statement will return all the attributes of the
specified table, as the asterisk (*) character is used to
include all attributes and all conditions. Selections based on more specific criteria can be built by
adding the required clauses:

SELECT <list of attributes from one or more tables> OR *
FROM <list of tables>
WHERE <conditions>

The <conditions> part specifies the particular requirements that the data must meet in order to
be reported, ranging from no conditions to very complicated multi-attribute and multi-table ones.
Similarly, the <list of tables> part specifies the tables that must be included in the report.
The reader can refer to the rich and readily available collection of related textbooks and resources,
providing thorough descriptions of the numerous forms of the detailed syntax clauses and possible
refinements (Oracle, 2021a).

The following Python script builds on the previous examples to demonstrate querying and
reporting on data from a table (i.e., Customers, Products, Orders), as specified by the user:

Observation 7.20 – The SELECT
Statement:

SELECT <list of attributes
from one or more tables> OR *
FROM <list of tables>
WHERE <conditions>

1 import mysql.connector
2
3 # Provide the established database config
4 GUIDB = 'GuiDB'
5 config = {'user': "root", 'password': "root",
6 'host': "localhost", 'database': "newDB"}
7
8 # Connect to the newDB database
9 connect = mysql.connector.connect(**config)
10 cursor = connect.cursor()
11
12 try:
13 # Attempt to show the tables of the newDB database
14 cursor.execute("SHOW TABLES")
15 tables = cursor.fetchall()
16 print("DB tables are: " + str(tables))
17 except:
18 print("There was a problem showing tables")
19
20 tableName = input("Enter the table selected: ")
21 try:
22 # Show the table metadata
23 cursor.execute("DESC " + tableName)
24 columns = cursor.fetchall()

307Database Programming with Python

Output 7.4.1: Reporting data from a table based on user selection

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: customers

Selected table is: customers

Its attributes are:
('CustomerID', 'int(3)', 'NO', 'PRI', None, '')
('CustLastName', 'char(15)', 'YES', '', None, '')
('CustFirstName', 'char(10)', 'YES', '', None, '')

The records in the table are:

(1, 'John', 'Good')
(2, 'Norman', 'Chris')
(3, 'Flora', 'Alex')

In the case presented here, the output reports all the records from the Customers table.

7.4.2 the SELECT stAtement With A simPle Condition

The previous section demonstrated the use of simple SELECT statements to report on data of a
MySQL table. The complexity of the queries is limited only by the imagination and capabilities of
the programmer and the task at hand, since Python provides the facilities and support for highly
complex querying and reporting tasks. As a starting point for building more complex tasks, the fol-
lowing Python script invites the user to select a table from an example database and build a query
based on the selection. Next, it prompts the user for a particular attribute to base the condition
on, and for setting particular preferences for the condition depending on whether the attribute is
numerical or text-based:

25 print("===================")
26 print("Selected table is: ", tableName)
27 print("===================")
28 print("Its attributes are:")
29 for row in columns:
30 print(row)
31
32 # Show the current instance of the table
33 cursor.execute("SELECT * FROM " + str(tableName))
34 records = cursor.fetchall()
35 print("==============================")
36 print("The records in the table are: ")
37 print("==============================")
38 for row in records:
39 print(row)
40 except:
41 print("There was a problem showing the table attributes")

1 import mysql.connector
2
3 # Provide the established database config

308 Handbook of Computer Programming with Python

4 GUIDB = 'GuiDB'
5 config = {'user': "root", 'password': "root",
6 'host': "localhost", 'database': "newDB"}
7
8 # Connect to the newDB database
9 connect = mysql.connector.connect(**config)
10 cursor = connect.cursor()
11
12 try:
13 # Attempt to show the tables of the newDB database
14 cursor.execute("SHOW TABLES")
15 tables = cursor.fetchall()
16 print("DB tables are: " + str(tables))
17 except:
18 print("There was a problem showing tables")
19
20 tableName = input("Enter the table selected: ")
21
22 # Show the table metadata
23 cursor.execute("DESC " + tableName)
24 columns = cursor.fetchall()
25 print("==")
26 print("Selected table is: ", tableName)
27 print("==")
28 print("Its attributes are:")
29 for row in columns:
30 print(row)
31
32 # Select the attribute to build the condition
33 print("==")
34 condAttribute = input("Enter the attribute to build the condition: ")
35 typeAttribute = input("Is it a numeric attribute or a text (Num/Text):")
36 if (typeAttribute == "Num"):
37 minCond = int(input("Enter the min value for the attribute"))
38 maxCond = int(input("Enter the max value for the attribute"))
39 sqlStatementCondition = " WHERE "+str(condAttribute)+" >= "+ \
40 str(minCond)+" AND "+str(condAttribute)+" <= "+str(maxCond)
41 if (typeAttribute == "Text"):
42 startingText = input("Enter the starting text of the value to \
43 search for: ")
44 sqlStatementCondition = " WHERE "+str(condAttribute)+" LIKE \'"+ \
45 str(startingText) + "%\'"
46
47 # Show the current instance of the table
48 sqlStatement = "SELECT * FROM " + str(tableName) + sqlStatementCondition
49 print(sqlStatement)
50 cursor.execute(sqlStatement)
51 records = cursor.fetchall()
52 print("====================================")
53 print("The records in the table are: ")

309Database Programming with Python

Output 7.4.2.a – Example 1: Conditionally reporting data based on user selection

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: items

Selected table is: items

Its attributes are:
('ItemID', 'char(6)', 'NO', 'PRI', None, '')
('ItemDesc', 'char(25)', 'YES', '', None, '')
('ItemPrice', 'int(5)', 'YES', '', None, '')

Enter the attribute to build the condition: ItemPrice
Is it a numeric attribute or a text (Num/Text):Num
Enter the min value for the attribute300

Select * from items where ItemPrice >= 300 and ItemPrice <= 450

The records in the table are:

('100', 'RF-100', 300)
('200', 'TV-LG100', 400)
('303', 'PC-3', 400)

Enter the max value for the attribute450

Output 7.4.2.b – Example 2: Conditionally reporting data based on user selection

DB tables are: [('customers',), ('items',), ('orders',), ('student',)]
Enter the table selected: items

Selected table is: items

Its attributes are:
('ItemID', 'char(6)', 'NO', 'PRI', None, '')
('ItemDesc', 'char(25)', 'YES', '', None, '')
('ItemPrice', 'int(5)', 'YES', '', None, '')

Enter the attribute to build the condition: ItemDesc
Is it a numeric attribute or a text (Num/Text):Text
Enter the starting text of the value to search for: TV
Select * from items where ItemDesc like 'TV%'

The records in the table are:

('200', 'TV-LG100', 400)
('201', 'TV-Samsung 100', 550)
('202', 'TV-BenQ', 600)

54 print("====================================")
55 for row in records:
56 print(row)

310 Handbook of Computer Programming with Python

In the output of Example 1 above, the user firstly selects table Items. Next, a list of all the available
attributes is presented to the user as a choice for the condition of the SELECT statement. The user selects
ItemPrice and is prompted to choose whether it is a numerical or text attribute. As the attribute is
numerical, the script offers the option to enter the min and max values. On the contrary, in the output
of Example 2, the user selects an attribute that is text-based. Hence, the script offers a different set of
prompts and statements, appropriate for the use of the SELECT statement with text-based conditions.

The reader should note that the SELECT statements in both cases are the same as those used in
MySQL. The only challenge in this instance is that the programmer has to prepare the final SQL
script with the dynamic elements in place. Expectedly, if no dynamic elements are involved in the
query (e.g., if the table and the condition are predefined), the preparation of the SELECT statement
is less complicated.

7.4.3 the SELECT stAtement using gui

Arguably, if one aims to develop a user-oriented application, it is necessary to wrap the application
with a user-friendly GUI. An extensive introduction to the most important GUI widgets (e.g., labels,
entry boxes, radio buttons, buttons) and their application is provided in earlier chapters of this
book. In the current context, it is assumed that the focus is on the creation of a grid-based layout that
will be used to host the results of the SQL queries. In such a case, a grid layout manager could be
used. The following Python script showcases the development and execution of a condition-based
MySQL SELECT query using a fully deployed GUI:

1 import mysql.connector
2 import tkinter as tk
3 from tkinter import ttk
4
5 global tableName, attributeName, radioButton, textVar
6 global minLabel, maxLabel, textualLabel; global textualEntry
7 global selectionsFrame, resultsFrame; global columnName, columnType
8 global minCondScale, maxCondScale; global tablesCombo, columnsCombo
9 global connect, cursor, config; global tables, columns
10 global minCond, maxCond; global minValue, maxValue, numCols
11
12 # Create the frame to select the table for the query and its attributes
13 def selectionGUI():
14 global tables, columns; global tablesCombo, columnsCombo
15 global tableName, radioButton, textVar
16 global selectionsFrame, resultsFrame
17 global minLabel, maxLabel, textualLabel
18 global minCondScale, maxCondScale; global textualEntry
19
20 # The frame for the query selections of the user
21 selectionsFrame=tk.LabelFrame(winFrame, text='Query selections')
22 selectionsFrame.config(bg = 'light grey', fg = 'red', bd = 2,
23 relief = 'sunken')
24 selectionsFrame.grid(column = 0, row = 0)
25
26 # Create the combobox to hold the tables available in the db
27 tablesLabel = tk.Label(selectionsFrame,

311Database Programming with Python

28 text = "Tables available:", bg = "light grey")
29 tablesLabel.grid(column = 0, row = 0)
30 tablesCombo = ttk.Combobox(selectionsFrame,
31 textvariable = tableName, width = 15)
32 tablesCombo['values'] = tables; tablesCombo.current(0)
33 tablesCombo.grid(column = 1, row = 0)
34
35 # Button updates the attributes combo based on the table selection
36 updateAttributesButton = tk.Button(selectionsFrame,
37 text = 'Update Attributes', relief = 'raised', width = 15)
38 updateAttributesButton.bind('<Button-1>',
39 lambda event: updateAttributes())
40 updateAttributesButton.grid(column = 2, row = 0)
41
42 # Create the button to run the query
43 runButton = tk.Button(selectionsFrame, text = 'Run Query',
44 relief = 'raised', width = 15)
45 runButton.bind('<Button-1>', lambda event: runQuery())
46 runButton.grid(column = 3, row = 0)
47
48 # Update the columns combo based on the table selection
49 columnsLabel = tk.Label(selectionsFrame,
50 text = "Select attribute:", bg = "light grey")
51 columnsLabel.grid(column = 0, row = 1)
52 columnsCombo = ttk.Combobox(selectionsFrame,
53 textvariable = attributeName, width = 15)
54 columnsCombo.grid(column = 1, row = 1)
55
56 # Check whether selected attribute is numeric or text
57 numericalAttribute = tk.Radiobutton (selectionsFrame,
58 text = 'Numerical\nattribute', width = 10, height = 2,
59 bg = 'light green', variable = radioButton, value = 1,
60 command = radioClicked).grid(column = 2, row = 1)
61 textAttribute = tk.Radiobutton (selectionsFrame,
62 text = 'Text\nattribute', width = 10, height = 2,
63 bg = 'light green', variable = radioButton, value = 2,
64 command = radioClicked).grid(column = 3, row = 1)
65 radioButton.set(1)
66
67 # Create the GUI for the numerical conditional parameters
68 minLabel=tk.Label(selectionsFrame,text="Min value:",bg="light grey")
69 minLabel.grid(column = 0, row = 4); minLabel.grid_remove()
70 minCond = tk.IntVar()
71 minCondScale = tk.Scale (selectionsFrame, length = 200,
72 from_ = 0, to = 10000)
73 minCondScale.config(resolution = 10,
74 activebackground = 'dark blue', orient = 'horizontal')
75 minCondScale.config(bg = 'light blue', fg = 'red',
76 troughcolor = 'cyan', command = onScaleMin)
77 minCondScale.grid(column = 1, row = 4); minCondScale.grid_remove()

312 Handbook of Computer Programming with Python

78 maxLabel = tk.Label(selectionsFrame, text = "Max value:",
79 bg = "light grey")
80 maxLabel.grid(column = 2, row = 4); maxLabel.grid_remove()
81 maxCond = tk.IntVar()
82 maxCondScale = tk.Scale (selectionsFrame, length = 200,
83 from_ = 0, to = 10000)
84 maxCondScale.config(resolution = 10, activebackground = 'dark blue',
85 orient = 'horizontal')
86 maxCondScale.config(bg = 'light blue', fg = 'red',
87 troughcolor = 'cyan', command = onScaleMax)
88 maxCondScale.grid(column = 3, row = 4); maxCondScale.grid_remove()
89
90 # Create the GUI for the textual parameters
91 textualLabel = tk.Label(selectionsFrame,
92 text = "Enter text to find:", bg = "light grey")
93 textualLabel.grid(column = 0, row = 5); textualLabel.grid_remove()
94 textVar = tk.StringVar()
95 textualEntry = ttk.Entry(selectionsFrame,
96 textvariable = textVar, width = 20)
97 textualEntry.grid(column = 1, row = 5); textualEntry.grid_remove()
98
99 # Update the attributes table based on the table selection
100 def updateAttributes():
101 global cursor; global tableName, textVar; global tables, columns
102 global tablesCombo, columnsCombo; global numCols
103 global columnName, columnType; global mindCondScale, maxCondScale
104
105 try:
106 # Show the selected table metadata
107 if (str(tableName.get()) != ""):
108 sqlString = "DESC " + str(tableName.get())
109 cursor.execute(sqlString)
110 columns = cursor.fetchall()
111
112 # Reformat the columns list to new useful ones

113 numCols = len(columns)
114 columnName = []; columnType = []
115 for i in range (numCols):
116 columnName.append(columns[i][0])
117 columnType.append(columns[i][1])
118 columns[i] = str(columns[i][0]) + " " + \
119 str(columns[i][1])
120 columnsCombo['values'] = columns
121 columnsCombo.current(0)
122 except:
123 print("There was a problem showing the attributes")
124
125 # Update the attributes table based on the table selection
126 def runQuery():
127 global cursor; global tableName; global tables, columns

313Database Programming with Python

128 global columnsCombo; global numCols, numRows
129 global selectedAttribute; global columnName, columnType
130 global minValue, maxValue; global resultsFrame
131
132 # Empty the results list and the results frame
133 records = []
134 if (resultsFrame != None):
135 resultsFrame.destroy()
136
137 # Prepare the query to run
138 selectedIndex = columnsCombo.current()
139 if (radioButton.get() == 1):
140 sqlStatementCondition = " WHERE " + \
141 str(columnName[selectedIndex]) + \
142 " >= " + str(minValue) + " AND " + \
143 str(columnName[selectedIndex]) + \
144 " <= " + str(maxValue)
145 elif (radioButton.get() == 2):
146 startingText = str(textVar.get())
147 sqlStatementCondition = " WHERE " + \
148 str(columnName[selectedIndex]) + \
149 " LIKE \'" + str(startingText) + "%\'"
150
151 # The frame for the query selections of the user
152 resultsFrame = tk.LabelFrame(winFrame, text = "Query data")
153 resultsFrame.config(bg = 'light grey', fg = 'red', bd = 2,
154 relief = 'sunken')
155 resultsFrame.grid(column = 0, row = 1)
156
157 # Show the current instance of the table
158 sqlStatement = "SELECT * FROM " + str(tableName.get()) + \
159 sqlStatementCondition
160 cursor.execute(sqlStatement)
161 records = cursor.fetchall()
162
163 numRows = len(records)
164
165 for i in range(numRows):
166 for j in range(numCols):
167 # Create the labels to display the columns of results
168 newLabel = tk.Label(resultsFrame, width = 24)
169 if (i%2 == 0):
170 newLabel.config(text = records[i][j],
171 bg = "light grey", relief = "sunken")
172 else:
173 newLabel.config(text = records[i][j],
174 bg = "light cyan", relief = "sunken")
175 newLabel.grid(column = j, row = i)
176

314 Handbook of Computer Programming with Python

177 # Display/hide the relevant conditional parameters depending on
178 # the type of the attribute
179 def radioClicked():
180 global minLabel, maxLabel; global minCondScale, maxCondScale
181 global textualLabel, textualEntry
182
183 if (radioButton.get() == 1):
184 minLabel.grid(); minCondScale.grid(); maxLabel.grid()
185 maxCondScale.grid(); textualLabel.grid_remove();
186 textualEntry.grid_remove()
187
188 if (radioButton.get() == 2):
189 minLabel.grid_remove(); minCondScale.grid_remove()
190 maxLabel.grid_remove()
191 maxCondScale.grid_remove(); textualLabel.grid()
192 textualEntry.grid()
193
194 # Define the method to control the min condition value
195 def onScaleMin(val):
196 global minValue
197 minValue = int(val)
198
199 # Define the method to control the max condition value
200 def onScaleMax(val):
201 global maxValue
202 maxValue = int(val)
203 #==
204 # Provide the established database config
205 GUIDB = 'GuiDB'
206 config = {'user': "root", 'password': "root", 'host': "localhost",
207 'database': "newDB"}
208
209 # Connect to the newDB database
210 connect = mysql.connector.connect(**config)
211 cursor = connect.cursor()
212
213 # Basic window frame with the title through tk.Tk() constructor
214 winFrame = tk.Tk()
215 winFrame.config(bg = "grey")
216 winFrame.title("Queries through GUIs")
217
218 try:
219 # Attempt to show the tables of the newDB database
220 cursor.execute("SHOW TABLES")
221 tables = cursor.fetchall()
222 except:
223 print("There was a problem with reporting the tables")
224
225 tableName = tk.StringVar()

315Database Programming with Python

Output 7.4.3.a: Using the grid layout manager with a numerical condition query

Output 7.4.3.b: Using the grid layout manager with a text-based condition query

Conceptually, this script is divided into four parts. The first part (lines 12–92) provides the GUI ele-
ment using the selectionGUI() function. This covers the main body of the GUI but excludes the
grid where the query data will be reported on. When running the application, the user must perform
the following actions:

226 attributeName = tk.StringVar()
227 radioButton = tk.IntVar()
228 resultsFrame = None
229 updateAttributes()
230 selectionGUI()
231
232 winFrame.mainloop()

316 Handbook of Computer Programming with Python

 1. Select a table from the connected database through the relevant combo box.
 2. Update the combo box using the attributes of the selected table.
 3. Select the attribute upon which the condition for the query will be based.
 4. Identify whether the attribute is numerical (int) or text-based (char).

The second part (lines 165–180) provides the necessary functionality for the user to be able to
decide the type of the attribute, through the selection of the relevant radio button. This provides
the appropriate partial interface that will enable the creation of the condition. The reader should
note how the selection causes the partial interfaces to appear/disappear and be replaced by the most
appropriate option based on the selection. This can be further enhanced and automated to include
as many conditions as needed.

In the third part, function updateAttributes() (lines 93–116) is used to update the attri-
butes combo box based on the selected table. Functions onScaleMin() and onScaleMax()
(lines 182–190) are also part of this process, as they allow the user to determine the limits of the
condition when a numerical attribute is selected.

Arguably, the most important part of the application is the runQuery() function (lines 118–
163). The function firstly prepares the query based on the user’s preferences, and subsequently runs
it based on the prepared condition. Upon execution, the data grid is displayed as required, with a
number of columns dictated by the results of the query. The grid is merely an arrangement of a
sequence of columns (i.e., per line of the grid layout manager) that is created on-the-spot and loaded
with the results of the previously executed query.

In relation to appearance and aesthetics, the reader should also note how the variation of the
background color of each new line creates a specific color theme for the grid. It must be stressed
that, in this particular application, the grid consists of labels and it is, thus, not possible to work
on it directly. If a different widget were to be used instead (e.g., entry boxes), the contents would be
editable and processing (e.g., updating the value of a particular attribute on selected table records)
could be applied to the data directly through the grid.

The simple application presented here is just a sample of the use and functionality of the SQL
and GUI features provided by Python. As mentioned, SQL provides numerous options and possi-
bilities, and this is reflected on the virtually limitless potential when designing and implementing
database applications in Python or other compatible programming languages.

7.5 CASE STUDY

Create an application that provides the following functionality:

 a. Prompt the user for their credentials and the name of the MySQL database to connect to.
Display a list of the tables that are available in the connected database in a status bar form
at the bottom of the application window (Hint: A label can be used for this purpose).

 b. Allow the user to define a new table and set the number of its attributes. Based on user
selection, create the interface required for the specifications of the attributes in the new
table (i.e., attribute name, type and size, primary or foreign key designation). The interface
should be created on-the-spot.

The application must use a GUI interface and the MySQL facilities for the database element.

7.6 EXERCISES

Based on the Employee example, write Python scripts to perform the following tasks using
MySQL:

317Database Programming with Python

 1. Create table DEPT to host departmental data for a company, with the following attributes:
 a. Code → DeptNo, Number (2), not null, primary key.
 b. Department name → Dname, 20 characters.
 2. Create table EMP to host employee data, with the following attributes:
 c. Code → Empno, Number (4), not null, primary key.
 d. Name (Last and First) → Ename, 40 characters.
 e. Job → Job, 10 characters.
 f. Manager Code → Mgr, Number (4), internal foreign key to Emp → Empno.
 g. Date Hired → Hiredate, date.
 h. Monthly salary → Sal, Number (7, 2), between 100 and 10,000.
 i. Department code → DeptNo, Number (2), foreign key to Dept → DeptNo.
 3. Alter table DEPT to include the following attribute: Location → DLocation, 20

characters.
 4. Alter table EMP to include the following attribute: Sales Commission → Comm, Number (7, 2),

no more than Sal.
 5. Insert five records into DEPT.
 6. Insert ten records into EMP, two for each department.
 7. Delete the record of the department entered last.

REFERENCES

APACHE. (2021). APACHE Software Foundation. https://apache.org.
Elmasri, R., & Navathe, S. (2017). Fundamentals of Database Systems (Vol. 7). Pearson, Hoboken, NJ.
MAMP. (2021). Download MAMP & MAMP PRO. https://www.mamp.info/en/downloads.
MySQL. (2021). Oracle Corporation. https://www.mysql.com.
Oracle. (2021a). MySQL Documentation. https://dev.mysql.com/doc.
Oracle. (2021b). Oracle.com.

https://apache.org
https://www.mamp.info
https://www.mysql.com
https://dev.mysql.com
http://Oracle.com

https://taylorandfrancis.com

319

8 Data Analytics and Data
Visualization with Python

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

Han- I Wang
The University of York

Christos Manolas
The University of York
Ravensbourne University London

CONTENTS

8.1 Introduction .. 320
8.2 Importing and Cleaning Data ... 322

8.2.1 Data Acquisition: Importing and Viewing Datasets ... 322
8.2.2 Data Cleaning: Delete Empty or NaN Values .. 324
8.2.3 Data Cleaning: Fill Empty or NaN Values ... 326
8.2.4 Data Cleaning: Rename Columns .. 327
8.2.5 Data Cleaning: Changing and Resetting the Index .. 329

8.3 Data Exploration ... 329
8.3.1 Data Exploration: Counting and Selecting Columns .. 329
8.3.2 Data Exploration: Limiting/Slicing Dataset Views .. 331
8.3.3 Data Exploration: Conditioning/Filtering... 332
8.3.4 Data Exploration: Creating New Data .. 333
8.3.5 Data Exploration: Grouping and Sorting Data ... 336

8.4 Descriptive Statistics .. 339
8.4.1 Measures of Central Tendency ...340
8.4.2 Measures of Spread... 343
8.4.3 Skewness and Kurtosis ... 347
8.4.4 The describe() and count() Methods .. 350

8.5 Data Visualization .. 352
8.5.1 Continuous Data: Histograms ... 352
8.5.2 Continuous Data: Box and Whisker Plot .. 354
8.5.3 Continuous Data: Line Chart .. 356
8.5.4 Categorical Data: Bar Chart ... 357
8.5.5 Categorical Data: Pie Chart .. 363
8.5.6 Paired Data: Scatter Plot ...364

8.6 Wrapping Up ...366
8.7 Case Study .. 371
References .. 371

DOI: 10.1201/9781003139010-8

https://doi.org/10.1201/9781003139010-8

320 Handbook of Computer Programming with Python

8.1 INTRODUCTION

Python is one of the most popular modern programming
languages for data analytics, data visualization, and
data science tasks in general. Indeed, its reputation as
a programming language comes from its efficiency in
such tasks and the wealth of related facilities and tools
it provides. Its power in addressing data analytics prob-
lems comes from its numerous built- in libraries, includ-
ing Pandas, Numpy, Matplotlib, Scipy, and Seaborn.
These libraries provide functionality to read data from
a variety of sources, clean data, and perform descrip-
tive and inferential statistics operations. In addition, the
libraries provide data visualization facilities, supporting
the generation of all types of charts based on the data at
hand. Finally, the platform is capable of performing the
aforementioned tasks on large collections of data, a task
commonly referred to as big data analytics.

A formal definition of the term data analytics may
be difficult to come up with, as it is a relatively new
and rather broad concept in the contemporary business and academic context. However, a possible
description could be that the term refers to the efficient analysis of data from various sources to
produce meaningful results that aid the process of decision- making. If this was to be extended in
order to also capture big data analytics, the associated data would be expected to come from a large
variety of sources, at great velocity (i.e., speed), in vast amounts of volume, and in a serious variety
of formats, as pointed in relevant, contemporary literature. The term data visualization, another
relatively new concept, refers to common mechanisms of illustrating the results of data analytics in
the form of various charts, available as visual tools or through built- in methods in programming
libraries.

A quick look into any book or resource related to data analytics would unveil that the process
is more or less the same, with any minor variations most likely having to do with the terminology
rather than the functionality and structure. The latter includes the following seven steps:

• Research Objectives/Research Question(s): The first part of the data analytics process is
frequently omitted, as it can be deemed as an obvious step. However, it is the most essen-
tial part of the process and requires effort to develop. To complicate things further, it is a
task of purely investigative nature, so limited support is available in terms of specific and
automated tools. It is basically a process seeking to establish the objectives and questions
the process is aiming to address for the task at hand at any given instance. It is beyond the
scope of this chapter to address these concepts in more detail. For more information, the
reader is encouraged to refer to literature related to research methods and methodologies.

• Data Acquisition: The process of reading data stored in a variety of formats and sources,
including spreadsheets, comma separated files, web pages, and databases. Once the data
is read, it is stored in a specific type of variable called data frame for further processing.

• Cleaning Data: While the collection of complete and error- free data during the acquisi-
tion process is highly desirable, this is seldom the case. Given that the data are entered
by users who are often not familiar with the data entry process, it is highly probable and
expected to encounter such problems. The process of data cleaning focuses on the removal
of these types of errors.

• Exploratory Analysis: This is a process that comes after data cleaning, with the aim of
identifying and summarizing the main characteristics of the data. It often involves the
application of descriptive statistics methods and analysis.

Observation 8.1 – Data Analytics:
Analysis of data from various sources
to produce meaningful results that aid
the process of decision- making.

Observation 8.2 – Data Visualization:
The process of illustrating the results of
data analytics through visual means.

Observation 8.3 – Big Data: Data
obtained from a large variety of
sources, at great velocity, in large
amounts of volumes, and in a variety
of formats.

321Data Analytics and Data Visualization

• Modeling and Validation: This process involves the deployment of advanced tools and
techniques, such as machine learning, for building models relating to the data. This task
covers broad and deep areas of study and expertise that is beyond the scope of this chapter.

• Visualizing Results: This task relates to the use of various facilities and programming
libraries to create charts that help in visualizing the data and assisting in the process of
decision- making.

• Reporting: Writing- up of the final reports relating to the data, including any conclusions
and recommendations.

It is apparent that the process involves various fields of
expertise, including databases and data mining, arti-
ficial intelligence/machine learning, statistics, social
science, and others. It is this interdisciplinary nature of
the overall process that results in the widely used data
science term.

As mentioned, the main Python packages and librar-
ies used for data processing and visualization are
Pandas, Numpy, Matplotlib, Scipy, and Seaborn. More specifically, the main characteristics of
these libraries are the following:

• NumPy: A library optimized for working with single and multi- dimensional arrays. A tool
suitable for machine learning and statistical analysis tasks.

• Pandas: An easy- to- use, open- source library that is based on NumPy. It works particularly
well with one and two- dimensional data (Series and DataFrame respectively). It is a good
choice for statistical analysis tasks.

• SciPy: Another library based on NumPy. It offers additional functionality compared
to NumPy, making it a solid choice for both machine learning and statistical analysis
tasks.

• Matplotlib: A low level plotting library suitable for creating basic graphs. While it pro-
vides a lot of freedom to the programmer, it may be rather demanding in terms of coding
requirements. One must be also aware of the fact that Matplotlib cannot deal directly with
analysis. As such, this needs to be addressed prior to plotting.

• Python’s Statistics: A built- in Python library for descriptive statistics. It works rather well
when datasets are not too large (Statistics — Mathematical Statistics Functions, 2021).

In this chapter, the reader will have the opportunity to acquire basic skills required for clean-
ing and describing data, and performing data visualization, while familiarising with some of
the most popular libraries associated with these tasks. This chapter is divided into four main
sections:

• Data Acquisition and Cleaning: Import, re- arrange, and clean data from various types
of sources.

• Data Exploration: Report data by selecting, sorting, filtering, grouping, and/or re-
calculating rows/columns, as necessary.

• Data Processing/Descriptive Statistics: Apply simple descriptive statistics on the data
frame.

• Data Visualization: Use the available methods from the various Python packages for data
visualization.

Excel files Grades.xlsx and Grades2.xlsx are used for the various examples presented throughout
this chapter.

Observation 8.4 – Data Science: An
interdisciplinary field that involves
databases and data mining, AI/
machine learning, statistics, social sci-
ences and other relevant means to
analyze and interpret data.

322 Handbook of Computer Programming with Python

8.2 IMPORTING AND CLEANING DATA

Before discussing the process of importing data for
 analysis, there are two key terms that need to be pre-
sented: arrays/lists and data frames. Unlike other
common programming languages like C++ or Java, in
Python there is no distinct array object. Instead, this
functionality is provided by the list object, as discussed
in Chapter 2. As a quick reminder, a list is a sequence of
variables that hold data of the same data type, sharing
the same name, and being distinguished only by their
index.

A data frame is a data structure that resembles a relational database table, or an Excel spread-
sheet consisting of rows and columns. The rows correspond to the actual records of the data frame
and are accessed by their index number. The columns correspond to the attributes/columns/fields
in a database table and are accessed by their names. The index is the first column of a data frame
(i.e., starting at zero).

8.2.1 dAtA ACquisition: imPorting And vieWing dAtAsets

The Pandas library is required in order to create the
object used to both read the data from the source and
create the data frame to which data analysis will be
applied. Various sources and formats of data are sup-
ported, including Excel and Comma Separated Values
(CSV) files, tables, plain text, databases, or web- based
sources. In all cases, the basic process of reading from
the source remains the same. However, the method and
the parameters used may vary slightly, depending on the
source.

In the case of reading data from Excel files, the gen-
eral syntax is the following:

<name of data frame> = <name of Pandas
object>.read_excel("<Filename>", sheet_
name = "<Sheet name>")

The following example demonstrates the process of reading data from a particular spreadsheet
(Grades 2020) within an Excel file (Grades.xlsx):

Output 8.2.1.a:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 58.57 50.5 76.0 70.7 60.0 55
1 65.90 49.0 89.0 63.0 54.0 90

69.32 63.5 73.0 54.7 70.0 802

Observation 8.5 – Data Frame:
Typically, a two- dimensional data
structure with rows representing the
data records. Records are divided
into columns, and indices are used to
speed up the searching process within
the data frame.

Observation 8.6 – The Pandas
Library: The Pandas library provides
support for the creation of objects that
can be used for various data analytics
tasks.

Observation 8.7 – Reading from
data sets: Use the read _ excel(),
read _ csv(), or read _ html()
methods to import (read) data from
Excel, CSV, or html files into the data
frame.

1 import pandas as pd
2 dataset = pd.read_excel("Grades.xlsx", sheet_name = "Grades 2020")
3 print(dataset)

323Data Analytics and Data Visualization

3 72.02 60.5 99.0 74.7 76.0 70
4 74.0 84.0 53.3 64.0 87
5 45.5 94.0 42.7 66.0 70
6 67.87 66.5 73.0 53.7 54.0 87
7 75.57 66.0 94.0 58.7 92.0 70
8 61.28 50.5 84.0 37.3 58.0 78
9 0.00 NaN NaN NaN NaN 69
10 62.35 48.0 78.0 49.0 70.0 71
11 66.13 61.0 83.0 45.3 70.0 70
12 69.43 50.0 80.0 49.3 90.0 76
13 82.60 74.0 94.0 65.0 86.0 92
14 0.00 NaN NaN NaN NaN 75
15 62.62 45.5 78.0 56.7 72.0 70
16 0.00 NaN NaN NaN NaN 0

73.68
61.32

The above script reports 16 rows/records across 6 columns. A few key things are noteworthy in
the script output. Firstly, the name of the read_excel() method is case sensitive. This is in
line with the general Python syntax rule for methods and statements used in data analytics tasks.
Secondly, as mentioned, it is highly unlikely to deal with perfect, clean data during data analysis.
More often than not, one has to deal with erroneous, corrupt, or missing data. The latter applies
to both designated NaN entries or empty cells. Fortunately, there are easy ways to tackle such
problems, some of which are described in the following sections. Finally, it is worth mention-
ing that in order to report a given dataset the print() method can be used. The method comes
handy in several situations related to reporting data from datasets and it is further discussed latter
in this chapter.

In the case of reading data from a flat CSV file, the general syntax is the following:

<name of data frame> = <name of Pandas object>.read_csv("<Filename.csv",
delimiter = ', ')

The following script reads and reports the data included in file Grades2.csv:

Output 8.2.1.b:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project

0 67.47 59.0 70 72.7 70 72

1 75.13 61.5 76 68.3 82 87

2 66.85 77.5 84 52.0 40 80

3 54.45 34.5 62 44.0 44 90

4 76.95 66.5 68 67.0 82 92

5 45.13 26.0 52 26.3 50 68

1 import pandas as pd
2 dataset = pd.read_csv('Grades2.csv', delimiter = ', ')
3 Dataset

324 Handbook of Computer Programming with Python

6 73.23 63.5 96 68.3 62 89

7 81.87 83.0 97 82.7 84 72

8 62.63 54.5 54 31.3 64 87

9 58.75 46.5 54 39.0 52 90

10 49.75 27.5 48 37.0 62 70

11 44.25 21.5 55 18.0 42 80

12 62.52 31.0 85 54.7 68 89

13 47.33 16.5 38 33.3 52 89

14 68.97 55.0 65 49.7 70 94

In the case of reading data from a web page, the general syntax is the following:

<name of data frame> = <name of Pandas object>.read_html("<url>")

8.2.2 dAtA CleAning: delete emPty or nAn vAlues

There are two main techniques to clean a dataset. One
has to do with correcting erroneous data and the other
with dealing with missing values. The cleaning process
may include the partial or complete deletion of the related
rows or the replacement of cells that contain missing data
with specific calculated or predefined values.

In the case of the former, there are two possible sce-
narios. Rows may contain missing or designated NaN
values, in some or all of its columns. If it is decided to delete all the rows that contain missing data,
the following syntax should be used:

<name of new Data Frame> = <name of original Data Frame>.dropna()

The following script demonstrates the application of the dropna() method that deletes all rows
with cells that include NaN values:

Using the dropna(how = “any”) method form instead of the simple dropna() form will
 produce the same result, similarly to deleting any row that contains either NaN or empty values.
The full syntax in this case is very similar to the previous one:

<name of new Data Frame> = <name of original Data Frame>.dropna(how = "any")

The following Python script provides an example of this method applied to the same data frame:

Observation 8.8 – Drop NaN or
Empty Values: Use the dropna()
method to delete rows with NaN or
empty values from a data frame. The
method must be used with the how
parameter (“all” or “any” values).

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 dframe_no_missing_data = dataset.dropna()
4 dframe_no_missing_data

325Data Analytics and Data Visualization

Output 8.2.2.a:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project

0 58.57 50.5 76.0 70.7 60.0 55

1 65.90 49.0 89.0 63.0 54.0 90

2 69.32 63.5 73.0 54.7 70.0 80

3 72.02 60.5 99.0 74.7 76.0 70

4 73.68 74.0 84.0 53.3 64.0 87

5 61.32 45.5 94.0 42.7 66.0 70

6 67.87 66.5 73.0 53.7 54.0 87

7 75.57 66.0 94.0 58.7 92.0 70

8 61.28 50.5 84.0 37.3 58.0 78

10 62.35 48.0 78.0 49.0 70.0 71

11 66.13 61.0 83.0 45.3 70.0 70

12 69.43 50.0 80.0 49.3 90.0 76

13 82.60 74.0 94.0 65.0 86.0 92

15 62.62 45.5 78.0 56.7 72.0 70

The reader should note that 2 of the 16 original rows are deleted from the data frame as a result of
running the two versions of the script, irrespectively of whether the dropna() or dropna(how
“any”) method form is used.

If it is decided to delete only the rows with all columns containing NaN or empty values, the fol-
lowing syntax of the dropna() method should be used:

<name of new Data Frame> = <name of original Data Frame>.dropna(how = "all")

The following script and its output demonstrate the use of the dropna() method, with parameters
that result in the deletion of rows consisting exclusively of cells with NaN values. Note that none of
the 16 original rows are deleted from the data frame as a result of the method call.

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 dframe_delete_rows_with_all_na_values = dataset.dropna(how = "all")
4 dframe_delete_rows_with_all_na_values

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 dframe_delete_rows_with_any_na_values = dataset.dropna(how = "any")
4 dframe_delete_rows_with_any_na_values

326 Handbook of Computer Programming with Python

Output 8.2.2.b:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project

0 58.57 50.5 76.0 70.7 60.0 55

1 65.90 49.0 89.0 63.0 54.0 90

2 69.32 63.5 73.0 54.7 70.0 80

3 72.02 60.5 99.0 74.7 76.0 70

4 73.68 74.0 84.0 53.3 64.0 87

5 61.32 45.5 94.0 42.7 66.0 70

6 67.87 66.5 73.0 53.7 54.0 87

7 75.57 66.0 94.0 58.7 92.0 70

8 61.28 50.5 84.0 37.3 58.0 78

9 0.00 NaN NaN NaN NaN 69

10 62.35 48.0 78.0 49.0 70.0 71

11 66.13 61.0 83.0 45.3 70.0 70

12 69.43 50.0 80.0 49.3 90.0 76

13 82.60 74.0 94.0 65.0 86.0 92

14 0.00 NaN NaN NaN NaN 75

15 62.62 45.5 78.0 56.7 72.0 70

16 0.00 NaN NaN NaN NaN 0

8.2.3 dAtA CleAning: fill emPty or nAn vAlues

It is often the case that empty cells or cells with NaN
values are filled with either predefined values or val-
ues calculated based on the rest of the data. In such
cases, instead of the dropna() method (in any
of its forms), one can use the fillna(<value>,
[inplace = true]) method. The general syntax of
the method is the following:

<name of new Data Frame> = <name of original Data Frame>.fillna(value[,
how = 'all'] [, inplace = True])
<name of new Data Frame> = <name of original Data Frame>.fillna(value[,
how = 'any'] [, inplace = True])

The value can be defined before running the script, based on existing dataset values and/or other
calculations (e.g., using the mean of the existing data in the same column). The inplace parameter
enables the permanent change of the data in the dataset, if set to true. While the false value can
be also used, this would not make much sense, since it is the default value when inplace is not used.

Observation 8.9 – Fill NaN or Empty
Values: Use the fillna() method
to define replacement values for any
NaN or empty values encountered.

327Data Analytics and Data Visualization

The following script and its output demonstrate the use of the fillna() method, while also
applying the inplace parameter to enable the permanent change of the data. The default value
used for the modification of empty or missing values is zero. The reader should note that the
inplace parameter affects only the dataset resulting from the execution of the script, and not
the data source:

Output 8.2.3:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project

0 58.57 50.5 76.0 70.7 60.0 55

1 65.90 49.0 89.0 63.0 54.0 90

2 69.32 63.5 73.0 54.7 70.0 80

3 72.02 60.5 99.0 74.7 76.0 70

4 73.68 74.0 84.0 53.3 64.0 87

5 61.32 45.5 94.0 42.7 66.0 70

6 67.87 66.5 73.0 53.7 54.0 87

7 75.57 66.0 94.0 58.7 92.0 70

8 61.28 50.5 84.0 37.3 58.0 78

9 0.00 0.0 0.0 0.0 0.0 69

10 62.35 48.0 78.0 49.0 70.0 71

11 66.13 61.0 83.0 45.3 70.0 70

12 69.43 50.0 80.0 49.3 90.0 76

13 82.60 74.0 94.0 65.0 86.0 92

14 0.00 0.0 0.0 0.0 0.0 75

15 62.62 45.5 78.0 56.7 72.0 70

16 0.00 0.0 0.0 0.0 0.0 0

8.2.4 dAtA CleAning: renAme Columns

It is sometimes required to change the column headings
in a dataset. This is especially true in the case of for-
mal reports, where clarity and appearance are key. In
such cases, the rename() method is used. The method
allows for the temporary change of the column heading
without affecting the original dataset at the source.

Observation 8.10 – rename(): Use
the rename() method to change the
column heading appearance. Use the
set notation to dictate the old and
new (temporary) column names.

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 dataset.fillna(0, inplace = True)
4 dataset

328 Handbook of Computer Programming with Python

The general syntax is the following:

df.rename(columns = {"oldname": "newname", } [, inplace=True])

As in the previous case, if the inplace parameter is used, the column names will be changed for
the resulting dataset, but the source data will not be affected. The most crucial aspect of the syntax
is that the programmer can change any number of column names just by separating them using
commas:

Output 8.2.4:

Total Grade

0 58.57 50.5 76.0 70.7 60.0 55

1 65.90 49.0 89.0 63.0 54.0 90

2 69.32 63.5 73.0 54.7 70.0 80

3 72.02 60.5 99.0 74.7 76.0 70

4 73.68 74.0 84.0 53.3 64.0 87

5 61.32 45.5 94.0 42.7 66.0 70

6 67.87 66.5 73.0 53.7 54.0 87

7 75.57 66.0 94.0 58.7 92.0 70

8 61.28 50.5 84.0 37.3 58.0 78

9 0.00 NaN NaN NaN NaN 69

10 62.35 48.0 78.0 49.0 70.0 71

11 66.13 61.0 83.0 45.3 70.0 70

12 69.43 50.0 80.0 49.3 90.0 76

13 82.60 74.0 94.0 65.0 86.0 92

14 0.00 NaN NaN NaN NaN 75

15 62.62 45.5 78.0 56.7 72.0 70

16 0.00 NaN NaN NaN NaN 0

ProjectMidtermTest 2Test 1Final Exam

The reader should note the use of the set notation to declare the pairs of column names (i.e., old
and new) when changing them. It must be also noted that, in order for the change to apply, the result
of the rename() method must be assigned to a new dataset before it is reported.

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 dataset_new = dataset.rename(columns = {"Final Grade": "Total Grade",
4 "Quiz 1": "Test 1", "Quiz 2": "Test 2", "Midterm Exam": “Midterm”})
5 dataset_new

329Data Analytics and Data Visualization

8.2.5 dAtA CleAning: ChAnging And resetting the index

The index of a dataset is important, as it can speed up the
process of data searching. This is particularly relevant
when searching for or sorting data on a column of the
dataset different than the one the focus is on. In such a
case, it is convenient to temporarily change the indexed
column to perform the task at hand, and return back to
the original state by resetting the index to its original
column once this is completed. The general syntax for
changing and resetting the index in a dataset is the following:

<name of dataset>.set_index("<column name>" [, inplace=True])
<name of dataset>.reset_index([inplace=True])

8.3 DATA EXPLORATION

Data exploration is an umbrella term, encompassing processes used to report data in various differ-
ent ways. For example, it may refer to the process of row/column selection for inclusion in the report,
or to facilities used to sort and/or filter data based on certain, defined conditions. If necessary, it
offers options to group the data in one or more columns and the functionality to create new columns
based on calculations on existing ones. This section will explore some of the most important con-
cepts and methods related to data exploration.

8.3.1 dAtA exPlorAtion: Counting And seleCting Columns

Three of the basic methods and parameters used in order
to view the data of a dataset are len(), columns, and
shape. The len() method reports the number of records
in the dataset. The general syntax is the following:

len(<name of dataset>)

The columns attribute can be used to get a list of the
available columns in the dataset, with the following syntax:

<name of dataset>.columns

Finally, the shape attribute can be used to report the number of records and columns in a dataset:

<name of dataset>.shape

The following script uses all three of the above, while also including a basic statement to display all
the data in the dataset:

Observation 8.11 – set _ index(),
reset _ index(): Use the set _
index() and reset _ index()
methods to set the index of the data-
set to another column and restore it
back to the original one.

Observation 8.12 – len(): Use the
len() method and the columns and
shape attributes of a dataset to report
the number of its records, the names
of its attributes, and the number of its
records and columns, respectively.

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 dataset[["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
4 "Midterm Exam", "Project"]]
5 dataset
6 len(dataset)
7 dataset.columns
8 dataset.shape

330 Handbook of Computer Programming with Python

Output 8.3.1.a: Basic exploration methods without print

(17, 6)

It should be noted that the script fails to display all the requested output. Instead, it displays only the
result of the application of shape: the number of records and columns. If it is necessary to display
all the requested information, the print() method should be used, as in the amended version of
the script below:

Output 8.3.1.b: Basic exploration methods using print

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 58.57 50.5 76.0 70.7 60.0 55
1 65.90 49.0 89.0 63.0 54.0 90
2 69.32 63.5 73.0 54.7 70.0 80
3 72.02 60.5 99.0 74.7 76.0 70
4 73.68 74.0 84.0 53.3 64.0 87
5 61.32 45.5 94.0 42.7 66.0 70
6 67.87 66.5 73.0 53.7 54.0 87
7 75.57 66.0 94.0 58.7 92.0 70
8 61.28 50.5 84.0 37.3 58.0 78
9 0.00 NaN NaN NaN NaN 69
10 62.35 48.0 78.0 49.0 70.0 71
11 66.13 61.0 83.0 45.3 70.0 70
12 69.43 50.0 80.0 49.3 90.0 76
13 82.60 74.0 94.0 65.0 86.0 92
14 0.00 NaN NaN NaN NaN 75
15 62.62 45.5 78.0 56.7 72.0 70
16 0.00 NaN NaN NaN NaN 0
The dataset has 17 records
The columns in the dataset are: Index(['Final Grade', 'Final Exam',
'Quiz 1', 'Quiz 2', 'Midterm Exam', 'Project'], dtype='object')
The number of records is: 17
The number of columns is: 6

As shown above, it is possible to improve the output appearance by adding appropriate text through
the print() method. Obviously, the presentation of the results could be further improved with the
use of more elaborate presentation techniques and tools, such as an appropriate GUI.

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 dataset[["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
4 "Midterm Exam", "Project"]]
5 print(dataset)
6 print("The dataset has", len(dataset), "records")
7 print("The columns in the dataset are:", dataset.columns)
8 print("The number of records is:", dataset.shape[0])
9 print("The number of columns is:", dataset.shape[1])

331Data Analytics and Data Visualization

8.3.2 dAtA exPlorAtion: limiting/sliCing dAtAset vieWs

It is often the case that it is impractical to display all
the data in a single report. This is especially true when
working with very large datasets. In such cases, it is
preferable to display just a sample of the dataset, by
limiting the number of records and/or columns. There
are a number of methods that can be used for this task.
Methods head(n) and tail(n) restrict the number of
the displayed records, either at the top or the bottom of
the dataset. The general syntax is the following:

<name of dataset>.head(number of rows from the top)
<name of dataset>.tail(number of rows from the bottom)

Methods loc[] and iloc[] can be used to restrict the displayed results based on specific rows
and/or columns:

<name of dataset>[start record number: end record number [: step]
<name of dataset>.loc[start record number: end record number [: step],
"<start column name>": "<end column name>"]
<name of dataset>.iloc[[start record number: end record number, start
column index: end column index]

The practical application of these methods and attributes is demonstrated in the following script:

Output 8.3.2:

0
1
2
3
4

Final Grade
58.57
65.90
69.32
72.02
73.68

Final Grade

Final Exam
50.5
49.0
63.5
60.5
74.0

Final Exam

Quiz 1
76.0
89.0
73.0
99.0
84.0

Quiz 1

Quiz 2
70.7
63.0
54.7
74.7
53.3

Quiz 2

Midterm Exam
60.0
54.0
70.0
76.0
64.0

Midterm Exam

Project
55
90
80
70
87

Project
12 69.43 50.0 80.0 49.3 90.0 76
13 82.60 74.0 94.0 65.0 86.0 92
14 0.00 NaN NaN NaN NaN 75
15 62.62 45.5 78.0 56.7 72.0 70
16 0.00 NaN NaN NaN NaN 0

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 58.57 50.5 76.0 70.7 60.0 55
5 61.32 45.5 94.0 42.7 66.0 70
10 62.35 48.0 78.0 49.0 70.0 71
15 62.62 45.5 78.0 56.7 72.0 70

Observation 8.13 – head(), tail():
Use the head(n) and tail(n) meth-
ods to restrict the number of displayed
records from the top and bottom of
the dataset. Use the loc[] or iloc[]
attributes to restrict the report to the
specified rows and columns using
labels or indices.

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx', sheet_name = "Grades 2020")
3 print(dataset.head(5))
4 print(dataset.tail(5))
5 print(dataset[0:37:5])
6 print(dataset.loc[0:5,"Final Grade": "Final Exam"])
7 print(dataset.iloc[0:5,0:3])

332 Handbook of Computer Programming with Python

Final Grade Final Exam
0 58.57 50.5
1 65.90 49.0
2 69.32 63.5
3 72.02 60.5
4 73.68 74.0
5 61.32 45.5

Final Grade Final Exam Quiz 1
0 58.57 50.5 76.0
1 65.90 49.0 89.0
2 69.32 63.5 73.0
3 72.02 60.5 99.0
4 73.68 74.0 84.0

In the output, the reader will notice that with the application of head(5) and tail(5), only the five
first and last records of the dataset are displayed (with all their columns). Next, records are displayed
in intervals of five, starting from zero and ending with the last records of the dataset. The next sec-
tion displays six records of the dataset using only the first three columns (inclusive of the index of
the dataset). In a similar way, the last section shows the first five records using only the first four
columns (inclusive of the index of the dataset), but the columns are specified by their index and not
their names. If it is required to report on non- sequential columns, these columns must be included
in square brackets ([]) and separated by commas.

8.3.3 dAtA exPlorAtion: Conditioning/filtering

Expectedly, Pandas also offers a set of methods that
allow for the filtering of the displayed data through con-
ditioning. For instance, the unique() method displays
only the first occurrence of recurring data values from
the specified column:

<name of dataset>["<name of column>"].
unique()

It is also possible to define a particular condition that limits the displayed results like in the case
of an if statement. The condition can be simple (single) or complex. The general syntax is the
following:

<name of dataset>[<condition>]
<name of dataset> [<condition>[&/|] <condition>]]

The following script uses the data from the Grades.xlsx file to identify unique grades for the project,
and report all final grades with a percentage higher than 80% and between 1% and 59%:

Observation 8.14 – unique():
Use the unique() method and the
square bracket ([]) list notation to
report unique data in a dataset based
on a specified column and to set the
conditions for the reported records.

1 import pandas as pd
2 dataset = pd.read_excel('Grades.xlsx')
3 print("Unique grades for project:", dataset["Project"].unique())
4 print("Final grades more than 80%:\n",
5 dataset[dataset["Final Grade"] > 80])
6 print("Final grades 1% to 60%:\n", dataset[(dataset["Final Grade"] > 0)
7 & (dataset["Final Grade"] < 60)])

333Data Analytics and Data Visualization

Output 8.3.3:

Unique grades for project: [55 90 80 70 87 78 69 71 76 92 75 0]
Final grades more than 80%:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
13 82.6 74.0 94.0 65.0 86.0 92
Final grades 1% to 60%:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 58.57 50.5 76.0 70.7 60.0 55

The reader should note that it is possible to limit the displayed columns if the loc[] parameter is
also used, although this is not shown in the current script and its output. It is also worth mentioning
that, in a compound condition like the second one in the example, instead of using the and or or
keywords one can use & and | operators respectively.

8.3.4 dAtA exPlorAtion: CreAting neW dAtA

As part of the data exploration process, it is sometimes necessary to create new data. This can take
four different forms:

• Merging two or more datasets into one.
• Creating a new column with data derived from other available data sources, in the same

or other datasets.
• Creating a new column with data calculated from other available data sources, in the same

or other datasets.
• Creating a new file of a certain file type (e.g.,

Excel, CSV).

The append() method is used to merge two or more
datasets. The basic syntax is the following:

<name of new dataset> = <name of first
old dataset>.append(<name of second old
dataset>)

To create a new column with values calculated based
on data of other columns one can use the following
command:

<name of dataset>["<name of new column>"]
= expression with other columns

If the newly created column is based on certain condi-
tions applied to data from other columns the following
commands could be used instead:

<name of dataset>["<name of new column>"]
= np.where(condition, value if True,
value if False)

or

<name of dataset>["<name of new column>"] =
np.select(<condition set>, <set of values>)

Observation 8.16 – Create a New
Column Using np.where() or np.
select(): Use Numpy’s np.where()
or np.select() methods and the
following syntax to create a new col-
umn based on a simple or complex
condition. This can include other col-
umns from the same or other datasets:

<name of dataset>[“<name of
new column>”] = np.where
(condition, value if True,
value if False)
<name of dataset>[“<name of
new column>”] = np.select
(<condition set>, <set of
values>)

Observation 8.15 – Create New
Column: Use the following expression
and syntax to create a new column
based on the values of other columns
from the same or other datasets:

<name of dataset>[“<name of
new column>”] = expression
with other columns

334 Handbook of Computer Programming with Python

Finally, to create a new dataset and store it in a file, one
of the following command structures could be used. The
examples provided here cover Excel and CSV files, but
the same logic also applies to other data file formats.

Excel files:
<name of new Excel file object> =
pd.ExcelWriter("<name of new Excel file>")
<name of dataset>.to_excel(<name of new
Excel file object>, "sheet name")
<name of new Excel file object>.save()

CSV files:
<name of dataset>.to_csv("<name of new
CSV file>")

Using the Grades.xlsx dataset as an example, student grades are stored in a particular section of
a course and in a particular semester. If another dataset for the same course but a different sec-
tion exists in another file (e.g., Grades2.csv), it may be
useful to merge the two and perform the necessary pro-
cesses in the newly created dataset. The following script
reads two different files (i.e., Excel and CSV), reports
their data, appends the second dataset at the end of the
first, defines the condition, and creates a new column
with values calculated from the data of other columns.
Finally, it saves the new dataset in both Excel and CSV
formats:

Observation 8.18 – Create a New
CSV File: Use the following syntax
to create a new CSV file from a given
dataset:

<name of dataset>.to_csv
(“<name of new CSV file>”)

Observation 8.17 – Create a New
Excel File: Use the following syntax to
create a new Excel file from a given
dataset:

<name of new Excel file
object> = pd.ExcelWriter
(“<name of new Excel file>”)
<name of dataset>.to_excel
(<name of new Excel file
object>, “sheet name”)
<name of new Excel file
object>.save()

1 import pandas as pd
2 import numpy as np
3
4 dataset1 = pd.read_excel("Grades.xlsx")
5 print("The data in Grades file are:"); print(dataset1.head(3))
6 dataset2 = pd.read_csv('Grades2.csv')
7 print("The data in Grades2 file are:"); print(dataset2.tail(3))
8 dataset = dataset1.append(dataset2)
9 print("The new merge dataset is:"); print(dataset.head(3))
10 print(dataset.tail(3))
11
12 # The conditions for the Letter Grades
13 conditions = [(dataset["Final Grade"] > 90.0),
14 (dataset["Final Grade"] > 80.0) & (dataset["Final Grade"] <= 89.9),
15 (dataset["Final Grade"] > 70.0) & (dataset["Final Grade"] <= 79.9),
16 (dataset["Final Grade"] > 60.0) & (dataset["Final Grade"] <= 69.9),
17 (dataset["Final Grade"] < 59.9)
18]
19
20 # The list of Grade Letters based on the conditions
21 gradeLetters = ["A", "B", "C", "D", "F"]
22 # Create a new Letter Grades column in the new dataset using numpy
23 dataset["Letter Grade"] = np.select(conditions, gradeLetters)

335Data Analytics and Data Visualization

Output 8.3.4:

The data in Grades file are:
Final Grade Final Exam Quiz 1

0 58.57 50.5 76.0
1 65.90 49.0 89.0
2 69.32 63.5 73.0
The data in Grades2 file are:

Quiz 2
70.7
63.0
54.7

Midterm Exam
60.0
54.0
70.0

Project
55
90
80

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
12 62.52 31.0 85 54.7 68 89
13 47.33 16.5 38 33.3 52 89
14
The new merge dataset is:

68.97 55.0 65 49.7 70 94

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 58.57 50.5
1 65.90 49.0
2 69.32 63.5

Final Grade Final Exam

76.0 70.7 60.0
89.0 63.0 54.0
73.0 54.7 70.0

Quiz 1 Quiz 2 Midterm Exam

55
90
80

Project
12 62.52 31.0 85.0 54.7 68.0 89
13 47.33 16.5 38.0 33.3 52.0 89
14 68.97 55.0 65.0 49.7 70.0 94
A partial view of the new dataset:

Course Work Final Exam Final Grade Letter Grade
0 43.42 50.5 58.57 F
5 47.67 45.5 61.32 D
10 47.95 48.0 62.35 D
15 48.97 45.5 62.62 D
3 44.10 34.5 54.45 F
8 46.28 54.5 62.63 D
13 42.38 16.5 47.33 F

Some key observations can be made based on this script. Firstly, it is possible, and indeed com-
mon, for the programmer to require the merging of datasets from files of different file types. In
this instance, the script merges a dataset stored in an Excel file with one in a CSV file. Secondly,

24 dataset["Course Work"] = dataset["Quiz 1"]*0.1+dataset["Quiz 2"]*0.1+ \
25 dataset["Midterm Exam"]*0.25 + dataset["Project"]*0.25
26 print("A partial view of the new dataset:")
27
28 # Find the number of records in the dataset
29 rowNum = len(dataset)
30 # Select the columns to be displayed in the report
31 cols = [7, 1, 0, 6]
32 print(dataset.iloc[:rowNum:5, cols])
33
34 # Save the new dataset as an Excel file
35 newExcel = pd.ExcelWriter("NewGrades.xlsx")
36 dataset.to_excel(newExcel, "New Data")
37 newExcel.save()
38
39 # Save the new dataset as a CSV file
40 dataset.to_csv("newGrades.csv")

336 Handbook of Computer Programming with Python

although it is possible to use multiple lines of code to define the values of a new column based
on different conditions, a more efficient option is to use the np.where() method to define the
conditions and their paired values in advance, and subsequently use the np.select() method
from the Numpy library. Thirdly, it is possible to create a new column based on simple or complex
expressions that include other columns. Fourthly, it may be more convenient to define the displayed
records and columns as variables and use them in a statement, rather than directly adding the asso-
ciated constraints to the statement. Finally, the reader should note that the sequence of statements
used to create a new Excel file is different than that for a CSV file. Such differences also exist for
files of other formats.

8.3.5 dAtA exPlorAtion: grouPing And sorting dAtA

Data grouping is one of the most important data pro-
cessing tasks, and is usually carried out before other
tasks commence. This is commonly coupled with data
sorting, and the two tasks together constitute a key
building block for the production of professional reports.
Unsurprisingly, Python provides facilities for both of
these tasks.

In order to group data within a dataset, the
groupby() method can be used. The general syntax
is the following:

<name of dataset>.groupby([“<name of column>” [, “<name of column>”,
…]]).<aggregate function>

It must be noted that the method requires the application of an aggregation (e.g., mean) to the
grouped data, a concept covered in the following section. Alternatively, if the goal is to simply dis-
play the report grouped by a specific column, the apply() method can be used with the following
syntax:

<name of dataset>.groupby([“<name of column>” [, “<name of column>”,
…]]).apply(lambda x: x[<rows>, <cols>])

The apply() method replaces the aggregation with the lambda x: x[…] expression in order to
specify the records and columns that should be displayed in the report.

The reader should also note that if more than one column is used for the grouping, the data will
be initially grouped based on the firstly selected column. After that point, data will be grouped in
each separate group based on the second column.

For the purposes of data sorting, the sort_values() method is used. The general syntax is the
following:

<name of dataset>.sort_values([“<name of
column>” [, “<name of column>”, …]] [,
ascending = False])

As with data grouping, the reader should note that if
more than one column is specified, the data with the
same value are sorted based on the first column.

Finally, it is possible to combine the functionality of
groupby() and sort_values() by firstly applying the former and assigning the result to the
lambda expression, and then applying the sort_values() method to the lambda expression.

Observation 8.19 – Grouping Data:
Use the groupby() method to group
a dataset based on one or more col-
umns. The method must be used with
either an aggregate method (e.g.,
mean()) or with the apply(lambda
x: x[…]) statement for non- aggregate
groupings.

Observation 8.20 – Sorting Data:
Use the sort_values() method to
sort a dataset based on one or more
specified columns.

337Data Analytics and Data Visualization

The following script reads a CSV file and groups and reports its data based on the Letter Grade
column, displaying only columns Letter Grade and Final Grade. Next, it creates a second dataset
and sorts the values based on the Final Grade in ascending order. Finally, it utilizes the apply()
method to group the data based on Letter Grade and sort them based on Final Grade:

Output 8.3.5.a–8.3.5.c:

Letter Grade
Letter Grade
B 13 B 82.60

24 B 81.87
C 3 C 72.02

4 C 73.68
7 C 75.57
18 C 75.13
21 C 76.95
23 C 73.23

D 1 D 65.90
2 D 69.32
5 D 61.32
6 D 67.87
8 D 61.28
10 D 62.35
11 D 66.13
12 D 69.43
15 D 62.62
17 D 67.47
19 D 66.85

Final Grade

1 import pandas as pd
2
3 dataset = pd.read_csv('newGrades.csv')
4
5 # Report the number of records in the dataset
6 rows = len(dataset)
7
8 # Report the records grouped by Letter Grade
9 dataset1 = dataset[["Letter Grade", "Final Grade"]]
10 print(dataset1.groupby(["Letter Grade"]).apply(lambda x: x[0:rows]))
11
12 # Report the records sorted by Final Grade
13 dataset2 = dataset[["Letter Grade", "Final Grade"]]
14 print(dataset2.sort_values(["Final Grade"], ascending = False))
15
16 # Report the records firstly grouped by Letter Grade and
17 # then sorted by Final Grade (within groups)
18 dataset3 = dataset[["Letter Grade", "Final Grade"]]
19 print(dataset3.groupby(["Letter Grade"]).
20 apply(lambda x: x.sort_values(["Final Grade"], ascending=False)))

338 Handbook of Computer Programming with Python

25 D 62.63
29 D 62.52
31 D 68.97

F 0 F 58.57
9 F 0.00
14 F 0.00
16 F 0.00
20 F 54.45
22 F 45.13
26 F 58.75
27 F 49.75
28 F 44.25
30 F 47.33

Letter Grade
13 B 82.60
24 B 81.87
21 C 76.95
7 C 75.57
18 C 75.13
4 C 73.68
23 C 73.23
3 C 72.02
12 D 69.43
2 D 69.32
31 D 68.97
6 D 67.87
17 D 67.47
19 D 66.85
11 D 66.13
1 D 65.90
25 D 62.63
15 D 62.62
29 D 62.52
10 D 62.35
5 D 61.32
8 D 61.28
26 F 58.75
0 F 58.57
20 F 54.45
27 F 49.75
30 F 47.33
22 F 45.13
28 F 44.25
14 F 0.00
9 F 0.00
16 F 0.00

Final Grade

Letter Grade
Letter Grade
B 13 B 82.60

24 B 81.87
C 21 C 76.95

7 C 75.57

Final Grade

339Data Analytics and Data Visualization

18 C 75.13
4 C 73.68
23 C 73.23
3 C 72.02

D 12 D 69.43
2 D 69.32
31 D 68.97
6 D 67.87
17 D 67.47
19 D 66.85
11 D 66.13
1 D 65.90
25 D 62.63
15 D 62.62
29 D 62.52
10 D 62.35
5 D 61.32
8 D 61.28

F 26 F 58.75
0 F 58.57
20 F 54.45
27

F
49.75

30
F

47.33
22 F 45.13
28 F 44.25
9 F 0.00
14 F 0.00
16 F 0.00

The output shows the results of the reports for the three datasets. From left to right, the output
shows the results of groupby() based on Letter Grade, the results of sort_values() based
on Final Grade, and the dataset grouped by Letter Grade and sorted by Final Grade. The reader
should note that, in this instance, the outputs are presented side- by- side for demonstration purposes,
but in a more realistic scenario they should be presented in succession, as dictated by the actual
output.

8.4 DESCRIPTIVE STATISTICS

Descriptive statistics are defined as the analysis of data
that describe, show, or summarize information in a
meaningful manner. They are simply a way of describ-
ing the data and they do not draw conclusions, make
predictions, or test hypotheses based on the data, all
of which form a specific branch of statistical analysis
referred to as inferential statistics (covered in Chapter 9).
This section provides introductions to basic concepts
relating to descriptive statistics and how Python is used
to carry out various descriptive analysis tasks.

Before performing any statistical task, it is useful to
distinguish and identify the type(s) of data that will be
analysed, as this largely dictates the most appropriate
descriptive statistics and data visualisation techniques
for the task at hand.

Observation 8.21 – Descriptive
Statistics: A branch of data analysis
that describes, displays, or summa-
rizes information without drawing
conclusions, making predictions, or
testing hypotheses.

Observation 8.22 – Categorical and
Continuous Data: Categorical data
are data that can be divided into
groups or classes but with no numeri-
cal relationship. Continuous data are
numerical data that can be used for
counting or measurements.

340 Handbook of Computer Programming with Python

In a broad context, data can be simply categorized into two types: categorical and continuous.
Categorical data are data that can be divided into groups or classes that do not have a numerical or
hierarchical relationship (e.g., gender). Continuous data are numerical, and can include counting
(i.e., integers) or measurements (i.e., any numerical values). The reader should become familiar with
these two terms, as they are used extensively throughout this section.

8.4.1 meAsures of CentrAl tendenCy

There are two main ways to explore and describe contin-
uous data: (a) measuring their central tendency and, (b)
measuring their spread. The following sections intro-
duce and briefly discuss these two concepts.

The measures of central tendency show the central
or middle values of datasets. Hence, this is also fre-
quently referred to as measures of central location.
There are three different measures that can be consid-
ered as the centre of a dataset, namely mean, median,
and mode.

The mean, also called the arithmetic mean, is a popu-
lar measure of central tendency. It is the average of the
data in a dataset, and is calculated as the sum of all the
data values divided by the number of cases in the data-
set. The mean can fail to describe the central location
of the data if there are outliers present or if the data are
skewed.

The median is the middle point of a dataset that has
been sorted in either ascending or descending order. The
main difference between the mean and the median is
that the former is heavily affected by outliers or skewed
data, while the latter is affected only slightly or not at all.

The following Python script reads the data frame
from the newGrades.csv file introduced in previous
script samples, and calculates the means, medians, and
modes of each of the columns:

Observation 8.25 – Median: The
middle point of a sorted dataset.

Observation 8.26 – Mode: The most
frequently occurring value in the
dataset. If more than one such values
exist, the dataset is characterized as
multimodal.

Observation 8.24 – (Arithmetic)
Mean: The average of the data in a
dataset, calculated as the sum of all
the data values divided by the num-
ber of cases.

Observation 8.23 – Measures of
Central Tendency: Measures that
describe the central or middle values
of a dataset. The three different mea-
sures are the mean, the median, and
the mode.

1 import pandas as pd
2
3 # Define the format of float numbers
4 pd.options.display.float_format = '${:,.2f}'.format
5
6 dataset = pd.read_csv('newGrades.csv')
7
8 # Define the number of rows and columns in the data frame
9 rows = len(dataset)
10 cols = ["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
11 "Midterm Exam", "Project"]
12
13 # Calculate the mean of all columns and append the dataset
14 mean1 = dataset["Final Grade"].mean()
15 mean2 = dataset["Final Exam"].mean()
16 mean3 = dataset["Quiz 1"].mean()

341Data Analytics and Data Visualization

17 mean4 = dataset["Quiz 2"].mean()
18 mean5 = dataset["Midterm Exam"].mean()
19 mean6 = dataset["Project"].mean()
20 means = {"Final Grade": mean1, "Final Exam": mean2, "Quiz 1": mean3,
21 "Quiz 2": mean4, "Midterm Exam": mean5, "Project": mean6}
22 dataset = dataset.append(means, ignore_index = True)
23
24 # Calculate the median of all columns and append the dataset
25 median1 = dataset["Final Grade"].median()
26 median2 = dataset["Final Exam"].median()
27 median3 = dataset["Quiz 1"].median()
28 median4 = dataset["Quiz 2"].median()
29 median5 = dataset["Midterm Exam"].median()
30 median6 = dataset["Project"].median()
31
32 medians = {"Final Grade": median1, "Final Exam": median2,
33 "Quiz 1": median3, "Quiz 2": median4, "Midterm Exam": median5,
34 "Project": median6}
35 dataset = dataset.append(medians, ignore_index = True)
36
37 # Find the mode in all columns and append the dataset
38 mode1 = dataset["Final Grade"].mode(dropna = True).values
39 if (len(mode1) > 1):
40 mode1 = "Multimode"
41 mode2 = dataset["Final Exam"].mode(dropna = True).values
42 if (len(mode2) > 1):
43 mode2 = "Multimode"
44 mode3 = dataset["Quiz 1"].mode(dropna = True).values
45 if (len(mode3) > 1):
46 mode3 = "Multimode"
47 mode4 = dataset["Quiz 2"].mode(dropna = True).values
48 if (len(mode4) > 1):
49 mode4 = "Multimode"
50 mode5 = dataset["Midterm Exam"].mode(dropna = True).values
51 if (len(mode5) > 1):
52 mode5 = "Multimode"
53 mode6 = dataset["Project"].mode(dropna = True).values
54 if (len(mode6) > 1):
55 mode6 = "Multimode"
56 modes = {"Final Grade": mode1, "Final Exam": mode2, "Quiz 1": mode3,
57 "Quiz 2": mode4, "Midterm Exam": mode5, "Project": mode6}
58 dataset = dataset.append(modes, ignore_index = True)
59
60 # Report the dataset
61 dataset1 = dataset[["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
62 "Midterm Exam", "Project"]]
63 print(dataset1.iloc[0:rows:1])
64
65 #Report the rows with the means, medians, modes
66 print("Means"); print(dataset1.iloc[32:33])
67 print("Medians"); print(dataset1.iloc[33:34])
68 print("Modes"); print(dataset1.iloc[34:35])

342 Handbook of Computer Programming with Python

Output 8.4.1:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 $58.57 $50.50 $76.00 $70.70 $60.00 $55.00
1 $65.90 $49.00 $89.00 $63.00 $54.00 $90.00
2 $69.32 $63.50 $73.00 $54.70 $70.00 $80.00
3 $72.02 $60.50 $99.00 $74.70 $76.00 $70.00
4 $73.68 $74.00 $84.00 $53.30 $64.00 $87.00
5 $61.32 $45.50 $94.00 $42.70 $66.00 $70.00
6 $67.87 $66.50 $73.00 $53.70 $54.00 $87.00
7 $75.57 $66.00 $94.00 $58.70 $92.00 $70.00
8 $61.28 $50.50 $84.00 $37.30 $58.00 $78.00
9 $0.00 NaN NaN NaN

NaN NaN NaN

NaN NaN NaN

NaN $69.00
10 $62.35 $48.00 $78.00 $49.00 $70.00 $71.00
11 $66.13 $61.00 $83.00 $45.30 $70.00 $70.00
12 $69.43 $50.00 $80.00 $49.30 $90.00 $76.00
13 $82.60 $74.00 $94.00 $65.00 $86.00 $92.00
14 $0.00 NaN $75.00
15 $62.62 $45.50 $78.00 $56.70 $72.00 $70.00
16 $0.00 NaN $0.00
17 $67.47 $59.00 $70.00 $72.70 $70.00 $72.00
18 $75.13 $61.50 $76.00 $68.30 $82.00 $87.00
19 $66.85 $77.50 $84.00 $52.00 $40.00 $80.00
20 $54.45 $34.50 $62.00 $44.00 $44.00 $90.00
21 $76.95 $66.50 $68.00 $67.00 $82.00 $92.00
22 $45.13 $26.00 $52.00 $26.30 $50.00 $68.00
23 $73.23 $63.50 $96.00 $68.30 $62.00 $89.00
24 $81.87 $83.00 $97.00 $82.70 $84.00 $72.00
25 $62.63 $54.50 $54.00 $31.30 $64.00 $87.00
26 $58.75 $46.50 $54.00 $39.00 $52.00 $90.00
27 $49.75 $27.50 $48.00 $37.00 $62.00 $70.00
28 $44.25 $21.50 $55.00 $18.00 $42.00 $80.00
29 $62.52 $31.00 $85.00 $54.70 $68.00 $89.00
30 $47.33 $16.50 $38.00 $33.30 $52.00 $89.00
31 $68.97 $55.00 $65.00 $49.70 $70.00 $94.00
Means

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
32 $58.87 $52.71 $75.28 $52.36 $65.72 $76.84
Medians

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
33 $62.63 $53.60 $77.00 $52.83 $65.86 $78.00
Modes

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
34 [0.0] Multimode Multimode Multimode [70.0] [70.0]

The script and its output demonstrate a few important points:

• Given that the various calculations occasionally produce floating point numbers with sev-
eral decimal digits, it may be desirable to limit the latter to a more manageable scale (i.e.,
two digits). The statement in line four formats the output accordingly.

• The statements in lines 13–15 calculate the mean of each of the columns of the dataset.
Next, these values are appended at the end of the dataset as a new row.

343Data Analytics and Data Visualization

• In a similar fashion, the statements in lines 21–26 calculate the median of each of the col-
umns of the dataset and append them as a new row at the end of the dataset. It should be
noted that, since it is necessary to have the data sorted in order to make such a calculation,
this particular method performs this task too.

• The statements in lines 33–50 calculate the mode for each of the columns. Since it is
undesirable in this particular example to have more than one such value reported, the code
includes appropriate if statements to ensure that the mode is a single value per column or
report that the output is multimodal, (i.e., it includes more than one values).

• Finally, the reader should note the use of the dropna = True parameter in the state-
ments that ensure empty or NaN values are not considered in the mode calculation. The
.values parameter also discards the information related to the resulting series and its
object type, leaving only the pure value.

8.4.2 meAsures of sPreAd

Another way to describe and summarize continuous
data is through measures of spread. Such measures
quantify the variability of data points; hence they are
also called measures of dispersion. Measures of spread
are frequently used in conjunction with measures of
central tendency to provide a clearer and more rounded
overview of the data at hand. The importance of mea-
sures of spread lies in the fact that they can describe how
well the mean represents the data. If the data spread is
large (i.e., if there are large differences between the data
points), the mean may not be as good a representation of
the data as the median or the mode.

The data range is the difference between the mini-
mum and maximum data points in the dataset. It is cal-
culated as range = max−min.

Quartiles describe the data spread by breaking the
data into four parts (i.e., quarters), using three quartiles.
The 1st quartile (Q1) is the 25th percentile of the sample,
dividing roughly the lowest 25% from the rest of the
data, while the 2nd quartile (Q2) is the 50th percentile
or the median, and the third (Q3) the 75th percentile.
Quartiles are a useful measure of spread, as they are
much less affected by outliers or skewed datasets than
other measures like variance or standard deviation.

Variance shows numerically how far the data points
are from the mean. Variance is useful as, unlike quar-
tiles, it takes into account all data points in the dataset
and provides a better representation of the data spread.
The variance of dataset 𝑥 with 𝑛 data points is expressed
as 𝑠² = Σi(𝑥i−mean(𝑥))²/(𝑛−1), where 𝑖 = 1, 2, …, 𝑛 and
mean(𝑥) is the mean of 𝑥. In order to get a better under-
standing of why the sum has to be divided with 𝑛−1
instead of 𝑛, the reader can refer to Bessel’s correction.

Standard deviation also demonstrates how the data
points spread out from the mean. It is the positive
square root of the variance. A small standard deviation

Observation 8.27 – Measures of
Spread: Measures that quantify the
variability of data points in a dataset.
If the spread is large, the measures of
tendency are not good representa-
tions of the data.

Observation 8.28 – min(), max():
Use the min() and max() methods
to find the minimum and maximum
values in a dataset. Calculate their
difference to find the range of these
values.

Observation 8.29 – Quartiles:
Use the quantile() method to
specify and report the relevant quar-
tile of data in a dataset. For instance,
 quantile(0.1) will report the lowest
10% of the data values in the dataset.

Observation 8.30 – variance(): Use
the variance() method to find the
variance of a dataset and show the dis-
tance of the data points from the mean.

Observation 8.31 – Standard
Deviation (SD): Standard deviation
shows the distance of the data points
from the mean. The larger its val-
ues the larger the spread of the data
points from the mean. It is frequently
preferable to the measure of variance.

344 Handbook of Computer Programming with Python

indicates that the data are close to the mean, while a large one shows a high outwards data spread
from the mean. Standard deviation is often the preferred choice in order to present the data
spread, and it is more convenient compared to variance, as it utilizes the same unit as the data
points.

The following script uses the Pandas and Statistics Python packages to read the newGrades.
csv file, find the max and min values for each column in the dataset, find the 25% (1st) quartile and
calculate the variance and the standard deviation using both the regular std() and the stdev()
methods from the statistics package. Finally, it creates a new dataset with all the related values, and
reports the dataset:

1 import pandas as pd
2 import statistics
3
4 # Define the format of float numbers
5 pd.options.display.float_format = '${:,.2f}'.format
6
7 dataset = pd.read_csv('newGrades.csv')
8
9 rows = len(dataset)
10 cols = ["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
11 "Midterm Exam", "Project"]
12
13 # Find the max values in each column
14 max1 = dataset["Final Grade"].max(); max2 = dataset["Final Exam"].max()
15 max3 = dataset["Quiz 1"].max(); max4 = dataset["Quiz 2"].max()
16 max5 = dataset["Midterm Exam"].max(); max6 = dataset["Project"].max()
17
18 # Find the min values in each column
19 min1 = dataset["Final Grade"].min(); min2 = dataset["Final Exam"].min()
20 min3 = dataset["Quiz 1"].min(); min4 = dataset["Quiz 2"].min()
21 min5 = dataset["Midterm Exam"].min(); min6 = dataset["Project"].min()
22
23 # Find the lower 25% quartile in all columns
24 quartile25a = dataset["Final Grade"].quantile(0.25);
25 quartile25b = dataset["Final Exam"].quantile(0.25)
26 quartile25c = dataset["Quiz 1"].quantile(0.25);
27 quartile25d = dataset["Quiz 2"].quantile(0.25)
28 quartile25e = dataset["Midterm Exam"].quantile(0.25)
29 quartile25f = dataset["Project"].quantile(0.25)
30
31 # Calculate the variance in all columns
32 variance1 = statistics.variance(dataset["Final Grade"].dropna())
33 variance2 = statistics.variance(dataset["Final Exam"].dropna())
34 variance3 = statistics.variance(dataset["Quiz 1"].dropna())
35 variance4 = statistics.variance(dataset["Quiz 2"].dropna())
36 variance5 = statistics.variance(dataset["Midterm Exam"].dropna())
37 variance6 = statistics.variance(dataset["Project"].dropna())
38
39 # Calculate the standard deviation of all columns using std()
40 std1 = dataset["Final Grade"].std(); std2 = dataset["Final Exam"].std()
41 std3 = dataset["Quiz 1"].std(); std4 = dataset["Quiz 2"].std()

345Data Analytics and Data Visualization

42 std5 = dataset["Midterm Exam"].std(); std6 = dataset["Project"].std()
43
44 # Calculate the standard deviation in all columns using stdev()
45 stdev1 = statistics.stdev(dataset["Final Grade"].dropna())
46 stdev2 = statistics.stdev(dataset["Final Exam"].dropna())
47 stdev3 = statistics.stdev(dataset["Quiz 1"].dropna())
48 stdev4 = statistics.stdev(dataset["Quiz 2"].dropna())
49 stdev5 = statistics.stdev(dataset["Midterm Exam"].dropna())
50 stdev6 = statistics.stdev(dataset["Project"].dropna())
51
52 # Report the dataset
53 dataset1 = dataset[["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
54 "Midterm Exam", "Project"]]
55 print(dataset1.iloc[0:rows:1])
56
57 # Append the dataset with the max values
58 maxs = {"Final Grade": max1, "Final Exam": max2, "Quiz 1": max3,
59 "Quiz 2": max4, "Midterm Exam": max5, "Project": max6}
60 dataset1 = dataset1.append(maxs, ignore_index = True)
61
62 mins = {"Final Grade": min1, "Final Exam": min2, "Quiz 1": min3,
63 "Quiz 2": min4, "Midterm Exam": min5, "Project": min6}
64 dataset1 = dataset1.append(mins, ignore_index = True)
65
66 quartiles = {"Final Grade": quartile25a, "Final Exam": quartile25b,
67 "Quiz 1": quartile25c, "Quiz 2": quartile25d,
68 "Midterm Exam": quartile25e, "Project": quartile25f}
69 dataset1 = dataset1.append(quartiles, ignore_index = True)
70
71 variances = {"Final Grade": variance1, "Final Exam": variance2,
72 "Quiz 1": variance3, "Quiz 2": variance4,
73 "Midterm Exam": variance5, "Project": variance6}
74 dataset1 = dataset1.append(variances, ignore_index = True)
75
76 stds = {"Final Grade": std1, "Final Exam": std2, "Quiz 1": std3,
77 "Quiz 2": std4, "Midterm Exam": std5, "Project": std6}
78 dataset1 = dataset1.append(stds, ignore_index = True)
79
80 stdevs = {"Final Grade": stdev1, "Final Exam": stdev2, "Quiz 1": stdev3,
81 "Quiz 2": stdev4, "Midterm Exam": stdev5, "Project": stdev6}
82 dataset1 = dataset1.append(stdevs, ignore_index = True)
83
84 # Report the rows with the max, min, quartile, variance, and std values
85 print("Max"); print(dataset1.iloc[32:33])
86 print("Min"); print(dataset1.iloc[33:34])
87 print("25% Quartile"); print(dataset1.iloc[34:35])
88 print("Variance"); print(dataset1.iloc[35:36])
89 print("Standard Deviation (using: std())"); print(dataset1.iloc[36:37])
90 print("Standard Deviation (using: stdev())")
91 print(dataset1.iloc[37:38])

346 Handbook of Computer Programming with Python

Output 8.4.2:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 $58.57 $50.50 $76.00 $70.70 $60.00 55
1 $65.90 $49.00 $89.00 $63.00 $54.00 90
2 $69.32 $63.50 $73.00 $54.70 $70.00 80
3 $72.02 $60.50 $99.00 $74.70 $76.00 70
4 $73.68 $74.00 $84.00 $53.30 $64.00 87
5 $61.32 $45.50 $94.00 $42.70 $66.00 70
6 $67.87 $66.50 $73.00 $53.70 $54.00 87
7 $75.57 $66.00 $94.00 $58.70 $92.00 70
8 $61.28 $50.50 $84.00 $37.30 $58.00 78
9 $0.00 NaN 69
10 $62.35 $48.00 $78.00 $49.00 $70.00 71
11 $66.13 $61.00 $83.00 $45.30 $70.00 70
12 $69.43 $50.00 $80.00 $49.30 $90.00 76
13 $82.60 $74.00 $94.00 $65.00 $86.00 92
14 $0.00 NaN NaN NaN NaN

NaN NaN NaN

75
15 $62.62 $45.50 $78.00 $56.70 $72.00 70
16 $0.00 NaN NaN NaN NaN 0
17 $67.47 $59.00 $70.00 $72.70 $70.00 72
18 $75.13 $61.50 $76.00 $68.30 $82.00 87
19 $66.85 $77.50 $84.00 $52.00 $40.00 80
20 $54.45 $34.50 $62.00 $44.00 $44.00 90
21 $76.95 $66.50 $68.00 $67.00 $82.00 92
22 $45.13 $26.00 $52.00 $26.30 $50.00 68
23 $73.23 $63.50 $96.00 $68.30 $62.00 89
24 $81.87 $83.00 $97.00 $82.70 $84.00 72
25 $62.63 $54.50 $54.00 $31.30 $64.00 87
26 $58.75 $46.50 $54.00 $39.00 $52.00 90
27 $49.75 $27.50 $48.00 $37.00 $62.00 70
28 $44.25 $21.50 $55.00 $18.00 $42.00 80
29 $62.52 $31.00 $85.00 $54.70 $68.00 89
30 $47.33 $16.50 $38.00 $33.30 $52.00 89
31 $68.97 $55.00 $65.00 $49.70 $70.00 94

Max
Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project

32 $82.60 $83.00 $99.00 $82.70 $92.00 $94.00
Min

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
33 $0.00 $16.50 $38.00 $18.00 $40.00 $0.00
25% Quartile

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
34 $57.54 $45.50 $65.00 $42.70 $54.00 $70.00
Variance

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
35 $461.46 $289.85 $267.49 $242.37 $197.06 $291.88
Standard Deviation (using: std())

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
36 $21.48 $17.02 $16.36 $15.57 $14.04 $17.08
Standard Deviation (using: stdev())

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
37 $21.48 $17.02 $14.04 $17.08$15.57$16.36

347Data Analytics and Data Visualization

8.4.3 sKeWness And Kurtosis

Skewness measures the asymmetry of the data and
describes the amount by which the distribution differs from
a normal distribution. There are several mathematical def-
initions of skewness. A commonly used one is Pearson’s
skewness coefficient, which can be derived using the size
of a dataset, the mean, and the standard deviation of the
data. Negative skewness values indicate a dominant tail
on the left side, while positive values correspond to a long
tail on the right side. If the skewness is close to 0 (i.e.,
between −0.5 and 0.5), the data are considered to be sym-
metric (Figure 8.1). When the skewness is between −1 and
−0.5 or between 0.5 and 1, the data are considered to be
moderately skewed. If skewness is less than −1 or more
then 1, the data are considered to be highly skewed.

Kurtosis shows whether the data is heavy- tailed or
light- tailed compared to a normal distribution. In other
words, kurtosis identifies whether the data contains
extreme values. A high kurtosis indicates a heavy tail
and more outliers in the data, while a low kurtosis shows
a light tail and fewer outliers. An alternative and effective
way to show kurtosis and skewness is the histogram, as it
visually demonstrates the shape of the data distribution.

There are three main types of kurtosis: mesokurtic,
leptokurtic, and platykurtic (Figure 8.2).

• Mesokurtic (Kurtosis = 3): Data are normally distributed.
• Leptokurtic (Kurtosis > 3): Data are heavy- tailed with profusion of outliers.
• Platykurtic (Kurtosis < 3): Data are light- tailed and/or contain less extreme values than

normal distribution.

Observation 8.32 – Skewness: Use
the skew() method to calculate
the skewness of a dataset. Based on
Pearson’s skewness coefficient, skew-
ness between −0.5 and 0.5 is consid-
ered to be symmetric, while values
between −1 and −0.5 or 0.5 and 1
indicate that skewness is moderate
and values less than −1 or more than
1 that it is high.

Observation 8.33 – Kurtosis: Use
the kurtosis() method to calculate
the kurtosis of a dataset. Data can be
characterized as mesokurtic (normal
distribution with value of 3), leptokyr-
tic (data heavily- tailed with profusion
of outliers and value higher than 3), or
platykurtic (data light- tailed with less
extreme values than normal distribu-
tion and value lower than 3).

FIGURE 8.1 Symmetric, positive, and negative skewness.

FIGURE 8.2 Main types of kurtosis.

348 Handbook of Computer Programming with Python

The following script reads the newGrades.csv file, calculates the skewness, kurtosis, and sum values
of all columns, and reports them alongside the rest of the dataset:

1 import pandas as pd
2
3 # Define the format of float numbers
4 pd.options.display.float_format = '${:,.2f}'.format
5
6 dataset = pd.read_csv('newGrades.csv')
7
8 rows = len(dataset)
9 cols = ["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
10 "Midterm Exam", "Project"]
11
12 # Find the skewness (Pearson's coefficient) values for each column
13 skew1 = dataset["Final Grade"].skew()
14 skew2 = dataset["Final Exam"].skew()
15 skew3 = dataset["Quiz 1"].skew()
16 skew4 = dataset["Quiz 2"].skew()
17 skew5 = dataset["Midterm Exam"].skew()
18 skew6 = dataset["Project"].skew()
19
20 # Find the kurtosis values for each column
21 kurtosis1 = dataset["Final Grade"].kurtosis()
22 kurtosis2 = dataset["Final Exam"].kurtosis()
23 kurtosis3 = dataset["Quiz 1"].kurtosis()
24 kurtosis4 = dataset["Quiz 2"].kurtosis()
25 kurtosis5 = dataset["Midterm Exam"].kurtosis()
26 kurtosis6 = dataset["Project"].kurtosis()
27
28 # Find the sum of all values for each column
29 sum1 = dataset["Final Grade"].sum()
30 sum2 = dataset["Final Exam"].sum()
31 sum3 = dataset["Quiz 1"].sum()
32 sum4 = dataset["Quiz 2"].sum()
33 sum5 = dataset["Midterm Exam"].sum();
34 sum6 = dataset["Project"].sum()
35
36 # Report the dataset
37 dataset1 = dataset[["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
38 "Midterm Exam", "Project"]]
39 print(dataset1.iloc[0:rows:1])
40
41 # Append the dataset with the max values
42 skewness = {"Final Grade": skew1, "Final Exam": skew2, "Quiz 1": skew3,
43 "Quiz 2": skew4, "Midterm Exam": skew5, "Project": skew6}
44 dataset1 = dataset1.append(skewness, ignore_index = True)
45
46 kurtosis = {"Final Grade": kurtosis1, "Final Exam": kurtosis2,
47 "Quiz 1": kurtosis3, "Quiz 2": kurtosis4,
48 "Midterm Exam": kurtosis5, "Project": kurtosis6}
49 dataset1 = dataset1.append(kurtosis, ignore_index = True)
50

349Data Analytics and Data Visualization

Output 8.4.3:

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project
0 $58.57 $50.50 $76.00 $70.70 $60.00 55
1 $65.90 $49.00 $89.00 $63.00 $54.00 90
2 $69.32 $63.50 $73.00 $54.70 $70.00 80
3 $72.02 $60.50 $99.00 $74.70 $76.00 70
4 $73.68 $74.00 $84.00 $53.30 $64.00 87
5 $61.32 $45.50 $94.00 $42.70 $66.00 70
6 $67.87 $66.50 $73.00 $53.70 $54.00 87
7 $75.57 $66.00 $94.00 $58.70 $92.00 70
8 $61.28 $50.50 $84.00 $37.30 $58.00 78
9 $0.00 NaN NaN NaN NaN 69
10 $62.35 $48.00 $78.00 $49.00 $70.00 71
11 $66.13 $61.00 $83.00 $45.30 $70.00 70
12 $69.43 $50.00 $80.00 $49.30 $90.00 76
13 $82.60 $74.00 $94.00 $65.00 $86.00 92
14 $0.00 NaN NaN NaN NaN 75
15 $62.62 $45.50 $78.00 $56.70 $72.00 70
16 $0.00 NaN NaN NaN NaN 0
17 $67.47 $59.00 $70.00 $72.70 $70.00 72
18 $75.13 $61.50 $76.00 $68.30 $82.00 87
19 $66.85 $77.50 $84.00 $52.00 $40.00 80
20 $54.45 $34.50 $62.00 $44.00 $44.00 90
21 $76.95 $66.50 $68.00 $67.00 $82.00 92
22 $45.13 $26.00 $52.00 526.30 $50.00 68
23 $73.23 $63.50 $96.00 $68.30 $62.00 89
24 $81.87 $83.00 $97.00 5E2.70 $84.00 72
25 $62.63 $54.50 $54.00 $31.30 $64.00 87
26 $58.75 $46.50 $54.00 $39.00 $52.00 90
27 $49.75 $27.50 $48.00 $37.00 $62.00 70
28 $44.25 $21.50 $55.00 $18.00 $42.00 80
29 $62.52 $31.00 $85.00 $54.70 $68.00 89
30 $47.33 $16.50 $38.00 $33.30 $52.00 89
31 $68.97 $55.00 $65.00 $49.70 $70.00 94
Skewness

Final Grade
32 $-1.96
Kurtcsis

Sum values
33

34

$3.52

Final Exam Quiz 1 Quiz 2 Midterm Exam Project

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project

Final Grade Final Exam Quiz 1 Quiz 2 Midterm Exam Project

$-0.43 $-0.51 $-0.18 $0.05 $-3.03

$-0.60

$1,528.50$1,883.94 $2,183.00 $1,518.40 $1,906.00 $2,459.00

$-0.35 $-0.53 $-0.39 $13.01

51 sums = {"Final Grade": sum1, "Final Exam": sum2, "Quiz 1": sum3,
52 "Quiz 2": sum4, "Midterm Exam": sum5, "Project": sum6}
53 dataset1 = dataset1.append(sums, ignore_index = True)
54
55 # Report the rows with the skewness, kurtosis, and sums
56 print("Skewness"); print(dataset1.iloc[32:33])
57 print("Kurtosis"); print(dataset1.iloc[33:34])
58 print("Sum values"); print(dataset1.iloc[34:35])

350 Handbook of Computer Programming with Python

8.4.4 the desCribe() And Count() methods

Two more methods that are worth mentioning are
describe() and count(). These methods come
rather handy when describing categorical data, but can
be also used with continuous data. The describe()
method provides a simple way to describe data, report-
ing the max, min, variance, quartiles, mean, and
standard deviation without having to deal with each
of them separately. The count() method reports the
number of occurrences of each case of categorical
data in the dataset (i.e., it denotes frequency of occur-
rence). It can be also calculated on a percentage basis
in order to obtain a representation of the part- to- whole
relationship.

The following script uses newGrades.csv to report basic descriptive statistics for Final Grade,
while also counting the As, Bs, Cs, Ds, and Fs in the report:

Observation 8.34 – describe():
Use the describe() method to
automatically report a set of basic
descriptive statistics.

Observation 8.35 – count(): Use
the count() method to report the
frequency of occurrence of categori-
cal data.

1 import pandas as pd
2
3 # Define the format of float numbers
4 pd.options.display.float_format = '${:,.2f}'.format
5
6 dataset c pd.read_csv('newGrades.csv')
7
8 rows = len(dataset)
9 cols = ["Final Grade", "Letter Grade"]
10
11 # Report the basic descriptive statistics for Final Grade
12 print("Basic descriptive statistics on Final Grade")
13 print(dataset["Final Grade"].describe(), "\n")
14
15 # Create a new dataset with Letter Grade only
16 dataset1 = dataset[["Letter Grade"]]
17
18 # Find the number of occurrences of Letter Grades
19 countAll = dataset1.count()
20 print("Total students:", countAll.values)
21
22 dataset2 = dataset1[dataset1["Letter Grade"] == "A"]
23 if (not dataset2.empty):
24 countA = dataset2.count()
25 else:
26 countA = 0
27 print("Students awarded an A:", countA)
28

351Data Analytics and Data Visualization

Output 8.4.4:

Basic descriptive statistics on Final Grade
count $32.00
mean $58.87
std $21.48
min $0.00
25% $57.54
50% $64.27
75% $70.08
max $82.60
Name: Final Grade, dtype: float64

Total students: [32]
Students awarded an A: 0
Students awarded an 3: [2]
Students awarded an C: [6]
Students awarded an D: [14]
Students awarded an F: [10]

29 dataset2 = dataset1[dataset1["Letter Grade"] == "B"]
30 if (not dataset2.empty):
31 countB = dataset2.count().values
32 else:
33 countB = 0
34 print("Students awarded an B:", countB)
35
36 dataset2 = dataset1[dataset1["Letter Grade"] == "C"]
37 if (not dataset2.empty):
38 countC = dataset2.count().values
39 else:
40 countC = 0
41 print("Students awarded an C:", countC)
42
43 dataset2 = dataset1[dataset1["Letter Grade"] == "D"]
44 if (not dataset2.empty):
45 countD = dataset2.count().values
46 else:
47 countD = 0
48 print("Students awarded an D:", countD)
49
50 dataset2 = dataset1[dataset1["Letter Grade"] == "F"]
51 if (not dataset2.empty):
52 countF = dataset2.count().values
53 else:
54 countF = 0
55 print("Students awarded an F:", countF)

352 Handbook of Computer Programming with Python

8.5 DATA VISUALIZATION

We are all familiar with the expression a picture is
worth a thousand words. Data visualisation refers to
the use of graphical means to represent and summarize
data. It can help the analyst identify and conceptualize
patterns, trends, and correlations present in the data that
may be otherwise difficult to spot. It is also an efficient
way to convey insights or summaries to wider audiences and, thus, it is widely used for data presen-
tation (particularly when working with big data). Data visualisation is also an essential step before
undertaking inferential statistics analysis (Chapter 9) and machine learning (Chapter 10) tasks, as it
provides an overview of some of the structures and techniques used in these fields. In general, data
visualisation is useful for the following tasks:

• Recognizing the structure and patterns of the data.
• Detecting errors or outliers.
• Exploring relationships between variables.
• Discovering new trends.
• Suggesting appropriate inferential statistical analysis and machine learning methods.
• Identifying the need for data correction (e.g., transforming data to log- scale).
• Communicating data to wider audiences.

Python is a popular data visualization choice for data scientists, as it provides various packages and
libraries suitable for visualization tasks. Some popular plotting libraries are the following:

• Matplotlib: As mentioned in earlier sections, Matplotlib is a low- level plotting library, suitable
for creating basic graphs and providing a lot of options relating to this task to the programmer.

• Pandas: Pandas is based on Matplotlib and, in addition to plotting, it also provides extra
analysis functionality.

• Seaborn: Seaborn is a high- level plotting library with a solid collection of usable, default
styles. It also allows for graph plotting with minimal coding, and it provides advanced
visuals, making it the tool of choice for many data scientists.

The above libraries and packages provide a wealth of available methods to produce any type of
visualization. In this section, only Pandas and Matplotlib are used. This is mainly for simplicity and
clarity reasons.

8.5.1 Continuous dAtA: histogrAms

A histogram is a type of graph that can depict the distri-
bution of continuous numerical data by displaying the
data frequency using bars of different heights. Due to
the use of bars, prior to plotting histograms, one first
has to bin the range of data values. The term bin is used
to describe the process of dividing the entire range of
data values into a series of intervals. Subsequently, data
falling into each interval are counted and the resulting
frequencies are plotted in the form of bars. Bins are usu-
ally specified as consecutive, non- overlapping intervals
and often have equal or comparable sizes, although this
is not a strict requirement (Freedman et al., 1998).

Observation 8.36 – Data Visuali-
zation: The use of visual means, such
as various types of charts, to represent
and summarize data.

Observation 8.37 – Histograms:
Use the plot.hist() method
(Pandas library) to visualize continu-
ous data, dividing the entire range
of values into a series of intervals
referred to as bins. Parameters such
as subplots, layout, grid,
 xlabelsize, ylabelsize, xrot,
yrot, figsize, and legend allow
for the detailed configuration of the
histogram.

353Data Analytics and Data Visualization

Histograms can be used when investigating and demonstrating the shape of the data distribution
(i.e., its center, spread, and skewness), as well as its various modes and the presence of outliers. They
help the analysis by visually determining whether two or more data distributions are different, like
in the example above (Figure 8.3).

At first, histograms may look like bar charts, but these two graph formats are notably differ-
ent. Histograms are used for summarising and grouping continuous data into ranges, while bar
charts are used for displaying the frequency of categorical data. Another difference is that the
proportion of the data in a histogram is represented as a unified area of the graph, while in a bar
chart through the length of individual bars. Bar charts are discussed in more detail in later parts
of this chapter.

To plot a histogram in Python, one can use the plot.hist() method from the Pandas library.
For basic plotting, no further arguments are needed. However, the method accepts additional argu-
ments in order to optionally control specific plotting details, such as the bin size (the default value
is 10). It is also possible to have multiple histograms generated and illustrated in one single plot.
The subplots parameter allows the programmer to plot each feature in the dataset separately,
and the layout parameter specifies the number of plots per row and column of a given diagram.
By default, the histogram appears inside a grid, but it is possible to avoid this by setting the grid
parameter to False. The letter size of the x or y axis can be controlled by setting the xlabelsize
or ylabelsize parameters, respectively. The histogram can be rotated by a specified number of
degrees on the x or y axis, by setting the xrot or yrot parameters. The size of the figures can be
specified (in inches) using the figsize parameter.

The following script uses the newGrades.csv dataset used in previous examples to display six
histograms in one plot (i.e., two lines and three columns):

1 import pandas as pd
2
3 dataset = pd.read_csv('newGrades.csv')
4 dataset1 = dataset[["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
5 "Midterm Exam", "Project"]]
6
7 # Prepare a histogram with 2 lines of subplots, visible grid & legend
8 # in 2 rows & 3 columns, with figures of size 10x10 inches, & 10 bins
9 plt = dataset1.plot.hist(subplots = 2, grid = True, legend = True,
10 layout = (2, 3), figsize = (10, 10), bins = 10)

FIGURE 8.3 Types of histograms.

354 Handbook of Computer Programming with Python

Output 8.5.1:

8.5.2 Continuous dAtA: box And WhisKer Plot

A box and whisker plot, also called box plot, is a graphical
representation of the spread of continuous data, based
on a five number summary: the minimum, the maximum,
the sample median, the first quartile (Q1), and the third
quartile (Q3). As the name suggests, the plot contains
two parts: a box and a set of whiskers. The two ends
of the whiskers show the minimum and the maximum
values of the dataset, while the top and the bottom of the
box represent Q3 and Q1, respectively. The horizontal
line in the middle of the box denotes the median. The data point that is located outside the whiskers
of the box plot is defined as an outlier, which is the value that is more than one and a half times the
length of the box. It is worth noting that box plots work better with data that only contain a limited
number of categories (Figure 8.4).

Observation 8.38 – Box and Whisker
Plot: Use the boxplot() method
(Pandas library) to draw a box and
whisker plot. Plot aspects like the grid,
the figure size, and the labels can be
configured using the grid, figsize,
and labels parameters, respectively.

355Data Analytics and Data Visualization

Box plots can be used when:

• Working with numerical data.
• Presenting the spread of the data and the central value.
• Comparing data distribution across different categories.
• Identifying outliers.

Box plots can be created using the boxplot() method from the Pandas library. The x and y axis values
can be modified using the by and column parameters, respectively (Pandas, 2021a). For an improved
visual effect, one can alternatively use the sns.boxplot() method from the Seaborn library.

The following script draws a box and whisker plot for the newGrades.csv dataset:

1 import pandas as pd
2
3 dataset = pd.read_csv('NewGrades.csv')
4
5 # The names of the columns on the x-axis
6 cols = ["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
7 "Midterm Exam", "Project"]
8
9 dataset1 = dataset[["Final Grade", "Final Exam", \
10 "Quiz 1", "Quiz 2", "Midterm Exam", "Project"]]
11
12 # Prepare a box and whisker diagram with all the 6 columns represented
13 # in a single plot of size 10x10 inches
14 dataset1.boxplot(grid = True, figsize = (10, 10), showcaps = True, \
15 showbox = True, showfliers = True, labels = cols)

FIGURE 8.4 Box and whisker plot.

356 Handbook of Computer Programming with Python

Output 8.5.2:

<AxesSubplot:>

8.5.3 Continuous dAtA: line ChArt

A line chart is a graphical method to represent trend
data as a continuous line. It connects a series of histori-
cal data points by line segments in order to depict the
variations of the data continuously over time. The x- axis
corresponds to time or continuous progression, while
the y- axis represents the corresponding values.

Line charts can be used when:

• Working with numerical data (y- axis) that follow a continuous progression (x- axis).
• Emphasizing changes in values over time or as a continuous progression.
• Comparing between different series of trends.

To create a line chart, one can call the plot.line() method from the Pandas library. If multiple
lines are plotted in a single line chart, Pandas automatically creates a legend. This is a rather useful
feature when comparing data trends.

The following script uses the newGrades.csv dataset to draw a line chart plotting all six columns
of the dataset:

Observation 8.39 – Line Chart: Use
the plot.line() method (Pandas
library) to draw a line chart. There are
several parameters available for the
detailed configuration of the chart.

357Data Analytics and Data Visualization

Output 8.5.3:

<AxesSubplot:title={'center':'Grades Line Chart'}>

8.5.4 CAtegoriCAl dAtA: bAr ChArt

A bar chart is a graph that displays counts of categori-
cal data or data associated with categorical data in
the form of vertical or horizontal rectangular bars. The
x- axis (vertical bar chart) represents the data by cat-
egory, while the y- axis can take any value depending
on the dataset used. Bar charts are useful for describing

Observation 8.40 – Bar Chart: Use
the plot.bar() method (Pandas
library) to draw a bar chart. There are
several parameters available for the
detailed configuration of the chart.

1 import pandas as pd
2
3 dataset = pd.read_csv('newGrades.csv')
4
5 # The names of the columns on the x-axis
6 cols = ["Final Grade", "Final Exam", "Quiz 1", "Quiz 2",
7 "Midterm Exam", "Project"]
8
9 dataset1 = dataset[["Final Grade", "Final Exam", \
10 "Quiz 1", "Quiz 2", "Midterm Exam", "Project"]]
11
12 # Prepare a line chart with all the 6 columns represented
13 # in a single plot of size 7x7 inches
14 dataset1.plot.line(grid = True, figsize = (7, 7),
15 title = "Grades Line Chart")

358 Handbook of Computer Programming with Python

categorical data that have less than approximately 30 categories, as anything close to or above this
rough threshold tends to make them rather unreadable. In such cases, a more efficient grouping or
re- grouping approach should be considered.

Bar charts can be used when:

• Working with categorical data.
• Investigating the frequency of the data.

To plot a bar chart for categorical data one can use the plot.bar() method (Pandas library).
The reader must note that before this method is called, the frequency for each category must be
counted using the value_count() method. Methods plt.xlabel(), plt.ylabel(), and
plt.title() can be used to add appropriate descriptions to the bar chart.

The following script uses plot.bar() to draw and configure a vertical bar chart (default) based
on the Letter Grade column of newGrades2.xlsx (New Data sheet):

Output 8.5.4.a:

Text(0.5, 0, 'Letter Grades')

1 import pandas as pd
2
3 dataset = pd.read_excel('newGrades2.xlsx', sheet_name = "New Data")
4
5 barChart = dataset["Letter Grade"].value_counts().plot.bar(grid = True,
6 legend = True, figsize = (7, 7), rot = 0)
7 barChart.set_title("Final Letter Grades")
8 barChart.set_ylabel("Frequencies")
9 barChart.set_xlabel("Letter Grades")

359Data Analytics and Data Visualization

The reader should note the use of the grid, legend, figsize, and rot parameters to configure
the basic appearance of the chart (i.e., show the grid and the legend, define the size of the figure in
inches, and ensure the correct orientation of the x- axis labels, respectively). It must be also noted
how methods set_title(), set_ylabel(), and set_xlabel() are used to set the title of the
chart and define the headings for the x and y axes.

When horizontal bars are needed instead of vertical ones the plot.barh() method should be
used instead of the plot.bar(). The following script demonstrates this option, while its output
illustrates how slight parameter variations can help with the new horizontal orientation:

Output 8.5.4.b:

Text(0.5, 0, 'Frequencies')

1 import pandas as pd
2
3 dataset = pd.read_excel('newGrades2.xlsx', sheet_name = "New Data")
4
5 barChart = dataset["Final Exam Letter"].value_counts().plot.barh(
6 grid = True, legend = True, figsize = (7, 7), rot = 0)
7 barChart.set_title("Final Exam Letter Grades")
8 barChart.set_ylabel("Letter Grades")
9 barChart.set_xlabel("Frequencies")

360 Handbook of Computer Programming with Python

It is also possible to have two or more different bar charts within the same figure. This can take
three different forms. The first is to have a single plot with two separate charts as in the script below.
The script uses the subplots() method from the plt object of the matplotlib.pyplot pack-
age to create two different plots:

Output 8.5.4.c:

Text(0.5, 0, 'Letter Grades')

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 dataset = pd.read_excel('newGrades2.xlsx', sheet_name = "New Data")
5
6 # Draw first subplot
7 plt.subplot(1, 2, 1)
8 plot1 = dataset["Letter Grade"].value_counts().plot.bar(grid = True,
9 figsize = (10, 7), legend = True, sharey = True, rot = 0)
10 plot1.set_title("Final Letter Grades")
11 plot1.set_ylabel("Frequencies")
12 plot1.set_xlabel("Letter Grades")
13
14 # Draw second subplot
15 plt.subplot(1, 2, 2)
16 plot2 = dataset["Final Exam Letter"].value_counts().plot.bar(grid=True,
17 figsize = (10, 7), legend = True, sharey = True, rot = 0)
18 plot2.set_title("Final Exam Letter Grades")
19 plot2.set_ylabel("Frequencies")
20 plot2.set_xlabel("Letter Grades")

361Data Analytics and Data Visualization

The second form is to create a compound or nested bar chart, allowing two or more sets of data
associated with the same categorical data to be plotted in a single diagram. This is useful in situa-
tions requiring visual comparison. The following script is a variation of previously used examples,
demonstrating this form of bar chart:

Output 8.5.4.d:

Text(0, 0.5, 'Frequencies')

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 # Read the Excel dataset
5 dataset = pd.read_excel('newGrades2.xlsx', sheet_name = "New Data")
6
7 # Count the frequencies of Letter Grade and Final Exam Letter
8 dataset1 = dataset["Letter Grade"].value_counts()
9 dataset2 = dataset["Final Exam Letter"].value_counts()
10
11 barChart = pd.DataFrame({"Final Letter Grade": dataset1,
12 "Final Exam Letter Grade": dataset2})
13 barChart.plot.bar(grid = True,
14 title = "Final Exam and Final Grade Letter Grades",
15 rot = 0, figsize = (8, 8), color = ["lightblue", "lightgrey"])
16
17 # Use the plt object to set the labels of the x and y axis
18 plt.xlabel("Letter Grades")
19 plt.ylabel("Frequencies")

362 Handbook of Computer Programming with Python

The third form is the stacked bar chart. In this case, the various components are stacked upon each
other to create a single, unified bar. The following script presents columns Letter Grade and Final
Exam Letter from the newGrades2.xlsx dataset (New Data sheet). The reader should note that, in
addition to the previously mentioned parameters of the regular plot.bar() method, the script also
uses the stacked = True parameter that is responsible for stacking the two datasets:

Output 8.5.4.e:

Text(0, 0.5 'Frequencies')

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 # Read the Excel dataset
5 dataset = pd.read_excel('newGrades2.xlsx', sheet_name = "New Data")
6
7 # Count the frequencies of the "Letter Grade" & the "Final Exam Letter"
8 dataset1 = dataset["Letter Grade"].value_counts()
9 dataset2 = dataset["Final Exam Letter"].value_counts()
10
11 barChart = pd.DataFrame({"Final Letter Grade": dataset1,
12 "Final Exam Letter Grade": dataset2})
13 barChart.plot.bar(stacked = True, grid = True,
14 title = "Final Exam and Final Grade Letter Grades",
15 rot = 0, figsize = (8, 8), color = ["lightblue", "lightgrey"])
16
17 # Use the plt object to set the labels of the x-axis and the y-axis
18 plt.xlabel("Letter Grades")
19 plt.ylabel("Frequencies")

363Data Analytics and Data Visualization

8.5.5 CAtegoriCAl dAtA: Pie ChArt

A pie chart is a circular graph that uses the size of pie slices to illustrate proportion. It displays a
part- to- whole relationship of categorical data. Like in the case of the bar chart, the pie chart should
be avoided for data with a significant number of categories (i.e., slices), as this would compromise
readability. Ideally, data with five or less categories are preferable. If the pie chart is to be used for
data with more than five categories, re- categorising or aggregating the data should be considered.
Pie charts can be used when the presentation of the part-
to- whole relationship of the data is more important than
the precise size of each category, and when it is required
to visually compare the size of categories in relation
to the whole. However, unlike bar charts, they can-
not explicitly demonstrate absolute numbers or values
for each category. To plot a pie chart, one can use the
plot.pie() method from the Pandas library (Pandas,
2021b), while its appearance can be further configured
using the plt object from the matplotlib.pyplot
package.

The following script reads the New Data dataset from newGrades2.xlsx and creates a pie chart
based on the Letter Grade column. Next, it demonstrates the use of the labels, autopct,
shadow, and startangle parameters to define and format the labels (in percentages), to dis-
play shadows, and to dictate the orientation and angle of the slices. Finally, it uses the axis,
legend, and title methods to adjust the size of the slices, and to add titles to the chart and
the legend:

Observation 8.41 – Pie Chart: Use
the pie() method (Pandas library)
to create a pie chart based on a
dataset. Use the plt object from
 matplotlib.pyplot to configure
and improve the appearance of the
chart.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3
4 # Read the Excel dataset
5 dataset = pd.read_excel('newGrades2.xlsx', sheet_name = "New Data")
6
7 labels1 = dataset["Letter Grade"].unique()
8
9 # Count the frequencies of Letter Grade
10 dataset1 = dataset["Letter Grade"].value_counts()
11 plt.pie(dataset1, labels = labels1, autopct = "%1.1f%%", shadow = True,
12 startangle = 90)
13 plt.axis("equal")
14 plt.legend(title = "Final Letter Grades")
15 plt.title("Final Letter Grades")

364 Handbook of Computer Programming with Python

Output 8.5.5:

Text(0.5, 1.0, 'Final Letter Grades')

8.5.6 PAired dAtA: sCAtter Plot

A scatter plot is a visual representation of the relation-
ship between two sets of data using dots or circles.
The dots/circles can report the values of individual
data points, but also patterns of the data as a whole.
Relationships between variables can be described in the
following ways: positive or negative, strong or weak, lin-
ear or nonlinear (Figure 8.5).

Scatter plots can be used when:

• Working with paired numerical data.
• Identifying whether the data are correlated.
• Investigating data patterns (e.g., cluster, data gap, outliers) (Figure 8.6).

To create a scatter plot, one can call the plot.scatter() method from the Pandas library, and use
the x and y arguments to define the paired data. The following script draws a scatter plot chart using
the Final Exam Grades and Final Grades columns from newGrades2.xlsx:

Observation 8.42 – Scatter Plot: Use
plot.scatter() (Pandas library) to
create a scatter plot. Scatter plots
illustrate the relationship between
two sets of data using dots or circles.

1 import pandas as pd
2
3 # Read the Excel dataset
4 dataset = pd.read_excel('newGrades2.xlsx', sheet_name = "New Data")
5
6 dataFrame = pd.DataFrame(data = dataset, columns = ["Final Exam",
7 "Final Grade"])
8 dataFrame.plot.scatter(x = "Final Exam", y = "Final Grade",
9 title = "Scatter chart between final exams and final grades ",
10 figsize = (7, 7))

365Data Analytics and Data Visualization

FIGURE 8.5 Types of scatter plots.

FIGURE 8.6 Investigating data patterns.

366 Handbook of Computer Programming with Python

Output 8.5.6:

<AxesSubplot:title={'center':'Scatter chart between final exams
and final grades '}, xlabel='Final Exam', ylabel='Final Grade'>

8.6 WRAPPING UP

This chapter covered some of the basic concepts and tasks used in data analysis. Considering the
large number of possibilities and analysis combinations that may be utilized in order to provide
thorough data analytics results, this chapter was not meant to provide exhaustive analysis of all
options, but introductions to some of the main ones that highlight the general approaches and per-
spectives. For instance, topics like heatmaps, word clouds, bubble charts, area charts, and geospa-
tials were not covered, although they are rather popular and common data visualization tools. The
reader can find more detailed information on such topics in the rather extensive body of work that is
readily available in related publications or web sources. At the level of detail and abstraction used in
this chapter, Table 8.1 can be used as a quick guide for some of the methods covered, and their use
in the context of data analytics.

TABLE 8.1
Quick Guide of Methods and Their Functionality and Syntax

Functionality Syntax/Example

Data Acquisition
Import the Pandas library. import pandas as <pandas object>

Example:
import pandas as pd

(Continued)

367Data Analytics and Data Visualization

TABLE 8.1 (Continued)
Quick Guide of Methods and Their Functionality and Syntax

Functionality Syntax/Example

Create a data frame through
data read.

<name of data frame> = <name of pandas object>.read_
csv(“<Filename.csv”, delimiter = ‘,’)
Example:
dataset=pd.read_csv(‘WPP2019_TotalPopulationBySex.
csv’, delimiter = ‘,’)

<name of data frame> = <name of pandas object>.read_
excel(“<Filename.xlsx>”, sheet_name = “<Sheet name>”)
Example:
dataset=pd.read_excel(WPP2019_Total_Population.xlsx’,
sheet_name = “ESTIMATES”)

<name of data frame> = <name of pandas object>.
read_html(“<url>”)

Data Cleaning
Delete all rows containing
missing data.

<name of new Data Frame> = <name of original Data
Frame>.dropna()
Example:
dframe_no_missing_data = dataset.dropna()

Delete all rows containing
any missing data.

<name of new Data Frame> = <name of original Data
Frame>.dropna(how = “any”)
Example:
dframe_delete_rows_with_any_na_values = dataset.
dropna(how = “any”)

Delete all rows with missing
data in all columns.

<name of new Data Frame> = <name of original Data
Frame>.dropna(how = “all”)
Example:
dframe_delete_rows_with_all_na_values = dataset.
dropna(how = “all”)

Replace missing values with a
predefined or calculated
value.

<name of new Data Frame> = <name of original Data
Frame>.fillna(value[, how = ‘all’] [, inplace = True])
<name of new Data Frame> = <name of original Data
Frame>.fillna(value[, how = ‘any’] [, inplace = True])
Example:
dataset.fillna(0, inplace = True)

Change the names of columns
with new ones.

<name of Data Frame>.rename(columns = {“oldname”:
”newname”, } [, inplace=True])
Example:
dataset_new = dataset.rename (columns = {“Final
Grade”: “Total Grade”, “Quiz 1”: “Test 1”, “Quiz 2”:
“Test 2”, “Midterm Exam”: “Midterm”})

Change the index of a dataset
and reset it back to the
original column.

<name of dataset>.set_index(“<column name>”[,
inplace=True])
<name of dataset>.reset_index([inplace=True])

Data Exploration
Find the number of records in
the dataset.

len(<name of dataset>
Example:
len(dataset)

(Continued)

368 Handbook of Computer Programming with Python

TABLE 8.1 (Continued)
Quick Guide of Methods and Their Functionality and Syntax

Functionality Syntax/Example

Report the columns of the
dataset.

<name of dataset>.(columns)
Example:
dataset.columns

Report the number of records
and columns in the dataset.

<name of dataset>.shape
Example:
dataset.shape

Report the first n records of the
dataset.

<name of dataset>.head(n)
Example:
dataset.head(5)

Report the last n records of the
dataset.

<name of dataset>.tail(n)
Example:
dataset.tail(5)

Report a number of records
and columns from the dataset,
based on their name and/or
index value.

<name of dataset>[start row: end row: step]
<name of dataset>.loc[start row: end row, “<name of
starting column>”: “<name of ending column>”]
<name of dataset>.iloc[start row: end row, start
column (index): end column (index)
Example:
print(dataset[0:37:5])
print(dataset.loc[0:5,” Final Grade” : “Final Exam”])
print(dataset.iloc[0:5,0:3])

Report only the unique values
from a selected column in the
dataset.

<name of dataset>[“<name of column>”.unique()]
Example:
dataset[“Project”].unique())

Report data based on simple or
compound condition.

<name of dataset>[<condition>]
<name of dataset> [<condition>[&/|] <condition>]]
Examples:
dataset[“Final Grade”] > 80
dataset[“Final Grade”] > 0) & (dataset[“Final Grade”]
< 60)

Merge two datasets into a new
one.

<name of new dataset> = <name of first old dataset>.
append(<name of second old dataset>)
Example:
dataset = dataset1.append(dataset2)

Create a new column based on
an expression using data from
other columns.

<name of dataset>[“<name of new column>”] =
expression with other columns
Example:
dataset[“Course Work”] = dataset [“Quiz”]*0.2 +
dataset [“Midterm Exam”] *0.25 +
dataset[“Project”]*0.25

Create a new column based on
a condition.

<name of dataset>[“<name of new column>”] = np.where
(condition, value if True, value if False)
Example:
dataset[“Letter Grade”] = np.where (dataset[“Final
Grade”] > 89, “A”)

Create a new column based on
a set of conditions and paired
values.

<name of dataset>[“<name of new column>”] = np.select
(conditions, paired values)
Example:
dataset[“Letter Grade”] = np.select (conditions,
gradeLetters)

(Continued)

369Data Analytics and Data Visualization

TABLE 8.1 (Continued)
Quick Guide of Methods and Their Functionality and Syntax

Functionality Syntax/Example

Group a dataset based on one
or more columns, and apply
any aggregate method
necessary (e.g., sum(),
mean()).

<name of dataset>.groupby([“<name of column>” [,
“<name of column>”,...]]).<aggregate function>
Example:
dataset1.groupby([“Letter Grade”]).mean()

Group a dataset based on one
or more columns. Use
apply() to organize the
records and columns in the
dataset.

<name of dataset>.groupby([“<name of column>” [,
“<name of column>”,...]]).apply(lambda x: x[<rows>,
<cols>])
Example:
dataset1.groupby([“Letter Grade”]).apply(lambda x:
x[0:rows])

Sort the data in a dataset. <name of dataset>.sort_values([“<name of column>” [,
“<name of column>”,...]] [, ascending = False])
Example:
dataset3.groupby([“Letter Grade”]).apply (lambda x:
x.sort_values ([“Final Grade”], ascending=False))

Descriptive Statistics
Use mean() to find the mean/
average in a dataset.

<name of dataset>[“<name of column>”].mean()
Example:
dataset[“Final Grade”].mean()

Use median() to find the
median in a dataset.

<name of dataset>[“<name of column>”].median()
Example:
dataset[“Final Grade”].median()

Use mode() to find the most
frequent value in a dataset.

<name of dataset>[“<name of column>”].mode()
Example:
dataset[“Final Grade”].mode(dropna = True).values

Use .values to discard all
output from the mode()
report except its value.

<name of dataset>[“<name of column>”].mode().values
Example:
dataset[“Final Grade”].mode(dropna = True).values

Use max() to find the max
value in a dataset.

<name of dataset>[“<name of columna>”].max()
Example:
dataset[“Final Grade”].max()

Use min() to find the min
value in a dataset.

<name of dataset>[“<name of columna>”].min()
Example:
dataset[“Final Grade”].min()

Use quantile(x) to find
the xth quantile in a dataset.

<name of dataset>[“<name of columna>”].
quantile(0.0–1.0)
Example:
dataset[“Final Grade”].quantile(0.25)

Use variance() (Statistics
package) to calculate data
variance.

statistics.variance(<name of dataset>[“<name of
column>”].dropna()
Example:
statistics.variance(dataset[“Final Grade”].dropna())

Use std() or stdev()
(Statistics package) to
calculate standard deviation.

<name of dataset>[“<name of column>”].dropna
statistics.stdev(<name of dataset>[“<name of
column>”].dropna()
Example:
dataset[“Final Grade”].std()
statistics.stdev(dataset[“Final Grade”].dropna())

(Continued)

370 Handbook of Computer Programming with Python

TABLE 8.1 (Continued)
Quick Guide of Methods and Their Functionality and Syntax

Functionality Syntax/Example

Use skew() to calculate data
skewness.

<name of dataset>[“<name of column>”].skew()
Example:
dataset[“Final Grade”].skew()

Use kurtosis() to
calculate data kurtosis.

<name of dataset>[“<name of column>”].kurtosis()
Example:
dataset[“Final Grade”].kurtosis()

Use count() to calculate the
frequency of occurrence of a
value.

<name of dataset>[“<name of column>”].count()
Example:
dataset[“Final Grade”].count()

Use describe() to
automatically report a set of
basic descriptive statistics.

<name of dataset>[“<name of column>”].describe()
Example:
dataset[“Final Grade”].describe()

Data Visualization
Use the hist() function

(Pandas library) to draw
histograms.

plt = <name of dataset>.plot.hist(subplots =
<integer>, grid = True/False, legend = True/False,
layout = (<number of rows>, <number of columns>,
figsize = (<size on x axis in inches>, <size on y
axis in inches>), bins = <number of bins>)
Example:
plt = dataset1.plot.hist(subplots = 2, grid = True,
legend = True, layout = (2, 3), figsize = (10, 10),
bins = 10)

Use the boxplot() function
(Pandas library) to draw box
and whiskers plots.

<name of dataset>.boxplot ([grid = True/False],
[figsize = (<integer>, <integer>), [showcaps = True/
False], [showbox = True/False], [showfliers = True/
False], [labels = <names of columns>)
Example:
dataset1.boxplot(grid = True, figsize = (10, 10),
showcaps = True, showbox = True, showfliers = True,
labels = cols)

Use the line() function
(Pandas library) to draw a
line chart.

<name of dataset>.plot.line ([grid = True/False],
[figsize = (<integer>, <integer>], [title =
“<title>”])
Example:
dataset1.plot.line(grid = True, figsize = (7, 7),
title = “Grades Line Chart”)

Use the bar() function
(Pandas library) to draw a bar
chart. Use the subplots(),
and stacked() functions
with appropriate code to create
different types of bar charts.

<name of dataset>.plot.bar()
Example:
see relevant script in the text

Use the pie() function
(Pandas library) to draw a pie
chart. Use the plt object of
the matplotlib.pyplot package
to configure and improve the
appearance of the chart.

<name of dataset>.pie()
Example:
see relevant script in the text

(Continued)

371Data Analytics and Data Visualization

8.7 CASE STUDY

Readmission is considered a quality measure of hospital performance and a driver of healthcare
costs. Studies have shown that patients with diabetes are more likely to have higher early read-
missions (readmitted within 30 days of discharge), compared to those without diabetes (American
Diabetes Association, 2018; McEwen & Herman, 2018). To reduce early readmission, one solution
is to provide additional assistance to patients with high risk of readmission. For this purpose, the US
Department of Health would like to know how to identify the patients with high risk of readmission
using the collected clinical records of diabetes patients from 130 US hospitals between 1999 and
2008.

As an attempt to assist the US Department of Health in understanding the data, you are asked to
explore, analyse (descriptively), and visualize the data of readmission (readmitted) and the potential
risk factors, such as time in hospital (time_in_hospital) and hemoglobin A1c results (HA1Cresult),
using techniques covered in this chapter.

More specifically, your work should cover the following:

 1. Data Acquisition: Import the related data file (i.e., Diabetes.csv).
 2. Data Exploration: Report the number of records/samples and the number of columns/

variables in the dataset.
 3. Descriptive Statistics: Use suitable techniques to summarize or describe the three vari-

ables we are interested in: readmitted, time_in_hospital, and HA1Cresult.
 4. Data Visualisation: Use appropriate techniques to visualize the three variables and

the relationships between readmitted and time_in_hospital, and readmission and
HA1Cresult.

REFERENCES

American Diabetes Association. (2018). Economic costs of diabetes in the US in 2017. Diabetes Care, 41(5),
917–928. https://doi.org/https://doi.org/10.2337/dci18- 0007.

Freedman, D., Pisani, R., & Purves, R. (1998). Statistics (3rd ed.). New York: WW Norton & Company.
McEwen, L. N., & Herman, W. H. (2018). Health care utilization and costs of diabetes. Diabetes in America

(3rd ed.), 40- 1–40- 78. NIDDK.
Pandas. (2021a). pandas.DataFrame.boxplot. Version: 1.2.5. https://pandas.pydata.org/docs/reference/api/

pandas.DataFrame.boxplot.html.
Pandas. (2021b). pandas.DataFrame.plot.pie. https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.

plot.pie.html.
Statistics — Mathematical statistics functions. (2021). Python. https://docs.python.org/3/library/statistics.

html.

TABLE 8.1 (Continued)
Quick Guide of Methods and Their Functionality and Syntax

Functionality Syntax/Example

Use the scatter() function
(Pandas library) to draw a
scatter plot based on two
datasets.

<dataFrame>.plot.scatter(x = “<column 1>”, y =
“<column 2>”, [title = “<title>”,...)
Example:
dataFrame.plot.scatter(x = "Final Exam", y = "Final
Grade", title = "Final exams and final grades ",
figsize = (7, 7))

https://doi.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://pandas.pydata.org
https://docs.python.org
https://docs.python.org
https://doi.org/10.2337/dci18-0007

https://taylorandfrancis.com

373

9 Statistical Analysis with Python

Han- I Wang
The University of York

Christos Manolas
The University of York
Ravensbourne University London

Dimitrios Xanthidis
University College London

Higher Colleges of Technology

Contents

9.1 Introduction .. 374
9.1.1 What is Statistics? ... 374
9.1.2 Why Use Python for Statistical Analysis? .. 375
9.1.3 Overview of Available Libraries ... 375

9.2 Basic Statistics Concepts .. 376
9.2.1 Population vs. Sample: From Description to Inferential Statistics 376
9.2.2 Hypotheses and Statistical Significance ... 377
9.2.3 Confidence Intervals ... 378

9.3 Key Considerations Prior to Conducting Statistical Analysis .. 379
9.3.1 Level of Measures: Categorical and Numerical Variables 379
9.3.2 Types of Variables: Dependent and Independent Variables380
9.3.3 Statistical Analysis Types and Hypothesis Tests .. 381

9.3.3.1 Statistical Analysis for Summary Investigative Questions 381
9.3.3.2 Statistical Analysis for Comparison Investigative Questions 381
9.3.3.3 Statistical Analysis for Relationship Investigative Questions 383

9.3.4 Choosing the Right Type of Statistical Analysis .. 385
9.4 Setting Up the Python Environment ... 386

9.4.1 Installing Anaconda and Launching the Jupyter Notebook 387
9.4.2 Installing and Running the Pandas Library ... 387
9.4.3 Review of Basic Data Analytics ... 387

9.5 Statistical Analysis Tasks ... 388
9.5.1 Descriptive Statistics .. 388
9.5.2 Comparison: The Mann- Whitney U Test ... 391
9.5.3 Comparison: The Wilcoxon Signed- Rank Test .. 391
9.5.4 Comparison: The Kruskal- Wallis Test ... 392
9.5.5 Comparison: Paired t- test ... 393
9.5.6 Comparison: Independent or Student t- Test .. 395
9.5.7 Comparison: ANOVA ... 396
9.5.8 Comparison: Chi- Square .. 397
9.5.9 Relationship: Pearson’s Correlation .. 398
9.5.10 Relationship: The Chi- Square Test ... 399

DOI: 10.1201/9781003139010-9

https://doi.org/10.1201/9781003139010-9

374 Handbook of Computer Programming with Python

9.1 INTRODUCTION

When working with data, one of the main questions one seeks to answer is whether the observed
value fluctuations and differences are random or not. If not by chance, what are the key factors
that cause such changes, and what are their relationships with the data? Statistical analysis, and in
particular inferential statistics, is the key tool for answering these questions.

In this chapter, some commonly used statistical functions and the relationship between different
types of measurements and statistical tests are introduced, accompanied by demonstrations of how
to conduct relevant statistical analysis tasks in Python. The analysis functions follow a linear and
incremental order, and build on concepts introduced previously, in order to assist readers with little
or no prior experience in this area. For those familiar with the various concepts and functions dis-
cussed, this chapter can be used as a refresher or as a practical guide to implementing and executing
common statistical functions using the Python platform.

The reader should note that before embarking on any substantial task involving statistical analy-
sis, it is important to consult statistics experts in order to determine the appropriate data collection
functions and measurement units, as well as the types of statistical tests required and the best
approaches for interpreting and reporting the results.

9.1.1 WhAt is stAtistiCs?

Statistics is a branch of applied mathematics involving the
tasks of data collection, manipulation, interpretation, and
prediction. Two broad categories can be identified in the
field of statistics: descriptive and inferential. Descriptive
statistics (covered in part in Chapter 8 on Data Analytics
and Data Visualization) focus on identifying and describ-
ing patterns in the data, by utilizing straightforward
functions like frequencies and mean calculations. In
descriptive statistics, there is no uncertainty or unknown
factors. The goal is to summarize large volumes of data,
making it easier to visualize and understand. On the
other hand, inferential statistics focus on putting forward
hypotheses (or inferences) related to a sample taken from a
wider population. The hypotheses can be then generalized
and applied to the entire population. Hence, as the sample
does not contain the entirety of the population, analytical
tasks utilizing inferential statistics are bound to contain
an element of uncertainty.

The reader must note that the term statistics is com-
monly used to refer to inferential statistics, while the
term descriptive statistics is used when analytical tasks
are conducted solely for describing existing data. In line
with this convention, in this chapter the term statistics
will be most frequently used to refer to inferential statis-
tics, unless stated otherwise.

9.5.11 Relationship: Linear Regression ...400
9.5.12 Relationship: Logistic Regression ..402

9.6 Wrap Up ..404
9.7 Exercises ...405
References ..407

Observation 9.2 – Descriptive
Statistics: The focus is on identify-
ing and describing patterns in the
data through frequencies and mean
calculations.

Observation 9.3 – Inferential
Statistics: The focus is on putting for-
ward hypotheses (inferences) related
to a sample from a wider population.
If the hypotheses are proven correct,
they are generalized and applied to
the entire population.

Observation 9.1 – Statistics: A branch
of applied mathematics that involves
the tasks of data collection, manipu-
lation, interpretation, and prediction.
Two broad categories can be identified:
descriptive and inferential statistics.

375Statistical Analysis

9.1.2 Why use Python for stAtistiCAl AnAlysis?

A large number of specialized statistical software tools are available, such as SAS, Stata, R,
and SPSS, and are widely used for both academic and commercial purposes. However, as each
of these software packages come from different developers, they use customized features and
specialized commands and syntax that cannot be directly translated and exchanged across dif-
ferent platforms. On the contrary, Python is a general- purpose programming language with
extensive cross- platform capabilities. This characteristic gives Python an advantage when it
comes to complex statistical analysis tasks that mix statistics with other data science fields,
such as image analysis, text mining, or artificial intelligence and machine learning. In such
cases, the richness and flexibility of Python, provided by its ability to adapt its functionality by
means of appropriate modules, make it a better choice compared to other specialized statistical
software packages. Furthermore, the Python language
is relatively easy to learn compared to those found
in the more specialized statistical software tools. Its
syntax is reminiscent of the English language, mak-
ing it easy to learn and use, and thus accessible to
users from diverse backgrounds and programming
expertise levels. Finally, Python is an open- source
and free- to- use language, unlike most of the special-
ized statistical packages that frequently come at a
considerable cost.

9.1.3 overvieW of AvAilAble librAries

A number of Python libraries, such as NumPy, SciPy, Scikit- learn, and Pandas, provide
 functions and tools that allow the user to conduct specific statistical analysis tasks. As the
names suggest, NumPy and SciPy focus on numeric and scientific computations, as they sup-
port basic operations on multidimensional arrays.
Accordingly, Scikit- learn is mostly used for machine
learning and data mining, as it offers simple and effi-
cient tools for common data analysis tasks. Pandas
is derived from the term panel data, and is designed
for data manipulation and analysis (McKinney &
Team, 2020). For pure statistical analysis purposes,
the Pandas library is one of the most suitable options,
as it provides high- performance data analysis tools
(Anaconda Inc., 2020).

The reader will notice that the library of choice for a large part of the work covered in this chapter
is Pandas. This is due to three main reasons. Firstly, the library is highly suitable for the types of sta-
tistical analysis tasks covered in this chapter. Secondly, it supports different data formats like comma-
separated values (.csv), plain text, Microsoft Excel (.xls), and SQL, allowing the user to import, export,
and manipulate databases easily. Thirdly, it is built on top of the SciPy library, so the results can
be easily fed into functions of associated libraries like Matplotlib for plotting and Scikit- learn for
machine learning tasks (Mclntire et al., 2019). This highlights another concept that is central to the
structure and rationale of this chapter: the selective use of different libraries and functions for differ-
ent analytical tasks. For instance, functions from the SciPy library may be used for a specific analyti-
cal task alongside functions from the Matplotlib library for plotting the output data. This approach
aims at promoting the idea that, as long as the fundamental principles and logic for the various dif-
ferent analytical tasks remain the same, the reader should feel confident to explore different toolkits
and solutions.

Observation 9.4: Python, as a
general- purpose programming lan-
guage, allows the user to integrate sta-
tistics with other data science fields
and tasks like image analysis, text min-
ing, artificial intelligence, or machine
learning.

Observation 9.5: The NumPy and
SciPy libraries focus on numeric and
scientific computations, Scikit- learn is
used for machine learning and data
mining, and Pandas for data manipu-
lation and analysis.

376 Handbook of Computer Programming with Python

9.2 BASIC STATISTICS CONCEPTS

Readers unfamiliar with the intricacies of statistical analysis who come across the notions of sig-
nificant difference, p- value, or confidence intervals may wonder what exactly these terms mean,
and why they are so central in statistics. In this section, key statistics concepts, and the frequently
intimidating jargon that accompanies them, are discussed and contextualized using simple exam-
ples. This aims at assisting the reader establishing an understanding of the connections and differ-
ences between descriptive and inferential statistics, and how and why scientists frequently make the
 transition from the former to the latter.

9.2.1 PoPulAtion vs. sAmPle: from desCriPtion to inferentiAl stAtistiCs

Population can be defined as the whole set of individuals
or subjects for which generalized observations or assump-
tions are needed, whereas sample is the actual part of this
population from which data are actually collected. As
such, the sample is bound to be a small part of the entire
population.

In an ideal scenario, individual information from the
entirety of the population would be retrieved. In this
case, descriptive statistical functions could be utilized to
describe the patterns observed in the data. However, this
scenario is extremely rare. In most cases, budget and time constraints related to the data collection and
analysis tasks at hand impose significant limitations. This is especially true when the study population
is substantial, a rather common situation indeed. For example, if a national survey about the quality
of life of all patients with diabetes in the UK is to be carried out, researchers would have to interview
a population of approximately 4.7 million people (Diabetes UK, 2019). Arguably, it would be much
more efficient to survey a group of diabetes patients rather than the entire population. In such cases,
since researchers would get access to the information of a sample, statistical functions that allow one
to make inferences to the population based on the sample are required. Measuring the national Body
Mass Index (BMI) scores can be used as an example to demonstrate the underlying rationale. Assume
that one wants to measure the BMI scores of all smokers in the UK. Since it is not plausible to get
information from the entire UK smoker population, a sample will be drawn, which will be then used
to draw conclusions. Ultimately, findings will be generalized to the entire UK smoker population using
inferential statistics.

In order to determine the required sample size, various different sampling functions are avail-
able. These include, but are not limited to, random, cluster, and stratified sampling. Depending on the
research question behind the study and on the characteristics of the study population, a particular sam-
pling function may be preferable to others. A detailed analysis of sampling functions and how to choose
one is outside the scope of this chapter. However, a large number of related resources, like specialized
statistics books and online materials are available for those interested in learning more about the topic.

In terms of generalizing findings and observations from the sample to the entire population, one
may wonder how such a generalization can be possible and trustworthy. In its simplest form, this is
achieved by conforming to a strict set of minimum requirements, summarized below:

 1. The sample must be representative of the popu-
lation to which the results will be generalized.
Representative means that the sample should
reflect specific characteristics of the population,
such as age, gender, or ethnic background, as
closely as possible.

Observation 9.6 – Population, Sample:
Population is the whole set of indi-
viduals or subjects for which general-
ized observations or assumptions are
needed. The sample is the part of the
population from which data are actu-
ally collected. The sample is always
a small part of the entire population.

Observation 9.7 – Sample Characteris-
tics: A sample must be representative
of the population, suitable for answer-
ing the research question quantitatively,
and allowing for hypothesis testing.

377Statistical Analysis

 2. It must be suitable for answering the research question quantitatively.
 3. It must allow for hypothesis testing, as implied by the research question.
 4. The data analysis must match the type of the data being analyzed. In other words, one

needs to use the right statistical function for the data at hand.

These concepts are further discussed in the following sections.

9.2.2 hyPotheses And stAtistiCAl signifiCAnCe

Once a representative sample is drawn from the study population, hypotheses are drawn based on
the underlying research questions. These hypotheses are, subsequently, systematically tested in
order to measure the strength of the evidence and to draw conclusions about the entire population.
This is commonly known as hypothesis testing. Hypothesis testing is, therefore, the process of mak-
ing a claim about the study population and using the sample data to check whether the claim is
valid. A common and long- established convention within the scientific community is that this claim
is based on the assumption that the hypothesis will not be true, or in other words, that the analysis
will show that the intervention or condition under investigation will have no difference or no effect
in the context of the population. This is a specific and standardized type of assumption that is essen-
tial in statistical testing, and is commonly referred to as the null hypothesis (H0). For those unfamil-
iar with scientific methodologies, the fact that the
expectation is that the analysis will unveil no difference
as opposed to some difference may seem counter-
intuitive. However, the reader should note that the idea
behind this is that the analyst seeks to reject the null
hypothesis rather than confirm it. In other words, the
assumption is that if one can disprove the null hypothe-
sis (i.e., no difference), a difference or effect must exist
within the population.

To check the validity of the null hypothesis, one needs to conduct a detailed and strictly-
defined type of testing, commonly referred to as statistical significance testing. There are numer-
ous statistical significance tests to choose from, depending on the research questions and the data
at hand (see Section 9.3 for more details on test selection and on how to conduct such tests in
Python). A common attribute of all these tests is that they calculate the probability of the results
observed in the sample being consistent with the results
one would likely get from the entire population. This
is known as the p-value, which describes how likely it
is that the data would have occured by random chance
if the null hypothesis is true. Hence, if the p-value is
high, the observed sample data will confirm the null
hypothesis, and thus there must be no difference in the
population. If the p-value is low, it is a sign that the
observed sample data are inconsistent with the null
hypothesis (H0), which is, therefore, rejected. In this
case, one can conclude that there must be a difference
present in the population and the difference is statis-
tically significant or that a significant difference has
been detected.

As a working example of the above, the reader can assume a study of the effectiveness of a new
hypertension drug, by comparing the blood pressure levels of those using it with the levels of those
using conventional hypertension drugs. A hypothesis test can be carried out to detect whether the

Observation 9.8 – Null Hypothesis:
The hypothesis that the intervention
or condition under investigation asso-
ciated with the research question will
have no effect in the population.

Observation 9.9 – Hypothesis or
Statistical Significance Testing: Tests
that calculate the probability of the
results being consistent with those
from the entire population. If prob-
ability is high, the null hypothesis is
confirmed and there is no difference
in the population; if it is low, the
observed sample data are inconsis-
tent with the null hypothesis, which is
therefore rejected.

378 Handbook of Computer Programming with Python

new drug intervention has any effects on the sample or not. The null hypothesis will be based on the
claim that there will be no difference of blood pressure levels between the users of the two different
drugs in the sample. Hypothesis testing will be conducted and a p- value will be generated. If the
p- value is low and the null hypothesis is rejected, there is evidence that there must be a difference
in terms of the effectiveness of the two drugs in the general population.

At this point, the reader may start wondering how low the p- value should be in order to be consid-
ered low. The answer to this is that it depends on the significance level one chooses for the research
question. In other words, for each research question, one needs to determine how high or low the prob-
ability (i.e., the p- value) must be in order to conclude whether the sample data is consistent with the
null hypothesis or not. Conventionally, differences are considered to be significant if the p- value is less
than 0.05 (5%). Essentially, the p- value can be regarded as an indicator of the strength of the evidence.
The reader can use the classification of p- values as a rough guide for determining whether statistical
significance requirements are met for a specific analysis task (Table 9.1).

Using the same hypertension drug example, if the p- value of the hypothesis test is found to be 0.03, it
indicates that there is a 3% chance that the same treatment effect would occur in the randomly sampled
data. Since the 3% chance is lower than the 5% statistical significance threshold, the null hypothesis can
be rejected, leading to the conclusion that a significant difference between the two drugs exists in terms
of the treatment effects within the general population. It is worth mentioning that the p- value here only
indicates a statistical relationship and not causation. For identifying causation, more sophisticated
inferential statistical analysis methods, such as regression, are needed (see Sections 9.5.11, 9.5.12).

9.2.3 ConfidenCe intervAls

Another key concept used frequently in statistics is that of confidence intervals. The term is used
to describe the use of a range of values within which the actual value of the tests may fall instead
of a single estimated value. More specifically, in inferential statistics, one of the primary goals is
to estimate population parameters. However, such parameters like population mean and standard
deviation are always unknown, as it is very difficult, or even impossible, to be measured accu-
rately across the entire population. Instead, estimates are made based on the samples. In order to
avoid selection bias when the sample is selected and
to achieve an accurate and objective representation
of the population, methods like random sampling are
commonly used. However, even when such methods
are used, uncertainty about the population estimates
still exists to a certain degree, due to the possibility
of sampling errors. It must be noted that, despite the
term used, sampling errors do not refer to actual errors.
They appear due to the inevitable variability occurring
by chance, as random samples are used rather than an

Observation 9.10 – Confidence
Intervals: A range of values within
which the actual value of the tests
may fall. They act as mediators that
take into account potential sampling
errors and, therefore, provide a higher
level of confidence during the statisti-
cal analysis process.

TABLE 9.1
p–value and Significance

p- value Significance

>0.1 Little or no evidence of a difference or relationship.

0.05–0.1 Weak evidence of a difference or relationship.

0.01–0.05 Evidence of a difference or relationship.

0.001–0.01 Strong evidence of a difference or relationship.

<0.001 Very strong evidence of a difference or relationship.

379Statistical Analysis

entire population. Nevertheless, they are treated as errors for the purposes of statistical testing, as
they may lead to inaccurate conclusions.

Although sampling errors cannot be completely eliminated, confidence intervals act as
a mediator by taking these potential errors into account and providing a range of values the
actual population parameter value is likely to fall within. As an example of this, one can
assume that researchers want to know the average height of all secondary school students in
the UK. Since it is impossible to measure the height of every single student, a random sample
of 1,000 secondary school students could be used. If the analysis of the sample measurements
results in an average height of 165 cm, it is unlikely that the population mean will also have
this exact value, despite the fact that random sampling was used for sample selection. However,
if the average height of the sample is expressed as a value within a confidence interval between
160 and 170, researchers can be confident that the true average height of all UK secondary school
students among the entire population is captured within this range.

9.3 KEY CONSIDERATIONS PRIOR TO CONDUCTING STATISTICAL ANALYSIS

Before conducting statistical analysis in Python, key
aspects of the data collection process, as well as the
tools and methods that will be used for the analysis of
the collected data, must be considered. At a basic level,
such considerations include:

• the measurement scales and the types of variables
that will be used for data collection,

• the hypothesis being tested, and
• the statistical tests that will be used for data analysis.

A variable is a characteristic, factor, or quantity that can be measured, and which may vary between
subjects or change over time (or both). For example, age is a variable that varies between individuals
and changes over time, while income also varies between individuals but may, or may not, change
over time. The reason the type of the variable is important is that it is directly related to the type of
statistical analysis adopted for a given task. This is true for both descriptive and inferential statistics.
Certain statistical analysis tests can be used only with certain types of data. For instance, if statisti-
cal methods suitable for categorical data are used with continuous data, the results are bound to
be inconsistent and inaccurate. Hence, knowing the type of data that will be collected in advance
enables one to choose the appropriate analysis method.

Variables are generally categorized according to the type of measurement they are used for and
the level of detail of this measurement. The following sections briefly introduce the different types
of variables, the associated types of statistical tests, and how to choose the right statistical test based
on the type of variable at hand.

9.3.1 level of meAsures: CAtegoriCAl
And numeriCAl vAriAbles

Categorical variables, also known as qualita-
tive variables, describe categories or factors of
objects, events, or individuals. An example is gen-
der, which contains a finite number of categories
(e.g., female, male). Categorical variables can also
take numerical values (e.g., 1 for female, 2 for male).
However, these values are only used for coding and

Observation 9.11 – Variable: A char-
acteristic, factor, or quantity that
can be measured. As the name sug-
gests, it varies between subjects and/
or changes over time. It is directly
related to the type of statistical analy-
sis adopted for a given task.

Observation 9.12 – Categorical
Variables (Nominal, Ordinal):
Categorical (or qualitative) vari-
ables describe categories or factors
of objects, events, or characteristics
of individuals with no mathemati-
cal meaning. Nominal variables take
discrete values that have no particu-
lar order, while ordinal variables take
discrete, ordered values.

380 Handbook of Computer Programming with Python

indexing purposes and do not have any mathematical meaning. There are two types of categorical
variables: nominal and ordinal. A brief description of each type is provided below.

• Nominal variables can have two or more discrete states, but there is no implied order
for these states. For example, gender (i.e., female, male) is a nominal variable. Marital
status (i.e., unmarried, married, divorced) and ethnic background (e.g., African, Asian,
Caucasian) are also examples of nominal variables. Similarly, in medical research,
patients that are either in treatment or not in treatment can be also described by a nomi-
nal variable.

• Ordinal variables can have also two or more discrete states, but contrary to nominal vari-
ables, they can be ordered or ranked. For example, a satisfaction scale that lets respon-
dents choose a value between 1 (strongly disagree) and 5 (strongly agree) is an example
of an ordinal variable. Age group (e.g., 20–29, 30–39 and so on) and income can be also
expressed as ordinal variables.

Continuous variables, also known as quantitative variables, are variables that can increase or
decrease steadily, or by a quantifiable degree or amount. There are two types of continuous vari-
ables, namely interval and ratio. A brief description of each type is provided below.

• Interval variables can be measurable and ordered,
and the intervals between the different values are
equally spaced. For example, temperature mea-
sured in degrees (e.g., Celsius) is an interval vari-
able, as the difference between 40°C and 30°C,
and 30°C and 20°C is an equidistant interval of
10°C. Other examples of interval variables include
age (when measured in years, months or days
instead of the ordinal age groups of the previous
example), or pH. Another characteristic of interval
variables is that they do not have a true zero. For
instance, there is no such thing as no temperature, as a temperature of 0°C is still a mea-
surable temperature. Hence, interval variable values can be also added or subtracted (but
not multiplied or divided).

• Ratio variables are similar to interval variables, with one important difference: they do
have a true zero point. When a ratio variable equals to zero, this means there is none of
this variable. Examples of ratio variables include height, weight, and length. Also, due to
the existence of a true zero point, the ratio between two measurements takes a new mean-
ing. For instance, an object weighing 10 kg is twice as heavy as an object weighing 5 kg.
However, a temperature of 30°C (interval variable) cannot be considered twice as hot as
15°C. One can only claim that the 30°C temperature is higher than 15°C.

9.3.2 tyPes of vAriAbles: dePendent And indePendent vAriAbles

Variables are typically classified as either independent
or dependent. Independent variables, also called predic-
tor, explanatory, controlled, input, or exposure variables,
have an influence on the dependent variables, but are not
affected by any other variables themselves, hence their
name. Accordingly, dependent variables, also known
as observed, outcome, output, or response variables,
are variables that are changing based on changes in the

Observation 9.13 – Continuous
Variables (Interval, Ratio):
Continuous (or quantitative) variables
take continuous numerical values
describing measured objects, events,
or characteristics of individuals. They
can take the form of intervals with no
true zero values, or ratios where a true
zero value has a logical meaning.

Observation 9.14 – Dependent and
Independent Variables: Independent
variables are changed/controlled in
an experiment that tests their effect on
the dependent variables. Both inde-
pendent and dependent variables can
be either categorical or continuous.

381Statistical Analysis

associated independent variables. Ultimately, in a scientific experiment, one seeks to change or control
the independent variables in order to test the effects of these changes on the dependent variables.

As an example, one can consider the following research question:

Does the length of treatment result in improved health outcomes?

In this case, the length of treatment is the independent variable, while health outcomes are the
dependent variables. Similarly, if one poses the question:

How aspirin dosage affects the frequency of second heart attacks?

The aspirin dosage would be the independent variable, while the heart attack frequency would be
the dependent variable.

It is worth mentioning that any type of categorical or continuous variables can be either indepen-
dent or dependent, based on the context. A summary of the various different types of variables is
provided in Figure 9.1 below.

9.3.3 stAtistiCAl AnAlysis tyPes And hyPothesis tests

There are various different statistical analysis types and
hypothesis tests. In general, statistical analysis can solve
three main types of investigative questions: summary,
comparison, and relationship. A more detailed list of
common statistical analysis types, and the categories
of problems they are used to address, are presented on
Table 9.2 below.

9.3.3.1 Statistical Analysis for Summary Investigative Questions
Statistical analysis of this type is mainly used for summarizing and describing a single variable at a
given time. The most common statistical methods associated with this type of analysis are those cal-
culating the mean and median for continuous variables and the frequency for categorical variables.

9.3.3.2 Statistical Analysis for Comparison Investigative Questions
This type of statistical analysis is related to the comparison of the means of a single variable between
two or more groups. For example, it can be used if one needs to know whether the Body Mass Index
(BMI) numbers of men and women are significantly different to each other, or whether a new drug
can reduce blood pressure (i.e., measuring blood pressure before and after treatment). In this type of
analysis, p- value is used to determine whether the difference is statistically significant.

Observation 9.15 – Types of Statistical
Analysis: There are three statistical
analysis types: summary analysis using
descriptive statistics, and comparison
and relationship analysis both using
inferential statistics.

Con�nuous Categorical Independent
(treatment type & �me)

Variable

Ra�o
(height)

Ordinal
(Likert scale)

Nominal
(age, gender)

Interval
(30o C)

Dependent
(health outcome)

FIGURE 9.1 Types of variables.

382 Handbook of Computer Programming with Python

Overall, there are six common types of tests that can be used for comparative hypothesis cases.
The choice of the appropriate test for a particular task depends on a number of factors, such as the
sample size, the data characteristics, and the comparison groups. Tests of this type can be further
divided into two main categories: parametric and non- parametric (Table 9.3).

The main difference between parametric and non- parametric analysis is that the former tests the
group means, while the latter tests the group medians. When the sample size of each group is large
enough and the comparison data are continuous and normally distributed, parametric statistical
tests are preferable. Parametric tests have more statistical power than their non- parametric counter-
parts, and can thus detect an existing, underlying effect more efficiently. However, in cases where
the sample size is small, or the comparison data are skewed or non- continuous (e.g., five- point
Likert scales) (De Winter & Dodou, 2010), non- parametric statistical methods are more appro-
priate. Table 9.4 provides a simple indicative list of sample size thresholds for choosing whether
parametric and non- parametric tests should be used. The reader can find more on this topic in the
various available sources assisting users with statistical test selection, such as Minitab (2015).

Irrespectively of the sample size, when one compares two different means or medians, statistical
analysis can be further divided into two types, depending on whether the mean or median comes

TABLE 9.3
Common Types of Comparison Statistical Tests

Parametric Tests (Means) Non- Parametric Tests (Median)

Independent Student t- test Mann- Whitney U test

Dependent (Paired) Student t- test Wilcoxon Signed- Rank test

Analysis of Variance Test (ANOVA) Kruskal- Wallis, Mood’s median test

TABLE 9.2
Common Types of Statistical Tests

Statistics Investigative Question Common Statistical Tests

Descriptive Summary Continuous variable:
Mean, Median, Mode
Categorical variable:
Frequency

Inferential Comparison Continuous variable:
Nonparametric
Mann- Whitney U test
Wilcoxon Signed- Rank test
Kruskal- Wallis, Mood’s median test
Parametric
Student’s t- test
Paired Student’s t- test
Analysis of Variance test (ANOVA)
Categorical variable:
Chi- Square test

Inferential Relationship Association strength without causal relationship
Pearson’s correlation coefficient
Chi- Squared test
Association strength with causal relationship
Linear regression
Logistic regression

383Statistical Analysis

from independent groups or from repeated measurements within the same group. If it comes from
independent groups, independent t- tests should be used for parametric analysis and Mann- Whitney
U tests for non- parametric analysis. Examples of such cases are analysis based on measurements
of BMI for men and women, or the height of UK and US population. If the mean or median comes
from repeated measurements within the same group, dependent t- tests should be used for paramet-
ric analysis and Wilcoxon Signed- Rank tests for non- parametric analysis. An example of this is the
measurement of blood pressure before and after using a new drug.

One can also compare three or more different means or medians. An example of this is the com-
parison of height across different ethnic groups. In this case, Analysis of Variance (ANOVA) tests
should be used. In simple terms, ANOVA can be viewed as different implementations of t- tests that
allow one to compare means or medians of more than two groups.

9.3.3.3 Statistical Analysis for Relationship Investigative Questions
This type of statistical analysis is used to investigate the relationship between two or more vari-
ables. Depending on the type of variable and the purpose of the analysis, it can be further divided
into four sub- categories, as outlined in Table 9.5.

In general terms, relationship statistical analysis is suitable for:

• hypothesis testing,
• measuring the association strength, and
• investigating causal relationships.

Hypothesis testing is an attempt to check whether two variables are associated with each other. For
example, one may wish to know whether an increase in daily sodium intake results in blood pres-
sure changes Figure 9.2. If the test results in a p- value of 0.05, a significant relationship is assumed
to exist between salt intake and blood pressure.

Association strength is a measurement of how closely the two variables are correlated (Table 9.6).
This is usually expressed in terms of the R or R2 value, ranging from −1.0 to 1.0 or 0 to 1.0 respec-
tively. Positive numbers indicate a positive correlation (e.g., if one variable increases the other
increases too) and negative numbers an inverse correlation (e.g., if one variable increases the other

TABLE 9.4
Simple Guide for Choosing between Parametric and Non- Parametric Tests

Non- Parametric Tests Sample Size Parametric Tests

Mann- Whitney U test N = 15 in each group Independent Student t- test

Wilcoxon Signed- Rank test N = 30 Dependent (Paired) Student t- test

Kruskal- Wallis, Mood’s median test Compare 2–9 groups, n = 15 in each group
Compare 10–12 groups, n = 20 in each group

Analysis of Variance test (ANOVA)

TABLE 9.5
Common Types of Relationship Statistical Tests

Type of Variable Statistical Test Association Strength Causal Relationship

Continuous Variable Correlation
(Linear Regression)

Correlation Linear Regression

Categorical Variable Chi- Square
(Logistic Regression)

– Logistic Regression

384 Handbook of Computer Programming with Python

decreases). In this context, a value of 1.0 indicates a perfect correlation, and 0 no correlation. A rule
of thumb is that when R is higher than 0.7 or lower than −0.7 the two variables are considered to
be highly correlated. When R is between −0.3 and 0.3, the correlation between the two variables is
regarded as weak. In the example presented in Figure 9.2, R is 0.82. Thus, there is a positive relation-
ship between sodium intake and blood pressure. In other words, increasing the daily sodium intake
is highly correlated with high blood pressure.

The investigation of causal relationships is an attempt to relate the two variables via the equation
of a line that stretches across a cloud of points. The equation is usually expressed as Y = a + bX, and
it can be used for prediction. In the example presented in Figure 9.2, the causal relationship results
show that blood pressure equals to 114.5 + 3.5 * daily sodium intake. This indicates that if the daily
sodium intake of individuals is known it is possible to predict their approximate blood pressure. For
instance, when the daily salt intake is 3 g the blood pressure would be 125 mmHg, and would go
up by 3.5 mmHg for every 1 g increase of the daily sodium intake. This example provides a rather
simplified, but informative description of the causal relationship concept.

When the two variables are continuous, two common types of statistical analysis can be used
to test their relationship: correlation and linear regression (McDonald, 2014). In simple terms,
correlation measures the p- value in order to test the hypothesis, and can quantify the direction
and strength of the relationship between two continuous variables by summarizing the result
with an R value. However, correlation cannot infer a cause- and- effect relationship. On the other

FIGURE 9.2 Relationships between daily salt intake and blood pressure.

TABLE 9.6
R value and Strength of Correlation

R value Strength of Correlation

1.0 Perfect positive correlation

0.7 Strong positive correlation

0.5 Moderate positive correlation

0.3 Weak positive correlation

0 No correlation

−0.3 Weak negative correlation

−0.5 Moderate negative correlation

−0.7 Strong negative correlation

−1.0 Perfect negative correlation

385Statistical Analysis

hand, linear regression provides a p- value for hypothesis testing similarly to correlation, but can
also summarize the causal relationship with an equation that describes the relationship between
variables.

When the variables are categorical (i.e., nominal and ordinal), their relationship can be tested
using two additional types of statistical analysis: chi- square test and logistic regression. The chi-
square test is used to test the association by providing a p- value. For example, if one is interested
in the relationship between gender and smoking status, the chi- square test can be used. If the result
is a p- value of 0.015, a strong association between gender and smoking status can be assumed. As
in correlation, the chi- square test cannot infer a cause- and- effect relationship. To do so, logistic
regression is required. The latter works like linear regression in the sense that it can summarize
the causal relationship with an equation and use the equation for prediction. The only difference
between the two is that logistic regression is used for categorical data, while linear regression is
used for continuous data.

The reader can find a list and a brief description of a number of common statistical analysis tests
discussed in this section on Table 9.7.

9.3.4 Choosing the right tyPe of stAtistiCAl AnAlysis

Selecting the right type of statistical analysis is one of
the most important considerations when conducting
analytical work. This decision is generally based on the
type and number of variables, and it can be a challeng-
ing process for those with less experience in this field of
study. Table 9.7 presents a cheat sheet that can be used to
determine when to choose the statistical tests mentioned
in Section 9.3.3, Table 9.2. The first column contains the
number of variables under investigation and the second
the type of the research question one is trying to answer.
The third and fourth columns contain the types of the independent and dependent variables, and the
fifth the recommended statistical test. A decision tree chart is also provided on Figure 9.3, with the
recommended statistical test at the end of each tree branch. By using these resources as a guide,
the reader should be able to find a suitable statistical test for the data type and research question at
hand. It must be noted that this is a just a brief introduction to the topic of statistical test suitability
and selection. In addition to any decisions based on such guides, it is always helpful and advisable
to consult statisticians and analysis experts before embarking on any serious analytical task.

Observation 9.16 – Selecting the
Appropriate Test: The decision of
what test to use is not an arbitrary one
but depends on a number of factors,
such as the types and number of vari-
ables at hand, the number of groups
to be tested, the sample size, and the
data distribution characteristics.

TABLE 9.7
Cheat Sheet for Choosing the Right Statistical Test

No. of Variables Question Type Dependent Variable Independent Variable Statistical Test

1 Summary Continuous – Mean, Mode

1 Summary Categorical – Frequency

1 Comparison Continuous 2 groups t- Test

1 Comparison Continuous 3+ groups ANOVA

1 Comparison Categorical 2+ groups Chi- Square

2 Relationship Continuous 1 continuous Correlation

2 Relationship Categorical 1 categorical Chi- Square

2+ Relationship Continuous 1+ variables Linear Regression

2+ Relationship Categorical 1+ variables Logistic Regression

386 Handbook of Computer Programming with Python

9.4 SETTING UP THE PYTHON ENVIRONMENT

General information related to the process of setting up, and operating in, the Python envi-
ronment are provided in Chapter 1 of this book. Most of the essential requirements and basic
programming concepts presented in these chapters are transferable and, thus, apply to the work
and ideas presented here. Nevertheless, if the reader opts to focus solely on this chapter, the sec-
tions below provide a quick guide on how to set up the essential platforms, namely Anaconda
and Jupyter, as well as the required libraries and modules required for the purposes of statistical
analysis.

FIGURE 9.3 Choosing the right statistical analysis.

387Statistical Analysis

9.4.1 instAlling AnACondA And lAunChing the juPyter notebooK

The official Anaconda download page allows the user to download and install the latest version
of the Python platform (see Chapter 1) (Anaconda Inc., 2020). The code and examples provided in
this chapter were written and tested using Python 3.9. Once Anaconda is installed, the Anaconda
Navigator can be used to launch applications, and simple Python programs can be created and run
using the Spyder or Jupyter Notebook environments.

For the purposes of this chapter, Jupyter Notebook is the platform of choice. This is due to a num-
ber of reasons. Firstly, it offers an appropriate environment for the Pandas library, which is required
for tasks related to data exploration and modelling. Secondly, it allows for the execution of code in
cells rather than running the entire file, something that can save time when it comes to debugging.
Thirdly, it provides an easy way to visualize datasets and plots.

9.4.2 instAlling And running the PAndAs librAry

To install Pandas, the reader can type !pip install pandas in the command input cell. Since
Pandas is used frequently, it is common to import Pandas with a shorter name, namely pd. This is
done by using the import pandas as pd expression:

!pip install pandas
import pandas as pd

9.4.3 revieW of bAsiC dAtA AnAlytiCs

With Pandas imported, the user can read data from local .csv files using the pd.read_csv() func-
tion and the full path directory of the file. For example, the following command can be used to read
data from a local file named purchase.csv:

df = pd.read_csv('C:\Python\Example\purchase.csv', index_col=0)

The same applies to reading data files of other types, like Excel spreadsheets, SQL, and JSON, using
the appropriate functions (i.e., pd.read_excel(), pd.read_sql_query(), and pd.read_
json()) (The Pandas Development Team, 2020). For the purpose of importing tables from HTML
webpages, Pandas uses the pd.read_html() function (Sharma, 2019). The following example
uses the HTML dataset from a cryptocurrency website to showcase this (WorldCoinIndex, 2021).
Firstly, the requests library is imported. After passing the website link to variable url, function
request.get() attempts to connect to the web server and allocate the relevant connection informa-
tion to variable crypto_url. If a connection is established, property crypto_url.text is used
as an argument to the pd.read_html command that, in turn, passes a dataframe to variable
crypto_df. This particular dataframe contains columns with unnecessary data that are discarded
from the main dataset. Finally, the first five rows of the dataset are displayed:

1 import pandas as pd
2 import requests
3
4 # Define the url
5 url = 'https://www.worldcoinindex.com/'
6 # Request the url
7 crypto_url = requests.get(url)
8 # Read from the url to Pandas object
9 crypto_df = pd.read_html(crypto_url.text)

https://www.worldcoinindex.com

388 Handbook of Computer Programming with Python

Output 9.4.3:

Name Ticker Last price
0 Bitcoin BTC $ 33,839
1 Ethereum ETH $ 2,140.42
2 Axie Infinity AXS $ 40.82
3 Dogecoin DOGE $ 0.193697
4 Ethereumclassic ETC $ 47.64

A dataframe is a two- dimensional tabular data structure with labeled rows and columns. To view
the dataframe, the user can simply call the name of the variable it is stored in. For instance, calling
variable crypto_df from the pd.read_csv example presented above will read the entire dataframe
that is stored in it. By default, the first and last five rows of a dataframe can be also retrieved using
commands df.head() and df.tail() respectively. Passing a specific number to the arguments
list of the head() function retrieves the corresponding number of rows, in this case 10.

When it comes to saving the dataframe, various different file formats can be chosen. These
include, but are not limited to, the following:

 1. Plain Text CSV: A commonly used, straightforward format.
 2. Pickle: Python’s native data storage format.
 3. HDF5: A format designed to store large amounts of data.
 4. Feather: A fast and lightweight binary file format that is also compatible with statistical

analysis software R.

Depending on the requirements and nature of the task at hand, each format has its own advantages and
disadvantages. The example below uses Pickle, as the process is rather straightforward: function to_
pickle() is used to save the dataframe to file example.pkl and pd.read_pickle() to retrieve it:

df.to_pickle('example.pkl')
df1 = pd.read_pickle('example.pkl')

9.5 STATISTICAL ANALYSIS TASKS

Once the Python environment is configured and the appropriate methods and tools are determined,
the reader can focus on the practical implementation of the various analytical tasks using Python.
This section provides coding examples for various statistical analysis concepts and tests as well as
information on the interpretation of the test results.

9.5.1 desCriPtive stAtistiCs

Descriptive statistics are typically used for summarizing data from a sample. Depending on the type of
measures used, a number of tools can be utilized for analysis and visualization (Table 9.8). If the type of
measure is a continuous variable, functions and methods like .describe(), plot(kind=‘hist’),
or plt.hist() can be used to generate summarized estimates or plot histograms (Koehrsen, 2018).

10 # Acquire only the relevant data form the dataset
11 dataset = crypto_df[0]
12 # Limit the displayed columns
13 df = dataset.iloc[0:102, 2:5]
14 # Print the first five rows of the dataset
15 print(df.head(5))

389Statistical Analysis

As an example, assume a survey is conducted in order to gather personal information (i.e., age,
gender, or BMI) from adults (18+) in a particular geographic area, and this information should be
used to describe the age distribution within the sample population. The examples below show how
one can generate the associated summary statistics and plot graphs:

Output 9.5.1.a:

Descriptive Statistics for Age
age

count $2,849.00
mean $55.83
std $16.06
min $18.00
25% $44.00
50% $58.00
75% $67.00
max $101.00

1 import pandas as pd
2
3 # Define the floating numbers format
4 pd.options.display.float_format = '${:,.2f}'.format
5
6 # Define the analysis dataset
7 dataset = pd.read_csv("Survey.csv", index_col = 0)
8 print("Descriptive Statistics for Age")
9 print(dataset[["age"]].describe())
10
11 # Draw the histogram of the ‘age’ column
12 dataset["age"].plot(kind = 'hist', title = 'Age');

TABLE 9.8
Common Descriptive Statistical Tools for Different Types of Measures

Type of Measure Summarized Values Plot

Continuous Variable Mean, Median, Standard Deviation, Range Histogram, Box Chart and similar

Categorical Variable Frequency, Proportion, Percentage Pie Chart, Bar Chart, Box Chart and similar

390 Handbook of Computer Programming with Python

The results indicate that the mean age of this group is 55.83 years. The age ranges from 18 to 101,
and the distribution is symmetrically centred around the mean.

For categorical variables one can use the .value_counts() method to generate the frequency
of all values in a column, and the plot(kind=‘bar’) function to plot the frequency using bars
(Tavares, 2017). Using the same survey example, the gender distribution for the patient group can
be calculated and plotted using the following commands:

Output 9.5.1.b:

Descriptive Statistics for Gender
gender

count 2849
unique 2
top Female
freq 1660

<AxesSubplot:title={'center':'Gender'}>

The results show that that there are 1,660 females and 1,182 males within the patient group and the
related plot is generated.

As the topic of descriptive statistics is covered in detail in Chapter 8: Data Analytics and
Data Visualization, the information provided here is only meant to function as a quick reference.
Nevertheless, it is important to mention that descriptive statistics are frequently used as a way to
gauge the data and provide context to many of the inferential statistics tasks presented in the fol-
lowing sections.

1 import pandas as pd
2
3 # Define the analysis dataset
4 dataset = pd.read_csv("Survey.csv", index_col = 0)
5 print("Descriptive Statistics for Gender")
6 print(dataset[["gender"]].describe())
7
8 # Draw the bar graph for the gender column
9 dataset["gender"].value_counts().plot(kind = "bar",
10 title = "Gender", rot = 0)

391Statistical Analysis

9.5.2 ComPArison: the mAnn- Whitney u test

The Mann- Whitney U test is a type of non- parametric
test for continuous variables. It is used to test whether
the distributions of two independent samples are equal.
This test is appropriate when the sample size is small, or
the data are skewed.

As a practical example, one can consider a clinical
trial comparing the treatment effects of standard and a
new therapy for patients with depression. A total of ten
participants are randomly allocated to the two groups
(i.e., standard therapy/new therapy). The primary out-
come of the measurements is the depression scores, ranging from 1 (extremely depressed) to 100
(extremely euphoric):

The null hypothesis (H0) is that the depression scores of the two therapies are equal. Since the
sample size is small (<20), the Mann- Whitney U Test is the appropriate choice for analysis. To run
the test, the user can use the mannwhitneyu() function from the SciPy library. Data arrays
data1 and data2 contain the depression scores of the standard and new therapies. The two sets
of results can be compared using the mannwhitneyu(data1, data2) function:

Output 9.5.2:

MannwhitneyuResult(statistic=34.0, pvalue=0.11941708700675263)

The results provide two values: the U statistics value (34.0) and the p- value (0.119). Since the lat-
ter is larger than the significance level of 0.05, there is no sufficient evidence to conclude that the
number of bacteria in the blood between the two therapies is different. Hence, the null hypothesis
can be rejected with the conclusion that the new therapy
does not improve the reduction of bacteria numbers in
the blood compared to the standard therapy.

9.5.3 ComPArison: the WilCoxon
signed- rAnK test

The Wilcoxon Signed- Rank Test is used to test whether
the distributions of two paired samples are equal or not.
It is a non- parametric test that can be used for both con-
tinuous and ordinal variables.

Observation 9.17 – The Mann- Whitney
U Test: A non- parametric test for con-
tinuous variables. It tests whether the
distributions of two independent sam-
ples are equal. It is appropriate when
the sample size is small or the data are
skewed. Use the mannwhitneyu()
function from the SciPy library.

Standard therapy 85 65 70 55 40 75 30 80 20 80

New therapy 75 40 60 40 50 65 35 20 25 40

1 # Example of the Mann- Whitney U Test
2 from scipy.stats import mannwhitneyu
3 # Standard therapy
4 data1 = [85, 65, 70, 55, 40, 75, 30, 80, 20, 80]
5 # New therapy
6 data2 = [75, 40, 60, 40, 50, 65, 35, 70, 25, 40]
7 mannwhitneyu(data1, data2)

Observation 9.18 – The Wilcoxon
Signed- Rank Test: A non- parametric
test for continuous or ordinal vari-
ables. It tests whether the distributions
of two paired samples are equal. It is
appropriate when the sample size is
small or the data are skewed. Use the
wilcoxon() function from the SciPy
library.

392 Handbook of Computer Programming with Python

As an example, one can assume a test during which depression score measurements are taken
before and after a newly developed therapy for ten patients, and the goal is to find whether the
therapy makes a difference:

Output 9.5.3:

WilcoxonResult(statistic=7.0, pvalue=0.037109375)

The test provides a p- value of 0.036 which is below the significance level of 0.05. Hence, the null
hypothesis can be rejected with the conclusion that the new therapy has a significant effect on the
depression scores.

9.5.4 ComPArison: the KrusKAl- WAllis test

The Kruskal- Wallis Test is used to test whether the dis-
tributions (medians) of two or more independent sam-
ples are equal or not. It is used for continuous or ordinal
variables when the sample size is small and/or data are
not normally distributed. The test indicates whether the
differences between the test groups are likely to have
occurred by chance or not. It is worth noting that the
Kruskal- Wallis Test is used under the assumption that
the observations in each group come from populations
with the same shape of distribution. Hence, if differ-
ent groups have different distribution shapes (e.g., one
is right- skewed and another left- skewed), the Kruskal–Wallis Test may produce inaccurate results
(Fagerland & Sandvik, 2009).

As an example of how to use the test in Python, one can assume a case of three available options
to alleviate depression: standard therapy, new therapy, and new therapy plus exercise. The purpose
of the test is to determine whether there is any difference in depression scores between the three
therapy options with the following depression scores:

Observation 9.19 – The Kruskal-
Wallis Test: A non- parametric test
for continuous or ordinal variables
with small sample size and/or data
not normally distributed but with a
similar skewness. It tests whether the
differences between two or more
groups are by chance or not. Use the
 kruskal() function from the SciPy
library.

The null hypothesis (H0) is that there is no difference in depression scores before and after the
therapy. Since the data are taken from pairs and the sample size is small, the Wilcoxon Signed-
Rank Test is an appropriate choice. To run the test, the user can use the wilcoxon() function from
the SciPy library. Data arrays data1 and data2 contain the depression scores before and after
therapy. The two sets of results can be compared using the wilcoxon(data1, data2) function:

Patient 1 2 3 4 5 6 7 8 9 10

Before therapy 85 65 70 55 40 75 30 80 20 80

After therapy 75 40 50 40 50 65 35 20 25 40

1 # Example of the Wilcoxon Signed- Rank Test
2 from scipy.stats import wilcoxon
3 # Before therapy
4 data1 = [85, 65, 70, 55, 40, 75, 30, 80, 20, 80]
5 # After therapy
6 data2 = [75, 40, 50, 40, 50, 65, 35, 20, 25, 40]
7 wilcoxon(data1, data2)

393Statistical Analysis

Since the sample size is small and the depression scores are ordinal, the Kruskal- Wallis Test
is an appropriate choice. To run the test in Python, one can use the kruskal() function from
the SciPy library. Data arrays data1, data2 and data3 contain the depression scores for new
therapy and exercise, new therapy and standard therapy respectively. The three sets of results can
be compared using the kruskal(data1, data2, data3) expression:

Output 9.5.4:

KruskalResult(statistic=7.275735789710176, pvalue=0.026308376435655575)

The results show that the p- value is 0.026, which is less than the significance level of 0.05. Hence,
the null hypothesis (H0) (i.e., the depression scores of the three therapies are equal) can be rejected,
with the conclusion that a significant difference exists between the three treatment options.

9.5.5 ComPArison: PAired t- test

The Paired t- Test, also referred to as the Dependent
t- Test, is used to test whether repeated measurements
(means) taken from the same sample are significantly
different. Since the measurements come from the same
sample, the terms paired samples, matched samples or
repeated measures are also commonly used for this type
of test. The test is used under the assumption that the
measurements are normally distributed and do not contain significant outliers. If the measurements
are skewed or contain significant outliers, the Wilcoxon Signed- Rank Test should be used instead.

As an example, one can assume the case of a new drug developed to assist patients by reducing
blood pressure. To investigate the effectiveness of the new drug, the blood pressure of 100 patients
is firstly measured prior to taking the drug and also 3 months later. Since the goal is to determine
whether the new drug is effective, the null hypothesis (H0) is that the average blood pressure will be
the same before and after taking the drug. Assuming a dataset stored in a file named Blood.csv, the
user can conduct the Paired t- Test in Python using the ttest_rel() function from the SciPy library:

Observation 9.20 – The Paired t- Test:
A parametric test for normally distrib-
uted data with no significant outliers.
Use the ttest _ rel() function
from the SciPy library.

New therapy + exercise 90 80 90 30 55 90 55 85 40 90

New therapy 85 65 70 55 40 75 30 80 20 80

Standard therapy 75 40 50 40 50 65 35 20 25 40

1 # Example of the Kruskal- Wallis Test
2 from scipy.stats import kruskal
3 # New therapy and exercise
4 data1 = [90, 80, 90, 30, 55, 90, 55, 85, 40, 90]
5 # New therapy
6 data2 = [85, 65, 70, 55, 40, 75, 30, 80, 20, 80]
7 # Standard therapy
8 data3 = [75, 40, 50, 40, 50, 65, 35, 20, 25, 40]
9 kruskal(data1, data2, data3)

1 import pandas as pd
2 from scipy.stats import ttest_rel
3
4 # Define the format of floating numbers

394 Handbook of Computer Programming with Python

Output 9.5.5:

Descriptive Statistics for Blood before and after
Before After

count 80.00 80.00
mean 153.39 147.55
std 10.49 13.57
man 138.00 125.00
25% 144.75 136.00
50% 151.50 146.00
75% 159.25 157.00
max 185.00 184.00

Ttest_relResult(statistic=array([2.91731434]), pvalue=array([0.00459528]))

5 pd.options.display.float_format = '{:,.2f}'.format
6
7 # Define the dataset
8 dataset = pd.read_csv("Blood.csv", index_col = 0)
9 print("Descriptive Statistics for Blood before and after")
10 print(dataset[["Before", "After"]].describe())
11
12 # Prepare and display the scatter plot for the dataset
13 dataFrame = pd.DataFrame(data = dataset, columns = ["Before", "After"])
14 dataFrame.plot.scatter(x = "Before", y = "After",
15 title = "Scatter chart for Blood.csv", figsize = (7, 7))
16
17 # Calculate the Paired t-Test
18 ttest_rel(dataset[["Before"]], dataset[["After"]])

395Statistical Analysis

Arrays data1 and data2 correspond to the blood pressure scores before and after the drug
therapy. The results show that the average blood pressure before taking the new drug was higher
(153.38 mmHg) compared to the measurement taken after drug administration (147.55 mmHg). The
test provides a p- value of 0.004, which is lower than the significance level of 0.05. Hence, the null
hypothesis can be rejected with the conclusion that a statistically significant difference in blood
pressure occurs after using the new drug.

9.5.6 ComPArison: indePendent or student t- test

The Independent t- Test, also known as the Student
t- Test, is used to test whether the means of two inde-
pendent samples are significantly different. To conduct
Independent t- Tests in Python, the ttest_ind() func-
tion from the SciPy library can be used. The function
accepts two arrays as parameters, corresponding to the
sets of data under investigation. The reader can find
more information on the official SciPy.org website (The SciPy Community, 2020).

Using the same survey example, one can assume a case where the user needs to know whether
ages between men and women within the sample are different. In this context, the null hypothesis
(H0) the mean ages of the two groups are equal is used:

Output 9.5.6:

Descriptive Statistics for age grouped by gender
count mean std min 25% 50% 75% max

gender
Female $1,660.00 $55.27 $16.42 $18.00 $43.00 $57.00 $67.00 $101.00
Male $1,189.00 $56.61 $15.50 $19.00 $45.00 $58.00 $68.00 $98.00

Ttest_indResult(statistic=2.1993669348926157, pvalue=0.02793196707542121)

The first output shows that the average age for men (56.56) is higher than that of women (55.30). The
Independent t- Test is conducted in order to determine whether this difference is significant. The first
statistic value is the t score (2.199), which is a ratio of the difference between and within the two
groups. As a general rule, the higher the t score, the bigger the difference would be between groups,
and vice versa. To determine whether the t score is high enough, one has to rely on the p- value
output. In this example, the p- value is 0.0279, which is lower than the significance level of 0.05.

Observation 9.21 – The Student
t- Test: A parametric test for normally
distributed data with no significant
outliers. Use the ttest _ ind()
function from the SciPy library.

1 import pandas as pd
2 from scipy.stats import ttest_ind
3
4 # Define the format of floating numbers
5 pd.options.display.float_format = '${:,.2f}'.format
6
7 # Define the dataset
8 dataset = pd.read_csv("survey.csv", index_col = 0)
9 print("Descriptive Statistics for age grouped by gender")
10 print(dataset["age"].groupby(dataset["gender"]).describe())
11
12 # Calculate the Student t- Test
13 ttest_ind(dataset.age[dataset.gender == 'Male'],
14 dataset.age[dataset.gender == 'Female'])

http://SciPy.org

396 Handbook of Computer Programming with Python

Thus, the null hypothesis can be rejected with the conclusion that there is a statistically significant
difference between the age of male and female individuals.

9.5.7 ComPArison: AnovA

The ANOVA (i.e., Analysis of Variance) Test is used to
compare the means of three or more samples. It assumes
independence of observations, homogeneity of variances,
and normally distributed observations within groups. In
Python, the user can utilize the f_oneway() function
from the SciPy library to calculate the F- Statistic, which,
in turn, can be used to calculate the p- value. The function
accepts parameters corresponding to the sample mea-
sures for each group under consideration.

Using the same survey data as an example, one can assume that the user needs to know whether
the Body Mass Index (BMI) values are different across non- smokers, former smokers and current
smokers (smoking status). The null hypothesis (H0) is that there is no difference between the means
of the BMIs among people from the three different groups:

Output 9.5.7:

Descriptive statistics for survey by smokestat

smokestat
count mean std min 25% 50% 75% max

Current 363.00 28.20 6.84 17.50 23.20 27.20 31.25 62.60
Former 755.00 29.22 6.24 16.80 25.05 28.20 32.40 66.20
Never 1,731.00 28.14 6.48 16.10 23.50 27.10 31.30 75.20

Results of ANOVA by smokestat values of Never, Former, Current
F_onewayResult(statistic=7.548128785289014, pvalue=0.0005377158828502398)

The first output shows that the former smokers have the highest mean BMI (29.22), followed by
current smokers (28.30), and non- smokers (28.20). The output of the ANOVA Test shows that the
F- Statistic is 6.56 and the p- value is 0.0014, indicating an overall significant effect of smoking status
on BMI. However, at this point it is uncertain exactly where the difference between groups lies. To

Observation 9.22 – The ANOVA
Test: A parametric test for normally
distributed, independent observa-
tions, with homogeneity of variances.
Use the f_oneway() function from
the SciPy library.

1 import pandas as pd
2 from scipy.stats import f_oneway
3
4 # Define the format of floating numbers
5 pd.options.display.float_format = '{:,.2f}'.format
6
7 # Define the dataset
8 dataset = pd.read_csv("survey.csv", index_col = 0)
9 print("Descriptive statistics for survey by smokestat")
10 print(dataset.bmi.groupby(dataset.smokestat).describe(), "\n")
11
12 # Calculate the one- way ANOVA Test
13 print("Results of ANOVA by smokestat values of Never, Former, Current")
14 print(f_oneway(dataset.bmi[dataset.smokestat == "Never"], \
15 dataset.bmi[dataset.smokestat == "Former"], \
16 dataset.bmi[dataset.smokestat == "Current"]))

397Statistical Analysis

clarify this, one needs to conduct post- hoc tests. For more detailed information regarding post- hoc
tests in Python, the reader can refer to the official documentation in Scikit-posthocs (2020).

9.5.8 ComPArison: Chi- squAre

As shown, the t- Test is used to check whether means
differ between two groups. The Chi- square Test, also
known as the Chi- squared Goodness- of- fit Test, is
the equivalent of the t- test for categorical variables. It
tests whether categorical data from a single sample fol-
low a specified distribution (i.e., external or historical
distribution).

For example, based on the example of a smoker status survey, one can assume that the propor-
tions of non- smokers, former smokers, and current smokers are 30%, 10%, 60% respectively. The
government launched a health promotion campaign in an attempt to increase smoking cession rate.
To evaluate the impact of the program, the same survey was conducted for a second time a year
later. The survey was completed by 500 people, and the data obtained were the following:

Since the goal is to determine the impact of the health promotion programme, the null hypothesis
(H0) assumes that the distribution of smoking status is the same prior to, and after the implementa-
tion of the program and, thus, the health promotion campaign has no impact. In such cases, the
Chi- square Test is an appropriate choice. In Python, the test can be conducted using the
chisquare() function from the SciPy library. The function accepts parameters corresponding to
the observed frequencies in each categorical variable:

Output 9.5.8:

The dataset before the program:
[150 50 300]
The dataset after the program:
[140 80 280]
The Chi-square test results are the following:
Power_divergenceResult(statistic=13.392857142857142,
pvalue=0.0012353158761688927)

Observation 9.23 – The Chi- Square
Test: A parametric test for categorical
variables. It tests whether data from a
single sample follow a specified distri-
bution. Use the chisquare() func-
tion from the SciPy library.

Non- Smokers Former Smokers Current Smokers

Before programme 150 50 300

After programme 140 80 280

1 import scipy as scipy
2 from scipy.stats import chisquare
3 # Define the datasets
4 before = scipy.array([150, 50, 300])
5 print("The dataset before the program:")
6 print(before)
7 after = scipy.array([140, 80, 280])
8 print("The dataset after the program:")
9 print(after)
10
11 print("The Chi- square test results are the following:")
12 print(scipy.stats.chisquare(before, after))

398 Handbook of Computer Programming with Python

The first value of the output (13.39) is the Chi- square value, followed by the p- value (0.0012). Since
the p- value is less than the significance level of 0.05, the null hypothesis is rejected, indicating that
there is a significant difference in terms of the smoking status before and after the programme.

9.5.9 relAtionshiP: PeArson’s CorrelAtion

Correlation is used to test whether two continuous vari-
ables have a linear relationship. The correlation coef-
ficient summarizes the strength of this relationship.

As an example, the reader can assume that one needs
to know whether age and BMI are correlated. The null
hypothesis (H0) for this example is that age and BMI
are not correlated. Assuming that both age and BMI are
normally distributed and have the same variance, one
can use function pearsonr() from the SciPy library to calculate the correlation coefficient and
estimate the strength of the relationship. The function accepts two arrays as parameters correspond-
ing to the sets of data:

Output 9.5.9:

(0.0453741864067145, 0.014235768675028503)
<matplotlib.collections.PathCollection object
at 0x000002802BD93310>

Observation 9.24 – Pearson’s
Correlation: A test used to examine
whether two normally distributed,
continuous variables have a linear
relationship. Use the pearsonr()
function from the SciPy library.

1 import pandas as pd
2 import scipy as scipy
3 import matplotlib.pyplot as plt
4 from scipy.stats import pearsonr
5
6 # Read the dataset
7 dataset = pd.read_csv("example.csv", index_col = 0)
8 print(pearsonr(dataset.age, dataset.bmi))
9
10 # Visualize the correlation with a scatter plot
11 print(plt.scatter(dataset.age, dataset.bmi, alpha = 0.5,
12 edgecolors = "none", s = 20))

399Statistical Analysis

The first value of the output is the correlation coefficient (0.045), followed by the p- value (0.014).
Since p- value is less than the significance level of 0.05, one can confirm that a relationship exists
between age and BMI. Another important observation is that the correlation is positive (i.e., if age
increases, BMI increases too), as the correlation coefficient is a positive number. However, the
strength of the correlation is rather weak, as the correlation coefficient (0.045) is quite close to 0
(i.e., no correlation).

The correlation can be also visualized as a scatter plot, using the scatter() function as shown
in the Output plot above.

9.5.10 relAtionshiP: the Chi- squAre test

To test whether two categorical variables are indepen-
dent, one may use the Chi- squared Test, also known as
Chi- squared Test of Independence or Pearson’s Chi-
square Test.

To demonstrate the logic of the test, one can use the
same survey data example and evaluate whether gender
and smoking status are associated. The null hypothesis
(H0) would be that there is no relationship between gen-
der and smoking status. When neither of the two measurements is less than 5, one can use the
crosstab() function from the Pandas library to create a cross table and scipy.stats.chi2_
contingency() to conduct the Chi- square Test on the contingency/cross table. Detailed docu-
mentation for this function can be found in the official SciPy.org website (The SciPy Community,
2020). The following Python script makes use of both the crosstab() and the chi2_
contingency() functions to provide the frequencies of the smoking status across the two gender
groups and test whether there is an indication of a relationship between them:

Output 9.5.10.a:

gender Female Male
smokestat
Current 210 162
Former 403 367
Never 1093 683

(5835.999999999999, 0.0, 4, array([[47.42426319, 98.16312543, 226.41261138],
[98.16312543, 203.18711446, 468.64976011],
[226.41261138, 468.64976011, 1080.93762851]]))

Observation 9.25 – Pearson’s
Chi- Square Test: A test used to
examine whether two categorical
variables are independent. Use the
chi2_contingency() function from
the SciPy library.

1 import pandas as pd
2 import scipy as scipy
3 import matplotlib.pyplot as plt
4 from scipy.stats import chi2_contingency
5
6 # Read the dataset
7 dataset = pd.read_csv("example.csv", index_col = 0)
8 print(pd.crosstab(dataset.smokestat, dataset.gender), "\n")
9
10 # Calculate the Chi- squared Test of Independence
11 print(chi2_contingency(pd.crosstab(dataset.smokestat,
12 dataset.smokestat)))

http://SciPy.org

400 Handbook of Computer Programming with Python

The first value of the output (19.453) is the Chi- square value, followed by the p- value (5.96e−05), the
degrees of freedom (2), and the expected frequencies as an array. Since the p- value is less than 0.05, the
null hypothesis can be rejected, indicating that a relationship between smoking status and gender exists.

It is worth noting that if an expected frequency lower than 5 is present, the user should use the
Fisher’s Exact Test instead of the Chi- square Test. Both tests assess for independence between
variables. The Chi- square Test applies an approximation assuming the sample is large, while the
Fisher’s Exact Test runs an exact procedure suitable for small- sized samples (Kim, 2017).

To visualize the results of the test, one can also create a mosaic plot using the mosaic() func-
tion from the Statsmodels library. The function accepts the source as a parameter and defines the
names of the columns for the plot:

Output 9.5.10.b:

9.5.11 relAtionshiP: lineAr regression

Linear regression is used to examine the linear relation-
ship between two (i.e., univariate linear regression) or
more (i.e., multivariate linear regression) variables.

To contextualize this using the previous survey
example, the reader can assume a case where one wants
to test the relationship between body weight and BMI,
where the BMI is normally distributed. Additionally,
predictions regarding the BMI should be made based
on weight information. Since BMI is a continuous variable, linear regression is appropriate for

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from statsmodels.graphics.mosaicplot import mosaic
4
5 # Read the dataset
6 dataset = pd.read_csv("example.csv", index_col = 0)
7 mosaic(dataset, ["smokestat", "gender"])
8 plt.show()

Observation 9.26 – Linear
Regression: A test used to examine the
linear relationship between two (i.e.,
univariate) or more (i.e., multivariate)
variables. Use the OLS(y, X).fit()
function from the Statsmodels library.

401Statistical Analysis

the analysis. In Python, linear regression can be performed using either the Statsmodels or the
Scikit- learn libraries. For this example, the test choice was function OLS(y, X).fit() from the
Statsmodels library, as the Scikit- learn library is generally associated more with tasks related to
machine learning. The related Python script and its output are provided below:

Output 9.5.11.a and 9.5.11.b:

OLS Regression Results

Dep. Variable: bmi R-squared: 0.740
Model: OLS Adj. R-squared: 0.739
Method: Least Squares F-statistic: 8085.
Date: Sun, 25 Jul 2021 Prob (F-statistic): 0.00
Time: 16:35:19 Log-Likelihood: -7449.6
No. Observations: 2849 AIC: 1.490e+04
Df Residuals: 2847 BIC: 1.492e+04
Df Model:
Covariance Type:

1
nonrobust

coef std err t P>|t| [0.025 0.975]

const 6.5712 0.251 26.188 0.000 6.079 7.063
weight 0.1218 0.001 89.918 0.000 0.119 0.124

Omnibus: 268.275 Durbin-Watson: 1.290
Prob(Omnibus): 0.000 Jarque-Bera (JB): 609.183
Skew: 0.574 Prob(JB): 5.22e-133
Kurtosis: 4.953 Cond. No. 750.

[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
Figure(432x288)

Notes:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import statsmodels.api as sm
4
5 # Read the dataset
6 dataset = pd.read_csv("example2.csv", index_col = 0)
7 # Independent variable
8 X = dataset.weight
9 # Dependent variable
10 y = dataset.bmi
11 # Add an intercept (beta_0) to the model
12 X = sm.add_constant(X)
13 # Function sm.OLS(dependent variable, independent variable)
14 model = sm.OLS(y, X).fit()
15 # Predictions
16 predictions = model.predict(X)
17 # Print out the statistics
18 print(model.summary())
19
20 # Plot the statistics
21 print(sm.graphics.plot_ccpr(model, "weight"))

402 Handbook of Computer Programming with Python

In this example of linear regression, y equals to a dependent variable, which is the variable that
must be predicted or estimated. Variable x equals to a set of independent variables, which are the
predictors of y. It must be noted that we need to add an intercept to the list of independent variables
using sm.add_constant(x) before running the regression.

The output provides several pieces of information. The first part contains information about
the dependent variable, the number of observations, the model, and the method. OLS stands for
Ordinary Least Squares, and method Least Squares relates to the attempt to fit a regression line
that would minimize the square of vertical distance from the data points to the regression line.
Another important value presented in the first part is the R squared (R² = 0.740), which is the per-
centage of variance that the model can justify (73.9%). The larger the R squared value the better
the model fit.

The second part of the output includes the intercept and the coefficients. The p- value is lower
than .0001, indicating that there is statistical significance in terms of the weight predicting the BMI,
with a weight increase of 1 pound leading to a respective increase in BMI by 0.1219. The linear
regression equation can be also used in the following form:

 BMI Intercept Weight_ coefficient * weight() ()= +

Once the output numbers are added, the equation would take the following form:

 BMI 6.5531 0.1219* weight= +

Therefore, if the user knows a person’s weight (e.g., 125 pounds), their BMI can be calculated as 6.5
531 + 0.1219 * 125 = 21.7906.

The user can also use the Matplotlib library to plot the results, as illustrated in the associated
graph.

9.5.12 relAtionshiP: logistiC regression

Logistic regression is used to describe the relation-
ship between a dependent, categorical variable and
one or more independent variables. It models the logit-
transformed probability in a linear relationship with the
predictor variables. For instance, using the same survey
example, one can assume that the user wants to know
the relationship between smoking status (i.e., 1 = current
smoker, and 0 = non- smoker) and the potential predic-
tors, such as age, gender, and marital status. In addi-
tion, the user may also want to predict the smoking status based on the predictor information. Since
smoking status is a categorical variable, logistic regression is an appropriate analysis method. In
Python, logistic regression can be conducted using the Logit(y, X) function from the Statsmodels
library. Parameter y equals to a dependent variable, which is the variable that must be predicted or
estimated. Variable X equals to a set of independent variables, which are the predictors of y:

Observation 9.27 – Logistic
Regression: A test used to examine
the relationship between a depen-
dent, categorical variable and one
or more independent variables.
Use the logit(y, X) function from the
Statsmodels library.

1 # Example of Logistic Regression
2 import pandas as pd
3 import statsmodels.api as sm
4
5 # Read data
6 df = pd.read_csv("Example2.csv", index_col = 0)
7

403Statistical Analysis

Output 9.5.12:

Optimization terminated successfully.
Current function value: 0.373830
Iterations 6

Results: Logit

Model: Logit
Dependent Variable:

Pseudo R-squared:
AIC: 2142.0822

Date: 2021-07-27 13:21 BIC: 2177.8105
No. Observations: 2849 Log-Likelihood: -1065.0
Df Model: 5 LL-Null: -1086.7
Df Residuals: 2843 LLR p-value: 3.1240e-08
Converged: 1.0000 Scale: 1.0000
No. Iterations: 6.0000

Coef. Std.Err.

const -1.7107 0.2307
age -0.0109 0.0040
gender2 0.1805 0.1170
marital_divorced 0.8406 0.1422
marital_single 0.4609 0.1584
marital_widowed 0.4764 0.2229

0.020
smokestat2

z P>|z| [0.025 0.975]

-7.4156 0.0000 -2.1628
-2.7133 0.0067 -0.0187 -0.0030
1.5418 0.1231 -0.0489 0.4098
5.9097 0.0000 0.5618 1.1194
2.9096 0.0036 0.1504 0.7715
2.1372 0.0326 0.0395 0.9133

-1.2585

8 x = df[["age", "gender2", "marital_divorced",
9 "marital_single", "marital_widowed"]]
10 y = df.smokestat2
11
12 # Add an intercept (beta_0) to the model
13 X = sm.add_constant(x)
14
15 logit_model = sm.Logit(y, X)
16 result = logit_model.fit()
17
18 # Print result.summary()
19 print(result.summary2())

404 Handbook of Computer Programming with Python

As in linear regression, the output contains two parts. The first part provides information about the
dependent variable and the number of observations, while the second part provides the intercept
and the coefficients. As shown, age and marital status are significant predictors on smoking status
(p < 0.05), while gender is not (p = 0.1231). Individuals who are divorced are 2.31 (i.e., exp(0.8406))
times more likely to be smokers than those who are married. Similar trends are also observed for
those who are single (1.5855 times) and widowed (1.6102 times). In terms of age, it is observed that
for every 1- year increase in age there is a decrease of approximately 1% (i.e., 1−exp(−0.0109)) in the
odds of an individual being a smoker.

The output information can be also used in order to build the logistic regression as follows:
P(probability of being a smoker) =

exp(1.7107 0.0109* Age 0.1805* gender2 0.8406* Divorced+0.4609*Single+0.4764*Widowed)

1 exp(1.7107 0.0109* Age 0.1805* gender2 0.8406* Divorced+0.4609*Single+0.4764*Widowed)
− − + +

+ − − + +

As such, it can be predicted that a 40- year- old divorced male will have a 24.5% probability of being
a smoker:

exp 1.7107 0.0109* 40 0.1805*1 0.8406*1

1 exp 1.7107 0.0109* 40 0.1805*1 0.8406*1
0.3244

1 0.3244
0.2450

()
()
− − + +

+ − − + +
=

+
=

9.6 WRAP UP

This chapter focused on the introduction of basic concepts and terms related to statistics analysis
and on the practical demonstration of carrying out inferential statistics analysis tasks using Python.
It provided an overview of statistics and the available tools for conducting the analytical tasks. Basic
statistical concepts, such as population and sample, hypothesis, significance levels and confidence
intervals, were introduced. It also provided a practical guide for choosing the right type of statistical
test for different types of tasks. The purposes and definitions of common types of statistical analysis
methods were briefly discussed. Furthermore, it covered the necessary background for choosing a
statistical analysis approach, such as levels and types of variables and the corresponding statistical
and hypothesis tests and demonstrated how to set up the Python environment and work with vari-
ous libraries specifically designed for statistical analysis. Finally, it provided a practical guide for
the implementation and execution of common statistical analysis tasks in Python. Each statistical
analysis method was supported by working examples, the associated Python programming code,
and result interpretations.

A list of the common statistical analysis methods covered in this section, as well as the corre-
sponding Python libraries and methods, are presented below:

Statistical Test Library Code

Mann- Whitney U Test SciPy mannwhitneyu(data1, data2)
Willcoxon Signed- rank Test SciPy wilcoxon(data1, data2)
Kruskal- Wallis Test SciPy kruskal(data1, data2, data3, …)
Paired t- Test SciPy ttest_rel(data1, data2)
Independent t- Test SciPy ttest_ind(data1, data2)
Chi- Square of goodness of Fit SciPy chisquare (data1, data2)
ANOVA SciPy f_oneway(data 1, data 2, data3, …)
Pearson’s Correlation SciPy pearsonr(var1, var2)
Pearson’s Correlation (Scatter Plot) Matplotlib scatter(var1, var2)

(Continued)

405Statistical Analysis

The basic inferential statistical tests covered in this chapter lay the foundation for other, more advanced
statistical analysis tasks, such as time to event and time series analysis. Ultimately, such methods and
results could be used as building blocks for even more complex system simulations, such as Markov mod-
els, discrete- event, and agent- based simulations. Although advanced statistical analysis and simulation
tasks like these were not covered in this chapter, the reader should be able to explore them by building on
the information and knowledge acquired. Relevant key textbooks and bibliography for the purposes of
further study and self- learning can be found in the Reference List of this chapter.

9.7 EXERCISES

We conducted an experiment about different plant species response to length of light over 3 months.
The data we collected are listed below:

 1. The variable of Plant Species is:
 A. Ordinal variable
 B. Nominal variable
 C. Interval variable
 D. Ratio variable

Answer: B

 2. The variable of Length of Daylight is:
 A. Ordinal variable
 B. Nominal variable
 C. Interval variable
 D. Ratio variable

Answer: D

Statistical Test Library Code

Pearson’s Chi- Square Test SciPy chisquare (data1, data2)
Pearson’s Chi- Square Test (Mosaic Plot) Statsmodels mosaic(Dataframe, ['var1', 'var2'])
Linear Regression Statsmodels OLS(y, X).fit()
Logistic Regression Statsmodels Logit(y, X)

Sample Plant Species
Length of Daylight
(Hours per Day)

Growth
(cm)

Flowered or Not
(1 = Yes, 0 = No)

1 A 6 4.2 0

2 B 7 3.1 1

3 A 6 4.6 1

4 A 5 3.3 0

5 B 6 2.5 0

6 A 8 5.2 1

7 B 9 3.9 1

8 B 5 2.1 0

9 A 7 3.5 1

10 B 8 3.4 1

406 Handbook of Computer Programming with Python

 3. The variable of Growth is:
 A. Ordinal variable
 B. Nominal variable
 C. Continuous variable
 D. Categorical variable

Answer: C

 4. The variable of Flowered or not is:
 A. Ordinal variable
 B. Nominal variable
 C. Interval variable
 D. Ratio variable

Answer: A

 5. If we want to know the correlation between Length of Daylight and Growth, which of the
following statistical methods should we use?

 A. Chi- square
 B. Pearson’s Correlation
 C. Logistic Regression
 D. ANOVA

Answer: B

 6. The estimated correlation coefficient is 0.45. What is the strength of the correlation?
 A. Weak negative correlation
 B. Strong positive correlation
 C. Moderate positive correlation
 D. Weak positive correlation

Answer: D

 7. If we want to compare the growth difference of different plant species, which statistical
analysis should we use?

 A. Linear Regression
 B. Chi- square Test
 C. Student t- Test
 D. Mann- Whitney U Test

Answer: D

 8. We received more data from other research teams, making the total sample size 150. Next,
we would like to update our growth comparison results for different plant species. Which
Python codes should we use?

 A. mannwhitneyu(data1, data2)
 B. chisquare(data1, data2)
 C. ttest_ind(data1, data2)
 D. wilcoxon(data1, data2)

Answer: C

407Statistical Analysis

 9. Based on the total of 150 samples, we decided to investigate the relationship between
Growth and Length of Daylight. What would be our dependant variable?

 A. Length of Daylight
 B. Growth
 C. Plant Species
 D. Flowered or not

Answer: B

 10. To explore the relationship mentioned in Question 9, which statistical analysis should be used?
 A. Linear Regression
 B. Logistic Regression
 C. ANOVA
 D. Chi- square Test

Answer: A

 11. Which Python code should be used to conduct the analysis used in Question 10?
 A. ttest_rel(data1, data2)
 B. f_oneway(data1, data2, data3)
 C. OLS(y, X).fit()
 D. Logit(y, X)

Answer: C

 12. To explore the relationship between Flowered or not and Length of Daylight, which Python
code should be used?

 A. ttest_rel(data1, data2)
 B. f_oneway(data1, data2, data3)
 C. OLS(y, X).fit()
 D. Logit(y, X)

Answer: D

REFERENCES

Anaconda Inc. (2020). Anaconda Distribution Starter Guide. https://docs.anaconda.com/_downloads/9ee215
ff15fde24bf01791d719084950/Anaconda- Starter- Guide.pdf.

De Winter, J. F. C., & Dodou, D. (2010). Five- point likert items: t test versus Mann- Whitney- Wilcoxon
(Addendum added October 2012). Practical Assessment, Research, and Evaluation, 15(1), 11.

Diabetes UK. (2019). Number of People with Diabetes Reaches 4.7 Million. https://www.diabetes.org.uk/
about_us/news/new- stats- people- living- with- diabetes.

Fagerland, M. W., & Sandvik, L. (2009). The Wilcoxon–Mann–Whitney test under scrutiny. Statistics in
Medicine, 28(10), 1487–1497.

Kim, H.- Y. (2017). Statistical notes for clinical researchers: Chi- squared test and Fisher’s exact test. Restorative
Dentistry & Endodontics, 42(2), 152–155.

Koehrsen, W. (2018). Histograms and Density Plots in Python. Towardsdatascience. com, https://towards-
datascience.com/histograms- and …. https://towardsdatascience.com/histograms- and- density- plots- in-
python- f6bda88f5ac0.

McDonald, J. H. (2014). Correlation and linear regression. In Handbook of Biological Statistics (3rd ed.).
Baltimore, MD: Sparky House Publishing. https://www.biostathandbook.com/HandbookBioStatThird.
pdf.

https://docs.anaconda.com
https://www.diabetes.org.uk
https://www.diabetes.org.uk
https://towardsdatascience.com
https://towardsdatascience.com
https://towardsdatascience.com
https://www.biostathandbook.com
https://www.biostathandbook.com
https://docs.anaconda.com
https://towardsdatascience.com

408 Handbook of Computer Programming with Python

McKinney, W., & Team, P. D. (2020). Pandas- Powerful python data analysis toolkit. Pandas—Powerful
Python Data Analysis Toolkit, 1625. https://pandas.pydata.org/docs/pandas.pdf.

Mclntire, G., Martin, B., & Washington, L. (2019). Python Pandas Tutorial: A Complete Introduction for
Beginners. Learn Data Science- Tutorials, Books, Courses, and More. https://www.learndatasci.com/
tutorials/python- pandas- tutorial- complete- introduction- for- beginners/.

Minitab. (2015). Choosing between a nonparametric test and a parametric test. State College: The Minitab
Blog. https://blog.minitab.com/blog/adventures- in- statistics- 2/choosing- between- a- nonparametric- test-
and- a- parametric- test.

Pandas Development Team. (2020). pandas.read_excel. https://pandas.pydata.org/pandas- docs/stable/refer-
ence/api/pandas.read_excel.html.

Scikit- posthocs. (2020). The Scikit Posthocs Test. https://scikit- posthocs.readthedocs.io/en/latest/.
SciPy Community. (2020). scipy.stats.ttest_ind. https://docs.scipy.org/doc/scipy/reference/generated/scipy.

stats.ttest_ind.html.
Sharma, A. (2019). Importing Data into Pandas. https://www.datacamp.com/community/tutorials/importing-

data- into- pandas#:~:targetText=To read an HTML file, to read the HTML document.
Tavares, E. (2017). Counting and Basic Frequency Plots. https://etav.github.io/python/count_basic_freq_plot.

html.
WorldCoinIndex. (2021). WorldCoinIndex. https://www.worldcoinindex.com/.

https://pandas.pydata.org
https://www.learndatasci.com
https://www.learndatasci.com
https://blog.minitab.com
https://pandas.pydata.org
https://pandas.pydata.org
https://scikit-posthocs.readthedocs.io
https://docs.scipy.org
https://docs.scipy.org
https://www.datacamp.com
https://www.datacamp.com
https://etav.github.io
https://etav.github.io
https://www.worldcoinindex.com
https://blog.minitab.com

409

10 Machine Learning with Python

Muath Alrammal
Higher Colleges of Technology
University Paris- Est (UPEC)

Dimitrios Xanthidis and Munir Naveed
University College London
Higher Colleges of Technology

10.1 INTRODUCTION

At the present time, machine learning (ML) plays an
essential role in many human activities. It is applied in
different areas including online shopping, medicine,
video surveillance, email spam and malware detection,
online customer support, and search engine result refine-
ment. It is a subfield of computer science and a subset
of Artificial Intelligence (AI). The main focus of ML is
on developing algorithms that can learn from data and
make predictions based on this learning.

An ML program is one that learns from experience E
given some tasks (T) and performance measure (P), if it
improves from that experience (E) (Mitchell, 1997). ML
behaves similarly to the growth of a child. As a child
grows, its experience E in performing task T increases,
which results in a higher performance measure (P).

In ML, a computer is trained using a given dataset
in order to predict the properties of new data. For instance, one can train a system by feeding it
with 10,000 images of dogs and 10,000 more images not containing dogs, indicating in each case

Observation 10.1 – Machine
Learning: A subfield of computer sci-
ence and Artificial Intelligence that
focuses on developing algorithms that
can learn from data and make predic-
tions based on their learning.

Observation 10.2 – Machine
Learning Process: A Machine
Learning program learns from experi-
ence (E) given some tasks (T) and per-
formance measure (P), if it improves
from that experience (E).

CONTENTS

10.1 Introduction ..409
10.2 Types of Machine Learning Algorithms ... 410
10.3 Supervised Learning Algorithms: Linear Regression ... 411
10.4 Supervised Learning Algorithms: Logistic Regression ... 414
10.5 Supervised Learning Algorithms: Classification and Regression Tree (CART) 418
10.6 Supervised Learning Algorithms: Naïve Bayes Classifier .. 430
10.7 Unsupervised Learning Algorithms: K- means Clustering .. 435
10.8 Unsupervised Learning Algorithms: Apriori .. 438
10.9 Other Learning Algorithms ... 443
10.10 Wrap Up - Machine Learning Applications ..444
10.11 Case Studies ...447
10.12 Exercises ..447
References ..447

DOI: 10.1201/9781003139010-10

https://doi.org/10.1201/9781003139010-10

410 Handbook of Computer Programming with Python

whether a picture is a dog or not. following this training, when the system is fed with a new image
it should be able to predict whether it is the image of a dog or not.

Python has an arsenal of libraries that support the implementation of ML algorithms. Some of
these libraries are already discussed and used in previous chapters (e.g., Pandas, Matplotlib). Other
libraries especially useful for ML applications are the following:

• NumPy: It is an array- processing library. It provides complex mathematical functions for
processing multi- dimensional arrays and matrices. It is a powerful tool for handling ran-
dom numbers, Fourier transforms, and linear algebra.

• SciPy: It is an open- source Python library used for scientific computing. It contains mod-
ules for image optimization, signal processing, Fast Fourier transform, linear algebra,
and ordinary differential equation (ODE). It is built on top of NumPy, as its underlying
data structure is a multi- dimensional array.

• Scikit- Learn: It is built in 2010 on top of NumPy and SciPy libraries. It contains several
supervised and unsupervised ML algorithms. The library is also useful in data mining
and data analysis. It handles clustering, regression, classification, model selection, and
preprocessing.

• TensorFlow: This library was developed by Google in 2015. It uses a NumPy backend for
manipulating tensors.

There is an abundance of implemented ML algorithms, applying to various domains. This chapter
provides an introduction to some of the most important as well as some of the most popular domain
applications. This chapter concludes with a relevant case study that explores some of the main
aspects of ML.

10.2 TYPES OF MACHINE LEARNING ALGORITHMS

There are three main types of ML algorithms: super-
vised, unsupervised, and reinforcement. A simple way
to understand the difference between supervised and
unsupervised ML is by introducing the concept of using
some type of help to teach a computer how to map par-
ticular inputs into the relevant outputs.

In the case of supervised learning the supervisor uses
what is referred to as labeled data to direct the computer
into understanding how to map the input into output. As
an example, assume the case of training a computer to
distinguish between the images of a laptop and a desktop
PC. The computer is provided with a set of images and a
label or flag for each one specifying it is a laptop. The same process is repeated for the case of the
desktop PC images. Although this is a simplified example, it provides a straightforward description
of supervised learning.

In terms of the outputs associated with supervised learning, there are two broad types: classifica-
tion and regression. Classification is related with categories, such as “sick” or “healthy” individu-
als, “dog” or “cat” pets, “laptop” or “desktop” PCs. Regression is related to outputs in the form of
continuous numerical values, such as predicting an individual’s height or weight, or the amount of
rainfall. An additional type of supervised learning is ensembling, which involves combining the
predictions of multiple ML models that may be too weak to stand on their own, in order to produce
a more accurate prediction for a new sample.

In general, a broad statement about supervised learning is that it uses labeled data to train a com-
puter to map inputs (X) into outputs (Y) by solving equation Y = f(X) for f.

Observation 10.3 – Supervised
Learning: Use labeled data to train
a computer how to map particular
input into output. If the output is in
a categorical form the type is classifi-
cation. If the output is in continuous
numerical form the type is regression.
Combining multiple supervised learn-
ing models is referred to as type of
ensembling.

411Machine Learning

In the case of unsupervised learning there is no super-
visor to train the computer in terms of mapping inputs
into outputs, and no labeled training input data to model
possible corresponding output variables. Essentially, the
computer is left to predict the possible outputs on its
own, given a set of previous inputs. There are three main
types of unsupervised learning: association, clustering,
and dimensionality reduction.

Association is used to discover the probability of the
co- occurrence of items in a collection. It is used exten-
sively in market- based analysis. For example, an associ-
ation model might be used to predict whether a purchase
of bread has an 80% probability to be connected with a
purchase of eggs. Clustering is used to group samples in
a way that ensures that objects within the same cluster
share more similarities with each other than with objects from other clusters. Dimensionality reduc-
tion is used to reduce the number of variables of a dataset, while ensuring that important informa-
tion is still conveyed. Dimensionality reduction can be achieved by using feature extraction and
feature selection functions. The latter essentially refers to the selection of a subset of the original
variables. Feature extraction performs data transformations from a high- dimensional space to a
low- dimensional space (e.g., PCA algorithm).

Finally, reinforcement learning is a type of ML that allows an agent to decide the best action
based on its current state, by learning behaviors that will maximize the associated rewards. It usu-
ally learns optimal actions through trial and error. For example, one can think of a video game in
which the player needs to move to certain places at certain times in order to earn points. If a rein-
forcement algorithm attempts to play this game instead of a human player, it would start by moving
randomly, but eventually would learn where and when it needs to move in order to maximize points
accumulation through the use of an appropriate trial and error process.

10.3 SUPERVISED LEARNING ALGORITHMS: LINEAR REGRESSION

The basic idea behind linear regression is the quantifica-
tion of the relationship between a set of inputs and their
corresponding outputs. This takes the form of a line
(y = a + b.x) where b is the slope of the regression line
(the coefficient of the line) and a is the y- axis intercept.
The goal is to have the least number of outliers (i.e., data
with a large deviation from the line). This is measured
as the sum of the squares of all the distances of the data
points from the line. Another important parameter in
linear regression is that of R2, which suggests the pos-
sibility that the output y is affected by a related change in
the input x. Obviously, like in all other statistical analy-
sis tests, this particular test results in a p value (statisti-
cal significance) that determines whether there is a statistically significant correlation between the
input and output datasets.

In Python, linear regression can be implemented using the linregress(X, y) function of the
Stats library. The function uses an input and an output dataset (i.e., X and y, respectively). The func-
tion output consists of five values: the slope of the linear regression, the intercept, the r value, the
p value, and the statistical error of the test. Based on this, the overall process can be summarized
in five distinct steps:

Observation 10.5 – Linear
Regression: Trains a system to pre-
dict the output of a particular input by
quantifying the relationship y = a + b.x
between a set of inputs and their cor-
responding outputs, where b is the
slope of the line and a is the y- axis
intercept. Use R2 to measure the
effect of the input on the possible out-
put and p to measure the statistical
significance of the test.

Observation 10.4 – Unsupervised
Learning: There is no supervisor to
train the computer to map input into
output and there is no labeled data for
such training. The computer is trained
by itself through a trial- and- error pro-
cess. Association is used to determine
the probability of the co- occurrence
of items in the collection. Clustering
is used to group samples within the
same cluster. Dimensionality reduc-
tion is used to reduce the number of
variables of the dataset.

412 Handbook of Computer Programming with Python

• Step 1: Import/read the data for the linear regression.
• Step 2: Define the two datasets (X and y) used to create the model.
• Step 3: Use linregress() to calculate the slope, the intercept, the r, and the p values

of the linear regression.
• Step 4 (Optional): Use the slope and the intercept to visualize the model.
• Step 5 (Optional): Test the model with new data.

There are numerous real- life applications of linear regression ML algorithms. A notable example
is their use in medicine and pharmaceutical research, when trying to determine the optimal dosage
of a particular drug for a particular illness. Other examples include the use of such algorithms in
sales and marketing, when trying to find the correct volume of promotional material (and the associ-
ated costs) for a particular product in order to maximize revenue, and the association of a student’s
coursework grades with their final grade in an educational context. The following Python script
quantifies the relationship between the values of two columns of the grades2.csv dataset (Midterm
Exam and Final Grade). Next, once the slope and the intercept values are calculated and the regres-
sion model is prepared for further use, both the training and the test datasets are visualized (plotted)
alongside the regression line:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 # Request to plot inline with the rest of the results
4 # This is particularly relevant in Jupyter Anaconda
5 %matplotlib inline
6 from scipy import stats
7
8 # The function uses the calculated slope and intercept
9 # to predict the Final Grade, given the Midterm Exam grade input
10 def predictFinalGrade(X):
11 return slope * X + intercept
12
13 # Read the dataset
14 dataset = pd.read_csv("grades2.csv")
15 dataset2 = dataset[["Final Grade", "Midterm Exam"]]
16 print("The input dataset is as follows:")
17 print(dataset2)
18
19 # Define the input and output datasets
20 X = dataset2["Midterm Exam"]; y = dataset2["Final Grade"]
21
22 # Use the linregress function from the stats library
23 # to calculate slope, intercept, r, p, and std_err
24 slope, intercept, r, p, std_err = stats.linregress(X, y)
25
26 print("The slope and intercept values are: {:.2f}, \
27 {:.2f}".format(slope, intercept))
28 print("The value of R- square is: {:.2f}".format(r**2))
29 print("The value of statistical significance, p is: {:.2f}".format(p))
30
31 mymodel = list(map(predictFinalGrade, X))
32 # Plot the model of the resulting linear regression

413Machine Learning

Output 10.3:

The input data set is as follows:
Final Grade Midterm Exam

0 67.47 70
1 75.13 82
2 66.85 40
3 54.45 44
4 76.95 82
5 45.13 50
6 73.23 62
7 81.87 84
8 62.63 64
9 58.75 52
10 49.75 62
11 44.25 42
12 62.52 68
13 47.33 52
14 68.97 70
The slope and intercept values are: 0.62, 23.96
The value of R-square is: 0.57
The value of statistical significance, p is: 0.00

Enter the new Midterm Exam grade:88
The predicted Final Grade is: 78.80

In terms of the information provided here, the dataset is printed first with the input values used to
train the system to quantify the regression model. The stats.linregress() function of the
Stats library is used to calculate the slope and the intercept values, as well as the R2 value, the sta-
tistical significance value (p) and the standard error (std_err). Next, the user is prompted to enter
a new Midterm Exam grade, and the system predicts the Final Grade using the related function
predictFinalGrade().

33 plt.scatter(X, y); plt.plot(X, mymodel); plt.show()
34
35 grades = int(input("Enter the new Midterm Exam grade:"))
36 grades = predictFinalGrade(grades)
37 print("The predicted Final Grade is: {:.2f}".format(grades))

414 Handbook of Computer Programming with Python

The reader should also note that the output includes the R2 value, which can be interpreted as a
57% possibility that a change in the Midterm Exam will affect the Final Grade. Another notewor-
thy output is that of the p value (i.e., statistical significance), which in this particular case is less
than 0.05, suggesting that there is a correlation between the Midterm Exam and the Final Grade.
Another value calculated during linear regression, although not displayed in the output results, is
std_err. This value describes the maximum distance of the output values from the regression line in
the form of an error, which is often referred to as residual. The script makes use of the format()
specifier to limit the number of decimal places of the results to 2. Finally, the reader should note
the inclusion of directive %matplotlib inline, dictating that the regression model must be plotted
inline with the rest of the data.

10.4 SUPERVISED LEARNING ALGORITHMS: LOGISTIC REGRESSION

As shown, linear regression predictions take the form
of continuous values. In the case of logistic regression,
predictions take the form of discrete values (i.e., binary),
such as whether a student will pass or fail a course, or
whether it will rain or not. Its name comes from the
associated logistic function: y = 1/(1 + e−x). The plot of
this function is an S- shaped curve. In contrast to linear
regression where the output is a value directly based on
the input, in logistic regression it is a probability ranging from 0 to 1. For example, if a value 1
represents a passing grade, an output of 0.85 means that a student is very likely to pass the course
at a probability of 85%.

There are eight possible steps to follow when performing logistic regression, of which two are
optional:

• Step 1: Import/read the data for the logistic regression.
• Step 2: Split the input datasets into train and test sets.
• Step 3: Perform feature scaling for the data (between 0 and 1).
• Step 4: Build the logistic classifier (with a preferred random_state = 0 for consistent

results) and fit the trained set into the classifier.
• Step 5: Predict the results based on the classifier.
• Step 6: Find the accuracy of the regression model as a percentage.
• Step 7 (Optional): Visualize the results of the trained set.
• Step 8 (Optional): Visualize the results of the test set.

The following Python script uses Midterm Exam and Project grades to create a logistic regression
model and visualize its results:

Observation 10.6 – Logistic
Regression: Train a system to predict
the probability of an output as one of
two possible values based on a given
input. The function used for this pur-
pose is the following: y = 1/(1 + ex).

1 # Import train_test_split to train and test the input
2 from sklearn.model_selection import train_test_split
3 # Import StandardScaler to scale the data
4 from sklearn.preprocessing import StandardScaler
5 # Import the LogisticRegression to create the classifier object
6 from sklearn.linear_model import LogisticRegression
7 # Import the accuracy_score to calculare the accuracy of the model
8 from sklearn.metrics import accuracy_score
9 # Import numpy to prepare the plot parameters

415Machine Learning

10 import numpy as np
11 # Import pyplot to create the plot
12 import matplotlib.pyplot as plt
13 # Import ListedColormap to color the data points in the plot
14 from matplotlib.colors import ListedColormap
15 # Define that results are to plotted inline
16 # This is particularly relevant in Jupyter Anaconda
17 %matplotlib inline
18
19 # Step 1: Define the input dataset. X must be a 2D list with
20 # as many rows as observations
21 X = [[60, 55], [54, 90], [70, 80], [76, 70], [64, 87], [66, 70],
22 [54, 87], [92, 70], [58, 78], [70, 71], [70, 70], [90, 76],
23 [86, 92], [72, 70], [70, 72], [82, 87], [40, 80], [44, 90],
24 [82, 92], [50, 68]]
25 y = [0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
26
27 # Step 2: Split set X and y into train test and test set
28 # Test size is 25% of the dataset, train size is 75%
29 # The new trained and test lists will be in random order
30 X_train, X_test, y_train, y_test = train_test_split(X, y,
31 test_size = 0.25, random_state = 0)
32 print("Trained X set:", X_train); print("Test X set:", X_test)
33 print("Trained y set:", y_train); print("Test y set:", y_test)
34
35 # Step 3: Perform feature scaling for the data (between 0 and 1)
36 sc_X = StandardScaler()
37 X_train = sc_X.fit_transform(X_train)
38 print("\nThe 2D set of trained X input:\n", X_train)
39 X_test = sc_X.transform(X_test)
40 print("\nThe 2D set of test X input:\n", X_test)
41
42 # Step 4: Build the logistic classifier
43 # Set random_state to 0 for consistent results
44 # Fit the trained set into the classifier
45 model = LogisticRegression(solver = 'liblinear',
46 random_state = 0).fit(X_train, y_train)
47 print("\n", model)
48
49 # Step 5: Predict the test results
50 y_pred = model.predict(X_test)
51 print("\nResults predicted by the model:", y_pred)
52 print("Results from the test:", y_test)
53 model.predict_proba(X)[:,1]
54
55 # Step 6: Form the confusion matrix to get the accuracy of the model
56 # Use y_test (actual output) and y_pred (predicted output)
57 accuracy = accuracy_score(y_test, y_pred)
58 print("The accuracy of the model given the test data is: ",
59 accuracy * 100, "%")
60

416 Handbook of Computer Programming with Python

Output 10.4:

Trained X set: [[44, 90], [54, 87], [72, 70], [64, 87],
[70, 80], [66, 70], [70, 72], [70, 71], [92, 70], [40,
80], [90, 76], [76, 70], [60, 55], [82, 87], [86, 92]]
Test X set: [[82, 92], [54, 90], [50, 68], [58, 78], [7
0, 70]]
Trained y set: [0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
1, 1]
Test y set: [1, 0, 0, 0, 1]

The 2D set of trained X input:
 [[-1.69129319 1.30698109]
 [-1.01657516 1.00224457]
 [0.19791729 -0.72459574]
 [-0.34185713 1.00224457]
 [0.06297368 0.29119268]
 [-0.20691353 -0.72459574]
 [0.06297368 -0.52143805]
 [0.06297368 -0.62301689]
 [1.54735334 -0.72459574]

The 2D set of test X input:
[[0.87263531 1.51013878]
[-1.01657516 1.30698109]
[-1.28646237 -0.92775342]
[-0.74668795 0.088035]
[0.06297368 -0.72459574]]

[-1.9611804 0.29119268]
[1.41240974 -0.11512269]
[0.4678045 -0.72459574]
[-0.61174434 -2.24827836]
[0.87263531 1.00224457]
[1.14252253 1.51013878]]

61 # Step 7: Visualize the training set results
62 X_set, y_set = X_train, y_train
63 X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1,
64 stop = X_set[:, 0].max() + 1, step = 0.01),
65 np.arange(start = X_set[:, 1].min() - 1,
66 stop = X_set[:, 1].max() + 1, step = 0.01))
67 plt.contourf(X1,X2, model.predict(np.array([X1.ravel(), \
68 X2.ravel()]).T).reshape(X1.shape), alpha = 0.75,
69 cmap = ListedColormap(('red','blue')))
70
71 plt.xlim(X1.min(), X1.max())
72 plt.ylim(X2.min(), X2.max())
73 for i, j in enumerate(np.unique(y_set)):
74 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1])
75 plt.title('Logistic Regression: Training set')
76 plt.xlabel("Midterm Exam")
77 plt.ylabel("Project")
78 plt.show()
79
80 # Step 8: Visualize the test results
81 X_set, y_set = X_test, y_test
82 X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1,
83 stop = X_set[:, 0].max() + 1, step = 0.01),
84 np.arange(start = X_set[:, 1].min() - 1,
85 stop = X_set[:, 1].max() + 1, step = 0.01))
86
87 plt.contourf(X1,X2, model.predict(np.array([X1.ravel(), \
88 X2.ravel()]).T).reshape(X1.shape),alpha = 0.75,
89 cmap = ListedColormap(('red','blue')))
90
91 plt.xlim(X1.min(), X1.max());plt.ylim(X2.min(), X2.max())
92 for i, j in enumerate(np.unique(y_set)):
93 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1])
94 plt.title('Logistic Regression: Test set')
95 plt.xlabel("Midterm Exam"); plt.ylabel("Project")
96 plt.show()

417Machine Learning

Trained X set: [[44, 90], [54, 87], [72, 70], [64, 87],
[70, 80], [66, 70], [70, 72], [70, 71], [92, 70], [40,
80], [90, 76], [76, 70], [60, 55], [82, 87], [86, 92]]
Test X set: [[82, 92], [54, 90], [50, 68], [58, 78], [7
0, 70]]
Trained y set: [0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
1, 1]
Test y set: [1, 0, 0, 0, 1]

The 2D set of trained X input:
 [[-1.69129319 1.30698109]
 [-1.01657516 1.00224457]
 [0.19791729 -0.72459574]
 [-0.34185713 1.00224457]
 [0.06297368 0.29119268]
 [-0.20691353 -0.72459574]
 [0.06297368 -0.52143805]
 [0.06297368 -0.62301689]
 [1.54735334 -0.72459574]

The 2D set of test X input:
[[0.87263531 1.51013878]
[-1.01657516 1.30698109]
[-1.28646237 -0.92775342]
[-0.74668795 0.088035]
[0.06297368 -0.72459574]]

[-1.9611804 0.29119268]
[1.41240974 -0.11512269]
[0.4678045 -0.72459574]
[-0.61174434 -2.24827836]
[0.87263531 1.00224457]
[1.14252253 1.51013878]]

LogisticRegression(random_state=0, solver='1iblinear')

Results predicted by the model: [1 1 0 0 0]
Results from the test: [1, 0, 0, 0, 1]
The accuracy of the model given the test data is: 60.0
%

418 Handbook of Computer Programming with Python

The above script and its output demonstrate the eight steps followed when using logistic regression.
In Step 1 (data read), it is important to remember that input dataset X must be a two- dimensional
array/list of pairs of data equal to the number of observations. In this particular case, the set includes
the grades of each student for Midterm Exam and Project. The y dataset includes values 0 or 1 for
each student, with 0 referring to a fail and 1 to a pass.

In the step, the script makes use of the train_test_split() function (train_test_split mod-
ule) from the Sklearn.model_selection library. The function takes the X and y datasets, splits them
to train and test subsets at a rate of 75/25 (test_size = 0.25), and randomizes the splitting process.
The results of the function are datasets X_train, X_test, y_train, and y_test. In Step 3,
the script imports the StandardScaler module from the Sklearn.preprocessing library and uses
the StandardScaler() constructor and the fit_transform() function to scale output data y
between 0 and 1, as required by the logistic regression model.

In Step 4, the actual logistic regression classifier is used to fit the data and execute the model
using the X_train, X_test, y_train, and y_test datasets. Next, the script uses the model to
predict (.predict()) the results of the regression (fifth step). In Step 6, the script uses function
accuracy_score() (Accuracy_score module) from the Sklearn.metrics library to calculate the
accuracy rate of the resulting regression model, as a number between 0 and 1. Finally, Steps 7 and 8 are
used to visualize the training and test set results, respectively. In both cases, function meshgrid() is
used to prepare the data for plotting and ListedColormap() to color the pass and fail outputs.

There are numerous different options and variations available for each of these steps, as well
as for displaying and plotting the resulting data. The reader can refer to the multitude of statistics
and/or machine learning textbooks and resources in order to delve deeper into the various concepts
related to the interpretation and use of the results of logistic regression in various contexts.

10.5 SUPERVISED LEARNING ALGORITHMS: CLASSIFICATION
AND REGRESSION TREE (CART)

A decision tree consists of a root, nodes, and leaves (Figure 10.1). The starting point of the decision
tree is the root; each internal node is branching out to connect to other inputs, also in the form of
nodes. Each leaf node is a possible output of the tree. The branching is determined by using a split
function, which divides the input data into one or more branches. The leaf nodes of the tree are the
outcomes.

FIGURE 10.1 Decision tree.

419Machine Learning

In order to create the order (or height) of the decision tree and its features, the decision tree algo-
rithm uses a function to determine the information gain. There are two functions serving this pur-
pose, referred to as indices: entropy or Gini index. Their function is to measure the impurity of a
node in the tree and, based on their value, the node is being kept or discarded. These values also
determine the position of a node in the tree. There are different types of the decision tree, depending
on how the indices are calculated and what choices are being made in terms of splitting continuous
values. The most commonly used types of a decision tree are ID3 (Quinlan, 1986), C4.5 (Salzberg,
1994) and CART (Mola, 1998).

CART (Classification and Regression Tree) is one
of the most important and popular types of supervised
learning algorithms. The output can be in a form of a
categorical value (e.g., it will rain or not) or a continuous
value (e.g., the final price of a car). A visual represen-
tation of a decision tree is shown in Figure 10.2. The
tree starts with the Age feature, which is a numeric attri-
bute in a bank dataset. The values of Age are split into
three branches: 18–23, 24–34 and >35. The algorithm
can split the continuous number values of the Age fea-
ture using a technique that also determines the order of
features within the tree. Next, the Age feature (the root
of the tree) is associated with three additional features
(nodes): Job, Marital Status, and Housing.

The decision tree can be built using a training data-
set. In the following example, the script makes use of a
dataset of 40 bank account customer records, contain-
ing features age, job, marital status, and education. The
system aims at predicting the possibility of customers

Observation 10.7 – CART: The
Classification and Regression Tree
(CART) is a decision tree with a root,
nodes and leaves and with outputs
either in a form of a categorical or a
continuous value. The branching is
determined by using a split function
that divides the input data into one or
more branches.

Observation 10.8 – Input and
Output Datasets: The Classification
and Regression Tree (CART) requires
a 2D list/array of values as its input
and output datasets. If the input and
output datasets do not match, appro-
priate amendments are required.

FIGURE 10.2 Example of decision tree.

420 Handbook of Computer Programming with Python

making a deposit in the bank or not. In order to train
the CART decision tree, these four features are used as
input and the deposit feature as output. The possible out-
puts are Yes and No (depositing money or not). The script
requires a number of associated libraries. Some of these
libraries are already included in the system (e.g., Pandas and Numpy), while others like Pydoplus
and Graphviz must be installed explicitly. Given that the installation of any libraries depends on
the particular system in use, the reader is advised to check the available pip install statements for
specific system settings:

Observation 10.9 – StringIO,
Graphviz: Used to depict the deci-
sion tree in a visual form.

With the libraries imported, the next part of the script is the first step of this particular implementa-
tion. Initially, the list of values for input list X (2D array) is defined. Each sub- list includes the age, job,
marital status, and education features of the bank customer. Next, output Y (single dimension list) is
defined as a unidimensional list, taking values of either Yes or No. In line 82, input list X is converted
to a Numpy array to facilitate a more efficient manipulation of the elements in the list. In the follow-
ing line (83), the 2D array is divided into four unidimensional sub- arrays, each storing the respective
elements. Finally, the data of each newly created input sub- array (X1–X4) and of output Y are printed:

1 # Import the basic libraries
2 import pandas as pd
3 import numpy as np
4
5 # Import the DecisionTreeClassifier
6 from sklearn.tree import DecisionTreeClassifier
7 # Import the confusion_matrix, the accuracy_score, and the
8 # classification report
9 from sklearn.metrics import confusion_matrix
10 from sklearn.metrics import accuracy_score
11 from sklearn.metrics import classification_report
12
13 # Import train_test_split to split the data into train and test samples
14 from sklearn.model_selection import train_test_split
15
16 # Import the libraries for the necessary hot encoding
17 from sklearn.preprocessing import LabelEncoder
18
19 # Import the libraries to plot the graph
20 from sklearn.tree import export_graphviz
21
22 # import StringIO from sklearn.externals.six
23 from six import StringIO
24 from IPython.display import Image
25 import pydotplus
26
27 # Plot results inline
28 # This is often particularly needed in Jupyter Anaconda
29 %matplotlib inline
30

31 #==
32 # Step 1: Define and print the input and output datasets

421Machine Learning

33 print("Step 1: Define and print the input and output datasets\n")
34
35 X = [[59, 'admin.', 'married', 'secondary'],
36 [56, 'admin.', 'married', 'secondary'],
37 [41, 'technician', 'married', 'secondary'],
38 [55, 'services', 'married', 'secondary'],
39 [54, 'admin.', 'married', 'tertiary'],
40 [42, 'management', 'single', 'tertiary'],
41 [56, 'management', 'married', 'tertiary'],
42 [60, 'retired', 'divorced', 'secondary'],
43 [37, 'technician', 'married', 'secondary'],
44 [28, 'services', 'single', 'secondary'],
45 [38, 'admin.', 'single', 'secondary'],
46 [30, 'blue-collar', 'married', 'secondary'],
47 [29, 'management', 'married', 'secondary'],
48 [46, 'blue-collar', 'single', 'tertiary'],
49 [31, 'technician', 'single', 'tertiary'],
50 [35, 'management', 'divorced', 'tertiary'],
51 [32, 'blue-collar', 'single', 'primary'],
52 [49, 'services', 'married', 'secondary'],
53 [41, 'admin.', 'married', 'secondary'],
54 [49, 'admin.', 'divorced', 'secondary'],
55 [49, 'retired', 'married', 'secondary'],
56 [32, 'technician', 'married', 'secondary'],
57 [30, 'self-employed', 'single', 'secondary'],
58 [55, 'services', 'divorced', 'tertiary'],
59 [32, 'blue-collar', 'married', 'secondary'],
60 [52, 'admin.', 'divorced', 'secondary'],
61 [38, 'unemployed', 'divorced', 'secondary'],
62 [60, 'retired', 'married', 'secondary'],
63 [60, 'retired', 'divorced', 'secondary'],
64 [30, 'admin.', 'married', 'tertiary'],
65 [44, 'unemployed', 'married', 'secondary'],
66 [32, 'blue-collar', 'married', 'secondary'],
67 [46, 'entrepreneur', 'married', 'tertiary'],
68 [34, 'management', 'married', 'secondary'],
69 [40, 'management', 'married', 'secondary'],
70 [34, 'housemaid', 'married', 'primary'],
71 [43, 'admin.', 'single', 'secondary'],
72 [52, 'technician', 'married', 'secondary'],
73 [35, 'blue-collar', 'married', 'secondary'],
74 [34, 'blue-collar', 'single', 'secondary']]
75
76 Y=['yes','yes','yes','yes','yes','yes','yes','yes','yes','yes',
77 'yes','yes','yes','yes','yes','yes','yes','yes','yes','yes',
78 'no','no','no','no','no','no','no','no','no','no',
79 'no','no','no','no','no','no','no','no','no','no']
80
81 # Convert the list into a numpy array for better index control
82 newX = np.array(X)
83 newX1,newX2,newX3,newX4=newX[:,0],newX[:, 1],newX[:, 2],newX[:, 3]

422 Handbook of Computer Programming with Python

Output 10.5: Step 1

Step 1: Define and print the input and output datasets

The input of ages (X1) is :
['59' '56' '41' '55' '54' '42' '56' '60' '37' '28' '38' '30' '29' '46'
'31' '35' '32' '49' '41' '49' '49' '32' '30' '55' '32' '52' '38' '60'
'60' '30' '44' '32' '46' '34' '40' '34' '43' '52' '35' '34']

The input of jobs (X2) is :
['admin.' 'admin.' 'technician' 'services' 'admin.' 'management'
'management' 'retired' 'technician' 'services' 'admin.' 'blue-collar'
'management' 'blue-collar' 'technician' 'management' 'blue-collar'
'services' 'admin.' 'admin.' 'retired' 'technician' 'self-employed'
'services' 'blue-collar' 'admin.' 'unemployed' 'retired' 'retired'
'admin.' 'unemployed' 'blue-collar' 'entrepreneur' 'management'
'management' 'housemaid' 'admin.' 'technician' 'blue-collar'
'blue-collar']

The input of marital status (X3) is :
['married' 'married' 'married' 'married' 'married' 'single' 'married'
'divorced' 'married' 'single' 'single' 'married' 'married' 'single'
'single' 'divorced' 'single' 'married' 'married' 'divorced' 'married'
'married' 'single' 'divorced' 'married' 'divorced' 'divorced' 'married'
'divorced' 'married' 'married' 'married' 'married' 'married' 'married'
'married' 'single' 'married' 'married' 'single']

The input of education (X4) is :
['secondary' 'secondary' 'secondary' 'secondary' 'tertiary' 'tertiary'
'tertiary' 'secondary' 'secondary' 'secondary' 'secondary' 'secondary'
'secondary' 'tertiary' 'tertiary' 'tertiary' 'primary' 'secondary•
'secondary' 'secondary' 'secondary' 'secondary' 'secondary' 'tertiary'
'secondary' 'secondary' 'secondary' 'secondary' 'secondary' 'tertiary'

The output of deposits (Y) is :
['yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes',
'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes',
'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no',
'no', 'no', 'no', 'no', 'no', 'no', 'no', 'no']

'secondary' 'secondary' 'tertiary' 'secondary' 'secondary' 'primary'
'secondary' 'secondary' 'secondary' 'secondary']

84 print("\nThe input of ages (X1) is :\n", newX1)
85 print("\nThe input of jobs (X2) is :\n", newX2)
86 print("\nThe input of marital status (X3) is :\n", newX3)
87 print("\nThe input of education (X4) is :\n", newX4)
88
89 print("\nThe output of deposits (Y) is :\n", Y)
90

423Machine Learning

In Step 2, the code addresses an important classifica-
tion issue. Since models are mathematical in nature, the
underlying calculations are based on textual rather than
numerical data. Hence, it is necessary to encode the var-
ious elements of the data into numerical (integer) values,
a process referred to as integer encoding. Lines 97–102
include code for finding the unique elements in each of
the input sub- arrays X1–X4. Next, in lines 105–122, the
LabelEncoder() function (Sklearn.preprocessing
library) is utilized to create the relevant objects, subsequently used by fit_transform() to pro-
duce the integer encoded sub- arrays for X1–X4. The same process is also applied in the case of
output dataset Y:

Observation 10.10 – Integer
Encoding: The process of converting
a categorical value into the numerical
form necessary for the CART algo-
rithm. Use the LabelEncoder()
function from the Sklearn.preprocess-
ing library.

91 #==
92 # Step 2: Encode the categorical values of the input & output datasets
93 # Find and print the unique values of the categories/columns for job
94 # and marital status
95 print("\n\nStep 2: The inputs of jobs, marital status,",
96 "and education and the outputs are integer encoded")
97 jobs = np.unique(newX2)
98 print("\nThe various categories of jobs are:\n", jobs)
99 maritalStatus = np.unique(newX3)
100 print("\nThe various categories of marital status are:\n",
101 maritalStatus)
102 education = np.unique(newX4)
103 print("\nThe various categories of education are:\n", education)
104 # Integer Encode the categorical input and output values as fit()
105 # does not accept strings
106 label_encoderX2 = LabelEncoder()
107 integer_encodedX2 = label_encoderX2.fit_transform(newX2)
108 print("\nThe various categories of jobs are integer Encoded as",
109 "follows:\n", integer_encodedX2)
110 label_encoderX3 = LabelEncoder()
111 integer_encodedX3 = label_encoderX3.fit_transform(newX3)
112 print("\nThe various categories of marital status are ",
113 "integer Encoded as follows:\n",
114 integer_encodedX3)
115 label_encoderX4 = LabelEncoder()
116 integer_encodedX4 = label_encoderX4.fit_transform(newX4)
117 print("\nThe various categories of education are integer Encoded as",
118 "follows:\n", integer_encodedX4)
119 label_encoderY = LabelEncoder()
120 integer_encodedY = label_encoderY.fit_transform(Y)
121 print("\nThe various categories of output are integer Encoded as",
122 "follows:\n", integer_encodedY)

424 Handbook of Computer Programming with Python

Output 10.5: Step 2

Step 2: The inputs of jobs, marital status, and education and the outputs are
integer encoded
The various categories of jobs are:
['admin.' 'blue-collar' 'entrepreneur' 'housemaid' 'management' 'retired'
'self-employed' 'services' 'technician' 'unemployed']

The various categories of marital status are:
['divorced' 'married' 'single']

The various categories of education are:
['primary' 'secondary' 'tertiary']

The various categories of jobs are integer Encoded as follows:
[0 0 8 7 0 4 4 5 8 7 0 1 4 1 8 4 1 7 0 0 5 8 6 7 1 0 9 5 5 0 9 1 2 4 4 3 0
8 1 1]

The various categories of marital status are integer Encoded as follows:
[1 1 1 1 1 2 1 0 1 2 2 1 1 2 2 0 2 1 1 0 1 1 2 0 1 0 0 1 0 1 1 1 1 1 1 1 2
1 1 2]

The various categories of education are integer Encoded as follows:
[1 1 1 1 2 2 2 1 1 1 1 1 1 2 2 2 0 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 2 1 1 0 1
1 1 1]

The various categories of output are integer Encoded as follows:
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]

In Step 3, the code splits the datasets into train and test input and train and test output. Provided
that the fit() function used in the next step needs a 2D numerical array to perform its calculations,
it is necessary to combine the previously divided input sub- arrays into a single 2D array. The zip()
function takes the four input sub- arrays and combines them in a single 2D array. However, since the
result is still unusable for the relevant fitting calculations, the list() function is used to convert the
2D array to a suitable form (lines 127–128).

Next, function train_test_split() (Sklearn.model_selection library) is used with the
newly created 2D array, as well as the unidimensional output array, in order to split (75/25) and
randomize the datasets. This is defined explicitly by the test_size = 0.25 and the random_
state = 0 arguments (lines 129–130). The test_size parameter is referring to the hold- out
validation that splits the dataset into the train and test parts, in this case 75% and 25%.

The alternative to hold- out validation is the cross- validation technique, which selects data for
training via sampling. In this approach, a block of data of fixed size is selected for training in each
iteration. The technique could be also applied to smaller datasets, but the sample selection in each
iteration of training can lead to heavy computation requirements and, therefore, more CPU cycles. The
main types of cross- validation are leave- p out and k- fold. In the case of k- fold, the most commonly
used selection is the ten- fold (i.e., k = 10). An example of a cross- validation statement is the following:

crossValidation = cross_validate (decisionTree, X_Train, Y_Train,
crossValidation = 10)

In the current context, this statement would be placed in the code just after the definition of the
DecisionTreeClassifier().

The last part of this step prints the train and test inputs and the train and test outputs:

425Machine Learning

Output 10.5: Step 3

Step 3: Define the point to split the datasets to 3/4

Trained X set: [('60', 5, 1, 1), ('34', 3, 1, 0), ('52', 8, 1, 1), ('41',
8, 1, 1), ('34', 1, 2, 1), ('44', 9, 1, 1), ('40', 4, 1, 1), ('32', 1, 2,
0), ('43', 0, 2, 1), ('37', 8, 1, 1), ('46', 1, 2, 2), ('42', 4, 2, 2),
('49', 7, 1, 1), ('31', 8, 2, 2), ('34', 4, 1, 1), ('60', 5, 0, 1), ('46',
2, 1, 2), ('56', 0, 1, 1), ('38', 9, 0, 1), ('29', 4, 1, 1), ('32', 1, 1,
1), ('32', 1, 1, 1), ('56', 4, 1, 2), ('55', 7, 0, 2), ('32', 8, 1, 1),
('49', 0, 0, 1), ('28' ,7, 2, 1), ('35', 1, 1, 1), ('55', 7, 1, 1), ('59',
0, 1, 1)]

Test X set: (('30', 6, 2, 1), ('49', 5, 1, 1), ('52', 0, 0, 1), ('54', 0,
1, 2), ('38', 0, 2, 1), ('35', 4, 0, 2), ('60', 5, 0, 1), ('30', 1, 1, 1),
('41', 0, 1, 1), ('30', 0, 1, 2)]

Trained y set: [0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1]

Test y set: [0 0 0 1 1 1 0 1 1 0]

In Step 4, the defined trained and test inputs and out-
puts are used to train and test the model (i.e., predict
the possible output). This is achieved through the
DecisionTreeClassifier() function, (Sklearn.
tree library), which creates the decisionTree object
model used for the output prediction (lines 144–146). The reader should note that the mathematical
algorithm used in the classifier is entropy, random_state = 100, maximum_depth = 100,
and min_samples_leaf = 2.

In terms of the entropy mechanism, the mathematical equation used is: E = −Σ(i:n)pilog2pi. The idea is
to calculate the entropy of mixed values encountered in the columns of the train dataset. If the values are
heavily mixed and unequal in population, the entropy will
be close to 1, otherwise it would be close to 0. Ideally, the
preferred value is 0, which means that the dataset has
largely homogeneous values. When visualizing the deci-
sion tree, the value of entropy suggests the impurity of the
values in the related tree or sub- tree. The alternative to
entropy is the Gini index mechanism, which is also used by
the classifier to organize the decision tree. Its mathematical

Observation 10.11 – DecisionTree
Classifier(): The class used to create
the decision tree model.

Observation 10.12 – Entropy, Gini
Index: The mathematical models
used to define and organize the deci-
sion tree. They measure the level of
impurity of the values in the dataset
used for the tree.

123 #===
124 # Step 3: Define the point to split the dataset to 3/4
125 print("\nStep 3: Define the point to split the datasets to 3/4\n")
126
127 newEncodedInput = list(zip(newX1, integer_encodedX2, integer_encodedX3,
128 integer_encodedX4))
129 X_Train, X_Test, y_Train, y_Test = train_test_split(newEncodedInput,
130 integer_encodedY, test_size = 0.25, random_state = 0)
131 print("\nTrained X set:", X_Train)
132 print("\nTest X set:", X_Test)
133 print("\nTrained y set:", y_Train)
134 print("\nTest y set:", y_Test)
135

426 Handbook of Computer Programming with Python

equation is: Gini Index = 1−Σ(P(x = k))2. This also suggests the probabilities of uncertainty of impurity
among various partitions of the dataset. In the case of this example, both mechanisms are included with
that of entropy applied and the Gini index deactivated as a comment. Switching the activation of one
over the other would showcase that the results are quite similar. For further information on either entropy
or the Gini index, the reader is advised to study textbooks specifically focused on ML.

There are two more parameters specified in DecisionTreeClassifier() that affect the visu-
alization of the tree: max_depth and min_samples_leaf. The former determines the maximum
depth of the tree. If omitted, the tree will have no maximum depth but will grow as deep as necessary
according to the calculation and the dataset. The latter will determine the minimum number of sam-
ples required to be present as leaves in the tree. If its value
is 1, it will display every simple sample in the tree mak-
ing the visual tree grow in size to its fullest. Increasing
the value of min_samples_leaf will result in a
reduction of the size of the visual depiction of the tree by
combining the number of samples in each leaf. As men-
tioned, the present sample code includes two alternative
versions of DecisionTreeClassifier() (lines
141–146): one using entropy and one the Gini index. The
former uses a min_samples_leaf value of 1, while
the latter a value of 6. Notice the difference in the size
of the visual depiction of the decision tree in each case,
and also how the algorithm makes decisions based on the
columns of the dataset that have the greatest influence on
the resulting visual depiction of the decision tree:

Observation 10.13 – Parameter
maximum _ depth: Used to define
the depth of the decision tree (unlim-
ited if omitted).

Observation 10.14 – Parameter
min _ samples _ leaf: Used to
define the minimum number of sam-
ples that a leaf may have in order to
be displayed in the visualization of the
decision tree.

136 #==
137 # Step 4: Create the classifier & train & test the input & output
138 # Create the classifier object using 4 attributes: criterion can be
139 # entropy or gini, splitter can be best or random,
140 print("\nStep 4: Define the point to split the datasets to 3/4")
141 #decisionTree = DecisionTreeClassifier(criterion = "entropy",
142 # splitter = "best", random_state = 100, max_depth = 100,
143 # min_samples_leaf = 1)
144 decisionTree = DecisionTreeClassifier (criterion = "gini",
145 splitter = "best", random_state = 100, max_depth = 100,
146 min_samples_leaf = 6)
147 # The classifier trains the input (X_Train) & the output (y_Train)
148 arrayX_Train = np.array(X_Train)
149 arrayY_Train = np.array(y_Train)
150 print("\nThe input dataset to train is:\n", arrayX_Train)
151 print("\nThe output dataset to train is:\n", arrayY_Train)
152 decisionTree.fit(arrayX_Train, arrayY_Train)
153
154 arrayY_Test1 = np.array(y_Test)
155 arrayY_Test = list(zip(arrayY_Test1, arrayY_Test1, arrayY_Test1,
156 arrayY_Test1))
157 print("\nThe output dataset to test is:\n", arrayY_Test)
158 y_Predict = decisionTree.predict(arrayY_Test)
159 print("\nThe predicted output is:\n", y_Predict)
160

427Machine Learning

Output 10.5: Step 4

Step 4: Define the point to split the datasets to 3/4

The input dataset to train is:
[['60' '51 '1' '1']
['34' '3' '1' '0']
['52' '8' '1' '1']
['41' '8' '1' '1']
['34' '1' '2' '1']
['44' '9' '1' '1']
['40' '4' '1' '1']
['32' '1' '2' '0']
['43' '0' '2' '1']
['37' '8' '1' '1']
['46' '1' '2' '2']

...

The output dataset to train is:
[0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 1]

The output dataset to test is:
[(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 1, 1),

(1, 1, 1, 1), (0, 0, 0, 0), (1, 1, 1, 1), (1, 1, 1, 1), (0, 0, 0, 0)]

The predicted output is:
[0 0 0 0 0 0 0 0 0 0]

In Step 5, the code inverts the output to the original column values, it calculates the confusion
matrix and the accuracy score, and provides the classification report. For the inversion of the out-
put, the label encoders are used in the same way as in the case of the integer encoded arrays used in
the model. Next, the confusion matrix is printed followed by the accuracy score (50%). The reader
should note that, in an ideal scenario, the value of the latter approaches the 100% mark. Finally,
the classification report is displayed with all the relevant details. These tasks are coded in lines
164–174. The output shows the results of Step 5.

From one training dataset, the CART algorithm can build several decision trees. The perfor-
mance criteria determine which tree is preferable for the task at hand. Different metrics or per-
formance measurement parameters are being used, the most common being accuracy, confusion
matrix, precision, recall and f- score. Accuracy represents the overall accuracy of a tree. It is calcu-
lated using the correctly classified observations divided by the total number of observations, and
is represented as a percentage. For example, if there are 100 observations tested and 70 of them
are correctly classified, the accuracy of that tree will be 70.00. A higher accuracy suggests a better
performance for the decision tree.

The confusion matrix represents the overall behavior of the tree, based on the test or train data-
sets. It provides more insight in terms of the performance of the tree on each class label. Therefore,
the size of confusion matrix depends on the class labels, as it is always n × n, where n denotes the
number of the class labels. For instance, if there are three class labels in a dataset, the confusion
matrix will be 3 × 3. In the case of the bank dataset, the confusion matrix will be 2 × 2, as it has only
two class labels (Yes/No). The matrix will also provide a breakdown of the numbers of labels being
wrongly categorized by the tree. Such information is not provided by the accuracy scores.

Precision is the measurement of the relevance- based accuracy (i.e., a ratio of the number of
correctly predicted observations over the total number of observations) for each label. For example,

428 Handbook of Computer Programming with Python

assume a tree that has classified 60 customers out of 100 as Yes. However, only 40 out of the 60 clas-
sifications are correct. Thus, the precision will be 40/60 or 0.667.

Recall is the measure of relevance with respect to the overall classification performance in for
the class labels. For example, assume a tree that predicts 60 responses of Yes in a dataset of 100. If
40 of these predictions are correct, while the dataset has 75 observed responses of Yes, the recall
will be 40/75 or 0.533.

Fscore combines both the recall and the precision values into a single value. This value repre-
sents the performance in terms of relevance for each label. High fscore values dictate that the clas-
sifier is performing better and is more fine- tuned than one with lower values.

Output 10.5: Step 5

Step 5: Invert the integer encoded results into their original tex:-based
The inverted output test values are: ['no' 'no' 'no' 'yes' 'yes' 'yes'
'no' 'yes' 'yes' 'no']
The inverted predicted values of the output are: ['no' 'no' 'no' 'no'
'no' 'no' 'no' 'no' 'no' 'no']
The confusion matrix for the particular case is:
[[5 0]
[5 0]]

The accuracy of the model given the test data is: 50.0 %

The classification report is as follows:
precision recall f1-score support

0 0.50 1.00 0.67 5
1 0.00 0.00 0.00 5

accuracy 0.50 10
Macro avg 0.25 0.50 0.33 10

weighted avg 0.25 0.50 0.33 10

161 #===
162 # Step 5: Invert the encoded values and calculate the confusion matrix,
163 # the accuracy score, and the classification report
164 print("\nStep 5: Invert the integer encoded results into "
165 "their original text-based")
166 invertedY_Test = label_encoderY.inverse_transform(y_Test)
167 print ("The inverted output test values are:", invertedY_Test)
168 invertedPredicted = label_encoderY.inverse_transform(y_Predict)
169 print ("The inverted predicted values of the output are:",
170 invertedPredicted)
171 confusionMatrix = confusion_matrix(invertedY_Test, invertedPredicted)
172 print("The confusion matrix for the particular case is:\n",
173 confusionMatrix)
174 accuracyScore = accuracy_score(invertedY_Test, invertedPredicted)
175 print("\nThe accuracy of the model given the test data is: ",
176 accuracyScore * 100, "%")
177 classificationReport = classification_report(y_Test, y_Predict)
178 print("\nThe classification report is as follows:\n",
179 classificationReport)
180

429Machine Learning

Finally, Step 6 implements the statements used to visualize the decision tree based, on the param-
eters specified in the previous steps. The reader should note that the names of the features of the
depicted decision tree, referred as graphCols, must be defined before the tree is visualized, so
that proper labels are attached to the respective tree classifications:

Output 10.5.a: Depicting the Decision Tree using gini index and min_samples_leaf = 6

181 #==
182 # Step 6: Visualizing the CART Decision Tree
183 # Define the names of the labels/features to be depicted in the
184 # decision tree
185 graphCols = ['age', 'Jobs', 'marital','education']
186
187 # Define the type of I/O to be used for the visualization of the
188 # decision tree
189 dot_data = StringIO()
190
191 # Use the export_graphviz() to prepare the visualization of the
192 # decision tree
193 export_graphviz(decisionTree, out_file = dot_data, filled = True,
194 feature_names = graphCols, rounded = True)
195
196 # Use the pydotplus library to plot the decision tree
197 graph = pydotplus.graphviz.graph_from_dot_data(dot_data.getvalue())
198
199 # Save the graph of the decision tree as a .png file in the local
200 # folder
201 graph.write_png("test.png")
202 Image(graph.create_png())

430 Handbook of Computer Programming with Python

Output 10.5.b: Depicting the Decision Tree using entropy and min_samples_leaf = 1

10.6 SUPERVISED LEARNING ALGORITHMS: NAÏVE BAYES CLASSIFIER

Naïve Bayes is a probabilistic model, which can therefore generalize the classification problem
using a set of probabilities. The main concept of this model is based on the popular Bayesian

431Machine Learning

theorem. The theorem can solve the problem of finding
the probability of an event by using existing data for the
conditions related to the event. For example, to find the
probability of an event A to occur while event B is true
is given by the equation below. This is also referred to as
posterior probability.

P A B

P B A P A

P B
() () ()

()
=

⋅

P(B|A) represents the known information regarding the A occurrence, such that B occurring when A
is True. This probability is also called prior probability, as it is part of the existing knowledge. P(A)
is the probability or likelihood of A occurring without any condition. P(B) represents the probability
of event B occurring. P(B) is called evidence. Using prior probability, evidence and likelihood, a
Naïve Bayes model can determine the posterior probabilities of each class label for a set of features,
and assign a label based on these probabilities. The label with the highest or maximum posterior
probabilities is assigned to the current observation.

As an example, consider the following weather data for the covering the previous 7 days, as given
in Table 10.1. Based on the weather condition, the pilot instructors decide whether to run a training
flight or not.

The theorem can be used to make a decision for the following weather conditions:

 1. Appearance: Sunny
 2. Temperature: Hot
 3. Windy: False

To find the posterior probability for each label, calculate the probability for label Yes:

P(Yes) = 3/7
P(Sunny|Yes) = 1/3
P(Hot| Yes) = 1/3
P(False|Yes) = 3/3

The posterior probability for label Yes would be the following:

P(Yes | (Sunny, Hot, False)) = P(Sunny | Yes) * P(Hot | Yes) * P(False | Yes) * P(Yes) =
= (1/3) * (1/3) * (3/3) * (3/7) = 0.047

Observation 10.15 – Naïve Bayes
Classifier: A supervised ML algorithm
that is used to find the probability of
an event given certain conditions.
This probability is referred to as poste-
rior probability. The known informa-
tion is referred to as prior probability.

TABLE 10.1
Weather Data for Previous 7 Days

Appearance Temperature Windy Training Flight?

Sunny Cold False Yes

Cloudy Mild False Yes

Sunny Cold True No

Rainy Hot False Yes

Rainy Cold True No

Cloudy Hot True No

Cloudy Cold False No

432 Handbook of Computer Programming with Python

Similarly, the posterior probability for label No for the same observation would be the following:

P(No | (Sunny, Hot, False)) = P(Sunny | No) * P(Hot | No) * P(False | No) * P(No) =
(1/4) * (1/4) * (1/4) * (4/7) = 0.009

In this case, the posterior probability of Yes is higher than that of No. Therefore, training flight will
run with weather condition of Appearance: Sunny, Temperature: Hot and Windy: False.

Naïve Bayes may have three different implementations, depending on the data. In the case of con-
tinuous data, the Gaussian distribution is more suitable, whereas in the case of nominal data the
multinomial distribution could produce better results. In the latter case (i.e., multinomial distribution),
the implementation can be expressed in the following seven steps, with the last two being optional:

• Step 1: Import/read the data.
• Step 2: Split the input data into train and test sets.
• Step 3: Build the multinomial Naïve Bayes classifier.
• Step 4: Predict the results based on the classifier.
• Step 5: Find the accuracy of the regression model as a percentage.
• Step 6 (Optional): Visualize the results of the trained set.
• Step 7 (Optional): Visualize the results of the test set.

The following script uses students’ Midterm Exam and Project grades to create the Naïve Bayes
model and visualize the results:

1 # Import train_test_split to train and test the input
2 from sklearn.model_selection import train_test_split
3 # Import StandardScaler to scale the data
4 from sklearn.preprocessing import StandardScaler
5 # Import the Multinomial Naïve Bayes to create the classifier object
6 from sklearn.naive_bayes import MultinomialNB
7 # Import the accuracy_score to calculare the accuracy of the model
8 from sklearn.metrics import accuracy_score
9 # Import Numpy to prepare the plot parameters
10 import numpy as np
11 # Import Pyplot to create the plot
12 import matplotlib.pyplot as plt
13 # Import ListedColormap to color the data points in the plot
14 from matplotlib.colors import ListedColormap
15 # Plot inline
16 # This is particularly relevant in Jupyter Anaconda
17 %matplotlib inline
18
19 # Step 1: Define the input dataset. X must be a 2D list
20 # with as many rows as the observations
21 X = [[30, 75], [84, 89], [79, 84], [71, 74], [68, 71], [81, 70],
22 [61, 78], [89, 81], [58, 78], [70, 71], [70, 70], [90, 76],
23 [86, 92], [72, 70], [70, 72], [82, 87], [51, 78], [44, 71],
24 [82, 92], [50, 68]]
25 y = [0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
26
27 # Step 2: Split the set X and y into train and test sets
28 # Test size is 25% of the dataset, Train size is 75%
29 # The new train and test lists will be in random order
30 X_train, X_test, y_train, y_test = train_test_split(X, y, \
31 test_size = 0.25, random_state = 0)

433Machine Learning

32 print("Trained X set:", X_train); print("Test X set:", X_test)
33 print("Trained y set:", y_train); print("Test y set:", y_test)
34
35 # Step 3: Build the Naïve Bayes classifier
36 # Fit the trained set into the classifier
37 model = MultinomialNB().fit(X_train, y_train)
38 print("\n", model)
39
40 # Step 4: Predict the test results
41 y_pred = model.predict(X_test)
42 print("\nResults predicted by the model:", y_pred)
43 print("Results from the test:", y_test)
44 model.predict_proba(X)[:,1]
45
46 # Step 5: Form the confusion matrix to get the accuracy of the model
47 # Use the y_test (actual output) and the y_pred (predicted output)
48 accuracy = accuracy_score(y_test, y_pred)
49 print("The accuracy of the model given the test data is: ",
50 accuracy * 100, "%")
51 # Step 6: Visualize the training set results
52 X_set, y_set = X_train, y_train
53 X1, X2 = np.meshgrid(np.arange(start=np.array(X_set)[:, 0].min() - 1, \
54 stop = np.array(X_set)[:, 0].max() + 1, step = 0.01), \
55 np.arange(start = np.array(X_set)[:, 1].min() - 1, \
56 stop = np.array(X_set)[:, 1].max() + 1, step = 0.01))
57 plt.contourf(X1,X2, model.predict(np.array([X1.ravel(), \
58 X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, \
59 cmap = ListedColormap(('red','blue')))
60
61 plt.xlim(X1.min(), X1.max())
62 plt.ylim(X2.min(), X2.max())
63 for i, j in enumerate(np.unique(y_set)):
64 plt.scatter(np.array(X_set)[y_set == j, 0],
65 np.array(X_set)[y_set == j, 1])
66 plt.title('Naive Bayes: Training set')
67 plt.xlabel("Midterm Exam")
68 plt.ylabel("Project")
69 plt.show()
70
71 # Step 7: Visualize the test results
72 X_set, y_set = X_test, y_test
73 X1, X2 = np.meshgrid(np.arange(start=np.array(X_set)[:, 0].min() - 1, \
74 stop = np.array(X_set)[:, 0].max() + 1, step = 0.01), \
75 np.arange(start = np.array(X_set)[:, 1].min() - 1, \
76 stop = np.array(X_set)[:, 1].max() + 1, step = 0.01))
77
78 plt.contourf(X1,X2, model.predict(np.array([X1.ravel(), \
79 X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, \
80 cmap = ListedColormap(('red','blue')))
81
82 plt.xlim(X1.min(), X1.max());plt.ylim(X2.min(), X2.max())
83 for i, j in enumerate(np.unique(y_set)):
84 plt.scatter(np.array(X_set)[y_set == j, 0],

434 Handbook of Computer Programming with Python

Output 10.6:

Trained X set: [[44, 71], [61, 78], [72, 70], [68, 71], [79, 84], [81, 7
01, [70, 72], [70, 71], [89, 81], [51, 78], [90, 761, [71, 74], [30, 75],
[82, 87], [86, 92]]
Test X set: [[82, 92], [84, 89], [50, 68], [58, 78], [70, 70]]
Trained y set: [0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1]
Test y set: [1, 1, 0, 0, 1]

MultinomialNB()

Results predicted by the model: [1 1 0 0 1]
Results from the test: [1, 1, 0, 0, 1]
The accuracy of the model given the test data is: 100.0 %

85 np.array(X_set)[y_set == j, 1])
86 plt.title('Naive Bayes: Test set')
87 plt.xlabel("Midterm Exam"); plt.ylabel("Project")
88 plt.show()

435Machine Learning

In this case, the output suggests that Naïve Bayes can predict the final grade (Pass/Fail) for the stu-
dents with 100% accuracy. For the same data, a different implementation of Naïve Bayes may pro-
duce results with large variations (e.g., in the case of Gaussian Naïve Bayes function, the accuracy
will be significantly lower). The reason for this is that the various Naïve Bayes functions depend on
the nature of the data and are, thus, more scalable than other models.

10.7 UNSUPERVISED LEARNING ALGORITHMS: K- MEANS CLUSTERING

The k- means clustering algorithm is an unsupervised ML
approach used to solve clustering problems in ML or data
science. Its aim is to group unlabeled datasets into dif-
ferent clusters, where k is equal to the chosen number of
newly created clusters. Each cluster is associated with a
centroid, a data point representing the center of a cluster.
The algorithm seeks to minimize the sum of distances
between the data point and their corresponding clusters.
Its applications may be relevant in different domains, such
as customer segmentation, insurance fraud detection, and document classification just to name a few.
Figure 10.3 presents a case of two clusters (k = 2) being identified in the source dataset:

K- means is, essentially, an iterative algorithm. First, it selects a value for k, that represents the
number of clusters (e.g., k = 3 for 3 clusters). Next, it randomly assigns each data point to any of the
clusters. Finally, it calculates the cluster centroid for each of the clusters. Once the iteration is com-
plete a new one commences. At this stage, the algorithm reassigns each point to the closest cluster
centroid. It then follows the same procedure to assign the points to the clusters containing the other
centroids. The algorithm repeats the last two steps until there is no switching of data points from
one cluster to another, in which case it is completed.

Implementing the k- means algorithm usually involves the following steps:

• Step 1: Select the number of clusters (k). One could also use the elbow function to deter-
mine the optimal number.

• Step 2: Select a random centroid for each cluster. Note that this may be other than the
input dataset.

Observation 10.16 – K- means
Clustering: An unsupervised ML algo-
rithm that aims to group unlabeled
datasets into a number (k) of different
clusters, each associated with a cen-
troid data point representing the cen-
ter of cluster.

FIGURE 10.3 k- means clusters and their centroids. (See Raghupathi, 2018.)

436 Handbook of Computer Programming with Python

• Step 3: Measure the distance (Euclidean function) between each point and the centroids.
Assign each data point to their closest centroid.

• Step 4: Calculate the variance and add a new centroid for each cluster (i.e., calculate the
mean of all the points for each cluster and set the new centroid).

• Step 5: Repeat Steps 3 and 4 until the centroid positions do not change.

The implementation of this approach in Python is rather straightforward, making it accessible to
novice programmers and/or data scientists with no programming background. The following script
is an example of a k- means algorithm implementation, with the objective to classify 100 customers
based on their annual incomes and spending scores:

1 # Import Pandas
2 import pandas as pd
3 # Import Numpy as data manipulation
4 import numpy as np
5 # Import the KMeans library from the sklearn
6 from sklearn.cluster import KMeans
7 # Import the Pyplot to create the plot
8 import matplotlib.pyplot as plt
9 # Plot inline
10 # This is particularly relevant in Jupyter Anaconda
11 %matplotlib inline
12 # Import the operating system module
13 import os
14 # Import the Python data visualization library based on matplotlib
15 import seaborn as sns
16 sns.set(context = "notebook", palette = "Spectral", style = 'darkgrid',
17 font_scale = 1.5, color_codes = True)
18
19 # X is a list of 100 samples for customers, each representing the
20 # annual income and the spending score
21 X = [[15, 39], [15, 81], [16, 6], [16, 77], [17, 40], [17, 76],
22 [18, 6], [18, 94], [19, 3], [19, 72], [19, 14], [19, 99],
23 [20, 15], [20, 77], [20, 13], [20, 79], [21, 35], [21, 66],
24 [23, 29], [23, 98], [24, 35], [24, 73], [25, 5], [25, 73],
25 [28, 14], [28, 82], [28, 32], [28, 61], [29, 31], [29, 87],
26 [30, 4], [30, 73], [33, 4], [33, 92], [33, 14], [33, 81],
27 [34, 17], [34, 73], [37, 26], [37, 75], [38, 35], [38, 92],
28 [39, 36], [39, 61], [39, 28], [39, 65], [40, 55], [40, 47],
29 [40, 42], [40, 42], [42, 52], [42, 60], [43, 54], [43, 60],
30 [43, 45], [43, 41], [44, 50], [44, 46], [46, 51], [46, 46],
31 [46, 56], [46, 55], [47, 52], [47, 59], [48, 51], [48, 59],
32 [48, 50], [48, 48], [48, 59], [48, 47], [49, 55], [49, 42],
33 [50, 49], [50, 56], [54, 47], [54, 54], [54, 53], [54, 48],
34 [54, 52], [54, 42], [54, 51], [54, 55], [54, 41], [54, 44],
35 [54, 57], [54, 46], [57, 58], [57, 55], [58, 60], [58, 46],
36 [59, 55], [59, 41], [60, 49], [60, 40], [60, 42], [60, 52],
37 [60, 47], [60, 50], [61, 42], [61, 49]]
38
39 # Convert the list to an np.array for plotting the clusters
40 # of customers

437Machine Learning

Output 10.7.a:

The output illustrates the identification of the optimal number of clusters that can represent the
k- means, in this Case 4. Next, this is used to find, organize, and illustrate the respective clusters
with their centroid data, as in the following script:

41 X = np.array(X)
42
43 # Find the optimal number of clusters (elbow method)
44 from sklearn.cluster import KMeans
45 wcss = []
46 for i in range(1, 15):
47 kmeans = KMeans(n_clusters = i, init = 'k- means++', \
48 random_state = 42)
49 kmeans.fit(X)
50 # Inertia function returns wcss for that model:
51 # WCSS is the sum of squared distance between each point
52 # and the centroid in a cluster
53 wcss.append(kmeans.inertia_)
54 # Plot the clusters and WCSS
55 plt.figure(figsize = (10,5))
56 sns.lineplot(range(1, 15), wcss, marker = 'o', color = 'red')
57 plt.title('The Elbow Method')
58 plt.xlabel('Number of clusters')
59 plt.ylabel('WCSS')
60 plt.show()

61 # Fitting K- means to the dataset
62 kmeans = KMeans(n_clusters = 4, init = 'k- means++', random_state = 42)
63 y_kmeans = kmeans.fit_predict(X)
64
65 # plot ('Annual Income (k$), Spending Score)
66 plt.figure(figsize = (15,7))
67 sns.scatterplot(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], \
68 color = 'yellow', label = 'Cluster 1', s = 50)
69 sns.scatterplot(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], \
70 color = 'blue', label = 'Cluster 2', s = 50)

438 Handbook of Computer Programming with Python

Output 10.7.b: Finding and illustrating the clusters, their data points, and their centroids

The output identifies the four optimal clusters of the data points and their centroids.

10.8 UNSUPERVISED LEARNING ALGORITHMS: APRIORI

The apriori algorithm is based on rule mining and is
mainly used for finding the association between differ-
ent items in a dataset. However, the algorithm can be
also used as a classifier. It explores the data space and
keeps all items in a dynamic structure. The apriori algo-
rithm prunes the list of itemsets to keep only those that
meet certain criteria. One simple criterion is the use of
a threshold value: the most frequent item and itemset
lists can be pruned using the threshold values on support
and confidence. For example, if the support of an item is
less than the threshold value the item is not added to the
frequent items.

The association between items is determined based
on two main measurements: support and confidence.

Observation 10.17 – Apriori: An
unsupervised ML algorithm used to
find the association between differ-
ent items in a dataset. It is based on
the measurements of confidence and
support.

Observation 10.18 – Support:
Calculates the likelihood of an item
being in the data space and filters the
reported items. Use parameter min _
support = value (0.0–1.0).

71 sns.scatterplot(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], \
72 color = 'green', label = 'Cluster 3', s = 50)
73 sns.scatterplot(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], \
74 color = 'grey', label = 'Cluster 4', s = 50)
75 sns.scatterplot(kmeans.cluster_centers_[:, 0], \
76 kmeans.cluster_centers_[:, 1], color = 'red',
77 label = 'Centroids', s = 300, marker = ', ')
78 plt.grid(False)
79 plt.title('Clusters of customers')
80 plt.xlabel('Annual Income (k$)')
81 plt.ylabel('Spending Score (1–100)')
82 plt.legend()
83 plt.show()

439Machine Learning

Support calculates the likelihood of an item being in the data space and confidence measures the
relationship or association of an item with another.

For a given item (A) the support is calculated using the following equation (Equation 10.1):

 Support
Number of observationscontaining

Total number of observations
A

A() = (10.1)

The confidence is measured using the following equation (Equation 10.2) and represents the asso-
ciation between two items, say A and B:

 Confidence to
Number of observationscontaining &

Number of observationscontaining
A B

A B

A
() = (10.2)

The min_lift parameter indicates the likelihood of
an item being associated with another. A value of 1 indi-
cates that the items are not associated. A lift value
greater than 1 indicates that an item is likely to be asso-
ciated with another item, while a value less than 1 means
the opposite.

The min_length parameter defines the minimum
number of items considered for the rules, and depends
on the number of the available items. The association
among the items can be determined up to a certain
length: if the length of the association is 10, a maximum
of ten items can be related to each other. Each one of
these combinations is called an itemset. In a large data-
set, the number of frequent items and itemsets could be
rather substantial.

The apriori algorithm can be further explained using
the dataset provided in Table 10.2. The table lists the
four most recent transactions made by customers in a
supermarket.

Apriori will start by calculating the support for all
items as shown on Table 10.3. Next, it will apply the
threshold to trim the item list and build a frequent
itemset. Assume that the threshold for the support is
50%. The trimmed list of frequent items is shown on
Table 10.4. Similarly, the algorithm will calculate the confidence for finding an association between
two items, and trim the list using the threshold on confidence. Eventually, two rules will be selected:

 1. If a customer buys an Apple, there are high chances the customer buys a Banana.
 2. If a customer buys a Bread, there is a likelihood the customer will also buy Eggs.

Observation 10.20 – min_lift:
Defines the minimum number of
items to be considered (as a combi-
nation) in the displayed rules. A value
of 1 suggests an association, while a
value less than 1 suggests lack of an
association.

Observation 10.19 – Confidence:
Calculates the level of confidence of
the association with another item and
filters the reported items. Use param-
eter min _ confidence = value
(0.0–1.0).

Observation 10.21 – min_length:
Defines the minimum number of
items to be considered for the rules,
and depends on the number of avail-
able items.

TABLE 10.2
Transactions at a Supermarket

Transaction ID Items Purchased

1 Apple, Banana, Biscuits

2 Apple, Banana, Bread

3 Bread, Eggs, Cereal

4 Apple, Bread, Eggs

440 Handbook of Computer Programming with Python

The apriori implementation in Python can be described using the following four steps (the last
one being optional):

• Step 1: Import/read the data.
• Step 2: Build the apriori model.
• Step 3: Transform the rules into a dataframe.
• Step 4: Create a table to display all the rules.

The following script uses the above data to create the apriori model:

TABLE 10.3
Support for All Items

Item Support

Apple 0.75

Banana 0.5

Bread 0.75

Biscuits 0.25

Cereals 0.25

Eggs 0.5

TABLE 10.4
Frequent Itemset with 50% Support

Item Support

Apple 0.75

Banana 0.5

Bread 0.75

Eggs 0.5

1 # import Pandas and Numpy
2 import pandas as pd
3 import numpy as np
4
5 # import the apriori model
6 from apyori import apriori
7 # Import the accuracy_score to calculare the accuracy of the model
8 from sklearn.metrics import accuracy_score
9
10 # Step 1: Define the input dataset. X must be a 2D list with
11 # as many rows as the observations
12 X = [["Apple", "Banana", "Biscuits"], ["Apple", "Banana", "Bread"],
13 ["Bread", "Eggs", "Cereal"], ["Apple", "Bread", "Eggs"]]
14
15 # Step 2 Build the apriori model
16 rules = apriori(X, min_length = 2, min_support = 0.1, \
17 min_confidence = 0.02, min_lift = 1)
18 # rules = apriori(X, min_length = 2, min_support = 0.5,
19 # min_confidence = 0.5, min_lift = 1)
20

441Machine Learning

Output 10.8.a–10.8.c:

The association rules for the particular dataset are:
items support \

0 (Apple) 0.75
1 (Banana) 0.50
2 (Biscuits) 0.25
3 (Bread) 0.75

(Cereal) 0.25
5
4

(Eggs) 0.50
6 (Apple, Banana) 0.50
7 (Apple, Biscuits) 0.25
8 (Apple, Bread) 0.50
9 (Apple, Eggs) 0.25
10 (Banana, Biscuits) 0.25
11 (Banana, Bread) 0.25
12 (Bread, Cereal) 0.25
13 (Eggs, Bread) 0.50
14 (Eggs, Cereal) 0.25
15 (Apple, Banana, Biscuits) 0.25
16 (Apple, Banana, Bread) 0.25
17 (Apple, Eggs, Bread) 0.25
18 (Eggs, Bread, Cereal) 0.25

21 # Step3: Transform outputs in an appropriate pd.Dataframe format
22 results = list(rules)
23 results = pd.DataFrame(results)
24 print("The association rules for the particular dataset are:\n",
25 results)
26
27 # Step 4 Create an output table from the ordered statistics
28 # Note: not all tables are of the same type
29 F1 = []; F2 = []; F3 = []; F4 = []
30 C3 = results.support
31 for i in range(results.shape[0]):
32 single_list = results['ordered_statistics'][i][0]
33 F1.append(list(single_list[0]))
34 F2.append(list(single_list[1]))
35 F3.append(single_list[2])
36 F4.append(single_list[3])
37
38 # First column of the table
39 C1 = pd.DataFrame(F1)
40 # Second column of the table
41 C2 = pd.DataFrame(F2)
42 # Fourth column of the table
43 C4 = pd.DataFrame(F3,columns = ['Confidence'])
44 # Fifth column of the table
45 C5 = pd.DataFrame(F4,columns = ['Lift'])
46
47 # Concatenate all tables into one
48 table = pd.concat([C1,C2,C3,C4,C5], axis = 1)
49 print("\nImproved format of the association rules for the dataset:\n",
50 table)

442 Handbook of Computer Programming with Python

ordered_statistics
0 [((), (Apple), 0.75, 1.0)]
1 [((), (Banana), 0.5, 1.0)]
2 [((), (Biscuits), 0.25, 1.0)]
3 [((), (Bread), 0.75, 1.0)]
4 [((), (Cereal), 0.25, 1.0)]
5 [((), (Eggs), 0.5, 1.0)]
6 [((), (Apple, Banana), 0.5, 1.0), ((Apple), (B...
7 [((), (Apple, Biscuits), 0.25, 1.0), ((Apple),...
8 [((), (Apple, Bread), 0.5, 1.0)]
9 [((), (Apple, Eggs), 0.25, 1.0)]
10 [((), (Banana, Biscuits), 0.25, 1.0), ((Banana...
11 [((), (Banana, Bread), 0.25, 1.0)]
12 [((), (Bread, Cereal), 0.25, 1.0), ((Bread), (...
13 [((), (Eggs, Bread), 0.5, 1.0), ((Bread), (Egg...
14 [((), (Eggs, Cereal), 0.25, 1.0), ((Cereal), (...
15 [((), (Apple, Banana, Biscuits), 0.25, 1.0), (...
16 [((), (Apple, Banana, Bread), 0.25, 1.0), ((Ap...
17 [((), (Apple, Eggs, Bread), 0.25, 1.0), ((Brea...
18 [((), (Eggs, Bread, Cereal), 0.25, 1.0), ((Bre...

Improved format of the association rules for the dataset:
0 1 2 support Confidence Lift

0 Apple None None 0.75 0.75 1.0
1 Banana None None 0.50 0.50 1.0
2 Biscuits None None 0.25 0.25 1.0
3 Bread None None 0.75 0.75 1.0
4 Cereal None None 0.25 0.25 1.0
5 Eggs None None 0.50 0.50 1.0
6 Apple Banana None 0.50 0.50 1.0
7 Apple Biscuits None 0.25 0.25 1.0
8 Apple Bread None 0.50 0.50 1.0
9 Apple Eggs None 0.25 0.25 1.0
10 Banana Biscuits None 0.25 0.25 1.0
11 Banana Bread None 0.25 0.25 1.0
12 Bread Cereal None 0.25 0.25 1.0
13 Eggs Bread None 0.50 0.50 1.0
14 Eggs Cereal None 0.25 0.25 1.0
15 Apple Banana Biscuits 0.25 0.25 1.0
16 Apple Banana Bread 0.25 0.25 1.0
17 Apple Eggs Bread 0.25 0.25 1.0
18 Eggs Bread Cereal 0.25 0.25 1.0

The results demonstrate the apriori model at work, and also highlight the dominant associations
between the items. Strong associations between Bread and Eggs, and Apple and Banana is evident.

Changing the parameter values to min_support = 0.5 and min_confidence = 0.5 will change the
reported Output 10.8.d as follows:

443Machine Learning

The association rules for the particular dataset are:
items support ordered_statistics

0 (Apple) 0.75 [((), (Apple), 0.75, 1.0)]
1 (Banana) 0.50 [((), (Banana), 0.5, 1.0)]
2 (Bread) 0.75 [((), (Bread), 0.75, 1.0)]
3 (Eggs) 0.50 [((), (Eggs), 0.5, 1.0)]
4 (Apple, Banana) 0.50 [((), (Apple, Banana), 0.5, 1.0), ((Apple), (B...
5 (Apple, Bread) 0.50 [((), (Apple, Bread), 0.5, 1.0)]
6 (Bread, Eggs) 0.50 [((), (Bread, Eggs), 0.5, 1.0), ((Bread), (Egg...

Improved format of the association rules for the dataset:
0 1 support Confidence Lift

0 Apple None 0.75 0.75 1.0
1 Banana None 0.50 0.50 1.0
2 Bread None 0.75 0.75 1.0
3 Eggs None 0.50 0.50 1.0
4 Apple Banana 0.50 0.50 1.0
5 Apple Bread 0.50 0.50 1.0
6 Bread Eggs 0.50 0.50 1.0

Notice how filtering dramatically reduces the reported rules and output, by increasing the level
of confidence and the acceptable support.

The rules extracted by apriori identify the patterns of item sales for a supermakert. The model
can determine similar associations for a larger dataset and the report can be tweaked to display the
top ranking associations (e.g. Eggs and Bread or Apple and Banana).

10.9 OTHER LEARNING ALGORITHMS

A number of other ML algorithms are also frequently used in real- life applications. One the most
popular is random forest (Andrade et al., 2019; Kwon et al., 2015; Naveed & Alrammal, 2017;
Naveed et al., 2020), a supervised ML algorithm. It can be used for both classification and regres-
sion. The main idea behind random forest is to create multiple ML decision tree models, with data-
sets created using what is referred to as a bootstrap sampling method. According to this method,
each sub- dataset is composed of random sub- samples of the original dataset. Each of the defined
training datasets is used to create a different model, using the same ML algorithm and making dif-
ferent predictions. The best prediction is used as the result of the process.

The random forest algorithm can be described using the following four steps:

• Step 1: Select random samples from a given
dataset.

• Step 2: Create a decision tree for each sample and
get a prediction result for each decision tree.

• Step 3: Perform a vote for each of the predicted
results.

• Step 4: Select the prediction result with the high-
est number votes as the final prediction.

Observation 10.22 – Random Forest:
Create multiple ML decision trees
from random sub- sets of the original
dataset. Make predictions for each
of the decision trees and vote for the
best prediction.

444 Handbook of Computer Programming with Python

Random forest is considered a highly accurate ML algorithm, with the larger numbers of decision
trees created leading to increasingly more robust results. Since it calculates the average of all its
predictions, it does not suffer from overfitting or outliers being present in the original dataset. Its
main shortcomings come from the fact that it consists of multiple decision trees. Hence, it is slow in
generating a final prediction as it has to get all the sub- tree predictions and vote the best one, and it
is not as straightforward to interpret as a single decision tree.

The K- Nearest Neighbors (k- NN) algorithm uses the entire dataset as a training set, rather than
splitting the dataset into a training and a test set. It assumes that similar data points are in close
proximity to each other. This proximity (or distance) can be calculated using a variety of methods,
such as the Euclidean theorem, or the Hamming distance (Sharma, 2020). When a new outcome is
requested for a new data point, the k- NN algorithm cal-
culates the instances between the new data point and the
entire dataset, or the user- defined k data points that look
more similar to the new data point. Next, it calculates
the mean of the outcomes following a regression model,
or the mode (i.e., the most frequent class).

The algorithm of the k- NN model follows the following six main steps:

• Step 1: Load the data.
• Step 2: Select the number (k) of neighbors.
• Step 3: For each new data point, calculate the distance between new and the current data-

set points.
• Step 4: Add the distance and the index of the new data point to the current collection.
• Step 5: Sort the current collection of distances and indices by distance.
• Step 6: Pick the first k entries from the sorted collection, get their labels, and return the

mean or mode.

The main disadvantage of k- NN is that it is becoming significantly slower as the dataset increases
in size.

10.10 WRAP UP - MACHINE LEARNING APPLICATIONS

Through the use of Machine Learning (ML) algorithms, Artificial Intelligence (AI) has penetrated
all forms of human activity. It is highly likely that the vast majority of humans has a first- hand expe-
rience of this through one of its many real- life applications. Traffic Alerts (maps) is such an example
with several applications being used to suggestions and routes to help drivers deal with navigation
and traffic. Data are collected either from other drivers currently using the same system or network
and, or historical data of the various routes collected over time. Data collected when users are
using the application or network include their location, average speed, and the route in which they
are travelling. Figure 10.4 illustrates such an example on heavy congestion conditions (i.e., Sheikh
Mohammed bin Rashid Blvd – Downtown Dubai).

Another class of examples of ML algorithms are the various virtual personal assistants. Such
systems assist the users on various daily tasks and include advanced detection capabilities like
understanding the users’ voice (e.g., asking “what is my schedule for today?” will trigger the
associated response). Common tasks implemented into contemporary virtual personal assistant
systems include speech recognition, speed- to- text conversion, natural language processing, and
text- to- speech conversion. The systems collect and refine the information based on previous inter-
actions. They are integrated into a variety of platforms, including smart speakers, smartphones,
and mobile apps.

Social media is another space where ML applications are heavily integrated and used. From per-
sonalizing news feeds to better ads targeting, social media platforms are utilizing machine learning

Observation 10.23 – k- NN: Use the
whole data set as a training set to cal-
culate the distances between the vari-
ous k data points in the dataset.

445Machine Learning

for both corporate and end- user benefits. The list below includes some examples one may be famil-
iar with, perhaps without even realizing that these features are nothing but the practical application
of ML algorithms:

• People You May Know: ML works on a simple concept: understanding through experi-
ence. For example, Social Media platforms continuously monitor the friends one connects
with, the most often visited profiles, one’s interests, or work and personal status, or groups
one belongs too. Based on continuous learning, a list of the Social Media users that one can
become friends with is suggested.

• Face Recognition: A user uploads a personal picture with a friend and the system instantly
recognizes the identity of that friend. Such systems may check the poses and projections in
the picture, identify unique features, and match them with people in the user’s friends or
contact lists. The entire process is based on ML and is commonly referred to as friend tag-
ging. It is a rather complex process taking place at the backend, but it is rather transparent
on the user side, as it seems like a simple and unobtrusive feature at the front end.

• Similar Pins: ML is a core element in computer vision, a technique to extract useful
information from images and videos. An example of this can be seen in platforms which
use computer vision to identify the objects (or pins) in the images and recommend other
related pins accordingly.

House price prediction is yet another example of ML algorithms in action. By leveraging the data
collected from large numbers of houses in relation to their characteristics (e.g., square footage,
number of rooms, property type), the algorithm trains the ML model to predict the price of other
houses. The multiple popular online portals for searching houses or apartments (both for rental and
purchase) are examples of the use of such applications.

FIGURE 10.4 Traffic alert application.

446 Handbook of Computer Programming with Python

Product recommendation is an experience most people have without even noticing. As an exam-
ple, one can think of using a web browser to check a product on a specific website. It is likely that
while engaging in other online activities, such as watching online videos, the same or similar prod-
ucts appear as an ad. In such cases, the various platforms use smart agents to track the user’s search
history and recommends ads based on it.

Recommender systems are another application of ML algorithms. Such systems use collabora-
tive filtering, a method based on gathering and analyzing user behavior information and predicting
what they like based on similarities with other users. Figure 10.5 provides an example of the use
of collaborative filtering in an E- commerce web app. In this context one can assume a customer
(Customer 1) viewing product A and other customers viewing products A, B, C, and D. Due to the
similarity of interests of all the users in product A, the web app will propose products B, C and D
to Customer 1.

Among the most important applications of ML is the monitoring of video cameras. In areas or
countries utilizing excessive numbers of traffic monitoring video cameras, monitoring by human offi-
cers can be impractical and challenging. The idea of training computers to accomplish this task comes
handy in such cases. Similarly, video surveillance systems powered by AI/ML make it possible to
detect suspicious activity, sometimes even before it takes place. This is done by tracking unusual
behavior (e.g., when one stands motionless for a long time, stumbles, or laying on public locations).
The system can generate alerts sent to human attendants, who can then take appropriate actions. As
activities are reported and verified, they help to improve the surveillance services even further.

In the context of information security, one should note the use of spam filtering. The term refers
to processes monitoring the user’s email traffic and executing appropriate preventive actions. It is
crucial for such systems to ascertain that spam filters are continuously updated; this is accomplished
through ML algorithms. While there are hundreds of thousands of malware and security threats
detected every single day, it is generally accepted that the associated code is 90% or more similar
to its predecessor. ML- based security programs can identify such coding patterns and detect new
malware with slight coding variations rather easily. Similarly, ML provides great potential to secure
online monetary transactions from online frauds. For instance, online payment platforms use a set
of tools that helps compare millions of transactions taking place almost simultaneously and identi-
fying suspicious of fraudulent action between buyers and sellers.

Finally, another common application of ML models can be found in the online customer support
services of many e- Business or e- Commerce platforms. Such platforms frequently offer the option

FIGURE 10.5 Product recommendations. (See Keshari, 2021.)

447Machine Learning

to chat with a customer support representative while navigating the website. While the transaction
may seem like a regular conversation, it is not with a real representative but with a chatbot. The lat-
ter extracts information from the website and presents it to the customers in a chat- like form. Every
time a new chat begins, the answer is improved based on the previously recorded answers.

The discussion on ML applications can continue further, with practical use examples like
weather prediction, distinction between animals/plants/objects, or customer segmentation, just to
name a few.

10.11 CASE STUDIES

Use dataset dataset.csv to write a Python script that predicts whether a patient will be readmitted or
not within 30 days. The application should do the following:

 1. Read the dataset and create a data frame with the following categories: gender, race,
age, admission type id, discharge disposition id, admission source id, max glu serum,
A1Cresult, change, diabetesMed, readmitted (categorical), time in hospital, number of
lab procedures, number of procedures, number of medications, number of outpatients,
number of emergencies, number of inpatients, number of diagnoses (numerical).

 2. Apply the following ML algorithms and calculate their accuracy: logistic regression,
k- NN, SVM, Kernel SVM, Naïve Bayes, CART Decision Tree, Random Forest.

10.12 EXERCISES

 1. Use the CART example in this chapter to change the criterion from entropy to Gini index
and the max depth to 10. How does this affect the accuracy of the model? What is the effect
of changing the max depth to 20?

 2. Test both the BEST and RANDOM splitter features on the CART example from this chap-
ter. Explain whether the performance of a decision tree depends on the splitter feature of
the classifier object.

 3. Apply a smaller training dataset to the CART decision tree example to investigate whether
the performance will improve or decrease (Hint: Increase and decrease the ratio of the
size of the training dataset).

 4. Find the precision, recall and fscore for a CART decision tree with entropy as criterion,
max dept of 4 and min samples leaf nodes of 20.

 5. Use the bank dataset to train a decision tree classifier with ten- fold cross validation and
generate the respective classification report.

REFERENCES

Andrade, E. de O., Viterbo, J., Vasconcelos, C. N., Guérin, J., & Bernardini, F. C. (2019). A model based
on lstm neural networks to identify five different types of malware. Procedia Computer Science, 159,
182–191.

Keshari, K. (2021). Top 10 Applications of Machine Learning: Machine Learning Applications in Daily Life.
https://www.edureka.co/blog/machine- learning- applications/.

Kwon, B. J., Mondal, J., Jang, J., Bilge, L., & Dumitraş, T. (2015). The dropper effect: Insights into malware
distribution with downloader graph analytics. Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (1118–1129), Denver, Colorado.

Mitchell, T. M. (1997). Machine Learning (1st ed.). New York: McGraw- Hill.
Mola, F. (1998). Classification and Regression Trees Software and New Developments BT – Advances in Data

Science and Classification (A. Rizzi, M. Vichi, & H.- H. Bock eds.; pp. 311–318). Berlin Heidelberg:
Springer.

https://www.edureka.co

448 Handbook of Computer Programming with Python

Naveed, M., & Alrammal, M. (2017). Reinforcement learning model for classification of Youtube movie.
Journal of Engineering and Applied Science, 12(9), 1–7.

Naveed, M., Alrammal, M., & Bensefia, A. (2020). HGM: A Novel Monte- Carlo simulations based model for
malware detection. IOP Conference Series: Materials Science and Engineering, 946(1), 12003. https://
doi.org/10.1088/1757- 899x/946/1/012003.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106. https://doi.org/10.1007/
BF00116251.

Raghupathi, K. (2018). 10 Interesting Use Cases for the K- Means Algorithm. DZone AI Zone. https://dzone.
com/articles/10- interesting- use- cases- for- the- k- means- algorithm.

Salzberg, S. L. (1994). C4.5: Programs for machine learning by J. Ross Quinlan. Morgan Kaufmann Publishers,
Inc., 1993. Machine Learning, 16(3), 235–240. https://doi.org/10.1007/BF00993309.

Sharma, P. (2020). 4 Types of Distance Metrics in Machine Learning. Analytics Vidhya. https://www.analyt-
icsvidhya.com/blog/2020/02/4- types- of- distance- metrics- in- machine- learning/.

https://doi.org/10.1088/1757-899x/946/1/012003
https://doi.org/10.1088/1757-899x/946/1/012003
https://doi.org/10.1007/BF00116251
https://doi.org/10.1007/BF00116251
https://dzone.com
https://dzone.com
https://doi.org/10.1007/BF00993309
https://www.analyticsvidhya.com
https://www.analyticsvidhya.com

449

11 Introduction to Neural
Networks and Deep Learning

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

Muhammad Fahim
Higher Colleges of Technology

Han-I Wang
The University of York

11.1 INTRODUCTION

Deep learning is in fact a new name for an approach to artificial intelligence called neural networks,
which has been going in and out of fashion for more than 70 years. Neural networks were first proposed
in 1944 by Warren McCullough and Walter Pitts, two University of Chicago researchers who moved to
MIT in 1952 as founding members of what’s sometimes called the first cognitive science department.

(Hardesty, 2017)

CONTENTS

11.1 Introduction ..449
11.2 Relevant Algebraic Math and Associated Python Methods for DL 452

11.2.1 The Dot Method.. 452
11.2.2 Matrix Operations with Python .. 455
11.2.3 Eigenvalues, Eigenvectors and Diagonals .. 459
11.2.4 Solving Sets of Equations with Python ..460
11.2.5 Generating Random Numbers for Matrices with Python ... 461
11.2.6 Plotting with Matplotlib ..463
11.2.7 Linear and Logistic Regression ..465

11.3 Introduction to Neural Networks ..466
11.3.1 Modelling a Simple ANN with a Perceptron ... 467
11.3.2 Sigmoid and Rectifier Linear Unit (ReLU) Methods ... 470
11.3.3 A Real-Life Example: Preparing the Dataset ... 473
11.3.4 Creating and Compiling the Model .. 474
11.3.5 Stochastic Gradient Descent and the Loss Method and Parameters 475
11.3.6 Fitting and Evaluating the Models, Plotting the Observed Losses 477
11.3.7 Model Overfit and Underfit ... 482

11.4 Wrap Up .. 483
11.5 Case Study ..484
References ..484

DOI: 10.1201/9781003139010-11

https://doi.org/10.1201/9781003139010-11

450 Handbook of Computer Programming with Python

Human intelligence is an evolutionary, biologically
controlled process. Humans learn based on their expe-
riences. Similarly, machine or artificial intelligence is
subject to comparable experiences in the form of data.
On a broader context, the two forms of intelligence are
similar in the sense that they are subject to a common
approach: “based on what I have seen and observed I
think this will happen next”. Once this core idea is
transferred to mathematical constructs and the associated algorithms (self-evolving), machines are
observed to be capable of learning on their own, a process commonly referred to as machine learn-
ing (ML). ML is a branch of artificial intelligence (AI), an umbrella term used to describe approaches
and techniques that can make machines think and act in a more rational and human-like way.

Deep learning (DL) is a specific form of ML, and therefore another branch of AI (Figure 11.1).
At a basic level, DL is based on mimicking the human thinking process and developing relevant
abstractions and connections. It consists of the following elements:

 1. Learning: Facilitating the functionality to artificially obtain and process new information.
 2. Reasoning: Offering the functionality to process information in different, and potentially

overlooked, ways.
 3. Understanding: Providing ways to showcase the results of the adopted model.
 4. Validating: Offering the opportunity to validate the results of the model based on theory.
 5. Discovering: Providing the mechanisms to identify new relationships within the data.
 6. Extracting: Allowing the extraction of new meanings based on the predictors.

DL uses numerous layers of algorithms to process the underlying data, which could be spoken
words, images, text, or more complex objects. The data are normally passed through interconnected
layers of processing networks, as shown in Figure 11.2.

In ML, there are two types of variables: dependent and independent. One way to contextualize
these variables is to think of independent variables as the inputs of the ML process and dependent
as the outputs. For example, one can predict a person’s weight by knowing that person’s height.

Another notion the reader should be familiar with is that of data plotting. Essentially, plotting
is a way to visualize the data in an effort to identify underlying patterns and groupings. As data
can be scattered, when plotting them the goal is to find a line that represents the best fit for a given
dataset. A simple equation can define such a process: Y = F(X) + B where Y is the dependent variable
(predicted weight) and X the independent variable (an individual’s height).

In ML, there are mainly two types of predictions:

 1. Linear Regression: Linear regression is focused on predicting continuous values. This
topic is thoroughly discussed in Chapter 10: Machine Learning with Python. It is highly
recommended that the reader goes through the basic discussions on that chapter before
proceeding to the next sections of the present one, as they offer a useful foundation for
understanding many aspects of DL.

Observation 11.1 – Deep Learning: A
specialized form of Machine Learning.
It uses many layers of algorithms to
process the underlying data which
could be human speeches, images,
text, complex objects, etc.

FIGURE 11.1 Scope of data-based learning technologies.

451Introduction to Neural Networks and Deep Learning

 2. Logistic Regression: Logistic regression is focused on predicting values classified as 0 or
1, and is one of the cornerstones of DL.

DL is applied in cases of learning based on unlabelled data with unknown features. Thus, feature
extraction (FE) is a vital aspect of DL. FE uses algorithms to construct the meaning of the features,
so the training and testing processes can be applied.

This chapter covers the following:

 1. An introduction to the theory and mathematical constructs of DL fundamentals, supported
by the associated mathematical equations, and working examples and related Python
scripts.

 2. An introductory discussion on Neural Networks (NN) and DL algorithms implementing
NN with working examples and scripts.

 3. Examples of building a DL model using NN.

It should be noted that, since there are several mathematical concepts involved in the DL processes,
it is possible to face compatibility issues when working with more than one libraries. In such cases,
it is, often, quite useful to know if a particular library is installed in the system and, if so, which
version. In that case, the following statements may come handy:

FIGURE 11.2 DL processing and layering structure.

1 # scipy
2 import scipy
3 print('scipy: %s' % scipy.__version__)
4 # numpy
5 import numpy
6 print('numpy: %s' % numpy.__version__)
7 # matplotlib
8 import matplotlib
9 print('matplotlib: %s' % matplotlib.__version__)
10 # pandas
11 import pandas
12 print('pandas: %s' % pandas.__version__)

452 Handbook of Computer Programming with Python

Output 11.1:

scipy: 1.4.1
numpy: 1.19.5
matplotlib: 3.2.2
pandas: 1.1.5
statsmode1s: 0.10.2
sklearn: 1.0.1

In addition to Pandas, MatplotLib, Nympy, and SciPy libraries already covered in previous chap-
ters, there are a few more that are essential in DL scripts. Some of these must be installed prior to
their import and use in the script. However, given the variety of installations depending on the oper-
ating systems and configurations, it is deemed impractical to cover all those in the present chapter.
The reader is advised to seek instructions in the many online available sites. A list of these libraries,
with a brief description, follows:

 1. TensorFlow: It is used for backpropagation and passes the data for training and prediction.
 2. Theano: It helps with defining, optimizing and evaluating mathematical equations on

multi-dimensional arrays. It is very efficient when performing symbolic differentiation.
 3. Pytorch: It helps with tensor computations with GPU and Neural Networks based data

modeling.
 4. Caffe: It helps with implementing DL frameworks using improved expressions and speed.
 5. Apache mxnet: As a core component, it comes with a dynamic dependency scheduler that

provides parallelism for both symbolic and imperative operations.

11.2 RELEVANT ALGEBRAIC MATH AND ASSOCIATED
PYTHON METHODS FOR DL

There are some essential mathematical concepts that must be explained and their Python implemen-
tations described before delving into the introduction of DL with Python. The most fundamental are
the dot() method, the matrix operations, eigenvalues/eigenvectors and diagonals, solving equations
through sets, generating random numbers, and linear and logistic regression.

11.2.1 the dot method

A method often used in DL that is not covered in previous chapters is the dot method. It implements
the math equation that sums the products of two arrays:

∑= =
=

.
1

x y x b x yT

n

N

n n

The dot method is important in the context of DL, as
the main method of the latter is to accept multiple inputs

Observation 11.2 – The Dot Method:
Calculates the sum of vectors, provided
in the form of matrices.

13 # statsmodels
14 import statsmodels
15 print('statsmodels: %s' % statsmodels.__version__)
16 # scikit-learn
17 import sklearn
18 print('sklearn: %s' % sklearn.__version__)

453Introduction to Neural Networks and Deep Learning

from various neurons and calculate their sum. Since the inputs are always in the form of vectors
(i.e., pairs of values like course grade and its weight), the dot method is an effective means for this
calculation. Figure 11.3 illustrates the functionality of the dot method:

Consider the following Python script:

1 import numpy as np
2
3 # 1x2 and 1x3 arrays
4 x1, y1 = np.array([1, 2]), np.array([3, 4])

5 x2, y2 = np.array([1, 2, 3]), np.array([4, 5, 6])
6 print("The two arrays x1 and y1 are:\n", x1, y1)
7 print("The two arrays x2 and y2 are:\n", x2, y2)
8
9 # Product of 2 arrays calculated as xi*yi (for each of the 2 elements)
10 print("\nCreate a new list as products of the elements of the two \
11 arrays (x1 * y1):", x1 * y1)
12 print("\nCreate a new list as products of the elements of the two \
13 arrays (x2 * y2):", x2 * y2)
14
15 # Loop calculates the dot method of the 2 arrays (x1, y1 & x2, y2)
16 Dot = 0
17 for i in range(len(x1)):
18 Dot += x1[i] * y1[i]
19 print("\nUsing a regular loop to calculate the dot value for \
20 the 1x2 arrays:", Dot)
21 Dot = 0
22 for i in range(len(x2)):
23 Dot += x2[i] * y2[i]
24 print("Using a regular loop to calculate the dot value for \
25 the 1x3 arrays:", Dot)
26 # The zip method with parallel iterations calculates
27 # the dot for x1, y1 and x2, y2
28 Dot = 0
29 for g, h in zip(x1, y1):
30 Dot += g * h
31 print("\nUsing the zip method for parallel iterations:", Dot)
32

FIGURE 11.3 The dot method in DL.

454 Handbook of Computer Programming with Python

33 Dot = 0
34 for g, h in zip(x2, y2):
35 Dot += g * h
36 print("Using the zip method for parallel iterations:", Dot)
37
38 # The sum method calculates the dot for two arrays
39 print("\nThe sum of the products of the elements of the two arrays \
40 (np.sum(x1 * y1)):", np.sum(x1 * y1))
41 print("\nThe sum of the products of the elements of the two arrays \
42 (np.sum(x2 * y2)):", np.sum(x2 * y2))
43
44 # A different version of the sum method calculates the dot of 2 arrays
45 print("\nThe sum of the products of the elements of the two arrays \
46 ((x1 * y1).sum()):", (x1 * y1).sum())
47 print("The sum of the products of the elements of the two arrays \
48 ((x1 * y1).sum()):", (x2 * y2).sum())
49
50 # The dot method on two arrays
51 print("\nUse the dot method on the elements of the two arrays \
52 (np.dot(x1, y1)):", np.dot(x1, y1))
53 print("Use the dot method on the elements of the two arrays \
54 (np.dot(x2, y2)):", np.dot(x2, y2))
55
56 # A different version of the dot method on two arrays
57 print("\nAnother way to use the dot method on the elements \
58 of the two arrays (x1.dot(y1)):", x1.dot(y1))
59
60 print("Another way to use the dot method on the elements \
61 of the two arrays (x2.dot(y2)):", x2.dot(y2))
62
63 # Direct use of the dot notation on two arrays
64 print("\nAnother way to use the dot method (x1 @ y1):", x1 @ y1)
65 print("\nAnother way to use the dot method (x2 @ y2):", x2 @ y2)

Output 11.2.1:

The two arrays xl and yl are:
[1 2] [3 4]

The two arrays x2 and y2 are:
[1 2 3] [4 5 6]

Create a new list as products of the elements of the two arrays (xl * yl)
: [3 8]
Create a new list as products of the elements of the two arrays (x2 * y2)
: [4 10 18]
Using a regular loop to calculate the dot value for the 1x2 arrays: 11
Using a regular loop to calculate the dot value for the 1x3 arrays: 32

Using the zip method for parallel iterations: 11
Using the zip method for parallel iterations: 32

The sum of the products of the elements of the two arrays (np.sum(xl * yl))
: 11
The sum of the products of the elements of the two arrays (np.sum(x2 * y2))
: 32
The sum of the products of the elements of the two arrays ((xl * yl).sum())
: 11

The sum of the products of the elements of the two arrays ((xl * yl).sum())
: 32
Use the dot method on the elements of the two arrays (np.dot(xl, yl)): 11
Use the dot method on the elements of the two arrays (np.dot(x2, y2)): 32

Another way to use the dot method on the elements of the two arrays (xl.dot
(yl)): 11
Another way to use the dot method on the elements of the two arrays (x2.dot
(y2)): 32

Another way to use the dot method (xl @ yl): 11

Another way to use the dot method (x2 @ y2): 32

455Introduction to Neural Networks and Deep Learning

The two arrays xl and yl are:
[1 2] [3 4]

The two arrays x2 and y2 are:
[1 2 3] [4 5 6]

Create a new list as products of the elements of the two arrays (xl * yl)
: [3 8]
Create a new list as products of the elements of the two arrays (x2 * y2)
: [4 10 18]
Using a regular loop to calculate the dot value for the 1x2 arrays: 11
Using a regular loop to calculate the dot value for the 1x3 arrays: 32

Using the zip method for parallel iterations: 11
Using the zip method for parallel iterations: 32

The sum of the products of the elements of the two arrays (np.sum(xl * yl))
: 11
The sum of the products of the elements of the two arrays (np.sum(x2 * y2))
: 32
The sum of the products of the elements of the two arrays ((xl * yl).sum())
: 11

The sum of the products of the elements of the two arrays ((xl * yl).sum())
: 32
Use the dot method on the elements of the two arrays (np.dot(xl, yl)): 11
Use the dot method on the elements of the two arrays (np.dot(x2, y2)): 32

Another way to use the dot method on the elements of the two arrays (xl.dot
(yl)): 11
Another way to use the dot method on the elements of the two arrays (x2.dot
(y2)): 32

Another way to use the dot method (xl @ yl): 11

Another way to use the dot method (x2 @ y2): 32

This script calculates and presents the sum of the products of the elements of two arrays (based on
their indices) in varying ways and presents their results. For illustration purposes, it uses two types
of arrays (i.e., 1 × 2 elements and 1 × 3 elements). The reader should notice the various forms that
the dot method can take. The method is quite useful and becomes handy in the examples provided
in the following sections.

11.2.2 mAtrix oPerAtions With Python

Another algebraic concept that is quite useful in DL is that of matrix multiplication. Broadly speak-
ing, this process requires that the size of the second dimension of the first matrix must be the same
as the size of the first dimension of the second matrix. In other words, the number of columns in
the first matrix must be equal to the number of rows in the second matrix. The resulting matrix has
the size of the first dimension of the first matrix (or its number of rows) and the size of the second
dimension of the second matrix (or its number of columns). For the calculation of the various ele-
ments of the new matrix the dot method is used.

As an example, one can assume the following two matrices:

 npArray =

1 2
5 6

 newMatrix =

3 4 5
1 2 3

The first array (npArray) has two columns, whereas the second (newMatrix) has two rows. Hence,
it is possible to have a new matrix as the product of these two matrices. The resulting matrix will
be calculated as follows:

1* 3 2*1 1* 4 2* 2 1* 5 2* 3

5* 3 6*1 5* 4 6* 2 5* 5 6* 3

5 8 11
21 32 43

() () ()
() () ()

+ + +
+ + +

=

456 Handbook of Computer Programming with Python

Another mathematical Python method that often comes
handy when using matrices is exp() from the Numpy
library. The method accepts an array of elements (an
algebraic matrix) as an argument and creates a new
matrix as a result of e^xiyi. Using the previous exam-
ple of matrix npArray, the resulting matrix will be as
follows:

 =

^ 1 ^ 2
^ 5 ^ 6

:
2.71828283 7.3890561

148.4131591 403.42879349
e e
e e

Another concept often used in DL is that of the inverse matrix. If such a matrix is multiplied by
the original, it will result into the identity matrix. If, in turn, the latter is multiplied by the original
matrix, it will not change it. This is similar to integer 1, which when multiplied by any other integer
it does not incur any value changes. The identity matrices for 2 × 2, 3 × 3, and 4 × 4 matrices can be
expressed as follows:

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

This pattern can continue in a similar fashion for larger
square matrices. It is important to note that there are
two requirements for a matrix to have a corresponding
inverse: it must be a square matrix and its determinant
value must be non-zero.

The determinant is a special number, either integer
or real, calculated from a matrix. Its most important role
is precisely to determine whether a matrix can have an
inverse one, in which case the determinant is non-zero.
If not, it will have a value of 0 or extremely close to
0. It must be noted that even a number like 2.3e−23 is
 considered as 0 and, therefore, such a determinant would
suggest that it is not feasible to have an inverse matrix.

The determinant is calculated by subtracting the
product of the diagonal elements of the matrix. For

example, in the case of matrix

1 2
5 6

 the deter-

minant is calculated as 1*6 – 5*2 = 6 – 10 = –4. However, in the case of

1 3 2
5 4 8
7 6 9

 things

Observation 11.3 – The exp()
Method: Creates a new matrix as a
result of e^xiyi of the elements of the
original matrix.

Observation 11.4 – Inverse Matrix:
A matrix which, if multiplied by the
original, gives the identity matrix.

Observation 11.5 – Identity Matrix:
A matrix that has all its first diagonal
elements with a value of 1, which
causes no change to the correspond-
ing values when multiplied by the
original matrix.

Observation 11.6 – Determinant: A
special number, integer or real, calcu-
lated from the diagonals of a matrix.
It determines whether a matrix has
an inverse (value is non-zero) or not
(value is 0).

457Introduction to Neural Networks and Deep Learning

are more complicated. In this case the determinant is calculated as 1*((4*9) − (6*8)) − 3*((5*9) −
(7*8)) + 2*((5*6) − (7*4)) = 1*(36−48) − 3*(45−56) + 2*(30−28) = − 12 − 3*(−11) + 2*2 = −12 +
33 + 4 = 25. The pattern for 3 × 3 or larger matrices is as follows:

• Multiply the first element of the first row with the determinant of the matrix that is not in
the same row or column.

• Similarly, calculate the same values for all the elements of the first row of the matrix.
• Calculate the final determinant as first result − second result + third result – fourth result

and so forth.

The reader should note that the determinant can be calculated only for square matrices.
The following script briefly demonstrates the above concepts:

1 import numpy as np
2
3 # Create a 2-dimensonal array (2x2) using the array function (Numpy)
4 npArray = np.array([[1, 2], [5, 6]])
5 # Show the entire array and the 2nd element of the 1st dimension
6 # in 2 different ways
7 print("\nThe nparray's array's contents:\n", npArray)
8 print("The 2nd element of the 1st dimension of the array:",
9 npArray[0][1])
10 print("The same result from a different syntax:", npArray[0, 1])
11 print("\nThe elements of the 2nd dimension:", npArray[:, 0])
12 print("\nShow the result of the e^x for each element of the input \
13 array:\n", np.exp(npArray))
14
15 # Create a 2-dimensonal array (2x3) using the array function (Numpy)
16 newMatrix = np.array([[3, 4, 5], [1, 2, 3]])
17 print("\nThe 2x3 matrix newMatrix is:\n", newMatrix)
18 # Multiply the arrays npArray and newMatrix applying the .dot method
19 print("\nThe product of npArray and newMatrix using the .dot method \
20 is:\n", npArray.dot(newMatrix))
21
22 # Create a 2-dimensional array (3x3) using the array function (Numpy)
23 newMatrix2 = np.array([[1, 3, 2], [5, 4, 8], [7, 6, 9]])
24 print("\nThe 3x3 matrix newMatrix2 is:\n", newMatrix2)
25 # Determinant values for npArray & newMatrix2. The matrices are squares
26 print("\nThe determinant for the npArray is: ", np.linalg.

det(npArray))
27 print("The determinant for the newMatrix is: ",
28 np.linalg.det(newMatrix2))
29 # Calculate and display the inverse matrix for npArray and newMatrix2
30 inverseNpArray = np.linalg.inv(npArray)
31 print("\nThe inverse matrix for the npArray is:\n", inverseNpArray)
32 inverseNewMatrix2 = np.linalg.inv(newMatrix2)
33 print("\nThe inverse matrix for the newMatrix2 is:\n",
34 inverseNewMatrix2)
35 # Multiplying original npArray & newMatrix2 matrices with their
36 # inverse produces the identity matrix
37 print("\nThe product of the npArray and its inverse matrix is:\n",

458 Handbook of Computer Programming with Python

38 inverseNpArray.dot(npArray))
39 print("\nThe product of the newMatrix2 and its inverse matrix is:\n",
40 inverseNewMatrix2.dot(newMatrix2))

Output 11.2.2:

The nparray's array's contents:
[[1 2]
[5 6]]

The 2nd element of the 1st dimension of the array: 2
The same result from a different syntax: 2

The elements of the 2nd dimension: [1 5]

Show the result of the e^x for each element of the input array:
[[2.71828183 7.3890561]
[148.4131591 403.42879349]]

The 2x3 matrix newMatrix is:
[[3 4 5]
[1 2 3]]

The product of npArray and newMatrix using the .dot method is:
[[5 8 11]
[21 32 43]]

The 3x3 matrix newMatrix2 is:
[[1 3 2]
[5 4 8]
[7 6 9]]

The determinant for the npArray is: -3.999999999999999
The determinant for the newMatrix is: 25.000000000000007

The inverse matrix for the npArray is:
[[-1.5 0.5]
[1.25 -0.25]]

The inverse matrix for the newMatrix2 is:
[[-0.48 -0.6 0.64]
[0.44 -0.2 0.08]
[0.08 0.6 -0.44]]

The product of the npArray and its inverse matrix is:
[[1.00000000e+00 -2.22044605e-16]
[-5.55111512e-17 1.00000000e+00]]

The product of the newMatrix2 and its inverse matrix is:
[[1.00000000e+00 6.66133815e-16 9.99200722e-16]
[-2.08166817e-16 1.00000000e+00 -1.24900090e-16]
[7.21644966e-16 1.11022302e-16 1.00000000e+00]]

459Introduction to Neural Networks and Deep Learning

The results showcase the output of the calculations. Note that the rather complicated calculations
for the determinant lead to the respective values not being whole numbers. In addition, the product
of newMatrix2 and its inverse matrix is the identity matrix of 3 × 3, although some of its elements
appear to be non-zero values, but are quite close to that.

11.2.3 eigenvAlues, eigenveCtors And diAgonAls

Another concept related to matrix operations is that of eigenvalues and eigenvectors, which deter-
mine whether a particular matrix changes direction when multiplied by a specified vector. As an
example, consider a square matrix A. Its eigenvector and eigenvalue will be the ones that make the
following equation true: AV = λV where A is the original matrix, V is the eigenvector and λ is the
eigenvalue. It is beyond the scope of this chapter to cover algebraic mathematics in any sort of
detail. The reader can find such information on the multitude of related books and resources. For the
purposes of this chapter, it should suffice to mention that the concept of eigenvalues and eigenvec-
tors is useful in several transformation processes, including but not limited to computer graphics,
physics applications, and predictive modelling.

Another notion that must be mentioned is that of a
diagonal. It is often useful to find the diagonals above or
below the main diagonal of a matrix. In the case of the
former, a positive integer is suggested, whereas in the
case of the latter a negative one.

The following script is a demonstration of how the
concepts of eigenvalue, eigenvector, and diagonals are
calculated and/or identified:

1 import numpy as np
2
3 # Create a 2x2 array using the array function (Numpy) and
4 # display its contents
5 npArray = np.array([[1, 2], [5, 6]])
6 print("\nThe nparray's array's contents:\n", npArray)
7
8 # Create a 3x3 array using the array function (Numpy) and
9 # display its contents
10 newMatrix = np.array([[1, 3, 2], [5, 4, 8], [7, 6, 9]])
11 print("\nThe 3x3 matrix newMatrix2 is:\n", newMatrix)
12
13 # Display the diagonal for both arrays
14 print("The diagonal of the npArray is: ", np.diag(npArray))
15 print("The diagonal of the npArray above the main diagonal is: ",
16 np.diag(npArray, 1))
17 print("The diagonal of the npArray below the main diagonal is: ",
18 np.diag(npArray, -1))
19 print("The diagonal of the newMatrix is: ", np.diag(newMatrix))
20 print("The diagonal of the newMatrix above the main diagonal is: ",
21 np.diag(newMatrix, 1))
22 print("The diagonal of the newMatrix below the main diagonal is: ",
23 np.diag(newMatrix, -1))
24
25 # Calculate and display the Eigenvalue and Eigenvector for both arrays
26 eigenValueNpArray, eigenVectorNpArray = np.linalg.eig(npArray)

Observation 11.7 – Eigenvalue,
Eigenvector: Mathematical concepts
that suggest whether a particular
matrix changes direction when mul-
tiplied by a specified vector (AV = λV).

460 Handbook of Computer Programming with Python

27 print("\nThe eigenvalues of the npArray are: \n", eigenValueNpArray)
28 print("\nThe eigenvectors of the npArray are: \n", eigenVectorNpArray)
29 eigenValueNewMatrix, eigenVectorNewMatrix = np.linalg.eig(newMatrix)
30 print("\nThe eigenvalues of the newMatrix are: \n",
31 eigenValueNewMatrix)
32 print("\nThe eigenvectors of the newMatrix are: \n",
33 eigenVectorNewMatrix)

Output 11.2.3:

The nparray's array's contents:
[[1 2]
[5 6]]

The 3x3 matrix newMatrix2 is:
[[1 3 2]
[5 4 8]
[7 6 9]]
The diagonal of the npArray is: [1 6]
The diagonal of the npArray above the main diagonal is: [2]
The diagonal of the npArray below the main diagonal is: [5]
The diagonal of the newMatrix is: [1 4 9]
The diagonal of the newMatrix above the main diagonal is: [3 8]
The diagonal of the newMatrix below the main diagonal is: [5 6]

The eigenvalues of the npArray are:
[-0.53112887 7.53112887]

The eigenvectors of the npArray are:
[[-0.79402877 -0.2928046]
[0.60788018 -0.9561723]]

The eigenvalues of the newMatrix are:
[15.86430285+0.j -0.93215143+0.84080839j -0.93215143-0.84080839j]

The eigenvectors of the newMatrix are:
[[0.22516436+0.j 0.76184671+0.j 0.76184671-0.j]
[0.60816639+0.j -0.24748842+0.39196634j -0.24748842-0.39196634j]
[0.76120605+0.j -0.36476897-0.26766596j -0.36476897+0.26766596j]]

11.2.4 solving sets of equAtions With Python

Python provides a convenient way to solve sets of equations by treating them as matrices. The idea
behind this is to take a set of equations, produce the relevant matrices (i.e., one with the variable
coefficients and one with the resulting values for each equation), and call the solve() method
(Numpy library). Consider the following example of a set of three equations:

 x y z5 3 2 10− + =

 x y z4 3 9 3− − − =

 x y z2 4 3 6+ + =

461Introduction to Neural Networks and Deep Learning

Firstly, the following matrix of the variable coefficients
is produced:

−
− − −

5 3 2
4 3 9

2 4 3

This is followed by the matrix for their solutions:

 10, 3, 6

Finally, the solve() method is called, producing the respective solutions for x, y, and z:

1 import numpy as np
2
3 # Assume the following set of equations:
4 # 5x - 3y + 2z = 10
5 # -4x - 3y - 9z = 3
6 # 2x + 4y + 3z = 6
7 # Use solve() to solve the equations
8
9 # Create a 3x3 matrix based on the equations and and display contents
10 equations = np.array([[5, -3, 2], [-4, -3, -9], [2, 4, 3]])
11 results = np.array([10, 3, 6])
12 print(“\nThe solution for x, y, and z is:\n”,
13 np.linalg.solve(equations, results))

Output 11.2.4:

The solution for x, y, and z is:
[3.90225564 1.46616541 -2.55639098]

11.2.5 generAting rAndom numbers for mAtriCes With Python

Sometimes it is useful to generate matrices with random numbers in order to evaluate models prior
to using actual data. Through the Numpy library, Python provides several methods that offer such
functionality. The following script can be divided into three distinct parts. In the first part, a 3 × 4
matrix is generated and filled with 0 s. Next, another two matrices are generated and filled with 1 s
and 20 s, respectively. Finally, a 4 × 4 identity matrix is generated. In the second part, the script
uses the rand() and randn() methods to generate
numbers for the matrices, either through the regular ran-
dom numbers generator or from the Normal Gaussian
Distribution that has a mean of 0. In the third part, the
script demonstrates the use of basic statistics methods
from Numpy, including mean(), var(), and std() to
calculate the mean, the statistical variance, and the
 standard deviation of the data, respectively:

Observation 11.9 – rand(), randn(),
mean(), var(), std(): Some of the
methods of the Random package of
the Numpy library that provide basic
descriptive statistical calculations on
matrices.

Observation 11.8 – The solve()
Method: A method that solves a set
of equations using relevant, appropri-
ately processed matrices.

462 Handbook of Computer Programming with Python

1 import numpy as np
2
3 # Generate 3x4 matrices of zeroes, ones, 20s, and a 4x4 identity matrix
4 print("Generate a 3x4 matrix of zeroes\n", np.zeros((3, 4)))
5 print("\nGenerate a 3x4 matrix of ones\n", np.ones((3, 4)))
6 print("\nGenerate a 3x4 matrix of 20s\n", 20 * np.ones((3, 4)))
7 print("\nGenerate an Identify matrix 4x4\n", np.eye(4))
8
9 # Generate a random number, a 3x4 matrix of random numbers,
10 # a 3x4 matrix of random numbers from the Normal (Gaussian)
11 # Distribution (i.e., mean = 0), and a 4x4 matrix of random
12 # numbers between 5 and 15 from the Normal Distribution
13 print("\nGenerate a random number\n", np.random.random())
14 print("\nGenerate an array 3x4 with random numbers\n",
15 np.random.random((3, 4)))
16 print("\nGenerate an array 3x4 with random numbers from the Normal \
17 Distribution\n", np.random.randn(3, 4))
18 print("\nGenerate an array 4x4 with random numbers between 5 and 15\n",
19 np.random.randint(5, 15, size = (4, 4)))
20
21 # Generate an array of 10 items with random numbers from the
22 # Normal (Gaussian). Distribution and use it as a source for performing
23 # basic statistics
24 npArray = np.random.randn(10)
25 print("\nGenerate an array of 10 random numbers from the Normal \
26 Distribution\n", np.random.randn(10))
27 # Print the mean of the new array
28 print("\nThe mean of the new array is: ", npArray.mean(),)
29 # Print the variance of the new array
30 print("The variance of the new array is: ", npArray.var())
31 # Print the standard deviation (i.e., the square root of the variance)
32 print("The stdDev of the new array is: ", npArray.std())

Output 11.2.5:

Generate a 3x4 matrix of zeroes
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

Generate a 3x4 matrix of ones
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

Generate a 3x4 matrix of 20s
[[20. 20. 20. 20.]
[20. 20. 20. 20.]
[20. 20. 20. 20.]]

Generate an Identify matrix 4x4
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

Generate a random number
0.8435542056822151

Generate an array 3x4 with random numbers
[[0.35570211 0.27618855 0.0541145 0.58001638]
[0.20641101 0.48294052 0.92104823 0.61556587]
[0.19491554 0.5713989 0.63918665 0.81824177]]

Generate an array 3x4 with random numbers from the Normal Distribution
[[-0.24286997 -1.00451518 0.06104505 -1.85966171]
[-0.47202171 0.01079039 0.03526387 0.44499205]
[2.2395344 0.42076315 0.6505322 -0.6350833]]

463Introduction to Neural Networks and Deep Learning

Generate a 3x4 matrix of zeroes
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

Generate a 3x4 matrix of ones
[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

Generate a 3x4 matrix of 20s
[[20. 20. 20. 20.]
[20. 20. 20. 20.]
[20. 20. 20. 20.]]

Generate an Identify matrix 4x4
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

Generate a random number
0.8435542056822151

Generate an array 3x4 with random numbers
[[0.35570211 0.27618855 0.0541145 0.58001638]
[0.20641101 0.48294052 0.92104823 0.61556587]
[0.19491554 0.5713989 0.63918665 0.81824177]]

Generate an array 3x4 with random numbers from the Normal Distribution
[[-0.24286997 -1.00451518 0.06104505 -1.85966171]
[-0.47202171 0.01079039 0.03526387 0.44499205]
[2.2395344 0.42076315 0.6505322 -0.6350833]]

Generate an array 4x4 with random numbers between 5 and 15
[[7 13 7 12]
[7 9 5 5]
[12 12 10 8]
[12 7 9 13]]

Generate an array of 10 random numbers from the Normal Distribution
[0.80516765 -0.34184534 -1.01860459 1.55026532 1.52091946 0.68490906
-0.07417641 1.35254549 0.21432432 0.29326124]

The mean of the new array is: 0.009347564051776013
The variance of the new array is: 0.6866073562925792
The stdDev of the new array is: 0.8286177383405325

11.2.6 Plotting With mAtPlotlib

As it is already discussed in Chapter 8 on Data Analytics and Data Visualization and Chapter 9
on Statistics, Python offers libraries that effectively and efficiently address all types of charts that
might be required by the analysis of data at hand. These include Matplotlib and Scipy and are
widely used for Deep Learning as well. The following two scripts are a quick refresh of how to use
these libraries to visualize/plot the results of the mathematical methods of the previous sections:

1 # Import the Numpy and Matplotlib libraries
2 import numpy as np
3 import matplotlib.pyplot as plt
4 # Plot inline alongside the rest of the results
5 # This is particularly relevant in Jupyter Anaconda
6 %matplotlib inline
7
8 # Plot a line as the sin of the values between 0 and 40
9 # with 4 different types of intervals
10 for i in range(1, 5):
11 A = np.linspace(0, 40, 20*i)

464 Handbook of Computer Programming with Python

12 B = np.sin(A) + 0.2 * A
13 plt.plot(A, B)
14 plt.xlabel("Input"); plt.ylabel("Output")
15 titleShow = "Basics of Charts. Number of samples: " + str(20*i)
16 plt.title(titleShow); plt.show()

Output 11.2.6.a–11.2.6.d:

1 # Import the Scipy and Matplotlib libraries
2 from scipy.stats import norm
3 import matplotlib.pyplot as plt
4 # Plot inline alongside the rest of the results
5 # This is particularly relevant in Jupyter Anaconda
6 %matplotlib inline
7
8 # Create data points between -10 and 10, with 2000 intervals
9 x = np.linspace(-10, 10, 2000)
10 # loc is the mean and scale is the standard deviation
11 # Calculate the probability density function (Norm module/Scipy)
12 fx = norm.pdf(x, loc = 0, scale = 1)
13 # Plot the chart
14 plt.plot(x, fx); plt.show()
15 # Calculate the cumulative distribution function (Norm module/Scipy)
16 fx2 = norm.cdf(x, loc = 0, scale = 1)
17 # Plot the chart

http://norm.pdf
http://norm.pdf

465Introduction to Neural Networks and Deep Learning

18 plt.plot(x, fx2); plt.show()
19 # Calculate the log of the probability density function (Norm
20 # module/Scipy)
21 fx3 = norm.logpdf(x, loc = 0, scale = 1)
22 plt.plot(x, fx3); plt.show()
23 # Calculate the log of the cumulative distribution function
24 # (Norm module/Scipy)
25 fx4 = norm.logcdf(x, loc = 0, scale = 1)
26 plt.plot(x, fx4); plt.show()

Output 11.2.6.e–11.2.6.h:

11.2.7 lineAr And logistiC regression

Regression can involve either categorical or continuous variables. The input could be continuous,
categorical, or discrete. If y shows the outcome and x shows the input, the model can be written as
follows:

y = F(x), where F is the DL model that suggests the relationship between input and output.

In the case of Linear Regression this model reveals a directly proportional relationship between
input and output with some possible Regression coefficients (γ) of the various inputs (x) and the pos-
sibility of an error (φ) of the model calculations. Eventually, in the case of Linear Regression, the
model can be written as follows:

 γ γ γ ϕ()= = + + + +0 1 1y F x x xn n

In the case of Logistic Regression (LR), the backbone of a DL Neural Network, the DL algorithm is
used to classify the possible outputs as accurately as possible. The categories are encoded as either

466 Handbook of Computer Programming with Python

0 or 1 and a sigmoid method is used to output a number between 0 and 1. The output is interpreted
as a probability that the data is to be categorized as 1.

11.3 INTRODUCTION TO NEURAL NETWORKS

“Neural networks reflect the behavior of the human brain, allowing computer programs to recognize
patterns and solve common problems in the fields of AI, machine learning, and deep learning.”

(IBM Cloud Education, 2020)

The artificial neural networks (ANN) technique was inspired by the basics of human functioning.
The main idea behind it is to interpret data through a series of multiple ML-based perceptrons (cov-
ered in detail in the next section), and label or cluster the input as required. Real world data such as
images, sounds, time series, or other complex data are translated into numbers using vectors. ANN
is quite helpful in classifying and clustering raw data even if they are unidentified and unlabelled.
This is because it groups data based on similarities it observes or learns in its deeper layers, thus,
transforming them into labelled training data, in a similar way the human brain does.

A deep neural network consists of one or more perceptrons in two or more layers (input and
output). The perceptrons of each different layer are fed by the previous layer, using the same input
but with different weights. The target of DL in ANN is to find correlations and map inputs to out-
puts. At a basic level, it extracts unknown features from the input data that can be fed to other algo-
rithms, while also creating components of larger ML applications that may include classification,
regression and reinforcement learning. It approximates the unknown method (f(x) = y) for any input
x and output y. During learning, ANN finds the right method by evolving into a tuned transforma-
tion of x into y. In simple terms, this could represent methods like f(x) = 7x + 18 or f(x) = 8x−0.8.

ANN performs particular well in clustering. It falls into the category of unsupervised learn-
ing, as it does not require labels to perform its tasks. It
consists of the input layer, the hidden layer(s), the out-
put layer, the adjustable weights for model training and
learning for all layers, and the activation method.

The neuron is the basic building block of a neural
network. It is also known as the linear unit of the neural
network system Figure 11.4.

In Figure 11.4 above, X is the input to the neuron and
w is the weight. In its most basic form, the key for a neu-
ron to be able to learn is the modification of value w. Y is
the output and b the bias of the model. The bias is independent of the input and its value is provided
with the model. The neuron sums up all the input values to come up with the equation that describes
its model like a slope equation in linear algebra: Y = wX + b.

Observation 11.10 – Neuron: The
basic building block of a neural net-
work, also called the linear unit. It
learns by modifying the values of the
weights of the inputs and adding up
the sum of inputs × weights and the
possible bias of the model.

FIGURE 11.4 A typical neuron.

467Introduction to Neural Networks and Deep Learning

11.3.1 modelling A simPle Ann With A PerCePtron

Figure 11.5 illustrates the method of a single neuron in a single layer (i.e., a perceptron). Its funda-
mental functionality is to mimic the behavior of the human brain’s neuron. The idea is to take the
inputs of the model (x1, x2,…, xn) and multiply each by their respective weights (w1, w2,…, wn), in
order to produce the relevant k values (k1, k2,…, kn). Often, a constant bias value multiplied by its
associated weight is also added to this sum. Next, the sum of the k values is calculated and applied
to the selected sigmoid activation method. Finally, the result is frequently normalized using some
type of method as the unit step. A perceptron is also
called a single-layer neural network because its output
is decided based on the outcome of a single activation
method associated with a single neuron. Figure 11.5
illustrates this model.

Class FirstNeuralNetwork presented below imple-
ments a basic perceptron (i.e., single-layer ANN). The
implementation includes the following steps:

 1. Generate and initialize a new object (named ANN) based on the FirstNeuralNetwork class,
to initiate the perceptron model (lines 46 and 5–10). Instead of reading the weights from
a data file, these are randomly generated as an array of 3 × 1 values, ranging from −1
to 1. The calculation uses the following formula: (max−min) * randomset (lines × col-
umns) + min. Hence, in this case, the formula will be (1−(−1)) * np. random.random((3,
1)) + (−1) = 2 * np.random.random(3, 1)−1. The reader should keep in mind that by using
the seed() method with a particular parameter, in this case 1, the random sequence of
numbers will always be the same. If it is preferred to have a different sequence of numbers
every time the script runs, the seeding line should not be included.

 2. Instead of reading the training inputs and outputs from a dataset, these are given as arrays
of values (lines 49–52). Since the dot method will be used on the inputs and weights to
calculate their sum, it is necessary that the number of columns of the former must match
the number of lines of the latter (in this case 3).

Observation 11.11 – Perceptron:
A single-layer neural network as its
output is decided on a single activa-
tion method associated with a single
neuron.

FIGURE 11.5 Perceptron.

468 Handbook of Computer Programming with Python

 3. Call the Training() method to train the model (line 56). For optimum training results,
it is necessary to define the number of required iterations. The number is rather subjective;
however, empirical experience suggests that a number of iterations between 10,000 and
15,000 is sufficient.

 4. Use the dot() method to calculate the weighted sum of the inputs and their weights (lines
38–42).

 5. Use the Sigmoid() method (lines 12–15) to calculate the output based on the result of the
dot() method in step 4 (lines 41–42).

 6. An optional step would be to calculate the training process error as the result of the train-
ing output (originally provided) – the calculated output. There are various ways to cal-
culate this error, depending on the required level of accuracy. In this case, the error is
calculated based on the last iteration of the training process (lines 28–36).

 7. Another optional step would be to adjust the weights vector, based on the error calculated
in the previous step (line 34).

1 import numpy as np
2

3 class FirstNeuralNetwork():
4
5 def __init__(self):
6 # Create a random number using the seed method
7 np.random.seed(1)
8 # Convert weights to a 3x1 matrix with values from -1 to 1 and
9 # a mean of 0 multiplied by 2
10 self.weights = 2 * np.random.random((3, 1)) -1
11

12 def Sigmoid(self, x):
13 # Use the sigmoid method to calculate the output
14 sigmoid = 1 / (1 + np.exp(-x))
15 return sigmoid
16

17 def SigmoidDerivative(self, x):
18 derivative = x * (1 - x)
19 return derivative
20

21 def Training(self, trainingInputs, trainingOutputs,
22 trainingIterations):
23 # Train the model for continuous adjustment of the weights
24 for iteration in range(trainingIterations):
25 # Train the data through the neuron

469Introduction to Neural Networks and Deep Learning

26 output = self.NeuronThinking(trainingInputs)
27
28 # Compute the error rate for back-propagation
29 theError = trainingOutputs - output
30
31 # Perform weight adjustments during the training phase
32 theAdjustments = np.dot(trainingInputs.T,
33 theError * self.SigmoidDerivative(output))
34 self.weights += theAdjustments
35 print("\nThe calculated error vector of the training process \
36 is: \n", theError)
37
38 def NeuronThinking(self, inputs):
39 # Pass the inputs through the neuron
40 inputs = inputs.astype(float)
41 output = self.Sigmoid(np.dot(inputs, self.weights))
42 return output
43
44 if __name__ == "__main__":
45 # Create an object based on the FirstNeuralNetwork neuron class
46 ANN = FirstNeuralNetwork()
47 print("Randomly Generated Weights:\n", ANN.weights)
48
49 # Train the data with 4 input values and 1 output
50 trainingInputs = np.array([[0,0,1], [1,1,1], [1,0,1], [0,1,1]])
51 print("\nThe training inputs:\n", trainingInputs)
52 trainingOutputs = np.array([[0],[1],[1],[0]])
53 print("\nThe training output:\n", trainingOutputs)
54
55 # Call the Training method to train the model
56 ANN.Training(trainingInputs, trainingOutputs, 15000)
57 print("\nThe adjusted weights vector is:\n", ANN.weights)
58
59 firstInput = str(input("\nProvide first input: "))
60 secondInput = str(input("Provide second input: "))
61 thirdInput = str(input("Provide third input: "))
62 print("The three inputs are: ", firstInput, secondInput,
63 thirdInput)
64 print("The new data is projected to be: ")
65 print(ANN.NeuronThinking(np.array([firstInput, secondInput,
66 thirdInput])))

470 Handbook of Computer Programming with Python

Output 11.3.1: Test it with 1, 0, 0 and 0, 1, 0

Output test 1 Output test 2

Randomly Generated Weights:
[[-0.16595599]
[0.44064899]
[-0.99977125]]

The training inputs:
[[0 0 1]
[1 1 1]
[1 0 1]
[0 1 1]]

The training output:
[[0]
[1]
[1]
[0]]

The calculated error vector
of the training process is:
[[-0.00786416]
[0.00641397]
[0.00522118]
[-0.00640343]]

The adjusted weights vector is:
[[10.08740896]
[-0.20695366]
[-4.83757835]]

Provide first input: 1
Provide second input: 0
Provide third input: 0
The three inputs are: 1 0 0
The new data is projected to be:
[0.9999584]

Randomly Generated Weights:
[[-0.16595599]
[0.44064899]
[-0.99977125]]

The training inputs:
[[0 0 1]
[1 1 1]
[1 0 1]
[0 1 1]]

The training output:
[[0]
[1]
[1]
[0]]

The calculated error vector
of the training process is:
[[-0.00786416]
[0.00641397]
[0.00522118]
[-0.00640343]]

The adjusted weights vector is:
[[10.08740896]
[-0.20695366]
[-4.83757835]]

Provide first input: 0
Provide second input: 1
Provide third input: 0
The three inputs are: 0 1 0
The new data is projected to be:
[0.44844546]

11.3.2 sigmoid And reCtifier lineAr unit (relu) methods

Both sigmoid and rectifier linear unit (ReLU) are activation methods used in DL.

The sigmoid method is defined as: σ () =
+ −

1

1
x

e x .

One of the drawbacks of the sigmoid method is that it
slows down the DL process in case of big data inputs,
as it takes time to make the necessary calculations. This
is especially true when the input is a large number. For
this reason, it is mostly used when its output is expected
to fall in the range between 0 and 1, much like a prob-
ability output.

Observation 11.12 – The Sigmoid
Method: It takes input values in a
range and calculates the relevant out-
put values given a specific formula.
The output is always probabilistic
ranging from 0 to 1. The method is
slow with big data, and particularly
with large numbers.

471Introduction to Neural Networks and Deep Learning

In most cases, the ReLU method is used instead.
The concept of this method is simple: if the input value
is higher than or equal to 0, it is returned as output
unchanged; if it is lower, the method returns 0 as out-
put. The method is particularly useful as it is rather fast,
regardless of the input. The obvious problem with ReLU
is that it ignores the negative input values, thus, not map-
ping them into the output.

The following script creates a sequence of input floats
ranging from −10 to 10. Next, it calculates the outputs
for each of the inputs using the sigmoid method and the
outputs using ReLU. Finally, it plots the results of the inputs and outputs for both cases:

1 # Import matplotlib, numpy and math
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import math
5
6 # linspace(start, end) creates a sequence of integer input numbers
7 x = np.linspace(-10, 10)
8 print("The generated array of floats is: \n", x)
9
10 # Use the sigmoid function to calculate the output
11 sigmoid = 1/(1 + np.exp(-x))
12 print("\nThe calculated array of sigmoids is: \n", sigmoid)
13
14 # Create the Numpy array for the ReLU results & initialize with zeros
15 relu = np.zeros(len(x))
16 # Use the ReLU function to calculate the ReLU output based on the input
17 for i in range(len(x)):
18 if x[i]> 0:
19 relu[i] = x[i]
20 else:
21 relu[i] = 0.0
22 print("\nThe resulting array of ReLU is: \n", relu)
23
24 plt.plot(x, sigmoid)
25 plt.xlabel("x")
26 plt.ylabel("Sigmoid(X)")
27 plt.title("The sigmoid function for inputs -10 to 10")
28 plt.show()
29
30 plt.plot(x, relu)
31 plt.xlabel("x")
32 plt.ylabel("ReLU(X)")
33 plt.title("The ReLU function for inputs -10 to 10")
34 plt.show()

Observation 11.13 – The Rectifier
Linear Unit (ReLU) Method: It takes
input values in a range. For each input
higher than or equal to 0 it results in
the same value as the input. For each
input value lower than 0, it results in
0. An important restriction with this
method is that it ignores negative
values.

472 Handbook of Computer Programming with Python

Output 11.3.2:

The generated array of floats is:
[-10. -9.59183673 -9.18367347 -8.7755102 -8.36734694
-7.95918367 -7.55102041 -7.14285714 -6.73469388 -6.32653061
-5.91836735 -5.51020408 -5.10204082 -4.69387755 -4.28571429
-3.87755102 -3.46938776 -3.06122449 -2.65306122 -2.24489796
-1.83673469 -1.42857143 -1.02040816 -0.6122449 -0.20408163
0.20408163 0.6122449 1.02040816 1.42857143 1.83673469
2.24489796 2.65306122 3.06122449 3.46938776 3.87755102
4.28571429 4.69387755 5.10204082 5.51020408 5.91836735
6.32653061 6.73469388 7.14285714 7.55102041 7.95918367
8.36734694 8.7755102 9.18367347 9.59183673 10.]

The calculated array of sigmoids is:
[4.53978687e-05 6.82792246e-05 1.02692018e-04 1.54446212e-04
2.32277160e-04 3.49316192e-04 5.25297471e-04 7.89865942e-04
1.18752721e-03 1.78503502e-03 2.68237328e-03 4.02898336e-03
6.04752187e-03 9.06814944e-03 1.35769169e-02 2.02816018e-02
3.01959054e-02 4.47353464e-02 6.58005831e-02 9.57904660e-02
1.37437932e-01 1.93321370e-01 2.64947903e-01 3.51547277e-01
4.49155938e-01 5.50844062e-01 6.48452723e-01 7.35052097e-01
8.06678630e-01 8.62562068e-01 9.04209534e-01 9.34199417e-01
9.55264654e-01 9.69804095e-01 9.79718398e-01 9.86423083e-01
9.90931851e-01 9.93952478e-01 9.95971017e-01 9.97317627e-01
9.98214965e-01 9.98812473e-01 9.99210134e-01 9.99474703e-01
9.99650684e-01 9.99767723e-01 9.99845554e-01 9.99897308e-01
9.99931721e-01 9.99954602e-01]

The resulting array of ReLU is:
[0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0.20408163 0.6122449 1.02040816 1.42857143 1.83673469
2.24489796 2.65306122 3.06122449 3.46938776 3.87755102 4.28571429
4.69387755 5.10204082 5.51020408 5.91836735 6.32653061 6.73469388
7.14285714 7.55102041 7.95918367 8.36734694 8.7755102 9.18367347
9.59183673 10.]

473Introduction to Neural Networks and Deep Learning

11.3.3 A reAl-life exAmPle: PrePAring the dAtAset

The basic tasks when creating a multi-layer NN is to
create, compile and fit the model, if necessary, plot
the associated observations and data, and evaluate
it. Among the most important concepts in DL are the
sequential model, the dense class, the activation class,
and adding layers to the model. A detailed analysis of
these topics is beyond the scope of this chapter and the
reader is encouraged to consider related sources special-
izing in DL. Nevertheless, a relatively common real-life example is examined in order to showcase
and introduce some of the basic associated notions. This is split into a number of distinct steps,
presented in the following sections.

The first step involves reading a dataset from a CSV file (diabetes.csv) and taking a random
sample (i.e., 70%) of its rows to use as a training dataset (frac parameter). For the same input, the
sample will also be the same, as a result of the random_state = 0 parameter. Next, the index of
the dataset is dropped, in order to keep only the remaining columns. Finally, the NN is optimized
by scaling the dataset values to a range between 0 and 1:

1 import pandas as pd
2 import numpy as np
3
4 # Step 1: Read the csv file
5 MyDataFrame = pd.read_csv('diabetes.csv')
6 MyDataSource = MyDataFrame.to_numpy()
7
8 X = MyDataSource[:,0:8]
9 y = MyDataSource[:,8]
10
11 # Step 2: Use frac to split dataset to the train & test parts (70/30)
12 # Use random state to return the sample rows in every iteration
13 # Remove the index column from the dataset and print the first 4 rows
14 # Scale the dataset values to [0, 1] to optimize the NN
15 My_train = MyDataFrame.sample(frac = 0.7, random_state = 0)
16 My_test = MyDataFrame.drop(My_train.index)
17 print(My_train.head(4))
18 maxTo = My_train.max(axis = 0)
19 minTo = My_train.min(axis = 0)
20 My_train = (My_train - minTo) / (maxTo - minTo)
21 My_test = (My_test - minTo) / (maxTo - minTo)
22
23 # Split the features and the target
24 Xtrain = My_train.drop('Outcome', axis = 1)
25 Xtest = My_test.drop('Outcome', axis = 1)
26 Ytrain = My_train['Outcome']
27 Ytest = My_test['Outcome']
28 print("\nThe dataset contains", Xtrain.shape[0], "rows and",
29 Xtrain.shape[1], "columns")

Observation 11.14 – The sample()
Method: Use this Pandas method
with the frac and random_state
parameters, to define a sample from
the original set to be used in the DL
process.

474 Handbook of Computer Programming with Python

Output 11.3.3:

Pregnancies Glucose

•••
•••
•••

•••
•••

Age Outcome
661 1 199 22 1
122 2 107 23 0
113 4 76 25 0
14 5 166 51 1

[4 rows x 9 columns]

The dataset contains 538 rows and 8 columns

Number 8 in the output indicates the number of inputs, as the number of features in the dataset.

11.3.4 CreAting And ComPiling the model

The next step involves the creation of four different models as a way to examine different scenarios.
Firstly, the Keras and Layers libraries (TensorFlow package) are imported. These libraries are
necessary in order to create the DL model and define its details. Next, the four models are created.
SimpleModel consists of only the input and the output layers, with the former having just 12 neu-
rons. MakeItWider doubles the number of neurons keeping the same basic layers. MakeItDeeper
keeps the number of neurons the same as in the case of SimpleModel, but adds a third hidden layer
between the input and the output. Finally, FinalModel defines a significant number of neurons per
layer (a rather common case) and adds two layers between the input and the output.

In all four cases, the newly created DL models are created following the sequential approach.
This simply means that each layer builds upon the input from the previous layer, thus connecting all
layers to each other. The minimum number of layers in any DL model is 2: the input and the output.
Any other layer is a hidden layer. There is no consensus as to what is the correct number of neurons
per layer, although there are some suggested mathematical formulae on how to determine this num-
ber. As a rough guide, the reader should note that a number between 500 and 1,000 neuros per layer
is commonly used. It must be also noted that the various layers in the NN do not have to consist of
the same number of neurons.

The activation parameter defines the type of sto-
chastic gradient descent used to optimize the weights
of the model. In all four cases of this example, the
ReLU method is selected. The optional input_shape
parameter defines the number of features in the NN
model (i.e., in this case 8). This number defines the col-
umns of the data set excluding the index (which is not
used) and the output (i.e., the outcome column).

Once the models are created, they must be compiled. Compilation basically deals with training
and adjusting weights, and is often known as backend processes. It determines the best network rep-
resentation for train/test and makes predictions on the specified hardware (i.e., either GPU or CPU).
It also supports distributed computing such as Hadoop/MapReduce. At the moment of writing,
Theano and TensorFlow are among the most commonly used libraries. In terms of the associated
methods/parameters used in all four cases of this example, the loss method of choice is mae, the
optimizer is adam, and the metric is accuracy. These methods/parameters are discussed in
more detail in the following section.

Observation 11.15 – Sequential
Approach: Each of the layers of the
NN builds on the input from its previ-
ous layer, ensuring that all layers con-
nected to each other.

475Introduction to Neural Networks and Deep Learning

The additionial part of the script is the following:

1 from tensorflow import keras
2 from tensorflow.keras import layers
3
4 # Step 3: Prepare the models for testing and compiling
5 # Prepare a simple model
6 SimpleModel = keras.Sequential([layers.Dense(12,
7 activation = 'relu'), layers.Dense(1)])
8 SimpleModel.compile(loss = 'mae', optimizer = 'adam',
9 metrics = ['accuracy'])
10 # Make the model wider by doubling the neuros of the layer
11 MakeItWider = keras.Sequential([layers.Dense(24, activation = 'relu'),
12 layers.Dense(1)])
13 MakeItWider.compile(loss = 'mae', optimizer = 'adam',
14 metrics = ['accuracy'])
15 # Make the model deeper by adding another layer
16 MakeItDeeper = keras.Sequential([layers.Dense(12, activation = 'relu'),
17 layers.Dense(12, activation = 'relu'),
18 layers.Dense(1)])
19 MakeItDeeper.compile(loss = 'mae', optimizer = 'adam',
20 metrics = ['accuracy'])
21 # Prepare the final model with many neuros and adding another layer
22 FinalModel = keras.Sequential([
23 layers.Dense(600, activation = 'relu', input_shape = [8]),
24 layers.Dense(600, activation = 'relu'),
25 layers.Dense(600, activation = 'relu'),
26 layers.Dense(1)])
27 FinalModel.compile(loss = 'mae', optimizer = 'adam',
28 metrics = ['accuracy'])

Notice that there is no output for the above script which serves as a preparation step.

11.3.5 stoChAstiC grAdient desCent And
the loss method And PArAmeters

Stochastic gradient descent (SGD) is a family of algo-
rithms aiming to optimize the weights for the best possi-
ble mapping of inputs to outputs. The selected algorithm
is defined by the optimizer paramenter/method,
which at present is most often adam.

The loss parameter/method deals with the measure-
ment of the integrity of the NN predictions. In simple
terms, it measures the disparity between predicted val-
ues and desired values. Several loss method options
are available, including mean square error (MSE), root
mean square (RMS), and mean absolute error (MAE).

MSE is amongst the most well-known methods of cal-
culating the average (mean) of the differences between

Observation 11.17 – Method loss
Parameters: Select from a number
of available mathematical methods
to calculate the loss resulting from
the process (e.g., mean square error,
root mean square, and mean absolute
error).

Observation 11.16 – Stochastic
Gradient Descent (SGD): A family
of algorithms aiming to optimize the
weights for the best mapping of inputs
to outputs.

476 Handbook of Computer Programming with Python

the real observations and the predictions. The mathematical equation for this particular method is
the following:

x x

K
k

K
i iMSE

1

2

∑()= − ′

=

RMS is one of the most popular and, possibly, most accurate methods. It calculates the square
root of the MSE. Its mathematical equation is the following:

x x

K
k

K
i iRMSE

1

2

∑()= − ′

=

Finally, MAE is calculated as the mean of the absolute errors between the real and the predicted
observations as in the following formula (i.e., xk = true observations, xk = predictions):

K

x x
k

K

k kMAE
1

1

∑= − ′
=

The following script showcases the use of all three loss measuring methods discussed above:

1 import numpy as np
2
3 # Define the actual and the predicted values as np arrays
4 actual = np.array([1.8, 2, 1.9])
5 print("The actual observations are: \n", actual)
6 predicted = np.array([2, 1.7, 1.7])
7 print("\nThe predicted observations are: \n", predicted)
8 # Array calculated on the differences between the 2 sets of values
9 difference = predicted - actual
10 print("\nThe differences in the observations are: \n", difference)
11
12 # Calculate the array based on the squares of the differences
13 squareOfDifferences = difference ** 2
14 print("\nThe squares of the differences of the observations: \n",
15 squareOfDifferences)
16
17 # Calculate the mean square error for the observations
18 MSE = squareOfDifferences.mean()
19 print("\nThe Mean Square Error is calculated as: ", MSE)
20
21 # Calculate the mean of the square of the differences
22 meanSquareDifferences = squareOfDifferences.mean()
23 RMSE = np.sqrt(meanSquareDifferences)
24 print("\nThe root mean of square of differences is: ", RMSE)

477Introduction to Neural Networks and Deep Learning

25
26 # Calculate the mean of the absolute error of the differences
27 absoluteDifferences = np.absolute(difference)
28 meanAbsoluteDifference = absoluteDifferences.mean()
29 print("\nThe mean of the absolute differences of the observations \
30 is: ", meanAbsoluteDifference)

Output 11.3.5:

The actual observations are:
[1.8 2. 1.9]

The predicted observations are:
[2. 1.7 1.7]

The differences in the observations are:
[0.2 -0.3 -0.2]

The squares of the differences of the observations:
[0.04 0.09 0.04]

The Mean Square Error is calculated as: 0.056666666666666664

The root mean of square of differences is: 0.23804761428476165

The mean of the absolute differences of the observations is:
0.2333333333333333

11.3.6 fitting And evAluAting the models, Plotting the observed losses

The next step involves the fitting of the various models, as well as the plotting of the relevant obser-
vations. The reader can follow the implementation of this step in the following script, taking note of
the following:

 1. For practical reasons, the number of iterations
during model training is set to 5 (as defined by the
epochs parameter). It must be noted that this is
a quite small number to be truly efficient, but it is
sufficient for demonstration purposes. In reality,
this number is expected to be at least three digits
long (i.e., between 100 and 1,000).

 2. The fitting process investigates the training of the
models with 300 rows of train data (shown in the
batch_size).

 3. The observations from the four different mod-
els are plotted together using the plot method
(Matplotlib.pyplot library).

Observation 11.18 – The epochs
Parameter: Used to define the num-
ber of iterations of the training set dur-
ing the training/fitting step. Usually,
the number is in the hundreds.

Observation 11.19 – The batch_
size Parameter: Used to define the
number of rows to be observed dur-
ing the training/fitting step.

478 Handbook of Computer Programming with Python

1 import matplotlib.pyplot as plt
2
3 # Step 4: Fit the models and plot the observations
4 # Fit the SimpleModel
5 print(“\nThe observation epochs for the simple model: \n”)
6 Observations1 = SimpleModel.fit(Xtrain, Ytrain, validation_data =
7 (Xtest, Ytest), batch_size = 300, epochs = 5)
8 # Prepare the dataframe from the SimpleModel observation history
9 Observation1DataFrame = pd.DataFrame(Observations1.history)
10
11 # Fit the MakeItWider model
12 print(“\nThe observation epochs for the wider model: \n”)
13 Observations2 = MakeItWider.fit(Xtrain, Ytrain, validation_data =
14 (Xtest, Ytest), batch_size = 300, epochs = 5)
15 # Prepare the dataframe from the MakeItWider observation history
16 Observation2DataFrame = pd.DataFrame(Observations2.history)
17
18 # Fit the MakeItDeeper model
19 print(“\nThe observation epochs for the deeper model: \n”)
20 Observations3 = MakeItDeeper.fit(Xtrain, Ytrain, validation_data =
21 (Xtest, Ytest), batch_size = 300, epochs = 5)
22 # Prepare the dataframe from the MakeItDeeper observation history
23 Observation3DataFrame = pd.DataFrame(Observations3.history)
24
25 # Fit the FinalModel model
26 print(“\nThe observation epochs for the final model: \n”)
27 Observations4 = FinalModel.fit(Xtrain, Ytrain, validation_data =
28 (Xtest, Ytest), batch_size = 300, epochs = 5)
29 # Prepare the dataframe from the FinalModel observation history
30 Observation4DataFrame = pd.DataFrame(Observations4.history)
31
32 # Plot the observations from the 4 models
33 plt.xlabel(“Epochs”)
34 plt.ylabel(“Loss”)
35 plt.title(“History of observations of loss”)
36 Observation1DataFrame[‘loss’].plot(label = “Simple model”)
37 Observation2DataFrame[‘loss’].plot(label = “Make it wider”)
38 Observation3DataFrame[‘loss’].plot(label = “Make it deeper”)
39 Observation4DataFrame[‘loss’].plot(label = “Final model”)
40 plt.legend()
41 plt.grid()

479Introduction to Neural Networks and Deep Learning

O
ut

pu
t

11
.3

.6
:

Th
e
ob
se
rv
at
io
n

ep
oc

hs
 f

or
 t

he
 s

im
pl

e
mo
de
l:

Ep
oc
h
1/
5

2/
2

Ep
oc
h
2/
5

2/
2

- - - - -

3s
 9

46
ms

/s
te

p
-

lo
ss

:
0.

47
62

 -
 a

cc
ur

ac
y:

 0
.6

45
0

-
va

l_
lo

ss
:

0.
44

24
 -

 v
al

_a
cc

ur
ac

y:
 0

.6
65

2

0s
 1

18
ms

/s
te

p
-

lo
ss

:
0.

46
27

 -
 a

cc
ur

ac
y:

 0
.6

45
0

-
Va

l_
lo

ss
:

0.
42

90
 -

 v
al

_a
cc

ur
ac

y:
 0

.6
65

2

0s
 1

22
ms

/s
te

p
-

lo
ss

:
0.

44
91

 -
 a

cc
ur

ac
y:

 0
.6

45
0

-
va

l_
lo

ss
:

0.
41

61
 -

 v
al

_a
cc

ur
ac

y:
 0

.6
65

2

0s
 1

06
ms

/s
te

p
-

lo
ss

:
0.

43
59

 -
 a

cc
ur

ac
y:

 0
.6

45
0

-
va

l_
lo

ss
:

0.
40

37
 -

 v
al

_a
cc

ur
ac

y:
 0

.6
65

2

0s
 9

6m
s/

st
ep

 -
 l

os
s:

 0
.4

23
1

-
ac

cu
ra

cy
:

0.
64

50
 -

 v
al

_l
os

s:
 0

.3
92

4
-

va
l_

ac
cu

ra
cy

:
0.

66
52

Ep
oc
h
3/
5

2/
2

Ep
oc
h
4/
5

2/
2

Ep
oc
h
5/
5

2/
2

Th
e
ob
se
rv
at
io
n

ep
oc

hs
 f

or
 t

he
 w

id
er

 m
od
el
:

Ep
oc
h
1/
5

2/
2

- - - - -

2s
 5

90
ms

/s
te

p
-

lo
ss

:
0.

42
48

 -
 a

cc
ur

ac
y:

 0
.6

45
0

-
va

l_
lo

se
:

0.
38

55
 -

 v
al

_a
cc

ur
ac

y:
 0

.6
65

2

0s
 6

5m
s/

st
ep

 -
 l

os
s:

 0
.4

06
9

-
ac

cu
ra

cy
:

0.
64

50
 -

 v
al

_l
os

s:
 0

.3
76

7
-

va
l_

ac
cu

ra
cy

:
0.

66
52

0s
 9

0m
s/

st
ep

 -
 l

os
s:

 0
.3

95
6

-
ac

cu
ra

cy
:

0.
64

50
 -

 v
al

_l
os

s:
 0

.3
71

7
-

va
l_

ac
cu

ra
cy

:
0.

66
52

0s
 9

2m
s/

st
ep

 -
 l

os
s:

 0
.3

89
0

-
ac

cu
ra

cy
:

0.
64

50
 -

 v
al

_l
os

s:
 0

.3
70

5
-

va
l_

ac
cu

ra
cy

:
0.

66
52

0s
 4

5m
s/

st
ep

 -
 l

os
s:

 0
.3

85
6

-
ac

cu
ra

cy
:

0.
64

50
 -

 v
al

_l
os

s:
 0

.3
71

5
-

va
l_

ac
cu

ra
cy

:
0.

66
52

Ep
oc
h
2/
5

2/
2

Ep
oc
h
3/
5

2/
2

Ep
oc
h
4/
5

2/
2

Ep
oc
h
5/
5

2/
2

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

480 Handbook of Computer Programming with Python

Th
e
ob
se
rv
at
io
n

ep
oc

hs
 f

or
 t

he
 d

ee
pe

r
mo

de
l:

Ep
oc
h
1/
5

2/
2

Ep
oc
h
2/
5

2/
2

2/
2

Ep
oc
h
3/

5

Ep
oc
h
4/
5

2/
2

Ep
oc
h
5/
5

2/
2

- - - - -

1s
 4

04
ms

/s
te

p
-

lo
ss

:
0.

41
24

 -
 a

cc
ur

ac
y:

 0
.6

50
6

-
va

l_
lo

ss
:

0.
39

40
 -

 v
al

_a
cc

ur
ac

y:
 0

.6
65

2

0s
 1

24
ms

/s
te

p
-

lo
ss

:
0.

40
54

 -
 a

cc
ur

ac
y:

 0
.6

48
7

-
va

l_
lo

ss
:

0.
38

66
 -

 v
al

_a
cc

ur
ac

y:
 0

.6
65

2

0s
 8

1m
s/

st
ep

 -
 l

os
s:

 0
.3

98
5

-
ac

cu
ra

cy
:

0.
64

87
 -

 v
al

_l
os

s:
 0

.3
79

6
-

va
l_

ac
cu

ra
cy

:
0.

66
52

0s
 7

1m
s/

st
ep

 -
 l

os
s:

 0
.3

92
7

-
ac

cu
ra

cy
:

0.
64

68
 -

 v
al

_l
os

s:
 0

.3
73

1
-

va
l_

ac
cu

ra
cy

:
0.

66
96

0s
 5

6m
s/

st
ep

 -
 l

os
s:

 0
.3

85
5

-
ac

cu
ra

cy
:

0.
64

68
 -

 v
al

_l
os

s:
 0

.3
67

2
-

va
l_

ac
cu

ra
cy

:
0.

66
96

Th
e
ob
se
rv
at
io
n

ep
oc

hs
 f

or
 t

he
 f

in
al

 m
od

el
:

Ep
oc
h
1/

5
2/

2

2/
2

Ep
oc
h
2/

5
2s

 7
51

ms
/s

te
p

-
lo

ss
:

0.
43

79
 -

 a
cc

ur
ac

y:
 0

.6
45

0
-

va
l_

lo
ss

:
0.

34
37

 -
 v

al
_a

cc
ur

ac
y:

 0
.6

65
2

0s
 5

3m
s/

st
ep

 -
 l

os
e:

 0
.3

76
7

-
ac

cu
ra

cy
:

0.
64

50
 -

 v
al

_l
os

s:
 0

.3
95

5
-

va
l_

ac
cu

ra
cy

:
0.

66
09

0s
 5

4m
s/

st
ep

 -
 l

os
s:

 0
.3

97
3

-
ac

cu
ra

cy
:

0.
65

06
 -

 v
al

_l
os

s:
 0

.3
81

9
-

va
l_

ac
cu

ra
cy

:
0.

66
09

0s
 5

6m
s/

st
ep

 -
 l

os
s:

 0
.3

78
5

-
ac

cu
ra

cy
:

0.
64

68
 -

 v
al

_l
os

s:
 0

.3
54

3
-

va
l_

ac
cu

rn
cy

:
0.

66
52

0s
 5

5m
s/

st
ep

 -
 l

os
s:

 0
.3

52
1

-a
cc

ur
ac

y:
 0

.6
45

0
-

va
l_

lo
se

:
0.

35
10

 -
 v

al
_a

cc
ur

ac
y:

 0
.6

65
2

Ep
oc
h
3/

5
2/

2
Ep

oc
h
4/

5
2/

2
Ep

oc
h
5/

5
2/

2

- - - - -

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

[
]

481Introduction to Neural Networks and Deep Learning

In the last step, the script evaluates the four models using
the input and output testing datasets defined in the begin-
ning of the process using the evaluate() method, and
prints the relevant accuracy results for the models:

1 # Step 5: Evaluate the accuracy of the models
2 # Evaluate the accuracy of the Simple model
3 Accuracy1 = SimpleModel.evaluate(Xtest, Ytest)
4 print(‘Measured Accuracy for SimpleModel: %2.2f’ % (Accuracy1[1]*100))
5
6 # Evaluate the accuracy of the MakeItWider model
7 Accuracy2 = MakeItWider.evaluate(Xtest, Ytest)
8 print(‘Measured Accuracy for MakeItWider: %2.2f’ % (Accuracy2[1]*100))
9
10 # Evaluate the accuracy of the MakeItDeeper model
11 Accuracy3 = MakeItDeeper.evaluate(Xtest, Ytest)
12 print(‘Measured Accuracy for MakeItDeeper: %2.2f’ % (Accuracy3[1]*100))
13
14 # Evaluate the accuracy of the FinalModel model
15 Accuracy4 = FinalModel.evaluate(Xtest, Ytest)
16 print(‘Measured Accuracy for FinalModel: %2.2f’ % (Accuracy4[1]*100))

Output 11.3.6.d:

8/8 - 0s 4ms/step - loss: 0.3924 - accuracy: 0.6652
Measured Accuracy for SimpleModel: 66.52
8/8 - 0s 2ms/step - loss: 0.3715 - accuracy: 0.6652
Measured Accuracy for MakeItWider: 66.52
8/8 - 0s 2ms/step - loss: 0.3672 - accuracy: 0.6696
Measured Accuracy for MakeItDeeper: 66.96
8/8 - 0s 4ms/step - loss: 0.3510 - accuracy: 0.6652
Measured Accuracy for FinalModel: 66.52

[]

[]

[]

[]

Observation 11.20 – The evaluate()
Method: Used to calculate the accu-
racy of the suggested model through
the test input and output datasets.

482 Handbook of Computer Programming with Python

11.3.7 model overfit And underfit

Too much or too little learning is not good for any
model. The optimum fit between the former (i.e., over-
fit), and the latter (i.e., underfit) must be found, although
all models suffer from either one or the other to some
extent. In simple terms, a model is underfit when loss
is not low enough, which means that it does not have
enough data to learn. The opposite is overfit, meaning
that the model learned using too much data, which is
wrongfully taken as good data. Figure 11.6 illustrates
this concept:

Finally, the reader must be aware of a common problem that must be addressed. Every DL model
has a characteristic called capacity. This is the indication of size and complexity of the associated
patterns. In the case of neural networks this relates to the number of neurons and layers. In order to
overcome underfitting, the capacity of the model has to be increased.

TensorFlow provides a callback method for early stopping. As the name indicates, the method
runs after every epoch during the training process.

The next script.

1 from tensorflow.keras.callbacks import EarlyStopping
2
3 # Define the minimum amount of change and the waiting time (epochs)
4 # before stopping
5 EarlyStopping1 = EarlyStopping(min_delta = 0.001, patience = 10,
6 restore_best_weights = True)
7
8 print("\nThe observation epochs for the new model: \n")
9 NewObservation = FinalModel.fit(Xtrain, Ytrain, validation_data =
10 (Xtest, Ytest), batch_size = 300, epochs = 400,
11 callbacks = [EarlyStopping1], verbose = 0)
12 Observation5DataFrame = pd.DataFrame(NewObservation.history)
13 Observation5DataFrame.loc[:, ['loss', 'val_loss']].plot();

Observation 11.21 – Overfit,
Underfit: A model is overfit when
there is too much data used by the
model to learn and much of it is not
good. A model is underfit when there
is not enough data to learn, and the
loss is not low enough.

FIGURE 11.6 Validation vs. training.

483Introduction to Neural Networks and Deep Learning

Output 11.3.7:

11.4 WRAP UP

While the concepts presented in the previous sections should suffice to provide a general idea of
the basic structural components of neural networks, in reality, DL utilizes a number of different
network types and topologies that expand and extend their complexity and functionality. Examples
include, but are not limited to, the following:

• Convolutional Neural Network (CNN): A regularized variation of the multi-layer ANN,
using a hierarchical approach to produce increasingly complex patterns. CNNs are com-
monly used for image processing.

• Recurrent Neural Network (RNN): As the name suggests, RNNs make use of recurrent
loops and connections across the network components. This provides the ability to store
data within the network and use them as a feedback mechanism to inform events. RNNs
are particularly popular in machine translation applications.

• Self-Organizing Map (SOM): SOMs differ to other ANNs in terms of the approach taken
towards data training (i.e., competitive learning instead of error-correction learning). The
aim of such types of networks is to reduce the dimensionality of the input data.

• Auto-Encoder: Autoencoders aim at encoding data efficiently by ignoring noise that may
be present in the signal or data. They are used for various applications like information
retrieval, image processing and reconstruction, and popularity prediction.

As this chapter was meant to method as an introduction to some of the basic concepts behind neural
networks, it does not explicitly cover the various types and topologies these can take within the
DL context. The reader can find a wealth of information on these topics on the broad and extensive
associated bibliography and online resources covering the theory and application of ML and DL
algorithms.

484 Handbook of Computer Programming with Python

11.5 CASE STUDY

 1. Phase 1: Build the necessary logical gates (i.e., AND, OR, XOR) that will act as building
blocks for the perceptron modeling in the ANN. Follow the guidelines below:

 a. User real numbers instead of integers.
 b. Implement 1D vectors for weights (w) and inputs (x) as follows:

 = . z w x.
 c. Feed the sum of the vectors to the sigmoid activation method.
 2. Phase 2: Implement the following tasks:
 a. Task 1: (Perceptron Engineering):

– Write a sigmoid method.
– Write a method to send values to the weights.

 b. Task 2: (Validating):
– Develop a method/method to insert values for the weights.
– Develop a method/method to provide a sample to the network.
– Test the network with the XOR gate-based weights.

 c. Task 3: Implement a multi-layer perceptron (i.e., Class).
 d. Task 4: Develop a backpropagation algorithm by following the next steps:

– Feed a sample to the network: =

0
1

y .

– Calculate the MSE: ∑()= −
=

−

MSE
1

Output
0

1
2

n
y

i

n

i i

– Calculate the error terms of each Neuron’s output:

 σ () ()= − −Output * 1 Output * Outputyk k k k k

 k kOutput * 1 Output , is derivative of sigmoid function()−

– Repeatedly compute the error terms in the hidden layers:

 ∑σ σ()= −
∈

Output * 1 Output * Hid Hid Hid

outputs

Hidw
k

k k

– Apply the delta rule:

 γ σ∆ = * *ij ijw xi

– Adjust the weights for the best model outcome:

 = + ∆ij ij ijw w w

 e. Task 5: Validate the class.

REFERENCES

Hardesty, L. (2017). Explained: Neural Networks – Ballyhooed Artificial-Intelligence Technique Known
as “Deep Learning” Revives 70-Year-Old Idea. MIT News Office. https://news.mit.edu/2017/
explained-neural-networks-deep-learning–0414.

IBM Cloud Education. (2020). Neural Networks. IBM. ibm.https://wwwcom/cloud/learn/neural-networks.

https://news.mit.edu
https://news.mit.edu
https://www.com

485

12 Virtual Reality Application
Development with Python

Christos Manolas
The University of York
Ravensbourne University London

Ourania K. Xanthidou
Brunel University London

Dimitrios Xanthidis
University College London
Higher Colleges of Technology

12.1 INTRODUCTION

The idea of artificially created immersive environments like the ones used in Virtual Reality (VR)
has been around for a surprisingly long time, but the various incarnations of the technological sys-
tems used over the years have been largely limited to highly specialized and inaccessible to the gen-
eral public contexts, such as simulation for training purposes and scientific research (Carlson, 2017;
Rosen, 2008; Smith, 2010). Nevertheless, the rapid technological advances of the past decades made
the technologies required for the exploration of this idea accessible and affordable to millions of
people. Powerful computers, high quality 3D graphics, VR headsets, accurate motion trackers and
sensors, and development software suitable for VR are no longer restricted to specialized computer

CONTENTS

12.1 Introduction ..485
12.2 3D Video Game Engines and VR Development Platforms ...487
12.3 Motion Trackers and Head Mounted Displays VS Keyboards, Mice and Display Screens 489
12.4 The Vizard Environment and Creating the Graphics Window ...490
12.5 Creating the 3D World ... 491
12.6 Collisions and Gravity ... 492
12.7 Creating Additional 3D Objects ... 495
12.8 3D (Cartesian) Coordinates and Basic Object Positioning .. 496
12.9 Euler Angles and Object Orientation ... 499
12.10 Absolute vs Relative Positioning ..500
12.11 Creating and Positioning Multiple Objects through Lists ...504
12.12 Using Prefabricated Animations .. 510
12.13 Basic Movement ... 514
12.14 Basic Interaction .. 519
12.15 Integrating VR Hardware and Exporting a Standalone.exe File 523
12.16 Conclusion .. 525
12.17 Case Study ... 526
References .. 526

DOI: 10.1201/9781003139010-12

https://doi.org/10.1201/9781003139010-12

486 Handbook of Computer Programming with Python

laboratories or simulation training facilities. Such technologies and tools are becoming increasingly
affordable to anyone interested in exploring the possibilities offered by their use and integration,
both as an end user and a VR developer.

A significant contributing factor to the rapid expansion of VR development over the past few years
is also the fact that much of the development work can be done in existing 3D graphics and video
game platforms (game engines), with little or no need for serious modifications of their core com-
ponents and workflows. It is, thus, unsurprising that VR development shares a lot with 3D graphics
and video games development, and it is true that someone with experience in the latter will find it a
lot easier to make the transition compared to someone starting from scratch. At the same time, VR
development is a unique medium with its own technical and creative characteristics and challenges.
Therefore, although VR developers are bound to have significant exposure to video game platforms
and 3D graphics technologies on their way towards mastering their craft, it is perfectly feasible to
start their VR development journey without previous experience in these areas. The path of least
resistance for such an entry to VR development would likely have the form of a platform that com-
bines a simple development interface and a solid and computationally powerful base that can support
the substantial demands of VR applications and hardware. Vizard, the software package used in this
chapter is exactly this: a VR development platform offering a Python scripting interface that is built
on top of the required low-level core classes and libraries used for the rendering and manipulation of
the VR environment (WorldViz, 2019). This allows the aspiring VR developer to get exposure to fun-
damental concepts, principles, and techniques without having to engage with the more challenging
and difficult to master programming languages like C++ or C# that are used in some of the leading
commercial VR development platforms (Epic Games, 2019; Unity Technologies, 2019).

It must be noted that while this chapter focuses on the basic introduction of concepts related to
the technical implementation of VR applications with Python, the most important element of the VR
experience is arguably an engaging and meaningful storyline or a key feature acting as the main
focal point. The understanding of the technological aspects of VR development without a matching
understanding of the conceptual aspects of the process would be more suitable as an exercise rather
than a viable VR development approach. It is, thus, recommended that once a basic understanding
of the main aspects of the technical implementation is established, the reader should refer to the rich
literature covering the conceptual and aesthetic implications of the emergence of VR technologies,
and the challenges it has brought about for content developers.

This chapter firstly introduces some basic concepts and technologies related to VR and 3D games
development, and then the focus shifts to the introduction of basic VR development tasks through
Python scripting. In addition to providing an introduction to some of the basic Python commands
used in the Vizard platform, the main aim of this chapter is to expose the reader to some essential
conceptual and technical aspects of VR development and to the programming logic one may wish
to adopt for this type of work.

A basic understanding of object-oriented programming principles and logic is assumed for the
reader. As such, concepts like class and function/method structures, instantiation, inheritance,
and polymorphism are not covered here, although they certainly are as relevant in this context as in
any other object-oriented programming situation. Nevertheless, as Python scripting commands in
the Vizard environment are relatively easy to use and self-explanatory, even readers without a solid
understanding of these concepts should be able to follow the programming ideas presented in this
chapter and make a start in VR development.

For clarity and compatibility purposes, the Python scripts developed in this chapter are loosely
following some of the examples provided in the official Vizard documentation and online tutorials.
This is in order a) to support an easy transition to the very detailed Vizard guides and API refer-
ence if the reader decides to delve deeper into the platform, and b) to utilize the basic collection of
prefabricated 3D objects that come with the standard Vizard installation, thus avoiding possible
inconsistencies, confusion, and folder structure or file format issues a random choice of assets could
cause. The code presented in this chapter was written and tested in the 64-bit version of Vizard 7
(WorldViz, 2019).

487Virtual Reality Application Development

12.2 3D VIDEO GAME ENGINES AND VR DEVELOPMENT PLATFORMS

Before starting to write the first lines of Python code, one needs to establish a basic understanding
of the platforms and technologies that make VR possible. Although a thorough introduction of a
complex and convoluted topic such as the technological foundation of VR systems is beyond the
scope of this chapter, the reader may benefit from conceptualizing some basic ideas related to it.
This brief introduction is especially aimed at those who have an interest in learning more about VR
development but do not necessarily have a background on programming in the context of 3D graph-
ics or video games development. Readers familiar with these concepts can start at later sections of
this chapter, as required.

At the moment of writing, many VR developers use
existing game development platforms that provide the
essential tools and functionality for the creation and opera-
tion of the 3D environments, instead of building new ones
from the ground up. This is especially true on a commer-
cial level, where VR applications are commonly developed
using advanced, industry-standard 3D game development
platforms, or game engines, like Epic Games’ Unreal Engine (Epic Games, 2019) and Unity 3D (Unity
Technologies, 2019). Such platforms provide pre-built classes, functions/methods and tools specifically
designed for working with 3D graphics, and specialized methods like physics modelling and 3D graph-
ics rendering (Dunn & Parberry, 2011). As 3D game engines support the manipulation of fully ani-
mated 3D graphics, they are also suitable for the development of applications for other types of media
that rely on such features like VR (Glover & Linowes, 2019). Indeed, the line between 3D video games
and VR is becoming increasingly blurred, as a large volume of commercial VR application develop-
ment occurs in the context of video games.

A typical 3D game development environment provides access to both the visual model of the 3D
world under development and the necessary tools and interfaces to work with it. For readers who have
not worked with a game engine before, a screenshot of a project in the Unity 3D environment is pro-
vided in Figure 12.1. In this example, the main screen displays the 3D world or map from a given angle
(i.e., the camera or viewpoint), a list of all the objects that reside on the 3D world (top-left), hierarchi-
cal views of the file and folder structures (bottom and bottom-left), and a panel providing access to
detailed settings and parameters for given objects within the 3D world (right). In video games and VR
development, an object refers to anything that can be added to the 3D world, irrespectively of whether
it is visible or not. For instance, in Figure 12.1, the hills and the ground are one single object (i.e., the
3D world), the vegetation is a series of separate objects based on the same template, and the selected
little white symbol at the lower center is an audio object that can be triggered when the user enters the
area outlined by the faint spherical outlines. The reader
should note that everything that exists within the 3D envi-
ronment is treated like a separate object, irrespectively of
its size, complexity, and attributes.

Although game or VR development platforms usu-
ally provide extensive and elaborate tools for address-
ing many of the common development tasks through a
visual interface, a significant amount of coding is also
required for developing viable applications. As such, a
programming interface exposing the required program-
ming classes and functions/methods is also provided
in these platforms. In the vast majority of cases, this
is done by means of a scripting interface that supports
internal or external coding editors and compilers. As an
example, Figure 12.2 shows a script added as a compo-
nent to an object in Unity 3D and opened for editing

Observation 12.1 – 3D Game Engine:
A software platform providing special-
ized tools, libraries, and interfaces for
the development of video games and
interactive audiovisual content.

Observation 12.2 – Camera or
Viewpoint: In the 3D environment
of a 3D engine, a camera or view-
point represents the angle and posi-
tion from which the user observes
the environment. A given 3D envi-
ronment may have many camera/
viewpoint objects, but the user uti-
lizes one of them at any given time.
A good example of this is the typical
3D multiplayer video game, in which
different users observe the same 3D
environment through their own, indi-
vidual cameras/viewpoints.

488 Handbook of Computer Programming with Python

FIGURE 12.2 Script created in Unity 3D and opened for editing in Visual Studio. (See Microsoft, 2019.)

FIGURE 12.1 The Unity 3D development environment. (See Unity Technologies, 2019.)

489Virtual Reality Application Development

using an external editor (Microsoft, 2019; Unity Technologies, 2019). The programming languages
used for scripting in each development platform varies, depending on the underlying architecture
and structure, and the intended audience. Nevertheless, irrespectively of the programming language
and tools used, what is important to note is that one of the functions of the game engine is to inte-
grate the compiled scripts into the 3D environment, and to assign them to the intended objects and
functionality modules.

Despite the fact that 3D game development platforms are currently some of the biggest play-
ers in VR development, the increasing interest in VR as a separate and unique medium has led to
the appearance of a number of dedicated tools specifically focusing on VR development. As with
the 3D game development platforms discussed earlier, the structure and target audience of these
platforms vary, and so do the supported programming languages. Although it is generally true that
lower-level languages like C++ are better suited for computationally heavy tasks, such as working
with animated 3D graphics, some of the dedicated VR development platforms aim at those who
need to use them without delving into the details of low-level programming and the mathematical
principles behind 3D animation or physics modelling. Vizard, the platform used in this chapter, is
such a platform, providing a more accessible interface for VR development. This is where Python
comes into the picture, as Vizard is one of the few platforms that use it explicitly for all the associ-
ated scripting tasks. Through the Vizard interface, Python scripts can be used to manipulate and
control the appearance, structure, and behavior of the 3D environment, and the interaction of the
user with the VR world. This is achieved through specialized libraries and methods that do all the
necessary work for the translation of the Python commands to the appropriate lower-level languages
and platforms.

12.3 MOTION TRACKERS AND HEAD MOUNTED DISPLAYS
VS KEYBOARDS, MICE AND DISPLAY SCREENS

Two of the most obvious differences between VR applications and those utilizing regular screen
displays, keyboards, and mice are a) the way input from the user is being received, and b) the
method of delivery of the visual content. A motion tracker generally refers to a sensor that tracks the
user’s movements and translates them to numerical coordinates that are passed to the application.
This essentially replaces traditional input devices like handheld game controllers, keyboards, and
mice. Nevertheless, at a primary level, there is not much difference between receiving the neces-
sary coordinate numbers by a motion tracker or a keyboard and mouse. It must be noted here that
although working natively with motion trackers and through a keyboard or mouse are two distinct
and frequently different processes, for exploratory and prototyping tasks like the ones presented in
this chapter such differences are less crucial.

As with input devices, video game and VR applications also differ in the way the output is
handled. In VR, a Head Mounted Display (HMD) projects the 3D environment images to each eye
of the user using specialized short distance projectors instead of a screen (Glover & Linowes, 2019).
Although the study of the mechanisms of vision and stereoscopic image projection are beyond the
scope of this chapter, interested readers can find more information on seminal textbooks on the
subject of stereoscopic media, such as Ray Zone’s Stereoscopic Cinema and the Origins of 3-D
Film (Zone, 2007) and Bernard Mendiburu’s 3D Movie Making, Stereoscopic Digital Cinema from
Script to Screen (Mendiburu, 2012). As with motion trackers, the differences between monitor-
ing the development work on a screen or through an HMD should be of secondary importance
when it comes to demonstration and prototyping tasks, although admittedly there are significant
differences in terms of how animators or graphic designers work when professional work is being
produced. Although there is certainly a point where the requirement for displaying content through
an HMD and receiving input from motion trackers becomes essential, for many of the basic steps
of a VR project one can work using a regular computer screen, a keyboard, and a mouse. In the
current context, all the concepts presented can be explored and tested without a strict requirement

490 Handbook of Computer Programming with Python

for working with specialized HMDs or motion trackers.
Nevertheless, the process of connecting such devices
through the dedicated interface provided by Vizard
(Vizconnect) is briefly covered in the latter parts of this
chapter. This is in order to allow the reader to poten-
tially integrate VR hardware devices of their choice to
the scripts developed over this chapter with minimal
changes and amendments to the code.

12.4 THE VIZARD ENVIRONMENT AND
CREATING THE GRAPHICS WINDOW

Vizard is available on three different types of licenses that can be downloaded from the official
company website at WorldViz.com (WorldViz, 2019). It offers a Python scripting interface and a
selection of libraries and tools allowing for the navigation and management of the VR project(s).
The Python scripts reside at the top right of the main window, while a project/file explorer window
is provided on the left side, and a debugging and information panel on the bottom (Figure 12.3):

Unlike the game development platform examples presented earlier, the reader will notice that
in Vizard there is no permanently visible 3D environment. This is because the 3D environment is
rendered in real time on a separate window when the appropriate Python command is executed.
As such, instead of the VR developer working directly on an existing 3D graphics design window

Observation 12.3 – Head Mounted
Display (HMD): A wearable, head-
worn device projecting visual content
directly to the eyes of the user from a
close distance. It is usually equipped
with motion trackers that provide
positional information, so the display
can adapt to the user’s head and eye
movements and render the visual
content accordingly.

FIGURE 12.3 The Vizard scripting environment. (See WorldViz, 2019.)

http://WorldViz.com

491Virtual Reality Application Development

as in Figure 12.1, a Python script must be run in order for the actual VR environment to show up.
A new script can be created using the File > New Vizard File command from the application menu.
The Python libraries required for the creation and manipulation of the VR environment are pro-
vided by Vizard. As in most other programming envi-
ronments, such libraries need to be explicitly declared
and imported to the script in order for the user to get
access to their classes and objects. In Vizard, the viz
keyword is used to declare the main library that enables
the instantiation of the 3D world:

import viz

Once the library is imported, an empty 3D world can be created by using the viz.go() method:

viz.go()

Several aspects of the appearance and characteristics of
the window within which the VR environment will be
displayed can be also controlled by using the appropri-
ate flags. For instance, the following command will cre-
ate a full screen window as opposed to the default one
(800 × 600 pixels):

viz.go(viz.FULLSCREEN)

Similarly, using the PROMPT flag will allow the user to select the presentation mode prior to launch-
ing the VR environment window:

viz.go(viz.PROMPT)

An exhaustive list of all the available options can be found in the Vizard reference and API docu-
mentation (WorldViz, 2019). At this stage, the developed script should look like the following:

1 # Import the viz library
2 import viz
3
4 # Create an empty window for the 3D environment
5 viz.go(viz.FULLSCREEN)

Pressing the Run button on the Vizard toolbar or F5 on the keyboard will execute the script. As
this is the first time the script is being executed, it must be saved before proceeding. Scripts can be
saved on any location, but as with any other project, keeping the file and folder structure reasonably
organized certainly helps in the long term. After running the script, the window hosting the VR
application (the graphics window) will be launched. At this stage, an empty black screen will be
displayed. The reason for this is that the script in its current form creates an empty 3D space but
does not fill this space with any visual content.

12.5 CREATING THE 3D WORLD

The 3D environment within which the action will take place can be referred to as the map or the
3D world. A map may consist of various integrated 3D objects, or designed as a single object irre-
spectively of how large and complex this object may be. It must be noted that, in most cases, the 3D
objects and graphics used for 3D games and VR development are created outside the development
platforms, in specialized 3D software like 3D Studio Max and Blender (Autodesk, 2020; Blender,

Observation 12.5 – The viz.go()
Method: Use the viz.go() method
to create the 3D world. Use the
FULLSCREEN flag to create a full
screen window.

Observation 12.4 – The viz Library:
Import the viz library to a project to
gain access to the methods needed to
initiate and run the 3D world.

492 Handbook of Computer Programming with Python

2020). As such, the structure, appearance, and characteristics of the 3D objects are decided during
the design phase by 3D graphics designers and animators. Once the design is completed, the objects
are exported to suitable formats, ready for use in the 3D game and VR development platforms.
Such predesigned objects are often referred to as prefabricated objects or prefabs. In this section,
a prefabricated 3D model of a plaza will be used as the visual environment for the map of the VR
application. The plaza 3D object is stored as a .osgb file, a 3D object filetype supported by Vizard
(WorldViz, 2019). In Vizard, new 3D objects can be created or imported into the 3D environment
using the viz.add() and viz.addChild() methods. For instance, the following command will
load the prefabricated plaza object to the, initially empty, map:

piazza = viz.add('piazza.osgb')

The name of the .osgb file of the prefabricated object
(piazza.osgb) must be declared in the argument list
and passed to a newly created variable (piazza). For
someone without a basic understanding of variables
and instantiation, the structure of this command may
be slightly confusing. This concept is discussed further
in Section 12.7 Creating Additional 3D Objects. For the
time being, it should suffice to mention that when new
3D objects are imported or created within the 3D world,
they must be allocated to newly created variables, in
this instance the variable named piazza.

By default, newly added 3D objects are positioned with
their center point aligned to the center of the map. The
camera (viewpoint) through which the user observes the
map is also initially positioned at the center (Figure 12.4).

With the graphics window active, the user can move
within the map by pointing the mouse towards the desired
direction, while holding down the left mouse button.
Alternative modes of movement and orientation adjust-
ments are also available through the mouse by holding
down a) the right mouse button or, b) both the left and right
mouse buttons. These are the default navigation controls
in Vizard. As expected, these controls can be modified
and reallocated, and this topic is covered in more detail in
Section 12.15 Integrating VR Hardware and Exporting a
Standalone.exe File. At this point, the default controls should be sufficient for testing the script and famil-
iarizing with the 3D environment. Below is a version of the complete script developed in this section:

Import the viz library
import viz

Create an empty window for the 3D environment
viz.go(viz.FULLSCREEN)

Add a prefabricated 3D model of the chosen environment
piazza = viz.add(‘piazza.osgb’)

12.6 COLLISIONS AND GRAVITY

While navigating, the reader will notice that the camera can move freely through the boundaries
of the 3D world (i.e., the walls of the buildings and the floor of the plaza). This is because the 3D
model graphics that were imported to the empty 3D environment are just that: graphics. At this

Observation 12.6 – Map or 3D
World: The 3D environment where
the action takes place.

Observation 12.7 – Prefabricated
Objects (Prefabs): Pre-designed 3D
objects, such as environments or
character models that the user of a
game engine can import to a project
instead of creating them from scratch.

Observation 12.8 – The add() and
addChild() Methods: Use the
add() and addChild() methods to
add new 3D objects to the map.

Observation 12.9 – Movement within
the Map: In Vizard, the default way of
moving within the map is through the
mouse.

493Virtual Reality Application Development

stage, it has not been specifically declared that when the
camera overlaps with the graphics it should be prevented
from moving further in order to emulate a more realis-
tic behavior. In 3D games and VR development, this is
known as a collision, an event occurring at the space and
time where one object (e.g., the camera) starts overlap-
ping with another (e.g., the walls and/or the floor). The
process of detecting when and where a collision occurs
is commonly referred to as collision detection, and it is
one of the key tools in the VR developer’s toolkit. From a programming perspective, when two
objects collide, it is frequently required that specific actions are performed, such as the objects
bouncing off each other or a specific reaction or animation being triggered (e.g., a bomb exploding
when touching the ground). Although there are many ways to deal with collisions through code, the
Vizard environment simplifies things by providing methods and commands that take care of the
collision detection tasks. One of the collision-related tasks that must be controlled in almost every
VR application is the interaction between the camera and the graphics of the 3D world. In Vizard,
one can do this by calling the collision() method of the camera object (viz.MainView):

viz.MainView.collision()

The reason for accessing collision by specifically including the path of MainView in the viz
library (i.e., viz.MainView) is that there can be multiple different views in a single VR application

Observation 12.10 – Collision and
Collision Detection: Terms referring
to the detection of objects overlap-
ping within the 3D world. Collision
detection is used to trigger actions
and events, and thus determine the
behaviour of 3D objects as necessary.

FIGURE 12.4 3D plaza model through the main camera/viewpoint at the center of the map. (See WorldViz,
2019.)

494 Handbook of Computer Programming with Python

and the VR developer may not want to enable collision detection for all of them at once. If the reader
is not familiar with classes and object-oriented programming structures, it is sufficient to think of
the MainView as the visual environment that is currently active (i.e., the 3D plaza) and viz as the
window that hosts this environment.

The collision() method accepts as an argument either the viz.ON or viz.OFF flag and sets
the state of collision detection between the camera and other objects in the 3D world accordingly:

viz.MainView.collision(viz.ON)

Once collision detection is switched on, the camera will
not be able to pass through the graphics of the 3D world
anymore. In this case, most of the hard work has been
handled by the classes behind the viz.MainView.
collision() method. Such tasks would typically
include the precise measurement of the location of the
surfaces of the 3D object, as well as the boundaries and
the geometry of each surface. However, at the level of abstraction the typical VR developer would
normally operate, this is of academic interest rather than something that would be required on a
practical level. What really matters is that one is familiar with the concept of collision detection
and the use of relevant commands and methods like viz.MainView.collision(), as well as of
the fact that the default state of collision detection for the camera in Vizard is OFF when a new 3D
world is created.

The second issue the user will notice while navigating the 3D world at this stage of develop-
ment is that the camera could be placed at any given point statically, both vertically and horizon-
tally. An additional consideration one has to deal with when designing the behavior of the various
objects is the presence (or absence) of gravity. This is especially important in VR development,
as it is often the case that the camera represents the viewpoint of the user. The viz.MainView.
collision(viz.ON) command, in addition to providing collision detection between the camera
and the 3D objects, automatically sets the gravity feature for the camera on. By default, gravity is
set at the rate of the gravitational power of the earth (i.e., 9.8 m/s2). The camera becomes subject to
the gravitational pull, so it is prevented from floating statically, although the user can still navigate
vertically while the mouse button is held down. If the mouse button is released while navigating
above ground, the camera will start falling at a speed
of 9.8 m/s2 and will stop only when it collides with the
ground surface. This is, of course, unless the user inten-
tionally navigates outside the limits of the plaza and past
the buildings, in which case the camera will keep on
falling indefinitely into the void space outside the map.

Although the automatic adjustment of the gravitational pull is a convenient feature, there are
many instances in which the apparent gravity of the 3D world should be defined exclusively. For
instance, if the 3D world is supposed to be located at a floating space station with minimal gravita-
tional powers at play, the VR developer may wish to switch off the gravity altogether. Similarly, if
the VR world is set on the moon, the gravity needs to be set at a lower level (i.e., 1.62 m/s2) than the
default settings of 9.8 m/s2 for the gravity on earth. In its simplest form, setting up the gravity for
the 3D world is achieved by passing the desired gravity pull as a numerical argument (in m/s2) to
the viz.MainView.gravity() method. For example:

viz.MainView.gravity(0)

will set off gravity, as it will be equal to zero, while:

viz.MainView.gravity(9.8)

Observation 12.11 – Camera
Collision On/Off: Once collision
detection is switched on, the camera
will not be able to pass through the
graphics of the 3D world anymore.

Observation 12.12 – The gravity()
Method: Use the gravity() method
to set up the gravity pull applied to
objects within the 3D environment.

495Virtual Reality Application Development

will set gravity back to the rate expected on earth. Accordingly:

viz.MainView.gravity(1.62)

will emulate the effect of gravity the user would experience on the moon. Below is a version of the
complete script for this section:

1 # Import the viz library
2 import viz
3
4 # Create an empty window for the 3D environment
5 viz.go(viz.FULLSCREEN)
6
7 # Add a prefabricated 3D model of the chosen environment
8 piazza = viz.add('piazza.osgb')
9
10 # Enable collision detection and gravity for the created 3D world
11 viz.MainView.collision(viz.ON)

Running this script should allow the user to move around the 3D world using the mouse controls
without being able to pass through solid objects, while being also subjected to the standard gravita-
tion pull of the earth.

12.7 CREATING ADDITIONAL 3D OBJECTS

For someone without prior knowledge of object-oriented programming, the concept of an object can
be confusing. However, in the Vizard environment, objects should be much easier to recognize, as
they usually represent tangible elements of the 3D world. As shown, the script used in the previous
sections already includes the creation of an object:

piazza = viz.add('piazza.osgb')

In this instance, a new variable with the name piazza is declared and the piazza.osgb 3D model
(prefabricated outside Vizard) is allocated to it through the viz.add() method. Thus, the 3D
object that was created has the name piazza and is currently the only object that was explicitly
declared and created in the script. Additional objects can be created and added to the 3D world
using the same structure but different variable names. For example, the following command will
create a new object named plant using the prefabricated plant.osgb model:

plant = viz.add('plant.osgb')

Objects of different file types can be imported in a similar way, irrespectively of how simple or
complex they are in terms of their design. For instance, the following command:

jane = viz.add('vcc_female.cfg')

will allocate a new object to variable jane, using the vcc_ female.cfg model. Files of type.cfg are
used for avatars, 3D objects that represent characters and can have prefabricated behaviors and
animations attached to them by design. Below is a complete version of the script developed in the
section with comments:

496 Handbook of Computer Programming with Python

1 # Import the viz library
2 import viz
3
4 # Create an empty window for the 3D environment
5 viz.go(viz.FULLSCREEN)
6
7 # Add the 3D model of the plaza and enable collision detection
8 piazza = viz.add('piazza.osgb')
9 viz.MainView.collision(viz.ON)
10
11 # Create a plant object based on the 'plant.osgb' model
12 plant = viz.add('plant.osgb')
13
14 # Create a female character object (Jane) based on the
15 # 'vcc_female.cfg' model
16 jane = viz.add('vcc_female.cfg')

Running the script will instantiate a new 3D environment, add the plaza model (3D world), turn
on collisions and gravity for the camera, and add two new objects: a plant and a female character
named Jane. Note that the new objects may not be instantly visible, as they are all created at the
same place as the camera (i.e., the center point of the 3D world). Navigating slightly backwards will
allow the user to see the objects.

12.8 3D (CARTESIAN) COORDINATES AND BASIC OBJECT POSITIONING

In the previous examples, the position of the plaza model, as well as the positions of the newly
created objects and the camera itself, were determined by Vizard and automatically placed at the
center point of the 3D environment. However, in most occasions, the VR developer would require
objects to be instantiated at specific points. As VR development is done on a 3D environment, the
position of objects in space is best described by a three-dimensional (Cartesian) coordinate system
along three axes: x, y, and z (DQ, 2019; Dunn & Parberry, 2011). Vizard uses what is known as a
left-handed coordinate space, as x defines the left-to-right axis, y the bottom-to-top axis, and z
the back-to-front axis in relation to the center of the 3D
world (Figure 12.5).

Any given position within the 3D world can be
described using the three numbers corresponding to
the x, y, and z axes. In programming terms, methods
or commands handling the positioning of objects would
normally accept these numbers as arguments. In Vizard,
the structure of the Python command for positioning an
object to a specific point is the following:

<object>.setPosition([0,0,0])

The <object> keyword is a placeholder for the object
of choice. For example, the following command:

jane.setPosition([0, 0, 8])

will position Jane eight units to the front (axis z) of the camera when the 3D world is instantiated.
Similarly, adding the following command:

plant.setPosition([-3, 0, 10])

Observation 12.14 – The setPosi-
tion() Method: Use the setPo-
sition() method on any object to
place it in a particular position relative
to the center of the map.

Observation 12.13 – 3D Cartesian
Coordinate System: A mathemati-
cal coordinate system describing the
positioning of a given object in 3D
space, using three mutually perpen-
dicular axes (x, y, z).

497Virtual Reality Application Development

will position the plant three units to the left (axis x) and 10 to the front (axis z). Note that the start-
ing point of the axes is the center of the 3D world. As such, a negative value on axis x (e.g., −3) will
move the object to the left. Negative and positive values on other axes work in the same manner.
Any number can be used for positioning if and when necessary, but one needs to be careful with the
initial positioning of objects, as collision detection and gravity features will not prevent an object
from being created outside the boundaries of the 3D world. In this case, the object would fall into
the void. As an example of this, setting axis y to a negative value in the current script will position
the object in the empty space under the floor of the plaza.

It must be noted that, although not explicitly defined, another object is automatically created
when the script is run: the camera itself. In object-oriented programming, it is often the case that
when something is essential for the functionality of the program it is created automatically behind
the scenes, although manual access and control over this may be also given to the programmer. In
the current context, this means that the camera can be also controlled and positioned, as any other
object. Accessing different types of objects within the viz library hierarchy can take some time
to master. Without getting into the details of how one works with multiple cameras and different
views, Vizard allows the VR developer to access the default camera using the viz.MainView.
setPosition() method. Adding the following line to the script will initiate the camera 10 units
behind the center point of the 3D world on the z axis:

viz.MainView.setPosition([0, 0, -10])

By doing this, upon loading the 3D world, the user will appear to be 10 units to the rear of the center
point, facing Jane and the plant near the fountain (Figure 12.6).

FIGURE 12.5 3D Cartesian coordinates in Vizard. (See WorldViz, 2019.)

498 Handbook of Computer Programming with Python

Below is a version of the complete script developed in this section:

1 # Import the viz library
2 import viz
3
4 # Create an empty window for the 3D environment
5 viz.go(viz.FULLSCREEN)
6
7 # Add the 3D model of the plaza and enable collision detection
8 piazza = viz.add('piazza.osgb')
9 viz.MainView.collision(viz.ON)
10
11 # Create a plant object and Jane
12 plant = viz.add('plant.osgb')
13 jane = viz.add('vcc_female.cfg')
14
15 # Set the positions and orientation of the 3D objects and the camera
16 jane.setPosition([0, 0, 8])
17 plant.setPosition([-3, 0, 10])
18 viz.MainView.setPosition([0, 0, -10])

FIGURE 12.6 3D objects and camera starting positions. (See WorldViz, 2019.)

499Virtual Reality Application Development

12.9 EULER ANGLES AND OBJECT ORIENTATION

The orientation of objects within the 3D world is defined
and controlled using a similar logic to positioning.
Objects can be rotated around each of the three axes
(x, y, z) of the 3D coordinate system. In mathematics,
this is known as the Euler Angles, which describe the
rotations around the three axes as the yaw, pitch, and
roll (Ardakani & Bridges, 2010). The command used to
adjust the Euler angles in Vizard is the following:

<object>.setEuler([0, 0, 0])

Note that the orientation is defined in terms of degrees,
with each degree ‘measuring 1/360th of a complete revolution’ (Dunn & Parberry, 2011). Thus, the
arguments passed to the command should be between 0 and 360. Note that the degrees can also
have negative values (i.e., −360 to 0). This dictates whether the rotation is calculated on a clockwise
or counter-clockwise basis. Based on this, adding the following command:

jane.setEuler([180, 0, 0])

will cause Jane to turn by 180° clockwise on the y axis (yaw) and face the camera rather than the
fountain at the center of the plaza. Similarly, positioning the camera 10 units to the left of the origi-
nal position ([−10, 0, 0]) and adjusting its y axis rotation by 45° ([45, 0, 0]) will cause it
to move closer to the corner of the plaza, while facing the area where the two 3D objects are from
a certain angle:

viz.MainView.setPosition([-10, 0, 0])
viz.MainView.setEuler([45, -10, 0])

As mentioned, the use of positive or negative values dictates whether the angle is calculated on a
clockwise or counter-clockwise basis. Changing the argument values of the setPosition() com-
mands for the plant and the camera to the ones below:

plant.setPosition([-8, 0, 2])
viz.MainView.setPosition([-10, 0, 0])

and the values of the setEuler() command for the camera to the following:

viz.MainView.setEuler([45, 15, 0])

will cause the plant to be initiated two units in front of the camera, with the camera facing directly
to it at a 15° downward angle (Figure 12.7).

Below is a version of the complete script developed in this section:

1 # Import the viz library
2 import viz
3
4 # Create an empty window for the 3D environment
5 viz.go(viz.FULLSCREEN)
6
7 # Add the 3D model of the plaza and enable collision detection

Observation 12.15 – Euler Angles
and the setEuler() Method: Euler
Angles are mathematical definitions
that describe the rotations around the
x, y, and z axes of a 3D coordinate
system. These rotations are commonly
referred to as the yaw, pitch, and
roll. Use the setEuler(x, y, z)
method to adjust the rotation of an
object based on Euler Angles.

500 Handbook of Computer Programming with Python

8 piazza = viz.add('piazza.osgb')
9 viz.MainView.collision(viz.ON)
10
11 # Create a plant object and Jane
12 plant = viz.add('plant.osgb')
13 jane = viz.add('vcc_female.cfg')
14
15 # Set the positions and orientation of the 3D objects and the camera
16 jane.setPosition([0, 0, 8])
17 jane.setEuler([180, 0, 0])
18 plant.setPosition([-8, 0, 2])
19 viz.MainView.setPosition([-10, 0, 0])
20 viz.MainView.setEuler([45, 15, 0])

12.10 ABSOLUTE VS RELATIVE POSITIONING

Positioning objects explicitly through static numbers may work in simple situations, but as the proj-
ects and tasks become more complex the VR developer will need to calculate positioning in relation
to other objects rather than by means of hard-coded values. As an example based on the current
version of the script, if the camera was to point at Jane from a short distance, the commands used
for its positioning and orientation could have been changed to something like the following:

viz.MainView.setPosition([0, 0, 5])
viz.MainView.setEuler([0, 15, 0])

FIGURE 12.7 Viewpoint positioning and orientation. (See WorldViz, 2019.)

501Virtual Reality Application Development

This would position the camera three units in front
of Jane who is currently at [0, 0, 8] (i.e., 8−5 = 3) and
facing slightly downwards (15°). However, this way
of working assumes that the VR developer knows the
exact 3D coordinates for all objects at all times (or is
willing to spend a significant amount of time trying
different numbers like the author of this chapter fre-
quently did while writing). This is obviously not an
efficient way of working and, more often than not, the
positioning of objects needs to be decided on the fly.
Thus, the reader must become familiar with another
key concept in VR and 3D content development: the
distinction between absolute and relative positioning.
So far, the values used as arguments for the setPosi-
tion() method were absolute values, in the sense that
they referred to absolute positions within the 3D world.
Relative positioning ignores the global 3D world coor-
dinates and uses another object as a reference point, in
relation to which the coordinate values are calculated.
In order to do this, one needs to have a way for reading
the current position of any given object. In Vizard, this can be done through the getPosi-
tion() method. As with setPosition(), getPosition() returns three numerical values
corresponding to the three coordinate axes (x, y, z). However, as in this instance the values are
being read instead of assigned, no argument passing is needed. The syntax of the command is
the following:

<object>.getPosition()

and it returns all three coordinate numbers of the chosen object automatically. The values returned
by getPosition() could be stored in a variable or passed on to another method or object. For
those unfamiliar with basic programming concepts like storing values to variables or passing them
to methods, it should suffice to mention that in Python a new variable that can hold the type of infor-
mation returned by getPosition() can be created simply by declaring it with a unique name.
In the current context, examples of this are the cases where Jane and the plant are created:

jane_pos = jane.getPosition()

This line of code will store the coordinates of Jane’s current position in the newly created jane_
pos variable. Note that this command should be added in the script after Jane has been placed on
the desired position, otherwise it will return inaccurate numbers. For testing and debugging pur-
poses, the reader can use the print() method to monitor the values stored in the variable:

jane_pos = jane.getPosition()
print("Jane's current position is", jane_pos)

The line will be printed on the Interactive window at the bottom panel of the Vizard environment
(Figure 12.3).

One could also use the contents of jane_pos as a direct argument to another object. The
 following line will position the plant at the same place as Jane:

plant.setPosition(jane_pos)

Observation 12.16 – Absolute versus
Relative Positioning: Terms describing
what the reference for measuring an
object’s position within the 3D world
is. Absolute positioning describes the
position of the object within the 3D
environment in absolute terms (i.e., in
relation to the center of the 3D envi-
ronment), while relative positioning
describes its position in relation to
another object.

Observation 12.17 – The get-
Position() Method: Use the
 getPosition() method to read the
current position of an object in terms
of its Cartesian coordinates.

502 Handbook of Computer Programming with Python

as the x, y, z coordinates passed on will correspond to Jane’s. The assignment of all three coordi-
nates at once may be handy at times, but the VR developer will frequently need to access and use the
values of the three axes individually. Although familiarity with concepts like arrays and indexing
is assumed for the reader, a brief explanation is provided below for those who may not feel entirely
comfortable with them. The jane_pos variable stores the three numbers corresponding to the
three axes as an array or, in Python terms, a list, an organized collection of data values. The values
stored in a list can be accessed individually by using an index, an integer number defining the posi-
tion of the stored value within the array (Table 12.1).

Note that, in programming terms, numbering frequently starts at 0 instead of 1. As such, if one
wanted to access the first value within the list, an index value of 0 should be used. In Python, indi-
ces can be used to pick values from lists using square brackets after the name of the variable that
contains the list. For instance:

jane_pos[0]

will return the first of the three coordinate numbers stored in jane_pos. As with values being
returned by getPosition() in earlier examples, the values acquired in this manner need to
be stored in corresponding variables, or passed on as arguments to another command, object, or
method. For example:

jane_x = jane_pos[0]
jane_z = jane_pos[2]

will store the x and z coordinate values to two newly created and appropriately named variables.
Once the variables are created, replacing the plant positioning command with the following:

plant.setPosition([jane_x, 0, jane_z])

will position the plant on the same x and z axes as Jane. Calculations can be also performed directly
on the variables, either before they are passed to setPosition() or in its arguments list. For
instance, the following lines:

jane_pos = jane.getPosition()
jane_z = jane_pos[2]
cam_z = jane_z -3
viz.MainView.setPosition([0, 0, cam_z])

will position the camera three units in front of Jane, irrespectively of where Jane is positioned
within the 3D world. After replacing the camera positioning commands with the lines above, the
reader can try placing Jane back to the center point by changing the z axis value in the original
positioning command:

jane.setPosition([0, 0, 0])

TABLE 12.1
Coordinate Table and Indices (WorldViz, 2019)

Coordinates List −10 0 5

Index = 0 −10

Index = 1 0

Index = 2 5

503Virtual Reality Application Development

Running the script with these settings will cause Jane and the camera to move together in relation
to each other. The same can be also achieved by skipping the janeZ variable allocation and doing
the calculation directly in the arguments section:

jane_pos = jane.getPosition()
cam_z = jane_pos[2] – 3
viz.MainView.setPosition([0, 0, cam_z])

or by skipping the intermediate variable allocations altogether and working directly with the
jane_pos command:

jane_pos = jane.getPosition()
viz.MainView.setPosition([jane_pos[0], 0, jane_pos[2] – 3])

Ultimately, one could do all the work in one single line:

viz.MainView.setPosition(jane.getPosition()[0], 0, jane.getPosition()[2] -3)

as the index value for the z axis for Jane can be read straight from jane.getPosition() without
being passed to a variable. Any of the above variations could be used to achieve the same goal, and
it is just a matter of programming experience, style, and preference which option should be chosen.
Although the general consensus is that code should be as concise as possible (in which case the last
version should be preferred), such decisions are always based on convenient compromises between
efficiency, ease-of-use, and readability.

The above example demonstrates where the real power of relative positioning lies: the VR devel-
oper can lock the camera to an object without the need to know where it may be at any given
moment. This is especially important in situations where objects are moving at randomly generated
positions and directions within the 3D world during run-time. In such cases, it is impossible for one
to know the position of the objects at the time the code is written.

Once the relationships between objects are established, elements of the 3D world can be moved
around by modifying a minimal number of values, both during the design phase and at run-time.
For instance, the relative distance of the camera from Jane can be modified simply by changing the
number deducted from Jane’s z axis position in the camera positioning command:

viz.MainView.setPosition(jane.getPosition()[0], 0, jane.getPosition()[2] -11)

Similarly, changing the coordinate values of the x and z axes when Jane’s position is firstly defined
in the script will not affect her relative distance from the camera. In this particular occasion this is
rather handy, as changing the z axis coordinate during Jane’s positioning to 8 again:

jane.setPosition([0, 0, 8])

will move her back to the fountain while the camera is automatically placed three units behind the
center point (i.e., 8−11 = −3). This would also create enough space for the new objects that will be
created in the next section.

Below is a version of the complete script developed in this section:

1 # Import the viz library
2 import viz
3
4 # Create an empty window for the 3D environment
5 viz.go(viz.FULLSCREEN)
6

504 Handbook of Computer Programming with Python

7 # Add the 3D model of the plaza and enable collision detection
8 piazza = viz.add('piazza.osgb')
9 viz.MainView.collision(viz.ON)
10
11 # Create a plant object and Jane
12 plant = viz.add('plant.osgb')
13 jane = viz.add('vcc_female.cfg')
14
15 # Set the positions and orientation of the 3D objects and the camera
16 jane.setPosition([0, 0, 8])
17 jane.setEuler([180, 0, 0])
18 plant.setPosition([-3, 0, jane.getPosition()[2] + 3])
19 viz.MainView.setPosition(jane.getPosition()[0], 0,
20 jane.getPosition()[2] - 11)

12.11 CREATING AND POSITIONING MULTIPLE OBJECTS THROUGH LISTS

Familiarity with the basic programming for loop structure is assumed for the reader. If the reader
has no previous exposure to the use of loops in Python, Chapter 2 covers this topic in detail.

In its most basic form, the for loop repeats a task for a set number of times. For instance, the
following statement:

for i in range(5):
 print('Iteration no.', i)

will print the number of the iteration the for loop goes through at run-time. The range keyword is
just a way to tell the for loop to do five iterations (starting at 0). When it comes to 3D objects, a for
loop can be also used for their instantiation and positioning. For example, the following statement:

for i in range(5):
 pigeon = viz.add('pigeon.cfg')
 pigeon.setPosition([i, 0, 0])

will create five pigeons and position them one unit apart on the x axis along the center point of the
map. Note that the pigeons will appear on the right side in relation to the camera once the 3D world
is instantiated. The pigeon.cfg avatar used for the above example comes with the standard installa-
tion of Vizard, similarly to the vcc_ female.cfg female character used for Jane.

Although using the range keyword can be certainly convenient on many occasions, it may not
be the optimal choice for other common VR development tasks, such as the positioning of objects in
asymmetric or random points within the 3D world. For dealing with such tasks, a slightly different
way of using Python for loops can be utilized. Instead of using a predefined range, the conditional
arguments can be structured as a list, exactly like the one used previously for positioning and orien-
tation purposes. As with the previous list examples, the for loop uses an index to access the various
values within the list. In this instance, this is not based on selection rather than on a sequence. For
example, the following block of code:

for i in [0, 1, 2, 3, 4]:
 pigeon = viz.add('pigeon.cfg')
 pigeon.setPosition([i, 0, 0])

will have exactly the same result as the previous one that utilized the range keyword. Using the
for loop has the disadvantage of requiring the conditional arguments to be passed on manually, so
it is not optimal for generating or manipulating large numbers of objects. However, it provides the

505Virtual Reality Application Development

VR developer with direct control over the values passed as arguments. For example, modifying the
above statement in the following manner:

for i in [-5, -2, 1, 2, 6]:
 pigeon = viz.add('pigeon.cfg')
 pigeon.setPosition([i, 0, 0])

will position the pigeons at asymmetric, but explicitly defined positions on the x axis along the
center point.

Another aspect one needs to deal with frequently when managing numerous instances of an
object is the use and management of unique names or identifiers. Although in the example above the
five pigeons were successfully instantiated and positioned, they all appear to have the same name:
pigeon. This can be confusing for the VR developer. Although behind the scenes each pigeon has a
unique identifier indeed, in the current form of the script there seems to be no direct way of manipulat-
ing individual pigeons after they are created. This type of control is essential, especially when it comes
to making the 3D world look more realistic at subsequent stages of development. One of the tricks that
enable one to deal with such issues is to create lists of 3D objects rather than separate ones. In Python,
a new variable can be designated as a list by allocating square brackets to it during the declaration:

my_empty_list = []

This command will create an empty list that can be later
populated with different types of items, including 3D
objects. Pre-defined arguments can be also supplied to
the list during the variable declaration:

my_list = [-8, 0, 6]

New values can be added to an existing list using the
append() method. The appended value is passed as an
argument. For instance, the following command:

my_empty_list.append(7)

will add number 7 to my_empty_list. Similarly:

my_list.remove(6)

will remove number 6 from my_list. The reader can find more information on Python lists in
Chapter 2. In the current context, the list structure will enable the dynamic manipulation of multiple
objects, during or after their instantiation. For example, an empty list holding multiple instances of
the pigeon can be created as a new list variable named pigeons. The pigeons variable will host
as many pigeon objects as desired (within reason). Replacing the for loop of the previous example
with the following lines:

pigeons = []

pigeon = viz.add('pigeon.cfg')
pigeon.setPosition([-1, 0, 0])
pigeons.append(pigeon)

pigeon = viz.add('pigeon.cfg')
pigeon.setPosition([1, 0, 0])
pigeons.append(pigeon)

Observation 12.18 – 3D Object Lists:
In the context of 3D engines or VR
development platforms, 3D objects
operate as regular OOP objects. As
such, the user can create collections
of objects using regular OOP struc-
tures, such as lists and arrays.

506 Handbook of Computer Programming with Python

will create two new pigeons, position them two units apart along the x axis (−1 and 1) and at the
center point on the z axis (0), and add them to the pigeons list. This time, however, each of the
pigeons can be explicitly accessed at any point after instantiation, using the corresponding index
value on the pigeons list. For example, adding the following command to the previous example:

pigeons[0].setPosition([0, 0, 5])

will place the first of the two newly created pigeons closer to Jane along the z axis (as mentioned, an
index value of 0 corresponds to the first object in the list).

A more efficient and condensed way of dealing with such tasks would be to use a for loop, both
for the creation and positioning of multiple pigeons within the 3D world and for adding them to the
list. For instance, replacing the last example with the following block of code:

pigeons = []

for i in [-5, -3, 2, 4, 5]:
 pigeon = viz.add('pigeon.cfg')
 pigeon.setPosition([i, 0, 0])
 pigeons.append(pigeon)

will create five pigeons and position them at asymmetrical but predefined points along the x axis from
the center point of the 3D world, before finally adding them to the pigeons list. As discussed, access
to individual pigeons within the pigeons list is now available for further manipulation. Adding the
following lines to the script will reposition pigeons 1, 4, and 5 to the specified coordinates:

pigeons[0].setPosition([-1, 0, 6])
pigeons[3].setPosition([2, 0, 3])
pigeons[4].setPosition([4, 0, 4])

Finally, the positioning of the pigeons can be made to
appear slightly more realistic by generating random val-
ues for the coordinates of the pigeons, rather than trying
to do this explicitly like in the previous example. Python
provides several methods for the generation of random
values. For this example, the uniform() method from
the random library is used. This method generates val-
ues within a given range. For instance:

import random
print('Random value', random.uniform(1, 10))

will print a random value between 1 and 10. In terms of the pigeons example, random.uniform()
can be used to randomly generate coordinate numbers for any of the three axes. For example, the
following commands:

pigeons[1].setPosition([random.uniform(-5, 5), 0, 0])
pigeons[3].setPosition([0, 0, random.uniform(2, 7)])
pigeons[4].setPosition([random.uniform(-5, 5), 0, random.uniform(2, 7)])

will position the second pigeon from the pigeons list
(index = 1) between −5 and 5 units on the x axis from
the center point, the fourth pigeon (index = 3) between
2 and 7 units on the z axis, and the fifth one (index = 4)
somewhere within the area defined by x = −5 to 5 and
y = 2 to 7. In reality, such tasks need to be automated
further, especially in situations involving large numbers

Observation 12.19 – Randomization:
In the context of interactive 3D con-
tent development, randomization
commonly refers to the process of
allocating artificially generated ran-
dom sequences of actions to specific
objects and/or items within object
lists and arrays. This provides a sense
of realism to the artificial 3D worlds.

Observation 12.20 – The random.
uniform() Method: Use the uni-
form() method from the random
library to generate random values
within a given range.

507Virtual Reality Application Development

of objects. The following example will create five pigeons, randomly position them along the x and
z axes within the limits passed as arguments to random.uniform(), and append each pigeon to
the pigeons list for further use:

import random

[…]

pigeons = []

for i in range(5):
 pigeon = viz.add(‘pigeon.cfg’)
 pigeon.setPosition([random.uniform(-5, 5), 0, random.uniform(2, 7)])
 pigeons.append(pigeon)

The real value of this structure lies on the fact that the VR developer could use the exact same lines
of code to create and position any number of pigeons. The only difference would be the value passed
as an argument to the range() method.

As the script starts becoming slightly lengthier, this may be a good time to quickly bring up the
notion of organizing the code through functions. This will be also necessary for the tasks covered
in the next section. A basic level of understanding of functions in Python is assumed for the reader.
However, a brief example is provided below for those not familiar with this aspect. A Python function
can be declared by using the def keyword followed by a (unique) name and a colon. For instance:

def create_pigeons():

will declare the create_ pigeons() function. Commands can be added to the function in a
similar manner as in the for loop case shown earlier. For instance, if one would like to group all the
pigeon instantiation and positioning commands developed earlier under the create_pigeons()
function, the structure could look like the one below:

def create_pigeons():
 pigeons = []
 for i in range(5):
 pigeon = viz.add(‘pigeon.cfg’)
 pigeon.setPosition([random.uniform(-5, 5), 0, random.uniform(2, 7)])
 pigeons.append(pigeon)

Using this structure, instead of having to type all the commands needed to create new pigeons, the
VR developer can merely call create_ pigeons() whenever needed. As an example, the follow-
ing commands will create 15 pigeons (i.e., 3 × 5):

create_pigeons()
create_pigeons()
create_pigeons()

Alternatively, one could also use a for loop for the same
task to further automate the workflow:

for i in range(3):
 create_pigeons()

However, this structure intentionally contains a logical
error. As the variables declared inside a Python function
have a local scope, the pigeons list will not be visible

Observation 12.21 – Passing 3D
Objects as Arguments: In line with
universal OOP programming princi-
ples, 3D objects and object lists can
be passed to methods and functions
as arguments. This allows VR devel-
opers to build programming structures
that use these objects dynamically,
based on the requirements of the VR
application.

508 Handbook of Computer Programming with Python

to the rest of the script. In other words, while the pigeons will be created and positioned as expected,
the VR developer will not have control over individual pigeons outside the create_pigeons()
function, which was one of the original reasons for doing all this work. To address this, one can cre-
ate the pigeons list outside the function, so it is visible globally, and then pass it to the function
as an argument:

pigeons = []

def create_pigeons (pigeon_list):
 for i in range(4):
 pigeon = viz.add('pigeon.cfg')
 pigeon.setPosition([random.uniform(-5, 5), 0, random.uniform(2, 7)])
 pigeon_list.append(pigeon)

for i in range(3):
 create_pigeons(pigeons)

This is an important notion, as it dictates whether a variable should be declared inside or outside the
function. More details on this topic can be found in Chapters 2 and 3, and in other sources cover-
ing the Python language in detail (Ascher & Lutz, 1999). Back to the current example, any other
parameter that may need to be modified within the function can be passed as an argument too. For
example, if the number of pigeons created inside the create_pigeons() function needs to be
adjusted frequently, it can be passed as an argument like in the following example:

pigeons = []

def create_pigeons(no_of_pigeons, pigeon_list):
 for i in range(no_of_pigeons):
 pigeon = viz.add('pigeon.cfg')
 pigeon.setPosition([random.uniform(-5, 5), 0, random.uniform(2, 7)])
 pigeon_list.append(pigeon)

create_pigeons(30, pigeons)

This structure will generate 30 randomly positioned pigeons (Figure 12.8). In a similar manner, the
VR developer could have created any number of pigeons just by passing the desired number as a
numeric argument to the create_pigeons() function.

In order to be able to manipulate the number of pigeons easily when the script becomes more
complex, the pigeon number can be passed to a variable at the beginning of the block (or the script).
This will allow for the adjustment of the number of pigeons globally, removing thus the need to check
the details of each function or block of code if the number of pigeons needs to be changed later on:

pigeons_no = 30

[…]

pigeons = []

def create_pigeons(no_of_pigeons, pigeon_list):
 for i in range(no_of_pigeons):
 pigeon = viz.add(‘pigeon.cfg’)
 pigeon.setPosition([random.uniform(-5, 5), 0, random.uniform(2, 7)])
 pigeon_list.append(pigeon)

create_pigeons(pigeons_no, pigeons)

509Virtual Reality Application Development

As with most programming tasks, different ways of achieving the same result are available. In general
terms, one should adopt the structuring and programming style that best suits their style or the project
requirements, but this is something that is being developed over time rather than decided based on
a few examples in a book chapter. Nevertheless, it must be mentioned that various alternative meth-
ods to achieve similar results with the examples above can be found on the tutorial pages of Vizard.
Comparing different approaches will help the reader to start generating different programming ideas
about the same task and developing a more creative mindset towards programming in general.

Below is a version of the complete script developed in this section, resulting in the 3D environ-
ment shown in Figure 12.8:

1 # Import libraries
2 import viz
3 import random
4
5 # Create an empty window for the 3D environment
6 viz.go(viz.FULLSCREEN)
7
8 # Add the 3D model of the plaza and enable collision detection
9 piazza = viz.add('piazza.osgb')
10 viz.MainView.collision(viz.ON)
11
12 # Create a plant object and Jane
13 plant = viz.add('plant.osgb')
14 jane = viz.add('vcc_female.cfg')
15

FIGURE 12.8 Multiple 3D object creation and positioning. (See WorldViz, 2019.)

510 Handbook of Computer Programming with Python

16 # Set the positions and orientation of the 3D objects and the camera
17 jane.setPosition([0, 0, 8])
18 jane.setEuler([180, 0, 0])
19 plant.setPosition([-3, 0, jane.getPosition()[2] + 3])
20 viz.MainView.setPosition(jane.getPosition()[0], 0,
21 jane.getPosition()[2] - 11)
22
23 # Create and position multiple pigeon objects
24 pigeons_no = 30
25 pigeons = []
26
27 def create_pigeons(no_of_pigeons, pigeon_list):
28 for i in range(no_of_pigeons):
29 pigeon = viz.add('pigeon.cfg')
30 pigeon.setPosition([random.uniform(-5, 5), 0,
31 random.uniform(2, 7)])
32 pigeon_list.append(pigeon)
33
34 create_pigeons(pigeons_no, pigeons)

12.12 USING PREFABRICATED ANIMATIONS

The 3D objects created so far in this chapter are com-
pletely motionless. Although the complexities of detailed
object animation are best left to 3D animators and game
physics programmers, there are a number of ways the VR
developer can inject some life to the 3D world. Arguably,
the easiest way to do this is by using the prefabricated
animations that are commonly attached to the 3D objects
during the design phase. In the simplest scenarios, the VR
developer can access these animations simply by call-
ing specific methods and commands. In the case of ava-
tar objects like Jane, such animations can take the form
of object states. The Vizard platform provides access to
the various states of an object through the <object>.
state() method. Different states for a given avatar are defined by a predetermined, unique numerical
index value that is passed as an argument. For example, adding the following command to the script:

jane.state(4)

will make Jane applaud the user for bringing her to life. Similarly, changing Jane’s state to the following:

jane.state(1)

will make her look around idly, waiting for further instructions.
As mentioned, in the case of avatar objects like Jane

and the pigeons, animations can be stored as properties
of the prefabricated object when it is designed. Object
animations can be also programmed by the VR devel-
oper, but this topic exceeds the scope of this chapter.
The reader can find more information on this topic on
the detailed Vizard API reference (WorldViz, 2019).

Observation 12.22 – Prefabricated
Animations: Prefabricated 3D objects
can be static or animated. Although
game engines provide the neces-
sary tools for animating initially static
objects, it is common for prefabri-
cated objects to include certain ani-
mation behaviors by default. These
are determined by the original cre-
ators of the objects (e.g., 3D artists,
animators).

Observation 12.23 – The state()
Keyword: In Vizard, the state() key-
word is used to describe, handle, and
trigger the various different animations
allocated to a given 3D object.

511Virtual Reality Application Development

Nevertheless, a basic level of realism can be achieved by automating the states of an object, in order
to make it behave in a seemingly natural manner. One way of performing such tasks is by using a
timer to trigger specific states at predetermined intervals. Vizard offers two timer methods through
the vizact library. In its simplest form, the timer will trigger an event at a predefined time. In this
particular instance, this event will be Jane’s state. Replacing the commands of the previous example
with the following lines:

import vizact

[…]

def jane_state():
 jane.state(1)

jane.state(4)
jane_state_timer = vizact.ontimer2(3, 1, jane_state)

will automate Jane’s actions by using a timed trigger. Jane will firstly appear to be applauding and
three seconds later will switch to the waiting state. This structure firstly imports the vizact library
that is necessary for using the ontimer() method. Next, it creates a function named jane_state()
that changes Jane’s state to the idle animation (state 1), and sets Jane’s initial state to the applauding
animation (state 4). Finally, it uses the ontimer2() method from the vizact library to trigger the
jane_state function after three seconds. Note that the ontimer() method is allocated to the jane_
state_timer variable. This is in order to have control over this particular timer if more timers are
added to the script. The second argument in the arguments list of the ontimer() method dictates how
many times the underlying task must be executed. Note that if an action is to be repeated indefinitely
rather than for a set number of times, the ontimer() method can be used instead of ontimer2().
The ontimer() method behaves exactly like ontimer2(), but the second argument is missing, as
the timer will repeat indefinitely. As mentioned earlier, changing an object’s state indefinitely may be
required in order to try and create a sense of realism. For instance, the VR developer may want to do
so in order to create the illusion that computer-controlled characters have some sort of intelligence and
make informed decisions. In the existing script, changing the last structure to the following:

def jane_state():
 x = int(random.choice([1, 9]))
 jane.state(x)

jane.state(1)
jane_state_timer = vizact.ontimer((random.randint(10, 20)), jane_state)

will make Jane’s states randomly change between wait-
ing (state 1) and looking for something or someone
(state 9). This is decided by a variation of random.
choice(), the command used in earlier examples that
picks an element of the supplied list at random on every
iteration. Similarly, if the random.randint() is used
as an argument for the timer it will pick a random inte-
ger from the range provided in its argument list (e.g.,
10–20 seconds). Note that Jane’s state is initialized to
state 1 before the timer is called. This way, Jane starts at
a preset animation rather than motionless.

Observation 12.24 – Timer: In OOP,
and in programming in general, a
timer represents an object that allows
the programmer to execute specific
commands at predefined times and/
or intervals. In the context of game
engines, the timer is a particularly
important programming component,
as it allows one to dictate and refine
the apparent movements and actions
of 3D objects within the 3D world.

512 Handbook of Computer Programming with Python

The same logic can be also used in order to change
the state of specific objects from an object list. For
example, a similar structure could be used to change the
state of a given pigeon from the pigeon list:

def pigeon_state():
 x = int(random.choice([1, 3]))
 pigeons[4].state(x)

pigeon_state_timer = vizact.ontimer((random.randint(10, 20)), pigeon_state)

In this case, it is likely that the animation states should be changed for random pigeons from the list
on every iteration of the timer rather than a given, preselected one. In order to do this, choosing a
pigeon from the list needs to be randomized too:

def pigeon_state():
 x = int(random.choice([1, 3]))
 pigeons[random.randint(0, pigeons_no)].state(x)

pigeon_state_timer=vizact.ontimer((random.randint(10, 20)), pigeon_state)

Adding the above commands to the script will gradually make the pigeons change their state in a
random order and at random times (Figure 12.9).

The ontimer() method offers another way of doing this. Instead of randomizing the selection
from the list inside the function, the selected item can be passed as an argument. Replacing the last
structure with the following:

Observation 12.25 – The ontimer()
and ontimer2() Methods: Use the
ontimer() or ontimer2() methods
from the vizact library to repeatedly
trigger a particular action.

FIGURE 12.9 Adding animation and movement to 3D objects. (See WorldViz, 2019.)

513Virtual Reality Application Development

def pigeon_state(rand_pigeon):
 x = int(random.choice([1, 3]))
 rand_pigeon.state(x)

pigeon_state_timer=vizact.ontimer(1,pigeon_state,vizact.choice(pigeons))

will pick a random pigeon from the pigeon list when the ontimer() is executed, and will
pass it to the pigeon_state() function as an argument with the name rand _pigeon.
The vizact.choice() method automatically selects a random object from a list. Note that the
ontimer() method allows the user to send arguments to the chosen function (pigeon_state)
by adding them to the argument list. The advantage of this version of the structure over the previ-
ous ones is that the VR developer does not have to change anything in the code if the pigeons list
is altered elsewhere in the script. For example, if one decides to create 300 pigeons rather than 30
when the pigeons list is firstly created, the vizact.choice() will adapt to the size of the list.
Writing code that dynamically adjusts to possible changes of variables in other parts of the program
may take some more work and thinking, but it is certainly worth the effort.

Having introduced the random.choice() method, it may be worth making a small amend-
ment to the create_pigeons function discussed earlier. One can use this method to generate
random states for the pigeons when they are instantiated for the first time. This will prevent the
pigeons from being instantiated in a static state and having to wait until they are randomly animated
by the pigeon_state function later on. Adding the following line after setting the position of a
pigeon inside the create_pigeons function:

[…]

pigeon.state(random.choice([1, 3]))

[…]

will instantiate the pigeons on an animated state. At this
phase, many pigeons may still move simultaneously in
a rather artificial manner, but the amendments that will
be made on the next section should help to significantly
moderate this effect.

Below is a version of the complete script developed
in this section:

1 # Import libraries
2 import viz
3 import random
4 import vizact
5
6 # Create an empty window for the 3D environment
7 viz.setMultiSample(4)
8 viz.go(viz.FULLSCREEN)
9
10 # Add the 3D model of the plaza and enable collision detection
11 piazza = viz.add(‘piazza.osgb’)
12 viz.MainView.collision(viz.ON)
13
14 # Create a plant object and Jane
15 plant = viz.add(‘plant.osgb’)
16 jane = viz.add(‘vcc_female.cfg’)

Observation 12.26 – The choice()
Method: Use the choice() method
from the vizact library to randomly
select an object from a given object
list.

514 Handbook of Computer Programming with Python

17
18 # Set the positions and orientation of the 3D objects and the camera
19 jane.setPosition([0, 0, 8])
20 jane.setEuler([180, 0, 0])
21 plant.setPosition([-3, 0, jane.getPosition()[2] + 3])
22 viz.MainView.setPosition(jane.getPosition()[0], 0,
23 jane.getPosition()[2] - 11)
24
25 # Create and position multiple pigeon objects
26 pigeons_no = 30
27 pigeons = []
28
29 def create_pigeons(no_of_pigeons, pigeon_list):
30 for i in range(no_of_pigeons):
31 pigeon = viz.add(‘pigeon.cfg’)
32 pigeon.setPosition([random.uniform(-5, 5), 0,
33 random.uniform(2, 7)])
34 pigeon.state(random.choice([1, 3]))
35 pigeon_list.append(pigeon)
36
37 create_pigeons(pigeons_no, pigeons)
38
39 # Initialize and randomize the animation states of Jane
40 def jane_state():
41 x = int(random.choice([1, 9]))
42 jane.state(x)
43
44 jane.state(1)
45 jane_state_timer = vizact.ontimer((random.randint(10, 20)),
46 jane_state)
47
48 # Initialize & randomize the animation states & movement of the pigeons
49 def pigeon_state(rand_pigeon):
50 x = int(random.choice([1, 3]))
51 rand_pigeon.state(x)
52
53 pigeon_state_timer = vizact.ontimer(1, pigeon_state,
54 vizact.choice(pigeons))

12.13 BASIC MOVEMENT

In addition to changing avatar object states, the vizact
library offers an easy way to create complex avatar
object movements, such as walking, turning, or moving
different parts of the body of a character in a controlled
manner. In spite of their technical and developmental
complexity, such actions are similar to the positioning
and orientation tasks discussed in previous sections, as
they also use the Cartesian coordinates system to deter-
mine their direction and angle changes over time. For
instance, the following command:

walk = vizact.walkTo([0, 0, 2])

Observation 12.27 – Animation vs
Movement: Although prefabricated
animations animate the object (e.g.,
provide a walking movement to a
character’s body), they may not move
the object within the 3D world (e.g.,
the character gets a walking anima-
tion movement but remains at the
same point in space). In most cases,
animations and movement com-
mands must be combined to create a
realistic object behavior.

515Virtual Reality Application Development

can be used to instruct a character to perform a (prefabricated) walking movement from their cur-
rent position towards a specific point in the 3D world (i.e., two units from the center point on the z
axis). Similarly, the following command:

turn = vizact.turn(150)

can be used to make a character change their orientation by 150° on the z axis (clockwise), with
0 being the north of the 3D world. Note that the designated vizact movement commands are
passed to the walk and turn variables. In order for the movement to take place, these variables
must be added to the desired object using the <object>.addAction() method. The following
command:

jane.addAction(walk)

will cause Jane to perform the walking movement that has been passed to the walk variable. The
following statements will make Jane walk to the left of the camera and turn in order to look at the
position the MainView camera is located during instantiation:

jane_walk = vizact.walkTo([-3, 0, 2])
jane.addAction(jane_walk)
jane_turn = vizact.turn(150)
jane.addAction(jane_turn)

Movement actions can be also randomly determined
and triggered. As an example, a new function named
pigeon_walk can be created, based on the pigeon_
state function:

def pigeon_walk(rand_pigeon):
 walk = vizact.walkTo([random.randint(-5, 5), 0, random.randint(0, 8)])
 rand_pigeon.addAction(walk)

The pigeon_walk function allocates a walking action to the walk variable. The coordinates of
the movement are determined by generating random values for the x (−5 to 5) and z (0 to 8) axes.
This is in order to create the illusion that the pigeons are moving randomly but, at the same time,
to contain them within a predetermined area around the center of the 3D world. A new instance
of ontimer() can be used to call the pigeon_walk function at random times and for random
pigeons from the pigeons list:

pigeon_walk_timer = vizact.ontimer(random.randint(1, 3),
pigeon_walk, vizact.choice(pigeons))

The above structure will cause the pigeons to start moving around one by one and at random times.
Although the latest amendments will make Jane and the pigeons move randomly, a more careful

examination will unveil that the walking animation occasionally stops while the characters are still
in motion. This is more noticeable when the random times between changing states are shorter or
when the number of objects is lower. The reader can set the number of pigeons to a very low number
(e.g., 2–3) and the ontimer() interval for the jane_state_timer to one or two seconds in
order to observe this issue more comfortably:

Observation 12.28 – The walkTo(),
turn() and addAction() Methods:
Use the walkTo() and turn() meth-
ods to prepare an object to move and/
or turn in a specified manner. Use the
addAction() method to enable the
move or turn action.

516 Handbook of Computer Programming with Python

[…]

pigeons_no = 30

[…]

jane_state_timer = vizact.ontimer(1, jane_state)

[…]

(Note: Remember to change the values back to their original settings after this test otherwise Jane
will behave erratically.)

If a state is triggered while Jane or the pigeons are in walking mode they will appear to be float-
ing. The reason for this inconsistency is that the ontimer() commands that were originally created
for controlling the states of Jane and the pigeons through the jane_state and pigeon_state
functions, are occasionally overriding the prefabricated walking animation while the walking move-
ment is still in place. In order to address such issues, the logical order and the structure of the script
must be controlled. For example, in the case of Jane’s movement, the random state allocation can be
disabled by stopping the respective timer:

[…]

jane_state_timer.setEnabled(0)
jane_walk = vizact.walkTo([-3, 0, 2])
jane.addAction(jane_walk)
jane_turn = vizact.turn(150)
jane.addAction(jane_turn)

[…]

The setEnabled(0) command stops jane_state_timer from triggering different states for
Jane. It can be put back to action by passing value 1 as an argument.

Another way of addressing such overlaps would be to
control the animation states and the movements of an avatar
object under the same timer and structure rather than sepa-
rate ones. In the current script, in the case of the pigeons,
one may choose to unify the randomization of the states
and the movement in one function. This will allow a more
precise control over the state of each object at any given
time and will prevent the changing state from overriding a simultaneous movement of any given pigeon.
For this sort of control, the VR developer will need to utilize a simple logical control structure using the
if…else statement (Chapter 2). Modifying the existing pigeon_state function to the following:

def pigeon_state_move(rand_pigeon):
 random_switch = random.choice([1, 2])
 if (random_switch == 1):
 rand_pigeon.clearActions()
 x = int(random.choice([1, 3]))
 rand_pigeon.state(x)
 else:
 walk = vizact.walkTo([random.randint(-5, 5), 0, random.randint(0, 8)])
 rand_pigeon.addAction(walk)

pigeon_state_timer = vizact.ontimer(1, pigeon_state_move,
vizact.choice(pigeons))

Observation 12.29 – The setEn-
abled() Method: Use the setEn-
abled() method to deactivate (0) or
activate (1) the timer associated with
the actions of an object.

517Virtual Reality Application Development

will allow for the control of the state and movement of any given pigeon in a mutually exclusive
manner, avoiding state/movement overlapping. A random value generator has been added to the
start of the function. This is in order to determine whether the current iteration of the function will
alter the state a) or the movement b) of the pigeon. Note that the clearActions() command has
been added to the beginning of the if…else statement. This clears all previous actions, such as
walking animations, that may have been added to this pigeon on previous iterations. This way, the
pigeon will either change state or move to a new location, but the possibility of changing states
while walking is now controlled. To improve clarity, the above structure can be placed just under
the pigeon creation section.

The above solutions to this logical issue may not
be the optimal or the most appropriate ones. However,
they are provided in order to encourage the reader to
start thinking creatively when it comes to structuring
and controlling the order and the general logic of the
actions of the various objects. This is an important part
not only of VR development, but of coding in general,
and it is too broad a subject to be analyzed in a single
book chapter.

As a last comment for this section, once adding ani-
mation and movement to the 3D world, the user may
notice some rendering artefacts and aliasing along the
edges of the objects. Vizard provides the viz.set-
MultiSample() method in order to smoothen out
such effects. Adding the following line:

viz.setMultiSample(4)

before the viz.go() command at the beginning of the
script, will provide anti-aliasing processing while ren-
dering the 3D world. The number passed as an argument dictates the resolution of the anti-aliasing
correction, and it can be adjusted according to the seriousness of the effect and the computational
power of the system.

Below is a version of the complete script for this section:

1 # Import libraries
2 import viz
3 import random
4 import vizact
5
6 # Create an empty window for the 3D environment
7 viz.setMultiSample(4)
8 viz.go(viz.FULLSCREEN)
9
10 # Add the 3D model of the plaza and enable collision detection
11 piazza = viz.add(‘piazza.osgb’)
12 viz.MainView.collision(viz.ON)
13
14 # Create a plant object and the Jane avatar
15 plant = viz.add(‘plant.osgb’)
16 jane = viz.add(‘vcc_female.cfg’)
17
18 # Set the positions and orientation of the 3D objects and the camera

Observation 12.30 – The clear-
Actions() Method: Use the
clearActions() method to cancel
all previous actions associated with a
particular object.

Observation 12.31 – Anti-Aliasing:
As the 3D environment consists of
audiovisual reconstructions based
on samples rather than continuous
signals, distortions and artefacts can
frequently occur in the form of alias-
ing. Anti-aliasing refers to the vari-
ous techniques and tools addressing
distortions and artefacts caused by
sampling.

518 Handbook of Computer Programming with Python

19 jane.setPosition([0, 0, 8])
20 jane.setEuler([180, 0, 0])
21 plant.setPosition([-3, 0, jane.getPosition()[2] + 3])
22 viz.MainView.setPosition(jane.getPosition()[0], 0,
23 jane.getPosition()[2] - 11)
24
25 # Create and position multiple pigeon objects
26 pigeons_no = 30
27 pigeons = []
28
29 def create_pigeons(no_of_pigeons, pigeon_list):
30 for i in range(no_of_pigeons):
31 pigeon = viz.add(‘pigeon.cfg’)
32 pigeon.setPosition([random.uniform(-5, 5), 0,
33 random.uniform(2, 7)])
34 pigeon.state(random.choice([1, 3]))
35 pigeon_list.append(pigeon)
36
37 create_pigeons(pigeons_no, pigeons)
38
39 # Initialize & randomize the animation states & movement of the pigeons
40 def pigeon_state_move(rand_pigeon):
41 random_switch = random.choice([1, 2])
42 if (random_switch == 1):
43 rand_pigeon.clearActions()
44 x = int(random.choice([1, 3]))
45 rand_pigeon.state(x)
46 else:
47 walk = vizact.walkTo([random.randint(-5, 5), 0,
48 random.randint(0, 8)])
49 rand_pigeon.addAction(walk)
50
51 pigeon_state_timer = vizact.ontimer(1, pigeon_state_move,
52 vizact.choice(pigeons))
53
54 # Randomize the animation states of Jane
55 def jane_state():
56 x = int(random.choice([1, 9]))
57 jane.state(x)
58
59 jane.state(1)
60 jane_state_timer = vizact.ontimer((random.randint(10, 20)), jane_state)
61
62 # Jane walking and turning actions
63 jane_state_timer.setEnabled(0)
64 jane_walk = vizact.walkTo([-3, 0, 2])
65 jane.addAction(jane_walk)
66 jane_turn = vizact.turn(160)
67 jane.addAction(jane_turn)

519Virtual Reality Application Development

12.14 BASIC INTERACTION

At this point, the 3D world created over the previous sections should be showing some signs of life.
However, one of the main elements that make VR special is still missing. As opposed to traditional
linear immersive media, one of the fundamental characteristics of VR is that it is interactive.
Interaction applies to many facets of the VR experience, such as the interaction between the user
and the 3D world, between the various different 3D objects, or the way specific elements of the
environment react to the user’s input. Providing a concrete and well-designed interaction system to
the user is a rather complicated process involving thorough planning, technical aptitude and under-
standing, and extensive prototyping and testing. In this section, a few basic, related ideas are pre-
sented, in order to help the reader understand the logic and the challenges behind the design of
interaction systems for VR. More detailed information on such topics can be found in works that
cover VR development more extensively, such as Sherman and Craig’s Understanding Virtual
Reality: Interface, Application and Design (Sherman & Craig, 2018) and Glover and Linowes’
Complete Virtual Reality and Augmented Reality Development with Unity (Glover & Linowes,
2019).

In its most basic form, an interaction system may
consist of simple keyboard or mouse commands, or
user movements that trigger specific events and behav-
iors. In Vizard, one of the commands allowing the VR
developer to handle such tasks comes in the form of the
onkeydown() method from the vizact library. The
method determines if a specific key has been pressed
and executes any associated actions accordingly. As an
example, one could use the keyboard to instruct Jane to
dance. Before asking Jane to do so, it is a good idea to
remove the following lines that automate Jane’s walking
and turning movements from the end of the previously
created script:

jane_state_timer.setEnabled(0)
jane_walk = vizact.walkTo([-3, 0, 2])
jane.addAction(jane_walk)
jane_turn = vizact.turn(160)
jane.addAction(jane_turn)

Changing the deleted lines with the following:

vizact.onkeydown('d', jane.state, 5)

will make Jane dance when button ‘d’ is pressed on the keyboard. Jane will revert to one of the ran-
domized states dictated by the next jane_state_timer trigger (jane_state function), as the
jane_state_timer.setEnabled(0) command used to stop this from happening is deleted.

The above is a rather trivial task and does not add much to the VR experience. One may want to
replace the dance command once more with the following lines:

jane_state_timer.setEnabled(0)
walk_to_camera = vizact.walkTo([viz.MainView.getPosition()[0], 0,
viz.MainView.getPosition()[2] + 3])
jane.addAction(walk_to_camera)

Observation 12.32 – Interactive ver-
sus Linear Systems: One of the main
characteristics of VR systems is that
they are interactive. Essentially, this
means that the interaction between
the user and the 3D environment can
affect the user experience, as opposed
to linear system productions like film
or television where the experience is
largely pre- determined in terms of the
audiovisual content.

Observation 12.33 – The onkey-
down() and onkeyup() Methods:
Use the onkeydown() and
onkeyup() methods to trigger par-
ticular actions when a specified key
is pressed and/or released.

520 Handbook of Computer Programming with Python

This block of code will firstly stop jane_state_timer and then make Jane to walk towards the
camera. The positional x and y coordinates for the walkTo() method are acquired through, and
calculated based on, the relevant getPosition() list elements. If the VR developer prefers Jane
to follow the camera only when a specific event takes place (e.g., if a specific button is pressed), the
above lines can be put into a function and called on demand:

def jane_walk():
 jane_state_timer.setEnabled(0)
 walk_to_camera = vizact.walkTo([viz.MainView.getPosition()[0], 0,
 viz.MainView.getPosition()[2] + 3])
 jane.addAction(walk_to_camera)

vizact.onkeydown('w', jane_walk)

An element of independence in the way Jane behaves and reacts to the user’s input can be also added
by randomizing Jane’s willingness to move to the point dictated by the user, adding a sense of real-
ism to her behavior. This idea could be further expanded into a more elaborate interaction system
based on Jane’s seemingly randomized mood and the ability to control the level of politeness and
patience of the user through input commands. This is an extremely brief introduction to another
element the reader needs to be aware of: one can use simplistic or elaborate artificial intelligence
techniques to create the illusion of realism in VR projects. Nevertheless, the creation of elaborate,
highly realistic VR experiences of this level exceeds the scope of this chapter. For the time being,
Jane’s response to the user’s walking request can be based simply on random chance:

def jane_walk():
 jane_state_timer.setEnabled(0)
 random_switch = random.choice([1, 2])
 if random_switch == 1:
 walk_to_camera = vizact.walkTo([viz.MainView.getPosition()[0], 0,
 viz.MainView.getPosition()[2] + 3])
 jane.addAction(walk_to_camera)
 else:
 jane.clearActions()
 jane_state_timer.setEnabled(1)

vizact.onkeydown(‘w’, jane_walk)

In the jane_walk function, the timer that causes Jane to switch states is firstly disabled in order to
avoid interfering with the user’s input. Next, the random.choice() method is used to randomly
generate a value of either 1 or 2. If 1 is generated, Jane walks towards the camera, otherwise she
refuses to follow the user’s instruction and switches back to the normal cycle of changing states, as
the jane_state_timer is enabled again. Note that clearActions() is used in order to stop
Jane from walking before starting the timer again. If this was not done, the state changes while she
is still in a walking movement would have caused her to appear floating.

In line with the concept and the theme of the 3D world under development, one more feature
that could be added to the script is Jane’s ability to feed the pigeons upon request. This type of task
is interesting, as it involves both the interaction of the user with Jane and of Jane with the pigeons.
Adding the following function to the end of the script:

def jane_feed_pigeons(no_of_pigeons):
 jane_state_timer.setEnabled(0)
 pigeon_state_timer.setEnabled(0)
 jane.clearActions()
 jane.state(15)

521Virtual Reality Application Development

 for i in range(no_of_pigeons):
 walk = vizact.walkTo([jane.getPosition()[0], 0, jane.

getPosition()[2]])
 pigeons[i].addAction(walk)

vizact.onkeydown('f', jane_feed_pigeons, pigeons_no)
vizact.onkeyup('f', jane_state)

will disable the timers controlling the random allocation of states and movements for Jane and
the pigeons, clear any existing actions in place (e.g., walking), change Jane’s state to feeding
(state 15), and make the pigeons walk to Jane as long as she is feeding them. Note that an additional
onkeyup() command has been added after onkeydown(), with the same key identifier (i.e., ‘f’).
This allows the user to feed the pigeons as long as key ‘f’ is being pressed, and reverts back to a
regular state when it is released. Finally, adding the following line:

pigeon_state_timer.setEnabled(1)

to the beginning of the jane_state function will ensure that when Jane stops feeding the pigeons
they will also return to their regular behavior. This is due to the timer turning on again.

Below is a version of the complete script developed in this section:

1 # Import libraries
2 import viz
3 import random
4 import vizact
5
6 # Create an empty window for the 3D environment
7 viz.setMultiSample(4)
8 viz.go(viz.FULLSCREEN)
9
10 # Add the 3D model of the plaza and enable collision detection
11 piazza = viz.add(‘piazza.osgb’)
12 viz.MainView.collision(viz.ON)
13
14 # Create a plant object and the Jane avatar
15 plant = viz.add(‘plant.osgb’)
16 jane = viz.add(‘vcc_female.cfg’)
17
18 # Set the positions and orientation of the 3D objects and the camera
19 jane.setPosition([0, 0, 8])
20 jane.setEuler([180, 0, 0])
21 plant.setPosition([-3, 0, jane.getPosition()[2] + 3])
22 viz.MainView.setPosition(jane.getPosition()[0], 0,
23 jane.getPosition()[2] - 11)
24
25 # Create and position multiple pigeon objects
26 pigeons_no = 30
27 pigeons = []
28
29 def create_pigeons(no_of_pigeons, pigeon_list):
30 for i in range(no_of_pigeons):
31 pigeon = viz.add(‘pigeon.cfg’)
32 pigeon.setPosition([random.uniform(-5, 5), 0,

522 Handbook of Computer Programming with Python

33 random.uniform(2, 7)])
34 pigeon.state(random.choice([1, 3]))
35 pigeon_list.append(pigeon)
36
37 create_pigeons(pigeons_no, pigeons)
38
39 # Initialize & randomize the animation states & movement of the pigeons
40 def pigeon_state_move(rand_pigeon):
41 random_switch = random.choice([1, 2])
42 if random_switch == 1:
43 rand_pigeon.clearActions()
44 x = int(random.choice([1, 3]))
45 rand_pigeon.state(x)
46 else:
47 walk = vizact.walkTo([random.randint(-5, 5), 0,
48 random.randint(0, 8)])
49 rand_pigeon.addAction(walk)
50
51 pigeon_state_timer = vizact.ontimer(1,
52 pigeon_state_move, vizact.choice(pigeons))
53
54 # Randomize the animation states of Jane
55 def jane_state():
56 x = int(random.choice([1, 9]))
57 jane.state(x)
58
59 jane.state(1)
60 jane_state_timer = vizact.ontimer((random.randint(10, 20)), jane_state)
61
62 # Jane walking and behaviour
63 def jane_walk():
64 jane_state_timer.setEnabled(0)
65 random_switch = random.choice([1, 2])
66 if random_switch == 1:
67 walk_to_camera = vizact.walkTo([viz.MainView.getPosition()[0],
68 0, viz.MainView.getPosition()[2] + 3])
69 jane.addAction(walk_to_camera)
70 else:
71 jane.clearActions()
72 jane_state_timer.setEnabled(1)
73
74 vizact.onkeydown(‘w’, jane_walk)
75
76 # Jane feeding the pigeons
77 def jane_feed_pigeons(no_of_pigeons):
78 jane_state_timer.setEnabled(0)
79 pigeon_state_timer.setEnabled(0)
80 jane.clearActions()
81 jane.state(15)
82 for i in range(no_of_pigeons):
83 walk = vizact.walkTo([jane.getPosition()[0], 0,
84 jane.getPosition()[2]])

523Virtual Reality Application Development

85 pigeons[i].addAction(walk)
86
87 vizact.onkeydown('f', jane_feed_pigeons, pigeons_no)
88 vizact.onkeyup('f', jane_state)

12.15 INTEGRATING VR HARDWARE AND EXPORTING
A STANDALONE.EXE FILE

It may seem slightly odd that the integration of some of the most essential elements of any VR expe-
rience, the HMDs and the motion tracking controllers, were left for last. Partially, this is due to the
fact that a large part of the development, testing, and prototyping work presented here can be com-
pleted without them. This also allows anyone without access to such equipment to get exposed to
VR development and follow the work done in this chapter. From a developmental perspective,
assigning actions to the VR hardware is not hugely different to assigning actions to other input
devices like a keyboard or a mouse. Similarly, experiencing the 3D world through the HMD,
although certainly more immersive and enveloping for the user, does not show anything that is not
already there while using the screen.

From a strategic perspective, connecting the VR
hardware to an already developed VR prototype after
the basic building blocks, functionality, and logic are put
in place is also a valid option. Working long hours with
an HMD on trivial tasks can cause increased discomfort
and fatigue, and utilizing the motion sensors to test basic
interaction and collision tasks makes no big difference
compared to using keyboard and mouse commands.
Once a basic structure is in place and the reader desires
to start looking at the various development aspects in
more detail, different pieces of VR hardware can be
integrated to the existing projects, as required. When the
VR application is intended to be used with various dif-
ferent VR hardware products, each of these products and
their integration needs to be tested individually. This is
another reason for choosing to start the exploration of
VR development with a hardware-agnostic approach
and to leave the hardware related decisions for the latter
stages of the development cycle.

From a practical perspective, integrating the VR
hardware to VR applications developed in platforms like
Vizard should not pose a big challenge to the VR devel-
oper. Most modern VR development platforms provide
ample support and tools for connecting devices from
various VR hardware manufacturers. The connection of
the devices is usually through a corresponding Software
Development Kit (SDK) and the related collections of
libraries, tools and middleware, and/or through a dedi-
cated Graphical User Interface (GUI). In all cases, the
connection of the VR hardware to the development plat-
form is not as troublesome and experimental as it used to be in the past, and VR hardware manufac-
turers provide detailed tutorials, manuals, and support for device connectivity. As such, the reader
should have no major issues integrating their preferred VR hardware to their projects with minimal
code adjustments. In Vizard, the connection of the VR hardware to the development platform is
managed through a dedicated visual interface called Vizconnect (Figure 12.10).

Observation 12.34 – VR Hardware:
Although an application designed
for VR could be also run on a con-
ventional computer system, the main
point of creating it is for the user to
be able to experience it as an immer-
sive 3D experience. In order to do so,
the application needs to be deployed
to specialized VR hardware systems.
These systems consist of HMDs or
3D display setups, motion trackers,
and other specialized input/output
controllers.

Observation 12.35 – Software
Development Kit (SDK): As with
most other OOP environments, VR
development platforms rely on SDKs
to add specialized functionality to the
applications and make them com-
patible with third party software and
hardware. This is particularly relevant
during integration and deployment,
in order to make the VR application
compatible with the various different
VR systems that are available at any
given time.

524 Handbook of Computer Programming with Python

Vizconnect allows the user to assign the required HMDs, trackers and controllers, test functional-
ity, and adjust or calibrate various system parameters. As a simple example, below are the first steps of
basic display and tracker integration, in line with the official Vizard documentation (WorldViz, 2019):

• Open Vizconnect (Tools > Vizconnect).
• Vizconnect will ask the user to save the new configuration file. Save it under the name viz_

config_file.py, on the same folder as the original script developed throughout this chapter.
• On the start-up screen select Option 3 (Advanced Configuration).
• On the Displays tab create a new display and select Custom Window. Apply and Exit.
• On the Trackers tab select Mouse and Keyboard Walking. Apply and Exit.
• On the Scene Graph panel (right side), drag the Custom Window icon onto the Mouse and

Keyboard Walking icon. This should add it as a child object (Figure 12.10).
• Exit Vizconnect and return to the original script.

Once the hardware is set, it can be accessed from the script by importing the vizconnect library:

import vizconnect

and replacing the viz.go() command with a link to the
configuration file created through Vizconnect:

vizconnect.go('viz_config_file.py')

Observation 12.36 – The vizcon-
nect Library: Use the vizconnect
library to access the newly configured
HMDs through the VR environment.

FIGURE 12.10 Vizconnect visual interface and hierarchical view of input and output devices. (See
WorldViz, 2019.)

525Virtual Reality Application Development

Once these changes take place, the first few lines of the script should look like the following:

Import libraries
import viz
import random
import vizact
import vizconnect

Create an empty window for the 3D environment
viz.setMultiSample(4)
vizconnect.go('viz_config_file.py')

[…]

The above adjustments will allow navigation in the 3D world using the directional arrows on the
keyboard, and x-y-z rotation using the mouse. Although keyboards and mice are not VR hardware
controllers in the strict sense, the basic process for integrating them to a script is the same as for
dedicated VR hardware. The reader is encouraged to refer to the detailed Vizard tutorials to explore
the multitude of options offered through the Vizconnect system. The ultimate decisions are down to
VR hardware availability and compatibility, and the requirements of the VR project at hand.

Once the selected VR hardware is connected and integrated, the project can be exported as a
standalone application (.exe) using the built-in wizard (File > Publish as EXE). The wizard collects
and tests all the dependencies and necessary components and files for the project, so no extra adjust-
ments, coding, or conversions are required. Note that adding VR hardware is not a requirement for
exporting the application, so projects can be exported without such an integration, if necessary.

12.16 CONCLUSION

In a topic as complex and multifaceted as VR development, a book chapter like this can only scratch
the surface and point the reader to some general, broad directions. Creating a polished and mean-
ingful VR experience takes a lot more than just animating and randomizing a few objects and their
behaviors. Thorough planning is required in order to understand the requirements and lay down
all the details of the project long before a single line of code is written. Most importantly, the VR
experience needs a storyline, or a key feature that keeps the user interested and engaged. Without
this, even the most spectacular VR environment will lose its shine once the user is accustomed to
the technological novelty.

The script developed in this chapter is meant to function as an introduction to some of the basic
concepts and challenges VR developers deal with on a regular basis. In its current form, it creates
a 3D world (map), adds 3D objects and avatars, provides movement functionality via prefabricated
animations, and some basic interaction between the user (camera) and the 3D objects. At this stage,
the script is nowhere near being completed or even being fully functional in a technical sense.
Major issues are still present that need to be addressed, such as avatars missing collision detection
and being able to walk through the 3D world, the 3D world being completely silent, the pigeons
concentrating on the exact same spot during feeding, interaction choices being very limited, and
a multitude of other movement, structural, and logical issues. Some of these are intentionally left
unresolved so the reader can try to address them in the exercises provided below. For the more ambi-
tious readers, Vizard provides access to numerous specialized Python methods and commands,
allowing for a much more efficient and organized way to deal with tasks like the ones covered in
this chapter. Automating tasks through sequences, directors, and threads, using time and execution
management methods like waittime() and waitkey() instead of simple timers, using the elabo-
rate OPAL physics system, and consolidating and structuring code in classes and custom actions
are just some of the areas the reader may wish to explore (WorldViz, 2019). The abundance of tools
and libraries and the extensive documentation provided by Vizard should be more than enough for
starting the exploration of the finer details and challenges of VR application development.

526 Handbook of Computer Programming with Python

12.17 CASE STUDY

Improve the existing script by adding the following features:

 1. Allow Jane to feed the pigeons at random times without being instructed by the user. The
feeding must stop automatically after a random amount of time has elapsed, and Jane
should return to her normal states cycle.

 2. Allow Jane to walk to random positions without the user’s instruction. Make sure to restrict
Jane’s walking area so she does not get outside the 3D world boundaries or pass-through
3D objects.

 3. Make the pigeons spread around while eating instead of concentrating at the same single
point as Jane.

 4. Make the pigeons walk faster towards Jane when feeding is triggered.
 5. Make the pigeons change back to their normal states at random times after they have

walked towards Jane for feeding.
 6. Add a general ambience background sound to the 3D world.
 7. Make Jane whistle once when each round of the pigeon feed commences. The whistle sound

must emanate from the position Jane is at any given moment rather than being omnipresent.
Note that for this sort of task the audio file needs to be in MONO rather than STEREO.

 8. Add pigeon chirping sounds to the pigeons. The sounds must be allocated to random pigeons.
As above, for this sort of task the audio file needs to be in MONO rather than STEREO.

 9. Add some variety to the pigeons’ chirping by adding two more chirping sounds and randomly
switch between the three different sounds at run-time. Obviously, the three chirping sounds need
to be distinguishably different to each other in order for this exercise to have practical value.

 10. Add some randomness to the intervals at which the different pigeon chirps are triggered to
improve realism.

REFERENCES

Ardakani, H. A., & Bridges, T. J. (2010). Review of the 3-2-1 euler angles: a yaw-pitch-roll sequence. Tech.
Rep. Guildford: University of Surrey.

Ascher, D., & Lutz, M. (1999). Learning Python. Sebastopol, CA: O’Reilly.
Autodesk. (2020). 3DS Max -3D modelling and rendering software for design visualisation, games and ani-

mation. https://www.autodesk.co.uk/products/3ds-max/overview?plc=3DSMAX&term=1-YEAR&sup
port=ADVANCED&quantity=1.

Blender. (2020). Our mission. https://www.blender.org/about/.
Carlson, W. E. (2017). Computer graphics and computer animation: a retrospective overview. Columbus:

Ohio State University.
DQ, N. (2019). Cartesian coordinates. http://mathinsight.org/cartesian_coordinates.
Dunn, F., & Parberry, I. (2011). 3D Math Primer for Graphics and Game Development. Boca Raton, FL:

Taylor and Francis.
Epic Games. (2019). What is Unreal Engine 4? https://www.unrealengine.com/en-US/what-is-unreal-engine-4.
Glover, J., & Linowes, J. (2019). Complete Virtual Reality and Augmented Reality Development with Unity:

Leverage the Power of Unity and Become a Pro at Creating Mixed Reality Applications. Birmingham:
Packt Publishing Ltd.

Mendiburu, B. (2012). 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. New York:
Routledge.

Microsoft. (2019). Visual studio: best in-class tools for any developer. https://visualstudio.microsoft.com/.
Rosen, K. R. (2008). The history of medical simulation. Journal of Critical Care, 23(2), 157–166.
Sherman, W. R., & Craig, A. B. (2018). Understanding Virtual Reality: Interface, Application, and Design.

Cambridge, MA: Morgan Kaufmann.
Smith, R. (2010). The long history of gaming in military training. Simulation & Gaming, 41(1), 6–19.
Unity Technologies. (2019). Unity 3D. https://unity3d.com/unity.
WorldViz. (2019). Vizard 6 (64-bit). https://www.worldviz.com/vizard-virtual-reality-software.
Zone, R. (2007). Stereoscopic cinema and the origins of 3-D film, 1838–1952. Lexington: University Press

of Kentucky.

https://www.autodesk.co.uk
https://www.blender.org
http://mathinsight.org
https://www.unrealengine.com
https://visualstudio.microsoft.com
https://unity3d.com
https://www.worldviz.com
https://www.autodesk.co.uk

527

Appendix
Case Studies Solutions

CHAPTER 2 – INTRODUCTION TO PROGRAMMING WITH PYTHON

desCriPtion

Write a Python application that displays the following menu and runs the associated functions
based on the user’s input:

 1. Body mass index calculator.
 2. Check customer credit.
 3. Check a five-digit for palindrome.
 4. Convert an integer to the binary system.
 5. Initialize a list of integers and sort it.
 6. Exit.

Specifics on the components of the application:

• Body Mass Index Calculator: Read the user’s weight in kilos and height in meters, and
calculate and display the user’s body mass index. The formula is: BMI = (weightKilos)/
(heightMeters × heightMeters). If the BMI value is less than 18.5, display the message
“Underweight: less than 18.5”. If it is between 18.5 and 24.9, display the message “Normal:
between 18.5 and 24.9”. If it is between 25 and 29.9, display the message “Overweight:
between 25 and 29.9”. Finally, if it is more than 30, display the message “Obese: 30 or
greater”.

• Check Department-Store Customer Balance: Determine if a department-store customer
has exceeded the credit limit on a charge account. For each customer, the following facts
are to be entered by the user:

 a. Account number.
 b. Balance at the beginning of the month.
 c. Total of all items charged by the customer this month.
 d. Total of all credits applied to the customer’s account this month.
 e. Allowed credit limit.

The program should accept input for each of the above from as integers, calculate
the new balance (= beginning balance + charges − deposits), display the new balance,
and determine if the new balance exceeds the customer’s credit limit. For customers
whose credit limit is exceeded, the program should display the message “Credit limit
exceeded”.

• A palindrome is a number or a text phrase that reads the same backward as forward (e.g.,
12321, 55555). Write an application that reads a five-digit integer and determines whether
or not it is a palindrome. If the number is not five digits long, display an error message
indicating the issue to the user. When the user dismisses the error dialog, allow them to
enter a new value.

• Convert Decimal to Binary: Accept an integer between 0 and 99 and print its binary
equivalent. Use the modulus and division operations, as necessary.

528 Appendix

• List Manipulation and Bubble Sort: Write a script that does the following:
 a. Initialize a list of integers of a Maximum size, where Maximum is entered by the user
 b. Prompt the user to select between automatic or manual entry of integers to the list
 c. Fill the list with values, either automatically or manually, depending on the user’s

selection
 d. Sort the list using Bubble Sort
 e. Display the list if it has less than 100 elements.

The above should be implemented using a single Python script. Avoid adding statements in the main
body of the script unless necessary. Try to use functions to run the various tasks of the application.
Have the application/menu run continuously until the user enters the value associated with exiting.

solution

1 # The package random allows to generate different types of random
2 # numbers
3 import random
4
5 def BMI():
6 # Collect inputs needed for the calculation
7 weight = float(input("Enter your weight in Kilogram: "))
8 height = float(input("Enter your height in Meters: "))
9 # Call the function calculateBMI sending the inputs as parameters
10 calcualteBMI(weight, height)
11
12 def CustomerCredit():
13 # Collect inputs needed for the calculation
14 balanceStart = int(input("Enter your balance at the begining \
15 of the month: "))
16 monthCharges = int(input("Enter the total amount of your \
17 charges this month: "))
18 monthCredits = int(input("Enter the total amount of your \
19 credits this month: "))
20 limit = int(input("Enter your Credit Limit: "))
21 # Call the function calculateCustomerCredit by sending the inputs
22 # as parameters
23 calculateCustomerCredit(balanceStart, monthCharges,
24 monthCredits, limit)
25
26 def Palindrome():
27 # Collect string input needed for the calculation
28 number = input("Enter a five-digit number:")
29 if (len(number) != 5):
30 print("The number entered is not with 5 digits ... \
31 Please try again")
32 calculatePalindrome(number)
33
34 def ConvertToBinary():
35 # Collect the integer number to be converted into binary
36 number = int(input("Enter an integer number between 0 and 99: "))
37 if (number < 0) or (number > 99):

529Appendix

38 print("The number entered is not within the range ... \
39 Please try again")
40 calculateBinary(number)
41
42 def ArraySorting():
43 # Collect the needed input to sort the array's elements
44 maxSize = int(input("Enter the maximum size of your array: "))
45 filling = input("Fill the array automatically (Y/N)? ")
46 if (filling != 'Y' and filling != 'y' and filling != 'n' and
47 filling != 'N'):
48 print("The entered answer is not valid ... Please try again")
49 else:
50 bubbleSort(maxSize, filling)
51
52 # --------- Functions Section ------------
53 # --
54 # ********* BMI Function *****************
55 def calcualteBMI(W, H):
56 bmi = W/(H*H)
57 if (bmi<18.5):
58 print("Underweight: less than 18.5")
59 elif (bmi>=18.5) and (bmi<=24.9):
60 print("Normal: between 18.5 and 24.9")
61 elif (bmi>=25) and (bmi<=29.9):
62 print("Overweight: between 25 and 29.9")
63 elif (bmi>=30):
64 print("Obese: 30 or greater")
65 else:
66 print ("BMI's calculation failed .. ")
67
68 # ********** Customer Credit Function ****
69 def calculateCustomerCredit(blnc, charges, credits, limit):
70 newBalance = blnc + charges - credits
71 print ("Your new balance is: ", newBalance)
72 if (newBalance>limit):
73 print("You exceeded your credit limit this month")
74
75 # ********** Palindrome Function ****
76 def calculatePalindrome(Nbr):
77 # To be a palindrome, the 5th digit should be equal to the first
78 # digit and the 4th digit should be equal to the second
79 if (Nbr[4] == Nbr[0]) and (Nbr[3] == Nbr[1]):
80 print ("Your number is a palindrome")
81 else:
82 print ("Your number is not a palindrome")
83
84 # ********** Binary Conversion Function ****
85 def calculateBinary(Nbr):
86 # Keep dividing by 2 and keeping the remainders
87 result = Nbr
88 rem = ""
89 while (result != 0):

530 Appendix

90 result = Nbr//2
91 rem = rem + str(Nbr%2)
92 Nbr = result
93 # Reverse the string rem to get the exact binary number
94 binary = ""
95 l = len(rem)
96 for i in range(0,l):
97 binary = binary + rem[l-i-1]
98 print("The binary number is: ", binary)
99
100 # ********** Array Sorting Function ****
101 def bubbleSort(Max, Fill):
102 Array = []
103 if (Fill == 'y' or Fill=='Y'):
104 for i in range(0, Max):
105 number = random.randrange(0,1000)
106 Array.append(number)
107 else:
108 for i in range(0, Max):
109 number = int(input("Enter an element of the array: "))
110 Array.append(number)
111 if (len(Array) <= 100):
112 print("The original array is:", Array)
113 # bubble sort
114 for k in range(Max-1,0,-1):
115 for i in range(k):
116 if Array[i] > Array[i+1]:
117 temp = Array[i]
118 Array[i] = Array[i+1]
119 Array[i+1] = temp
120 if (len(Array) <= 100):
121 print("The sorted array is:", Array)
122
123 # --------- MENU ---
124 # --
125 def DisplayMenu():
126 print("--")
127 print("---------- M E N U ------------")
128 print("--")
129 print(" 1- Body Mass Index Calculator")
130 print(" 2- Customer Credit")
131 print(" 3- Five-Digit Palindrome")
132 print(" 4- Integer Binary Conversion")
133 print(" 5- Array Integers Sorting")
134 print("--")
135 rep = int(input(" ----- Choose an option (1-5) --- : "))
136 return rep
137
138 while (True):
139 selection = DisplayMenu()
140 if (selection == 1):
141 BMI()
142 elif (selection == 2):

531Appendix

143 CustomerCredit()
144 elif (selection == 3):
145 Palindrome()
146 elif (selection == 4):
147 ConvertToBinary()
148 elif (selection == 5):
149 ArraySorting()

Output: Case Study Chapter 2

532 Appendix

CHAPTER 3 – OBJECT ORIENTED PROGRAMMING WITH PYTHON

desCriPtion

Sherwood real estate requires an application to manage properties. There are two types of proper-
ties: apartments and houses. Each property may be available for rent or sale. The following are the
requirements:

• Both types of properties (apartment or house) are described using a reference number,
address, built up area, number of bedrooms, number of bathrooms, number of parking
slots, pool availability and gym availability.

• A house requires extra attributes such as the number of floors, plot size and house type
(villa or townhouse).

• An apartment requires additional attributes such as floor and number of balconies.
• Each type of property (house or apartment) may be available for rent or sale.
• A rental property should include attributes such as deposit amount, yearly rent, furnished

(yes or no), includes maids’ room (yes or no).
• A property available for sale has attributes such as sale price and estimated annual service

charge.
• All properties include an agent commission of 2% that is fixed for all properties. Both

types of sale properties have a tax of 4% which is fixed for all properties.
• All properties require a method to display the details of that property.
• All properties should include a method to compute the agent commission. For rental prop-

erties agent commission is calculated by using the yearly rental amount, whereas for pur-
chase properties it is calculated using the sale price.

• Both types of purchase properties should include a method to compute the tax amount. Tax
amount is computed on sale price.

Implement a Python application that creates the four types of properties – RentalApartment,
RentalHouse, SaleApartment, SaleHouse - by using multiple inheritance and abstract classes.
Implement class attributes and instance attributes using encapsulation. All numeric attributes such
as price should be validated for inputs with a suitable minimum and maximum price.

Define the methods in the abstract class and implement it in the respective classes. Override the
print function to display each property details.

Create a main application to offer the above functionalities and test them by creating new proper-
ties of each type and calling the respective methods.

solution

First it is necessary to create the parent class from which all the rest will somehow inherit its
functions/methods and attributes. This is an abstract class called “Property” which uses the ABC
Abstract Base Class.

1 # Import the ABC Abstract Base Classes
2 from abc import ABC, abstractmethod
3
4 # Define abstract class Property
5 class Property(ABC):
6
7 # Define class attributes
8 agentCommission = 0.02

533Appendix

9
10 # Define the constructor of the class and its attributes
11 def __init__(self, refNumber, owner, address, builtUpArea,
12 bedNumber, bathNumber, parkNumber, pool, gym):
13 self.refNumber = refNumber
14 self.owner = owner
15 self.address = address
16 self.builtUpArea = builtUpArea
17 self.bedNumber = bedNumber
18 self.bathNumber = bathNumber
19 self.parkNumber = parkNumber
20 self.pool = pool
21 self.gym = gym
22
23 # Define abstract method setPropertyAttributes
24 @abstractmethod
25 def setPropertyAttributes(self):
26 self.owner = input("Owner: ")
27 self.address = input("Address: ")
28 self.builtUpArea = input("Area ")
29 self.bedNumber = input("Bedrooms: ")
30 self.bathNumber = input("Bathrooms: ")
31 self.parkNumber = input("Parking Slots: ")
32 self.pool = input("Pool: ")
33 self.gym = input("Gym: ")
34
35 # Define abstract method displayPropertyDetails
36 @abstractmethod
37 def displayPropertyDetails(self):
38 print("Reference Number: " + self.refNumber)
39 print("Owner: " + self.owner)
40 print("Address: " + self.address)
41 print("Built Up Area: " + self.builtUpArea)
42 print("Beds: " + str(self.bedNumber))
43 print("Bathrooms: " + str(self.bathNumber))
44 print("Parking Slots: " + str(self.parkNumber))
45 print("Pool: " + self.pool)
46 print("Gym: " + self.gym)

Then, the “Apartment” class is implemented that inherits from the parent “Property” class as
follows:

1 from Property import Property
2
3 # Define sub-class Apartment
4 class Apartment(Property):
5
6 # Define class attributes
7 floor = 0
8 balconyNumber = 0
9
10 # Implement abstract method calculateCommission

534 Appendix

11 def calculateCommission():
12 pass
13
14 # Implement abstract method setPropertyAttributes
15 def setPropertyAttributes(self):
16 Property.setPropertyAttributes(self)
17
18 # Implement abstract method displayPropertyDetails
19 def displayPropertyDetails(self):
20 Property.displayPropertyAttributes(self)
21
22 # Set extra attributes for Apartments
23 def setApartmentAttributes(self):
24 self.floor = input("Enter apartment floor: ")
25 self.balconyNumber = input("Enter number of balconies: ")
26
27 # Display Property details
28 def displayPropertyDetails(self):
29 Property.displayPropertyDetails(self)
30 print("Floor: " + str(self.floor))
31 print("Number of Balconies: " + str(self.balconyNumber))

The third class, the “RentalProperty”, provides rental details related to the apartment to be rented:

1 # Define sub-class RentalProperty
2 class RentalProperty():
3
4 # Define class attributes
5 depositAmount = 0
6 yearlyRent = 0
7 isFurnished = "No"
8 maidsRoom = "No"
9 agentCommission = 0.02
10
11 # Set extra attributes for rental properties
12 def setRentalAttributes(self):
13 self.depositAmount = int(input("Enter deposit amount: "))
14 self.yearlyRent = int(input("Enter yearly rent: "))
15 self.isFurnished = input("Property furnished (Yes/No): ")
16 self.maidsRoom = input("Maids room (Yes/No): ")
17
18 # Display rental property details
19 def displayRentalDetails(self):
20 print("Deposit Amount: " + str(self.depositAmount))
21 print("Yearly Rent: " + str(self.yearlyRent))
22 print("Property furnished: " + str(self.isFurnished))
23 print("Maids room: " + str(self.maidsRoom))
24 print("Agent Commission: " + str(self.agentCommission))
25
26 # Calculate Agent Commission
27 def calcCommission(self):
28 self.agentCommission = self.agentCommission * self.yearlyRent

535Appendix

Finally, the “RentalApartment” class inherits from both the “Apartment” and the “RentalProperty”
classes to create the objects with the details of the apartments available as well as their rental
details. The class has no particular attributes or functions/methods by itself and looks as follows:

1 from Apartment import Apartment
2 from RentalProperty import RentalProperty
3
4 # Define sub-class RentalApartment
5 class RentalApartment(Apartment, RentalProperty):
6 pass

Likewise with the case of the “RentalApartment” the “SaleApartment” class inherits from both
the “Apartment” (already listed above) and the “SaleProperty” classes to create the objects with
the details of the apartments available as well as their details “for sale”. The “SaleProperty” class
is shown below:

1 # Define sub-class SaleProperty
2 class SaleProperty():
3
4 # Define class attributes
5 salePrice = 0
6 annualServiceCharge = 0
7 tax = 0.04
8
9 # Set extra attributes for sale properties
10 def setSaleAttributes(self):
11 self.salePrice = input("Enter sale price: ")
12 self.annualServiceCharge=input("Enter annual service charge: ")
13
14 # Display sale property details
15 def displaySaleDetails(self):
16 print("Sale price: " + str(self.salePrice))
17 print("Annual service charge: " + str(self.annualServiceCharge))
18 print("Tax: " + str(self.tax))

Similarly, the “SaleApartment” class is given below:

1 from Apartment import Apartment
2 from SaleProperty import SaleProperty
3
4 # Define sub-class SaleApartment
5 class SaleApartment(Apartment, SaleProperty):
6 pass

Having completed the classes for the cases of apartments to rent or for sale, the same pattern and
similar classes will be needed for the cases of houses to rent or for sale. Once again, the parent class
is the one given before, i.e., “Property”. The “House” class follows:

1 from Property import Property
2
3 # Define sub-class House

536 Appendix

4 class House(Property):
5
6 # Define class attributes
7 numberOfFloors = 1
8 plotSize = 200
9 houseType = ""
10
11 # Implement abstract method setPropertyAttributes
12 def setPropertyAttributes(self):
13 Property.setPropertyAttributes(self)
14
15 # Implement abstract method displayPropertyDetails
16 def displayPropertyDetails(self):
17 Property.displayPropertyAttributes(self)
18
19 # Set extra attributes for Houses
20 def setHouseAttributes(self):
21 self.numberOfFloors = input("Enter number of floors: ")
22 self.plotSize = input("Enter plot size: ")
23 self.houseType=input("Enter type of house (Villa/Townhouse): ")
24
25 # Display Property details
26 def displayPropertyDetails(self):
27 Property.displayPropertyDetails(self)
28 print("Number of Floors: " + str(self.numberOfFloors))
29 print("Plot Size: " + str(self.plotSize))
30 print("House Type: " + str(self.houseType))

The “SaleHouse” class is given below:

1 from House import House
2 from SaleProperty import SaleProperty
3
4 # Define sub-class RentalHouse
5 class SaleHouse(House, SaleProperty):
6 pass

The next class is the “RentalHouse”:

1 from House import House
2 from RentalProperty import RentalProperty
3
4 # Define sub-class RentalHouse
5 class RentalHouse(House, RentalProperty):
6 pass

Finally, the main script that will run the application and all the classes, i.e.,
“Chapter3CaseStudyApplication, is given below:

537Appendix

1 from RentalApartment import RentalApartment
2 from SaleApartment import SaleApartment
3 from RentalHouse import RentalHouse
4 from SaleHouse import SaleHouse
5
6 print("Select any of the following options")
7 print("===================================")
8 print("1. Apartments to rent")
9 print("2. Apartments for sale")
10 print("3. Houses to rent")
11 print("4. Houses for sale")
12 print("===================================")
13 selection = input("Enter your choice: ")
14
15 # Enter the general details of the property
16 propertyCode = input("Enter the code of the property:")
17 propertyOwner = input("Enter the name of the owner:")
18 propertyAddress = input("Enter the address of the property:")
19 propertyArea = input("Enter the location/area of the property:")
20 propertyBedNum = int(input("Enter the number of bedrooms (1-10):"))
21 propertyBathNum = int(input("Enter the number of bathrooms (1-5):"))
22 propertyParkNum = int(input("Enter the number of parking slots (1-5):"))
23 propertyPool = input("Does the property include a swimming pool \
24 (Yes/No):")
25 propertyGym = input("Does the property include a gym (Yes/No):")
26 if (selection == "1"):
28 # Create the object with the details of the property
29 newRentalApartment = RentalApartment(propertyCode,
30 propertyOwner, propertyAddress, propertyArea,
31 propertyBedNum, propertyBathNum, propertyParkNum,
32 propertyPool, propertyGym)
33
34 # Enter the specific details of the apartment for rent
35 # and report all property details
36 newRentalApartment.setApartmentAttributes()
37 newRentalApartment.setRentalAttributes()
38 print("\nReporting property details")
39 print("==========================")
40 newRentalApartment.displayPropertyDetails()
41 print("\nReporting rental details")
42 print("==========================")
43 newRentalApartment.calcCommission()
44 newRentalApartment.displayRentalDetails()
45
46 if (selection == "2"):
47 # Create the object with the details of the property
48 newSaleApartment = SaleApartment(propertyCode, propertyOwner,
49 propertyAddress, propertyArea, propertyBedNum, propertyBathNum,

538 Appendix

50 propertyParkNum, propertyPool, propertyGym)
51
52 # Enter the specific details of the apartment for rent
53 # and report all property details
54 newSaleApartment.setApartmentAttributes()
55 newSaleApartment.setSaleAttributes()
56 print("\nReporting property details")
57 print("==========================")
58 newSaleApartment.displayPropertyDetails()
59 print("\nReporting sale details")
60 print("==========================")
61 newSaleApartment.displaySaleDetails()
62
63 if (selection == "3"):
64 # Create the object with the details of the property
65 newRentalHouse = RentalHouse(propertyCode, propertyOwner,
66 propertyAddress, propertyArea, propertyBedNum, propertyBathNum,
67 propertyParkNum, propertyPool, propertyGym)
68
69 # Enter the specific details of the house for rent
70 # and report all property details
71 newRentalHouse.setHouseAttributes()
72 newRentalHouse.setRentalAttributes()
73 print("\nReporting property details")
74 print("==========================")
75 newRentalHouse.displayPropertyDetails()
76 print("\nReporting rental details")
77 print("==========================")
78 newRentalHouse.calcCommission()
79 newRentalHouse.displayRentalDetails()
80
81 if (selection == "4"):
82 # Create the object with the details of the property
83 newSaleHouse = SaleHouse(propertyCode, propertyOwner,
84 propertyAddress, propertyArea, propertyBedNum, propertyBathNum,
85 propertyParkNum, propertyPool, propertyGym)
86
87 # Enter the specific details of the house for sale
88 # and report all property details
89 newSaleHouse.setHouseAttributes()
90 newSaleHouse.setSaleAttributes()
91 print("\nReporting property details")
92 print("==========================")
93 newSaleHouse.displayPropertyDetails()
94 print("\nReporting sale details")
95 print("==========================")
96 newSaleHouse.displaySaleDetails()

539Appendix

Output: Case Study Chapter 3

540 Appendix

CHAPTER 4 – GRAPHICAL USER INTERFACE
PROGRAMMING WITH PYTHON

desCriPtion

Enhance the “Countries” application in order to include the following functionality:

• Add one more listbox to display more content for each country (e.g., size, population, etc.)
• Add a combobox to allow the user to select the font name of the contents of the listboxes.
• Add a combobox to allow the user to select the font size of the contents of the listboxes.
• Add a combobox to change the background color of the content in the listboxes.

solution

1 import tkinter as tk
2 from tkinter import *
3 from tkinter import ttk
4 from tkinter import messagebox
5
6 countries = ['E.U.', 'U.S.A.', 'Russia', 'China', 'India', 'Brazil']
7 capital = ['Brussels', 'Washinghton', 'Moscow', 'Beijing', 'New Delhi',
8 'Brazilia']
9 population = ['450m', '330m', '145m', '1,400m', '1,350m', '210m']
10 fontName = ['Arial', 'Garamond', 'Times New Roman', 'Courier']
11 fontSize = [8, 10, 12, 14]
12 fontColor = ['cyan', 'grey', 'green', 'red']
13
14 global newCountry, newCapital, newPopulation
15 global FontNameSelection, FontSizeSelection, FontColorSelection
16 global CountriesFrame, CapitalFrame, PopulationFrame, SettingsFrame
17 global checkButton1, checkButton2, checkButton3
18 global radioButton
19 global CountriesList, CapitalList, PopulationList
20 global FontNameList, FontSizeList, FontColorList
21 global CountriesScrollBar, CapitalScrollBar, PopulationScrollBar
22
23 # Create the interface for the listboxes
24 def drawListBoxes():
25 global FontNameSelection, FontSizeSelection, FontColorSelection
26 global CountriesList, CapitalList, PopulationList
27 global CountriesFrame, CapitalFrame, PopulationFrame
28 global CountriesScrollBar, CapitalScrollBarPopulationScrollBar
29
30 color = FontColorSelection.get()
31 size = FontSizeSelection.get()
32 name = FontNameSelection.get()
33
34 # Create the CountriesFrame labelframe & place the
35 # CountriesList widget in it
36 CountriesFrame = tk.LabelFrame(winFrame, text = 'Countries')
37 CountriesFrame.config(bg = 'light grey', fg = 'blue', bd = 2,

541Appendix

38 width = 13, relief = 'sunken')
39 # Create a scrollbar widget to attach to the CountriesList
40 CountriesScrollBar = Scrollbar(CountriesFrame, orient = VERTICAL)
41 CountriesScrollBar.pack(side = RIGHT, fill = Y)
42 # Create the listbox in the CountriesFrame
43 CountriesList = tk.Listbox(CountriesFrame, bg = color,
44 font = (name, size), yscrollcommand = CountriesScrollBar,
45 width = 13, height = 8)
46 CountriesList.pack(side = LEFT, fill = BOTH)
47 # Associate the scrollbar command with its parent widget,
48 # i.e., the CountriesList yview
49 CountriesScrollBar.config(command = CountriesList.yview)
50 # Place the Countries frame and its parts onto the interface
51 CountriesFrame.pack();
52 CountriesFrame.place(relx = 0.02, rely = 0.05)
53 CountriesList.bind('<Double-Button-1>',
54 lambda event: alignList('countries'))
55
56 # Create the CapitalFrame labelframe and place the CapitalList
57 # widget in it
58 CapitalFrame = tk.LabelFrame(winFrame, text = 'Capitals')
59 CapitalFrame.config(bg = 'light grey', fg = 'blue', bd = 2,
60 width = 14, relief = 'sunken')
61 # Create a scrollbar widget to attach to the CapitalFrame
62 CapitalScrollBar = Scrollbar(CapitalFrame, orient = VERTICAL)
63 CapitalScrollBar.pack(side = RIGHT, fill = Y)
64 # Create the listbox in the CapitalFrame
65 CapitalList = tk.Listbox(CapitalFrame,
66 yscrollcommand = CapitalScrollBar, bg = color,
67 font = (name, size), width = 13, height = 8)
68 CapitalList.pack(side = LEFT, fill = BOTH)
69 # Associate the scrollbar command with its parent widget,
70 # i.e., the CapitalList yview
71 CapitalFrame.pack()
72 CapitalFrame.place(relx = 0.25, rely = 0.05)
73 CapitalList.bind('<Double-Button-1>',
74 lambda event: alignList('capital'))
75
76 # Create the PopulationFrame labelframe and place the
77 # PopulationList widget in it
78 PopulationFrame = tk.LabelFrame(winFrame, text = 'Populations')
79 PopulationFrame.config(bg = 'light grey', fg = 'blue',
80 bd = 2, width = 14, relief = 'sunken')
81 # Create a scrollbar widget to attach to the PopulationFrame
82 PopulationScrollBar = Scrollbar(PopulationFrame, orient = VERTICAL)
83 PopulationScrollBar.pack(side = RIGHT, fill = Y)
84 # Create the listbox in the PopulationFrame
85 PopulationList = tk.Listbox(PopulationFrame, bg = color,
86 width = 13, height = 8, font = (name, size),
87 yscrollcommand = PopulationScrollBar)
88 PopulationList.pack(side = LEFT, fill = BOTH)
89 # Associate the scrollbar command with its parent widget,

542 Appendix

90 # i.e., the PopulationList yview
91 PopulationFrame.pack()
92 PopulationFrame.place(relx = 0.50, rely = 0.05)
93 PopulationList.bind('<Double-Button-1>',
94 lambda event: alignList('population'))
95
96 # Create the interface for the new entries
97 def drawNewEntries():
98 global newCountry, newCapital, newPopulation
99
100 # Create the labelframe & place the newCountry Entry widget in it
101 NewCountryFrame = tk.LabelFrame(winFrame, text = 'New Country')
102 NewCountryFrame.config(bg = 'light grey', fg = 'blue',
103 bd = 2, width = 14, relief = 'sunken')
104 NewCountryFrame.pack()
105 NewCountryFrame.place(relx = 0.02, rely = 0.5)
106 newCountry = tk.StringVar()
107 newCountry.set('')
108 NewCountryEntry = tk.Entry(NewCountryFrame,
109 textvariable = newCountry, width = 13)
110 NewCountryEntry.config(bg = 'dark grey', fg = 'red',
111 relief = 'sunken')
112 NewCountryEntry.grid(row = 0, column = 0)
113
114 # Create the labelframe & place the newCapital Entry widget in it
115 NewCapitalFrame = tk.LabelFrame(winFrame, text = 'New Capital')
116 NewCapitalFrame.config(bg = 'light grey', fg = 'blue',
117 bd = 2, width = 14, relief = 'sunken')
118 NewCapitalFrame.pack()
119 NewCapitalFrame.place(relx = 0.25, rely = 0.5)
120 newCapital = tk.StringVar()
121 newCapital.set('')
122 NewCapitalEntry = tk.Entry(NewCapitalFrame,
123 textvariable = newCapital, width = 13)
124 NewCapitalEntry.config(bg = 'dark grey', fg = 'red',
125 relief = 'sunken')
126 NewCapitalEntry.grid(row = 0, column = 0)
127
128 # Create the labelframe & place the newPopulation Entry widget in it
129 NewPopulationFrame = tk.LabelFrame(winFrame,
130 text = 'New Population')
131 NewPopulationFrame.config(bg = 'light grey', fg = 'blue',
132 bd = 2, width = 14, relief = 'sunken')
133 NewPopulationFrame.pack()
134 NewPopulationFrame.place(relx = 0.50, rely = 0.5)
135 newPopulation = tk.StringVar()
136 newPopulation.set('')
137 NewPopulationEntry = tk.Entry(NewPopulationFrame, width = 13,
138 textvariable = newPopulation)
139 NewPopulationEntry.config(bg = 'dark grey', fg = 'red',
140 relief = 'sunken')
141 NewPopulationEntry.grid(row = 0, column = 0)

543Appendix

142
143 # Create the interface for the action buttons
144 def drawButtons():
145 # Create the labelframe to place the buttons in it
146 ButtonsFrame = tk.LabelFrame(winFrame, text = "Actions")
147 ButtonsFrame.config(bg = 'light grey', fg = 'blue',
148 bd = 2, width = 14, relief = 'sunken')
149 ButtonsFrame.pack()
150 ButtonsFrame.place(relx = 0.75, rely = 0.05)
151
152 newRecordButton = tk.Button(ButtonsFrame,
153 text = 'Insert\nnew record', width = 8, height = 2)
154 newRecordButton.grid(row = 0, column = 0)
155 newRecordButton.bind('<Button-1>', lambda event,
156 a = 'insertRecord': buttonsClicked(a))
157
158 deleteRecordButton = tk.Button(ButtonsFrame,
159 text = 'Delete\n record', width = 8, height = 2)
160 deleteRecordButton.grid(row = 0, column = 1)
161 deleteRecordButton.bind('<Button-1>', lambda event,
162 a = 'deleteRecord': buttonsClicked(a))
163
164 clearRecordsButton = tk.Button(ButtonsFrame,
165 text = 'Clear\n records', width = 8, height = 2)
166 clearRecordsButton.grid(row = 1, column = 0)
167 clearRecordsButton.bind('<Button-1>', lambda event,
168 a = 'clearAllRecords': buttonsClicked(a))
169
170 changeSettingsButton = tk.Button(ButtonsFrame,
171 text = 'Change\n settings', width = 8, height = 2)
172 changeSettingsButton.grid(row = 1, column = 1)
173 changeSettingsButton.bind('<Button-1>', lambda event,
174 a = 'changeSettings': buttonsClicked(a))
175
176 exitButton = tk.Button(ButtonsFrame, text = 'Exit', width = 8,
177 height = 2)
178 exitButton.grid (columnspan = 2, row = 2, column = 0)
179 exitButton.bind('<Button-1>', lambda event : winFrame.destroy())
180 exit()
181
182 # Create the interface for the checkbuttons
183 def drawCheckButtons():
184 global checkButton1, checkButton2, checkButton3
185
186 # Create the labelframe to place the checkbuttons in it
187 CheckButtonsFrame = tk.LabelFrame(winFrame, text = "Enable/Disable")
188 CheckButtonsFrame.config(bg = 'light grey', fg = 'blue', bd = 2,
189 relief = 'sunken')
190 CheckButtonsFrame.pack()
191 CheckButtonsFrame.place(relx = 0.75, rely = 0.45)
192
193 checkButton1 = IntVar(value = 1)

544 Appendix

194 CountriesCheckButton = tk.Checkbutton(CheckButtonsFrame,
195 text = 'Countries', width = 16, height = 1, bg = 'light blue',
196 variable = checkButton1, onvalue = 1, offvalue = 0,
197 command = checkClicked).grid(row = 0, column = 0)
198
199 checkButton2 = IntVar(value = 1)
200 CapitalCheckButton = tk.Checkbutton(CheckButtonsFrame,
201 text = 'Capitals', width = 16, height = 1, bg = 'light blue',
202 variable = checkButton2, onvalue = 1, offvalue = 0,
203 command = checkClicked).grid(row = 1, column = 0)
204
205 checkButton3 = IntVar(value = 1)
206 PopulationCheckButton = tk.Checkbutton(CheckButtonsFrame,
207 text = 'Populations', width = 16, height = 1, bg = 'light blue',
208 variable = checkButton3, onvalue = 1, offvalue = 0,
209 command = checkClicked).grid(row = 2, column = 0)
210
211 # Create the interface for the radiobuttons
212 def drawRadioButtons():
213 global radioButton
214
215 # Create the labelframe to place the radiobuttons
216 RadioButtonsFrame = tk.LabelFrame(winFrame, text = "Containers")
217 RadioButtonsFrame.config(bg = 'light grey', fg = 'blue',
218 bd = 2, relief = 'sunken')
219 RadioButtonsFrame.pack()
220 RadioButtonsFrame.place(relx = 0.75, rely = 0.7)
221
222 radioButton = IntVar()
223 visibleRadioButton = tk.Radiobutton(RadioButtonsFrame,
224 text = 'Visible', width = 8, height = 1, bg = 'light green',
225 variable = radioButton, value = 1,
226 command = radioClicked).grid(row = 0, column = 0)
227
228 invisibleRadioButton = tk.Radiobutton(RadioButtonsFrame,
229 text = 'Invisible', width = 8, height = 1, bg = 'light green',
230 variable = radioButton, value = 2,
231 command = radioClicked).grid(row = 0, column = 1)
232
233 radioButton.set(1)
234
235 # Create the interface for the settings comboboxes
236 def drawSettingsCombos():
237 global FontNameSelection, FontSizeSelection, FontColorSelection
238 global FontNameList, FontSizeList, FontColorList
239 global SettingsFrame
240
241 # Create the labelframe and place the settings combos in it
242 SettingsFrame = tk.LabelFrame(winFrame, text = 'Settings')
243 SettingsFrame.config(bg = 'light grey', fg = 'blue', bd = 2,
244 width = 20, relief = 'sunken')

545Appendix

245 SettingsFrame.pack()
246 SettingsFrame.place(relx = 0.02, rely = 0.65)
247
248 # Create the label in the entry frame
249 FontNameLabel = tk.Label(SettingsFrame,
250 text = 'Select font name', width = 17)
251 FontNameLabel.config(bg = 'light grey', fg = 'red', bd = 3,
252 relief = 'flat', font = 'Arial 14 bold')
253 FontNameLabel.grid(column = 0, row = 0)
254 # Create the combobox to select the font name from the combo
255 FontNameCombo = ttk.Combobox(SettingsFrame,
256 textvariable = FontNameSelection, width = 14)
257 FontNameCombo['values'] = fontName
258 FontNameCombo.current(0); FontNameCombo.grid(column = 0, row = 1)
259
260 # Create the label in the entry frame
261 FontSizeLabel = tk.Label(SettingsFrame,
262 text = 'Select font size', width = 17)
263 FontSizeLabel.config(bg = 'light grey', fg = 'red', bd = 3,
264 relief = 'flat', font = 'Arial 14 bold')
265 FontSizeLabel.grid(column = 1, row = 0)
266 # Create the combobox to select the font name from the combo
267 FontSizeCombo = ttk.Combobox(SettingsFrame,
268 textvariable = FontSizeSelection, width = 14)
269 FontSizeCombo['values'] = fontSize
270 FontSizeCombo.current(0); FontSizeCombo.grid(column = 1, row = 1)
271
272 # Create the label in the entry frame
273 FontColorLabel = tk.Label(SettingsFrame,
274 text = 'Select font color', width = 17)
275 FontColorLabel.config(bg = 'light grey', fg = 'red', bd = 3,
276 relief = 'flat', font = 'Arial 14 bold')
277 FontColorLabel.grid(column = 2, row = 0)
278 # Create the combobox to select the font name from the combo
279 FontColorCombo = ttk.Combobox(SettingsFrame,
280 textvariable = FontColorSelection, width = 14)
281 FontColorCombo['values'] = fontColor
282 FontColorCombo.current(0); FontColorCombo.grid(column = 2, row = 1)
283
284 # Define the method 'indexSelectedListbox' that will identify
285 # the row selected in any of the listboxes
286 def alignList(a):
287 global CountriesList, CapitalList, PopulationList
288 global selectedIndex
289
290 if (a == 'countries'):
291 selectedIndex = int(CountriesList.curselection()[0])
292 CapitalList.selection_set(selectedIndex)
293 PopulationList.selection_set(selectedIndex)
294
295 if (a == 'capital'):

546 Appendix

296 selectedIndex = int(CapitalList.curselection()[0])
297 CountriesList.selection_set(selectedIndex)
298 PopulationList.selection_set(selectedIndex)
299
300 if (a == 'population'):
301 selectedIndex = int(PopulationList.curselection()[0])
302 CountriesList.selection_set(selectedIndex)
303 CapitalList.selection_set(selectedIndex)
304
305 # Define the checkClicked function that will control the state
306 # of the containers
307 def checkClicked():
308 global checkButton1, checkButton2
309
310 # Control the state of the containers as NORMAL or DISABLED
311 # based on the checkbuttons' state
312 if (checkButton1.get() == 1):
313 CountriesList.config(state = NORMAL)
314 else:
315 CountriesList.config(state = DISABLED)
316
317 if (checkButton2.get() == 1):
318 CapitalList.config(state = NORMAL)
319 else:
320 CapitalList.config(state = DISABLED)
321
322 if (checkButton3.get() == 1):
323 PopulationList.config(state = NORMAL)
324 else:
325 PopulationList.config(state = DISABLED)
326
327 # Define the radioClicked function that will display or hide the frames
328 # of the containers
329 def radioClicked():
330 global CountriesFrame, CapitalFrame
331 global radioButton
332
333 # Use the destroy() function to destroy the frames of the
334 # containers. The lists are not destroyed
335 CountriesFrame.destroy()
336 CapitalFrame.destroy()
337 PopulationFrame.destroy()
338
339 if (radioButton.get() == 1):
340 drawListBoxes()
341 populate()
342
343 # Populate the listboxes
344 def populate():
345 global CountriesList, CapitalList, PopulationList
346 global FontNameSelection, FontSizeSelection, FontColorSelection

547Appendix

347
348 color = FontColorSelection.get(); size = FontSizeSelection.get()
349 name = FontNameSelection.get()
350
351 for i in range (int(len(countries))):
352 CountriesList.insert(i, countries[i])
353
354 for i in range (int(len(capital))):
355 CapitalList.insert(i, capital[i])
356
357 for i in range (int(len(population))):
358 PopulationList.insert(i, population[i])
359
360 PopulationList.config(bg = color, font = (name, size))
361 CountriesList.config(bg = color, font = (name, size))
362 CapitalList.config(bg = color, font = (name, size))
363
364 # Define the method 'buttonsClicked' that will trigger the code
365 # to be executed when any of the buttons is clicked
366 def buttonsClicked(a):
367 global CountriesList, PopulationCombo, CapitalList
368 global FontNameSelection, FontSizeSelection, FontColorSelection
369 global newCountry, newPopulation, newCapital, populationSelection
370 global selectedIndex
371
372 if (a == "insertRecord"):
373 if (newCountry != '' and newCapital != ''
374 and newPopulation != ''):
375 countries.append(newCountry.get())
376 CountriesList.delete('0', 'end')
377 capital.append(newCapital.get())
378 CapitalList.delete('0', 'end')
379 population.append(newPopulation.get())
380 PopulationList.delete('0', 'end')
381 # Call the function populate() to re-populate the containers
382 # with the renewed lists
383 populate()
384
385 if (a == 'deleteRecord'):
386 # Use the messagebox.askyesno() to pop a message to ask
387 # confirmation for deleting the elements
388 deleteElementOrNot = messagebox.askokcancel(
389 title = "Delete element",
390 message = "Are you ready to delete the elements?",
391 icon = 'info')
392 if (deleteElementOrNot == True):
393 # Use the pop() method to remove the selected elements
394 # from the lists
395 countries.pop(selectedIndex)
396 capital.pop(selectedIndex)
397 population.pop(selectedIndex)

548 Appendix

398 CountriesList.delete('0', 'end')
399 CapitalList.delete('0', 'end')
400 PopulationList.delete('0', 'end')
401 # Call the function populate() to re-populate the containers
402 # with the renewed lists
403 populate()
404
405 if (a == 'clearAllRecords'):
406 # Use the messagebox.askyesno() to pop a message to ask
407 # confirmation for clearing the lists
408 clearListsOrNot = messagebox.askokcancel(
409 title = "Clear all elements",
410 message = "Are you ready to clear the lists?",
411 icon = 'info')
412 if (clearListsOrNot == True):
413 countries.clear(); capital.clear()
414 population.clear()
415 CountriesList.delete('0', 'end')
416 CapitalList.delete('0', 'end')
417 PopulationList.delete('0', 'end')
418 # Call the function populate() to re-populate the containers
419 # with the renewed lists
420 populate()
421
422 if (a == 'changeSettings'):
423 CountriesList.delete('0', 'end'); CapitalList.delete('0', 'end')
424 PopulationList.delete('0', 'end')
425 # Call the function populate() to re-populate the containers
426 # with the renewed lists and change the interface settings
427 populate()
428
429 # Create the frame for the 'Enhanced Countries' program and configure
430 # its size and background color
431 winFrame = tk.Tk()
432 winFrame.title ('Countries'); winFrame.geometry("650x350")
433 winFrame.config (bg = 'light grey'); winFrame.resizable(False, False)
434
435 FontNameSelection = tk.StringVar(); FontSizeSelection = tk.IntVar()
436 FontColorSelection = tk.StringVar()
437
438 FontNameSelection.set(fontName[0]); FontSizeSelection.set(fontSize[0])
439 FontColorSelection.set(fontColor[0])
440
441 # Create the Graphical User Interface
442 drawListBoxes(); drawNewEntries(); drawButtons()
443 drawCheckButtons(); drawRadioButtons(); drawSettingsCombos()
444
445 # Call populate() method to populate the listboxes and comboboxes
446 populate()
447
448 winFrame.mainloop()

549Appendix

Output: Case Study Chapter 4

550 Appendix

551Appendix

CHAPTER 5 – APPLICATION DEVELOPMENT WITH PYTHON

desCriPtion

Complete the integration of the Basic Widgets Python script from Chapters 4 with a full menu sys-
tem in an object-oriented application, using all three types of menus (i.e., regular, toolbar, popup),
as described in this chapter. The menu system should include the following options: Color dialog,
Open File dialog, Separator, Basic Widgets, Save As, Separator, About, Exit.

solution

Firstly, the main application must be created that will include the main interface with all the three
types of menus and the call to the Basic Widgets application and the APIs for the Color Dialog,
Open File Dialog, Save As, and the About window. The script for the application follows:

1 import tkinter as tk
2 from tkinter import ttk
3
4 from tkinter import filedialog
5 from tkinter import colorchooser
6 from tkinter import Menu
7 from tkinter import *
8 from tkinter import messagebox as mbox
9 # Import from PIL the necessary image processing classes
10 from PIL import Image, ImageTk
11
12 import Chapter5CaseStudyBasicWidgets
13
14 class CaseStudy:
15 global openFileToolTip, saveAsToolTip
16 global colorsDialogToolTip, exitToolTip
17 global photo1, photo2, photo3, photo4
18 global openFileButton, saveAsButton, colorsButton, exitButton
19
20 # Show the messagebox for the info of the particular application
21 def _msgBox(self):
22 mbox.showinfo("About", "The Case Study for the Chapter 5: \
23 \nApplication Development with Python")
24
25 # Exit the application
26 def _quit(self):
27 MsgBox = mbox.askquestion("Exit Application",
28 "Exit the application?", icon = "warning")
29 if MsgBox == 'yes':
30 self.Main_winFrame.quit()
31 self.Main_winFrame.destroy()
32 exit()
33 else:
34 msg2 =mbox.showinfo("Return", "You will now return to the \
35 application screen")
36
37 # Create the main project window

552 Appendix

38 def __init__(self,Main_winFrame):
39
40 global openFileToolTip, saveAsToolTip
41 global colorsDialogToolTip, exitToolTip
42 global photo1, photo2, photo3, photo4
43 global openFileButton, saveAsButton, colorsButton, exitButton
44 global popupmenu
45
46 self.Main_winFrame = Main_winFrame
47 self.Main_winFrame.title("Application Development with Python")
48 self.Main_winFrame.config(bg = 'linen')
49 self.Main_winFrame.resizable(False, False)
50 self.Main_winFrame.geometry("800x600")
51
52 # Add a menu to the main frame
53 menuBar = tk.Menu(self.Main_winFrame)
54 self.Main_winFrame.config(menu = menuBar)
55 fileMenu = Menu(menuBar, tearoff = 0)
56 fileMenu.add_command(label = "Basic Widget",
57 command = self.BasicWidget_app)
58 fileMenu.add_separator()
59 fileMenu.add_command(label = "Exit (Ctrl+Q)",
60 command = self._quit,underline = 1, accelerator = "Ctrl+Q")
61 menuBar.add_cascade(label = "Basic Apps", menu = fileMenu)
62
63 helpMenu = Menu(menuBar, tearoff=0)
64 helpMenu.add_command(label = "About", command = self._msgBox)
65 menuBar.add_cascade(label = "Help", menu = helpMenu)
66
67 # Create the toolbar and invoke the bindButton function to
68 # bind them
69 self.images()
70 toolbar = tk.Frame(self.Main_winFrame, bd = 1, relief = RAISED)
71 toolbar.pack(side = TOP, fill = X)
72 openFileButton=tk.Button(toolbar, image=photo1, relief=FLAT)
73 saveAsButton=tk.Button(toolbar, image = photo2, relief = FLAT)
74 colorsButton=tk.Button(toolbar, image = photo3, relief = FLAT)
75 exitButton = tk.Button(toolbar, image = photo4, relief = FLAT)
76 self.bindButtons()
77 openFileButton.pack(side = LEFT, padx = 0, pady = 0)
78 saveAsButton.pack(side = LEFT, padx = 0, pady = 0)
79 colorsButton.pack(side = LEFT, padx = 0, pady = 0)
80 exitButton.pack(side = LEFT, padx = 0, pady = 0)
81
82 # Create the Popup menu
83 popupmenu = tk.Menu(self.Main_winFrame, tearoff = 0)
84 popupmenu.add_command(label="Open File dialog", image = photo1,
85 compound = LEFT, command = self.openDialog)
86 popupmenu.add_command(label = "Save As dialog", image = photo2,
87 compound = LEFT, command = self.saveAsDialog)
88 popupmenu.add_command(label = "Color dialog", image = photo3,
89 compound = LEFT, command = self.colorDialog)

553Appendix

90 popupmenu.add_separator()
91 popupmenu.add_command(label = "Exit", image = photo4,
92 compound = LEFT, command = self._quit)
93 self.Main_winFrame.bind('<Button-1>',
94 lambda event: self.popupMenu(event))
95
96 # Methods to be called using the interactive interface
97 # --
98 def BasicWidget_app(self):
99 app1Frame = tk.Tk
100 app1 = Chapter5CaseStudyBasicWidgets.BasicWidgets(app1Frame)
101
102 # ToolBar Menu images
103 def images(self):
104 global photo1, photo2, photo3, photo4
105 image1 = Image.open("images/OpenFile.gif")
106 image1 = image1.resize((24, 24), Image.ANTIALIAS)
107 photo1 = ImageTk.PhotoImage(image1)
108 image2 = Image.open("images/SaveAs.gif")
109 image2 = image2.resize((24, 24), Image.ANTIALIAS)
110 photo2 = ImageTk.PhotoImage(image2)
111 image3 = Image.open("images/ColorsDialog.gif")
112 image3 = image3.resize((24, 24), Image.ANTIALIAS)
113 photo3 = ImageTk.PhotoImage(image3)
114 image4 = Image.open("images/Exit.gif")
115 image4 = image4.resize((24, 24), Image.ANTIALIAS)
116 photo4 = ImageTk.PhotoImage(image4)
117
118 # ToolBar Menu Application 1
119 def colorDialog(self):
120 # Assign the user's selection of the color to a set of variables
121 (rgbSelected, colorSelected) = colorchooser.askcolor()
122 # Use the color part of the set of variables to change the
123 # color of the form
124 self.Main_winFrame.config(background = colorSelected)
125
126 # ToolBar Menu Application 2
127 def openDialog(self):
128 filedialog.askopenfile(title = "Open File Dialog")
129
130 # ToolBar Menu Application 3
131 def saveAsDialog(self):
132 filedialog.asksaveasfilename(title = "Save As Dialog")
133
134 # ToolBar Menu Application 4
135 def quit(self):
136 self.winFrame.destroy()
137 exit()
138
139 # Call the Popup Menu
140 def popupMenu(self, event):
141 global popupmenu

554 Appendix

142 popupmenu.tk_popup(event.x_root, event.y_root)
143
144 # Create the Tooltips to show and hide
145 def showToolTips(self, a):
146 global openFileToolTip, saveAsToolTip
147 global colorsDialogToolTip, exitToolTip
148 if (a == 1):
149 openFileToolTip = tk.Label(self.Main_winFrame,
150 relief = FLAT, text = "Open the Open File dialog",
151 background = 'cyan')
152
153 openFileToolTip.place(x = 25, y = 30)
154 if (a == 2):
155 saveAsToolTip = tk.Label(self.Main_winFrame, bd = 2,
156 relief = FLAT, text = "Open the Save As Dialog",
157 background = 'cyan')
158 saveAsToolTip.place(x = 50, y = 30)
159 if (a == 3):
160 colorsDialogToolTip = tk.Label(self.Main_winFrame,
161 relief = FLAT, bd = 2,
162 text = "Open the Colors Dialog", background = 'cyan')
163 colorsDialogToolTip.place(x = 75, y = 30)
164 if (a == 4):
165 exitToolTip = tk.Label(self.Main_winFrame, relief = FLAT,
166 bd = 2, text = "Click to exit the application",
167 background = 'cyan')
168 exitToolTip.place(x = 100, y = 30)
169
170 def hideToolTips(self, a):
171 global openFileToolTip, saveAsToolTip
172 global colorsDialogToolTip, exitToolTip
173
174 if (a == 1):
175 openFileToolTip.destroy()
176 if (a == 2):
177 saveAsToolTip.destroy()
178 if (a == 3):
179 colorsDialogToolTip.destroy()
180 if (a == 4):
181 exitToolTip.destroy()
182
183 # Define the bindButtons function to bind the buttons with the
184 # various events.
185 def bindButtons(self):
186 global openFileButton, saveAsButton, colorsButton, exitButton
187
188 openFileButton.bind('<Button-1>',
189 lambda event: self.openDialog())
190 openFileButton.bind('<Enter>',
191 lambda event: self.showToolTips(1))
192 openFileButton.bind('<Leave>',
193 lambda event: self.hideToolTips(1))

555Appendix

194 saveAsButton.bind('<Button-1>',
195 lambda event: self.saveAsDialog())
196 saveAsButton.bind('<Enter>',
197 lambda event: self.showToolTips(2))
198 saveAsButton.bind('<Leave>',
199 lambda event: self.hideToolTips(2))
200 colorsButton.bind('<Button-1>',
201 lambda event: self.colorDialog())
202 colorsButton.bind('<Enter>',
203 lambda event: self.showToolTips(3))
204 colorsButton.bind('<Leave>',
205 lambda event: self.hideToolTips(3))
206 exitButton.bind('<Button-1>',
207 lambda event: self._quit())
208 exitButton.bind('<Enter>',
209 lambda event: self.showToolTips(4))
210 exitButton.bind('<Leave>',
211 lambda event: self.hideToolTips(4))
212
213 # Create the main window frame
214 Main_winFrame = tk.Tk()
215 app = CaseStudy(Main_winFrame)
216 # Call the main window form of the application
217 Main_winFrame.mainloop()

Then, the main Basic Widgets application must be created and called from the main application.
The application is the same as in the previous chapter with the addition of the manipulation of the
color, the size, and the font name of the entry box text. The script is as follows:

1 import tkinter as tk
2 from tkinter import ttk
3 from tkinter import colorchooser
4 from tkinter.font import Font
5
6 class BasicWidgets():
7 global fonts
8 fonts = ['Arial', 'Tahoma', 'Verdana', 'Silom', 'Herculanum',
9 'Courier']
10 global fontSize, fontName, fontColor, colorSelected, fontDetails
11
12 # Declare the global variables
13 global tempText, winText
14 global textVar
15 global textEntryBox
16 global LfontName
17
18 # The method that hides the contents of the EntryBox
19 def hideEntryContents(self):
20 self.tempText = self.textEntryBox.get()
21 self.textEntryBox.delete(0, "end")
22
23 # The method that shows the contents of the Entry Box

556 Appendix

24 def showEntryContents(self):
25 if self.tempText != '':
26 self.textEntryBox.insert(0,self.tempText)
27
28 # The method to enable or disable the Entry box
29 def enableDisableEntryWidget(self, a):
30 if (a == 'e'):
31 self.textEntryBox.config(state = 'normal')
32 elif (a == 'd'):
33 self.textEntryBox.config(state = 'disable')
34
35 # The method to turn the font to bold and back to normal
36 def boldContentsofEntryWidget(self, a):
37 global fontDetails
38
39 if (a == 'b'):
40 self.textEntryBox.config(font = 'bold')
41 elif (a == 'n'):
42 self.setFormatting()
43
44 # The method to change the font of the content to password and back
45 def passwordEntryWidget(self, a):
46 if (a == 'p'):
47 self.textEntryBox.config(show = '*')
48 elif (a == 'n'):
49 self.textEntryBox.config(show = '')
50
51 # The method to control the color options
52 def setColor(self):
53 global colorSelected, fontColor
54 (rgbSelected,self.colorSelected) = colorchooser.askcolor()
55 self.fontColor = self.colorSelected
56 self.setFormatting()
57
58 # The method to change the formatting option
59 def change(self, event):
60 global LfontName, fontName, fonts, fontIndex
61 fontIndex = LfontName.current()
62 self.fontName.set(fonts[fontIndex])
63 self.setFormatting()
64
65 # The method to select the font size based on the onScale selection
66 def onScale(self,val):
67 global fontSize
68 self.fontSize = str(val)
69 self.setFormatting()
70
71 # The method to finalize the format of the text
72 def setFormatting(self):
73 global fontSize, fontColor, fontName, fontDetails
74
75 fontDetails = "" + str(self.fontName.get()) + " " + \

557Appendix

76 str(self.fontSize)
77 self.textEntryBox.config(foreground = self.fontColor,
78 font = fontDetails)
79
80 # Initialize the widgets of the form
81 def __init__(self,winFrame):
82
83 global textVar
84 global winText, tempText
85 global fontSize, fontName, fontColor, fontDetails
86 global LfontName
87
88 self.tempText = ''
89
90 winFrame = tk.Tk()
91 self.winFrame = winFrame
92 self.winFrame.title("Basic Widgets")
93 self.winFrame.config(bg = 'light grey')
94 self.winFrame.resizable(True, True)
95 self.winFrame.geometry('335x290')
96
97 # The label widget
98 winLabel = tk.Label(self.winFrame,
99 text = "Enter your Text", width = 15)
100 winLabel.config(bg = 'linen', font = "Arial 14 bold")
101 winLabel.grid(column = 0, row = 0)
102
103 # The textEditbox widget
104 textVar = tk.StringVar()
105 self.textEntryBox = ttk.Entry(self.winFrame,
106 width = 18, textvariable = textVar)
107 self.textEntryBox.grid(column = 1, row = 0)
108
109 # Button 1: Show the Entry widget
110 btn1_show_entry_w = tk.Button(self.winFrame,
111 text = "Show the\n Entry Widget", fg = 'red')
112 btn1_show_entry_w.config(width = 18,
113 font = 'Arial 11 bold', borderwidth = 8 ,
114 command = self.textEntryBox.grid)
115 btn1_show_entry_w.grid(column = 0, row = 1)
116
117 # Button 2: Hide the Entry widget
118 btn2_hide_entry_w = tk.Button(self.winFrame,
119 text = "Hide the\n Entry Widget", fg = 'red')
120 btn2_hide_entry_w.config(width = 28,
121 font = "Arial 11 bold", borderwidth = 8,
122 command = self.textEntryBox.grid_remove)
123 btn2_hide_entry_w.grid(column = 1, row = 1)
124
125 # Button 3: Hide the contents of the entry widget
126 btn3_Hide_EntryContent = tk.Button(self.winFrame,
127 text = "Hide the contents\n of the Entry Widget",

558 Appendix

128 fg = 'steelblue')
129 btn3_Hide_EntryContent.config(width = 18,
130 font = "Arial 11 bold", borderwidth = 8 ,
131 command = self.hideEntryContents)
132 btn3_Hide_EntryContent.grid(column = 0, row = 2)
133
134 # Button 4: Show the contents of the entry widget
135 btn4_show_EntryContent = tk.Button(self.winFrame,
136 text = "Show the contents\n of the Entry Widget",
137 fg = 'steelblue')
138 btn4_show_EntryContent.config(width = 28,
139 font = "Arial 11 bold", borderwidth = 8,
140 command = self.showEntryContents)
141 btn4_show_EntryContent.grid(column = 1, row = 2)
142
143 # Button 5: Enable the entry widget
144 btn5_ebable_EntryW = tk.Button(self.winFrame,
145 text = "Enable the\n Entry Widget", fg = 'green')
146 btn5_ebable_EntryW.config(width = 18,
147 font = "Arial 11 bold", Borderwidth = 8)
148 btn5_ebable_EntryW.grid(column = 0, row = 3)
149 btn5_ebable_EntryW.bind('<Button-1>', lambda event,
150 a = 'e': self.enableDisableEntryWidget(a))
151
152 # Button 6: Disable the entry widget
153 btn6_Disable_EntryW = tk.Button(self.winFrame,
154 text = "Disable the\n Entry Widget", fg = 'green')
155 btn6_Disable_EntryW.config(width = 28,
156 font = "Arial 11 bold", borderwidth = 8)
157 btn6_Disable_EntryW.grid(column = 1, row = 3)
158 btn6_Disable_EntryW.bind('<Button-1>', lambda event,
159 a = 'd': self.enableDisableEntryWidget(a))
160
161 self.fontBold = False
162
163 # Button 7: Change the content of the entry widget to Bold
164 btn7_Bold_EntryW = tk.Button(self.winFrame,
165 text = "Bold contents of\n the Entry Widget",
166 fg = 'orchid')
167 btn7_Bold_EntryW.config(width = 18,
168 font = "Arial 11 bold", borderwidth = 8)
169 btn7_Bold_EntryW.grid(column = 0, row = 4)
170 btn7_Bold_EntryW.bind('<Button-1>', lambda event,
171 a = 'b': self.boldContentsofEntryWidget(a))
172
173 # Button 8: Return the contents of the entry widget back to
174 # normal
175 btn8_normalFont_EntryW = tk.Button(self.winFrame,
176 text = "Return to normal \nthe Entry Widget",
177 fg = 'orchid')
178 btn8_normalFont_EntryW.config(width = 28,

559Appendix

179 font = "Arial 11 bold", borderwidth = 8)
180 btn8_normalFont_EntryW.grid(column = 1, row = 4)
181 btn8_normalFont_EntryW.bind('<Button-1>', lambda event,
182 a = 'n': self.boldContentsofEntryWidget(a))
183
184 # Button 9: Change the contents of the entry widget to password
185 btn9_Password_EntryW = tk.Button(self.winFrame,
186 text = "Show Entry Contents\n as Password Text",
187 fg = 'purple')
188 btn9_Password_EntryW.config(width = 18,
189 font = "Arial 11 bold", borderwidth = 8)
190 btn9_Password_EntryW.grid(column = 0, row = 5)
191 btn9_Password_EntryW.bind('<Button-1>', lambda event,
192 a = 'p': self.passwordEntryWidget(a))
193
194 # Button 10: Change the contents of the entry widget back
195 # to normal
196 btn10_noPassword_EntryW = tk.Button(self.winFrame,
197 text = "Show Entry Contents\n as Normal Text",
198 fg = 'purple')
199 btn10_noPassword_EntryW.config(width = 28,
200 font = "Arial 11 bold", borderwidth = 8)
201 btn10_noPassword_EntryW.grid(column = 1, row = 5)
202 btn10_noPassword_EntryW.bind('<Button-1>', lambda event,
203 a = 'n': self.passwordEntryWidget(a))
204
205 # Button 11: Select the preferred font size
206 btn11_FontSize = tk.Button(self.winFrame,
207 text = "Use the scale to\nselect the font size",
208 fg = 'dark grey')
209 btn11_FontSize.config(width = 18, font = "Arial 11 bold",
210 borderwidth = 8)
211 btn11_FontSize.grid(column = 0, row = 6)
212
213 self.fontSize = 8
214 fontScale = tk.Scale(self.winFrame, length = 200 ,
215 from_ = 8, to = 16)
216 fontScale.config(resolution = 1, activebackground = 'darkblue',
217 orient = 'horizontal', command = self.onScale,
218 bg = 'linen', fg = 'DarkMagenta', troughcolor = 'Thistle')
219 fontScale.grid(column = 1 , row = 6)
220
221 # Button 12: Select the preferred font name
222 btn12_FontName = tk.Button(self.winFrame, fg = 'brown',
223 text = "Use the combobox to\nselect the font name")
224 btn12_FontName.config(width = 18, font = "Arial 11 bold",
225 borderwidth = 8)
226 btn12_FontName.grid(column = 0, row = 7)
227
228 self.fontName = tk.StringVar()
229 self.fontName.set(fonts[0])

560 Appendix

230 LfontName = ttk.Combobox(self.winFrame,
231 textvariable = self.fontName, width = 18)
232 LfontName['values'] = fonts; LfontName.current(1)
233 LfontName.grid(column = 1 , row = 7)
234 LfontName.bind("<<ComboboxSelected>>", self.change)
235
236 # Button 13: Create the Font Color Selector
237 self.fontColor = "#00fcff"
238 btn13_ColorSelector = tk.Button(self.winFrame,
239 Text = 'Select the preferred\ntext color',
240 width = 18, Fg = 'orange',font = "Arial 11 bold",
241 command = self.setColor)
242 btn13_ColorSelector.grid(column = 0, row = 8)
243
244 # Start the form
245 self.winFrame.mainloop()

Output: Case Study Chapter 5

561Appendix

562 Appendix

CHAPTER 6 – DATA STRUCTURES AND ALGORITHMS WITH PYTHON

desCriPtion

Create an application that implements the specified algorithms and tasks. The application should use
a GUI interface in the form of a tabbed notebook, using one tab for each algorithm. The application
requirements are the following:

 1. Implement the Following Static Sorting Algorithms: bubble sort, insertion sort, shaker
sort, merge sort.

 2. Ask the user to enter a regular arithmetic expression in a form of a phrase, with each of the
operators limited to single digit integer numbers. Convert the infix expression to postfix.

 3. Ask the user to enter a sequence of integers, insert them into a binary search tree and
implement the BST ADS algorithm with both inorder and postorder traversals.

solution

1 # Import the necessary libraries
2 import tkinter as tk
3 from tkinter import ttk
4
5 # Import the random module to generate random numbers
6 import random
7 import time
8
9 # Declare and/or initialise the global variables and widgets
10 global tab1, tab2, tab3, tab4, tab5
11 global i, j, k, mergeComp
12 global textVar
13 global winLabel
14 global tempText
15 global list
16
17 #----------- CASE STUDY - PART A: SORTING -----------
18 #------Bubble Sort------
19 def bubbleSort(size):
20 global list
21 comparisons = 0
22
23 # Start the timer
24 startTime = time.process_time()
25
26 # The Bubble sort algorithm
27 for i in range (size - 1):
28 for j in range (size - 1):
29 comparisons += 1
30 if (list[j] > list[j + 1]):
31 temp = list[j]
32 list[j] = list[j + 1]
33 list[j+1] = temp
34

563Appendix

35 # End the timer
36 endTime = time.process_time()
37
38 listToString = ' '.join(map(str, list))
39 winLabel1 = tk.Label(tab1,
40 text = "The sorted list is: " + listToString)
41 winLabel1.grid(column = 1, row = 1)
42 winLabel2 = tk.Label(tab1,
43 text = "The number of comparisons is = " + str(comparisons))
44 winLabel2.grid(column = 1, row = 3)
45 winLabel3 = tk.Label(tab1, text="The elapsed time in seconds = " +
46 str(endTime - startTime))
47 winLabel3.grid(column = 1, row = 5)
48
49 #------ Insertion Sort ------
50 def insertionSort(size):
51 global list
52 comparisons = 0
53
54 # Start the timer
55 startTime = time.process_time()
56
57 # The Insertion sort algorithm
58 for i in range(1, size):
59 temp = list[i]
60 loc = i
61 while ((loc > 0) and (list[loc - 1] > temp)):
62 comparisons += 1
63 list[loc] = list[loc - 1];
64 loc = loc - 1
65 list[loc] = temp
66
67 # End the timer
68 endTime = time.process_time()
69
70 listToString = ' '.join(map(str, list))
71 winLabel1 = tk.Label(tab2,
72 text = "The sorted list is: " + listToString)
73 winLabel1.grid(column = 1, row = 1)
74 winLabel2 = tk.Label(tab2, text="The number of comparisons is = " +
75 str(comparisons))
76 winLabel2.grid(column = 1, row = 3)
77 winLabel3 = tk.Label(tab2, text="The elapsed time in seconds = " +
78 str(endTime - startTime))
79 winLabel3.grid(column = 1, row = 5)
80
81 #------ Shaker Sort ------
82 def shakerSort(size):
83 global list
84 comparisons = 0
85
86 # Start the timer

564 Appendix

87 startTime = time.process_time()
88
89 # The Shaker Sort algorithm
90 swapped = True; start = 0; end = size - 1
91
92 # Keep running the Shaker Sort while there are swaps taking place
93 while (swapped == True):
94 # Set swap to false to start the new loop
95 swapped = False;
96
97 # Loop from left to right using Bubble sort
98 for i in range(start, end):
99 comparisons += 1
100 if (list[i] > list[i + 1]):
101 temp = list[i]; list[i] = list[I + 1]
102 list[I + 1] = temp; swapped = True;
103 # If there were no swaps, then the list is sorted
104 if (swapped == False):
105 break
106 # If there was at least one swap, then reset swap to false
107 # and continue
108 else:
109 swapped = False
110 # Decrease the end of the list to -1 since one more largest
111 # element moved to the right
112 end -= 1
113
114 # Loop from right to left using Bubble sort
115 for i in range (end, start, -1):
116 comparisons += 1
117 if (list[i] < list[i - 1]):
118 temp = list[i]; list[i] = list[i - 1]
119 list[i-1] = temp; swapped = True
120
121 # Increase the start of the list by 1 since one more smallest
122 # element moved to the left
123 start += 1
124
125 # End the timer
126 endTime = time.process_time()
127
128 # Print output
129 listToString = ' '.join(map(str, list))
130 winLabel1 = tk.Label(tab3, text = "The sorted list is: " +
131 listToString)
132 winLabel1.grid(column = 1, row = 1)
133 winLabel2 = tk.Label(tab3, text="The number of comparisons is = " +
134 str(comparisons))
135 winLabel2.grid(column = 1, row = 3)
136 winLabel3 = tk.Label(tab3, text="The elapsed time in seconds = " +
137 str(endTime - startTime))
138 winLabel3.grid(column = 1, row = 5)

565Appendix

139
140 #------ Merge Sort ------
141 def merge(first, middle, last):
142 global list
143 global i, j, k, mergeComp
144 size1 = middle - first + 1; size2 = last - middle
145
146 # Create temporary lists
147 leftList = []; rightList = []
148
149 # Copy data of the original list to temporary lists leftList
150 # and rightList
151 for i in range(0 , size1):
152 leftList.append(list[first + i])
153 for j in range(0 , size2):
154 rightList.append(list[middle + 1 + j])
155
156 # Merge the temporary lists leftList and rightList into the
157 # original list until one of the sub-lists is empty
158 i = 0; j = 0; k = first
159 while (i < size1 and j < size2):
160 if (leftList[i] <= rightList[j]):
161 list[k] = leftList[i]; i += 1; mergeComp += 1
162 else:
163 list[k] = rightList[j]; j += 1; mergeComp += 1
164 k += 1
165
166 # If the leftList becames empty, copy its remaining elements to the
167 # original list
168 while (i < size1):
169 list[k] = leftList[i]; i += 1; k += 1
170
171 # If the rightList becames empty, copy its remaining elements to
172 # the original list
173 while (j < size2):
174 list[k] = rightList[j]; j += 1; k += 1
175
176 # The mergeSort algorithm
177 def mergeSort(first, last):
178 global list
179 # Start the timer
180 startTime = time.process_time()
181
182 # The recursive step
183 if (first <= last-1):
184 middle = (first + last)//2
185 mergeSort(first, middle)
186 mergeSort(middle + 1, last)
187 merge(first, middle, last)
188
189 # End the timer
190 endTime = time.process_time()

566 Appendix

191
192 # Print output
193 listToString = ' '.join(map(str, list))
194 winLabel1 = tk.Label(tab4,
195 text = "The sorted list is: " + listToString)
196 winLabel1.grid(column = 1, row = 1)
197 winLabel2 = tk.Label(tab4,
198 text = "The number of comparisons is = " + str(mergeComp))
199 winLabel2.grid(column = 1, row = 3)
200 winLabel3 = tk.Label(tab4,
201 text = "The elapsed time in seconds = " +
202 str(endTime - startTime))
203 winLabel3.grid(column = 1, row = 5)
204
205 #----- Sorting Function Calls -----
206 def multiSorting():
207 global list
208 global i, j, k, mergeComp
209 list = []
210 i, j, k, mergeComp = 0, 0, 0, 0
211 size = 10
212
213 # Use the randint() method of the random class to generate
214 # random integers
215 for i in range (size):
216 newNum = random.randint(-100, 100)
217 list.append(newNum)
218
219 # Call sorting functions
220 bubbleSort(size)
221 insertionSort(size)
222 shakerSort(size)
223 mergeSort(0, size - 1)
224
225 #--
226 #------ CASE STUDY PART B: INFIX TO POSTFIX ------
227 #------ Infix to Postfix ------
228 # Source: https://cppsecrets.com/users/
229 # 2582658986657266505064717765737646677977/
230
231 # INFIX-TO-POSTFIX-CONVERSION-USING-STACK.php
232
233 def infixToPostfix(infixExpression):
234 global textVar
235 global winLabel
236
237 # Initialize set of operators and priorities dictionary
238 OPERATORS = set(['+', '-', '*', '/', '(', ')', '^'])
239 PRIORITY = {'+':1, '-':1, '*':2, '/':2, '^':3}
240
241 # Initialize stack and output expression
242 stack = []

https://cppsecrets.com

567Appendix

243 Output = ''
244
245 # Infix to Postfix conversion
246 for ch in infixExpression:
247 if ch not in OPERATORS:
248 Output += ch
249 elif ch == '(':
250 stack.append('(')
251 elif ch == ')':
252 while stack and stack[-1] != '(':
253 Output += stack.pop()
254 stack.pop()
255 else:
256 while stack and stack[-1] != \
257 '(' and PRIORITY[ch] <= PRIORITY[stack[-1]]:
258 Output += stack.pop()
259 stack.append(ch)
260 while stack:
261 Output += stack.pop()
262
263 textVar.set(Output)
264
265 # Create GUI
266 def createInfixPostfixGUI():
267 global textVar
268 textVar = tk.StringVar()
269
270 # Create and initialize labels, buttons and text boxes
271 winLabel1 = tk.Label(tab5, text = 'Enter Infix Expression:')
272 winLabel1.grid(column = 1, row = 1)
273
274 winLabel2 = tk.Label(tab5, textvariable = textVar)
275 winLabel2.grid(column = 2, row = 3)
276
277 textVarLocal = tk.StringVar()
278 textVarLocal.set('(A * B) + C - D')
279 winText = ttk.Entry(tab5, textvariable = textVarLocal)
280 winText.grid(column = 2, row = 1)
281
282 winButtonConvert = tk.Button(tab5, text = 'Convert to Postfix')
283 winButtonConvert.grid(column = 1, row = 3)
284 winButtonConvert.bind('<Button-1>',
285 lambda event: infixToPostfix(textVarLocal.get()))
286
287 #--
288 #------ CASE STUDY PART C: BST POSTORDER ------
289 # BST class initialization
290 class BinarySearchTree:
291 def __init__(self, key):
292 self.left = None
293 self.right = None
294 self.data = key

568 Appendix

295
296 # BST class initialization
297 def insert(root, newData):
298
299 if (root == None):
300 return BinarySearchTree(newData)
301 else:
302 if root.data == newData:
303 return root
304 elif root.data < newData:
305 root.right = insert(root.right, newData)
306 else:
307 root.left = insert(root.left, newData)
308 return root
309
310 # Inorder Traversal
311 def traverseInorderBST(root):
312 global tempText
313
314 # If the BST current node is not a leaf traverse the left subtree.
315 # If it is a leaf, print its data & then traverse the right subtree
316 if (root):
317 traverseInorderBST(root.left)
318 tempText = tempText + ' ' + str(root.data)
319 traverseInorderBST(root.right)
320
321 # Postorder Traversal
322 def traversePostorderBST(root):
323 global tempText
324
325 # If the BST current node is not a leaf traverse the left subtree.
326 # If it is a leaf, print its data & then traverse the right subtree
327 if (root):
328 traversePostorderBST(root.left)
329 traversePostorderBST(root.right)
330 tempText = tempText + ' ' + str(root.data)
331
332 # Create GUI and call traversal functions
333 def createInorderPostorderGUI():
334 global tempText
335
336 newData = random.randint(-100, 100)
337 winLabel1 = tk.Label(tab6, text = 'Root: ')
338 winLabel1.grid(column = 1, row = 1)
339 winLabel2 = tk.Label(tab6, text = str(newData))
340 winLabel2.grid(column = 2, row = 1)
341 bst = BinarySearchTree(newData)
342
343 for i in range (10):
344 newData = random.randint(-100, 100)

569Appendix

345 bst = insert(bst, newData)
346
347 tempText = ''
348 traverseInorderBST(bst)
349 winLabel3 = tk.Label(tab6, text = 'Inorder Traversal: ')
350 winLabel3.grid(column = 1, row = 3)
351 winLabel4 = tk.Label(tab6, text = tempText)
352 winLabel4.grid(column = 2, row = 3)
353
354 tempText = ''
355 traversePostorderBST(bst)
356 winLabel5 = tk.Label(tab6, text = 'Postorder Traversal: ')
357 winLabel5.grid(column = 1, row = 5)
358 winLabel6 = tk.Label(tab6, text = tempText)
359 winLabel6.grid(column = 2, row = 5)
360
361 #--
362 #------------------------ MAIN BODY -----------------------------------
363 winFrame = tk.Tk()
364 winFrame.title("Chapter 6 - Case Study")
365 winFrame.resizable(True, True)
366 winFrame.geometry('500x150')
367
368 # Create the notebook with the tab pages
369 tabbedInterface = ttk.Notebook(winFrame)
370 tab1 = ttk.Frame(tabbedInterface)
371 tabbedInterface.add(tab1, text = "Bubble Sort")
372 tab2 = ttk.Frame(tabbedInterface)
373 tabbedInterface.add(tab2, text = "Insertion Sort")
374 tab3 = ttk.Frame(tabbedInterface)
375 tabbedInterface.add(tab3, text = "Shaker Sort")
376 tab4 = ttk.Frame(tabbedInterface)
377 tabbedInterface.add(tab4, text = "Merge Sort")
378 tab5 = ttk.Frame(tabbedInterface)
379 tabbedInterface.add(tab5, text = "Infix to Postfix")
380 tab6 = ttk.Frame(tabbedInterface)
381 tabbedInterface.add(tab6, text = "Postorder Traversal")
382 tabbedInterface.pack()
383
384 # Invoke the Sorting functions
385 multiSorting()
386
387 # Invoke the Infix to Postfix functions
388 createInfixPostfixGUI()
389
390 # Invoke the Inorder to Postorder functions
391 createInorderPostorderGUI()
392
393 winFrame.mainloop()
394 #--

570 Appendix

Output: Case Study Chapter 6

571Appendix

CHAPTER 7 – DATABASE PROGRAMMING WITH PYTHON

desCriPtion

Create an application that provides the following functionality:

 a. Prompt the user for their credentials and the name of the MySQL database to connect to.
Display a list of the tables that are available in the connected database in a status bar form
at the bottom of the application window (Hint: A label can be used for this purpose).

 b. Allow the user to define a new table and set the number of its attributes. Based on user
selection, create the interface required for the specifications of the attributes in the new
table (i.e., attribute name, type, and size, primary or foreign key designation). The interface
should be created on-the-spot.

The application must use a GUI interface and the MySQL facilities for the database element.

solution

1 import mysql.connector
2 import tkinter as tk
3 from tkinter import ttk
4
5 global LoginF, DescF, columnDetailFrame
6 global userVar, passVar, hostVar, dbVar, statusVar, tableVar
7 global tablesCombo, columnsCombo
8 global connect, cursor, config; global numOfColumns
9 global tables, columns, dataTypes, primaryKey
10 #---
11 def initializeVarObjects():
12 global userVar, passVar, hostVar, dbVar, statusVar, tableVar
13 global numOfColumns; global tables, columns, dataTypes, primaryKey
14
15 userVar = tk.StringVar(); userVar.set("Enter the username here")
16 passVar = tk.StringVar(); passVar.set("Enter the password here")
17 hostVar = tk.StringVar(); hostVar.set("Enter the host here")
18 dbVar = tk.StringVar(); dbVar.set("Enter the database name here")
19 tableVar = tk.StringVar(); tableVar.set("")
20 statusVar = tk.StringVar(); statusVar.set("")
21 numOfColumns = 0; dataTypes = ["Char", "Integer"]
22 primaryKey = [True, False]; tables = []; columns = []
23 #---
24 # Define the function to control the Column Size Scale widget change
25 def onScale(val):
26 global numOfColumns
27 v = int(val)
28 numOfColumns = v
29 #---
30 def createGUI():
31 global userVar, passVar, hostVar, dbVar, statusVar
32 global tablesCombo; global connect, cursor, config
33 global LoginF, DescF, StatusF
34

572 Appendix

35 # Create the frames for the GUI
36 LoginF = tk.LabelFrame(winFrame, text = 'Login',
37 bg = 'light grey', fg = 'red')
38 LoginF.grid(column = 0, row = 0)
39
40 # Create the labels and entry boxes
41 userL = tk.Label(LoginF, text = "Username:",
42 bg = "light grey").grid(column = 0, row = 0)
43 userT = ttk.Entry(LoginF, textvariable = userVar,
44 width = 46).grid(column = 1, row = 0)
45 passL = tk.Label(LoginF, text = "Password:",
46 bg = "light grey").grid(column = 0, row = 1)
47 passT = ttk.Entry(LoginF, textvariable = passVar,
48 width = 46).grid(column = 1, row = 1)
49 hostL = tk.Label(LoginF, text = "Hostname:",
50 bg = "light grey").grid(column = 0, row = 2)
51 hostT = ttk.Entry(LoginF, textvariable = hostVar,
52 width = 46).grid(column = 1, row = 2)
53 dbL = tk.Label(LoginF, text = "DB Name:",
54 bg = "light grey").grid(column = 0, row = 3)
55 dbT = ttk.Entry(LoginF, textvariable = dbVar,
56 width = 46).grid(column = 1, row = 3)
57 connectB = tk.Button(LoginF, text = "Connect", fg = 'blue')
58 connectB.bind("<Button-1>", lambda event: dbConnect())
59 connectB.grid(columnspan = 2, column = 0, row = 4)
60
61 # The frame to display the status of the operations
62 StatusF = tk.LabelFrame(winFrame, text = 'Status',
63 bg = 'light grey', fg = 'red')
64 StatusF.grid(column = 0, row = 3)
65 statusT = ttk.Entry(StatusF, textvariable = statusVar,
66 width = 55).grid(column = 1, row = 0)
67 #---
68 def dbCreateTableGUI():
69 global NewTableFrame; global tableNoColsScale; global tableNameVar
70
71 # The frame for the creation of the new table and its attributes
72 NewTableFrame = tk.LabelFrame(winFrame, text = 'New Table',
73 bg = 'light grey', fg = 'red')
74 NewTableFrame.grid(column = 0, row = 1)
75 # Create the label, and entry for the name of the new table
76 tableNameLabel = tk.Label(NewTableFrame, text = "Name:",
77 bg = "light grey")
78 tableNameLabel.grid(column = 0, row = 0)
79 tableNameVar = tk.StringVar()
80 tableNameVar.set("Enter name")
81 tableNameText = ttk.Entry(NewTableFrame,
82 textvariable = tableNameVar, width = 26)
83 tableNameText.grid(column = 1, row = 0)
84 tableNoColsLabel = tk.Label(NewTableFrame,
85 text = "No. of columns:", bg = "light grey")
86 tableNoColsLabel.grid(column = 2, row = 0)
87 tableNoColsVar = tk.IntVar()

573Appendix

88 tableNoColsScale = tk.Scale(NewTableFrame, length = 100,
89 from_ = 0, to = 40)
90 tableNoColsScale.config(resolution = 1, orient = 'horizontal')
91 tableNoColsScale.config(bg = 'light grey', fg = 'red',
92 troughcolor = 'cyan', command = onScale)
93 tableNoColsScale.grid(column = 3, row = 0)
94 # Create button to finalize the number of columns in the new table
95 tableNoColsButton = tk.Button(NewTableFrame,
96 text = "Finalize columns", fg = "blue")
97 tableNoColsButton.bind("<Button-1>",
98 lambda event: dbFinalizeColumns())
99 tableNoColsButton.grid(column = 1, row = 1)
100 # Create the button to execute the statement that will create
101 # the new table
102 tableNoColsButton = tk.Button(NewTableFrame, text = "Create table",
103 fg = "blue")
104 tableNoColsButton.bind("<Button-1>", lambda event: dbCreateTable())
105 tableNoColsButton.grid(column = 2, row = 1)
106 #--
107 # Define the function to finalize the number of columns in the new table
108 def dbFinalizeColumns():
109 global columnTypeCombo, columnPrimaryKeyCombo
110 global tableNoColsScale, columnSizeScale
111 global connect
112 global columnNameText
113 global tables, columns, dataTypes, primaryKey
114 global statusVar
115 global tablesCombo, columnsCombo; global ColumnDetailFrame
116
117 numOfColumns = int(tableNoColsScale.get())
118 statusVar.set("Decision is for " + str(numOfColumns) + \
119 " attributes/columns")
120
121 columnNameLabel = []*numOfColumns
122 columnTypeLabel = []*numOfColumns
123 columnSizeLabel = []*numOfColumns
124 columnPrimaryKeyLabel = []*numOfColumns
125 columnNameText = []*numOfColumns
126 referenceTableLabel = []*numOfColumns
127 columnTypeCombo = []*numOfColumns
128 columnPrimaryKeyCombo = []*numOfColumns
129 columnSizeScale = []*numOfColumns
130
131 # The frame for the definition of each of the columns of the table
132 ColumnsFrame = tk.LabelFrame(winFrame,
133 text = 'The Attributes of the table')
134 ColumnsFrame.config(bg = 'light grey', fg = 'red', bd = 2,
135 relief = 'sunken')
136 ColumnsFrame.grid(column = 0, row = 2)
137
138 ColumnDetailFrame = [None]*numOfColumns
139 for i in range(numOfColumns):
140 # Create the label frame to accept the attribute details

574 Appendix

141 ColumnDetailFrame[i] = tk.LabelFrame(ColumnsFrame,
142 text = "Column " + str(i+1) + " details")
143 ColumnDetailFrame[i].config(bg = 'light grey', fg = 'red',)
144 ColumnDetailFrame[i].grid(column = 0, row = i)
145
146 # Create the label to prompt for the name of the new column
147 newLabel = tk.Label(ColumnDetailFrame[i],
148 text = "Name:", bg = "light grey")
149 columnNameLabel.append(newLabel)
150 columnNameLabel[i].grid(column = 0, row = 0)
151
152 # Create the text to accept the name of the new column
153 newColumnNameText = ttk.Entry(ColumnDetailFrame[i], width = 8)
154 columnNameText.append(newColumnNameText)
155 columnNameText[i].grid(column = 1, row = 0)
156
157 # Create the combobox to select the data type of the new column
158 newColumnTypeLabel = tk.Label(ColumnDetailFrame[i],
159 text = "Type:", bg = "light grey")
160 columnTypeLabel.append(newColumnTypeLabel)
161 columnTypeLabel[i].grid(column = 2, row = 0)
162 newColumnTypeCombo = ttk.Combobox(ColumnDetailFrame[i],
163 width = 4)
164 newColumnTypeCombo['values'] = dataTypes
165 newColumnTypeCombo.current(0)
166 columnTypeCombo.append(newColumnTypeCombo)
167 columnTypeCombo[i].grid(column = 3, row = 0)
168
169 # Create the scale to select the size of the column
170 newColumnSizeLabel = tk.Label(ColumnDetailFrame[i],
171 text = "Size:", bg = "light grey")
172 columnSizeLabel.append(newColumnSizeLabel)
173 columnSizeLabel[i].grid(column = 4, row = 0)
174 newColumnSize = tk.Scale(ColumnDetailFrame[i],
175 length = 61, from_ = 0, to = 30)
176 newColumnSize.config(resolution = 1, orient = 'horizontal')
177 newColumnSize.config(bg = 'light grey', fg = 'red',
178 troughcolor = 'cyan', command = onScale)
179 newColumnSize.grid(column = 5, row = 0)
180 columnSizeScale.append(newColumnSize)
181
182 # Create the combobox to decide if the current column is part
183 # a primary key
184 newColumnPrimaryKeyLabel = tk.Label(ColumnDetailFrame[i],
185 text = "Primary\nKey?", bg = "light grey")
186 columnPrimaryKeyLabel.append(newColumnPrimaryKeyLabel)
187 columnPrimaryKeyLabel[i].grid(column = 6, row = 0)
188 newColumnPrimaryKeyCombo = ttk.Combobox(
189 ColumnDetailFrame[i], width = 4)
190 newColumnPrimaryKeyCombo['values'] = primaryKey
191 newColumnPrimaryKeyCombo.current(0)
192 columnPrimaryKeyCombo.append(newColumnPrimaryKeyCombo)

575Appendix

193 columnPrimaryKeyCombo[i].grid(column = 7, row = 0)
194 #---
195 # Define the function to create the new table
196 def dbCreateTable():
197 global tableNameVar, statusVar; global connect
198 global columnNameText
199 global columnTypeCombo, columnPrimaryKeyCombo
200 global columnSizeScale, tableNoColsScale
201
202 cursor = connect.cursor()
203 numOfColumns = int(tableNoColsScale.get())
204
205 sqlString = "Create table " + tableNameVar.get() + "("
206 for i in range (0, numOfColumns):
207 sqlString = sqlString + str(columnNameText[i].get()) + " " + \
208 str(columnTypeCombo[i].get()) + "(" + \
209 str(columnSizeScale[i].get()) + ")"
210 if (str(columnPrimaryKeyCombo[i].get()) == "True"):
211 sqlString = sqlString + " Primary key"
212 if (i == numOfColumns-1):
213 sqlString = sqlString + ")"
214 else:
215 sqlString = sqlString + ", "
216 statusVar.set(sqlString)
217
218 try:
219 cursor.execute(sqlString)
220 statusVar.set("Table " + tableNameVar.get() + " is created")
221 except:
222 statusVar.set("There was a problem with creating the table")
223 #---
224 # Define the function to connect to the database
225 def dbConnect():
226 global userVar, passVar, hostVar, dbVar, statusVar
227 global connect, cursor, config; global tables, columns
228
229 GUIDB = 'GuiDB'
230 config = {'user': userVar.get(), 'password': passVar.get(),
231 'host': hostVar.get(), 'database': dbVar.get()}
232
233 connect = mysql.connector.connect(**config)
234 cursor = connect.cursor()
235 try:
236 cursor.execute("Show tables")
237 tables = cursor.fetchall()
238 cursor.execute("Desc " + str(tables[0][0]))
239 columns = cursor.fetchall()
240 statusVar.set("DB tables are: " + str(tables))
241 except:
242 statusVar.set("There was a problem with the connection")
243 dbCreateTableGUI()
244 #---

576 Appendix

245 # Create the basic window frame with the tk.Tk() constructor and
246 # give a title
247 winFrame = tk.Tk()
248 winFrame.config(bg = "grey")
249 winFrame.title("Data Definition Language: Create")
250
251 initializeVarObjects()
252 createGUI()
253 winFrame.mainloop()

Output: Case Study Chapter 7

577Appendix

578 Appendix

CHAPTER 8 – DATA ANALYTICS AND DATA VISUALIZATION

desCriPtion

Readmission is considered a quality measure of hospital performance and a driver of healthcare
costs. Studies have shown that patients with diabetes are more likely to have higher early read-
missions (readmitted within 30 days of discharge), compared to those without diabetes (American
Diabetes Association, 2018; McEwen & Herman, 2018). To reduce early readmission, one solution
is to provide additional assistance to patients with high risk of readmission. For this purpose, the US
Department of Health would like to know how to identify the patients with high risk of readmission
using the collected clinical records of diabetes patients from 130 US hospitals between 1999 and
2008.

As an attempt to assist the US Department of Health in understanding the data, you are asked to
explore, analyse (descriptively), and visualise the data of readmission (readmitted) and the potential
risk factors, such as time in hospital (time_in_hospital) and hemoglobin A1c results (HA1Cresult),
using techniques covered in this chapter.

More specifically, your work should cover the following:

 1. Data Acquisition: Import the related data file (i.e., Diabetes.csv).
 2. Data Exploration: Report the number of records/samples and the number of columns/vari-

ables in the dataset.
 3. Descriptive Statistics: Use suitable techniques to summarise or describe the three variables

we are interested in: readmitted, time_in_hospital, and HA1Cresult.
 4. Data Visualisation: Use appropriate techniques to visualise the three variables and the rela-

tionships between readmitted and time_in_hospital, and readmission and HA1Cresult.

solution

1. Use the read_csv functions to import (read in) data from the CSV file into the data frame. To
view the first few rows of the dataset, use the head() function.

1 import pandas as pd
2 dataset = pd.read_csv('Diabetes.csv')
3 dataset.head()

Output: Case Study Chapter 8.a

2. Use the len() and the shape() functions to report the number of records and columns. Use the
columns function to get a list of the available columns in the dataset.

1 import pandas as pd
2 dataset = pd.read_csv('Diabetes.csv')

579Appendix

3 print("Number of samples", len(dataset))
4 print ("Number of records", dataset.shape[0])
5 print ("Number of columns", dataset.shape[1])
6 print ("List of columns", dataset.columns)

Output: Case Study Chapter 8.b

3. The describe() function can be used to investigate the individual variables. The function gen-
erates descriptive statistics that summarise the central tendency and dispersion of a continuous
 variable, and the number of levels and the most frequent level of a categorical variable (excluding
NaN – Not a Number values).

1 import pandas as pd
2 dataset = pd.read_csv('Diabetes.csv')
3 print(dataset.readmitted.describe(), "\n")
4 print(dataset.time_in_hospital.describe(), "\n")
5 print(dataset.HA1Cresult.describe(), "\n")

Output: Case Study Chapter 8.c

580 Appendix

Based on the results of the describe() function, it is clear that both readmitted and HA1Cresult
are categorical variables, as they have unique values (levels of the categorical variable) of 2 and
4, respectively. To describe categorical variables, the value_counts() function can be used. The
dropna=False attribute can be applied to include the counts of NaN, while the normalize=True
attribute can be used to obtain the percentages.

1 import pandas as pd
2 dataset = pd.read_csv('Diabetes.csv')
3 print(dataset.readmitted.value_counts(dropna=False), "\n")
4 print(dataset.HA1Cresult.value_counts(dropna=False), "\n")
5 print(dataset.readmitted.value_counts(dropna=False,
6 normalize=True), "\n")
7 print(dataset.readmitted.value_counts(dropna=False,
8 normalize=True), "\n")

Output: Case Study Chapter 8.d

On the other hand, based on the results of the describe() function, it is clear that time_in_hospital is
a continuous variable. This is because the results display the mean, standard deviation (sd), median,
25th and 75th quintiles, and minimum and maximum values. Functions like mean (), median () and
mode () can be used to derive mean, median, and mode respectively. Functions like max (), min (),
quantile (0.25), quantile (0.75), std (), skew () and kurtosis () are useful to obtain information about
the maximum, minimum, 25th percentile, 75th percentile, standard deviation, skewness and kurto-
sis of a continuous variable, respectively.

1 import pandas as pd
2 dataset = pd.read_csv('Diabetes.csv')
3 print('Mean:', dataset.time_in_hospital.mean(), "\n")
4 print('Median:', dataset.time_in_hospital.median(), "\n")
5 print('Mode:', dataset.time_in_hospital.mode(), "\n")
6 print('Max:', dataset.time_in_hospital.max(), "\n")
7 print('Min:', dataset.time_in_hospital.min(), "\n")
8 print('25th percentile:', dataset.time_in_hospital.quantile(0.25), "\n")
9 print('75th percentile:', dataset.time_in_hospital.quantile(0.75), "\n")
10 print('Standard deviation:', dataset.time_in_hospital.std(), "\n")
11 print('Skewness:', dataset.time_in_hospital.skew(), "\n")
12 print('Kurtosis:', dataset.time_in_hospital.kurtosis(), "\n")

581Appendix

Output: Case Study Chapter 8.e

The mean (3.87), median (3.0) and mode (2) values, alongside the skewness estimate (1.36), suggest
that the time in hospital (time_in_hospital) is not normally distributed, but highly and positively
skewed. In addition, since Kurtosis is 1.69 (>0), the distribution of time_in_hospital is leptokurtic,
meaning that the data are heavily-tailed, with profusion of outliers.

4. To visualise individual variables, bar and pie charts can be used for categorical variables (e.g.,
readmitted and HA1Cresult), while histograms and box plots can be used for continuous variables
(e.g., time_in_hospital). In this instance, we use the plt.pie function from the matplotlib.pyplot
package to plot the pie charts for the categorical variables.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 dataset = pd.read_csv('Diabetes.csv')
4
5 # labels
6 readmit_label = dataset.readmitted.unique()
7
8 # Count the frequencies
9 readmit_count = dataset.readmitted.value_counts()
10
11 # Plot the pie chart
12 plt.pie(readmit_count,labels = readmit_label,
13 autopct = "%1.1f%%", startangle = 90)
14 plt.axis("equal")
15 plt.legend(title = "Early readmission")
16 plt.title("Early readmission")

582 Appendix

Output: Case Study Chapter 8.f

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 dataset = pd.read_csv(‘Diabetes.csv’)
4
5 # labels
6 HA1C_label = dataset.HA1Cresult.unique()
7
8 # Count the frequencies
9 HA1C_count = dataset.HA1Cresult.value_counts()
10
11 # Plot the pie chart
12 plt.pie(HA1C_count, labels = HA1C_label, autopct = “%1.1f%%”,
13 startangle = 90)
14 plt.axis(“equal”)
15 plt.legend(title = “HA1C result”)
16 plt.title(“HA1C result”)

Output: Case Study Chapter 8.g

To illustrate the distribution of continuous variable time_in_hospital, the plot.hist() function
was used to plot the histogram.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 dataset = pd.read_csv('Diabetes.csv')
4 Plt = dataset.time_in_hospital.plot.hist(legend = True)

583Appendix

Output: Case Study Chapter 8.h

Apart from the visualisation of individual variable, one can also visualise the relationship
between two variables. For the relationship between readmitted and HA1Cresult, the nested or
compound bar chart can be used. In this instance, we used the plot.bar () function to display the
frequency of HA1Cresult by readmitted.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 dataset = pd.read_csv('Diabetes.csv')
4
5 # create a crosstable
6 dataset1 = pd.crosstab(dataset.HA1Cresult, dataset.readmitted)
7 fig, ax = plt.subplots(1,2)
8
9 # draw the first chart
10 plt.subplot(1,2,1)
11 plot1 = dataset1['<30'].plot.bar(figsize = (10, 7), legend = True,
12 sharey = True, rot = 0)
13 plot1.set_title('Early admission')
14 plot1.set_ylabel('Frequencies')
15 plot1.set_xlabel('HA1C result')
16
17 # draw the second chart
18 plt.subplot(1,2,2)
19 plot2 = dataset1['>30'].plot.bar(figsize = (10, 7), legend = True,
20 sharey = True, rot = 0)
21 plot2.set_title('Readmitted')
22 plot2.set_ylabel('Frequencies')
23 plot2.set_xlabel('HA1C result')

584 Appendix

Output: Case Study Chapter 8.i

For the relationship between readmitted and time_in_hospital, box plots can be used. In
this instance, we used the boxplot () function to display the box plots of time_in_hospital by
readmitted.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 dataset = pd.read_csv('Diabetes.csv')
4 dataset.boxplot(column = ['time_in_hospital'],
5 by = ['readmitted'], grid = False)

Output: Case Study Chapter 8.k

Based on the plot, it appears that the distributions of time_in_hospital did not differ significantly
between early readmissions and other admissions.

585Appendix

CHAPTER 9 – STATISTICAL ANALYSIS WITH PYTHON

desCriPtion

Readmission is considered a quality measure of hospital performance and a driver of healthcare
costs. Studies have shown that patients with diabetes are more likely to have higher early read-
missions (readmitted within 30 days of discharge), compared to those without diabetes (American
Diabetes Association, 2018; McEwen & Herman, 2018). To reduce early readmission, one solution
is to provide additional assistance to patients with high risk of readmission. For this purpose, the US
Department of Health would like to know how to identify the patients with high risk of readmission
using the collected clinical records of diabetes patients from 130 US hospitals between 1999 and
2008.

The Diabetes database contains information about readmission (readmitted) and the potential
associated risk factors, including demographics (age, gender, race), primary diagnosis (diag),
measurement of hemoglobin A1c at admission (HA1C result), admission source (admission_
source), discharge disposition (discharge_disposition), medical specialty of the admitting physi-
cian (medical_specialty), and time spent in hospital (time_in_hospital). The aim of this case
study is to consider all the available variables in order to assist the US Department of Health
identifying the diabetes patients with high risk of readmission. The following tasks need to be
addressed:

 1. Based on Sections 9.3.1 and 9.3.2, identify the dependent variable (outcome variable), the
independent variables (predictor variables) and their data types (continuous or categori-
cal). For more details, the reader can also refer to Chapter 8: Data Analytics and Data
Visualisation.

 2. Choose an appropriate regression method based on the data type of the dependent variable
and the number of independent variables. (See Sections 9.3.3 and 9.3.4).

 3. Conduct the selected regression analysis (relevant Python code can be found in
Section 9.5).

 4. Identify the risk factors that significantly affect the risk of readmission using p-values (see
Section 9.2.2)

 5. Interpret the regression results and make suggestions to the US Department of Health (see
Section 9.5).

solution

The objective of this case study was to identify the diabetes patients with high risk of early readmis-
sion using the clinical records. The Diabetes.csv file was used for the analysis.

1. The identification of dependent and independent variables is based on the research question and
the study objectives. In this case, since the purpose of the analysis was to identify patients with
high risk of early admission, it was clear that the dependent variable (outcome variable) would be
readmitted, and the independent variables (predictor variables) the potential risk factors: Age, gen-
der, race, primary diagnosis (diag), measurement of hemoglobin A1c at admission (HA1C result),
admission source (admission_source), discharge disposition (discharge_disposition), medical spe-
cialty of the admitting physician (medical_specialty), and time spent in hospital (time_in_hospital).

586 Appendix

To identify the data type of each variable, one could firstly use the read_csv() function to
import (read in) data from the CSV file into the data frame, and the shape and columns functions
to check the number of records and the list of available variables in the dataset. Secondly, func-
tion describe() could be used to obtain brief summaries of all the variables.

1 import pandas as pd
2 dataset = pd.read_csv('Diabetes.csv')
3 print ("Number of records", dataset.shape[0])
4 print ("Number of columns", dataset.shape[1])
5 print ("List of columns", dataset.columns)

Output: Case Study Chapter 9.a

1 import pandas as pd
2 dataset = pd.read_csv('Diabetes.csv')
3 print(dataset.readmitted.describe(), "\n")
4 print(dataset.age.describe(), "\n")
5 print(dataset.gender.describe(), "\n")
6 print(dataset.race.describe(), "\n")
7 print(dataset.number_diagnoses.describe(), "\n")
8 print(dataset.HA1Cresult.describe(), "\n")
9 print(dataset.medical_specialty.describe(), "\n")
10 print(dataset.time_in_hospital.describe(), "\n")

587Appendix

Output: Case Study Chapter 9.b

As shown, the diabetes dataset contains 101,766 records and 50 columns. The dependent variable
(readmitted) is a categorical variable, as it contains two levels (unique = 2). “<30” signifies that
the patient was readmitted within 30 days of discharge and “Other” covers both readmission after
30 days and no readmission at all. Regarding the independent variable, only time_in_hospital is
continuous, while the rest of the variables are categorical.

2. Since the dependent variable (readmitted) is categorical and the number of potential risk factors
is more than one, therefore, logistic regression is considered as an appropriate method for testing the
relationship between the readmission and the potential risk factors.

3. To conduct the logistic regression in Python, the independent variable needs to be converted
into a binary value (i.e., 0/1). Next, the formula function can be used to define the dependent and
independent variables and the logit() function from the statsmodels.formula.api package to run the
logistic regression. For easier interpretation, the exp() function from the Numpy package can be
used to turn the coefficients into odd ratios. More details in relation to this coding can be found in
Section 9.5.12.

588 Appendix

1 import pandas as pd
2 import statsmodels.formula.api as smf
3 import statsmodels.api as sm
4 import numpy as np
5 dataset = pd.read_csv('Diabetes.csv')
6
7 # Create a new dependent variable that contains only 0 and 1
8 dataset['readmitted2'] = dataset.readmitted
9 dataset.readmitted2 = dataset.readmitted2.replace('Other', 0)
10 dataset.readmitted2 = dataset.readmitted2.replace('NO', 0)
11 dataset.readmitted2 = dataset.readmitted2.replace('>30', 0)
12 dataset.readmitted2 = dataset.readmitted2.replace('<30', 1)
13
14 # Logistic regression
15 formula = "readmitted2~C(age, Treatment('[60–70)')) + \
16 C(gender, Treatment('Male')) + \
17 C(race) + C(medical_specialty) + \
18 C(number_diagnoses, Treatment(8)) + \
19 C(HA1Cresult, Treatment('None')) + time_in_hospital"
20 Model = smf.logit(formula, data = dataset).fit()
21 print(Model.summary())
22
23 # Odds ratios
24 Odds = pd.DataFrame({
25 'coef': Model.params.values,
26 'odds ratio': np.exp(Model.params.values),
27 'name': Model.params.index })
28 print(Odds, "\n")

4. The output of the logistic regression is partially presented below. The results show that age, race,
primary diagnosis, HbA1c measurement, medical speciality, and time in hospital were statistically
significant (p < 0.05). Comparing to individuals with an age lower than 60 years, those aged over 60
were found to be 1.4 times more likely to have readmission (coefficient > 0, p < 0.001, odds ratio = 1.4).
Caucasians were also 1.2 times more likely to have readmission compared to African-Americans
(coefficient > 0, p = 0.001, odds ratio = 1.2). It was found that compared to primary diagnosis with
diabetes, individuals with primary diagnosis of digestive, genitourinary, neoplasms and respiratory
diseases were less likely to have readmission (coefficient < 0, p < 0.05). Patients spent longer time in
hospital were also less likely to be readmitted (coefficient < 0, p < 0.001, odds ratio = 0.97).

589Appendix

Output: Case Study Chapter 9.c

5. The results suggest that older diabetes patients with high HbA1c level, primary diagnosis of
diabetes, and who stayed shorter periods in hospital were more likely to have early readmission.
Therefore, greater attention should be paid to such patients in order to reduce readmissions, improve
patient safety, and lower the costs of inpatient care.

Note that the dataset was originally derived from the UCI Machine Learning Repository (Frank &
Asuncion, 2010; Strack et al., 2014). The data were further modified for purposes of this example.

590 Appendix

CHAPTER 10 – MACHINE LEARNING WITH PYTHON

desCriPtion

Use dataset dataset.csv to write a Python script that predicts whether a patient will be readmitted or
not within 30 days. The application should do the following:

 1. Read the dataset and create a data frame with the following categories: gender, race,
age, admission type id, discharge disposition id, admission source id, max glu serum,
A1Cresult, change, diabetesMed, readmitted (categorical), time in hospital, number of
lab procedures, number of procedures, number of medications, number of outpatients,
number of emergencies, number of inpatients, number of diagnoses (numerical).

 2. Apply the following ML algorithms and calculate their accuracy: logistic regression,
k-NN, SVM, Kernel SVM, Naïve Bayes, CART Decision Tree, Random Forest.

solution

The dataset.csv contains data related to diabetes from 130 US hospitals for the years 1999–2008.
The source can be found at: https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for
+years+1999-2008#. It includes over 50 features representing patient and hospital outcomes. The
information extracted to satisfy the following criteria:

 1. It is an inpatient encounter (a hospital admission).
 2. It is a diabetic encounter during which any kind of diabetes was entered to the system as a

diagnosis.
 3. The length of stay was at least 1 day and at most 14 days.
 4. Laboratory tests were performed during the encounter.
 5. Medications were administered during the encounter.

The data contains such attributes as patient number, race, gender, age, admission type, time in
 hospital, medical specialty of admitting physician, number of lab test performed, HbA1c test result,
diagnosis, number of medications, diabetic medications, number of outpatient, inpatient, and
 emergency visits in the year before the hospitalization, etc. The following tables lists the various
categorical and continuous variables:

Categorical Variables

*race 6 levels ?, Caucasian, AfricanAmerican, Hispanic, Other, Asian

*gender 3 levels Male, Female, Unknown/Invalid

*age 10 levels 0-, 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-

*weight 10 levels drop the variable

*admission_type_id 8 levels 1, 2, 3, 4, 5, 6, 7, 8

*discharge_disposition_id 30 levels 1, 2, 3,…, 30

*admission_source_id 26 levels 1, 2, 3,…, 26

*payer_code 28 levels ?, MD,…, FR

*medical_specialty 72 levels ?, Allergy,…, Urology

*max_glu_serum 4 levels None, Norm, >200, >300 (Glucose serum test result)

*A1Cresult 4 levels None, Norm, >7, >8 (A1c test result)

*change 2 levels No, Ch (Change of medications)

*diabetesMed 2 levels Yes, No (any diabetic medication prescribed)

(Continued)

https://archive.ics.uci.edu
https://archive.ics.uci.edu

591Appendix

*readmitted 3 levels >30, <30, No (Days to inpatient readmission)

*metformin 4 levels No, Steady, Up, Down (medical drug 1)

*repaglinide 4 levels No, Steady, Up, Down (medical drug 2)

*nateglinide 4 levels No, Steady, Up, Down (medical drug 3)

*chlorpropamide 4 levels No, Steady, Up, Down (medical drug 4)

*glimepiride 4 levels No, Steady, Up, Down (medical drug 5)

*acetohexamide 4 levels No, Steady, Up, Down (medical drug 6)

*glipizide 4 levels No, Steady, Up, Down (medical drug 7)

*glyburide 4 levels No, Steady, Up, Down (medical drug 8)

*tolbutamide 4 levels No, Steady, Up, Down (medical drug 9)

*pioglitazone 4 levels No, Steady, Up, Down (medical drug 10)

*rosiglitazone 4 levels No, Steady, Up, Down (medical drug 11)

*acarbose 4 levels No, Steady, Up, Down (medical drug 12)

*miglitol 4 levels No, Steady, Up, Down (medical drug 13)

*troglitazone 4 levels No, Steady, Up, Down (medical drug 14)

*tolazamide 4 levels No, Steady, Up, Down (medical drug 15)

*examide 4 levels No, Steady, Up, Down (medical drug 16)

*citoglipton 4 levels No, Steady, Up, Down (medical drug 17)

*insulin 4 levels No, Steady, Up, Down (medical drug 18)

*glyburide-metformin 4 levels No, Steady, Up, Down (medical drug 19)

*glipizide-metformin 4 levels No, Steady, Up, Down (medical drug 20)

*glimepiride-pioglitazone 4 levels No, Steady, Up, Down (medical drug 21)

*metformin-rosiglitazone 4 levels No, Steady, Up, Down (medical drug 22)

*metformin-pioglitazone 4 levels No, Steady, Up, Down (medical drug 23)

Continuous Variables

*time_in_hospital continuous – from 1 to 14

*num_lab_procedures continuous – from 1 to 121

*num_procedures continuous – from 0 to 6

*num_medications continuous – from 0 to 85

*number_outpatient continuous – from 0 to 36

*number_emergency continuous – from 0 to 64

*number_inpatient continuous – from 0 to 15

The first step in solving the suggested problem, as always, is to import the relevant libraries as
follows:

1 # Import general libraries
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import pandas as pd
5 import scipy
6 from scipy import stats
7
8 # Import the libraries for the encoding of the independent variables
9 from sklearn.compose import ColumnTransformer
10 from sklearn.preprocessing import OneHotEncoder
11 from sklearn.preprocessing import LabelEncoder

592 Appendix

12
13 # Import the libraries for the Machine Learning processes
14 from sklearn.model_selection import train_test_split
15 from sklearn.preprocessing import StandardScaler
16 from sklearn.linear_model import LogisticRegression
17 from sklearn.neighbors import KNeighborsClassifier
18 from sklearn.svm import SVC
19 from sklearn.naive_bayes import GaussianNB
20 from sklearn.tree import DecisionTreeClassifier
21 from sklearn.ensemble import RandomForestClassifier
22
23 # Import the libraries for the confusion matrix and the accuracy score
24 from sklearn.metrics import confusion_matrix, accuracy_score

Apparently, the above yields no output.
The second step, as in most similar cases, is to read the data from the suggested file and clean it

to improve it. The following script, the actual Step 1: Data Processing, reads the relevant “diabetic_
data.csv” file, counts the number of initial observations, finds, and removes the duplicate records,
and finishes with the cleansed version. The dataset includes several encounters of patients that have
the same patient_nbr which might introduce bias.

1 # Step 1: Data Processing
2 # Read the dataset
3 ds = pd.read_csv('diabetic_data.csv')
4 # Current total number of observations (n = 101766)
5 print("Initial number of observations: ", len(ds.index))
6
7 # Remove duplicates; Sort data by patient_nbr and time_in_hospital
8 ds = ds.sort_values(["patient_nbr", "time_in_hospital"],
9 ascending = (True, True))
10 Ds = ds.drop_duplicates('patient_nbr', keep = 'first')
11 # Updated number of observations (n = 71518)
12 print("Updated number of observations after removing the duplicates: ",
13 len(Ds.index))

Output: Case Study Chapter 10.a

In the next step, Step 2, it is necessary to make several conversion, replacements, and regroupings to
bring the dataset in a form useful for further analysis. The script and its output follow:

1 # Step 2: Data Processing: Replace, clean, and regroup data
2 # Start with race: Replace? with NA; regroup race
3 print("\nThe races before cleaning and regrouping are:")
4 print(ds.race.value_counts())
5 ds.race = ds.race.replace('?', np.nan)
6 ds.race = ds.race.replace('Hispanic', 'Other')
7 ds.race = ds.race.replace('Asian', 'Other')

593Appendix

8 print("\nThe races after cleaning and regrouping are:")
9 print(ds.race.value_counts())
10
11 # Continue with gender: Replace Unknown/Invalid with NA
12 print("\nThe genders before cleaning and regrouping are:")
13 print(ds.gender.value_counts())
14 ds.gender = ds.gender.replace('Unknown/Invalid', np.nan)
15 print("\nThe genders after cleaning and regrouping are:")
16 print(ds.gender.value_counts())
17
18 # Continue with age: Regroup age ranges
19 print("\nThe age ranges before cleaning and regrouping are:")
20 print(ds.age.value_counts())
21 ds.age = ds.age.replace('[0-10)', '[50-]')
22 ds.age = ds.age.replace('[10-20)', '[50-]')
23 ds.age = ds.age.replace('[20-30)', '[50-]')
24 ds.age = ds.age.replace('[30-40)', '[50-]')
25 ds.age = ds.age.replace('[40-50)', '[50-]')
26 ds.age = ds.age.replace('[50-60)', '[50-60]')
27 ds.age = ds.age.replace('[60-70)', '[60-70]')
28 ds.age = ds.age.replace('[70-80)', '[70-80]')
29 ds.age = ds.age.replace('[80-90)', '[80+]')
30 ds.age = ds.age.replace('[90-100)', '[80+]')
31 print("\nThe age ranges after regrouping are:")
32 print(ds.age.value_counts())
33
34 # Continue with weight (in pounds):
35 print("\nThe weights before cleaning and regrouping are:")
36 print(ds.weight.value_counts())
37 ds.weight = ds.weight.replace('?', np.nan)
38 print("\nThe weights after cleaning and regrouping are:")
39 print(ds.weight.value_counts())
40
41 # Continue with admission type:
42 print("\nThe admission types before cleaning and regrouping are:")
43 print(ds.admission_type_id.value_counts())
44 ds.admission_type_id = ds.admission_type_id.replace([
45 1, 2, 7], 'Emergency')
46 ds.admission_type_id = ds.admission_type_id.replace([3, 4],
47 'Non-emergency')
48 ds.admission_type_id = ds.admission_type_id.replace([
49 5, 6, 8], np.nan)
50 print("\nThe admission types after cleaning and regrouping are:")
51 print(ds.admission_type_id.value_counts())
52
53 # Continue with discharge_disposition:
54 print("\nThe discarge disposition ids before cleaning and "
55 "regrouping are:")
56 print(ds.discharge_disposition_id.value_counts())
57 ds.discharge_disposition_id = ds.discharge_disposition_id. \
58 replace([1, 6, 8, 13], 'Home')
59 ds.discharge_disposition_id = ds.discharge_disposition_id. \

594 Appendix

60 replace([2, 5, 29, 9, 10, 15, 10, 12, 16, 17], 'Hospital')
61 ds.discharge_disposition_id = ds.discharge_disposition_id. \
62 replace([3, 4, 22, 23, 24, 27, 28, 30, 13, 14], 'Care')
63 ds.discharge_disposition_id = ds.discharge_disposition_id. \
64 replace([11, 19, 20, 21], 'Death')
65 ds.discharge_disposition_id = ds.discharge_disposition_id. \
66 replace(7, 'AMA')
67 ds.discharge_disposition_id = ds.discharge_disposition_id. \
68 replace([18, 25, 26], np.nan)
69 print("\nThe discarge disposition ids after cleaning and "
70 "regrouping are:")
71 print(ds.discharge_disposition_id.value_counts())
72
73 # Continue with the admission source:
74 print("\nThe admission source ids before cleaning and "
75 "regrouping are:")
76 print(ds.admission_source_id.value_counts())
77 ds.admission_source_id = ds.admission_source_id.replace(
78 [7, 8], 'Emergency')
79 ds.admission_source_id = ds.admission_source_id.replace([1, 2,
80 3, 4, 5, 6, 10, 18, 19, 22, 25, 11, 13, 14, 23], 'Non-emergency')
81 ds.admission_source_id = ds.admission_source_id.replace([
82 9, 15, 17, 20, 21], np.nan)
83 print("\nThe admission source ids after cleaning and regrouping are:")
84 print(ds.admission_source_id.value_counts())
85
86 # Continue with player code:
87 print("\nThe payer codes before cleaning and regrouping are:")
88 print(ds.payer_code.value_counts())
89 ds.payer_code = ds.payer_code.replace('?', np.nan)
90 ds.payer_code = ds.payer_code.replace(['MC', 'HM', 'BC',
91 'SP', 'MD', 'CP', 'UN', 'CM', 'OG', 'PO', 'DM', 'WC', 'CH',
92 'OT', 'SI', 'MP', 'FR'], 'Insured')
93 print("\nThe payer codes after cleaning and regrouping are:")
94 print(ds.payer_code.value_counts())
95
96 # Continue with medical speciality:
97 print("\nThe medical specialties before cleaning and "
98 "regrouping are:")
99 print(ds.medical_specialty.value_counts())
100 # DM related
101 ds.medical_specialty = ds.medical_specialty.replace([
102 'InternalMedicine', 'Family/GeneralPractice', 'Cardiology',
103 'Orthopedics', 'Orthopedics-Reconstructive', 'Urology',
104 'Nephrology', 'Dentistry', 'DCPTEAM', 'Endocrinology-Metabolism',
105 'Neurology', 'Podiatry', 'Endocrinology', 'Ophthalmology'], 1)
106 # Pregancy related
107 ds.medical_specialty = ds.medical_specialty.replace(
108 ['ObstetricsandGynecology', 'Perinatology', 'Obstetrics'], 2)
109 # Pediatrics
110 ds.medical_specialty = ds.medical_specialty.replace([
111 'Pediatrics', 'Pediatrics-CriticalCare',

595Appendix

112 'Anesthesiology-Pediatric', 'Pediatrics-Pulmonology',
113 'Surgery-Pediatric', 'Pediatrics-Neurology',
114 'Cardiology-Pediatric', 'Pediatrics-Endocrinology',
115 'Pediatrics-Hematology-Oncology', 'Pediatrics-EmergencyMedicine',
116 'Pediatrics-AllergyandImmunology'], 3)
117 # Psychiatry
118 ds.medical_specialty = ds.medical_specialty.replace([
119 'Psychiatry', 'Psychiatry-Child/Adolescent',
120 'Psychiatry-Addictive', 'Psychology',
121 'Psychiatry-Child/Adolescent',
122 'PhysicalMedicineandRehabilitation'], 4)
123 # surgery
124 ds.medical_specialty = ds.medical_specialty.replace([
125 'Surgeon', 'Surgery-Cardiovascular',
126 'Surgery-Cardiovascular/Thoracic','Surgery-Colon&Rectal',
127 'Surgery-General', 'Surgery-Maxillofacial',
128 'Surgery-Plastic', 'Surgery-PlasticwithinHeadandNeck',
129 'Surgery-Neuro', 'Surgery-Vascular', 'SurgicalSpecialty',
130 'Surgery-Thoracic'], 5)
131 # Cancer
132 ds.medical_specialty = ds.medical_specialty.replace([
133 'Radiologist', 'Obsterics&Gynecology-GynecologicOnco',
134 'Osteopath', 'Hematology/Oncology','Oncology',
135 'Radiology'], 6)
136 # Other/ungrouped
137 ds.medical_specialty = ds.medical_specialty.replace([
138 'Emergency/Trauma', 'Pulmonology', 'Proctology', 'Dermatology',
139 'SportsMedicine', 'Speech', 'Neurophysiology', 'Resident',
140 'AllergyandImmunology', 'Anesthesiology', 'Pathology',
141 'OutreachServices', 'Rheumatology', 'Gastroenterology',
142 'Gynecology', 'Hematology', 'Hospitalist',
143 'InfectiousDiseases', 'Otolaryngology'], 7)
144 # missing
145 ds.medical_specialty = ds.medical_specialty.replace(['?',
146 'PhysicianNotFound'], np.nan)
147 print("\nThe medical specialties after cleaning and regrouping are:")
148 print(ds.medical_specialty.value_counts())
149
150 # Continue with diagnosis through max_glu_serum
151 print("\nThe diagnoses through max_glu_serum before cleaning and "
152 "regrouping are:")
153 print(ds.max_glu_serum.value_counts())
154 ds.max_glu_serum = ds.max_glu_serum.replace(['>200'], '200-')
155 ds.max_glu_serum = ds.max_glu_serum.replace(['>300'], '300-')
156 print("\nThe diagnoses through max_glu_serum after cleaning and "
157 "regrouping are:")
158 print(ds.max_glu_serum.value_counts())
159
160 # Continue with diagnosis through A1Cresults
161 print("\nThe diagnoses through A1Cresults before cleaning and "
162 "regrouping are:")
163 print(ds.A1Cresult.value_counts())

596 Appendix

164 ds.A1Cresult = ds.A1Cresult.replace(['>8'], '8-')
165 ds.A1Cresult = ds.A1Cresult.replace(['>7'], '7-')
166 print("\nThe diagnoses through A1Cresults after cleaning and "
167 "regrouping are:")
168 print(ds.A1Cresult.value_counts())
169
170 # List the percentage of missing values per column
171 print("\nThe percentages of missing values per column are:")
172 print(ds.isna().sum()/len(dataset)*100, "%")
173
174 # Remove the variables that have over 40% of missing data
175 ds = ds.drop(columns = ['weight', 'payer_code',
176 'medical_specialty'])
177 # numeric columns
178 ds.fillna(ds.select_dtypes(
179 include = 'number').mean().iloc[0], inplace = True)
180 # categorical columns
181 ds.fillna(ds.select_dtypes(
182 include = 'object').mode().iloc[0], inplace = True)
183
184 # Remove unnecessary columns
185 ds = ds.drop(columns = ['encounter_id', "patient_nbr",
186 'diag_1', 'diag_2', 'diag_3', 'metformin', 'repaglinide',
187 'nateglinide', 'chlorpropamide', 'glimepiride', 'acetohexamide',
188 'glipizide', 'glyburide', 'tolbutamide', 'pioglitazone',
189 'rosiglitazone', 'acarbose', 'miglitol', 'troglitazone',
190 'tolazamide', 'examide', 'citoglipton', 'insulin',
191 'glyburide-metformin', 'glipizide-metformin',
192 'glimepiride-pioglitazone', 'metformin-rosiglitazone',
193 'metformin-pioglitazone'])
194 print("\nThe final version of the dataset is:")
195 print(ds)

Output: Case Study Chapter 10.b

597Appendix

598 Appendix

599Appendix

600 Appendix

601Appendix

Step 3 lists the categorical and numerical variables and calculates their statistical significance.
The script and its output follow:

1 # Step 3: Data Analysis
2 # List and significance of categorical feature
3 categorical_features = ['gender', 'age', 'race', 'admission_type_id',
4 'discharge_disposition_id', 'admission_source_id', 'max_glu_serum',
5 'A1Cresult', 'change', 'diabetesMed', 'readmitted']
6 print("\nThe following lists the cagegorical features and their "
7 "significance:")
8 for col in categorical_features :
9 data_crosstab = pd.crosstab(ds['readmitted'],
10 ds[col], margins = False)
11 stat, p, dof, expected = scipy.stats.chi2_contingency(data_crosstab)
12 if p < 0.4 :
13 print(p, col, 'is significant')
14 else:
15 print(p, col, 'is not significant')
16
17 # List and significance of numeric features
18 numeric_features = ['time_in_hospital', 'num_lab_procedures',
19 'num_procedures', 'num_medications', 'number_outpatient',
20 'number_emergency', 'number_inpatient', 'number_diagnoses']

602 Appendix

21 print("\nThe folowing lists the numerical features and their "
22 "significance:")
23 for col in numeric_features :
24 rho, pval=scipy.stats.spearmanr(ds['readmitted'],ds[col])
25 if pval < 0.4 :
26 print(col, 'is significant')
27 else :
28 print(col, 'is not significant')
29 rejected_features.append(col)

Output: Case Study Chapter 10.c

Step 4 prepares the dataset for the ML model. The script and its output follow:

1 # Step 4: Prepare for Machine Learning
2 # Update >30 days as none
3 ds.readmitted = ds.readmitted.replace('>30', 'NO')
4 X = ds.iloc[:, :-1].values
5 y = ds.iloc[:, -1].values
6
7 ds.head()
8 ds.readmitted.value_counts()
9
10 X = pd.DataFrame(X, columns = ['race', 'gender', 'age',
11 'admission_type_id', 'discharge_disposition_id',
12 'admission_source_id', 'time_in_hospital ',
13 'num_lab_procedures', 'num_procedures', 'num_medications',
14 'number_outpatient', 'number_emergency', 'number_inpatient',
15 'number_diagnoses', 'max_glu_serum',
16 'A1Cresult', 'change', 'diabetesMed'])
17
18 X = pd.get_dummies(X, columns = ['gender', 'race', 'age',
19 'admission_type_id', 'discharge_disposition_id',
20 'admission_source_id', 'max_glu_serum',
21 'A1Cresult', 'change', 'diabetesMed'])

603Appendix

22 X = np.array(X)
23
24 # Encode for dependent variables
25 le = LabelEncoder()
26 y = le.fit_transform(y)
27 print(y)

Output: Case Study Chapter 10.d

Following up from the previous Step 4, the dataset is split into train and test parts, the train part is
transformed and trained to the relevant ML model, and, finally, the predictions are made based on
the various ML models, the confusion matrices and the accuracy scores are calculated. (Note that
only two ML models are active, the rest are deactivated, for practical reasons related to the time it
takes to make the calculations for all the ML models). The script and its output follow:

1 # Step 4: Split the dataset to train and test parts
2 X_train, X_test, y_train, y_test = train_test_split(X, y,
3 test_size = 0.2, random_state = 1)
4
5 sc = StandardScaler()
6 X_train = sc.fit_transform(X_train)
7 X_test = sc.transform(X_test)
8
9 # Train the model for logistic regression
10 classifier1 = LogisticRegression(random_state = 0)
11 classifier1.fit(X_train, y_train)
12
13 # Train the model for the KNN
14 classifier2 = KNeighborsClassifier(n_neighbors = 5,
15 metric = 'minkowski', p = 2)
16 classifier2.fit(X_train, y_train)
17
18 """
19 # Train the model for the SVM
20 classifier3 = SVC(kernel = 'linear', random_state = 0)
21 classifier3.fit(X_train, y_train)
22
23 # Train the model for the Kernel SVM
24 classifier4 = SVC(kernel = 'rbf', random_state = 0)
25 classifier4.fit(X_train, y_train)
26
27 # Train the model for the Naive Bayes
28 classifier5 = GaussianNB()
29 classifier5.fit(X_train, y_train)
30
31 # Train the model for the Decision Tree
32 classifier6 = DecisionTreeClassifier(criterion = 'entropy',
33 random_state = 0)
34 classifier6.fit(X_train, y_train)

604 Appendix

35
36 # Train the model for Random Forest
37 classifier7 = RandomForestClassifier(n_estimators = 10,
38 criterion = 'entropy', random_state = 0)
39 classifier7.fit(X_train, y_train)
40 """
41
42 # Predit the results
43 y_pred1 = classifier1.predict(X_test)
44 y_pred2 = classifier2.predict(X_test)
45 #y_pred3 = classifier3.predict(X_test)
46 #y_pred4 = classifier4.predict(X_test)
47 #y_pred5 = classifier5.predict(X_test)
48 #y_pred6 = classifier6.predict(X_test)
49 #y_pred7 = classifier7.predict(X_test)
50
51 # Report the confusion matrix
52 cm1 = confusion_matrix(y_test, y_pred1)
53 print("\nThe confusion matrix for Logistic Regression is:")
54 print(cm1)
55 print("\nThe accuracy score for the Logistic Regression is:",
56 accuracy_score(y_test, y_pred1))
57
58 cm2 = confusion_matrix(y_test, y_pred2)
59 print("\nThe confusion matrix for KNeighbors is:")
60 print(cm2)
61 print("\nThe accuracy score for the KNeighbors is:",
62 accuracy_score(y_test, y_pred2))
63
64 """
65 cm3 = confusion_matrix(y_test, y_pred3)
66 print("\nThe confusion matrix for SVM is:")
67 print(cm3)
68 print("\nThe accuracy score for the SVM is:",
69 accuracy_score(y_test, y_pred3))
70
71 cm4 = confusion_matrix(y_test, y_pred4)
72 print("\nThe confusion matrix for Kernel SVM is:")
73 print(cm4)
74 print("\nThe accuracy score for the Kernel SVM is:",
75 accuracy_score(y_test, y_pred4))
76
77 cm5 = confusion_matrix(y_test, y_pred5)
78 print("\nThe confusion matrix for Naive Bayes is:")
79 print(cm5)
80 print("\nThe accuracy score for the Naive Bayes is:",
81 accuracy_score(y_test, y_pred5))
82
83 cm6 = confusion_matrix(y_test, y_pred6)
84 print("\nThe confusion matrix for Decision Tree is:")
85 print(cm6)
86 print("\nThe accuracy score for the Decision Tree is:",

605Appendix

87 accuracy_score(y_test, y_pred6))
88
89 cm7 = confusion_matrix(y_test, y_pred7)
90 print("\nThe confusion matrix for Random Forest is:")
91 print(cm7)
92 print("\nThe accuracy score for the Random Forest is:",
93 accuracy_score(y_test, y_pred7))
94 """

Output: Case Study Chapter 10.e

606 Appendix

CHAPTER 11 – INTRODUCTION TO NEURAL NETWORKS
AND DEEP LEARNING WITH PYTHON

desCriPtion

 1. Phase 1: Build the necessary logical gates (i.e., AND, OR, and XOR) that will act as the
building blocks for the perceptron modeling in the ANN. Follow the hints below:

 a. User real numbers instead of integers,
 b. Implement 1D vectors for weights (w) and inputs (x) as follows: = ⋅ z w x

,
 c. Feed the sum of the vectors to the sigmoid activation function.
 2. Phase 2: Implement the following tasks:
 a. Task 1: (Perceptron Engineering):

– Write a sigmoid function,
– Write a method to send values to the weights.

 b. Task 2: (Validating it):
– Develop a method/function to write values for the weights.
– Develop a method/function to provide a sample to the network.
– Then, test your network with the XOR gate-based weights.

 c. Task 3: Implement the multi-layer perceptron Class.
 d. Task 4: Develop a backpropagation algorithm by following the next steps:

– Feed a sample to the network: =

0
1

y ,

– Calculate the MSE: ∑()= −
=

−

MSE
1

Output
0

1
2

n
y

i

n

i i

– Calculating the error terms of each Neuron’s output:

 σ () ()= − −yk k k k kOutput * 1 Output * Output

 ()−k kOutput * 1 Output , is derivative of sigmoid function

– Repeatedly compute the errors terms in the hidden layers:

 ∑σ σ()= −
∈

w
k

k kOutput * 1 Output * Hid Hid Hid

outputs

Hid

– Applying the delta rule:

 γ σ∆ = * *ij ijw xi

– Adjust the weights for the best model outcome:

 = + ∆ij ij ijw w w

 e. Task 5: Validate the class.

solution

 1. Phase 1: Build the necessary logical gates (i.e., AND, OR, and XOR) that will act as the
building blocks for the perceptron modeling in the ANN. Follow the hints below:

 a. User real numbers instead of integers,
 b. Implement 1D vectors for weights (w) and inputs (x) as follows: = ⋅ z w x

,
 c. Feed the sum of the vectors to the sigmoid activation function.

607Appendix

Recall the basic concepts of AND, OR, and XOR gates. The following table is a brief review:

A B A AND B A OR B A XOR B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

1 import numpy as np
2
3 class PerceptronEngineering:
4
5 def sigmoidFunction(self, x):
6 return 1/(1+np.exp(-x))
7
8 def setTheWeights(self, list_Init):
9 #Use list_Init to set the weights using numpy array method
10 self.weights = np.array(list_Init)
11
12 def __init__(self, inputs, thebias = 1.0):
13 # Create Perceptron object with specified number of inputs
14 # 2 is a scaling factor and shift of −1
15 self.weights = (np.random.rand(inputs + 1) * 2) −1
16 self.thebias = thebias
17
18 def runThePerceptron(self, myList):
19 # Run the perceptron. myList includes the input values.
20 netSum = np.dot(np.append(myList, self.thebias), self.weights)
21 return self.sigmoidFunction(netSum)
22
23 # Test the class
24 myNeuron = PerceptronEngineering (inputs = 2)
25 myNeuron.setTheWeights([10, 10, −15])
26
27 print("Building AND gate as Perceptron")
28 print ("0 0 = {0:.10f}".format(myNeuron.runThePerceptron([0,0])))
29 print ("0 1 = {0:.10f}".format(myNeuron.runThePerceptron([0,1])))
30 print ("1 0 = {0:.10f}".format(myNeuron.runThePerceptron([1,0])))
31 print ("1 1 = {0:.10f}".format(myNeuron.runThePerceptron([1,1])))

Output: Case Study Chapter 11.a

608 Appendix

1 print("Building OR gate as Perceptron")
2 myNeuron = PerceptronEngineering (inputs = 2)
3 myNeuron.setTheWeights([15,15,−10])
4 print ("0 0 = {0:.10f}".format(myNeuron.runThePerceptron([0,0])))
5 print ("0 1 = {0:.10f}".format(myNeuron.runThePerceptron([0,1])))
6 print ("1 0 = {0:.10f}".format(myNeuron.runThePerceptron([1,0])))
7 print ("1 1 = {0:.10f}".format(myNeuron.runThePerceptron([1,1])))

Output: Case Study Chapter 11.b

1 class MultiLayerPerceptronEngineering:
2 # innerlayers represents a python list with the number of elements
3 # per layer. thebias represents the bias term used for all neurons.
4 # LRate represents the learning rate.
5
6 def __init__(self, innerlayers, thebias = 1.0, LRate = 0.5):
7 self.innerlayers = np.array(innerlayers, dtype = object)
8 self.thebias = thebias
9 self.LRate = LRate
10
11 # Create an internal network for a list of lists of neurons
12 self.network = []
13 # Hold the list of lists of output values
14 self.values = []
15 # The list of lists of error terms
16 self.delta = []
17
18 for i in range(len(self.innerlayers)):
19 self.values.append([])
20 self.delta.append([])
21 self.network.append([])
22 self.values[i] = [0.0 for j in range(self.innerlayers[i])]
23 self.delta[i] = [0.0 for j in range(self.innerlayers[i])]
24
25 # No of neuros for input layer at network[0]
26 if i > 0:
27 for j in range(self.innerlayers[i]):
28 self.network[i].append(PerceptronEngineering(
29 inputs = self.innerlayers[i-1],
30 thebias = self.thebias))
31
32 self.network = np.array([np.array(x) for x in self.network],
33 dtype = object)
34 self.values = np.array([np.array(x) for x in self.values],
35 dtype = object)
36 self.delta = np.array([np.array(x) for x in self.delta],
37 dtype = object)

609Appendix

38
39 def setTheWeights(self, Linit):
40 # We will be Seting the weights. Linit is a list of
41 # lists with the weights for all excluding input layer.
42 for i in range(len(Linit)):
43 for j in range(len(Linit[i])):
44 self.network[i+1][j].setTheWeights(Linit[i][j])
45
46 def printTheWeights(self):
47 print()
48 for i in range(1, len(self.network)):
49 for j in range(self.innerlayers[i]):
50 print("Layer", i+1, "Neuron", j,
51 self.network[i][j].weights)
52 print()
53
54 def runTheMLPerceptron(self, x):
55 # We will feed a sample x into the MultiLayer Perceptron.
56 x = np.array(x,dtype=object)
57 self.values[0] = x
58 for i in range(1, len(self.network)):
59 for j in range(self.innerlayers[i]):
60 self.values[i][j] = self.network[i][
61 j].runThePerceptron(self.values[i-1])
62 return self.values[-1]
63
64 # This method will do the magic of Training
65 def backPropogation(self, x, y):
66 # We will run a single (x,y) pair with the backpropagation
67 # algorithm.
68 x = np.array(x, dtype = object)
69 y = np.array(y, dtype = object)
70
71 # STEP 1: Feeding a sample to the network.
72 theOutputs = self.runTheMLPerceptron(x)
73
74 # STEP 2: Calculating the MSE
75 theError = (y - theOutputs)
76 MSE = sum(theError ** 2) / self.innerlayers[-1]
77
78 # STEP 3: Calculating error terms of each Neuron's output.
79 self.delta[-1] = theOutputs * (1 - theOutputs) * (theError)
80
81 # STEP 4: Repeatedly compute the errors terms in the
82 # hidden layers
83 for i in reversed(range(1, len(self.network) -1)):
84 for h in range(len(self.network[i])):
85 forwardError = 0.0
86 for k in range(self.innerlayers[i+1]):
87 forwardError += self.network[i+1][k].weights[h] * \
88 self.delta[i+1][k]
89 self.delta[i][h] = self.values[i][h] * \
90 (1-self.values[i][h]) * forwardError

610 Appendix

91
92 # STEPS 5 & 6: Calculating the deltas and finally updating
93 # the weights
94 for i in range(1, len(self.network)):
95 for j in range(self.innerlayers[i]):
96 for k in range(self.innerlayers[i-1] + 1):
97 if k == self.innerlayers[i-1]:
98 Delta=self.LRate*self.delta[i][j]*self.thebias
99 else:
100 Delta = self.LRate * self.delta[i][j] * \
101 self.values[i-1][k]
102 self.network[i][j].weights[k] += Delta
103 return MSE
104
105 # Testing
106
107 myMLP = MultiLayerPerceptronEngineering(innerlayers = [2, 2, 1])
108 myMLP.setTheWeights([[[-10, 10, 15],[15, 15, -10]],[[10, 10, -15]]])
109 myMLP.printTheWeights()
110
111 print("MLP: ")
112
113 print ("0 0 = {0:.10f}".format(myMLP.runTheMLPerceptron([0, 0])[0]))
114 print ("0 1 = {0:.10f}".format(myMLP.runTheMLPerceptron([0, 1])[0]))
115 print ("1 0 = {0:.10f}".format(myMLP.runTheMLPerceptron([1, 0])[0]))
116 print ("1 1 = {0:.10f}".format(myMLP.runTheMLPerceptron([1, 1])[0]))

Output: Case Study Chapter 11.c

1 #testing code
2
3 myMLP = MultiLayerPerceptronEngineering(innerlayers = [2, 2, 1])
4
5 print("NN Training as represented as XOR Gate")
6
7 for i in range(3000):
8 MSE = 0.0
9 MSE += myMLP.backPropogation([0, 0], [0])
10 MSE += myMLP.backPropogation([0, 1], [1])
11 MSE += myMLP.backPropogation([1, 0], [1])
12 MSE += myMLP.backPropogation([1, 1], [0])
13 MSE = MSE / 4
14
15 if (i % 100 == 0):

611Appendix

16 print(MSE)
17
18 myMLP.printTheWeights()
19
20 print("Now Executing MLP: ")
21
22 print("0 0 = {0:.10f}".format(myMLP.runTheMLPerceptron([0, 0])[0]))
23 print("0 1 = {0:.10f}".format(myMLP.runTheMLPerceptron([0, 1])[0]))
24 print("1 0 = {0:.10f}".format(myMLP.runTheMLPerceptron([1, 0])[0]))
25 print("1 1 = {0:.10f}".format(myMLP.runTheMLPerceptron([1, 1])[0]))

Output: Case Study Chapter 11.d

612 Appendix

CHAPTER 12 – VIRTUAL REALITY APPLICATION
DEVELOPMENT WITH PYTHON

desCriPtion

You are given the following complete script from Chapter 12:

1 # Import libraries
2 import viz
3 import random
4 import vizact
5
6 # Create an empty window for the 3D environment
7 viz.setMultiSample(4)
8 viz.go(viz.FULLSCREEN)
9
10 # Add the 3D model of the plaza and enable collision detection
11 piazza = viz.add('piazza.osgb')
12 viz.MainView.collision(viz.ON)
13
14 # Create a plant object and the Jane avatar
15 plant = viz.add('plant.osgb')
16 jane = viz.add('vcc_female.cfg')
17
18 # Set the positions and orientation of the 3D objects and the camera
19 jane.setPosition([0, 0, 8])
20 jane.setEuler([180, 0, 0])
21 plant.setPosition([-3, 0, jane.getPosition()[2] + 3])
22 viz.MainView.setPosition(jane.getPosition()[0], 0,
23 jane.getPosition()[2] - 11)
24
25 # Create and position multiple pigeon objects
26 pigeons_no = 30
27 pigeons = []
28
29 def create_pigeons(no_of_pigeons, pigeon_list):
30 for i in range(no_of_pigeons):
31 pigeon = viz.add('pigeon.cfg')
32 pigeon.setPosition([random.uniform(-5, 5), 0,
33 random.uniform(2, 7)])
34 pigeon.state(random.choice([1, 3]))
35 pigeon_list.append(pigeon)
36
37 create_pigeons(pigeons_no, pigeons)
38
39 # Initialize & randomize the animation states & movement of the pigeons
40 def pigeon_state_move(rand_pigeon):
41 random_switch = random.choice([1, 2])
42 if random_switch == 1:
43 rand_pigeon.clearActions()
44 x = int(random.choice([1, 3]))
45 rand_pigeon.state(x)

613Appendix

46 else:
47 walk = vizact.walkTo([random.randint(-5, 5), 0,
48 random.randint(0, 8)])
49 rand_pigeon.addAction(walk)
50
51 pigeon_state_timer = vizact.ontimer(1, pigeon_state_move,
52 vizact.choice(pigeons))
53
54 # Randomize the animation states of Jane
55 def jane_state():
56 x = int(random.choice([1, 9]))
57 jane.state(x)
58
59 jane.state(1)
60 jane_state_timer = vizact.ontimer((random.randint(10, 20)), jane_state)
61
62 # Jane walking and behaviour
63 def jane_walk():
64 jane_state_timer.setEnabled(0)
65 random_switch = random.choice([1, 2])
66 if random_switch == 1:
67 walk_to_camera=vizact.walkTo([viz.MainView.getPosition()[0], 0,
68 viz.MainView.getPosition()[2] + 3])
69 jane.addAction(walk_to_camera)
70 else:
71 jane.clearActions()
72 jane_state_timer.setEnabled(1)
73
74 vizact.onkeydown('w', jane_walk)
75
76 # Jane feeding the pigeons
77 def jane_feed_pigeons(no_of_pigeons):
78 jane_state_timer.setEnabled(0)
79 pigeon_state_timer.setEnabled(0)
80 jane.clearActions()
81 jane.state(15)
82 for i in range(no_of_pigeons):
83 walk = vizact.walkTo([jane.getPosition()[0], 0,
84 jane.getPosition()[2]])
85 pigeons[i].addAction(walk)
86
87 vizact.onkeydown('f', jane_feed_pigeons, pigeons_no)
88 vizact.onkeyup('f', jane_state)

Improve the existing script by adding the following features:

 1. Allow Jane to feed the pigeons at random times without being instructed by the user. The
feeding must stop automatically after a random amount of time has elapsed, and Jane
should return to her normal states cycle.

 2. Allow Jane to walk to random positions without the user’s instruction. Make sure to restrict
Jane’s walking area so she does not get outside the 3D world boundaries or pass through
3D objects.

614 Appendix

 3. Make the pigeons spread around while eating instead of concentrating at the same single
point as Jane.

 4. Make the pigeons walk faster towards Jane when feeding is triggered.
 5. Make the pigeons change back to their normal states at random times after they have

walked towards Jane for feeding.
 6. Add a general ambience background sound to the 3D world.
 7. Make Jane whistle once when each round of the pigeon feed commences. This must ema-

nate from the position Jane is at any given moment rather than being omnipresent. Note
that for this sort of task the audio file needs to be in MONO rather than STEREO.

 8. Add pigeon chirping sounds to the pigeons. The sounds must be allocated to random
pigeons. As above, for this sort of task the audio file needs to be in MONO rather than
STEREO.

 9. Add some variety to the pigeons’ chirping by adding two more chirping sounds and ran-
domly switch between the three different sounds at run-time. Obviously, the three chirping
sounds need to be distinguishably different to each other in order for this exercise to have
practical value.

 10. Add some randomness to the intervals at which the different pigeon chirps are triggered to
improve realism.

solution

1. Simply trigger the existing jane_feed_pigeons and jane_state functions at random times:

random_feed_timer = vizact.ontimer(random.randint(30, 60),
jane_feed_pigeons, pigeons_no)
random_state_timer = vizact.ontimer(random.randint(20, 30), jane_state)

It may be a good idea to also add the following line at the beginning of the jane_state function,
in order to make sure that previous actions are stopped before triggering new states:

jane.clearActions()

2. Add the following function:

def jane_random_walk():
 jane.clearActions()
 walk_to_random = vizact.walkTo([random.randint(−5, 5), 0,
 random.randint(0, 8)])
 jane.addAction(walk_to_random)

and a timer that triggers it randomly:

jane_random_walk = vizact.ontimer(random.randint(30, 60),
jane_random_walk)

3. Replace the for loop in the jane_feed_pigeons function with the following:

for i in range(no_of_pigeons):
 x1 = jane.getPosition()[0] −2
 x2 = jane.getPosition()[0] + 2
 y1 = jane.getPosition()[2] −2
 y2 = jane.getPosition()[2] + 2
 walk = vizact.walkTo([random.uniform(x1,x2), 0, random.uniform(y1,y2)])
 pigeons[i].addAction(walk)

615Appendix

This for loop creates a 4 × 4 units rectangular area around the position Jane is at the moment the
feeding starts. Next, it randomizes the pigeon movements within this area using random.uni-
form() in the arguments of the walkTo() method.

4. Add a decimal number (0.4–0.5) as an argument at the end of the walkTo() method in the
jane_feed_pigeons function. This argument dictates the movement speed in meters per
second:

walk = vizact.walkTo([random.uniform(x1, x2), 0, random.uniform(y1, y2)], 0.5)

5. Add the following line at the end of the jane_feed_pigeons function. Make sure that the
command is outside the for loop:

pigeon_state_timer.setEnabled(1)

6. Source a suitable ambience sound audio file (.wav), rename it to Ambience.wav and move it to the
folder where the current script is saved. Add the following lines at the start of the script, but after
the 3D world has been instantiated. For example, the code can be added after the plaza model is
created and the viewpoint collision is turned on:

ambience = viz.addAudio('Ambience.wav')
ambience.loop()
ambience.play()

7. Source a suitable whistling audio file (.wav). As mentioned, the file needs to be in MONO.
Rename the file to Whistle.wav and move it to the folder where the current script is saved. Add
the following line to the jane_feed_pigeons function, just before the for loop and after the
jane.state(15) command:

jane.playsound('Whistle.wav', viz.PLAY)

This is an alternative way to work with audio and it is used for 3D sounds (i.e., sounds that can be
placed at specific points within the 3D world or attached to 3D objects). The command loads and
attaches the sound directly to Jane. Flags can be passed as arguments to control the sound behavior.

8. Source a suitable pigeon chirping audio file (.wav). The file needs to be in MONO. Rename the
file to Chirp_1.wav and move it to the folder where the current script is saved. Create the following
function:

def random_pigeon_sound(rand_pigeon):
 rand_pigeon.playsound(‘Chirp_1.wav’, viz.PLAY)

As usual, the function can be triggered by a timer that picks random pigeons:

random_pigeon_sound_timer = vizact.ontimer(5, random_pigeon_sound,
vizact.choice(pigeons))

9. Source two more pigeon chirping audio files (.wav). Rename the files to Chirp_2.wav and
Chirp_3.wav respectively and move them to the folder where the current script is saved. Modify the
random_pigeon_sound function to the following:

616 Appendix

def random_pigeon_sound(rand_pigeon):
 random_switch = random.choice([1, 2, 3])
 if random_switch == 1:
 rand_pigeon.playsound(‘Chirp_1.wav’, viz.PLAY)
 elif random_switch == 2:
 rand_pigeon.playsound(‘Chirp_2.wav’, viz.PLAY)
 else:
 rand_pigeon.playsound(‘Chirp_3.wav’, viz.PLAY)

random_pigeon_sound_timer = vizact.ontimer(5,
random_pigeon_sound, vizact.choic

10. This can be done in a number of ways, depending on the depth one wants to go to. A simple
solution that provides a pseudo-randomized triggering is to use a number of different timers that
trigger the chirping sounds of random pigeons at randomly chosen intervals:

vizact.ontimer(random.randint(7, 11), random_pigeon_sound, vizact.
choice(pigeons))
vizact.ontimer(random.randint(15, 20), random_pigeon_sound, vizact.
choice(pigeons))
vizact.ontimer(random.randint(25, 30), random_pigeon_sound, vizact.
choice(pigeons))

This choice provides a different random pattern of triggering between the timers every time the
application is run. However, it has the disadvantage of repeating the same pattern while the appli-
cation is running. Adding more timers will add more complexity to the pattern and, thus, improve
realism, but at the same time it will increase computational power demands. If the reader is inter-
ested in the subject of controlling timed processes and flow in more detail, a good area to start is the
Tasks and Sequences sections in the Vizard online reference manual (WorldViz, 2019).

REFERENCES

American Diabetes Association. (2018). Economic costs of diabetes in the US in 2017. Diabetes Care, 41(5),
917–928. https://doi.org/https://doi.org/10.2337/dci18–0007.

Frank, A., & Asuncion, A. (2010). UCI Maching Learning Repository. University of California, School of
Information and Computer Science. https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospital
s+for+years+1999–2008.

McEwen, L. N., & Herman, W. H. (2018). Health care utilization and costs of diabetes. Diabetes in America,
3rd Edition. 40–1–40–78. https://www.ncbi.nlm.nih.gov/books/NBK567979/.

Strack, B., DeShazo, J. P., Gennings, C., Olmo, J. L., Ventura, S., Cios, K. J., & Clore, J. N. (2014). Impact of
HbA1c measurement on hospital readmission rates: Analysis of 70,000 clinical database patient records.
BioMed Research International, 2014, 781670. https://doi.org/10.1155/2014/781670.

WorldViz. (2019). Vizard 6 (64-Bit). https://www.worldviz.com/vizard-virtual-reality-software.

https://doi.org
https://archive.ics.uci.edu
https://www.ncbi.nlm.nih.gov
https://doi.org/10.1155/2014/781670
https://www.worldviz.com
https://doi.org/10.2337/dci18%E2%80%930007
https://archive.ics.uci.edu

617

Index

<Button-1>, <Button-3>, <Double-Button-1> 118
3D Cartesian coordinate system 496
3D game engine 487
__dict__ attribute 66
3D object lists 505
<key>, event.keycode 159
@property decorator 77
[“values”] 137

absolute versus relative positioning 501
abstract class 91, 92, 94
access modifiers 72
activebackground, troughcolor, bg, fg, resolution 130
add_cascade() 181
add_command(),add_checkbutton(),add_radiobutton() 201
add_separator(), underline, hot keys, accelerator 174
add() and addChild() 491
after() 159
algorithm(s) 6, 10, 11
ALTER TABLE statement 289
animation vs. movement 514
ANOVA test 396
anti-aliasing 517
Apache mxnet 452
API 169
append(), delete(), clear() 145
apriori 438
askcolor(), asksaveasfile(), askopenfile(),

askdirectory() 169
auto-encoder 483

the backslash special character (“\”) 113
bar chart, plot.bar() 357
Basic Widgets 109
batch_size parameter 477
big data 320
binary search 208, 230, 233
binary search tree 208, 262, 263
binary tree 208, 261, 262
box and whisker plot, boxplot(), grid, figsize, labels 354
break 45, 46
bubble sort 44, 217, 218
button 119

Caffe 452
camel case 62
camera collision on/off 94
camera or viewpoint 487
CART 419
casting 31
categorical and continuous data 339, 350
categorical variables (nominal, ordinal) 379
checkbutton 126, 138, 144, 145
Chi-square Test 397
choice() 513
circular queue 250
class attribute 64
class keyword 62

clear() 137, 145
clearActions() 517
collision and collision detection 493
command 131, 145
comment(s) 13, 17
compound, left, right, center 118
condition 30, 31, 32, 33, 34, 35
confidence 439
confidence intervals 378
connecting to a database 279
constructor method 68, 69, 70
continue 45, 46
continuous variables (interval, ratio) 380
Convolutional Neural Network (CNN) 483
count() 350
create a new column in a dataset 333
create a new column using np.where() or np.select() 333
create a new CSV file 334
create a new excel file 334
create a table with a single primary key but no foreign

key 283
create a table with combined primary key but no foreign

key 283
create a table with one or more foreign keys 285
CREATE TABLE Statement 280
create tables with no primary or foreign key 280
current 137
curselection() 145

data analytics 320
data frame 320, 321, 322
data science 321
data structures 208
data type(s) 10, 14, 15, 16
data visualization 320, 321, 352
database 274, 276
database schema, database instance 274
DecisionTreeClassifier() 425
deep learning 450
DELETE statement 303
delete() 137, 145, 146
dependent and independent variables 380
DESC statement 296
describe() 350
descriptive statistics 339, 374
destroy(), exit() 144
destructor method 71
determinant 456
dictionary 16, 32, 34, 35, 42, 208, 215, 216
dot 452, 453
drop NaN or empty values 324
DROP TABLE statement 294

eigenvalue, eigenvector 459
encapsulation 72
Enter, Leave 178
entropy, Gini index 425
entry/text 120

618 Index

epochs parameter 477
Euler Angles and the setEuler() method 499
evaluate() 481
event 108
event-driven (or visual) programming 108
exp() 456
expand, foreground, background, font, anchor 113
expression(s) 11, 18, 21, 22, 23

fill NaN or empty values 326
for loop 40, 42, 43, 44
foreign key 283
frame 108, 109, 110
from_=, to = 130
function 50, 51, 52, 53, 54

get() 137
getPosition() 501
getters/setters 72, 74
graph 208, 262, 267, 268
gravity() 494
grid() 111, 112, 113, 126
grid_remove() 202
groupby() 336

handling exception 98
Head Mounted Display (HMD) 490
head(n), tail(n) 331
histograms, plot.hist(), subplots, layout, grid, xlabelsize,

ylabelsize, xrot, yrot, figsize, legend 352
horizontal 114, 130, 131, 152
hypothesis or statistical significance testing 377

identity matrix 456
idletasks() 155, 156
if statement 30, 31, 32, 35
import statement 95
indentation 30, 31
inferential statistics 374
infix, postfix, prefix 245, 246
inheritance 62, 78, 83
input 12, 29, 30
input and output datasets 419
insert records 296
insert()42, 137
insertion sort 208, 220
instance method 66
integer encoding 423
interactive versus linear systems 519
interface 76, 91, 94
IntVar() 137
inverse matrix 456

keywords 13
k-means clustering 435
k-NN 444
Kruskal-Wallis test 392
kurtosis 347

labelframe 131, 136
labels 111
lambda 118
len(), columns, shape 329
line chart, plot.line() 356

linear regression 400, 411
linked list 208, 242, 254
list 16, 208, 209
listbox, combobox 126, 131
loc[], iloc[] 331
logistic regression 402, 414
loop 218, 220, 222

machine learning process 409
magic/dunder methods 88
mainloop() 110
Mann-Whitney U test 391
map or 3D world 492
mean (arithmetic) 340
measures of central tendency 340
measures of spread 343
median 340
Menu() 171
merge sort 208, 230, 238
messagebox 138, 146, 162
messagebox, showinfo(), showerror(), showwarning() 138,

146, 162, 164
messagebox with Options, askokcancel(), askretrycancel(),

askyesno(), askquestion() 164
messagebox with User Input, askstring(), askinteger(),

askfloat(), simpledialog 166
method 108
method loss parameters 475
method overloading 70, 85, 86
methods rand(), randn(), mean(), var(), std() 461
min_length 439
min_lift 439
min(), max() 343
mode 340
module, 94, 95, 96, 97
movement within the map 491

Naïve Bayes classifier 431
nested loops 42, 45
neuron 466
Notebook() 181, 185
null hypothesis 377

object data (attributes) 63
object instantiation 63
onkeydown() and onkeyup() 519
ontimer() and ontimer2() 511
onvalue, offvalue 144
operands 21, 23, 24, 87, 88, 245
operator overloading 87, 89
operators 11, 21, 22, 24, 25, 26, 28, 32, 35, 87, 88
option 108
orient 130, 151
output 6, 11, 12, 17, 29
overfit, underfit 482
overloading built-in methods 90

package 96
Paired t-Test 393
Pandas library 322
parameter maximum_depth 426
parameter min_samples_leaf 426
pass keyword 62, 78
passing 3D objects as arguments 507

619Index

passing values to arguments 52, 53
Pearson’s Chi-square test 399
Pearson’s correlation 398
perceptron 467
pie chart, pie() 363
polymorphism 85
population, sample 376
pop-up 175, 178, 181
prefabricated animations 510
prefabricated objects (prefabs) 491
primary key 276, 282
process_time() 137
processing 12, 31
progressbar, determinate, interminate 152
property method 76
Python GUI modules 109
Pytorch 452

quartiles 343
queue 208, 242, 248
quicksort 208, 230, 235

radiobutton 126, 138, 144, 145
raising exceptions 101
randint() 131
random forest 443
randomization 506
random.uniform() 506
read_excel(), read_csv(), read_html() 322
read-only attributes 75
rectifier linear unit (ReLU) function 471
Recurrent Neural Network (RNN) 483
recursion 208, 230, 231
relief, borderwidth 118
relx, rely 130, 156
rename() 327
Resize(), ANTIALIAS 118

sample characteristics 376
sample() 473
scale 126, 130, 131
scatter plot, plot.scatter() 364
scrollbar, xview, yview, xscrollcommand,

yscrollcommand 137
SELECT statement 306
selecting the appropriate test 385
selection 32, 37, 45
selection sort 208, 220
selection_set() 202
Self-Organizing Map (SOM) 483
sequential approach 474
set 16, 208, 209, 214
setEnabled() 516
set_index(), reset_index() 329
setPosition() 496

shaker sort 208, 227
shell sort 208, 225
show 126
SHOW TABLES statement 279
sigmoid function 470
skewness 347
Software Development Kit (SDK) 523
solve() 461
sort_values() 336
spinbox 126, 130, 131, 185
splash screen 168
stack 208, 240, 242, 243
standard deviation (SD) 343
start(), stop() 189
state 126, 145
state, NORMAL, DISABLED 145
state() 510
statement(s) 11, 12, 13, 21
statistics 374
stochastic gradient descent (SGD) 475
StringIO, Graphviz 420
Student t-test 395
supervised learning 410
support 438

TensorFlow 452
textvariable 121, 137
Theano 452
Thread 162, 186
timer 511
tk_popup(event.x_root, event.y_root) 181
toolbar 162, 171, 175
tooltip 175, 178
tuple 16, 208, 209, 214
types of errors 98
types of scripting in relational databases 274
types of statistical analysis 381

unique() 332
unsupervised learning 411
UPDATE statement 301

validating data 74
variable(s) 10, 13, 14, 15, 379
variance() 343
vertical 114, 130, 134, 138, 152
viz library 491
vizconnect library 524
viz.go() method 491
VR hardware 523

walkTo(), turn() and addAction() 515
while loop 11, 36, 37
widget 108
Wilcoxon Signed-Rank test 391

REQUEST A FREE TRIAL
support@taylorfrancis.com

Taylor & Francis eBooks
www.taylorfrancis.com

A single destination for eBooks from Taylor & Francis
with increased functionality and an improved user
experience to meet the needs of our customers.

90,000+ eBooks of award-winning academic content in
Humanities, Social Science, Science, Technology, Engineering,

and Medical written by a global network of editors and authors.

TAYLOR & FRANCIS EBOOKS OFFERS:

A streamlined
experience for

our library
customers

A single point
of discovery
for all of our

eBook content

Improved
search and
discovery of

content at both
book and

chapter level

mailto:support@taylorfrancis.com
http://www.taylorfrancis.com

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Editors
	Contributors
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Audience
	1.3 Getting Started with Jupyter Notebook
	1.4 Creating Standalone, Executable Files
	1.5 Structure of this Book
	References

	Chapter 2 Introduction to Programming with Python
	2.1 Introduction
	2.2 Algorithm vs. Program
	2.2.1 Algorithm
	2.2.2 Program

	2.3 Lexical Structure
	2.3.1 Case Sensitivity and Whitespace
	2.3.2 Comments
	2.3.3 Keywords

	2.4 Punctuations and Variables
	2.4.1 Punctuations
	2.4.2 Variables

	2.5 Data Types
	2.5.1 Primitive Data Types
	2.5.2 Non-Primitive Data Types
	2.5.3 Examples of Variables and Data Types Using Python Code

	2.6 Statements, Expressions, and Operators
	2.6.1 Statements and Expressions
	2.6.2 Operators
	2.6.2.1 Arithmetic Operators
	2.6.2.2 Comparison Operators
	2.6.2.3 Logical Operators
	2.6.2.4 Assignment Operators
	2.6.2.5 Bitwise Operators
	2.6.2.6 Operators Precedence

	2.7 Sequence: Input and Output Statements
	2.8 Selection Structure
	2.8.1 The if Structure
	2.8.2 The if… else Structure
	2.8.3 The if… elif… else Structure
	2.8.4 Switch Case Structures
	2.8.5 Conditional Expressions
	2.8.6 Nested if Statements

	2.9 Iteration Statements
	2.9.1 The while Loop
	2.9.2 The for Loop
	2.9.3 The Nested for Loop
	2.9.4 The break and continue Statement
	2.9.5 Using Loops with the Turtle Library

	2.10 Functions
	2.10.1 Function Definition
	2.10.2 No Arguments, No Return
	2.10.3 With Arguments, No Return
	2.10.4 No Arguments, With Return
	2.10.5 With Arguments, With Return
	2.10.6 Function Parameter Passing
	2.10.6.1 Call/Pass by Value
	2.10.6.2 Call/Pass by Reference

	2.11 Case Study
	2.12 Exercises
	2.12.1 Sequence and Selection
	2.12.2 Iterations – while Loops
	2.12.3 Iterations – for Loops
	2.12.4 Methods

	References

	Chapter 3 Object-Oriented Programming in Python
	3.1 Introduction
	3.2 Classes and Objects in Python
	3.2.1 Instantiating Objects
	3.2.2 Object Data (Attributes)
	3.2.2.1 Instance Attributes
	3.2.2.2 Class Attributes

	3.2.3 Object Behavior (Methods)
	3.2.3.1 Instance Methods
	3.2.3.2 Constructor Methods
	3.2.3.3 Destructor Method

	3.3 Encapsulation
	3.3.1 Access Modifiers in Python
	3.3.2 Getters and Setters
	3.3.3 Validating Inputs before Setting
	3.3.4 Creating Read-Only Attributes
	3.3.5 The property() Method
	3.3.6 The @property Decorator

	3.4 Inheritance
	3.4.1 Inheritance in Python
	3.4.1.1 Customizing the Sub Class

	3.4.2 Method Overriding
	3.4.2.1 Overriding the Constructor Method

	3.4.3 Multiple Inheritance

	3.5 Polymorphism – Method Overloading
	3.5.1 Method Overloading through Optional Parameters in Python

	3.6 Overloading Operators
	3.6.1 Overloading Built-In Methods

	3.7 Abstract Classes and Interfaces in Python
	3.7.1 Interfaces

	3.8 Modules and Packages in Python
	3.8.1 The import Statement
	3.8.2 The from…import Statement
	3.8.3 Packages
	3.8.4 Using Modules to Store Abstract Classes

	3.9 Exception Handling
	3.9.1 Handling Exceptions in Python
	3.9.1.1 Handling Specific Exceptions

	3.9.2 Raising Exceptions
	3.9.3 User-Defined Exceptions in Python

	3.10 Case Study
	3.11 Exercises

	Chapter 4 Graphical User Interface Programming with Python
	4.1 Introduction
	4.1.1 Python's GUI Modules
	4.1.2 Python IDE (Anaconda) and Chapter Scope

	4.2 Basic Widgets in Tkinter
	4.2.1 Empty Frame
	4.2.2 The Label Widget
	4.2.3 The Button Widget
	4.2.4 The Entry Widget
	4.2.5 Integrating the Basic Widgets

	4.3 Enhancing the GUI Experience
	4.3.1 The Spinbox and Scale Widgets inside Individual Frames
	4.3.2 The Listbox and Combobox Widgets inside LabelFrames
	4.3.3 GUIs with CheckButtons, RadioButtons and SimpleMessages

	4.4 Basic Automation and User Input Control
	4.4.1 Traffic Lights Version 1 – Basic Functionality
	4.4.2 Traffic Lights Version 2 – Creating a Basic Illusion
	4.4.3 Traffic Lights Version 3 – Creating a Primitive Automation
	4.4.4 Traffic Lights Version 4 – A Primitive Screen Saver with a Progress Bar
	4.4.5 Traffic Lights Version 5 – Suggesting a Primitive Screen Saver

	4.5 Case Studies
	4.6 Exercises

	Chapter 5 Application Development with Python
	5.1 Introduction
	5.2 Messages, Common Dialogs, and Splash Screens in Python
	5.2.1 Simple Message Boxes
	5.2.2 Message Boxes with Options
	5.2.3 Message Boxes with User Input
	5.2.4 Splash Screen/About Forms
	5.2.5 Common Dialogs

	5.3 Menus
	5.3.1 Simple Menus with Shortcuts
	5.3.2 Toolbar Menus with Tooltips
	5.3.3 Popup Menus with Embedded Icons

	5.4 Enhancing the GUI Experience
	5.4.1 Notebooks and Tabbed Interfaces
	5.4.2 Threaded Applications
	5.4.3 Combining Multiple Concepts and Applications in a Multithreaded System

	5.5 Wrap Up
	5.6 Case Study

	Chapter 6 Data Structures and Algorithms with Python
	6.1 Introduction
	6.2 Lists, Tuples, Sets, Dictionaries
	6.2.1 List
	6.2.2 Tuple
	6.2.3 Sets
	6.2.4 Dictionary

	6.3 Basic Sorting
	6.3.1 Bubble Sort
	6.3.2 Insertion Sort
	6.3.3 Selection Sort
	6.3.4 Shell Sort
	6.3.5 Shaker Sort

	6.4 Recursion, Binary Search, and Efficient Sorting with Lists
	6.4.1 Recursion
	6.4.2 Binary Search
	6.4.3 Quicksort
	6.4.4 Merge Sort

	6.5 Complex Data Structures
	6.5.1 Stack
	6.5.2 Infix, Postfix, Prefix
	6.5.3 Queue
	6.5.4 Circular Queue

	6.6 Dynamic Data Structures
	6.6.1 Linked Lists
	6.6.2 Binary Trees
	6.6.3 Binary Search Tree
	6.6.4 Graphs
	6.6.5 Implementing Graphs and the Eulerian Path in Python

	6.7 Wrap Up
	6.8 Case Studies
	6.9 Exercises
	References

	Chapter 7 Database Programming with Python
	7.1 Introduction
	7.2 Scripting for Data Definition Language
	7.2.1 Creating a New Database in MySQL
	7.2.2 Connecting to a Database
	7.2.3 Creating Tables
	7.2.4 Altering Tables
	7.2.5 Dropping Tables
	7.2.6 The DESC Statement

	7.3 Scripting for Data Manipulation Language
	7.3.1 Inserting Records
	7.3.2 Updating Records
	7.3.3 Deleting Records

	7.4 Querying a Database and Using a GUI
	7.4.1 The SELECT Statement
	7.4.2 The SELECT Statement with a Simple Condition
	7.4.3 The SELECT Statement Using GUI

	7.5 Case Study
	7.6 Exercises
	References

	Chapter 8 Data Analytics and Data Visualization with Python
	8.1 Introduction
	8.2 Importing and Cleaning Data
	8.2.1 Data Acquisition: Importing and Viewing Datasets
	8.2.2 Data Cleaning: Delete Empty or NaN Values
	8.2.3 Data Cleaning: Fill Empty or NaN Values
	8.2.4 Data Cleaning: Rename Columns
	8.2.5 Data Cleaning: Changing and Resetting the Index

	8.3 Data Exploration
	8.3.1 Data Exploration: Counting and Selecting Columns
	8.3.2 Data Exploration: Limiting/Slicing Dataset Views
	8.3.3 Data Exploration: Conditioning/Filtering
	8.3.4 Data Exploration: Creating New Data
	8.3.5 Data Exploration: Grouping and Sorting Data

	8.4 Descriptive Statistics
	8.4.1 Measures of Central Tendency
	8.4.2 Measures of Spread
	8.4.3 Skewness and Kurtosis
	8.4.4 The describe() and count() Methods

	8.5 Data Visualization
	8.5.1 Continuous Data: Histograms
	8.5.2 Continuous Data: Box and Whisker Plot
	8.5.3 Continuous Data: Line Chart
	8.5.4 Categorical Data: Bar Chart
	8.5.5 Categorical Data: Pie Chart
	8.5.6 Paired Data: Scatter Plot

	8.6 Wrapping Up
	8.7 Case Study
	References

	Chapter 9 Statistical Analysis with Python
	9.1 Introduction
	9.1.1 What is Statistics?
	9.1.2 Why Use Python for Statistical Analysis?
	9.1.3 Overview of Available Libraries

	9.2 Basic Statistics Concepts
	9.2.1 Population vs. Sample: From Description to Inferential Statistics
	9.2.2 Hypotheses and Statistical Significance
	9.2.3 Confidence Intervals

	9.3 Key Considerations Prior to Conducting Statistical Analysis
	9.3.1 Level of Measures: Categorical and Numerical Variables
	9.3.2 Types of Variables: Dependent and Independent Variables
	9.3.3 Statistical Analysis Types and Hypothesis Tests
	9.3.3.1 Statistical Analysis for Summary Investigative Questions
	9.3.3.2 Statistical Analysis for Comparison Investigative Questions
	9.3.3.3 Statistical Analysis for Relationship Investigative Questions

	9.3.4 Choosing the Right Type of Statistical Analysis

	9.4 Setting Up the Python Environment
	9.4.1 Installing Anaconda and Launching the Jupyter Notebook
	9.4.2 Installing and Running the Pandas Library
	9.4.3 Review of Basic Data Analytics

	9.5 Statistical Analysis Tasks
	9.5.1 Descriptive Statistics
	9.5.2 Comparison: The Mann-Whitney U Test
	9.5.3 Comparison: The Wilcoxon Signed-Rank Test
	9.5.4 Comparison: The Kruskal-Wallis Test
	9.5.5 Comparison: Paired t-test
	9.5.6 Comparison: Independent or Student t-Test
	9.5.7 Comparison: ANOVA
	9.5.8 Comparison: Chi-Square
	9.5.9 Relationship: Pearson's Correlation
	9.5.10 Relationship: The Chi-Square Test
	9.5.11 Relationship: Linear Regression
	9.5.12 Relationship: Logistic Regression

	9.6 Wrap Up
	9.7 Exercises
	References

	Chapter 10 Machine Learning with Python
	10.1 Introduction
	10.2 Types of Machine Learning Algorithms
	10.3 Supervised Learning Algorithms: Linear Regression
	10.4 Supervised Learning Algorithms: Logistic Regression
	10.5 Supervised Learning Algorithms: Classification and Regression Tree (CART)
	10.6 Supervised Learning Algorithms: Naïve Bayes Classifier
	10.7 Unsupervised Learning Algorithms: K-means Clustering
	10.8 Unsupervised Learning Algorithms: Apriori
	10.9 Other Learning Algorithms
	10.10 Wrap Up - Machine Learning Applications
	10.11 Case Studies
	10.12 Exercises
	References

	Chapter 11 Introduction to Neural Networks and Deep Learning
	11.1 Introduction
	11.2 Relevant Algebraic Math and Associated Python Methods for DL
	11.2.1 The Dot Method
	11.2.2 Matrix Operations with Python
	11.2.3 Eigenvalues, Eigenvectors and Diagonals
	11.2.4 Solving Sets of Equations with Python
	11.2.5 Generating Random Numbers for Matrices with Python
	11.2.6 Plotting with Matplotlib
	11.2.7 Linear and Logistic Regression

	11.3 Introduction to Neural Networks
	11.3.1 Modelling a Simple ANN with a Perceptron
	11.3.2 Sigmoid and Rectifier Linear Unit (ReLU) Methods
	11.3.3 A Real-Life Example: Preparing the Dataset
	11.3.4 Creating and Compiling the Model
	11.3.5 Stochastic Gradient Descent and the Loss Method and Parameters
	11.3.6 Fitting and Evaluating the Models, Plotting the Observed Losses
	11.3.7 Model Overfit and Underfit

	11.4 Wrap Up
	11.5 Case Study
	References

	Chapter 12 Virtual Reality Application Development with Python
	12.1 Introduction
	12.2 3D Video Game Engines and VR Development Platforms
	12.3 Motion Trackers and Head Mounted Displays VS Keyboards, Mice and Display Screens
	12.4 The Vizard Environment and Creating the Graphics Window
	12.5 Creating the 3D World
	12.6 Collisions and Gravity
	12.7 Creating Additional 3D Objects
	12.8 3D (Cartesian) Coordinates and Basic Object Positioning
	12.9 Euler Angles and Object Orientation
	12.10 Absolute vs Relative Positioning
	12.11 Creating and Positioning Multiple Objects through Lists
	12.12 Using Prefabricated Animations
	12.13 Basic Movement
	12.14 Basic Interaction
	12.15 Integrating VR Hardware and Exporting a Standalone.exe File
	12.16 Conclusion
	12.17 Case Study
	References

	Appendix: Case Studies Solutions
	Index

