

FOUNDATIONS OF
ARTIFICIAL INTELLIGENCE

Foundations of Artificial Intelligence

Series Editors

J. Hendler
H. Kitano
B. Nebel

Cover picture by Helmut Simonis

ELSEVIER
AMSTERDAM–BOSTON–HEIDELBERG–LONDON–NEW YORK–OXFORD

PARIS–SAN DIEGO–SAN FRANCISCO–SINGAPORE–SYDNEY–TOKYO

Handbook of Constraint Programming

Edited by

Francesca Rossi
University of Padova

Italy

Peter van Beek
University of Waterloo

Canada

Toby Walsh
National ICTA Australia &

University of New South Wales
Australia

ELSEVIER
AMSTERDAM–BOSTON–HEIDELBERG–LONDON–NEW YORK–OXFORD

PARIS–SAN DIEGO–SAN FRANCISCO–SINGAPORE–SYDNEY–TOKYO

Elsevier
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

First edition 2006

Copyright © 2006 Elsevier B.V. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-0-444-52726-4
ISBN-10: 0-444-52726-5
ISSN: 1574-6525

For information on all Elsevier publications
visit our website at books.elsevier.com

Printed and bound in The Netherlands

06 07 08 09 10 10 9 8 7 6 5 4 3 2 1

Foreword

Constraints are an ubiquitous concept, which in its broader sense pertains to every day
experience: they represent the conditions which restrict our freedom of decision. In fact,
how much our choices are constrained by the external world is a basic philosophical ques-
tion. In the formalized reasoning of scientific disciplines, constraints have been employed
extensively, from logic to numerical analysis, from mathematical programming to opera-
tions research. In computer science, constraints have been with us from the early days, for
modeling, representing and reasoning (see the interesting historical remarks in Chapter 2
of this handbook, Constraint Satisfaction: An Emerging Paradigm).

I see several good reasons for this ubiquity: one is the conceptually clear separation
between the perfectly declarative problem statements and the often cumbersome enumera-
tive efforts for finding solutions. Another reason is the complexity challenge: the classical
constraint satisfaction problem is NP-complete and in fact tautology checking in propo-
sitional calculus (a constraint problem on Boolean variables) has been the touchstone for
this complexity class. A further reason is that large, complex constraint problems often
occur in practice, they must be solved in one way or another, and fast, efficient, systematic
solutions have an enormous economic value.

What I find surprising about constraints is that within artificial intelligence and com-
puter science a relatively recent, relatively uniform body of knowledge has emerged which
often yields decisive advantages over classical, extensively studied and well developed
techniques. As for many success stories within computer science, success is largely due
to a mixture of structures, algorithms, languages, programming techniques and system im-
plementations. The aim of this handbook is to present this knowledge in all its facets.
Different chapters are largely self contained and all contribute to put the subject into focus,
similarly to the Hawaii Keck observatory, where the mirror is composed of 36 hexagonal
segments.

From the conceptual point of view, the main characteristic features of constraint pro-
gramming are constraint propagation, and the identification of various special cases which
make complexity tractable. The former (see Chapter 3) is an inference technique which
makes local constraints stronger without changing the global constraint. The latter issue
concerns both the structure (see Chapter 7, Tractable Structures for Constraint Satisfaction
Problems) and the kind of constraints (see Chapter 8, The Complexity of Constraint Lan-
guages). Less specific, but still very important issues are as follows: Backtracking Search
Algorithms, in Chapter 4; Local Search, in Chapter 5; Global Constraints, in Chapter 6;
Symmetry in Constraint Programming, in Chapter 10; and Modelling, in Chapter 11.

Another surprising fact about constraint theory is the incredibly close relationship with
logic programming. In a rather precise sense logic programming is a way of expressing,
and solving, certain classes of disjunctive, recursive constraints. Furthermore, logic pro-
gramming can be very elegantly generalized to constraint logic programming (see Chapter

v

vi Foreword

12), where the ordinary Herbrand constraint system, and its unification algorithm, are com-
plemented with specific constraint solvers. The interaction with the committed choice lan-
guages studied in the Japanese projects of the eighties also yielded very interesting models
of computation based on constraints. Amalgamation with more common (and efficiently
implemented!) programming languages is also possible (see Chapter 13, Constraints in
Procedural and Concurrent Languages).

Besides and beyond the beauty of its theoretical foundations, what contributes the most
to the practical convenience of constraint programming are: (i) the development of specific
results for important classes of constraints; (ii) the ability of extending the basic theory to
various additional aspects which are very relevant in practice; and (iii) the flexibility and
potential for integration with other modeling and solving methodologies.

About the development of specific results, this handbook includes chapters about con-
straints on finite (Chapter 14), structured (Chapter 17), temporal (Chapter 19), continuous
and interval-based (Chapter 16) domains. The potential to extend the basic theory in evi-
dent in the case of soft constraints, considered in Chapter 9. Ordinary constraints are either
satisfied or not, namely either true or false. Instead soft constraints return a more infor-
mative weight. Interestingly enough, the proposed extensions both accommodate several
important cases (fuzzy, hierarchical, optimization, probabilistic constraints), and still of-
ten exhibit essentially the same solution algorithms. Extensions to random, changing and
distributed/open constraints are treated in Chapters 18, 21 and 20 respectively.

About the last issue, in addition to the seamless integration with logic and imperative
programming languages we mentioned already, quite remarkable are the paradigms result-
ing from the integration of constraint programming with operations research (see Chapter
15), with scheduling and planning (see Chapter 22), with vehicle routing (see Chapter 23),
with component configuration (see Chapter 24), with (electricity, water, oil, data) networks
(see Chapter 25), and with bioinformatics (see Chapter 26).

The global scenario based on service-oriented computing which is now under devel-
opment offers additional theoretical and practical challenges to constraint programming.
Conditions for service deployment and discovery, both functional and involving different
aspects of quality of service, could be expressed in terms of hard and soft constraints, and
the negotiation phases should involve substantial constraint solving abilities. Transactions
among the various actors could also require partially backtrackable behavior or at least
programmable compensations. Some level of real time, distributed, global constraint solv-
ing should be implemented in the middleware, since lots of higher level applications will
be able to take advantage of, and pay for it.

I think that research and practical development in the area of constraint programming
will be very active for quite a while in the future, establishing closer and closer connections
with a variety of other design methodologies and even other disciplines. I consider this
handbook not only a very nice piece of scientific work, but also a contribution quite instru-
mental at disseminating advanced knowledge about constraint programming both within
the inner constraint community and across the much wider audience of potential users.

UGO MONTANARI

Dipartimento di Informatica
Università di Pisa, Italy

Editors

Francesca Rossi
University of Padova
Italy

Peter van Beek
University of Waterloo
Canada

Toby Walsh
National ICT Australia &
University of New South Wales
Australia

vii

This page intentionally left blank

Contributors

Rolf Backofen
Albert-Ludwigs-Universität
Germany

Philippe Baptiste
CNRS LIX & École Polytechnique
France

Frédéric Benhamou
Université de Nantes
France

Christian Bessiere
LIRMM-CNRS
France

Kenneth N. Brown
Cork Constraint Computation Centre &
University College Cork, Ireland

Mats Carlsson
SICS AB
Sweden

David Cohen
Royal Holloway, University of London
United Kingdom

Rina Dechter
University of California, Irvine
USA

Boi Faltings
Swiss Federal Institute of Technology
Switzerland

Eugene C. Freuder
Cork Constraint Computation Centre &
University College Cork, Ireland

Thom Frühwirth
Universität Ulm
Germany

Ian P. Gent
University of St. Andrews
Scotland, United Kingdom

Carmen Gervet
Brown University
USA

David Gilbert
University of Glasgow
Scotland, United Kingdom

Carla Gomes
Cornell University
USA

Laurent Granvilliers
Université de Nantes
France

John N. Hooker
Carnegie Mellon University
USA

Holger H. Hoos
University of British Columbia
Canada

ix

x Contributors

Peter Jeavons
University of Oxford
United Kingdom

Ulrich Junker
ILOG SA
France

Irit Katriel
University of Aarhus
Denmark

Philip Kilby
The Australian National University
Australia

Manolis Koubarakis
University of Athens
Greece

Philippe Laborie
ILOG SA
France

Claude Le Pape
ILOG SA
France

Alan K. Mackworth
University of British Columbia
Canada

Kim Marriott
Monash University
Australia

Pedro Meseguer
IIIA-CSIC
Spain

Laurent Michel
University of Connecticut
USA

Ian Miguel
The University of St. Andrews
Scotland, United Kingdom

Wim Nuijten
ILOG SA
France

Karen E. Petrie
University of St. Andrews
Scotland, United Kingdom

Jean-François Puget
ILOG SA
France

Francesca Rossi
University of Padova
Italy

Thomas Schiex
INRA Toulouse
France

Christian Schulte
KTH - Royal Institute of Technology
Sweden

Paul Shaw
ILOG SA
France

Helmut Simonis
CrossCore Optimization
United Kingdom

Barbara M. Smith
Cork Constraint Computation Centre &
University College Cork, Ireland

Peter J. Stuckey
University of Melbourne
Australia

Edward Tsang
University of Essex
United Kingdom

Peter van Beek
University of Waterloo
Canada

Contributors xi

Willem-Jan van Hoeve
Cornell University
USA

Mark Wallace
Monash University
Australia

Toby Walsh
National ICT Australia &
University of New South Wales
Australia

This page intentionally left blank

Contents

Foreword v

Editors vii

Contributors ix

Contents xiii

I Foundations 1

1 Introduction 3
Francesca Rossi, Peter van Beek, Toby Walsh

1.1 Purpose of the Handbook . 4
1.2 Structure and Content . 4
1.3 Future Research . 10

2 Constraint Satisfaction: An Emerging Paradigm 13
Eugene C. Freuder and Alan K. Mackworth

2.1 The Early Days . 13
2.2 The Constraint Satisfaction Problem: Representation and Reasoning . . 16
2.3 Conclusions . 23

3 Constraint Propagation 29
Christian Bessiere

3.1 Background . 30
3.2 Formal Viewpoint . 33
3.3 Arc Consistency . 37
3.4 Higher Order Consistencies . 50
3.5 Domain-Based Consistencies Stronger than AC 57
3.6 Domain-Based Consistencies Weaker than AC 62
3.7 Constraint Propagation as Iteration of Reduction Rules 68
3.8 Specific Constraints . 70

4 Backtracking Search Algorithms 85
Peter van Beek

4.1 Preliminaries . 86
4.2 Branching Strategies . 87

xiii

xiv

4.3 Constraint Propagation . 90
4.4 Nogood Recording . 96
4.5 Non-Chronological Backtracking . 102
4.6 Heuristics for Backtracking Algorithms 105
4.7 Randomization and Restart Strategies 111
4.8 Best-First Search . 116
4.9 Optimization . 117
4.10 Comparing Backtracking Algorithms 118

5 Local Search Methods 135
Holger H. Hoos and Edward Tsang

5.1 Introduction . 136
5.2 Randomised Iterative Improvement Algorithms 142
5.3 Tabu Search and Related Algorithms 144
5.4 Penalty-Based Local Search Algorithms 148
5.5 Other Approaches . 154
5.6 Local Search for Constraint Optimisation Problems 155
5.7 Frameworks and Toolkits for Local Search 157
5.8 Conclusions and Outlook . 158

6 Global Constraints 169
Willem-Jan van Hoeve and Irit Katriel

6.1 Notation and Preliminaries . 170
6.2 Examples of Global Constraints . 176
6.3 Complete Filtering Algorithms . 182
6.4 Optimization Constraints . 189
6.5 Partial Filtering Algorithms . 193
6.6 Global Variables . 200
6.7 Conclusion . 203

7 Tractable Structures for Constraint Satisfaction Problems 209
Rina Dechter

7.1 Background . 210
7.2 Structure-Based Tractability in Inference 213
7.3 Trading Time and Space by Hybrids of Search and Inference 231
7.4 Structure-Based Tractability in Search 239
7.5 Summary and Bibliographical Notes 241

8 The Complexity of Constraint Languages 245
David Cohen and Peter Jeavons

8.1 Basic Definitions . 246
8.2 Examples of Constraint Languages . 247
8.3 Developing an Algebraic Theory . 251
8.4 Applications of the Algebraic Theory 258
8.5 Constraint Languages Over an Infinite Set 263
8.6 Multi-Sorted Constraint Languages . 264
8.7 Alternative Approaches . 269

Contents

xv

8.8 Future Directions . 274

9 Soft Constraints 281
Pedro Meseguer, Francesca Rossi, Thomas Schiex

9.1 Background: Classical Constraints . 282
9.2 Specific Frameworks . 283
9.3 Generic Frameworks . 287
9.4 Relations among Soft Constraint Frameworks 291
9.5 Search . 297
9.6 Inference . 300
9.7 Combining Search and Inference . 313
9.8 Using Soft Constraints . 316
9.9 Promising Directions for Further Research 321

10 Symmetry in Constraint Programming 329
Ian P. Gent, Karen E. Petrie, Jean-François Puget

10.1 Symmetries and Group Theory . 331
10.2 Definitions . 337
10.3 Reformulation . 340
10.4 Adding Constraints Before Search . 343
10.5 Dynamic Symmetry Breaking Methods 350
10.6 Combinations of Symmetry Breaking Methods 362
10.7 Successful Applications . 363
10.8 Symmetry Expression and Detection 364
10.9 Further Research Themes . 366
10.10 Conclusions . 368

11 Modelling 377
Barbara M. Smith

11.1 Preliminaries . 378
11.2 Representing a Problem . 379
11.3 Propagation and Search . 379
11.4 Viewpoints . 381
11.5 Expressing the Constraints . 382
11.6 Auxiliary Variables . 386
11.7 Implied Constraints . 387
11.8 Reformulations of CSPs . 391
11.9 Combining Viewpoints . 394
11.10 Symmetry and Modelling . 398
11.11 Optimization Problems . 400
11.12 Supporting Modelling and Reformulation 401

II Extensions, Languages, and Applications 407

12 Constraint Logic Programming 409
Kim Marriott, Peter J. Stuckey, Mark Wallace

Contents

xvi

12.1 History of CLP . 411
12.2 Semantics of Constraint Logic Programs 413
12.3 CLP for Conceptual Modeling . 425
12.4 CLP for Design Modeling . 430
12.5 Search in CLP . 437
12.6 Impact of CLP . 442
12.7 Future of CLP and Interesting Research Questions 444

13 Constraints in Procedural and Concurrent Languages 453
Thom Frühwirth, Laurent Michel, and Christian Schulte

13.1 Procedural and Object-Oriented Languages 454
13.2 Concurrent Constraint Programming 465
13.3 Rule-Based Languages . 473
13.4 Challenges and Opportunities . 485
13.5 Conclusion . 486

14 Finite Domain Constraint Programming Systems 495
Christian Schulte and Mats Carlsson

14.1 Architecture for Constraint Programming Systems 496
14.2 Implementing Constraint Propagation 506
14.3 Implementing Search . 513
14.4 Systems Overview . 517
14.5 Outlook . 519

15 Operations Research Methods in Constraint Programming 527
John N. Hooker

15.1 Schemes for Incorporating OR into CP 527
15.2 Plan of the Chapter . 528
15.3 Linear Programming . 530
15.4 Mixed Integer/Linear Modeling . 534
15.5 Cutting Planes . 536
15.6 Relaxation of Global Constraints . 539
15.7 Relaxation of Piecewise Linear and Disjunctive Constraints 545
15.8 Lagrangean Relaxation . 547
15.9 Dynamic Programming . 550
15.10 Branch-and-Price Methods . 554
15.11 Benders Decomposition . 556
15.12 Toward Integration of CP and OR . 560

16 Continuous and Interval Constraints 571
Frédéric Benhamou and Laurent Granvilliers

16.1 From Discrete to Continuous Constraints 574
16.2 The Branch-and-Reduce Framework 575
16.3 Consistency Techniques . 577
16.4 Numerical Operators . 583
16.5 Hybrid Techniques . 587
16.6 First Order Constraints . 590

Contents

xvii

16.7 Applications and Software packages 593
16.8 Conclusion . 595

17 Constraints over Structured Domains 605
Carmen Gervet

17.1 History and Applications . 606
17.2 Constraints over Regular and Constructed Sets 609
17.3 Constraints over Finite Set Intervals . 613
17.4 Influential Extensions to Subset Bound Solvers 619
17.5 Constraints over Maps, Relations and Graphs 628
17.6 Constraints over Lattices and Hierarchical Trees 631
17.7 Implementation Aspects . 631
17.8 Applications . 633
17.9 Further Topics . 633

18 Randomness and Structure 639
Carla Gomes and Toby Walsh

18.1 Random Constraint Satisfaction . 640
18.2 Random Satisfiability . 644
18.3 Random Problems with Structure . 648
18.4 Runtime Variability . 651
18.5 History . 657
18.6 Conclusions . 658

19 Temporal CSPs 665
Manolis Koubarakis

19.1 Preliminaries . 666
19.2 Constraint-Based Formalisms for Reasoning About Time 669
19.3 Efficient Algorithms for Temporal CSPs 677
19.4 More Expressive Queries for Temporal CSPs 681
19.5 First-Order Temporal Constraint Languages 683
19.6 The Scheme of Indefinite Constraint Databases 685
19.7 Conclusions . 691

20 Distributed Constraint Programming 699
Boi Faltings

20.1 Definitions . 701
20.2 Distributed Search . 702
20.3 Improvements and Variants . 713
20.4 Distributed Local Search . 718
20.5 Open Constraint Programming . 721
20.6 Further Issues . 724
20.7 Conclusion . 726

Contents

xviii

21 Uncertainty and Change 731
Kenneth N. Brown and Ian Miguel

21.1 Background and Definitions . 732
21.2 Example: Course Scheduling . 732
21.3 Uncertain Problems . 733
21.4 Problems that Change . 738
21.5 Pseudo-dynamic Formalisms . 752
21.6 Challenges and Future Trends . 753
21.7 Summary . 755

22 Constraint-Based Scheduling and Planning 761
Philippe Baptiste, Philippe Laborie, Claude Le Pape, Wim Nuijten

22.1 Constraint Programming Models for Scheduling 763
22.2 Constraint Programming Models for Planning 771
22.3 Constraint Propagation for Resource Constraints 778
22.4 Constraint Propagation on Optimization Criteria 785
22.5 Heuristic Search . 789
22.6 Conclusions . 794

23 Vehicle Routing 801
Philip Kilby and Paul Shaw

23.1 The Vehicle Routing Problem . 802
23.2 Operations Research Approaches . 804
23.3 Constraint Programming Approaches 809
23.4 Constraint Programming in Search . 819
23.5 Using Constraint Programming as a Subproblem Solver 823
23.6 CP-VRP in the Real World . 825
23.7 Conclusions . 828

24 Configuration 837
Ulrich Junker

24.1 What Is Configuration? . 838
24.2 Configuration Knowledge . 844
24.3 Constraint Models for Configuration 853
24.4 Problem Solving for Configuration . 863
24.5 Conclusion . 868

25 Constraint Applications in Networks 875
Helmut Simonis

25.1 Electricity Networks . 876
25.2 Water (Oil) Networks . 878
25.3 Data Networks . 879
25.4 Conclusion . 898

Contents

xix

26 Bioinformatics and Constraints 905
Rolf Backofen and David Gilbert

26.1 What Biologists Want from Bioinformatics 906
26.2 The Central Dogma . 907
26.3 A Classification of Problem Areas . 908
26.4 Sequence Related Problems . 908
26.5 Structure Related Problems . 922
26.6 Function Related Problems . 935
26.7 Microarrays . 937

Index 945

Contents

This page intentionally left blank

Part I

Foundations

This page intentionally left blank

Handbook of Constraint Programming 3
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier B.V. All rights reserved

Chapter 1

Introduction

Francesca Rossi, Peter van Beek, Toby Walsh

Constraint programming is a powerful paradigm for solving combinatorial search problems
that draws on a wide range of techniques from artificial intelligence, computer science,
databases, programming languages, and operations research. Constraint programming is
currently applied with success to many domains, such as scheduling, planning, vehicle
routing, configuration, networks, and bioinformatics. The basic idea in constraint pro-
gramming is that the user states the constraints and a general purpose constraint solver is
used to solve them. Constraints are just relations, and a constraint satisfaction problem
(CSP) states which relations should hold among the given decision variables. For exam-
ple, in scheduling activities in a company, the decision variables might be the starting times
and the durations of the activities and the resources needed to perform them, and the con-
straints might be on the availability of the resources and on their use for a limited number
of activities at a time.

Constraint solvers take a real-world problem like this, represented in terms of deci-
sion variables and constraints, and find an assignment to all the variables that satisfies
the constraints. Constraint solvers search the solution space either systematically, as with
backtracking or branch and bound algorithms, or use forms of local search which may
be incomplete. Systematic method often interleave search and inference, where inference
consists of propagating the information contained in one constraint to the neighboring
constraints. Such inference (usually called constraint propagation) is useful since it may
reduce the parts of the search space that need to be visited.

While defining a set of constraints may seem a simple way to model a real-world prob-
lem, finding a good model that works well with a chosen solver is not always easy. A poorly
chosen model may be very hard to solve. Thus much care must be devoted to choosing a
good model and also to devising solvers that can exploit the features of the chosen model.

From this description it may seem that constraint programming is “programming” in
the sense of “mathematical programming”: the user declaratively states the constraints
on the feasible solutions for a set of decision variables, and an underlying solver solves
the constraints. However, constraint programming is also “programming” in the sense of
“computer programming”: the user needs to program a strategy to search for a solution.

4 1. Introduction

Without this, the solving process would be very inefficient. This is very natural to do in
logic-based programming languages, such as constraint logic programming, but it can also
be done in other programming paradigms.

1.1 Purpose of the Handbook

The aim of this handbook is to capture the full breadth and depth of the constraint pro-
gramming field and to be encyclopedic in its scope and coverage. While there are excellent
books on constraint programming (see, for example, [1, 2, 3, 4, 5, 6, 7, 8]), such books
necessarily focus on the main notions and techniques and cannot cover also extensions,
applications, and languages. The handbook gives a reasonably complete coverage of all
these lines of work, based on constraint programming, so that a reader can have a rather
precise idea of the whole field and its potential. Of course each line of work is dealt with
in a survey-like style, where some details may be neglected in favor of broader coverage.
However, the extensive bibliography of each chapter will help the interested readers to find
suitable sources for the missing details. Each chapter of the handbook is intended to be
a self-contained survey of a topic, and is written by one or more authors who are leading
researchers in the area.

The intended audience of the handbook is researchers, graduate students, upper-year
undergraduates, and practitioners who wish to learn about the state-of-the-art in constraint
programming. No prior knowledge about the field is necessary to be able to read the
chapters and gather useful knowledge. Researchers from other fields should find in this
handbook an effective way to learn about constraint programming and to possibly use some
of the constraint programming concepts and techniques in their own work, thus providing
a means for a fruitful cross-fertilization among different research areas.

1.2 Structure and Content

The handbook is organized in two parts. The first part covers the basic foundations of
constraint programming, including the history, the notion of constraint propagation, basic
search methods, global constraints, tractability and computational complexity, and impor-
tant issues in modeling a problem as a constraint problem. The second part covers con-
straint languages and solver, several useful extensions to the basic framework (such as
interval constraints, structured domains, and distributed CSPs), and successful application
areas for constraint programming.

Part I: Foundations

In Chapter 2, Eugene C. Freuder and Alan K. Mackworth survey the emergence of con-
straint satisfaction as a new paradigm within artificial intelligence and computer science.
Covering the two decades from 1965 to 1985, Freuder and Mackworth trace the devel-
opment of two streams of work, which they call the language stream and the algorithm
stream. The focus of the language stream was on declarative program languages and sys-
tems for developing applications of constraints. The language stream gave many special
purpose declarative languages and also general programming languages such as constraint
logic programming. The focus of the algorithm stream was on algorithms and heuristics

F. Rossi, P. van Beek, T. Walsh 5

for the constraint satisfaction framework. The algorithm stream gave constraint propa-
gation algorithms such as algorithms for arc consistency and also heuristics and constraint
propagation within backtracking search. Ultimately, the language stream and the algorithm
stream merged to form the core of the new field of constraint programming.

In Chapter 3, Christian Bessiere surveys the extensive literature on constraint propa-
gation. Constraint propagation is a central concept—perhaps the central concept—in the
theory and practice of constraint programming. Constraint propagation is a form of reason-
ing in which, from a subset of the constraints and the domains, more restrictive constraints
or more restrictive domains are inferred. The inferences are justified by local consistency
properties that characterize necessary conditions on values or set of values to belong to
a solution. Arc consistency is currently the most important local consistency property in
practice and has received the most attention in the literature. The importance of constraint
propagation is that it can greatly simplify a constraint problem and so improve the effi-
ciency of a search for a solution.

The main algorithmic techniques for solving constraint satisfaction problems (CSPs)
are backtracking search and local search. In Chapter 4, Peter van Beek surveys backtrack-
ing search algorithms. A backtracking search algorithm performs a depth-first traversal
of a search tree, where the branches out of a node represent alternative choices that may
have to be examined in order to find a solution, and the constraints are used to prune sub-
trees containing no solutions. Backtracking search algorithms come with a guarantee that
a solution will be found if one exists, and can be used to show that a CSP does not have
a solution or to find a provably optimal solution. Many techniques for improving the ef-
ficiency of a backtracking search algorithm have been suggested and evaluated including
constraint propagation, nogood recording, backjumping, heuristics for variable and value
ordering, and randomization and restart strategies.

In Chapter 5, Holger H. Hoos and Edward Tsang survey local search algorithms for
solving constraint satisfaction problems. A local search algorithm performs a walk in a
directed graph, where the nodes represent alternative assignments to the variables that may
have to be examined and the number of violated constraints is used to guide the search for
a solution. Local search algorithms cannot be used to show that a CSP does not have a so-
lution or to find a provably optimal solution. However, such algorithms are often effective
at finding a solution if one exists and can be used to find an approximation to an optimal
solution. Many techniques and strategies for improving local search algorithms have been
proposed and evaluated including randomized iterative improvement, tabu search, penalty-
based approaches, and alternative neighborhood and move strategies.

In Chapter 6, Willem-Jan van Hoeve and Irit Katriel survey global constraints. A global
constraint is a constraint that can be over arbitrary subsets of the variables. The canonical
example of a global constraint is the all-different constraint which states that the
variables in the constraint must be pairwise different. The power of global constraints is
two-fold. First, global constraints ease the task of modeling an application using constraint
programming. The all-different constraint, for example, is a pattern that reoccurs
in many applications, including rostering, timetabling, sequencing, and scheduling appli-
cations. Second, special purpose constraint propagation algorithms can be designed which
take advantage of the semantics of the constraint and are therefore much more efficient.
Van Hoeve and Katriel show that designing constraint propagation algorithms for global
constraints draws on a wide variety of disciplines including graph theory, flow theory,
matching theory, linear programming, and finite automaton.

6 1. Introduction

A fundamental challenge in constraint programming is to understand the computational
complexity of problems involving constraints. In their most general form, constraint satis-
faction problems (CSPs) are NP-Hard. To counter this pessimistic result, much work has
been done on identifying restrictions on constraint satisfaction problems such that solving
an instance can be done efficiently; that is, in polynomial time in the worst-case. Finding
tractable classes of constraint problems is of theoretical interest of course, but also of prac-
tical interest in the design of constraint programming languages and effective constraint
solvers. The restrictions on CSPs that lead to tractability fall into two classes: restrict-
ing the topology of the underlying graph of the CSP and restricting the type of the allowed
constraints. In Chapter 7, Rina Dechter surveys how the complexity of solving CSPs varies
with the topology of the underlying constraint graph. The results depend on properties of
the constraint graph, such as the well-known graph parameter tree-width. In Chapter 8,
David Cohen and Peter Jeavons survey how the complexity of solving CSPs varies with
the type of allowed constraints. Here, the results depend on algebraic properties of the
constraint relations.

The first part ends with three chapters concerned with modeling real world problems
as CSPs. In many real world problems, not all constraints are hard. Some constraint may
be “soft” and express preferences that we would like to satisfy but do not insist upon.
Other real world problems may be over-constrained. In both cases, an extension of the
basic framework of constraint satisfaction to soft constraints is useful. In Chapter 9, Pedro
Meseguer, Francesca Rossi, and Thomas Schiex survey the different formalisms of soft
constraints proposed in the literature. They describe the relationship between these differ-
ent formalisms. In addition, they discuss how solving methods have been generalized to
deal with soft constraints.

Symmetry occurs in many real world problems: machines in a factory might be iden-
tical, nurses might have the same skills, delivery trucks might have the same capacity, etc.
Symmetry can also be introduced when we model a problem as a CSP. For example, if
we introduce a decision variable for each machine, then we can permute those variables
representing identical machines. Such symmetry enlarges the search space and must be
dealt with if we are to solve problems of the size met in practice. In Chapter 10, Ian P.
Gent, Karen E. Petrie, and Jean-François Puget survey the different forms of symmetry
in constraint programming. They describe the three basic techniques used to deal with
symmetry: reformulating the problem, adding symmetry breaking constraints, and mod-
ifying the search strategy to ignore symmetric states. Symmetry is one example of the
sort of issues that need to be considered when modeling a problem as a CSP. In Chapter
11, Barbara M. Smith surveys a range of other issues in modeling a problem as a CSP.
This includes deciding on an appropriate viewpoint (e.g. if we are scheduling exams, do
the variables represent exams and their values the times, or do the variables represent the
times and their values the exams?), adding implied constraints to help prune the search
space, and introducing auxiliary variables to make it easier to state the constraints or to
improve propagation.

Part II: Extensions, Languages, and Applications

To increase the uptake, ease of use, extensibility, and flexibility of constraint technology,
constraints and search have been integrated into several programming languages and pro-
gramming paradigms. In Chapter 12, Kim Marriott, Peter J. Stuckey, and Mark Wallace

F. Rossi, P. van Beek, T. Walsh 7

survey constraint logic programming (CLP), the integration of constraint solving into logic
programming languages. Constraint solving and logic programming are both declarative
paradigms, so their integration is quite natural. Further, the fact that constraints can be seen
as relations or predicates, that a set of constraints can be viewed as the conjunction of the
individual constraints, and that backtracking search is a basic methodology for solving a set
of constraints, makes constraint solving very compatible with logic programming, which
is based on predicates, logical conjunctions, and backtracking search. Marriott, Stuckey,
and Wallace cover the elegant semantics of CLP, show the power of CLP in modeling con-
straint satisfaction problems, and describe how to define specific search routines in CLP
for solving the modeled problem.

In Chapter 13, Thom Frühwirth, Laurent Michel, and Christian Schulte survey the inte-
gration of constraints into procedural and object-oriented languages, concurrent languages,
and rule-based languages. Integrating constraint solving into these more traditional pro-
gramming paradigms faces new challenges as these paradigms generally lack support for
declarative programming. These challenges include (i) allowing the specification of new
search routines, while maintaining declarativeness, (ii) the design of declarative model-
ing languages that are user-friendly and based on well-known programming metaphors,
and (iii) the integration of constraint solving into multi-paradigm languages. Frühwirth,
Michel, and Schulte include a discussion of the technical aspects of integrating constraints
into each programming paradigm, as well as the advantages and disadvantages of each
paradigm.

In Chapter 14, Christian Schulte and Mats Carlsson survey finite domain constraint
programming systems. One of the key properties of constraint programming systems is
the provision of widely reusable services—such as constraint propagation and backtrack-
ing search—for constructing constraint-based applications. Schulte and Carlsson discuss
which services are provided by constraint programming systems and also the key principles
and techniques in implementing and coordinating these services. For many applications,
the constraint propagation, backtracking search, and other services provided by the con-
straint programming system are sufficient. However, some applications require more, and
most constraint programming systems are extensible, allowing the user to define, for exam-
ple, new constraint propagators or new search strategies. Schulte and Carlsson also provide
an overview of several well-known finite domain constraint programming systems.

Operations research (OR) and constraint programming (CP) are complementary frame-
works with similar goals. In Chapter 15, John N. Hooker surveys some of the schemes for
incorporating OR methods into CP. In constraint programming, constraints are used to
reduce the domains of the variables. One method for incorporating an OR method is to
apply it to a constraint to reduce the domains. For example, if a subset of the constraints
are linear inequalities, the domain of a variable in the subset can possibly be reduced by
minimizing and maximizing the variable using linear programming on the subset of linear
constraints. This example is an instance of a popular scheme for incorporating OR into CP:
create a relaxation of the CP problem in the form of an OR model, such as a linear pro-
gramming model. Other schemes for creating hybrid OR/CP combinations decompose a
problem so that CP and OR are each used on the parts of the problem to which they are best
suited. Hooker shows that OR/CP combinations using both relaxation and decomposition
can bring substantial computational benefits.

Real-world problems often take us beyond finite domain variables. For example, to
reason about power consumption, we might want a variable to range over the reals and

8 1. Introduction

to reason about communication networks we might want a variable to range over paths
in a graph. Constraint programming has therefore been extended to deal with more than
just finite (or enumerated) domains of values. In Chapter 16, Frédéric Benhamou and Lau-
rent Granvilliers survey constraints over continuous and interval domains. The extension of
backtracking search over finite domains to interval constraints is called branch-and-reduce:
branching splits an interval and reduce narrows the intervals using a generalization of local
consistency and interval arithmetic. Hybrid techniques combining symbolic reasoning and
constraint propagation have also been designed. Benhamou and Granvilliers also discuss
some of the applications of interval constraints and the available interval constraint soft-
ware packages. In Chapter 17, Carmen Gervet surveys constraints over structured domains.
Many combinatorial search problems—such as bin packing, set covering, and network
design—can be naturally represented in the language of sets, multi-sets, strings, graphs
and other structured objects. Constraint propagation has therefore been extended to deal
with constraints over variables which range over such datatypes.

Early work in empirical comparisons of algorithms for solving constraint satisfaction
problems was hampered by a lack of realistic or hard test problems. The situation im-
proved with the discovery of hard random problems that arise at a phase transition and
the investigation of alternative random models of constraint satisfaction, satisfiability, and
optimization problems. Experiments could now be performed which compared the algo-
rithms on the hardest problems and systematically explored the entire space of random
problems to see where one algorithm bettered another. In Chapter 18, Carla Gomes and
Toby Walsh survey these alternative random models. In addition to their interest as an
experimental testbed, insight gained from the study of hard problems has also led to the
design of better algorithms. As one example, Gomes and Walsh discuss the technique of
randomization and restarts for improving the efficiency of backtracking search algorithms.

In Chapter 19, Manolis Koubarakis surveys temporal constraint satisfaction problems
for representing and reasoning with temporal information. Temporal reasoning is impor-
tant in many application areas—including natural language understanding, database sys-
tems, medical information systems, planning, and scheduling—and constraint satisfaction
techniques play a large role in temporal reasoning. Constraint-based temporal reasoning
formalisms for representing qualitative, metric, and combined qualitative-metric temporal
information have been proposed in the literature and many efficient constraint satisfaction
algorithms are known for these formalisms. Koubarakis also demonstrates the application-
driven need for more expressive queries over temporal constraint satisfaction (especially
queries combining temporal and non-temporal information) and surveys various proposals
that address this need including the scheme of indefinite constraint databases.

In Chapter 20, Boi Faltings surveys distributed constraint satisfaction. In distributed
constraint satisfaction, constraint solving happens under the control of different indepen-
dent agents, where each agent controls a single variable. The canonical example of the
usefulness of this formalism is meeting scheduling, where each person has their own con-
straints and there are privacy concerns that restrict the flow of information, but many ap-
plications have been identified. Backtracking search and its improvements have been ex-
tended to the distributed case. In synchronous backtracking, messages are passed from
agent to agent with only one agent being active at any one time. A message consists of ei-
ther a partial instantiation or a message that signals the need to backtrack. In asynchronous
backtracking, all agents are active at once, and messages are sent to coordinate their the as-
signments that are made to their individual variables. Asynchronous backtracking has been

F. Rossi, P. van Beek, T. Walsh 9

the focus of most of the work in distributed constraint satisfaction. Faltings also surveys
the literature on open constraint satisfaction, a form of distributed CSP where the domains
of the variables and the constraints may be incomplete or not fully known.

The basic framework of constraint programming makes two assumptions that do not
hold in many real world problems: that the problem being modeled is static and that the
constraints are known with certainty. For example, factory scheduling is inherently dy-
namic and uncertain since the full set of jobs may not be known in advance, machines may
break down, employees may be late or ill, and so on. In Chapter 21, Kenneth N. Brown and
Ian Miguel survey the uses and extensions of constraint programming for handling prob-
lems subject to change and uncertainty. For dynamically changing problems, two of the
alternatives are to record information about the problem structure during the solving pro-
cess, such as explanation or nogood recording, so that re-solving can be done efficiently;
and to search for robust or solutions that anticipate expected changes. For uncertain prob-
lems, different types of uncertainty can be identified including: the problem itself is intrin-
sically imprecise; there is a set of possible realizations of the problem, one of which will
be the final version, and there are probability distributions over the full realizations. As
well, many CSP formalisms have been proposed for handling uncertainty including fuzzy,
mixed, uncertain, probabilistic, stochastic, and recurrent CSPs.

Constraint programming has proven useful—indeed, it is often the method of choice—
in important applications from industry, business, manufacturing, and science. In the last
five chapters of the handbook, some of these applications of constraint programming are
highlighted. Each of the chapters emphasizes why constraint programming has been suc-
cessful in the given application domain. As well, in the best traditions of application-
driven research, the chapters describe how focusing on real-world applications has led to
basic discoveries and improvements to existing constraint programming techniques. In a
fruitful cycle, these discoveries and improvements then led to new and more successful
applications.

In Chapter 22, Philippe Baptiste, Philippe Laborie, Claude Le Pape, and Wim Nuijten
survey constraint programming approaches to scheduling and planning. Scheduling is the
task of assigning resources to a set of activities to minimize a cost function. Scheduling
arises in diverse settings including in the allocation of gates to incoming planes at an air-
port, crews to an assembly line, and processes to a CPU. Planning is a generalization of
scheduling where the set of activities to be scheduled is not known in advance. Constraint
programming approaches to scheduling and planning have aimed at generality, with the
ability to seamlessly handle real-world side constraints. As well, much effort has gone
into improved implied constraints such as global constraints, edge-finding constraints and
timetabling constraints, which lead to powerful constraint propagation. Baptiste et al. show
that one of the reasons for the success of a constraint programming approach is its ability
to integrate efficient special purpose algorithms within a flexible and expressive paradigm.
Additional advantages of a constraint propagation approach include the ability to form
hybrids of backtracking search and local search and the ease with which domain specific
scheduling and planning heuristics can be incorporated within the search routines.

In Chapter 23, Philip Kilby and Paul Shaw survey constraint programming approaches
to vehicle routing. Vehicle Routing is the task of constructing routes for vehicles to visit
customers at minimum cost. A vehicle has a maximum capacity which cannot be exceeded
and the customers may specify time windows in which deliveries are permitted. Much
work on constraint programming approaches to vehicle routing has focused on alternative

10 1. Introduction

constraint models and additional implied constraints to increase the amount of pruning
performed by constraint propagation. Kilby and Shaw show that constraint programming
is well-suited for vehicle routing because of its ability to handle real-world (or side) con-
straints. Vehicle routing problems that arise in practice often have unique constraints that
are particular to a business entity. In non-constraint programming approaches, such side
constraints often have to be handled in an ad hoc manner. In constraint programming a
wide variety of side constraints can be handled simply by adding them to the core model.

In Chapter 24, Ulrich Junker surveys constraint programming approaches to configu-
ration. Configuration is the task of assembling or configuring a customized system from a
catalog of components. Configuration arises in diverse settings including in the assembly
of home entertainment systems, cars and trucks, and travel packages. Junker shows that
constraint programming is well-suited to configuration because of (i) its flexibility in mod-
eling and the declarativeness of the constraint model, (ii) the ability to explain a failure
to find a customized system when the configuration task is over-constrained and to sub-
sequently relax the user’s constraints, (iii) the ability to perform interactive configuration
where the user makes a sequence of choices and after each choice constraint propagation is
used to restrict future possible choices, and (iv) the ability to incorporate reasoning about
the user’s preferences.

In Chapter 25, Helmut Simonis surveys constraint programming approaches to applica-
tions that arise in electrical, water, oil, and data (such as the Internet) distribution networks.
The applications include design, risk analysis, and operational control of the networks.
Simonis discusses the best alternative formulations or constraint models for these prob-
lems. The constraint programming work on networks vividly illustrates the advantages
of application-driven research. The limited success in this domain of classical constraint
programming approaches, such as backtracking search, led to improvements in hybrid ap-
proaches which combine both backtracking and local search or combine both constraint
programming and operations research methods. A research hurdle that must still be over-
come, however, is the complexity and implementation effort that is required to construct a
successful hybrid system for an application.

In Chapter 26, Rolf Backofen and David Gilbert survey constraint programming ap-
proaches to problems that arise in bioinformatics. Bioinformatics is the study of infor-
matics and computational problems that arise in molecular biology, evolution, and genet-
ics. Perhaps the first and most well-known example problem in bioinformatics is DNA
sequence alignment. More recently, constraint programming approaches have made sig-
nificant progress on the important problem of protein structure prediction. The ultimate
goals and implications of bioinformatics are profound: better drug design, identification of
genetic risk factors, gene therapy, and genetic modification of food crops and animals.

1.3 Future Research

The field of constraint programming is rapidly progressing. Many new research results
are being published and new research areas are being opened in the field of constraint
reasoning. We conclude this introduction with some speculation on lines of research that
appear interesting and promising to us, and that in the future could be mature enough to
constitute entire chapters in future revisions of this handbook.

F. Rossi, P. van Beek, T. Walsh 11

Quantified constraint problems are a very interesting extension of classical CSPs where
some variables may be universally quantified. This can help modeling scenarios where
uncertainty does not allow us to decide the values for some variables. Many theoretical
results on the complexity of such problems have already been developed. We envision a
fast growth of this area and its applications.

When using a constraint solver, often it is not easy to understand what went wrong, or
why a certain solution is returned rather than another one. Explanation tools could greatly
help in making constraint technology easy to use in an interactive system. In general, user
interaction in constraint systems deserves much attention and effort. Improvements in this
respect could greatly widen the usability of constraint-based tools.

It is rare that all constraints are collected at the same time from the user of a constraint
system. Usually such constraints, or preferences, are collected some at a time, but the
system must be able to perform some amount of reasoning also with partial knowledge.
Moreover, based on the partial knowledge it has, it should be able to ask the user only for
those constraints or preferences that are useful to make the next inference. The issue of
preference elicitation is crucial in such situations, and allows users to intelligently interact
with a constraint system without being forced to state all their constraints, or preferences,
at the beginning of the interaction. This can also be useful in scenarios where the users
want to avoid revealing all their preferences, for example for privacy reasons.

Even when the user is willing to state all the information at the beginning of the inter-
action, sometimes it may be difficult for him to actually state it in terms of constraints. For
example, it could be easier to state examples of desirable or unacceptable solutions. In this
cases, machine learning techniques can be helpful to learn the constraints from the partial
and possibly imprecise user statements. As for explanation and preference elicitation, this
can greatly help in easing the interaction between users and constraint solvers.

Satisfiability is a mature research area with much interaction with constraint reasoning,
since a satisfiability problem is just a constraint problem with Boolean variables. Thus,
many theoretical results can be adapted from one field to the other one. We hope to see
many such results in the future.

This handbook contains chapters on just some of the main application areas for con-
straint programming. Other application fields, which look very promising, are design, con-
straint databases, web services, global computing, and security. We hope to see constraint
programming to be the base of many useful tools for such applications.

Acknowledgements

A project like this, which lasted almost two years and involved about sixty people, would
not be possible without the support and encouragement of a great many people within
the constraint programming community. First, we wish to thank the many authors of the
chapters within this handbook. Many of them also helped us by reviewing other chapters.
Additionally, we would like to thank Claire Bagley, Roman Bartak, Andrei Bulatov, Martin
Henz, Andrea Lodi, Michela Milano, Luis Quesada, Francesco Scarcello, Peter Van Roy,
and Roland Yap, who reviewed other chapters. Thanks also to Ugo Montanari, a pioneer
of constraint programming, who wrote the foreword for the book.

We also wish to thank Zeger Karssen, originally at Elsevier and now at Atlantic Press,
and Bernhard Nebel, one of the editors of the series where this book will appear. They

12 1. Introduction

have been very enthusiastic about this project since the very first time we described it to
them in the Summer of 2004. Zeger and his assistants have helped us greatly to put the
project together and to smoothly reach a satisfactory agreement on the format and style of
the book.

Finally, we also would like to thank Helmut Simonis, who, besides being an author of
the handbook, provided the very nice cover picture for this handbook. We think his beauti-
ful rose can represent very well the spirit of this handbook: the petals are the many authors,
who worked together in cooperation to produce what we hope is a book as beautiful as this
rose.

Bibliography

[1] K. R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
[2] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[3] F. Fages. Programmation logique par contraintes. Ellipses Marketing, 1998.
[4] T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming. Springer,

2003.
[5] J. Hooker. Logic-Based Methods for Optimization: Combining Optimization and Con-

straint Satisfaction. Wiley-Interscience, 2000.
[6] K. Marriott and P. J. Stuckey. Programming with Constraints. The MIT Press, 1998.
[7] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[8] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

Handbook of Constraint Programming 13
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier B.V. All rights reserved

Chapter 2

Constraint Satisfaction:
An Emerging Paradigm

Eugene C. Freuder and Alan K. Mackworth

This chapter focuses on the emergence of constraint satisfaction, with constraint languages,
as a new paradigm within artificial intelligence and computer science during the period
from 1965 (when Golomb and Baumert published “Backtrack programming” [34]) to 1985
(when Mackworth and Freuder published “The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems” [55]). The rest of this hand-
book will cover much of the material introduced here in more detail, as well as, of course,
continuing on from 1986 into 2006.

2.1 The Early Days

Constraint satisfaction, in its basic form, involves finding a value for each one of a set of
problem variables where constraints specify that some subsets of values cannot be used
together. As a simple example of constraint satisfaction, consider the task of choosing
component parts for the assembly of a bicycle, such as the frame, wheels, brakes, sprockets
and chain, that are all mutually compatible.

Constraint satisfaction, like most fields of artificial intelligence, can be separated into
(overlapping) concerns with representation and reasoning. The former can be divided into
generic and application-specific concerns, the latter into search and inference. While con-
straint satisfaction has often been pigeon-holed as a form of search, its real importance
lies in its broad representational scope: it can be used effectively to model many other
forms of reasoning (e.g. temporal reasoning) and applied to many problem domains (e.g.
scheduling). For this reason, constraint satisfaction problems are sometimes encountered
in application domains that are unaware that an academic community has been studying the
subject for years: one reason for the importance of a handbook such as this. Furthermore,
while heuristic search methods are a major concern, the distinguishing feature of constraint
satisfaction as a branch of artificial intelligence is arguably the emphasis on inference, in
the form of constraint propagation, as opposed to search.

14 2. Constraint Satisfaction: An Emerging Paradigm

Constraint satisfaction problems have been tackled by a dizzying array of methods,
from automata theory to ant algorithms, and are a topic of interest in many fields of com-
puter science and beyond. These connections add immeasurably to the richness of the
subject, but are largely beyond the scope of this chapter. Here we will focus on the basic
methods involved in the establishment of constraint satisfaction as a branch of artificial
intelligence. This new branch of artificial intelligence, together with related work on pro-
gramming languages and systems that we can only touch upon here, laid the groundwork
for the flourishing of interest in constraint programming languages after 1985.

Constraint satisfaction of course, predates 1965. The real world problems that we now
identify as constraint satisfaction problems, like workforce scheduling, have naturally al-
ways been with us. The toy 8-queens problem, which preoccupied so many of the early
constraint satisfaction researchers in artificial intelligence, is said to have been proposed in
1848 by the chess player Max Bazzel. Mythology claims that a form of backtrack search,
a powerful search paradigm that has become a central tool for constraint satisfaction, was
used by Theseus in the labyrinth in Crete. Backtrack search was used in recreational math-
ematics in the nineteenth century [51], and was an early subject of study as computer
science and operations research emerged as academic disciplines after World War II. Bit-
ner and Reingold [2] credit Lehmer with first using the term ‘backtrack’ in the 1950’s [50].
Various forms of constraint satisfaction and propagation appeared in the computer science
literature in the 1960’s [16, 15, 34, 75].

In artificial intelligence interest in constraint satisfaction developed in two streams. In
some sense a common ancestor of both streams is Ivan Sutherland’s groundbreaking 1963
MIT Ph.D. thesis, “Sketchpad: A man-machine graphical communication system” [73].

In one stream, the versatility of constraints led to applications in a variety of domains,
and associated programming languages and systems. This stream we can call the language
stream. In 1964 Wilkes proposed that algebraic equations be allowed as constraint state-
ments in procedural Algol-like programming languages, with relaxation used to satisfy the
constraints [80]. Around 1967, Elcock developed a declarative language, Absys, based on
the manipulation of equational constraints [22]. Burstall employed a form of constraint
manipulation as early as 1969 in a program for solving cryptarithmetic puzzles [9]. In the
very first issue of Artificial Intelligence in 1970, Fikes described REF-ARF, where the REF
language formed part of a general problem-solving system employing constraint satisfac-
tion and propagation as one of its methods [23]. Kowalski used a form of constraint prop-
agation for theorem proving [48]. Sussman and others at MIT applied a form of constraint
propagation to analysis, synthesis and fault localization for circuits [6, 17, 18, 67, 71], and
Sussman with Steele developed the CONSTRAINTS language [72]. Borning used con-
straints in his ThingLab simulation laboratory [4, 5], whose kernel was an extension of the
Smalltalk language; Lauriere used constraints in Alice, a language for solving combina-
torial problems [49]. In the planning domain, Eastman did “constraint structured” space
planning with GSP, the General Space Planner [21], Stefik used “constraint posting” in
MOLGEN, which planned gene-cloning experiments in molecular genetics [68, 69], and
Descotte and Latombe’s GARI system, which generated the machining plans of mechani-
cal parts, embedded a planner which made compromises among “antagonistic constraints”
[20]. Fox, Allen and Strohm developed ISIS-II [25] a constraint-directed reasoning system
for factory job-shop scheduling.

In the other stream, an interest in constraint solving algorithms grew out of the ma-
chine vision community; we cite some of the early work here. We refer to this stream as

E. C. Freuder, A. K. Mackworth 15

the algorithm stream. The landmark ‘Waltz filtering’ (arc consistency) constraint propa-
gation algorithm appeared in a Ph.D. thesis on scene labeling [79], building upon work
of Huffman [41] and Clowes [10]. Montanari developed path consistency and established
a general framework for representing and reasoning about constraints in a seminal paper
entitled “Networks of constraints: fundamental properties and applications to picture pro-
cessing” [60]. Mackworth exploited constraints for machine vision [52], before providing
a general framework for “Consistency in networks of relations” and new algorithms for arc
and path consistency [53]. Freuder generalized arc and path consistency to k-consistency
[26] shortly after completing a Ph.D. thesis on “active vision”. Barrow and Tenenbaum,
with MSYS [1] and IGS [74], were also early users of constraints for image interpretation.
Rosenfeld, Hummel and Zucker, in “Scene labeling by relaxation operations”, explored the
“continuous labeling problem”, where constraints are not ‘hard’, specifying that values can
or cannot be used together, but ‘soft’ specifying degrees of compatibility [65]. Haralick,
Davis, Rosenfeld and Milgram discussed “Reduction operations for constraint satisfaction”
[38], and Haralick and Shapiro generalized those results in a two-part paper on “The con-
sistent labeling problem” [36, 37]. Together with J. R. Ullman, they even discussed special
hardware for constraint propagation and parallel search computation in [76].

The language and algorithm streams diverged, and both became more detached from
specific application domains. While applications and commercial exploitation did prolif-
erate, the academic communities focused more on general methods. While the generality
and scientific rigor of constraint programming is one of its strengths, we face a continu-
ing challenge to reconnect these streams more firmly with their semantic problem-solving
roots.

The language stream became heavily influenced by logic programming, in the form of
constraint logic programming, and focused on the development of programming languages
and libraries. Hewitt’s Planner language [40] and its partial implementation as Micro-
Planner [70] can be seen as an early logic programming language [3]. The major early
milestone, though, was the development of Prolog by Colmerauer and others around 1972
[14] and the logic as a programming language movement [39, 47]. Prolog can be framed as
an early constraint programming language, solving equality constraints over terms (includ-
ing variables) using the unification algorithm as the constraint solver. Colmerauer pushed
this view much further in his introduction of Prolog II in 1982 [13, 12]. The integration
of constraint propagation algorithms into interpreters for Planner-like languages was pro-
posed by Mackworth [53]. Van Hentenryck developed and implemented CHIP (Constraint
Handling in Prolog) as a fully-fledged constraint logic programming language [77]. In a
parallel development Jaffar et al. developed the CLP(X) family of constraint logic pro-
gramming languages [42] including CLP(R) [44]. For more on these developments in the
language stream see the surveys in [11, 43] and other chapters in this handbook.

The algorithm stream, influenced by the paradigm of artificial intelligence as search,
as exemplified in Nilsson’s early textbook [61], and by the development of the science of
algorithms, as exemplified by Knuth’s The Art of Computer Programming [45], focused
on algorithms and heuristics. The second stream remained more firmly within artificial
intelligence, developing as one of the artificial intelligence communities built around rea-
soning paradigms: constraint-based reasoning [29], case-based reasoning, and the like. It
also focused increasingly on the simple, but powerful and general, constraint satisfaction
problem (CSP) formulation and its variants. We shall focus primarily on this stream, and
the development of the CSP paradigm, in this chapter.

16 2. Constraint Satisfaction: An Emerging Paradigm

The challenge then became to reintegrate the language and algorithm streams, along
with related disciplines, such as mathematical programming and constraint databases, into
a single constraint programming community. This process began in earnest in the 1990’s
when Paris Kanellakis, Jean-Louis Lassez, and Vijay Saraswat chaired a workshop that
soon led to the formation of an annual International Conference on Principles and Practice
of Constraint Programming, and, at the instigation of Zsófia Ruttkay, Gene Freuder estab-
lished the Constraints journal, which “provides a common forum for the many disciplines
interested in constraint programming and constraint satisfaction and optimization, and the
many application domains in which constraint technology is employed”.

2.2 The Constraint Satisfaction Problem: Representation and
Reasoning

Here we consider the representation of constraint satisfaction problems, the varieties of
reasoning used by algorithms to solve them and the analysis of those solution methods.

2.2.1 Representation

The classic definition of a Constraint Satisfaction Problem (CSP) is as follows. A CSP
P is a triple P = 〈X,D,C〉 where X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉,
D is a corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such that xi ∈ Di, C is
a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉. A constraint Cj is a pair 〈RSj

, Sj〉 where
RSj

is a relation on the variables in Si = scope(Ci). In other words, Ri is a subset of the
Cartesian product of the domains of the variables in Si.1

A solution to the CSP P is an n-tuple A = 〈a1, a2, . . . , an〉 where ai ∈ Di and
each Cj is satisfied in that RSj

holds on the projection of A onto the scope Sj . In a
given task one may be required to find the set of all solutions, sol(P), to determine if
that set is non-empty or just to find any solution, if one exists. If the set of solutions is
empty the CSP is unsatisfiable. This simple but powerful framework captures a wide
range of significant applications in fields as diverse as artificial intelligence, operations
research, scheduling, supply chain management, graph algorithms, computer vision and
computational linguistics, to name but a few.

The classic CSP paradigm can be both specialized and generalized in a variety of im-
portant ways. One important specialization considers the extensionality/intensionality of
the domains and constraints. If all the domains in D are finite sets, with extensional rep-
resentations, then they, and the constraint relations, may be represented and manipulated
extensionally. However, even if the domains and the relations are intensionally represented,
many of the techniques described in this chapter and elsewhere in the handbook still ap-
ply. If the size of the scope of each constraint is limited to 1 or 2 then the constraints
are unary and binary and the CSP can be directly represented as a constraint graph with
variables as vertices and constraints as edges. If the arity of constraints is not so limited
then a hypergraph is required with a hyperedge for each p-ary constraint (p > 2) connect-
ing the p vertices involved. The satisfiability of propositional formulae, SAT, is another

1 This is the conventional definition, which we will adhere to here. A more parsimonious definition of a CSP
would dispense with D entirely leaving the role of Di to be played by a unary constraint Cj with scope(Cj) =
〈xi〉.

E. C. Freuder, A. K. Mackworth 17

specialization of CSP, where the domains are restricted to be {T, F} and the constraints
are clauses. 3-SAT, the archetypal NP-complete decision problem, is a further restriction
where the scope of each constraint (clause) is 3 or fewer variables.

The classic view of CSPs was initially developed by Montanari [60] and Mackworth
[53]. It has strong roots in, and links with, SAT [16, 15, 54], relational algebra and
database theory [58], computer vision [10, 41, 79] and graphics [73].

Various generalizations of the classic CSP model have been developed subsequently.
One of the most significant is the Constraint Optimization Problem (COP) for which there
are several significantly different formulations, and the nomenclature is not always con-
sistent [19]. Perhaps the simplest COP formulation retains the CSP limitation of allowing
only ‘hard’ Boolean-valued constraints but adds a cost function over the variables, that
must be minimized. This arises often, for example, in scheduling applications.

2.2.2 Reasoning: Inference and Search

We will consider the algorithms for solving CSPs under two broad categories: inference
and search, and various combinations of those two approaches. If the domains Di are all
finite then the finite search space for putative solutions is Ω = ⋊⋉i Di (where ⋊⋉ is the join
operator of relational algebra [58]). Ω can, in theory, be enumerated and each n-tuple tested
to determine if it is a solution. This blind enumeration technique can be improved upon
using two distinct orthogonal strategies: inference and search. In inference techniques,
local constraint propagation can eliminate large subspaces from Ω on the grounds that they
must be devoid of solutions. Search systematically explores Ω, often eliminating subspaces
with a single failure. The success of both strategies hinges on the simple fact that a CSP
is conjunctive: to solve it, all of the constraints must be satisfied so that a local failure on
a subset of variables rules out all putative solutions with the same projection onto those
variables. These two basic strategies are usually combined in most applications.

2.2.3 Inference: Constraint Propagation Using Network Consistency

The major development in inference techniques for CSPs was the discovery and develop-
ment, in the 1970’s, of network consistency algorithms for constraint propagation. Here
we will give an overview of that development.

Analysis of using backtracking to solve CSPs shows that it almost always displays
pathological thrashing behaviors [3]. Thrashing is the repeated exploration of failing sub-
trees of the backtrack search tree that are essentially identical–differing only in assignments
to variables irrelevant to the failure of the subtree. Because there is typically an exponential
number of such irrelevant assignments, thrashing is often the most significant factor in the
running time of backtracking.

The first key insight behind all the consistency algorithms is that much thrashing be-
havior can be identified and eliminated, once and for all, by tightening the constraints,
making implicit constraints explicit, using tractable, efficient polynomial-time algorithms.
The second insight is that the level, or scope, of consistency, the size of the set of variables
involved in the local context, can be adjusted as a parameter from 1 up to n, each increase
in level requiring correspondingly more work.

For simplicity, we will initially describe the development of the consistency algorithms
for CSPs with finite domains and unary and binary constraints only, though neither restric-

18 2. Constraint Satisfaction: An Emerging Paradigm

tion is necessary, as we shall see. We assume the reader is familiar with the basic elements
of graph theory, set theory and relational algebra.

Consider a CSP P = 〈X,D,C〉 as defined above. The unary constraints are Ci
= 〈R〈xi〉, 〈xi〉〉. We use the shorthand notation Ri to stand for R〈xi〉. Similarly, the binary
constraints are of the form Cs = 〈R〈xi,xj〉, 〈xi, xj〉〉 where i 6= j. We use Rij to stand for
R〈xi,xj〉.

Node consistency is the simplest consistency algorithm. Node i comprised of vertex i
representing variable xi with domain Di is node consistent iff Di ⊆ Ri. If node i is not
node consistent it can be made so by computing:

D′
i = Di

⋂

Ri
Di ← D′

i

A single pass through the nodes makes the network node consistent. The resulting
CSP is P ′ = 〈X,D′, C〉 where D′ = 〈D′

1, D
′
2, . . . , D

′
n〉. We say P ′ = NC(P). Clearly

sol(P) = sol(P ′). Let Ω′ =⋊⋉i D
′
i then |Ω′| ≤ |Ω|.

Arc consistency is a technique for further tightening the domains using the binary con-
straints. Consider node i with domain Di. Suppose there is a non-trivial relation Rij
between variables xi and xj . We consider the arcs 〈i, j〉 and 〈j, i〉 separately. Arc 〈i, j〉 is
arc consistent iff:

Di ⊂ πi(Rij ⋊⋉ Dj)

where π is the projection operator. That is, for every member of Di, there is a correspond-
ing element in Dj that satisfies Rij . Arc 〈i, j〉 can be tested for arc consistency and made
consistent, if it is not so, by computing:

D′
i = Di

⋂

πi(Rij ⋊⋉ Dj)
Di ← D′

i

(This is a semijoin [58]). In other words, delete all elements ofDi that have no correspond-
ing element in Dj satisfying Rij . A network is arc consistent iff all its arcs are consistent.
If all the arcs are already consistent a single pass through them is all that is needed to ver-
ify this. If, however, at least one arc has to be made consistent (i.e. D′

i 6= Di – there is a
deletion from Di) then one must recheck some number of arcs. The basic arc consistency
algorithm simply checks all the arcs repeatedly until a fixed point of no further domain
reductions is reached. This algorithm is known as AC-1 [53].

Waltz [79] realized that a more intelligent arc consistency bookkeeping scheme would
only recheck those arcs that could have become inconsistent as a direct result of deletions
from Di. Waltz’s algorithm, now known as AC-2 [53], propagates the revisions of the
domains through the arcs until, again, a fixed point is reached. AC-3, presented by Mack-
worth [53], is a generalization and simplification of AC-2. AC-3 is still the most widely
used and effective consistency algorithm. For each of these algorithms let P ′ = AC(P)
be the result of enforcing arc consistency on P . Then clearly sol(P) = sol(P ′) and
|Ω′| ≤ |Ω|.

The best framework for understanding all the network consistency algorithms is to see
them as removing local inconsistencies from the network which can never be part of any
global solution. When those inconsistencies are removed they may propagate to cause

E. C. Freuder, A. K. Mackworth 19

inconsistencies in neighboring arcs that were previously consistent. Those inconsistencies
are in turn removed so the algorithm eventually arrives, monotonically, at a fixed point
consistent network and halts. An inconsistent network has the same set of solutions as
the consistent network that results from applying a consistency algorithm to it; however,
if one subsequently applies, say, a backtrack search to the consistent network the resultant
thrashing behavior can be no worse and almost always is much better, assuming the same
variable and value ordering.

Path consistency [60] is the next level of consistency to consider. In arc consistency
we tighten the unary constraints using local binary constraints. In path consistency we
analogously tighten the binary constraints using the implicit induced constraints on triples
of variables.

A path of length two from node i through nodem to node j, 〈i,m, j〉, is path consistent
iff:

Rij ⊂ πij(Rim ⋊⋉ Dm ⋊⋉ Rmj)

That is, for every pair of values 〈a, b〉 allowed by the explicit relation Rij there is a value
c for xm such that 〈a, c〉 is allowed by Rim and 〈c, b〉 is allowed by Rmj .

Path 〈i,m, j〉 can be tested for path consistency and made consistent, if it is not, by
computing:

R′
ij = Rij

⋂

πij(Rim ⋊⋉ Dm ⋊⋉ Rmj)
Rij ← R′

ij

If the binary relations are represented as Boolean bit matrices then the combination of the
join and projection operations (which is relational composition) becomes Boolean matrix
multiplication and the

⋂

operation becomes simply pairwise bit ∧ operations. In other
words, for all the values 〈a, b〉 allowed byRij if there is no value c for xm allowed byRim
and Rmj the path is made consistent by changing that bit value in Rij from 1 to 0. The
way to think of this is that the implicit constraint on 〈i, j〉 imposed by node 〈m〉 through
the relational composition Rim ◦ Rmj is made explicit in the new constraint R′

ij when
path 〈i,m, j〉 is made consistent.

As with arc consistency the simplest algorithm for enforcing path consistency for the
entire network is to check and ensure path consistency for each length 2 path 〈i,m, j〉. If
any path has to be made consistent then the entire pass through the paths is repeated again.
This is algorithm PC-1 [53, 60].

The algorithm PC-2 [53] determines, when any path is made consistent, the set of other
paths could have become inconsistent because they use the arc between that pair of vertices
and queues those paths, if necessary, for further checking. PC-2 realizes substantial savings
over PC-1 just as AC-3 is more efficient than AC-1 [55].

Typically, after path consistency is established, there are non-trivial binary constraints
between all pairs of nodes. As shown by Montanari [60], if all paths of length 2 are con-
sistent then all paths of any length are consistent, so longer paths need not be considered.
Once path consistency is established, there is a chain of values along any path satisfying
the relations between any pair of values allowed at the start and the end of the path. This
does not mean that there is necessarily a solution to the CSP. If a path traverses the entire
network with a chain of compatible values, if that path self-intersects at a node the two

20 2. Constraint Satisfaction: An Emerging Paradigm

values on the path at that node may be different. Indeed, it is a property of both arc consis-
tency and path consistency that consistency may be established with non-empty domains
and relations even though there may be no global solution. Low-level consistency, with no
empty domains, is a necessary but not sufficient condition for the existence of a solution.
So, if consistency does empty any domain or relation there is no global solution.

Parenthetically, we note that our abstract descriptions of these algorithms, in terms
of relational algebra, are specifications not implementations. Implementations can often
achieve efficiency savings by, for example, exploiting the semantics of a constraint such as
the all different global constraint, alldiff, that requires each variable in its scope to assume
a different value.

Briefly, let us establish that consistency algorithms do not require the finite domain
or binary constraint restrictions on the CSP model. As long as we can perform ⋊⋉, π and
⋂

operations on the domain and relational representations these algorithms are perfectly
adequate.

Consider, for example, the trivial CSP P = 〈〈x1, x2〉, 〈[0, 3], [2, 5]〉, 〈=, 〈x1, x2〉〉〉
where x1 and x2 are reals. That is, x1 ∈ D1 = [0, 3], x2 ∈ D2 = [2, 5]. Arc consistency
on arc 〈1, 2〉 reduces D1 to [2, 3] and arc consistency on arc 〈2, 1〉 reduces D2 to [2, 3].

If some of the constraints are p-ary (p > 2) we can generalize arc consistency. In this
case we can represent each p-ary constraint C = 〈RSj

, Sj〉 as a hyperedge connecting the
vertices representing the variables in Sj . Consider a vertex xi ∈ Sj . We say we make the
directional hyperarc 〈xi, Sj − 〈xi〉〉 generalized arc consistent by computing:

D′
i = Di

⋂

πi(RSj
⋊⋉ (⋊⋉m∈Sj−〈xi〉 Dm))

Di ← D′
i

In other words the hyperarc is made generalized arc consistent, if necessary, by deleting
from Di any element that is not compatible with some tuple of its neighbors under the
relation Rs. As with AC-3 any changes in Di may propagate to any other hyperarcs di-
rected at node i. This is the generalized arc consistency algorithm GAC [53]. One can
also specialize arc consistency: Mackworth, Mulder and Havens exploited the properties
of tree-structured variable domains in a hierarchical arc consistency algorithm HAC [57].

While there is no immediately obvious graph theoretic concept analogous to nodes,
arcs and paths to motivate a higher form of consistency, the fact that consideration of paths
of length two is, in fact, sufficient for path consistency, provides a natural motivation for
the concept of k-consistency introduced by Freuder in 1978 [26]. k-consistency requires
that given consistent values for any k−1 variables, there exists a value for any kth variable,
such that all k values are consistent (i.e. the k values form a solution to the subproblem
induced by the k variables). Thus 2-consistency is equivalent to arc consistency, and 3-
consistency to path consistency. Freuder provided a synthesis algorithm for finding all the
solutions to a CSP without search by achieving higher and higher levels of consistency.

Freuder went on in 1985 to generalize further to (i, j)-consistency [28]. A constraint
network is (i, j)-consistent if, given consistent values for any i variables, there exist values
for any other j variables, such that all i + j values together are consistent. k-consistency
is (k − 1, 1)-consistency. Special attention was paid to (1, j)-consistency, which is a gen-
eralization of what would now be termed ‘singleton consistency’.

E. C. Freuder, A. K. Mackworth 21

2.2.4 Search: Backtracking

Backtrack is the fundamental ‘complete’ search method for constraint satisfaction prob-
lems, in the sense that one is guaranteed to find a solution if one exists. Even in 1965,
Golomb and Baumert, in a JACM paper simply entitled “Backtrack programming” [34],
were able to observe that the method had already been independently ‘discovered’ many
times. Golomb and Baumert believed their paper to be “the first attempt to formulate the
scope and methods of backtrack programming in its full generality”, while acknowledging
the “fairly general exposition” given five years earlier by Walker [78].

Indeed, Golomb and Baumert’s formulation is almost too general for our purposes
here in that it is presented as an optimization problem, with the objective to maximize
a function of the variables. Arguably Golomb and Baumert are presenting ‘branch and
bound programming’, where upper and lower bounds on what is possible or desirable at
any point in the search can provide additional pruning of the search. What we would now
call a classic CSP, the 8-queens problem, they formulate by specifying a function whose
value is 0 when the queens do not attack each other, and 1 otherwise. It is worth noting also
that in this optimization context, again even in 1965, Golomb and Baumert acknowledge
the existence of “learning programs and hill climbing programs” that converge on relative
maxima. They observe dryly that while “the backtrack algorithm lacks such glamorous
qualities as learning and progress, it has the more prosaic virtue of being exhaustive”.

Basic backtrack search builds up a partial solution by choosing values for variables
until it reaches a dead end, where the partial solution cannot be consistently extended.
When it reaches a dead end it undoes the last choice it made and tries another. This is done
in a systematic manner that guarantees that all possibilities will be tried. It improves on
simply enumerating and testing of all candidate solutions by brute force in that it checks
to see if the constraints are satisfied each time it makes a new choice, rather than waiting
until a complete solution candidate containing values for all variables is generated. The
backtrack search process is often represented as a search tree, where each node (below the
root) represents a choice of a value for a variable, and each branch represents a candidate
partial solution. Discovering that a partial solution cannot be extended then corresponds
to pruning a subtree from consideration. Other noteworthy early papers on backtracking
include Bitner and Reingold’s “Backtrack programming techniques” [2] and Fillmore and
Williamson’s “On backtracking: a combinatorial description of the algorithm” [24], which
used group theory to address symmetry issues.

Heuristic search methods to support general purpose problem solving paradigms were
studied intensely from the early days of artificial intelligence, and backtracking played a
role in the form of depth-first search of state spaces, problem reduction graphs, and game
trees [61]. In the 1970’s as constraint satisfaction emerged as a paradigm of its own, back-
track in the full sense we use the term here, for search involving constraint networks, gained
prominence in the artificial intelligence literature, leading to the publication in the Artifi-
cial Intelligence journal at the beginning of the 1980’s of Haralick and Elliott’s “Increasing
Tree Search Efficiency for Constraint Satisfaction Problems” [35]. This much-cited paper
provided what was, for the time, an especially thorough statistical and experimental evalu-
ation of the predominant approaches to refining backtrack search.

There are two major themes in the early work on improving backtracking: control-
ling search and interleaving inference (constraint propagation) with search. Both of these
themes are again evident even in Golomb and Baumert. They observe that “all other things

22 2. Constraint Satisfaction: An Emerging Paradigm

being equal, it is more efficient to make the next choice from the set [domain] with fewest
elements”, an instance of what Haralick and Elliott dubbed the “fail first principle”, and
they discuss “preclusion”, where a choice for one variable rules out inconsistent choices
for other variables, a form of what Haralick and Elliott called “lookahead” that they pre-
sented as “forward checking”. Of course, preclusion and the smallest domain heuristic
nicely complement one another.

In general, one can look for efficient ways to manage search both going ‘forward’ and
‘backward’. When we move forward, extending partial solutions, we make choices about
the order in which we consider variables, values and constraints. This order can make an
enormous difference in the amount of work we have to do. When we move backwards
after hitting a dead end, we do not have to do this chronologically by simply undoing the
last choice we made. We can be smarter about it. In general, constraint propagation, most
commonly in the form of partial or complete arc consistency, can be carried out before,
and/or during, search, in an attempt to prune the search space.

Haralick and Elliott compared several forms of lookahead, carrying out different de-
grees of partial arc consistency propagation after choosing a value. Oddly their “full looka-
head” still did not maintain full arc consistency. However, restoring full arc consistency
after choosing values had been proposed as early as 1974 by Gaschnig [31], and McGre-
gor had even experimented with interleaving path consistency with search [59]. Mack-
worth observed that one could generalize to the alternation of constraint manipulation and
case analysis, and proposed an algorithm that decomposed problems by splitting a variable
domain in half and then restoring arc consistency on the subproblems [53].

Basic backtrack search backtracks chronologically to undo the last choice and try some-
thing else. This can result in silly behavior, where the algorithm tries alternatives for
choices that clearly had no bearing on the failure that induced the backtracking. Stallman
and Sussman, in the context of circuit analysis, with “dependency-directed backtracking”
[67], Gaschnig with “backjumping” [33], and Bruynooghe with “intelligent backtracking”
[8] all addressed this problem. These methods in some sense remember the reasons for
failure in order to backtrack over legitimate ‘culprits’. Stallman and Sussman went further
by “learning” new constraints (“nogoods”) from failure, which could be used to prune fur-
ther search. Gaschnig used another form of memory in his “backmarking” algorithm to
avoid redundant checking for consistency when backtracking [32].

2.2.5 Analysis

While it was recognized early on that solving CSPs was in general NP-hard, a variety
of analytical techniques were brought to bear to evaluate, predict or compare algorithm
performance and relate problem complexity to problem structure. In particular, there are
tradeoffs to evaluate between the effort required to avoid search, e.g. by exercising more
intelligent control or carrying out more inference, and the reduction in search effort ob-
tained.

Knuth [46] and Purdom [63] used probing techniques to estimate the efficiency of
backtrack programs. Haralick and Elliott carried out a statistical analysis [35], which was
refined by Nudel [62] to compute “expected complexities” for classes of problems de-
fined by basic problem parameters. Brown and Purdom investigated average time behavior
[7, 64]. Mackworth and Freuder carried out algorithmic complexity analyses of worst case
behavior for various tractable propagation algorithms [55]. They showed the time com-

E. C. Freuder, A. K. Mackworth 23

plexity for arc consistency to be linear in the number of constraints, settling an unresolved
issue. This result turned out to be important for constraint programming languages that
used arc consistency as a primitive operation [56]. Of course, experimental evaluation was
common, though in the early days there was perhaps too much reliance on the n-queens
problem, and too little understanding of the potential pitfalls of experiments with random
problems.

Problem complexity can be related to problem structure. Seidel [66] developed a dy-
namic programming synthesis algorithm, using a decomposition technique based on graph
cutsets, that related problem complexity to a problem parameter that he called “front
length”. Freuder [27] proved that problems with tree-structured constraint graphs were
tractable by introducing the structural concept of the “width” of a constraint graph, and
demonstrating a connection between width and consistency level that ensured that tree-
structured problems could be solved with backtrack-free search after arc consistency pre-
processing. He subsequently related complexity to problem structure in terms of maximal
biconnected components [28] and stable sets [30].

2.3 Conclusions

This chapter has not been a complete history, and certainly not an exhaustive survey. We
have focused on the major themes of the early period, but it is worth noting that many
very modern sounding topics were also already appearing at this early stage. For exam-
ple, even in 1965 Golomb and Baumert were making allusions to symmetry and problem
reformulation.

Golomb and Baumert concluded in 1965 [34]:

Thus the success or failure of backtrack often depends on the skill and ingenu-
ity of the programmer in his ability to adapt the basic methods to the problem
at hand and in his ability to reformulate the problem so as to exploit the char-
acteristics of his own computing device. That is, backtrack programming (as
many other types of programming) is somewhat of an art.

As the rest of this handbook will demonstrate, much progress has been made in making
even more powerful methods available to the constraint programmer. However, constraint
programming is still “somewhat of an art”. The challenge going forward will be to make
constraint programming more of an engineering activity and constraint technology more
transparently accessible to the non-programmer.

Acknowledgements

We are grateful to Peter van Beek for all his editorial comments, help and support during
the preparation of this chapter. This material is based upon works supported by the Science
Foundation Ireland under Grant No. Grant 00/PI.1/C075 and by the Natural Sciences and
Engineering Research Council of Canada. Alan Mackworth is supported by a Canada
Research Chair in Artificial Intelligence.

24 2. Constraint Satisfaction: An Emerging Paradigm

Bibliography

[1] H. G. Barrow and J. M. Tenenbaum. MSYS: A system for reasoning about scenes.
In SRI AICenter, 1975.

[2] J. R. Bitner and E. M. Reingold. Backtrack programming techniques. Comm. ACM,
18:651–656, 1975.

[3] D. G. Bobrow and B. Raphael. New programming languages for artificial intelligence
research. ACM Computing Surveys, 6(3):153–174, Sept. 1974.

[4] A. Borning. ThingLab – an object-oriented system for building simulations using
constraints. In R. Reddy, editor, Proceedings of the 5th International Joint Confer-
ence on Artificial Intelligence, pages 497–498, Cambridge, MA, Aug. 1977. William
Kaufmann. ISBN 0-86576-057-8.

[5] A. Borning. Thinglab: A constraint-oriented simulation laboratory. Report CS-79-
746, Computer Science Dept., Stanford University, CA, 1979.

[6] A. Brown. Qualitative knowledge, casual reasoning and the localization of failures.
Technical Report AITR-362, MIT Artificial Intelligence Laboratory, Nov. 6 1976.
URL http://dspace.mit.edu/handle/1721.1/6921.

[7] C. A. Brown and P. W. Purdom Jr. An average time analysis of backtracking. SIAM
J. Comput., 10:583–593, 1981.

[8] M. Bruynooghe. Solving combinatorial search problems by intelligent backtracking.
Information Processing Letters, 12:36–39, 1981.

[9] R. M. Burstall. A program for solving word sum puzzles. Computer Journal, 12(1):
48–51, Feb. 1969.

[10] M. B. Clowes. On seeing things. Artificial Intelligence, 2:79–116, 1971.
[11] J. Cohen. Constraint logic programming languages. CACM, 33(7):52–68, July 1990.

ISSN 0001-0782. URL http://www.acm.org/pubs/toc/Abstracts/

0001-0782/79209.html.
[12] A. Colmerauer. Prolog II reference manual and theoretical model. Technical report,

Groupe d’Intelligence Arificielle, Univeristé d’Aix-Marseille II, Luminy, Oct. 1982.
[13] A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-A. Tärnlund, editors,

Logic Programming, pages 231–251. Academic Press, 1982.
[14] A. Colmerauer and P. Roussel. The birth of Prolog. In R. L. Wexelblat, editor,

Proceedings of the Conference on History of Programming Languages, volume 28(3)
of ACM Sigplan Notices, pages 37–52, New York, NY, USA, Apr. 1993. ACM Press.
ISBN 0-89791-570-4.

[15] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7:201–215, 1960.

[16] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Comm. ACM, 5:394–397, 1962.

[17] J. de Kleer. Local methods for localizing faults in electronic circuits. Technical
Report AIM-394, MIT Artificial Intelligence Laboratory, Nov. 6 1976. URL http:

//dspace.mit.edu/handle/1721.1/6921.
[18] J. de Kleer and G. J. Sussman. Propagation of constraints applied to circuit synthesis.

Technical Report AIM-485, MIT Artificial Intelligence Laboratory, Sept. 6 1978.
URL http://hdl.handle.net/1721.1/5745.

[19] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[20] Y. Descotte and J.-C. Latombe. GARI : A problem solver that plans how to machine

E. C. Freuder, A. K. Mackworth 25

mechanical parts. In International Joint Conference on Artificial Intelligence (IJCAI
’81), pages 766–772, 1981.

[21] C. M. Eastman. Automated space planning. Artificial Intelligence, 4(1):41–64, 1973.
[22] E. W. Elcock. Absys: the first logic programming language - A retrospective and a

commentary. Journal of Logic Programming, 9(1):1–17, July 1990.
[23] R. E. Fikes. REF-ARF: A system for solving problems stated as procedures. Artificial

Intelligence, 1:27–120, 1970.
[24] J. P. Fillmore and S. G. Williamson. On backtracking: A combinatorial description

of the algorithm. SIAM Journal on Computing, 3(1):41–55, Mar. 1974.
[25] M. S. Fox, B. P. Allen, and G. Strohm. Job-shop scheduling: An investigation in

constraint-directed reasoning. In AAAI82, Proceedings, pages 155–158, 1982.
[26] E. C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21:958–966, 1978.
[27] E. C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29:24–32,

1982.
[28] E. C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32:

755–761, 1985.
[29] E. C. Freuder and A. K. Mackworth. Introduction to the special volume on constraint-

based reasoning. Artificial Intelligence, 58:1–2, 1992.
[30] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in con-

straint satisfaction problems. In Proceedings of the Ninth International Joint Confer-
ence on Artificial Intelligence, pages 1076–1078, Los Angeles, 1985.

[31] J. Gaschnig. A constraint satisfaction method for inference making. In Proc. 12th
Annual Allerton Conf. on Circuit System Theory, pages 866–874, U. Illinois, 1974.

[32] J. Gaschnig. A general backtracking algorithm that eliminates most redundant tests.
In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
page 457, Cambridge, Mass., 1977.

[33] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algo-
rithms for satisficing assignment problems. In Proceedings of the Second Canadian
Conference on Artificial Intelligence, pages 268–277, Toronto, 1978.

[34] S. Golomb and L. Baumert. Backtrack programming. J. ACM, 12:516–524, 1965.
[35] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14:263–313, 1980.
[36] R. M. Haralick and L. G. Shapiro. The consistent labeling problem: Part I. IEEE

Trans. Pattern Analysis and Machine Intelligence, 1(2):173–184, Apr. 1979.
[37] R. M. Haralick and L. G. Shapiro. The consistent labeling problem: Part II. IEEE

Trans. Pattern Analysis and Machine Intelligence, 2(3):193–203, May 1980.
[38] R. M. Haralick, L. S. Davis, A. Rosenfeld, and D. L. Milgram. Reduction operations

for constraint satisfaction. Inf. Sci, 14(3):199–219, 1978. URL http://dx.doi.

org/10.1016/0020-0255(78)90043-9.
[39] P. J. Hayes. Computation and deduction. In Proc. 2nd International Symposium on

Mathematical Foundations of Computer Science, pages 105–118. Czechoslovakian
Academy of Sciences, 1973.

[40] C. Hewitt. PLANNER: A language for proving theorems in robots. In Proceedings
of the First International Joint Conference on Artificial Intelligence, pages 295–301,
Bedford, MA., 1969. Mitre Corporation.

[41] D. A. Huffman. Impossible objects as nonsense sentences. In B. Meltzer and
D. Michie, editors, Machine Intelligence 6, pages 295–323. Edinburgh Univ. Press,

26 2. Constraint Satisfaction: An Emerging Paradigm

1971.
[42] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Fourteenth Annual

ACM Symposium on Principles of Programming Languages (POPL), pages 111–119,
München, 1987.

[43] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19(20):503–581, 1994.

[44] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language
and system. TOPLAS, 14(3):339–395, July 1992. ISSN 0164-0925. URL http:

//www.acm.org/pubs/toc/Abstracts/0164-0925/129398.html.
[45] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Program-

ming. Addison-Wesley, 1973.
[46] D. E. Knuth. Estimating the efficiency of backtrack programs. Mathematics of Com-

putation, 29:121–136, 1975.
[47] R. A. Kowalski. Predicate logic as a programming language. Proc. IFIP ’74, pages

569–574, 1974.
[48] R. A. Kowalski. A proof procedure using connection graphs. J. ACM, 22(4):572–595,

1975.
[49] J.-L. Lauriere. A language and a program for stating and solving combinatorial prob-

lems. Artificial Intelligence, 10:29–127, 1978.
[50] D. H. Lehmer. Combinatorial problems with digital computers. In Proc. of the Fourth

Canadian Math. Congress, pages 160–173, 1957.
[51] E. Lucas. Récréations Mathématiques. Gauthier-Villars, Paris, 1891.
[52] A. K. Mackworth. Interpreting pictures of polyhedral scenes. Artificial Intelligence,

4:121–137, 1973.
[53] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:

99–118, 1977.
[54] A. K. Mackworth. The logic of constraint satisfaction. Artificial Intelligence, 58:

3–20, 1992.
[55] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial network

consistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25:65–74, 247, 1985.

[56] A. K. Mackworth and E. C. Freuder. The complexity of constraint satisfaction revis-
ited. Artificial Intelligence, 59:57–62, 1993.

[57] A. K. Mackworth, J. A. Mulder, and W. S. Havens. Hierarchical arc consistency:
Exploiting structured domains in constraint satisfaction problems. Computational
Intelligence, 1:118–126, 1985.

[58] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
[59] J. J. McGregor. Relational consistency algorithms and their application in finding

subgraph and graph isomorphisms. Inform. Sci., 19:229–250, 1979.
[60] U. Montanari. Networks of constraints: Fundamental properties and applications to

picture processing. Inform. Sci., 7:95–132, 1974.
[61] N. J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,

New York, 1971.
[62] B. Nudel. Consistent-labeling problems and their algorithms: Expected-complexities

and theory-based heuristics. Artificial Intelligence, 21:135–178, 1983.
[63] P. W. Purdom Jr. Tree size by partial backtracking. SIAM J. Comput., 7:481–491,

1978.

E. C. Freuder, A. K. Mackworth 27

[64] P. W. Purdom Jr. Search rearrangement backtracking and polynomial average time.
Artificial Intelligence, 21:117–133, 1983.

[65] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labelling by relaxation oper-
ations. IEEE Trans. on Systems, Man, and Cybernetics, SMC-6:420–433, 1976.

[66] R. Seidel. A new method for solving constraint satisfaction problems. In Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, pages 338–
342, Vancouver, 1981.

[67] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9:135–196, 1977.

[68] M. Stefik. Planning with constraints (MOLGEN: Part 1). Artificial Intelligence, 16:
111–140, 1981.

[69] M. J. Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial Intelligence,
16:141–169, 1981.

[70] G. Sussman and T. Winograd. Micro-planner reference manual. Technical Re-
port AIM-203, MIT Artificial Intelligence Laboratory, July 1 1970. URL ftp:

//publications.ai.mit.edu/ai-publications/0-499/AIM-203.

ps;ftp://publications.ai.mit.edu/ai-publications/pdf/

AIM-203.pdf.
[71] G. J. Sussman and R. M. Stallman. Heuristic techniques in computer-aided circuit

analysis. IEEE Trans. on Circuits and Systems, CAS-22(11), 1975.
[72] G. J. Sussman and G. L. Steele. CONSTRAINTS: a language for expressing almost-

hierarchical descriptions. Artificial Intelligence, 14, 1980.
[73] I. E. Sutherland. SKETCHPAD: A man-machine graphical communications system.

Technical Report 296, MIT, Lincoln Laboratory, Jan. 1963.
[74] J. M. Tenenbaum and H. G. Barrow. Experiments in interpretation-guided segmenta-

tion. Artif. Intell, 8(3):241–274, 1977.
[75] J. R. Ullmann. Associating parts of patterns. Information and Control, 9(6):583–601,

1966.
[76] J. R. Ullmann, R. M. Haralick, and L. G. Shapiro. Computer architecture for solving

consistent labelling problems. Comput. J, 28(2):105–111, 1985.
[77] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.
[78] R. L. Walker. An enumerative technique for a class of combinatorial problems. In

Combinatorial Analysis, Proceedings of Symposium in Applied Mathematics, Vol X,
Amer. Math. Soc., Providence, RI, USA, pages 91–94, 1960.

[79] D. Waltz. Understanding line drawings of scenes with shadows. In P. H. Winston,
editor, The Psychology of Computer Vision, pages 19–91. McGraw-Hill, 1975.

[80] M. V. Wilkes. Constraint-type statements in programming languages. CACM, 7(10):
587–588, 1964. URL http://doi.acm.org/10.1145/364888.364967.

This page intentionally left blank

Handbook of Constraint Programming 29
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 3

Constraint Propagation

Christian Bessiere

Constraint propagation is a form of inference, not search, and as
such is more ”satisfying”, both technically and aesthetically.

—E.C. Freuder, 2005.

Constraint reasoning involves various types of techniques to tackle the inherent in-
tractability of the problem of satisfying a set of constraints. Constraint propagation is one
of those types of techniques. Constraint propagation is central to the process of solving a
constraint problem, and we could hardly think of constraint reasoning without it.

Constraint propagation is a very general concept that appears under different names
depending on both periods and authors. Among these names, we can find constraint re-
laxation, filtering algorithms, narrowing algorithms, constraint inference, simplification
algorithms, label inference, local consistency enforcing, rules iteration, chaotic iteration.

Constraint propagation embeds any reasoning which consists in explicitly forbidding
values or combinations of values for some variables of a problem because a given subset
of its constraints cannot be satisfied otherwise. For instance, in a crossword-puzzle, when
you discard the words NORWAY and SWEDEN from the set of European countries that
can fit a 6-digit slot because the second letter must be a ’R’, you propagate a constraint.
In a problem containing two variables x1 and x2 taking integer values in 1..10, and a
constraint specifying that |x1 − x2| > 5, by propagating this constraint we can forbid
values 5 and 6 for both x1 and x2. Explicating these ’nogoods’ is a way to reduce the
space of combinations that will be explored by a search mechanism.

The concept of constraint propagation can be found in other fields under different kinds
and names. (See for instance the propagation of clauses by ’unit propagation’ in propo-
sitional calculus [40].) Nevertheless, it is in constraint reasoning that this concept shows
its most accomplished form. There is no other field in which the concept of constraint
propagation appears in such a variety of forms, and in which its characteristics have been
so deeply analyzed.

c© 2006 Elsevier B.V. All rights reserved

30 3. Constraint Propagation

In the last 30 years, the scientific community has put a lot of effort in formalizing and
characterizing this ubiquitous concept of constraint propagation and in proposing algo-
rithms for propagating constraints. This formalization can be presented along two main
lines: local consistencies and rules iteration. Local consistencies define properties that the
constraint problem must satisfy after constraint propagation. This way, the operational be-
havior is left completely open, the only requirement being to achieve the given property on
the output. The rules iteration approach, on the contrary, defines properties on the process
of propagation itself, that is, properties on the kind/order of operations of reduction applied
to the problem.

This chapter does not include data-flow constraints [76], even if this line of research
has been the focus of quite a lot of work in interactive applications and if some of these
papers speak about ‘propagation’ on these constraints [27]. They are indeed quite far from
the techniques appearing in constraint programming.

The rest of this chapter is organized as follows. Section 3.1 contains basic definitions
and notations used throughout the chapter. Section 3.2 formalizes all constraint propaga-
tion approaches within a unifying framework. Sections 3.3–3.8 contain the main existing
types of constraint propagation. Each of these sections presents the basics on the type of
propagation addressed and goes briefly into sharper or more recent advances on the subject.

3.1 Background

The notations used in this chapter have been chosen to support all notions presented. I
tried to remain on the borderline between ‘heavy abstruse notations’ and ‘ambiguous defi-
nitions’, hoping I never fall too much on one side or the other of the edge.

A constraint satisfaction problem (CSP) involves finding solutions to a constraint net-
work, that is, assignments of values to its variables that satisfy all its constraints. Con-
straints specify combinations of values that given subsets of variables are allowed to take.
In this chapter, we are only concerned with constraint satisfaction problems where vari-
ables take their value in a finite domain. Without loss of generality, I assume these do-
mains are mapped on the set of integers, and so, I consider only integer variables, that
is, variables with a domain being a finite subset of .

Definition 3.1 (Constraint). A constraint c is a relation defined on a sequence of variables
X(c) = (xi1 , . . . , xi|X(c)|

), called the scheme of c. c is the subset of |X(c)| that contains

the combinations of values (or tuples) τ ∈ |X(c)| that satisfy c. |X(c)| is called the arity
of c. Testing whether a tuple τ satisfies a constraint c is called a constraint check.

A constraint can be specified extensionally by the list of its satisfying tuples, or in-
tensionally by a formula that is the characteristic function of the constraint. Definition
3.1 allows constraints with an infinite number of satisfying tuples. I sometimes write
c(x1, . . . , xk) for a constraint c with scheme X(c) = (x1, . . . , xk). Constraints of ar-
ity 2 are called binary and constraints of arity greater than 2 are called non-binary. Global
constraints are classes of constraints defined by a formula of arbitrary arity (see Section
3.8.2).

Example 3.2. The constraint alldifferent(x1, x2, x3) ≡ (vi �= vj ∧ vi �= vk ∧ vj �=
vk) allows the infinite set of 3-tuples in 3 such that all values are different. The constraint

C. Bessiere 31

c(x1, x2, x3) = {(2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 2, 2), (3, 2, 3), (3, 3, 2)} allows the finite
set of 3-tuples containing both values 2 and 3 and only them.

Definition 3.3 (Constraint network). A constraint network (or network) is composed of:

• a finite sequence of integer variables X = (x1, . . . , xn),

• a domain for X , that is, a set D = D(x1)× . . .×D(xn), where D(xi) ⊂ is the
finite set of values, given in extension,1 that variable xi can take, and

• a set of constraints C = {c1, . . . , ce}, where variables in X(cj) are in X .

Given a network N , I sometimes use XN , DN and CN to denote its sequence of
variables, its domain and its set of constraints. Given a variable xi and its domain D(xi),
minD(xi) denotes the smallest value inD(xi) andmaxD(xi) its greatest one. (Remember
that we consider integer variables.)

In the whole chapter, I consider constraints involving at least two variables. This is not
a restriction because domains of variables are semantically equivalent to unary constraints.
They are separately specified in the definition of constraint network because the domains
are given extensionally whereas a constraint c can be defined by any Boolean function on

|X(c)| (in extension or not). I also consider that no variable is repeated in the scheme of
a constraint. This restriction could be relaxed in most cases, but it simplifies the notations.
The vocabulary of graphs is often used to describe networks. A network can indeed be
associated with a (hyper)graph where variables are nodes and where schemes of constraints
are (hyper)edges.

According to Definitions 3.1 and 3.3, the variablesXN of a networkN and the scheme
X(c) of a constraint c ∈ CN are sequences of variables, not sets. This is required because
the order of the values matters for tuples in DN or in c. Nevertheless, it simplifies a lot the
notations to consider sequences as sets when no confusion is possible. For instance, given
two constraints c and c′, X(c) ⊆ X(c′) means that constraint c involves only variables
that are in the scheme of c′, whatever their ordering in the scheme. Given a tuple τ on a
sequence Y of variables, and given a sequence W ⊆ Y , τ [W] denotes the restriction of τ
to the variables in W , ordered according to W . Given xi ∈ Y, τ [xi] denotes the value of
xi in τ . If X(c) = X(c′), c ⊆ c′ means that for all τ ∈ c the reordering of τ according to
X(c′) satisfies c′.

Example 3.4. Let (1, 1, 2, 4, 5) be a tuple on Y = (x1, x2, x3, x4, x5) and W = (x3, x2,
x4). τ [x3] is the value 2 and τ [W] is the tuple (2, 1, 4). Given c(x1, x2, x3) defined by
x1 + x2 = x3 and c′(x2, x1, x3) defined by x2 + x1 ≤ x3, we have c ⊆ c′.

We also need the concepts of projection, intersection, union and join. Given a constraint
c and a sequence Y ⊆ X(c), πY (c) denotes the projection of c on Y , that is, the relation
with scheme Y that contains the tuples that can be extended to a tuple on X(c) satisfying
c. Given two constraints c1 and c2 sharing the same scheme X(c1) = X(c2), c1∩ c2 (resp.
c1 ∪ c2) denotes the intersection (resp. the union) of c1 and c2, that is, the relation with
scheme X(c1) that contains the tuples τ satisfying both c1 and c2 (resp. satisfying c1 or
c2). Given a set of constraints {c1, . . . , ck}, ��k

j=1 cj (or �� {c1, . . . , ck}) denotes the join

1The condition on the domains given in extension can be relaxed, especially in numerical problems where
variables take values in a discretization of the reals. (See Chapter 16 in Part II.)

32 3. Constraint Propagation

of c1, . . . , ck, that is, the relation with scheme ∪kj=1X(cj) that contains the tuples τ such
that τ [X(cj)] ∈ cj for all j, 1 ≤ j ≤ k.

Backtracking algorithms are based on the principle of assigning values to variables
until all variables are instantiated.

Definition 3.5 (Instantiation). Given a network N = (X,D,C),

• An instantiation I on Y = (x1, . . . , xk) ⊆ X is an assignment of values v1, . . . vk to
the variables x1, . . . , xk, that is, I is a tuple on Y . I can be denoted by ((x1, v1), . . . ,
(xk, vk)) where (xi, vi) denotes the value vi for xi.

• An instantiation I on Y is valid if for all xi ∈ Y, I[xi] ∈ D(xi).

• An instantiation I on Y is locally consistent iff it is valid and for all c ∈ C with
X(c) ⊆ Y , I[X(c)] satisfies c. If I is not locally consistent, it is locally inconsistent.

• A solution to a networkN is an instantiation I onX which is locally consistent. The
set of solutions of N is denoted by sol(N).

• An instantiation I on Y is globally consistent (or consistent) if it can be extended to
a solution (i.e., there exists s ∈ sol(N) with I = s[Y]).

Example 3.6. Let N = (X,D,C) be a network with X = (x1, x2, x3, x4), D(xi) =
{1, 2, 3, 4, 5} for all i ∈ [1..4] and C = {c1(x1, x2, x3), c2(x1, x2, x3), c3(x2, x4)} with
c1(x1, x2, x3) = alldifferent(x1, x2, x3), c2(x1, x2, x3) ≡ (x1 ≤ x2 ≤ x3), and
c3(x2, x4) ≡ (x4 ≥ 2 · x2). We thus have π{x1,x2}(c1) ≡ (x1 �= x2) and c1 ∩ c2 ≡ (x1 <
x2 < x3). I1 = ((x1, 1), (x2, 2), (x4, 7)) is a non valid instantiation on Y = (x1, x2, x4)
because 7 /∈ D(x4). I2 = ((x1, 1), (x2, 1), (x4, 3)) is a locally consistent instantiation
on Y because c3 is the only constraint with scheme included in Y and it is satisfied by
I2[X(c3)]. However, I2 is not globally consistent because it does not extend to a solution
of N . sol(N) = {(1, 2, 3, 4), (1, 2, 3, 5)}.

There are many works in the constraint reasoning community that put some restrictions
on the definition of a constraint network. These restrictions can have some consequences
on the notions handled. I define the main restrictions appearing in the literature and that I
will use later.

Definition 3.7 (Normalized and binary networks).

• A network N is normalized iff two different constraints in CN do not involve exactly
the same variables.

• A network N is binary iff for all ci ∈ CN , |X(ci)| = 2.

When a network is both binary and normalized, a constraint c(xi, xj) ∈ C is often
denoted by cij . To simplify even further the notations, cji denotes its transposition, i.e.,
the constraint c(xj , xi) = {(vj , vi) | (vi, vj) ∈ cij}, and since there cannot be ambiguity
with another constraint, I act as if cji was in C as well.

Given two normalized networks N = (X,D,C) and N ′ = (X,D′, C ′), N �N N ′

denotes the network N ′′ = (X,D′′, C ′′) with D′′ = D ∪ D′ and C ′′ = {c′′ | ∃c ∈
C, ∃c′ ∈ C ′, X(c) = X(c′) and c′′ = c ∪ c′}.

The constraint reasoning community often used constraints with a finite number of
tuples, and even more, constraints that only allow valid tuples, that is, combinations of
values from the domains of the variables involved. I call these constraints ‘embedded’.

C. Bessiere 33

Definition 3.8 (Embedded network). Given a network N and a constraint c ∈ CN , the
embedding of c in DN is the constraint ĉ with scheme X(c) such that ĉ = c∩ πX(c)(DN).
A network N is embedded iff for all c ∈ CN , c = ĉ.

In complexity analysis, we sometimes need to refer to the size of a network. The size
of a network N is equal to |XN |+

∑

xi∈XN
|DN (xi)|+

∑

cj∈CN
‖cj‖, where ‖c‖ is equal

to |X(c)| · |c| if c is given in extension, or equal to the size of its encoding if c is defined
by a Boolean function.

3.2 Formal Viewpoint

This section formally characterizes the concept of constraint propagation. The aim is es-
sentially to relate the different notions of constraint propagation.

The constraint satisfaction problem being NP-complete, it is usually solved by back-
track search procedures that try to extend a partial instantiation to a global one that is
consistent. Exploring the whole space of instantiations is of course too expensive. The
idea behind constraint propagation is to make the constraint network more explicit (or
tighter) so that backtrack search commits into less inconsistent instantiations by detecting
local inconsistency earlier. I first introduce the following preorder on constraint networks.

Definition 3.9 (Preorder � on networks). Given two networks N and N ′, we say that
N ′ � N iff XN ′ = XN and any instantiation I on Y ⊆ XN locally inconsistent in N is
locally inconsistent in N ′ as well.

From the definition of local inconsistency of an instantiation (Definition 3.5) I derive
the following property of constraint networks ordered according to �.

Proposition 3.10. Given two networks N and N ′, N ′ � N iff XN ′ = XN , DN ′ ⊆ DN ,2

and for any constraint c ∈ CN , for any tuple τ on X(c) that does not satisfy c, either
τ is not valid in DN ′ or there exists a constraint c′ in CN ′ , X(c′) ⊆ X(c), such that
τ [X(c′)] /∈ c′.

The relation � is not an order because there can be two different networks N and N ′

with N � N ′ � N .

Definition 3.11 (Nogood-equivalence). Two networks N and N ′ such that N � N ′ � N
are said to be nogood-equivalent. (A nogood is a partial instantiation that does not lead to
a solution.)

Example 3.12. Let N = (X,D,C) be the network with X = {x1, x2, x3}, D(x1) =
D(x2) = D(x3) = {1, 2, 3, 4} and C = {x1 < x2, x2 < x3, c(x1, x2, x3)} where
c(x1, x2, x3) = {(111), (123), (222), (333)}. Let N ′ = (X,D,C ′) be the network with
C ′ = {x1 < x2, x2 < x3, c

′(x1, x2, x3)}, where c′(x1, x2, x3) = {(123), (231), (312)}.
The only difference between N and N ′ is that the latter contains c′ instead of c. For any
tuple τ on X(c) (resp. X(c′)) that does not satisfy c (resp. c′), there exists a constraint in
C ′ (resp. in C) that makes τ locally inconsistent. As a result, N � N ′ � N and N and
N ′ are nogood-equivalent.

2DN′ ⊆ DN because we supposed that networks do not contain unary constraints, and so, instantiations
of size 1 can be made locally inconsistent only because of the domains.

34 3. Constraint Propagation

Constraint propagation transforms a network N by tightening DN , by tightening con-
straints from CN , or by adding new constraints to CN . Constraint propagation does not
remove redundant constraints, which is more a reformulation task. I define the space of
networks that can be obtained by constraint propagation on a network N .

Definition 3.13 (Tightenings of a network). The space PN of all possible tightenings of a
network N = (X,D,C) is the set of networks N ′ = (X,D′, C ′) such that D′ ⊆ D and
for all c ∈ C there exists c′ ∈ C ′ with X(c′) = X(c) and c′ ⊆ c.

Note that PN does not contain all networks N ′ � N . In Example 3.12, N ′ /∈ PN
because c′ �⊆ c. However, if N ′′ = (X,D,C ′′) with C ′′ = {x1 < x2, x2 < x3, c

′′ =
c ∪ c′}, we have N ∈ PN ′′ and N ′ ∈ PN ′′ . The set of networks PN together with �
forms a preordered set. The top element of PN according to � is N itself and the bottom
elements are the networks with empty domains.3 In PN we are particularly interested in
networks that preserve the set of solutions of N . PsolN denotes the subset of PN containing
only the elements N ′ of PN such that sol(N ′) = sol(N). Among the networks in PsolN ,
those that are the smallest according to � have interesting properties.

Proposition 3.14 (Global consistency). Let N = (X,D,C) be a network, and GN =
(X,DG, CG) be a network in PsolN . If GN is such that for all N ′ ∈ PsolN , GN � N ′,
then any instantiation I on Y ⊆ X which is locally consistent in GN can be extended to a
solution of N . GN is called a globally consistent network.

Proof. Suppose there exists an instantiation I on Y ⊆ X locally consistent in GN which
does not extend to a solution. Build the network N ′ = (X,DG, CG ∪ {c}) where X(c) =
Y and c = |Y | \ {I}. N ′ ∈ PsolN because GN ∈ PsolN and I does not extend to a solution
of N . In addition, I is locally inconsistent in N ′. So, GN �� N ′.

Thanks to Proposition 3.14 we see the advantage of having a globally consistent net-
work of N . A simple brute-force backtrack search procedure applied on a globally con-
sistent network is guaranteed to produce a solution in a backtrack-free manner. However,
globally consistent networks have a number of disadvantages that make them impossible
to use in practice. A globally consistent network is not only exponential in time to com-
pute, but in addition, its size is in general exponential in the size of N . In fact, building
a globally consistent network is similar to generating and storing all minimal nogoods of
N . Building a globally consistent network is so hard that a long tradition in constraint
programming is to try to transformN into an element of PsolN as close as possible to global
consistency at reasonable cost (usually keeping polynomial time and space). This is con-
straint propagation.

Rules iteration and local consistencies are two ways of formalizing constraint propaga-
tion. Rules iteration consists in characterizing for each constraint (or set of constraints) a
set of reduction rules that tighten the network. Reduction rules are sufficient conditions to
rule out values (or instantiations) that have no chance to appear in a solution. The second
—and most well-known— way of considering constraint propagation is via the notion of
local consistency. A local consistency is a property that characterizes some necessary con-
ditions on values (or instantiations) to belong to solutions. A local consistency property

3Remember that we consider that unary constraints are expressed in the domains.

C. Bessiere 35

(denoted by Φ) is defined regardless of the domains or constraints that will be present in
the network. A network is Φ-consistent if and only if it satisfies the property Φ.

It is difficult to say more about constraint propagation in completely general terms. The
preorder (PN ,�) is indeed too weak to characterize the features of constraint propagation.
Most of the constraint propagation techniques appearing in constraint programming (or at
least those that are used in solvers) are limited to modifications of the domains. So, I first
concentrate on this subcase, that I call domain-based constraint propagation. I will come
back to the general case in Section 3.4.

Definition 3.15 (Domain-based tightenings). The spacePND of domain-based tightenings
of a network N = (X,D,C) is the set of networks in PN with the same constraints as N ,
that is, N ′ ∈ PND iff XN ′ = X , DN ′ ⊆ D and CN ′ = C.

Proposition 3.16 (Partial order on networks). Given a networkN , the relation� restricted
to the set PND is a partial order (denoted by ≤).

(PND,≤) is a partially ordered set (poset) because given two networksN1 = (X1, D1,
C1) and N2 = (X2, D2, C2), N1 ≤ N2 ≤ N1 implies that X1 = X2, C1 = C2, and
D1 ⊆ D2 ⊆ D1, which means that N1 = N2. In fact, the poset (PND,≤) is isomorphic
to the partial order ⊆ on DN . We are interested in the subset PsolND of PND containing all
the networks that preserve the set of solutions of N . PsolND has the same top element as
PND, namely N itself, and a unique bottom element GND = (XN , DG, CN), where for
any xi ∈ XN , DG(xi) only contains values belonging to a solution of N , i.e., DG(xi) =
π{xi}(sol(N)). Such a network was named variable-completable by Freuder [56].

Domain-based constraint propagation looks for an element inPsolND on which the search
space to explore is smaller (that is, values have been pruned from the domains). Since
finding GND is NP-hard (consistency of N reduces to checking non emptiness of domains
in GND), domain-based constraint propagation usually consists of polynomial techniques
that produce a network which is an approximation of GND. The network N ′ produced by
a domain-based constraint propagation technique always verifies GND ≤ N ′ ≤ N , that
is, DG ⊆ DN ′ ⊆ DN .

Domain-based rules iteration consists in applying for each constraint c ∈ CN a set of
reduction rules that rule out values of xi that cannot appear in a tuple satisfying c. Domain-
based reduction rules are also named propagators. For instance, if c ≡ (|x1 − x2| = k), a
propagator for c on x1 can beDN (x1)← DN (x1)∩ [minDN

(x2)−k .. minDN
(x2)+k].

Applying propagators iteratively tightens DN while preserving the set of solutions of N .
In other words, propagators slide down the poset (PND,≤) without moving out of PsolND .
Reduction rules will be presented in Section 3.7. From now on, we concentrate on domain-
based local consistencies. Any property Φ that specifies a necessary condition on values to
belong to solutions can be considered as a domain-based local consistency. Nevertheless,
we usually consider only those properties that are stable under union.

Definition 3.17 (Stability under union). A domain-based property Φ is stable under union
iff for any Φ-consistent networks N1 = (X,D1, C) and N2 = (X,D2, C), the network
N ′ = (X,D1 ∪D2, C) is Φ-consistent.

Example 3.18. Let Φ be the property that guarantees that for each constraint c and variable
xi ∈ X(c), at least half of the values in D(xi) belong to a valid tuple satisfying c. Let
X = (x1, x2) and C = {x1 = x2}. Let D1 be the domain with D1(x1) = {1, 2}

36 3. Constraint Propagation

and D1(x2) = {2}. Let D2 be the domain with D2(x1) = {2, 3} and D2(x2) = {2}.
(X,D1, C) and (X,D2, C) are both Φ-consistent but (X,D1∪D2, C) is not Φ-consistent
because among the three values for x1, only value 2 can satisfy the constraint x1 = x2. Φ
is not stable under union.

Stability under union brings very useful features for local consistencies. Among all
networks in PND that verify a local consistency Φ, there is a particular one.

Theorem 3.19 (Φ-closure). LetN = (X,D,C) be a network and Φ be a domain-based lo-
cal consistency. Let Φ(N) be the network (X,DΦ, C) whereDΦ = ∪{D′ ⊆ D | (X,D′, C)
is Φ-consistent}. If Φ is stable under union, Φ(N) is Φ-consistent and is the unique net-
work in PND such that for any Φ-consistent network N ′ ∈ PND , N ′ ≤ Φ(N). Φ(N) is
called the Φ-closure of N . (By convention, we suppose (X, ∅, C) is Φ-consistent.)

Φ(N) has some interesting properties. The first one I can point out is that it preserves
the solutions: sol(Φ(N)) = sol(N). This is not the case for all Φ-consistent networks in
PND .

Example 3.20. Let Φ be the property that guarantees that all values for all variables can
be extended consistently to a second variable. Consider the network N = (X,D,C) with
variables x1, x2, x3, domains all equal to {1, 2} and C = {x1 ≤ x2, x2 ≤ x3, x1 �= x3}.
Let D1 be the domain with D1(x1) = D1(x2) = {1} and D1(x3) = {2}. (X,D1, C)
is Φ-consistent but does not contain the solution (x1 = 1, x2 = 2, x3 = 2) which is
in sol(N). In fact, Φ(N) = (X,DΦ, C) with DΦ(x1) = {1}, DΦ(x2) = {1, 2} and
DΦ(x3) = {2}.

Computing a particular Φ-consistent network of PND can be difficult. GND for in-
stance, is obviously Φ-consistent for any domain-based local consistency Φ, but it is NP-
hard to compute. The second interesting property of Φ(N) is that it can be computed by a
greedy algorithm.

Proposition 3.21 (Fixpoint). If a domain-based consistency property Φ is stable under
union, then for any network N = (X,D,C), the network N ′ = (X,D′, C), where D′ is
obtained by iteratively removing values that do not satisfy Φ until no such value exists, is
the Φ-closure of N .

Corollary 3.22. If a domain-based consistency property Φ is polynomial to check, finding
Φ(N) is polynomial as well.

By achieving (or enforcing) Φ-consistency on a network N , I mean finding the Φ-
closure Φ(N).

I define a partial order on local consistencies to express how much they permit to go
down the poset (PND,≤). A domain-based local consistency Φ1 is at least as strong as
another local consistency Φ2 if and only if for any network N , Φ1(N) ≤ Φ2(N). If
in addition there exists a network N ′ such that Φ1(N

′) < Φ2(N
′), then Φ1 is strictly

stronger than Φ2. If there exist networks N ′ and N ′′ such that Φ1(N
′) < Φ2(N

′) and
Φ2(N

′′) < Φ1(N
′′), Φ1 and Φ2 are incomparable.

When networks are both normalized and embedded, stability under union, Φ-closure,
and the ‘stronger’ relation between local consistencies can be extended to local consisten-
cies other than domain-based ones by simply replacing PND by PN , the union on domains
∪ by the union on networks �N (see Section 3.1), and the partial order ≤ on PND by the
preorder � on PN (see Section 3.4).

C. Bessiere 37

1

2

1

2 2

3

1

2

3

1

2

3

1

2

3

2 4

X1 X2 X3X1 X2 X3

X2 < X3X1 = X2

: allowed pair

Figure 3.1: Network of Example 3.23 before arc consistency (left) and after (right).

3.3 Arc Consistency

Arc consistency is the oldest and most well-known way of propagating constraints. This
is indeed a very simple and natural concept that guarantees every value in a domain to be
consistent with every constraint.

Example 3.23. Let N be the network depicted in Fig. 3.1(left). It involves three variables
x1, x2 and x3, domains D(x1) = D(x2) = D(x3) = {1, 2, 3}, and constraints c12 ≡
(x1 = x2) and c23 ≡ (x2 < x3). N is not arc consistent because there are some values
inconsistent with some constraints. Checking constraint c12 does not permit to remove
any value. But when checking constraint c23, we see that (x2, 3) must be removed because
there is no value greater than it inD(x3). We can also remove value 1 fromD(x3) because
of constraint c23. Removing 3 from D(x2) causes in turn the removal of value 3 for x1

because of constraint c12. Now, all remaining values are compatible with all constraints.

REF-ARF [51], is probably one of the first systems incorporating a feature which looks
similar to arc consistency (even if the informal description does not permit to be sure of
the equivalence). In papers by Waltz [124] and Gaschnig [61], the correspondence is more
evident since algorithms for achieving arc consistency were presented. But the seminal
papers on the subject are due to Mackworth, who is the first who clearly defined the concept
of arc consistency for binary constraints [86], who extended definitions and algorithms to
non-binary constraints [88], and who analyzed the complexity [89].

I give a definition of arc consistency in its most general form, i.e., for arbitrary con-
straint networks (in which case it is often called generalized arc consistency). In its first
formal presentation, Mackworth limited the definition to binary normalized networks.

Definition 3.24 ((Generalized) arc consistency ((G)AC)). Given a network N = (X,D,
C), a constraint c ∈ C, and a variable xi ∈ X(c),

• A value vi ∈ D(xi) is consistent with c in D iff there exists a valid tuple τ satisfying
c such that vi = τ [{xi}]. Such a tuple is called a support for (xi, vi) on c.

• The domain D is (generalized) arc consistent on c for xi iff all the values in D(xi)
are consistent with c in D (that is, D(xi) ⊆ π{xi}(c ∩ πX(c)(D))).

• The network N is (generalized) arc consistent iff D is (generalized) arc consistent
for all variables in X on all constraints in C.

• The network N is arc inconsistent iff ∅ is the only domain tighter than D which is
(generalized) arc consistent for all variables on all constraints.

38 3. Constraint Propagation

By notation abuse, when there is no ambiguity on the domain D to consider, we often
say ’constraint c is arc consistent’ instead of ’D is arc consistent on c for all xi ∈ X(c)’.
We also say ’variable xi is arc consistent on constraint c’ instead of ’all values inD(xi) are
consistent with c in D’. When a constraint cij is binary and a tuple τ = (vi, vj) supports
(xi, vi) on cij , we often refer to (xj , vj) (rather than to τ itself) when we speak about a
‘support for (xi, vi)’.

Historically, many papers on constraint satisfaction made the simplifying assumption
that networks are binary and normalized. This has the advantage that notations become
much simpler (see Section 3.1) and new concepts are easier to present. But this had some
strange effects that we must bear in mind.

First, the name ’arc consistency’ is so strongly bound to binary networks that even if the
definition is perfectly the same for both binary and non-binary constraints, a different name
has often been used for arc consistency on non-binary constraints. Some papers use hyper
arc consistency, or domain consistency, but the most common name is generalized arc
consistency. In the following, I will use indifferently arc consistency (AC) or generalized
arc consistency (GAC), though I will use GAC when the network is explicitly non-binary.

The second strange effect of associating AC with binary normalized networks is the
confusion between the notions of arc consistency and 2-consistency. (As we will see in
Section 3.4, 2-consistency guarantees that any instantiation of a value to a variable can
be consistently extended to any second variable.) On binary networks, 2-consistency is
at least as strong as AC. When the binary network is normalized, arc consistency and 2-
consistency are equivalent. However, this is not true in general. The following examples
show that 2-consistency is strictly stronger than AC on non normalized binary networks and
that generalized arc consistency and 2-consistency are incomparable on arbitrary networks.

Example 3.25. Let N be a network involving two variables x1 and x2, with domains
{1, 2, 3}, and the constraints x1 ≤ x2 and x1 �= x2. This network is arc consistent because
every value has a support on every constraint. However, this network is not 2-consistent
because the instantiation x1 = 3 cannot be extended to x2 and the instantiation x2 = 1
cannot be extended to x1.

Let N be a network involving three variables x1, x2, and x3, with domains D(x1) =
D(x2) = {2, 3} andD(x3) = {1, 2, 3, 4}, and the constraint alldifferent(x1, x2, x3).
N is 2-consistent because every value for any variable can be extended to a locally consis-
tent instantiation on any second variable. However, this network is not GAC because the
values 2 and 3 for x3 do not have support on the alldifferent constraint.

3.3.1 Complexity of Arc Consistency

There are a number of questions related to GAC reasoning. It is worth analyzing their
complexity. Bessiere et al. have characterized five questions that can be asked about a
constraint [21]. Some of the questions are more of an academic nature whereas others are
at the heart of propagation algorithms. These questions can be asked in general, or on a
particular class of constraints, such as a given global constraint (see Section 3.8.2). These
questions can be adapted to other local consistencies that we will present in latter sections.
In the following, I use the notation PROBLEM[data] to refer to the instance of PROBLEM

with the input ’data’.

C. Bessiere 39

GACSUPPORT

Instance. A constraint c, a domain D on X(c), and a value v for variable xi
in X(c)
Question. Does value v for xi have a support on c in D?

GACSUPPORT is at the core of all generic arc consistency algorithms. GACSUPPORT is
generally asked for all values one by one.

ISITGAC
Instance. A constraint c, a domain D on X(c)
Question. Does GACSUPPORT[c,D, xi, v] answer ‘yes’ for each variable
xi ∈ X(c) and each value v ∈ D(xi)?

ISITGAC has both practical and theoretical importance. If enforcing GAC on a particular
constraint is expensive, we may first test whether it is necessary or not to launch the prop-
agation algorithm (i.e., whether the constraint is already GAC). On the academic side, this
question is commonly used to compare different levels of local consistency.

NOGACWIPEOUT

Instance. A constraint c, a domain D on X(c)
Question. Is there a non empty D′ ⊆ D on which ISITGAC[c,D′] answers
‘yes’?

NOGACWIPEOUT occurs when GAC is maintained during search by a backtrack proce-
dure. At each node in the search tree (i.e., after each instantiation of a value to a variable),
we want to know if the remaining network can be made GAC without wiping out the do-
main. If not, we must unassign one of the variables already instantiated.

MAXGAC
Instance. A constraint c, a domain D0 on X(c), and a domain D ⊆ D0

Question. Is (X(c), D, {c}) the arc consistent closure of (X(c), D0, {c})?
Arc consistency algorithms (see next subsection) are asked to return the arc consistent
closure of a network, that is, the subdomain that is GAC and any larger subdomain is not
GAC. MAXGAC characterizes this ‘maximality’ problem.

GACDOMAIN

Instance. A constraint c, a domain D0 on X(c)
Output. The domain D such that MAXGAC[c,D0, D] answers ‘yes’

GACDOMAIN returns the arc consistent closure, that is, the domain that a GAC algorithm
computes. GACDOMAIN is not a decision problem as it computes something other than
‘yes’ or ‘no’.

In [20, 21], Bessiere et al. showed that all five questions are NP-hard in general. In
addition, they showed that on any particular class of constraints, NP-hardness of a question
implies NP-hardness of other questions.

Theorem 3.26 (Dependencies in the NP-hardness of GAC questions). Given a class C
of constraints, GACSUPPORT is NP-hard on C iff NOGACWIPEOUT is NP-hard on C.
GACSUPPORT is NP-hard on C iff GACDOMAIN is NP-hard on C. If MAXGAC is
NP-hard on C then GACSUPPORT is NP-hard on C. If ISITGAC is NP-hard on C then
MAXGAC is NP-hard on C.

40 3. Constraint Propagation

NoGACWipeOut

GACDomain

maxGAC

IsItGAC

GACSupport

A B : if A is NP−hard then B is NP−hard

Figure 3.2: Dependencies between intractability of arc consistency questions

A summary of the dependencies in Theorem 3.26 is given in Fig. 3.2. Note that be-
cause each arrow from question A to question B in Fig. 3.2 means that A can be rewritten
as a polynomial number of calls to B, we immediately derive that tractability of B im-
plies tractability of A. Whereas the decision problems GACSUPPORT, ISITGAC, and
NOGACWIPEOUT are in NP, MAXGAC may be outside NP. In fact, MAXGAC is DP -
complete in general. The DP complexity class contains problems which are the conjunc-
tion of a problem in NP and one in coNP [101].

Assuming P �= NP, GAC reasoning is thus not tractable in general. In fact, the best
complexity that can be achieved for an algorithm enforcing GAC on a network with any
kind of constraints is in O(erdr), where e is the number of constraints and r is the largest
arity of a constraint.

Though not related to GAC, constraint entailment ([70]) is a sixth question that is
used by constraint solvers to speed up propagation. An entailed constraint can safely be
disconnected from the network.

ENTAILED

Instance. A constraint c, a domain D on X(c)
Question. Does ISITGAC[c,D′] answer ‘yes’ for all D′ ⊆ D?

Entailment of c on D means that D ⊆ c. ENTAILED is coNP-complete in general. There
is no dependency between intractability of entailment and intractability of the GAC ques-
tions. On a class C of constraints, ENTAILED can be tractable and the GAC questions
intractable, or the reverse, or both tractable or intractable.

3.3.2 Arc Consistency Algorithms

Proposing efficient algorithms for enforcing arc consistency has always been considered
as a central question in the constraint reasoning community. A first reason is that arc
consistency is the basic propagation mechanism that is probably used in all solvers. A
second reason is that the new ideas that permit to improve efficiency of arc consistency
can usually be applied to algorithms achieving other local consistencies. This is why I
spend some time presenting the main algorithms that have been introduced, knowing that
the techniques involved can be used for other local consistencies presented in forthcoming
sections. I follow a chronological presentation to emphasize the incremental process that
led to the current algorithms.

C. Bessiere 41

Algorithm 3.1: AC3 / GAC3
function Revise3(in xi: variable; c: constraint): Boolean ;

begin
CHANGE← false;1

foreach vi ∈ D(xi) do2

if � ∃τ ∈ c ∩ πX(c)(D) with τ [xi] = vi then3

remove vi from D(xi);4

CHANGE← true;5

return CHANGE ;6

end

function AC3/GAC3(in X: set): Boolean ;
begin

/* initalisation */;
Q← {(xi, c) | c ∈ C, xi ∈ X(c)};7

/* propagation */;
while Q �= ∅ do8

select and remove (xi, c) from Q;9

if Revise(xi, c) then10

if D(xi) = ∅ then return false ;11

else Q← Q ∪ {(xj , c
′) | c′ ∈ C ∧ c′ �= c ∧ xi, xj ∈ X(c′) ∧ j �= i};12

return true ;13

end

AC3

The most well-known algorithm for arc consistency is the one proposed by Mackworth in
[86] under the name AC3. It was proposed for binary normalized networks and actually
achieves 2-consistency. It was extended to GAC in arbitrary networks in [88]. This algo-
rithm is quite simple to understand. The burden of the general notations being not so high,
I present it in its general version. (See Algorithm 3.1.)

The main component of GAC3 is the revision of an arc, that is, the update of a domain
wrt a constraint.4 Updating a domainD(xi) wrt a constraint cmeans removing every value
in D(xi) that is not consistent with c. The function Revise(xi, c) takes each value vi in
D(xi) in turn (line 2), and explores the space πX(c)\{xi}(D), looking for a support on c
for vi (line 3). If such a support is not found, vi is removed from D(xi) and the fact that
D(xi) has been changed is flagged (lines 4–5). The function returns true if the domain
D(xi) has been reduced, false otherwise (line 6).

The main algorithm is a simple loop that revises the arcs until no change occurs, to
ensure that all domains are consistent with all constraints. To avoid too many useless calls
to Revise (as this is the case in the very basic AC algorithms such as AC1 or AC2), the
algorithm maintains a list Q of all the pairs (xi, c) for which we are not guaranteed that
D(xi) is arc consistent on c. In line 7, Q is filled with all possible pairs (xi, c) such that
xi ∈ X(c). Then, the main loop (line 8) picks the pairs (xi, c) in Q one by one (line 9)
and calls Revise(xi, c) (line 10). If D(xi) is wiped out, the algorithm returns false (line
11). Otherwise, if D(xi) is modified, it can be the case that a value for another variable

4The word ’arc’ comes from the binary case but we also use it on non-binary constraints.

42 3. Constraint Propagation

xj has lost its support on a constraint c′ involving both xi and xj . Hence, all pairs (xj , c
′)

such that xi, xj ∈ X(c′) must be put again in Q (line 12). When Q is empty, the algorithm
returns true (line 13) as we are guaranteed that all arcs have been revised and all remaining
values of all variables are consistent with all constraints

Proposition 3.27 (GAC3). GAC3 is a sound and complete algorithm for achieving arc
consistency that runs in O(er3dr+1) time and O(er) space, where r is the greatest arity
among constraints.

McGregor proposed a different way of propagating constraints in AC3, that was later
named variable-oriented, as opposed to the arc-oriented propagation policy of AC3 [91].
Instead of putting in Q all arcs that should be revised after a change in D(xi) (line 12), we
simply put xi. Q contains variables for which a change in their domain has not yet been
propagated. When picking a variable xj from Q, the algorithm revises all arcs (xi, c) that
could lead to further deletions because of xj . The implementation of this version of AC3 is
simpler because the elements in Q are just variables. But this less precise information has
a drawback. An arc can be revised several times whereas the classical AC3 would revise it
once. For instance, imagine a network containing a constraint c with scheme (x1, x2, x3).
If a modification occurs on x2 because of a constraint c′, AC3 puts (x1, c) and (x3, c) in
Q. If a modification occurs on x3 because of another constraint c′′ while the previous arcs
have not yet been revised, AC3 adds (x2, c) to Q but not (x1, c) which is already there.
The same scenario with McGregor’s version will put x2 and x3 inQ. Picking them fromQ
in sequence, it will revise (x1, c) and (x3, c) because of x2, and (x1, c) and (x2, c) because
of x3. (x1, c) has been revised twice. Boussemart et al. proposed a modified version of
McGregor’s algorithm that solves this problem by storing a counter for each arc [28].

From now on, I switch to binary normalized networks because most of the literature
used this simplification, and I do not want to make assumptions on which extension the
authors would have chosen. Nevertheless, the ideas always allow extensions to non nor-
malized binary networks, and most of the time to networks with non-binary constraints.

Corollary 3.28 (AC3). AC3 achieves arc consistency on binary networks in O(ed3) time
and O(e) space.

The time complexity of AC3 is not optimal. The fact that function Revise does not
remember anything about its computations to find supports for values leads AC3 to do and
redo many times the same constraint checks.

Example 3.29. Let x, y and z be three variables linked by the constraints c1 ≡ x ≤ y
and c2 ≡ y �= z, with D(x) = D(y) = {1, 2, 3, 4} and D(z) = {3}. Revise(x, c1)
requires 1 constraint check for finding support for (x, 1), 2 checks for (x, 2), etc., so a
total of 1+2+3+4=10 constraint checks to prove that all values in D(x) are consistent with
c1. All these constraint checks are depicted as arrows in Fig. 3.3.a. Revise(y, c1) re-
quires 4 additional constraint checks to prove that y values are all consistent with (x, 1).
Revise(y, c2) requires 4 constraint checks to prove that all values are consistent with
(z, 3) except (y, 3) which is removed. Hence, the arc (x, c1) is put in Q. Revise(z, c2)
requires 1 single constraint check to prove that (z, 3) is consistent with (y, 1).

When (x, c1) is picked from Q, a new call to Revise(x, c1) is launched (Fig. 3.3.b).
It requires 1+2+3+3=9 checks, among which only ((x, 3), (y, 4)) has not already been
performed at the first call.

C. Bessiere 43

1

4

3

2

1

4

3

2
3

Initialisation: Revise (X,c1), (Y,c1), (Y,c2), (Z,c2)

X Y ZY = ZX <= Y

4 + 1 constraint10 + 4 constraint
checks checks

c2:c1:

1

4

3

2
3

1

4

3

2

X Y ZY = ZX <= Y

checks

Propagation: Revise (X,c1)

9 constraint

c1: c2:

(a) (b)

Figure 3.3: AC3 behavior depicted on Example 3.29. (Plain arrows represent positive
constraint checks whereas dashed arrows represent negative ones.)

AC4

AC3 being non optimal, Mohr and Henderson proposed AC4 to improve the time com-
plexity [92, 93]. The idea of AC4, as opposed to AC3, is to store a lot of information.
AC3 performs the minimum amount of work inside a call to Revise, just ensuring that
all remaining values of xi are consistent with c and memorizing nothing. The price to pay
is to redo much of the work if the same Revise is recalled. AC4 stores the maximum
amount of information in a preprocessing step in order to avoid redoing several times the
same constraint check during the propagation of deletions.

AC4 is presented in Algorithm 3.2. It computes a counter counter[xi, vi, xj] for
each triple (xi, vi, xj) where cij ∈ C and vi ∈ D(xi). This counter will finally say how
many supports vi has on cij . AC4 also builds lists S[xj , vj] containing all values that are
supported by (xj , vj) on cij . In the initialization phase, AC4 performs all possible con-
straint checks on all constraints. Each time a support vj ∈ D(xj) is found for (xi, vi) on
cij , counter[xi, vi, xj] is incremented, and (xi, vi) is added to S[xj , vj] (lines 3 and 5).
Each time a value is found without support on a constraint, it is removed from the domain
and put in the list Q for future propagation (line 4). Once the initialization is finished, we
enter the propagation loop (line 7), which consists in propagating the consequences of the
removals of values in Q. For each value (xj , vj) picked from Q (line 8), we just need to
decrement counter[xi, vi, xj] for each value (xi, vi) ∈ S[xj , vj] to maintain the coun-
ters up to date (line 11). If counter[xi, vi, xj] reaches zero, this means that (xj , vj) was
the last support for (xi, vi) on cij . (xi, vi) is removed and put in the list Q (lines 12 and
13). When Q is empty, we know that all values remaining in the domains have a non zero
counter on all their constraints, and so are arc consistent.

AC4 is the first algorithm in a category later named ‘fine-grained’ algorithms [126]
because they perform propagations (via list Q) at the level of values. ‘Coarse-grained’
algorithms, such as AC3, propagate at the level of constraints (or arcs), which is less precise
and can involve unnecessary work.

Proposition 3.30 (AC4). AC4 achieves arc consistency on binary normalized networks in
O(ed2) time and O(ed2) space. Its time complexity is optimal.

44 3. Constraint Propagation

Algorithm 3.2: AC4
function AC4(in X: set): Boolean ;

begin
/* initialization */;
Q← ∅; S[xj , vj] = 0,∀vj ∈ D(xj),∀xj ∈ X;1

foreach xi ∈ X, cij ∈ C, vi ∈ D(xi) do2

initialize counter[xi, vi, xj] to |{vj ∈ D(xj) | (vi, vj) ∈ cij}|;3

if counter[xi, vi, xj] = 0 then remove vi from D(xi) and add (xi, vi) to Q;4

add (xi, vi) to each S[xj , vj] s.t. (vi, vj) ∈ cij ;5

if D(xi) = ∅ then return false ;6

/* propagation */;
while Q �= ∅ do7

select and remove (xj , vj) from Q;8

foreach (xi, vi) ∈ S[xj , vj] do9

if vi ∈ D(xi) then10

counter[xi, vi, xj] = counter[xi, vi, xj]− 1;11

if counter[xi, vi, xj] = 0 then12

remove vi from D(xi); add (xi, vi) to Q;13

if D(xi) = ∅ then return false ;14

return true ;15

end

Example 3.31. Take again the network in Example 3.29 with constraints c1 ≡ x ≤ y and
c2 ≡ y �= z, and domains D(x) = D(y) = {1, 2, 3, 4} and D(z) = {3}. In its initializa-
tion phase, AC4 first counts the number of supports of each value on each constraint and
builds the lists of supported values. Thus, in its initialization, AC4 performs all possible
constraint checks for every value in each domain, that is, 4 · 4 = 16 constraint checks on
c1 and 4 · 1 = 4 on c2.5 At the end of this phase, the data structures are the following:

counter[x, 1, y] = 4 counter[y, 1, x] = 1 counter[y, 1, z] = 1
counter[x, 2, y] = 3 counter[y, 2, x] = 2 counter[y, 2, z] = 1
counter[x, 3, y] = 2 counter[y, 3, x] = 3 counter[y, 3, z] = 0
counter[x, 4, y] = 1 counter[y, 4, x] = 4 counter[y, 4, z] = 1

counter[z, 3, y] = 3

S[x, 1] = {(y, 1), (y, 2), (y, 3), (y, 4)} S[y, 1] = {(x, 1), (z, 3)}
S[x, 2] = {(y, 2), (y, 3), (y, 4)} S[y, 2] = {(x, 1), (x, 2), (z, 3)}
S[x, 3] = {(y, 3), (y, 4)} S[y, 3] = {(x, 1), (x, 2), (x, 3)}
S[x, 4] = {(y, 4)} S[y, 4] = {(x, 1), (x, 2), (x, 3), (x, 4), (z, 3)}

S[z, 3] = {(y, 1), (y, 2), (y, 4)}

The only counter equal to zero is counter[y, 3, z]. So, (y, 3) is removed and AC4 en-
ters the propagation loop with (y, 3) in Q. When (y, 3) is picked from Q, S[y, 3] is tra-
versed and counter[x, 1, y], counter[x, 2, y],counter[x, 3, y] are decremented (be-
cause (x, 1), (x, 2), (x, 3) are in S[y, 3]). None of these counters are equal to zero and no

5In the original version of AC4 presented in [92], each constraint cij is processed twice (once for xi and once
for xj), which gives 32 constraint checks on c1 and 8 on c2). The general version presented in [93] processes
each constraint only once, updating all relevant counters and lists at the same time.

C. Bessiere 45

value is removed. We observe that the propagation of the deletion of (y, 3) did not require
any constraint check. It required traversals of S[..] lists and updates of counters.

While being optimal in time, AC4 does not only suffer from its high space complex-
ity. Its very expensive initialization phase can be by itself prohibitive in time. In fact, we
can informally say that AC4 has optimal worst-case time complexity but it almost always
reaches this worst-case. Wallace discussed this issue in [120]. In addition, even when the
initialization phase has finished, AC4 maintains a so accurate view of the process that it
spends a lot of effort updating its counters and traversing its lists. This is visible in Ex-
ample 3.31, where the removal of (y, 3) provoked traversal of S[y, 3] and counter updates,
whereas all remaining values had supports.

The non-binary version GAC4, proposed by Mohr and Masini in [93], is in the optimal
O(erdr) time complexity given in Section 3.3.1, where r is the greatest arity among all
constraints.

AC6

Bessiere and Cordier proposed AC6, a compromise between AC3 laziness and AC4 ea-
gerness [15, 14]. The motivation behind AC6 is both to keep the optimal worst-case time
complexity of AC4 and to stop the search for support for a value on a constraint as soon
as the first support is found, as done in Revise of AC3. In addition, AC6 maintains a
data structure lighter than AC4. In fact, the idea in AC6 is not to count all the supports a
value has on a constraint, but just to ensure that it has at least one. AC6 only needs lists
S, where S[xj , vj] contains all values for which (xj , vj) is the current support. That is,
(xi, vi) ∈ S[xj , vj] if and only if vj was the first support found for vi on cij . 6

In Algorithm 3.3, AC6 looks for one support (the first one or smallest one with respect
to the ordering on integers) for each value (xi, vi) on each constraint cij (line 3). When
(xj , vj) is found as the smallest support of (xi, vi) on cij , (xi, vi) is added to S[xj , vj], the
list of values currently having (xj , vj) as smallest support (line 4). If no support is found,
(xi, vi) is removed and is put in the list Q for future propagation (line 5). The propagation
loop (line 7) consists in propagating the consequences of the removal of values inQ. When
(xj , vj) is picked from Q, AC6 looks for the next support on cij for each value (xi, vi) in
S[xj , vj]. Instead of starting at minD(xj) as AC3 would do, it starts at the value of D(xj)
following vj (line 11). If a new support v′j is found, (xi, vi) is put in S[xj , v

′
j] (line 12).

Otherwise, (xi, vi) is removed and put in Q (line 14). When Q is empty, we know that all
remaining values have a current support on every constraint.

Like AC4, AC6 is a fine-grained algorithm because it propagates along values. It does
not reconsider constraint cij when the removed value (xj , vj) has no chance to provoke
another removal in D(xi), that is, when D(xi) ∩ S[xj , vj] = ∅.
Proposition 3.32 (AC6). AC6 achieves arc consistency on binary normalized networks in
O(ed2) time and O(ed) space.

Example 3.33. I show what the data structures of AC6 are on the example used for AC3
(Example 3.29) and for AC4 (Example 3.31), i.e., constraints c1 ≡ x ≤ y and c2 ≡ y �= z
and domainsD(x) = D(y) = {1, 2, 3, 4} andD(z) = {3}. In its initialization phase, AC6

6A similar technique, called ’watch literals’, has independently been proposed by Moskewicz et al. for
efficient unit propagation in their Chaff solver for SAT [97].

46 3. Constraint Propagation

Algorithm 3.3: AC6
function AC6(in X: set): Boolean ;

begin
/* initialization */;
Q← ∅; S[xj , vj] = 0,∀vj ∈ D(xj),∀xj ∈ X;1

foreach xi ∈ X, cij ∈ C, vi ∈ D(xi) do2

vj ← smallest value in D(xj) s.t. (vi, vj) ∈ cij ;3

if vj exists then add (xi, vi) to S[xj , vj];4

else remove vi from D(xi) and add (xi, vi) to Q;5

if D(xi) = ∅ then return false ;6

/* propagation */;
while Q �= ∅ do7

select and remove (xj , vj) from Q;8

foreach (xi, vi) ∈ S[xj , vj] do9

if vi ∈ D(xi) then10

v′
j ← smallest value in D(xj) greater than vj s.t. (vi, vj) ∈ cij ;11

if v′
j exists then add (xi, vi) to S[xj , v

′
j];12

else13

remove vi from D(xi); add (xi, vi) to Q;14

if D(xi) = ∅ then return false ;15

return true ;16

end

looks for one support (the smallest) for each value on each constraint and stores the fact
that a value (xj , vj) has been found as supporting (xi, vi) by adding (xi, vi) to S[xj , vj].
Thus, in its initialization, AC6 performs the same number of constraint checks as AC3,
namely 10+4 on c1 and 4+1 on c2. At the end of this phase, the data structures are the
following,

S[x, 1] = {(y, 1), (y, 2), (y, 3), (y, 4)} S[y, 1] = {(x, 1), (z, 3)}
S[x, 2] = {} S[y, 2] = {(x, 2)}
S[x, 3] = {} S[y, 3] = {(x, 3)}
S[x, 4] = {} S[y, 4] = {(x, 4)}

S[z, 3] = {(y, 1), (y, 2), (y, 4)}

and the list Q contains (y, 3) which has been removed. When AC6 enters the propagation
loop it pops (y, 3) from Q, S[y, 3] is traversed and a new support greater than 3 is sought
for (x, 3). (3, 4) ∈ c1(x, y), so (x, 3) is added to S[y, 4], which supports now both (x, 3)
and (x, 4). The deletion of (y, 3) required a single constraint check and the traversal of list
S[y, 3]. Note that S[y, 3] contained less values than in AC4 because AC6 stores a single
support per value.

AC2001

In fine-grained algorithms, such as AC4 or AC6, the propagation is value-oriented. The
deletion of a value (xj , vj) is directly propagated through Q on values (xi, vi) that had

C. Bessiere 47

Algorithm 3.4: Function Revise for AC2001
function Revise2001(in xi: variable; cij : constraint): Boolean ;

begin
CHANGE← false;1

foreach vi ∈ D(xi) s.t. Last(xi, vi, xj) �∈ D(xj) do2

vj ← smallest value in D(xj) greater than Last(xi, vi, xj) s.t. (vi, vj) ∈ cij ;3

if vj exists then Last(xi, vi, xj)← vj ;4

else5

remove vi from D(xi);6

CHANGE← true;7

return CHANGE ;8

end

(xj , vj) as support (that is, on values (xi, vi) that are in S[xj , vj]). Coarse-grained al-
gorithms are arc-oriented. They do not propagate the consequences of value removals to
other values. They propagate changes in the domain of a variable xj on the other variables
xi sharing a constraint c with xj : List Q contains pairs (xi, c) for which some variable xj
in X(c) has changed. Although coarse-grained algorithms are less precise in the way they
propagate, they have a double advantage. First, the architecture of constraint solvers (see
Section 3.8) usually supports an arc-oriented propagation and not a value-oriented one.
Second, all fine-grained algorithms require lists S[..] of supported values as data struc-
ture, which is more complex to implement and maintain. These were the motivations for
AC2001, the first (and only) optimal coarse-grained algorithm [24, 126, 25].

AC2001 follows the same framework as AC3, but achieves optimality by storing the
smallest support for each value on each constraint, like AC6. However, the way this infor-
mation is stored and used differs from that in AC6. AC2001 does not use lists S[xj , vj] to
store those (xi, vi) that have vj as smallest support on cij . It uses a pointer Last[xi, vi, xj]
that contains vj .

AC2001 differs from AC3 only by its Revise function and by its initialization phase
which needs to initialize the pointers Last[xi, vi, xj] to some dummy value smaller than
minD(xj). In Revise2001 (Algorithm 3.4), when a value vj in D(xj) is found to
support (xi, vi) on cij , AC2001 assigns vj to Last[xi, vi, xj] (line 4). The next time
(xi, cij) will be revised, supports will be sought for (xi, vi) only if Last[xi, vi, xj] is
no longer in D(xj) (line 2). More importantly, optimality is obtained because values in
D(xj) that are smaller than Last[xi, vi, xj] are not checked again because they were
already unsuccessfully checked in previous calls to Revise2001 (line 3).

Proposition 3.34 (AC2001). AC2001 achieves arc consistency on binary normalized net-
works in O(ed2) time and O(ed) space.

Example 3.35. Again I show the data structures of AC2001 on the example used for the
other algorithms, i.e., constraints c1 ≡ x ≤ y and c2 ≡ y �= z and domains D(x) =
D(y) = {1, 2, 3, 4} and D(z) = {3}. In its initialization phase, AC2001 looks for the
smallest support for each value on each constraint and stores it in the Last structure. It
performs exactly the same constraint checks as AC3 or AC6. At the end of this phase, the

48 3. Constraint Propagation

data structures are the following,

Last[x, 1, y] = 1 Last[y, 1, x] = 1 Last[y, 1, z] = 3
Last[x, 2, y] = 2 Last[y, 2, x] = 1 Last[y, 2, z] = 3
Last[x, 3, y] = 3 Last[y, 3, x] = 1 Last[y, 3, z] = nil
Last[x, 4, y] = 4 Last[y, 4, x] = 1 Last[y, 4, z] = 3

Last[z, 3, y] = 1

and the list Q contains (x, c1) because (y, 3) has been removed while revising c2. When
AC2001 enters the propagation loop it pops (x, c1) from Q, and calls Revise(x, c1). It
checks whether Last[x, 1, y], Last[x, 2, y], Last[x, 3, y] and Last[x, 4, y] are still in
D(y). Last[x, 3, y] is no longer in D(y), so a new support greater than 3 is sought for
(x, 3). (3, 4) satisfies c1(x, y), so Last[x, 3, y] receives value 4. The deletion of (y, 3)
required checking if the Last pointers of values in D(x) were still in D(y), and a single
constraint check to find a new support for (x, 3).

AC2001 can easily be extended to a GAC2001 non-binary version [25].

3.3.3 Other Improvements

I have presented the main techniques to enforce arc consistency on a network. Other kinds
of techniques exist to reduce the cost of arc consistency. They are usually added to one
of the arc consistency algorithms presented above to improve its performance. I cannot be
exhaustive, but here are two of those types of techniques.

Bidirectionality

Constraints are said to be multidirectional because when a tuple τ is found to support
(xi, vi) on a constraint c, it is also a support for any (xj , vj) ∈ τ on the same constraint.
The binary version of multidirectionality is called bidirectionality. This property, which
can seem obvious, is not used as much as it could be by the algorithms presented so far.

In fact, AC3 partially uses it when it avoids putting (xj , c) in Q after modifying xi in
Revise(xi, c) (line 12 in Algorithm 3.1): A value vi removed fromD(xi) had no support
on c, so its removal cannot discard a support for a value in D(xj).

Gaschnig proposed to use bidirectionality more explicitly. The algorithm DEE [62]
is an extension of AC3 that uses a ‘Revise-both’ procedure to process Revise(xi, cij)
and Revise(xj , cij) in sequence. As a first step, Revise-both performs the same work as
Revise(xi, cij), but in addition, marks every value in D(xj) which has been found in a
support for a value in D(xi). Once all values of xi are checked, Revise-both revises xj on
cij by only looking for support for unmarked values of D(xj). Values marked during the
first phase are guaranteed to have support. DEE does not store these marks from a call to
Revise-both to another. Besides, in the propagation phase, arcs are often revised in only
one direction at a time, which reduces the gain of DEE.

Van Dongen proposed a heuristic approach of using bidirectionality [114]. The algo-
rithm ACb uses the same idea as DEE, trying to avoid work when both arcs (xi, cij) and
(xj , cij) are inQ. ACb does not check supports in lexicographic ordering but tries to maxi-
mize the number of ‘double-support’ checks. A double-support check is a constraint check
cij(vi, vj) for which neither vi nor vj are known to be supported on cij . The motivation is

C. Bessiere 49

that if cij(vi, vj) is true, we deduce support for two values at the price of a single constraint
check.

Bidirectionality was used even more extensively in AC7 [18, 19], an extension of AC6.
Thanks to the lists of supported values of AC6, and additional pointers, AC7 fully exploits
bidirectionality. This means that a constraint check cij(vi, vj) is performed when looking
for support for (xi, vi) on cij only if cji(vj , vi) has never been checked while looking for
supports for (xj , vj) on cji and there does not exist v′j ∈ D(xj) such that cji(v′j , vi) has
already been successfully checked as support for (xj , v

′
j). The non-binary version of AC7

[23] is used in IlogSolver [71] to propagate general constraints. As for GAC4, it runs in
the optimal O(erdr) time complexity.

Lecoutre et al. proposed several extensions of AC2001 that permit to adapt the tech-
niques used in AC7 to coarse-grained algorithms [81]. AC3.2 is an algorithm that partially
exploits bidirectionality on positive constraint checks. AC3.3 fully exploits bidirectional-
ity on positive constraint checks. AC3.2* and AC3.3* are extensions of AC3.2 and AC3.3
that also exploit bidirectionality on negative constraint checks, like in AC7. An exten-
sive experimentation suggests that AC3.3 is the best stand alone arc consistency algorithm,
whereas AC3.2 is the best when maintained during search.

Ordering the propagation list

Another way of improving the time needed to enforce arc consistency is by revising first
the arcs that will prune the most or that will be the cheapest to revise. In their seminal paper
on the subject, Wallace and Freuder proposed several heuristics to reorder the propagation
list in AC3 [121]. Among the different heuristics they analyzed, the best seemed to be the
one selecting first the arcs (xi, cij) such that the variable xj against which to revise has the
smallest domain.

Gent et al. applied to arc consistency the general criterion of ‘constrainedness’ defined
in [65]. They proposed to select first the arc that minimizes the constrainedness κac of
arc consistency [64]. They show that this heuristic is a good way to reduce the number of
constraint checks but is heavy to compute. Interestingly, approximations of their criterion
give some of the good heuristics proposed by Wallace and Freuder.

The most comprehensive study on ordering heuristics for coarse-grained arc consis-
tency algorithms was recently proposed by Boussemart et al. in [28]. They not only
studied heuristics to reorder the propagation list Q, but also the type of information we
put in it. Q can be a list of arcs to revise, as in regular AC3 (arc-oriented revision), a list
of variables whose domain has been modified as in McGregor’s version (variable-oriented
revision), or a list of constraints which had a variable of their scheme modified. Lists of
variables being much shorter than lists of arcs, they showed that heuristics handling Q are
less time consuming when incorporated in variable-oriented implementations. Since Mc-
Gregor’s algorithm suffers from redundant revisions (see Subsection 3.3.2), Boussemart et
al. proposed a modified version that avoids these redundant revisions while keeping the
advantage of variable-oriented revision. As for saving constraint checks, they found that
several heuristics close to that already proposed by Wallace and Freuder or by van Dongen
[121, 113] show good performance. Among all, they recommend a variable-oriented im-
plementation of coarse-grained algorithms (they experimented with AC3.2) in which the
variable with the smallest domain is picked first from Q.

50 3. Constraint Propagation

3.4 Higher Order Consistencies

In Section 3.3, we have seen that arc consistency, which is the most natural technique
for tightening a network, has received great attention from the community. Nevertheless,
this is not the only way to tighten a network, and as early as in the 70’s, several authors
proposed techniques that discover more inconsistencies than arc consistency.

3.4.1 Path Consistency

Path consistency was proposed by Montanari as a necessary condition for the consistency
of pairs of values in binary normalized networks [95]. Roughly speaking, it says that if
for a given pair of values (vi, vj) on a pair of variables (xi, xj) there exists a sequence of
variables from xi to xj such that we cannot find a sequence of values for these variables
starting at vi and finishing at vj , and satisfying all binary constraints along the sequence,
then (vi, vj) is inconsistent.

Definition 3.36 (Path consistency). Let N = (X,D,C) be a normalized network.

• Given two variables xi and xj in X , the pair of values (vi, vj) ∈ D(xi)×D(xj) is
path consistent iff for any sequence of variables Y = (xi = xk1

, xk2
, . . . , xkp

= xj)
such that for all q ∈ [1..p − 1], ckq,kq+1

∈ C, there exists a tuple of values (vi =
vk1

, vk2
, . . . , vkp

= vj) ∈ πY (D) such that for all q ∈ [1..p − 1], (vkq
, vkq+1

) ∈
ckq,kq+1

.

• The network N is path consistent (PC) iff for any pair of variables (xi, xj), i �= j,
any locally consistent pair of values on (xi, xj) is path consistent.

Example 3.37. Consider the network N with variables x1, x2, x3, domains D(x1) =
D(x2) = D(x3) = {1, 2}, and C = {x1 �= x2, x2 �= x3}. N is not path consistent
because neither ((x1, 1), (x3, 2)) nor ((x1, 2), (x3, 1)) can be extended to a value of x2

satisfying both c12 and c23. The network N ′ = (X,D,C ∪ {x1 = x3}) is path consistent.

Montanari observed that it is sufficient to enforce path consistency only on paths of
length 2 to obtain the same level of local consistency as path consistency.

Definition 3.38 (2-path consistency). Let N = (X,D,C) be a normalized network.

• Given two variables xi and xj in X , the pair of values (vi, vj) ∈ D(xi)×D(xj) is
2-path consistent iff for any third variable xk ∈ X with cik ∈ C and ckj ∈ C, there
exists a value vk ∈ D(xk) such that (vi, vk) ∈ cik and (vj , vk) ∈ ckj .
• The network N is 2-path consistent iff for any pair of variables (xi, xj), i �= j, any

locally consistent pair of values on (xi, xj) is 2-path consistent.

Proposition 3.39. Path consistency and 2-path consistency are equivalent.

Path consistency does not reduce domains of variables but removes pairs of values. As
a result, the path consistent closure of a normalized network N is not in PsolND . I define
PN2 as the subset of PN where networks are normalized and differ fromN only by adding
or tightening binary constraints. The path consistent closure PC(N) of N is the union
(according to �N) of all path consistent networks in PN2. In PN2, there can be several

C. Bessiere 51

networks nogood-equivalent to PC(N) because constraints with the same scheme can dif-
fer on non valid tuples, which does not change the set of locally inconsistent instantiations.
Nevertheless, PC algorithms represent modified constraints extensionally, generating only
embedded constraints. So, if we consider networks where all binary constraints are embed-
ded, the relation � is a partial order on PN2 and PC algorithms are guaranteed to converge
on PC(N).

Several algorithms achieving PC were proposed in the literature. Each time a new
technique was proposed for arc consistency, it was soon applied to path consistency. PC1
[95, 87] can be seen as the path consistency counterpart of the brute-force AC1. PC2 is the
extension of AC3 to path consistency [87]. PC3 [92] and PC4 [68] use lists of support, like
AC4, to reach optimality. PC5 [111] and PC6 [32] extend AC6. PC7 [31] and PC8 [33] are
simplifications of PC6 that perform well in practice. PC5++ [111] applies bidirectionality
of AC7. Finally, PC2001 [126, 25] extends AC2001.

A drawback of path consistency is that enforcing it can produce additional constraints
that were not in CN (see Example 3.37). Furthermore, even when a constraint c(xi, xj) is
already in CN , its refinement by PC can impose to change its semantics and to represent
this new constraint extensionally whereas it was given as a function.

Example 3.40. Consider the network with variables x1, x2, x3, domains D(x1) = D(x2)
= D(x3) = {1, 2, 3, 4}, and C = {|x1 − x2| ≥ 2, x2 �= x3, x1 �= x3}. These three con-
straints can be given by their arithmetic expression if the constraint toolkit in use permits
them. However, enforcing PC will discard the tuples (2, 4), and (3, 1) from c13, which
probably requires a storage in extension of this constraint. If c13 had a specific propaga-
tion algorithm for enforcing AC on it (see Section 3.8), it no longer works on this new
constraint.

The last thing we can notice is that even if path consistency is usually considered in
binary normalized networks, nothing in Definition 3.36 prevents its use on non-binary
normalized networks. Non-binary constraints are just ignored.

3.4.2 k-Consistencies

A few years after Montanari’s paper, Freuder extended the notion of local consistencies
stronger than AC to a whole class of consistencies, called k-consistencies [53, 54].

Definition 3.41 (k-consistency). Let N = (X,D,C) be a network.

• Given a set of variables Y ⊆ X with |Y | = k − 1, a locally consistent instantiation
I on Y is k-consistent iff for any kth variable xik ∈ X \ Y there exists a value
vik ∈ D(xik) such that I ∪ {(xik , vik)} is locally consistent.

• The network N is k-consistent iff for any set Y of k − 1 variables, any locally
consistent instantiation on Y is k-consistent.

Given a normalized network N , PNk denotes the subset of PN containing all normal-
ized networks N ′ in which only constraints of arity k can differ from N . More formally,
N ′ ∈ PNk if and only if N ′ ∈ PN , DN ′ = DN , and any constraint in CN ′ \ CN has
arity k. The k-consistent closure of N is the union (according to �N) of all k-consistent

52 3. Constraint Propagation

networks inPN(k−1). (Enforcing k-consistency makes explicit nogoods of size k−1.) I re-
strict to normalized networks because �N is not defined on arbitrary networks (see Section
3.2). � is a partial order on PN(k−1) only if all constraints of arity k − 1 are embedded.

As observed by Dechter [46], even if 3-consistency has strong similarities with (2-)path
consistency, it is not equivalent. Indeed, 3-consistency ensures that any instantiation of
length 2 can be extended to an instantiation involving any third variable without violating
any constraint, whereas (2-)path consistency only guarantees that binary constraints are
not violated.

Example 3.42. Suppose a network involving variables x1, x2, x3 with domains D(x1) =
D(x1) = D(x1) = {1, 2}, and a single constraint c(x1, x2, x3) = {(1, 1, 1), (2, 2, 2)}.
This network is path consistent because it does not contain any binary constraint. It is
not 3-consistent because the instantiation (x1 = 1, x2 = 2), which is locally consistent,
cannot be extended consistently to x3. 3-consistency produces the three binary constraints
c12 = {(1, 1), (2, 2)}, c23 = {(1, 1), (2, 2)} and c13 = {(1, 1), (2, 2)}.

k-consistency ensures that each time we have a locally consistent instantiation of size
k − 1, we can consistently extend it to any kth variable. So, the question is ’how to build
locally consistent instantiations of size k − 1?’. Strong k-consistencies are properties that
guarantee that the network is j-consistent for 1 ≤ j ≤ k. Thus, we can build from scratch
a locally consistent instantiation of size k without any backtrack.

Definition 3.43 (Strong k-consistency). A network is strongly k-consistent iff it is j-consis-
tent for all j ≤ k.

Given a normalized network N , P∗
Nk denotes the subset of PN containing all normal-

ized networks N ′ in which only the domains and constraints of arity at most k can differ
from N . More formally, N ′ ∈ P∗

Nk if and only if N ′ ∈ PN , DN ′ ⊆ DN , and any con-
straint in CN ′ \ CN has arity at most k. The strong k-consistent closure of N is the union
of all strongly k-consistent networks in P∗

N(k−1). The relation � is not a partial order
in P∗

N(k−1) even if we restrict to embedded constraints. As a consequence, an algorithm
achieving strong k-consistency by iteratively enforcing j-consistency, 1 ≤ j ≤ k, is not
guaranteed to terminate on the strong k-consistent closure of N . It may terminate on a
network of P∗

N(k−1) nogood-equivalent to the closure.

Example 3.44. Consider the network with variables x1, . . . , x6, domains equal to {1, 2}
and C = {c1(x1, x2, x3, x4), c2(x2, x3, x4, x5), x2 = x6, x6 �= x3}, with c1 = {(1112),
(1121), (1211), (2122), (2212), (2221)} and c2 = {(1112), (1211), (1222), (2112),
(2122), (2222)}. If we apply 4-consistency on x2, x3, x4 wrt x1 and x5, we derive the
constraint c3(x2, x3, x4) = {(121), (122), (211), (212)}. 3-consistency on x2, x3 wrt x4

produces the constraint c4(x2, x3) = {(12), (21)}. By applying first 3-consistency to
x2, x3 wrt x6, the constraint c4 would have been produced before c3. So c3 would have
never been generated because all its tuples are already inconsistent with c4.

The algorithms proposed by Freuder and Cooper in [53, 37] both reach a fixpoint which
is not the strong k-consistent closure. They make all constraints (up to arity k − 1) as
explicit as possible. For instance, if a pair of values ((xi, vi), (xj , vj)) is path inconsistent,
they create a constraint on every superset Y of {xi, xj} with |Y | < k, and this constraint
forbids all tuples τ on Y where τ [(xi, xj)] = (vi, vj). Cooper showed that his algorithm

C. Bessiere 53

runs in O(nkdk), which is the optimal time complexity for strong k-consistency. The
algorithm proposed by Cooper requires O(nkdk) space. The optimal space complexity for
strong k-consistency is O(nk−1dk−1) because we must store all the constraints of arity
k− 1 that k-consistency creates each time an instantiation of size k− 1 does not extend to
a kth variable. .

I said in Section 3.2 that the maximal amount of simplification we can perform on a
network is to reach a globally consistent network, that is, a network on which all locally
consistent instantiations can be extended to solutions. Strong n-consistency guarantees
that.

Proposition 3.45. If a network is strongly n-consistent then it is globally consistent.

Enforcing global consistency on an arbitrary network is far too space consuming (in
O(nn−1dn−1)). Freuder gave conditions on the associated hypergraph for which strong
k-consistency (k < n) is sufficient to allow a backtrack-free search [54]. In [47], Dechter
and Pearl developed adaptive consistency (AdC), a technique inspired from dynamic pro-
gramming. Given a total ordering on the variables, AdC adapts the level of k-consistency
enforced on each variable xi depending on the number of variables that share a constraint
with xi and that precede it in the ordering. The obtained network guarantees backtrack-free
search. (See Chapter 7.)

In [55], Freuder proposed (i, j)-consistency, a generalization of k-consistency where
we do not guarantee that instantiations of size k−1 can be extended to instantiations of size
k, but instantiations of size i can be extended to j additional variables. k-consistency is
(k − 1, 1)-consistency. Since the main drawback of k-consistencies is the huge space they
require to store all forbidden instantiations of size k− 1, we can design local consistencies
requiring less space by setting i to a small value in (i, j)-consistency.

3.4.3 Montanari’s Decomposability and Minimality

Montanari characterized networks that can be made globally consistent in polynomial
space. These are networks for which the set of solutions is a decomposable relation [95],
also named binary decomposable relation in [46].

Definition 3.46 (Decomposable in the sense of Montanari).

• A relation ρ with scheme X is binary-representable iff there exists a binary network
N , XN = X , such that sol(N) = ρ.

• A relation ρ with scheme X is decomposable in the sense of Montanari iff for all
Y ⊆ X , πY (ρ) is binary-representable.

• A network N is decomposable in the sense of Montanari iff sol(N) is a decompos-
able relation.

Example 3.47. ([95]) Consider the network N in Fig. 3.4, with variables x1, x2, x3,
x4, domains D(x1) = {1, 2, 3, 4}, D(x2) = D(x3) = D(x4) = {0, 1}, and constraints
as shown in the boxes on the figure. sol(N) is equal to the relation R on the top right-
hand corner of the figure, which is thus representable by a binary network. However, R
is not decomposable in the sense of Montanari because π{x2,x3,x4}(R) = {(000), (101),
(110), (111)} = {x2 = x3 ∨ x4} cannot be represented by a binary network. (Any binary
network on x2, x3, x4 that accepts all tuples in the relation also accepts the tuple (100).)

54 3. Constraint Propagation

2 1
1 0

4 1
3 1

1

0

1

0

1

0

1

2

3

4

X1 X2 X3 X4

 1 0 0 0
 2 1 0 1
 3 1 1 0
 4 1 1 1

R:

X3

X2

X1
X4

2 1
1 0

4 1
3 0

2 0
1 0

4 1
3 1

c(X1,X4):c(X1,X3):

c(X1,X2):

Figure 3.4: A relation R that can be represented by a binary network but which is non
decomposable in the sense of Montanari.

Proposition 3.48. If a networkN = (X,D,C) is decomposable in the sense of Montanari
then there exists a binary network GN = (X,D,CG), which is globally consistent and
sol(N) = sol(GN).

Decomposability of Montanari is stronger than what is commonly called ‘decompos-
able constraint’. (See [63] or Section 3.8.2 for more details.)

Example 3.47 shows that it is not because a network is binary that it is decomposable in
the sense of Montanari. For binary networks, Montanari proposed the concept of minimal
network, which is the best approximating binary network for global consistency. This is
thus another technique for tightening binary networks.

Definition 3.49 (Minimal network). Given a binary networkN = (X,D,C), the minimal
network of N is the binary normalized and embedded in D network MN = (X,D,CM)
such that any locally consistent instantiation of length 2 is globally consistent and sol(MN)
= sol(N).

Corollary 3.50. Given a binary network N , if sol(N) is decomposable in the sense of
Montanari, the minimal network MN is globally consistent.

Minimality on a binary network could be considered as a kind of local consistency. But
local consistencies usually refer to properties which are polynomial to enforce. Building
the minimal network is obviously intractable because once we have the minimal network, it
is constant time to decide consistency of the original network (by checking non emptiness
of any constraint).

The question of building the minimal network was called the ‘central problem’ by
Montanari. This led to some confusion as it was sometimes believed that generating a
solution is polynomial if the network is minimal. Dechter partially fixed the ambiguity by
saying that:

“it is still not clear, however, whether or not generating a single solution of
a minimal network is hard, even though empirical experience shows that it is
normally easy. Nevertheless, we do speculate that generating a single solution
from the minimal network is hard...”

We can say a little more about this.

C. Bessiere 55

Proposition 3.51 (Generating solutions of a minimal network). Generating a solution of
a minimal network MN is not backtrack-free (unless ΠP

2 = ΣP2).

Proof. The clause entailment problem is known to be non compilable7 unless ΠP
2 = ΣP2

[29]. In [38], Cros reduced the clause entailment problem to the compilability of the prob-
lem of the global consistency of a partial instantiation in a binary network N . If build-
ing solutions in a minimal network was backtrack-free, it would be polynomial to answer
whether a partial instantiation is globally consistent or not. Furthermore, a minimal net-
work has a size in O(n2d2), which is polynomial in the size of N . Hence, the problem
of the consistency of partial instantiations would be compilable, and clause entailment as
well.

3.4.4 Consistencies Based on Constraints

All consistencies I studied until now (except arc consistency) are properties of partial in-
stantiations of variables wrt other variables. They do not take into account the network
topology, i.e., which sets of variables are linked by a constraint and which are not. This
is a limitation for constraint propagation, which creates new constraints everywhere in the
network. This is also a limitation on non-binary networks if we want to link the level
of consistency and the hypergraph structure in backtrack-free conditions. In this section,
I restrict my attention to embedded networks because all the works I present used this
restriction.

Janssen et al. proposed a first local consistency based on constraints instead of variables
[72]. It was applied from works on relational databases [7].

Definition 3.52 (Pairwise consistency). Given an embedded network N , a pair of con-
straints c1 and c2 in CN is pairwise consistent iff any tuple on X(c1) (resp. on X(c2))
satisfying c1 (resp. c2) can be extended to an instantiation on X(c1)∪X(c2) satisfying c2
(resp. c1), that is, iff πX(c1)∩X(c2)(c1) = πX(c1)∩X(c2)(c2). N is pairwise consistent iff
any pair of constraints in CN is pairwise consistent.

Example 3.53. Consider the network with variables x1, x2, x3, x4, domains D(x1) =
D(x2) = D(x3) = D(x4) = {1, 2} and constraints c1(x1, x2, x3) = {(121), (211),
(222)} and c2(x2, x3, x4) = {(111), (222)}. This network is generalized arc consistent.
However, it is not pairwise consistent because the tuple (121) from c1 is not compatible
with any tuple in c2.

Janssen et al. showed in [72] that pairwise consistency is equivalent to 2-consistency on
the dual encoding of the network, where dual variables represent constraints of the original
network [48].

In a database context, Gyssens proposed k-wise consistency, a direct extension of pair-
wise consistency where we consider k constraints at a time instead of two [67]. Jégou
applied this notion to constraint networks [73].

7The problem of asking queries of a class Q to instances of a class P is said to be compilable if there exists a
polynomial space transformation p′ of any instance p of P (the time for the transformation should just be finite)
such that any query q from Q asked on p can be answered in polynomial time by using p′ [29].

56 3. Constraint Propagation

Definition 3.54 (k-wise consistency). Given an embedded network N , a set of constraints
{c1 . . . , ck} in CN is k-wise consistent iff for any ci, i ∈ [1..k], any tuple on X(ci) satis-
fying ci can be extended to an instantiation on

⋃k
j=1X(cj) satisfying cj for all j ∈ [1..k],

that is, iff ci = πX(ci)(��
k
j=1 cj). N is k-wise consistent iff for all {c1 . . . , ck} in CN ,

{c1 . . . , ck} is k-wise consistent.

k-wise consistency is the constraint-based counterpart of k-inverse consistency (see
Section 3.5). Enforcing k-wise consistency does not alter the associated hypergraph. It
just alters existing constraints.

In [74], Jégou proposed another duality between variables and constraints. He presents
hyper k-consistency. This is the constraint-based counterpart of k-consistency.

Definition 3.55 (Hyper k-consistency). Let N be an embedded network. A set {c1, . . . ,
ck−1} of k − 1 constraints in CN is hyper k-consistent relative to a kth constraint ck iff
any instantiation on ∪k−1

i=1X(ci) satisfying c1, . . . , ck−1 has an extension on the variables
in X(ck) that satisfies ck, that is, iff πY (��k−1

i=1 ci) ⊆ πY (ck), where Y = (∪k−1
i=1X(ci)) ∩

X(ck). N is hyper k-consistent iff for all {c1, . . . , ck−1} ⊆ CN , for all ck ∈ CN ,
{c1, . . . , ck−1} is hyper k-consistent relative to ck.

Pairwise consistency is both 2-wise consistency and hyper 2-consistency.
Based on definition 3.55, Jégou characterized some sufficient conditions for a network

to be consistent. These conditions link the level of hyper k-consistency of the network to
the width of its hypergraph. Nevertheless, hyper k-consistency inherits one of the draw-
backs of k-consistencies because enforcing hyper k-consistency creates new constraints on
sets of variables that were not linked in the original network.

Dechter and van Beek proposed a new form of local consistency which is more bound
to schemes of constraints already in the network than hyper k-consistency is. They refer to
those new types of consistencies as relational consistencies [49].

Definition 3.56 (Relational arc consistency). LetN be an embedded network. A constraint
c in CN is relationally arc consistent relative to a subset of variables Y ⊆ X(c) iff any
locally consistent instantiation on Y has an extension to a tuple on X(c) that satisfies c.
c is relationally arc consistent iff it is relationally arc consistent relative to every subset
Y of X(c). N is relationally arc consistent iff every constraint in CN is relationally arc
consistent.

An advantage of relational arc consistency is that enforcing it does not create con-
straints between variables not linked in the original network. However, it creates subcon-
straints on subsets of the schemes of the original constraints, which can be prohibitive on
large arity constraints because it can create up to 2|X(c)| subconstraints for a constraint c.

Definition 3.57 (Relationalm-consistency). LetN be an embedded network. A set {c1, . . . ,
cm} of m constraints in CN is relationally m-consistent relative to a subset of vari-
ables Y ⊆ ⋃m

i=1X(ci) iff any locally consistent instantiation on Y has an extension to
⋃m
i=1X(ci) that satisfies c1, . . . , cm simultaneously. A set {c1, . . . , cm} of m constraints

in CN is relationallym-consistent iff it is relationally m-consistent relative to every subset
Y of

⋃m
i=1X(ci). N is relationally m-consistent iff every set of m constraints in CN is

relationally m-consistent.

C. Bessiere 57

Relational m-consistency has the same drawbacks as hyper k-consistency because it
can create new constraints on any subset of variables involved in one of m constraints.
Dechter and van Beek proposed a bounded version of relationalm-consistency that permits
to tackle the space and time explosion.

Definition 3.58 (Relational (i,m)-consistency). Let N be an embedded network. A set
of constraints {c1, . . . , cm} ⊆ CN is relationally (i,m)-consistent iff it is relationally m-
consistent relative to every subset of variables Y ⊆ ⋃m

i=1X(ci), |Y | = i. N is relationally
(i,m)-consistent iff every subset of m constraints in CN is relationally (i,m)-consistent.
N is strong relational (i,m)-consistent iff it is relationally (j,m)-consistent for every
j ≤ i.

Relational arc consistency corresponds to strong relational (n, 1)-consistency and rela-
tional m-consistency corresponds to strong relational (n,m)-consistency. Generalized arc
consistency is relational (1, 1)-consistency. Relational (1,m)-consistencies are domain-
based consistencies, and so, do not modify the set of constraints.

As in the case of strong k-consistencies, algorithms enforcing strong relational (i,m)-
consistencies can converge to different networks depending on the order in which they
generate new constraints.

Dechter and van Beek proposed an algorithm enforcing relational (i,m)-consistency.
Its complexity is exponential in i ·m. They also proposed an algorithm for adaptive rela-
tional consistency. It is inspired from adaptive consistency (see Chapter 7) and applies the
right level of relational consistency to guarantee a backtrack-free search for solutions wrt
a given ordering of the variables.

Walsh performed an extensive theoretical comparison of relational consistencies with
k-consistencies, k-inverse consistencies and generalized arc consistency [123].

3.5 Domain-Based Consistencies Stronger than AC

There exist local consistencies that permit to prune more values than arc consistency while
keeping the set of constraints unchanged (as opposed to what is done by k-consistencies
and consistencies based on constraints —see Section 3.4). The first ones I present are
different kinds of reasoning we can apply on triples of variables. The others involve the
whole neighborhood of a variable or check local consistency of the whole network after a
single assignment of a variable.

3.5.1 Triangle-Based Local Consistencies

The local consistencies defined here are limited to binary normalized networks. They all
deal with ‘triangles’ of constraints, namely triples of variables connected two-by-two by
binary constraints.

The first local consistency following this line of research is Restricted Path Consis-
tency (RPC), proposed by Berlandier [13]. The motivation for RPC is to remove more
inconsistent values than arc consistency whereas avoiding the cost of path consistency.
Path consistency removes all pairs of values that cannot be extended to a third variable.
The idea of RPC is to try to extend only those pairs of values that if removed, would lead
to arc inconsistency of a value. So, in addition to arc consistency, RPC guarantees path

58 3. Constraint Propagation

(a)

1

2

1

1

2Xj >= Xk

Xi + Xk > 2

Xi >= Xj

Xi Xj

2

Xk

(b)

1

2

3

1

2

1

2

3
1 2

forbidden pair of values:

Xi + Xk > 2

Xj * Xk < 4

Xi + Xj > 2

Xi

Xj

Xk

Figure 3.5: (a) Network on which RPC prunes more than AC: (xi, 1) is not RPC whereas
the whole network is AC. (b) Network on which PIC prunes more than RPC: (xi, 1) is not
PIC whereas the whole network is RPC.

consistency of the pairs of values ((xi, vi), (xj , vj)) that are the only support for (xi, vi)
on cij . If such a pair is path inconsistent, its deletion would lead to the arc inconsistency of
(xi, vi). Thus (xi, vi) can be removed. These few additional path consistency checks allow
the detection of more inconsistent values than arc consistency without having to delete any
pair of values, and so leaving the structure of the network unchanged.

Definition 3.59 (Restricted path consistency). A binary normalized network N = (X,D,
C) is restricted path consistent (RPC) iff it is arc consistent and for all xi ∈ X , for all
vi ∈ D(xi), for all cij ∈ C such that (xi, vi) has a unique support ((xi, vi), (xj , vj)) on
cij , for all xk ∈ X linked to both xi and xj by a constraint, there exists vk ∈ D(xk) such
that (vi, vk) ∈ cik and (vj , vk) ∈ cjk.

RPC is strictly stronger than AC. An example of a network on which RPC prunes more
values than AC is shown in Figure 3.5. Berlandier proposed an algorithm inO(end3). The
optimal complexity of achieving RPC on a binary normalized network is in O(en+ ed2 +
td2), where t is the number of triples of variables (x,, xj , xk) with cij , cjk and cik all in C.
An algorithm with this optimal time complexity was presented by Debruyne and Bessiere
[42].

In [57], Freuder and Elfe proposed other alternatives to enforce local consistencies
stronger than AC whereas modifying only the domains. The idea is to take the inverse of
what is done by k-consistency. k-consistency (or (k − 1, 1)-consistency) ensures that any
locally consistent instantiation of size k − 1 can be extended to any kth variable in a con-
sistent way. This implies the explicit removing of all instantiations of size k−1 that cannot
fit this property. k-inverse consistency ensures that any locally consistent instantiation of
size 1 can be consistently extended to any k − 1 additional variables. This is (1, k − 1)-
consistency. Since 2-inverse consistency is the same as 2-consistency, the simplest non
trivial such inverse consistency is 3-inverse consistency, or path-inverse consistency (PIC),
as called in [57].

Definition 3.60 (Path inverse consistency). A binary normalized network N = (X,D,C)
is path-inverse consistent (PIC) iff for all xi ∈ X , for all vi ∈ D(xi), for all xj , xk ∈ X ,
there exists vj ∈ D(xj) and vk ∈ D(xk) such that ((xi, vi), (xj, vj), (xk, vk)) is locally
consistent.

C. Bessiere 59

(a)

1

2

1

2

3

1

2

1

2

Xj

Xm

Xi

2Xi <> Xj

Xi + Xm >2

Xj >= Xk

Xj * Xm < 6

Xi + Xk > 2

Xk

(b)

1

2

1

2

1

2

1

2 1 2

forbidden pair of values:

XjXi

Xk

Xm

Xi <= Xk

Xk <= Xj

Xj <= Xm

Xi + Xm < 4

Figure 3.6: (a) Network on which maxRPC prunes more than PIC: (xi, 1) is not maxRPC
whereas the whole network is PIC. (b) Network on which SAC prunes more than maxRPC:
(xi, 2) is not SAC whereas the whole network is maxRPC.

PIC is strictly stronger than RPC. An example of a network on which PIC prunes
more values than RPC is shown in Figure 3.5. Freuder and Elfe proposed an algorithm in
O(en2d4). In [41], Debruyne proposed some sufficient conditions for the path-inverse con-
sistency of a network. They permit to avoid some constraint checks. Debruyne presented
an optimal algorithm for PIC that runs in O(en+ ed2 + td3).

Following RPC and PIC, Debruyne and Bessiere proposed max-restricted path consis-
tency (maxRPC) [42]. maxRPC still increases the amount of local consistency on triangles
of variables. Given a value (xi, vi) and a constraint cij , maxRPC ensures that (xi, vi) has
a support on cij path consistent on any third variable.

Definition 3.61 (Max-restricted path consistency). A binary normalized network N =
(X,D,C) is max-restricted-path consistent (maxRPC) iff for all xi ∈ X , for all vi ∈
D(xi), for all cij ∈ C, there exists vj ∈ D(xj) such that (vi, vj) ∈ cij and for all xk ∈ X
there exists vk ∈ D(xk) with ((xi, vi), (xj, vj), (xk, vk)) locally consistent.

maxRPC is strictly stronger than PIC. An example of a network on which maxRPC
prunes more values than PIC is shown in Figure 3.6. An optimal algorithm for maxRPC
was proposed in [42]. It runs in O(en+ ed2 + td3).

3.5.2 Consistency According to the Neighborhood

Since k-inverse consistency is polynomial with the exponent depending on k, checking
k-inverse consistency is prohibitive if k is large. However, if variables are not uniformly
constrained, it can be worthwhile to adapt the level of k-inverse consistency to the size
of their neighborhood, focusing filtering effort on the most constrained variables (as it
is done in Adaptive consistency —see Section 3.4.2). This is the basis of neighborhood
inverse consistency (NIC, [57]), which ensures that every value vi in a domain D(xi) can
be extended consistently to all the neighbors of xi.

Definition 3.62 (Neighborhood inverse consistency). A network N = (X,D,C) is neigh-
borhood-inverse consistent (NIC) iff for all xi ∈ X , for all vi ∈ D(xi), the instantiation

60 3. Constraint Propagation

(xi, vi) can be extended to a locally consistent instantiation on the set of all variables
involved in a constraint with xi.

An algorithm for NIC was proposed in [57]. It runs in O(g2(n+ ed)dg+1), where g is
the maximum degree of a variable in the associated hypergraph. It is not proved optimal.
Anyway, it seems difficult to go below the exponential factor nd ·dg because every value of
every variable must be proved consistent with its neighborhood (possibly of size g). NIC
is strictly stronger than maxRPC.

NIC networks do not have the good property of backtrack-free search that adaptive
consistent networks have. Although achieving NIC is exponential in the size of the largest
neighborhood, it guarantees neither backtrack-free search nor consistency of the network.
In addition, the behavior of NIC is dependent on the structure of the network. If two vari-
ables xi and xj are not neighbors, the network obtained by adding a universal constraint
allowing all the pairs of values (vi, vj) ∈ D(xi)×D(xj) between xi and xj is equivalent
to the initial one. However, as opposed to the other local consistencies, NIC is affected
by this change because the neighborhood of xi has changed. NIC can detect more in-
consistent values. Obviously, this process increases time complexity because the sizes of
neighborhoods increase.

3.5.3 Singleton Consistencies

A general technique, which has been used in several areas of automated reasoning consists
in trying in turn different assignments of a value to a variable, and performing constraint
propagation on the subproblem obtained by this assignment. If the problem is found to
be inconsistent, this means that this value does not belong to any solution and thus can be
pruned. This kind of technique was used on the bounds of interval domains in scheduling
(’shaving’ in [90]) or on continuous CSPs (3B-consistency in [83]). This technique was
also used on literals as a way to derive better variable ordering heuristics in DPLL for SAT
formulas (by counting the size of the remaining clauses after instantiation of a literal and
unit propagation) in [52, 85]. Finally, it was formalized as a class of local consistencies
in [43, 102, 44] under the name ‘singleton consistencies’. I give the definition in the case
where the amount of propagation applied to each subproblem is arc consistency. Any other
local consistency can be used in a similar way. In the following, the subnetwork obtained
from a network N by reducing the domain of a variable xi to the singleton {vi} is denoted
by N |xi=vi

.

Definition 3.63 (Singleton arc consistency). A network N = (X,D,C) is singleton arc
consistent (SAC) iff for all xi ∈ X , for all vi ∈ D(xi), the subproblem N |xi=vi

is not arc
inconsistent.

SAC is strictly stronger that maxRPC. An example of a network on which SAC prunes
more values than maxRPC is given in Fig. 3.6. The first algorithm for SAC was proposed
by Debruyne and Bessiere in [43], and was later named SAC1. It is a brute-force algorithm
that checks SAC of each value by performing AC on each subproblemN |xi=vi

. It removes
vi from D(xi) if N |xi=vi

is arc inconsistent. After each change in a domain, it rechecks
SAC of every remaining value. It can then perform AC nd times on each subproblem, and
because there are nd subproblems, it runs in O(en2d4) on binary normalized networks,
where AC is in O(ed2). In [6], Bartàk and Erben proposed SAC2, a smarter algorithm

C. Bessiere 61

Strong PC SAC maxRPC PIC RPC AC

NIC
A B: A and B are incomparable

A B: A is strictly stronger than B

Figure 3.7: Summary of the comparison between domain-based consistencies lying be-
tween AC and Strong PC. A→ B means that local consistency A is strictly stronger than
local consistency B. (The stronger relation is transitive.)

that avoids unnecessary work by storing lists of supports, a bit like AC4. Unfortunately, its
worst-case time complexity is still O(en2d4). Recently, Bessiere and Debruyne showed
that the complexity of SAC on binary normalized networks is in O(end3), and they pro-
posed SAC-Opt, an algorithm with this optimal time complexity [16, 17]. To achieve opti-
mal time, SAC-Opt stores a lot of information in large data structures that requireO(end2)
space. SAC-SDS (Sharing Data Structures) is a lighter version in which less structures are
stored. ItsO(end4) time complexity is a compromise between former SAC algorithms and
SAC-Opt, whereas its space complexity is the same as SAC2, namely, O(n2d2). Lecoutre
and Cardon proposed SAC3, a different technique to enforce SAC [82]. SAC3 incremen-
tally assigns values to variables in the network until arc consistency wipes out a domain.
If the current sequence of assignments is I = ((x1, v1), . . . , (xk, vk)), it deduces that the
values (x1, v1), (x2, v2), . . . , (xk−1, vk−1) are currently SAC. This technique permits to
prove SAC of several values in a single arc consistency pass. SAC3 does not have optimal
worst-case time complexity but it works well in practice.

Several extensions of SAC have been proposed. Prosser et al. proposed restricted-SAC,
a weakened version of SAC that checks SAC of each value in one pass, without propagating
removals to values already processed [102]. Some subtle extensions that are stronger than
SAC itself have been proposed in [12, 34, 16]. Their effectiveness and efficiency in practice
have not yet been assessed.

Many other singleton consistencies can be constructed because any local consistency
can be used to detect the possible inconsistency of the network N |xi=vi

. If a local con-
sistency can be enforced in polynomial time, the corresponding singleton consistency also
has a polynomial worst-case time complexity. Prosser et al. analyzed this wider picture. In
[102, 122], they theoretically compared the pruning capabilities of (i, j)-consistencies and
singleton (i, j)-consistencies:

Theorem 3.64. Strong (i + 1, j)-consistency is strictly stronger than singleton (i, j)-
consistency. Singleton (1, j)-consistency is strictly stronger than (1, j + 1)-consistency.

Fig. 3.7 summarizes the qualitative comparison between the local consistencies pre-
sented in this section. Complete proofs can be found in [44]. Verfaillie et al. proposed a
generic algorithm schema that can enforce most of the local consistencies presented in this
section, plus new ones that are combinations of existing ones [119].

62 3. Constraint Propagation

3.6 Domain-Based Consistencies Weaker than AC

Arc consistency is not the weakest level of consistency we can define on a network. The
80’s and first half of 90’s have seen quite a lot of works trying to find the amount of filtering
that should be performed by a backtrack search procedure. At that time, even if the studies
were mostly interested in binary constraints, it was the conventional wisdom that AC was
too expensive to be maintained. As a result, several other properties weaker than AC were
proposed. The idea behind these properties is to reduce the number of times arc consistency
of variables must be checked against constraints. In other words, these properties reduce
the number of calls to function Revise in a coarse-grained algorithm. They are presented
in Section 3.6.1.

More recently, and essentially because of the cost of arc consistency on non-binary
constraints, other forms of consistency were introduced. These techniques do not try to
reduce the number of calls to the Revise procedure, but instead, they try to reduce the
amount of work such a Revise procedure performs. Section 3.6.2 describes them.

3.6.1 Reducing the Number of Times Constraints are Revised

The filtering techniques that try to reduce the number of times constraints are revised are
based on properties a network must verify according to some additional parameter such
as an ordering on the variables, or a partial instantiation. This extra parameter permits to
specify which variables must be arc consistent with which constraints.

Directional arc consistency

Dechter and Pearl proposed directional arc consistency in [47]. The idea is to associate an
ordering to the variables in the network and to impose that constraints are arc consistent in
the direction of this ordering.

Definition 3.65 (Directional arc consistency). A binary network N = (X,D,C) is di-
rectional arc consistent (DAC) according to ordering o = (xk1

, . . . , xkn
) on X , where

(k1, . . . , kn) is a permutation of (1, . . . , n), iff for all c(xi, xj) ∈ C, if xi <o xj then xi is
arc consistent on c(xi, xj).

Directional arc consistency is simpler to enforce than arc consistency. Removing a
value vi in D(xi) for some variable xi cannot make a variable xj directional arc incon-
sistent on cij if xi <o xj . As a result, there is no need to use a propagation queue for
an algorithm achieving DAC. It is sufficient to process the variables from the last in the
ordering to the first, revising each variable preceding the current one on the constraint they
share, if any (see Algorithm 3.5).

Algorithm 3.5: Algorithm for DAC
procedure DAC(N, o);

for j ← n downto 2 do1

foreach cikj
∈ CN | xi <o xkj

do2

if not Revise(xi, cikj
) then return false3

C. Bessiere 63

Example 3.66. Consider the network with variablesX = {x1, x2, x3}, domainsD(x1) =
D(x2) = {1..5}, D(x3) = {1..3}, constraints C = {x1 < x2, x2 = x3, x1 > x3}, and
ordering o = (x1, x2, x3). Revising x1 on c13 and x2 on c23 (in whatever order) prunes
value 1 from D(x1) and values 4 and 5 from D(x2). Revising x1 on c12 prunes values
3,4,5 from D(x1). Therefore, N ′ = (X,D′, C) with D′(x1) = {2}, D′(x2) = D′(x3) =
{1, 2, 3} is the DAC closure of N . Note that arc consistency proves inconsistency.

Proposition 3.67. The algorithm DAC enforces directional arc consistency according to
ordering o in O(ed2) time.

Forward checking

Even if they are often presented as stand alone preprocessing of a network, local consis-
tencies are usually intended to be maintained during a backtrack search. It is thus natural
to include in our analysis the filtering techniques that were only defined as associated with
backtrack search. The amount of filtering performed by the famous forward checking (FC)
[66, 69] can be defined as a local consistency. The FC search procedure guarantees that at
each step of the search, all the constraints between already assigned variables and not yet
assigned variables are arc consistent.

Definition 3.68 (Forward checking). LetN = (X,D,C) be a binary network and Y ⊆ X
such that |D(xi)| = 1 for all xi ∈ Y . N is forward checking consistent (FC) according to
the instantiation I on Y iff I is locally consistent and for all xi ∈ Y , for all xj ∈ X \ Y ,
for all c(xi, xj) ∈ C, xj is arc consistent on c(xi, xj).

Algorithm 3.6 presents a procedure that applies FC on a network N according to a
subset of instantiated variables Y ∪ {xi} if N is already FC according to Y .

Algorithm 3.6: Algorithm for FC
procedure FC(N, Y, xi);

foreach cij ∈ CN | xj ∈ X \ Y do1

if not Revise(xj , cij) then return false2

Example 3.69. On the network of Example 3.66, where X = {x1, x2, x3}, domains
D(x1) = D(x2) = {1..5}, D(x3) = {1..3}, and C = {x1 < x2, x2 = x3, x1 > x3},
applying FC according to {x1} after an instantiation x1 = 3 (i.e., D(x1) = {3}) prunes
values 1,2,3 from D(x2) and 3 from D(x3).

FC has the property that once a variable xj is made arc consistent on cij (|D(xi)| = 1),
it remains AC on cij in spite of any future domain reduction, because xi is singleton. This
means that each constraint needs to be revised only once along a branch of instantiations.
As opposed to chronological backtracking, a procedure maintaining FC does not need to
check consistency of values of the current variable against already instantiated ones. FC is
the weakest level of local consistency with this property.

The complexity of a call to Revise in FC is in O(d) because one of the domains
involved is a singleton. Hence, enforcing FC on a binary network according to a partial
instantiation of arbitrary length is in O(ed).

64 3. Constraint Propagation

Algorithm 3.7: Algorithms for PL and FL
procedure PL(N, Y, xi);

FC(N,Y, xi);1

foreach j ← i + 1 to n do2

foreach k ← j + 1 to n | cjk ∈ CN do3

if not Revise(xj, cjk) then return false4

procedure FL(N, Y, xi);
FC(N,Y, xi);5

foreach j ← i + 1 to n do6

foreach k ← i + 1 to n, k �= j | cjk ∈ CN do7

if not Revise(xj, cjk) then return false8

The definition of FC can be extended to non-binary constraints in several different
ways. Van Hentenryck proposed a basic one in [115]: A network is FC according to a
partial instantiation I on a subset Y of X if and only if I is locally consistent and for all
xj ∈ X \ Y , for all c ∈ C such that X(c) \ Y = {xj}, xj is arc consistent on c. Bessiere
et al. presented five additional extensions of FC to non-binary constraints [22].

Other lookahead filterings

The idea of reducing the amount of filtering of arc consistency to avoid complex algorithms
led to other forms of propagation. In [69], Haralick and Elliott proposed partial lookahead
(PL) and full lookahead (FL), two levels of propagation, stronger that FC. Haralick and
Elliott gave operational definitions of PL and FL in terms of algorithms performing a given
amount of filtering. As opposed to DAC and FC, no clear property on the output of PL or
FL can be specified and thus, no clear fixpoint can be defined.

PL and FL are presented in Algorithm 3.7. Given a network N , an ordering o =
(x1, . . . , xn), and a current variable xi, PL first performs FC and then takes the variables
xj from xi+1 to xn and calls Revise for xj on each cjk, j < k ≤ n. FL performs
a stronger level of filtering than PL. Given a network N , an ordering o, and a current
variable xi, FL takes the variables xj from xi+1 to xn and calls Revise for xj on each
cjk, i < k ≤ n, k �= j.

PL and FL cannot guarantee any property on the arc consistency of arcs at the end of the
process. After xj has been made arc consistent on cjk, j < k, values of xk can be removed
when making xk arc consistency on arcs leaving xk. Thus, it is no longer guaranteed that
the arc (xj , cjk) is arc consistent at the end of the process because each arc is revised only
once.

The complexity of function Revise is in O(d2) because it is called on constraints
involving non singleton variables for both PL and FL. Thus, PL and FL are in O(ed2), like
DAC.

In [98, 99], Nadel encapsulated these forms of consistency in a general schema, going
from the consistency maintained by simple backtracking, i.e., local consistency of the in-
stantiated variables (noted AC1/5), to arc consistency. FC is denoted by AC1/4 while PL
and FL are denoted by AC1/3 and AC1/2 respectively.

In [112], Tsang gave a comparison of the pruning capabilities of these different levels
of filtering. He proved that DAC and FL are strictly stronger than PL, which itself is

C. Bessiere 65

strictly stronger than FC. FL and DAC are incomparable: There are cases where DAC
prunes values FL does not prune and vice versa. AC is strictly stronger than all of them.

Selective revision

As a last technique to reduce the number of calls to function Revise in arc consistency,
there is the work by Freuder and Wallace. They proposed to use criteria to discard arc
revisions when they are not likely to be effective [58].

Given a coarse-grained arc consistency algorithm, distance-bounded propagation con-
fines constraint propagation to a fixed distance δ from the variables at which it began. This
is implemented by attaching a stamp to each arc in Q. Arcs put in Q in the initialization of
the arc consistency call are stamped with zero. Forthcoming arcs are stamped with t + 1
if t is the stamp of the revised arc that provoked their addition to Q. When an arc is to be
stamped with a value greater than the maximal distance δ, it is not put in Q.

Response-bounded propagation stops subsequent propagations when the amount of
change in a domain falls below a given threshold r. This is implemented by testing if
the ratio of values removed by a revision is greater than r before adding relevant arcs in Q.

3.6.2 Using the Order on the Domains to Relax Revise

The second form of local consistencies weaker than arc consistency do not try to reduce the
number of arc revisions, but instead, they try to reduce the cost of revisions to overcome
the prohibitive cost of generalized arc consistency on some constraints. The idea behind
these local consistencies is to use the fact that domains are composed of integers. Integer
domains inherit the total ordering on and by consequence they inherit the two particular
values minD(xi) and maxD(xi), called the bounds of D(xi). I present two ways of
relaxing generalized arc consistency on a constraint c. The first option is to ensure support
on c only for the bounds of the domain of each variable in X(c). The second option is to
look for supports not in πX(c)(D) but in πX(c)(D

I), where DI is the domain such that for
all xi, DI(xi) = {v ∈ | minD(xi) ≤ v ≤ maxD(xi)}. Using the first option or the
second, or combining both, give rise to three relaxed forms of local consistency.

Definition 3.70 (Consistencies on bounds). Given a network N = (X,D,C), given a
constraint c, a bound support τ on c is a tuple that satisfies c and such that for all xi ∈
X(c),minD(xi) ≤ τ [xi] ≤ maxD(xi), that is, τ ∈ c ∩ πX(c)(D

I). (A bound support in
which each variable is assigned a value in its domain is a support.)

• A constraint c is bound(Z) consistent (BC(Z)) iff for all xi ∈ X(c), (xi,minD(xi))
and (xi,maxD(xi)) belong to a bound support on c.

• A constraint c is range consistent (RC) iff for all xi ∈ X(c), for all vi ∈ D(xi),
(xi, vi) belongs to a bound support on c.

• A constraint c is bound(D) consistent (BC(D)) iff for all xi ∈ X(c), (xi,minD(xi))
and (xi,maxD(xi)) belong to a support on c.

The networkN is bound(Z) / range / bound(D) consistent iff all its constraints are bound(Z)
/ range / bound(D) consistent.

66 3. Constraint Propagation

X2X1 X3 X4 X5 X6

X2X1 X3 X4 X5 X6

X2X1 X3 X4 X5 X6

X2X1 X3 X4 X5 X6X2X1 X3 X4 X5 X6

after bound(D) consistency

after range consistency

1
2
3
4
5
6
7

after bound(Z) consistency

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

value not in D(Xi)

value in D(Xi)

original domains

value pruned from D(Xi)

after generalized arc consistency

Figure 3.8: Amount of propagation performed by BC(Z), BC(D), RC and GAC on the
constraint alldifferent(x1 . . . , x6) of Example 3.71.

Example 3.71. Consider the network with variables x1, . . . , x6, domainsD(x1) = D(x2)
= {1, 2}, D(x3) = D(x4) = {2, 3, 5, 6}, D(x5) = {5}, D(x6) = [3..7] and C = {all-
different(x1 . . . , x6)}. These domains are depicted in Fig. 3.8 after BC(Z), BC(D),
RC, and GAC are applied to the constraint.

The notion of local consistency on bounds comes from works on arithmetic constraints
over real variables (variables taking values in intervals of reals). The move to integer is
not so direct, and the names chosen in Definition 3.70 are not unanimously used in the
literature.8 Collavizza et al. presented a review of several local consistency notions for
continuous domains [36]. One of these local consistencies is named bound consistency
but has no link at all with those named bound(Z) or bound(D) consistencies in Definition
3.70. In [109, 2], Schulte and Stuckey, and Apt gave a definition for bound consistency on
integer variables that is the direct application of the definition on reals. Choi et al. called
it bound(R) consistency [35]. Bound(R) consistency differs from bound(Z) consistency in
that it looks for bound supports composed of real values (instead of integer values). For
instance, in Fig. 3.8 the bound (x3, 2), removed by BC(Z), is bound(R) consistent because
it belongs to the tuple (1, 3

2 , 2, 4, 5, 3) which satisfies the alldifferent constraint and
where each variable takes a real value between its bounds. In [109], Schulte and Stuckey
showed that there exist constraints on which BC(R) is polynomial to enforce whereas
BC(Z) is NP-hard. The bound consistency of Dechter in [46] corresponds to bound(D)
consistency in Definition 3.70. The local consistency named interval consistency by Van
Hentenryck et al. and by Apt in [118, 2] corresponds to bound(Z) consistency in Defini-
tion 3.70. In recent papers dealing with integer variables, it seems that the name bound
consistency is uniformly used to refer to BC(Z) [103, 105]. As seen in Fig. 3.8, these local
consistencies do not all prune the same amount of values.

8We took the names bound(Z) consistency and bound(D) consistency in [35] and range consistency in [80].

C. Bessiere 67

Theorem 3.72. Generalized arc consistency is strictly stronger than range and bound(D)
consistencies, which are themselves strictly stronger than bound(Z) consistency, which it-
self is strictly stronger than bound(R) consistency. Bound(D) consistency and range con-
sistency are incomparable.

These local consistencies being all strictly weaker than GAC, the only reason to use
one of them instead of GAC is to have a faster algorithm. BC(D) requires finding supports,
as in GAC. Hence, it only decreases the cost by a factor d because it seeks supports for 2
values per domain (the bounds) instead of d values. RC, BC(Z) and BC(R) look for bound
supports (on integers or on reals). Now, looking for bound supports is not necessarily
simpler than looking for supports. To keep things simple, let us focus on BC(Z) but the
same reasoning applies to BC(R) or RC.

Proposition 3.73 (Complexity of bound(Z) consistency). Deciding bound(Z) consistency
of a constraint can take exponential time, even if the constraint is binary, where arc con-
sistency is in O(d2) time, d being the size of the largest domain.

Proof. Let c be any binary constraint with no particular semantics that could be used
by a propagation algorithm. It is well-known that deciding AC on such a constraint
is in O(d2) time [92]. If X(c) = (xi, xj), deciding BC(Z) is done by looking for a
bound support for the four values minD(xi), minD(xj), maxD(xi), maxD(xj). Find-
ing a bound support for minD(xi) is done by exploring DI(xj). Suppose c is char-
acterized by a Boolean function requiring constant space (this is often the case), and
suppose D(xi) = {minD(xi),maxD(xi)}, D(xj) = {minD(xj),maxD(xj)}, with
maxD(xi) < maxD(xj). The size of the input is in O(log2(maxD(xj))). The cost of
exploring the whole set DI(xj) is thus exponential in the size of the input.

A direct consequence of Proposition 3.73 is that deciding BC(Z) is NP-hard. Supposeϕ
is a set of clauses on the Boolean variables x1, . . . , xn and c(y,z) is the constraint satisfied
by all tuples on (y, z) where y �= 0 if and only if the bit vector of size n representing
z mod 2n in base 2 is a tuple of 0/1 values for x1, . . . , xn that satisfies ϕ. If maxD(z) −
minD(z) ≥ 2n, deciding BC(Z) for a bound ofD(y) other than 0 is equivalent to deciding
the satisfiability of ϕ.

This shows that bound(Z) consistency is useful only if the constraint we want to prop-
agate has inherent properties that permit a computation of bound supports faster than
supports. Take for example the constraint sumk(x1, . . . , xn) that holds if and only if
∑n
i=1 xi = k. Deciding generalized arc consistency on this constraint is NP-complete

because we can easily transform the decision problem SUBSETSUM [60] into the problem
of deciding whether a sumk constraint has support.9 On the contrary, testing bound(Z)
consistency on the sumk constraint is polynomial because it is sufficient to verify that
minD(xi) is at least k−∑

j �=imaxD(xj) andmaxD(xi) is at most k−∑

j �=iminD(xj),
for all i, 1 ≤ i ≤ n.

Zhang and Yap showed that bound(R) consistency is equivalent to generalized arc con-
sistency when constraints are linear [125]. For example, the constraint

∑n
i=1 xi ≤ k is

bound(R) consistent if and only if it is generalized arc consistent. Schulte and Stuckey

9The constraint sumk(x1, . . . , xn) where D(xi) = {0, ji} has support if and only if there exists a subset
of {j1, . . . , jn} of sum k, which is exactly the SUBSETSUM problem.

68 3. Constraint Propagation

gave other sufficient conditions on constraints that permit to guarantee that bound(R) con-
sistency is equivalent to generalized arc consistency [109]. Even when a constraint does
not fit the required conditions, there are cases where additional properties on the input
domains guarantee that the output of enforcing BC(R) will be GAC. For instance, if all
variables have interval domains, BC(R) on the sumk constraint is equivalent to GAC. This
is a polynomial case for GAC on sumk, which is NP-hard in general. Interestingly, Schulte
and Stuckey showed how to analyze a constraint model to discover on which constraints
generalized arc consistency enforcing can be replaced by bound(R) consistency whereas
preserving the amount of pruning.

3.7 Constraint Propagation as Iteration of Reduction Rules

Local consistency is a way to formally define which amount of consistency we want a
network to guarantee, and as a consequence, which network will be produced by an algo-
rithm enforcing this level of consistency. But nothing is said about the way the algorithm
enforces it. Rules iteration takes the question on the other side. A reduction rule speci-
fies under which conditions and on which constraints operations of filtering are performed.
The network produced guarantees a formal property such as a given level of local consis-
tency only if the reduction rules and the way they are applied have some good properties.
The rules iteration approach was first formalized by Montanari and Rossi under the name
relaxation rules [96]. Benhamou et al. studied rules iteration via interval arithmetics (that
is, reducing only bounds) [10, 11]. Constraint Handling Rules (CHR) is a programming
language based on reduction rules (see [59] and Chapter 13 in Part II). In [1, 2], Apt gave
a comprehensive presentation of the rules iteration approach. I essentially follow Apt’s
presentation of the concept of reduction rule.

A reduction rule is simply a function that maps a network to another, where the image
is a tightening of the input.

Definition 3.74 (Reduction rule). Given a networkN , a reduction rule is a function f from
PN to PN such that for all N ′ ∈ PN , f(N ′) ∈ PN ′ .

We should bear in mind that PN contains all the networks that are tightenings of N
(see Definition 3.13). In most cases, reduction rules are reduction steps that reduce a
single variable domain according to a single constraint. I name them propagators.

Definition 3.75 (Propagator). Given a constraint c in a network Nc = (X,D, {c}), a
propagator f for c is a reduction rule from PNc

to PNc
that tightens only domains in-

dependently of the constraints other than c. That is, for all N ′ = (X,D′, C ′) ∈ PNc
,

f(N ′) = (X,D′′, C ′), with D′′ ⊆ D′ and D′′ = Df(X,D′,{c}).

Propagators can verify some properties.

Definition 3.76 (Properties of propagators). Given a network N = (X,D,C) and two
propagators f and g on PND:

• f is called monotonic if N1 ≤ N2 implies f(N1) ≤ f(N2) for all N1, N2 ∈ PND ,

• f is called idempotent if ff(N1) = f(N1) for all N1 ∈ PND,

• we say that f and g commute if fg(N1) = gf(N1) for all N1 ∈ PND ,

C. Bessiere 69

I give examples of propagators that do not verify these properties.

Example 3.77. Consider two networks N1 = (X,D1, C) and N2 = (X,D2, C) with
C = {c ≡ (x1 = x2)}, D1(x1) = {1, 2}, D1(x2) = {2}, D2(x1) = {1, 2, 3} and
D2(x2) = {2}. Consider the propagator f that prunes all values from x1 that have no
support on c if less than half of them have support. f is not monotonic because Df(N1) �⊆
Df(N2) whereas DN1

⊆ DN2
(f reduces D2(x1) to {2}). Consider the propagator g that

prunes one of the values from x1 that have no support on c if such a value exists. g is
not idempotent because Dgg(N2) �= Dg(N2) (g reduces D2(x1) to {1, 2} or {2, 3} whereas
gg reduces it to {2}). f and g do not commute because Dfg(N2) �= Dgf(N2) (fg reduces
D2(x1) to {1, 2} or {2, 3} whereas gf reduces it to {2}).

Most of the propagators used in practice satisfy the properties of Definition 3.76.
Among them, monotonicity is particularly interesting. I first need to define what I mean
by iteration and by stability of a propagator.

Definition 3.78 (Iteration). Let N = (X,D,C) be a network and F = {f1, . . . , fk} be a
finite set of propagators on PND . An iteration of F on N is a sequence 〈N0, N1, . . .〉 of
elements of PND defined by

N0 = N,

Nj = fnj
(Nj−1),

where j > 0 and nj ∈ [1..k]. We say that fnj
is activated at step j.

Definition 3.79 (Stability). LetN = (X,D,C) be a network andF be a set of propagators
on PND . A network N ′ ∈ PND is stable for F iff for all f ∈ F, f(N ′) = N ′.

There can be many networks in PND that are stable for a given set of propagators. But
monotonicity of propagators implies that only one of them will be produced.

Proposition 3.80 (Least fixpoint). Let N = (X,D,C) be a network and F be a set of
propagators on PND. If S = 〈N0, N1, . . .〉 is an infinite iteration of F where each f ∈ F
is activated infinitely often, then there exists j ≥ 0 such that Nj is stable for F . If all f in
F are monotonic, Nj is unique and is called the least fixpoint of F on N .

Algorithm 3.8 is a procedure that takes as input a networkN and a set F of propagators
on PND . Thanks to Proposition 3.80, we are guaranteed that it terminates. If all f in F
are monotonic, the output of Algorithm 3.8 is the least fixpoint of F on N .

Algorithm 3.8: Generic Iteration Algorithm
procedure Generic-Iteration(N,F);

G← F ;
while G �= ∅ do

select and remove g from G;
if N �= g(N) then

update(G);
N ← g(N);

/* update(G) adds to G at least all functions f in F \G for which g(N) �= f(g(N)) */

70 3. Constraint Propagation

Sometimes, in addition to monotonicity, propagators can have some other properties.
In those cases, Algorithm 3.8 can be simplified, while still ensuring to produce the same
result.

Proposition 3.81 (Direct iteration). Let N = (X,D,C) be a network and F = {f1, . . . ,
fk} be a set of monotonic and idempotent propagators on PND that commute with each
other. If an iteration S = 〈N0, N1, . . . , Nk〉 is such that N = N0 and for all fi ∈ F there
exists Nj ∈ S such that Nj = fi(Nj−1), then Nk is stable for F and is the least fixpoint
of F on N .

Proposition 3.81 guarantees that Algorithm 3.9 produces the least fixpoint of F .

Algorithm 3.9: Direct Iteration Algorithm
procedure Direct-Iteration(N,F);

G← F ;
while G �= ∅ do

select and remove g from G;
N ← g(N);

By defining the appropriate set of propagators, we can obtain most of the local consis-
tencies presented in previous sections. For instance, we can enforce arc consistency on a
network N = (X,D,C). I first define the propagators fi,j such that:

∀N1 = (X,D1, C) ∈ PND, ∀xi ∈ X, ∀cj ∈ C, fi,j(N1) = (X,D′
1, C) with

D′
1(xi) = π{xi}(cj ∩ πX(cj)(D1)) and D′

1(xk) = D1(xk), ∀k �= i.

I consider the set of propagators FAC = {fi,j | xi ∈ X, cj ∈ C}. They are all monotonic.
Then, Generic-Iteration(N,FAC) terminates on the least fixpoint for FAC , which is the
arc consistent closure of N .

It is shown in [2] that we can also enforce higher-order consistencies, such as path
consistency, by defining sets of monotonic propagators that involve several constraints at a
time and that alter the set of constraints.

3.8 Specific Constraints

In previous sections, I presented constraint propagation and local consistencies in a generic
way without saying what should be done when we have some specific information on the
semantics of a constraint. In this section, I develop some of the available techniques to take
into account constraint semantics.

3.8.1 Specific Propagators in Solvers

All constraint solvers attach a specific propagation algorithm to the specific types of con-
straints they contain. In addition, most of them allow the user to design her own propaga-
tors for the new constraints she incorporates. The fact that arithmetic constraints are at the
core of most constraint solvers influences the way these solvers are implemented. Not only
all basic arithmetic constraints are present, but the programming possibilities they provide

C. Bessiere 71

Algorithm 3.10: AC3-like constraint propagation schema
function Constraint-Propag(in X: set): Boolean ;

begin
foreach c ∈ C do perform init-propag on c and update Q with relevant events;1

while Q �= ∅ do2

select and remove (xi, c, xj , Mtype) from Q;3

if Revise(xi, c, (xj , Mtype), Changes) then4

if D(xi) = ∅ then return false ;5

foreach c′ ∈ ΓC(xi), Mtype ∈ Changes do6

foreach xj ∈ X(c′), j �= i do Q← Q ∪ {(xj , c
′, xi, Mtype)};7

return true ;8

end
/* ΓC(xi) is the set of constraints with xi in their scheme */

for building new propagators is arithmetic-oriented. I give a brief overview of what is the
common point to most solvers. The art of designing constraint propagators is not a ma-
ture science yet, and things can differ from one solver to another, and will most probably
evolve in the next years. This topic has been addressed in some academic publications
[79, 94, 117, 118, 78, 110] and in manuals of constraint solvers. See also Chapter 14 in
Part II.

In most arithmetic constraints, it appears that a reduction of a domain does not produce
the same effect on the other variables of the constraint, depending on if it is the removal
of a value in the middle of the domain, if it is the increase of its minimum value, if it is
the decrease of its maximum value, or if it is an instantiation to a single value. Then, it
is worth differentiating these different types of events to be able to propagate exactly as
necessary. The events usually recognized by constraint solvers are:

• RemValue: when a value v is removed from D(xi)

• IncMin: when the minimum value of D(xi) increases

• DecMax: when the maximum value of D(xi) decreases

• Instantiate: when D(xi) becomes a singleton

The way these events are used in a constraint solver is usually bound to the type of prop-
agation architecture handled by the solver. The description I give here is just an illustrative
example of how to use those events. If we follow an AC3 like schema of propagation,
the use of event types leads to a modified version of Algorithm 3.1 that takes into account
the type Mtype of reduction performed on a domain (see Algorithm 3.10). The modified
function Revise has parameters (xi, c, (xj ,Mtype), Changes) where (xi, c) is the arc
to revise because of an Mtype change in D(xj). In addition to a Boolean indicating if
a domain has been changed, function Revise returns the set Changes of the types of
changes it performed on D(xi) (line 4). Each modification of type Mtype on domain
D(xi) requires the addition of 4-tuples (xj , c

′, xi,Mtype) to the list Q of pending events
(lines 6–7). The presence of (xj , c, xi,Mtype) in Q means that xj should be revised on c
because of an Mtype change in D(xi). I suppose that each constraint is associated with a
function init-propag that performs the very first pass of propagation on the constraint
and appends to list Q all 4-tuples relevant to events performed on some domains (line 1).

72 3. Constraint Propagation

The benefit of this differentiation between types of events is twofold. First, it permits
to process constraint propagation differently according to the type of event (line 4). As
shown in the following example, this can have a dramatic effect on the cost of revision.

Example 3.82. Let x1 ≤ x2, with D(x1) = D(x2) = {1..100}. If value 100 is removed
from D(x2), the regular Revise procedure of AC3 takes each of the 100 values in D(x1)
one by one, and looks for a support by traversing D(x2). This requires 1 + 2 + . . . +
99 + 99 = 100·101

2 − 1 constraint checks to discover that (x1, 100) must be removed.
An adapted Revise procedure knowing that 100 is a DecMax event simply decreases
maxD(x1) to the same value as maxD(x2), i.e., 99. If the value removed from D(x2)
is 50, again regular Revise performs around 5,000 constraint checks whereas a specific
Revise knows that removing 50 is a RemValue event for which nothing should be done
because the only events that can alterD(x1) are DecMax and Instantiate. Algorithm
3.11 is a specific function Revise for constraints xk1

≤ xk2
(kl is the index of the lth

variable in the scheme of the constraint).

Algorithm 3.11: Function Revise for the constraint of Example 3.82
function revise(inout xi; in c ≡ xk1 ≤ xk2 ; in (xj , Mtype); out Changes): Boolean ;

Changes← ∅;
switch Mtype do

case RemValue
nothing;

case IncMin
if j = k1 then remove all v < minD(xj) from D(xi);

case DecMax
if j = k2 then remove all v > maxD(xj) from D(xi);

case Instantiate
if j = k1 then remove all v < minD(xj) from D(xi);
else remove all v > maxD(xj) from D(xi);

Changes← the types of changes performed on D(xi);

The second advantage of the information on events is that in some cases, we know that
it is useless to propagate a constraint because a given event cannot alter the other variables
of the constraint. For instance, in the constraint x1 ≤ x2 of the example above, RemValue
has no effect. Instead of having a set ΓC(xi) of all constraints involving xi, we can build
such a set for each type of event. ΓCMtype(xi) only contains constraints involving xi for
which an Mtype event on xi requires propagation. Line 6 in Algorithm 3.10 becomes:

6 foreach c′ ∈ ΓC
Mtype(xi), Mtype ∈ Changes do ...

Example 3.83. Let c ≡ x1 ≤ x2. The only events that require propagation are IncMin
and Instantiate on x1, and DecMax and Instantiate on x2. Thus, c is only put
in ΓCIncMin(x1), ΓCInstantiate(x1), ΓCDecMax(x2), and ΓCInstantiate(x2). It avoids not only
useless calls to Revise but also insertions and deletions of useless events in Q.

In the extreme case, the domains have been reduced in such a way that a constraint c is
entailed. That is, c is satisfied for any valid combination of values onX(c). (See [118, 110]

C. Bessiere 73

or Section 3.3.1.) c can then be removed from the set of constraints of the network as long
as the domains are not relaxed.

Example 3.84. Let c ≡ x1 ≤ x2, D(x1) = {1, 2, 4} and D(x2) = {5, 6, 7}. Any valid
instantiation of x1 and x2 satisfies c. So, c can safely be removed from the network.

There is a third way of saving work during the propagation of changes in domains.
It consists in storing not only the type of change performed on a domain D(xi) during a
call to Revise, but also the set Δi of values removed. Function Revise has the extra
parameter Δj of the values removed from D(xj) that led to this revision. In addition to
Changes, Revise returns the set Δi of values it removes from D(xi). Δi is put in Q
with the other information. Lines 3–7 in Algorithm 3.10 become:

3 select and remove (xi, c, xj , Mtype, Δj) from Q;
4 if Revise(xi, c, (xj , Mtype, Δj), Changes, Δi) then
5 if D(xi) = ∅ then return false;
6 foreach c′ ∈ ΓC

Mtype(xi), Mtype ∈ Changes do
7 foreach xj ∈ X(c′), j �= i do Q← Q ∪ {(xj , c

′, xi, Mtype, Δi)}

Such a facility was already proposed by Van Hentenryck et al. in the AC5 propaga-
tion schema [117]. This notably permits to decrease the complexity of arc consistency on
functional or anti-functional constraints.

Example 3.85. The functional constraint xk1
= xk2

+m can be propagated by the function
Revise in Algorithm 3.12.

Algorithm 3.12: Function Revise for the constraint of Example 3.85
function revise(inout xi; in c ≡ xk1=xk2 + m; in (xj , Mtype, Δj);

out Changes; out Δi): Boolean ;
Changes← ∅;
switch Mtype do

case RemValue
if j = k1 then foreach v ∈ Δj do remove (v −m) from D(xi);
else foreach v ∈ Δj do remove (v + m) from D(xi);

case IncMin
if j = k1 then remove all v < minD(xj)−m from D(xi);
else remove all v < minD(xj) + m from D(xi);

case DecMax
if j = k1 then remove all v > maxD(xj)−m from D(xi);
else remove all v > maxD(xj) + m from D(xi);

case Instantiate
if j = k1 then assign minD(xj)−m to xi;
else assign minD(xj) + m to xi;

Changes← the types of changes performed;
Δi ← all values removed from D(xi);

These four types of events permit to build efficient propagators for elementary con-
straints. But as soon as constraints are not arithmetic or do not have properties such as
being functional, antifunctional or others, it is difficult to implement propagators with this
kind of architecture.

74 3. Constraint Propagation

3.8.2 Classes of Specific Constraints: Global Constraints

There are ‘constraint patterns’ that are ubiquitous when trying to express real problems as
constraint networks. For example, we often need to say that a set of variables must all
take different values. The size of the pattern is not fixed, that is, there can be any number
of variables in the set. The alldifferent constraint, as introduced in CHIP [50], is
not a single constraint but a whole class of constraints. Any constraint specifying that its
variables must all take different values is an alldifferent constraint. The conventional
wisdom is to name ‘global constraints’ these classes of constraints defined by a Boolean
function whose domain contains tuples of values of any length. An instance c of a given
global constraint is a constraint with a fixed scheme of variables which contains all tuples
of length |X(c)| accepted by the function defining the global constraint.10 In the last years,
the literature became quite verbose on this subject. Beldiceanu et al. proposed an extensive
list of global constraints [9].

Example 3.86. The alldifferent(x1, . . . , xn) global constraint is the class of con-
straints that are defined on any sequence of n variables, n ≥ 2, such that xi �= xj for all
i, j, 1 ≤ i, j ≤ n, i �= j. The NValue(y, [x1, . . . , xn]) global constraint is the class
of constraints that are defined on any sequence of n + 1 variables, n ≥ 1, such that
|{xi | 1 ≤ i ≤ n}| = y [100, 8].

It is interesting to incorporate global constraints in constraint solvers so that users can
use them to express the corresponding constraint pattern easily. Because these global con-
straints can be used with a scheme of any size, it is important to have a way to propagate
them without using generic arc consistency algorithms. (Remember that optimal generic
arc consistency algorithms are in O(erdr) for constraints involving r variables —see Sec-
tion 3.3.1.)

The first alternative to the combinatorial explosion of generic algorithms for GAC on
a global constraint is to decompose it with ‘simpler’ constraints. A decomposition of a
global constraint G is a polynomial time transformation δk (k being an integer) that, given
any network N = (X(c), D, {c}) where c is an instance of G, returns a network δk(N)
such that X(c) ⊆ Xδk(N), for all xi ∈ X(c), D(xi) = Dδk(N)(xi), for all cj ∈ Cδk(N),
|X(cj)| ≤ k, and sol(N) = πX(c)(sol(δk(N))). That is, transforming N in δk(N) means
replacing c by some new bounded arity constraints (and possibly new variables) whereas
preserving the set of tuples allowed on X(c). Note that by definition, the domains of the
additional variables in the decomposition are necessarily of polynomial size.11

Example 3.87. The global constraint atmostp,v(x1, . . . , xn) holds if and only if at most
p variables in x1, . . . , xn take value v [116]. This constraint can be decomposed with n+1
additional variables y0, . . . , yn. The transformation involves the constraint (xi = v ∧ yi =
yi−1 + 1)∨ (xi �= v ∧ yi = yi−1) for all i, 1 ≤ i ≤ n, and the domains D(y0) = {0} and
D(yi) = {0, . . . , p} for all i, 1 ≤ i ≤ n.

10This definition does not allow constraints defined on several sequences of variables, such as the
disjoint([x1 . . . , xn], [y1 . . . , ym]) constraint [9]. In such a case, we need to extend to Boolean functions
with parameters giving the length of each sequence. This is essentially the same.

11Some decompositions depend only on the instance c of the global constraint and not on the domain. How-
ever, in other decompositions, the domain of the new variables depends on the domain of the variables in X(c).

C. Bessiere 75

Some global constraints G admit a decomposition δk that preserves GAC. That is,
given any instance c of G and any domain D on X(c), given any subdomain D′ ⊆ D,
GAC on (X(c), D′, {c}) prunes the same values as GAC on the network obtained from
δk((X(c), D, {c})) by reducing D(xi) to D′(xi) for all xi ∈ X(c). atmostp,v is a
global constraint that admits a decomposition preserving GAC (see Example 3.87). But
there are some constraints, such as the alldifferent, for which we do not know any
such decomposition.12 For those constraints, it is sometimes possible to build a specialized
algorithm that enforces GAC in polynomial time on all instances of the global constraint.
For instance, Knuth and Raghunathan, and Régin, made the link between GAC on the
alldifferent constraint and the problem of finding maximal matchings in a bipartite
graph [77, 106], which is polynomial.

In [20], Bessiere et al. relaxed the definition of decomposition. They allow decomposi-
tions using constraints with unbounded arity as long as enforcing GAC on them is polyno-
mial. The decomposition of a global constraint G is GAC-polytime if for any instance c of
G and any domain on X(c), enforcing GAC on the decomposition is polynomial. This en-
larges the set of global constraints that can be decomposed. Nevertheless, there are global
constraints for which we do not know any GAC-polytime decomposition that preserves
GAC. Tools of computational complexity help us decide when a given global constraint
has no chance to allow a GAC-polytime decomposition preserving GAC. In fact, if en-
forcing GAC on a global constraint G is NP-hard, there does not exist any GAC-polytime
decomposition that preserves GAC (assuming P�= NP). For instance, enforcing GAC on
NValue is NP-hard. This tells us that there is no way to find a GAC-polytime decompo-
sition on which GAC always removes all GAC inconsistent values of the original NValue
constraint.

Decompositions were limited to transformations in polynomial time, and so polynomial
space. If we remove these restrictions, any global constraint allows a transformation into a
binary network via the hidden variable encoding, where the unique additional variable has
a domain of exponential size [45, 108]. GAC on this transformation is equivalent to GAC
on the original constraint, even if enforcing GAC on it is NP-hard.

It is sometimes possible to express a global constraint as a combination of simpler
constraints which is not a conjunction. Disjunctions are not naturally handled by constraint
solvers. Van Hentenryck et al. proposed constructive disjunction as a way to partially
propagate disjunctions of constraints [70]. Given a constraint c = c1 ∨ c2 ∨ . . . ∨ ck,
constructive disjunction propagates constraints ci one by one independently of the others,
and finally prunes values that were inconsistent with all ci. This technique has been refined
by Lhomme [84]. Bacchus and Walsh proposed a constraint algebra in which we can define
meta-constraints as logical expressions composed of simpler constraints [4]. They give
ways to propagate them and conditions under which GAC is guaranteed.

When enforcing GAC is too expensive on a global constraint, another possibility is
to enforce a weaker level of consistency, such as BC(Z) or RC. BC(Z) and RC are sig-
nificantly cheaper than GAC on constraints composed of arithmetic expressions (espe-
cially linear constraints). BC(Z) and RC are also used on other classes of constraints for
which GAC is too expensive. In [80], Leconte showed that RC can be enforced on the

12In [26], Bessiere and Van Hentenryck characterized three types of globality for global constraints, depending
on the non existence of decompositions preserving the solutions, preserving GAC or preserving the complexity
of enforcing GAC.

76 3. Constraint Propagation

alldifferent constraint at a cost asymptotically lower than that of Régin’s GAC al-
gorithm ([106]). Puget proposed a BC(Z) algorithm for alldifferent with an even
lower complexity [103]. On the global cardinality constraint (gcc) defined by Régin
[107], Quimper et al. showed that GAC is NP-hard if cardinalities are variables instead
of fixed intervals [104]. Katriel and Thiel proposed a BC(Z) algorithm for gcc that runs
in polynomial time even if cardinalities are variables [75]. In this case, BC(Z) is a means
to propagate the constraint polynomially.

3.8.3 Creating Propagators Automatically

As an alternative to specialized algorithms for propagating a specific constraint, Apt and
Montfroy proposed to generate sets of reduction rules [3]. A rule is of the form “if xi1
takes value in Si1 , . . ., xik takes value in Sik then y cannot take value v”, where xij ’s and
y belong to the scheme of the constraint and Sij ’s are subsets of given domains D(xij).
For any constraint, there exists a set of rules that simulates arc consistency. However, its
size can be exponential in the number of variables in the scheme of the constraint.

To avoid this combinatorial explosion, Dao et al. proposed to restrict their attention to
rules in which variables xij take values in intervals Iij instead of arbitrary subsets of the
domains Sij [39]. This reduces the space of possibilities and permits to express the task of
generating rules as a linear program to be solved by a simplex.

Another way to avoid combinatorial explosion when building propagators for a con-
straint cadhoc is to take into account the internal structure of the constraint to factorize
many satisfying tuples under the same rule. Barták proposed to decompose ad hoc binary
constraints cadhoc(xi, xj) into rectangles [5]. The Cartesian product r = Si × Sj of two
sets of integers Si and Sj is a rectangle for cadhoc if (vi, vj) ∈ Si×Sj ⇒ (vi, vj) ∈ cadhoc.
Given a collection R of rectangles such that

⋃

r∈R r = cadhoc, Barták gives a propa-
gation algorithm that revises cadhoc more efficiently than a generic algorithm. Cheng et
al. extended this technique by proposing to decompose (possibly non-binary) constraints
into ‘triangles’ instead of rectangles [30]. More precisely, they decompose a constraint
cadhoc(x1, . . . , xk) into a disjunction of ‘box constraints’. A box is a k-dimensional hy-
percube [l1..u1] × · · · × [lk..uk] where [li..ui] is an interval of integers for xi. A box
constraint is the conjunction of a box B and a simple constraint cb, that is, a constraint of
the form

∑k
1 aixi ≤ a0 (the set of allowed tuples looks like a triangle when the constraint

is binary). Cheng et al. proposed an algorithm that generates a representation of the con-
straint cadhoc as a disjunction of box constraints. Applying constructive disjunction on this
representation is equivalent to arc consistency on cadhoc.

3.8.4 Priorities in the Propagation List

A simple way to improve the efficiency of propagation in constraint solvers is to put pri-
orities on the different propagation events of the different constraints. We saw in Section
3.3.3 that the propagation list of arc consistency algorithms can be heuristically ordered.
The main criterion in the case of generic AC algorithms for binary constraints was to put
first the constraints that are expected to prune more. Constraint solvers contain various
types of constraints and various types of propagation events for these constraints which
can have different complexities. Laburthe et al. in [78] and Schulte and Stuckey in [110]
proposed to maintain a propagation list with several levels of priority. The idea is to put

C. Bessiere 77

a propagation event in a different level of the list depending on its time complexity. An
event in the ith level is not popped while the (i− 1)th level is not empty. The instantiation
event on a simple arithmetic constraint is the kind of event that is put at the first level.
Propagating GAC on an expensive global constraint is put at the last level. Propagating
BC(Z) on the same constraint will be put in some intermediate level. The CHOCO solver
uses a propagation list with 7 levels of priority [78].

Acknowledgements

I would like to thank especially Charlotte Truchet and Peter van Beek for their careful
reading of this chapter and their many valuable comments. Thanks also to Eric Bourreau
for having checked the section on specific constraints, to Peter Stuckey for his advice for
choosing the names of the different consistencies on bounds, to Roland Yap for some point-
ers in the literature, and to Toby Walsh for interesting discussions on global constraints.
Finally, I am very grateful to E.C. Freuder for the epigraph he kindly gave me for introduc-
ing this chapter.

Bibliography

[1] K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179–210, 1999.

[2] K.R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[3] K.R. Apt and E. Montfroy. Automatic generation of constraint propagation algo-
rithms for small finite domains. In Proceedings CP’99, pages 58–72, Alexandria
VA, 1999.

[4] F. Bacchus and T. Walsh. Propagating logical combinations of constraints. In Pro-
ceedings IJCAI’05, pages 35–40, Edinburgh, Scotland, 2005.

[5] R. Barták. A general relation constraint: An implementation. In Proceedings of
CP’00 Workshop on Techniques for Implementing Constraint Programming Systems
(TRICS), pages 30–40, Singapore, 2000.

[6] R. Barták and R. Erben. A new algorithm for singleton arc consistency. In Proceed-
ings FLAIRS’04, Miami Beach FL, 2004. AAAI Press.

[7] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30:479–513, 1983.

[8] N. Beldiceanu. Pruning for the minimum constraint family and for the number of
distinct values constraint family. In Proceedings CP’01, pages 211–224, Paphos,
Cyprus, 2001.

[9] N. Beldiceanu, M. Carlsson, and J.X. Rampon. Global constraint catalog. Techni-
cal Report T2005:08, Swedish Institute of Computer Science, Kista, Sweden, May
2005.

[10] F. Benhamou, D.A. McAllester, and P. Van Hentenryck. Clp(intervals) revisited.
In Proceedings of the International Symposium on Logic Programming (ILPS’94),
pages 124–138, Ithaca, New York, 1994.

[11] F. Benhamou and W. Older. Applying interval arithmetic to real, integer and boolean
constraints. Journal of Logic Programming, 32:1–24, 1997.

78 3. Constraint Propagation

[12] H. Bennaceur and M.S. Affane. Partition-k-ac: an efficient filtering technique com-
bining domain partition and arc consistency. In Proceedings CP’01, pages 560–564,
Paphos, Cyprus, 2001. Short paper.

[13] P. Berlandier. Improving domain filtering using restricted path consistency. In Pro-
ceedings IEEE Conference on Artificial Intelligence and Applications (CAIA’95),
1995.

[14] C. Bessiere. Arc-consistency and arc-consistency again. Artificial Intelligence, 65:
179–190, 1994.

[15] C. Bessiere and M.O. Cordier. Arc-consistency and arc-consistency again. In Pro-
ceedings AAAI’93, pages 108–113, Washington D.C., 1993.

[16] C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consistency. In
B. Hnich, editor, Proceedings ECAI’04 Workshop on Modelling and solving prob-
lems with constraints, pages 20–29, Valencia, Spain, 2004.

[17] C. Bessiere and R. Debruyne. Optimal and suboptimal singleton arc consistency
algorithms. In Proceedings IJCAI’05, pages 54–59, Edinburgh, Scotland, 2005.

[18] C. Bessiere, E. C. Freuder, and J. C. Régin. Using inference to reduce arc consis-
tency computation. In Proceedings IJCAI’95, pages 592–598, Montréal, Canada,
1995.

[19] C. Bessiere, E.C. Freuder, and J.C. Régin. Using constraint metaknowledge to re-
duce arc consistency computation. Artificial Intelligence, 107:125–148, 1999.

[20] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global con-
straints. In Proceedings AAAI’04, pages 112–117, San Jose CA, 2004. to appear.

[21] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global con-
straints. In Proceedings CP’04, pages 716–720, Toronto, Canada, 2004. Short
paper.

[22] C. Bessiere, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward checking for
non-binary constraint satisfaction. Artificial Intelligence, 141:205–224, 2002.

[23] C. Bessiere and J.C. Régin. Arc consistency for general constraint networks: pre-
liminary results. In Proceedings IJCAI’97, pages 398–404, Nagoya, Japan, 1997.

[24] C. Bessiere and J.C. Régin. Refining the basic constraint propagation algorithm. In
Proceedings IJCAI’01, pages 309–315, Seattle WA, 2001.

[25] C. Bessiere, J.C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-grained arc
consistency algorithm. Artificial Intelligence, 165:165–185, 2005.

[26] C. Bessiere and P. Van Hentenryck. To be or not to be ... a global constraint. In
Proceedings CP’03, pages 789–794, Kinsale, Ireland, 2003. Short paper.

[27] A. Borning. The programming language aspects of thinglab, a constraint-oriented
simulation laboratory. ACM Trans. Program. Lang. Syst., 3(4):353–387, 1981.

[28] F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuristics for the con-
straint satisfaction problem. In Proceedings of the CP’04 Workshop on Constraint
Propagation and Implementation, pages 29–43, Toronto, Canada, 2004.

[29] M. Cadoli and F.M. Donini. A survey on knowledge compilation. AI Communica-
tions, 10(3-4):137–150, 1997.

[30] K.C.K. Cheng, J.H.M. Lee, and P.J. Stuckey. Box constraint collections for adhoc
constraints. In Proceedings CP’03, pages 214–228, Kinsale, Ireland, 2003.

[31] A. Chmeiss and P. Jégou. Path-consistency: when space misses time. In Proceedings
AAAI’96, pages 196–201, Portland OR, 1996.

[32] A. Chmeiss and P. Jégou. Sur la consistance de chemin et ses formes partielles. In

C. Bessiere 79

Proceedings RFIA’96, pages 212–219, Rennes, France, 1996. (in French).
[33] A. Chmeiss and P. Jégou. Efficient path-consistency propagation. International

Journal on Artificial Intelligence Tools, 7(2):121–142, 1998.
[34] A. Chmeiss and L. Saı̈s. About the use of local consistency in solving CSPs. In

Proceedings IEEE-ICTAI’00, pages 104–107, Vancouver, Canada, 2000.
[35] C.W. Choi, W. Harvey, J.H.M. Lee, and P.J. Stuckey. Finite domain bounds consis-

tency revisited. http://arxiv.org/abs/cs.AI/0412021, December 2004.
[36] H. Collavizza, F. Delobel, and M. Rueher. A note on partial consistencies over

continuous domains. In Proceedings CP’98, pages 147–161, Pisa, Italy, 1998.
[37] M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41:89–95,

1989/90.
[38] H. Cros. Compilation et apprentissage dans les réseaux de contraintes. PhD thesis,

University Montpellier II, France, 2003. in French.
[39] T.B.H. Dao, A. Lallouet, A. Legtchenko, and L. Martin. Indexical-based solver

learning. In Proceedings CP’02, pages 541–555, Ithaca NY, 2002.
[40] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal

of the ACM, 7:201–215, 1960.
[41] R. Debruyne. A property of path inverse consistency leading to an optimal pic

algorithm. In Proceedings ECAI’00, pages 88–92, Berlin, Germany, 2000.
[42] R. Debruyne and C. Bessiere. From restricted path consistency to max-restricted

path consistency. In Proceedings CP’97, pages 312–326, Linz, Austria, 1997.
[43] R. Debruyne and C. Bessiere. Some practicable filtering techniques for the con-

straint satisfaction problem. In Proceedings IJCAI’97, pages 412–417, Nagoya,
Japan, 1997.

[44] R. Debruyne and C. Bessiere. Domain filtering consistencies. Journal of Artificial
Intelligence Research, 14:205–230, 2001.

[45] R. Dechter. On the expressiveness of networks with hidden variables. In Proceed-
ings AAAI’90, pages 556–562, Boston MA, 1990.

[46] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[47] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-

lems. Artificial Intelligence, 34:1–38, 1988.
[48] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-

gence, 38:353–366, 1989.
[49] R. Dechter and P. van Beek. Local and global relational consistency. Theoretical

Computer Science, 173(1):283–308, 1997.
[50] M. Dincbas, P. Van Hentenryck, H. Simonis, and A. Aggoun. The constraint logic

programming language chip. In Proceedings of the International Conference on
Fifth Generation Computer Systems, pages 693–702, Tokyo, Japan, 1988.

[51] R.E. Fikes. REF-ARF: A system for solving problems stated as procedures. Artifi-
cial Intelligence, 1:27–120, 1970.

[52] J.W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, Philadelphia PA, 1995.

[53] E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM, 21
(11):958–966, Nov 1978.

[54] E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24–32, Jan. 1982.

[55] E.C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the

80 3. Constraint Propagation

ACM, 32(4):755–761, Oct. 1985.
[56] E.C. Freuder. Completable representations of constraint satisfaction problems. In

Proceedings KR’91, pages 186–195, Cambridge MA, 1991.
[57] E.C. Freuder and C.D. Elfe. Neighborhood inverse consistency preprocessing. In

Proceedings AAAI’96, pages 202–208, Portland OR, 1996.
[58] E.C. Freuder and R.J. Wallace. Selective relaxation for constraint satisfaction prob-

lems. In IEEE-ICTAI’91, pages 332–339, San Jose CA, 1991.
[59] T.W. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic

Programming, 37(1-3):95–138, 1998.
[60] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to NP-

Completeness. Freeman, San Francisco CA, 1979.
[61] J. Gaschnig. A constraint satisfaction method for inference making. In Proceedings

Twelfth Annual Allerton Conference on Circuit and System Theory, pages 866–874,
1974.

[62] J. Gaschnig. Experimental case studies of backtrack vs waltz-type vs new algorithms
for satisficing assignment problems. In Proceedings CCSCSI’78, pages 268–277,
1978.

[63] I. Gent, K. Stergiou, and T. Walsh. Decomposable constraints. Artificial Intelli-
gence, 123:133–156, 2000.

[64] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The constrainedness of
arc consistency. In Proceedings CP’97, pages 327–340, Linz, Austria, 1997.

[65] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In
Proceedings AAAI’96, pages 246–252, Portland OR, 1996.

[66] S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the ACM, 12
(4):516–524, October 1965.

[67] M. Gyssens. On the complexity of join dependencies. ACM Trans. Database Syst.,
11(1):81–108, 1986.

[68] C.C. Han and C.H. Lee. Comments on Mohr and Henderson’s path consistency
algorithm. Artificial Intelligence, 36:125–130, 1988.

[69] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for constraint sat-
isfaction problems. Artificial Intelligence, 14:263–313, 1980.

[70] P. Van Hentenryck, V. Saraswat, and Y. Deville. The design, implementation, and
evaluation of the constraint language cc(FD). In Constraint Programming: Basics
and Trends. Springer Verlag, 1995.

[71] ILOG. User’s manual. ILOG Solver 4.4, ILOG S.A., 1999.
[72] P. Janssen, P. Jégou, B. Nouguier, and M. C. Vilarem. A filtering process for gen-

eral constraint-satisfaction problems: Achieving pairwise-consistency using an as-
sociated binary representation. In Proceedings of the IEEE Workshop on Tools for
Artificial Intelligence, pages 420–427, Fairfax VA, 1989.

[73] P. Jégou. Contribution á l’étude des problèmes de satisfaction de contraintes: al-
gorithmes de propagation et de résolution; propagation de contraintes dans les
réseaux dynamiques. PhD thesis, CRIM, University Montpellier II, 1991. in French.

[74] P. Jégou. On the consistency of general constraint-satisfaction problems. In Pro-
ceedings AAAI’93, pages 114–119, Washington D.C., 1993.

[75] I. Katriel and S. Thiel. Fast bound consistency for the global cardinality constraint.
In Proceedings CP’03, pages 437–451, Kinsale, Ireland, 2003.

[76] D.E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2

C. Bessiere 81

(2):127–145, 1968.
[77] D.E. Knuth and A. Raghunathan. The problem of compatible representatives. SIAM

Journal of Discrete Mathematics, 5(3):422–427, 1992.
[78] F. Laburthe and Ocre. Choco : implémentation du noyau d’un système de con-

traintes. In Proceedings JNPC’00, pages 151–165, Marseilles, France, 2000.
[79] J.L. Laurière. A language and a program for stating and solving combinatorial

problems. Artificial Intelligence, 10:29–127, 1978.
[80] M. Leconte. A bounds-based reduction scheme for difference constraints. In

Proceedings of the FLAIRS’96 workshop on Constraint-based Reasoning (Con-
straint’96), Key West FL, 1996.

[81] C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirectionality in coarse-
grained arc consistency algorithms. In Proceedings CP’03, pages 480–494, Kinsale,
Ireland, 2003.

[82] C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc consis-
tency. In Proceedings IJCAI’05, pages 199–204, Edinburgh, Scotland, 2005.

[83] O. Lhomme. Consistency techniques for numeric CSPs. In Proceedings IJCAI’93,
pages 232–238, Chambéry, France, 1993.

[84] O. Lhomme. Efficient filtering algorithm for disjunction of constraints. In Proceed-
ings CP’03, pages 904–908, Kinsale, Ireland, 2003.

[85] C.M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability prob-
lems. In Proceedings IJCAI’97, pages 366–371, Nagoya, Japan, 1997.

[86] A.K. Mackworth. Consistency in networks of relations. Technical Report 75-3,
Dept. of Computer Science, Univ. of B.C. Vancouver, 1975. (also in Artificial Intel-
ligence 8, 99-118, 1977).

[87] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:
99–118, 1977.

[88] A.K. Mackworth. On reading sketch maps. In Proceedings IJCAI’77, pages 598–
606, Cambridge MA, 1977.

[89] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25:65–74, 1985.

[90] P. Martin and D.B. Shmoys. A new approach to computing optimal schedules for
the job-shop scheduling problem. In Proceedings 5th International Conference on
Integer Programming and Combinatorial Optimization (IPCO’96), volume 1084 of
LNCS, pages 389–403, Vancouver, BC, 1996. Springer–Verlag.

[91] J.J. McGregor. Relational consistency algorithms and their application in finding
subgraph and graph isomorphism. Information Science, 19:229–250, 1979.

[92] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intelli-
gence, 28:225–233, 1986.

[93] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings ECAI’88,
pages 651–656, Munchen, FRG, 1988.

[94] R. Mohr and G. Masini. Running efficiently arc consistency. In G. Ferraté et al., ed-
itor, Syntactic and Structural Pattern Recognition, pages 217–231. Springer–Verlag,
Berlin, 1988.

[95] U. Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Information Science, 7:95–132, 1974.

[96] U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artificial Intelli-

82 3. Constraint Propagation

gence, 48:143–170, 1991.
[97] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient sat solver. In Proceedings International Design Automation Conference
(DAC-01), pages 530–535, Las Vegas NV, 2001.

[98] B.A. Nadel. Tree search and arc consistency in constraint satisfaction algorithms.
In L.Kanal and V.Kumar, editors, Search in Artificial Intelligence, pages 287–342.
Springer-Verlag, 1988.

[99] B.A. Nadel. Constraint satisfaction algorithms. Computational Intelligence, 5:188–
224, 1989.

[100] F. Pachet and P. Roy. Automatic generation of music programs. In Proceedings
CP’99, pages 331–345, Alexandria VA, 1999.

[101] C.H. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets
of complexity). J. Comput. System Sci., 28:244–259, 1984.

[102] P. Prosser, K. Stergiou, and T Walsh. Singleton consistencies. In Proceedings
CP’00, pages 353–368, Singapore, 2000.

[103] J.F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings AAAI’98, pages 359–366, Madison WI, 1998.

[104] C.G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved algo-
rithms for the global cardinality constraint. In Proceedings CP’04, pages 542–556,
Toronto, Canada, 2004.

[105] C.G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S.B. Sadjad. An
efficient bounds consistency algorithm for the global cardinality constraint. In Pro-
ceedings CP’03, pages 600–614, Kinsale, Ireland, 2003.

[106] J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceed-
ings AAAI’94, pages 362–367, Seattle WA, 1994.

[107] J.C. Régin. Generalized arc consistency for global cardinality constraint. In Pro-
ceedings AAAI’96, pages 209–215, Portland OR, 1996.

[108] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction prob-
lems. In Proceedings ECAI’90, pages 550–556, Stockholm, Sweden, 1990.

[109] C. Schulte and P.J. Stuckey. When do bounds and domain propagation lead to the
same search space. In Proceedings of the Third International Conference on Prin-
ciples and Practice of Declarative Programming, pages 115–126, Florence, Italy,
September 2001. ACM Press.

[110] C. Schulte and P.J. Stuckey. Speeding up constraint propagation. In Proceedings
CP’04, pages 619–633, Toronto, Canada, 2004.

[111] M. Singh. Path consistency revisited. International Journal on Artificial Intelligence
Tools, 5(1-2):127–141, 1996.

[112] E. Tsang. No more ’partial’ and ’full’ looking ahead. Artificial Intelligence, 98:
351–361, 1998.

[113] M.R.C. van Dongen. Lightweight arc-consistency algorithms. Technical Report
TR-01-2003, Cork Constraint Computation Center, 2003.

[114] M.R.C. van Dongen and J.A. Bowen. Improving arc-consistency algorithms with
double-support checks. In Proceedings of the Eleventh Irish Conference on Artificial
Intelligence and Cognitive Science, pages 140–149, 2000.

[115] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, MA, 1989. ISBN 0-262-08181-4.

[116] P. Van Hentenryck and Y. Deville. The cardinality operator: A new logical connec-

C. Bessiere 83

tive for constraint logic programming. In Proceedings ICLP’91, pages 745–759,
Paris, France, 1991.

[117] P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

[118] P. Van Hentenryck, V.A. Saraswat, and Y. Deville. Design, implementation, and
evaluation of the constraint language cc(FD). Journal of Logic Programming, 37
(1-3):139–164, 1998.

[119] G. Verfaillie, D. Martinez, and C. Bessiere. A generic customizable framework for
inverse local consistency. In Proceedings AAAI’99, pages 169–174, Orlando FL,
1999.

[120] R.J. Wallace. Why AC-3 is almost always better than AC-4 for establishing arc
consistency in CSPs. In Proceedings IJCAI’93, pages 239–245, Chambéry, France,
1993.

[121] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency algorithms.
In Proceedings Ninth Canadian Conference on Artificial Intelligence, pages 163–
169, Vancouver, Canada, 1992.

[122] T. Walsh. Errata on singleton consistencies. Private communication, September
2000.

[123] T. Walsh. Relational consistencies. Technical Report APES report 28-2001, Uni-
versity of York, 2001.

[124] D.L. Waltz. Generating semantic descriptions from drawings of scenes with shad-
ows. Tech.Rep. MAC AI-271, MIT, 1972.

[125] Y. Zhang and R.H.C. Yap. Arc consistency on n-ary monotonic and linear con-
straints. In Proceedings CP’00, pages 470–483, Singapore, 2000.

[126] Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm. In Proceedings
IJCAI’01, pages 316–321, Seattle WA, 2001.

This page intentionally left blank

Handbook of Constraint Programming 85
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 4

Backtracking Search Algorithms

Peter van Beek

There are three main algorithmic techniques for solving constraint satisfaction problems:
backtracking search, local search, and dynamic programming. In this chapter, I sur-
vey backtracking search algorithms. Algorithms based on dynamic programming [15]—
sometimes referred to in the literature as variable elimination, synthesis, or inference
algorithms—are the topic of Chapter 7. Local or stochastic search algorithms are the topic
of Chapter 5.

An algorithm for solving a constraint satisfaction problem (CSP) can be either complete
or incomplete. Complete, or systematic algorithms, come with a guarantee that a solution
will be found if one exists, and can be used to show that a CSP does not have a solution
and to find a provably optimal solution. Backtracking search algorithms and dynamic
programming algorithms are, in general, examples of complete algorithms. Incomplete, or
non-systematic algorithms, cannot be used to show a CSP does not have a solution or to
find a provably optimal solution. However, such algorithms are often effective at finding
a solution if one exists and can be used to find an approximation to an optimal solution.
Local or stochastic search algorithms are examples of incomplete algorithms.

Of the two classes of algorithms that are complete—backtracking search and dynamic
programming—backtracking search algorithms are currently the most important in prac-
tice. The drawbacks of dynamic programming approaches are that they often require an
exponential amount of time and space, and they do unnecessary work by finding, or mak-
ing it possible to easily generate, all solutions to a CSP. However, one rarely wishes to find
all solutions to a CSP in practice. In contrast, backtracking search algorithms work on only
one solution at a time and thus need only a polynomial amount of space.

Since the first formal statements of backtracking algorithms over 40 years ago [30, 57],
many techniques for improving the efficiency of a backtracking search algorithm have been
suggested and evaluated. In this chapter, I survey some of the most important techniques
including branching strategies, constraint propagation, nogood recording, backjumping,
heuristics for variable and value ordering, randomization and restart strategies, and alter-
natives to depth-first search. The techniques are not always orthogonal and sometimes
combining two or more techniques into one algorithm has a multiplicative effect (such as

c© 2006 Elsevier B.V. All rights reserved

86 4. Backtracking Search Algorithms

combining restarts with nogood recording) and sometimes it has a degradation effect (such
as increased constraint propagation versus backjumping). Given the many possible ways
that these techniques can be combined together into one algorithm, I also survey work on
comparing backtracking algorithms. The best combinations of these techniques result in
robust backtracking algorithms that can now routinely solve large, hard instances that are
of practical importance.

4.1 Preliminaries

In this section, I first define the constraint satisfaction problem followed by a brief review
of the needed background on backtracking search.

Definition 4.1 (CSP). A constraint satisfaction problem (CSP) consists of a set of variables,
X = {x1, . . . , xn}; a set of values,D = {a1, . . . , ad}, where each variable xi ∈ X has an
associated finite domain dom(xi) ⊆ D of possible values; and a collection of constraints.

Each constraint C is a relation—a set of tuples—over some set of variables, denoted
by vars(C). The size of the set vars(C) is called the arity of the constraint. A unary
constraint is a constraint of arity one, a binary constraint is a constraint of arity two, a
non-binary constraint is a constraint of arity greater than two, and a global constraint is
a constraint that can be over arbitrary subsets of the variables. A constraint can be spec-
ified intensionally by specifying a formula that tuples in the constraint must satisfy, or
extensionally by explicitly listing the tuples in the constraint. A solution to a CSP is an
assignment of a value to each variable that satisfies all the constraints. If no solution exists,
the CSP is said to be inconsistent or unsatisfiable.

As a running example in this survey, I will use the 6-queens problem: how can we place
6 queens on a 6 × 6 chess board so that no two queens attack each other. As one possible
CSP model, let there be a variable for each column of the board {x1, . . . , x6}, each with
domain dom(xi) = {1, . . . , 6}. Assigning a value j to a variable xi means placing a queen
in row j, column i. Between each pair of variables xi and xj , 1 ≤ i < j ≤ 6, there is a
constraint C(xi, xj), given by (xi 6= xj) ∧ (|i− j| 6= |xi − xj |). One possible solution is
given by {x1 = 4, x2 = 1, x3 = 5, x4 = 2, x5 = 6, x6 = 3}.

The satisfiability problem (SAT) is a CSP where the domains of the variables are the
Boolean values and the constraints are Boolean formulas. I will assume that the constraints
are in conjunctive normal form and are thus written as clauses. A literal is a Boolean
variable or its negation and a clause is a disjunction of literals. For example, the formula
¬x1 ∨x2 ∨x3 is a clause. A clause with one literal is called a unit clause; a clause with no
literals is called the empty clause. The empty clause is unsatisfiable.

A backtracking search for a solution to a CSP can be seen as performing a depth-
first traversal of a search tree. The search tree is generated as the search progresses and
represents alternative choices that may have to be examined in order to find a solution.
The method of extending a node in the search tree is often called a branching strategy, and
several alternatives have been proposed and examined in the literature (see Section 4.2).
A backtracking algorithm visits a node if, at some point in the algorithm’s execution, the
node is generated. Constraints are used to check whether a node may possibly lead to a
solution of the CSP and to prune subtrees containing no solutions. A node in the search
tree is a deadend if it does not lead to a solution.

P. van Beek 87

The naive backtracking algorithm (BT) is the starting point for all of the more so-
phisticated backtracking algorithms (see Table 4.1). In the BT search tree, the root node
at level 0 is the empty set of assignments and a node at level j is a set of assignments
{x1 = a1, . . . , xj = aj}. At each node in the search tree, an uninstantiated variable is
selected and the branches out of this node consist of all possible ways of extending the
node by instantiating the variable with a value from its domain. The branches represent
the different choices that can be made for that variable. In BT, only constraints with no
uninstantiated variables are checked at a node. If a constraint check fails—a constraint is
not satisfied—the next domain value of the current variable is tried. If there are no more
domain values left, BT backtracks to the most recently instantiated variable. A solution is
found if all constraint checks succeed after the last variable has been instantiated.

Figure 4.1 shows a fragment of the backtrack tree generated by the naive backtracking
algorithm (BT) for the 6-queens problem. The labels on the nodes are shorthands for the
set of assignments at that node. For example, the node labeled 25 consists of the set of
assignments {x1 = 2, x2 = 5}. White dots denote nodes where all the constraints with
no uninstantiated variables are satisfied (no pair of queens attacks each other). Black dots
denote nodes where one or more constraint checks fail. (The reasons for the shading and
dashed arrows are explained in Section 4.5.) For simplicity, I have assumed a static order
of instantiation in which variable xi is always chosen at level i in the search tree and values
are assigned to variables in the order 1, . . . , 6.

4.2 Branching Strategies

In the naive backtracking algorithm (BT), a node p = {x1 = a1, . . . , xj = aj} in the
search tree is a set of assignments and p is extended by selecting a variable x and adding
a branch to a new node p ∪ {x = a}, for each a ∈ dom(x). The assignment x = a is
said to be posted along a branch. As the search progresses deeper in the tree, additional
assignments are posted and upon backtracking the assignments are retracted. However,
this is just one possible branching strategy, and several alternatives have been proposed
and examined in the literature.

More generally, a node p = {b1, . . . , bj} in the search tree of a backtracking algo-
rithm is a set of branching constraints, where bi, 1 ≤ i ≤ j, is the branching con-
straint posted at level i in the search tree. A node p is extended by adding the branches
p∪{b1j+1}, . . . , p∪{bkj+1}, for some branching constraints bij+1, 1 ≤ i ≤ k. The branches
are often ordered using a heuristic, with the left-most branch being the most promising.
To ensure completeness, the constraints posted on all the branches from a node must be
mutually exclusive and exhaustive.

Usually, branching strategies consist of posting unary constraints. In this case, a vari-
able ordering heuristic is used to select the next variable to branch on and the ordering of
the branches is determined by a value ordering heuristic (see Section 4.6). As a running
example, let x be the variable to be branched on, let dom(x) = {1, . . . , 6}, and assume that
the value ordering heuristic is lexicographic ordering. Three popular branching strategies
involving unary constraints are the following.

1. Enumeration. The variable x is instantiated in turn to each value in its domain. A
branch is generated for each value in the domain of the variable and the constraint
x = 1 is posted along the first branch, x = 2 along the second branch, and so

88 4. Backtracking Search Algorithms

2

3

4

5

6

25

253

2531 2536

25314 25364

Figure 4.1: A fragment of the BT backtrack tree for the 6-queens problem (from [79]).

on. The enumeration branching strategy is assumed in many textbook presentations
of backtracking and in much work on backtracking algorithms for solving CSPs.
An alternative name for this branching strategy in the literature is d-way branching,
where d is the size of the domain.

2. Binary choice points. The variable x is instantiated to some value in its domain.
Assuming the value 1 is chosen in our example, two branches are generated and the
constraints x = 1 and x 6= 1 are posted, respectively. This branching strategy is often
used in constraint programming languages for solving CSPs (see, e.g., [72, 123]) and
is used by Sabin and Freuder [116] in their backtracking algorithm which maintains
arc consistency during the search. An alternative name for this branching strategy in
the literature is 2-way branching.

3. Domain splitting. Here the variable is not necessarily instantiated, but rather the
choices for the variable are reduced in each subproblem. For ordered domains such
as in our example, this could consist of posting a constraint of the form x ≤ 3 on
one branch and posting x > 3 on the other branch.

The three schemes are, of course, identical if the domains are binary (such as, for example,
in SAT).

P. van Beek 89

Table 4.1: Some named backtracking algorithms. Hybrid algorithms which combine tech-
niques are denoted by hyphenated names. For example, MAC-CBJ is an algorithm that
maintains arc consistency and performs conflict-directed backjumping.

BT Naive backtracking: checks constraints with no uninstantiated vari-
ables; chronologically backtracks.

MAC Maintains arc consistency on constraints with at least one uninstanti-
ated variable; chronologically backtracks.

FC Forward checking algorithm: maintains arc consistency on constraints
with exactly one uninstantiated variable; chronologically backtracks.

DPLL Forward checking algorithm specialized to SAT problems: uses unit
propagation; chronologically backtracks.

MCk Maintains strong k-consistency; chronologically backtracks.

CBJ Conflict-directed backjumping; no constraint propagation.

BJ Limited backjumping; no constraint propagation.

DBT Dynamic backtracking: backjumping with 0-order relevance-bounded
nogood recording; no constraint propagation.

Branching strategies that consist of posting non-unary constraints have also been pro-
posed, as have branching strategies that are specific to a class of problems. As an example
of both, consider job shop scheduling where we must schedule a set of tasks t1, . . . , tk on
a set of resources. Let xi be a finite domain variable representing the starting time of ti
and let di be the fixed duration of ti. A popular branching strategy is to order or serialize
the tasks that share a resource. Consider two tasks t1 and t2 that share the same resource.
The branching strategy is to post the constraint x1 + d1 ≤ x2 along one branch and to post
the constraint x2 + d2 ≤ x1 along the other branch (see, e.g., [23] and references therein).
This continues until either a deadend is detected or all tasks have been ordered. Once all
tasks are ordered, one can easily construct a solution to the problem; i.e., an assignment of
a value to each xi. It is interesting to note that, conceptually, the above branching strategy
is equivalent to adding auxiliary variables to the CSP model which are then branched on.
For the two tasks t1 and t2 that share the same resource, we would add the auxiliary vari-
able O12 with dom(O12) = {0, 1} and the constraints O12 = 1 ⇐⇒ x1 + d1 ≤ x2 and
O12 = 0 ⇐⇒ x2 + d2 ≤ x1. In general, if the underlying backtracking algorithm has a
fixed branching strategy, one can simulate a different branching strategy by adding auxil-
iary variables. Thus, the choice of branching strategy and the design of the CSP model are
interdependent decisions.

There has been further work on branching strategies that has examined the relative
power of the strategies and proposed new strategies. Van Hentenryck [128, pp.90–92]
examines tradeoffs between the enumeration and domain splitting strategies. Milano and
van Hoeve [97] show that branching strategies can be viewed as the combination of a value
ordering heuristic and a domain splitting strategy. The value ordering is used to rank the
domain values and the domain splitting strategy is used to partition the domain into two or

90 4. Backtracking Search Algorithms

more sets. Of course, the set with the most highly ranked values will be branched into first.
The technique is shown to work well on optimization problems.

Smith and Sturdy [121] show that when using chronological backtracking with 2-way
branching to find all solutions, the value ordering can have an effect on the efficiency
of the backtracking search. This is a surprise, since it is known that value ordering has
no effect under these circumstances when using d-way branching. Hwang and Mitchell
[71] show that backtracking with 2-way branching is exponentially more powerful than
backtracking with d-way branching. It is clear that d-way branching can be simulated by
2-way branching with no loss of efficiency. Hwang and Mitchell show that the converse
does not hold. They give a class of problems where a d-way branching algorithm with an
optimal variable and value ordering takes exponentially more steps than a 2-way branching
algorithm with a simple variable and value ordering. However, note that the result holds
only if the CSP model is assumed to be fixed. It does not hold if we are permitted to add
auxiliary variables to the CSP model.

4.3 Constraint Propagation

A fundamental insight in improving the performance of backtracking algorithms on CSPs
is that local inconsistencies can lead to much thrashing or unproductive search [47, 89].
A local inconsistency is an instantiation of some of the variables that satisfies the relevant
constraints but cannot be extended to one or more additional variables and so cannot be
part of any solution. (Local inconsistencies are nogoods; see Section 4.4.) If we are using
a backtracking search to find a solution, such an inconsistency can be the reason for many
deadends in the search and cause much futile search effort. This insight has led to:

(a) the definition of conditions that characterize the level of local consistency of a CSP
(e.g., [39, 89, 102]),

(b) the development of constraint propagation algorithms—algorithms which enforce
these levels of local consistency by removing inconsistencies from a CSP (e.g., [89,
102]), and

(c) effective backtracking algorithms for finding solutions to CSPs that maintain a level
of local consistency during the search (e.g., [31, 47, 48, 63, 93]).

A generic scheme to maintain a level of local consistency in a backtracking search is
to perform constraint propagation at each node in the search tree. Constraint propagation
algorithms remove local inconsistencies by posting additional constraints that rule out or
remove the inconsistencies. When used during search, constraints are posted at nodes as
the search progresses deeper in the tree. But upon backtracking over a node, the con-
straints that were posted at that node must be retracted. When used at the root node of the
search tree—before any instantiations or branching decisions have been made—constraint
propagation is sometimes referred to as a preprocessing stage.

Backtracking search integrated with constraint propagation has two important benefits.
First, removing inconsistencies during search can dramatically prune the search tree by
removing many deadends and by simplify the remaining subproblem. In some cases, a
variable will have an empty domain after constraint propagation; i.e., no value satisfies the
unary constraints over that variable. In this case, backtracking can be initiated as there

P. van Beek 91

is no solution along this branch of the search tree. In other cases, the variables will have
their domains reduced. If a domain is reduced to a single value, the value of the variable
is forced and it does not need to be branched on in the future. Thus, it can be much easier
to find a solution to a CSP after constraint propagation or to show that the CSP does not
have a solution. Second, some of the most important variable ordering heuristics make use
of the information gathered by constraint propagation to make effective variable ordering
decisions (this is discussed further in Section 4.6). As a result of these benefits, it is now
standard for a backtracking algorithm to incorporate some form of constraint propagation.

Definitions of local consistency can be categorized in at least two ways. First, the def-
initions can be categorized into those that are constraint-based and those that are variable-
based, depending on what are the primitive entities in the definition. Second, definitions of
local consistency can be categorized by whether only unary constraints need to be posted
during constraint propagation, or whether posting constraints of higher arity is sometimes
necessary. In implementations of backtracking, the domains of the variables are repre-
sented extensionally, and posting and retracting unary constraints can be done very effi-
ciently by updating the representation of the domain. Posting and retracting constraints of
higher arity is less well understood and more costly. If only unary constraints are necessary,
constraint propagation is sometimes referred to as domain filtering or domain pruning.

The idea of incorporating some form of constraint propagation into a backtracking
algorithm arose from several directions. Davis and Putnam [31] propose unit propaga-
tion, a form of constraint propagation specialized to SAT. Golomb and Baumert [57] may
have been the first to informally describe the idea of improving a general backtracking
algorithm by incorporating some form of domain pruning during the search. Constraint
propagation techniques were used in Fikes’ REF-ARF [37] and Lauriere’s Alice [82], both
languages for stating and solving CSPs. Gaschnig [47] was the first to propose a back-
tracking algorithm that enforces a precisely defined level of local consistency at each node.
Gaschnig’s algorithm used d-way branching. Mackworth [89] generalizes Gaschnig’s pro-
posal to backtracking algorithms that interleave case-analysis with constraint propagation
(see also [89] for additional historical references).

Since this early work, a vast literature on constraint propagation and local consistency
has arisen; more than I can reasonably discuss in the space available. Thus, I have cho-
sen two representative examples: arc consistency and strong k-consistency. These local
consistencies illustrate the different categorizations given above. As well, arc consistency
is currently the most important local consistency in practice and has received the most at-
tention so far, while strong k-consistency has played an important role on the theoretical
side of CSPs. For each of these examples, I present the definition of the local consistency,
followed by a discussion of backtracking algorithms that maintain this level of local con-
sistency during the search. I do not discuss any specific constraint propagation algorithms.
Two separate chapters in this Handbook have been devoted to this topic (see Chapters 3
& 6). Note that many presentations of constraint propagation algorithms are for the case
where the algorithm will be used in the preprocessing stage. However, when used during
search to maintain a level of local consistency, usually only small changes occur between
successive calls to the constraint propagation algorithm. As a result, much effort has also
gone into making such algorithms incremental and thus much more efficient when used
during search.

When presenting backtracking algorithms integrated with constraint propagation, I
present the “pure” forms of the backtracking algorithms where a uniform level of local

92 4. Backtracking Search Algorithms

consistency is maintained at each node in the search tree. This is simply for ease of presen-
tation. In practice, the level of local consistency enforced and the algorithm for enforcing
it is specific to each constraint and varies between constraints. An example is the widely
used all-different global constraint, where fast algorithms are designed for enforcing many
different levels of local consistency including arc consistency, range consistency, bounds
consistency, and simple value removal. The choice of which level of local consistency to
enforce is then up to the modeler.

4.3.1 Backtracking and Maintaining Arc Consistency

Mackworth [89, 90] defines a level of local consistency called arc consistency1. Given a
constraint C, the notation t ∈ C denotes a tuple t—an assignment of a value to each of the
variables in vars(C)—that satisfies the constraint C. The notation t[x] denotes the value
assigned to variable x by the tuple t.

Definition 4.2 (arc consistency). Given a constraint C, a value a ∈ dom(x) for a variable
x ∈ vars(C) is said to have a support in C if there exists a tuple t ∈ C such that a = t[x]
and t[y] ∈ dom(y), for every y ∈ vars(C). A constraint C is said to be arc consistent if
for each x ∈ vars(C), each value a ∈ dom(x) has a support in C.

A constraint can be made arc consistent by repeatedly removing unsupported val-
ues from the domains of its variables. Note that this definition of local consistency is
constraint-based and enforcing arc consistency on a CSP means iterating over the con-
straints until no more changes are made to the domains. Algorithms for enforcing arc
consistency have been extensively studied (see Chapters 3 & 6). An optimal algorithm for
an arbitrary constraint has O(rdr) worst case time complexity, where r is the arity of the
constraint and d is the size of the domains of the variables [101]. Fortunately, it is almost
always possible to do much better for classes of constraints that occur in practice. For ex-
ample, the all-different constraint can be made arc consistent in O(r2d) time in the worst
case.

Gaschnig [47] suggests maintaining arc consistency during backtracking search and
gives the first explicit algorithm containing this idea. Following Sabin and Freuder [116],
I will denote such an algorithm as MAC2. The MAC algorithm maintains arc consistency
on constraints with at least one uninstantiated variable (see Table 4.1). At each node of
the search tree, an algorithm for enforcing arc consistency is applied to the CSP. Since
arc consistency was enforced on the parent of a node, initially constraint propagation only
needs to be enforced on the constraint that was posted by the branching strategy. In turn,
this may lead to other constraints becoming arc inconsistent and constraint propagation
continues until no more changes are made to the domains. If, as a result of constraint
propagation, a domain becomes empty, the branch is a deadend and is rejected. If no
domain is empty, the branch is accepted and the search continues to the next level.

1Arc consistency is also called domain consistency, generalized arc consistency, and hyper arc consistency
in the literature. The latter two names are used when an author wishes to reserve the name arc consistency for the
case where the definition is restricted to binary constraints.

2Gaschnig’s DEEB (Domain Element Elimination with Backtracking) algorithm uses d-way branching.
Sabin and Freuder’s [116] MAC (Maintaining Arc Consistency) algorithm uses 2-way branching. However, I
will follow the practice of much of the literature and use the term MAC to denote an algorithm that maintains arc
consistency during the search, regardless of the branching strategy used.

P. van Beek 93

As an example of applying MAC, consider the backtracking tree for the 6-queens prob-
lem shown in Figure 4.1. MAC visits only node 25, as it is discovered that this node is a
deadend. The board in Figure 4.2a shows the result of constraint propagation. The shaded
numbered squares correspond to the values removed from the domains of the variables by
constraint propagation. A value i is placed in a shaded square if the value was removed
because of the assignment at level i in the tree. It can been seen that after constraint prop-
agation, the domains of some of the variables are empty. Thus, the set of assignments
{x1 = 2, x2 = 5} cannot be part of a solution to the CSP.

When maintaining arc consistency during search, any value that is pruned from the
domain of a variable does not participate in any solution to the CSP. However, not all
values that remain in the domains necessarily are part of some solution. Hence, while
arc consistency propagation can reduce the search space, it does not remove all possible
deadends. Let us say that the domains of a CSP are minimal if each value in the domain of a
variable is part of some solution to the CSP. Clearly, if constraint propagation would leave
only the minimal domains at each node in the search tree, the search would be backtrack-
free as any value that was chosen would lead to a solution. Unfortunately, finding the
minimal domains is at least as hard as solving the CSP. After enforcing arc consistency on
individual constraints, each value in the domain of a variable is part of some solution to
the constraint considered in isolation. Finding the minimal domains would be equivalent
to enforcing arc consistency on the conjunction of the constraints in a CSP, a process that
is worst-case exponential in n, the number of variables in the CSP. Thus, arc consistency
can be viewed as approximating the minimal domains.

In general, there is a tradeoff between the cost of the constraint propagation performed
at each node in the search tree, and the quality of the approximation of the minimal do-
mains. One way to improve the approximation, but with an increase in the cost of constraint
propagation, is to use a stronger level of local consistency such as a singleton consistency
(see Chapter 3). One way to reduce the cost of constraint propagation, at the risk of a
poorer approximation to the minimal domains and an increase in the overall search cost, is
to restrict the application of arc consistency. One such algorithm is called forward check-
ing. The forward checking algorithm (FC) maintains arc consistency on constraints with
exactly one uninstantiated variable (see Table 4.1). On such constraints, arc consistency
can be enforced in O(d) time, where d is the size of the domain of the uninstantiated vari-
able. Golomb and Baumert [57] may have been the first to informally describe forward
checking (called preclusion in [57]). The first explicit algorithms are given by McGregor
[93] and Haralick and Elliott [63]. Forward checking was originally proposed for binary
constraints. The generalization to non-binary constraints used here is due to Van Henten-
ryck [128].

As an example of applying FC, consider the backtracking tree shown in Figure 4.1.
FC visits only nodes 25, 253, 2531, 25314 and 2536. The board in Figure 4.2b shows the
result of constraint propagation. The squares that are left empty as the search progresses
correspond to the nodes visited by FC.

Early experimental work in the field found that FC was much superior to MAC [63, 93].
However, this superiority turned out to be partially an artifact of the easiness of the bench-
marks. As well, many practical improvements have been made to arc consistency prop-
agation algorithms over the intervening years, particularly with regard to incrementality.
The result is that backtracking algorithms that maintain full arc consistency during the
search are now considered much more important in practice. An exception is the widely

94 4. Backtracking Search Algorithms

used DPLL algorithm [30, 31], a backtracking algorithm specialized to SAT problems in
CNF form (see Table 4.1). The DPLL algorithm uses unit propagation, sometimes called
Boolean constraint propagation, as its constraint propagation mechanism. It can be shown
that unit propagation is equivalent to forward checking on a SAT problem. Further, it
can be shown that the amount of pruning performed by arc consistency on these problems
is equivalent to that of forward checking. Hence, forward checking is the right level of
constraint propagation on SAT problems.

Forward checking is just one way to restrict arc consistency propagation; many vari-
ations are possible. For example, one can maintain arc consistency on constraints with
various numbers of uninstantiated variables. Bessière et al. [16] consider the possibilities.
One could also take into account the size of the domains of uninstantiated variables when
specify which constraints should be propagated. As a third alternative, one could place ad
hoc restrictions on the constraint propagation algorithm itself and how it iterates through
the constraints [63, 104, 117].

An alternative to restricting the application of arc consistency—either by restricting
which constraints are propagated or by restricting the propagation itself—is to restrict the
definition of arc consistency. One important example is bounds consistency. Suppose
that the domains of the variables are large and ordered and that the domains of the vari-
ables are represented by intervals (the minimum and the maximum value in the domain).
With bounds consistency, instead of asking that each value a ∈ dom(x) has a support in
the constraint, we only ask that the minimum value and the maximum value each have a
support in the constraint. Although in general weaker than arc consistency, bounds con-
sistency has been shown to be useful for arithmetic constraints and global constraints as it
can sometimes be enforced more efficiently (see Chapters 3 & 6 for details). For exam-
ple, the all-different constraint can be made bounds consistent in O(r) time in the worst
case, in contrast to O(r2d) for arc consistency, where r is the arity of the constraint and
d is the size of the domains of the variables. Further, for some problems it can be shown
that the amount of pruning performed by arc consistency is equivalent to that of bounds
consistency, and thus the extra cost of arc consistency is not repaid.

x1 x2 x3 x4 x5 x6

1

2

3

4

5

6

Q

Q

1

1

1

2

1

2

1

1

2

2

1

2

2

1

2

2

1

2

2

2

1

2

1

2

2

2

2

x1 x2 x3 x4 x5 x6

1

2

3

4

5

6

Q

Q

Q

1

1

1

1

1

2

2

1

2

3

1

3

1

3

2

1

2

1

3

2

3

(a) (b)

Figure 4.2: Constraint propagation on the 6-queens problem; (a) maintaining arc consis-
tency; (b) forward checking.

P. van Beek 95

4.3.2 Backtracking and Maintaining Strong k-Consistency

Freuder [39, 40] defines a level of local consistency called strong k-consistency. A set of
assignments is consistent if each constraint that has all of its variables instantiated by the
set of assignments is satisfied.

Definition 4.3 (strong k-consistency). A CSP is k-consistent if, for any set of assignments
{x1 = a1, . . . , xk−1 = ak−1} to k − 1 distinct variables that is consistent, and any
additional variable xk, there exists a value ak ∈ dom(xk) such that the set of assignments
{x1 = a1, . . . , xk−1 = ak−1, xk = ak} is consistent. A CSP is strongly k-consistent if it
is j-consistent for all j ≤ k.

For the special case of binary CSPs, strong 2-consistency is the same as arc consistency
and strong 3-consistency is also known as path consistency. A CSP can be made strongly
k-consistent by repeatedly detecting and removing all those inconsistencies t = {x1 =
a1, . . . , xj−1 = aj−1} where 1 ≤ j < k and t is consistent but cannot be extended to
some jth variable xj . To remove an inconsistency or nogood t, a constraint is posted to
the CSP which rules out the tuple t. Enforcing strong k-consistency may dramatically
increase the number of constraints in a CSP, as the number of new constraints posted can
be exponential in k. Once a CSP has been made strongly k-consistent any value that
remains in the domain of a variable can be extended to a consistent set of assignments
over k variables in a backtrack-free manner. However, unless k = n, there is no guarantee
that a value can be extended to a solution over all n variables. An optimal algorithm
for enforcing strong k-consistency on a CSP containing arbitrary constraints has O(nkdk)
worst case time complexity, where n is the number of variables in the CSP and d is the size
of the domains of the variables [29].

Let MCk be an algorithm that maintains strong k-consistency during the search (see
Table 4.1). For the purposes of specifying MCk, I will assume that the branching strategy
is enumeration and that, therefore, each node in the search tree corresponds to a set of
assignments. During search, we want to maintain the property that any value that remains
in the domain of a variable can be extended to a consistent set of assignments over k
variables. To do this, we must account for the current set of assignments by, conceptually,
modifying the constraints. Given a set of assignments t, only those tuples in a constraint
that agree with the assignments in t are selected and those tuples are then projected onto
the set of uninstantiated variables of the constraint to give the new constraint (see [25] for
details). Under such an architecture, FC can be viewed as maintaining one-consistency,
and, for binary CSPs, MAC can be viewed as maintaining strong two-consistency.

Can such an architecture be practical for k > 2? There is some evidence that the
answer is yes. Van Gelder and Tsuji [127] propose an algorithm that maintains the closure
of resolution on binary clauses (clauses with two literals) and gives experimental evidence
that the algorithm can be much faster than DPLL on larger SAT instances. The algorithm
can be viewed as MC3 specialized to SAT. Bacchus [2] builds on this work and shows that
the resulting SAT solver is robust and competitive with state-of-the-art DPLL solvers. This
is remarkable given the amount of engineering that has gone into DPLL solvers. So far,
however, there has been no convincing demonstration of a corresponding result for general
CSPs, although efforts have been made.

96 4. Backtracking Search Algorithms

4.4 Nogood Recording

One of the most effective techniques known for improving the performance of backtrack-
ing search on a CSP is to add implied constraints. A constraint is implied if the set of
solutions to the CSP is the same with and without the constraint. Adding the “right” im-
plied constraints to a CSP can mean that many deadends are removed from the search tree
and other deadends are discovered after much less search effort.

Three main techniques for adding implied constraints have been investigated. One
technique is to add implied constraints by hand during the modeling phase (see Chapter
11). A second technique is to automatically add implied constraints by applying a con-
straint propagation algorithm (see Section 4.3). Both of the above techniques rule out local
inconsistencies or deadends before they are encountered during the search. A third tech-
nique, and the topic of this section, is to automatically add implied constraints after a local
inconsistency or deadend is encountered in the search. The basis of this technique is the
concept of a nogood, due to Stallman and Sussman [124]3.

Definition 4.4 (nogood). A nogood is a set of assignments and branching constraints that
is not consistent with any solution.

In other words, there does not exist a solution—an assignment of a value to each vari-
able that satisfies all the constraints of the CSP—that also satisfies all the assignments and
branching constraints in the nogood. If we are using a backtracking search to find a so-
lution, each deadend corresponds to a nogood. Thus nogoods are the cause of all futile
search effort. Once a nogood for a deadend is discovered, it can be ruled out by adding
a constraint. Of course, it is too late for this deadend—the backtracking algorithm has
already refuted this node, perhaps at great cost—but the hope is that the constraint will
prune the search space in the future. The technique, first informally described by Stallman
and Sussman [124], is often referred to as nogood or constraint recording.

As an example of a nogood, consider the 6-queens problem. The set of assignments
{x1 = 2, x2 = 5, x3 = 3} is a nogood since it is not contained in any solution (see the
backtracking tree shown in Figure 4.1 where the node 253 is the root of a failed subtree).
To rule out the nogood, the implied constraint ¬(x1 = 2 ∧ x2 = 5 ∧ x3 = 3) could be
recorded, which is just x1 6= 2 ∨ x2 6= 5 ∨ x3 6= 3 in clause form.

The recorded constraints can be checked and propagated just like the original con-
straints. In particular, since nogoods correspond to constraints which are clauses, forward
checking is an appropriate form of constraint propagation. As well, nogoods can be used
for backjumping (see Section 4.5). Nogood recording—or discovering and recording im-
plied constraints during the search—can be viewed as an adaptation of the well-known
technique of adding caching (sometimes called memoization) to backtracking search. The
idea is to cache solutions to subproblems and reuse the solutions instead of recomputing
them.

The constraints that are added through nogood recording could, in theory, have been
ruled out a priori using a constraint propagation algorithm. However, while constraint
propagation algorithms which add implied unary constraints are especially important, the

3Most previous work on nogood recording implicitly assumes that the backtracking algorithm is performing
d-way branching (only adding branching constraints which are assignments) and drops the phrase “and branching
constraints” from the definition. The generalized definition and descriptions used in this section are inspired by
the work of Rochart, Jussien, and Laburthe [113].

P. van Beek 97

algorithms which add higher arity constraints often add too many implied constraints that
are not useful and the computational cost is not repaid by a faster search.

4.4.1 Discovering Nogoods

Stallman and Sussman’s [124] original account of discovering nogoods is embedded in
a rule-based programming language and is descriptive and informal. Bruynooghe [22]
informally adapts the idea to backtracking search on CSPs. Dechter [33] provides the first
formal account of discovering and recording nogoods. Dechter [34] shows how to discover
nogoods using the static structure of the CSP.

Prosser [108], Ginsberg [54], and Schiex and Verfaillie [118] all independently give
accounts of how to discover nogoods dynamically during the search. The following def-
inition captures the essence of these proposals. The definition is for the case where the
backtracking algorithm does not perform any constraint propagation. (The reason for the
adjective “jumpback” is explained in Section 4.5.) Recall that associated with each node
in the search tree is the set of branching constraints posted along the path to the node. For
d-way branching, the branching constraints are of the form x = a, for some variable x and
value a; for 2-way branching, the branching constraints are of the form x = a and x 6= a;
and for domain splitting, the branching constraints are of the form x ≤ a and x > a.

Definition 4.5 (jumpback nogood). Let p = {b1, . . . , bj} be a deadend node in the search
tree, where bi, 1 ≤ i ≤ j, is the branching constraint posted at level i in the search tree.
The jumpback nogood for p, denoted J(p), is defined recursively as follows.

1. p is a leaf node. Let C be a constraint that is not consistent with p (one must exist);

J(p) = {bi | vars(bi) ∩ vars(C) 6= ∅, 1 ≤ i ≤ j}.

2. p is not a leaf node. Let {b1j+1, . . . , b
k
j+1} be all the possible extensions of p at-

tempted by the branching strategy, each of which has failed;

J(p) =

k
⋃

i=1

(J(p ∪ {bij+1})− {bij+1}).

As an example of applying the definition, consider the jumpback nogood for the node
25314 shown in Figure 4.1. The set of branching constraints associated with this node is
p = {x1 = 2, x2 = 5, x3 = 3, x4 = 1, x5 = 4}. The backtracking algorithm branches on
x6, but all attempts to extend p fail. The jumpback nogood is given by,

J(p) = (J(p ∪ {x6 = 1})− {x6 = 1}) ∪ · · · ∪ (J(p ∪ {x6 = 6})− {x6 = 6}),
= {x2 = 5} ∪ · · · ∪ {x3 = 3},
= {x1 = 2, x2 = 5, x3 = 3, x5 = 4}.

Notice that the order in which the constraints are checked or propagated directly influences
which nogood is discovered. In applying the above definition, I have chosen to check the
constraints in increasing lexicographic order. For example, for the leaf node p∪{x6 = 1},
both C(x2, x6) and C(x4, x6) fail—i.e., both the queen at x2 and the queen at x4 attack
the queen at x6—and I have chosen C(x2, x6).

98 4. Backtracking Search Algorithms

The discussion so far has focused on the simpler case where the backtracking algo-
rithm does not perform any constraint propagation. Several authors have contributed to
our understanding of how to discover nogoods when the backtracking algorithm does use
constraint propagation. Rosiers and Bruynooghe [114] give an informal description of
combining forward checking and nogood recording. Schiex and Verfaillie [118] provide
the first formal account of nogood recording within an algorithm that performs forward
checking. Prosser’s FC-CBJ [108] and MAC-CBJ [109] can be viewed as discovering
jumpback nogoods (see Section 4.5.1). Jussien, Debruyne, and Boizumault [75] give an
algorithm that combines nogood recording with arc consistency propagation on non-binary
constraints. The following discussion captures the essence of these proposals. The key idea
is to modify the constraint propagation algorithms so that, for each value that is removed
from the domain of some variable, an eliminating explanation is recorded.

Definition 4.6 (eliminating explanation). Let p = {b1, . . . , bj} be a node in the search
tree and let a ∈ dom(x) be a value that is removed from the domain of a variable x by
constraint propagation at node p. An eliminating explanation for a, denoted expl(x 6= a),
is a subset (not necessarily proper) of p such that expl(x 6= a) ∪ {x = a} is a nogood.

The intention behind the definition is that expl(x 6= a) is sufficient to account for the
removal of a. As an example, consider the board in Figure 4.2a which shows the result of
arc consistency propagation. At the node p = {x1 = 2, x2 = 5}, the value 1 is removed
from dom(x6). An eliminating explanation for this value is expl(x6 6= 1) = {x2 = 5},
since {x2 = 5, x6 = 1} is a nogood. An eliminating explanation can be viewed as the
left-hand side of an implication which rules out the stated value. For example, the implied
constraint to rule out the nogood {x2 = 5, x6 = 1} is ¬(x2 = 5 ∧ x6 = 1), which can be
rewritten as (x2 = 5) ⇒ (x6 6= 1). Similarly, expl(x6 6= 3) = {x1 = 2, x2 = 5} and the
corresponding implied constraint can be written as (x1 = 2 ∧ x2 = 5)⇒ (x6 6= 3).

One possible method for constructing eliminating explanations for arc consistency
propagation is as follows. Initially at a node, a branching constraint bj is posted and arc
consistency is enforced on bj . For each value a removed from the domain of a variable
x ∈ vars(bj), expl(x 6= a) is set to {bj}. Next constraint propagation iterates through the
constraints re-establishing arc consistency. Consider a value a removed from the domain
of a variable x during this phase of constraint propagation. We must record an explana-
tion that accounts for the removal of a; i.e., the reason that a does not have a support in
some constraint C. For each value b of a variable y ∈ vars(C) which could have been
used to form a support for a ∈ dom(x) in C but has been removed from its domain,
add the eliminating explanation for y 6= b to the eliminating explanation for x 6= a; i.e.
expl(x 6= a) ← expl(x 6= a) ∪ expl(y 6= b). In the special case of arc consistency prop-
agation called forward checking, it can be seen that the eliminating explanation is just the
variable assignments of the instantiated variables in C.

The jumpback nogood in the case where the backtracking algorithm performs con-
straint propagation can now be defined as follows.

Definition 4.7 (jumpback nogood with constraint propagation). Let p = {b1, . . . , bj} be
a deadend node in the search tree. The jumpback nogood for p, denoted J(p), is defined
recursively as follows.

P. van Beek 99

1. p is a leaf node. Let x be a variable whose domain has become empty (one must
exist), where dom(x) is the original domain of x;

J(p) =
⋃

a∈dom(x)

expl(x 6= a).

2. p is not a leaf node. Same as Definition 4.5.

Note that the jumpback nogoods are not guaranteed to be the minimal nogood or the
“best” nogood that could be discovered, even if the nogoods are locally minimal at leaf
nodes. For example, Bacchus [1] shows that the jumpback nogood for forward checking
may not give the best backjump point and provides a method for improving the nogood.
Katsirelos and Bacchus [77] show how to discover generalized nogoods during search
using either FC-CBJ or MAC-CBJ. Standard nogoods are of the form {x1 = a1 ∧ · · · ∧
xk = ak}; i.e., each element is of the form xi = ai. Generalized nogoods also allow
conjuncts of the form xi 6= ai. When standard nogoods are propagated, a variable can
only have a value pruned from its domain. For example, consider the standard nogood
clause x1 6= 2 ∨ x2 6= 5 ∨ x3 6= 3. If the backtracking algorithm at some point makes the
assignments x1 = 2 and x2 = 5, the value 3 can be removed from the domain of variable
x3. Only indirectly, in the case where all but one of the values have been pruned from the
domain of a variable, can propagating nogoods cause the value of a variable to be forced;
i.e., cause an assignment of a value to a variable. With generalized nogoods, the value of a
variable can also be forced directly which may lead to additional propagation.

Marques-Silva and Sakallah [92] show that in SAT, the effects of Boolean constraint
propagation (BCP or unit propagation) can be captured by an implication graph. An impli-
cation graph is a directed acyclic graph where the vertices represent variable assignments
and directed edges give the reasons for an assignment. A vertex is either positive (the vari-
able is assigned true) or negative (the variable is assigned false). Decision variables and
variables which appear as unit clauses in the original formula have no incoming edges;
other vertices that are assigned as a result of BCP have incoming edges from vertices that
caused the assignment. A contradiction occurs if a variable occurs both positively and neg-
atively. Zhang et al. [139] show that in this scheme, the different cuts in the implication
graph which separate all the decision vertices from the contradiction correspond to the dif-
ferent nogoods that can be learned from a contradiction. Zhang et al. show that some types
of cuts lead to much smaller and more powerful nogoods than others. As well, the nogoods
do not have to include just branching constraints, but can also include assignments that are
forced by BCP. Katsirelos and Bacchus [77] generalize the scheme to CSPs and present
the results of experimentation with some of the different clause learning schemes.

So far, the discussion on discovering nogoods has focused on methods that are tightly
integrated with the search process. Other methods for discovering nogoods have also been
proposed. For example, many CSPs contain symmetry and taking into account the sym-
metry can improve the search for a solution. Freuder and Wallace [43] observe that a
symmetry mapping applied to a nogood gives another nogood which may prune additional
parts of the search space. For example, the 6-queens problem is symmetric about the hori-
zontal axis and applying this symmetry mapping to the nogood {x1 = 2, x2 = 5, x3 = 3}
gives the new nogood {x1 = 5, x2 = 2, x3 = 4}.

Junker [74] shows how nogood discovery can be treated as a separate module, indepen-
dent of the search algorithm. Given a set of constraints that are known to be inconsistent,

100 4. Backtracking Search Algorithms

Junker gives an algorithm for finding a small subset of the constraints that is sufficient
to explain the inconsistency. The algorithm can make use of constraint propagation tech-
niques, independently of those enforced in the backtracking algorithm, but does not re-
quire modifications to the constraint propagation algorithms. As an example, consider the
backtracking tree shown in Figure 4.1. Suppose that the backtracking algorithm discovers
that node 253 is a deadend. The set of branching constraints associated with this node is
{x1 = 2, x2 = 5, x3 = 3} and this set is therefore a nogood. Recording this nogood
would not be useful. However, the subsets {x1 = 2, x2 = 5}, {x1 = 2, x3 = 3}, and
{x2 = 5, x3 = 3} are also nogoods. All can be discovered using arc consistency prop-
agation. Further, the subsets {x2 = 5} and {x3 = 3} are also nogoods. These are not
discoverable using just arc consistency propagation, but are discoverable using a higher
level of local consistency. Clearly, everything else being equal, smaller nogoods will lead
to more pruning. On CSPs that are more difficult to solve, the extra work involved in
discovering these smaller nogoods may result in an overall reduction in search time.

While nogood recording is now standard in SAT solvers, it is currently not widely used
for solving general CSPs. Perhaps the main reason is the presence of global constraints in
many CSP models and the fact that some form of arc consistency is often maintained on
these constraints. If global constraints are treated as a black box, standard methods for de-
termining nogoods quickly lead to saturated nogoods where all or almost all the variables
are in the nogood. Saturated nogoods are of little use for either recording or for back-
jumping. The solution is to more carefully construct eliminating explanations based on
the semantics of each global constraint. Katsirelos and Bacchus [77] present preliminary
work on learning small generalized nogoods from arc consistency propagation on global
constraints. Rochart, Jussien, and Laburthe [113] show how to construct explanations for
two important global constraints: the all-different and stretch constraints.

4.4.2 Nogood Database Management

An important problem that arises in nogood recording is the cost of updating and querying
the database of nogoods. Stallman and Sussman [124] propose recording a nogood at each
deadend in the search. However, if the database becomes too large and too expensive to
query, the search reduction that it entails may not be beneficial overall. One method for
reducing the cost is to restrict the size of the database by including only those nogoods that
are most likely to be useful. Two schemes have been proposed: one restricts the nogoods
that are recorded in the first place and the other restricts the nogoods that are kept over
time.

Dechter [33, 34] proposes ith-order size-bounded nogood recording. In this scheme
a nogood is recorded only if it contains at most i variables. Important special cases are
0-order, where the nogoods are used to determine the backjump point (see Section 4.5)
but are not recorded; and 1-order and 2-order, where the nogoods recorded are a subset of
those that would be enforced by arc consistency and path consistency propagation, respec-
tively. Early experiments on size-bounded nogood recording were limited to 0-, 1-, and
2-order, since these could be accommodated without moving beyond binary constraints.
Dechter [33, 34] shows that 2-order was the best choice and significantly improves BJ
on the Zebra problem. Schiex and Verfaillie [118] show that 2-order was the best choice
and significantly improves CBJ and FC-CBJ on the Zebra and random binary problems.
Frost and Dechter [44] describe the first non-binary implementation of nogood recording

P. van Beek 101

and compare CBJ with and without unrestricted nogood recording and 2-, 3-, and 4-order
size-bounded nogood recording. In experiments on random binary problems, they found
that neither unrestricted nor size-bounded dominated, but adding either method of nogood
recording led to significant improvements overall.

In contrast to restricting the nogoods that are recorded, Ginsberg [54] proposes to
record all nogoods but then delete nogoods that are deemed to be no longer relevant. As-
sume a d-way branching strategy, where all branching constraints are an assignment of a
value to a variable, and recall that nogoods can be written in the form,

((x1 = a1) ∧ · · · ∧ (xk−1 = ak−1))⇒ (xk 6= ak).

Ginsberg’s dynamic backtracking algorithm (DBT) always puts the variable that has most
recently been assigned a value on the right-hand side of the implication and only keeps
nogoods whose left-hand sides are currently true (see Table 4.1). A nogood is consid-
ered irrelevant and deleted once the left-hand side of the implication contains more than
one variable-value pair that does not appear in the current set of assignments. When all
branching constraints are of the form x = a, for some variable x and value a, DBT can be
implemented using O(n2d) space, where n is the number of variables and d is the size of
the domains. The data structure maintains a nogood for each variable and value pair and
each nogood is O(n) in length.

Bayardo and Miranker [10] generalize Ginsberg’s proposal to ith-order relevance-
bounded nogood recording. In their scheme a nogood is deleted once it contains more
than i variable-value pairs that do not appear in the current set of assignments. Subse-
quent experiments compared unrestricted, size-bounded, and relevance-bounded nogood
recording. All came to the conclusion that unrestricted nogood recording was too expen-
sive, but differed on whether size-bounded or relevance-bounded was better. Baker [7], in
experiments on random binary problems, concludes that CBJ with 2-order size-bounded
nogood recording is the best tradeoff. Bayardo and Schrag [11, 12], in experiments on a
variety of real-world and random SAT instances, conclude that DPLL-CBJ with 4-order
relevance-bounded nogood recording is best overall. Marques-Silva and Sakallah [92], in
experiments on real-world SAT instances, conclude that DPLL-CBJ with 20-order size-
bounded nogood recording is the winner.

Beyond restricting the size of the database, additional techniques have been proposed
for reducing the cost of updating and querying the database. One of the most important of
these is “watch” literals [103]. Given a set of assignments, the nogood database must tell
the backtracking search algorithm whether any nogood is contradicted and whether any
value can be pruned from the domain of a variable. Watch literals are a data structure for
greatly reducing the number of nogoods that must be examined to answer these queries
and reducing the cost of examining large nogoods.

With the discovery of the watch literals data structure, it was found that recording
very large nogoods could lead to remarkable reductions in search time. Moskewicz et
al. [103] show that 100- and 200-order relevance-bounded nogood recording with watch
literals, along with restarts and a variable ordering based on the recorded nogoods, was
significantly faster than DPLL-CBJ alone on large real-world SAT instances. Katsirelos
and Bacchus [77] show that unrestricted generalized nogood recording with watch literals
was significantly faster than MAC and MAC-CBJ alone on a variety of CSP instances from
planning, crossword puzzles, and scheduling.

102 4. Backtracking Search Algorithms

4.5 Non-Chronological Backtracking

Upon discovering a deadend, a backtracking algorithm must retract some previously posted
branching constraint. In the standard form of backtracking, called chronological backtrack-
ing, only the most recently posted branching constraint is retracted. However, backtracking
chronologically may not address the reason for the deadend. In non-chronological back-
tracking, the algorithm backtracks to and retracts the closest branching constraint which
bears some responsibility for the deadend. Following Gaschnig [48], I refer to this process
as backjumping4.

Non-chronological backtracking algorithms can be described as a combination of (i) a
strategy for discovering and using nogoods for backjumping, and (ii) a strategy for deleting
nogoods from the nogood database.

4.5.1 Backjumping

Stallman and Sussman [124] were the first to informally propose a non-chronological back-
tracking algorithm—called dependency-directed backtracking—that discovered and main-
tained nogoods in order to backjump. Informal descriptions of backjumping are also given
by Bruynooghe [22] and Rosiers and Bruynooghe [114]. The first explicit backjumping
algorithm was given by Gaschnig [48]. Gaschnig’s backjumping algorithm (BJ) [48] is
similar to BT, except that it backjumps from deadends. However, BJ only backjumps from
a deadend node when all the branches out of the node are leaves; otherwise it chrono-
logically backtracks. Dechter [34] proposes a graph-based backjumping algorithm which
computes the backjump points based on the static structure of the CSP. The idea is to jump
back to the most recent variable that shares a constraint with the deadend variable. The
algorithm was the first to also jump back at internal deadends.

Prosser [108] proposes the conflict-directed backjumping algorithm (CBJ), a general-
ization of Gaschnig’s BJ to also backjump from internal deadends. Equivalent algorithms
were independently proposed and formalized by Schiex and Verfaillie [118] and Ginsberg
[54]. Each of these algorithms uses a variation of the jumpback nogood (Definition 4.5)
to decide where to safely backjump to in the search tree from a deadend. Suppose that
the backtracking algorithm has discovered a non-leaf deadend p = {b1, . . . , bj} in the
search tree. The algorithm must backtrack by retracting some branching constraint from p.
Chronological backtracking would choose bj . Let J(p) ⊆ p be the jumpback nogood for
p. Backjumping chooses the largest i, 1 ≤ i ≤ j, such that bi ∈ J(p). This is the back-
jump point. The algorithm jumps back in the search tree and retracts bi, at the same time
retracting any branching constraints that were posted after bi and deleting any nogoods that
were recorded after bi.

As examples of applying CBJ and BJ, consider the backtracking tree shown in Fig-
ure 4.1. The light-shaded part of the tree contains nodes that are skipped by Conflict-
Directed Backjumping (CBJ). The algorithm discovers a deadend after failing to extend
node 25314. As shown earlier, the jumpback nogood associated with this node is {x1 =
2, x2 = 5, x3 = 3, x5 = 4}. CBJ backtracks to and retracts the most recently posted
branching constraint, which is x5 = 4. No nodes are skipped at this point. The remaining

4Backjumping is also referred to as intelligent backtracking and dependency-directed backtracking in the
literature.

P. van Beek 103

two values for x5 also fail. The algorithm has now discovered that 2531 is a deadend node
and, because a jumpback nogood has been determined for each branch, the jumpback no-
good of 2531 is easily found to be {x1 = 2, x2 = 5, x3 = 3}. CBJ backjumps to retract
x3 = 3 skipping the rest of the subtree. The backjump is represented by a dashed arrow.
In contrast to CBJ, BJ only backjumps from deadends when all branches out of the dead-
end are leaves. The dark-shaded part of the tree contains two nodes that are skipped by
Backjumping (BJ). Again, the backjump is represented by a dashed arrow.

In the same way as for dynamic backtracking (DBT), when all branching constraints
are of the form x = a, for some variable x and value a, CBJ can be implemented using
O(n2d) space, where n is the number of variables and d is the size of the domains. The
data structure maintains a nogood for each variable and value pair and each nogood is
O(n) in length. However, since CBJ only uses the recorded nogoods for backjumping and
constraints corresponding to the nogoods are never checked or propagated, it is not neces-
sary to actually store a nogood for each value. A simpler O(n2) data structure, sometimes
called a conflict set, suffices. The conflict set stores, for each variable, the union of the
nogoods for each value of the variable.

CBJ has also been combined with constraint propagation. The basic backjumping
mechanism is the same for all algorithms that perform non-chronological backtracking,
no matter what level of constraint propagation is performed. The main difference lies in
how the jumpback nogood is constructed (see Section 4.4.1 and Definition 4.7). Prosser
[108] proposes FC-CBJ, an algorithm that combines forward checking constraint propa-
gation and conflict-directed backjumping. An equivalent algorithm as independently pro-
posed and formalized by Schiex and Verfaillie [118]. An informal description of an al-
gorithm that combines forward checking and backjumping is also given by Rosiers and
Bruynooghe [114]. Prosser [109] proposes MAC-CBJ, an algorithm that combines main-
taining arc consistency and conflict-directed backjumping. As specified, the algorithm only
handles binary constraints. Chen [25] generalizes the algorithm to non-binary constraints.

Many experiments studies on conflict-directed backjumping have been reported in the
literature. Many of these are summarized in Section 4.10.1.

4.5.2 Partial Order Backtracking

In chronological backtracking and conflict-directed backjumping, it is assumed that the
branching constraints at a node p = {b1, . . . , bj} in the search tree are totally ordered. The
total ordering is the order in which the branching constraints were posted by the algorithm.
Chronological backtracking then always retracts bj , the last branching constraint in the
ordering, and backjumping chooses the largest i, 1 ≤ i ≤ j, such that bi is in the jumpback
nogood.

Bruynooghe [22] notes that this is not a necessary assumption and proposes partial
order backtracking. In partial ordering backtracking the branching constraints are consid-
ered initially unordered and a partial order is induced upon jumping back from deadends.
Assume a d-way branching strategy, where all branching constraints are an assignment of
a value to a variable. When jumping back from a deadend, an assignment x = a must
be chosen from the jumpback nogood and retracted. Bruynooghe notes that backjumping
must respect the current partial order, and proposes choosing any assignment that is maxi-
mal in the partial order. Upon making this choice and backjumping, the partial order must
now be further restricted. Recall that a nogood {x1 = a1, . . . , xk = ak} can be written in

104 4. Backtracking Search Algorithms

the form ((x1 = a1)∧· · ·∧ (xk−1 = ak−1))⇒ (xk 6= ak). The assignment x = a chosen
to be retracted must now appear on the right-hand side of any nogoods in which it appears.
Adding an implication restricts the partial order as the assignments on the left-hand side
of the implication must come before the assignment on the right-hand side. And if the re-
tracted assignment x = a appears on the left-hand side in any implication, that implication
is deleted and the value on the right-hand side is restored to its domain. Deleting an im-
plication relaxes the partial order. Rosiers and Bruynooghe [114] show, in experiments on
hard (non-binary) word sum problems, that their partial order backtracking algorithm was
the best choice over algorithms that did forward checking, backjumping, or a combination
of forward checking and backjumping. However, Baker [7] gives an example (the example
is credited to Ginsberg) showing that, because in Bruynooghe’s scheme any assignment
that is maximal in the partial order can be chosen, it is possible for the algorithm to cycle
and never terminate.

Ginsberg proposes [54] the dynamic backtracking algorithm (DBT, see Table 4.1).
DBT can be viewed as a formalization and correction of Bruynooghe’s scheme for partial
order backtracking. To guarantee termination, DBT always chooses from the jumpback no-
good the most recently posted assignment and puts this assignment on the right-hand side
of the implication. Thus, DBT maintains a total order over the assignments in the jump-
back nogood and a partial order over the assignments not in the jumpback nogood. As a
result, given the same jumpback nogood, the backjump point for DBT would be the same
as for CBJ. However, in contrast to CBJ which upon backjumping retracts any nogoods
that were posted after the backjump point, DBT retains these nogoods (see Section 4.4.2
for further discussion of the nogood retention strategy used in DBT). Ginsberg [54] shows,
in experiments which used crossword puzzles as a test bed, that DBT can solve more prob-
lems within a fixed time limit than a backjumping algorithm. However, Baker [7] shows
that relevance-bounded nogood recording, as used in DBT, can interact negatively with a
dynamic variable ordering heuristic. As a result, DBT can also degrade performance—by
an exponential amount—over an algorithm that does not retain nogoods such as CBJ.

Dynamic backtracking (DBT) has also been combined with constraint propagation.
Jussien, Debruyne, and Boizumault [75] show how to integrate DBT with forward check-
ing and maintaining arc consistency, to give FC-DBT and MAC-DBT, respectively. As
with adding constraint propagation to CBJ, the main difference lies in how the jumpback
nogood is constructed (see Section 4.4.1 and Definition 4.7). However, because of the re-
tention of nogoods, there is an additional complexity when adding constraint propagation
to DBT that is not present in CBJ. Consider a value in the domain of a variable that has
been removed but its eliminating explanation is now irrelevant. The value cannot just be
restored, as there may exist another relevant explanation for the deleted value; i.e., there
may exist several ways of removing a value through constraint propagation.

Ginsberg and McAllester [56] propose an algorithm called partial order dynamic back-
tracking (PBT). PBT offers more freedom than DBT in the selection of the assignment
from the jumpback nogood to put on the right-hand side of the implication, while still
giving a guarantee of correctness and termination. In Ginsberg’s DBT and Bruynooghe’s
partial order algorithm, deleting an implication relaxes the partial order. In PBT, the idea
is to retain some of the partial ordering information from these deleted implications. Now,
choosing any assignment that is maximal in the partial order is correct. Bliek [18] shows
that PBT is not a generalization of DBT and gives an algorithm that does generalize both
PBT and DBT. To date, no systematic evaluation of either PBT or Bliek’s generalization

P. van Beek 105

have been reported, and no integration with constraint propagation has been reported.

4.6 Heuristics for Backtracking Algorithms

When solving a CSP using backtracking search, a sequence of decisions must be made
as to which variable to branch on or instantiate next and which value to give to the vari-
able. These decisions are referred to as the variable and the value ordering. It has been
shown that for many problems, the choice of variable and value ordering can be crucial to
effectively solving the problem (e.g., [5, 50, 55, 63]).

A variable or value ordering can be either static, where the ordering is fixed and de-
termined prior to search, or dynamic, where the ordering is determined as the search pro-
gresses. Dynamic variable orderings have received much attention in the literature. They
were proposed as early as 1965 [57] and it is now well-understood how to incorporate a
dynamic ordering into an arbitrary tree-search algorithm [5].

Given a CSP and a backtracking search algorithm, a variable or value ordering is said
to be optimal if the ordering results in a search that visits the fewest number of nodes
over all possible orderings when finding one solution or showing that there does not exist
a solution. (Note that I could as well have used some other abstract measure such as the
amount of work done at each node, rather than nodes visited, but this would not change
the fundamental results.) Not surprisingly, finding optimal orderings is a computationally
difficult task. Liberatore [87] shows that simply deciding whether a variable is the first
variable in an optimal variable ordering is at least as hard as deciding whether the CSP
has a solution. Finding an optimal value ordering is also clearly at least as hard since, if
a solution exists, an optimal value ordering could be used to efficiently find a solution.
Little is known about how to find optimal orderings or how to construct polynomial-time
approximation algorithms—algorithms which return an ordering which is guaranteed to
be near-optimal (but see [70, 85]). The field of constraint programming has so far mainly
focused on heuristics which have no formal guarantees.

Heuristics can be either application-independent, where only generic features common
to all CSPs are used, or application-dependent. In this survey, I focus on application-
independent heuristics. Such heuristics have been quite successful and can provide a good
starting point when designing heuristics for a new application. The heuristics I present
leave unspecified which variable or value to choose in the case of ties and the result is im-
plementation dependent. These heuristics can often be dramatically improved by adding
additional features for breaking ties. However, there is no one best variable or value order-
ing heuristic and there will remain problems where these application-independent heuris-
tics do not work well enough and a new heuristic must be designed.

Given that a new heuristic is to be designed, several alternatives present themselves.
The heuristic can, of course, be hand-crafted either using application-independent features
(see [36] for a summary of many features from which to construct heuristics) or using
application-dependent features. As one example of the latter, Smith and Cheng [122] show
how an effective heuristic can be designed for job shop scheduling given deep knowledge
of job shop scheduling, the CSP model, and the search algorithm. However, such a combi-
nation of expertise can be scarce.

An alternative to hand-crafting a heuristic is to automatically adapt or learn a heuristic.
Minton [98] presents a system which automatically specializes generic variable and value

106 4. Backtracking Search Algorithms

ordering heuristics from a library to an application. Epstein et al. [36] present a system
which learns variable and value ordering heuristics from previous search experience on
problems from an application. The heuristics are combinations from a rich set of primitive
features. Bain, Thornton, and Sattar [6] show how to learn variable ordering heuristics for
optimization problems using evolutionary algorithms.

As a final alternative, if only relatively weak heuristics can be discovered for a problem,
it has been shown that the technique of randomization and restarts can boost the perfor-
mance of problem solving (see Section 4.7). Cicirello and Smith [27] discuss alternative
methods for adding randomization to heuristics and the effect on search efficiency. Hulubei
and O’Sullivan [70] study the relationship between the strength of the variable and value
ordering heuristics and the need for restarts.

4.6.1 Variable Ordering Heuristics

Suppose that the backtracking search is attempting to extend a node p. The task of the
variable ordering heuristic is to choose the next variable x to be branched on.

Many variable ordering heuristics have been proposed and evaluated in the literature.
These heuristics can, with some omissions, be classified into two categories: heuristics that
are based primarily on the domain sizes of the variables and heuristics that are based on
the structure of the CSP.

Variable ordering heuristics based on domain size

When solving a CSP using backtracking search interleaved with constraint propagation,
the domains of the unassigned variables are pruned using the constraints and the current
set of branching constraints. Many of the most important variable ordering heuristics are
based on the current domain sizes of the unassigned variables.

Definition 4.8 (remaining values). Let rem(x | p) be the number of values that remain in
the domain of variable x after constraint propagation, given a set of branching constraints
p.

Golomb and Baumert [57] were the first to propose a dynamic ordering heuristic based
on choosing the variable with the smallest number of values remaining in its domain. The
heuristic, hereafter denoted dom, is to choose the variable x that minimizes,

rem(x | p),

where x ranges over all unassigned variables. Of course, the heuristic makes sense no
matter what level of constraint propagation is being performed during the search. In the
case of algorithms that do not perform constraint propagation but only check constraints
which have all their variables instantiated, define rem(x | p) to contain only the values
which satisfy all the relevant constraints. Given that our backtracking search algorithm is
performing constraint propagation, which in practice it will be, the dom heuristic can be
computed very efficiently. The dom heuristic was popularized by Haralick and Elliott [63],
who showed that dom with the forward checking algorithm was an effective combination.

P. van Beek 107

Much effort has gone into understanding this simple but effective heuristic. Intrigu-
ingly, Golomb and Baumert [57], when first proposing dom, state that from an information-
theoretic point of view, it can be shown that on average choosing the variable with the
smallest domain size is more efficient, but no further elaboration is provided. Haralick and
Elliott [63] show analytically that dom minimizes the depth of the search tree, assuming
a simplistic probabilistic model of a CSP and assuming that we are searching for all so-
lutions using a forward checking algorithm. Nudel [105], shows that dom is optimal (it
minimizes the number of nodes in the search tree) again assuming forward checking but
using a slightly more refined probabilistic model. Gent et al. [52] propose a measure called
kappa whose intent is to capture “constrainedness” and what it means to choose the most
constrained variable first. They show that dom (and dom+deg, see below) can be viewed
as an approximation of this measure.

Hooker [66], in an influential paper, argues for the scientific testing of heuristics—as
opposed to competitive testing—through the construction of empirical models designed to
support or refute the intuition behind a heuristic. Hooker and Vinay [67] apply the method-
ology to the study of the Jeroslow-Wang heuristic, a variable ordering heuristic for SAT.
Surprisingly, they find that the standard intuition, that “a [heuristic] performs better when
it creates subproblems that are more likely to be satisfiable,” is refuted whereas a newly
developed intuition, that “a [heuristic] works better when it creates simpler subproblems,”
is confirmed. Smith and Grant [120] apply the methodology to the study of dom. Haralick
and Elliott [63] proposed an intuition behind the heuristic called the fail-first principle: “to
succeed, try first where you are most likely to fail”. Surprisingly, Smith and Grant find that
if one equates the fail-first principle with minimizing the depth of the search tree, as Har-
alick and Elliott did, the principle is refuted. In follow on work, Beck et al. [14] find that if
one equates the fail-first principle with minimizing the number of nodes in the search tree,
as Nadel did, the principle is confirmed. Wallace [132], using a factor analysis, finds two
basic factors behind the variation in search efficiency due to variable ordering heuristics:
immediate failure and future failure.

In addition to the effort that has gone into understanding dom, much effort has gone
into improving it. Brélaz [20], in the context of graph coloring, proposes a now widely
used generalization of dom. Let the degree of an unassigned variable x be the number
of constraints which involve x and at least one other unassigned variable. The heuristic,
hereafter denoted dom+deg, is to choose the variable with the smallest number of values
remaining in its domain and to break any ties by choosing the variable with the highest
degree. Note that the degree information is dynamic and is updated as variables are instan-
tiated. A static version, where the degree information is only computed prior to search, is
also used in practice.

Bessière and Régin [17] propose another generalization of dom. The heuristic, here-
after denoted dom/deg, is to divide the domain size of a variable by the degree of the
variable and to choose the variable which has the minimal value. The heuristic is shown to
work well on random problems. Boussemart et al. [19] propose to divide by the weighted
degree, hereafter denoted dom/wdeg. A weight, initially set to one, is associated with
each constraint. Every time a constraint is responsible for a deadend, the associated weight
is incremented. The weighted degree is the sum of the weights of the constraints which
involve x and at least one other unassigned variable. The dom/wdeg heuristic is shown to
work well on a variety of problems. As an interesting aside, it has also been shown empir-
ically that arc consistency propagation plus the dom/deg or the dom/wdeg heuristic can

108 4. Backtracking Search Algorithms

reduce or remove the need for backjumping on some problems [17, 84].
Gent et al. [50] propose choosing the variable x that minimizes,

rem(x | p)
∏

C

(1− tC),

where C ranges over all constraints which involve x and at least one other unassigned vari-
able and tC is the fraction of assignments which do not satisfy the constraint C. They also
propose other heuristics which contain the product term in the above equation. A limitation
of all these heuristics is the requirement of an updated estimate of tC for each constraint
C as the search progresses. This is clearly costly, but also problematic for intensionally
represented constraints and non-binary constraints. As well, the product term implicitly
assumes that the probability a constraint fails is independent, an assumption that may not
hold in practice.

Brown and Purdom [21] propose choosing the variable x that minimizes,

rem(x | p) + min
y 6=x

∑

a∈rem(x|p)

rem(y | p ∪ {x = a})

,

where y ranges over all unassigned variables. The principle behind the heuristic is to pick
the variable x that is the root of the smallest 2-level subtree. Brown and Purdom show that
the heuristic works better than dom on random SAT problems as the problems get larger.
However, the heuristic has yet to be thoroughly evaluated on hard SAT problems or general
CSPs.

Geelen [49] proposes choosing the variable x that minimizes,
∑

a∈dom(x)

∏

y

rem(y | p ∪ {x = a}),

where y ranges over all unassigned variables. The product term can be viewed as an upper
bound on the number of solutions given a value a for x, and the principle behind the
heuristic is said to be to choose the most “constrained” variable. Geelen shows that the
heuristic works well on the n-queens problem when the level of constraint propagation
used is forward checking. Refalo [111] proposes a similar heuristic and shows that it is
much better than dom-based heuristics on multi-knapsack and magic square problems.
Although the heuristic is costly to compute, Refalo’s work shows that it can be particularly
useful in choosing the first, or first few variables, in the ordering. Interestingly, Wallace
[132] reports that on random and quasigroup problems, the heuristic does not perform well.

Freeman [38], in the context of SAT, proposes choosing the variable x that minimizes,
∑

a∈dom(x)

∑

y

rem(y | p ∪ {x = a}),

where y ranges over all unassigned variables. Since this is an expensive heuristic, Free-
man proposes using it primarily when choosing the first few variables in the search. The
principle behind the heuristic is to maximize the amount of propagation and the number of
variables which become instantiated if the variable is chosen, and thus simplify the remain-
ing problem. Although costly to compute, Freeman shows that the heuristic works well on

P. van Beek 109

hard SAT problems when the level of constraint propagation used is unit propagation, the
equivalent of forward checking. Malik et al. [91] show that a truncated version (using just
the first element in dom(x)) is very effective in instruction scheduling problems.

Structure-guided variable ordering heuristics

A CSP can be represented as a graph. Such graphical representations form the basis of
structure-guided variable ordering heuristics. Real problems often do contain much struc-
ture and on these problems the advantages of structure-guided heuristics include that struc-
tural parameters can be used to bound the worst-case of a backtracking algorithm and
structural goods and nogoods can be recorded and used to prune large parts of the search
space. Unfortunately, a current limitation of these heuristics is that they can break down in
the presence of global constraints, which are common in practice. A further disadvantage
is that some structure-guided heuristics are either static or nearly static.

Freuder [40] may have been the first to propose a structure-guided variable ordering
heuristic. Consider the constraint graph where there is a vertex for each variable in the
CSP and there is an edge between two vertices x and y if there exists a constraint C such
that both x ∈ vars(C) and y ∈ vars(C).

Definition 4.9 (width). Let the vertices in a constraint graph be ordered. The width of an
ordering is the maximum number of edges from any vertex v to vertices prior to v in the
ordering. The width of a constraint graph is the minimum width over all orderings of that
graph.

Consider the static variable ordering corresponding to an ordering of the vertices in the
graph. Freuder [40] shows that the static variable ordering is backtrack-free if the level
of strong k-consistency is greater than the width of the ordering. Clearly, such a variable
ordering is within an O(d) factor of an optimal ordering, where d is the size of the domain.
Freuder [40] also shows that there exists a backtrack-free static variable ordering if the
level of strong consistency is greater than the width of the constraint graph. Freuder [41]
generalizes these results to static variable orderings which guarantee that the number of
nodes visited in the search can be bounded a priori.

Dechter and Pearl [35] propose a variable ordering which first instantiates variables
which cut cycles in the constraint graph. Once all cycles have been cut, the constraint
graph is a tree and can be solved quickly using arc consistency [40]. Sabin and Freuder
[117] refine and test this proposal within an algorithm that maintains arc consistency. They
show that, on random binary problems, a variable ordering that cuts cycles can out perform
dom+deg.

Zabih [136] proposes choosing a static variable ordering with small bandwidth. Let
the n vertices in a constraint graph be ordered 1, . . . , n. The bandwidth of an ordering is
the maximum distance between any two vertices in the ordering that are connected by an
edge. The bandwidth of a constraint graph is the minimum bandwidth over all orderings
of that graph. Intuitively, a small bandwidth ordering will ensure that variables that caused
the failure will be close by and thus reduce the need for backjumping. However, there is
currently little empirical evidence that this is an effective heuristic.

A well-known technique in algorithm design on graphs is divide-and-conquer using
graph separators.

110 4. Backtracking Search Algorithms

Definition 4.10 (separator). A separator of a graph is a subset of the vertices or the edges
which, when removed, separates the graph into disjoint subgraphs.

A graph can be recursively decomposed by successively finding separators of the re-
sulting disjoint subgraphs. Freuder and Quinn [42] propose a variable ordering heuristic
based on a such a recursive decomposition. The idea is that the separators (called cutsets in
[42]) give groups of variables which, once instantiated, decompose the CSP. Freuder and
Quinn also propose a special-purpose backtracking algorithm to correctly use the variable
ordering to get additive behavior rather than multiplicative behavior when solving the inde-
pendent problems. Huang and Darwiche [69] show that the special-purpose backtracking
algorithm is not needed; one can just use CBJ. Because the separators are found prior to
search, the pre-established variable groupings never change during the execution of the
backtracking search. However, Huang and Darwiche note that within these groupings the
variable ordering can be dynamic and any one of the existing variable ordering heuristics
can used. Li and van Beek [86] present several improvements to this divide-and-conquer
approach. So far the divide-and-conquer approach has been shown to be effective on hard
SAT problems [69, 86], but there has as yet been no systematic evaluation of the approach
on general CSP problems.

As two final structure-guided heuristics, Moskewicz et al. [103], in their Chaff solver
for SAT, propose that the choice of variable should be biased towards variables that occur
in recently recorded nogoods. Jégou and Terrioux [73] use a tree-decomposition of the
constraint graph to guide the variable ordering.

4.6.2 Value Ordering Heuristics

Suppose that the backtracking search is attempting to extend a node p and the variable
ordering heuristic has chosen variable x to be branched on next. The task of the value
ordering heuristic is to choose the next value a for x. The principle being followed in the
design of many value ordering heuristics is to choose next the value that is most likely to
succeed or be a part of a solution. Value ordering heuristics have been proposed which
are based on either estimating the number of solutions or estimating the probability of a
solution, for each choice of value a for x. Clearly, if we knew either of these properties
exactly, then a perfect value ordering would also be known—simply select a value that
leads to a solution and avoid a value that does not lead to a solution.

Dechter and Pearl [35] propose a static value ordering heuristic based on approximating
the number of solutions to each subproblem. An approximation of the number of solutions
is found by forming a tree relaxation of the problem, where constraints are dropped until
the constraint graph of the CSP can be represented as a tree. Counting all solutions to a
tree-structured CSP is polynomial and thus can be computed exactly. The values are then
ordered by decreasing estimates of the solution counts. Followup work [76, 94, 131] has
focused on generalizing the approach to dynamic value orderings and on improving the
approximation of the number of solutions (the tree relaxation can provide a poor estimate
of the true solution count) by using recent ideas from Bayesian networks. A limitation
of this body of work is that, while it compares the number of solutions, it does not take
into account the size of the subtree that is being branched into or the difficultly or cost of
searching the subtree.

P. van Beek 111

Ginsberg et al. [55], in experiments which used crossword puzzles as a test bed, propose
the following dynamic value ordering heuristic. To instantiate x, choose the value a ∈
dom(x) that maximizes the product of the remaining domain sizes,

∏

y

rem(y | p ∪ {x = a}),

where y ranges over all unassigned variables. Ginsberg et al. show that the heuristic works
well on crossword puzzles when the level of constraint propagation used is forward check-
ing. Further empirical evidence for the usefulness of this heuristic was provided by Geelen
[49]. Geelen notes that the product gives the number of possible completions of the node
p and these completions can be viewed in two ways. First, assuming that every comple-
tion is equally likely to be a solution, choosing the value that maximizes the product also
maximizes the probability that we are branching into a subproblem that contains a solution.
Second, the completions can be viewed as an upper bound on the number of solutions to the
subproblem. Frost and Dechter [46] propose choosing the value that maximizes the sum
of the remaining domain sizes. However, Geelen [49] notes that the product differentiates
much better than summation. In the literature, the product heuristic is sometimes called the
“promise” heuristic and the summation heuristic is sometimes called the “min-conflicts”
heuristic—as it was inspired by a local search heuristic of the same name proposed by

Minton et al. [99].

4.7 Randomization and Restart Strategies

It has been widely observed that backtracking algorithms can be brittle on some instances.
Seemingly small changes to a variable or value ordering heuristic, such as a change in
the ordering of tie-breaking schemes, can lead to great differences in running time. An
explanation for this phenomenon is that ordering heuristics make mistakes. Depending on
the number of mistakes and how early in the search the mistakes are made (and therefore
how costly they may be to correct), there can be a large variability in performance between
different heuristics. A technique called randomization and restarts has been proposed for
taking advantage of this variability.

The technique of randomization and restarts within backtracking search algorithms
goes back at least to the PhD work of Harvey [64]. Harvey found that periodically restart-
ing a backtracking search with different variable orderings could eliminate the problem
of “early mistakes”. This observation led Harvey to propose randomized backtracking
algorithms where on each run of the backtracking algorithm the variable or the value or-
derings are randomized. The backtracking algorithm terminates when either a solution
has been found or the distance that the algorithm has backtracked from a deadend ex-
ceeds some fixed cutoff. In the latter case, the backtracking algorithm is restarted and the
search begins anew with different orderings. Harvey shows that this randomize and restart
technique gives improved performance over a deterministic backtracking algorithm on job
shop scheduling problems. Gomes et al. [60, 61, 62] have done much to popularize and ad-
vance the technique through demonstrations of its wide applicability, drawing connections
to closely related work on Las Vegas algorithms, and contributions to our understanding of
when and why restarts help.

112 4. Backtracking Search Algorithms

In the rest of this section, I first survey work on the technique itself and then survey
work that addresses the question of when do restarts help. For more on the topic of ran-
domization and restart strategies see, for example, the survey by Gomes [58].

4.7.1 Algorithmic Techniques

The technique of randomization and restarts requires a method of adding randomization
to a deterministic backtracking algorithm and a restart strategy, a schedule or method for
deciding when to restart.

Randomization

Several possible methods of adding randomization to backtracking algorithms have been
proposed in the literature. Harvey [64] proposes randomizing the variable ordering. Gomes
et al. [61, 62] propose randomizing the variable ordering heuristic either by randomized tie
breaking or by ranking the variables using an existing heuristic and then randomly choos-
ing a variable from the set of variables that are within some small factor of the best variable.
They show that restart strategies with randomized variable orderings lead to orders of mag-
nitude improvement on a wide variety of problems including both SAT and CSP versions
of scheduling, planning, and quasigroup completion problems. Cicirello and Smith [27]
discuss alternative methods for adding randomization to heuristics and the effect on search
efficiency. Other alternatives are to choose a variable with a probability that is propor-
tional to the heuristic weight of the variable or to randomly pick from among a suite of
heuristics. One pitfall to be aware of is that the method of adding randomization to the
heuristic must give enough different decisions near the top of the search tree. Harvey [64]
proposes randomizing the value ordering so that each possible ordering is equally likely.
As well, all the options listed above for randomizing variable orderings are also options
for value orderings. Zhang [138] argues that randomizing a heuristic can weaken it, an
undesirable effect. Prestwich [106] and Zhang [138] propose a random backwards jump in
the search space upon backtracking. Although effective, this has the consequence that the
backtracking algorithm is no longer complete.

Restart strategies

A restart strategy S = (t1, t2, t3, ...) is an infinite sequence where each ti is either a pos-
itive integer or infinity. The idea is that the randomized backtracking algorithm is run for
t1 steps. If no solution is found within that cutoff, the algorithm is run for t2 steps, and so
on. A fixed cutoff strategy is a strategy where all the ti are equal. Various restart strategies
have been proposed.

Luby, Sinclair, and Zuckerman [88] (hereafter just Luby) examine restart strategies in
the more general setting of Las Vegas algorithms. A Las Vegas algorithm is a randomized
algorithm that always gives the correct answer when it terminates, however the running
time of the algorithm varies from one run to another and can be modeled as a random
variable. Let f(t) be the probability that a backtracking algorithm A applied to instance
x stops after taking exactly t steps. Let F (t) be the cumulative distribution function of f ;
i.e., the probability that A stops after taking t or fewer steps. F (t) is sometimes referred
to as the runtime distribution of algorithm A on instance x. The tail probability is the

P. van Beek 113

probability that A stops after taking more than t steps; i.e., 1− F (t), which is sometimes
referred to as the survival function. Luby shows that, given full knowledge of the runtime
distribution, the optimal strategy is given by St∗ = (t∗, t∗, t∗, . . .), for some fixed cutoff
t∗. Of course, the runtime distribution is not known in practice. For the case where there
is no knowledge of the runtime distribution, Luby shows that a universal strategy given
by Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, . . .) is within a log factor of the optimal
strategy St∗ and that this is the best performance that can be achieved up to a constant
factor by any universal strategy. Further, Luby proves that, no matter what the runtime
distribution of the original algorithm A, if we apply A using restart strategy St∗ or Su, the
tail probability of the restart strategy is small as it decays exponentially.

To use a restart strategy in practice, one must decide what counts as a primitive oper-
ation or step in the computation. Several methods have been used in the literature. Har-
vey [64] uses a fixed cutoff strategy which restarts the backtracking algorithm when the
distance that the algorithm has backtracked from a deadend exceeds some fixed cutoff.
Richards [112] restarts at every deadend, but maintains completeness by first recording a
nogood so the deadend is not revisited. Gomes et al. [61] use a fixed cutoff strategy that
restarts the backtracking algorithm when the number of backtracks exceeds some fixed cut-
off. Kautz et al. [78, 115] use the number of nodes visited by the backtracking algorithm.
For a fixed cutoff strategy, one must also decide what cutoff to use. So far it appears that
good cutoffs are specific to an instance. Thus one must perform some sort of trial-and-error
search for a good cutoff value. However, van Moorsel and Wolter [130] observe that for
some runtime distributions a wide range of cutoffs perform well. They further observe that
it is often safer to make the cutoff too large rather than too small. For the universal strategy,
one does not need to decide the cutoff. However, it has been reported that the universal
strategy is slow in practice as the sequence increases too slowly (e.g., [61, 78, 115]). Note
that this does not contradict the fact that the universal strategy is within a log factor of
optimal, since this is an asymptotic result and ignores constant factors. However, it may
also be noted that one can scale the universal strategy Su = (s, s, 2s, . . .), for some scale
factor s, and possibly improve performance while retaining the optimality guarantee.

Walsh [134] proposes a universal strategy Sg = (1, r, r2, . . .), where the restart values
are geometrically increasing, and shows that values of r in the range 1 < r < 2 work well
on the problems examined. The strategy has the advantage that it increases more quickly
than the universal strategy but avoids the search for a cutoff necessary for a fixed cutoff
strategy. Although it appears to work well in practice, unfortunately the geometric strategy
comes with no formal guarantees for its worst-case performance. It can be shown that the
expected runtime of the geometric strategy can be arbitrarily worse than that of the optimal
strategy.

Kautz et al. [78, 115] (hereafter just Kautz) observe that Luby makes two assumptions
when proving the optimality of St∗ that may not hold in practice. The assumptions are (i)
that successive runs of the randomized algorithm are statistically independent and identi-
cally distributed, and (ii) that the only feasible observation or feature is the length of a run.
As an example of where the first assumption may be false, consider the case where the cur-
rent instance is drawn from one of two distributions but we do not know which. The failure
to find a solution in previous runs can change our belief about the runtime distribution of
the current instance. To show that the second assumption may be false, Kautz shows that
a Bayesian model based on a rich set of features can with sufficient accuracy predict the
runtime of the algorithm on the current instance. Kautz removes these assumptions and

114 4. Backtracking Search Algorithms

proposes context-sensitive or dynamic restart strategies. In one set of experiments, Kautz
shows that a dynamic strategy can do better than the static optimal strategy St∗ . The strat-
egy uses a Bayesian model to predict whether a current run of the algorithm will be either
“long” or “short”, and restarts if the prediction is “long”.

Van Moorsel and Wolter [130] consider a case that often arises in practice where a
solution is useful only if it is found within some deadline; i.e., we are given a deadline
c and we may run the restart strategy until a total of c steps of the algorithm have been
executed. Van Moorsel and Wolter consider restart strategies that maximize the probability
the deadline is met.

4.7.2 When Do Restarts Help?

The question of when and why the technique of randomization and restarts is useful has
been addressed from two angles: For what kinds of runtime distributions are restarts help-
ful and what are the underlying causes for these runtime distributions.

Runtime distributions for which restarts are useful

In the case where restarts are helpful on satisfiable instances, Gomes et al. [61, 62] show
that probability distributions with heavy-tails can be a good fit to the runtime distribu-
tions of backtracking algorithms with randomized heuristics. A heavy-tailed distribution
is one where the tail probability or survival function (see above) decays polynomially;
i.e., there is a significant probability that the backtracking algorithm will run for a long
time. For unsatisfiable instances, Gomes et al. [61] report that in their experiments on
random quasigroup completion problems, heavy-tailed behavior was not found and that
restarts were consequently not helpful on these problems. As an interesting aside, Bap-
tista and Marques-Silva [8] show experimentally that—because of synergy between the
techniques—a backtracking algorithm that incorporates nogood recording can benefit from
randomization and restarts when solving unsatisfiable instances.

Hoos [68] notes that restarts will not only be effective for heavy tails, but that its effec-
tiveness depends solely on there existing some point where the cumulative runtime distri-
bution is increasing slower than the exponential distribution. It is at this point, where the
search is stagnating, that a restart would be helpful.

Van Moorsel and Wolter [129] provide necessary and sufficient conditions for restarts
to be helpful. Their work can be seen as a formalization of Hoos’ insight and its exten-
sion from one restart to multiple restarts. Let T be a random variable which models the
runtime of a randomized backtracking algorithm on an instance and let E[T] be the ex-
pected value of T . Under the assumption that successive runs of the randomized algorithm
are statistically independent and identically distributed, Van Moorsel and Wolter show that
any number of restarts using a fixed cutoff of t steps is better than just letting the algorithm
run to completion if and only if,

E[T] < E[T − t | T > t]

holds; i.e., if and only if the expected runtime of the algorithm is less than the expected
remaining time to completion given that the algorithm has run for t steps. Van Moorsel and
Wolter also show that if a single restart improves the expected runtime, multiple restarts

P. van Beek 115

perform even better, and unbounded restarts performs best. For what kinds of distribu-
tions does the above condition hold? Restarts will be most effective (the inequality will
be greatest) for heavy-tailed distributions, where the tail decays polynomially, but Van
Moorsel and Wolter observe that the condition also hold for some distributions where the
tail decays exponentially. For other exponentially decaying distributions, restarting will
be strictly worse than running the algorithm to completion. Zhan [137] shows that this is
not an isolated case and for many problems restarts can be harmful. For pure exponential
distributions, the condition is an equality and restarts will be neither helpful or harmful.

Underlying causes for these runtime distributions

Various theories have been postulated for explaining why restarts are helpful; i.e., why do
runtime distributions arise where restarts are helpful. It is superficially agreed that an ex-
planation for this phenomenon is that ordering heuristics make mistakes which require the
backtracking algorithm to explore large subtrees with no solutions. However, the theories
differ in what it means for an ordering heuristic to make a mistake.

Harvey [64] defines a mistake as follows.

Definition 4.11 (value mistake). A mistake is a node in the search tree that is a nogood
but the parent of the node is not a nogood.

When a mistake is made, the search has branched into a subproblem that does not
have a solution. The result is that the node has to be refuted and doing this may require
a large subtree to be explored, especially if the mistake is made early in the tree. In this
definition, value ordering heuristics make mistakes, variable ordering heuristics do not.
However, changing the variable ordering can mean either that a mistake is not made, since
the value ordering is correct for the newly chosen variable, or that any mistake is less costly
to correct. Harvey constructs a probabilistic model to predict when a restart algorithm will
perform better than its deterministic counterpart. With simplifying assumptions about the
probability of a mistake, it is shown that restarts are beneficial when the mistake probability
is small. Clearly, the definition, and thus the probabilistic model on which it depends, only
applies if a CSP has a solution. Therefore, the theory does not explain when restarts would
be beneficial for unsatisfiable problems.

As evidence in support of this theory, Hulubei and O’Sullivan [70] consider the dis-
tribution of refutation sizes to correct mistakes (the size of the subtrees that are rooted at
mistakes). They show that when using a poor value ordering in experiments on quasigroup
completion problems, heavy-tailed behavior was observed for every one of four different
high-quality variable ordering heuristics. However, the heavy-tailed behavior disappeared
when the same experiments were performed but this time with a high-quality value order-
ing heuristic in place of the random value ordering.

Williams, Gomes, and Selman [135] (hereafter just Williams) define a mistake as fol-
lows.

Definition 4.12 (backdoor mistake). A mistake is a selection of a variable that is not in a
minimal backdoor, when such a variable is available to be chosen.

A backdoor is a set of variables for which there exists value assignments such that the
simplified problem (such as after constraint propagation) can be solved in polynomial time.
Backdoors capture the intuition that good variable and value ordering heuristics simplify

116 4. Backtracking Search Algorithms

the problem as quickly as possible. When a mistake is made, the search has branched into
a subproblem that has not been as effectively simplified as it would have been had it chosen
a backdoor variable. The result is that the subproblem is more costly to search, especially
if the mistake is made early in the tree. In this definition, variable ordering heuristics
make mistakes, value ordering heuristics do not. Williams constructs a probabilistic
model to predict when heavy-tailed behavior will occur but there will exist a restart strategy
that will have polynomial expected running time. With simplifying assumptions about the
probability of a mistake, it is shown that both of these occur when the probability of a
mistake is sufficiently small and the size of the minimal backdoor is sufficiently small.
The theory can also explain when restarts would be beneficial for unsatisfiable problems,
through the notion of a strong backdoor. However, the theory does not entirely account for
the fact that a random value ordering together with a restart strategy can remove heavy-
tail behavior. In this case the variable ordering remains fixed and so the probability of a
mistake also remains unchanged.

Finally, some work contributes to our understanding of why runtime distributions arise
where restarts are helpful while remaining agnostic about the exact definition of a mistake.
Consider the probability distribution of refutation sizes to correct mistakes. It has been
shown both empirically on random problems and through theoretical, probabilistic models
that heavy-tails arise in the case where this distribution decays exponentially as the size
of the refutation grows [24, 59]. In other words, there is an exponentially decreasing
probability of making a costly (exponentially-sized) mistake.

4.8 Best-First Search

In the search tree that is traversed by a backtracking algorithm, the branches out of a
node are assumed to be ordered by a value ordering heuristic, with the left-most branch
being the most promising (or at least no less promising than any branch to the right). The
backtracking algorithm then performs a depth-first traversal of the search tree, visiting
the branches out of a node in left-to-right order. When a CSP instance is unsatisfiable
and the entire search tree must be traversed, depth-first search is the clear best choice.
However, when it is known or it can safely be assumed that a CSP instance is satisfiable,
alternative search strategies such as best-first search become viable. In this section, I
survey discrepancy-based search strategies, which can be viewed as variations on best-first
search.

Harvey and Ginsberg [64, 65] were the first to propose a discrepancy-based search
strategy, in an algorithm called limited discrepancy search. A discrepancy is the case
where the search does not follow the value ordering heuristic and does not take the left-
most branch out of a node. The idea behind limited discrepancy search is to iteratively
search the tree by increasing number of discrepancies, preferring discrepancies that occur
near the root of the tree. This allows the search to recover from mistakes made early in the
search (see Definition 4.11). In contrast, with backtracking (or depth-first) search, mistakes
made near the root of the tree can be costly to discover and undo. On the ith iteration, the
limited discrepancy algorithm visits all leaf nodes with up to i discrepancies in the path
from the root to the leaf. The algorithm terminates when a solution is found or the iteration
is exhausted. Limited discrepancy search is called iteratively with i = 0, 1, . . . , k. If
k ≥ n, where n is the depth of the search tree, the algorithm is complete; otherwise it is

P. van Beek 117

incomplete. Harvey and Ginsberg show both theoretically and experimentally that limited
discrepancy search can be better than depth-first search on satisfiable instances when a
good value ordering heuristic is available.

Korf [80] proposes a modification to the limited discrepancy algorithm so that it visits
fewer duplicate nodes on subsequent iterations. On the ith iteration, Korf’s algorithm visits
all leaf nodes with exactly i discrepancies in the path from the root to the leaf. However, to
achieve these savings, Korf’s algorithm prefers discrepancies deeper in the tree. Korf notes
that limited discrepancy search can be viewed as a variation on best-first search, where the
cost of a node p is the number of discrepancies in the path from the root of the search tree
to p. In best-first search, the node with the lowest cost is chosen as the next node to be
extended. In Harvey and Ginsberg’s proposal, ties for lowest cost are broken by choosing
a node that is closest to the root. In Korf’s proposal, ties are broken by choosing a node
that is farthest from the root.

Walsh [133] (and independently Meseguer [95]), argues that value ordering heuris-
tics tend to be less informed and more prone to make mistakes near the top of the search
tree. Walsh proposes depth-bounded discrepancy search, which biases search to discrep-
ancies near the top of the tree, but visits fewer redundant nodes than limited discrepancy
search. On the ith iteration, the depth-bounded discrepancy search algorithm visits all
leaf nodes where all discrepancies in the path from the root to the leaf occur at depth i or
less. Meseguer [95] proposes interleaved depth-first search, which also biases search to
discrepancies near the top of the tree. The basic idea is to divide up the search time on the
branches out of a node using a variation of round-robin scheduling. Each branch—or more
properly, each subtree rooted at a branch—is searched for a given time-slice using depth-
first search. If no solution is found within the time slice, the search is suspended and the
next branch becomes active. Upon suspending search in the last branch, the first branch
again becomes active. This continues until either a solution is found or all the subtrees
have been exhaustively searched. The strategy can be applied recursively within subtrees.

Meseguer and Walsh [96] experimentally compare backtracking algorithms using tradi-
tional depth-first search and the four discrepancy-based search strategies described above.
On a test bed which consisted of random binary, quasigroup completion, and number par-
titioning CSPs, it was found that discrepancy-based search strategies could be much bet-
ter than depth-first search. As with randomization and restarts, discrepancy-based search
strategies are a way to overcome value ordering mistakes made early in the search.

4.9 Optimization

In some important application areas of constraint programming such as scheduling, se-
quencing and planning, CSPs arise which have, in addition to constraints which must be
satisfied, an objective function f which must be optimized. Without loss of generality, I
assume in what follows that the goal is to find a solution which minimizes f and that f is
a function over all the variables of the CSP. I also assume that a variable c has been added
to the CSP model and constrained to be equal to the objective function; i.e., c = f(X),
where X is the set of variables in the CSP. I call this the objective constraint.

To solve optimization CSPs, the common approach is to find an optimal solution by
solving a sequence of CSPs; i.e., a sequence of satisfaction problems. Several variations
have been proposed and evaluated in the literature. Van Hentenryck [128] proposes what

118 4. Backtracking Search Algorithms

can be viewed as a constraint-based version of branch-and-bound. Initially, a backtracking
search is used to find any solution p which satisfies the constraints. A constraint is then
added to the CSP of the form c < f(S) which excludes solutions that are not better than
this solution. A new solution is then found for the augmented CSP. This process is repeated
until the resulting CSP is unsatisfiable, in which case the last solution found has been
proven optimal. Baptiste, Le Pape, and Nuijten [9] suggest iterating on the possible values
of c by either (i) iterating from the smallest value in dom(c) to the largest until a solution
is found, (ii) iterating from largest to smallest until a solution is no longer found, or (iii)
performing binary search. Each time, of course, we are solving a satisfaction problem
using a backtracking search algorithm. For these approaches to be effective, it is important
that constraint propagation techniques be applied to the objective constraint. For example,
see [9, Chapter 5] for propagation techniques for objective constraints for several objective
functions that arise in scheduling.

4.10 Comparing Backtracking Algorithms

As this survey has indicated, many improvements to backtracking have been proposed and
there are many ways that these techniques can be combined together into one algorithm. In
this section, I survey work on comparing the performance of backtracking algorithms. The
work is categorized into empirical and theoretical approaches. Both approaches have well-
known advantages and disadvantages. Empirical comparisons allow the comparison of any
pair of backtracking algorithms, but any conclusion about which algorithm is better will
always be weak since it must be qualified by the phrase, “on the instances we examined”.
Theoretical comparisons allow categorical statements about the relative performance of
some pairs of backtracking algorithms, but the requirement that any conclusion be true for
all instances means that statements cannot be made about every pair of algorithms and the
statements that can be made must sometimes be necessarily weak.

When comparing backtracking algorithms, several performance measures have been
used. For empirical comparisons, of course runtime can be used, although this requires
one to be sure that one is comparing the underlying algorithms and not implementation
skill or choice of programming language. Three widely used performance measures that
are implementation independent are number of constraint checks, backtracks, and nodes
visited.

4.10.1 Empirical Comparisons

Early work in empirical comparisons of backtracking algorithms was hampered by a lack
of realistic or hard test problems (e.g., [21, 48, 63, 93, 108, 114]). The experimental test
bed often consisted of only toy problems—the ubiquitous n-queens problem first used in
1965 [57] was still being used as a test bed more than 20 years later [125]—and simple
random problems. As well, often only CSPs with binary constraints were experimented
upon. The focus on simple, binary CSPs was sometimes detrimental to the field and led to
promising approaches being prematurely dismissed.

The situation improved with the discovery of hard random problems that arise at a
phase transition and the investigation of alternative random models of CSPs (see [51] and
references therein). Experiments could now be performed which compared the algorithms

P. van Beek 119

on the hardest problems and systematically explored the entire space of random problems
to see where one algorithm bettered another (e.g., [17, 45, 126]). Unfortunately, most
of the random models lack any structure or realism. The situation was further improved
by the realization that important applications of constraint programming are often best
modeled using global constraints and other non-binary constraints, and the construction
and subsequent wide use of a constraint programming benchmark library [53].

In the remainder of this section, I review two representative streams of experiments:
experiments that examine what level of constraint propagation a backtracking algorithm
should perform and experiments that examine the interaction between several techniques
for improving a backtracking algorithm. Many other experiments—such as those per-
formed by authors who have introduced a new technique and then show that the technique
works better on a selected set of test problems—are reported elsewhere in this survey.

Experiments on level of constraint propagation

Experiments have examined the question of what level of local consistency should be main-
tained during the backtracking search. Consider the representative set of experiments sum-
marized in Table 4.2. Gaschnig [47] originally proposed interleaving backtracking search
with arc consistency. Early experiments which tested this proposal concluded that an algo-
rithm that maintained arc consistency during the search was not competitive with forward
checking [48, 63, 93].

This view was maintained for about fifteen years until it was challenged by Sabin and
Freuder. Sabin and Freuder [116], using hard random problems, showed that MAC could
be much better than forward checking. More recently, with an increasing emphasis on ap-
plying constraint programming in practice, has come an understanding of the importance of
global constraints and other intensionally represented non-binary constraints for modeling
real problems. With such constraints, special purpose constraint propagation algorithms
are developed and the modeler has a choice of what level of constraint propagation to
enforce. It is now generally accepted that the choice of level of constraint propagation de-
pends on the application and different choices may be made for different constraints within
the same CSP.

Table 4.2: Experiments on constraint propagation: MAC vs FC.

Faster? Comment
McGregor (1979) [93] FC 3 × faster
Haralick & Elliott (1980) [63] FC 3 × faster
Sabin & Freuder (1994) [116] MAC much better
Bacchus & van Run (1995) [5] FC 3–20 × faster
Bessière & Régin (1996) [17] MAC much better
Larrosa (2000) [81] both much better

120 4. Backtracking Search Algorithms

Experiments on the interaction between improvements

Experiments have examined the interaction of the quality of the variable ordering heuris-
tic, the level of local consistency maintained during the backtracking search, and the addi-
tion of backjumping techniques such as conflict-directed backjumping (CBJ) and dynamic
backtracking (DBT). Unfortunately, these three techniques for improving a backtracking
algorithm are not entirely orthogonal. Consider the representative set of experiments sum-
marized in Table 4.3. These experiments show that, if the variable ordering is fixed and
the level of constraint propagation is forward checking, conflict-directed backjumping is
an effective technique. However, it can also be observed in previous experimental work
that as the level of local consistency that is maintained in the backtracking search is in-
creased and as the variable ordering heuristic is improved, the effects of CBJ are dimin-
ished [5, 17, 107, 108]. For example, it can be observed in Prosser’s [108] experiments
that, given a static variable ordering, increasing the level of local consistency maintained
from none to the level of forward checking, diminishes the effects of CBJ. Bacchus and
van Run [5] observe from their experiments that adding a dynamic variable ordering (an
improvement over a static variable ordering) to a forward checking algorithm diminishes
the effects of CBJ. In their experiments the effects are so diminished as to be almost neg-
ligible and they present an argument for why this might hold in general. Bessière and
Régin [17] observe from their experiments that simultaneously increasing the level of lo-
cal consistency even further to arc consistency and further improving the dynamic variable
ordering heuristic diminishes the effects of CBJ so much that, in their implementation,
the overhead of maintaining the data structures for backjumping actually slows down the
algorithm. They conjecture that when arc consistency is maintained and a good variable
ordering heuristic is used, “CBJ becomes useless”. All of the above experiments were on
small puzzles—the Zebra problem and n-queens problem—and on random CSPs which
lacked any structure.

In contrast, in subsequent experiments on both random and real-world structured CSPs,
backjumping was found to be a useful technique. Jussien, Debruyne, Boizumault [75]
present empirical results that show that adding dynamic backtracking to an algorithm that
maintains arc consistency can greatly improve performance. Chen and van Beek [26]
present empirical results that show that, although the effects of CBJ may be diminished,
adding CBJ to a backtracking algorithm that maintains arc consistency can still provide
orders of magnitude speedups. Finally, CBJ is now a standard technique in the best back-
tracking algorithms for solving structured SAT problems [83].

Table 4.3: Experiments on backjumping: FC vs FC-CBJ.

Faster? Comment
Rosiers and Bruynooghe (1987) [114] FC-CBJ never worse
Prosser (1993) [108] FC-CBJ three times better
Frost & Dechter (1994) [45] FC-CBJ somewhat better
Bacchus & van Run (1995) [5] FC-CBJ slightly
Smith & Grant (1995) [119] FC-CBJ sometimes much better
Bayardo & Schrag (1996, 1997) [11, 12] FC-CBJ much better

P. van Beek 121

4.10.2 Theoretical Comparisons

Worst-case analysis and average-case analysis are two standard theoretical approaches to
understanding and comparing algorithms. Unfortunately, neither approach has proven gen-
erally successful for comparing backtracking algorithms. The worst-case bounds of back-
tracking algorithms are always exponential and rarely predictive of performance, and the
average-case analyses of backtracking algorithms have, by necessity, made simplifying and
unrealistic assumptions about the distribution of problems (e.g., [63, 105, 110]).

Two alternative approaches that have proven more successful for comparing algorithms
are techniques based on proof complexity and a methodology for constructing partial or-
ders based on characterizing properties of the nodes visited by an algorithm.

Proof complexity and backtracking algorithms

Backtracking algorithms can be compared using techniques from the proof complexity of
resolution refutation proofs. The results that can be proven are of the general form: Given
any CSP instance, algorithm A with an optimal variable and value ordering never visits
fewer and can visit exponentially more nodes when applied to the instance than algorithm
B with an optimal variable and value ordering. The optimal orderings are relative to the
algorithms and thus A and B may use different orderings. I begin by briefly explaining
resolution refutation proofs and proof complexity, followed by an explanation of some
results of applying proof complexity techniques to the study of backtracking algorithms
for CSPs.

The resolution inference rule takes two premises in the form of clauses (A ∨ x) and
(B ∨ ¬x) and gives the clause (A ∨ B) as a conclusion. The two premises are said to
be resolved and the variable x is said to be resolved away. Resolving the two clauses
x and ¬x gives the empty clause. Given a set of input clauses F , a resolution proof or
derivation of a clause C is a sequence of applications of the resolution inference rule such
that C is the final conclusion and each premise in each application of the inference rule is
either a clause from F or a conclusion from a previous application of the inference rule. A
resolution proof that derives the empty clause is called a refutation proof, as it shows that
the input set of clauses F is unsatisfiable.

A resolution proof of a clause C can be viewed as a directed acyclic graph (DAG).
Each leaf node in the DAG is labeled with a clause from F , each internal node is labeled
with a derived clause that is justified by resolving the clauses of its two parents, and there
is a single node with no successors and the label of that node is C. Many restrictions on
the form of the proof DAG have been studied. For our purposes, one will suffice. A tree
resolution proof is a resolution proof where the DAG of inferences forms a tree. The size
of a proof is the number of nodes (clauses) in the proof DAG.

Proof complexity is the study of the size of the smallest proof a method can produce
[28]. It is known that the smallest tree resolution refutation proof to show a set of clauses
F is unsatisfiable can be exponentially larger than the smallest unrestricted resolution refu-
tation proof and can never be smaller (see [13] and references therein). To see why tree
proofs can be larger, note that if one wishes to use a derived clause elsewhere in the proof
it must be re-derived. To see why tree proofs can never be smaller, note that every tree
resolution proof is also an unrestricted resolution proof.

122 4. Backtracking Search Algorithms

Why is resolution refutation proof complexity interesting for the study of backtracking
algorithms? The search tree that results from applying a complete backtracking algorithm
to an unsatisfiable CSP can be viewed as a resolution refutation proof. As an example of
the correspondence, consider the backtracking tree that results from applying BT to the
SAT problem which consists of the set of clauses {a ∨ b ∨ c, a ∨ ¬c, ¬b, ¬a ∨ c, b ∨ ¬c}.
Each leaf node is labeled with the clause that caused the failure, interior nodes are labeled
by working from the leaves to the root applying the resolution inference rule, and the root
will be labeled with the empty clause. Thus, proof complexity addresses the question of
the size of the smallest possible backtrack tree; i.e., the size of the backtrack tree if one
assumes optimal variable and value ordering heuristics.

The connection between backtracking algorithms for SAT and resolution has been
widely observed and it is known that DPLL-based algorithms on unsatisfiable instances
correspond to tree resolution refutation proofs. Baker [7] shows how to generalize this cor-
respondence to the backtracking algorithm BT for general CSPs, when BT is using d-way
branching. Mitchell [100], using earlier work by de Kleer [32], shows how to generalize
this correspondence when BT is using 2-way branching.

Beame, Kautz, and Sabharwal [13] (hereafter Beame) use proof complexity techniques
to investigate backtracking algorithms with nogood recording. Let DPLL be a basic back-
tracking algorithm for SAT, let DPLL+nr be DPLL with a nogood recording scheme (called
FirstNewCut) added, and let DPLL+nr+restarts be DPLL with nogood recording and in-
finite restarts added. Beame shows that the smallest refutation proofs using DPLL can be
exponentially longer than the smallest refutation proofs using DPLL+nr. In other words,
DPLL with an optimal variable and value ordering never visits fewer and can visit expo-
nentially more nodes than DPLL with nogood recording and an optimal variable and value
ordering. Beame also shows that DPLL+nr+restarts is equivalent to unrestricted resolu-
tion if the learned nogoods are retained between restarts. It is an open question whether
DPLL+nr is equivalent to unrestricted resolution or falls strictly between unrestricted res-
olution and tree resolution proofs.

Hwang and Mitchell [71] use proof complexity techniques to investigate backtrack-
ing algorithms with different branching strategies. Let BT-2-way be a basic backtracking
algorithm for general CSPs using 2-way branching, and let BT-d-way be a backtracking
algorithm using d-way branching. Hwang and Mitchell show that BT-d-way with an opti-
mal variable and value ordering never visits fewer and can visit exponentially more nodes
than BT-2-way with an optimal variable and value ordering.

Although a powerful technique, a limitation of the proof complexity framework is that
it cannot be used to distinguish between some standard improvements to the basic chrono-
logical backtracking algorithm. For example, consider the four combinations of adding
or not adding unit propagation and conflict-directed backjumping to DPLL. When using
an optimal variable and value ordering each algorithm visits exactly the same number of
nodes. Similar results hold for adding conflict-directed backjumping, dynamic backtrack-
ing, or forward checking to BT [7, 26, 100].

A partial order on backtracking algorithms

Backtracking algorithms can be compared by formulating necessary and sufficient condi-
tions for a search tree node to be visited by each backtracking algorithm. These charac-
terizations can then be used to construct a partial order (or hierarchy) on the algorithms

P. van Beek 123

according to two standard performance measures: the number of nodes visited and the
number of constraint checks performed.

The results that can be proven are of the general form: Given any CSP instance and
any variable and value ordering, algorithm A with the variable and value ordering never
visits more nodes (and may visit fewer) when applied to the instance than algorithm B with
the same variable and value ordering. In other words, algorithm A dominates algorithm B
when the performance measure is nodes visited. A strong feature of this approach is that
the results still hold (A still dominates B), even if the CSP model used by both algorithms
is the model that is best from algorithm B’s point of view and even if the variable and value
ordering used by both algorithms are the orderings that are best (optimal) from algorithm
B’s point of view.

Kondrak and van Beek [79] introduce the general methodology and give techniques
and definitions that can be used for characterizing backtracking algorithms. Using the
methodology, they formulate necessary and sufficient conditions for several backtracking
algorithms including BT, BJ, CBJ, FC, and FC-CBJ. As an example of a necessary condi-
tion, it can be shown that if FC visits a node, then the parent of the node is 1-consistent (see
Definition 4.3). As an example of a sufficient condition, it can be shown that if the parent
of a node is 1-consistent, then BJ visits the node. The necessary and sufficient conditions
can then be used to order the two backtracking algorithms. For example, to show that FC
dominates BJ in terms of nodes visited, we show that every node that is visited by FC is
also visited by BJ. The necessary condition for FC is used to deduce that the parent of the
node is 1-consistent. Since the parent of the node is 1-consistent, the sufficient condition
for BJ can then be used to conclude that BJ visits the node.

Chen and van Beek [26] extend the partial ordering of backtracking algorithms to in-
clude backtracking algorithms and their CBJ hybrids that maintain levels of local consis-
tency beyond forward checking, including the algorithms that maintain arc consistency.
To analyze the influence of the level of local consistency on the backjumping, Chen and
van Beek use the notion of backjump level. Informally, the level of a backjump is the
distance, measured in backjumps, from the backjump destination to the farthest deadend.
By classifying the backjumps performed by a backjumping algorithm into different levels,
CBJ is weakened into a series of backjumping algorithms which perform limited levels of
backjumps. Let BJk be a backjumping algorithm which backjumps if the backjump level
j is less than or equal to k, but chronologically backtracks if j > k. BJn is equivalent to
CBJ, which performs unlimited backjumps, and BJ1 is equivalent to Gaschnig’s [48] BJ,
which only does first level backjumps. Recall that the maintaining strong k-consistency
algorithm (MCk) enforces strong k-consistency at each node in the backtrack tree, where
MC1 is equivalent to FC and on binary CSPs MC2 is equivalent to MAC. MCk can be com-
bined with backjumping, namely MCk-CBJ. Chen and van Beek show that an algorithm
that maintains strong k-consistency never visits more nodes than a backjumping algorithm
that is allowed to backjump at most k levels. Thus, as the level of local consistency that
is maintained in the backtracking search is increased, the less that backjumping will be an
improvement.

Figure 4.3 shows a partial order or hierarchy in terms of the size of the backtrack tree
for BJk, MCk, and MCk-CBJ. If there is a path from algorithm A to algorithm B in the
figure, A never visits more nodes than B. For example, for all variable orderings, MCk
never visits more nodes than BJj , for all j ≤ k.

Bacchus and Grove [3] observe that the partial orderings with respect to nodes visited

124 4. Backtracking Search Algorithms

can be extended to partial orderings with respect to constraint checks, or other measures
of the amount of work performed at each node. For example, on binary CSPs the MAC
algorithm can perform O(n2d2) work at each node of the tree, where n is the number of
variables and d is the size of the domain, whereas the FC algorithm can perform O(nd)
work. Thus, one can conclude that on binary CSPs MAC can be at most O(nd) times
slower in the worst case (when the two algorithms visit the same nodes). The partial
orderings with respect to nodes and constraint checks are consistent with and explain some
of the empirical results reported in the literature (e.g., see the experiments reported in
Tables 4.2 & 4.3).

Besides the relationships that are shown explicitly, it is important to note the ones that
are implicit in the hierarchy. If there is not a path from algorithm A to algorithm B in
the hierarchy, A and B are incomparable. To show a pair of algorithms A and B are
incomparable, one needs to find a CSP and a variable ordering on which A is better than
B, and one on which B is better than A. Examples have been given that cover all the
incomparability results [4, 26, 79]. Some of the more surprising results include: CBJ and
FC-CBJ are incomparable [79], CBJ and MCk are incomparable for any fixed k < n in
that each can be exponentially better than the other [4], and MAC-CBJ and FC-CBJ and
more generally MCk-CBJ and MCk+1-CBJ are incomparable for any fixed k < n in that
each can be exponentially better than the other [26].

P. van Beek 125

MCn
BJn

(CBJ)
MCn−CBJ

MCk+1 BJk+1 MCk+1−CBJ

MCk BJk MCk−CBJ

MC2

(MAC)
BJ2

MC2−CBJ
(MAC−CBJ)

MC1

(FC)

BJ1
(BJ)

MC1−CBJ
(FC−CBJ)

BJ0
(BT)

Figure 4.3: A hierarchy for BJk, MCk, and MCk-CBJ in terms of the size of the backtrack
tree (adapted from [26, 79]). On binary CSPs, MC2 is equivalent to MAC and MC2-CBJ
is equivalent to MAC-CBJ.

126 4. Backtracking Search Algorithms

Acknowledgements

I would like to thank Fahiem Bacchus, Xinguang Chen, Grzegorz Kondrak, Dennis Man-
chak, and Jonathan Sillito for many interesting discussions and collaborations in the past
on backtracking algorithms. I would also like to thank Christian Bessière and George Kat-
sirelos for helpful comments on an early draft of this survey. This work was supported in
part by the Natural Sciences and Engineering Research Council of Canada.

Bibliography

[1] F. Bacchus. Extending forward checking. In Proceedings of the Sixth International
Conference on Principles and Practice of Constraint Programming, pages 35–51,
Singapore, 2000.

[2] F. Bacchus. Enhancing Davis Putman with extended binary clause reasoning. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence, pages
613 – 619, Edmonton, 2002.

[3] F. Bacchus and A. Grove. On the forward checking algorithm. In Proceedings of the
First International Conference on Principles and Practice of Constraint Program-
ming, pages 292–309, Cassis, France, 1995.

[4] F. Bacchus and A. Grove. Looking forward in constraint satisfaction algorithms.
Unpublished manuscript, 1999.

[5] F. Bacchus and P. van Run. Dynamic variable ordering in CSPs. In Proceedings
of the First International Conference on Principles and Practice of Constraint Pro-
gramming, pages 258–275, Cassis, France, 1995.

[6] S. Bain, J. Thornton, and A. Sattar. Evolving variable-ordering heuristics for con-
strained optimisation. In Proceedings of the Eleventh International Conference on
Principles and Practice of Constraint Programming, pages 732–736, Sitges, Spain,
2005.

[7] A. B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems: Experi-
mental and Theoretical Results. PhD thesis, University of Oregon, 1995.

[8] L. Baptista and J. Marques-Silva. Using randomization and learning to solve hard
real-world instances of satisfiability. In Proceedings of the Sixth International Con-
ference on Principles and Practice of Constraint Programming, pages 489–494,
Singapore, 2000.

[9] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer, 2001.

[10] R. J. Bayardo Jr. and D. P. Miranker. A complexity analysis of space-bounded
learning algorithms for the constraint satisfaction problem. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pages 298–304, Portland,
Oregon, 1996.

[11] R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve excep-
tionally hard SAT instances. In Proceedings of the Second International Conference
on Principles and Practice of Constraint Programming, pages 46–60, Cambridge,
Mass., 1996.

[12] R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve real-

P. van Beek 127

world SAT instances. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pages 203–208, Providence, Rhode Island, 1997.

[13] P. Beame, H. Kautz, and A. Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. of Artificial Intelligence Research, 22:319–351, 2004.
URL http://www.jair.org.

[14] J. C. Beck, P. Prosser, and R. J. Wallace. Trying again to fail first. In Recent Ad-
vances in Constraints, Lecture Notes in Artificial Intelligence, Vol. 3419. Springer-
Verlag, 2005.

[15] U. Bertelè and F. Brioschi. Nonserial Dynamic Programming. Academic Press,
1972.

[16] C. Bessière, P. Meseguer, E. C. Freuder, and J. Larrosa. On forward checking for
non-binary constraint satisfaction. Artificial Intelligence, 141:205–224, 2002.

[17] C. Bessière and J.-C. Régin. MAC and combined heuristics: Two reasons to for-
sake FC (and CBJ?) on hard problems. In Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, pages 61–75,
Cambridge, Mass., 1996.

[18] C. Bliek. Generalizing partial order and dynamic backtracking. In Proceedings of
the Fifteenth National Conference on Artificial Intelligence, pages 319–325, Madi-
son, Wisconsin, 1998.

[19] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by
weighting constraints. In Proceedings of the 16th European Conference on Artificial
Intelligence, pages 146–150, Valencia, Spain, 2004.

[20] D. Brélaz. New methods to color the vertices of a graph. Comm. ACM, 22:251–256,
1979.

[21] C. A. Brown and P. W. Purdom Jr. An empirical comparison of backtracking algo-
rithms. IEEE PAMI, 4:309–315, 1982.

[22] M. Bruynooghe. Solving combinatorial search problems by intelligent backtracking.
Information Processing Letters, 12:36–39, 1981.

[23] Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In Pro-
ceedings of the Eleventh International Conference on Logic Programming, pages
369–383, Santa Margherita Ligure, Italy, 1994.

[24] H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in com-
binatorial search. In Proceedings of the Seventh International Conference on Prin-
ciples and Practice of Constraint Programming, pages 408–421, Paphos, Cyprus,
2001.

[25] X. Chen. A Theoretical Comparison of Selected CSP Solving and Modeling Tech-
niques. PhD thesis, University of Alberta, 2000.

[26] X. Chen and P. van Beek. Conflict-directed backjumping revisited. J. of Artificial
Intelligence Research, 14:53–81, 2001. URL http://www.jair.org.

[27] V. A. Cicirello and S. F. Smith. Amplification of search performance through ran-
domization of heuristics. In Proceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming, pages 124–138, Ithaca, New
York, 2002.

[28] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof sys-
tems. J. Symbolic Logic, 44:36–50, 1979.

[29] M. C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence, 41:89–
95, 1989.

128 4. Backtracking Search Algorithms

[30] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Comm. ACM, 5:394–397, 1962.

[31] M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM,
7:201–215, 1960.

[32] J. de Kleer. A comparison of ATMS and CSP techniques. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, pages 290–296,
Detroit, 1989.

[33] R. Dechter. Learning while searching in constraint satisfaction problems. In Pro-
ceedings of the Fifth National Conference on Artificial Intelligence, pages 178–183,
Philadelphia, 1986.

[34] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learn-
ing, and cutset decomposition. Artificial Intelligence, 41:273–312, 1990.

[35] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-
lems. Artificial Intelligence, 34:1–38, 1988.

[36] S. L. Epstein, E. C. Freuder, R. J. Wallace, A. Morozov, and B. Samuels. The adap-
tive constraint engine. In Proceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming, pages 525–540, Ithaca, New
York, 2002.

[37] R. E. Fikes. REF-ARF: A system for solving problems stated as procedures. Artifi-
cial Intelligence, 1:27–120, 1970.

[38] J. W. Freeman. Improvements to Propositional Satisfiability Search Algorithms.
PhD thesis, University of Pennsylvania, 1995.

[39] E. C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21:958–966,
1978.

[40] E. C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29:24–32,
1982.

[41] E. C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32:
755–761, 1985.

[42] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in
constraint satisfaction problems. In Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pages 1076–1078, Los Angeles, 1985.

[43] E. C. Freuder and R. J. Wallace. Generalizing inconsistency learning for constraint
satisfaction. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pages 563–571, Montréal, 1995.

[44] D. Frost and R. Dechter. Dead-end driven learning. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 294–300, Seattle, 1994.

[45] D. Frost and R. Dechter. In search of the best search: An empirical evaluation.
In Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
301–306, Seattle, 1994.

[46] D. Frost and R. Dechter. Look-ahead value ordering for constraint satisfaction prob-
lems. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 572–578, Montréal, 1995.

[47] J. Gaschnig. A constraint satisfaction method for inference making. In Proceedings
Twelfth Annual Allerton Conference on Circuit and System Theory, pages 866–874,
Monticello, Illinois, 1974.

[48] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algo-
rithms for satisficing assignment problems. In Proceedings of the Second Canadian

P. van Beek 129

Conference on Artificial Intelligence, pages 268–277, Toronto, 1978.
[49] P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.

In Proceedings of the 10th European Conference on Artificial Intelligence, pages
31–35, Vienna, 1992.

[50] I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. An empirical study
of dynamic variable ordering heuristics for the constraint satisfaction problem. In
Proceedings of the Second International Conference on Principles and Practice of
Constraint Programming, pages 179–193, Cambridge, Mass., 1996.

[51] I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. Random constraint
satisfaction: Flaws and structure. Constraints, 6(4):345–372, 2001.

[52] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In
Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages
246–252, Portland, Oregon, 1996.

[53] I. P. Gent and T. Walsh. CSPlib: A benchmark library for constraints. In Proceed-
ings of the Fifth International Conference on Principles and Practice of Constraint
Programming, pages 480–481, Alexandria, Virginia, 1999.

[54] M. L. Ginsberg. Dynamic backtracking. J. of Artificial Intelligence Research, 1:
25–46, 1993. URL http://www.jair.org.

[55] M. L. Ginsberg, M. Frank, M. P. Halpin, and M. C. Torrance. Search lessons learned
from crossword puzzles. In Proceedings of the Eighth National Conference on Ar-
tificial Intelligence, pages 210–215, Boston, Mass., 1990.

[56] M. L. Ginsberg and D. A. McAllester. GSAT and dynamic backtracking. In Pro-
ceedings of the Second Workshop on Principles and Practice of Constraint Pro-
gramming, pages 243–265, Rosario, Orcas Island, Washington, 1994.

[57] S. Golomb and L. Baumert. Backtrack programming. J. ACM, 12:516–524, 1965.
[58] C. Gomes. Randomized backtrack search. In M. Milano, editor, Constraint and

Integer Programming: Toward a Unified Methodology, pages 233–292. Kluwer,
2004.

[59] C. Gomes, C. Fernández, B. Selman, and C. Bessière. Statistical regimes across
constrainedness regions. Constraints, 10:317–337, 2005.

[60] C. Gomes, B. Selman, and N. Crato. Heavy-tailed distributions in combinatorial
search. In Proceedings of the Third International Conference on Principles and
Practice of Constraint Programming, pages 121–135, Linz, Austria, 1997.

[61] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems. J. of Automated Reasoning, 24:67–100,
2000.

[62] C. Gomes, B. Selman, and H. Kautz. Boosting combinatorial search through ran-
domization. In Proceedings of the Fifteenth National Conference on Artificial Intel-
ligence, Madison, Wisconsin, 1998.

[63] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[64] W. D. Harvey. Nonsystematic backtracking search. PhD thesis, Stanford University,
1995.

[65] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, pages
607–613, Montréal, 1995.

[66] J. N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics, 1:

130 4. Backtracking Search Algorithms

33–42, 1996.
[67] J. N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated

Reasoning, 15:359–383, 1995.
[68] H. H. Hoos. Heavy-tailed behaviour in randomised systematic search algorithms for

SAT. Technical Report TR-99-16, UBC, 1999.
[69] J. Huang and A. Darwiche. A structure-based variable ordering heuristic for SAT.

In Proceedings of the Eighteenth International Joint Conference on Artificial Intel-
ligence, pages 1167–1172, Acapulco, Mexico, 2003.

[70] T. Hulubei and B. O’Sullivan. Search heuristics and heavy-tailed behaviour. In
Proceedings of the Eleventh International Conference on Principles and Practice of
Constraint Programming, pages 328–342, Sitges, Spain, 2005.

[71] J. Hwang and D. G. Mitchell. 2-way vs. d-way branching for CSP. In Proceedings
of the Eleventh International Conference on Principles and Practice of Constraint
Programming, pages 343–357, Sitges, Spain, 2005.

[72] ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.
[73] P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of

constraint networks. Artificial Intelligence, 146:43–75, 2003.
[74] U. Junker. QuickXplain: Preferred explanations and relaxations for over-

constrained problems. In Proceedings of the Nineteenth National Conference on
Artificial Intelligence, pages 167–172, 2004.

[75] N. Jussien, R. Debruyne, and B. Boizumault. Maintaining arc-consistency within
dynamic backtracking. In Proceedings of the Sixth International Conference on
Principles and Practice of Constraint Programming, pages 249–261, Singapore,
2000.

[76] K. Kask, R. Dechter, and V. Gogate. Counting-based look-ahead schemes for con-
straint satisfaction. In Proceedings of the Tenth International Conference on Prin-
ciples and Practice of Constraint Programming, pages 317–331, Toronto, 2004.

[77] G. Katsirelos and F. Bacchus. Generalized nogoods in CSPs. In Proceedings of
the Twentieth National Conference on Artificial Intelligence, pages 390–396, Pitts-
burgh, 2005.

[78] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart poli-
cies. In Proceedings of the Eighteenth National Conference on Artificial Intelli-
gence, pages 674–681, Edmonton, 2002.

[79] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 89:365–387, 1997.

[80] R. E. Korf. Improved limited discrepancy search. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 286–291, Portland, Oregon,
1996.

[81] J. Larrosa. Boosting search with variable elimination. In Proceedings of the Sixth
International Conference on Principles and Practice of Constraint Programming,
pages 291–305, Singapore, 2000.

[82] J.-L. Lauriere. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10:29–127, 1978.

[83] D. Le Berre and L. Simon. Fifty-five solvers in Vancouver: The SAT 2004 com-
petition. In Proceedings of the Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT2004), pages 321–344, Vancouver, 2004.
Available as: Springer Lecture Notes in Computer Science 3542, 2005.

P. van Beek 131

[84] C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus
conflict-directed heuristics. In Proceedings of the Sixteenth IEEE International Con-
ference on Tools with Artificial Intelligence, pages 549–557, Boca Raton, Florida,
2004.

[85] C.-M. Li and S. Gérard. On the limit of branching rules for hard random unsatisfi-
able 3-SAT. Discrete Applied Mathematics, 130:277–290, 2003.

[86] W. Li and P. van Beek. Guiding real-world SAT solving with dynamic hypergraph
separator decomposition. In Proceedings of the Sixteenth IEEE International Con-
ference on Tools with Artificial Intelligence, pages 542–548, Boca Raton, Florida,
2004.

[87] P. Liberatore. On the complexity of choosing the branching literal in DPLL. Artifi-
cial Intelligence, 116:315–326, 2000.

[88] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
In Proceedings of the Second Israel Symposium on the Theory of Computing and
Systems, Jerusalem, 1993.

[89] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:
99–118, 1977.

[90] A. K. Mackworth. On reading sketch maps. In Proceedings of the Fifth Inter-
national Joint Conference on Artificial Intelligence, pages 598–606, Cambridge,
Mass., 1977.

[91] A. M. Malik, J. McInnes, and P. van Beek. Optimal basic block instruction schedul-
ing for multiple-issue processors using constraint programming. Technical Report
CS-2005-19, School of Computer Science, University of Waterloo, 2005.

[92] J. Marques-Silva and K. A. Sakallah. GRASP – a new search algorithm for satisfia-
bility. In Proceedings of the International Conference on Computer-Aided Design,
pages 220–227, San Jose, Calif., 1996.

[93] J. J. McGregor. Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Inform. Sci., 19:229–250, 1979.

[94] A. Meisels, S. E. Shimony, and G. Solotorevsky. Bayes networks for estimating the
number of solutions to a CSP. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence, pages 185–190, Providence, Rhode Island, 1997.

[95] P. Meseguer. Interleaved depth-first search. In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 1382–1387, Nagoya, Japan,
1997.

[96] P. Meseguer and T. Walsh. Interleaved and discrepancy based search. In Proceed-
ings of the 13th European Conference on Artificial Intelligence, pages 239–243,
Brighton, UK, 1998.

[97] M. Milano and W. J. van Hoeve. Reduced cost-based ranking for generating promis-
ing subproblems. In Proceedings of the Eighth International Conference on Princi-
ples and Practice of Constraint Programming, pages 1–16, Ithaca, New York, 2002.

[98] S. Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints, 1:7–44, 1996.

[99] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: A
heuristic repair method for constraint satisfaction and scheduling problems. Artifi-
cial Intelligence, 58:161–206, 1992.

[100] D. G. Mitchell. Resolution and constraint satisfaction. In Proceedings of the Ninth
International Conference on Principles and Practice of Constraint Programming,

132 4. Backtracking Search Algorithms

pages 555–569, Kinsale, Ireland, 2003.
[101] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of the 8th Eu-

ropean Conference on Artificial Intelligence, pages 651–656, Munchen, Germany,
1988.

[102] U. Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Inform. Sci., 7:95–132, 1974.

[103] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of 39th Design Automation Conference, Las
Vegas, 2001.

[104] B. A. Nadel. Constraint satisfaction algorithms. Computational Intelligence, 5:
188–224, 1989.

[105] B. Nudel. Consistent-labeling problems and their algorithms: Expected-
complexities and theory-based heuristics. Artificial Intelligence, 21:135–178, 1983.

[106] S. Prestwich. A hybrid search architecture applied to hard random 3-SAT and low-
autocorrelation binary sequences. In Proceedings of the Sixth International Con-
ference on Principles and Practice of Constraint Programming, pages 337–352,
Singapore, 2000.

[107] P. Prosser. Domain filtering can degrade intelligent backtracking search. In Pro-
ceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
pages 262–267, Chambèry, France, 1993.

[108] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational
Intelligence, 9:268–299, 1993.

[109] P. Prosser. MAC-CBJ: Maintaining arc consistency with conflict-directed back-
jumping. Research Report 177, University of Strathclyde, 1995.

[110] P. W. Purdom Jr. Search rearrangement backtracking and polynomial average time.
Artificial Intelligence, 21:117–133, 1983.

[111] P. Refalo. Impact-based search strategies for constraint programming. In Proceed-
ings of the Tenth International Conference on Principles and Practice of Constraint
Programming, pages 557–571, Toronto, 2004.

[112] E. T. Richards. Non-systematic Search and No-good Learning. PhD thesis, Imperial
College, 1998.

[113] G. Rochart, N. Jussien, and F. Laburthe. Challenging explanations for global
constraints. In CP03 Workshop on User-Interaction in Constraint Satisfaction
(UICS’03), pages 31–43, Kinsale, Ireland, 2003.

[114] W. Rosiers and M. Bruynooghe. Empirical study of some constraint satisfaction
algorithms. In P. Jorrand and V. Sgurev, editors, Artificial Intelligence II, Methodol-
ogy, Systems, Applications, Proc. AIMSA’86, pages 173–180. North Holland, 1987.

[115] Y. Ruan, E. Horvitz, and H. Kautz. Restart policies with dependence among runs: A
dynamic programming approach. In Proceedings of the Eighth International Con-
ference on Principles and Practice of Constraint Programming, pages 573–586,
Ithaca, New York, 2002.

[116] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In Proceedings of the 11th European Conference on Artificial Intelligence,
pages 125–129, Amsterdam, 1994.

[117] D. Sabin and E. C. Freuder. Understanding and improving the MAC algorithm. In
Proceedings of the Third International Conference on Principles and Practice of
Constraint Programming, pages 167–181, Linz, Austria, 1997.

P. van Beek 133

[118] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problems. International Journal on Artificial Intelligence Tools, 3:1–
15, 1994.

[119] B. M. Smith and S. A. Grant. Sparse constraint graphs and exceptionally hard prob-
lems. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 646–651, Montréal, 1995.

[120] B. M. Smith and S. A. Grant. Trying harder to fail first. In Proceedings of the
13th European Conference on Artificial Intelligence, pages 249–253, Brighton, UK,
1998.

[121] B. M. Smith and P. Sturdy. Value ordering for finding all solutions. In Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence, pages
311–316, Edinburgh, 2005.

[122] S. F. Smith and C. Cheng. Slack-based heuristics for constraint satisfaction schedul-
ing. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 139–144, Washington, DC, 1993.

[123] G. Smolka. The OZ programming model. In Computer Science Today, Lecture
Notes in Computer Science 1000, pages 324–343, 1995.

[124] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9:135–196, 1977.

[125] H. S. Stone and J. M. Stone. Efficient search techniques—an empirical study of the
N-queens problem. IBM J. Res. and Develop., 31:464–474, 1987.

[126] E. P. K. Tsang, J. E. Borrett, and A. C. M. Kwan. An attempt to map the performance
of a range of algorithm and heuristic combinations. In Proceedings of the AI and
Simulated Behaviour Conference, pages 203–216, 1995.

[127] A. Van Gelder and Y. K. Tsuji. Satisfiability testing with more reasoning and less
guessing. In D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satis-
fiability: Second DIMACS Implementation Challenge, pages 559–586. American
Mathematical Society, 1996.

[128] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[129] A. P. A. van Moorsel and K. Wolter. Analysis and algorithms for restart. In Proceed-
ings of the IEEE Quantitative Evaluation of Systems (QEST 2004), pages 195–204,
Enschede, The Netherlands, 2004.

[130] A. P. A. van Moorsel and K. Wolter. Meeting deadlines through restart. In Proceed-
ings of the 12th GI/ITG Conference on Measuring, Modelling and Evaluation of
Computer and Communication Systems, pages 155–160, Dresden, Germany, 2004.

[131] M. Vernooy and W. S. Havens. An evaluation of probabilistic value-ordering heuris-
tics. In Proceedings of the Australian Conference on AI, pages 340–352, Sydney,
1999.

[132] R. J. Wallace. Factor analytic studies of CSP heuristics. In Proceedings of the
Eleventh International Conference on Principles and Practice of Constraint Pro-
gramming, pages 712–726, Sitges, Spain, 2005.

[133] T. Walsh. Depth-bounded discrepancy search. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence, pages 1388–1393, Nagoya,
Japan, 1997.

[134] T. Walsh. Search in a small world. In Proceedings of the Sixteenth International

134 4. Backtracking Search Algorithms

Joint Conference on Artificial Intelligence, pages 1172–1177, Stockholm, 1999.
[135] R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In

Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence, pages 1173–1178, Acapulco, Mexico, 2003.

[136] R. Zabih. Some applications of graph bandwidth to constraint satisfaction problems.
In Proceedings of the Eighth National Conference on Artificial Intelligence, pages
46–51, Boston, Mass., 1990.

[137] Y. Zhan. Randomisation and restarts, 2001. MSc thesis, University of York.
[138] H. Zhang. A random jump strategy for combinatorial search. In Proceedings of

International Symposium on AI and Math, Fort Lauderdale, Florida, 2002.
[139] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learn-

ing in a boolean satisfiability solver. In Proceedings of the International Conference
on Computer-Aided Design, pages 279–285, San Jose, Calif., 2001.

Handbook of Constraint Programming 135
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 5

Local Search Methods

Holger H. Hoos and Edward Tsang

Local search is one of the fundamental paradigms for solving computationally hard combi-
natorial problems, including the constraint satisfaction problem (CSP). It provides the basis
for some of the most successful and versatile methods for solving the large and difficult
problem instances encountered in many real-life applications. Despite impressive advances
in systematic, complete search algorithms, local search methods in many cases represent
the only feasible way for solving these large and complex instances. Local search algo-
rithms are also naturally suited for dealing with the optimisation criteria arising in many
practical applications.

The basic idea underlying local search is to start with a randomly or heuristically gener-
ated candidate solution of a given problem instance, which may be infeasible, sub-optimal
or incomplete, and to iteratively improve this candidate solution by means of typically mi-
nor modifications. Different local search methods vary in the way in which improvements
are achieved, and in particular, in the way in which situations are handled in which no
direct improvement is possible.

Most local search methods use randomisation to ensure that the search process does not
stagnate with unsatisfactory candidate solutions and are therefore referred to as stochastic
local search (SLS) methods. Prominent examples of SLS methods are randomised iterative
improvement (also known as stochastic hill-climbing), evolutionary algorithms, simulated
annealing, tabu search, dynamic local search and, more recently, ant colony optimisation.
These classes of local search algorithms are also widely known as metaheuristics.

Many SLS methods are conceptually rather simple and relatively easy to implement
compared to many other techniques. At the same time, they often show excellent perfor-
mance and in many cases define the state-of-the-art in the respective problems.1 Further-
more, SLS algorithms are often very flexible in that they can be easily adapted to changes
in the specification of a problem. This makes them a very popular choice for solving
conceptually complex application problems that are sometimes not fully formalised at the

1Still, the efficient implementation of some high-performance SLS algorithms requires considerable effort
and sophisticated data structures (see, e.g., [79]).

B.V.

136 5. Local Search Methods

beginning of a project. Consequently, SLS algorithms are amongst the most prominent and
widely used combinatorial problem solving techniques in academia and industry.

It may be noted that when taking a very broad view of constraint programming, many
combinatorial problems, including scheduling, sequencing, configuration and routing prob-
lems, can be seen as constraint programming problems. Local search algorithms for these
problems are widely studied by researchers from various disciplines, and the correspond-
ing, vast body of literature would be difficult (if not impossible) to survey within a single
book chapter.

Therefore, this chapter primarily provides an overview of SLS algorithms for the con-
straint satisfaction problem (CSP), one of the most prominent problems in constraint pro-
gramming. We focus on widely known and high-performing algorithms for the general
CSP and for SAT, the propositional satisfiability problem, a special case of CSP which
plays an important role not only in constraint programming and reasoning research, but
also in many other areas of computing science and beyond. We also briefly cover SLS
algorithms for constraint optimisation problems such as MAX-CSP and MAX-SAT, the
optimisation variants of CSP and SAT, respectively, and point the reader to some of the
best-known frameworks and toolkits for implementing local search algorithms for con-
straint programming problems.

5.1 Introduction

Constraint programming is a powerful conceptual framework that can express many types
of combinatorial problems. In this chapter, we mainly focus on the finite discrete con-
straint satisfaction problem (CSP), a problem of central importance within the area of con-
straint programming with many applications in artificial intelligence, operations research
and other areas of computing science and related disciplines.

The Constraint Satisfaction Problem (CSP)

An instance of the CSP is defined by a set of variables, a set of possible values (or domain)
for each variable and a set of constraints each of which involve one or more of the variables.
The Constraint Satisfaction Problem (CSP) is to decide for a given CSP instance whether
it is possible to assign to each variable a value from its respective domain such that all
constraints are simultaneously satisfied. Formally, this can be expressed as follows [52]:

Definition 5.1. A CSP instance is a triple P = (V,D, C), where V = {x1, . . . , xn} is a
finite set of n variables,D is a function that maps each variable xi to the setDi of possible
values it can take (Di is called the domain of xi), and C = {C1, . . . , Cm} is a finite set of
constraints. Each constraint Cj is a relation over an ordered set Var(Cj) of variables from
V , i.e., for Var(Cj) = (y1, . . . , yk), Cj ⊆ D(y1) × · · · × D(yk). The elements of the set
Cj are referred to as satisfying tuples of Cj , and k is called the arity of the constraint Cj .
A CSP instance P is called n-ary, if the arity of all constraints in P have arity at most n;
in particular, binary CSP instances have only constraints of arity at most two.

P is a finite discrete CSP instance if all variables in P have discrete and finite domains.
A variable assignment of P is a mapping a : V 7→ ⋃n

i=1Di that assigns to each variable
x ∈ V a value from its domain D(x). (The assignment of a value to an individual variable
is called an atomic assignment.) Let Assign(P) denote the set of all possible variable

H. H. Hoos, E. Tsang 137

assignments for P ; then a variable assignment a ∈ Assign(P) is a solution of P if, and
only if, it simultaneously satisfies all constraints in C, i.e., if for all Cj ∈ C with, say,
Var(Cj) = (y1, . . . , yk) the assignment a maps y1, . . . , yk to values v1, . . . , vk such that
(v1, . . . , vk) ∈ Cj .

CSP instances for which at least one solution exists are called consistent (or soluble),
while instances that do not have any solutions are called inconsistent (or insoluble).

The finite discrete CSP is the problem of deciding whether a given finite discrete CSP
instance P is consistent.

The Propositional Satisfiability Problem (SAT)

The well-known satisfiability problem in propositional logic (SAT) can be seen as a promi-
nent special case of the general CSP. Consider a propositional formula F in conjunctive
normal form, i.e., of the form

F :=
m
∧

i=1

ci with ci :=

k(i)
∨

j=1

lij

where each of the lij is a propositional variable or its negation; the lij are called literals,
while the disjunctions ci are referred to as the clauses of F . The objective of the satis-
fiability problem is then to decide whether F is satisfiable, i.e., whether there exists an
assignment a of truth values true and false to the variables xk such that every clause con-
tains at least one literal rendered true by a. Obviously, this corresponds to a CSP instance
where all variables have domains {true, false} and for every clause ci there is a constraint
Ci between the variables appearing in ci that is satisfied if, and only if, ci is satisfied under
the (partial) assignment of its variables. Hence, a clause with k literals corresponds to a
k-ary constraint relation.

As the prototypicalNP -complete problem, SAT is of central importance to the theory
of computing; it also plays an important role in circuit design and verification (see, e.g.,
Biere et al. [6] or Gu and Puri [37]). Other practical applications of SAT include various
scheduling tasks [126, 15] as well as problems from machine vision, robotics, database
systems and computer graphics [38]. SAT also plays in important role in the development
of algorithms; its conceptual simplicity facilitates the design, implementation and evalu-
ation of new algorithms. Particularly with respect to local search algorithms, many ideas
and techniques have been first developed for SAT, before they were generalised to more
general types of CSP instances.

SAT-Encodings of CSP

CSP instances can be encoded into SAT in a number of ways (see, e.g., Prestwich [84] or
Hoos and Stützle [52] for an overview), and using such encodings, arbitrary CSP instances
can be solved by state-of-the-art SAT solvers, including powerful local and systematic
search algorithms as well as preprocessing techniques. The main appeal of this approach
stems from the previously mentioned advantages of SAT for algorithm development and
implementation in combination with the substantial amount of research on SAT solving
techniques. SAT encodings may, however, lead to potentially significant increases in the
size of problem instances and the respective search spaces; more problematically, they

138 5. Local Search Methods

can obfuscate structural aspects of CSP instances that are important for efficiently solving
these.

There is some evidence that the ‘encode and solve as SAT’ approach can work surpris-
ingly well (see, e.g., Kautz and Selman [58], Ernst et al. [24] and Hoos [48]); furthermore,
it has been shown that some encodings allow SAT-solvers to directly exploit important as-
pects of CSP structure [5]. However, it is still unclear whether and to which extent finding
good SAT-encodings is any easier than developing good native CSP algorithms — particu-
larly in the case of local search methods, which can often benefit directly from insights and
improvements achieved on SAT. It should be noted that the general issue of modelling (i.e.,
finding good formulations of a problem) plays an important role in constraint programming
(see Chapter 11).

Local Search

Given a combinatorial problem such as the CSP, the key idea behind local search is very
simple: starting at an initial search position (for the CSP, typically a randomly chosen,
complete variable assignment), in each step the search process moves to a position selected
from the local neighbourhood (typically based on a heuristic evaluation function). This
process is iterated until a termination criterion is satisfied. To avoid stagnation of the search
process, almost all local search algorithms use some form of randomisation, typically in
the generation of initial positions and in many cases also in the search steps. This leads
to the concept of stochastic local search (SLS) algorithms, which is formally defined as
follows [52]:

Definition 5.2. Given a (combinatorial) problem Π, a stochastic local search algorithm
for solving an arbitrary problem instance π ∈ Π is defined by the following components:

• the search space S(π) of instance π, which is a finite set of candidate solutions s ∈ S
(also called search positions, locations, configurations, or states) — in the case of
the CSP, this is typically the set of all complete variable assignments;

• a set of (feasible) solutions S′(π) ⊆ S(π) — for the CSP, this set typically consists
of all solutions of the given CSP instance;

• a neighbourhood relation on S(π), N(π) ⊆ S(π) × S(π) — this determines the
positions that can be reached in one search step at any given time during the search
process;

• a finite set of memory states M(π), which, in the case of SLS algorithms that do not
use memory, may consist of a single state only, and in other cases holds information
about the state of the search mechanism beyond the search position (e.g., tabu tenure
values in the case of tabu search);

• an initialisation function init(π) : ∅ 7→ D(S(π) ×M(π)), which specifies a prob-
ability distribution over initial search positions and memory states — this function
characterises the initialisation of the search process;

• a step function step(π) : S(π)×M(π) 7→ D(S(π)×M(π)) mapping each search
position and memory state onto a probability distribution over its neighbouring

H. H. Hoos, E. Tsang 139

search positions and memory states — this function specifies what happens in ev-
ery search step;

• a termination predicate terminate(π) : S(π)×M(π) 7→ D({true, false}) mapping
each search position and memory state to a probability distribution over truth val-
ues, which indicates the probability with which the search is to be terminated upon
reaching a specific search position and memory state.

In the above, D(S) denotes the set of probability distributions over a given set S, where
formally, a probability distribution D ∈ D(S) is a function D : S 7→ R+

0 that maps
elements of S to their respective probabilities.

Note that this definition includes deterministic local search algorithms as special cases,
in which the probability distributions used in the initialisation and step function as well
as in the termination criterion are degenerate, with all probability mass concentrated on
one value of the underlying domain. As previously noted, completely deterministic local
search algorithms are seldom used in research or applications.

In the case of almost all local search algorithms for CSP, the search space consists of
all complete variable assignments of the given CSP instance, the solution set is comprised
of all satisfying assignments, and the so-called 1-exchange neighbourhood is used, under
which two assignments are direct neighbours if, and only if, they differ at most in the
value assigned to one variable. In the special case of SAT, a variant of this neighbourhood
relation known as the 1-flip neighbourhood is typically used, under which two assignments
are direct neighbours if, and only if, one can be obtained from the other by flipping the truth
value assigned to exactly one of the variable from true to false or vice versa. In many cases
the initial search position is determined by generating a variable assignment uniformly at
random, and the termination criterion is satisfied if a solution is found or a given bound on
the number of search steps has been exceeded.

The various local search algorithms for CSP (and SAT) differ from each other mainly
with respect to their step function, which for all but the most simple (and ineffective) algo-
rithms incorporates heuristic guidance in the form of an evaluation function. This function
typically maps the candidate solutions of the given problem instance π onto a real num-
ber such that its global minima correspond to the solutions of π. The evaluation function
is used for assessing or ranking the direct neighbours of the current search positions. A
commonly used evaluation function for the CSP maps each assignment to the number of
constraints violated under it. Note that solutions are characterised by evaluation function
value zero, and can hence be easily recognised.

The simplest local search method that effectively uses a given evaluation function g is
called Iterative Improvement (or II; also known as hill-climbing or iterative descent). In
each search step, II selects an improving position from the current neighbourhood, i.e., a
position s′ ∈ N(s) with g(s′) < g(s), where s is the current search position. There are
various commonly used heuristics for selecting such an improving neighbour. In Itera-
tive Best-Improvement, a neighbour s′ with minimal value g(s′) within N(s) is chosen;
if multiple such neighbours exist, one is chosen uniformly at random. In Iterative First-
Improvement, on the other hand, the neighbourhood is evaluated in a given order, and the
first improving neighbour encountered during this process is selected as the next search po-
sition. Variants of Iterative Improvement form the basis for almost all local search methods
for CSP, SAT and other combinatorial problems.

140 5. Local Search Methods

procedure MCH (P, maxSteps)
input: CSP instance P, positive integer maxSteps
output: solution of P or “no solution found”

a := randomly chosen assignment of the variables in P ;
for step := 1 to maxSteps do

if a satisfies all constraints of P then return a end
x := randomly selected variable from conflict set K(a);
v := randomly selected value from the domain of x such that

setting x to v minimises the number of unsatisfied constraints;
a := a with x set to v;

end
return “no solution found”

end MCH

Figure 5.1: The basic MCH algorithm; all random selections are according to a uniform
probability distribution over the underlying sets.

The Min-Conflicts Heuristic

The simplest and probably most widely known iterative improvement algorithm for the
CSP is the Min Conflicts Heuristic (MCH) [76, 77]. MCH iteratively modifies the assign-
ment of a single variable in order to minimise the number of violated constraints, which is
achieved as follows (see also Figure 5.1): Given a CSP instance P , the search process is
initialised by assigning to each variable in P a value that is chosen uniformly at random
from its domain. Then, in each local search step, first a CSP variable x is selected uni-
formly at random from the so-called conflict set K(a), the set of all variables that appear
in a constraint that is unsatisfied under the current assignment a. A new value v is then
chosen from the domain of x, such that by assigning v to x, the number of unsatisfied
constraints (conflicts) is minimised. If there are several values of v with that property, one
of them is chosen uniformly at random. The search is terminated when a solution is found
or a user-specified bound on the number of search steps has been exceeded.

A variant of the basic MCH algorithm that uses a greedy initialisation procedure has
been very successfully applied to the n-Queens Problem (a prominent special case of the
general CSP, for which specialized polynomial-time algorithms exist) with very large n
(say, n equals a million). Furthermore, the efficacy of MCH has been demonstrated in
applications to graph colouring and real-world scheduling problems [77].

Like most iterative improvement methods, MCH can get stuck in local minima of the
underlying evaluation function; it is therefore essentially incomplete [52], i.e., even if run
arbitrarily long, the probability for finding a solution to soluble CSP instance may ap-
proach a value strictly smaller than one. A simple generic approach for overcoming this
problem is to extend MCH with a static restart mechanism that re-initialises the search
process every maxSteps search steps, where maxSteps is a user-specified parameter of the
algorithm. Unfortunately, the performance of the resulting algorithm depends critically
and quite sensitively on good choices of maxSteps, which vary substantially between dif-
ferent CSP instances. Substantially more effective variants of the MCH will be discussed
later in this chapter.

H. H. Hoos, E. Tsang 141

procedure GSAT (F, maxTries, maxSteps)
input: CNF formula F, positive integers maxTries and maxSteps
output: model of F or “no solution found”

for try := 1 to maxTries do
a := randomly chosen assignment of the variables in formula F ;
for step := 1 to maxSteps do

if a satisfies F then return a end
x := randomly selected variable flipping which minimises

the number of unsatisfied clauses;
a := a with x flipped;

end
end
return “no solution found”

end GSAT

Figure 5.2: The basic GSAT algorithm; all random selections are according to a uniform
probability distribution over the underlying sets.

The GSAT Algorithm

Basic GSAT [91] is a simple iterative best-improvement algorithm for SAT that uses the
number of clauses unsatisfied under a given assignment as its evaluation function. The
algorithm works as follows (see also Figure 5.2): Starting from a complete variable assign-
ment chosen uniformly at random, in each local search step, a single propositional variable
is flipped from true to false or vice versa. The variable to be flipped is chosen such that
a maximal decrease in the number of unsatisfied clauses is achieved; if there are several
variables with that property, one of them is selected uniformly at random. The iterative
best-improvement search used in GSAT gets easily stuck in local minima of the evaluation
function. Therefore, GSAT uses a simple static restart mechanism that re-initialises the
search at a randomly chosen assignment every maxSteps flips. The search is terminated
when a model of the given formula F has been found, or after maxTries sequences (also
called ‘tries’) of maxSteps variable flips each have been performed without finding a model
of F .

Straightforward implementations of GSAT are rather inefficient, since in each step the
scores of all variables, i.e., the changes in the number of unsatisfied clauses caused by the
respective flips, have to be calculated from scratch. The key to efficiently implementing
GSAT is to compute the complete set of scores only once at the beginning of each try, and
then after each flip to update only the scores of those variables that were possibly affected
by the flipped variable (details on this mechanism can be found in Chapter 6 of Hoos and
Stützle [52]).

For any fixed setting of the maxTries parameter, GSAT is essentially incomplete [44,
47], and severe stagnation behaviour is observed on most SAT instances. Still, when it
was first introduced, GSAT outperformed the best systematic search algorithms for SAT
available at that time. As one of the first SLS algorithms for SAT, basic GSAT had a
very significant impact on the development of a broad range of much more powerful SAT
solvers, including most of the current state-of-the-art SLS algorithms for SAT. Further-

142 5. Local Search Methods

more, GSAT and its variants (described later in this chapter) also had a significant impact
on the development of high-performance SLS algorithms for the CSP.

5.2 Randomised Iterative Improvement Algorithms

The main limitation of iterative improvement algorithms stems from the fact that they
get stuck in local minima of the given evaluation function. A simple approach to deal
with this problem is to occasionally allow non-improving search steps, i.e., the selection
of neighbours s′ ∈ N(s) with g(s′) ≥ g(s) from the current neighourhood. There are
numerous different mechanisms that implement this approach; many of these make use of
randomised decisions in order to balance the diversification effects of worsening search
steps with the search intensification provided by Iterative Improvement.

Randomised Iterative Improvement (RII) is an extension of Iterative Improvement where
in each step with a fixed probability wp, a position s′ is selected uniformly at random from
the current neighbourhood N(s) — this is called a random walk step; otherwise (i.e., with
probability 1 − wp), a standard II step is performed. Note that using this mechanism,
arbitrarily long sequences of (possibly worsening) random walk steps can be performed.
Therefore, as long as the given neighbourhood graph is connected (i.e., any two candi-
date solutions can be reached from each other by means of a sequence of search steps),
RII, when run arbitrarily long, will find a solution to any soluble problem instance with
probability approaching one, i.e., limt→∞ Ps(RT ≤ t) = 1, where Ps(RT ≤ t) is the
probability that a solution is found in time at most t.2 Algorithms with this property are
called probabilistically approximately complete (PAC).

The Min Conflicts Heuristic with Random Walk (WMCH)

By extending the Min Conflicts Heuristic with a simple random walk mechanism, a ran-
domised iterative improvement algorithm called WMCH is obtained [116]. In each WMCH
step, first a variable xi is chosen uniformly at random from the conflict set (as in MCH).
Then, with probability wp ≥ 0, a random walk step is performed, i.e., xi is assigned a
value from its domain Di that has been chosen uniformly at random. In the remaining
cases, that is, with probability 1−wp, a conflict-minimising value is chosen and assigned,
as in a conventional MCH step.

The walk probability wp (also called noise setting) has a critical impact on the be-
haviour of the algorithm. For wp = 0, the algorithm is equivalent to the standard Min-
Conflicts Heuristic and hence essentially incomplete, but for wp > 0, WMCH is provably
probabilistically approximately complete (PAC). Intuitively, for low walk probabilities,
the search process is likely to have difficulties escaping from local minima regions of the
search space, while for very high walk probabilities, its behaviour starts to resemble that
of an uninformed random walk, and it will increasingly lack effective heuristic guidance
towards solutions. However, for suitably chosen wp settings, WMCH has been empirically
observed to perform substantially better than MCH with random restart [101].

2Most local search algorithms for CSP use connected neighbourhoods; however, for more complex constraint
programming problems, connected neighbourhoods that can be searched efficiently are sometimes difficult to
construct.

H. H. Hoos, E. Tsang 143

Random walk steps in WMCH always involve a variable that appears in a currently
unsatisfied constraint; they are therefore also called conflict-directed random walk steps.
However, different from the GWSAT algorithm [92] (described in the following), which
preceded and inspired WMCH, the conflict-directed random walk steps in WMCH do not
necessarily render satisfied any previously unsatisfied constraint. WMCH can be varied
slightly such that in each random walk step, after choosing a variable xi involved in a
currently violated constraint C, xi is assigned a value v such that C becomes satisfied; if
no such v exists, a value is chosen at random. This variant was found to perform marginally
better than the random walk mechanism used in WMCH [101].

GSAT with Random Walk (GWSAT)

The basic GSAT algorithm can be significantly improved by extending it with a random
walk mechanism similar to that used in WMCH. Here, in each conflict-directed random
walk step, the variable to be flipped is selected uniformly at random from the set of all
variables appearing in currently unsatisfied clauses. Note that as a result of any such step,
at least one previously unsatisfied clause will become satisfied. This mechanism is closely
related to (and in fact inspired by) the conflict-directed random walk algorithm by Pa-
padimitriou, which has been proven to solve 2-SAT in quadratic expected time [80].

GSAT with Random Walk (GWSAT) [92] is variant of basic GSAT that in each local
search step probabilistically decides between performing a basic GSAT step and a conflict-
directed random walk step (as previously explained). The latter type of step is chosen with
a fixed walk probability wp, and basic GSAT steps are performed otherwise. While for
wp = 0, GWSAT is equivalent to basic GSAT, it has been proven to be probabilistically
approximately complete (PAC) for any wp > 0 [47].

For suitably chosen walk probability settings (which vary between problem instances,
but in many cases can be as high as 0.5), GWSAT achieves substantially better performance
than basic GSAT [92]. Furthermore, it has been shown that when using sufficiently high
noise settings, GWSAT does not suffer from stagnation behaviour; also, for hard SAT in-
stances, it typically shows exponential run-time distributions (RTDs) [44, 51]. Therefore,
static restarts are ineffective, and optimal speedup can be obtained by multiple indepen-
dent runs parallelisation [52]. For low noise settings, stagnation behaviour is frequently
observed; recently, there has been evidence that the corresponding RTDs can be charac-
terised by mixtures of exponential distributions [46].

WalkSAT

The WalkSAT algorithm is conceptually closely related to both GWSAT and MCH; it
was first published by Selman, Kautz and Cohen [92], and is now commonly known as
WalkSAT/SKC. This algorithm was later extended into an algorithmic framework called
the WalkSAT architecture [73], which includes the original WalkSAT/SKC algorithm as
well as several other high-performance SLS algorithms for SAT as special cases (several
of these will be covered in later sections of this chapter). Furthermore, variants of WalkSAT
have been developed for more general classes of CSP instances as well as for constraint
optimisation problems (see Section 5.6).

WalkSAT/SKC (and all other WalkSAT algorithms) are based on a 2-stage variable
selection process similar to that used in MCH. In each local search step, first a clause c

144 5. Local Search Methods

is selected uniformly at random from the set of all currently unsatisfied clauses. Then,
one of the variables appearing in c is flipped to obtain a new assignment. The choice of
this variable is based on a heuristic scoring function scoreb(x) that counts the number of
currently satisfied clauses that will be broken, i.e., become unsatisfied, by flipping a given
variable x. Using this scoring function, the following variable selection scheme is applied:
If there is a variable x with scoreb(x) = 0 in the clause c selected in stage 1, that is, if c
can be satisfied without breaking another clause, x is flipped (this is called a zero damage
step). If more than one such variable exists in c, one of them is selected uniformly at
random and flipped. If no such variable exists, with a certain probability 1-p, the variable
with minimal scoreb value is selected (greedy step; ties are broken uniformly at random);
in the remaining cases, that is, with probability p (the so-called noise setting), one of the
variables from c is selected uniformly at random (random walk step).

Note that — like in GWSAT, but unlike in MCH — every step in WalkSAT/SKC is
guaranteed to satisfy at least one previously unsatisfied clause (but may at the same time
cause many others to become unsatisfied). Otherwise, WalkSAT/SKC uses the same ran-
dom search initialisation, static random restart mechanism and termination criterion as
GSAT.

Although it has been proven that WalkSAT/SKC with fixed maxTries parameter has
the PAC property when applied to 2-SAT [16], it is not known whether the algorithm
is PAC in the general case. In practice, WalkSAT/SKC does not appear to suffer from
any stagnation behaviour when using sufficiently high (instance-specific) noise settings, in
which case its run-time behaviour is characterised by exponential RTDs [44, 51, 49]. As
in the case of GWSAT, stagnation behaviour is frequently observed for low noise settings,
and there is some evidence that the corresponding RTDs can be characterised by mixtures
of exponential distributions [46].

Typically, when using (somewhat instance-specific) optimised noise settings, Walk-
SAT/SKC performs substantially better than GWSAT.3 Furthermore, because of its two-
stage variable selection scheme, WalkSAT/SKC (like all other WalkSAT algorithms and
MCH variants), can be implemented efficiently without using the incremental score update
technique essential for the efficient implementation of GSAT and GWSAT.

5.3 Tabu Search and Related Algorithms

The key idea behind Tabu Search (TS) [35, 36] is to use memory to prevent the search
process from stagnating in local minima or, more generally, attractive non-solution ar-
eas of the given search space. In Simple Tabu Search, an iterative improvement strategy
is enhanced with a short-term memory that allows it to escape from local minima. This
memory is used to prevent the search from returning the most recently visited search po-
sitions for a fixed number of search steps. Simple TS can be implemented by explicitly
memorising previously visited candidate solutions and ruling out any step that would lead
back to those. More commonly, reversing recent search steps is prevented by forbidding
the re-introduction of solution components (such as assignments of individual CSP vari-
ables) which have just been removed from the current candidate solution. A parameter

3Several techniques have been proposed for automatically tuning the noise setting for WalkSAT algorithms
(see Patterson and Kautz [83], Hoos [45]).

H. H. Hoos, E. Tsang 145

called tabu tenure determines the number of search steps for which these restrictions ap-
ply. Note that forbidding possible steps using a tabu mechanism has the same effect as
dynamically restricting the neighbourhood N(s) of the current candidate solution s to a
subset N ′ ⊆ N(s) of admissible neighbours.

As an undesirable side-effect, this tabu mechanism can sometimes rule out search steps
that lead to interesting, unvisited areas of the search space. Therefore, many tabu search
algorithms make use of a so-called aspiration criterion, which specifies conditions under
which the tabu status of candidate solutions or solution components is overridden. One of
the most commonly used aspiration criteria overrides the tabu status of steps that lead to
an improvement in the incumbent candidate solution, i.e., the best candidate solution seen
throughout the search process.

Min Conflicts Heuristic with Tabu Search (TMCH)

Extending MCH with a simple tabu search mechanism leads to the TMCH algorithm [101,
98]. TMCH works exactly as MCH, except that after each search step, i.e., after the value
of a variable xi is changed from v to v′, the variable/value pair (xi, v) is declared tabu
for the next tt steps, where tt is the tabu tenure parameter. While (xi, v) is tabu, value
v is excluded from the selection of values for xi, unless assigning v to xi leads to an
improvement over the incumbent assignment (aspiration criterion).

According to empirical evidence, TMCH typically performs better than WMCH. In-
terestingly, a tabu tenure setting of tt = 2 was found to consistently result in good perfor-
mance for CSP instances of different types and sizes [101].

The Tabu Search Algorithm by Galinier and Hao (TS-GH)

Although conceptually quite similar to TMCH, the tabu search algorithm by Galinier and
Hao [29], TS-GH, typically shows much better performance. TS-GH is based on the same
neighbourhood and evaluation function as MCH, but uses a different heuristic for selecting
the variable/value pair involved in each search step: Amongst all pairs (x, v′) for which
variable x appears in a currently violated constraint and v′ is any value from the domain
of x, TS-GH chooses the one that leads to a maximal decrease in the number of violated
constraints. If multiple such pairs exist, one of them is selected uniformly at random. As in
MCH, the actual search step is then performed by assigning v′ to x. This best-improvement
strategy is augmented with the same tabu mechanism used in TMCH: After changing the
assignment of x from v to v′, the variable value pair (x, v) is declared tabu for tt search
steps. Furthermore, the same aspiration criterion is used to enable the algorithm to perform
search steps that lead to improvements over the incumbent assignment regardless of the
tabu status of respective variable/value pair.

Unlike for the MCH variants discussed so far, efficient implementations of TS-GH cru-
cially depend on an incremental update mechanism for evaluation function values similar
to the one used in GSAT. The basic idea is to maintain the effects of any potential search
step on the evaluation function (i.e., the number of conflicts resulting from any search step)
in a two-dimensional table of size n × k, where n is the number of variables, and k is the
size of the largest domain in the given CSP instance.

Furthermore, the tabu mechanism can be implemented efficiently as follows. For each
variable/value pair (x, v) the search step number tx,v when xwas last set to v is memorised.

146 5. Local Search Methods

When initialising the search, all the tx,v are set to −tt; subsequently, every time a variable
x is set to a value v, tx,v is set to the current search step number t, where search steps
are counted starting from 0 at the initialisation of the search process. A variable/value pair
(x, v) is tabu if, and only if, t − tx,v ≤ tt. By using this technique in combination with
the previously described incremental update mechanism, search steps of TS-GH can be
performed as efficiently as those of MCH.

TS-GH was originally introduced as an algorithm for MAX-CSP, the optimisation vari-
ant of CSP in which the objective is to find a variable assignment that satisfies a maximal
number of constraints (see Section 5.6). Empirical studies suggest that when applied to
the conventional CSP, TS-GH generally achieves better performance than any other MCH
variant, including TMCH, rendering it one of the best SLS algorithms for the CSP cur-
rently known [101]. Unlike in the case of TMCH, the optimal setting of the tabu tenure
parameter in TS-GH tends to increase with instance size; this makes it considerably harder
to solve new CSP instances with peak efficiency [101].

GSAT with Tabu Search

Integrating a simple tabu search strategy into the best-improvement procedure underlying
basic GSAT leads to an algorithm called GSAT with Tabu Search (GSAT/Tabu) [72, 98].
In GSAT/Tabu, tabu status is associated with the propositional variables in the given for-
mula. After a variable x has been flipped, it cannot be flipped back within the next tt
steps, where the tabu tenure, tt, is a parameter of the algorithm. In each search step, the
variable to be flipped is selected as in basic GSAT, except that the choice is restricted to
variables that are currently not tabu. Upon search initialisation, the tabu status of all vari-
ables is cleared. Otherwise, GSAT/Tabu works exactly as GSAT; in particular, it uses the
same restart mechanism and termination criterion. As in the case of TMCH, to implement
GSAT/Tabu efficiently, it is crucial to use incremental score updating and tabu mechanisms.

Unlike in the case of GWSAT, it is not clear whether GSAT/Tabu with fixed maxTries
parameter has the PAC property. Intuitively, for low tt, the algorithm may not be able
to escape from extensive local minima regions, while for high tt settings, all the routes
to a solution may be cut off, because too many variables are tabu. However, when us-
ing instance-specific, optimised tabu tenure settings, GSAT/Tabu typically performs sig-
nificantly better than GWSAT with similarly optimised parameters. This is particularly
the case for large and structured SAT instances [49]; there are, however, a few excep-
tional cases where GSAT/Tabu performs substantially worse than GWSAT, including well-
known SAT-encoded instances of logistics planning problems. Analogously to basic GSAT,
GSAT/Tabu can be extended with a random walk mechanism; limited experimentation sug-
gests that typically this hybrid algorithm does not perform better than GSAT/Tabu [98].

WalkSAT with Tabu Search

Like GSAT and MCH, WalkSAT/SKC can be extended with a simple tabu search mech-
anism. WalkSAT/Tabu [73] uses the same two stage selection mechanism and the same
scoring function scoreb as WalkSAT/SKC and additionally enforces a tabu tenure of tt
steps for each flipped variable. (To implement this tabu mechanism efficiently, the same
approach is used as previously described for TS-GH.) If the selected clause c does not al-
low a zero damage step, of all the variables occurring in c that are not tabu, WalkSAT/Tabu

H. H. Hoos, E. Tsang 147

picks the one with the highest scoreb value; when there are several variables with the same
maximal score, one of them is selected uniformly at random. In cases where all variables
appearing in the selected clause c are tabu, the variable assignment remains unchanged (a
so-called null-flip), but the current tabu tenure values for all variables decrease exactly as
after any other flip.

WalkSAT/Tabu with fixed maxTries parameter has been proven to be essentially in-
complete [44, 47]. Although this is mainly caused by null-flips, it is not clear whether re-
placing null-flips by random walk steps, for instance, would be sufficient for obtaining the
PAC property. In practice, however, WalkSAT/Tabu typically performs significantly better
than WalkSAT/SKC, especially on structured SAT instances, such as large SAT-encoded
blocks world planning problems [49].

Novelty and Variants

The Novelty algorithm [73] is derived from the WalkSAT framework. Like tabu search,
Novelty uses a limited information on the search history to avoid search stagnation. More
specifically, its variable selection mechanism is based on the intuition that repeatedly flip-
ping back and forth the same variable should be avoided. This mechanism is based on the
age of a variable (see also Gent and Walsh [33]), i.e., the number of flips that have occurred
since it was last flipped. Different from WalkSAT/SKC and WalkSAT/Tabu, Novelty and
its more recent variants use the same variable scoring function as GSAT, i.e., the difference
in the number of unsatisfied clauses caused by the respective flip.

In each step of Novelty, after an unsatisfied clause c has been chosen uniformly at
random (exactly as in WalkSAT/SKC), the variable to be flipped is selected as follows. If
the variable x with the highest score does not have minimal age among the variables in c,
it is always selected. Otherwise, x is only selected with a probability of 1-p, where p is a
parameter called the noise setting. In the remaining cases, the variable with the next lower
score is selected. When sorting the variables according to their scores, ties are broken
according to decreasing age. (If there are several variables with identical score and age,
the reference implementation by Kautz and Selman always chooses the one that appears
first in c.) Novelty (and the advanced variants described below) use the same initialisation
procedure, restart mechanism and termination condition as WalkSAT/SKC.

Note that even for p > 0, Novelty is significantly greedier than WalkSAT/SKC, since
always one of the two most improving variables from a clause is selected, where Walk-
SAT/SKC may select any variable if no improvement without breaking other clauses can
be achieved. Precisely for this reason, Novelty is provably essentially incomplete for fixed
maxTries setting and has been shown to occasionally suffer from extreme stagnation on
several commonly used benchmark instances [44, 49]. It may also be noted that, different
from WalkSAT/SKC, the Novelty strategy for variable selection within a clause is com-
pletely deterministic for both p = 0 and p = 1. Still, in most cases, Novelty shows
significantly improved performance over WalkSAT/SKC and WalkSAT/Tabu [73, 49].

R-Novelty [73], a variant of Novelty that uses a more complex variable selection mech-
anism, performs often, but not always, better than Novelty (for details, see McAllester et al.
[73] or Chapter 6 of Hoos and Stützle [52]). Despite its use of a loop-breaking strategy
designed to prevent search stagnation, this algorithm suffers from the effects of its provable
essential incompleteness [44, 47], but it sometimes performs somewhat better than Novelty
[73, 49].

148 5. Local Search Methods

Both Novelty and R-Novelty can be easily extended with a simple conflict-directed
random walk mechanism similar to that used in GWSAT; this way, the essential incom-
pleteness as well as the empirically observed stagnation behaviour are effectively over-
come. The Novelty+ algorithm [44, 47] selects the variable to be flipped according to the
standard Novelty mechanism with probability 1−wp, and makes a uniform random choice
from the selected clause in the remaining cases. R-Novelty+ is obtained from R-Novelty
in the same way, but does not make use of R-Novelty’s loop-breaking mechanism.

Novelty+ is provably PAC for wp > 0 and shows exponential RTDs for sufficiently
high (instance-specific) settings of the primary noise parameter, p. In practice, small walk
probabilities, wp, are generally sufficient to prevent the extreme stagnation behaviour occa-
sionally observed for Novelty and to achieve substantially superior performance compared
to Novelty. In fact, the algorithm’s behaviour appears to be much more robust w.r.t. the
wp parameter than w.r.t. the primary noise setting, p, and uniformly good performance
has been observed for wp = 0.01 [47]. It may be noted that in cases where Novelty
does not suffer from stagnation behaviour, Novelty+’s performance for wp = 0.01 is typ-
ically almost identical to Novelty’s. Similar observations hold for R-Novelty+; however,
there is some indication that R-Novelty+ does not reach the performance of the conceptu-
ally simpler Novelty+ algorithm on several classes of structured SAT instances, including
SAT-encoded hard graph colouring and planning problems [49].

Adaptive Novelty+ [45] is an extension of Novelty+ that dynamically adapts the noise
parameter during the search process and hence does not require this parameter to be tuned
manually. An efficient implementation of this algorithm won first prize in the random
category of the SAT 2004 SAT Solvers Competition. Novelty++, a more recent variant of
Novelty, has been found to perform better than Novelty+ in many cases; its performance
can be further improved by hybridising the underlying variable selection mechanism with
a greedy iterative improvement strategy similar to that underlying GSAT [69].

5.4 Penalty-Based Local Search Algorithms

An alternative to extending an iterative improvement strategy such that it can escape from
local minima of a given evaluation function is to modify the evaluation function when the
search process is about to stagnate in a local minimum [71]. This approach is also known
as Dynamic Local Search (DLS) [52].

Penalty-based algorithms modify the evaluation function by means of penalty weights,
which are associated with solution components or other features of candidate solutions; in
the case of the CSP, penalty weights are usually associated with the constraint relations of
the given CSP instance and for SAT, analogously, with the clauses of the given CNF for-
mula (in the latter case, the penalty weights are often referred to as clause weights). These
penalty weights are modified during the search process. Various penalty-based algorithms
differ in their underlying local search strategy and the mechanism used for penalty modi-
fication. The latter, in particular, can have a significant impact on the performance of the
algorithm.

Penalty-based algorithms have sometimes been motivated by the intuition that by mod-
ifying the evaluation function, local minima can be eliminated or, in the case of CSP,
the search process can learn to distinguish ‘important’ from less critical constraints, thus
making it easier to find solutions (i.e., global optima). There is, however, increasing evi-

H. H. Hoos, E. Tsang 149

dence that the primary reason for the excellent performance of current penalty-based algo-
rithms lies rather in the effective search diversification caused by the penalty modifications
[111, 103]. The idea of diversifying search effort to different parts of the search space as
needed in a specific situation has a long history in operations research – see, for example,
Koopman [61] and Stone [99].

GENET and the Breakout Method

GENET [119, 107, 20, 17] was one of the earliest penalty-based algorithms in constraint
satisfaction. It is based on a neural network design with nodes representing atomic variable
assignments and links connecting conflicting atomic assignments. More precisely, a binary
CSP instance is represented by a network in which for each variable there is a cluster of
label nodes that correspond to the values the variable can take. Any pair of label nodes
that correspond to variable assignments violating any constraint is connected by a link. A
penalty weight is associated with every link in the network; at the beginning of the search
process, these weights are all set to one and a random label node in each cluster is switched
on.

At any stage of the search, exactly one node per cluster is switched on, that is, every
variable has a unique value assigned to it, and the state of the network corresponds to a
complete variable assignment. Each label node receives a signal from each of its neighbor-
ing nodes that are switched on. The strength of the signal is equal to the weight associated
with the connection. For each cluster, the node that receives the least amount of inhibitory
signals is switched on. Note that when all penalty weights are one, GENET resembles the
Min-Conflicts Heuristic [76, 77].

Motivated by hardware implementations of neural networks, the variable whose cluster
is updated in a given search step is chosen asynchronously. Implemented on a sequential
machine, clusters are updated sequentially in a random order in each iteration. Whenever
the network settles in a stable state, that is, when there is no change of the active node
within any cluster that would reduce the total weight of edges between active nodes, the
weight of all edges between active nodes are increased by one. As a result, the network
may become unstable again.

The ‘energy’ of a network state (which is returned by the evaluation function) is the
total amount of input received by all the nodes that are switched on in that state [18]. The
stable states of the network correspond to the local minima of this evaluation function, and
GENET reaches these by performing iterative improvement steps. If the energy is 0, then
a solution to the CSP has been found.

GENET was extended to non-binary constraint satisfaction problems by using hyper-
edges as links in the network [119, 20, 67, 68]. Stuckey and Tam [100] used such an
extension of GENET to mutate chromosomes in an evolutionary algorithm. The resulting
memetic algorithm was demonstrated to be effective in solving hard CSP instances. Vari-
ants of GENET have also been used to solve challenging instances of a car sequencing
problem [19].

The Breakout Method [78] is another early penalty-based algorithm for the CSP. Un-
like GENET, it associates a single penalty weight with each constraint of the given CSP
instance and uses an evaluation function that maps each variable assignment a to the total
weighted of the constraints violated under a. Otherwise, the two algorithms are basically
identical. In particular, like GENET, the Breakout Method initialises all penalty weights

150 5. Local Search Methods

to one and uses iterative improvement until a local minima of its evaluation function is
reached, at which point the weights of all unsatisfied constraints are incremented by one
before the search is continued.

Guided Local Search (GLS)

Unlike GENET or the Breakout Method, which were designed rather specifically for con-
straint satisfaction problems, Guided Local Search (GLS) [111] is a more general penalty-
based method that has been used for combinatorial decision and optimisation problems
(such as SAT and TSP, respectively) [113].

As a penalty-based method, GLS associates penalties with the constraints of the given
CSP instance. GLS uses an augmented evaluation function of the form

g′(a) = g(a) + λ

m
∑

i=1

piIi(a), (5.1)

where a is a complete variable assignment, g(a) is the evaluation function value of a (here:
the number of constraints unsatisfied under a), pi is the penalty of constraint i, and Ii(a)
is an indicator function with value 1 if constraint i is violated under a and 0 otherwise.

All penalties are initialised to 0 at the beginning of the search, and penalty changes
are applied whenever the search process reaches a local minimum of f . The penalties to
be increased in a given local minimum are selected such that they maximise the utility
function

utili(a) = Ii(a) · c(i)/(1 + pi) (5.2)

where a, Ii(a), g(a) and pi are defined as in Eq. 5.1, and c(i) is the cost of having con-
straint i unsatisfied. This cost is set to one for all constraints in a standard CSP, but by
using different cost values, GLS can be easily extended to optimisation variants of the
CSP with weighted constraints. This selection mechanism ensures that only penalties of
currently violated constraints are increased. Secondly, the more a constraint has been pe-
nalised, the less incentive there is for penalising it again; this facilitates diversification of
the search. Each penalty selected is increased by one at a time. Finally, when non-uniform
constraint costs are used, this strategy keeps the search focused on satisfying higher-cost
constraints. This carefully designed penalty update mechanism has been proven to be use-
ful in various applications, including BT’s scheduling problem [106] and a version of the
Radio-Link Frequency Assignment Problem [112], an abstracted military communications
problem originating from the CALMA project [8].

One of the attractive properties of GLS is that it has only one major parameter, namely
λ, to tune. One good heuristic is to set the value of λ to a fraction (between 0 and 1) of the
cost of the first local minimum encountered by GLS. This allows λ to be selected according
to the characteristics of the given problem instance. At the time of publication, GLS was
shown to be competitive with other high-performance algorithms on a widely studied set
of 11 benchmark problems. More recently, GLS has been extended to incorporate random
moves and aspiration [74]. The resulting algorithm, Extended GLS, was shown to be at
least as effective as GLS, but significantly less sensitive to the value of the λ parameter for
the problems it was tested on (which included SAT, Weighted MAX-SAT and the Quadratic
Assignment Problem).

H. H. Hoos, E. Tsang 151

GSAT with Clause Weights

This early penalty-based algorithm for SAT was motivated by the observation that when
performing multiple runs of basic GSAT on some types of structured SAT instances, certain
clauses tend to be unsatisfied at the end of each run. The idea behind GSAT with Clause
Weights [90] is to bias the search process towards satisfying such ‘problem clauses’ by
associating weights with them. More precisely, weights are associated with each clause.
These are initially set to one; but before each restart, the weights of all currently unsatisfied
clauses are increased by δ = 1. The underlying local search procedure is a variant of basic
GSAT that uses a modified evaluation function g′(F, a) which measures the total weight
of all clauses in the given formula F that are unsatisfied under assignment a. Search
initialisation, restart and termination are as in basic GSAT. (A variant called ‘Averaging
In’ uses a modified search initialisation that introduces a bias towards the best candidate
solutions reached in previous local search phases [90].)

GSAT with Clause Weights was found to perform substantially better than basic GSAT
on various classes of structured SAT instances, including SAT-encoded graph colouring
problems; furthermore, there is some indication that by using the same clause weighting
mechanism with GWSAT, further performance improvements can be achieved [90]. To
date, both of these algorithms are outperformed by WalkSAT algorithms such as Novelty+

and by state-of-the-art penalty-based algorithms, such as SAPS (which is covered later in
this section) and PAWS [102]. Several variants of GSAT with Clause Weights have been
studied by Cha and Iwama [12]. Some of these use slight variations of the weight update
scheme and a simple form of tabu search. However, from their limited empirical results
it is doubtful that any of these variations achieves significant performance improvements
over the original GSAT with Clause Weights algorithm.

Several variants of GSAT with Clause Weights that perform weight updates after each
local search step have been proposed and studied by Frank [26, 27]. These are based on
the idea that GSAT should benefit from discovering which clauses are most difficult to
satisfy relative to recent assignments. The most basic of these variants, called WGSAT,
uses the same weight initialisation and update procedure as GSAT with Clause Weights,
but performs only a single GSAT step before updating the clause weights. A modification
of this algorithm, called UGSAT, restricts the neighbourhood considered in each search
step to the set of variables appearing in currently unsatisfied clauses [26]. (This is the
same neighbourhood as used in the random walk steps of GWSAT.) While this leads to
considerable speedups for naı̈ve implementations of the underlying local search procedure,
the difference for efficient implementations is likely to be insufficient to render UGSAT
competitive with other GSAT variants, such as GWSAT.

Frank also studied a variant of WGSAT in which the clause weights are subject to a
uniform decay over time [27]. The underlying idea is that the relative importance of clauses
w.r.t. their satisfaction status can change during the search, and hence a mechanism is
needed that focuses the weighted search on the most recently unsatisfied clauses. Although
using this decay mechanism slightly improves the performance of WGSAT when measured
in terms of variable flips, this gain is insufficient to amortise the added time complexity of
the frequent weight update steps. However, similar mechanisms for focusing the search on
recently unsatisfied clauses play a crucial role in state-of-the-art penalty-based algorithms
for SAT that are covered later in this section.

152 5. Local Search Methods

The Discrete Lagrangian Method (DLM)

The use of penalties in dynamic local search is conceptually closely related to the use of
Lagrange multipliers for solving continuous constrained optimisation problems [93, 115].
For a constrained optimisation problem in which a function f(~x) is to be minimised subject
to equality constraints gi(~x) = 0, we can define the Lagrangian function

L(~x,~λ) = f(~x) +
∑

i

λigi(~x) (5.3)

where the λi are continuous variables called Lagrange multipliers. Note that these play
the same role as the penalty weights in the augmented evaluation function typically used in
the previously discussed penalty-based algorithms. It can be shown that a local minimum
satisfying all equality constraints can be obtained by finding a saddle point of L, i.e., a
point (~x∗, ~λ∗) such that

L(~x∗, ~λ) ≤ L(~x∗, ~λ∗) ≤ L(~x,~λ∗) (5.4)

for all (~x∗, ~λ) and (~x,~λ∗) sufficiently close to (~x∗, ~λ∗). Based on this result, the problem
of finding a local minimum of a constrained optimisation problem can be reduced to the
problem of finding a saddle point of an unconstrained optimisation problem. This latter
task can be achieved by performing iterative improvement (e.g., in the form of gradient
descent) on L using the variables ~x in combination with iterative ascent on L using the
Lagrange multipliers ~λ. In a local minimum ~x of f that does not satisfy all constraints,
increasing the Lagrange multipliers has the effect of more heavily penalising violated con-
straints. Eventually, for some value of ~λ, L(~x,~λ) is no longer a local minimum, such
that further minimisation by modifying ~x becomes possible, resulting in fewer violated
constraints.

This well-known approach for solving continuous constrained optimisation problems
provided the motivation for Shang and Wah’s DLM algorithm for SAT [93]. The basic
idea behind this dynamic local search algorithm is to perform iterative best improvement
on the same augmented evaluation function used in GSAT with clause weights (this corre-
sponds to the minimisation of L(~x,~λ) over ~x). Whenever a local minimum is reached, the
penalties for all unsatisfied clauses are increased (this corresponds to the ascent on L(~x,~λ)

by modifying ~λ), until some previously worsening variable flip becomes improving, and
hence the search process is no longer stuck in a local minimum. The basic version of DLM
for SAT also uses a tabu mechanism equivalent to that found in GSAT/Tabu, as well as
periodic decreases of all clause penalties to avoid numerical overflow. Furthermore, before
the search process is started, the given formula is simplified by performing a complete pass
of unit propagation.

Several extensions of the basic DLM algorithm have been shown to achieve improved
performance [122, 121]; these use various memory-based mechanisms for avoiding and
overcoming search stagnation more effectively (for an overview of these methods, see Hoos
and Stützle [52].) All of these algorithms have a relatively large number of parameters that
need to be tuned carefully in order to achieve peak performance. DLM has also been
applied to weighted MAX-SAT problems [115], while extensions to non-binary problems
represent an interesting research direction.

It should be noted that despite the close conceptual relationship between the approaches,
important mathematical properties of Lagrangian methods for continuous optimisation do

H. H. Hoos, E. Tsang 153

not carry over to DLM. This is primarily due to the heuristic mechanisms used by DLM
for determining search steps, as opposed to the rigorous use of derivatives of the objective
function in continuous Lagrangian methods.

ESG and SAPS

The Exponentiated Subgradient (ESG) algorithm [89] was originally motivated by sub-
gradient optimisation, a well-known method for minimising Lagrangian functions that is
widely used for generating lower bounds for branch-and-bound algorithms. As a penalty-
based algorithms for SAT, ESG associates penalty weights with the clauses of the given
CNF formula that are modified during the search process. The search is started from a ran-
domly selected variable assignment after initialising all clause weights to one. The local
search procedure underlying ESG for SAT is based on a best improvement search method
that can be seen as a simple variant of GSAT; in each local search step, the variable to be
flipped is selected uniformly at random from the set of all variables that appear in currently
unsatisfied clauses and whose flipping leads to a maximal decrease in the total weight of
unsatisfied clauses. When reaching a local minimum (i.e., an assignment in which flipping
any variable that appears in an unsatisfied clause would not lead to a decrease in the to-
tal weight of unsatisfied clauses), with probability η, the search is continued by flipping
a variable that is uniformly chosen at random from the set of all variables appearing in
unsatisfied clauses; otherwise, the local search phase is terminated.

After each local search phase, the clause weights are updated in two stages: First, the
weights of all clauses are multiplied by a factor that depends on the respective satisfac-
tion status (scaling stage): weights of satisfied clauses are multiplied by αsat, weights
of unsatisfied clauses by αunsat. Then, all clause weights are updated using the formula
clw(c) := clw(c) · ρ+ (1− ρ) · w (smoothing stage), where w is the average of all clause
weights after scaling, and the parameter ρ has a fixed value between zero and one. The
algorithm terminates when a satisfying assignment for F has been found or when a given
bound on the number of search steps has been reached.

Compared to the underlying local search steps, a weight update is computationally ex-
pensive, since it involves modifications of all clause weights. Additionally, experimental
evidence indicates that local search phases in ESG are typically quite short, and there-
fore the expensive smoothing operations have to be performed rather frequently [52, 53].
Even with the use of special implementation techniques that help ameliorate this problem,
Southey and Schuurmans’ highly optimised reference implementation of ESG for SAT
does not always reach the performance of high-performance WalkSAT algorithms such
as Novelty+. Compared to DLM-2000-SAT, ESG-SAT typically requires fewer steps for
finding a model of a given formula, but in terms of CPU-time, both algorithms show very
similar performance [89, 53]. It may be noted that the general ESG framework has been
originally proposed for the more general Boolean linear programming (BLP) problem, and
it has also been applied quite successfully to combinatorial auctions winner determination
problems [89].

The Scaling and Probabilistic Smoothing (SAPS) algorithm by Hutter et al. [53] is
based on the insight that the expensive weight update scheme in ESG can be replaced by
a much more efficient procedure without negative impact on the underlying search proce-
dure. SAPS can be seen as a variant of ESG that uses a modified weight update scheme,
in which the scaling stage is restricted to the weights of currently unsatisfied clauses, and

154 5. Local Search Methods

smoothing is only performed with a certain probability psmooth. The first of these mod-
ifications is also used in Southey and Schuurmans’ efficient ESG implementation; but it
is the probabilistic, and hence less frequent, smoothing that results in a substantial per-
formance improvement over ESG and also renders superfluous the special implementation
tricks that are crucial for achieving good performance in ESG. SAPS was shown to perform
substantially better than ESG, DLM-2000-SAT and high-performance WalkSAT variants
[53]; however, there are some types of SAT instances (in particular, hard and large SAT
encoded graph colouring instances), for which SAPS does not reach the performance of
Novelty+.

A reactive variant of SAPS, RSAPS [53], automatically adjusts the smoothing probabil-
ity psmooth during the search, using a mechanism that is very similar to the one underlying
Adaptive WalkSAT [45]. RSAPS sometimes achieves significantly better performance than
SAPS; however, it still has other parameters, in particular, the scaling factor αunsat, that
need to be manually optimised.

5.5 Other Approaches

Besides the algorithms covered in the previous sections, many other local search methods
have been applied in the context of solving CSPs. Within the confines of this chapter it is
impossible to present a complete survey of the large and ever-increasing number of local
search algorithms for the CSP and closely related problems, such as the Graph Colouring
Problem and SAT. Therefore, the algorithms mentioned in the following were selected to
illustrate some of the major approaches.

There is a large body of work on evolutionary algorithms for constraint satisfaction
problems. Some of the earliest work include Tsang and Warwick [108], Paredis [82], Hao
and Dorne [39], Warwick and Tsang [120] and Riff Rojas [87]; Craenen et al. [14] provides
on overview and comparison of more recent evolutionary algorithms. GENET and GLS
have been used as subsidiary search procedures in memetic algorithms for constraint sat-
isfaction [100] and optimisation [43]. Galinier and Hao [30] have developed a specialised
memetic algorithm for the Graph Colouring Problem (GCP) that uses short runs of an ef-
fective tabu search algorithm as its subsidiary search procedure; this algorithm is one of
the most effective GCP algorithms currently known.

Hao and Dorne [39] used a specialised genetic algorithm to search the space of partial
assignments. Lau [64] developed the Guided Genetic Algorithm (GGA), which applies the
principle of Guided Local Search in a genetic algorithm. The idea is to use penalties to
construct a fitness template, which guides crossover and mutation in a genetic algorithm
such that better assignments will be chosen in the selection process with higher probability.
GGA has been applied successfully to the Processor Configuration Problem [65], the Gen-
eral Assignment Problem in scheduling [64], and to a version of the Radio-Link Frequency
Assignment Problem [66].

Constraints are used to help evolutionary algorithms search efficiently. This is done by
modifying the objective functions in evolutionary computation. For example, Yu et al.
[125] used penalties to guide the search away from ‘poor’ areas of the search space,
whereas Li [70], Tsang and Li [105], and Jin [54] used incentives to guide the search
towards promising areas.

H. H. Hoos, E. Tsang 155

Ant colony optimisation (ACO), a population-based stochastic local search method in-
spired by the path-finding behaviour of ants [22], has been applied with some success to
the CSP [96], and in particular, to permutation constraint satisfaction problems, such as
car sequencing [95], and to binary CSPs [110]. Other widely used stochastic local search
methods have been applied to specific types of CSP instances. For example, there are
various simulated annealing algorithms for the graph colouring problem (GCP) [55] and
SAT [97]. Likewise, several iterated local search algorithms have been developed for the
GCP [13, 81] and MAX-SAT [123, 94]. A generalisation of GSAT to CSP that also in-
cludes various additional SLS mechanisms, including random walk and clause penalties,
was developed by Kask and Dechter [56] and later extended with a tree search mecha-
nism based on cycle-cutsets [57]. Walser [117] has introduced a WalkSAT algorithm for
Pseudo-Boolean CSP (a well-known special case of CSP), which includes a tabu mecha-
nism as well as biased random search initialisation.

Local search does not have to be incomplete. In Systematic Local Search [40] and re-
lated approaches (e.g., Richards et al. [86]), completeness is achieved through the recording
and resolution of no-goods whenever the underlying local search algorithm encounters a
local minimum. When a no-good is encountered, resolution is attempted: for example, if
both “P=true and Q=true” and “P=true and Q=false” have been encountered, then they
are replaced by “P=true” (a technique often used in truth maintenance systems; see, e.g.,
Doyle [23]). These no-goods help Systematic Local search to escape from local optima
and to achieve completeness, a desirable property which most other local search methods
do not enjoy: When both “P=true” and “P=false” are found to be no-goods for any P ,
the given CSP instance has been shown to be unsatisfiable. To achieve completeness, Sys-
tematic Local Search may record an exponential number of no-goods in the worst case.
However, with careful memory management, the algorithm has been demonstrated to be
effective for job shop scheduling problems [21].

Constrained Local Search [85] is an example for an approach that searches over partial
assignments that do not violate any constraints. Based on dynamic backtracking [34],
Constrained Local Search conducts a depth-first search. Whenever a partial assignment
cannot be further extended, a randomly chosen atomic assignment is removed from it,
such that the search can be continued in a different direction. Despite its use of depth-first
search, Constrained Local Search is incomplete.

Most local search algorithms for CSP use neighbourhood relations that restrict search
steps to modifying the value of only one variable at a time. However, the use of larger
neighbourhoods can sometimes be advantageous; for example, the swap neighbourhood,
in which search steps swap the values of two variables, has been used successfully on
sequencing problems in conjunction with GENET [19]. Large neighbourhoods are more
commonly used in SLS algorithms for constraint optimisation problems (see next section).

5.6 Local Search for Constraint Optimisation Problems

Many real-life problems are over-constrained. For example, in a production planning appli-
cation, there may be insufficient resources to complete all given jobs within their respective
deadlines. In this situation, it may be desirable to find a feasible assignment of resources
such that the total amount of revenue generated is maximised; this type of optimisation
problem is referred to as a maximal utility problem [104]. In other cases, some constraints

156 5. Local Search Methods

may be violated, but doing so incurs a penalty cost. The objective is then to find a solution
with minimal penalty; this is known as the minimal violation problem [104].

These types of problems can be modelled by extending constraint satisfaction prob-
lems to include optimisation objectives. In the simplest case, the problem is represented as
a CSP instance, but the objective becomes to find a variable assignment that satisfies a max-
imal number of constraints (MAX-CSP). Note that this is equivalent to finding a variable
assignment that minimises the total number of violated constraints. In many cases, not all
constraints are equally important. In Weighted MAX-CSP, this is captured by weights asso-
ciated with the individual constraints, and the objective is to maximise the total weight of
the satisfied constraints. More general formalisations of constraint optimisation problems
include Partial CSP [28], Semi-Ring Based CSP [7] and Valued CSP [88].

A widely studied special case of MAX-CSP and Weighted MAX-CSP is the optimi-
sation variant of SAT, MAX-SAT: Given a propositional formula F in conjunctive normal
form, the objective in MAX-SAT is to find an assignment of truth values to the variables in
F such that a maximum number of clauses in F is satisfied. In Weighted MAX-SAT, each
clause has an associated weight, and the goal is to find an assignment that maximises the
total weight of the satisfied clauses. MAX-SAT and Weighted MAX-SAT are of particular
interest in algorithm development because of their conceptual simplicity in combination
with the fact that any Weighted MAX-CSP instance can be transformed into a Weighted
MAX-SAT instance (at the price of losing structures of the constraint graph and searching
a somewhat larger space).

Local search methods are naturally suited for solving constraint optimisation problems
[42]. In particular, most local search algorithms for the CSP can be directly applied to
MAX-CSP, since their evaluation function directly corresponds to the optimisation objec-
tive of minimising the number of violated constraints. Moreover, these algorithms can be
extended to Weighted MAX-CSP by modifying the standard evaluation function (number
of constraints violated under a given assignment) such that it maps each variable assign-
ment to the total weight of the constraints violated under it (see, e.g., Lau [63]). In spe-
cial cases, different evaluation functions may be useful; for example, Walser’s WalkSAT
algorithm for Overconstrained Pseudo-Boolean CSP with hard and soft constraints uses
an evaluation function that takes into account the degree of violation of the given linear
pseudo-Boolean constraint relations [118].

It is worth noting that when generalising dynamic local search methods to Weighted
MAX-CSP, there is no single ‘correct’ way to integrate the constraint weights and the
penalty values into the augmented evaluation function. Perhaps the most obvious approach
is to simply add the weights and penalties over all violated constraints (see, e.g., Wah and
Shang [115]). An alternate solution was found to work better in GLS, where constraint
weights are used for determining the penalty values to be increased after each local search
phase, but do not appear in the augmented evaluation function (see Section 5.4). A similar
approach is taken in Wu and Wah’s DLM algorithm for Weighted MAX-SAT [122], where
the clause weights are used for penalty initialisation and update, but not in the evaluation
function.

Larger neighbourhoods, which allow more than one variable to be changed in a single
local search step, have been more extensively studied in the context of in local search
for constraint optimisation than in the case of CSP. For example, Yagiura and Ibaraki
[123] have developed various types of SLS algorithms for MAX-SAT based on 2- and
3-flip neighbourhoods. Large neighbourhoods have also been used successfully in vari-

H. H. Hoos, E. Tsang 157

ous application-relevant combinatorial optimisation problems (see, e.g., Yao [124], Tsang
and Voudouris [106], Ahuja et al. [2], Abdullah et al. [1]). In all of these cases, special
techniques have to be used in order to search these large neighbourhoods efficiently.

Local search algorithms play a major role in solving real-life constraint optimisation
problems, because in many cases, they are able to find high-quality solutions more ef-
ficiently than other approaches. For example, GLS has been incorporated into ILOG’s
Dispatcher system (ILOG is the market leader in commercial constraint programming soft-
ware) [3, 60]. Dispatcher was specifically designed for vehicle routing, a prominent prob-
lem in Operations Research which is of central importance in the transportation business
(see Chapter 23). Generally, local search algorithms can often be very usefully applied in
combination with other methods. For example, branch-and-bound algorithms can benefit
significantly from high-quality bounds obtained by high-performance local search meth-
ods.

5.7 Frameworks and Toolkits for Local Search

Both the development of local search algorithm for solving constraint satisfaction and op-
timisation problems and their practical application are often greatly facilitated by software
frameworks and programming toolkits. This is particularly the case when dealing with con-
ceptually complex constraint programming problems. Such systems can substantially ease
the burden associated with achieving efficient implementations of SLS algorithms. They
also facilitate software reuse and support the separation of problem formulation (mod-
elling) and solving. In the following, we give a brief overview of some of the better known
frameworks and toolkits that support SLS algorithms; while some of these are general com-
binatorial optimisation or constraint programming systems, others are specifically focused
on local search methods.

ILOG Solver is a commercial system which provides users with a C++ library that
implements state-of-the-art algorithms for constraint satisfaction and optimisation. The
OPL interface to ILOG Solver supports a rich declarative syntax that can be used to define
the structure of problems and heuristics [41]. ILOG Dispatcher is a specialised package
for vehicle routing that supports a variety of local search algorithms.

The commercial iOpt system implements a wide range of SLS methods. Through a
graphic interface, iOpt allows users to experiment with different local search strategies and
to construct hybrid algorithms. It also provides an abstract class library in Java that can
be used to implement local search methods [114]. Similarly, the freely available object-
oriented frameworks EasyLocal++ [31] and HotFrame [25] support the design and im-
plementation of local search algorithms in C++. In these general optimisation systems,
problem-independent parts of the algorithms are captured in the form of abstract classes,
which are specialised by the user to implement problem-specific algorithms.

The COMET programming language supports both modeling and search abstractions
in constraint programming. It allows users to specify and control local search algorithms
using constraints, modelling and search abstractions, and it has been applied to a wide
range of combinatorial problems [42]. The conceptually related SALSA language facili-
tates the concise, declarative definition of local, systematic and hybrid search algorithms
[62]. Finally, the freely available ZDC system aims to help non-experts in constraint pro-
gramming by providing them with a simple declarative language (EaCL) and a graphic

158 5. Local Search Methods

user interface. It implements a number of local search algorithms, including Guided Local
Search [10, 109].

Regardless of whether local search algorithms are realised within such a framework
or environment or implemented ‘from scratch’, it is very important for the reproducibility
of empirical results to ensure that their published descriptions are accurate and complete
(covering also all performance-critical implementation details). Furthermore, whenever
possible, reference implementations should be made available to the research community.4

5.8 Conclusions and Outlook

Among the various approaches for solving constraint programming problems such as the
CSP, local search methods are of considerable interest to researchers and practitioners.
Although most local search algorithms are incomplete, in many cases, their performance
scales better with instance size than that of complete, systematic search algorithms. Conse-
quently, high-performance local search methods are often the only practical tool for solv-
ing large and difficult real-world problems, which often involve thousands of variable with
large domains. This is especially true for decision problems where the main objective
is to find feasible solutions quickly and for optimisation problems where high-quality or
(near-)optimal solutions need to be obtained as efficiently as possible.

Local search methods have been shown to be very successful in solving many im-
portant classes of problems, including SAT, MAX-SAT, travelling salesman and quadratic
assignment problems. Their effectiveness and efficiency has also been demonstrated for
many real-world problems, including scheduling, vehicle routing and radio-frequency as-
signment tasks. In many of these applications, local search algorithms achieve comparable
or superior performance compared to all other methods.

Although efficient local search algorithms typically incorporate problem-specific knowl-
edge (often in the form of the neighbourhood relation and evaluation function), there are
general, high-level strategies that have been shown to be effective across a broad range of
combinatorial problems. Most of these general local search strategies involve randomisa-
tion to avoid search stagnation in or around local minima of the given evaluation function
and are therefore captured in the general framework of Stochastic Local Search (SLS). SLS
methods such as randomised iterative improvement, tabu search and dynamic local search
have provided the basis for some of the most prominent and best performing algorithms
for CSP and SAT. Other methods, including simulated annealing, evolutionary algorithms,
ant colony optimisation and iterated local search have also been applied to these and many
other constraint programming problems, and were shown to be effective for solving certain
types of instances. These search strategies employ different mechanisms for balancing the
exploration of the given search space (diversification) against the efficient exploitation of
heuristic information (intensification). Intensification and diversification mechanism often
interact in complex ways, and minor variations can have significant impact on the perfor-
mance of the resulting algorithms.

For this reason, in combination with the fact that theoretical results in this area are
difficult to obtain and typically very limited in their practical relevance, SLS algorithms
are mostly studied empirically, by means of computational experiments. (It may be noted
that a similar situation is encountered for most, if not all, other high-performance CSP

4The same applies, of course, to any other constraint programming algorithm that is evaluated empirically.

H. H. Hoos, E. Tsang 159

algorithms.) In the case of SLS algorithms for CSP, many empirical studies have been
focused on distributions of relatively unstructured, random binary CSP instances. The
same holds for MAX-CSP, and the situations for prominent special cases, such as SAT
and MAX-SAT, is similar. While such instances can be useful for evaluating the efficacy
of search strategies, they lack the type of structure found in many real-world problems.
Consequently, there is an increasing emphasis on using structured problem instances for the
empirical analysis of SLS algorithms for the CSP and related problems. This endeavour,
as well as the comparability of empirical results between studies, is facilitated by public
collections of benchmark problems, such as CSPLIB [32] and SATLIB [50].

Furthermore, while currently the design of new SLS algorithms largely resembles a
craft in that it requires experience and intuition to a significant extent, there is substan-
tial interest in developing more principled approaches that will facilitate the engineering
of high-performance SLS algorithms. In this context, advanced empirical methods (see,
e.g., Chapter 4 of Hoos and Stützle [52]) in combination with frameworks that specifically
support the formulation and implementation of local search algorithms (see Section 5.7)
are likely to play a major role. Furthermore, our understanding of the factors causing the
relative hardness of certain problem instances for a given SLS algorithm is fairly limited.
The investigation of these factors, for example, by means of search space analysis, is an
active research area with many open problems.

Another attractive research direction is to develop SLS algorithms that adapt their be-
haviour based on information collected during the search process or over runs on various
problem instances. Interesting work in this area includes studies by Battiti and Tecchiolli
[4], Glover [35] and Minton [75], as well as Boyan and Moore [9], Patterson and Kautz
[83], Hoos [45], Mills [74], Hutter et al. [53], Burke and Newall [11] and [59].

It may be noted that in many ways, the development and understanding of SLS algo-
rithms is significantly further advanced for SAT than for the general CSP. (The situation
for MAX-SAT and MAX-CSP is analogous.) This is mostly caused by the fact that as a
conceptually simpler problem, SAT for CNF formulae better facilitates the development,
analysis and efficient implementation of SLS algorithms. This raises the question to which
extent more efficient SLS algorithms for the general CSP can be obtained by augmenting
suitably generalised high-performance SLS algorithms for SAT with specific methods for
handling certain types of complex constraints known from other constraint programming
approaches. Furthermore, it is likely that advanced SLS methods that have been demon-
strated to be very successful in solving other combinatorial problems, such as iterated local
search, variable depth search or scatter search, may still hold considerable and largely un-
explored potential for solving constraint satisfaction and optimisation problems.

Overall, local search methods are among the most powerful and versatile tools for
solving constraint programming problems. They give rise to a broad range of interesting
research challenges, and continuing efforts to improve these methods and our understand-
ing of them will further enhance their usefulness in a broad range of challenging real-world
applications.

Bibliography

[1] S. Abdullah, S. Ahmadi, E. Burke, and M. Dror. Applying Ahuja-Orlin’s large
neighbourhood for constructing examination timetabling solution. In 5th Interna-

160 5. Local Search Methods

tional Conference on the Practice and Theory of Automated Timetabling (PATAT),
pages 413–419, 2004.

[2] R. Ahuja, O.Ergun, J. Orlin, and P. Punnen. A survey of very large scale neighbor-
hood search techniques. Discrete Applied Mathematics, 123(1-3):75–102, 2002.

[3] B. D. Backer, V. Furnon, P. Kilby, P. Prosser, and P. Shaw. Solving vehicle routing
problems using constraint programming and meta heuristics. Journal of Heuristics,
6(4):501–525, 2000.

[4] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,
6(2):126–140, 1994.

[5] C. Bessière, E. Hebrard, and T. Walsh. Local consistencies in SAT. In Theory
and Applications of Satisfiability Testing, 6th International Conference (SAT 2003),
Selected Revised Papers, LNCS 2919, pages 299–314. Springer Verlag, 2004.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for Construction and Analysis of Systems (TACAS
’99), LNCS 1579, pages 193–207. Springer Verlag, Berlin, Germany, 1999.

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and
optimization. Journal of the ACM, 44(2):201–236, 1997.

[8] A. Bouju, J. Boyce, C. Dimitropoulos, G. vom Scheidt, and J. Taylor. Intelligent
search for the radio link frequency assignment problem. In International Conference
on Digital Signal Processing, Cyprus, 1995.

[9] J. Boyan and A. Moore. Learning evaluation functions to improve optimization by
local search. Journal of Machine Learning Research, 1:77–112, 2000.

[10] R. Bradwell, P. M. J. Ford, E. Tsang, and R. Williams. An overview of the CACP
project: modelling and solving constraint satisfaction/optimisation problems with
minimal expert intervention. In CP 2000 Workshop on Analysis and Visualization
of Constraint Programs and Solvers, 2000.

[11] E. Burke and J. Newall. A new adaptive heuristic framework for examination
timetabling problems. Annals of Operations Research, 129:107–134, 2004.

[12] B. Cha and K. Iwama. Performance test of local search algorithms using new types
of random CNF formulas. In 14th International Joint Conference on Artificial Intel-
ligence, pages 304–310. Morgan Kaufmann Publishers, San Francisco, CA, USA,
1995.

[13] M. Chiarandini and T. Stützle. An application of iterated local search to the graph
coloring problem. In Computational Symposium on Graph Coloring and its Gener-
alizations, pages 112–125, Ithaca, New York, USA, 2002.

[14] B. Craenen, A. Eiben, and J. van Hemert. Comparing evolutionary algorithms on
binary constraint satisfaction problems. IEEE Transactions on Evolutionary Com-
putation, 7(5):424–445, 2003.

[15] J. Crawford and A. Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. In 12th National Conference on Artificial Intel-
ligence (AAAI-94), volume 2, pages 1092–1097, Seattle, Washington, USA, 1994.
AAAI Press/MIT Press. ISBN 0-262-51078-2.

[16] J. Culberson, I. Gent, and H. Hoos. On the probabilistic approximate completeness
of WalkSAT for 2-SAT. Technical Report APES-15a-2000, APES Research Group,
2000.

[17] A. Davenport. A comparison of complete and incomplete algorithms in the easy
and hard regions. In Workshop on Studying and Solving Really Hard Problems, 1st

H. H. Hoos, E. Tsang 161

International Conference on Principles and Practice of Constraint Programming,
pages 43–51, September 1995.

[18] A. Davenport. Extensions and evaluation of GENET in constraint satisfaction. PhD
thesis, Department of Computer Science,University of Essex, Colchester, UK, 1997.

[19] A. Davenport and E. Tsang. Solving constraint satisfaction sequencing problems
by iterative repair. In 1st International Conference on the Practical Application of
Constraint Technologies and Logic Programming (PACLP), pages 345–357, Lon-
don, April 1999.

[20] A. Davenport, E. Tsang, C. Wang, and K. Zhu. GENET: a connectionist architec-
ture for solving constraint satisfaction problems by iterative improvement. In 12th
National Conference for Artificial Intelligence, pages 325–330, 1994.

[21] B. Dilkina, L. Duan, and W. Havens. Extending systematic local search for job shop
scheduling problems. In 11th International Conference on Principles and Prac-
tice of Constraint Programming (CP 2005), LNCS 3709, pages 762–766. Springer-
Verlag, 2005.

[22] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA,
USA, 2004.

[23] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
[24] M. D. Ernst, T. D. Millstein, and D. S. Weld. Automatic SAT-compilation of plan-

ning problems. In 15th International Joint Conference on Artificial Intelligence,
pages 1169–1177. Morgan Kaufmann Publishers, San Francisco, CA, USA, 1997.

[25] A. Fink and S. Voß. Hotframe: A heuristic optimization framework. In Optimization
Software Class Libraries, pages 81–154. Kluwer, 2002.

[26] J. Frank. Weighting for Godot: Learning heuristics for GSAT. In 13th National
Conference on Artificial Intelligence, pages 776–783. AAAI Press / The MIT Press,
Menlo Park, CA, USA, 1996.

[27] J. Frank. Learning short-term clause weights for GSAT. In 15th International Joint
Conference on Artificial Intelligence, pages 384–389. Morgan Kaufmann Publish-
ers, San Francisco, CA, USA, 1997.

[28] E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence,
Special Volume on Constraint Based Reasoning, 58(1-3):21–70, 1992.

[29] P. Galinier and J.-K. Hao. Tabu search for maximal constraint satisfaction problems.
In Principles and Practice of Constraint Programming – CP 1997, LNCS 1330,
pages 196–208. Springer Verlag, Berlin, Germany, 1997.

[30] P. Galinier and J. K. Hao. Hybrid evolutionary algorithms for graph coloring. Jour-
nal of Combinatorial Optimization, 3(4):379–397, 1999.

[31] L. D. Gaspero and A. Schaerf. Easylocal++: an object-oriented framework for the
flexible design of local-search algorithms. Software Practice and Experience, 33
(8):733–765, 2003.

[32] I. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Technical report,
APES-09-1999, 1999.

[33] I. P. Gent and T. Walsh. Towards an understanding of hill–climbing procedures for
SAT. In 10th National Conference on Artificial Intelligence, pages 28–33. AAAI
Press / The MIT Press, Menlo Park, CA, USA, 1993.

[34] M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research, 1:
25–46, 1993.

[35] F. Glover. Tabu search and adaptive memory programming — advances, applica-

162 5. Local Search Methods

tions and challenges. In Interfaces in Computer Science and Operations Research.
Kluwer Academic Publishers, 1996.

[36] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, MA,
USA, 1997.

[37] J. Gu and R. Puri. Asynchronous Circuit Synthesis with Boolean Satisfiability. IEEE
Transactions of Computer-Aided Design of Integrated Circuits and Systems, 14(8):
961–973, 1995.

[38] J. Gu, P. Purdom, J. Franco, and B. Wah. Algorithms for the satisfiability (SAT)
problem: A survey. In Satisfiability problem: Theory and Applications, volume 35
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 19–151. American Mathematical Society, Providence, RI, USA, 1997.

[39] J.-K. Hao and R. Dorne. A new population-based method for satisfiability problems.
In 11th European Conference on Artificial Intelligence, pages 135–139, Amsterdam,
1994. John Wiley & Sons.

[40] W. Havens and B. Dilkina. A hybrid schema for systematic local search. In Ad-
vances in Artificial Intelligence: 17th Conference of the Canadian Society for Com-
putational Studies of Intelligence, LNCS 3060, pages 248–260. Springer Verlag,
2004.

[41] P. V. Hentenryck. The OPL Optimization Programming Language. MIT Press,
Cambridge, MA, USA, 1999.

[42] P. V. Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press, Cam-
bridge, MA, USA, 2005.

[43] D. Holstein and P. Moscato. Memetic algorithms using guided local search, a case
study. In New ideas in optimization, pages 235–243. McGraw Hill, 1999.

[44] H. Hoos. Stochastic Local Search — Methods, Models, Applications. PhD thesis,
TU Darmstadt, FB Informatik, Darmstadt, Germany, 1998.

[45] H. Hoos. An adaptive noise mechanism for WalkSAT. In 18th National Conference
on Artificial Intelligence, pages 655–660. AAAI Press / The MIT Press, Menlo Park,
CA, USA, 2002.

[46] H. Hoos. A mixture-model for the behaviour of SLS algorithms for SAT. In 18th
National Conference on Artificial Intelligence, pages 661–667. AAAI Press / The
MIT Press, Menlo Park, CA, USA, 2002.

[47] H. Hoos. On the run-time behaviour of stochastic local search algorithms for SAT.
In 16th National Conference on Artificial Intelligence, pages 661–666. AAAI Press
/ The MIT Press, Menlo Park, CA, USA, 1999.

[48] H. Hoos. SAT-encodings, search space structure, and local search performance.
In 16th International Joint Conference on Artificial Intelligence, pages 296–302.
Morgan Kaufmann Publishers, San Francisco, CA, USA, 1999.

[49] H. Hoos and T. Stützle. Local search algorithms for SAT: An empirical evaluation.
Journal of Automated Reasoning, 24(4):421–481, 2000.

[50] H. Hoos and T. Stützle. SATLIB: An Online Resource for Research on SAT. In SAT
2000, volume 63, pages 283–292. IOS Press, Amsterdam, The Netherlands, 2000.

[51] H. Hoos and T. Stützle. Characterising the behaviour of stochastic local search.
Artificial Intelligence, 112(1–2):213–232, 1999.

[52] H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications.
Elsevier / Morgan Kaufmann, 2004.

[53] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and probabilistic smoothing:

H. H. Hoos, E. Tsang 163

Efficient dynamic local search for SAT. In Principles and Practice of Constraint
Programming – CP 2002, LNCS 2470, pages 233–248. Springer Verlag, Berlin,
Germany, 2002.

[54] N. Jin. Equilibrium selection by co-evolution for bargaining problems under incom-
plete information about time preferences. In Congress on Evolutionary Computation
(CEC 2005), pages 2661–2668, Edinburgh, September 2005.

[55] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by
simulated annealing: An experimental evaluation: Part II, graph coloring and num-
ber partitioning. Operations Research, 39(3):378–406, 1991.

[56] K. Kask and R. Dechter. GSAT and local consistency. In 14th International Joint
Conference on Artificial Intelligence, pages 616–623. Morgan Kaufmann Publish-
ers, San Francisco, CA, USA, 1995.

[57] K. Kask and R. Dechter. A graph-based method for improving GSAT. In 13th
National Conference on Artificial Intelligence, pages 350–355. AAAI Press / The
MIT Press, Menlo Park, CA, USA, 1996.

[58] H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and
stochastic search. In 13th National Conference on Artificial Intelligence, volume 2,
pages 1194–1201. AAAI Press / The MIT Press, Menlo Park, CA, USA, 1996.

[59] M. Kern. Parameter Adaptation in heuristic search - a population-based approach.
PhD thesis, Department of Computer Science, University of Essex, Colchester, UK,
2005.

[60] P. Kilby, P. Prosser, and P. Shaw. A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints, 5
(4):389–414, 2000.

[61] B. Koopman. The theory of search, part iii, the optimum distribution of searching
effort. Operations Research, 5:613–626, 1957.

[62] F. Laburthe and Y. Caseau. SALSA: A language for search algorithms. In 4th
International Conference on Principles and Practice of Constraint Programming,
LNCS 1520, pages 310–324. Springer Verlag, 1998.

[63] H. C. Lau. A new approach for weighted constraint satisfaction. Constraints, 7(2):
151–165, 2002.

[64] T. Lau. Guilded Genetic Algorithm. PhD thesis, Department of Computer Science,
University of Essex, Colchester, UK, 1999.

[65] T. Lau and E. Tsang. Solving the processor configuration problem with a mutation-
based genetic algorithm. International Journal on Artificial Intelligence Tools
(IJAIT), 6(4):567–585, December 1997.

[66] T. Lau and E. Tsang. Guided genetic algorithm and its application to radio link
frequency assignment problems. Constraints, 6(4):373–398, 2001.

[67] J. Lee, H. Leung, and H. Won. Extending GENET for non-binary CSPs. In 17th
International Conference on Tools with Artificial Intelligence, pages 338–342, 1995.

[68] J. Lee, H. Leung, and H. Won. Towards a more efficient stochastic constraint solver.
In 2nd International Conference on Principles and Practice of Constraint Program-
ming, pages 338–352, Cambridge, Massachusetts, USA, August 1996.

[69] C. M. Li and W. Huang. Diversification and determinism in local search for satisfi-
ability. In 8th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2005), LNCS 3569, pages 158–172. Springer Verlag, 2005.

[70] J. Li. FGP: A genetic programming based tool for financial forecasting. PhD thesis,

164 5. Local Search Methods

Department of Computer Science, University of Essex, Colchester, UK, 2001.
[71] D. Luenberger, editor. Linear and nonlinear programming. Addison-Wesley Pub-

lishing Co., Inc., 1984.
[72] B. Mazure, L. Sais, and E. Gregoire. TWSAT: A new local search algorithm for SAT

– performance and analysis. In 14th National Conference on Artificial Intelligence,
pages 281–285. AAAI Press / The MIT Press, Menlo Park, CA, USA, 1997.

[73] D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in local search. In
14th National Conference on Artificial Intelligence, pages 321–326. AAAI Press /
The MIT Press, Menlo Park, CA, USA, 1997.

[74] P. Mills. Extensions to guided local search. PhD thesis, Department of Computer
Science, University of Essex, Colchester, UK, 2002.

[75] S. Minton. Automatically configuring constraint satisfaction programs, a case study.
Constraints, 1(1&2):7–43, 1996.

[76] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-scale con-
straint satisfaction and scheduling problems using a heuristic repair method. In 8th
National Conference on Artificial Intelligence, pages 17–24. AAAI Press / The MIT
Press, Menlo Park, CA, USA, 1990.

[77] S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelli-
gence, 58(1–3):161–205, 1992.

[78] P. Morris. The breakout method for escaping from local minima. In National Con-
ference on Artificial Intelligence, pages 40–45, 1993.

[79] D. Neto. Efficient Cluster Compensation for Lin-Kernighan Heuristics. PhD thesis,
University of Toronto, Department of Computer Science, Toronto, Canada, 1999.

[80] C. H. Papadimitriou. On selecting a satisfying truth assignment. In 32nd Annual
IEEE Symposium on Foundations of Computer Science, pages 163–169. IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1991.

[81] L. Paquete and T. Stützle. An experimental investigation of iterated local search for
coloring graphs. In Applications of Evolutionary Computing, LNCS 2279, pages
122–131. Springer Verlag, Berlin, Germany, 2002.

[82] J. Paredis. Genetic state-space search for constrained optimization problems. In 13th
International Joint Conference on Artificial Intelligence, pages 967–972, 1993.

[83] D. J. Patterson and H. Kautz. Auto-walksat: A self-tuning implementation of walk-
sat. In LICS 2001 Workshop on Theory and Applications of Satisfiability Testing
(SAT 2001). Elsevier, Amsterdam, The Netherlands, 2001.

[84] S. Prestwich. Local search on SAT-encoded CSPs. In 6th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2003), pages 388–399,
2003.

[85] S. Prestwich. Stochastic local search in constrained spaces. In Practical Applica-
tions of Constraint Technology and Logic Programming (PACLP ’00), pages 27–39,
2000.

[86] T. Richards, Y. Jiang, and B. Richards. Ng-backmarking – an algorithm for con-
straint satisfaction. British Telecom Technology Journal, 13(1):102–109, 1995.

[87] M. Riff Rojas. From quasi-solutions to solution: an evolutionary algorithm to solve
CSPs. In 2nd International Conference on Principles and Practice of Constraint
Programming, pages 367–381, August 1996.

[88] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:

H. H. Hoos, E. Tsang 165

Hard and easy problems. In 14th International Joint Conference on Artificial Intel-
ligence, pages 631–639. Morgan Kaufmann Publishers, San Francisco, CA, USA,
1995.

[89] D. Schuurmans, F. Southey, and R. C. Holte. The exponentiated subgradient algo-
rithm for heuristic Boolean programming. In 17th International Joint Conference
on Artificial Intelligence, pages 334–341. Morgan Kaufmann Publishers, San Fran-
cisco, CA, USA, 2001.

[90] B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solving large
structured satisfiability problems. In 13th International Joint Conference on Arti-
ficial Intelligence, pages 290–295. Morgan Kaufmann Publishers, San Francisco,
CA, USA, 1993.

[91] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satis-
fiability problems. In 10th National Conference on Artificial Intelligence, pages
440–446. AAAI Press / The MIT Press, Menlo Park, CA, USA, 1992.

[92] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In
12th National Conference on Artificial Intelligence, pages 337–343. AAAI Press /
The MIT Press, Menlo Park, CA, USA, 1994.

[93] Y. Shang and B. W. Wah. A discrete Lagrangian-based global-search method for
solving satisfiability problems. Journal of Global Optimization, 12(1):61–99, 1998.

[94] K. Smyth, H. H. Hoos, and T. Stützle. Iterated robust tabu search for MAX-SAT.
In Advances in Artificial Intelligence, 16th Conference of the Canadian Society for
Computational Studies of Intelligence, LNCS 2671, pages 129–144. Springer Ver-
lag, Berlin, Germany, 2003.

[95] C. Solnon. Solving permutation constraint satisfaction problems with artificial ants.
In 14th European Conference on Artificial Intelligence, pages 118–122, Berlin, Ger-
many, August 2000.

[96] C. Solnon. Ants can solve constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation, 6(4):347–357, 2001.

[97] W. M. Spears. Simulated annealing for hard satisfiability problems. Technical re-
port, Naval Research Laboratory, Washington D.C., USA, 1993.

[98] O. Steinmann, A. Strohmaier, and T. Stützle. Tabu search vs. random walk. In
KI-97: Advances in Artificial Intelligence, LNAI 1303, pages 337–348. Springer
Verlag, Berlin, Germany, 1997.

[99] L. D. Stone. The process of search planning: current approaches and continuing
problems. Operations Research, 31:207–233, 1983.

[100] P. Stuckey and V. Tam. Improving evolutionary algorithms for efficient constraint
satifaction. International Journal on Artificial Intelligence Tools (IJAIT), World
Scientific, 8(4):363–383, 1999.

[101] T. Stützle. Local Search Algorithms for Combinatorial Problems — Analysis, Im-
provements, and New Applications. PhD thesis, TU Darmstadt, FB Informatik,
Darmstadt, Germany, 1998.

[102] J. Thornton, D. Pham, S. Bain, and V. Ferreira. Additive versus multiplicative clause
weighting for SAT. In 19th National Conference on Artificial Intelligence, pages
191–196. AAAI Press / The MIT Press, Menlo Park, CA, USA, 2004.

[103] D. Tompkins and H. Hoos. Warped landscapes and random acts of SAT solving. In
8th International Symposium on Artificial Intelligence and Mathematics, 2004.

[104] E. Tsang. Foundations of constraint satisfaction. Academic Press, London and San

166 5. Local Search Methods

Diego, 1993.
[105] E. Tsang and J. Li. EDDIE for financial forecasting. In Genetic Algorithms and

Programming in Computational Finance, pages 161–174. Kluwer Academic Pub-
lishers, 2002.

[106] E. Tsang and C. Voudouris. Fast local search and guided local search and their ap-
plication to British Telecom’s workforce scheduling problem. Operations Research
Letters, 20(3):119–127, 1997.

[107] E. Tsang and C. Wang. A generic neural network approach for constraint satisfaction
problems. In Neural network applications, pages 12–22. Springer-Verlag, 1992.

[108] E. Tsang and T. Warwick. Applying genetic algorithms to constraint satisfaction
problems. In 9th European Conference on AI, pages 649–654, 1990.

[109] E. Tsang, J. Ford, P. Mills, R. Bradwell, R. Williams, and P. Scott. Towards a
practical engineering tool for rostering. Annals of Operational Research, Special
Issue on Personnel Scheduling and Planning, 2006 (to appear).

[110] J. van Hemert and C. Solnon. A study into ant colony optimization, evolu-
tionary computation and constraint programming on binary constraint satisfaction
problems. In Evolutionary Computation in Combinatorial Optimization (EvoCOP
2004), LNCS 3004, pages 114–123. Springer Verlag, Berlin, Germany, 2004.

[111] C. Voudouris and E. Tsang. Partial constraint satisfaction problems and guided local
search. In Practical Application of Constraint Technology (PACT’96), pages 337–
356, London, April 1996.

[112] C. Voudouris and E. Tsang. Solving the radio link frequency assignment problem
using guided local search. In 13th NATO symposium on Frequency Assignment,
Sharing and Conservation Systems (Aerospace), Research and Technology Organi-
zation (RTO). North Atlantic Treaty Organization (NATO), 1999.

[113] C. Voudouris and E. Tsang. Guided local search, chapter 7. In Handbook of meta-
heuristics. Kluwer, 2003.

[114] C. Voudouris, R. Dorne, D. Lesaint, and A. Liret. iopt: A software toolkit for heuris-
tic search methods. In 7th International Conference on Principles and Practice of
Constraint Programming, pages 716–729. Springer Verlag, 2001.

[115] B. Wah and Y. Shang. Discrete Lagrangian-based search for solving MAX-SAT
problems. In 15th International Joint Conference on Artificial Intelligence, pages
378–383, 1997.

[116] R. J. Wallace and E. C. Freuder. Heuristic methods for over-constrained constraint
satisfaction problems. In Over-Constrained Systems, LNCS 1106, pages 207–216.
Springer Verlag, Berlin, Germany, 1995.

[117] J. P. Walser. Solving linear pseudo-Boolean constraint problems with local search.
In 14th National Conference on Artificial Intelligence, pages 269–274. AAAI Press
/ The MIT Press, Menlo Park, CA, USA, 1997.

[118] J. P. Walser. Integer Optimization by Local Search: A Domain-Independent Ap-
proach. LNCS 1637. Springer Verlag, Berlin, Germany, 1999.

[119] C. Wang and E. Tsang. Solving constraint satisfaction problems using neural-
networks. In IEE 2nd International Conference on Artificial Neural Networks, pages
295–299, 1991.

[120] T. Warwick and E. Tsang. Using a genetic algorithm to tackle the processors config-
uration problem. In ACM Symposium on Applied Computing (SAC), pages 217–221,
1994.

H. H. Hoos, E. Tsang 167

[121] Z. Wu and B. W. Wah. An efficient global-search strategy in discrete Lagrangian
methods for solving hard satisfiability problems. In 17th National Conference on
Artificial Intelligence, pages 310–315. AAAI Press / The MIT Press, Menlo Park,
CA, USA, 2000.

[122] Z. Wu and B. W. Wah. Trap escaping strategies in discrete Lagrangian methods for
solving hard satisfiability and maximum satisfiability problems. In 16th National
Conference on Artificial Intelligence, pages 673–678. AAAI Press / The MIT Press,
Menlo Park, CA, USA, 1999.

[123] M. Yagiura and T. Ibaraki. Efficient 2 and 3-flip neighborhood search algorithms
for the MAX SAT: Experimental evaluation. Journal of Heuristics, 7(5):423–442,
2001.

[124] X. Yao. Dynamic neighbourhood size in simulated annealing. In International
Joint Conference on Neural Networks (IJCNN’92), volume 1, pages 411–416. IEEE
Press, Piscataway, NJ, USA, 1992.

[125] X. Yu, W. Zheng, B. Wu, and X. Yao. A novel penalty function approach to con-
strained optimization problems with genetic algorithms. Journal of Advanced Com-
putational Intelligence, 2(6):208–213, 1998.

[126] H. Zhang. Generating college conference basketball schedules by a SAT solver. In
5th International Symposium on the Theory and Applications of Satisfiability Testing
(SAT 2002), pages 281–291, 2002.

This page intentionally left blank

Handbook of Constraint Programming 169
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 6

Global Constraints

Willem-Jan van Hoeve and Irit Katriel

A global constraint is a constraint that captures a relation between a non-fixed number
of variables. An example is the constraint alldifferent(x1, . . . , xn), which specifies
that the values assigned to the variables x1, . . . , xn must be pairwise distinct. Typically, a
global constraint is semantically redundant in the sense that the same relation can be ex-
pressed as the conjunction of several simpler constraints. Having shorthands for frequently
recurring patterns clearly simplifies the programming task. What may be less obvious is
that global constraints also facilitate the work of the constraint solver by providing it with
a better view of the structure of the problem.

One of the central ideas of constraint programming is the propagation-search tech-
nique, which consists of a traversal of the search space of the given constraint satisfaction
problem (CSP) while detecting “dead ends” as early as possible. An algorithm that per-
forms only the search component would enumerate all possible assignments of values to
the variables until it either finds a solution to the CSP or exhausts all possible assignments
and concludes that a solution does not exist. Such an exhaustive search has an exponential-
time complexity in the best case, and this is where propagation comes in: It allows the
constraint solver to prune useless parts of the search space without enumerating them. For
example, if the CSP contains the constraint x + y = 3 and both x and y are set to 1, we
can conclude that regardless of the values assigned to other variables, the partial assign-
ment we have constructed so far cannot lead to a solution. Thus it is safe to backtrack and
reverse some of our previous decisions (see also Chapter 3, “Constraint Propagation”, and
Chapter 4 “Backtracking Search Algorithms for CSPs”).

The type of propagation that we will discuss in this chapter is called filtering of the
variable domains. The filtering task is to examine the variables which were not assigned
values yet, and remove useless values from their domains. A value is useless if it cannot
participate in any solution that conforms with the assignments already made. Since it is,
in general, NP-hard to determine whether or not a value in the domain of a variable is
useful for the CSP, the solver filters separately with respect to each of the constraints. If a
value is useless with respect to one of the constraints, then it is also useless with respect
to the whole CSP, but not vice versa. In other words, filtering separately with respect

c© 2006 Elsevier B.V. All rights reserved

170 6. Global Constraints

to each constraint allows false-positives (keeping a value which is useless for the CSP),
but not false-negatives (removing a useful value). We then arrive at a tradeoff between
the efficiency of the filtering (i.e., the running time) and its effectiveness (i.e., how many
useless values were identified). “Good” constraints are constraints that address this tradeoff
by allowing significant filtering with a low computational cost.

A filtering algorithm for a constraint C is an algorithm that filters the domains of
variables with respect to C. If the algorithm removes every useless value from the domain
of every variable that C is defined on, we say that it achieves complete filtering. If it
removes only some of the useless values, we say that it performs partial filtering.

This chapter explores the topic of globals constraints. Our goal is to familiarize the
reader with the important concepts of the field, which include different types of constraints,
different measures of filtering and different compromises between efficiency and effective-
ness of filtering. We will illustrate each of the concepts with some examples, that is,
specific global constraints and filtering algorithms. We believe that our (obviously non-
exhaustive) selection of constraints and algorithms suffices to provide the reader with an
overview of the state of the art of research on global constraints.

The rest of the chapter is organized as follows. Section 6.1 provides notation and
preliminaries for the rest of the chapter. In Section 6.2 we describe some useful global
constraints. In Section 6.3 we describe efficient algorithms that achieve complete filtering
for several global constraints. In Section 6.4 we describe global optimization constraints,
i.e., constraints that encapsulate optimization criteria, and filtering algorithms for them.
Section 6.5 covers the topic of partial filtering algorithms, beginning with their motivation
through definitions of different measures of filtering to actual examples of partial filtering
algorithms. In Section 6.6 we describe complex variable types, constraints defined on them
and filtering algorithms for such constraints. Finally, in Section 6.7 we review some recent
ideas and directions for further research.

6.1 Notation and Preliminaries

6.1.1 Constraint Programming

The domain of a variable x, denotedD(x), is a finite set of elements that can be assigned to
x. For a set of variables X we denote the union of their domains by D(X) = ∪x∈XD(x).

Let X = {x1, . . . , xk} be a set of variables. A constraint C on X is a subset of the
Cartesian product of the domains of the variables in X , i.e., C ⊆ D(x1) × · · · ×D(xk).
A tuple (d1, . . . , dk) ∈ C is called a solution to C. Equivalently, we say that a solution
(d1, . . . , dk) ∈ C is an assignment of the value di to the variable xi, for all 1 ≤ i ≤ k, and
that this assignment satisfies C. If C = ∅, we say that it is inconsistent. When a constraint
C is defined on a set X of k variables together with a certain set p of � parameters, we will
denote it by C(X, p), but consider it to be a set of k-tuples (and not k + �-tuples).

A constraint satisfaction problem (CSP) is a finite set of variables X , together with a
finite set of constraints C, each on a subset of X . A solution to a CSP is an assignment of
a value d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Given a constraint C defined on the variables {x1, . . . , xk}, the filtering task is to
shrink the domain of each variable such that it still contains all values that this variable can
assume in a solution to C. An algorithm that achieves complete filtering, computes, for

W.-J. van Hoeve, I. Katriel 171

every 1 ≤ j ≤ k,

D(xj)← D(xj)∩{vi | D(x1)×· · ·×D(xj−1)×{vi}×D(xj+1)×· · ·×D(xk)∩C 	= ∅}.

In many applications, we wish to find a solution to a CSP that is optimal with respect
to certain criteria. A constraint optimization problem (COP) is a CSP P defined on the
variables x1, . . . , xn, together with an objective function f : D(x1) × · · · ×D(xn) → Q

that assigns a value to each assignment of values to the variables. An optimal solution to
a minimization (maximization) COP is a solution d to P that minimizes (maximizes) the
value of f(d). The objective function value is often represented by a variable z, together
with the “constraint” maximize z or minimize z for a maximization or a minimization
problem, respectively.

6.1.2 Graph Theory

Basic notions

A graph or undirected graph is a pair G = (V,E), where V is a finite set of vertices and
E ⊆ V ×V is a multiset1 of unordered pairs of vertices, called edges. An edge “between”
u ∈ V and v ∈ V is denoted by {u, v}. A graph G is bipartite if there exists a partition
S ∪̇ T of V such that E ⊆ S × T . We then write G = (S, T,E).

A walk in a graph G = (V,E) is a sequence P = v0, e1, v1, . . . , ek, vk where k ≥ 0,
v0, . . . , vk ∈ V , e1, . . . , ek ∈ E and ei = {vi−1, vi} for 1 ≤ i ≤ k. If there is no
confusion, P may be denoted by v0, v1, . . . , vk or e1, e2, . . . , ek. A walk is called a path if
v0, . . . , vk are distinct. A closed path, i.e., v0 = vk, is called a circuit.

An induced subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) such that
V ′ ⊆ V and E′ = {{u, v} | u ∈ V ′, v ∈ V ′, {u, v} ∈ E}. A component or connected
component of a graph G = (V,E) is an induced subgraph G′ = (V ′, E′) of G such that
there exists a u-v path inG′ for every pair u, v ∈ V ′, andG′ is maximal with respect to V ′.

A digraph or directed graph is a pair G = (V,A) where V is a finite set of vertices and
A ⊆ V × V is a multiset of ordered pairs of vertices, called arcs. A pair occurring more
than once in A is called a multiple arc. An arc from u ∈ V to v ∈ V is denoted by (u, v).
The set of arcs incoming into a vertex u is denoted by δin(u) = A ∩ (V × {u}) and the
set of arcs outgoing from a vertex u is denoted by δout(u) = A ∩ ({u} × V). Similarly
to undirected bipartite graphs, a directed graph G = (V,A) is bipartite if there exists a
partition S ∪̇ T of V such that A ⊆ (S × T) ∪ (T × S). We then write G = (S, T,A).

A directed walk in a directed graphG = (V,A) is a sequenceP = v0, a1, v1, . . . , ak, vk
where k ≥ 0, v0, . . . , vk ∈ V , a1, . . . , ak ∈ A and ai = (vi−1, vi) for 1 ≤ i ≤ k. Again,
if there is no confusion, P may be denoted by v0, v1, . . . , vk or a1, a2, . . . , ak. A di-
rected walk is called a directed path if v0, . . . , vk are distinct. A closed directed path, i.e.,
v0 = vk, is called a directed circuit.

An induced subgraph of a digraph G = (V,A) is a graph G′ = (V ′, A′) such that
V ′ ⊆ V andA′ = A∩(V ′×V ′). A strongly connected component of a digraphG = (V,A)
is an induced subgraph G′ = (V ′, A′) of G such that there exists a directed u-v path in G′

for every pair u, v ∈ V ′, and G′ is maximal with respect to V ′.

1A multiset is a set in which an element may occur more than once.

172 6. Global Constraints

Matching theory

Given an undirected graph G = (V,E), a matching in G is a set M ⊆ E of disjoint edges,
i.e., no two edges in M share a vertex. A matching is said to cover a vertex v if v belongs
to some edge in M . For a set S ⊆ V , we say that M covers S if it covers every vertex in
S. A vertex v ∈ V is called M -free if M does not cover v. The cardinality of a matching
M is the number of edges in it, |M |. The maximum cardinality matching problem is the
problem of finding a matching of maximum cardinality in a graph.

Let M be a matching in a graph G = (V,E). A path P in G is called M -augmenting
if P has odd length, its ends are not covered by M , and its edges are alternatingly out of
and in M . A circuit C in G is called M -alternating if its edges are alternatingly out of
and in M . Given an M -augmenting path P , the symmetric difference2 of M and P gives
a matching M ′ with |M ′| = |M |+1. Furthermore, the existence of an M -alternating path
is a necessary condition for the existence of a matching of larger cardinality:

Theorem 6.1 (Petersen [50]). Let G = (V,E) be a graph, and let M be a matching
in G. Then M is a maximum-cardinality matching if and only if there does not exist an
M -augmenting path in G.

Hence, a maximum-cardinality matching can be found by repeatedly finding an M -
augmenting path in G and using it to extend M . On a bipartite graph G = (U,W,E), this
can be done with the following method, due to van der Waerden [67] and König [38]. Let
M be the current matching. Construct the directed bipartite graph GM = (U,W,A) by
orienting all edges in M from W to U and all other edges from U to W , i.e.,

A = {(w, u) | {u,w} ∈M,u ∈ U,w ∈W} ∪
{(u,w) | {u,w} ∈ E \M,u ∈ U,w ∈W}.

Then every directed path in GM starting from an M -free vertex in U and ending in an
M -free vertex in W corresponds to an M -augmenting path in G. By choosing |U | ≤ |W |,
we need to find at most |U | such paths. As each path can be identified in at most O(|A|)
time by breadth-first search, the time complexity of this algorithm is O(|U | |A|).

Hopcroft and Karp [28] improved this running time toO(|U |1/2 |A|), where we choose
again |U | ≤ |W |. Instead of repeatedly augmenting M along a single M -augmenting
path, the idea is to repeatedly augment M simultaneously along a collection of disjoint
M -augmenting paths. Such a collection of paths can again be found in O(|A|) time. By
reasoning on the lengths of the alternating paths, one can show that the algorithm needs
only O(|U |1/2) iterations, leading to a total time complexity of O(|U |1/2 |A|).

Flow theory

Let G = (V,A) be a directed graph and let s, t ∈ V . A function f : A → R is called a
flow from s to t, or an s-t flow, if

(i) f(a) ≥ 0 for each a ∈ A,
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t}. (6.1)

2For two sets A and B, the symmetric difference A ⊕ B is the set of elements that belong to A or B but not
both. Formally, A ⊕ B = (A ∪ B) \ (A ∩ B).

W.-J. van Hoeve, I. Katriel 173

where for any set S of arcs, f(S) =
∑

a∈S f(a). Property (6.1)(ii) ensures flow
conservation, i.e., for a vertex v 	= s, t, the amount of flow entering v is equal to the
amount of flow leaving v.
The value of an s-t flow f is defined to be

value(f) = f(δout(s))− f(δin(s)).

In other words, the value of a flow is the net amount of flow leaving s, which by flow
conservation must be equal to the net amount of flow entering t.

In a flow network, each arc a is associated with a requirement [d(a), c(a)] where c(a) ≥
d(a) ≥ 0. Viewing d(a) as the “demand” of a and c(a) as its “capacity”, we say that a
flow f is feasible in the network if d(a) ≤ f(a) ≤ c(a) for every a ∈ A.

Let w : A → R be a “weight” (or “cost”) function for the arcs. For a directed path P
in G we define w(P) =

∑

a∈P w(a). Similarly for a directed circuit. The weight of any
flow f : A→ R is defined to be

weight(f) =
∑

a∈A

w(a)f(a).

A feasible flow f is called a minimum-weight flow if weight(f) ≤ weight(f ′) for any
feasible flow f ′. Given a digraph G = (V,A) with s, t ∈ V , the minimum-weight flow
problem is to find a minimum-weight s-t flow in G.

Let f be an s-t flow in G. The residual graph of G with respect to f is defined
as Gf = (V,Af) where for each (u, v) ∈ A, if f(u, v) < c(u, v) then (u, v) ∈ Af
with residual demand max{d(u, v) − f(u, v), 0} and residual capacity c(u, v) − f(u, v),
and if f(u, v) > d(u, v) then (v, u) ∈ Af with residual demand 0 and residual capacity
f(v, u) − d(v, u). Intuitively, if the capacity of an arc is not exceeded, then the residual
demand indicates how much more flow must be sent along this arc for its demand to be
fulfilled and the residual capacity indicates how much additional flow can be sent along
this arc without exceeding its capacity. If the flow on an arc is strictly higher than its
demand, then the residual capacity (on an arc which is oriented in the reverse direction)
indicates by how much we may reduce the flow on this arc, while still fulfilling its demand.

Let P be a directed path in Gf . Every arc a ∈ P appears in G either in the same
orientation (as the arc a) or in reverse direction (as the arc a−1). The characteristic vector
of P is defined as follows:

χP (a) =

⎧

⎨

⎩

1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

For a directed circuit C in Gf , we define χC ∈ {−1, 0, 1}A similarly.
Using the above notation, a feasible s-t flow in G with minimum weight can be found

using Algorithm 6.1, which is sometimes referred to as the successive shortest paths algo-
rithm, due to Ford and Fulkerson [18], Jewell [31], Busacker and Gowen [11], and Iri [30].
It begins by adding the arc (t, s) to G, with demand 0 and infinite capacity. This simplifies
the computations because we no longer need to consider s and t as special vertices; all
we need in order to have a feasible flow is to ensure that flow conservation holds at every

174 6. Global Constraints

Algorithm 6.1: Minimum-weight feasible s-t flow in G = (V,A)

set f = �0
add the arc (t, s) with d(t, s) = 0, c(t, s) =∞, w(t, s) = 0 and f(t, s) = 0 to G
while there exists an arc (u, v) with f(u, v) < d(u, v) do

compute a directed v-u path P in Gf minimizing w(P)
if P does not exist then stop (no feasible flow exists)
else define the directed circuit C = P, u, v
reset f = f + εχC , where ε is maximal subject to �0 ≤ f + εχP ≤ �c and
f(u, v) + ε ≤ d(u, v)

vertex. Then, the algorithm repeatedly finds an arc whose demand is not respected and
adds flow along a cycle in the residual graph that contains this arc. The flow is increased
maximally along this cycle, taking into account the demand and capacity requirements of
the arcs on the cycle. Note that in order to meet the demand of an arc, it may be necessary
to increase the flow along more than one directed cycle. It can be proved that for integer
demand and capacity functions and non-negative weights, Algorithm 6.1 finds an integral
feasible s-t flow with minimum weight if it exists; see for example [62, p. 175–176].

The time complexity of Algorithm 6.1 is O(φ · SP), where φ is the value of the flow
found and SP is the time to compute a shortest directed path in G. Although faster al-
gorithms exist for general minimum-weight flow problems, this algorithm suffices for our
purposes, because we only need to find flows of relatively small values.

Note that the van der Waerden-König algorithm for finding a maximum-cardinality
matching in a bipartite graph is a special case of the above algorithm. Namely, let G =
(U,W,E) be a bipartite graph. Similar to the construction of the directed bipartite graph
GM in Section 6.1.2, we transform G into a directed bipartite graph G′ by orienting all
edges from U to W . Furthermore, we add a “source” s, a “sink” t, and arcs from s to
all vertices U and from all vertices in W to t. To all arcs a of the resulting graph we
assign a capacity c(a) = 1 and a weight w(a) = 0. Now the algorithm for finding a
minimum-weight s-t flow in G′ mimics exactly the augmenting paths algorithm for find-
ing a maximum-cardinality matching in G. In particular, given a flow f in G′ and the
corresponding matching M in G, the directed graph GM corresponds to the residual graph
G′
f where s, t and their adjacent arcs have been removed. Similarly, an M -augmenting

path in GM corresponds to a directed s-t path in G′
f .

Finally, we mention a result that, as we will see, is particularly useful for designing
incremental filtering algorithms. Given a minimum-weight s-t flow, we want to compute
the increase that would occur in the weight of solution when an unused arc is forced to be
used. The following result shows that this can be done by re-routing the flow through a
minimum-cost circuit containing the unused arc, see [2, p. 338].

Theorem 6.2. Let f be a minimum-weight s-t flow of value φ inG = (V,A) with f(a) = 0
for some a ∈ A. Let C be a directed circuit in Gf with a ∈ C, minimizing w(C). Then
f ′ = f + εχC , where ε is subject to d ≤ f + εχC ≤ c, has minimum weight among all
s-t flows g in G with value(g) = φ and g(a) = ε. If C does not exist, f ′ does not exist.
Otherwise, weight(f ′) = weight(f) + ε · w(C).

W.-J. van Hoeve, I. Katriel 175

The proof of Theorem 6.2 relies on the fact that for a minimum-weight flow f in G,
the residual graph Gf does not contain directed circuits with negative weight.
For further reading on network flows we recommend Ahuja et al. [2] or Schrijver [62,
Chapter 6–15].

6.1.3 Linear Programming

A linear program consists of continuous variables and linear constraints (inequalities or
equalities). The objective is to optimize a linear cost function. One of the standard forms
of a linear program is

min c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
...

am1x1 + am2x2 + . . . + amnxn = bm

x1, . . . , xn ≥ 0

or, using matrix notation,

min {cTx | Ax = b, x ≥ 0} (6.2)

where c ∈ Rn, b ∈ Rn, A ∈ Rm×n and x ∈ Rn. Here c represents the “cost” vector and x
is the vector of variables. Every linear program can be transformed into a linear program
in the form of (6.2); see for example [61, Section 7.4].

Recall that the rank of a matrix is the number of linearly independent rows or columns
of the matrix. For simplicity, we assume in the following that the rank of A is m, i.e. there
are no redundant equations in (6.2).

Let A = (a1, a2, . . . , an) where aj is the j-th column of A. For some “index set”
I ⊆ {1, . . . , n} we denote by AI the submatrix of A consisting of the columns ai with
i ∈ I .

Because the rank of A is m, there exists an index set B = {B1, . . . , Bm} such that the
m × m submatrix AB = (aB1

, . . . , aBm
) is nonsingular and is therefore invertible. We

call AB a basis of A. Let N = {1, . . . , n} \ B. If we permute the columns of A such that
A = (AB, AN), we can write Ax = b as

ABxB +ANxN = b,

where x = (xB, xN). Then a solution to Ax = b is given by xB = A−1
B b and xN = �0.

This solution is called a basic solution. A basic solution is feasible if A−1
B b ≥ �0. The

vector xB contains the basic variables and the vector xN contains the nonbasic variables.
If we permute c such that c = (cB, cN), the corresponding objective value is cTx =
cTBA

−1
B b+ cTN�0 = cTBA

−1
B b.

Given a basis AB , we can rewrite (6.2) into the following equivalent linear program

min cTBA
−1
B b+ (cTN − cTBA−1

B AN)xN

subject to xB +A−1
B ANxN = A−1

B b

xB, xN ≥ 0.

(6.3)

176 6. Global Constraints

Program (6.3) represents how the objective may improve if we would replace (some) basic
variables by nonbasic variables. This means that some basic variables will take value 0,
while some nonbasic variables will take a non-zero value instead. If we do so, feasibility
is maintained by xB + A−1

B ANxN = A−1
B b. The improvement of the objective value

is represented by (cTN − cTBA−1
B AN)xN . This rewritten cost vector for xN is called the

reduced-cost vector and is defined on both basic and nonbasic variables as cT = cT −
cTBA

−1
B A. We have the following (cf. [46, pp. 31–32]):

Theorem 6.3. (xB, xN) is an optimal solution if and only if c ≥ �0.

Apart from this result, reduced-costs have another interesting property. Namely, they
represent the marginal rate at which the solution gets worse if we insert a nonbasic variable
into the solution (by giving it a non-zero value). For example, if we insert nonbasic variable
xi into the solution, the objective value will increase by at least cixi. This property will be
exploited in Section 6.5.2.

To solve linear programs one often uses the simplex method, invented by Dantzig [15],
which employs Theorem 6.3. Roughly, the simplex method moves from one basis to an-
other by replacing a column in AB by a column in AN , until it finds a basic feasible
solution for which all reduced-costs are nonnegative. The method is very fast in practice,
although it has an exponential worst-case time complexity. Polynomial-time algorithms
for linear programs were presented by Khachiyan [36] and Karmarkar [33, 32].
For further reading on linear programming we recommend Chvátal [14] or Nemhauser and
Wolsey [46].

6.2 Examples of Global Constraints

In this section we present a number of global constraints that are practically useful and for
which efficient filtering algorithms exist.

6.2.1 The Sum and Knapsack Constraints

The sum constraint is one of the most frequently occurring constraints in applications. Let
x1, . . . , xn be variables. To each variable xi, we associate a scalar ci ∈ Q. Furthermore,
let z be a variable with domain D(z) ⊆ Q. The sum constraint is defined as

sum(x1, . . . , xn, z, c) =

{

(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z), d =
n
∑

i=1

cidi

}

.

We also write z =
∑n

i=1 cixi.
The knapsack constraint is a variant of the sum constraint. Rather than constraining

the sum to be a specific value, the knapsack constraint states the sum to be within a lower
bound l and an upper bound u. Traditionally, one writes l ≤ ∑n

i=1 cixi ≤ u. Here we
represent l and u by a variable z, such that D(z) = [l, u]. Then we define the knapsack
constraint as

knapsack(x1, . . . , xn, z, c) =
{(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z), d ≤∑n

i=1 cidi} ∩
{(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z),

∑n
i=1 cidi ≤ d} ,

which corresponds to minD(z) ≤∑n
i=1 cixi ≤ maxD(z).

W.-J. van Hoeve, I. Katriel 177

6.2.2 The Element Constraint

Let y be an integer variable, z a variable with finite domain, and c an array of variables, i.e.,
c = [x1, x2, . . . , xn]. The element constraint states that z is equal to the y-th variable in
c, or z = xy. More formally

element(y, z, x1, . . . , xn) =
{(e, f, d1, . . . , dn) | e ∈ D(y), f ∈ D(z), ∀i di ∈ D(xi), f = de}.

The element constraint was introduced Van Hentenryck and Carillon [24]. It can be
applied to model many practical problems, especially when we want to model variable
subscripts. An example is presented in Section 6.2.8 below.

6.2.3 The Alldifferent Constraint

The alldifferent constraint is probably the best-known, most influential and most
studied global constraint in constraint programming. Apart from its simplicity and practical
applicability, this is probably due to its relationship to matching theory. This important
field of theoretical computer science has produced several classical results and provided
the basis for efficient filtering algorithms for the alldifferent constraint.

Definition 6.4 (Alldifferent constraint, [39]). Let x1, x2, . . . , xn be variables. Then

alldifferent(x1, . . . , xn) = {(d1, . . . , dn) | ∀i di ∈ D(xi), ∀i �=j di 	= dj}.

A famous problem that can be modeled with alldifferent constraints is the n-
queens problem: Place n queens on an n × n chessboard in such a way that no queen
attacks another queen.

One way of modeling this problem is to introduce an integer variable xi for every row
i = 1, 2, . . . , n, which ranges over column 1 to n. This means that in row i, a queen is
placed in the xi-th column. The domain of every xi is D(xi) = {1, 2, . . . , n} and we
express the no-attack constraints by

xi 	= xj for 1 ≤ i < j ≤ n, (6.4)

xi − xj 	= i− j for 1 ≤ i < j ≤ n, (6.5)

xi − xj 	= j − i for 1 ≤ i < j ≤ n, (6.6)

The constraints (6.4) state that no two queens are allowed to occur in the same column
and the constraints (6.5) and (6.6) state the diagonal cases. A more concise model can be
stated as follows. After rearranging the terms of constraints (6.5) and (6.6), we transform
the model into

alldifferent(x1, . . . , xn),
alldifferent(x1 − 1, x2 − 2, . . . , xn − n),
alldifferent(x1 + 1, x2 + 2, . . . , xn + n),
xi ∈ {1, 2, . . . , n} for 1 ≤ i ≤ n.

178 6. Global Constraints

6.2.4 The Global Cardinality Constraint

The global cardinality constraint gcc(x1, . . . , xn, cv1 , . . . , cvn′) is a generalization of
alldifferent. While alldifferent requires that every value is assigned to at
most one variable, the gcc is specified on n assignment variables x1, . . . , xn and n′ count
variables cv1 , . . . , cvn′ and specifies that each value vi is assigned to exactly cvi

assign-
ment variables. alldifferent, then, is the special case of gcc in which the domain of
each count variable is {0, 1}. For any tuple t ∈ Dn and value v ∈ D, let occ(v, t) be the
number of occurrences of v in t.

Definition 6.5 (Global cardinality constraint, [47]). Let x1, . . . , xn be assignment vari-
ables whose domains are contained in {v1, . . . vn′} and let {cv1 , . . . , cvn′} be count vari-
ables whose domains are sets of integers. Then

gcc(x1, . . . , xn, cv1 , . . . , cvn′) = {(w1, . . . , wn, o1, . . . , on′) |
∀j wj ∈ D(xj), ∀i occ(vi, (w1, . . . , wn)) = oi ∈ D(cvi

)}.

An example of a problem that can be modeled with a gcc is the shift assignment
problem [13, 58] in which we are given a set of workers W = {W1, . . . ,Ws} and a set of
shifts S = {S1, . . . , St} and the problem is to assign each worker to one of the shifts while
fulfilling the constraints posed by the workers and the boss: Each worker Wi specifies in
which of the shifts she is willing to work and for each shift Si the boss specifies a lower
and upper bound on the number of workers that should be assigned to this shift. In the
gcc, the workers would be represented by the assignment variables and the shifts by the
count variables. The domain of an assignment variable would contain the set of shifts that
the respective worker is willing to work in and the interval corresponding to each count
variable would match the lower and upper bounds specified by the boss for this shift.

6.2.5 The Global Cardinality Constraint with Costs

The global cardinality constraint with costs [59] combines a gcc and a variant of the sum
constraint. As in Section 6.2.4, let X = {x1, . . . , xn} be a set of assignment variables and
let cv1 , . . . , cvn′ be count variables. We are given a function w that associates to each pair
(x, d) ∈ X×D(X) a “cost”w(x, d) ∈ Q. In addition, the constraint is defined on a “cost”
variable z with domain D(z). Assuming that we want to minimize the cost variable z, the
global cardinality constraint with costs is defined as

cost gcc(x1, . . . , xn, cv1 , . . . , cvn′ , z, w) = {(d1, . . . , dn, o1, . . . , on′ , d) |
(d1, . . . , dn, o1, . . . , on′) ∈ gcc(x1, . . . , xn, cv1 , . . . , cvn′),
∀i di ∈ D(xi), d ∈ D(z),

∑n
i=1 w(xi, di) ≤ d}.

(6.7)

In other words, the cost variable z represents an upper bound on the sum of w(xi, di)
for all i. We want to find only those solutions to the gcc whose associated cost is not
higher than this bound.

As an example of the practical use of a cost gcc we extend the above shift assign-
ment problem. It is natural to assume that different workers perform shifts differently. For
example, suppose that we have a prediction of “work output” when we assign a worker to a
shift. Denote this output by O(W,S) for each worker W and shift S. The boss now wants

W.-J. van Hoeve, I. Katriel 179

to maximize the output, while still respecting the above preferences and constraints on the
shifts. We can model this as

cost gcc(W1, . . . ,Wn, S1, . . . , St, z, Õ),

where Õ(W,S) = −O(W,S) for all workers W and shifts S. Namely, maximizing O is
equivalent to minimizing −O.

6.2.6 Scheduling with Cumulative Resource Constraints

An important application area for constraint solvers is in solving NP-hard scheduling prob-
lems. Chapter 22, “Planning and Scheduling”, explores the use of constraint programming
for scheduling in depth. Here, we mention only one problem of this family; that of schedul-
ing non-preemptive tasks who share a single resource with bounded capacity.

We are given a collection T = t1, . . . , tn of tasks, such that each task ti is associated
with four variables: Its release time ri is the earliest time at which it can begin executing,
its deadline di is the time by which it must complete, its processing time pi is the amount
of time it takes to complete and its capacity requirement ci is the capacity of the resource
that it takes up while it executes. In addition, we are given the capacity variable C of the
resource. (The special case in which ∀i ci = 1 and C = 1 is known as the disjunctive case
while the general case in which arbitrary capacities are allowed is the cumulative case.)

A solution is a schedule, i.e., a starting time si for each task ti such that ri ≤ si ≤
di − pi (the task completes before its deadline), and in addition,

∀u
∑

i|si≤u≤si+pi

ci ≤ C

i.e., at any time unit u, the capacity of the resource is not exceeded. Note that the starting
times si are auxiliary variables; instead of si we reason about the release times ri and
deadlines di.
The cumulative({r1, . . . , rn}, {d1, . . . , dn}, {p1, . . . , pn}, {c1, . . . , cn}, C) constraint
models scheduling problems as described above [1].

6.2.7 The Regular Language Membership Constraint

The regular constraint [48] is defined on a fixed-length sequence of finite-domain vari-
ables and states that the sequence of values taken by these variables belongs to a given
regular language. The regular constraint has applications, for example, in rostering
problems and sequencing problems.

Before we formally introduce the regular constraint, we need some definitions (see
[29]). A deterministic finite automaton (DFA) is described by a 5-tuple M = (Q,Σ, δ, q0,
F) whereQ is a finite set of states, Σ is an alphabet, δ : Q×Σ→ Q is a transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final (or accepting) states. Given an
input string, the automaton starts in the initial state q0 and processes the string one symbol
at the time, applying the transition function δ at each step to update the current state. The
string is accepted if and only if the last state reached belongs to the set of final states F .
Strings processed by M that are accepted are said to belong to the language defined by M ,
denoted by L(M). As an example, the DFAM for the regular expression aa�bb�aa�+cc�

is shown in Figure 6.1. It accepts the strings aaabaa and cc, but not aacbba.

180 6. Global Constraints

q0
q2 q3

q4

q1
a b a

c

a b a

c

Figure 6.1: A representation of a DFA with each state shown as a circle, final states as a
double circle, and transitions as arcs.

Definition 6.6 (Regular language membership constraint, [48]). Let M = (Q,Σ, δ, q0,
F) be a DFA and let X = {x1, x2, . . . , xn} be a set of variables with D(xi) ⊆ Σ for
1 ≤ i ≤ n. Then

regular(X,M) = {(d1, . . . , dn) | ∀i di ∈ D(xi), d1d2 · · · dn ∈ L(M)} .

Returning to our example, consider the CSP

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},
regular(x1, x2, x3, x4,M).

One solution to this CSP is x1 = a, x2 = b, x3 = a and x4 = a.
The regular constraint allows us to express many relations between the variables

of a sequence. For example, it is possible to express the maximum length of identical
consecutive values, also known as the stretch constraint [49, 23]. A typical application
of the stretch constraint is to restrict the maximum number of night shifts in a nurse
scheduling problem. Pesant [48] discusses even more complicated patterns.

6.2.8 The Circuit Constraint

Before we introduce the circuit constraint, we need the following definition. Consider
a permutation S = s1, . . . , sn of {1, . . . , n}, i.e., si ∈ {1, . . . , n} and si 	= sj whenever
i 	= j. Define the set CS as follows:

1 ∈ CS ,
i ∈ CS ⇒ si ∈ CS .

We say that S is cyclic if |CS | = n.

Definition 6.7 (Circuit constraint, [39]). Let X = {x1, x2, . . . , xn} be a set of variables
with respective domains D(xi) ⊆ {1, 2, . . . , n} for i = 1, 2, . . . , n. Then

circuit(x1, . . . , xn) = {(d1, . . . , dn) | ∀i di ∈ D(xi), d1, . . . , dn is cyclic}.

To the variables in Definition 6.7 we can associate the digraph G = (X,A) with arc
set A = {(xi, xj) | j ∈ D(xi), 1 ≤ i ≤ n}. An assignment x1 = d1, . . . , xn = dn
corresponds to the subset of arcs Ã = {(xi, xdi

) | 1 ≤ i ≤ n}. The circuit constraint
ensures that Ã is a directed circuit.

W.-J. van Hoeve, I. Katriel 181

A famous combinatorial problem that can be modeled with the circuit constraint
is the Traveling Salesperson Problem, or TSP [40]: A salesperson needs to find a shortest
route to visit n cities exactly once, and return in its starting city.

We model the TSP as follows. Let cij denote the distance between city i and j (where
1 ≤ i, j ≤ n). For each city i, we introduce a variable xi with domain D(xi) =
{1, . . . , n} \ {i}. The value of xi is the city that is visited by the tour immediately af-
ter city i. We also introduce for every 1 ≤ i ≤ n the variable di to indicate the distance
from city i to city xi. The TSP can then be modeled as follows.

minimize z,
circuit(x1, . . . , xn),
z =

∑n
i=1 di,

di = cixi
1 ≤ i ≤ n.

(6.8)

To perform the assignment di = cixi
, we use the constraint element(xi, di, ci∗), where

ci∗ denotes the array [cij]1≤j≤n.

6.2.9 The Soft Alldifferent Constraint

A soft constraint, as opposed to a traditional hard constraint, is a constraint that may be
violated. Instead we measure its violation, and the goal is to minimize the total amount
of violation of all soft constraints. Soft constraints are particularly useful to model and
solve over-constrained and preference-based problems (see Chapter 9, “Soft Constraints”).
In this chapter, we follow the scheme proposed by Régin et al. [60] to soften global con-
straints.

A violation measure for a soft constraint C(x1, . . . , xn) is a function μ : D(x1) ×
· · · × D(xn) → Q. This measure is represented by a “cost” variable z, which is to be
minimized. There exist several useful violation measures for soft constraints. For the
soft alldifferent constraint, we consider two measures of violation, see [51]. The
first is the variable-based violation measure μvar which counts the minimum number of
variables that need to change their value in order to satisfy the constraint. The second is
the decomposition-based violation measure μdec which counts the number of constraints
in the binary decomposition that are violated. For alldifferent(x1, . . . , xn) the latter
amounts to μdec(x1, . . . , xn) = |{(i, j) | ∀i < j xi = xj}|.
Definition 6.8 (Soft alldifferent constraint, [51]). Let x1, x2, . . . , xn, z be variables with
respective finite domains D(x1), D(x2), . . . , D(xn), D(z). Let μ be a violation measure
for the alldifferent constraint. Then

soft alldifferent(x1, . . . , xn, z, μ) =
{(d1, . . . , dn, d) | ∀i di ∈ D(xi), d ∈ D(z), μ(d1, . . . , dn) ≤ d}

is the soft alldifferent constraint with respect to μ.

As stated above, the cost variable z is minimized during the solution process. Thus,
maxD(z) represents the maximum value of violation that is allowed, and minD(z) rep-
resents the lowest possible value of violation.

As an example, consider the following over-constrained CSP

x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

182 6. Global Constraints

We have, for instance, μvar(a, a, b, b) = 2, while μdec(a, a, b, b) = 2, and μvar(b, b, b, b) =
3, while μdec(b, b, b, b) = 6. We soften the alldifferent constraint using μdec, and
transform the CSP into the following COP

z ∈ {0, 1, . . . , 6},
x1 ∈ {a, b}, x2 ∈ {a, b}, x3 ∈ {a, b}, x4 ∈ {b, c},
soft alldifferent(x1, x2, x3, x4, z, μdec),
minimize z.

A solution to this COP is x1 = a, x2 = a, x3 = b, x4 = c and z = 1.

6.3 Complete Filtering Algorithms

As mentioned in Section 6.1, the filtering task with respect to a constraintC defined on a set
of variablesX is to remove values from the domains of variables inX without changing the
set of solutions to C. We say that the filtering is complete if the removal of any additional
value from the domain of any of the variables in X would change the set of solutions to C.
Formally:

Definition 6.9 (Generalized arc consistency). Let C be a constraint on the variables x1,
. . . , xk with respective domainsD(x1), . . . , D(xk). That is,C ⊆ D(x1)×· · ·×D(xk). We
say that C is generalized arc consistent (arc consistent, for short) if for every 1 ≤ i ≤ k
and v ∈ D(xi), there exists a tuple (d1, . . . , dk) ∈ C such that di = v. A CSP is arc
consistent if each of its constraints is arc consistent.

In the literature, arc consistency is also referred to as hyper-arc consistency or domain
consistency. Note that arc consistency only guarantees that each individual constraint has
a solution; it does not guarantee that the CSP has a solution.

In this section we present filtering algorithms that establish arc consistency. In general,
establishing arc consistency for a non-binary constraint (or global constraint) is NP-hard
(see Chapter 3, “Constraint Propagation”). For a number of global constraints, however,
it is possible to establish arc consistency quite efficiently. We present such filtering algo-
rithms in detail for the alldifferent, the gcc, and the regular constraints.

6.3.1 The Alldifferent Constraint

Régin [57] proposed an arc consistency algorithm for the alldifferent constraint
which is based on matching theory.

Definition 6.10 (Value graph, [57]). Let X be a set of variables and D(X) the union of
their domains. The bipartite graph G = (X,D(X), E) with E = {{x, d} | x ∈ X, d ∈
D(x)} is called the value graph of X .

As an example, consider the following CSP:

x1 ∈ {b, c, d, e}, x2 ∈ {b, c}, x3 ∈ {a, b, c, d}, x4 ∈ {b, c},
alldifferent(x1, x2, x3, x4).

The value graph of the variables in this CSP is shown in Figure 6.2.a.

W.-J. van Hoeve, I. Katriel 183

1 x3x

b c d ea

x2 x4

a. Value graph

eb c d

x x2 x3 x41

a

b. Value graph after filtering

Figure 6.2: Graph representation for the alldifferent constraint, before and after
filtering. Bold edges represent a matching, corresponding to a solution to the alldiff-
erent constraint.

Theorem 6.11 (Régin [57]). Let X = {x1, x2, . . . , xn} be a set of variables and let G be
the value graph of X . Then (d1, . . . , dn) ∈ alldifferent(x1, . . . , xn) if and only if
M = {{x1, d1}, . . . , {xn, dn}} is a matching in G.

Proof: By definition. �

Note that the matching M in Theorem 6.11 covers X , and is therefore a maximum-
cardinality matching.

Consider again the above CSP. A solution to this CSP, i.e., to the alldifferent
constraint in the CSP, is x1 = d, x2 = b, x3 = a and x4 = c. This solution corre-
sponds to a maximum-cardinality matching in the value graph, indicated with bold edges
in Figure 6.2.a.

Corollary 6.12 (Régin [57]). Let G be the value graph of a set of variables X = {x1, x2,
. . . , xn}. The constraint alldifferent(x1, x2, . . . , xn) is arc consistent if and only if
every edge in G belongs to a matching in G covering X .

Proof: Immediate from Definition 6.9 and Theorem 6.11. �

The following Theorem identifies edges that belong to a maximum-cardinality match-
ing. The proof follows from [50]; see also [62, Theorem 16.1].

Theorem 6.13. Let G be a graph and M a maximum-cardinality matching in G. An edge
e belongs to some maximum-cardinality matching in G if and only if e ∈ M , or e is on
an even-length M -alternating path starting at an M -free vertex, or e is on an even-length
M -alternating circuit.

Proof: Let M be a maximum-cardinality matching in G = (V,E). Suppose edge e
belongs to a maximum-cardinality matching N , and e /∈ M . The graph G′ = (V,M ⊕
N) consists of even-length paths (possibly empty) and circuits with edges alternatingly
in M and N . If the paths are not of even length, either M or N can be made larger
by interchanging edges in M and N along this path (a contradiction because they are of
maximum cardinality).

184 6. Global Constraints

Conversely, let M be a maximum-cardinality matching in G and let P be an even-
length M -alternating path starting at an M -free vertex or an M -alternating circuit. Let e
be an edge such that e ∈ P \M . Then M ⊕ P is a maximum-cardinality matching that
contains e. �

Using Theorem 6.13, we construct the following arc consistency algorithm. First we
compute a maximum-cardinality matching M in the value graph G = (X,D(X), E).
This can be done in O(m

√
n) time, using the algorithm by Hopcroft and Karp [28], where

m =
∑n

i=1 |D(xi)|. Next we identify the even M -alternating paths starting at an M -free
vertex, and the even M -alternating circuits in the following way.

Define the directed bipartite graph GM = (X,D(X), A) with arc set A = {(x, d) |
x ∈ X, {x, d} ∈ M} ∪ {(d, x) | x ∈ X, {x, d} ∈ E \M}. In other words, edges in M
are oriented from X (the variables) to D(X) (the domain values) and edges not in M are
oriented in reverse direction. We first compute the strongly connected components in GM
in O(n+m) time [65]. Arcs between vertices in the same strongly connected component
belong to an even M -alternating circuit in G, and are marked as “used”. Next we search
for the arcs that belong to a directed path in GM , starting at an M -free vertex. This takes
O(m) time, using breadth-first search. Arcs belonging to such a path belong to an M -
alternating path in G starting at an M -free vertex, and are marked as “used”. For all edges
{x, d} whose corresponding arc is not marked “used” and that do not belong to M , we
update D(x) = D(x) \ {d}. Then, by Theorem 6.13, the corresponding alldifferent
constraint is arc consistent.

It follows from the above that the alldifferent constraint can be checked for
consistency, i.e., determined to contain a solution, in O(m

√
n) time and that it can be

made arc consistent in O(m) additional time.
In Figure 6.2.b we have shown the corresponding value graph for our example CSP,

after establishing arc consistency. Note that the remaining edges are either in the matching
M (for example x1d), or on an even-length M -alternating path starting at an M -free ver-
tex (for example ex1dx3a), or on an even-lengthM -alternating circuit (namely x2bx4cx2).

During the whole solution process of the CSP, constraints other than alldiffer-
ent might also be used to remove values from variable domains. In such cases, we must
update the filtering of our alldifferent constraint. As pointed out by Régin [57],
this can be done incrementally, i.e., we can make use of our current value graph and our
current maximum-cardinality matching to compute a new maximum-cardinality matching.
For example, if the domain of k variables has changed, we can recompute our matching
in O(min{km,m√n}) time, and establish arc consistency in O(m) additional time again.
The same idea has been used by Barták [4] to make the alldifferent constraint dy-
namic with respect to the addition of variables during the solution process.

6.3.2 The Global Cardinality Constraint

Figure 6.3 shows an example of a gcc and one of its solutions. Unfortunately, it is NP-hard
to filter the domains of all variables to arc consistency [53]. However, if we replace the
count variables cv1 , . . . , cvn′ by constant intervals Ei = [Li, Ui] (i = 1, . . . , n′), we can
use a generalization of the arc consistency algorithm for the alldifferent constraint
to efficiently filter the domains of all assignment variables to arc consistency [58]: We

W.-J. van Hoeve, I. Katriel 185

E1 E2 E3 E4

[1,3] [1,2] [1,1] [1,1]

D(x1) D(x2) D(x3) D(x4) D(x5) D(x6)

{1} {1,2} {1,2} {2} {2,3,4} {3,4}

v1 v2 v3 v4

x1 x2 x3 x4 x6x5

Figure 6.3: gcc example: On the left are the domains D(xi) of the assignment variables
and the fixed intervalsEi that replace the count variables. On the right is the corresponding
value graph with a solution marked by bold edges.

1

1

1

1

1

1

1

1

1

1

1

[1,2]

[1,1]

[1,1]

[1,3]
2

1

1

2

1

x1

x2

x3

x4

x5

x6

v1

v2

v3

v4

ts

[0,1]

[1,1]

a. Flow network and feasible flow

[0,1]

[0,1]

[0,1]

x1

x2

x3

x4

x5

x6

v1

v2

v3

v4

ts

[0,1]

b. Residual graph

Figure 6.4: a. The flow network for the example of Figure 6.3. The requirements of the
arcs are shown as intervals above each equal-requirement group. The numbers above the
arcs indicate a feasible flow. b. The residual capacity of an arc (vi, t) indicates how many
more variables can be assigned the value vi without exceeding its capacity and the resid-
ual capacity of an arc (t, vi) indicates how many variables which are assigned vi can be
assigned another value without going below vi’s demand.

construct the value graph G as before, orient the arcs from the variables to the values and
assign to each of them a requirement of [0, 1]. Then, we add two vertices s and t, such that
for each variable xi there is an arc with requirement [1, 1] from s to xi, and for each value
vj , there is an arc with requirement [Lj , Uj] from vj to t (see Figure 6.4.a). The following
theorem states that a solution to the gcc corresponds to an integral feasible s-t flow in this
network.

Theorem 6.14 (Régin [58]). Let C = gcc(x1, . . . , xn, cv1 , . . . , cvn′) and let G be the
augmented value graph described above. Then there is a one-to-one correspondence be-
tween the solutions to C and integral feasible s-t flows in G.

Proof: Given a solution S = (vi1 , . . . , vin , o1, . . . , on′) to the constraint, we construct
a feasible flow in G as follows. For each variable xj , f(xj , vij) = 1 and for any value
v 	= vij , f(xj , v) = 0. For each value vi, we set f(vi, t) = oi and for each variable xj we

186 6. Global Constraints

set f(s, xj) = 1. It is not hard to verify that the capacities of the arcs are respected by f
and that flow conservation holds, so f is an integral feasible s-t flow.

Conversely, let f be a feasible flow in G. Then by the demand and capacity require-
ment, for every arc a from a variable vertex to a value vertex, f(a) ∈ {0, 1}. By flow
conservation, and by our selection of capacities for the arcs from s to the variable vertex,
we know that every variable vertex is incident to exactly one variable-value arc that carries
flow 1.

Let S = (vi1 , . . . , vin , o1, . . . , on′) be a tuple such that for each 1 ≤ j ≤ n, the arc
(xj , vij) is the unique arc such that f(xj , vij) = 1 and for each 1 ≤ j′ ≤ n′, oj′ is the
number of occurrences of the value vj′ in (vi1 , . . . , vin). To see that S is a solution to the
constraint, it remains to show that every variable is assigned a value in its domain. For
the assignment variables this is obvious: If a variable-value arc carries flow it must exist
in the graph, and this can hold only when the value is in the domain of the variable. For
the count variables, this holds, again, by flow conservation and by our choice of capacities
for the arcs in the network: The value of the flow on an arc from the value vertex vi to t
is, by construction of the flow network, some value fi in Ei. By flow conservation, the
amount of flow entering this value vertex is also fi, and since flow can only enter through
variable-value arcs, we get that the number of variables that are assigned the value vi is fi.

�

We say that the arc a belongs to a flow f if f(a) > 0. Once again, we conclude that:

Corollary 6.15 (Régin [58]). Let G be the value graph of a set of variablesX = {x1, . . . ,
xn}, augmented into a flow network as described above. The constraint gcc(x1, . . . , xn,
E1, . . . , En′), where each Ei is a fixed interval, is arc consistent if and only if every
variable-value arc in G belongs to some feasible integral flow in G.

The following theorem characterizes the arcs of G that belong to feasible flows, in
terms of the residual graph of G with respect to a given flow (see Figure 6.4.b). Its proof
is along the same lines as the proof of Theorem 6.13 and belongs to the folklore of flow
theory.

Theorem 6.16. Let G be a graph and f a feasible flow in G. An arc belongs to some
feasible flow in G if and only if it belongs to f or both of its endpoints belong to the same
SCC of the residual graph of G with respect to f .

Therefore, given a gcc whose count variables are fixed intervals, we can filter the do-
mains of the assignment variables to arc consistency by an algorithm that follows the same
approach as the arc consistency algorithm for the alldifferent constraint, except that
the maximum cardinality matching computation is replaced by a feasible flow computa-
tion. If we were to use a generic flow algorithm such as Algorithm 6.1, the running time
deteriorates to O(mn). However, Quimper et al. [53] recently showed that the structure of
the value graph can be exploited to compute the flow inO(m

√
n) time, using an adaptation

of the Hopcroft-Karp algorithm [28] for maximum cardinality bipartite matchings.

6.3.3 The Regular Language Membership Constraint

A filtering algorithm for the regular constraint, establishing arc consistency, was pre-
sented by Pesant [48]. It makes use of a specific digraph representation of the DFA, which

W.-J. van Hoeve, I. Katriel 187

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

x1 x2 x3 x4

V1

a

c

c c c

a

b b

b

a a

a

V5V4V3V2

a a

b

b

a. Graph representation

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q0

q3

q4

q1

x1 x2 x3 x4

V1

q2

a

c

c c c

a

b b

b

a a

a

V5V4V3V2

b. Graph after filtering

Figure 6.5: Graph representation for the regular constraint, before and after filtering. A
double circle represents a final state. Arcs outgoing from a vertex which is not reachable
from q10 were omitted for clarity.

has similarities to dynamic programming.
Let M = (Q,Σ, δ, q0, F) be a DFA and let X = {x1, . . . , xn} be a set of vari-

ables with D(xi) ⊆ Σ for each 1 ≤ i ≤ n. We construct the digraph R representing
regular(X,M) as follows. The vertex set V consists of n + 1 duplicates of the set of
states of the DFA:

V = V1 ∪ V2 ∪ · · · ∪ Vn+1,

where

∀1≤i≤n+1Vi = {qik | qk ∈ Q}.

The arc set A of the graph represents the transition function δ of the DFA:

A = A1 ∪A2 ∪ · · · ∪An,

where

∀1≤i≤nAi = {(qik, qi+1
l) | δ(qk, d) = ql for d ∈ D(xi)}.

Figure 6.5.a shows the graphR corresponding to the DFA in Figure 6.1.

Theorem 6.17 (Pesant [48]). A solution to regular(X,M) corresponds to a directed
path inR from q10 in V1 to a final state in Vn+1.

Proof: Follows immediately from the construction ofR and the definition of the regu-
lar constraint. �

We apply Theorem 6.17 to establish arc consistency for the regular constraint:

188 6. Global Constraints

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q2

q0

q3

q4

q1

q0

q3

q4

q1

x1 x2 x3 x4

V1

q2

a

c

c c c

a

b

a

V5V4V3V2

Figure 6.6: Updated graph after the removal of element a from D(x3).

Corollary 6.18 (Pesant [48]). Let M = (Q,Σ, δ, q0, F) be a DFA and let X = {x1, . . . ,
xn} be a set of variables withD(xi) ⊆ Σ for 1 ≤ i ≤ n. The constraint regular(X,M)
is arc consistent if and only if for all xi ∈ X and d ∈ D(xi), there exists an arc a =
(qik, q

i+1
l) such that δ(qk, d) = ql and a belongs to a path from q10 to a final state in Vn+1.

Consider again the example presented in Section 6.2.7, i.e.,

x1 ∈ {a, b, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, b, c},
regular(x1, x2, x3, x4,M).

The CSP is not arc consistent. For example, value b can never be assigned to x1. If we
make the CSP arc consistent we obtain

x1 ∈ {a, c}, x2 ∈ {a, b, c}, x3 ∈ {a, b, c}, x4 ∈ {a, c},
regular(x1, x2, x3, x4,M).

In Figure 6.5.b, the graph R corresponding to this example is shown after establishing arc
consistency.

Corollary 6.18 implies the following filtering algorithm. First, we construct the graph
R, referred to in [48] as the “forward” phase. During this phase we omit all arcs that
are not on a directed path starting in q10 . Then we remove all arcs that are not on a path
from q10 to a final state in Vn+1. This can be done in a “backward” phase, starting from
vertices in Vn+1 which are not final states. The total time complexity of this algorithm is
dominated by the time to construct the graph, which is in O(n |Σ| |Q|). This is also the
space complexity of the algorithm.

Note that the algorithm can be made incremental. Whenever the domain of a variable
has changed, we remove the corresponding arc from the graph. Then we simply perform a
forward and backward phase on the affected parts of the graph, while leaving the rest un-
changed. An example is given in Figure 6.6. It shows the updated graph after the removal
of element b from D(x2). As a result, a is removed from D(x3).

W.-J. van Hoeve, I. Katriel 189

It should be noted that this algorithm resembles the filtering algorithm for the knap-
sack constraint proposed by Trick [66]. Trick’s algorithm applies dynamic programming
techniques to establish arc consistency on the knapsack constraint. The same algorithm
can be applied to make the sum constraint arc consistent. It has a pseudo-polynomial run-
ning time however, as its complexity depends on the actual values of the domain elements
of the variable which represents the sum.

6.4 Optimization Constraints

In this section we consider global constraints in the context of constraint optimization
problems, or COPs. Recall that a COP contains an objective function to be optimized,
and the goal is to find a solution that minimizes or maximizes its value. An optimization
constraint is a constraint that is linked to the objective function of the problem at hand.
For example, the cost gcc is an optimization constraint. Every solution to it induces a
“cost” that is represented by a variable z. The assumption is that z appears in the objective
function, and is to be minimized. Whenever a solution to the COP is found, we obtain an
upper bound for the variable z. Then the domain of z is filtered accordingly, and from that
point on, we will only be searching for improving solutions.

Traditionally, COPs were solved in the following way. Assume that the objective func-
tion is represented by a variable z, which is to be minimized. If we find a solution to the
problem, we compute its corresponding objective value opt and add the constraint z < opt .
In that way, we search only for improving solutions. By reasoning on the domains of the
variables present in the objective function, we may even detect sub-optimality before in-
stantiating all variables, and backtrack. A major deficiency of this method, however, is that
there is no inference from the domain of z to the domains of the other variables. Optimiza-
tion constraints do take this two-way inference into account. They are global constraints,
i.e., they specify a complex relation on a set of variables, but in addition they are also de-
fined on a variable such as z above, which represents the value of the best solution found
so far. Since we are only interested in improving solutions, a minimization (maximization)
constraint is satisfied only when the value of the solution is at most (at least) z.

In this section we present complete filtering algorithms for two types of optimization
constraints. First, we consider the cost gcc, which embodies the natural extension of
global constraints to optimization constraints. Next, we consider the soft alldiffer-
ent constraint, which can be applied to over-constrained and preference-based problems.
In Section 6.5.2 we discuss partial filtering methods for optimization constraints.

6.4.1 The Global Cardinality Constraint with Costs

The filtering algorithm for the global cardinality constraint with costs (the cost gcc) is
an extension of the filtering algorithm of the gcc without costs. As in Section 6.3.2, we
replace the count variables cv1 , . . . , cvn′ by constant intervals E1, . . . , En′ and filter the
domains of the assignment variables.

Let X = {x1, . . . , xn}, E = {E1, . . . , En′} and let cost gcc(X,E, z, w) be the
constraint under consideration in this section. We extend the graph G of Section 6.3.2
by applying a “weight” function to its arcs. The weight of arc (xi, d) is w(xi, d) for all
1 ≤ i ≤ n and d ∈ D(xi). To all other arcs we assign a weight 0. The filtering algorithm
is based on finding a flow in the weighted version of G, which we denote by CG.

190 6. Global Constraints

Theorem 6.19 (Régin [59]). The constraint cost gcc(X,E, z, w) is arc consistent if
and only if

i) for all x ∈ X and d ∈ D(x) there exists an integral feasible s-t flow f in CG with
f(x, d) = 1 and weight(f) ≤ maxD(z), and

ii) minD(z) ≥ weight(f) for some integral feasible s-t flow f in CG.

Proof: If we ignore the costs, we know from the gcc case that there is a one-to-one
correspondence between integral feasible s-t flows and solutions to the constraint. By our
choice of weights for the arcs, the weight of a flow is equal to the cost of the corresponding
solution. Hence, a flow corresponds to a solution only if its weight is at most maxD(z)
and every value in D(z) (in particular, minD(z)) must be larger than the weight of at least
one feasible integral s-t flow. �

Theorem 6.19 gives rise to the following filtering algorithm for the cost gcc. We
first build the digraph CG that represents the constraint. Then, for every variable-value pair
(xi, d) we check whether the pair belongs to a solution, i.e., whether there exists a flow in
CG that represents a solution containing xi = d, with cost at most maxD(z). If this is not
the case, we can remove d from D(xi). Finally, we update minD(z) to be the maximum
between its current value and the weight of a minimum-weight s-t flow of value n in CG.

By applying the successive shortest paths algorithm described in Section 6.1, we can
compute a minimum-weight flow in CG in O(n(m+n logn)) time. Hence, the time com-
plexity of this filtering algorithm is O(n2d(m+n logn)) where d is the maximum domain
size. However, we can improve the efficiency by applying Theorem 6.2, as proposed by
Régin [59, 56].

The resulting, more efficient, algorithm is as follows. We first compute an initial
minimum-weight flow f in CG representing a solution. Then for each arc a = (u, v)
representing (xi, d) with f(a) = 0, we compute a minimum-weight directed path P from
v to u in the residual graph CGf . Together with a, P forms a directed circuit. Because
f represents a solution, it is an integer flow. This means that we can reroute one unit of
flow along the circuit and obtain a flow f ′. Then cost(f ′) = cost(f) + cost(P), following
Theorem 6.2. If cost(f ′) > maxD(z) we remove d from the domain of xi.

An initial solution is still computed in O(n(m + n log n)) time, but we can reduce
the time complexity to establish arc consistency. A first attempt is to compute for all arcs
(xi, d) with f(xi, d) = 0 a shortest path in the residual graph. That would yield a time
complexityO((m−n)(m+n logn)). We can do better, however, see [59, 56]. We compute
for each (variable) vertex in X the distance to all other vertices in O(m + n logn) time.
Alternatively, this may be done for all (value) vertices in D(X) instead. This gives us the
lengths of all paths in O(Δ(m+ n logn)) time, where Δ = min(n, |D(X)|).

In addition, this algorithm is incremental. When the domain of k variables has changed,
it takes O(k(m + n logn)) time to recompute a feasible flow, starting from the previous
flow. Establishing arc consistency is done again in O(Δ(m+ n logn)) additional time.

Note that, by definition (6.7), we don’t restrict all values ofD(z) to belong to a solution.
This would however be the case if we had defined

∑n
i=1 w(xi, di) = d in (6.7). The reason

for omitting this additional restriction on z is that it makes the task of establishing arc

W.-J. van Hoeve, I. Katriel 191

consistency NP-hard. This follows from a reduction from the “subset sum” problem (see
[20]). Definition (6.7) does allow an efficient filtering algorithm, as we have seen above. In
a sense, one could argue that while establishing arc consistency, the algorithm mimics the
establishment of bound consistency (see Section 6.5.1) with respect to the cost variable z.

6.4.2 The Soft Alldifferent Constraint

In this section we present filtering algorithms for the soft alldifferent constraint.
Each of the violation measures μvar and μdec gives rise to a different arc consistency prob-
lem, and we describe an algorithm for each of them.

Variable-based violation measure

Recall that the variable-based violation measure μvar counts how many variables need to
change their values in order for the constraint to be satisfied.

Theorem 6.20 (Petit et al. [51]). Let G be the value graph of the variables x1, . . . , xn
and letM be a maximum-cardinality matching in G. The constraint soft alldiffer-
ent(x1, . . . , xn, z, μvar) is arc consistent if and only if one of the following conditions
holds

i) minD(z) ≤ n− |M | < maxD(z), or

ii) minD(z) ≤ n − |M | = maxD(z) and all edges in G belong to a matching in G
with cardinality |M |.

Proof: We can assign |M | variables to a different value. Thus we need to change the
value of at least n − |M | variables, i.e., μvar ≥ n − |M |. Given an assignment with min-
imum violation, every change in this assignment can only increase μvar by 1. Hence, if
minD(z) ≤ n − |M | < maxD(z) all domain values belong to a solution. On the other
hand, if n−|M | = maxD(z), only those edges that belong to a matching with cardinality
|M | belong to a solution. �

The constraint soft alldifferent(x1, . . . , xn, z, μvar) can be filtered to arc con-
sistency by an algorithm which is similar to the one in Section 6.3.1. First we com-
pute a maximum-cardinality matching M in the value graph G in O(m

√
n) time, where

m =
∑n
i=1 |D(xi)|. If n− |M | > maxD(z), the constraint is inconsistent. Otherwise, if

n− |M | = maxD(z), we identify all edges that belong to a maximum-cardinality match-
ing. Here we apply Theorem 6.13, i.e., we identify the even M -alternating paths starting
at an M -free vertex, and the even M -alternating circuits. This takes O(m) time, as we
saw in Section 6.3.1. Note that in this case vertices in X may also be M -free. Finally, we
update minD(z)← max{minD(z), n− |M |} if minD(z) < n− |M |.

Decomposition-based violation measure

Recall that the decomposition-based violation measure counts the number of constraints in
the binary decomposition (i.e., the set of pairwise not-equal constraints) that are violated.

192 6. Global Constraints

x2

1x

x3
=0w

=1w
=2w
=3w

=1
w

=0
w

=2
w

=0
w

x4

ts

a

b

c

[0,1]

1

1

1

1

1

1

1

1
1

1

1
1

[0,1]

[1,1]

a. Flow network and feasible flow

x2

1x

x3
=0w

=1w
=2w
=3w

=2
w

=0
w

=0
w

=−1
w

s

x4

t

a

b

c

[0,1] [0,1]

b. Residual graph

Figure 6.7: Graph representation for the soft alldifferent constraint. The require-
ments of the arcs are shown as intervals above each equal-requirement group. Unless
indicated otherwise, the weight w of an arc is 0. The numbers next to the arcs describe a
feasible flow with weight 1.

Once again, we construct a directed graph S = (V,A), this time with

V = {s, t} ∪X ∪D(X) and A = AX ∪As ∪At

where X = {x1, . . . , xn} and

AX = {(xi, d) | d ∈ D(xi)},
As = {(s, xi) | 1 ≤ i ≤ n},
At = {(d, t) | d ∈ D(xi), 1 ≤ i ≤ n}.

Note that At contains parallel arcs if two or more variables share a domain value. If there
are k parallel arcs (d, t) between some d ∈ D(X) and t, we distinguish them by numbering
the arcs as (d, t)0, (d, t)1, . . . , (d, t)k−1 in a fixed but arbitrary order.

To the arcs in As we assign a requirement [1, 1] while the arcs in A \As have require-
ment [0, 1]. We also assign a “cost” function w to the arcs. If a ∈ As∪AX , thenw(a) = 0.
If a ∈ At, such that a = (d, t)i for some d ∈ D(X) and integer i, the value of w(a) = i.

Figure 6.7.a shows the graph S corresponding to the soft alldifferent example
presented in Section 6.2.9.

Theorem 6.21 (van Hoeve [26]). The constraint soft alldifferent(x1, . . . , xn, z,
μdec) is arc consistent if and only if

i) every arc a ∈ AX belongs to some feasible integral flow f in S with weight(f) ≤
maxD(z), and

ii) minD(z) ≥ weight(f) for a minimum-weight s-t flow f in S.

Proof: Similar to the proof of Theorem 6.19. The weights on the arcs in At are chosen
such that the weight of a minimum-cost flow is exactly the smallest possible value of μdec.
Namely, the first unit of flow entering a value d ∈ D(X) causes no violation and chooses
the outgoing arc with weight 0. The k-th unit of flow that enters d causes k − 1 violations

W.-J. van Hoeve, I. Katriel 193

and chooses the outgoing arc with weight k − 1. �

Once again, we can filter the constraint soft alldifferent(x1, . . . , xn, z, μdec)
to arc consistency by an algorithm which is similar to the one in Section 6.3.1. First we
compute a minimum-cost flow f in S. We apply the successive shortest paths algorithm,
i.e., we need to compute n shortest paths in the residual graph. Because there are non-
zero weights only on arcs in At, each shortest path computation takes O(m) time, using a
breadth-first search. Hence we can find f in O(nm) time. If weight(f) > maxD(z), we
know that the constraint is inconsistent.

To identify the arcs a = (xi, d) ∈ AX that belong to a feasible integral flow g with
weight(g) ≤ maxD(z), we again apply Theorem 6.2. Thus, we search for a shortest d-xi
path in Sf that together with a forms a directed circuitC. We can compute all such shortest
paths in O(m) time, using again the fact that only arcs a ∈ At contribute to the cost of
such paths (more details are given in [26]).

In [27], the above algorithm was extended to other soft global constraints, such as the
soft regular constraint and the soft gcc constraint. The result for the soft regular
constraint was obtained independently in [5].

6.5 Partial Filtering Algorithms

The algorithms we have presented so far achieve perfect filtering: The removal of any
additional value from the domain of any variable would change the solution set of the
constraint. Sometimes, achieving this utopian goal is too costly, even intractable, and it
makes sense to compromise on a weaker level of filtering. This section describes some of
the approaches that have been suggested for partial filtering of global constraints.

6.5.1 Bound Consistency

Assume that the elements of the variable domains are drawn from a total order (e.g., the
integers) and that the domain of each variable xi is an interval of this total order. Thus,
a domain D(x) = [L(x), U(x)] is specified by a lower bound and an upper bound on the
values that variable x can take.

Definition 6.22 (Bound consistency). Let C be a constraint on the variables x1, . . . , xk
with respective interval domains D(x1), . . . , D(xk). We say that C is bound consistent if
for every 1 ≤ i ≤ k, there exists a tuple (d1, . . . , dk) ∈ C such that di = L(xi) and there
exists a tuple (e1, . . . , ek) ∈ C such that ei = U(xi).

Computing bound consistency, then, amounts to shrinking the domain intervals as
much as possible without losing any solutions.

Bound consistency for alldifferent and gcc

The assumption that the domain of each variable is an interval of the values, implies that
the value graph is convex:

194 6. Global Constraints

Definition 6.23 (Convex graph). A bipartite graphG = (X,Y,E) is convex if the vertices
of Y can be assigned distinct integers from [1, |Y |] such that for every vertex x ∈ X , the
numbers assigned to its neighbors form a subinterval of [1, |Y |].

Algorithms for computing bound consistency exploit this property of the value graph
(either directly or implicitly). Naturally, filtering algorithms for alldifferent ap-
peared first and the generalizations to gcc followed. Two parallel approaches were ex-
plored (see Table 6.1). The first is an adaption of the matching/flow method described
above and the second is based on Hall’s marriage theorem.

Theorem 6.24 (Hall’s Marriage Theorem [22]). A bipartite graph G = (X,Y,E) has a
matching covering X if and only if for any subset X ′ of X , we have that |D(X ′)| ≥ |X ′|.

In our terminology: there is a solution to an alldifferent constraint if and only
if for every subset of the variables, the union of their domains contains enough values to
match each of them with a different value. This theorem implies that if there is a set S of
k variables whose domains are contained in a size-k interval I of values, then the values
of I can be safely removed from the domain of any variable outside of S. It also implies
that this filtering step suffices: If it cannot be applied, the alldifferent constraint is
bound consistent.
As we saw, the flow-based approach yields both arc consistency and bound consistency
algorithms. The second approach, using Hall’s marriage theorem, was first applied by
Leconte [41] who obtained an algorithm that computes range consistency, a filtering level
which is stronger than bound consistency but weaker than arc consistency. Subsequently,
Hall’s theorem was also used in bound consistency algorithms.

Hall’s Theorem Matchings/Flows
bound consistency arc consistency bound consistency

alldifferent Puget [52], Régin [57] Mehlhorn and Thiel [44]
López-Ortiz et al. [43]

gcc Quimper et al. [54] Régin [58] Katriel and Thiel [35]

Table 6.1: The two approaches for filtering of alldifferent and gcc constraints.

In the following, n denotes the number of variables, n′ denotes the number of values in
the union of their domains and m denotes the sum of the cardinalities of the domains (so
the value graph has n+ n′ vertices and m edges). Since m may be as large as nn′, bound
consistency algorithms typically do not construct the graph explicitly.

Puget designed the first bound consistency algorithm for alldifferent, which is
based on Hall’s theorem and runs in O(n logn) time [52]. Mehlhorn and Thiel [44] later
showed that since the matching and SCC computations of Régin’s algorithm [57] can be
performed faster on convex graphs compared to general graphs, it is possible to achieve
bound consistency for alldifferent using the matching approach in O(n + n′) time
plus the time required to sort the variables according to the endpoints of their domains.
Katriel and Thiel [35] later generalized this algorithm for the gcc case. Simultaneously,
Quimper et al. [54] discovered an alternative bound consistency algorithm for gcc, based
on the Hall interval approach. The latter algorithm narrows the domains of only the assign-

W.-J. van Hoeve, I. Katriel 195

ment variables, while the former narrows the domains of the assignment variables as well
as the count variables, to bound consistency.

As mentioned in Section 6.3.2, it is NP-hard to filter all variables to arc consistency.
It is therefore significant that we can achieve at least some filtering for the domains of the
count variables.

Glover’s algorithm

In order to demonstrate how much simpler convex bipartite graphs are from general bi-
partite graphs, we describe a simple, greedy algorithm that finds a maximum cardinality
matching in a convex value graph. Glover [21] was the first who suggested this algo-
rithm as an O(nn′)-time solution. Using sophisticated data structures, the complexity was
later reduced to O(n′ + nα(n)) by Lipski and Preparata [42] and finally to O(n′ + n) by
Gabow and Tarjan [19]. The latter solutions assume that the values are integers in the in-
terval [1, n′] (which can be achieved in O(n′ logn′) time by sorting and relabeling them).
We will restrict our description to a simple implementation of Glover’s algorithm, which
uses only a priority queue and does not require that the values are in [1, n′]. This imple-
mentation runs in O(n′ + n logn) time. It is much faster than the best known solution for
general value graphs which, recall, runs in O(m

√
n) time [28].

The algorithm traverses the value vertices from smaller to larger and greedily decides,
for each value vertex, whether it is to be matched and if so, with which variable vertex.
For this purpose, it maintains a priority queue that contains variable vertices which are
candidates for matching, sorted by the upper endpoints of their domains. When considering
the value vertex vi, the algorithm first inserts into the queue all variable vertices whose
domains begin at vi; they were not candidates for matching before, but they are now.

Next, there are two cases to consider. If the priority queue is empty, vi will remain
unmatched. Otherwise, the minimum priority variable vertex xj is extracted, and there are
two subcases. If xj’s priority is at least vi, then it is matched with vi. Otherwise, it should
have been matched earlier, and the algorithm terminates and reports that there is no solution
(the graph does not have a matching covering X , or, equivalently, the alldifferent
constraint does not have a solution).

The intuition behind this algorithm is that it always matches the candidate variable ver-
tex whose domain ends earliest, so when xj is matched, any candidate vertex that remains
unmatched can be matched with at least as many value vertices as xj , but perhaps more.
For a formal proof of correctness see [21] or [44].

6.5.2 Reduced-Cost Based Filtering

Next we consider a partial filtering method for optimization constraints of the following
type. Let X = {x1, . . . , xn} be a set of variables with corresponding finite domains
D(x1), . . . , D(xn). We assume that each pair (xi, j) with j ∈ D(xi) induces a “cost”
cij . We now extend any global constraint C on X to an optimization constraint opt C by
introducing a cost variable z and defining

opt C(x1, . . . , xn, z, c) = {(d1, . . . , dn, d) |
(d1, . . . , dn) ∈ C(x1, . . . , xn),
∀i di ∈ D(xi), d ∈ D(z),

∑n
i=1 cidi

≤ d}.

196 6. Global Constraints

where we assume that z is to be minimized. For example, the cost gcc is a particular
instance of such constraint. We have seen that its arc consistency algorithm is efficient
because of its correspondence with a minimum-weight flow. For many other optimization
constraints of this type, however, such correspondence does not exist, or is difficult to
identify. In such situations we may be able to apply reduced-cost based filtering instead,
using a linear programming relaxation of the optimization constraint. This method was
first introduced in this form by Focacci et al. [17], although the technique is part of the
linear programming folklore under the name variable fixing. Note that in general, such a
filtering algorithm does not establish arc consistency.

In order to apply reduced-cost based filtering, we need to infer a linear programming
relaxation from the optimization constraint. First, we introduce binary variables yij for all
i ∈ {1, . . . , n} and j ∈ D(xi), such that

xi = j ⇔ yij = 1,
xi 	= j ⇔ yij = 0.

(6.9)

To ensure that each variable xi is assigned to a single value in its domain we state the linear
constraints

∑

j∈D(xi)

yij = 1 for i = 1, . . . , n.

The linear objective function is stated as
n
∑

i=1

∑

j∈D(xi)

cijyij .

The next, most difficult, task is to rewrite (a part of) the optimization constraint as a system
of linear constraints using the binary variables. This is problem dependent, and no general
recipe exists. However, for many problems such descriptions are known, see, e.g., [55].
For example, for an alldifferent constraint we may add the linear constraints

n
∑

i=1

yij ≤ 1 for all j ∈
n
⋃

i=1

D(xi)

to ensure that every domain value is assigned to at most one variable.
Finally, in order to obtain a linear programming relaxation, we remove the integrality

constraint on the binary variables and state

0 ≤ yij ≤ 1 for i ∈ {1, . . . , n}, j ∈ D(xi).

When we solve this linear programming relaxation to optimality, we obtain a lower
bound on z, and reduced-costs c. Recall from Section 6.1.3 that reduced-costs estimate the
increase of the objective function when we force a variable into the solution. Hence, if we
enforce the assignment xi = j, the objective function value will increase by at least cij .
Let z∗ be the objective value of the current optimal solution of the linear program. Then
we apply the following filtering rule:

if z∗ + cij > maxD(z) then D(xi)← D(xi) \ {j}.
A huge advantage of this approach is that it can be applied very efficiently. Namely,
reduced-costs are obtained automatically when solving a linear program. Hence, the filter-
ing rule can be applied without additional computational costs.

W.-J. van Hoeve, I. Katriel 197

6.5.3 Intractable Global Constraints

As already noted, global constraints serve to break up the CSP into a conjunction of simpler
CSPs, each of which can be filtered efficiently. We show below that if it is NP-hard to
determine whether a constraint has a solution, it is also NP-hard to compute arc consistency
for the constraint. The following is a special case of a Theorem due to Bessière et al. [9].

Theorem 6.25. Let C be a constraint. If there is a polynomial-time algorithm that com-
putes arc consistency for C then there is a polynomial-time algorithm that finds a single
solution to C.

Proof: Assume that we have an algorithm A that prunes the variable domains to arc
consistency in polynomial time. Then we can find a solution to the constraint as follows:

1. Use algorithm A to compute arc consistency. The constraint has a solution if and
only if all domains are now non-empty.

2. Repeat until a solution is found:

a) Let x be a variable such that |D(x)| > 1 and let v ∈ D(x).

b) Set D(x)← {v}
c) Use algorithm A to compute arc consistency.

In each iteration the value of one variable is determined, so the total number of itera-
tions is at most equal to the number of variables and the running time of the algorithm is
polynomial. �

The converse of Theorem 6.25 does not hold; there are constraints for which arc consis-
tency is NP-hard while checking feasibility is not (see, e.g., [64]). A weaker version which
does hold is stated below. The crucial point to note is that there are constraints for which
it is possible to efficiently check whether the constraint has a solution, but it is NP-hard to
check whether it has a solution in which a certain variable is assigned a specific value in
its domain.

Theorem 6.26. Let C be a constraint defined on the variables X = {x1, . . . , xk}. If there
is an algorithm A that, for any xi ∈ X and d ∈ D(xi), determines in polynomial time
whether there is a solution to the constraint C ∧ (xi ← d), then there is a polynomial-time
algorithm that computes arc consistency for C.

Proof: For every variable xi and value d ∈ D(xi), use algorithm A to check if there is a
solution when xi ← d and remove d from D(xi) otherwise. �

A consequence of Theorem 6.25 is that there is a very large class of practically useful
global constraints for which we probably cannot achieve perfect filtering. In some cases,
a possible remedy is to compromise on bound consistency; as already mentioned, bound
consistency can be computed in almost-linear time for the gcc, while arc consistency, for
the assignment and count variables, is NP-hard.

198 6. Global Constraints

Filtering for the cumulative constraint

Another method to cope with NP-hardness is to relax the constraint. That is, to transform
our NP-hard constraint C into a constraint C ′ such that C ′ can be efficiently filtered to a
guaranteed consistency level (e.g., arc consistency or bound consistency) and C ⊂ C ′, i.e.,
every solution to C is also a solution to C ′. For example, the reduced-cost based filtering
method described above applies a linear programming relaxation of the constraint. Here
we will demonstrate this approach by describing a filtering algorithm for a relaxation of
the cumulative3 constraint [45]. We assume for simplicity that the capacity of the
resource and the capacity requirements and processing times of the tasks are fixed, i.e.,
|D(C)| = 1 and |D(ci)| = |D(pi)| = 1 for all i. The filtering task is to increase the
minimum start times and decrease the maximum completion times of the tasks, without
losing any solutions to the constraint. We will describe the algorithm that tightens the
earliest start times; the solution for the latest completion times is symmetric. The relaxation
of the cumulative constraint will be defined below, but first we wish to build up the
intuition behind the definition.

Let the energy of task ti be ei = cipi; it represents the total capacity of the resource
that is consumed by the task. For a set Ω ⊆ T of tasks, let rΩ be the earliest release time
of a task in Ω, dΩ the latest deadline of a task in Ω and eΩ the sum of the energies of tasks
in Ω. Clearly, if there is a subset Ω ⊆ T of the tasks such that eΩ > C(dΩ − rΩ), the
problem is infeasible: Between time rΩ and dΩ, the tasks need more of the resource than
is available.

Now, let Ω be a set of tasks and ti /∈ Ω another task such that eΩ∪{ti} > C(dΩ −
rΩ∪{ti}). If ti is scheduled such that it completes executing before any task in Ω, then it
completes before dΩ, so the total energy of the tasks scheduled in the interval [rΩ∪{ti}, dΩ]
is above the capacity of the resource, a contradiction. So ti completes execution last among
the tasks in Ω ∪ {ti}.

Once we have found such a pair (Ω, ti), we can use it to adjust the starting time of ti as
follows. For each subset Θ ⊆ Ω, we examine the time interval I = [rΘ, dΘ] and determine
what is the earliest time in this interval at which ti can start executing. Since we know that
ti cannot complete before any task in Θ, we get that if ti is scheduled at time unit u ∈ I ,
then in the interval [u, dΘ] the schedule allocates only C − ci capacity units of the resource
for tasks in Θ.

Conceptually, split the resource into two parts, with capacities C1 = C−ci and C2 = ci.
Assume that the schedule placed ti on the second part and that ti was the last task scheduled
there. Clearly, on the first part we can schedule at most (C − ci)(dΘ − rΘ) units of energy
in the time interval I . This means that at least rest(Θ, ci) = eΘ− (C − ci)(dΘ− rΘ) units
of energy must be scheduled in this time interval on the second part just to schedule all the
tasks of Θ. Even if all of this energy is scheduled as early as possible, it takes up at least
the first 1

ci
rest(Θ, ci) time units of the second part and therefore ti cannot begin before

time unit rΘ + 1
ci

rest(Θ, ci).
An algorithm that performs all such adjustments to the starting times of tasks is called

an edge-finding algorithm (because the algorithm discovers edges in the precedence-graph
of the completion times of the tasks). The basic idea of such an algorithm is to efficiently

3The cumulative constraint is, in general, NP-hard. Recently, Artiouchine and Baptiste [3] developed a
bound consistency algorithm for the special case in which all processing times are equal.

W.-J. van Hoeve, I. Katriel 199

identify a small number of pairs (Θ, ti) for which the rule described above needs to be
applied.

Edge-finding algorithms were first developed for the disjunctive case, which is much
simpler than the most general case. The fastest algorithm runs in O(n logn) time [12].
For the cumulative case, the fastest known solution is by Mercier and Van Hentenryck [45]
and runs in O(kn2) where k is the number of different capacity requirements of the tasks
(a previously developed O(n2)-time solution was shown to be incomplete).

After giving an outline of the algorithm, we are ready to define the constraint that it
filters, i.e., the relaxation of the cumulative constraint. Since edge-finding algorithms
existed in the scheduling literature before cumulative was a global constraint, this def-
inition may seem opportunistic: We define the problem to be whatever we already know
how to solve. Nevertheless, scheduling is an important application in constraint program-
ming so we believe that the edge-finding algorithm deserves a description in constraint
programming terminology: It is a bound consistency algorithm for the relaxation of the
cumulative constraint (where the processing times and capacities of the tasks, as well
as the capacity of the resource are fixed) which is satisfied if for every task ti

min{D(ri)} ≥ max max rΘ + � 1

ci
rest(Θ, ci)�

Ω ⊆ T Θ ⊆ Ω

i /∈ Ω rest(Θ, ci)

α(Ω, i)

where α(Ω, i)⇔
(

C(dΩ − rΩ∪{i}) < eΩ∪{i})
)

.

Intractable optimization constraints

Sellmann [63, 64] suggested two forms of partial consistency, which are specifically mo-
tivated by NP-hard optimization constraints. The first is an adaptation of relaxed con-
sistency [64] to optimization constraints. That is, we transform the constraint C into a
constraint C ′ such that C ⊆ C ′ and C ′ can be filtered efficiently. The idea is similar to
the relaxation of the cumulative constraint described above, except that here C and
C ′ are both optimization constraints. The reduced-cost based filtering based on a linear
relaxation, which was described in Section 6.5.2, also employs this idea.

Sellmann demonstrates this technique by way of the shorter-path constraint, which is
defined on a digraph G, a source vertex s and a target vertex t inG, an upper bound W and
a variable P whose domain is all subsets of arcs of G (see Section 6.6.1). The constraint
is satisfied if P is a set of arcs that form a path in G from s to t whose length is at most
W . Since it is NP-hard to determine whether there is a path from s to t that uses a certain
arc (while visiting each node at most once), it is NP-hard to compute bound consistency
for the set variables P . However, it is easy to determine whether there is an “almost-path”
from s to t that uses the arc (u, v) and whose length is at most the upper bound: Find the
length of the shortest path from s to u and the length of the shortest path from v to t. The
concatenation of these two paths through the arc (u, v) is a walk from s to t that visits
every vertex at most twice. The relaxed shorter-path constraint, then, excludes from the set
assigned to P any arc that does not belong to a path or almost-path from s to t in G whose
length is at most W .

200 6. Global Constraints

Sellmann’s second form of partial consistency is termed approximated consistency [63].
Here, the idea is to use efficient approximation algorithms for NP-hard problems as com-
ponents of the filtering algorithm. Recall that an α-approximation algorithm for a mini-
mization (maximization) problem P is a polynomial-time algorithm A such that for every
instance x of P , A finds a solution whose value is at most (1 + ε) · Opt(P, x) (at least
(1 − ε) · Opt(P, x)), where Opt(P, x) is the value of the optimal solution to instance x
of problem P . Clearly, the smaller the value of α, the better the quality of approximation.
1+α (resp. 1−α) is referred to as the approximation factor achieved by algorithm A. For
more details, see any text on approximation algorithms, such as [25, 68].

For a minimization (maximization) constraint that is defined on a variable z which
holds the upper (lower) bound on the value of a solution, we say that C is ε-arc consistent
if every value in the domain of every variable participates in a solution of value at most
z + εOpt (at least z − εOpt). The motivation behind this definition is that approximation
algorithms allow us to efficiently identify problem instances whose optimal solutions are
much better or much worse than the best solution found so far, but may give inconclusive
replies for instances which are of comparable quality. In such cases, approximate consis-
tency allows one-sided errors: we keep the respective value in the variable domain, to be
on the safe side.

6.6 Global Variables

In recent years, some of the work of global constraints, i.e., that of providing more struc-
tured information to the solver and simplifying the syntax of CSPs, is taken up by complex
variable types, which we will collectively refer to as global variables. Our focus in this
section is on constraints defined on global variables and the design of filtering algorithms
for such constraints. We will discuss two important examples: sets and graphs. Chapter 17,
“Beyond Finite Domains”, is devoted to the topic of complex variable types, and describes
many examples and aspects that are not mentioned here.

6.6.1 Set Variables

Let us revisit the shift-assignment problem for which we used the global cardinality con-
straint in Section 6.2.4. We assumed that each worker is to work exactly one shift. It is
more realistic, however, that we have a lower bound and an upper bound on the number
of shifts that each worker is to staff. The result is known as the symmetric cardinality
constraint [37]:

Definition 6.27. The symmetric cardinality constraint symcc(x1, . . . , xn, cx1
, . . . , cxn

,
cv1 , . . . , cvn′) is defined on a collection of assignment variables x1, . . . , xn and two sets
of count variables, cx1

, . . . , cxn
and cv1 , . . . , cvn′ . It specifies that the value assigned to

xj is a subset of {v1, . . . , vn′} of cardinality cxj
, and that the number of such subsets that

contain vi is cvi
.

We still have one variable for each worker, but the value of this variable is the set of
shifts that the worker will staff. One way to handle this is to say that the domain contains
all subsets of the shifts. This results in an exponential growth in the number of values (and
hence in the size of the value graph).

W.-J. van Hoeve, I. Katriel 201

An alternative is to use set variables. A set variable x is a variable that has a discrete
domain D(x) = [lb(x), ub(x)]. Thus, the domain of a set variable consists of two sets, the
set lb(x) of mandatory elements and the set ub(x) \ lb(x) of possible elements. The value
assigned to x should be a set s(x) such that lb(x) ⊆ s(x) ⊆ ub(x).

For a constraint on set variables, we are not interested in arc consistency because the
individual values that a set variable can take do not explicitly exist; we only have their
intersection (lb) and their union (ub). Viewing the intersection as a lower bound and the
union as an upper bound, we speak of bound consistency when filtering the domain of a
set variable. A bound consistency computation for a constraint C defined on a set variable
x requires that we:

• Remove a value v from ub(x) if there is no solution to C in which v ∈ s(x).

• Include a value v ∈ ub(x) in lb(x) if in all solutions to C, v ∈ s(x).

To demonstrate such a computation4, we sketch how the flow-based filtering algorithm
for gcc can be adapted to compute bound consistency for the assignment variables of
symcc, assuming that the domains of all count variables are fixed intervals. The flow
network constructed from the value graph is almost identical, except that the requirement
of an arc from s to a variable vertex reflects the cardinality requirement for the set assigned
to the variable. That is, the capacity of the arc (s, xj) is equal to the interval D(cxj

).
Then, we once again have a one-to-one correspondence between the integral s-t flows in
the network and the solutions to the constraint. As before, after finding a flow we have that
a non-flow arc belongs to some integral s-t flow if and only if its endpoints belong to the
same SCC of the residual graph.

However, unlike in the gcc case, this does not complete the filtering task: we must also
identify arcs that belong to any integral s-t flow, and make sure that they are in the lower
bounds of the domains of the relevant set variables. It is not difficult to verify that this is
exactly the set of flow arcs whose endpoints belong to different SCCs of the residual graph
(recall that the requirement of an arc from a variable vertex to a value vertex is [0, 1]).

The bottleneck of the algorithm is the flow computation, which takes O(mn) time. It
is interesting to note that the cardinality of the domain of any of the set variables may well
be exponential in the running time of this algorithm, which handles all of these domains at
once.

6.6.2 Graph Variables

A graph variable [16] is simply two set variables V and E, with an inherent constraint
E ⊆ V ×V . As with set variables, the domainD(G) = [lb(G), ub(G)] of a graph variable
G consists of mandatory vertices and edges lb(G) (the lower bound graph) and possible
vertices and edges ub(G) \ lb(G) (the upper bound graph). The value assigned to the
variable G must be a subgraph of ub(G) and a super graph of the lb(G).

The usefulness of graph variables depends on the existence of efficient filtering algo-
rithms for useful constraints defined on them, i.e., constraints that force graph variables to
have certain properties or certain relations between them. As a simple example, the con-
straint Subgraph(G,S) specifies that S is a subgraph of G. Note that both S and G are

4Additional examples can be found in [8].

202 6. Global Constraints

variables, so computing bound consistency for the Subgraph constraint means the follow-
ing:

1. If lb(S) is not a subgraph of ub(G), the constraint has no solution.

2. For each e ∈ ub(G) ∩ lb(S), include e in lb(G).

3. For each e ∈ ub(S) \ ub(G), remove e from ub(S).

The conditions above can be checked in time which is linear in the sum of the sizes of
ub(G) and ub(S). As with set variables, we are in the interesting situation in which the
number of graphs that the bound consistency algorithm reasons about may be exponential
in the running-time of the algorithm.

The spanning tree constraint

As a slightly more sophisticated example, we consider the constraint ST (G, T), which
states that the graph T is a spanning tree of the graph G. Since a spanning tree is a sub-
graph, the conditions described above should be checked when computing bound consis-
tency for ST . In addition, (1) the vertex-sets of G and T must be equal, and (2) T must be
a tree.

To enforce (1), we remove from ub(G) any vertex which is not in ub(T) and we include
in lb(T) any vertex which is in lb(G). As for (2), if lb(T) contains a circuit then T cannot
be a tree and if ub(T) is not connected then T cannot be connected. In both cases, the
constraint has no solution. Finally, any edge in ub(T) \ lb(T) whose endpoints belong
to the same connected component of lb(T) must be removed (including it in any solution
would introduce a circuit in T) and any bridge5 in ub(T) must be placed in lb(T) (T cannot
be connected if it is excluded).

The running time of the algorithm we described is linear in the sum of the sizes of the
upper bounds of G and T . To prove that it achieves bound consistency, one needs to show
that the following three conditions hold:

1. Every vertex or edge that was removed, does not participate in any solution.

2. Every remaining vertex or edge in ub(T) or ub(G) participates in at least one solu-
tion and every remaining vertex or edge in ub(T)\lb(T) or ub(G)\lb(G) is excluded
from at least one solution to the constraint.

3. Every vertex or edge that the algorithm inserts into lb(G) or lb(T) participates in all
solutions.

Note that in item 3 above we do not say that every element in lb(G) and lb(T) belongs
to all solutions. This is only required of those elements that the filtering algorithm decided
to include in the lower bound sets. The input may include any vertex or edge in the lower
bound graph, and the filtering algorithm does not ask why: It may only remove values from
variable domains, and never add them.

5A bridge in a graph is an edge whose removal increases the number of connected components.

W.-J. van Hoeve, I. Katriel 203

6.7 Conclusion

The search for useful global constraints and the design of efficient filtering algorithms for
them is an ongoing research effort that tackles many challenging and interesting problems.
We have already mentioned some of the fundamental questions: What are the frequently
recurring sub-problems that we would like to capture by global constraints? For a specific
constraint, what is the computational complexity of filtering it to arc consistency? Should
we compromise on partial consistency? We would like to briefly mention several other
ideas on global constraints that have been proposed in recent years.

Given the large number of global constraints that were and will be defined, several
researchers are attempting to find generic methods to specify and handle constraints. Beldi-
ceanu et al. [7] describe a constraint solver that views a global constraint in terms of a
collection of graph properties (such as the number of strongly connected components in a
digraph). Then, the solver uses a database of known graph theoretic results to automatically
generate new constraints that strengthen the model by allowing more filtering. They point
out that out of the 227 global constraints listed in the global constraints catalog [6], about
200 can be described in terms of graph properties. Therefore, their approach seems to be
widely applicable. Bessière et al. [10] defined a declarative language that can be used to
specify many known constraints which model counting and occurrence problems. In this
language, a constraint is specified as the conjunction of constraints, each of which can be
a simple (binary) constraint on scalar or set variables, or one of two globals constraints
called range and roots.

Another approach is to view the filtering task in the context of the tree search. We have
already mentioned the problem of dynamic filtering, i.e., recomputing arc consistency af-
ter a small change such as the removal of a few values from variable domains. Recently,
Katriel [34] pointed out that in a flow network with n nodes and m edges where every
edge belongs to at least one feasible flow, there are only O(n) edges whose removal would
render other edges useless. This implies that if the filtering is random, i.e., the edge re-
moved from the value graph of an alldifferent or gcc is always selected at random
among all possibilities, the expected number of edges that need to be removed before it
makes sense to recompute arc consistency is Θ(m/n). It would be interesting to evaluate
experimentally whether the assumption that filtering is random is realistic, and whether
delayed filtering is a good compromise between filtering efficiency and effectiveness. If
this approach is to be pursued, it is necessary to either analyze each global constraint in-
dependently and determine a reasonable filtering frequency, or find a generic or automated
way to do this for many global constraints.

In the area of partial filtering for NP-hard global constraints, there seems to be a lot of
potential for enhancements. Here we would like to suggest the idea of approximate filter-
ing. Recall that an approximation algorithm for an optimization problem is an algorithm
that finds a solution whose value, according to the objective function of the problem, does
not deviate too much from the value of the optimal solution. For a filtering problem, the
objective function counts the sum of the cardinalities of the domains of the variables. An
optimal solution minimizes this number, and hence an α-approximate solution, for α ≥ 1,
is a solution that removes all but αOpt values from the variable domains. Formally,

Definition 6.28 (Approximate filtering). Let C(x1, . . . , xn) be a constraint and assume
that after filtering it to arc consistency, the sum of the cardinalities of the domains of

204 6. Global Constraints

x1, . . . , xn is Opt . An α-approximate filtering algorithm for C is an algorithm that re-
moves values from the domains of the variables x1, . . . , xn such that the solution set of C
remains unchanged and the sum of the cardinalities of the domains of the variables is at
most αOpt .

Note that approximate filtering is different from the notion of approximated consistency
that was described in Section 6.5.3 in two ways. First, approximate filtering applies to
any constraint while approximated consistency is defined for optimization constraints. In
addition, with approximated consistency, what is being approximated is the value of the
solutions to the constraint that remain, while approximate filtering directly approximates
the effectiveness of the filtering algorithm.

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling
and placement problems. Journal of Mathematical and Computer Modelling, 17(7):
57–73, 1993.

[2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, 1993.
[3] K. Artiouchine and P. Baptiste. Inter-distance Constraint: An Extension of the All-

Different Constraint for Scheduling Equal Length Jobs. In P. van Beek, editor, Pro-
ceedings of the Eleventh International Conference on Principles and Practice of Con-
straint Programming (CP 2005), volume 3709 of Lecture Notes in Computer Science,
pages 62–76. Springer, 2005.

[4] R. Barták. Dynamic Global Constraints in Backtracking Based Environments. Annals
of Operations Research, 118(1–4):101–119, 2003.

[5] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving Filtering Algorithms from Con-
straint Checkers. In M. Wallace, editor, Proceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programming (CP 2004), volume
3258 of Lecture Notes in Computer Science, pages 107–122. Springer, 2004.

[6] N. Beldiceanu, M. Carlsson, and J.X.-Rampon. Global constraint catalog. Technical
Report T2005-06, Swedish Institute of Computer Science, 2005.

[7] N. Beldiceanu, M. Carlsson, J.-X. Rampon, and C. Truchet. Graph invariants as
necessary conditions for global constraints. In P. van Beek, editor, Proceedings of
the Eleventh International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2005), volume 3709 of Lecture Notes in Computer Science, pages
92–106. Springer, 2005.

[8] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. Disjoint, partition and intersection
constraints for set and multiset variables. In M. Wallace, editor, Proceedings of the
Tenth International Conference on Principles and Practice of Constraint Program-
ming (CP 2004), volume 3258 of Lecture Notes in Computer Science, pages 138–152.
Springer, 2004.

[9] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global con-
straints. In M. Wallace, editor, Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP 2004), volume 3258 of
Lecture Notes in Computer Science, pages 716–720. Springer, 2004.

[10] C. Bessière, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The range and roots con-
straints: Specifying counting and occurrence problems. In Proceedings of the Twen-

W.-J. van Hoeve, I. Katriel 205

tieth International Joint Conference on Artificial Intelligence (IJCAI 2005), pages
60–65. Professional Book Center, 2005.

[11] R.G. Busacker and P.J. Gowen. A Procedure for Determining a Family of Minimum-
Cost Network Flow Patterns. Technical Report ORO-TP-15, Operations Research
Office, The Johns Hopkins University, Bethesda, MD, 1960.

[12] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem.
Euro. J. Oper. Res., 78:146–161, 1994.

[13] Y. Caseau, P.-Y. Guillo, and E. Levenez. A Deductive and Object-Oriented Approach
to a Complex Scheduling Problem. In Proceedings of Deductive and Object-Oriented
Databases, Third International Conference (DOOD’93), pages 67–80, 1993.

[14] V. Chvátal. Linear programming. Freeman, 1983.
[15] G.B. Dantzig. Maximization of a linear function of variables subject to linear in-

equalities. In Tj.C. Koopmans, editor, Activity Analysis of Production and Allocation
– Proceedings of a conference, pages 339–347. Wiley, 1951.

[16] G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a Graph Compu-
tation Domain in Constraint Programming. In P. van Beek, editor, Proceedings of
the Eleventh International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2005), volume 3709 of Lecture Notes in Computer Science, pages
211–225. Springer, 2005.

[17] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar, ed-
itor, Proceedings of the Fifth International Conference on Principles and Practice
of Constraint Programming (CP 1999), volume 1713 of Lecture Notes in Computer
Science, pages 189–203. Springer, 1999.

[18] L.R. Ford, Jr and D.R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419–433, 1958.

[19] H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of
computing (STOC 1983), pages 246–251. ACM, 1983.

[20] M.R. Garey and D.S. Johnson. Computers and Intractability - A Guide to the Theory
of NP-Completeness. Freeman, 1979.

[21] F. Glover. Maximum matching in convex bipartite graphs. Naval Research Logistics
Quarterly, 14:313–316, 1967.

[22] P. Hall. On representatives of subsets. Journal of the London Mathematical Society,
10:26–30, 1935.

[23] L. Hellsten, G. Pesant, and P. van Beek. A Domain Consistency Algorithm for the
Stretch Constraint. In M. Wallace, editor, Proceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programming (CP 2004), volume
3258 of Lecture Notes in Computer Science, pages 290–304. Springer, 2004.

[24] P. Van Hentenryck and J.-P. Carillon. Generality vs. specificity: an experience with
AI and OR techniques. In Proceedings of the National Conference on Artificial Intel-
ligence (AAAI), pages 660–664, 1988.

[25] D.S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. Brooks /
Cole Pub. Co., 1996.

[26] W.-J. van Hoeve. A Hyper-Arc Consistency Algorithm for the Soft Alldifferent Con-
straint. In M. Wallace, editor, Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP 2004), volume 3258 of
Lecture Notes in Computer Science, pages 679–689. Springer, 2004.

206 6. Global Constraints

[27] W.-J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming: Flow-Based
Soft Global Constraints. Journal of Heuristics, 2006. To appear.

[28] J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

[29] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley, 1979.

[30] M. Iri. A new method of solving transportation-network problems. Journal of the
Operations Research Society of Japan, 3:27–87, 1960.

[31] W.S. Jewell. Optimal Flows Through Networks. Technical Report 8, Operations
Research Center, MIT, Cambridge, MA, 1958.

[32] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4:373–395, 1984.

[33] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the Sixteenth Annual ACM Symposium on Theory of Computing (STOC
1984), pages 302–311. ACM, 1984.

[34] I. Katriel. Expected-Case Analysis for Delayed Filtering. In C. Beck and B. Smith,
editors, Proceedings of the Third International Conference on the Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2006), Lecture Notes in Computer Science. Springer, 2006. To
appear.

[35] I. Katriel and S. Thiel. Complete bound consistency for the global cardinality con-
straint. Constraints, 10(3):191–217, 2005.

[36] L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20:191–194, 1979.

[37] W. Kocjan and P. Kreuger. Filtering methods for symmetric cardinality constraint. In
J.-C. Régin and M. Rueher, editors, Proceedings of the First International Conference
on the Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR 2004), volume 3011 of Lecture Notes in
Computer Science, pages 200–208. Springer, 2004.

[38] D. König. Graphok és matrixok. Matematikai és Fizikai Lapok, 38:116–119, 1931.
[39] J.-L. Lauriere. A language and a program for stating and solving combinatorial prob-

lems. Artificial Intelligence, 10(1):29–127, 1978.
[40] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors. The

Traveling Salesman Problem – A Guided Tour of Combinatorial Optimization. Wiley,
1985.

[41] M. Leconte. A bounds-based reduction scheme for constraints of difference. In
Proceedings of the Second International Workshop on Constraint-based Reasoning
(Constraint 1996), pages 19–28, 1996.

[42] W. Lipski and F.P. Preparata. Efficient algorithms for finding maximum matchings in
convex bipartite graphs and related problems. Acta Informatica, 15:329–346, 1981.

[43] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple al-
gorithm for bounds consistency of the alldifferent constraint. In Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (IJCAI 2003),
pages 245–250. Morgan Kaufmann, 2003.

[44] K. Mehlhorn and S. Thiel. Faster Algorithms for Bound-Consistency of the Sorted-
ness and the Alldifferent Constraint. In R. Dechter, editor, Proceedings of the Sixth
International Conference on Principles and Practice of Constraint Programming (CP

W.-J. van Hoeve, I. Katriel 207

2000), volume 1894 of Lecture Notes in Computer Science, pages 306–319. Springer,
2000.

[45] L. Mercier and P. Van Hentenryck. Edge finding for cumulative scheduling, 2005.
[46] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,

1988.
[47] A. Oplobedu, J. Marcovitch, and Y. Tourbier. CHARME: Un langage industriel de

programmation par contraintes, illustré par une application chez Renault. In Proceed-
ings of the Ninth International Workshop on Expert Systems and their Applications:
General Conference, volume 1, pages 55–70, 1989.

[48] G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. In M. Wallace, editor, Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP 2004), volume 3258 of
Lecture Notes in Computer Science, pages 482–495. Springer, 2004.

[49] G. Pesant. A Filtering Algorithm for the Stretch Constraint. In T. Walsh, editor,
Proceedings of the Seventh International Conference on Principles and Practice of
Constraint Programming (CP 2001), volume 2239 of Lecture Notes in Computer
Science, pages 183–195. Springer, 2001.

[50] J. Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15:193–220, 1891.
[51] T. Petit, J.-C. Régin, and C. Bessière. Specific Filtering Algorithms for Over-

Constrained Problems. In T. Walsh, editor, Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming (CP 2001), vol-
ume 2239 of Lecture Notes in Computer Science, pages 451–463. Springer, 2001.

[52] J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), pages
359–366. AAAI Press / The MIT Press, 1998.

[53] C.-G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved Algorithms
for the Global Cardinality Constraint. In M. Wallace, editor, Proceedings of the Tenth
International Conference on Principles and Practice of Constraint Programming (CP
2004), volume 3258 of Lecture Notes in Computer Science, pages 542–556. Springer,
2004.

[54] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S.B. Sadjad. An
Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint. Con-
straints, 10(2):115–135, 2005.

[55] P. Refalo. Linear Formulation of Constraint Programming Models and Hybrid
Solvers. In R. Dechter, editor, Proceedings of the Sixth International Conference
on Principles and Practice of Constraint Programming (CP 2000), volume 1894 of
Lecture Notes in Computer Science, pages 369–383. Springer, 2000.

[56] J.-C. Régin. Cost-Based Arc Consistency for Global Cardinality Constraints. Con-
straints, 7:387–405, 2002.

[57] J.-C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence (AAAI), volume 1,
pages 362–367. AAAI Press, 1994.

[58] J.-C. Régin. Generalized Arc Consistency for Global Cardinality Constraint. In Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Conference (AAAI / IAAI), volume 1,
pages 209–215. AAAI Press / The MIT Press, 1996.

208 6. Global Constraints

[59] J.-C. Régin. Arc Consistency for Global Cardinality Constraints with Costs. In J. Jaf-
far, editor, Proceedings of the Fifth International Conference on Principles and Prac-
tice of Constraint Programming (CP 1999), volume 1713 of Lecture Notes in Com-
puter Science, pages 390–404. Springer, 1999.

[60] J.-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An Original Constraint Based Ap-
proach for Solving over Constrained Problems. In R. Dechter, editor, Proceedings
of the Sixth International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2000), volume 1894 of Lecture Notes in Computer Science, pages
543–548. Springer, 2000.

[61] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[62] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
[63] M. Sellmann. Approximated consistency for knapsack constraints. In F. Rossi, ed-

itor, Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP 2003), volume 2833 of Lecture Notes in Computer
Science, pages 679–693. Springer, 2003.

[64] M. Sellmann. Cost-based filtering for shorter path constraints. In F. Rossi, edi-
tor, Proceedings of the Ninth International Conference on Principles and Practice
of Constraint Programming (CP 2003), volume 2833 of Lecture Notes in Computer
Science, pages 694–708. Springer, 2003.

[65] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Comput-
ing, 1:146–160, 1972.

[66] M.A. Trick. A Dynamic Programming Approach for Consistency and Propagation
for Knapsack Constraints. Annals of Operations Research, 118:73–84, 2003.

[67] B.L. van der Waerden. Ein Satz über Klasseneinteilungen von endlichen Mengen.
Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universität, 5:
185–188, 1927.

[68] V. Vazirani. Approximation Algorithms. Springer, 2001.

Handbook of Constraint Programming 209
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 7

Tractable Structures for Constraint
Satisfaction Problems

Rina Dechter

Throughout the past few decades two primary constraint processing schemes emerge—
those based on conditioning or search, and those based on inference or derivation. Search
in constraint satisfaction takes the form of depth-first backtracking, while inference is per-
formed by variable-elimination and tree-clustering algorithms, or by bounded local consis-
tency enforcing. Compared to human problem solving techniques, conditioning is analo-
gous to guessing (a value of a variable), or reasoning by assumption. The problem is then
divided into subproblems, conditioned on the instantiation of a subset of variables, each
of which should be solved. On the other hand, inference corresponds to reinterpreting or
making deduction from the problem at hand. Inference-based algorithms derive and record
new information, generating equivalent problem representations that facilitate an easier
solution.

Search and inference algorithms have their relative advantages and disadvantages. In-
ference-based algorithms are better at exploiting the independencies captured by the un-
derlying constraint graph. They therefore provide a superior worst-case time-guarantee as
a function of graph-based parameters. Unfortunately, any method that is time-exponential
in the tree-width is also space-exponential in the tree-width and, therefore, not practical
for dense problems.

Brute-force Search algorithms are structure-blind. They traverse the network’s search
space where each path represents a partial or a full solution. The linear structure of these
search spaces hide the structural independencies displayed in the constraint graph and
therefore, algorithms which explore these search spaces, may not be as effective. In par-
ticular they lack useful performance guarantees. On the other hand search algorithms are
flexible in their memory needs and can even operate with linear memory. Also search often
exhibits a much better average performance than their worst-case bounds, when augmented
with various heuristics and especially when looking for a single solution. Given their
complementary properties, combining inference-based and conditioning-based algorithms
may better utilize the benefit of each scheme and allow improved performance guarantees,

c© 2006 Elsevier B.V. All rights reserved

210 7. Tractable Structures for CSPs

reduced space complexity and improved average performance.
This chapter focuses on structure-driven constraint processing algorithms. We will start

with inference algorithms and show that their performance is controlled by graph parame-
ters such as tree-width, induced-width and hypertree width. We then show that hybrids of
search and inference can be controlled by graph-based parameters such as cycle-cutset, and
w-cutset and separator-size. Finally, we present the notion of AND/OR search spaces for
exploiting independencies displayed in the constraint graph during search, which, similar
to inference, leads to graph-based performance bounds using parameters such as the depth
of the pseudo-tree, path-width and tree-width.

7.1 Background

7.1.1 Constraint Networks and Tasks

A constraint problem is defined in terms of a set of variables taking values on finite domains
and a set of functions defined over these variables. We denote variables or subsets of
variables by uppercase letters (e.g., X, Y, Z, S, R . . .) and values of variables by lower
case letters (e.g., x, y, z, s). An assignment (X1 = x1, . . . , Xn = xn) can be abbreviated
as x = (〈X1, x1〉, . . . , 〈Xn, xn〉) or x = (x1, . . . , xn). For a subset of variables S, DS

denotes the Cartesian product of the domains of variables in S. xS and x[S] are both used
as the projection of x = (x1, . . . , xn) over a subset S. We denote functions by letters f , g,
h etc., and the scope (set of arguments) of the function f by scope(f).

A constraint network R consists of a finite set of variables X = {X1, . . . , Xn},
each associated with a domain of discrete values, D1, . . . , Dn and a set of constraints,
{C1, . . . , Ct}. Each of the constraints is expressed as a relation, defined on some subset
of variables, whose tuples are all the simultaneous value assignments to the members of
this variable subset that, as far as this constraint alone is concerned, are legal.1 Formally, a
constraint Ci has two parts: (1) the subset of variables Si = {Xi1 , . . . , Xij(i)

}, on which
it is defined, called a constraint-scope, and (2) a relation, Ri defined over Si : Ri ⊆ Di1 ×
· · · ×Dij(i)

. The relation denotes all compatible tuples of DSi
allowed by the constraint.

Thus a constraint networkR can be viewed as the tripletR = (X,D,C). The scheme of a
constraint network is its set of scopes, namely, scheme(R) = {S1, S2, . . . , St}, Si ⊆ X .

Definition 7.1 ((operations on constraints)). LetR be a relation on a set S of variables, let
Y ⊆ S be a subset of the variables. We denote by πY (R) the projection of the relation R
on the subset Y ; that is, a tuple over Y appears in πY (R) if and only if it can be extended
to a full tuple in R. Let RS1

be a relation on a set of variables S1 and let RS2
be a relation

on a set of variables S2. We denote by RS1
⋊⋉ RS2

the natural join of the two relations.
The join of RS1

and RS2
is a relation defined over S1 ∪ S2 containing all the tuples t,

satisfying t[S1] ∈ RS1
and t[S2] ∈ RS2

.

An assignment of a unique domain value to each member of some subset of variables is
called an instantiation. An instantiation is said to satisfy a given constraint Ci if the partial
assignment specified by the instantiation does not violate Ci. An instantiation is said to

1This does not mean that the actual representation of any constraint is necessarily in the form of its defining
relation, but that the relation can, in principle, be generated using the constraint’s specification without the need
to consult other constraints in the network.

R. Dechter 211

1 2 3

4

5

D1

D2 4

(a)
(b)

D

12
(snail, aron), (steer, earn))

C

3

5
D

= (hoses, laser, sheet, snail, steer)

= (hike, aron, keet, earn, same)= D

= (run, sun, let, yes, eat, ten)

= (no, be, us, it)

= ((hoses, same), (laser,same), (sheet, earn),

Figure 7.1: A crossword puzzle and its CN representation.

be legal or locally consistent if it satisfies all the (relevant) constraints of the network. A
consistent instantiation of all the variables of a constraint network is called a solution of
the network, and the set of all solutions is a relation, ρ, defined on the set of all variables.
This relation is said to be represented by the constraint network. Formally,

ρ = {x = (x1, . . . , xn) | ∀ Si ∈ scheme, πSi
x ∈ Ri}.

It can also be expressed as the join over all relations as ρ =⋊⋉Ri∈C Ri.

Example 1: Figure 7.1a presents a simplified version of a crossword puzzle (see
constraint satisfaction). The variables are X1 (1, horizontal), X2 (2, vertical), X3 (3,
vertical), X4 (4, horizontal), and X5 (5, horizontal). The scheme of this problem is
{{X1, X2}, {X1, X3}, {X4, X2}, {X4, X3}, {X5, X2}}. (We will sometime abuse no-
tation and denote a scope such as {X,Y } or as XY .) The domains and some constraints
are specified in Figure Figure 7.1b. A tuple in the relation associated with this puzzle is
the solution: (X1 = sheet,X2 = earn,X3 = ten,X4 = aron,X5 = no).

Typical tasks defined in connection with constraint networks are to determine whether
a solution exists, to find one or all of the solutions, to count solutions or, when the problem
is inconsistent, to find a solution that satisfies the maximum number of constraints (Max-
CSP). Sometime, given a set of preferences over solutions defined via a cost function, the
task is to find a consistent solution having maximum cost.

7.1.2 Graphical Representations

Graphical properties of constraint networks were initially investigated through the class
of binary constraint networks [23]. A binary constraint network is one in which every
constraint scope involves at most two variables. In this case the network can be associ-
ated with a constraint graph, where each node represents a variable, and the arcs connect
nodes whose variables are explicitly constrained. Figure 7.2 shows the constraint graph
associated with the crossword puzzle in Figure 7.1.

A graphical representation of higher order networks can be provided by hypergraphs,
where again, nodes represent the variables, and hyperarcs or hyperedges (drawn as regions)

212 7. Tractable Structures for CSPs

X5X2
X

4

X
3 X1

Figure 7.2: A constraint graph of the crossword puzzle.

group variables that belong to the same scope. Two variations of this representation that
can be used to facilitate structure-driven algorithms are primal-constraint graph and dual-
constraint graph. A Primal-constraint graph (a generalization of the binary constraint
graph) represents variables by nodes and associates an arc with any two nodes residing in
the same constraint. A dual-constraint-graph represents each scope by a node (also called
a c-variable) and associates a labeled arc with any two nodes whose scopes share variables.
The arcs are labeled by the shared variables.

For example, Figure 7.3 depicts the hypergraph (a), primal (b), and the dual (c) repre-
sentations of a network with variables A, B, C, D, E, F and constraints on the scopes
(ABC),(AEF), (CDE) and (ACE). The constraints themselves are symbolically given
by the inequalities: A + B ≤ C, A + E ≤ F , C +D ≤ E, A + C ≤ E, where the
domains of each variable are the integers [2, 3, 4, 5, 6].

The dual constraint graph can be viewed as a transformation of a nonbinary network
into a special type of binary network: the domain of the c-variables ranges over all possi-
ble value combinations permitted by the corresponding constraints, and any two adjacent
c-variables must obey the restriction that their shared variables should have the same val-
ues (i.e., the c-variables are bounded by equality constraints). For instance, the domain of
the c-variable ABC is {224, 225, 226, 235, 236, 325, 326, 246, 426, 336} and the binary
constraint between ABC and CDE is given by the relation: RABC,CDE = {(224,415),
(224,426)}. Viewed in this way, any network can be solved by binary networks’ tech-
niques. Next we summarize the above graph concepts.

Definition 7.2 (graph, hypergraph). A graph is a pair G = {V,E}, where V = {X1, . . . ,
Xn} is a set of vertices, and E = {(Xi, Xj)|Xi, Xj ∈ V } is the set of edges (arcs). The
degree of a variable is the number of arcs incident to it. A hypergraph is a pairH = (V, S)
where S = {S1, ..., St} is a set of subsets of V , called hyperedges or simple edges.

Definition 7.3 (primal graph, dual graph). The primal graph of a hypergraphH = (V, S) is
an undirected graphG = (V,E) such that there is an edge (u, v) ∈ E for any two vertices
u, v ∈ V that appear in the same hyperedge (namely, there exists Si, s.t., u, v ∈ Si). The
dual graph of a hypergraph H = (V, S) is an undirected graph G = (S,E) that has a
vertex for each hyperedge, and there is an edge (Si, Sj) ∈ E when the corresponding
hyper-edges share a vertex (Si ∩ Sj 6= ∅).

R. Dechter 213

D

C

BA

F

E D

C

BA

F

E

CE

AE

CDE

ABC

AC

CE

ACE

AEC

AEF
A

ACECDE

ABC AEF

ACE

(c) (d)

(a) (b)

Figure 7.3: (a)Hyper, (b)Primal, (c)Dual and (d)Join-tree constraint graphs of a CSP.

7.2 Structure-Based Tractability in Inference

Almost all the known structure-based techniques rely on the observation that binary con-
straint networks whose constraint graph is a tree can be solved in linear time [23, 36, 17]
in the number of variables. The solution of tree-structured networks are discussed next,
and later it is shown how they can be used to facilitate the solution of a general constraint
network.

7.2.1 Solving Tree-Networks

Given a tree-network over n variables (Fig. 7.5), the first step of the tree-algorithm is to
generate a rooted-directed tree. Each node in this tree (excluding the root) has one parent
node directed toward it and may have several child nodes, directed away from it. Nodes
with no children are called leaves. An ordering, d = X1, X2, . . . , Xn, is then enforced
such that a parent always precedes its children. In the second step, the algorithm processes

214 7. Tractable Structures for CSPs

Tree-solving
Input: A tree network T = (X,D,C).
Output: A backtrack-free network along an ordering d.
1. generate a width-1 ordering, d = X1, . . . , Xn.
2. let Xp(i) denote the parent of Xi in the rooted ordered tree.
3. for i = n to 1 do
4. Revise ((Xp(i)), Xi);
5. if the domain of Xp(i) is empty, exit (no solution exists).
6. endfor

Figure 7.4: Tree-solving algorithm

Figure 7.5: A tree network

each arc and its associated constraint from leaves to root, in an orderly layered fashion.
For each directed arc from Xi to Xj it removes a value from the domain of Xi if it has no
consistent match in the domain of Xj . Finally, after the root is processed, a backtracking
algorithm is used to find a solution along the ordering d.

It can be shown that the algorithm is linear in the number of variables. In particular,
backtracking search, which in general is an exponential procedure, is guaranteed to find a
solution without facing any dead-ends.

The tree algorithm is sketched in Figure 7.4. The revise procedure revise(Xj , Xi)
remove any value from the domain of Xj that has no match in the domain of Xi. The
complexity of the tree-solving algorithm is bounded by O(nk2) steps where k bounds the
domain size, because the revise procedure, which is bounded by k2 steps, is executed at
most n times.

Theorem 7.4. [37] A binary tree constraint problem can be solved in O(nk2) when n is
the number of variables and k bounds the domain size.

R. Dechter 215

7.2.2 Acyclic Networks

The notion of constraint trees can be extended beyond binary constraints to problems hav-
ing scope higher than 2, using the notions of hypergraphs and hypertrees, leading to the
creation of a class of acyclic constraint networks.

As noted, any constraint network R = (X,D,C), where C = {RS1
, ..., RSt

} can be
associated with a hypergraph HR = (X,H), where X is the set of nodes (variables), and
H is the set of scopes of the constraints in C, namely H = {S1, ..., St}. The dual graph
of a constraint hypergraph associates a node with each constraint scope (or a hyperedge)
and has an arc for each two nodes sharing variables. As noted before, this association
facilitates the transformation of a non-binary constraint problem into a binary one, called
the dual problem. Therefore, if a problem’s dual graph happens to be a tree, it means that
the dual constraint problem, can be efficiently solved by the tree-solving algorithm.

It turns out, however, that sometimes, even when the dual graph does not look like a
tree, it is in fact a tree, if some of its arcs (and their associated constraints) are redundant
and can be removed, leaving behind a tree structure. A constraint is considered redundant
if its removal from the constraint network does not change the set of all solutions. It is
not normally easy to recognize redundant constraints. In the dual representation, however,
some redundancies are easy to identify: since all the constraints in the dual network enforce
equalities (over shared variables), a constraint and its corresponding arc can be deleted if
the variables labeling the arc are shared by every arc along an alternate path between the
two end points. This is because the alternate path (of constraints) already enforces that
equality. Removing such constraints does not alter the problem.

Example 7.5. Looking again at Figure 7.3, we see that the arc between (AEF) and (ABC)
in Figure 7.3(c) is redundant because variable A also appears along the alternative path
(ABC)−AC−(ACE)−AE−(AEF). A consistent assignment toA is thereby ensured
by these constraints even if the constraint between AEF and ABC is removed. Likewise,
the arcs labeled E and C are also redundant, and their removal yields the graph in 7.3(d).

We call the property that ensures such legitimate arc removal the running intersection
property or connectedness property. The running intersection property can be defined over
hypergraphs or over their dual graphs, and is used to characterize equivalent concepts such
as join-trees (defined over dual graphs) or hypertrees (defined over hypergraphs). An arc
subgraph of a graph contains the same set of nodes as the graph, and a subset of its arcs.

Definition 7.6 (connectedness, join-trees, hypertrees and acyclic networks). Given a dual
graph of a hypergraph, an arc subgraph of the dual graph satisfies the connectedness prop-
erty iff for each two nodes that share a variable, there is at least one path of labeled arcs,
each containing the shared variables. An arc subgraph of the dual graph that satisfies the
connectedness property is called a join-graph. A join-graph that is a tree is called a join-
tree. A hypergraph whose dual-graph has a join-tree is called a hypertree. A constraint
network whose hypergraph is a hypertree is called an acyclic network.

Example 7.7. Considering again the graphs in Figure 7.3, we can see that the join-tree in
Figure 7.3(d) satisfies the connectedness property. That is, the hypergraph in Figure 7.3(a)
has a join-tree and is therefore a hypertree.

An acyclic constraint network can be solved efficiently. Because the constraint problem
has a join-tree, its dual problem is a tree of binary constraints and can therefore be solved

216 7. Tractable Structures for CSPs

by the tree-solving algorithm. Note that the domains of variables in the dual problem are
bounded by the number of tuples in the input constraints. In Figure 7.6, we reformulate
the tree algorithm for solving acyclic problems.

Example 7.8. Consider the tree dual problem in Figure 7.3(d) and assume that the con-
straints are given by: RABC = RAEF = RCDE = {(0, 0, 1) (0, 1, 0) (1, 0, 0)} and RACE
= {(1, 1, 0) (0, 1, 1) (1, 0, 1)}. Assume the ordering d= (RACE , RCDE , RAEF , RABC).
When processingRABC , its parent relation isRACE ; we therefore generate πACE (RACE
⋊⋉ RABC), yielding the revised relation RACE = {(0, 1, 1) (1, 0, 1)}. Next, processing
RAEF (likewise connected to RACE) we generate relation RACE = πACE (RACE ⋊⋉

RAEF) = {(0, 1, 1)}. Note that the revised relation RACE is now being processed. Subse-
quently, processing RCDE we generate: RACE = πACE(RACE ⋊⋉ RCDE) = {(0, 1, 1)}.
A solution can then be generated by picking the only allowed tuple forRACE ,A = 0, C =
1, E = 1, extending it with a value for D that satisfies RCDE , which is only D = 0, and
then similarly extending the assignment to F = 0 and B = 0, to satisfyRAEF andRABC .

ALGORITHM ACYCLIC-SOLVING

Input: an acyclic constraint networkR = (X,D,C), C = {R1, ..., Rt}.
Si is the scope of Ri. A join-tree T ofR.
Output: Determine consistency, and generate a solution.
1. d = (R1, ..., Rt) is an ordering such that every relation

appears before its descendant relations in the tree rooted at R1.
2. for j = t to 1, for edge (j,k) ,k < j, in the tree do

Rk ← πSk
(Rk ⋊⋉ Rj)

if the empty relation is created, exit, the problem has no solution.
endfor

3. return: The updated relations and a solution:
Select a tuple in R1. After instantiating R1, ..., Ri−1 select a tuple in Ri
that is consistent with all previous assignments.

Figure 7.6: Acyclic-solving algorithm

Since the complexity of a tree-solving algorithm is O(nk2), where n is the number
of variables and k bounds the domain size, the implied complexity of acyclic-solving is
O(r · l2) if there are r constraints, each allowing at most l tuples. However, the complexity
can be improved for this special case. The join operation can be performed in time linear
in the maximum number of tuples of each relation, like so: project Rj on the variables
shared by Rj and its parent constraint, Rk, an O(l) operation, and then prune any tuple
in Rk that has no match in that projection. If tuples are ordered lexicographically, which
requires O(l · logl) steps, the join operator has a complexity of O(l), yielding an overall
complexity of O(r · l · logl) steps [13]. For a more recent analysis see [30]. In summary,

Theorem 7.9. [13] [correctness and complexity] Algorithm acyclic-solving decides the
consistency of an acyclic constraint network, and its complexity is O(r · l · logl) steps,
where r is the number of constraints and l bounds the number of tuples in each constraint
relation . �

R. Dechter 217

Several efficient procedures for identifying acyclic networks and for finding a represen-
tative join-tree were developed in the area of relational databases [38]. One scheme that
proved particularly useful is based on the observation that a network is acyclic if, and only
if, its primal graph is both chordal and conformal [6]. A graph is chordal if every cycle
of a length of at least four has a chord, i.e., an edge joining two nonconsecutive vertices
along the cycle. A graph is conformal if each of its maximal cliques (i.e. subsets of nodes
that are completely connected) corresponds to a constraint scope in the original constraint
networks. The chordality of a graph can be identified via an ordering of the graph called
the maximal cardinality ordering, (m-ordering); it always assigns the next number to the
node having the largest set of already numbered neighbors (breaking ties arbitrarily).

It can be shown [46] that in an m-ordered chordal graph, the parent-set of each node,
namely,its earlier neighbors in the ordered graph, must be completely connected. If, in
addition, the maximal cliques coincide with the scopes of the original R, both conditions
for acyclicity would be satisfied. Because for chordal graphs each node and its parent
set constitutes a clique, the maximal cliques can be identified in linear time, and then a
join tree can be constructed by connecting each maximal clique to an ancestor clique with
which it shares the largest set of variables [18].

7.2.3 Tree-Decompositions, Tree-Width and Induced-Width

Since acyclic constraint networks can be solved efficiently, we naturally aim at compiling
an arbitrary constraint network into an acyclic one. This can be achieved by grouping sub-
sets of constraints into clusters, or subproblems, whose scopes constitute a hypertree, thus
transforming a constraint hypergraph into a constraint hypertree. Replacing each subprob-
lem with its set of solutions yields an acyclic constraint problem. If the transformation
process is tractable the resulting algorithm is polynomial. This compilation process is
called join-tree clustering.

The graphical input to the above scheme is the constraint hypergraph H = (X,H),
where H is the set of scopes of the constraint network. Its output is a hypertree S =
(X,S) and a partition of the original hyperedges into the new tree hyperedges defining the
subproblems. Each subproblem is then solved, and its set of solutions is a new constraint
whose scope is the hyperedge. Therefore, the result is a network having one constraint per
hyperedge of the tree S, and, by construction, is acyclic.

Join-tree clustering and processing

There are various specific methods that decompose a hypergraph into a hypertree. The
aim is to generate hypertrees having small-sized hyperedges because this implies small
constraint subproblems. The most popular approach manipulates the constraint’s primal
graph and it emerges from the primal recognition process of acyclic networks described
earlier. Since acyclic problems have primal graph that is chordal, the idea is to make the
primal graph of a given network, which is not acyclic, chordal and then associates the
maximal cliques of the resulting chordal graph with hyper-edges. Those hyperedges will
be the new scopes in the targeted acyclic problem. Given an ordered graph, chordality
can be enforced by recursively connecting all parents of every node starting from the last
node to the first. This process leads to the notion of induced-graph, induced-width and
tree-width which will be used extensively.

218 7. Tractable Structures for CSPs

Definition 7.10 (induced-width,tree-width). An ordered graph is a pair (G, d) denoted
Gd where G is an undirected graph, and d = (X1, ..., Xn) is an ordering of the vertices.
The width of a vertex in an ordered graph is the number of its earlier neighbors. The width
of an ordered graph, w(Gd), is the maximum width of all its vertices. The induced width of
an ordered graph,w∗(Gd), is the width of the induced ordered graph, denotedG∗

d, obtained
by processing the vertices recursively, from last to first; when vertex X is processed, all
its earlier neighbors are connected. When the identity of the graph is known we will also
denote w∗(Gd) by w∗(d). The induced width of a graph, w∗(G), is the minimal induced
width over all its orderings [17]. It is well known that the induced width of a graph is
identical to its tree-width [1, 18], we will therefore define tree-width of a graph as the
induced-width of the graph.

The procedure that generates the hypertree partitioning using the chordality algorithm
and that then associates each cluster of constraints with its full set of solutions is called
join-tree clustering (JTC) described in Figure 7.7. The first three steps of algorithm JTC
manipulate the primal graph, embedding it in a chordal graph (whose maximal cliques
make a hypertree), and then identifying its join-tree. Step 4 partitions the constraints into
the cliques (the hypertree edges). Step 5 solves each subproblem defined by a cluster, and
thus creates one new constraint for each subproblem (clique).

JOIN-TREE CLUSTERING (JTC)

Input: A constraint problemR = (X,D,C) and its primal graph G = (X,E).
Output: An equivalent acyclic constraint problem and its join-tree: T = (X,D,C ′)
1. Select a variable ordering, d = (X1, ..., Xn).
2. Triangulation (create the induced graph along d and call it G∗):

for j = n to 1 by -1 do
E ← E ∪ {(i, k)| (i, j) ∈ E, (k, j) ∈ E}

3. Create a join-tree of the induced graph G∗:
a. Identify all maximal cliques in the chordal graph (each variable and its parents is

a clique). Let C1, ..., Ct be all such cliques, created going from last variable to
first in the ordering.

b. Create a tree-structure T over the cliques:
Connect each Ci to a Cj (j < i) with whom it shares largest subset of variables.

4. Place each input constraint in one clique containing its scope, and let
Pi be the constraint subproblem associated with Ci.

5. Solve Pi and let R′
i be its set of solutions.

6. Return C ′ = {R′
1, ..., R

′
t}, the new set of constraints and their join-tree, T .

Figure 7.7: Join-tree clustering

We can conclude,

Theorem 7.11. [18] Algorithm join-tree clustering transforms a constraint network into
an equivalent acyclic network. �

R. Dechter 219

A

B

C

D

E

F

F

A

B

C

D

E

A

B C

D

E

F

(a) (b)
(c)

Figure 7.8: A graph (a) and two of its induced graphs (b) and (c). All arcs included.

A,B,C

D

B,C

B,C,D,E
D,E

B,C,D

A,B,E B,A

B,C,E

A,B,C,E

D,E,F

(b)(a)

E

B

F,D

Figure 7.9: Join-graphs of the induced graphs from (a)Figure 7.8(b) and Figure 7.8(c).
(All arcs included.) The corresponding join-trees are the same figures with the broken arcs
removed.

220 7. Tractable Structures for CSPs

Example 7.12. Consider the graph in Figure 7.8(a), and assume it is a primal graph of a
binary constraint network. In this case, the primal and hypergraph are the same. Consider
the ordering d1 = (F,E,D,C,B,A) in Figure 7.8(b). Performing join- tree-clustering
connects parents recursively from the last variable to the first, creating the induced-ordered
graph by adding the new (broken) edges of Figure 7.8(b). The maximal cliques of this
induced graph are: Q1 = {A,B,C,E}, Q2 = {B,C,D,E} and Q3 = {D,E, F}.
Alternatively, if ordering d2 in Figure 7.8(c) is used, the induced graph generated has
only one added edge. The cliques in this case are: Q1 = {D,F}, Q2 = {A,B,E},
Q3 = {B,C,D} and Q4 = {A,B,C}. The corresponding join-trees of both order-
ings are depicted in Figure 7.9 (broken arcs are not part of the join-trees). Next, fo-
cusing on the join-tree in Figure 7.9b, JTC partition the constraints into the tree-nodes.
It places the following subproblems into the nodes: P1 = {RFD} is placed in node
(FD), P2 = {RBD, RCD} is placed in node (BCD), P3 = {RAB , RAC} is placed in
node (ABC) and P4 = {RAB, RBE , RAE} is placed in (ABE). Next, applying steps 4
and 5 of the algorithm we solves the subproblems P1, P2, P3, P4, and replace each with
R′

1, R
′
2, R

′
3, R

′
4, where R′

i is the solution relation of Pi, yielding a desired acyclic net-
work.

Theorem 7.13. [18] [complexity of JTC] Given a constraint network having n variables
and r constraints, the time complexity of join-tree clustering is O(r · kw∗(d)+1), and the
space complexity is O(n ·kw∗(d)+1) where k is the maximum domain size and w∗(d) is the
induced width of the ordered graph.

Proof: Finding a tree-decomposition of a hypergraph (Step 1 of JTC) is performed over
the constraint primal graph and requires O(n2) steps. The most expensive step is Step 5,
which computes all the solutions of each subproblem. Since the size of each subproblem
corresponds to a clique in the induced (triangulated) ordered graph, it is bounded by the
induced width plus one. Solving a problem Pi having at most w∗(d) + 1 variables and ri
constraints costs O(ri · kw

∗(d)+1). Summing over all subproblems
∑

i rik
w∗(d)+1, yields

the desired bound. The space complexity is due to the need to record the solutions for each
of the n clusters having at most w∗(d) + 1 variables. �

Once algorithm JTC delivers an acyclic problem, it can be solved by ACYCLIC-SOLVING

yielding a solution. algorithm JTC followed by ACYCLIC-SOLVING provide a procedure
for solving the CSP problem. We get:

Theorem 7.14 (complexity of JTC followed by ACYCLIC-SOLVING). Given a constraint
network having n variables and r constraints, the time complexity of finding a solution
using join-tree clustering and ACYCLIC-SOLVING is O(r ·w∗(d) · logk ·kw∗(d)+1) and the
space complexity is O(nkw

∗(d)+1), where k is the maximum domain size and w∗(d) is the
induced width of the ordered graph.

Proof: JTC generates an acyclic problem having at most n relations whose sizes are
bounded by kw∗(d)+1. Thus the complexity of acyclic-solving on these relations is bounded
by O(n · w∗(d) · logk · kw∗(d)+1), which is just applying acyclic-solving when l =
O(kw

∗(d)+1). �

General tree-decomposition schemes

Algorithm Join-tree-clustering commits to a specific structuring algorithm that is based
on chordal graphs. In this section we reformulate the notion of a tree-decomposition and

R. Dechter 221

Figure 7.10: Two tree-decompositions

provide an alternative, time-space sensitive algorithm, for its processing. This exposition
unifies several related schemes such as variable elimination, join-tree clustering and hyper-
tree decomposition (to be discussed later).

Definition 7.15 (tree-decomposition). Let R = (X,D,C) be a CSP problem. A tree-
decomposition for R is a triple < T, χ, ψ >, where T = (V,E) is a tree, and χ and ψ
are labeling functions which associate each vertex v ∈ V with two sets, χ(v) ⊆ X and
ψ(v) ⊆ C, that satisfy the following conditions:

1. For each constraint Ri ∈ C, there is at least one vertex v ∈ V such that Ri ∈ ψ(v),
and scope(Ri) ⊆ χ(v).

2. For each variable Xi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a connected subtree
of T . (This is the connectedness property.)

Definition 7.16 (tree-width, hypertree-width, separator). The tree-width of a tree-decom-
position < T, χ, ψ > is tw = maxv∈V |χ(v)| − 1 and its hypertree width is hw =
maxv∈V |ψ(v)|. Given two adjacent vertices u and v of a tree-decomposition, the sep-
arator of u and v is defined as sep(u, v) = χ(u)∩ χ(v). The tree-width of a CSP problem
is the minimal tree-width over all its tree-decompositions.

Remarks: It is easy to see that the definition of a tree-decomposition of a constraint
network R = (X,D,C) is completely determined by the hypergraph of the constraint
network H = {X,S} where S is the scheme of R: S = {Si|Si = scope(Ci)}. Thus a
tree-decomposition of a constraint network defines a tree-decomposition of its hypergraph
and its tree-width. The tree-width of a hypergraph is the minimal tree-width over all its
tree-decompositions. It can be shown that the tree-width of a hypergraph is identical to the
induced-width of its primal graph.

Example 7.17. Consider the binary constraint problem whose primal graph appears in
Figure 7.8(a). The join-trees in Figure 7.9(a) and (b) were obtained via triangulation in
orderings of Figure 7.8b and 7.8c and can be redescribed in Figure 7.10, using the two
labeling functions. The χ labelings are the sets inside each node.

222 7. Tractable Structures for CSPs

CLUSTER TREE-ELIMINATION (CTE)
Input: A tree decomposition < T, χ, ψ > for a problemR =< X,D,C >.
Output: An augmented tree whose nodes are clusters containing the original constraints
as well as messages received from neighbors. A decomposable problem for each node v.
Compute messages:
for every edge (u, v) in the tree, do

• Let m(u,v) denote the message sent by vertex u to vertex v. After node u has
received messages from all adjacent vertices, except maybe from v

– Define, clusterv(u) = ψ(u) ∪ {m(i,u)|(i, u) ∈ T, i 6= v}
– Compute and send to v:

m(u,v) ← πsep(u,v)(⋊⋉Ri∈clusterv(u) Ri) (7.1)

endfor
Return: A tree-decomposition augmented with constraint messages. For every node
u ∈ T , return the decomposable subproblem cluster(u) = ψ(u) ∪ {m(i,u)|(i, u) ∈ T}

Figure 7.11: Algorithm cluster-tree elimination (CTE)

Once a tree-decomposition is available, algorithm Cluster-Tree Elimination (CTE) in
Figure 7.11, can processes the decomposition. The algorithm is presented as a message-
passing algorithm, where each vertex of the tree sends a constraint to each of its neighbors.
If the tree contains m edges, then a total of 2m messages will be sent. Node u takes all the
constraints in ψ(u) and all the constraint messages received by u from all adjacent nodes,
and generate their join projected on the various separators with its neighbors. The resulting
constraint is then sent to v (remember that v is adjacent to u in the tree).

Implementing Equation 7.1: The particular implementation of equation (7.1) in CTE
can vary. One option is to generate the combined relation (⋊⋉Ri∈clusterv(u) Ri) before
sending messages to neighbor v. The other option, which we assume here, is that the
message sent to each neighbor is created without recording the relation (⋊⋉Ri∈clusterv(u)

Ri). Rather, each tuple in the join is projected on the separator immediately after being
created. This will yields a better memory utilization. Furthermore, when u sends a message
to v its cluster may contain the message it received from v. Thus in a synchronized message
passing we can allow a single enumeration of the tuples in cluster(u) when the messages
are sent back towards the leaves, each of which be projected in parallel on the separators
of the outgoing messages.

The output of CTE is the original tree-decomposition where each node is augmented
with the constraints sent to it from neighboring nodes, called clusters. For each node the
augmented set of constraints is a minimal subproblem relative to the input constraint prob-
lem R. Intuitively, a subproblem of a constraint network is minimal if one can correctly
answer any query on it without having to refer back to information in the whole network.
More precisely, a subproblem over a subset of variables Y is minimal relative to the whole
network, if its set of solutions is identical to the projection of the networks’ solutions on
Y .

R. Dechter 223

Figure 7.12: Example of messages sent by CTE

.

Definition 7.18 (decomposable subproblem). Given a constraint problemR = (X,D,C)
and a subset of variables Y ⊆ X , a subproblem over Y , RY = (Y,DY , CY), is decom-
posable relative to R iff sol(RY) = πY sol(R) where sol(R) is the set of all solutions of
networkR.

Convergence of CTE is guaranteed. The above description implies that the computa-
tion will proceed from leaves towards the root and back. Therefore, convergence is guar-
anteed after two passes, where only one constraint message is sent on each edge in each
direction.

Example 7.19. Figure 7.12 shows the messages propagated over the tree-decomposition
in Figure 7.10b. Since cluster 1 contains only one relation, the message from cluster 1 to
2 is the projection of RFD over the separator between cluster 1 and 2, which is variable
D. The message m(2,3) from cluster 2 to cluster 3 joins the relations in cluster 2 with the
message m(1,2), and projects over the separator between cluster 2 and 3, which is {B,C},
and so on.

CTE can be shown to be equivalent to generating and solving an acyclic constraint
problem by a tree-solving algorithm and therefore it is clearly sound [33].

Complexity of CTE

It is well known that given an induced graph having an induced-width w∗(d) along an
ordering d, it implies a tree-decomposition having tree-width tw = w∗. The opposite is
also true: if there is a tree-decomposition having tree-width tw, it dictates an ordering
d having induced-width w∗(d) = tw. Thus, from now on we will use w∗(d) for both
induced-width and tree-width of a given tree decomposition, while w∗ or tw∗ for the min-
imal tree-width/induced-width of a graph.

Computing the messages. Algorithm CTE can be subtly varied to influence its time and
space complexities. If we first record the joined relation in Equation (7.1) and subsequently
project on the separator, we will have space complexity exponential in w∗. However, we

224 7. Tractable Structures for CSPs

can interleave the join and project operations, and thereby make the space complexity
identical to the size of the sent constraint message. The message can be computed by
enumeration (or search) as follows: For each assignment v to χ(u), we can test if v is
consistent with each constraint in cluster(u), and if it is, we will project the tuple v over
sep, creating vsep, and add it to the relation m(sep).

Theorem 7.20. [33] [Complexity of CTE] Let N be the number of vertices in a given tree
decomposition of a constraint network, w∗ its tree-width, sep its maximum separator size,
r the number of input functions, deg the maximum degree in T , and k the maximum domain
size of a variable. The time complexity of CTE is O((r+N) · deg · kw∗+1) and its space
complexity is O(N · ksep).

Proof. The time complexity of processing a vertex u is degu · (|ψ(u)| + degu) · k|χ(u)|,
where degu is the degree of u, because vertex u has to send out degu messages, each being
a combination of at most (|ψ(u)|+degu) functions, and require the enumeration of k|χ(u)|

combinations of values. The time complexity of CTE, Time(CTE) is

Time(CTE) =
∑

u

degu · (|ψ(u)|+ degu) · k|χ(u)|

By bounding the first occurrence of degu by deg and |χ(u)| by the tree-width w∗ + 1, we
get

Time(CTE) ≤ deg · kw∗+1 ·
∑

u

(|ψ(u)|+ degu)

Since
∑

u |ψ(u)| = r we can write

Time(CTE) ≤ deg · kw∗+1 · (r +N)

= O((r +N) · deg · kw∗+1)

For each edge CTE will record two functions. Since the number of edges is bounded
by N and the size of each function we record is bounded by ksep, the space complexity is
bounded by O(N · ksep).

If the cluster-tree is minimal (for any u and v, sep(u, v) ⊂ χ(u) and sep(u, v) ⊂ χ(v)),
then we can bound the number of vertices N by n. Assuming r ≥ n, the time complexity
of a minimal CTE is O(deg · r · kw∗+1).

If r ≥ n, this yields complexity of O(deg · r · kw∗+1). It is possible to have an
implementation of the algorithm whose time complexity will not depend on deg, but this
improvement will be more expensive in memory [44, 33]. �

Join-tree clustering as tree-decomposition. Algorithm JTC is a specific algorithm
for creating the tree-decomposition. Because it generates the full set of solutions for each
node, its space complexity is exponential in w∗ + 1, unlike CTE whose space complexity
is exponential in the separator’s size only. On the other hand, while the time complexity of
CTE is O(r ·deg ·kw∗+1) if N ≤ r, the time complexity of JTC, followed by ACYCLIC-
SOLVING is O(r · w · logk · kw∗+1). Clearly, this distinction matters only if there is a
substantial difference between the tree-width and the maximum separator size of a given
tree-decomposition. See [33] for more details.

R. Dechter 225

C

A B

D

E

{1,2}

{1,2,3}{1,2}

{1,2} {1,2}

Figure 7.13: A graph coloring example

7.2.4 Variable-Elimination Schemes

We next show that variable-elimination algorithms such as Adaptive-consistency [17] can
be viewed as message passing in a CTE type algorithm. Adaptive consistency, described
in Figure 7.15, works by eliminating variables one by one, while deducing the effect of the
eliminated variable on the rest of the problem. Adaptive-consistency can be described us-
ing the bucket data-structure. Given a variable ordering d = A,B,D,C,E in a graph col-
oring example depicted in Figure 7.13 we process the variables from last to first, namely,
from E to A. Step one is to partition the constraints into ordered buckets. All the con-
straints mentioning the last variable E are put in a bucket designated as bucketE . Subse-
quently, all the remaining constraints mentioning D are placed in bucketD , and so on. The
initial partitioning of the constraints is depicted in Figure 7.14a. In general, each constraint
is placed in the bucket of its latest variable.

After this initialization step, the buckets are processed from last to first by Adaptive-
consistency. Processing the bucket of E, all three constraints in the buckets are solved and
the solution is projected over D,C,B, recording the ternary constraint RDCB which is
placed in the bucket of C. Next, the algorithm process C’s bucket which contains C 6= B
and the new constraint RDCB . Joining these two constraints and projecting out C yields a
constraint RDB that is placed in the bucket of D, and so on.

At each step the algorithm generates a reduced but equivalent problem with one less
variable expressed by the union of unprocessed buckets. Once the reduced problem is
solved its solution is guaranteed to be extendible to a full solution since it accounted for
the deduced constraints generated by the rest of the problem. Therefore, once all the buck-
ets are processed, and if no inconsistency is discovered, a solution can be generated in a
backtrack-free manner. Namely, a solution is assembled progressively assigning values
to variables from the first variable to the last. A value of the first variable is selected
satisfying all the current constraints in its bucket. A value for the second variable is
then selected which satisfies all the constraints in the second bucket, and so on. Pro-

226 7. Tractable Structures for CSPs

Bucket(E): E 6= D, E 6= C, E 6= B
Bucket(C): C 6= B
Bucket(D): D 6= A,
Bucket(B): B 6= A,
Bucket(A):

(a)
Bucket(E): E 6= D, E 6= C, E 6= B
Bucket(C): C 6= B || RDCB
Bucket(D): D 6= A, || , RDB
Bucket(B): B 6= A, || RAB
Bucket(A): || RA

(b)

Figure 7.14: A schematic execution of adaptive-consistency

Algorithm Adaptive consistency (AC)
1. Input: A constraint problem R1, ...Rt, ordering d = X1, ..., Xn.
2. Output: An equivalent backtrack-free set of constraints and a solution.
3. Initialize: Partition constraints into bucket1, ...bucketn. bucketi contains
all relations whose scope include Xi but no higher indexed variable.
4. For p = n downto 1, process bucketp as follows

for all relations R1, ...Rm defined over S1, ...Sm ∈ bucketp do
(Find solutions to bucketp and project out Xp:)
A← ⋃m

j=1 Sj − {Xi}

RA ← πA(⋊⋉m
j=1 Rj)

5. if RA is not empty, add it to the bucket of its latest variable.
else, exit and return the empty network.

6. Return ∪jbucketj and generate a solution: for p = 1 to n do
assign a value to Xp that is consistent with previous assignments and satisfies
all the constraints in bucketp.

Figure 7.15: Algorithm Adaptive consistency

cessing a bucket amounts to solving a subproblem defined by the constraints appearing
in the bucket, and then restricting the solutions to all but the current bucket’s variable.
Adaptive-consistency is an instance of a general class of variable elimination algorithms
called bucket-elimination that are applicable across many tasks [15].

The complexity of adaptive-consistency is linear in the number of buckets and in the
time to process each bucket. Since processing a bucket amounts to solving a constraint
subproblem (the computation in a bucket can be described in terms of the relational opera-
tors of join followed by projection) its complexity is exponential in the number of variables
mentioned in a bucket which is bounded by the induced-width of the constraint graph along

R. Dechter 227

A

B

D

F

C

G

Figure 7.16: A constraint network example

that ordering [17].

Theorem 7.21 (Complexity of AC). [15, 33] Let w∗(d) be the induced width of G along
ordering d. The time complexity of adaptive-consistency is O(r · kw∗(d)+1) and the space
complexity is O(n · kw∗(d)).

7.2.5 Adaptive-Consistency as Tree-Decomposition

We now show that adaptive-consistency can be viewed as a message-passing algorithm
along a bucket-tree, which is a special case of tree-decomposition. Let R = (X,D,C) be
a problem and d an ordering of its variables, d = (X1, ..., Xn). LetBX1

, ..., BXn
be the set

of buckets, each contains those constraints in C whose latest variable in d is Xi. A bucket-
tree ofR in an ordering d, has buckets as its nodes, and bucket BX is connected to bucket
BY if the constraint generated by adaptive-consistency in bucket BX is placed in BY . The
variables ofBXi

are those appearing in the scopes of any of its original constraints, as well
as those received from other buckets. Therefore, in a bucket tree, every node BX has one
parent node BY and possibly several child nodes BZ1

, ...BZt
.

It is easy to see that a bucket tree of R is a tree-decomposition of R where for bucket
BX , χ(BX) contains X and its earlier neighbors in the induced graph along ordering d,
while ψ(BX) contains all constraints whose highest-ordered argument is X . Therefore,

Theorem 7.22. [33] A bucket tree of a constraint network R is a tree-decomposition of
R.

Thus we can add a bottom-up message passing to adaptive-consistency yielding Adap-
tive Tree Consistency (ATC) given in Figure 7.17. In the top-down phase, each bucket
receives constraint messages ρ from its children and sends ρ constraint messages to its
parent. This portion is identical to AC. In the bottom-up phase, each bucket receives a ρ
constraint from its parent and sends a ρ constraint to each child.

Example 7.23. Consider a constraint network defined over the graph in Figure 7.16. Fig-
ure 7.18 left shows the initial buckets along the ordering d = (A,B,C,D, F,G), and the ρ
constraints that will be created and passed by adaptive-consistency from top to bottom. On

228 7. Tractable Structures for CSPs

Algorithm Adaptive-Tree Consistency (ATC)
Input: A problemR = (X,D,C), ordering d.
Output: Augmented buckets containing the original constraints and all the ρ constraints
received from neighbors in the bucket-tree.
0. Pre-processing:
Place each constraint in the latest bucket, along d, that mentions a variable in its scope.
Connect bucket BX to BY , Y < X , if variable Y is the latest earlier neighbor of X in the
induced graph Gd.
1. Top-down phase: (AC)
For i = n to 1, process bucket BXi

:
Let ρ1, ..., ρj be all the constraints in BXi

at the time BXi
is processed, including original

constraints ofR. The constraint ρYXi
sent from Xi to its parent Y , is computed by

ρYXi
(sep(Xi, Y)) = πsep(Xi,Y) ⋊⋉

j
i=1 ρi (7.2)

2. Bottom-up phase:
For i = 1 to n, process bucket BXi

:
Let ρ1, ..., ρj be all the constraints in BXi

at the time BXi
is processed, including the

original constraints ofR. The constraints ρZj

Xi
for each child bucket zj is computed by

ρ
Zj

Xi
(sep(Xi, Zj)) = πsep(Xi,Zj)(⋊⋉

j
i=1 ρi)

Figure 7.17: Algorithm Adaptive-Tree Consistency (ATC)

Figure 7.18: Execution of AC along the bucket-tree

its right, the figure displays the same computation as a message-passing along its bucket-
tree. Figure 7.19 shows a complete execution of ATC along the linear order of buckets and
along the bucket-tree. The ρ constraints are displayed as messages placed on the outgoing
arcs.

Theorem 7.24 (Complexity of ATC). [33] Let w∗(d) be the induced width of G along
ordering d. The time complexity ofATC isO(r·deg·kw∗(d)+1), where deg is the maximum
degree in the bucket-tree. The space complexity of ATC is O(n · kw∗(d)).

R. Dechter 229

Figure 7.19: Propagation of ρ messages along the bucket-tree

7.2.6 Hypertree Decomposition

One problem with the tree-width in identifying tractability is that they are sensitive only to
the primal constraint graph and not to its hypergraph structure. For example, an acyclic
problem whose constraint’s scope have high arity would have a high tree-width even
though it can be processed in quadratic time in the input. A different graph parameter
that is more sensitive to the hypergraph structure is the hypertree width [29]. It relies on
a notion of hypertree decompositions for Constraint Satisfaction and it provides a stronger
indicator of tractability than the tree-width.

Definition 7.25 (hypertree decomposition). [29] A (complete) hypertree decomposition of
a hypergraph HG = (X,S) is a triple < T, χ, ψ >, where T = (V,E) is a rooted tree,
and χ and ψ are labelling functions which associate with each vertex v ∈ V two sets
χ(v) ⊆ X and ψ(v) ⊆ S, and which satisfies the following conditions:

1. For each edge h ∈ S, there exists v ∈ V such that h ∈ ψ(v) and scope(h) ⊆ χ(v)
(we say that v strongly covers h).

2. For each variable Xi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a (connected)
subtree of T .

3. For each v ∈ V , χ(v) ⊆ scope(ψ(v)).

4. For each v ∈ V , scope(ψ(v)) ∩ χ(Tv) ⊆ χ(v), where Tv = (Vv, Ev) is the subtree
of T rooted at v and χ(Tv) = ∪u∈Vv

χ(u).

The hypertree width hw of a hypertree decomposition is hw = maxv|ψ(v)|.

230 7. Tractable Structures for CSPs

A hypertree decomposition of a constraint network R is a hypertree decomposition of
its hypergraph where the vertices are the variables of R and the scopes of constraints are
the hyperedges. The hypertree decomposition can be processed by joining all the relations
in each cluster and then applying acyclic-solving procedure, or by CTE.

Processing hypertree decomposition by acyclic-solving: Once a hyper-tree decomposi-
tion is available, 1. join all the relations in each cluster, yielding a single relation on each
cluster. This step takes time and space O(m · thw) where t bounds the relation size and m
is the number of edges in the hypertree decomposition, and it creates an acyclic constraint
satisfaction problem. 2. Process the acyclic problem by arc-consistency. This step can
be accomplished in time O(m · hw · thw · logt) because there are m arc in the hypertree
decomposition, each has at most O(thw) tuples so acyclic-solving is O(m · thw · log(thw))
which yields the desired bound. We can summarize,

Theorem 7.26. [29] Let m be the number of edges in the hypertree decomposition of a
constraint networkR, hw be its hypertree width and t be a bound on the relation size. The
hypertree decomposition can be processed by ACYCLIC-SOLVING in time O(m ·hw · logt ·
thw) and in space O(m · thw).

Processing hypertree decompositions by CTE: Recall that given a hypertree decomposi-
tion, each node u has to send a single message to each neighbor v. We can computem(u,v)

in the space saving mode as follows. 1., Join all functions ψ(u) in node u yielding function
h(u), namely, h(u) =⋊⋉R∈ψ(u) R. This step can be done in time and space O(t|ψ(u)|). 2.
For each neighbor c of u, c 6= v iterate, h(u) ← h(u) ⋊⋉ m(c,u). This step can be accom-
plished in O(deg · hw · logt · thw) time and O(thw) space. 3. m(u,v) ← πχ(u)∩χ(v)h(u).
We can conclude:

Theorem 7.27. A hypertree decomposition of a constraint network can be processed by
CTE in time

O(m · deg · hw · logt · thw)

and space O(m · thw), where m is the number of edges in the hypertree decomposition,
hw its hypertree width, and t is a bound on the size of the relational representation of each
function inR.

Notice that CTE may be more space efficient than processing by generating the joins
in each cluster followed by ACYCLIC-SOLVING. However, we cannot capture this saving
using hw alone. If we use the sep parameter we could bound CTE’s space complexity by
O(N · ksep).

Notice that there are tree-decompositions that are not hypertree decompositions as in
Definition 7.25, because hypertree decompositions require that the variable-sets labeling a
vertex, will be contained in the combined scope of its labeling functions (Condition 3 of
Definition 7.25). This is not required by the tree-decomposition definition. For example,
consider a single n-ary constraint R. It can be mapped into a bucket-tree with n vertices.
Node i contains variables {1, 2, ...i} but no constraints, except that node n contains also
the original constraints of the problem. Both join-tree and hypertree decomposition will
allow just one vertex that include the function and all its variables.

R. Dechter 231

Therefore, Theorem 7.27 does not apply to Definition 7.15 of tree-decomposition be-
cause the analysis assumed Condition 3 of Definition 7.25. We can overcome this problem
by thinking of all uncovered variables in a node as having a universal relation with the
variables as its scope. In this case we can show

Theorem 7.28. A tree-decomposition of a constraint networkR can be processed by CTE
in time

O(m · deg · hw∗ · logt · thw∗

)

where t is a bound on the relation size, hw∗(v) = (|ψ(v)| + |{Xi|Xi 6∈ scope(ψ(v)}|),
and hw∗ = max

v∈V hw
∗(v) and in space O(m · thw∗).

Proof. Once we add the universal relation on uncovered variables we have a restricted
hypertree decomposition to which we can apply the bound of Theorem 7.27 assuming the
same implementation of CTE. The number of uncovered variables in a node v is n(v) =
|{Xi|Xi 6∈ scope(ψ(v)}|. So the processing of a node takes time O(thw · kn(v)) where
k bounds the domain size, yielding O((max(t, k)hw

∗

). Assuming that t > k we can use
the time and space bound O(N · thw∗

). Consequently, message passing between all nodes
yields overall complexity as in Theorem 7.27 when hw is replaced by hw∗.

7.2.7 Summary

This section discussed inference algorithms that transform a general constraint problem
into a tree of constraints which can be solved efficiently. The complexity of the trans-
formation process is exponentially bounded by the tree-width (or induced-width) of the
constraint graph. It is also exponentially bounded by any hypertree width of the hypertree-
decomposition. Thus both the induced-width and tree-width hypertree width can be used to
define structure-based tractable classes. Yet, the hypertree width defines a larger tractabil-
ity class because every problem with a bounded tree-width has a bounded hypertree width
but not vice-versa.

7.3 Trading Time and Space by Hybrids of Search and Inference

As we noted at the introduction, search and inference have complementary properties.
Inference exploit the graph structure and therefore allows structure-based time guarantees
but require substantial memory. Search, does not posses good complexity time bounds yet
it can operate in linear space. Therefore, using a hybrid of search and inference allows
structure-driven tradeoff of space and time. Two such hybrids are presented next.

7.3.1 The Cycle-Cutset and w-Cutset Schemes

The algorithms presented in this section exploit the fact that variable instantiation changes
the effective connectivity of the constraint graph. Consider a constraint problem whose
graph is given in Figure 7.20a. For this problem, instantiating X2 to some value, say a,
renders the choices of values to X1 and X5 independent, as if the pathway X1 −X2 −X5

were blocked at X2. Similarly, this instantiation blocks dependency in the pathway X1 −
X2 −X4, leaving only one path between any two variables. In other words, given that X2

232 7. Tractable Structures for CSPs

X2X4

X3 X1

(a)

X
3

X
4

X1

(b)

X
2

X
5

X2

X
2

X
5

Figure 7.20: An instantiated variable cuts its own cycles.

was assigned a specific value, the “effective” constraint graph for the rest of the variables
is shown in Figure 7.20b. Here, the instantiated variable X2 and its incident arcs are first
deleted from the graph, and X2 subsequently is duplicated for each of its neighbors. The
constraint problem having the graph shown in Figure 7.20(a) when X2 = a is identical
to the constraint problem having the graph in Figure 7.20(b) with the same assignment
X2 = a.

In general, when the group of instantiated variables constitutes a cycle-cutset; a set of
nodes that, once removed, would render the constraint graph cycle-free. The remaining
network is a tree (as shown in Figure 7.20b), and can be solved by tree-solving algorithm.
In most practical cases it would take more than a single variable to cut all the cycles in
the graph. Thus, a general way of solving a problem whose constraint graph contains
cycles is to identify a subset of variables that cut all cycles in the graph, find a consistent
instantiation of the variables in the cycle-cutset, and then solve the remaining problem
by the tree algorithm. If a solution to this restricted problem (conditioned on the cycle-
cutset values) is found, then a solution to the entire problem is at hand. If not, another
instantiation of the cycle-cutset variables should be considered until a solution is found.
If the task is to solve a constraint problem whose constraint graph is presented in Figure
7.20a, (assumeX2 has two values {a, b} in its domain), firstX2 = amust be assumed, and
the remaining tree problem relative to this instantiation, is solved. If no solution is found,
it is assumed that X2 = b and another attempt is made.

The number of times the tree-solving algorithm needs to be invoked is bounded by the
number of partial solutions to the cycle-cutset variables. A small cycle-cutset is therefore
desirable. However, since finding a minimal-size cycle-cutset is computationally hard, it
will be more practical to settle for heuristic compromises. One approach is to incorporate
this scheme within backtracking search. Because backtracking works by progressively
instantiating sets of variables, we only need to keep track of the connectivity status of the
constraint graph. As soon as the set of instantiated variables constitutes a cycle-cutset, the
search algorithm is switched to the tree-solving algorithm on the restricted problem, i.e.,
either finding a consistent extension for the remaining variables (thus finding a solution to
the entire problem) or concluding that no such extension exists (in which case backtracking
takes place and another instantiation tried).

R. Dechter 233

D

B

F

A

E

C

(b)

AA C

EF C

D

B

A

C

cutset-part

tree-part

(c)

E

C

D
B

(a)

A

E

Figure 7.21: (a) a constraint graph (b) its ordered graph (c) The constraint graph of the
cutset variable and the conditioned variable, where the assigned variables are darkened.

Example 7.29. Assume that backtracking instantiates the variables of the CSP represented
in Figure 7.21a in the order C,B,A,E,D, F (Figure 7.21b). Backtracking will instantiate
variables C, B and A, and then, realizing that these variables cut all cycles, will invoke
a tree-solving routine on the rest of the problem: the tree-problem in Figure 7.21c with
variables C, B and A assigned, should then be attempted. If no solution is found, control
returns to backtracking which will go back to variable A.

The cycle-cutset scheme can be generalized. Rather than insisting on conditioning on
a subset (cutset) that cuts all cycles and yields subproblems having induced-width 1, we
can allow cutsets that create subproblems whose induced-width is higher than 1 but still
bounded. This suggests a framework of hybrid algorithms parameterized by a bound w on
the induced-width of subproblems solved by inference.

Definition 7.30 (w-cutset). Given a graph G, a subset of nodes is called a w-cutset iff
when the subset is removed the resulting graph has an induced-width less than or equal to
w. A minimal w-cutset of a graph has a smallest size among all w-cutsets of the graph. A
cycle-cutset is a 1-cutset of a graph.

Finding a minimal w-cutset is a hard task. However, like in the special case of a cycle-
cutset we can settle for a w-cutset relative to the given variable ordering. We can look for
an initial set of the ordering that is a w-cutset. Then a backtracking algorithm can traverse
the search space over the w-cutset and for each of its consistent assignment solve the rest
of the problem by ADAPTIVE-CONSISTENCY or by CTE.

Algorithm cutset-decomposition(w) (called elim-cond in [15]) is described in Figure
7.22. It runs backtracking search on the w-cutset and adaptive-consistency on the remain-
ing variables. The constraint problem R = (X,D,C) conditioned on an assignment
Y = ȳ and denoted by Rȳ is R augmented with the unary constraints dictated by the
assignment ȳ. In the worst-case, all possible assignments to the w-cutset variables need to

234 7. Tractable Structures for CSPs

Algorithm cutset-decomposition(w)
Input: A constraint network R = (X,D,C), Y ⊆ X which is a w-cutset. d is an
ordering that starts with Y such that the induced-width when Y is removed, along d, is
bounded by w, Z = X − Y .
Output: A consistent assignment, if there is one.

1. while ȳ ← next partial solution of Y found by backtracking, do

a) z̄ ← adaptive− consistency(RY=ȳ).

b) if z̄ is not false, return solution (ȳ, z̄).

2. endwhile.

3. return: the problem has no solutions.

Figure 7.22: Algorithm cutset-decomposition(w)

be enumerated. If c is the w-cutset size, kc is the number of subproblems of induced-width
bounded by w needed to be solved, each requiring O((n− c)kw+1) steps.

Theorem 7.31. [15] Algorithm cutset-decomposition(w) has time complexity of O(n ·
kc+w+1) where n is the number of variables, c is the w-cutset size and k is the domain
size. The space complexity of the algorithm is O(kw). �

The special case of w = 1 yield the cycle-cutset decomposition algorithm whose time
complexity isO((n−c)kc+2) and it operates in linear space. Thus, the constantw can con-
trol the balance between search and inference (e.g., variable-elimination), and can affect
the tradeoff between time and space.

Another approach that uses the w-cutset principle is to alternate between search and
variable-elimination. Given a variable ordering for adaptive-consistency we can apply
variable elimination as long as the induced-width of the variables does not exceed w. If a
variable has induced-width higher than w, it will be conditioned upon. The algorithm alter-
nates between conditioning and elimination. This scheme was used both for solving SAT
problems and for optimization tasks [40, 34] and is currently used for Bayesian networks
applications [20, 22]. Clearly, a cutset uncovered via the alternating algorithm is also a
w-cutset and therefore can be used within the cutset-decomposition scheme.

Both cutset-decomposition and the alternating cutset-elimination algorithm call for a
new optimization task on graphs:

Definition 7.32 (finding a minimal w-cutset). Given a graph G = (V,E) and a constant
w, find a smallest subset of nodes U , such that when removed the resulting graph has
induced-width less than or equal w.

Finding a minimal w-cutset is hard, but various greedy heuristic algorithms were in-
vestigated empirically. Several greedy and approximation algorithms for the special case
of cycle-cutset can be found in the literature [5]. The general task of finding a minimal
w-cutset was addressed in recent papers [21, 8] both for the cutset-decomposition version

R. Dechter 235

A

B

C

G

D
E

F

H

Figure 7.23: a primal constraint graph

and for the alternating version. Note that verifying that a given subset of nodes is a w-
cutset can be accomplished in polynomial time (linear in the number of nodes), by deleting
the candidate cutset from the graph and verifying that the remaining graph has an induced
width bounded by w [1].

In summary, the parameter w can be used within the cutset-decomposition scheme to
control the trade-off between search and inference. If d is the ordering used by cutset-
decomposition(w) and if w ≥ w∗(d), the algorithm coincides with ADAPTIVE-CONSIS-
TENCY. As w decreases, the algorithm requires less space and more time. It can be shown
that the size of the smallest cycle-cutset (1-cutset), c∗1 and the smallest induced width, w∗,
obey the inequality c∗1 ≥ w∗−1. Therefore, 1+c∗1 ≥ w∗, where the left side of this inequal-
ity is the exponent that determines the time complexity of cutset-decomposition(w=1),
while w∗ governs the complexity of ADAPTIVE-CONSISTENCY. In general, if c∗w is the
size of a minimal w-cutset then,

1 + c∗1 ≥ 2 + c∗2 ≥ ...b+ c∗b , ... ≥ w∗ + c∗w∗ = w∗

We get a hybrid scheme controlled by w, whose time complexity decreases and its
space increases as w changes from w∗ to 1.

7.3.2 The Super-Bucket and Super-Cluster Schemes; Separator-Width

We now present an orthogonal approach for combining search and inference. The inference
algorithm CTE that process a tree-decomposition already contains a hidden combination
of variable elimination and search. It computes constraints on the separators using variable
elimination and is space exponential in the separator’s size. The clusters themselves can be
processed by search in time exponential in the cluster size. Thus, one can trade even more
space for time by allowing larger cliques but smaller separators.

Assume a problem whose tree-decomposition has tree-width r and maximum separator
size s. Assume further that our space restrictions do not allow the necessaryO(ks) memory
required when applying CTE on such a tree. One way to overcome this problem is to
combine the nodes in the tree that are connected by large separators into a single cluster.
The resulting tree-decomposition has larger subproblems but smaller separators. This idea
suggests a sequence of tree-decompositions parameterized by the sizes of their separators
as follows.

236 7. Tractable Structures for CSPs

AB

BCD

BDG

GDEF

GEFH

B

BD

GD
GFE

AB

BCD

BDG

GDEFH

AB

BCDGEFH

B

BD

GD

B

(a) (b) (c)T0 T1 T2

Figure 7.24: A tree-decomposition with separators equal to (a) 3, (b) 2, and (c) 1

Let T be a tree-decomposition of hypergraph H. Let s0, s1, ..., sn be the sizes of the
separators in T , listed in strictly descending order. With each separator size si we associate
a secondary tree decomposition Ti, generated by combining adjacent nodes whose sepa-
rator sizes are strictly greater than si. We denote by ri the largest set of variables in any
cluster of Ti, and by hwi the largest number of constraints in Ti. Note that as si decreases,
both ri and hwi increase. Clearly, from Theorem 7.20 it follows that,

Theorem 7.33. Given a tree-decomposition T over n variables andm constraints, separa-
tor sizes s0, s1, ..., st and secondary tree-decompositions having a corresponding maximal
number of nodes in any cluster, r0, r1, ..., rt. The complexity ofCTE when applied to each
secondary tree-decompositions Ti is O(m · deg · exp(ri)) time, and O(n · exp(si)) space
(i ranges over all the secondary tree-decomposition).

We will call the resulting algorithm the super-cluster tree elimination algorithm, or
SCTE(s). It takes a primary tree-decomposition and generates a tree-decomposition
whose separator’s size is bounded by s, which is subsequently processed by CTE. In
the following example we assume that a naive-backtracking search processes each cluster.

Example 7.34. Consider the constraint problem having the constraint graph in Figure
7.23. The graph can be decomposed into the join-tree in Figure 7.24(a). If we allow only
separators of size 2, we get the join tree T1 in Figure 7.24(b). This structure suggests
that applying CTE takes time exponential in the largest cluster, 5, while requiring space
exponential in 2. If space considerations allow only singleton separators, we can use the
secondary tree T2 in Figure 7.24(c). We conclude that the problem can be solved either in
O(k4) time (k being the maximum domain size) and O(k3) space using T0, or in O(k5)
time and O(k2) space using T1, or in O(k7) time and O(k) space using T2.

Superbuckets. Since as we saw in Section 7.2.5, bucket-elimination algorithms can be
extended to bucket-trees and since a bucket-tree is a tree-decomposition, by merging ad-
jacent buckets we generate a super-bucket-tree (SBT) in a similar way to generating super
clusters. This implies that in the top-down phase of bucket-elimination several variables
are eliminated at once (see [12]). Algorithm SCTE suggests a new graph parameter.

R. Dechter 237

Definition 7.35. Given a graph G and a constant s find a tree-decomposition of G having
the smallest induced-width, w∗

s . Or, find a hyper-tree decomposition having the smallest
hypertree width, hw∗

s .

A related problem of finding a tree-decomposition with a bounded tree-width w having
the smallest separator, was shown to be polynomial [42]. Finding w∗

s however, is hard but
it is easy for the special case of s = 1 as we show next.

Decomposition into non-separable components

A special tree-decomposition occurs when all the separators are singleton variables. This
type of tree-decomposition is attractive because it requires only linear space. While we
generally cannot find the best tree-decompositions having a bounded separators’ size in
polynomial time, this is a feasible task when the separators are singletons. To this end, we
use the graph notion of non-separable components [19].

Definition 7.36 (non-separable components). A connected graph G = (V,E) is said
to have a separation node v if there exist nodes a and b such that all paths connecting a
and b pass through v. A graph that has a separation node is called separable, and one
that has none is called non-separable. A subgraph with no separation nodes is called a
non-separable component or a bi-connected component.

An O(| E |) algorithm exists for finding all the non-separable components and the
separation nodes. It is based on a depth-first search traversal of the graph. An impor-
tant property of non-separable components is that that they are interconnected in a tree-
structured manner [19]. Namely, for every graphG there is a tree SG, whose nodes are the
non-separable components C1, C2, . . . , Cr of G. The separating nodes of these trees are
V1, V2, . . . , Vt and any two component nodes are connected through a separating node ver-
tex in SG. Clearly the tree of non-separable components suggests a tree-decomposition
where each node corresponds to a component, the variables of the nodes are those appear-
ing in each component, and the constraints can be freely placed into a component that
contains their scopes. Applying CTE to such a tree requires only linear space, but is time
exponential in the components’ sizes (see [12]).

Example 7.37. Assume that the graph in Figure 7.25(a) represents a constraint network
having unary, binary and ternary constraints as follows: R = {RAD, RAB , RDC , RBC ,
RGF , DG, DF , REHI , RCFE}. The non-separable components and their tree-structure
are given in Figure 7.25(b,c). The ordering of components d = (C1, C2, C3, C4) dictates
super-clusters associated with variables {G, J, F}, {E,H, I}, {C,F,E} and {A,B,C,D}.
The initial partition into super-clusters and a schematic execution of CTE are displayed in
Figure 7.25d.

Theorem 7.38 (non-separable components). [24] If R = (X,D,C), |X| = n, is a con-
straint network whose constraint graph has non-separable components of at most size r,
then the super-cluster-tree elimination algorithm, whose buckets are the non-separable
components, is time exponential O(n · exp(r)) but requires only linear in space.

238 7. Tractable Structures for CSPs

F

C 4

E

C 2

C

C 1

C 3

C 4

C 3

C 2

C 1

A

B C

D

G

F J

E

I

H

(a)
(b)

C,F,E

G,F,J

E,H,I

A,B,C,D

C,F,E 3

1

2

G,F,J

E,H,I

A,B,C,D 4

},,,,{ FGJFGJGF DDRRR

(F)2
1

(E)3
2

(C)4
2

(E)2
3

(F)1
2

}{ ,, IHER

},,,{ ,,,, CBCDBADA DRRR

}{ ,, EFCR

(C)2
4

Figure 7.25: A graph and its decomposition into non-separable components.

R. Dechter 239

Hinge decomposition

The non-separable component principle can be applied to the dual graph rather than to the
primal constraint graph. Better yet, since the dual graph may contain redundant edges, we
can first try to remove those edges to obtain a minimal dual graph (also called minimal join-
graph) and then generate a tree of non-separable components. This idea is very related to
another tree-decomposition principle proposed in the literature called hinge-decomposition
[32]. Indeed a best hinge decomposition can be obtained in polynomial time, yielding
smallest component in a bi-component tree decomposition of the dual graph whose some
redundant arcs are removed. For a formal proof see [31].

7.4 Structure-Based Tractability in Search

Search algorithms typically traverse the problem’s space whose paths represent a partial
or full solutions. Their main virtue is that they can operate using bounded memory. Their
main weakness however is that the structure of the search space hides the independencies
of the constraint network. Next we show that AND/OR search spaces can overcome this
difficulty because they display the independencies in the constraint graph and can some-
time yield exponential saving compared to the traditional search space (called OR space).
As a result, search algorithms can have graph-based performance guarantees like inference
schemes.

7.4.1 AND/OR Search Trees

Definition 7.39 (AND/OR search tree based on DFS tree). Given a constraint network R
and a DFS spanning tree T of its primal graph, the AND/OR search tree of R based on
T , denoted ST , has alternating levels of OR nodes (labeled with variable names, e.g. X)
and AND nodes (labeled with variable values, e.g. 〈X, v〉). The root of ST is an OR node
labeled with the root of T . The children of an OR node X are AND nodes, each labeled
with a value of X , 〈X, v〉. The children of an AND node 〈X, v〉, are OR nodes, labeled
with the variables that are children of X in T . A solution is a subtree containing the root
node and for every OR node, it includes one of its child nodes and for every AND nodes it
includes all its children.

Consider the tree T in Fig. 7.26 describing a graph coloring problem over domains
{1, 2, 3}. Its traditional OR search tree along the DFS ordering d = (X,Y, T,R, Z, L,M)
is given in Fig. 7.27, and its AND/OR search tree based on the DFS tree T with a high-
lighted solution subtrees are given in Fig. 7.28.

The construction of AND/OR search trees can be guided not just DFS spanning trees
but also by pseudo-trees which include DFS trees [25, 26, 3]. Pseudo-trees have the prop-
erty that every arc of the constraint graph is a back-arc in the pseudo-tree (i.e. it doesn’t
connect across different branches). Clearly, any DFS tree and any chain are pseudo-trees.
It is easy to see that searching an AND/OR tree guided by a pseudo-tree T is exponential
in the depth m of T . Also, it is known that if a graph has a tree-width w∗ it also has a
pseudo-tree whose depth m satisfies m ≤ w∗ · logn [3]. In summary,

Theorem 7.40. Given a constraint network R and a pseudo-tree T , its AND/OR search
tree ST is sound and complete (contains all and only solutions) and its size is O(n · km)

240 7. Tractable Structures for CSPs

X

Y Z

T R L M

Figure 7.26:
Tree T

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

Figure 7.27: OR search tree

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

Figure 7.28: AND/OR search tree

where m is the depth of its backbone pseudo-tree. Moreover, a constraint network that has
a tree-width w∗ has an AND/OR search tree whose size is O(kw

∗·log n).

Backjumping algorithms [28, 3] are backtracking search schemes applied to the regular
OR space, which uses the problem structure to jump back from a dead-end as far back as
possible. In graph-based backjumping (GBJ) [14] each variable maintains a graph-based
induced ancestor set which ensures that no solutions are missed when jumping back to
its deepest variable. Graph-based backjumping extracts knowledge about dependencies
from the constraint graph alone. Whenever a dead-end occurs at a particular variable X ,
the algorithm backs up to the most recent variable connected to X in the graph. It can
be shown that backjumping in effect explores an AND/OR search space. Indeed, when
backjumping is performed on a DFS ordering of the variables, its complexity can be
bounded by O(km) steps, m being the depth of the DFS tree. Therefore, if the graph has
an induced-width w∗, there exists an ordering for which backjumping can be bounded by
O(kw

∗·logn).

7.4.2 AND/OR Search Graphs

It is often the case that certain states in the search tree can be merged because the subtrees
they root are identical. Any two such nodes are called unifiable, and when merged, trans-
form the search tree into a search graph. For example, in Fig. 7.28, the search trees below
the paths 〈X, 2〉, 〈Y, 1〉 and 〈X, 3〉, 〈Y, 1〉 are identical, so the corresponding nodes are
unifiable.

In general, merging all the unifiable subtrees given an AND/OR search graph yields
a unique graph, called the minimal AND/OR search graph. Merging is applicable to the
traditional OR search space as well. However, in many cases it will not be able to reach
the compression we can get in AND/OR representations. Fig. 7.29 and Fig. 7.30 show
a comparison between minimal OR and AND/OR search graphs for the problem in Fig.
7.26. Indeed some variable-value instantiations appear multiple times in the OR graph
while just once in the AND/OR graph.

In some cases identifying unifiable nodes is easy. The idea is to extract from each path
only the relevant context that completely determines the unexplored portion of the space.
Subsequently, the subgraph is only solved once and the results are cached and indexed
by the context. Searching the AND/OR graphs rather than the AND/OR tree is related to
recording no-goods during backtracking search [11]. It can be shown that,

R. Dechter 241

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 32 1 2 3

123

1 2

1 2

2 3 1

1 3

3

2 3

Figure 7.29: Minimal OR search graph
of the tree problem in Fig. 7.26

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R

1 3

1 1

2

T R T R

1 32

L M

1 32

L M L M

1 32

Figure 7.30: Minimal AND/OR search
graph of the tree problem in Fig. 7.26

Theorem 7.41. [16] Given G, a pseudo-tree T of G and its induced width w∗ the size of
the minimal AND/OR search graph based on T is O(n · kw∗

), when k bounds the domain
size and n is the number of variables.

We can show that the minimal AND/OR search graph is bounded exponentially by the
primal graph’s induced-width while the OR minimal search graph is bounded exponentially
by its path-width. The path-width, pw∗, of a graph is the minimum tree-width over all
tree-decompositions whose trees are chains. It is well known [10] that for any graph w∗ ≤
pw∗ ≤ w∗ · log n. It is also easy to place m∗ (the minimal pseudo-tree depth) yielding
w∗ ≤ m∗ ≤ pw∗ ≤ w∗ · log n.

7.5 Summary and Bibliographical Notes

7.5.1 Structure-Based Tractability

Throughout this chapter several techniques that exploit the structure of the constraint net-
work were presented. Several graph parameters stood out in the analysis. The two main
classes are width-based and cutset-based. Width-based parameters capture the size of clus-
ters required to make the graph a tree of clusters. These include the tree-width also known
as induced-width w∗, (appearing in adaptive-consistency, tree-clustering and in searching
AND/OR graphs using caching of goods and no-goods. It also includes path-width (pw)
which captures the cluster size required to embed a graph in a chain of clusters, and the
hypertree hw appearing in the hypertree decomposition which captures the number of con-
straints in a tree of clusters. Cutset-based parameters include the cycle-cutset size c1 and
more generally the w-cutset size cw (appearing in the cutset-decomposition method, which
capture the number of variables that need to be removed from the constraint graph to make
its tree-width bounded by w. This concept can be extended in an obvious way to hypercut-
set decompositions defining cutsets for which the remaining graph has a bounded hypertree
width, rather than tree-width. Other parameters that do not belong to the above two classes
is 1) the depth of a DFS-tree and a pseudo-tree m (appearing when searching AND/OR
trees and in backjumping), 2) the size of the largest non-separable component r1 (appear-
ing in the decomposition to bi-connected components), 3) the size of hinges (appearing in
bi-connected decomposition of a minimal dual graphs) and 4) the size of separator-based
tree-width rs appearing in SCTE method capturing time-space tradeoffs.

It is well known [10, 3] that for any graph w∗ ≤ m∗ ≤ pw∗ ≤ w∗ · log n. Relating
width-based parameters to cutset parameters we have that w∗ ≤ c∗i + i holds. Also graphs

242 7. Tractable Structures for CSPs

having bounded tree-width also have bounded hypertree width but not vice-versa. There-
fore the hypertree width is the most informative parameter capturing tractability. However,
when memory is bounded we can use SCTE(i) or cutset-decomposition(i) for an appropri-
ate i so that memory of O(ki) is feasible.

7.5.2 Bibliographical Notes

Join-tree clustering was introduced in constraint processing by Dechter and Pearl [18] and
in probabilistic networks by Spigelhalter et. al [35]. Both methods are based on the char-
acterization by relational-database researchers that acyclic-databases have an underlying
tree-structure, called join-tree, that allows polynomial query processing using join-project
operations and easy identification procedures [6, 38, 46]. In both constraint networks
and belief networks, it was observed that the complexity of compiling any knowledge-
base into an acyclic one is exponential in the cluster size, which is characterized by the
induced-width or tree-width. At the same time, variable-elimination algorithms developed
in [7, 43] and [17] (e.g., adaptive-consistency and bucket-elimination) were also observed
to be governed by the same complexity graph-parameter. In [17, 18] the connection be-
tween induced-width and tree-width was recognized through the work of [1] on tree-width
and k-trees and partial k-trees, which was made explicit later in [27]. The similarity be-
tween variable-elimination and tree-clustering from the constraint perspective was ana-
lyzed [18]. Independently of this investigation, the tree-width parameter was undergoing
intensive investigation in the theoretic-graph-community. It characterizes the best embed-
ding of a graph or a hypergraph in a hypertree. Various connections between hypertrees,
chordal graphs and k-trees were made by Arnborg and his colleagues [1, 2]. They showed
that finding the smallest tree-width of a graph is NP-complete, but deciding if the graph
has a tree-width below a certain constant k is polynomial in k. A recent analysis shows
that this task can be accomplished in O(n · f(k)) where f(k) is a very bad exponential
function of k [9].

The decomposition into hinges was presented in [32]. As noted any hinge-decom-
position is closely related to bi-component tree decomposition of the dual graph whose
redundant arcs are removed [31]. The hypertree-width parameter was introduced in [29]
and shown to provide the most inclusive characterization of tractability. In recent years,
research has focused on a variety of greedy and other approximation algorithms for tree-
width and induced-width [4, 45]. For recent work see [39, 41]

Acknowledgements

This chapter is based in parts on Chapters 9 and 10 of [12] and on [33].

Bibliography

[1] S. A. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability - a survey. BIT, 25:2–23, 1985.

[2] S. A. Arnborg, D. G. Corneil, and A. Proskourowski. Complexity of finding embed-
dings in a k-tree. SIAM Journal of Discrete Mathematics., 8:277–284, 1987.

R. Dechter 243

[3] R. Bayardo and D. Miranker. A complexity analysis of space-bound learning al-
gorithms for the constraint satisfaction problem. In AAAI’96: Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pages 298–304, 1996.

[4] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal
junction trees. In Uncertainty in AI (UAI’96), pages 81–89, 1996.

[5] A. Becker, R. Bar-Yehuda, and D. Geiger. Random algorithms for the loop-cutset
problem. In Uncertainty in AI (UAI’99), pages 81–89, 1999.

[6] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30(3):479–513, 1983.

[7] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, 1972.
[8] B. Bidyuk and R. Dechter. On finding w-cutset in Bayesian networks. In Uncertainty

in AI (UAI04), 2004.
[9] H.L. Bodlaender. Treewidth: Algorithmic techniques and results. In MFCS-97, pages

19–36, 1997.
[10] H.L. Bodlaender, J. R. Gilbert, H. Hasfsteinsson, and T. Kloks. Approximating

treewidth, pathwidth and minimum elimination tree-height. In Technical report RUU-
CS-91-1, Utrecht University, 1991.

[11] R. Dechter. And/or search spaces for graphical models. In UCI Technical report,
2005.

[12] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
[13] R. Dechter. Constraint networks. Encyclopedia of Artificial Intelligence, pages 276–

285, 1992.
[14] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning

and cutset decomposition. Artificial Intelligence, 41:273–312, 1990.
[15] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial

Intelligence, 113:41–85, 1999.
[16] R. Dechter and R. Mateescu. The impact of and/or search spaces on constraint sat-

isfaction and counting. In Proceeding of Constraint Programming (CP2004), pages
731–736, 2004.

[17] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-
lems. Artificial Intelligence, 34:1–38, 1987.

[18] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, pages 353–366, 1989.

[19] S. Even. Graph algorithms. In Computer Science Press, 1979.
[20] M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedi-

grees. Bioinformatics, 2002.
[21] M. Fishelson and D. Geiger. Optimizing exact genetic linkage computations. RE-

COMB, pages 114–121, 2003.
[22] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for

general pedigrees. Human Heredity, 2005.
[23] E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,

29(1):24–32, 1982.
[24] E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the

ACM, 32(1):755–761, 1985.
[25] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in con-

straint satisfaction problems. In Joint International Conference of Artificial Intelli-
gence, 1985.

244 7. Tractable Structures for CSPs

[26] E. C. Freuder and M. J. Quinn. The use of lineal spanning trees to represent con-
straint satisfaction problems. Technical Report 87-41, University of New Hampshire,
Durham, 1987.

[27] E. C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58(1-3):21–70, 1992.

[28] J. Gaschnig. Performance measurement and analysis of search algorithms. Technical
Report CMU-CS-79-124, Carnegie Mellon University, 1979.

[29] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decomposi-
tion methods. Artificial Intelligence, pages 243–282, 2000.

[30] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. Journal of the ACM, pages 431–498, 2001.

[31] G. Greco and F. Scarcello. Non-binary constraints and optimal dual-graph represen-
tations. Ijcai-03, 2003.

[32] M. Gyssens, P. Jeavons, and D. Cohen. Decomposing constraint satisfaction problems
using database techniques. Artificial Intelligence, 66:57–89, 1994.

[33] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying tree-decompositions for
reasoning in graphical models. Artificial Intelligence, 166(1-2):165–193, 2005.

[34] J. Larrosa and R. Dechter. Dynamic combination of search and variable-elimination
in CSP and Max-CSP. Submitted, 2001.

[35] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with probabilities on graph-
ical structures and their application to expert systems. Journal of the Royal Statistical
Society, Series B, 50(2):157–224, 1988.

[36] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):
99–118, 1977.

[37] A. K. Mackworth and E. C. Freuder. The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25, 1985.

[38] D. Maier. The theory of relational databases. In Computer Science Press, Rockville,
MD, 1983.

[39] B. McMahan. Bucket elimination and hypertree decompositions. In Institute of In-
formation Systems (DBAI), TU, Vienna, 2004.

[40] I. Rish and R. Dechter. Resolution vs. search; two strategies for sat. Journal of
Automated Reasoning, 24(1/2):225–275, 2000.

[41] M. Samer. Hypertree decomposition via branch-decomposition. In International
Joint-conference of Artificial Intelligence (IJCAI05), pages 1535–1536, 2005.

[42] F. Scarcello, G. Greco, and N. Leone. Weighted hypertree decompositions and opti-
mal query plans. PODS’04, pages 210–221, 2004.

[43] R. Seidel. A new method for solving constraint satisfaction problems. In Interna-
tional Joint Conference on Artificial Intelligence (Ijcai-81), pages 338–342, 1981.

[44] P. P. Shenoy. Binary join trees. In Proceedings of the 12th Conference on Uncertainty
in Artificial Intelligence (UAI96), pages 492–499, 1996.

[45] K. Shoiket and D. Geiger. A practical algorithm for finding optimal triangulations. In
Fourteenth National Conference on Artificial Intelligence (AAAI’97), pages 185–190,
1997.

[46] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs and selectively reduce acyclic hypergraphs.
SIAM Journal of Computation., 13(3):566–579, 1984.

Handbook of Constraint Programming 245
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 8

The Complexity of
Constraint Languages

David Cohen and Peter Jeavons

One of the most fundamental challenges in constraint programming is to understand the
computational complexity of problems involving constraints. It has been shown that the
class of all constraint satisfaction problem instances is NP-hard [72], so it is unlikely
that efficient general-purpose algorithms exist for solving all forms of constraint prob-
lem. However, in many practical applications the instances that arise have special forms
that enable them to be solved more efficiently [11, 25, 70, 83].

One way in which this occurs is that there is some special structure in the way that the
constraints overlap and intersect each other. The natural theory for discussing the structure
of such interaction between constraints is the mathematical theory of hypergraphs. Much
work has been done in this area, and many tractable classes of constraint problems have
been identified based on structural properties (see Chapter 7). There are strong parallels
between this work and similar investigations into the structure of so-called conjunctive
queries in relational databases [41, 59].

Another way in which constraint problems can be defined which are easier to solve
than in the general case is when the types of constraints are limited. The natural theory
for discussing the properties of constraint types is the mathematical theory of relations and
their associated algebras. Again considerable progress has been made in this investigation
over the past few years. For example, a complete characterisation of tractable constraint
types is now known for both 2-element domains [86] and 3-element domains [14]. In
addition, a number of novel efficient algorithms have been developed for solving particular
types of constraint problems over both finite and infinite domains [3, 8, 16, 25, 26, 28, 64].

In this chapter we will focus on the second approach. That is, we will investigate
how the complexity of solving constraint problems varies with the types of constraints
which are allowed. One fundamental open research problem in this area is to characterise
exactly which types of constraints give rise to constraint problems which can be solved
in polynomial time. This problem is important from a theoretical perspective, because
it helps to clarify the boundary between tractability and intractability in a wide range of

c© 2006 Elsevier B.V. All rights reserved

246 8. The Complexity of Constraint Languages

combinatorial search problems [27, 37, 49, 63]. It is also important from a practical per-
spective, as it allows the development of constraint programming languages which exploit
the existence of diverse families of tractable constraints to provide more efficient solution
techniques [70, 83].

In this chapter a set of types of constraints will be called a constraint language. Sec-
tion 8.1 gives the basic definitions, and Section 8.2 lists some typical examples of tractable
(and intractable) constraint languages.

In Section 8.3 we present the mathematical theory that leads us to the major results in
the area: we will characterise the complexity of constraint languages (over finite domains)
in terms of properties of associated finite algebras.

In Section 8.4 we show how the algebraic theory can be used to identify tractable
constraint languages and select an appropriate algorithm. This section presents a strong
conjecture for a simple algebraic characterisation of all tractable constraint languages. We
will also show that a direct result of the theory is that if the decision problem for a constraint
language can be solved in polynomial time, then so can the search problem. In other words,
for any language for which it can be decided in polynomial time whether a solution exists,
a solution can be found in polynomial time.

In Section 8.5 we consider how the algebraic theory can be extended to deal with
constraint languages over infinite domains, and in Section 8.6 we consider multi-sorted
constraint languages (where different variables can take their values from different sets).

Finally, in Section 8.7 we briefly consider some alternative approaches, including a
constructive approach which builds new tractable constraint languages by combining sim-
pler languages. This theory applies to constraint languages over both finite and infinite
domains. This constructive approach has a rather different flavour from the more descrip-
tive algebraic approach, and the two approaches have not yet been fully unified.

We conclude the chapter in Section 8.8 with a discussion of possible future work in
this exciting area.

8.1 Basic Definitions

In this section we begin by defining the fundamental decision problem associated with any
given constraint language. It is the complexity of this decision problem that is the main
focus of this chapter.

The central notion in the study of constraints and constraint satisfaction problems is
the notion of a relation.

Definition 8.1. For any setD, and any natural number n, the set of all n-tuples of elements
of D is denoted by Dn. The ith component of a tuple t will be denoted by t[i].

A subset of Dn is called an n-ary relation over D. The set of all finitary relations over
D is denoted by RD.

A constraint language over D is a subset of RD.

The ‘constraint satisfaction problem’ was introduced by Montanari [76] in 1974 and
has been widely studied [33, 37, 66, 72, 73, 74] (see Chapter 2). In this chapter we study a
parameterised version of the standard constraint satisfaction problem, in which the param-
eter is a constraint language specifying the possible forms of the constraints.

D. Cohen, P. Jeavons 247

Definition 8.2. For any set D and any constraint language Γ over D, the constraint sat-

isfaction problem CSP(Γ) is the combinatorial decision problem with

Instance: A triple 〈V,D, C〉, where

• V is a set of variables;

• C is a set of constraints, {C1, . . . , Cq}.
• Each constraint Ci ∈ C is a pair 〈si, Ri〉, where

– si is a tuple of variables of length ni, called the constraint scope;
– Ri ∈ Γ is an ni-ary relation over D, called the constraint relation.

Question: Does there exist a solution, that is, a function ϕ, from V to D, such that, for
each constraint 〈s,R〉 ∈ C, with s = 〈v1, . . . , vn〉, the tuple 〈ϕ(v1), . . . , ϕ(vn)〉
belongs to the relation R?

The set D, specifying the possible values for the variables, is called the domain of the
problem. The set of solutions to a CSP instance P = 〈V,D,C〉 will be denoted Sol(P).

In order to determine the computational complexity of a constraint satisfaction problem
we need to specify how instances are encoded as finite strings of symbols. The size of a
problem instance can be taken to be the length of a string specifying the variables, the
domain, all constraint scopes and corresponding constraint relations. We shall assume in
all cases that this representation is chosen so that the complexity of determining whether
a constraint allows a given assignment of values to the variables in its scope is bounded
by a polynomial function of the length of the representation. For finite domains it is most
straightforward to assume that the tuples in the constraint relations are listed explicitly.

Throughout the chapter we shall be concerned with distinguishing between constraint
languages which give rise to tractable problems (i.e., problems for which there exists a
polynomial-time solution algorithm) and those which do not. Since many practical ap-
plications define constraint relations implicitly we ensure that our explicit representation
does not affect our results by defining the notion of tractability in such a way that it only
depends on finite subsets of the constraint language.

Definition 8.3. A constraint language, Γ, is said to be tractable if CSP(Γ′) can be solved
in polynomial time, for each finite subset Γ′ ⊆ Γ.

A constraint language, Γ, is said to be NP-complete if CSP(Γ′) is NP-complete, for
some finite subset Γ′ ⊆ Γ.

There are known to be infinitely many computational problems which are neither solv-
able in polynomial time nor NP-complete [67], but we shall see below that all constraint
languages over domains of size 2 and 3 are known to be either tractable or NP-complete.
The same dichotomy is conjectured to hold for all constraint languages over any finite
domain (see Conjecture 8.52 below), although this question is still open [11, 37].

8.2 Examples of Constraint Languages

This section introduces some typical constraint languages that we will be concerned with
in this chapter. For each language mentioned we simply state in this section whether it
is known to be tractable or NP-complete. A more detailed discussion of many of these
languages can be found later in the chapter.

248 8. The Complexity of Constraint Languages

Example 8.4. Let D be any field (that is, a set on which the operations of addition, sub-
traction, multiplication and division are defined, such as the rational numbers). Let ΓLIN

be the constraint language consisting of all those relations over D which consist of all the
solutions (for a fixed ordering of the unknowns) to some system of linear equations over
D.

Any relation from ΓLIN, and therefore any instance of CSP(ΓLIN), can be represented
by a system of linear equations1 over D, and so can be solved in polynomial time (e.g., by
Gaussian elimination). Hence ΓLIN is a tractable constraint language. �

Example 8.5. A constraint language over a two-element set D = {d0, d1} is known as a
Boolean constraint language. Using such languages we can express the standard proposi-
tional SATISFIABILITY problem [38, 78] as a constraint satisfaction problem, by identify-
ing the 2 elements of D with the logical values TRUE and FALSE.

It was established by Schaefer in 1978 [86] that a Boolean constraint language, Γ, is
tractable if (at least) one of the following six conditions holds:

1. Every relation in Γ contains a tuple in which all entries are equal to d0;

2. Every relation in Γ contains a tuple in which all entries are equal to d1;

3. Every relation in Γ is definable by a conjunction of clauses, where each clause has
at most one negative literal;

4. Every relation in Γ is definable by a conjunction of clauses, where each clause has
at most one positive literal (i.e., a conjunction of Horn clauses);

5. Every relation in Γ is definable by a conjunction of clauses, where each clause con-
tains at most 2 literals;

6. Every relation in Γ is the set of solutions of a system of linear equations over the
finite field with 2 elements, GF(2).

In all other cases Γ is NP-complete.
This result establishes a dichotomy for Boolean constraint languages: any Boolean con-

straint language is either tractable or NP-complete. Hence this result is known as Schae-
fer’s Dichotomy Theorem [86].

Similar dichotomy results have also been obtained for many other combinatorial prob-
lems over a Boolean domain which are related to the Boolean constraint satisfaction prob-
lem [63, 27]. �

Example 8.6. It follows from Schaefer’s Dichotomy Theorem [86] (Example 8.5) that
some Boolean constraint languages containing just a single relation are NP-complete.

For example, for any 2-element set D = {d0, d1}, let ND be the ternary not-all-equal
relation over D defined by

ND = D3 \ {〈d0, d0, d0〉 , 〈d1, d1, d1〉}
= {〈d0, d0, d1〉 , 〈d0, d1, d0〉 , 〈d0, d1, d1〉 , 〈d1, d0, d0〉 , 〈d1, d0, d1〉 , 〈d1, d1, d0〉}.

The problem CSP({ND}) corresponds to the NOT-ALL-EQUAL SATISFIABILITY prob-
lem [86] which is known to be NP-complete2.

1Moreover, this system of equations can be computed from the relations in polynomial time - see [11]
2The standard version of NOT-ALL-EQUAL SATISFIABILITY given in [38, 78] is slightly more general, but

can be shown to be polynomial-time equivalent to CSP({ND}).

D. Cohen, P. Jeavons 249

Similarly, let TD be the ternary one-in-three relation over D defined by

TD = {〈d0, d0, d1〉 , 〈d0, d1, d0〉 , 〈d1, d0, d0〉}.

The problem CSP({TD}) corresponds to the ONE-IN-THREE SATISFIABILITY problem
(with positive literals) [86, 38, 27] which is known to be NP-complete. �

Example 8.7. The class of constraints known as max-closed constraints was introduced
in [54] and shown to be tractable. This class of constraints has been used in the analysis
and development of a number of industrial scheduling tools [70, 83].

Max-closed constraints are defined for arbitrary finite domains which are totally or-
dered. This class of constraints includes all of the ‘basic constraints’ over the natural num-
bers in the constraint programming language CHIP [91], as well as many other forms of
constraint. The following are examples of max-closed constraints over a domain D which
can be any fixed finite set of natural numbers:

3x1 + x5 + 3x4 ≥ 2x2 + 10,
4x1 6= 8,

x1 ∈ {1, 2, 3, 5, 7, 11, 13},
2x1x3x5 ≥ 3x2 + 1,

(3x1 ≥ 7) ∨ (2x1 ≥ 4) ∨ (5x2 ≤ 7).

Hence the constraint language comprising all relations of these forms is tractable. �

Example 8.8. Let D be any finite set, and let ΓZOA be the set of all relations of the follow-
ing forms:

• All unary relations;

• All binary relations of the form D1 ×D2 for subsets D1, D2 of D;

• All binary relations of the form {〈d, π(d)〉 | d ∈ D1}, for some subset D1 of D and
some permutation π of D;

• All binary relations of the form {〈a, b〉 ∈ D1 × D2 | a = d1 ∨ b = d2} for some
subsets D1, D2 of D and some elements d1 ∈ D1, d2 ∈ D2.

These relations were introduced in [58], where they are called implicational relations,
and independently in [26], where they are called 0/1/all relations.

It was shown in [26] that Γ ZOA is tractable, and that for any binary relation R over D
which is not in ΓZOA, ΓZOA ∪ {R} is NP-complete. �

Example 8.9. The class of binary constraints known as connected row-convex constraints
was introduced in [35] and shown to be tractable. This class properly includes the ‘mono-
tone’ relations, identified and shown to be tractable by Montanari in [76].

Let the domain D be the ordered set {d1, d2, . . . , dm}, where d1 < d2 < · · · < dm.
The definition of connected row-convex constraints given in [35] uses a standard matrix
representation for binary relations: the binary relation R over D is represented by the
m × m 0-1 matrix M , by setting Mij = 1 if the relation contains the pair 〈di, dj〉, and
Mij = 0 otherwise.

250 8. The Complexity of Constraint Languages

A relation is said to be connected row-convex if the following property holds: the pat-
tern of 1’s in the matrix representation (after removing rows and columns containing only
0’s) is connected along each row, along each column, and forms a connected 2-dimensional
region (where some of the connections may be diagonal).

By [35] we see that the following examples of connected row-convex relations:

0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 1 0 1 0
0 1 1 1 1 1 1 0 1 0
1 1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 1 0 1 0
0 0 1 1 1 1 1 0 1 0
0 0 1 1 1 1 1 0 1 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0

form a tractable constraint language. �

Example 8.10. The binary inequality relation over an ordered setD is defined as follows:

<D = {〈d1, d2〉 ∈ D2 | d1 < d2}.

When D is the set of natural numbers, N, the class of constraint satisfaction problem
instances CSP({<D}) corresponds to the ACYCLIC DIGRAPH problem [4]. An instance
of this problem is a directed graph G, and the question is whether G is acyclic, that is,
contains no directed cycles. It is easy to show that a directed graph is acyclic if and only if
its vertices can be numbered in such a way that every arc leads from a vertex with smaller
number to a vertex with a greater one.

Since the ACYCLIC DIGRAPH problem is tractable, it follows that {<N} is a tractable
constraint language. �

Example 8.11. The binary disequality relation over a set D is defined as follows:

6=D = {〈d1, d2〉 ∈ D2 | d1 6= d2}.

The class of constraint satisfaction problem instances CSP({6=D}) corresponds to the
GRAPH COLORABILITY problem [38, 78] with |D| colours. This problem is tractable
when |D| ≤ 2 or |D| =∞, and NP-complete when 3 ≤ |D| <∞. �

Example 8.12. The ternary betweenness relation over an ordered set D is defined as
follows:

BD = {〈x, y, z〉 ∈ D3 | x < y < z or x > y > z}.

For a finite set D, the constraint language {BD} is tractable when |D| ≤ 4 and is NP-
complete when |D| ≥ 5 (see Example 8.45).

For an infinite setD, the constraint language {BD} is NP-complete because the class of
constraint satisfaction problem instances CSP({BD}) corresponds to the BETWEENNESS

problem, which is known to be NP-complete [38]. An instance of this problem is a pair
〈A, T 〉 where A is a finite set and T ⊆ A3; the question is whether there is a function
f : A → {1, . . . , |A|} such that, for every triple 〈a, b, c〉 ∈ T , we have either f(a) <
f(b) < f(c) or f(a) > f(b) > f(c). �

D. Cohen, P. Jeavons 251

Example 8.13. The class of constraints known as linear Horn constraints was introduced
in [55, 62] and shown to be tractable.

The constraint relation of a linear Horn constraint is a relation over an infinite ordered
set which is specified by a disjunction of an arbitrary finite number of linear disequali-
ties and at most one weak linear inequality. The following are examples of linear Horn
constraints:

3x1 + x5 − 3x4 ≤ 10,
x1 + x3 + x5 6= 7,

(3x1 + x5 − 4x3 ≤ 7) ∨ (2x1 + 3x2 − 4x3 6= 4) ∨ (x2 + x3 + x5 6= 7),
(4x1 + x3 6= 3) ∨ (5x2 − 3x5 + x4 6= 6).

Linear Horn constraints are an important class of linear constraints for expressing problems
in temporal reasoning [55]. In particular, the class of linear Horn constraints properly
includes the point algebra of [92], the (quantitative) temporal constraints of [60, 61] and
the ORD-Horn constraints of [77]. �

8.3 Developing an Algebraic Theory

A series of papers by Jeavons and co-authors [50, 51, 52, 54] has shown that the complexity
of constraint languages over a finite domain can be characterised using algebraic properties
of relations (see Figure 8.1).

The first step in the algebraic approach to constraint languages exploits the well-known
idea that, given an initial set of constraint relations, there will often be further relations that
can be added to the set without changing the complexity of the associated problem class.
In fact, it has been shown that it is possible to add all the relations that can be derived from
the initial relations using certain simple rules. The larger sets of relations obtained using
these rules are known as relational clones [34, 81]. Hence the first step in the analysis is
to note that it is sufficient to analyse the complexity only for those sets of relations which
are relational clones (see Section 8.3.1).

The next step in the algebraic approach is to note that relational clones can be char-
acterised by their polymorphisms, which are algebraic operations on the same underlying
set [49, 52] (see Section 8.3.2). As well as providing a convenient and concise method
for describing large families of relations, the polymorphisms also reflect certain aspects of
the structure of the relations that can be used for designing efficient algorithms. This link
between relational clones and polymorphisms has already played a key role in identifying
many tractable constraint classes and developing appropriate efficient solution algorithms
for them [14, 15, 17, 19, 28, 50].

The final step in the algebraic approach links constraint languages with finite univer-
sal algebras (see Section 8.3.3). The language of finite algebras provides a number of
very powerful new tools for analysing the complexity of constraints, including the deep
structural results developed for classifying the structure of finite algebras [45, 75, 88].

8.3.1 Step I: From Relations to Relational Clones

As stated above, the first step in the algebraic approach is to consider what additional re-
lations can be added to a constraint language without changing the complexity of the cor-
responding problem class. This technique has been widely used in the analysis of Boolean

252 8. The Complexity of Constraint Languages

Complexity of a constraint language

m
Properties of the corresponding relational clone

m
Properties of polymorphisms

m
Structural properties of a corresponding algebra

Figure 8.1: Translating questions about the complexity of constraint languages into ques-
tions about the properties of algebras.

constraint satisfaction problems [27, 86], and in the analysis of temporal and spatial con-
straints [36, 77, 84, 64, 65]; it was introduced for the study of constraints over arbitrary
finite sets in [49].

Definition 8.14. A constraint language Γ expresses a relation R if there is an instance
P = 〈V,D,C〉 ∈ CSP(Γ) and a list 〈v1, . . . , vn〉 of variables in V such that

R = {〈ϕ(v1), . . . , ϕ(vn)〉 | ϕ ∈ Sol(P)}

For any constraint language Γ, the set of all relations which can be expressed by Γ will
be called the expressive power of Γ. The expressive power of a constraint language Γ can
be characterised in a number of different ways [53]. For example, it is equal to the set of all
relations that can be obtained from the relations in Γ using the relational join and project
operations from relational database theory [43]. It has also been shown to be equal to the
set of relations definable by primitive positive formulas over the relations in Γ together with
the equality relation, where a primitive positive formula is a first-order formula involving
only conjunction and existential quantification [11]. In algebraic terminology [34, 81], this
set of relations is called the relational clone generated by Γ, and is denoted by 〈Γ〉.

Example 8.15. Consider the Boolean constraint language Γ = {R1, R2} where R1 =
{〈0, 1〉 , 〈1, 0〉 , 〈1, 1〉} and R2 = {〈0, 0〉 , 〈0, 1〉 , 〈1, 0〉}.

It is straightforward to check that all 16 binary Boolean relations can be expressed
by a primitive positive formula involving R1 and R2. For example, the relation R3 =
{〈0, 0〉 , 〈1, 0〉 , 〈1, 1〉} can be expressed by the formula R3 = ∃yR1(x, y) ∧ R2(y, z).
Hence 〈Γ〉, the relational clone generated by Γ, includes all 16 binary Boolean relations.

In fact it can be shown that, for this constraint language Γ, the set 〈Γ〉 consists of
precisely those Boolean relations (of any arity) that can be expressed as a conjunction of
unary or binary Boolean relations [82, 88]. This is equivalent to saying that the constraint
language Γ expresses precisely this set of relations. �

D. Cohen, P. Jeavons 253

The link between these notions and the complexity of constraint languages is estab-
lished by the next result.

Theorem 8.16 ([11, 49]). For any constraint language Γ and any finite subset Γ0 ⊆ 〈Γ〉
there is a polynomial time reduction from CSP(Γ0) to CSP(Γ).

Corollary 8.17. A constraint language Γ is tractable if and only if 〈Γ〉 is tractable. Simi-
larly, Γ is NP-complete if and only if 〈Γ〉 is NP-complete.

This result reduces the problem of characterising tractable constraint languages to the
problem of characterising tractable relational clones.

8.3.2 Step II: From Relational Clones to Sets of Operations

We have shown in the previous section that to analyse the complexity of arbitrary constraint
languages over finite domains it is sufficient to consider only relational clones. This con-
siderably reduces the variety of languages to be studied. However, it immediately raises
the question of how to represent and describe relational clones. For many relational clones
the only known generating sets are rather sophisticated, and in some cases no generating
sets are known.

Very conveniently, it turns out that there is a well-known alternative way to represent
and describe any relational clone: using operations.

Definition 8.18. LetD be a set, and k a natural number. A mapping f : Dk → D is called
a k-ary operation on D. The set of all finitary operations on D is denoted by OD.

We first describe a fundamental algebraic relationship between operations and rela-
tions. Observe that any operation on a set D can be extended in a standard way to an
operation on tuples of elements from D, as follows. For any (k-ary) operation f and
any collection of tuples t1, . . . , tk ∈ Dn, define f(t1, . . . , tk) ∈ Dn to be the tuple
〈f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])〉.

Definition 8.19 ([34, 75, 81, 88]). A k-ary operation f ∈ OD preserves an n-ary relation
R ∈ RD (or f is a polymorphism of R, or R is invariant under f) if f(t1, . . . , tk) ∈ R
for all choices of t1, . . . , tk ∈ R.

For any given sets Γ ⊆ RD and F ⊆ OD, we define the mappings Pol and Inv as
follows:

Pol(Γ) = {f ∈ OD | f preserves each relation from Γ},
Inv(F) = {R ∈ RD | R is invariant under each operation from F}.

We remark that the mappings Pol and Inv form a Galois correspondence between
RD and OD (see Proposition 1.1.14 of [81]). Brief introductions to this correspondence
can be found in [34, 80], and a comprehensive study in [81]. We note, in particular, that
Inv(F) = Inv(Pol(Inv(F))), for any set of operations F .

It is a well-known result in universal algebra that the relational clone generated by a set
of relations over a finite set is determined by the polymorphisms of those relations [81].
Here we will establish this key result using purely constraint-based reasoning.

254 8. The Complexity of Constraint Languages

∅∅∅∅

Sets of

relations

Sets of

operations

RD

G

Pol(G)Inv(Pol(G))

Pol

Inv
= ·GÒ

OD

∅∅∅∅

Figure 8.2: The operators Inv and Pol.

Definition 8.20. Let Γ be a finite constraint language over a finite set D.
For any positive integer k, the indicator problem of order k for Γ is the CSP instance

P = 〈V,D, C〉 ∈ CSP(Γ) where:

• V = Dk (in other words, each variable in P is a k-tuple of domain elements).

• C = {〈s,R〉 | R ∈ Γ and s matches R}.

In this definition we say that that a list of k-tuples s = 〈v1, . . . , vn〉matches a relationR if
n is equal to the arity of R and for each i ∈ {1, 2, . . . , k} the n-tuple 〈v1[i], . . . , vn[i]〉 is
in R. Hence the CSP instance P has constraints from the constraint language Γ on every
possible scope which matches a relation from Γ.

Note that the solutions to the indicator problem of order k for Γ are mappings from Dk

to D that preserve each of the relations in Γ, hence they are precisely the k-ary elements
of Pol(Γ).

Indicator problems are described in more detail in [48], where a number of concrete
examples are given. A software system for constructing and solving indicator problems for
given constraint languages is described in [39].

Theorem 8.21 ([49, 81]). For any constraint language Γ over a finite set, 〈Γ〉 = Inv(Pol(Γ)).

Proof. If two relations both have a polymorphism f , then their conjunction also has the
polymorphism f . Similarly, if a relation has a polymorphism f , then any relation obtained
by existential quantification of that relation also has the polymorphism f . Finally the
equality relation has every operation as a polymorphism. It follows from these observations

D. Cohen, P. Jeavons 255

that for any R in the relational clone of Γ we have Pol({R}) ⊇ Pol(Γ). Hence 〈Γ〉 ⊆
Inv(Pol(Γ)).

To establish the converse, let Γ be a constraint language over a finite set D, let R be
an arbitrary relation in Inv(Pol(Γ)), and let n be the arity of R. We need to show that
R ∈ 〈Γ〉, or in other words that R can be expressed using the constraint language Γ.

Let k be the number of tuples in the relation R, and construct the indicator problem
P of order k for Γ. Choose a list of variables t = 〈v1, . . . , vn〉 in P such that each of
the n-tuples 〈v1[i], . . . , vn[i]〉, for i = 1, . . . , k, is a distinct element of our target relation
R. Consider the relation Rt = {〈f(v1), . . . , f(vn)〉 | f ∈ Sol(P)}. By the observation
above, the elements of Sol(P) are the k-ary polymorphisms of Γ, and these include the k
projection operations which simply return one of their arguments. By the choice of t, each
of these projection operations results in a distinct tuple of R being included in Rt, and so
R ⊆ Rt. Conversely, by the choice ofR, every polymorphism of Γ preservesR, and hence
every element of Rt is contained in R.

Since the relational clone 〈Γ〉 consists of those relations that can be expressed by the
constraint language Γ, we immediately obtain the following strong link between polymor-
phisms and expressive power.

Corollary 8.22. A relation R over a finite set can be expressed by a constraint language
Γ precisely when Pol(Γ) ⊆ Pol({R}).

Combining Theorem 8.16 and Theorem 8.21 we obtain the following link between
polymorphisms and complexity.

Corollary 8.23. For any constraint languages Γ,Γ0 over a finite set, if Γ0 is finite and
Pol(Γ) ⊆ Pol(Γ0), then CSP(Γ0) is reducible to CSP(Γ) in polynomial time.

This result implies that, for any finite constraint language Γ over a finite set, the com-
plexity of CSP(Γ) is determined, up to polynomial-time reduction, by the polymorphisms
of Γ. Hence we can translate our original problem of characterising tractable constraint
languages into an equivalent problem for sets of operations.

Definition 8.24. A set of operations F ⊆ OD is said to be tractable if Inv(F) is tractable.
A set F ⊆ OD is said to be NP-complete if Inv(F) is NP-complete.

With this definition we have translated our basic challenge into characterising tractable
sets of operations.

8.3.3 Step III: From Sets of Operations to Algebras

We have seen in the previous section that the problem of analysing the complexity of a
constraint language can be translated into the problem of analysing the complexity of the
set of operations which preserve all of the relations in that language. In this section we
shall open the way to the use of a further set of powerful analytical tools by making the
final translation step, from sets of operations to algebras.

Definition 8.25. An algebra is an ordered pairA = 〈D,F 〉 such that D is a nonempty set
and F is a family of finitary operations on D. The set D is called the universe of A, and
the operations from F are called basic. An algebra with a finite universe is referred to as
a finite algebra.

256 8. The Complexity of Constraint Languages

To make the translation from sets of operations to algebras we simply note that any set
of operations F on a fixed set D can be associated with the algebra 〈D,F 〉. Hence, we
will define what it means for an algebra to be tractable by considering the tractability of
the basic operations.

Definition 8.26. An algebra A = 〈D,F 〉 is said to be tractable if the set of basic op-
erations F is tractable. An algebra A = 〈D,F 〉 is said to be NP-complete if F is NP-
complete.

Our basic task is now translated as: characterise all tractable algebras.
It will be useful to describe an equivalence relation linking algebras that correspond

to the same constraint language. As we noted earlier, the mappings Pol and Inv have the
property that Inv(Pol(Inv(F))) = Inv(F), so we can extend a set of operations F to the
set Pol(Inv(F)) without changing the associated invariant relations. The set Pol(Inv(F))
consists of all operations that can be obtained from the operations in F , together with the
set of all projection operations, by forming arbitrary compositions of operations3. Note
that any set of operations which includes all the projection operations and is closed under
composition is referred to by algebraists as a clone of operations. The clone of operations
obtained from a set F in this way is usually referred to as the set of term operations over
F , so we will make the following definition.

Definition 8.27. For any algebra A = 〈D,F 〉, an operation f on D will be called a term

operation of A if f ∈ Pol(Inv(F)).
The set of all term operations of A will be denoted Term(A).

Two algebras with the same universe are called term equivalent if they have the same set
of term operations. Since, for any algebraA = 〈D,F 〉, we have Inv(F) = Inv(Term(A)),
two algebras are term equivalent if and only if they have the same set of associated invari-
ant relations. It follows that we need to characterise tractable algebras only up to term
equivalence.

We will now show that we can restrict our attention to certain special classes of alge-
bras.

The first simplification we apply is to note that any unary polymorphism of a con-
straint language can be applied to all of the relations in the language without changing the
complexity.

Proposition 8.28 ([52, 49]). Let Γ be a constraint language over a set D, and let f be a
unary operation in Pol(Γ).

CSP(Γ) is polynomial-time equivalent to CSP(f(Γ)), where f(Γ) = {f(R) | R ∈ Γ}
and f(R) = {f(t) | t ∈ R}.

If we apply Proposition 8.28 with a unary polymorphism f which has the smallest
possible range out of all the unary polymorphisms of Γ, then we obtain a constraint lan-
guage f(Γ) whose unary polymorphisms are all surjective. Such a language will be called
a reduced constraint language.

3If f is an m-ary operation on a set D, and g1, g2, . . . , gm are k-ary operations on D, then the
composition of f and g1, g2, . . . , gm is the k-ary operation h on D defined by h(a1, a2, . . . , ak) =
f(g1(a1, . . . , ak), . . . , gm(a1, . . . , ak)).

D. Cohen, P. Jeavons 257

Definition 8.29. We call an algebra surjective if all of its term operations are surjective4.

It is easy to verify that a finite algebra is surjective if and only if its unary term opera-
tions are all surjective, and hence form a group of permutations. It follows that an algebra
A = 〈D,F 〉 is surjective if and only if Inv(F) is a reduced constraint language. Using
Proposition 8.28, this means that we can restrict our attention to surjective algebras.

The next theorem shows that for many purposes we need consider only those surjective
algebras with the additional property of being idempotent.

Definition 8.30. An operation f on D is called idempotent if it satisfies f(x, . . . , x) = x
for all x ∈ D.

The full idempotent reduct of an algebra A = 〈D,F 〉 is the algebra 〈D,Termid(A)〉,
where Termid(A) consists of all idempotent operations from Term(A).

An operation f on a set D is idempotent if and only if it preserves all the relations in the
set ΓCON = {{〈a〉} | a ∈ D}, consisting of all unary one-element relations on D. Hence,
Inv(Termid(A)) is the relational clone generated by Inv(F) ∪ ΓCON.

That is, considering only the full idempotent reduct of an algebra is equivalent to con-
sidering only those constraint languages in which we can arbitrarily fix variables to partic-
ular values from the domain.

Theorem 8.31 ([11]). A finite surjective algebraA is tractable if and only if its full idempo-
tent reduct A0 is tractable. Moreover,A is NP-complete if and only if A0 is NP-complete.

Next we link the complexity of a finite algebra with the complexity of its sub-algebras
and homomorphic images. In many cases, we can use these results to reduce the problem
of analysing the complexity of an algebra to a similar problem involving an algebra with a
smaller universe. In such cases we can reduce the problem of analysing the complexity of
a constraint language to a similar problem for a constraint language over a smaller domain.

Definition 8.32. Let A = 〈D,F 〉 be an algebra and U a subset of D such that, for any
f ∈ F and for any b1, . . . , bk ∈ B, where k is the arity of f , we have f(b1, . . . , bk) ∈ B.
Then the algebra B = 〈B,F |B〉 is called a sub-algebra of A, where F |B consists of the
restrictions of all operations in F toB. IfB 6= A, thenB is said to be a proper sub-algebra.

Definition 8.33. Let A1 = 〈D1, F1〉 and A2 = 〈D2, F2〉 be such that F1 = {f1
i | i ∈ I}

and F2 = {f2
i | i ∈ I}, where both f1

i and f2
i are ki-ary, for all i ∈ I .

A map Φ : A1 → A2 is called a homomorphism from A1 to A2 if

f1
i (a1, . . . , aki

) = f2
i (Φ(a1), . . . ,Φ(aki

))

holds for all i ∈ I and all a1, . . . , aki
∈ A1.

If the map Φ is surjective, then A2 is said to be a homomorphic image of A1.

Definition 8.34. A homomorphic image of a sub-algebra of an algebraA is called a factor

of A.

Theorem 8.35 ([11]). If A is a tractable finite algebra, then so is every factor of A.
If A has any factor which is NP-complete, then A is NP-complete.

4Some authors call an algebra surjective if all of its basic operations are surjective. However, such algebras
can have non-surjective term operations, so our definition is more restrictive.

258 8. The Complexity of Constraint Languages

8.4 Applications of the Algebraic Theory

8.4.1 A Pre-Processing Algorithm

The theory described in the previous section has shown that many key properties of a
constraint language are determined by its polymorphisms. Hence calculating the polymor-
phisms of the constraint language used in a given CSP instance can be a useful step in
analysing that instance.

For example, using Construction 8.20 and Proposition 8.28 we can design a pre-pro-
cessing algorithm which can sometimes simplify the presentation of a constraint satisfac-
tion problem (Algorithm 8.1).

Since the indicator problem of order 1 only has |D| variables, this pre-processing step
is efficient for many problems and can result in an equivalent problem instance with a
considerably smaller domain.

Algorithm 8.1: Pre-processing to reduce the domain size

Input: An instance P = 〈V,D, C〉 of CSP(Γ) where D is finite.
Output: An equivalent instance P ′.

1. Find all unary polymorphisms of Γ by generating and solving the indicator
problem of order 1 for Γ;

2. Choose a unary polymorphism f with the smallest number of values in its range;

3. If the range of f is smaller than D, apply f to each constraint relation in P to
obtain a new problem instance P ′ over a smaller domain.

8.4.2 Tractable Cases: Using Polymorphisms as Algorithm Selectors

In many cases, it has been shown that the existence of a single polymorphism satisfying
certain simple conditions is sufficient to ensure the tractability of a constraint language and
to identify an appropriate polynomial-time algorithm.

Definition 8.36. Let f be a k-ary operation on a set D.

• If k = 2 and f satisfies the identities f(x, f(y, z)) = f(f(x, y), z) (associativity),
f(x, y) = f(y, x) (commutativity), and f(x, x) = x (idempotency), then f is called
a semilattice operation.

• If f satisfies the identity f(x1, . . . , xk) ∈ {x1, . . . , xk}, then f is called a conser-

vative operation.

• If k ≥ 3 and f satisfies the identities f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · =
f(x, . . . , x, y) = x, then f is called a near-unanimity operation.

• If k = 3 and f satisfies the identities f(y, y, x) = f(x, y, y) = x, then f is called a
Mal’tsev operation.

D. Cohen, P. Jeavons 259

Proposition 8.37 ([52]). For any constraint language Γ over a finite set D, if Pol(Γ)
contains a semilattice operation, then Γ is tractable, and all instances in CSP(Γ) can be
solved by enforcing arc consistency5.

This result has been extended to more general semigroup operations in [12, 31].

Example 8.38. The Boolean constraint language consisting of all relations that can be
specified by Horn clauses, as described in Example 8.5, has the binary polymorphism ∧
(conjunction) [54], and so is tractable by Proposition 8.37. Any collection of Horn clauses
can be solved by unit resolution, which is a specialised form of arc consistency. �

Example 8.39. The max-closed constraints defined in [54] and described in Example 8.7
all have the binary polymorphism, max, which is a semilattice operation, so they are
tractable by Proposition 8.37. Any collection of max-closed constraints can be solved
by enforcing arc consistency. �

Proposition 8.40 ([16]). For any constraint language Γ over a finite set D, if Pol(Γ)
contains a conservative commutative binary operation, then Γ is tractable.

The algorithm for solving a collection of constraints preserved by a conservative com-
mutative binary operation is based on a generalisation of local consistency techniques [16].

Proposition 8.41 ([50]). For any constraint language Γ over a finite set D, if Pol(Γ) con-
tains a k-ary near-unanimity operation, then Γ is tractable, and all instances in CSP(Γ)
can be solved by enforcing k-consistency, which makes them globally consistent6.

In fact, it is shown in [50] that the only finite domain languages for which enforcing
k-consistency guarantees global consistency are those which have a near-unanimity poly-
morphism.

Example 8.42. Let Γ be the Boolean constraint language consisting of all relations that can
be specified by clauses with at most 2 literals. This language has the ternary polymorphism,
d, given by d(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z), which is a near-unanimity operation,
so Γ is tractable by Proposition 8.41. A satisfying assignment for any collection of such
clauses can be obtained in a backtrack-free way after enforcing path consistency. �

Example 8.43. The 0/1/all relations defined in [58, 26] and described in Example 8.8 all
have the ternary polymorphism, d, given by d(x, y, z) = x when y 6= z and d(x, y, z) = y
otherwise, which is a near-unanimity operation, so they are tractable by Proposition 8.41.
A solution for any collection of 0/1/all constraints can be obtained in a backtrack-free way
after enforcing path consistency [26, 50]. �

Example 8.44. The connected row-convex relations defined in [35] and described in Ex-
ample 8.9 all have the ternary polymorphism, m, given by m(x, y, z) = “the median of
x, y and z”, which is a near-unanimity operation, so they are tractable by Proposition 8.41.
A solution for any collection of connected row-convex constraints can be obtained in a
backtrack-free way after enforcing path consistency [50]. �

5See Chapter 3 for a definition of this standard procedure, and a discussion of possible algorithms.
6See Chapter 3 for definitions and algorithms.

260 8. The Complexity of Constraint Languages

Example 8.45. The betweenness relation BD on an ordered set D, described in Exam-
ple 8.12, has a ternary near-unanimity polymorphism when |D| ≤ 4, so the constraint
language containing just this relation is tractable when |D| ≤ 4, by Proposition 8.41.

The projection of BD onto its second co-ordinate is the unary relation containing all
elements of D except the largest and smallest. Hence the algebra 〈D,Pol({BD})〉 has a
subalgebra of size |D|−2. When |D| ≥ 5 this subalgebra can be shown to be NP-complete.
Hence, by Theorem 8.35, {BD} is NP-complete for finite sets D with |D| ≥ 5. �

Proposition 8.46 ([15, 8]). For any constraint language Γ over a finite set D, if Pol(Γ)
contains a Mal’tsev operation, then Γ is tractable.

The algorithm for solving a collection of constraints preserved by a Mal’tsev operation
is based on a generalisation of Gaussian elimination [15]. A much more straightforward
version of the algorithm is given in [8]. Note that no fixed level of consistency is sufficient
to solve all problems involving constraints of this type.

Example 8.47. The linear constraints described in Example 8.4 all have the ternary poly-
morphism p given by p(x, y, z) = x − y + z, which is a Mal’tsev operation, so they are
tractable by Proposition 8.46. A solution for any collection of linear constraints can be
obtained by a Gaussian elimination algorithm on the corresponding linear equations. �

A unified approach to Mal’tsev operations and near-unanimity operations, which gen-
eralises Proposition 8.41 and Proposition 8.46 is given in [29].

8.4.3 Towards a Complete Classification of Complexity

We have seen that the polymorphisms of a constraint language can identify many different
tractable cases and suggest an appropriate efficient solution algorithm for those cases.

However, what can be said about a constraint language Γ where Pol(Γ) does not con-
tain a semilattice operation, a conservative commutative binary operation, a near-unanimity
operation or a Mal’tsev operation? We cannot in general immediately conclude that Γ is
intractable. However, using Rosenberg’s analysis of minimal clones [85, 88], we do have
the following result (adapted slightly from [49]).

Definition 8.48. Let f be a k-ary operation on a set D.

• If there exists a (non-constant) unary operation g onD and an index i ∈ {1, 2, . . . , k}
such that f satisfies the identity f(x1, x2, . . . , xk) = g(xi), then f is called an es-

sentially unary operation. If g is the identity operation, then f is called a projection.

• If k ≥ 3 and f satisfies the identity f(x1, . . . , xk) = xi for some fixed i whenever
|{x1, x2, . . . , xk}| < k, but f is not a projection, then f is called a semiprojection.

D. Cohen, P. Jeavons 261

Theorem 8.49. For any reduced constraint language Γ on a finite set D, at least one of
the following conditions must hold:

1. Pol(Γ) contains a constant operation;

2. Pol(Γ) contains a near-unanimity operation of arity 3;

3. Pol(Γ) contains a Mal’tsev operation;

4. Pol(Γ) contains an idempotent binary operation (which is not a projection);

5. Pol(Γ) contains a semiprojection;

6. Pol(Γ) contains essentially unary surjective operations only.

If Pol(Γ) contains a constant operation, then Γ is trivially tractable, since each (non-
empty) relation in Γ contains a tuple 〈d, d, . . . , d〉, where d is the value of the constant oper-
ation. By Propositions 8.37 and 8.46, the second and third cases also guarantee tractability.
Hence the first three cases in Theorem 8.49 all guarantee tractability.

In the final case of Theorem 8.49 we observe that Inv(Pol(Γ)) includes the disequality
relation, 6=D, defined in Example 8.11, and when |D| = 2 it includes the not-all-equal
relation, ND, defined in Example 8.6. Hence in this case we have that Inv(Pol(Γ)) is
NP-complete for all finite sets D, so by Theorem 8.21 and Corollary 8.17 we conclude
that Γ is NP-complete in this case. Hence the final case of Theorem 8.49 guarantees NP-
completeness.

A similar argument gives the following slightly more general result.

Proposition 8.50 ([49]). Any set of essentially unary operations over a finite set is NP-
complete.

Cases 4 and 5 of Theorem 8.49 are inconclusive, in general, although for a Boolean do-
main there are only two binary idempotent operations which are not projections: the two
semilattice operations ∧ and ∨ (conjunction and disjunction). Hence, over a Boolean do-
main, case 4 guarantees tractability by Proposition 8.37. Moreover, over a Boolean domain
there are no semiprojection operations, so case 5 cannot occur. These observations mean
that Theorem 8.49 is sufficient to classify the complexity of any constraint language over a
Boolean domain, and hence derive Schaefer’s Dichotomy Theorem [86] (see Example 8.5).

Corollary 8.51 ([11]). An algebra with a 2-element universe is NP-complete if all of its
basic operations are essentially unary. Otherwise it is tractable.

The single condition described in Proposition 8.50 is the only condition needed to
establish the NP-completeness of all known NP-complete constraint languages, and has
been used to establish a dichotomy theorem for several broad classes of languages [11].
There is a longstanding conjecture [18] that this condition is sufficient to characterise all
forms of intractability in constraint languages. We state this conjecture for the special case
of idempotent algebras, where the only essentially unary operations are projections.

Conjecture 8.52 ([18, 11]). Tractable algebras conjecture: A finite idempotent algebra
A is NP-complete if it has a nontrivial factor B all of whose operations are projections.
Otherwise it is tractable.

262 8. The Complexity of Constraint Languages

By Proposition 8.28 and Theorem 8.31, the problem of determining the complexity
of an arbitrary constraint language can be reduced to an equivalent problem for a certain
idempotent algebra associated with the language. Therefore, this conjecture, if true, would
completely solve the fundamental question of analysing the complexity of any constraint
language over a finite set.

Conjecture 8.52 has been verified [11] for algebras with a 2-element universe, algebras
with a 3-element universe, conservative algebras (i.e., those whose operations preserve all
unary relations), and strictly simple surjective algebras (i.e. those with no non-trivial fac-
tors). If Conjecture 8.52 is true in general, then it yields an effective procedure to determine
whether any finite constraint language is tractable or NP-complete, as the following result
indicates.

Proposition 8.53 ([11]). Let D be a fixed finite set. If Conjecture 8.52 is true, then for any
finite constraint language Γ over D, there is a polynomial-time algorithm to determine
whether Γ is NP-complete or tractable.

In another direction, Proposition 8.50 was used in [71] to show that most non-trivial
constraint languages over a finite domain are NP-complete. More precisely, letR(n, k) de-
note a random n-ary relation on the set {1, . . . , k}, for which the probability that 〈a1, . . . , an〉
∈ R(n, k) is equal to 1/2 independently for each n-tuple 〈a1, . . . , an〉 where not all ai’s
are equal; also, set 〈a, a, . . . , a〉 6∈ R(n, k) for all a (this is necessary to ensure that
CSP({R(n, k)}) is non-trivial). It is shown in [71] that the probability that Pol {R(n, k)}
contains only projections tends to 1 as either n or k tends to infinity.

8.4.4 Search is No Harder than Decision

In this chapter we have formulated the constraint satisfaction problem as a decision prob-
lem in which the question is to decide whether or not a solution exists. However, the
corresponding search problem, in which the question is to find a solution, is often the real
practical question. Using the algebraic theory in Section 8.3, we can now show that the
tractable cases of these two forms of the problem coincide.

Theorem 8.54 ([11, 20]). Let Γ be a constraint language over a finite set. The decision
problem CSP(Γ) is tractable if and only if the corresponding search problem can be solved
in polynomial time.

Proof. Obviously, tractability of the search problem implies tractability of the correspond-
ing decision problem.

For the converse, let Γ be a tractable set of relations over a finite domain D.
Consider any instance P in CSP(Γ). By the choice of Γ, we can decide in polynomial

time whether P has a solution. If it does not then the search returns with no solution.
Otherwise, using Proposition 8.28 we can transform this instance to an instance P ′

over a reduced language Γ′ which has a solution. Furthermore we can arrange that every
solution to P ′ is a solution to P .

Since P ′ has a solution we know that for each variable v of P ′ there must be some
domain value a ∈ D for which we can add the constraint 〈〈v〉 , {〈a〉}〉 and still have a
solvable instance. By considering each variable in turn, and each possible value for that
variable, we can add such a constraint to each variable in turn, and hence obtain a solution

D. Cohen, P. Jeavons 263

to P ′. Checking for solvability for each possible value at each variable requires us to solve
an instance of the decision problem CSP(Γ∪ ΓCON) at most |P ′| times. By Theorem 8.31,
this can be completed in polynomial time in the size of P .

8.5 Constraint Languages Over an Infinite Set

Some computational problems can be formulated as constraint satisfaction problems only
by using a constraint language over an infinite set (see Examples 8.10 and 8.12).

Many of the results of the algebraic theory described in Section 8.3 hold for both fi-
nite and infinite domains. However, Theorem 8.21 does not hold, in general, for arbi-
trary constraint languages over an infinite set. It is not hard to check that the inclusion
〈Γ〉 ⊆ Inv(Pol(Γ)) still holds. However, for constraint languages over an infinite set this
inclusion can be strict, as the next example7 shows.

Example 8.55. Consider Γ = {R1, R2, R3} on N, whereR1 = {〈a, b, c, d〉 | a = b or c =
d}, R2 = {〈1〉}, and R3 = {〈a, a+ 1〉 | a ∈ N}. It is not difficult to show that every
polymorphism of Γ is a projection, and hence Inv(Pol(Γ)) is the set of all relations on
N. However, one can check that, for example, the unary relation consisting of all even
numbers does not belong to 〈Γ〉. �

However, if we impose some additional conditions, then the required equality does
hold, as the next result indicates. A relational structure consists of a universe D, to-
gether with a collection of relations overD. A relational structure with a countably infinite
universe is called ω-categorical if it is determined (up to isomorphism) by its first-order
theory [46].

Theorem 8.56 ([4]). Let Γ = {R1, . . . , Rk} be a finite constraint language over a count-
ably infinite set D.

If the relational structure 〈D,R1, . . . , Rk〉 is ω-categorical, then 〈Γ〉 = Inv(Pol(Γ)).

Examples of ω-categorical structures, as well as remarks on the complexity of the cor-
responding constraint satisfaction problems, can be found in [3], including a complete
analysis of the countably infinite ω-categorical structures with a single binary relation.

8.5.1 Allen’s Interval Algebra

One form of infinite-valued CSP which has been widely studied is the case where the val-
ues taken by the variables are intervals on some totally ordered set. This setting is used
to model the temporal behaviour of systems, where the intervals represent time intervals
during which events occur. The most popular such formalism is Allen’s Interval Algebra,
introduced in [1], which concerns binary qualitative relations between intervals. This al-
gebra contains 13 basic relations (see Table 8.1), corresponding to the 13 distinct ways in
which two given intervals can be related. The complete set of relations in Allen’s Interval
Algebra consists of the 213 = 8192 possible unions of the basic relations. This set of
relations will be denoted ΓAIA.

The constraint language ΓAIA is NP-complete, and the problem of classifying the com-
plexity of subsets of this language has attracted much attention (see, for example, [87]).

7This example is from [3], where it is credited to F. Börner.

264 8. The Complexity of Constraint Languages

Basic relation Example Endpoints

I precedes J p III I+ < J−

J preceded by I p−1
JJJ

I meets J m IIII I+ = J−

J met by I m−1
JJJJ

I overlaps J o IIII I− < J− < I+,
J overl. by I o−1

JJJJ I+ < J+

I during J d III I− > J−,
J includes I d−1 JJJJJJJ I+ < J+

I starts J s III I− = J−,
J started by I s−1 JJJJJJJ I+ < J+

I finishes J f III I+ = J+,
J finished by I f−1 JJJJJJJ I− > J−

I equals J ≡ IIII I− = J−,
JJJJ I+ = J+

Table 8.1: The 13 basic relations in Allen’s Interval Algebra.

Allen’s Interval Algebra has three operations on relations: composition, intersection,
and inversion. Note that these three operations can each be represented by using conjunc-
tion and existential quantification, so, for any subset ∆ of ΓAIA, the subalgebra ∆′ gener-
ated by ∆ has the property that ∆′ ⊆ 〈∆〉. It follows from Theorem 8.16 that CSP(∆)
and CSP(∆′) are polynomial-time equivalent. Hence it is sufficient to classify all subsets
of ΓAIA which are subalgebras of Allen’s Interval Algebra.

Theorem 8.57 ([64]). For any constraint language Γ ⊆ ΓAIA, if Γ is contained in one
of the eighteen subalgebras listed in Table 8.2, then it is tractable; otherwise it is NP-
complete.

The domain for Allen’s Interval Algebra can be taken to be the countably infinite set
of intervals with rational endpoints. It was noted in [4] that the relational structure asso-
ciated with Allen’s Interval Algebra (without its operations) is ω-categorical. Therefore,
by Theorem 8.56, the complexity classification problem for subsets of ΓAIA can be tackled
using polymorphisms. Such an approach might provide a route to simplify the involved
classification proof given in [64].

8.6 Multi-Sorted Constraint Languages

In practical constraint programming it is often the case that different variables have differ-
ent domains. So far in this chapter we have considered a simplified situation in which all
of the variables are assumed to have the same domain. This apparently minor simplifica-
tion can have serious consequences for the analysis of the complexity of different forms of
constraint; it can in fact mask the difference between tractability and NP-completeness for
some languages, as we will demonstrate in this section.

The algebraic approach described in Section 8.3 has been extended to deal with the
case when different variables have different domains [10], and we will now present the
main results of the extended theory.

D. Cohen, P. Jeavons 265

Sp = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (p)±1 ⊆ r}
Sd = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (d−1)±1 ⊆ r}
So = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (o)±1 ⊆ r}
A1 = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (s−1)±1 ⊆ r}
A2 = {r | r ∩ (pmod−1f−1)±1 6= ∅ ⇒ (s)±1 ⊆ r}
A3 = {r | r ∩ (pmodf)±1 6= ∅ ⇒ (s)±1 ⊆ r}
A4 = {r | r ∩ (pmodf−1)±1 6= ∅ ⇒ (s)±1 ⊆ r}

Ep = {r | r ∩ (pmods)±1 6= ∅ ⇒ (p)±1 ⊆ r}
Ed = {r | r ∩ (pmods)±1 6= ∅ ⇒ (d)±1 ⊆ r}
Eo = {r | r ∩ (pmods)±1 6= ∅ ⇒ (o)±1 ⊆ r}
B1 = {r | r ∩ (pmods)±1 6= ∅ ⇒ (f−1)±1 ⊆ r}
B2 = {r | r ∩ (pmods)±1 6= ∅ ⇒ (f)±1 ⊆ r}
B3 = {r | r ∩ (pmod−1s−1)±1 6= ∅ ⇒ (f−1)±1 ⊆ r}
B4 = {r | r ∩ (pmod−1s)±1 6= ∅ ⇒ (f−1)±1 ⊆ r}

E∗ =

{

r

∣

∣

∣

∣

1) r ∩ (pmod)±1 6= ∅ ⇒ (s)±1 ⊆ r, and
2) r ∩ (ff−1) 6= ∅ ⇒ (≡) ⊆ r

}

S∗ =

{

r

∣

∣

∣

∣

1) r ∩ (pmod−1)±1 6= ∅ ⇒ (f−1)±1 ⊆ r, and
2) r ∩ (ss−1) 6= ∅ ⇒ (≡) ⊆ r

}

H =

r

∣

∣

∣

∣

∣

∣

1) r ∩ (os)±1 6= ∅ & r ∩ (o−1f)±1 6= ∅ ⇒ (d)±1 ⊆ r, and
2) r ∩ (ds)±1 6= ∅ & r ∩ (d−1f−1)±1 6= ∅ ⇒ (o)±1 ⊆ r, and
3) r ∩ (pm)±1 6= ∅ & r 6⊆ (pm)±1 ⇒ (o)±1 ⊆ r

A≡ = {r | r 6= ∅ ⇒ (≡) ⊆ r}

For the sake of brevity, relations are written as collections of basic relations. So, for
instance, we write (pmod) instead of p ∪ m ∪ o ∪ d. We also use the symbol ±,
which should be interpreted as follows: a condition involving ± means the conjunction
of two conditions, one corresponding to + and one corresponding to −. For example,
the condition (o)±1 ⊆ r ⇔ (d)±1 ⊆ r means that both (o) ⊆ r ⇔ (d) ⊆ r and
(o−1) ⊆ r ⇔ (d−1) ⊆ r.

Table 8.2: The 18 maximal tractable subalgebras of Allen’s Interval Algebra

266 8. The Complexity of Constraint Languages

Definition 8.58. For any collection of sets D = {Di | i ∈ I}, and any list of in-
dices 〈i1, i2, . . . , in〉 ∈ In, a subset of Di1 × Di2 × · · · × Din , together with the list
〈i1, i2, . . . , in〉, will be called a multi-sorted relation over D with arity n and signature

〈i1, i2, . . . , in〉.

For any multi-sorted relation R, the signature of R will be denoted σ(R).
In the special case where D contains just a single set D we will call a multi-sorted

relation over D a one-sorted relation over D.

Example 8.59. Let R be a 5-ary relation with 17 tuples defined as follows:

R = { 〈3, 1, 2, c, b〉 , 〈3, 3, 2, c, b〉 , 〈1, 0, 2, c, b〉 , 〈1, 2, 2, c, b〉 ,
〈1, 1, 0, c, b〉 , 〈1, 3, 0, c, b〉 , 〈3, 0, 0, c, b〉 , 〈3, 2, 0, c, b〉 ,
〈3, 1, 2, c, a〉 , 〈3, 3, 2, c, a〉 , 〈1, 0, 2, c, a〉 , 〈1, 2, 2, c, a〉 ,
〈3, 1, 2, a, b〉 , 〈3, 3, 2, a, b〉 , 〈1, 1, 0, a, b〉 , 〈1, 3, 0, a, b〉 , 〈3, 3, 2, a, a〉 }

This relation can be considered in the usual way as a one-sorted relation over the set D =
{0, 1, 2, 3, a, b, c}. Alternatively, it can be seen as a multi-sorted relation with signature
〈1, 1, 1, 2, 2〉 over the collection of sets D = 〈D1, D2〉, where D1 = {0, 1, 2, 3} and
D2 = {a, b, c}. �

Given any set of multi-sorted relations, we can define a corresponding class of multi-
sorted constraint satisfaction problems, in the following way.

Definition 8.60. Let Γ be a set of multi-sorted relations over a collection of sets D = {Di |
i ∈ I}. The multi-sorted constraint satisfaction problem over Γ, denoted MCSP(Γ), is
defined to be the decision problem with

Instance: A quadruple 〈V,D, δ, C〉, where

• V is a finite set of variables;

• δ is a mapping from V to I called the domain function;

• C is a set of constraints, where each constraint C ∈ C is a pair 〈s,R〉 such that

– s, is a tuple of variables of length nC called the constraint scope, and

– R is an element of Γ with arity nC and signature 〈δ(s[1]), . . . , δ(s[nC])〉
called the constraint relation.

Question: Does there exist a solution, that is a function ϕ from V to
⋃

i∈I Di such that,
for each variable v ∈ V, ϕ(v) ∈ Dδ(v), and for each constraint 〈s,R〉 ∈ C with
s = 〈v1, . . . , vn〉, the tuple 〈ϕ(v1), . . . , ϕ(vn)〉 belongs to the multi-sorted relation
R.

It might be tempting to assume that the complexity of a set of multi-sorted relations
could be determined by considering each of the domains involved separately; in other
words, by separating the relations into a number of one-sorted relations, and analysing the
complexity of each of these. However, in general this simple approach does not work, as
the next example demonstrates.

D. Cohen, P. Jeavons 267

Example 8.61. Consider the sets D1 = {0, 1} and D2 = {a, b, c}, and the multi-sorted
relations R1, R2, R3 over D = {D1, D2}, each with signature 〈1, 2〉, where

R1 = { 〈1, a〉 , R2 = { 〈0, a〉 , R3 = { 〈0, a〉 ,
〈0, b〉 , 〈1, b〉 , 〈0, b〉 ,
〈0, c〉} 〈0, c〉} 〈1, c〉}.

If we divide each of these multi-sorted relations into two separate one-sorted relations, then
we obtain just the unary relations {0, 1} and {a, b, c} over the setsD1 andD2 respectively.
Each of these unary relations individually is clearly tractable.

However, by establishing a reduction from the NP-complete problem ONE-IN-THREE

SATISFIABILITY (see Example 8.6), it can be shown that the set of multi-sorted relations
Γ = {R1, R2, R3} is NP-complete. (Details of this reduction are given in [10].) �

It is often desirable to convert a multi-sorted constraint satisfaction problem into a one-
sorted problem. The most straightforward way to do this for a given multi-sorted problem
instance 〈V,D, δ, C〉, is to take D =

⋃

Di∈D
Di, and replace each constraint relation with

a one-sorted relation over D containing exactly the same tuples.
However, this straightforward conversion method does not necessarily preserve the

tractability of a multi-sorted constraint language Γ, as the next example indicates.

Example 8.62. Let D1 and D2 be two distinct supersets of a set D0, and let Γ be the
constraint language containing the single binary disequality relation 6=D0

, as defined in
Example 8.11, but now considered as a multi-sorted relation over {D1, D2} with signature
〈1, 2〉.

Because of the signature, this constraint can only be imposed between two variables
when one of them has domain D1 and the other has domain D2. Hence, in this case
MCSP(Γ) corresponds to the problem of colouring a bipartite graph with |D0| colours,
which is clearly tractable for any set D0. Note that the tractability is entirely due to the
signature of the relation rather than the tuples it contains.

If we convert Γ to a one-sorted constraint language by considering the relation 6=D0

as a one-sorted relation over the set D = D1 ∪ D2, then we obtain the usual disequality
relation over D0, which for |D0| > 2 is NP-complete (see Example 8.11). �

To ensure that we do preserve tractability when converting a multi-sorted constraint
language to a one-sorted constraint language, we make use of a more sophisticated conver-
sion technique, based on the following definition.

Definition 8.63. Let D = {D1, . . . , Dp} be a finite collection of sets, and define D∗ =
D1 ×D2 × · · · ×Dp.

For any n-ary relation R over D with signature σ(R) = 〈i1, . . . , in〉, we define the
one-sorted n-ary relation χ(R) over D∗ as follows:

χ(R) = {〈t1, t2, . . . , tn〉 ∈ (D∗)n | 〈t1[i1], t2[i2], . . . , tm[im]〉 ∈ R}.

Note that for any one-sorted relation R, we have χ(R) = R.

Example 8.64. Let R be the binary disequality relation 6=D0
over {D1, D2} with signa-

ture 〈1, 2〉, as in Example 8.62. In this case χ(R) is the relation consisting of all pairs
〈〈a, a′〉 , 〈b, b′〉〉 ∈ (D1 ×D2)× (D1 ×D2) such that a, b′ ∈ D0 and a 6= b′. �

268 8. The Complexity of Constraint Languages

Proposition 8.65 ([10]). Let Γ be a multi-sorted constraint language over a finite collec-
tion of finite sets. The language Γ is tractable if and only if the corresponding one-sorted
constraint language {χ(R) | R ∈ Γ} is tractable.

To extend the algebraic results of Section 8.3 to the multi-sorted case, we need to define
a suitable extension of the notion of a polymorphism. As we have shown in Example 8.61,
we cannot simply separate out different domains and consider polymorphisms on each one
separately; we must ensure that all of the domains are treated in a co-ordinated way. In
the following definition, this is achieved by defining different interpretations for the same
operation symbol applied to different sets.

Definition 8.66. Let D = {Di | i ∈ I} be a collection of sets. A k-ary multi-sorted

operation f on D is defined by a collection of interpretations {fDi | i ∈ I}, where each
fDi is a k-ary operation on the corresponding set Di.

For any multi-sorted relationR with signature 〈i1, . . . , in〉, and any collection of tuples
t1, . . . , tk ∈ R, define f(t1, . . . , tk) to be

〈

fDi1 (t1[1], . . . , tk[1]), . . . , fDin (t1[n], . . . , tk[n])
〉

.

Definition 8.67. A k-ary multi-sorted operation f on D is said to be a multi-sorted poly-

morphism of a multi-sorted relation R over D if f(t1, . . . , tk) ∈ R for all choices of
t1, . . . , tk ∈ R.

For any given multi-sorted constraint language Γ, the set of all multi-sorted polymor-
phisms of every relation in Γ is denoted MPol(Γ).

The next theorem is the main result of this section. It establishes the remarkable fact
that many of the polymorphisms that ensure tractability in the one-sorted case can be com-
bined in almost arbitrary ways to obtain new tractable multi-sorted constraint languages.

Note that a multi-sorted operation, f , is said to be idempotent if all of its interpretations
fD satisfy the identity fD(x, x, . . . , x) = x.

Theorem 8.68 ([10]). Let Γ be a multi-sorted constraint language over a finite collection
of finite sets D = {D1, . . . , Dn}.

If, for each Di ∈ D, MPol(Γ) contains a multi-sorted operation fi such that

• fDi

i is a constant operation; or

• fDi

i is a semilattice operation; or

• fDi

i is a near-unanimity operation; or

• fi is idempotent and fDi

i is an affine operation,

then MCSP(Γ) is tractable.

Example 8.69. Recall the relation R defined in Example 8.59.
If we consider R as a one-sorted relation over the domain {0, 1, 2, 3, a, b, c}, then it

does not fall into any of the many known (one-sorted) tractable classes described in Sec-
tion 8.4.2 above8.

8This was established by using the program Polyanna described in [39], which is available from
http://www.comlab.ox.ac.uk/oucl/research/areas/constraints/software/.

D. Cohen, P. Jeavons 269

However if we consider R as a multi-sorted relation with signature 〈1, 1, 1, 2, 2〉 over
the sets D1 = {0, 1, 2, 3} and D2 = {a, b, c}, then we can use Theorem 8.68 to show
that {R} is tractable. To see this, it is sufficient to check that R has two multi-sorted
polymorphisms f(x, y, z) and g(x, y), where

• fD1 is the affine operation of the group Z4, and fD2 is the (ternary) maximum
operation on D2, with respect to the order a < b < c (which is idempotent).

• gD1(x, y) = y, and gD2 is the (binary) maximum operation on D2, with respect to
the order a < b < c (which is a semilattice operation).

�

Further developments in the algebraic approach to multi-sorted constraints, and applica-
tions to the standard one-sorted CSP where the constraints limit the domain of each vari-
able, are given in [10].

8.7 Alternative Approaches

8.7.1 Homomorphism Problems

An important reformulation of the CSP is the HOMOMORPHISM problem: the question of
deciding whether there exists a homomorphism between two relational structures (see [3,
37, 41, 59]). Recall (from Section 8.5) that a relational structure is simply a set, together
with a list of relations over that set.

Definition 8.70. Let A1 =
〈

D1, R
1
1, R

1
2, . . . , R

1
q

〉

and A2 =
〈

D2, R
2
1, R

2
2, . . . , R

2
q

〉

be
relational structures where both R1

i and R2
i are ni-ary, for all i = 1, 2, . . . , q.

A mapping Φ : D1 → D2 is called a homomorphism fromA1 to A2 if it has the prop-
erty that 〈Φ(a1), . . . ,Φ(ani

)〉 ∈ R2
i whenever 〈a1, . . . , ani

〉 ∈ R1
i , for all i = 1, 2, . . . , q.

The HOMOMORPHISM PROBLEM for 〈A1,A2〉 is to decide whether there exists a ho-
momorphism from A1 to A2.

To see that the HOMOMORPHISM PROBLEM is the same as the CSP, think of the el-
ements in A1 as variables, the elements in A2 as values, tuples in the relations of A1 as
constraint scopes, and the relations ofA2 as constraint relations. With this correspondence,
the solutions to this CSP instance are precisely the homomorphisms from A1 to A2.

Example 8.71. A relational structure with a single binary relation 〈V,E〉 is usually known
as a (directed) graph.

An instance of the GRAPH H -COLORING problem consists of a finite graph G. The
question is whether there is a homomorphism fromG toH . WhenH is the complete graph
on k vertices, the GRAPH H -COLORING problem corresponds to the standard GRAPH

COLORABILITY problem with k colours (see Example 8.11). For an arbitrary graph
H = 〈V,E〉, the GRAPH H -COLORING problem precisely corresponds to the problem
CSP({E}).

For undirected graphs H , where the edge relation E is symmetric, the complexity
of GRAPH H -COLORING has been completely characterised [44]: it is tractable if H is
bipartite or contains a loop; otherwise it is NP-complete. (Note that this characterisation

270 8. The Complexity of Constraint Languages

also follows from Conjecture 8.52, see [7].) However, if we allow H and G to be directed
graphs, then the complexity of GRAPH H -COLORING has not yet been fully characterised.
In fact a complete classification would answer Conjecture 8.52 since it was shown in [37]
that every problem CSP(Γ) with finite Γ is polynomial-time equivalent to GRAPH H -
COLORING for some suitable directed graph H . �

8.7.2 Constraint Languages and Logic

In the field of descriptive complexity [47] the computational complexity of a problem is
investigated by studying the forms of logic which can be used to express that problem. The
use of descriptive complexity techniques to analyse the complexity of constraint languages
was initiated by the pioneering work of Feder and Vardi [37].

As shown in Section 8.7.1, for any finite constraint language Γ = {R1, . . . , Rq} over
a set D, the problem CSP(Γ) can be represented as the problem of deciding whether a
given relational structure has a homomorphism to the relational structure 〈D,R1, . . . , Rq〉,
Hence the class of instances of CSP(Γ) which do have a solution can be viewed as a class
of relational structures (sometimes called the “yes-instances”). If this class of relational
structures can be characterised in some restricted logic, then this can sometimes be used to
show that CSP(Γ) is tractable, as the following example illustrates.

Example 8.72. Recall from Example 8.11 that CSP({6=D}) is equivalent to the problem
of colouring a graph with |D| colours. The class of instances which have a solution is
the class of |D|-colourable graphs, which is a class of relational structures with a single
symmetric binary relation E (specifying which vertices are connected by edges).

Now assume that D = {0, 1}. It is well-known that a graph (V,E) is 2-colourable
if and only if it does not have any odd-length cycles. The property of having an odd-
length cycle can be expressed in the logic programming language Datalog [37] using the
following set of rules:

P (x, y) : − E(x, y)

P (x, y) : − P (x, z) ∧ E(z, u) ∧E(u, y)

Q : − P (x, x)

These rules give a recursive specification of two predicates, P and Q. Predicate P (x, y)
holds exactly when there exists an odd-length path in (V,E) from x to y. Predicate Q,
which acts as goal predicate, holds if there exists any odd-length cycle.

Hence, the class of structures for which CSP({6={0,1}}) has a solution can be charac-
terised as the set of structures (V,E) for which the goal predicate in this Datalog program
does not hold. It was shown in [37] that any CSP problem whose yes-instances can be char-
acterised by a Datalog program in this way is tractable. It has also recently been shown
that any CSP problem whose yes-instances can be characterised in first-order logic can be
characterised by a Datalog program in this way [2]. �

The techniques of descriptive complexity can also be used to obtain a more refined de-
scription of the complexity of a constraint language. For example, Dalmau has shown [30]
that if a finite constraint language Γ has a logical property which he calls “bounded path
duality”, then the problem CSP(Γ) is in the complexity class NL, and so can be solved
very efficiently using parallel algorithms.

D. Cohen, P. Jeavons 271

8.7.3 Disjunctive Combinations of Constraint Languages

Another approach to the analysis of constraint languages has been to consider how they
can be built up from combinations of simpler languages whose properties are more eas-
ily analysed [25, 6]. This approach has successfully unified several important classes of
tractable languages including five of the six tractable Boolean languages (Example 8.5), the
max-closed constraints (Example 8.7), the 0/1/all constraints (Example 8.8), the connected
row-convex constraints (Example 8.9) and the linear Horn constraints (Example 8.13).
One advantage of this constructive approach is that it works equally well for both finite
and infinite domains.

The key step in this approach is to define how relations can be combined disjunctively.

Definition 8.73. Let R1 be an n-ary relation and R2 an m-ary relation over a common
set D. The disjunction of R1 and R2, denoted R1 ∨R2, is the relation of arity n+m over
D defined as follows:

R1 ∨R2 = 〈〈x1, . . . , xn+m〉 | (〈x1, . . . , xn〉 ∈ R1) ∨ (〈xn+1, . . . , xn+m〉 ∈ R2)}〉
This definition of disjunction can be extended to constraint languages as follows.

Definition 8.74. For any two constraint languages Γ and ∆, over the same domain D,
define the constraint language Γ×

∨∆ as follows:

Γ×
∨∆ = Γ ∪∆ ∪ {R1 ∨R2 | R1 ∈ Γ, R2 ∈ ∆}

The constraint language Γ×
∨∆ (pronounced Γ “or-times” ∆) contains all of the relations

in Γ and ∆, together with the disjunction of each possible pair of relations from Γ and ∆.
The next example shows that when tractable constraint languages are combined using

the disjunction operation defined in Definition 8.74 the resulting constraint language may
or may not be tractable.

Example 8.75. Let Λ be the set of all relations over the domain {TRUE, FALSE} which
can be specified by a formula of propositional logic consisting of a single literal (where a
literal is either a variable or a negated variable).

The constraint language Λ is clearly tractable, as it is straightforward to verify in linear
time whether a collection of simultaneous single literals has a solution.

Now consider the constraint language Λ∨2 = Λ×
∨Λ. This set contains all Boolean

constraints specified by a disjunction of (at most) 2 literals. The problem CSP(Λ∨2) cor-
responds to the 2-SATISFIABILITY problem, which is well-known to be tractable [38] (see
Example 8.42).

Finally, consider the constraint language Λ∨3 = (Λ∨2)×∨Λ. This set of relations con-
tains all Boolean relations specified by a disjunction of (at most) 3 literals. The problem
CSP(Λ∨3) corresponds to the 3-SATISFIABILITY problem, which is well-known to be
NP-complete [38, 78]. �

Definition 8.76. For any constraint language, ∆, define the set ∆∗ as follows:

∆∗ =
∞
⋃

i=1

∆∨i, where

∆∨1 = ∆

∆∨(i+1) = (∆∨i)×∨∆ for i = 1, 2, . . .

272 8. The Complexity of Constraint Languages

In the remainder of this section we identify a number of simple conditions on constraint
languages Γ and ∆ which are necessary and sufficient to ensure that various disjunctive
combinations of Γ and ∆ are tractable.

Definition 8.77. For any constraint languages Γ and ∆ over a common domain D, define
CSP∆≤k(Γ∪∆) to be the subproblem of CSP(Γ∪∆) consisting of all instances containing
at most k constraints whose relations are members of ∆.

Using this definition, we now define what it means for one set of constraints to be
‘k-independent’ with respect to another.

Definition 8.78. For any constraint languages Γ and ∆ over a set D, we say that ∆ is
k-independent with respect to Γ if the following condition holds: any instance 〈V,D, C〉
in CSP(Γ ∪∆) has a solution provided that any instance 〈V,D, C′〉 in CSP∆≤k(Γ ∪∆)
with C′ ⊆ C has a solution.

The intuitive meaning of this definition is that the satisfiability of any set of constraints
with relations chosen chosen from the set ∆ can be determined by considering those con-
straints k at a time, even in the presence of arbitrary additional constraints from Γ.

Theorem 8.79 ([25, 6]). Let Γ and ∆ be constraint languages over a set D, such that
CSP∆≤1(Γ ∪∆) is tractable.

The constraint language Γ×
∨∆∗ is tractable if ∆ is 1-independent with respect to Γ.

Otherwise it is NP-complete.

A polynomial-time algorithm for solving instances of CSP(Γ×
∨∆∗), for any constraint

languages Γ and ∆ satisfying the conditions of Theorem 8.79 is given in [25].

Example 8.80. Let D be the set of real numbers (or the rationals). Let Γ be the constraint
language over D consisting of all constraints specified by a single (weak) linear inequality
(e.g., 3x1 + 2x2 − x3 ≤ 6). Let ∆ be the constraint language over D consisting of all
constraints specified by a single linear disequality (e.g., x1 + 4x2 + x3 6= 0).

To show that CSP∆≤1(Γ ∪ ∆) is tractable, we note that the consistency of a set of
inequalities, C, can be decided in polynomial time, using Khachian’s linear programming
algorithm [56]. Furthermore, for any single disequality constraint, C, we can detect in
polynomial time whether C ∪ {C} is consistent by simply running Khachian’s algorithm
to determine whether C implies the negation of C.

To show that ∆ is 1-independent with respect to Γ, we consider the geometrical inter-
pretation of the constraints as half spaces and excluded hyperplanes in Dn (see [62]).

Hence, we can apply Theorem 8.79 and conclude that Γ×
∨∆∗ is tractable. This set

consists of the linear Horn relations described in Example 8.13.
Note that the problem CSP(Γ∪∆∗) is much simpler than CSP(Γ×

∨∆∗) - it corresponds
to deciding whether a convex polyhedron, possibly minus the union of a finite number of
hyperplanes, is the empty set. This simpler problem was shown to be tractable in [69],
using a more restrictive notion of independence which has been widely used in the devel-
opment of consistency checking algorithms and canonical forms [68, 69]. However, the
much larger set of linear Horn constraints is not independent in the sense defined in [69]
(see [62]). �

D. Cohen, P. Jeavons 273

Theorem 8.81 ([6]). Let Γ and ∆ be constraint languages over a setD, such that CSP(Γ∪
∆) is tractable.

The constraint language Γ ∪∆∨2 is tractable if ∆ is 2-independent with respect to Γ.
Otherwise it is NP-complete.

Note that ∆ is 2-independent with respect to ∅ if and only if for every 〈V,D, C〉 ∈
CSP(∆) which has no solution, there exists a pair of (not necessarily distinct) constraints
Ci, Cj ∈ C such that 〈V,D, {Ci, Cj}〉 has no solution.

A polynomial-time algorithm for solving instances of CSP(Γ∪∆∨2), for any constraint
languages Γ and ∆ satisfying the conditions of Theorem 8.81 is given in [6].

Example 8.82. Consider the class of connected row-convex constraints over a set D de-
scribed in Example 8.9. In this example we will show that the tractability of connected
row-convex constraints is a simple consequence of Theorem 8.81. Furthermore, by us-
ing Theorem 8.81 we are able to generalise this result to obtain tractable constraints over
infinite sets of values.

Note that the 0-1 matrices defining binary connected row-convex constraints have a
very restricted structure. If we eliminate all rows and columns consisting entirely of zeros,
and then consider any remaining zero in the matrix, all of the ones in the same row as the
chosen zero must lie one side of it (because of the connectedness condition on the row).
Similarly, all of the ones in the same column must lie on one side of the chosen zero. Hence
there is a complete path of zeros from the chosen zero to the edge of the matrix along both
the row and column in one direction. But this means there must be a complete rectangular
sub-matrix of zeros extending from the chosen zero to one corner of the matrix (because
of the connectedness condition).

This implies that the whole matrix can be obtained as the intersection (conjunction) of
0-1 matrices that contain all ones except for a submatrix of zeros in one corner (simply
take one such matrix, obtained as above, for each zero in the matrix to be constructed).

There are four different forms of such matrices, depending on which corner submatrix
is zero, and they correspond to constraints expressed by disjunctive expressions of the four
following forms:

(xi ≥ di) ∨ (xj ≥ dj)
(xi ≥ di) ∨ (xj ≤ dj)
(xi ≤ di) ∨ (xj ≥ dj)
(xi ≤ di) ∨ (xj ≤ dj)

In these expressions xi, xj are variables and di, dj are constants.
Finally, we note that a row or column consisting entirely of zeros corresponds to a

constraint of the form (xi ≤ d1) ∨ (xi ≥ d2) for an appropriate choice of d1 and d2.
Hence, any connected row-convex constraint is equivalent to a conjunction of expres-

sions of these forms.
Now define ∆ to be the set of all unary constraints over D specified by a single in-

equality of the form xi ≤ di or xi ≥ di, for some di ∈ D.
It is easily shown that ∆ is 2-independent with respect to ∅ and CSP(∆) is tractable,

since each instance consists of a conjunction of upper and lower bounds for individual
variables. Hence, by Theorem 8.81, ∆×

∨∆ is tractable. By the alternative characterisation
described above, this establishes that connected row-convex constraints are tractable.

274 8. The Complexity of Constraint Languages

Unlike the arguments used previously to establish that connected row-convex con-
straints are tractable [35, 50], the argument above can still be applied when the set of
values D is infinite. �

Many further examples of constraint languages over both finite and infinite domains
which can be shown to be tractable by constructing them from simpler languages are given
in [25].

Disjunctive combinations of constraint languages over different domains are discussed
in [24, 13]. These papers make use of the algebraic methods discussed in Section 8.3
above.

8.8 Future Directions

We have shown in this chapter that considerable progress has been made in analysing
the complexity of constraint problems with specified constraint languages. The algebraic
approach described in Section 8.3 has led to a complete classification for many special
cases of constraint languages, and has prompted the conjecture that all constraint languages
can be classified as either tractable or NP-complete on the basis of their algebraic properties
(Conjecture 8.52).

Even greater progress has been made in analysing the complexity of constraint prob-
lems with restricted structure, where the constraint language is unrestricted. A number of
powerful structural decomposition algorithms [40], often based on ideas from relational
algebra, have been developed which guarantee tractability for constraint satisfaction prob-
lems whose structure is limited to certain infinite sets of structures but whose relations are
unrestricted. Furthermore, a complete classification of the complexity of constraint satis-
faction problems whose structure is limited to a any set of structures with bounded arity
scopes but whose relations are unrestricted is given in [42].

However, there is currently very little analytical work which combines these two ap-
proaches. One significant result of this kind shows that a certain level of local consistency
(see Chapter 3), which depends on the constraint tightness and the maximum constraint
arity, is sufficient to ensure global consistency [90]. In general, enforcing the required
level of local consistency will increase the constraint arity, and so increase the required
level of consistency still further, which means that this result can only be used to establish
the tractability of classes of problems involving particular languages applied on particular
restricted structures [90]. Other “hybrid” results of this kind, involving both structural and
language properties, are discussed in [89, 79] and in Chapter 12 of [32].

In many practical problems it will be the case that some constraints fall into one
tractable class and some fall into another. Can this fact be exploited to obtain an efficient
solution strategy? Does this depend on the structural way in which the different forms of
constraint overlap? There is currently no suitable theoretical framework to address this
question. One promising approach would be to incorporate ideas of space complexity, as
well as time complexity. The ability to construct solutions using only a limited amount
of working space and stored information seems to be a unifying principle between many
disparate techniques in constraint programming such as bucket elimination [32], hypertree
decomposition [40], and several forms of tractable constraint language [52].

Another direction of future work is to extend the analysis presented here to other
forms of constraint problem, such as quantified constraint problems, soft constraint prob-

D. Cohen, P. Jeavons 275

lems, overconstrained problems, or problems where we wish to count the number of so-
lutions [63]. There has been considerable progress in analysing variations of this kind for
Boolean constraint problems [27]. For larger finite domains there have been some initial
studies of the complexity of quantified constraint problems [5] and counting constraint
problems [9] based on extensions to the algebraic theory described in this chapter: for ex-
ample, it has been shown that for both of these problems the complexity of a constraint
language is determined by its polymorphisms [5, 9].

A rather more substantial extension of the algebraic theory presented here is required to
analyse the complexity of soft constraints, because in this form of problem the constraints
are represented as functions from tuples of domain values to some measure of desirability
(see Chapter 9, “Soft Constraints”). Many forms of combinatorial optimisation problems
can be represented in this very general framework [27, 57]. An initial approach to analysing
the complexity of such problems using algebraic techniques is developed in [21, 22] and a
tractable soft constraint language is presented in [23].

Bibliography

[1] J.F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26:832–843, 1983.

[2] A. Atserias. On digraph coloring problems and treewidth duality. In Proceedings
20th IEEE Symposium on Logic in Computer Science (LICS 2005), pages 106–115,
2005.

[3] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous
templates. To appear in the Journal of Logic and Computation.

[4] M. Bodirsky and J. Nešetřil. Constraint satisfaction with countable homogeneous
templates. In Proceedings of Computer Science Logic and the 8th Kurt Gödel Collo-
quium, volume 2803 of Lecture Notes in Computer Science, pages 44–57. Springer-
Verlag, 2003.

[5] F. Boerner, A. Bulatov, P. Jeavons, and A. Krokhin. Quantified constraints: Algo-
rithms and complexity. In Proceedings of Computer Science Logic and the 8th Kurt
Gödel Colloquium, volume 2803 of Lecture Notes in Computer Science, pages 58–70.
Springer, 2003.

[6] M. Broxvall, P. Jonsson, and J. Renz. Disjunctions, independence, refinements. Arti-
ficial Intelligence, 140(1-2):153–173, 2002.

[7] A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science,
349(1):31–39, 2005.

[8] A. Bulatov and V. Dalmau. Mal’tsev constraints are tractable. SIAM Journal on
Computing. (To appear).

[9] A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting constraint
satisfaction problem. In Proceedings 44th Symposium on Foundations of Computer
Science (FOCS 2003), pages 562–573. IEEE Computer Society, 2003.

[10] A. Bulatov and P. Jeavons. An algebraic approach to multi-sorted constraints. In
Proceedings 9th International Conference on Constraint Programming—CP’03 (Kin-
sale, September 2003), volume 2833 of Lecture Notes in Computer Science, pages
183–198. Springer-Verlag, 2003.

276 8. The Complexity of Constraint Languages

[11] A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[12] A. Bulatov, Jeavons P., and M. Volkov. Finite semigroups imposing tractable con-
straints. In Proceedings of the School on Algorithmic Aspects of the Theory of Semi-
groups and its Applications, Coimbra, Portugal, 2001, pages 313–329. World Scien-
tific, 2002.

[13] A. Bulatov and E. Skvortsov. Amalgams of constraint satisfaction problems. In Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI
2003), pages 197–202. Morgan Kaufmann, 2003.

[14] A.A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Pro-
ceedings 43rd IEEE Symposium on Foundations of Computer Science (FOCS’02),
pages 649–658, Vancouver, Canada, 2002.

[15] A.A. Bulatov. Mal’tsev constraints are tractable. Technical Report PRG-RR-02-05,
Computing Laboratory, University of Oxford, Oxford, UK, 2002.

[16] A.A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceed-
ings 18th IEEE Symposium on Logic in Computer Science (LICS’03), pages 321–330,
Ottawa, Canada, 2003. IEEE Press.

[17] A.A. Bulatov and P.G. Jeavons. Tractable constraints closed under a binary opera-
tion. Technical Report PRG-TR-12-00, Computing Laboratory, University of Oxford,
Oxford, UK, 2002.

[18] A.A. Bulatov, A.A. Krokhin, and P.G. Jeavons. Constraint satisfaction problems and
finite algebras. In Proceedings 27th International Colloquium on Automata, Lan-
guages and Programming (ICALP’00), volume 1853 of Lecture Notes in Computer
Science, pages 272–282. Springer-Verlag, 2000.

[19] A.A. Bulatov, A.A. Krokhin, and P.G. Jeavons. The complexity of maximal con-
straint languages. In Proceedings 33rd ACM Symposium on Theory of Computing
(STOC’01), pages 667–674, 2001.

[20] D. Cohen. Tractable decision for a constraint language implies tractable search. Con-
straints, 9:219–229, 2004.

[21] D. Cohen, M. Cooper, and P. Jeavons. A complete characterization of complexity
for Boolean constraint optimization problems. In Proceedings 10th International
Conference on Constraint Programming—CP’04, volume 3258 of Lecture Notes in
Computer Science, pages 212–226. Springer-Verlag, 2004.

[22] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Soft constraints: Complexity
and multimorphisms. In Proceedings 9th International Conference on Constraint
Programming—CP’03 (Kinsale, September 2003), volume 2833 of Lecture Notes in
Computer Science, pages 244–258. Springer-Verlag, 2003.

[23] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. A maximal tractable class of soft
constraints. Journal of Artificial Intelligence Research (JAIR), 22:1–22, 2004.

[24] D.A. Cohen, P.G. Jeavons, and R.L. Gault. New tractable classes from old. Con-
straints, 8:263–282, 2003.

[25] D.A. Cohen, P.G. Jeavons, P. Jonsson, and M. Koubarakis. Building tractable dis-
junctive constraints. Journal of the ACM, 47:826–853, 2000.

[26] M.C. Cooper, D.A. Cohen, and P.G. Jeavons. Characterising tractable constraints.
Artificial Intelligence, 65:347–361, 1994.

[27] N. Creignou, S. Khanna, and M. Sudan. Complexity Classification of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathemat-

D. Cohen, P. Jeavons 277

ics and Applications. Society for Industrial and Applied Mathematics, Philadelphia,
PA., 2001.

[28] V. Dalmau. A new tractable class of constraint satisfaction problems. In Proceedings
6th International Symposium on Artificial Intelligence and Mathematics, 2000.

[29] V. Dalmau. Generalized majority-minority operations are tractable. In Proceedings
20th IEEE Symposium on Logic in Computer Science, (LICS 2005), pages 438–447.
IEEE Computer Society, 2005.

[30] V. Dalmau. Linear datalog and bounded path duality of relational structures. Logical
Methods in Computer Science, 1:1–32, 2005.

[31] V. Dalmau, R. Gavaldà, P. Tesson, and D. Thérien. Tractable clones of polynomi-
als over semigroups. In Proceedings 11th International Conference on Constraint
Programming—CP’05 (Sitges, October 2005), volume 3709 of Lecture Notes in
Computer Science, pages 196–210. Springer-Verlag, 2005.

[32] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[33] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-

lems. Artificial Intelligence, 34(1):1–38, 1988.
[34] K. Denecke and S.L. Wismath. Universal Algebra and Applications in Theoretical

Computer Science. Chapman and Hall/CRC Press, 2002.
[35] Y. Deville, O. Barette, and P. van Hentenryck. Constraint satisfaction over connected

row convex constraints. In Proceedings of IJCAI’97, pages 405–411, 1997.
[36] T. Drakengren and P Jonsson. A complete classification of tractability in Allen’s

algebra relative to subsets of basic relations. Artificial Intelligence, 106:205–219,
1998.

[37] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM Journal
on Computing, 28:57–104, 1998.

[38] M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA., 1979.

[39] R.L Gault and P. Jeavons. Implementing a test for tractability. Constraints, 9:139–
160, 2004.

[40] G. Gottlob, L. Leone, and F. Scarcello. A comparison of structural CSP decomposi-
tion methods. Artificial Intelligence, 124:243–282, 2000.

[41] G. Gottlob, L. Leone, and F. Scarcello. Hypertree decomposition and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

[42] M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. In Proceedings 44th Annual IEEE Symposium on Founda-
tions of Computer Science, (FOCS’03), pages 552–561, 2003.

[43] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence, 66(1):57–89, 1994.

[44] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Ser.B, 48:92–110, 1990.

[45] D. Hobby and R.N. McKenzie. The Structure of Finite Algebras, volume 76 of Con-
temporary Mathematics. American Mathematical Society, Providence, R.I., 1988.

[46] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
[47] N. Immerman. Descriptive Complexity. Texts in Computer Science. Springer-Verlag,

1998.
[48] P.G. Jeavons. Constructing constraints. In Proceedings 4th International Conference

278 8. The Complexity of Constraint Languages

on Constraint Programming—CP’98 (Pisa, October 1998), volume 1520 of Lecture
Notes in Computer Science, pages 2–16. Springer-Verlag, 1998.

[49] P.G. Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185–204, 1998.

[50] P.G. Jeavons, D.A. Cohen, and M.C. Cooper. Constraints, consistency and closure.
Artificial Intelligence, 101(1–2):251–265, 1998.

[51] P.G. Jeavons, D.A. Cohen, and M. Gyssens. A unifying framework for tractable con-
straints. In Proceedings 1st International Conference on Constraint Programming,
CP’95, volume 976 of Lecture Notes in Computer Science, pages 276–291. Springer-
Verlag, 1995.

[52] P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints. Journal
of the ACM, 44:527–548, 1997.

[53] P.G. Jeavons, D.A. Cohen, and M. Gyssens. How to determine the expressive power
of constraints. Constraints, 4:113–131, 1999.

[54] P.G. Jeavons and M.C. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79(2):327–339, 1995.

[55] P. Jonsson and C. Bäckström. A unifying approach to temporal constraint reasoning.
Artificial Intelligence, 102:143–155, 1998.

[56] L.G. Khachian. A polynomial time algorithm for linear programming. Soviet Math.
Dokl., 20:191–194, 1979.

[57] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson. The approximability of con-
straint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920, 2001.

[58] L. Kirousis. Fast parallel constraint satisfaction. Artificial Intelligence, 64:147–160,
1993.

[59] Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint satis-
faction. Journal of Computer and System Sciences, 61:302–332, 2000.

[60] M. Koubarakis. Dense time and temporal constraints with 6=. In B. Nebel, C. Rich,
and W. Swartout, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference (KR’92), pages 24–35, San Mateo,
CA, 1992. Morgan Kaufmann.

[61] M. Koubarakis. From local to global consistency in temporal constraint networks.
In Proceedings 1st International Conference on Constraint Programming—CP’95
(Cassis, France, September 1995), volume 976 of Lecture Notes in Computer Sci-
ence, pages 53–69. Springer-Verlag, 1995.

[62] M. Koubarakis. Tractable disjunctions of linear constraints. In Proceedings 2nd Inter-
national Conference on Constraint Programming—CP’96, volume 1118 of Lecture
Notes in Computer Science, pages 297–307. Springer-Verlag, 1996.

[63] A. Krokhin, A. Bulatov, and P. Jeavons. Functions of multiple-valued logic and the
complexity of constraint satisfaction: A short survey. In Proceedings 33rd IEEE
International Symposium on Multiple-Valued Logic (ISMVL 2003), pages 343–351.
IEEE Computer Society, 2003.

[64] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The
tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50:591–640,
2003.

[65] A. Krokhin, P. Jeavons, and P. Jonsson. Constraint satisfaction problems on intervals
and lengths. SIAM Journal on Discrete Mathematics, 17:453–477, 2004.

[66] P.B. Ladkin and R.D. Maddux. On binary constraint problems. Journal of the ACM,

D. Cohen, P. Jeavons 279

41:435–469, 1994.
[67] R.E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,

22:155–171, 1975.
[68] J-L. Lassez and K. McAloon. A constraint sequent calculus. In Constraint Logic

Programming, Selected Research, pages 33–43. MIT Press, 1991.
[69] J-L. Lassez and K. McAloon. A canonical form for generalized linear constraints.

Journal of Symbolic Computation, 13:1–24, 1992.
[70] D. Lesaint, N. Azarmi, R. Laithwaite, and P. Walker. Engineering dynamic scheduler

for Work Manager. BT Technology Journal, 16:16–29, 1998.
[71] T. Łuczak and J. Nešetřil. A probabilistic approach to the dichotomy problem. Tech-

nical Report 2003-640, KAM-DIMATIA Series, Charles University, Prague, 2003.
[72] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99–

118, 1977.
[73] A.K. Mackworth. Constraint satisfaction. In S.C. Shapiro, editor, Encyclopedia of

Artificial Intelligence, volume 1, pages 285–293. Wiley Interscience, 1992.
[74] A.K. Mackworth and E.C. Freuder. The complexity of constraint satisfaction revis-

ited. Artificial Intelligence, 59:57–62, 1993.
[75] R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Lattices and Varieties,

volume I. Wadsworth and Brooks, California, 1987.
[76] U. Montanari. Networks of constraints: Fundamental properties and applications to

picture processing. Information Sciences, 7:95–132, 1974.
[77] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: a maximal tractable

subclass of Allen’s interval algebra. Journal of the ACM, 42:43–66, 1995.
[78] C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[79] J.K. Pearson and P.G. Jeavons. A survey of tractable constraint satisfaction problems.

Technical Report CSD-TR-97-15, Royal Holloway, University of London, July 1997.
[80] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge,

1997.
[81] R. Pöschel and L.A. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin,

1979.
[82] E.L. Post. The two-valued iterative systems of mathematical logic, volume 5 of An-

nals Mathematical Studies. Princeton University Press, 1941.
[83] L. Purvis and P. Jeavons. Constraint tractability theory and its application to the

product development process for a constraint-based scheduler. In Proceedings of 1st
International Conference on The Practical Application of Constraint Technologies
and Logic Programming - PACLP’99, pages 63–79. Practical Applications Company,
1999.

[84] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A max-
imal tractable fragment of the Region Connection Calculus. Artificial Intelligence,
108:69–123, 1999.

[85] I.G. Rosenberg. Minimal clones I: the five types. In Lectures in Universal Algebra
(Proc. Conf. Szeged 1983), volume 43 of Colloq. Math. Soc. Janos Bolyai, pages
405–427. North-Holland, 1986.

[86] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th ACM
Symposium on Theory of Computing, STOC’78, pages 216–226, 1978.

[87] E. Schwalb and L. Vila. Temporal constraints: a survey. Constraints, 3(2–3):129–
149, 1998.

280 8. The Complexity of Constraint Languages

[88] A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathema-
tiques Superieures. University of Montreal, 1986.

[89] P. van Beek and R. Dechter. On the minimality and decomposability of row-convex
constraint networks. Journal of the ACM, 42:543–561, 1995.

[90] P. van Beek and R. Dechter. Constraint tightness and looseness versus local and
global consistency. Journal of the ACM, 44:549–566, 1997.

[91] P. van Hentenryck, Y. Deville, and C-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

[92] M. Vilain, H. Kautz, and P. van Beek. Constraint propagation algorithms for temporal
reasoning: A revised report. In D.S. Weld and J. de Kleer, editors, Readings in
Qualitative Reasoning about Physical Systems, pages 373–281. Morgan Kaufmann,
1989.

Handbook of Constraint Programming 281
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 9

Soft Constraints

Pedro Meseguer, Francesca Rossi, Thomas Schiex

Many real-life combinatorial problems can be naturally modelled (see Chapters 2 and 11
and [34, 2]) and often efficiently solved using constraint techniques. It is essentially a
matter of identifying the decision variables of the problem and how they are related through
constraints. In a scheduling problem for example, there may be as many variables as tasks,
each specifying its starting time, and constraints can model the temporal relations among
such variables, such as ”the beginning of task 2 must occur after the end of task 1”. Similar
models have been designed for many problems in staff rostering, resource allocation, VLSI
design and other classes of combinatorial problems. Typical solving techniques involve a
search in the space of all the solutions. During such search, the constraints are not merely
treated as tests, but play an active role by helping discovering inconsistencies early on,
via the so-called constraint propagation, which allows one to eliminate parts of the search
space and thus to make the search shorter.

In many practical cases, however, the classical constraint framework does not help. For
example, it is possible that after having listed the desired constraints among the decision
variables, there is no way to satisfy them all. In this case, the instance is said to be over-
constrained, and several phases of manual model refinement are usually needed to often
heuristically chose which constraints to ignore. This process, when it is feasible, is rarely
formalized and always difficult and time consuming. Even when all the constraints can be
satisfied, and there are several solutions, such solutions appear equally good, and there is
no way to discriminate among them.

These scenarios often occur when constraints are used to formalize desired properties
rather than requirements that cannot be violated. Such desired properties are not faithfully
represented by constraints, but should rather be considered as preferences whose violation
should be avoided as far as possible. Soft constraints provide one way to model such
preferences.

As an example, consider a typical timetabling problem which aims at assigning courses
and teachers to classrooms and time slots in a university. In the description of this problem
there are usually many hard constraints, such as the size of the classrooms, the opening
hours of the building, or the fact that the same teacher cannot teach two different classes

c© 2006 Elsevier B.V. All rights reserved

282 9. Soft Constraints

at the same time. All these pieces of information are naturally modelled by constraints,
all of which have to be satisfied in order to find an acceptable assignment. However, there
are usually also many soft constraints, or preferences, which state for example the desires
of the teachers (like that he prefers not to teach on Fridays), or also university policies
(like that it is preferable to use smaller classrooms if possible). If all these desires would
be modelled by constraints, it is easy to figure out scenarios where there is no way to
satisfy all of them. On the contrary, there could be ways to satisfy all hard requirements
while violating the desires as little as possible, which is what we are looking for in the
real situation. Moreover, modelling the desires in a faithful way allows us to discriminate
among all the solutions which satisfy the hard constraints. In fact, there could be two
timetables which both satisfy the hard requirements, but where one of them satisfies better
the desires, and this should be the chosen one. Similar scenarios can be found in most
of the typical application fields for constraints, such as scheduling, resource allocation,
rostering, vehicle routing, etc.

To cope with similar situations, classical constraints have been generalized in various
ways in the past decades. Historically, first a variety of specific extensions of the basic
constraint formalism have been introduced. Later, these extensions have been generalized
using more abstract frameworks, which have been crucial in proving general properties and
in identifying the relationship among the specific frameworks. Moreover, for each of the
specific classes, algorithms for solving problems specified in the corresponding formalisms
have been defined.

In this chapter we will review most of the frameworks to model soft constraints, starting
from the specific ones in Section 9.2 to the general ones in Section 9.3. We will discuss the
relationship among the several formalisms, and also their relationship to other preference
modelling frameworks in AI. We will describe the main approaches to solve soft constraint
problems, considering search methods in Section 9.5, inference strategies in Section 9.6,
and approaches that combine both in Section 9.7. Many solving approaches for soft con-
straints are generalizations of ideas already used for hard constraint solving. Often, these
generalizations are far from being direct. In those particular cases, we will analyze in de-
tail the specific issues that arise for soft constraints. Finally, in Section 9.8 we will briefly
describe some applications of soft constraints, and in Section 9.9 we will point out some
promising directions for future work in the area of soft constraints.

9.1 Background: Classical Constraints

Here we summarize the main notions and associated notations that will be used in this
chapter. Since soft constraints often refer to the classical case, we also present the basic
concepts of classical constraint networks.

A sequence 〈a1, . . . , ak〉 is a totally ordered set that allows repetition of elements. A
k-tuple, or simply a tuple is a sequence of k elements. The Cartesian product of a sequence
of sets A1,. . . ,Ak, written A1 × · · · × Ak, is the set of all the k-tuples 〈a1, . . . , ak〉 such
that a1 ∈ A1,. . . , ak ∈ Ak. A variable xi represents an unknown element of its domain
Di, that is a finite set of values. Given a sequence of distinct variables V = 〈x1, . . . , xk〉
and their associated domains D1, . . . , Dk, a relation R on V is a subset of D1 × · · · ×Dk.
The arity of the relation is k and the scope of the relation is V . To make scopes explicit,
we will often denote a relation R over variables V as RV and an element of RV as a tuple

P. Meseguer, F. Rossi, T. Schiex 283

tV . Such a tuple tV is called an assignment of the variables in V . The projection of a
tuple tV over a sequence of variables W , W ⊆ V , is the tuple formed by the values in tV
corresponding to variables in W , denoted as tV [W].

A classical constraint network (classical CN) is a triple 〈X,D,C〉 defined as follows:

• X = {x1, . . . , xn} is a finite set of n variables.

• D = {D1, . . . , Dn} is the set of the domains corresponding to variables in X , such
that Di is the domain of xi; d bounds the domain size.

• C is a finite set of e constraints. A constraint c ∈ C is defined by a relation R
on a sequence of variables V ⊆ X . V is the scope of the constraint. The relation
specifies the assignments allowed by c for the variables of V . Thus, a constraint c
can be viewed as a pair 〈R, V 〉 also noted RV .

Given an assignment tV and a constraint c = RW , we say that c is completely assigned
by tV when W ⊆ V . In such case, we say that tV satisfies c when tV [W] ∈ RW . If
tV [W] /∈ RW , tV violates c. An assignment tV is consistent if it satisfies all constraints
completely assigned by it. An assignment tV is complete if V = X . A solution of a
classical CN is a complete consistent assignment. Since all constraints must be mandatorily
satisfied in a solution, we often say that they are hard constraints. The task of finding a
solution in a classical CN is known as the constraint satisfaction problem (CSP), which is
known to be NP-complete. In the following, we will use c to denote hard constraints, and
f, g to denote soft constraints.

9.2 Specific Frameworks

In this Section we describe the first frameworks that, historically, have been proposed in the
literature for modelling soft constraints. These frameworks are here called specific since
they focus on specific interpretations of soft constraints, in terms of possibilities, priorities,
costs, or probabilities.

9.2.1 Fuzzy, Possibilistic, and Lexicographic Constraints

Originally introduced by [92], and based on fuzzy set theory [42], fuzzy constraints rep-
resent the first extension of the notion of classical constraints that allowed to explicitly
represent preferences. This framework has been analyzed in depth in [45, 43].

A classical constraint can be seen as the set of value combinations for the variables in
its scope that satisfy the constraint. In the fuzzy framework, a constraint is no longer a set,
but rather a fuzzy set [42]. This means that, for each assignment of values to its variables,
we do not have to say whether it belongs to the set or not, but how much it does so. In other
words, we have to use a graded notion of membership. This allows us to represent the fact
that a combination of values for the variables of the constraint is partially permitted.

The membership function µE of a fuzzy set E associates a real number between 0 and
1 with every possible element of E. If µE(a) = 1, then a completely belongs to the set.
If µE(a) = 0, then a does not belong to the set. Intermediary values allow for graded
membership degrees. To represent classical sets, only membership degrees 0 and 1 are
used.

284 9. Soft Constraints

A fuzzy constraint network (fuzzy CN) is a triple 〈X,D,C〉 whereX andD are the set
of variables and their domain, as in classical CNs, and C is a set of fuzzy constraints. A
fuzzy constraint is a fuzzy relation RV on a sequence of variables V . This relation, that is
a fuzzy set of tuples, is defined by its membership function

µRV
:
∏

xj∈V

Dj → [0, 1]

The membership function of the relation RV indicates to what extent an assignment t
of the variables in V belongs to the relation and therefore satisfies the constraint. Given
two assignments t and t′ such that µRV

(t) < µRV
(t′), we can say that t′ satisfies RV

better than t, or that t′ is preferable to t for constraint RV . For example, if µRV
(t) = 0.3

and µRV
(t′) = 0.9, then t′ is preferable to t. To model an assignment t which satisfies

completely the constraint, we just have to set µRV
(t) = 1, while to model an assignment

which violates completely the constraint, and thus it is totally unacceptable, we have to set
µRV

(t) = 0. Therefore, we can say that the membership degree of an assignment gives us
the preference for that assignment. In fuzzy constraints, preference 1 is the best one and
preference 0 the worst one.

In classical constraint satisfaction, when we have a set of constraints we want all of
them to be satisfied. Thus, we combine constraints by taking their conjunction. Although
defined differently, also in the fuzzy framework constraints are naturally combined con-
junctively. Since alternative semantics have been defined [95], this approach is called con-
junctive fuzzy constraints. The conjunctive combination RV ⊗ RW of two fuzzy relations
RV and RW is a new fuzzy relation RV ∪W defined as

µRV ∪W
(t) = min(µRV

(t[V]), µRW
(t[W])) t ∈

∏

xi∈V ∪W

Di

We can now define the preference of a complete assignment, by performing a conjunc-
tion of all the fuzzy constraints. Given any complete assignment t, its membership degree,
also called satisfaction degree, is defined as

µt = (⊗
RV ∈C

RV)(t) = min
RV ∈C

µRV
(t[V])

Therefore, given a complete assignment of a fuzzy CN, the preference of such an as-
signment is computed by considering the preference given by each constraint for that as-
signment, and by taking the worst one of them. In this way, we associate to a complete
assignment the preference for its worst feature. This is very natural for example when we
are reasoning about critical applications, such as space or medical applications, where we
want to be as cautious as possible. Then, given a scenario, we usually forget about its best
features and just remember its bad parts, since these are the parts we are worried about.

A solution of a fuzzy CN is a complete assignment with satisfaction degree greater
than 0. When we compare two complete assignments, the one with the highest prefer-
ence is considered to be better. Thus, the optimal solution of a fuzzy CN is the complete
assignment whose membership degree is maximum over all complete assignments, that is,

max
t∈

Q

xi∈X Di

min
RV ∈C

µRV
(t[V])

P. Meseguer, F. Rossi, T. Schiex 285

Going back to the medical application field, consider the situation where somebody
has to undergo a medical treatment and the doctor proposes two different treatments. Each
proposal is judged by considering all its features (pros and cons) and then the two proposals
are compared. According to the fuzzy framework, the judgement on each proposal will
be based on its worst consequence, and the proposal where such a worst consequence is
less bad will be chosen. Note that this way of reasoning implies that the actual values
of the membership degrees used in the fuzzy constraints are not really significant: only
the relative position of each membership degree with respect to others matters in order to
identify how assignments are ranked.

The fuzzy framework properly generalizes classical constraints, which are just fuzzy
constraints with membership degrees 0 and 1 (that is, each assignment either totally satis-
fies or totally violates a constraint). So it is not surprising that, as for classical constraints,
also solving fuzzy CNs is a difficult task. In fact, the task of deciding whether the best sat-
isfaction degree (among all solutions) is larger than a given value is NP-complete, while
the task of finding an optimal solution is NP-hard.

A framework which is closely related to the fuzzy one is the possibilistic constraint
framework [99], where priorities are associated to constraints and the aim is to find an
assignment which minimizes the priority of the most important violated constraint. This
defines a min-max optimization task dual to the max-min task of fuzzy constraints (by just
using an order inversion over membership degrees), but the two frameworks have otherwise
the same expressive power. As usual for fuzzy sets, other operators besides min have also
been considered for fuzzy constraint aggregation (see work by [95]), which are useful in
domains where a less cautious way of reasoning is more natural.

A weakness of the conjunctive fuzzy constraint formalism is the very little discrimina-
tion between assignments induced by the min operator. In fact, assignments with the same
worst preference are considered equally preferred. Consider two complete assignments t
and t′ of a problem with only two fuzzy constraints, and such that t satisfies these con-
straints with membership degrees 0.5 and 1.0 while t′ satisfies them with degrees 0.5 and
0.5. Although t is obviously strictly preferable to t′, the overall satisfaction degree of the
two assignments are identical since min(0.5, 1.0) = min(0.5, 0.5). A possible way to dis-
criminate between such assignments is proposed in [47], which introduces the concept of
fuzzy lexicographic constraints. The main idea is to consider not just the least preference
value, but all the preference values when evaluating a complete assignment, and to sort
such values in increasing order. When two complete assignments are compared, the two
sorted preference lists are then compared lexicographically. If the least value is different,
the assignment with the highest one is considered better. Otherwise, if the least value is the
same, we pass to compare the next value in the increasing order, and so on. This means that
assignment which have the same minimal preference, and which are thus judged equally
preferable in the fuzzy framework, can now result one better than the other one. In the ex-
ample above, [0.5, 1.0] is strictly better than [0.5, 0.5], since the least values are the same
(that is, 0.5), but the next values (that is, 1 and 0.5) differ, and thus t is preferred.

9.2.2 Weighted Constraints

In many real-life problems, it is often natural to talk about costs or penalties rather than
preferences. In fact, there are situations where we are more interested in the damages we
get by not satisfying a constraint rather than in the advantages we obtain when we satisfy

286 9. Soft Constraints

it. For example, when we want to use highways to get to a different city, we may want to
find the itinerary with minimum overall cost. Also, when we want to put together a PC by
buying all its parts, we want to find the combination of parts which has minimum price.
A natural way to extend the classical constraint formalism to deal with these situations
consists of associating a certain penalty or cost to each constraint, to be paid when the
constraint is violated.

A weighted constraint network (weighted CN) is a triple 〈X,D,C〉, where X and D
are the set of variables and their domains defined as in classical CNs, and C is a set of
weighted constraints. A weighted constraint 〈c, w〉 is just a classical constraint c, plus a
weight w (over natural, integer, or real numbers).

The cost of an assignment t is the sum of all w(c), for all constraints c which are vio-
lated by t. An optimal solution is a complete assignment t with minimal cost. In the par-
ticular case when all penalties are equal to one, this is called the MAXCSP problem [48].
In fact, in this case the task consists of finding an assignment where the number of violated
constraints is minimal, which is equivalent to say that the number of satisfied constraints
is maximal. Moreover, if constraints are clauses over propositional variables, this becomes
the well-known MAXSAT problem [85].

Originally considered in [101], this framework has been since then refined to include
the fact that beyond a (possibly infinite) threshold k, costs are considered as unaccept-
able [65]. A k-weighted constraint network (k-weighted CN) is a 4-tuple 〈X,D,C, k〉
where X and D are the set of variables and their domains defined as in classical CNs, C is
a set of k-weighted constraints and k is an integer. A k-weighted constraint fV ∈ C with
scope V maps tuples defined on V to integers in [0, k], that is,

fV :
∏

xj∈V

Dj → [0, k]

A solution is a complete assignment with cost lower than k. An optimal solution is a
solution with minimal cost. If we define the k-bounded sum of two integers a and b as
a+k b = min{a+b, k}, then the cost of a complete assignment t is defined as the bounded
sum of all the costs obtained by applying each constraint to the projection of t on the scope
of the constraint. A classical CN can be seen as a k-weighted CN where only costs 0 and
k are used.

A closely related framework is the one using the so-called probabilistic constraint [46],
whose aim is to model constraint problems where the presence of the constraints in the
real-life scenario that we want to model is uncertain. Each constraint is associated to a
probability that it is present in the real-life scenario. Assuming that the events (machine
break, weather issues, etc.) that make the constraints present or not are independent, each
constraint R can be associated with a probability pR of its presence. The probability that a
given assignment is a solution of the (unknown) real-life problem can then be computed by
multiplying the probabilities that all the violated constraints are not present in the problem,
that is,

∏

(1− pR).
It is easy to transform probabilities into additive costs by taking their logarithm and

this allows us to reduce any probabilistic constraint instance to a weighted constraint in-
stance [100]. Notice however that probabilistic constraints are similar to fuzzy constraints,
since in both cases the values associated to the constraints are between 0 and 1, and better
solutions have higher values. The main difference is that, while in fuzzy constraints the

P. Meseguer, F. Rossi, T. Schiex 287

evaluation of a solution is the minimum value (over all the constraints), in probabilistic
constraints it is the product of all the values.

Weighted constraints are among the most expressive soft constraint frameworks, in
the sense that the task of finding an optimal solution for possibilistic, lexicographic or
probabilistic frameworks can be efficiently (that is, in polynomial time) reduced to the task
of finding an optimal solution for a weighted constraint instance [100].

9.3 Generic Frameworks

If we consider the specific frameworks described in the previous Section, it is easy to
observe that they all follow a common structure: given a complete assignment, each con-
straint specifies to what extent it is satisfied (or violated) by that assignment by using a
specific scale. Then, the overall degree of satisfaction (or violation) of the assignment
is obtained by combining these elementary degrees of satisfaction (or violation). An op-
timal solution is the complete assignment with an optimal satisfaction/violation degree.
Therefore, choosing the operator used to perform the combination and an ordered satisfac-
tion/violation scale is enough to define a specific framework.

Capturing these commonalities in a generic framework is desirable, since it allows us
to design generic algorithms and properties instead of a myriad of apparently unrelated, but
actually similar properties, theorems and algorithms. Moreover, this offers an environment
where one can study the specific frameworks and better understand their relations.

Designing such a generic framework is a matter of compromise between generality
and specificity. In fact, one would like to cover as many specific frameworks as possi-
ble, while at the same time to have enough specific features to be able to prove useful
properties and build efficient algorithms. The main general formalisms that have been pro-
posed in the literature are the ones based on semiring-based constraints [9, 11] and valued
constraints [100]. We will now describe both of them and discuss their relationship.

9.3.1 Semiring-Based Constraints

Semiring-based constraints rely on a simple algebraic structure, called a c-semiring since it
is very similar to a semiring, to formalize the notion of satisfaction degrees, or preference
levels. The structure is specified by a set E of satisfaction degrees, where two binary
operators are defined: ×s specifies how to combine preferences, while +s is used to induce
a partial ordering (actually a lattice) onE. Additional axioms, including the usual semiring
axioms, are added to precisely capture the notion of satisfaction degrees in soft constraints.

A c-semiring is a 5-tuple 〈E,+s,×s,0,1〉 such that:

• E is a set, 0 ∈ E, 1 ∈ E.

• +s is an operator closed in E, associative, commutative and idempotent for which 0

is a neutral element and 1 an annihilator.

• ×s is an operator closed in E, associative and commutative for which 0 is an anni-
hilator and 1 a neutral element.

• ×s distributes over +s.

288 9. Soft Constraints

The minimum level 0 is used to capture the notion of absolute non-satisfaction, which is
typical of hard constraints. Since a single complete unsatisfaction is unacceptable, 0 must
be an annihilator for ×s. This means that, when combining a completely violated con-
straint with a constraint which is satisfied at some level, we get a complete violation. Con-
versely, a complete satisfaction should not hamper the overall satisfaction degree, which
explains why 1 is a neutral element for ×s. In fact, this means that, when we combine a
completely satisfied constraint and a constraint which is satisfied at some level l, we get
exactly l. Moreover, since the overall satisfaction should not depend on the way elemen-
tary satisfactions are combined, combination (that is, ×s) is required to be commutative
and associative.

To define the ordering over the preference levels, operator +s is used: if a+s b = b, it
means that b is preferred to a, and we write this as b <s a. If a+s b = c, and c is different
from both a and b, then we say that a and b are incomparable. To make sure that this
ordering has the right properties, operator +s is required to be associative, commutative
and idempotent. This generates a partial order, and more precisely a lattice. In all cases,
a +s b is the least upper bound of a and b in the lattice 〈E,<s〉. The fact that 1 (resp. 0)
is a neutral (resp. annihilator) element for +s follows from the fact that it is a maximum
(resp. minimum) element for <s.

Notice that the possible presence of incomparable elements means that we can choose
a scale which is not totally ordered. This is useful for example when we need to reason
with more than one optimization criterion, since in this case there could be situations which
are naturally not comparable. For example, consider a problem which models the possible
routes from one city to another one, either by using highways or roads, and assume we want
to minimize cost and time, while at the same time getting the best view of the landscape.
Then, it could be that a route using highways is bad in terms of cost and view, but reduces
time. On the other hand, a route with roads could cost nothing and give some nice views,
but could take much longer. Then these two routes would be modelled as incomparable,
and imposing an order over them would be unnatural.

Finally, assume that a is better than b, and consider two complete assignments, one
that satisfies a constraint at level a and the other one that satisfies the same constraint at
level b. Then, if all the other constraints are satisfied equally by the two assignments,
it is reasonable to expect that the assignment satisfying at level a is overall better than
the one satisfying at level b. For comparable a and b, this is equivalent to saying that
(a×s c) +s (b×s c) = (a+s b)×s c i.e., that ×s distributes over +s. In a c-semiring, this
property is required in all cases, even if a and b are incomparable.

Compared to a classical semiring structure, the additional properties required by a c-
semiring are the idempotency of +s (to capture a lattice ordering) and the existence of a
minimum and a maximum element (to capture hard constraints). A c-semiring S is said
idempotent iff ×s is idempotent (a ×s a = a). In this case, a ×s b is the greatest lower
bound of a and b in the distributive lattice 〈E,<s〉. Examples of idempotent operators are
min, max and ∩.

A semiring constraint network is then a constraint network where each constraint maps
the assignments of its variables to values in the c-semiring.

A semiring constraint network (semiring CN) is a tuple 〈X,D,C, S〉 where:

• X = {x1, . . . , xn} is a finite set of n variables.

P. Meseguer, F. Rossi, T. Schiex 289

• D = {D1, . . . , Dn} is the collection of the domains of the variables in X such that
Di is the domain of xi.

• C is a finite set of soft constraints. A soft constraint is a function f on a sequence
of variables V ⊆ X , called the scope of the constraint, such that f maps assign-
ments (of variables in V to values in their domains) to to semiring values, that is
f :

∏

xi∈V
Di → E. Thus a soft constraint can be viewed as a pair 〈f, V 〉 also

written as fV .

• S = 〈E,+s,×s,0,1〉 is a c-semiring.

The consistency level of a complete assignment t, vals(t), is obtained by combining
the individual levels of each constraint, that is,

vals(t) = ×s
fV ∈C

fV (t[V])

An optimal solution is a complete assignment with a consistency level higher than, equal
to or incomparable with the consistency level of any other complete assignment. Because
the order <s may be partial, the optimal solutions of a semiring CN may have different,
but incomparable consistency levels.

Solving a semiring CN is a difficult task. Since semiring-based constraints properly
generalize classical constraints, it is easy to prove that this task is NP-hard. If the compu-
tation of a ×s b and a +s b are time-polynomial in the size of their arguments (that is, a
and b), deciding if the consistency level of a network is higher than a given threshold is an
NP-complete task.

9.3.2 Valued Constraints

Valued constraints [100] are an alternative to semiring-based constraints. More precisely,
one can show that valued constraints can model exactly the same scenarios as totally or-
dered semiring-based constraints. In this Section, we define precisely valued constraints
and show their relation to semiring-based constraints.

Valued constraints rely on an algebraic structure called a valuation structure, related to
a monoid. A first difference between valuation structures and c-semirings is that elements
of a valuation structure represent violation degrees instead of satisfaction degrees, so the
ordering scale is reversed. The only truly significant difference is the use of a total order
4v to compare such degrees. For this reason, only one operator, written ⊕, is needed to
define how valuations combine. It plays the same role as ×s in c-semirings.

A valuation structure is a 5-tuple 〈E,⊕,4v,⊥,⊤〉 such that:

• E is a set, whose elements are called valuations, totally ordered by 4v , with a max-
imum element ⊤ ∈ E and a minimum element ⊥ ∈ E.

• E is closed under a binary operation ⊕ that satisfies:

– ∀a, b ∈ E, (a⊕ b) = (b⊕ a). (commutativity)

– ∀a, b, c ∈ E, (a⊕ (b⊕ c)) = ((a⊕ b)⊕ c). (associativity)

– ∀a, b, c ∈ E, (a 4v b)→
(

(a⊕ c) 4v (b⊕ c)
)

. (monotonicity)

290 9. Soft Constraints

– ∀a ∈ E, (a⊕⊥) = a. (neutral element)

– ∀a ∈ E, (a⊕⊤) = ⊤. (annihilator)

The monotonicity axiom, which is a refinement of the distributivity axiom of c-semiring
(see later), is easier to justify, since it simply says that one increased violation cannot yield
an overall smaller combined violation. Other axioms have exact replicates in c-semirings.

This structure can be described as a positive totally ordered commutative monoid, a
structure also known as a positive tomonoid [44]. When E is restricted to [0, 1], this is also
known in uncertainty reasoning as a triangular co-norm [61]. It is well known that this
axiom set is not minimal in the sense that the annihilator axiom is actually implied by the
rest ((⊥⊕⊤) = ⊤ (neutral), (⊥⊕⊤) 4v (a⊕⊤) (minimum). Since ⊤ is maximum, we
derive (a⊕⊤) = ⊤). A valuation structure S is idempotent iff ⊕ idempotent (a⊕ a = a).

A valued constraint network (valued CN) is otherwise defined as a semiring CN ex-
cept that a valuation structure replaces the c-semiring. We now show that valuation struc-
tures precisely capture the same structures as totally ordered c-semirings. To do this,
we show how to transform valuation structures in equivalent totally ordered c-semirings,
and vice-versa. Consider a valuation structure S = 〈E,⊕,4v,⊥,⊤〉. We define S′ =
〈E,+s,×s,0,1〉 by choosing 0 = ⊤, 1 = ⊥, ×s = ⊕ and by defining a +s b =
min4v

{a, b}. It is easy to show that S′ is a c-semiring. Then, any semiring CN de-
fined over S′ is a valued CN over S, and the two networks are equivalent, which means
that, given a complete assignment, they associate to it the same preference/violation level.
Conversely, consider a totally ordered c-semiring S = 〈E,+s,×s,0,1) and define S′ =
〈E,⊕,4v,⊥,⊤〉 where ⊥ = 1, ⊤ = 0, ⊕ = ×s and a 4v b iff a +s b = a. It is easy
to check that S′ is a valuation structure. Any valued CN over S′ is an equivalent semiring
CN over S. This shows that the assumption of a total order is sufficient (and obviously
necessary) to reduce semiring CNs to valued CNs (see [11] for more details).

9.3.3 Fundamental Operations on Soft Constraints

When processing soft constraints to find an optimal solution, there are two operations
which are repeatedly used. They are called combination and projection. Combination is
used, as the word says, to combine two or more constraints and obtain a new constraint
which gives all the information of the original ones. On the other hand, projection is used
to eliminate one or more variables from a constraint, obtaining a new constraint which
gives all the information of the original one on the remaining variables.

Consider a soft constraint network (soft CN) 〈X,D,C, S〉 and two soft constraints
fV and f ′V ′ . Then, their combination, fV ⋊⋉ f ′V ′ , is the constraint gV ∪V ′ where g(t) =
f(t[V]) ×s f ′(t[V ′]). Moreover, given a constraint fV and a set of variables W ⊆ V , its
projection over W , written fV [W], is the constraint gW defined as

g(t) = +s
t′|t′[W]=t

f(t′)

In particular, when V −W = {x}, the projection over W is written fV [−x], an operation
also called projecting out x from fV .

Notice that the combination of all the constraints of a network, ⋊⋉f∈C f , is a soft
constraint that associates to each complete assignment its preference level vals(t). The

P. Meseguer, F. Rossi, T. Schiex 291

projection of this constraint on the empty set of variables is then a constraint of zero arity
(⋊⋉f∈C f)[∅] such that it is precisely equal to the level of consistency of the network.

The notion of solution of a soft CN, which has been informally stated in earlier sections,
can now be defined formally using the above notions of projection and combination. A
solution of a soft CN N = 〈X,D,C, S〉 is a complete assignment t such that (⋊⋉f∈C

f)(t) 6= 0. An optimal solution t is a solution such that there is no other solution t′ that
satisfies val(t′) ≻s val(t).

As for classical CNs, the interactions between variables in a soft CN can be represented
by an hyper-graph whose vertices represent variables and where an hyper-edge connects
all the variables that appear in the scope of a constraint.

The micro-structure of a soft CN 〈X,D,C, S〉 is defined as an hyper-graph with one
vertex for every value of the domain of every variable in X . For every constraint fV ∈ C
and for every assignment t over V such that f(t) 6= 1, a labelled hyper-edge connects
all the vertices that represent the values in t. The label on the hyper-edge is f(t). For
simplicity, if f(t) = 0 (that is, if the tuple is completely forbidden), the label may be
omitted. If f(t) = 1 then the edge can be omitted. Note that this convention is inconsistent
with the classical CSP representation where an absence of edge represents a forbidden
tuple. When all constraints are binary, the micro-structure is a graph.

In semiring-based (or valued) constraints, ×s (or ⊕) is always monotonic. However,
when it is strictly monotonic (that is, ∀a, b, c ∈ E, (a ≻s c), (b 6= 0) then (a ×s b) ≻s
(c ×s b)), then S will be said to be strictly monotonic. If we consider two complete
assignments t and t′ such that for all fV ∈ C, fV (t) <s fV (t′) 6= 0 and for some
gW ∈ C, gW (t) ≻s gW (t′), strict monotonicity guarantees that t will be preferred to t′ i.e,
val(t) ≻s val(t′). This is therefore an attractive property from a rationality point of view.
Note that strict monotonicity is incompatible with idempotency as soon as |E| > 2 [100].

9.4 Relations among Soft Constraint Frameworks

In previous sections we have defined several frameworks for modelling soft constraints,
both generic and specific. Here we relate the two generic frameworks, and present the
specific frameworks as particular instances of the generic ones. We also analyze their
relations with other preference formalisms.

9.4.1 Comparison Between the Generic Frameworks

As noticed, semiring-based and valued constraints are very strictly related: results ob-
tained in the semiring framework apply to the valued framework, and results obtained in
the valued framework apply to the subclass of totally ordered semiring-based constraints.
Apart from this semantic difference, syntactically the only (possibly disturbing) difference
is that the semiring framework maximizes a satisfaction level while the valued framework
minimizes a violation level.

Actually, the two frameworks are so close that we will use either of them depending
on the context. Because of its generality, fundamental definitions and notions will be
written in the semiring framework. For algorithms, the valued formalism will be used for
simplicity and consistency with published papers. Generalization to the semiring level will
be mentioned.

292 9. Soft Constraints

Semiring ×s +s <s 0 1 ubs lbs
Valued ⊕ minv 4v ⊤ ⊥ lbv ubv

Table 9.1: Translation between valued and semiring-based notations. lbv and ubv stand for
possible lower bounds (resp., upper bounds) on violation degrees in the valued notation,
which correspond respectively to upper and lower bounds on satisfaction degrees in the
semiring notation.

To make the simple connection between the two framework very clear, remember that
in the semiring framework, satisfaction levels are maximized and handled using ×s, +s,
<s, 0, and 1. In the valued-based one, violation levels are minimized and handled using⊕,
minv , 4v , ⊤ and ⊥. Table 9.1 gives a simple reminder on how to pass from one notation
to the other one.

9.4.2 Specific Frameworks as Soft Constraint Networks

Table 9.2 outlines the choices of E, +s, and ×s needed to instantiate the semiring-based
and the valued constraint formalism to get the previously outlined specific frameworks.
For example, for fuzzy constraints, the membership degrees of fuzzy relations belong to
[0, 1] and are combined with the operator min, and an optimal assignment maximizes the
combined degree (i.e., the largest one is preferred). The most preferred degree is therefore
1 and the worst one is 0. The corresponding semiring structure thus has E = [0, 1],
×s = min, +s = max (which means <s=≥).

Since all the structures in this table are totally ordered, they also are instances of the
valued formalism. For example, fuzzy constraints are valued constraints which use the
same set E and⊕ = min (according to the usual order over [0, 1]). The maximum element
is ⊤ = 0 and the minimum element ⊥ = 1 which shows how scales are inverted in valued
and semiring constraints.

For k-weighted constraints, costs are elements of {0, . . . , k} (where k is the maximal
cost) and are combined through the bounded addition +k. A minimum cost is preferred.
The most preferred degree is therefore 0 and the worst one is k. The corresponding semir-
ing structure therefore has E = {0, k}, ×s = +k, +s = min (which means <s=≤).
The extreme elements are defined by 1 = 0 and 0 = k. In this case, the corresponding
valuation structure uses the same set E and⊕ = +k. The maximum element is⊤ = k and
the minimum element is ⊥ = 0.

Semiring E ×s +s <s 0 1

Classical {t, f} ∧ ∨ t <s f f t
Fuzzy [0, 1] min max ≥ 0 1

k-weighted {0, . . . , k} +k min ≤ k 0
Probabilistic [0, 1] xy max ≥ 1 0

Valued E ⊕ minv 4v ⊤ ⊥
Table 9.2: Different specific frameworks modelled as c-semirings.

P. Meseguer, F. Rossi, T. Schiex 293

As noted above, the semiring framework allows one also to model partially ordered
structures such as those induced by multi-criteria optimization. This follows directly from
the fact that the product of two c-semirings is a c-semiring [10]. Other partially ordered
structures are those based on on sets inclusion and intersection. For more examples and
details, see [9, 100, 10, 11]. Note that, although valued CNs are incapable of directly
dealing with multiple criteria, those can simply be handled by using multiple valuation
structures simultaneously.

9.4.3 Fuzzy and Classical Constraints

Fuzzy constraints are the only totally ordered semiring instance with a combination op-
erator (that is, min) which is idempotent [100]. This gives this framework a very strong
connection with classical constraints, since classical constraints can be seen as fuzzy con-
straints on a totally ordered structures with just two preference values. Consider a con-
junctive fuzzy CN P = 〈X,D,C〉 and the set of all the different membership degrees
used in all the fuzzy relations, defined as F =

⋃

RV ∈C(∪t∈Q

xj∈V Dj
µRV

(t)). P can be

decomposed into |F | different classical CNs. For each level α ∈ F , there is one classical
CN Pα = 〈X,D,Cα〉 with the same variables and domains as in P . For each fuzzy con-
straint f ∈ C, Cα has a corresponding hard constraint fα whose relation contains only the
assignments that satisfy f with a degree higher or equal to α. This is called the α-cut of
the fuzzy set [42].

With increasing values of α, each constraint in the classical CN Pα allows less and
less combinations of values. Let α∗ be the maximum α such that Pα is consistent. Then
it is easy to show that the solutions of Pα∗

are the optimal solutions of the given fuzzy
CN P . In practice, using a dichotomic search approach, the membership degree α∗ and an
associated optimal solution can easily be identified by solving O(log(|F |)) classical CNs.

This simple decomposition process can actually be used to extend most results on clas-
sical constraint processing (such as polynomial classes) to fuzzy constraint processing, as
long as these results rely on properties preserved by this slicing approach.

9.4.4 Relations with Other AI Preference Formalisms

Soft constraints offer a very general framework to express both required and preferred
properties in a combinatorial setting. However, they also make some assumptions. First,
that the soft constraint statements are quantitative, that is, refer to a scale of elements which
are ordered and which represent the preferences. Second, that it is reasonably easy to define
the operations to combine and to aggregate preference levels. Other preference formalisms
do not make these assumptions but pose different restrictions. Here we discuss the relation
between soft constraints and other AI formalisms developed with a similar aim.

Partial constraint satisfaction

Inside the constraint community itself, several alternative generic formalisms have been
proposed to combine constraint representation and preferences. The notion of partial con-
straint satisfaction [49, 48] was a pioneering attempt to formalize the notion of soft con-
straints. In order to find a solution for an over-constrained classical CN, partial constraint
satisfaction tries to identify another classical CN which is both consistent and as close as

294 9. Soft Constraints

possible to the original one. The space of networks considered to find this consistent net-
work is defined using constraint relaxations (which amount, for example, at forgetting con-
straints, or at simply adding extra authorized combinations to the original ones) together
with a specific metric, which is needed to identify a nearest network. The framework is
very general and not totally formalized so that it cannot be truly related to semiring-based
or valued constraints. It has been mainly illustrated by examples, among which a simplified
variant of weighted constraint satisfaction has received the most attention.

Hierarchical constraint logic programming

In the framework of constraint logic programming, the notion of constraint hierarchies
and HCLP (Hierarchical Constraint Logic Programming [13, 112]) also allows for soft
constraint expressions. Here, each constraint is assigned a level (also called a strength) in
a totally ordered hierarchy, among which the strongest level is used for hard constraints.

Once its variables are assigned, each constraint generates a cost (called an error) in
R+. A solution is an assignment to all the variables which satisfies all hard constraints
completely (that is, with error 0). An optimal solution is a solution which satisfies the
other constraints as much as possible.

To choose between possible solutions, a comparator is used to eliminate assignments
which are dominated. There is much freedom in the definition of comparators which again
makes the comparison with semiring-based or valued constraints difficult. The so-called
global comparators have been the most studied. In this case, at each level of the hierarchy,
the errors generated by all the constraints are combined using a specific combining func-
tion. Then, a lexicographic order on the sequence of combined errors for successive levels
in the hierarchy is used to order possible solutions.

For all existing proposals of combining functions (such as the sum of weighted errors,
the maximum of weighted errors, or the sum of square of weighted errors), it is possible
to show that HCLP reduces to valued and weighted CNs. However, the general definition
of combining functions does not forbid the use of functions that would definitely violate
fundamental semiring or valued constraint axioms (such as monotonicity).

MaxSAT

SAT (for SATisfiability) is the problem of satisfying a set of clauses in propositional logic.
Each clause is a disjunction of literals, and each literal is either a variable or a negated
variable. For example, a clause can be x ∨ not(y) ∨ not(z). Satisfying a clause means
giving values (either true or false) to its variables such that the clause has value true.
MAXSAT is the problem of maximizing the number of satisfied clauses.

Since the satisfiability problem in propositional logic (SAT) is a subcase of the con-
straint satisfaction problem using boolean variables and clauses, the problem MAXSAT [85]
is clearly a particular case of the weighted constraint satisfaction problem. See [31, 55] for
successful illustrations of this.

Bayesian nets

Outside the world of constraints, Bayesian networks [86] can also be considered as specific
soft constraint problems where the constraints are conditional probability tables (satisfying

P. Meseguer, F. Rossi, T. Schiex 295

extra properties) using [0, 1] as the semiring values, multiplication as×s and the usual total
ordering on [0, 1]. The Most Probable Explanation (MPE) task is then equivalent to looking
for an optimal solution on such problems.

CP-nets

Conditional preferences networks (CP-nets) [14] have been recently proposed to capture
preferences. Beyond the usual variables and domains of constraint problems, CP-nets use
conditional preferences tables to specify a total preference order on the domain of each
variable depending on the values of a set of other variables. Such a set can also be empty,
thus there are also variables whose preference order is not conditional on the values of
other variables.

The syntax to specify a preference order over variable y given the values of variables
x1, . . . , xn is usually written as the preference statement

x1 = v1, . . . , xn = vn : y = w1 ≻ . . . ≻ y = wk

where w1, . . . , wk are the elements in the domain of y. CP-nets are usually graphically
represented by a hyper-graph, where nodes represent variables and there is one hyper-arc
for each conditional preference statement. A CP-net is said to be acyclic if such a hyper-
graph does not have cycles.

Preference statements in CP-nets are interpreted under the so-called ceteris paribus
interpretation: if x1 = v1, . . . , xn = vn, all else being equal, we prefer y = wi to y = wj
if i < j. The change of value for y from wi to wj is then called a worsening flip.

A complete assignment t to the variables of a CP-net is preferred to another one, say t′,
if it is possible to obtain t′ from t via a sequence of worsening flips. An optimal solution is
then a complete assignment such that no other assignment is preferred to it. This semantics
produces in general a preorder over the set of all complete assignments.

Given an arbitrary CP-net (acyclic or not), we can generate a classical CN such that its
set of solutions is exactly the set of preferred solutions of the CP-net [41]. It is enough to
take, for each preference statement of the form x1 = v1, . . . , xn = vn : y = w1 ≻ . . . ≻
y = wk, the constraint x1 = v1, . . . , xn = vn ⇒ y = w1. This means that, if we are just
interested in the set of optimal solutions, classical constraints are at least as expressive as
CP-nets.

However, this is not true if we are interested in maintaining the solution ordering. In
this respect, CP-nets and soft constraints are incomparable since each can do something
that the other one cannot do. More precisely, dominance testing (that is, comparing two
complete assignments to decide which is preferred (if any)) is is an NP-complete task [40]
in CP-nets. On the contrary, it is polynomial in soft constraints (if we assume ×s and
+s to be polynomially computable). Thus, unless P=NP, it is not possible to generate in
polynomial time a soft CN which has the same solution ordering of a given CP-net. On the
other hand, given any soft CN, it is not always possible to generate a CP-net with the same
ordering. This depends on the fact that CP-nets cannot represent all possible preorders, but
just some of them. For example, no CP-net can generate a solution ordering where two
solutions which differ for just one flip are not ordered. On the other hand, soft CNs can
represent any partial order over solutions. Thus, when we are interested in the solution
ordering, CP-nets and soft constraints are incomparable. The same holds also when CP-
nets are augmented with a set of hard constraints.

296 9. Soft Constraints

9.4.5 Relationship with Constraint Optimization

In most implementations of classical constraint systems (see Chapter 12, 13 and 14), there
are often primitives to optimize a criterion represented by one variable whose domain is
totally ordered (typically an integer domain variable). For example, we may have a variable
x which is linked to other variables by a constraint of the form x = a1.x1 + . . .+ an.xn,
representing an objective function to be optimized.

Since the central task in soft constraints is to find an assignment that optimizes a spe-
cific criterion, it is natural to consider possible formulations of soft constraint problems as
classical constraint problems with a specific variable representing the optimized criterion.
This can indeed be achieved.

Consider a totally ordered soft CN 〈X,D,C, S〉. We now generate a classical CN
which has the variables in X plus one new variable xV for each constraint fV ∈ C.
These extra variables have domain E (that is, the set of possible semiring values). Each
original constraint fV ∈ C is then transformed into a classical constraint cV ′ whose scope
is V ′ = V ∪ {xV }. The set of allowed tuples of cV ′ is obtained by taking every tuple
t of the Cartesian product of the domains of the variables in V extended to V ′ with the
semiring value fV (t).

Finally, one extra variable xc is introduced to represent the criterion. This variable is
connected to all the xV variables using one constraint which states that

∏

s xV = xc where
∏

s uses the semiring operator ×s. It is easy to check that for any assignment t of X , the
only possible value for xc is the semiring value of t. Therefore, maximizing the value of
xc leads to an optimal solution. This transformation has been first proposed in a simplified
form by [87]. It is also used to model MAXSAT problems as pseudo-Boolean problems
in [31].

Extra attention should be taken in practice to avoid infinite domains for the variables
xV . It is usually easy to bound them. As such, the transformation requires the addition
of extra variables and the use of constraints of increased arities which may lead to limited
efficiency (see Section 9.6.2 and [74, 31] for example) and strongly modifies the problem
structure.

Conversely, any classical CN with an optimization criterion can obviously be repre-
sented as a soft CN: hard constraints are kept and the criterion can be transformed in a soft
constraint which involves all the variables influencing the criterion.

9.4.6 Some Representational Issues

In the soft constraint models presented here, we assume that constraints are cost functions
mapping tuples of domain values to semiring values. However, in actual instances, the
granularity of preferences may be coarser. It is easy to see that one may decide to associate
semiring values also to other kinds of objects in a constraint problem:

• Constraints: a fixed value is used when the constraint is violated, otherwise 1 is
used. This scheme has been initially used in [100] for valued CNs. It is shown to be
as expressive as the tuple-based scheme in [11].

• Values: only unary soft constraints are present. As shown in [66], this is surprisingly
as expressive as the tuple-based scheme (by going to the dual representation) using
only hard binary constraints.

P. Meseguer, F. Rossi, T. Schiex 297

• Variables: in this case, the value represents how much we care that the variable is
assigned. This can be simulated using soft constraints by adding one extra value in
the variable domain, which is compatible with all values of all other variables. A
unary soft constraint is then used to associate a semiring level to the value.

9.5 Search

For easiness of presentation, in this Section we restrict ourselves to valued constraints, that
is, totally ordered c-semiring structures. At the end, we will discuss how the presented
algorithms can be extended to partially ordered c-semirings.

As in the classical case, perhaps the most direct way to solve a soft CN is searching in
its state space, exploring the set of all possible assignments. Since an optimal solution is an
assignment that minimizes the violation degree (or equivalently, maximizes the satisfaction
degree), solving optimally a soft CN is an optimization problem, thus harder than solving
classical CNs.

As usual, we differentiate between two main families of search strategies: systematic
search and local search. Systematic search visits each state that could be a solution, or skips
only states that are shown to be dominated by others, so it is always able to find an optimal
solution. Local search does not guarantee this behavior. When it terminates, after having
exhausted resources (such as time available or a limit number of iterations), it reports the
best solution found so far, but there is no guarantee that it is an optimal solution. To prove
optimality, systematic algorithms are required, at the extra cost of longer running times
with respect to local search. Systematic search algorithms often scale worse with problem
size than local search algorithms. Nevertheless, algorithms from both families can nicely
cooperate to solve soft CNs, as we will see in the following.

9.5.1 Systematic Search: Branch and Bound

The state space of the problem is explored as a tree, called the search tree, defined as fol-
lows. A node represents a subproblem, defined by the subset of unassigned variables, its
domains and constraints not completely assigned. The root represents the whole problem,
while leaves represent the empty problem. Node successors are produced by selecting
an unassigned variable and generating as many successors as the number of values in the
variable domain. Each arc connecting a node with its successors is labelled with one of
those values, meaning that this value is assigned to the selected variable. A node successor
contains a subproblem of the problem in its parent node, which is obtained by removing
the variable just assigned. Each path in the tree (from the root to a node) represents an
assignment. Since each node has a unique path from the root, there is a one-to-one cor-
respondence between tree nodes and assignments. For this reason, we do not differentiate
between them in the following.

Depth-first branch and bound (DFBB) performs a depth-first traversal of the search
tree. It keeps two bounds, lb and ub. The lower bound at node t, lb(t), is an underestimation
of the violation degree of any complete assignment below t. The upper bound ub is the
maximum violation degree that we are willing to accept. When ub 4v lb(t), the subtree
rooted at t can be pruned because it contains no solution with violation degree lower than
ub. If it finds a complete assignment with violation degree lower than ub, this violation

298 9. Soft Constraints

degree becomes the new ub; after exhausting the tree, DFBB returns the current ub. Its
time complexity is O(dn), while its space complexity is O(nd).

Algorithm 9.1: Depth-first branch and bound

Function DFBB(t : tuple, ub : level) : level
if (|t| = n) then return lb(t);
else

let xi be an unassigned variable;
foreach a ∈ Di do

if (lb(t ∪ {(xi, a)}) ≺v ub) then
ub← min(ub,DFBB(t ∪ {(xi, a)}, ub));

return ub;

The efficiency of DFBB depends largely on its pruning capacity, that relies on the
quality of its bounds: the higher lb and the lower ub, the better DFBB performs, since it
does more pruning, exploring a smaller part of the search tree. Many efforts have been
made to improve (that is, to increase) the lower bound.

Given a node, we define P and F as the sets of assigned and unassigned variables at
that node. Regarding constraints, CP (resp., CPF , CF) is the set of of constraints whose
variables are completely assigned (resp., partially assigned, unassigned) at that node. Ob-
viously, at every node we have X = P ∪ F and C = CP ∪ CPF ∪ CF .

In the context of k-weighted binary constraints, lower bounds can be computed using
bounded sum and by setting k = ub. DFBB performs the bounded sum, by taking the
minimum between ub and the recursive call DFBB. The simplest lower bound is

lb1(t) =
∑

fV ∈CP

fV (t[V])

where t is the assignment tuple corresponding to the current node. A more sophisticated
lower bound, that we call lb2, includes contributions from constraints in CPF . It has
been implemented in the partial forward checking (PFC) algorithm [48]. An inconsistency
count, icja, is the weight contribution from CPF that will be added if the current partial
solution is extended with (xj , a). A lookahead phase (similar to the lookahead done by for-
ward checking in classical constraints, adapted to the soft case), performs the propagation
from the current assignment to the domains of unassigned variables. The formal definition
of lb2 is

lb2(t) =
∑

fV ∈CP

fV (t[V]) +
∑

xj∈F

min
a
icja

Another lower bound, that we call lb3, includes contributions from constraints in CF . As-
suming a static variable ordering, a directed arc inconsistency count, dacja, is the weight
contribution from CF that will be added if the current partial solution is extended to a
complete one including (xj , a). This contribution is computed from variables that are arc
inconsistent (see Chapter 3) with (xj , a) and appear after xj in the ordering. lb3 was
first implemented using these counts [110], that were nicely combined with inconsistency
counts in [67], producing the expression

lb3(t) =
∑

fV ∈CP

fV (t[V]) +
∑

xj∈F

min
a

(icja + dacja)

P. Meseguer, F. Rossi, T. Schiex 299

Since this implementation (that assumed binary constraints) was computing lb from sum-
mations on unassigned variables, constraints had to be directed to avoid counting more
than once the same constraint. This was reflected in a static variable ordering. This limi-
tation was relaxed in a more sophisticated implementation based on the directed constraint
graph on unassigned variables GF , able to reverse its directed arcs. The new expression
for this lower bound is

lb3(t) =
∑

fV ∈CP

fV (t[V]) +
∑

xj∈F

min
a

(icja + dacja(G
F))

The whole algorithm, called PFC-MRDAC [71], showed a substantial improvement in
performance with respect to previous approaches. A range-based version of this algorithm,
suitable for problems with large domains, appeared in [89].

An alternative lower bound, that we call lb4, is presented within the russian doll search
(RDS) algorithm [109]. Imagine that variables are assigned by following a static order
x1, x2, . . . , xn and assume that they have been assigned up to xi−1. Subproblem i is then
defined by variables xi, . . . , xn and constraints among them. A lower bound for the current
node is

lb4(t) =
∑

fV ∈CP

fV (t[V]) +
∑

xj∈F

min
a
icja + min

t′

∑

fV ∈CF

fV (t′[V]) t′ ∈
∏

xj∈F

Dj

where the third term (usually called rdsi) is the optimal cost of solving subproblem i. In
RDS, one search is replaced by n searches on nested subproblems, each solving optimally
subproblems n, n − 1, . . . , 1. Solving subproblem j generates rdsj ; each rdsj is stored
and later reused when solving subproblem i < j to compute lower bounds at different tree
levels: rdsi+1 when assigning xi, rdsi+2 when assigning xi+1, and so on.

Since two consecutive searches of RDS differ in one variable only, the specialized
RDS approach (SRDS) [79], computes the optimal cost of the new subproblem for each
value of the new variable. While RDS performs n independent searches, SRDS increases
this number up to n d. SRDS is able to compute a higher lower bound than RDS (the
contribution of solving subproblem i with value a for the new variable, rdsia, can be
combined with icia and take the minimum of them). Despite of performing more searches,
SRDS is often superior to RDS. A further extension was presented in [81].

Most lower bound implementations are based on counters associated with variables
and they aggregate two elements: the global contribution of assigned variables, and indi-
vidual contributions of unassigned variables. In addition, a third element can be included:
contributions of disjoint subset of unassigned variables, not recorded in the individual con-
tributions. This new form of lower bound computation was called partition-based [68]. A
related approach [90] proposed the conflict-set based lower bound.

Most of the mentioned implementations assumed binary constraints. Their generaliza-
tion to non-binary constraints were presented in [80] and [90]. These lower bounds can
be easily generalized by replacing k-bounded sum +k by the generic ⊕ operator of val-
ued constraints. These lower bounds are presented for pedagogical reasons, since most are
subsumed by lower bounds based on soft local consistency, presented in Section 9.7.2.

300 9. Soft Constraints

9.5.2 Local Search

Local search algorithms perform generic optimization of scalar functions (see Chapter 5).
Therefore, any local search algorithm is suitable to optimize the function⊕fV ∈CfV (t[V]),
where t is a complete assignment, providing that t surpasses the consistency level consid-
ered as unacceptable (if any). Several empirical investigations about the performance of
different local search methods on over-constrained problems have been done. As an exam-
ple, we mention the comparison between tabu search and a hill-climbing strategy based on
min-conflicts plus random walk, that appears in [51].

When solving constraint networks, local search strategies are often enhanced with some
kind of constraint propagation, to discard states that cannot be solutions and to rank states
that still are solution candidates. This idea has been applied to explore efficiently large
neighborhoods in local search [75]. A similar approach explores neighborhoods of variable
size, using limited discrepancy search [76].

In combination with DFBB, local search can be of great help for computing the initial
upper bound. As preprocessing, before DFBB starts, any local search method executed for
a limited period of time may provide a solution. There is no guarantee that it will be an
optimal solution, but its level is an upper bound of the level of an optimal one. The DFBB
algorithm can take this upper bound as its initial ub value. A good ub improves DFBB
performance, since it will allow pruning from earlier levels of the search tree.

Stochastic search is other strategy that has also been used for different applications.
They are based on iterative sampling, sometimes enhanced with the bias of one [15, 17] or
several heuristics [18].

9.5.3 Search in Partially Ordered Semirings

We restricted search strategies to totally ordered c-semirings. The reason for this limitation
is easiness of presentation of the search algorithms. On a totally ordered c-semiring, solv-
ing soft CNs becomes a scalar optimization task. An optimal solution is a single assign-
ment with an optimal level, and there is no other complete assignment with a better level,
since all levels are comparable. In a partially ordered c-semiring, several non-dominated
solutions with non-comparable levels may exist. This means that search algorithms have
to keep the levels of all non-dominated solutions found, and use them to prune the search
tree below the current partial solution. In other words, solving soft constraint requires
algorithms which are, although conceptually related, more complex to present.

There exist approaches that deal with non-comparable solutions. For example, pre-
ference-based search is a general technique to speed up search by exploiting preferences
over search decisions [56]. Such a technique can be extended also to deal with multiple
optimization criteria. In [57], preferences are expressed over various optimization criteria,
and the search strategy looks for solutions which satisfy at best the most important criteria
first, obtaining both extreme and balanced, or Pareto-optimal, solutions.

9.6 Inference

For simplicity, in this Section, we restrict ourselves to valued CNs, that is totally ordered
c-semiring structures.

P. Meseguer, F. Rossi, T. Schiex 301

As an alternative to search strategies, inference-based algorithms can also solve soft
CNs. Before considering inference in soft constraints, let us first revisit inference in the
classical case.

In a classical CN P , a constraint c is said to be a consequence of P (or implied by P)
iff any solution of P satisfies c. It is also said to be redundant because c can be added to
P without changing its set of solutions. Inference in P consists in computing and adding
implied constraints, producing a network which is more explicit than P and hopefully eas-
ier to solve. If this process is always capable of producing the zero arity implied constraint
(⋊⋉f∈C f)[∅] which gives the level of consistency of the network, then inference is said
to be complete. Otherwise, inference is incomplete and it has to be complemented with
search. For classical CN, adaptive consistency enforcing is complete while local consis-
tency (arc or path consistency) enforcing is incomplete.

Inference in soft constraints keeps the same basic idea: adding constraints that will
make the problem more explicit without changing the set of solutions nor their levels.
However, with soft constraints, the addition of a new constraint to an existing network will
typically change the distribution of levels on solutions. For this reason, inference becomes
more complex than simply adding implied constraints. One cannot speak of redundant
constraints and we prefer the “implied” terminology.

To properly define implication between soft constraints, we first define an ordering.
The main idea is that one soft constraint is tighter or smaller than another one if its require-
ments are stronger than the ones of the other constraint.

Consider two soft constraints fV and f ′W . We define the constraint ordering ⊑ as the
following partial order: fV ⊑ f ′W if and only if, for all tuples t over V ∪W , f ′W (t[W]) 4v

fV (t[V]). If fV ⊑ f ′W we say that f ′W is implied by fV . Notice that as expected, any cost
function with constant cost ⊤ (representing inconsistency) implies any other constraint.
When V = W , if f ⊑ f ′ and f ′ ⊑ f , then f = f ′. This order between constraints
can be extended to entire networks. For two soft CNs N = 〈X,D,C, S〉 and N ′ =
〈X ′, D′, C ′, S〉, we say that N ⊑V N ′ if (⋊⋉f∈C f)[V] ⊑ (⋊⋉f∈C′ f)[V]. If N ⊑V N ′

and N ′ ⊑V N , we say that N and N ′ are equivalent with respect to V and we write
N ≡V N ′. If V = X = X ′ then we just say that N and N ′ are equivalent.

When the ⊕ operator is idempotent, any arbitrary implied constraint can be added
to a soft CN, yielding an equivalent network. However, if there is a level α that violates
idempotency (such thatα⊕α 6= α), the new network will not be equivalent. For this reason,
three different approaches to inference in soft constraint networks can be considered:

1. When the operator⊕ is idempotent, it is possible, as in classical CNs, to saturate the
network by directly adding implied constraints to it. The problem remains equivalent
and increasingly explicit.

2. In any case, it is possible to remove the constraints which have been used to produce
the implied constraint and to put the implied constraint instead. Under simple condi-
tions, the problem will have the same optimum as before and will also be simplified.

3. It may be possible to add the implied constraint directly to the problem and then to
extract it from the set of constraints which have been used to produce the implied
constraint. This requires additional properties from the ⊕ operator, but it produces
an equivalent problem and not simply one with the same optimum as in the previous
case.

302 9. Soft Constraints

In the Section 9.6.1, we present bucket elimination and cluster tree elimination, two
fundamental approaches to perform complete inference, by using the approach 2 to com-
pute the level of a soft CN.

In the Section 9.6.2, we detail three approaches for incomplete inference. The first one
(mini-buckets) uses the same approach as above, but fails to satisfy a simple condition on
the implied constraint and therefore produces problems with a modified optimum. The
next one uses the approach 1 to enforce local consistency, but is restricted to idempotent
⊕, and the last one uses the approach 3 to enforce local consistency on a large subclass of
soft CNs. These two last approaches produce equivalent problems.

9.6.1 Complete Inference

The two algorithms we are going to detail now are direct operational extensions of existing
algorithms in classical CNs: it suffices to use our extended definitions of combination and
projection in the original algorithms (see Chapter 7) to obtain the extended algorithms,
which work for arbitrary c-semirings. This class of algorithms can actually be applied to
an even larger class of problems [102].

Bucket elimination

Bucket elimination (BE) [36, 34] is a complete inference algorithm which is able to com-
pute all optimal solutions of a soft CN (as opposed to one optimal solution, as usually
done by search strategies). It is basically the extension of the adaptive consistency (ADC)
algorithm [38] to the soft case but it was already introduced in 1972 as variable elimina-
tion for cost function optimization in [7]. Before describing it, we have to introduce some
concepts.

Given a soft CN, a corresponding ordered constraint graph G(o) is the primal con-
straint graph plus an ordering o = x1, x2, . . . , xn of its variables. The induced graph
G∗(o) is the graph obtained by processing the nodes of G(o) from the last one to the first
one: when processing xi, all its neighbors that precede it in the ordering are connected
together, forming a clique. The induced width of the ordering, w∗(o), is the maximum
number of preceding neighbors over all the nodes of the induced graph. The induced width
of the graph w∗ is the minimum induced width among the possible orderings. The bucket
Bi of variable xi is the set of constraints having xi as the highest indexed variable in their
scope.

BE works as follows. IfP is a soft CN with n variables, the idea is to select one variable
xi and remove it from P , producing a soft CN P ′ with the same optimal solutions as P , but
with X − {xi} variables. This step is called the elimination of variable xi. Observe that
P ′ has one less variable than P . Applying the same strategy n times, we obtain a soft CN
without variables, that produces the level of the optimal solution. A polynomial procedure
allows us to recover one or all optimal solutions of P .

To eliminate variable xi, we have to replace all constraints that mention xi by a new
constraint that summarizes the effect of these constraints, but that does not include xi.
This can be done by combining all constraints mentioning xi and projecting out xi from
the resulting constraint. If variables are processed along the ordering o, from the last to
the first one, the set of all constraints mentioning xi is precisely the bucket Bi. The new

P. Meseguer, F. Rossi, T. Schiex 303

constraint that summarizes the effect of Bi in the network, but it does not mention xi is

gi = (⋊⋉
f∈Bi

f)[−xi]

where [−xi] means projecting over the scope of the new constraint minus xi. The new soft
CN is obtained from the previous one by removing xi and replacing Bi with gi. The level
of the optimal solution of the new soft CN is equal to the level of the optimal solution of
the previous one because, by construction, gi compensates for the absence of Bi. We have
obtained a new soft CN, with the same optimal solutions as the original one, but with one
less variable.

BE works in two phases. First, it eliminates all variables one by one, from the last one
to the first one in the ordering o. When eliminating the last variable, the level of the final
zero arity constraint obtained is the level of the optimal solution. In the second phase, BE
constructs an optimal solution by assigning variables from the first one to the last one in the
ordering o, and by reusing the intermediate constraints built to replace buckets. Variable xi
is assigned the value that has the best extension of the current partial solution x1, . . . , xi−1

with respect to Bi. The solution obtained in this way is an optimal one, with the level
computed in the first phase.

BE has a time complexity of O(n(2d)w
∗+1) and a space complexity of O(ndw

∗

) [34].
Both are exponential in w∗, the induced width of the constraint graph, which essentially
measures the graph cyclicity. The high memory cost, that comes from the high arity of
intermediate constraints gi that have to be stored as tables in memory, is the main drawback
of BE in practice. When the arity of the gi constraints remains reasonable, BE can perform
very well [73]. Different approaches have been made to enhance the applicability of BE,
by decreasing its memory requirements. The interested reader can consult [96, 97].

Algorithm 9.2: Bucket Elimination

Function BE((X : var set, D : dom set, C : constr set)) : level
foreach i = n, . . . , 1 do

Bi ← {fV ∈ C|xi ∈ V };
gi ← (⋊⋉fV ∈Bi

c)[−xi];
remove xi from X , replace Bi by gi in C;

foreach i = 1, . . . , n do
xi ← Di value that is the best extension of x1, . . . , xi with respect to Bi;

return g1;

Cluster tree elimination

Let us consider the dual graph of a soft constraint network, where nodes represent con-
straints, and two nodes are connected by an edge if the corresponding constraints share
some variable. In such a dual graph, we are interested in clustering the nodes in a way that
makes the resulting structure a tree.

A tree decomposition of a soft CN 〈X,D,C, S〉 is a triplet 〈T, χ, ψ〉, where T = 〈V,E〉
is a tree. χ and ψ are labelling functions which associate with each vertex v ∈ V two sets,
χ(v) ⊆ X and ψ(v) ⊆ C that satisfy the following conditions:

304 9. Soft Constraints

1. For each constraint fW ∈ C, there is exactly one vertex v ∈ V such that fW ∈ ψ(v).
In addition, W ⊆ χ(v).

2. For each variable x ∈ X , the set {v ∈ V |x ∈ χ(v)} induces a connected subtree of
T .

Tree decompositions for classical CNs often relax condition (1) by requiring that any con-
straint f ∈ C must appear in at least one vertex v ∈ V of the decomposition [34]. This is
because in classical CNs a constraint can be repeated without causing any trouble.

The tree width of a tree decomposition is the maximum number of variables in a vertex
minus one tw = maxv∈V |χ(v)| − 1. If (u, v) is an edge of a tree decomposition, the sep-
arator of u and v is sep(u, v) = χ(u)∩χ(v), that is, the set of common variables between
the two vertices. We will call s the maximum separator size s = max(u,v)∈E |sep(u, v)|.
The tree-width tw∗ of a graph is the minimum tree-width over all possible tree decompo-
sitions. See Figure 9.7 on page 319 for an example of tree decomposition.

Cluster-tree elimination (CTE) [37, 34] is a generic algorithm able to solve classical
or soft CNs. For the soft case, it takes as input a soft CN plus a tree decomposition, and it
computes for every node u its minimal subproblem, that is, the subproblem whose optimal
solutions are the same as the optimal solutions of the whole problem projected on χ(u).

CTE works by sending messages along edges of the tree decomposition. Given a tree
decomposition 〈〈V,E〉, χ, ψ〉, every edge (u, v) ∈ E has associated two messages: m(u,v)

is the message from u to v, and m(v,u) the one from v to u. Messagem(u,v) is a constraint
computed by joining all constraints in ψ(u) with all incoming CTE messages except from
v, projected over the separator sep(u, v). When all incoming CTE messages have arrived
to u, except the one coming from v, m(u,v) is computed in u and sent to v.

Algorithm 9.3: Cluster tree elimination

Procedure CTE(〈〈V,E〉, χ, ψ〉 : tree decom. of 〈X,D,C〉 soft CN)
foreach (u, v) ∈ E s.t. all m(i,u), i 6= v have arrived do

B ← ψ(u) ∪ {m(i,u) | (i, u) ∈ E, i 6= v};
m(u,v) ← (⋊⋉f∈B f)[sep(u, v)];
send m(u,v);

The complexity of CTE is O(deg(r + N)dtw) in time and O(Nds) in space, where
deg is the maximum degree of T , r is the number of constraints, N is the number of nodes
in the tree decomposition, tw is the tree-width and s is the separator size.

There is a close relation between algorithms BE and CTE because induced width w∗

and tree-width tw∗ exploit the same graph properties (and we have w∗ = tw∗). The
way BE processes buckets along the ordering o defines a bucket tree that is also a tree
decomposition. In fact, there is a node vi for each variable xi, the parent of node vi is
the node vj iff xj is the closest preceding neighbor of xi in the induced graph G∗(o);
χ(vi) contains xi and every preceding neighbor of xi in G∗(o); ψ(vi) is equal to the
bucket Bi. Therefore, CTE can be applied to the bucket tree. In this setting, it is called
the BTE algorithm, which can be seen as a two-phase algorithm. The first phase, that is
equivalent to BE, computes messages from leaves to the root in the bucket tree. The second
phase computes messages from root to leaves, producing the constraints for the minimal
subproblem at each node [34].

P. Meseguer, F. Rossi, T. Schiex 305

9.6.2 Incomplete Inference

Because complete inference can be extremely time and space intensive, it is often inter-
esting to have simpler processes able of producing just a lower bound on the network
consistency level. Such a lower bound can be immediately useful in branch and bound
algorithms.

Mini-buckets

BE has to compute and store intermediate constraints gi that can be of high arity, causing
a high memory consumption. If we cannot afford such amount of memory, it is always
possible to limit the arity of intermediate constraints, at the cost of losing optimality with
respect to the returned level and the solution found.

This approach is called mini-bucket elimination (MBE(z)) [35], and it is an approxi-
mation scheme for BE. When eliminating variable xi, instead of having a single bucket Bi
as BE has, MBE(z) partitions Bi into subsets Bi1 , . . . , Bim , such that the number of vari-
ables appearing in each Bij is bounded by z. Each Bij is called a mini-bucket. Parameter
z limits the arity of the intermediate constraints which are

gij ← (⋊⋉f∈Bij
f)[−xi]

These constraints replace mini-buckets Bi1 , . . . , Bim . Since

m
⊕

j=1

(

(⋊⋉f∈Bij
f)[−xi]

)

4v (⋊⋉f∈Bi
f)[−xi]

MBE(z) computes a lower bound of the level of the optimal solution. Obviously, higher
values of z increase the precision of mini-buckets, at the cost of using more memory. Both
time and space complexity of MBE(z) are exponential in the z parameter.

The same idea can be applied to CTE, producing the mini-cluster tree elimination,
MCTE(z), that is an approximation schema for the CTE algorithm. When the number of
variables in a cluster is too high, it is not possible to compute a single message that captures
the joint effect of all constraints of the cluster plus all incoming messages, due to memory
limitations. In this case, MCTE(z) computes a lower bound of the problem by using z to
limit the arity of the constraints sent in the messages.

An MCTE(z) message, noted M(u,v), is a set of constraints that approximate the cor-
responding CTE message m(u,v). It is computed as m(u,v), but instead of joining all
constraints of set B, it computes a partition P = {B1, B2, . . . , Bp} of B such that the join
of constraints in every Bi does not exceed arity z. We compute M(u,v) from P by joining
all constraints in every set of the partition, projected on the set sep(u, v).

Soft local consistency

Local consistency is an essential component of any constraint solver. A local consistency is
a local property with an associated enforcing (often polynomial time) algorithm that trans-
forms a classical CN into a unique and equivalent network that satisfies the property. If this
equivalent network is empty, then the initial network is obviously inconsistent, allowing to
detect some inconsistencies very efficiently.

306 9. Soft Constraints

A similar motivation exists for extending local consistency to soft constraints: the hope
that an equivalent locally consistent network may provide a better lower bound on the net-
work consistency level. This extension has been an incremental process and some problems
are still open nowadays. The first results were obtained on fuzzy CNs [92, 104, 99]. We
only consider extensions of node and arc consistency, but most results have been extended
to the general notion of k-consistency [25].

For simplicity we consider binary valued CNs 〈X,D,C, S〉, although most results have
been originally presented for arbitrary arities. A binary constraint involving xi and xj is
denoted fij . Without loss of generality, we assume that networks contain one unary con-
straint denoted fi for each variable xi ∈ X , representing its domain, and one special zero-
arity constraint f∅ with a constant value. Notice that f∅ is included in the computation of
the consistency level of any assignment.

In such a network, a naive lower bound on the level of the network is the value of f∅.
Local consistency enforcing will improve this naive bound.

A first operational approach. An operational extension of local consistencies for clas-
sical CNs can be directly obtained by replacing the ⋊⋉, ⊂, and projection operators with
their soft extensions (combination, constraint ordering, and projection, see 9.3.3) [9, 10].

In a classical CN (X,D,C), a variable xi is arc consistent with respect to constraint
Rij when Di ⊂ (Rij ⋊⋉ Dj)[xi]. Generalized by using soft constraint operators, this gives
a first definition of arc consistency.

Given a soft idempotent CN P = 〈X,D,C, S〉, a variable xi ∈ X is arc consistent
with respect to a constraint fij iff for every value a ∈ Di, fi ⊑ (fij ⋊⋉ fj)[xi]. The
variable xi is node consistent when ∃a ∈ Di such that fi(a) 6= ⊤. P is arc consistent when
every variable is node consistent and arc consistent with respect to all binary constraints
involving it.

The corresponding enforcing algorithm considers all variables xi that violate the arc
consistency condition (fi 6⊑ (fij ⋊⋉ fj)[xi]) and enforces fi ← fi ⋊⋉ ((fij ⋊⋉ fj)[xi])
(as the Revise procedure does in the classical case). Notice that this can only increase the
violation degree of values in fi. This is done iteratively until quiescence in Algorithm 9.4.

Algorithm 9.4: Enforcing arc consistency in soft idempotent constraint networks.
Q← true;
while Q do

Q← false;
foreach xi ∈ X do

foreach fij ∈ C do
f ← fi ⋊⋉ (fij ⋊⋉ fj)[xi];
if f 6= fi then fi ← f ; Q← true;

This definition and its enforcing procedure were initially formulated for arbitrary k-
consistency in semiring CNs in [9, 10, 12] with the following result: if ⊕ is idempotent,
then the algorithm terminates and yields a unique equivalent arc consistent soft CN.

To see that idempotency is required for equivalence, consider a non-idempotent val-
uation structure. There exists α ∈ E such that α ⊕ α 6= α. Consider a soft CN with

P. Meseguer, F. Rossi, T. Schiex 307

two variables x1 and x2, and two values a, b in each domain with the micro-structure il-
lustrated in Figure 9.1. A single binary constraint f12 assigns level α to the pairs (a, a)
and (b, b) and level α ⊕ α (denoted 2α) to the pair (b, a). After one iteration of the algo-
rithm, (f12 ⋊⋉ f2)[x1] is equal to α on x1 = b. When f1 is modified accordingly, we get
the network on the right where the pair (b, b) has now level f1(b) ⊕ f12(b, b) ⊕ f2(b) =
α⊕ α⊕⊥ = α⊕ α 6= α by assumption. Equivalence is lost.

equivalence preserving

x1 x2

α

b

a

b

a
α

equivalence

broken

equivalence
preserving

x1 x2

b

a

b

a

x1 x2

α

b

a

b

a
2α

α

α

x1 x2

α

a

b

a

b

2α

α α

α

α

Figure 9.1: A non-idempotent network and three derived networks. On the right, the result
of one iteration of Algorithm 9.4. Below, how equivalence can be preserved.

Beyond idempotent operators

To see how equivalence can be preserved, consider the network on the lower left of Fig-
ure 9.1: the implicit cost of α for the value b of x1 has been explicited but simultaneously,
we have modified f12 by “subtracting” one α from the levels of the pairs (b, a) and (b, b).
The network obtained is equivalent to the original one and more explicit since x1 carries
some previously implicit information. The same process can be applied to value a of x2 to
get the network in the right hand side of Figure 9.1 which is equivalent to the original one.

The extra mechanism needed to perform such operations is the ability to “extract”
some violation degree from any larger violation degree. This ability was used by [63] for
frequency assignment problems and introduced by [98] for valued CNs.

In a valuation structure S = 〈E,⊕,4v,⊥,⊤〉, if α, β ∈ E, α 4v β and ∃γ ∈ E such
that α⊕ γ = β, then γ is known as a difference between β and α. The valuation structure
S is fair if for any pair of valuations α, β ∈ E, with α 4v β, there exists a maximum
difference of β and α. This unique maximum difference of β and α is denoted by β ⊖ α.

Several examples of fair and unfair structures are given in [26] and fair structures are
totally analyzed in [25]. All the usual instances of valuation structures are fair, or can be
transformed into a fair equivalent structure. For example, in fuzzy CNs, where ⊕ = max,
the difference is also max since if β 4v α, then max(α,max(α, β)) = β. In k-weighted
CNs, where⊕ is the bounded addition, defined by α+k β = min(α+β, k), the difference
is −k is defined by:

α−k β =

{

α− β : α 6= k
k : α = k

308 9. Soft Constraints

This difference allows to define a new operation on cost functions called extraction.
Let fV and f ′W be two cost functions such that fV ⊑ f ′W , the extraction of f ′W from fV
is the cost function fV ⊖ f ′W with scope V ∪W such that for any tuple t over (V ∪W),
(fV ⊖ f ′W)(t) = fV (t[V])⊖ f ′W (t[W]).

Note that f ′W ⋊⋉ (fV ⊖ f ′W) is equivalent to fV . It becomes possible to add an implied
constraint f ′W to a network and then to extract it from these to preserve equivalence. Using
this approach, arc consistency has been extended to fair valued structures in [98, 26] and
k-consistency in [25]. The fundamental mechanism of these local consistencies is to first
build an implied constraint by combining all the constraints of a subnetwork and by project-
ing the resulting cost function. The projection is then added to the network and extracted
from the constraint combination. Several existing local consistencies can be captured by
the following notion of inference rule that preserves equivalence.

A (K,Y)-equivalence-preserving inference rule (EPI rule) is defined by a set of con-
straints K ⊂ C and a set of variables Y ⊂ X . The application of a (K,Y)-EPI rule
consists of:

1. Removing K from the network.

2. Adding (⋊⋉ K)[Y] and (⋊⋉ K)⊖ (⋊⋉ K)[Y] to the network.

Once such a rule is applied, the implicit constraint (⋊⋉ K)[Y] is explicit and equivalence is
preserved: cost has been moved from K to the scope Y . In the following, we define local
consistencies as sets of EPI rules. Similarly to what Algorithm 9.4 does for idempotent
structures, enforcing such a local consistency is done by the repeated application of all
the EPI rules in the set until no change occurs: the network is said to satisfy the local
consistency property.1

To illustrate this with an example, we use weighted binary CNs. Beyond its practical
usefulness, [26, 25] have shown that every fair valuation structure can be decomposed in
independent slices isomorphic to the valuation structure of weighted CNs, making such
problems central.

Node consistency. This is the simplest level of local consistency. Node consistency [65,
69, 70] (NC) is enforced using the set of EPI rules {({fi, f∅},∅), ∀xi ∈ X}. These rules
are applied iteratively until quiescence, as in the classical case.

Consider the k-weighted CN in Figure 9.2 with k = 4 (⊕ is +4, ⊖ is −4). It has
three variables X = {x1, x2, x3} with values a, b. There are two constraints f13, f23 and
two non-trivial unary constraints f1 and f3. One optimal solution is x1 = x2 = x3 = b,
with cost 2. It also contains a dummy f∅ constraint of zero arity equal to 0. Applying the
({f3, f∅},∅) rule gives the equivalent network of Figure 9.2 on the right. It has a better
obvious lower bound f∅ and is NC since no other rule in the set may modify the network.2

Arc consistencies. Together with the NC rules, the set of rules {({fij , fj}, {xi}), ∀fij ∈
C} would give a natural definition of arc consistency. However, the repeated application
of this set of rules is not always terminating [98]. As Figure 9.3 shows, the effect of the
application of one rule may be destroyed by another one.

1Note that local consistencies may get out of this schema by building other implied constraints or by simul-
taneously applying several rules which can be more powerful [24].

2The paper [65] introduces two notions of node consistency. Our definition corresponds to NC*.

P. Meseguer, F. Rossi, T. Schiex 309

f∅ = 1

x2
b

a

x3

a

b

b

x1

b)

2a

2

2

1

1
1

f∅ = 0
x1

a

b
x3

a

b

x2
b

a

a)

1

1

2

2

2

1

1
1

({f3, f∅}, ∅)

Figure 9.2: A k-weighted CN before and after node consistency enforcing.

b

ba

a

1

x1

x2

ba

a b

1

({f12, f1}, {x2})

({f12, f2}, {x1})

1

1

Figure 9.3: Full arc consistency can run forever.

To enforce termination, two approaches have been used. The first approach avoids the
possible extraction of costs from the unary level to the binary level by simultaneously us-
ing the NC rules and ({fij}, {xi}). This is called arc consistency [98, 65, 70]. Another
way to enforce termination is to restrict the direction of cost moves. If a variable order-
ing is assumed, directional arc consistency enforcing uses the rules of NC combined with
the following set of rules of full arc consistency: {({fij , fj}, {xi}) | xi < xj}. Taking
the union of the rules of AC and DAC defines the stronger full directional arc consistency
(FDAC) [27, 69, 26].3 Figure 9.4 shows how FDAC can be enforced on our previous net-
work. On this simple problem, a lower bound f∅ of 2 is built (assuming order x1, x2, x3).

DAC and AC are incomparable. AC and DAC are stronger than NC by definition, and
FDAC is stronger than AC or DAC. If ⊤ = k = 1, then k-weighted CNs become classical
CNs, and NC becomes classical node consistency, AC and FDAC become classical arc
consistency and DAC becomes classical directional arc consistency.

EPI rules can also be applied to weighted MAXSAT problems [31, 55]. Consider the
set K of two clashing weighted 2-clauses K = {(ℓ ∨ a, u), (¬ℓ ∨ b, v)} where a and b
are literals, u and v costs of violation. If V is the set of variables associated to literals
a, b and m = min(u, v), applying the (K,V)-EPI rule returns the equivalent pair of cost
functions (⋊⋉ K)[V] and (⋊⋉ K) ⊖ (⋊⋉ K)[V], respectively represented by the sets of
clauses {(a∨ b,m)} and {(ℓ∨A, u⊖m), (¬ℓ∨ b, v⊖m), (ℓ∨a∨ b,m), (¬ℓ∨a∨ b,m)}.
This can be considered as a form of resolution principle extended to MAXSAT [91, 55].

3There are differences between the definitions given here, which correspond to [65, 69, 70], and the defini-
tions in [26], which apply to arbitrary fair valued structures, do not use NC but, more subtly, exploit situations
where fij(a, b) ⊕ fi(a) ⊕ fj(b) = ⊤.

310 9. Soft Constraints

a

b

x1

b

a

b x2

x3

1

1

f∅ = 2

b

a

x3

x2
b

b

2

x1

f∅ = 2

a 1b

a

x3

x2
b

a

a

b

x1
2

1

f∅ = 1

1

2

1

f∅ = 1

x2
b

a

x3

a

b

b

x1
2a

2

2

1

1
1

f∅ = 1

x2
b

a
b

a

x3

x1

b

2

1

a

2

2

1

x3

a

b

x2

a

b

a
x1

b

2

2

1

f∅ = 1

1

({f23}, {x2}) ({f13}, {x3})

({f2},∅) ({f23}, {x3})
({f1},∅)

AC AC

NC AC

({f23, f3}, {x2}) DAC

Figure 9.4: Equivalence-preserving inference rules on the network of Figure 9.2.

1

1

111 1

a b c

cba

c

ba c

a b a b c

cba
x2

x1

({f12}, {x2}) ({f12}, {x1})

Figure 9.5: A MAXCSP and two different equivalent networks.

While most of the usual properties of local consistency in classical CNs are preserved
in these definitions (equivalence, polynomial time enforcing), local consistency enforcing
on non-idempotent soft CNs has a much more intricate behavior. Even for terminating
properties, the uniqueness of the result of enforcing arc consistency is lost. This is shown
in Figure 9.5 where each edge represents a unit cost. Applying AC rule ({f12}, {x1}) on
the central network yields the network on the left. If we use ({f12}, {x2}), we get the
network on the right which is AC (in fact, no more rule can be applied), but different.
The left network is more interesting since enforcing NC here yields an AC network with
f∅ = 1. Finding an optimal closure has been proved to be NP-complete in [26] for integer
costs.

It can be shown [98] that the lower bounds obtained by arc consistency enforcing sub-
sume previous ad-hoc lower bounds such as directed or reversible arc consistency counts.

P. Meseguer, F. Rossi, T. Schiex 311

Stronger local consistency notions, such as existential directional arc consistency (EDAC,
[32]), 3-cyclic consistency [24], and k-consistency [25] have been defined.

Soft global constraints

Important consistency enforcing algorithms in classical CNs are those associated to the
so-called global constraints. Such constraints have a specific semantics and an associated
algorithms that can enforce some type of local consistency on the constraint, usually much
more efficiently than a generic algorithm (see Chapter 6). Several global constraints and
their associated algorithms have been extended to handle soft constraints.

All these proposals have been made using the approach of [87] where a soft constraint
fS is represented as an hard constraint with an extra variable xS representing the cost of
the assignment of the other variables in S (see Section 9.4.5).

A global constraint is usually defined by three components: the precise semantics of
the constraint, the level of consistency enforced on this constraint and an algorithm to en-
force it. For example, a soft global constraint extends the classical all-different constraint.
Two semantics have been considered for the soft version: for a given assignment of the
variables involved in a soft all-different, the associated level can be either the number of
variables whose value must be changed to satisfy the all-different constraint, or the number
of pairs of variables that have identical values. The level of consistency enforced is clas-
sical generalized arc consistency, also called hyper-arc consistency. Enforcing algorithms
based on (minimum cost) flow/matching algorithms offer efficient enforcing algorithms for
these two semantics [88, 106].

Before this, [4] proposed a soft global constraint handling a variant of the One-Machine
scheduling problem. Following this first proposal, a few extra soft global constraints have
been proposed. Besides the previous soft all-different constraint, soft versions of the global
cardinality constraint (useful for example in personnel rostering problems, see Chapter 6)
and of the regular constraint (to capture regular language membership with errors) have
also been proposed by [107].

The problem of just computing the cost of an assignment for a single soft global con-
straint has been considered in [5]. For some semantics, this problem may naturally be
NP-hard, but all global constraints defined through specific graph properties can be com-
puted in polynomial time.

9.6.3 Polynomial Classes

As for classical CNs, most polynomial classes of soft CNs can be characterized by restric-
tions on the (hyper)graph structure of the network, or by restrictions on the cost functions.

As observed in Section 9.6.1, the class of problems whose graph has a bounded induced
width can be solved to optimality using bucket or cluster-tree elimination in polynomial
time. This is an old result for optimizing combination of local cost functions which already
appears in [7] where induced width is called “dimension”. Note that minimizing induced
width is precisely the DIMENSION problem considered in [3], where it is shown to be NP-
complete (as a decision problem). This class of graphical parameters has been generalized
in various ways for hyper-graphs. For more information, the reader is invited to refer to
Chapter 7 and [54, 23].

312 9. Soft Constraints

The use of restriction on cost functions is more interesting. Let D and E be fixed sets.
A soft constraint language over D with evaluation in E is defined to be a set of functions
Γ such that each φ ∈ Γ is a function from De to E for some e ∈ N (e is the arity of φ).

The set D represents the domain of the variables (that is, the union of all domains) and
the set E is the set of violation/satisfaction levels used in semiring/valued constraints. An
instance of the soft constraint satisfaction problem induced by a soft constraint language Γ,
denoted sCSP(Γ), is simply defined as a soft CN 〈X,D,C, S〉 such that all soft constraints
in C belong to Γ and S is defined over the set of satisfaction levels E. The associated
question is to identify a variable assignment with maximal overall satisfaction level, as
defined for semiring CNs. The soft constraint language Γ is said to be tractable when
the problem sCSP(Γ) can be solved in polynomial time. All existing results we know
apply only to totally ordered structures satisfying the valued network axioms, but depends
crucially on the fact that the combination operator is idempotent or not.

Idempotent ⊕ operator. In this case, when the order on E is total, it is known that the
only possible choice for ⊕ is min. The corresponding max-min optimization problem is
the fuzzy constraint satisfaction problem considered in Section 9.2.1. As shown in Sec-
tion 9.4.3, the set of optimal solutions of a fuzzy CN P is equal to the set of solutions of its
maximum consistent α-cut Pα. If p is the number of different levels of satisfaction used
in P , then a dichotomic search for the maximum consistent α requires at most ⌈log2(p)⌉
calls to an oracle for consistency on classical CNs. This provides a simple, but powerful
result, which is capable of lifting many polynomial classes of classical CNs to fuzzy ones.

Let Γ be a soft constraint language. We note Γcut the set of relations defined by the
α-cuts of all cost functions in Γ for any α. If Γcut is a tractable constraint language, then
Γ is a tractable soft constraint language.

Indeed, there are at most O(dn) different satisfaction levels in any fuzzy CN. Thus an
optimal solution can be identified by a sequence ofO(n log(d)) calls to a polynomial oracle
in this case. This shows that the language of binary cost functions over domains of size 2
is tractable if⊕ is idempotent and E totally ordered. A more significant tractable language
can be obtained by lifting the tractable language of simple temporal constraint satisfaction
problems leading to the tractable class of semi-convex fuzzy temporal networks [60].

Non idempotent ⊕ operators. The weighted constraint satisfaction problem (see Sec-
tion 9.2.2) provides very strong negative results for tractable languages. Indeed, when the
domains are restricted to boolean domains and cost functions takes only values 0 and 1,
this problems becomes the MAXSAT problem, known to be NP-complete and MAXSNP
complete, which means that it has no polynomial time approximation scheme. Even re-
strictions to binary clauses (cost functions) or to the binary function fxor (soft exclusive
or) defined by fxor(x, y) = ((x 6= y)?0 : 1) are know to be NP-hard [28]. Tractable
languages for MAXSAT and weighted MAXSAT (where cost functions can take any finite
integer value) have been fully characterized by [28].

The weighted constraint satisfaction problem generalizes weighted MAXSAT by al-
lowing to simultaneously use finite and infinite costs. Such soft Boolean constraint lan-
guages have been completely characterized and eight tractable classes have been identified
(see Theorem 2 of [20]).

P. Meseguer, F. Rossi, T. Schiex 313

Compared to weighted MAXSAT, weighted CSP also allows for domains of size greater
than two and this breaks some tractable MAX2SAT languages. In [21], the language of
soft equality, denoted by feq , defined by feq(x, y) = ((x = y) ? 0 : 1)) is shown to be
NP-hard for domain sizes of size 3 and more [21]. Amazingly, the non trivial language of
submodular cost functions is a tractable language for weighted CSP [21].

A function f such that ∀x, y, u, v, u ≤ x, v ≤ y, we have: f(u, v) + f(x, y) ≤
f(u, y) + f(x, v) is called a submodular function. This class is relatively rich in practice
and contains cost functions such as ax + by + c,

√

x2 + y2, |x − y|r(r ≥ 1),max(x −
y, 0)r(r ≥ 1), etc. This class is maximal (no other function can be added to the language
without making it NP-complete). An algorithm in O(n3d3) that can solve submodular
networks is described in [21]. Other related results appear in [19, 22].

9.7 Combining Search and Inference

9.7.1 Direct Combination

As we have shown in Section 9.6, variable (or bucket) elimination is computationally and
space efficient when each variable to eliminate is only connected to few other variables
or when it is assigned. Once a variable is eliminated, we get a network with the same
optimal cost, a smaller number of variables and constraints, and that can be solved without
backtracking. Conversely, branch and bound explores the domain of every variable with
limited space complexity, but with the requirement of backtracking until a provably optimal
solution is found. This gives a natural way to combine both approaches: if some variable
in the network has a small degree (that is, less than a constant m), we can eliminate it.
Each elimination may reduce the degree of other variables and enable further eliminations.
Otherwise, we can branch on a well-chosen variable (that is, one with a high degree). Once
assigned, the variable becomes easy to eliminate and may enable further eliminations.

The corresponding algorithm has been described in [64] where its efficiency on prob-
lems with relatively structured or sparse graphs is shown. As variable/bucket or cluster-tree
elimination, the space and time complexity of the algorithm can be a priori bounded using
a parameter derived from induced width and parameterized by the maximum degree bound
m for elimination.

9.7.2 Exploiting Stronger Bounds

The incomplete inference mechanisms all produce lower bounds which can be directly
used during a branch and bound optimization.

Mini-bucket-based bounds

Intermediate constraints produced by mini-bucket elimination can be used to generate
lower bounds inside branch and bound [59]. Let us assume that MBE(z) has processed
the problem, from the last to first variable in an ordering o. After that, branch and bound
starts following o as a static variable order. When assigning xi, all constraints in bucket i
can be evaluated, including the intermediate constraints produced by MBE(z). Their ag-
gregation gives a lower bound on the cost of extending the current partial solution to a

314 9. Soft Constraints

complete one. This lower bound can also be used as heuristic to order values of the current
variable.

The previous approach can be seen as a preprocess before search starts. Since interme-
diate constraints have been computed along the ordering o, to use them for lower bound
computation requires that branch and bound follows o as static variable ordering. However,
mini-buckets can also generate lower bounds when search uses dynamic variable ordering.
Instead of executing MBE(z) as preprocess, MBE(z) is executed at each node of the search
space, restricted to the subproblem rooted at that node and the current partial solution. The
aggregation of all constraints in the bucket of the current variable is a lower bound that, as
before, can be used as heuristic to order variable values [39].

A related approach considers mini-bucket tree elimination applied to an augmented
bucket tree, defined as follows. The bucket tree is the tree defined by the BE algorithm,
with n vertices {v1, v2, . . . , vn}. It is augmented with n − 1 new vertices, {u2, . . . , un},
and n−1 new arcs {(v2, u2), (v3, u3), . . . , (vn, un)}, such that χ(ui) = xi and ψ(ui) = ∅.
It is direct to check that the augmented bucket tree is a tree decomposition, so the MBTE(z)
algorithm can be applied on it. After MBTE(z) execution, constraints received in ui can
be aggregated, producing a lower bound of the singletons (pairs variable-value) of xi. This
approach can be combined with branch and bound. At each visited node of the search
space, MBTE(z) is executed to compute lower bounds of each singleton of unassigned
variables. These lower bounds are used for domain pruning. Since MBTE(z) is executed
at each node of the search tree, the validity of the lower bounds do not depend on any
variable ordering, so branch and bound can perform dynamic variable ordering. As before,
these lower bounds can be used as heuristic for value ordering.

Local consistency based bounds

Branch and bound application for minimizing combined violation relies on two essential
components: a lower bound lbv(p) on the violation degree of any complete assignment
below the current node p, and a current upper bound ubv which indicates the maximum
violation degree which is acceptable.

The main motivation for extending local consistency to soft constraints [98] has always
been to provide good lower bounds. As shown in [65], both lower and upper bounds can
be directly represented in the problem associated to the current node p: a lower bound is
immediately available from the constraint f∅, while the upper bound ubv can be enforced
by setting ⊤ to ubv .

Local consistency enforcing is capable of improving the naive lower bound on viola-
tions defined by f∅ and backtracking can occur whenever this bound reaches the current
value of ⊤. As in the classical case, for algorithms such as MAC (Chapter 4), the incre-
mentality of local consistency enforcing and the fact it can inform value ordering heuristics
is also essential. In soft constraints, it further provides value ordering heuristics.

Depending on the level of local consistency maintained at each node, several different
algorithms are obtained. For a stronger local consistency, more work is done at each node,
but less nodes are explored. Maintaining existential directional consistency [32], which is
among the strongest implemented local consistency property, is apparently the best cur-
rent compromise. For most problems, local consistency based bounds seem to outperform
previously defined bounds.

P. Meseguer, F. Rossi, T. Schiex 315

The first combined use of local consistency and branch and bound was done on min-
max (that is, fuzzy) networks since arc consistency has been defined for such networks
since [92]. See for example [99, 45]. For other types of valued networks, arc consistency
has been defined in [98] and combined with branch and bound in [65, 70]. The most recent
algorithms described in [69, 31, 32] rely on stronger consistencies which provide even
better efficiency, including on MAXSAT problems.

9.7.3 Exploiting Problem Structure

Problem structure can be exploited in several ways. Here, we will focus on the exploitation
of subproblem independence and the exploitation of the locality of constraints.

Independent subproblems can be solved separately so search can be accelerated. Inside
a branch and bound scheme, variables are instantiated in a particular order. At some point
in search, independent subproblems become disconnected and they can be solved sepa-
rately. Such independent subproblems can be identified using pseudo-tree arrangements.

A pseudo-tree arrangement of the constraint graph G is a rooted tree with the same set
of vertices as G, where two adjacent vertices of the graph must appear in the same root-
leaf branch of the pseudo-tree [50]. The interesting feature is that when assigning variables
following pseudo-tree branches, independent subproblems are easily identified: when the
successors of a node go to different branches, each represents an independent subproblem
that can be solved separately.

A first attempt to exploit pseudo-trees inside branch and bound is the PT-BB algo-
rithm [72]. It assigns variables following a depth-first pseudo-tree traversal, and solves
separately independent subproblems. In addition to the global bounds of DFBB, it con-
sider local upper and lower bounds, specialized for each particular subproblem. Using
global and local bounds, some parts of the search space can be pruned. To cope with the
issue of bad local upper bounds, this algorithm was combined with russian doll search,
producing the PT-RDS algorithm. The basic idea is to performs RDS on the pseudo-tree
starting from the leaves towards the root. When solving subproblem i, all its children sub-
problems have already been solved. When solving subproblem i− 1, a local upper bound
can be computed as the cost of extending the solution of subproblem i to a new variable.

The idea of pseudo-tree search is further developed in the context of AND/OR search
[77, 78]. Developing the pseudo-tree state space, we obtain the AND/OR search tree. This
tree is searched by the AOBB algorithm, that backs up costs from leaves towards the root.
It maintains local upper and lower bounds at each node of the current partial solution, used
to prune parts of the search space. Any lower bound computing strategy can be used.

A related approach is the bounded backtracking on valued CNs [105], a search strat-
egy based on a tree decomposition. Similarly to pseudo-tree arrangements, when all the
variables of a cluster (a node of the tree decomposition) have been instantiated, the child
clusters become independent and can be solved separately. This property is exploited in
the BDTval algorithm, a branch and bound algorithm that assigns variables following an
order compatible with the preorder traversal of the tree decomposition. Local upper and
lower bounds are maintained and used to prune the search space.

BTD goes beyond this by caching the optimal solutions of the independent subprob-
lems solved. When the exact same subproblem needs to be solved again, the cached value

316 9. Soft Constraints

is used instead.4 If we consider a cluster Ci in the tree decomposition and one of its son
Cj , the subproblem rooted in Cj which is solved once Ci is instantiated can be identified
by the assignment of the separator of Ci and Cj . If a new partial solution that includes
that particular assignment for the variables of the separator is tried later, the optimal cost
of the subproblem cached is reused. The justification is easy: the only connection of the
subproblem with the rest of the problem passes through the separator, so with the same
instantiation of the separator the subproblem will have the same optimal cost.

Bounded backtracking has time and space complexities similar to CTE. It performs
search, so it can use filtering algorithms to propagate hard inconsistencies, causing domain
sizes to change. Since it allows for dynamic variable ordering (compatible with the order-
ing of the decomposition), it can use domain-based heuristics, improving its performance
with respect to the theoretical bounds.

9.8 Using Soft Constraints

There may be several different reasons for using soft constraints. The first motivation can
be to just capture preferences. In this case, the essential problem is to identify (that is, to
elicitate) the preferences and this is related to machine learning issues. We have assumed
that soft constraints were clearly explicited, but the problem of learning soft constraints
from data has also been considered [93].

As soon as preferences are captured by soft constraints added to an existing classical
CN, it is possible to use such constraints to guide the search towards preferred solutions.
For example, preferences over variable values (such as those usually given by users in
configuration problems or produced as unary soft constraints by arc consistency enforcing)
can be used as a value ordering heuristics to be used during search, so that most preferred
values are tried first [108, 82, 103]. A similar technique can be used for preferences over
variables. This is simple and can be very effective in practice, making soft constraints one
way to express heuristic guidance.

Constraint propagation such as arc consistency can also be performed faster via the
notion of preferred support, which is based on preferences over values and variables [8].
Preferences can also be used to improve several tasks beyond that of finding an optimal so-
lution. For example, in the QUICKXPLAIN system [58], user preferences over constraints
can be used to identify the most useful explanations of failures for over-constrained prob-
lems, as well as the most useful relaxations of the problem which are satisfiable. The main
idea is to select, among a possibly very large number of explanations for a failure, one that
involves the most preferred constraints and is minimal.

Our main focus in this Section is on solving soft constraint problems to optimality. Be-
cause the history of soft constraint technology is essentially concentrated in the last decade,
it has not yet entered the arena of stable commercial solvers. But the recent progresses have
lead to the design of several solvers, often targeted towards a specific type of constraint
networks, either fuzzy CN, weighted CN, or weighted MAXSAT. Rather than giving an
exhaustive list of solvers, we invite the reader to refer to the Soft Constraints and MAXSAT
web site [30] that tries to maintain a list of complete and incomplete solvers for soft con-
straints together with many benchmarks from several areas. Despite their experimental

4The same idea appears in the Recursive conditioning algorithm [29] in the context of counting problems in
Bayesian networks.

P. Meseguer, F. Rossi, T. Schiex 317

design, some of these solvers achieve excellent performances, sometimes outperforming
commercial solvers on difficult soft constraints problems [31, 32].

Soft CNs offer a very flexible model for representing constrained problems with prefer-
ences. As a general indication of this, one may note that many usual and central problems
in complexity theory such MAXSAT, MAX CLIQUE, MAXONES, MIN VERTEX COVER,
MAX CUT, MINONES, MINCOL, etc., are very straightforward to model as weighted
CNs. These academic problems have often an almost direct application in various areas.
For example, MIN VERTEX COVER is related to two-level logic minimization in electronic
design automation, MINCOL is a simplified version of over-constrained frequency assign-
ment, and MAX CUT has been used to solve spin glass or sport scheduling problems. Origi-
nally, however, soft constraints have been introduced to handle over-constrained problems.
We now consider two application domains where such problems are frequent: resource
allocation and diagnosis based on experimental (that is, real word acquired) data. In par-
ticular, we will consider resource allocation in the context of the frequency assignment
problem and diagnosis in the context of bioinformatics problems.

9.8.1 Resource Allocation for Frequency Assignment

Soft constraints have been used, among others, in resource allocation problems such as
satellite scheduling [6], timetabling [94] or frequency assignment [16]. In such problems,
the available resources are often insufficient to answer the requirements (all expressed as
hard constraints) and the problems are easily over-constrained. Actually, even when not
over-constrained, optimization criteria can often be expressed as soft constraints.

The frequency assignment problem (FAP) defined by the Centre d’Électronique de
l’Armement (CELAR) from real data is specifically interesting because of its variety and
difficulty. This problem has been described in [16] and more information on frequency
assignment can be found on the FAP web site [62]. A set of wireless communication con-
nections must be assigned frequencies such that, for every connection, data transmission
between the transmitter and the receiver is possible. The frequencies should be selected
from a given set that may depend on the location.5 The frequencies assigned to two dif-
ferent connections may incur interference resulting in a loss of quality of the signal. Two
conditions are needed simultaneously in order to create interference between two signals:

• The two frequencies must be close on the electromagnetic band.

• The connections must be geographically close to each other: the signals that may in-
terfere should have a similar level of energy at the position where they might disturb
each other.

To avoid interference, when the second condition is satisfied, and depending on existing
physical wave-propagation models, a sufficient distance in the frequency spectrum has to
be imposed. Because the frequency resource is not infinite, some frequencies have to be
reallocated and the problem of finding an assignment that satisfies all distance constraints
is already NP-hard. Often, one also want to minimize some criteria. Two criteria are often
considered:

5In practice, much traffic is bidirectional, so that two frequencies must be chosen for each link, one for each
direction. This is often ignored by choosing two non-intersecting domains of frequency for forward and backward
communication.

318 9. Soft Constraints

siteA
siteB

Link i
fi

f ′
i

fi, f
′
i ∈ di

|fi − f ′
i | = ǫij|fi − fj | ≥ δij

fj

Figure 9.6: Frequency assignment

1. Minimizing the maximum frequency used allows one to use a small portion of an
available spectrum, which is often allocated on a slice by slice strategy by the re-
sponsible international agencies.

2. Minimizing the number of different frequencies used allows one to rapidly find an
available frequency for a new link.

When no solution exists that satisfies all distance constraints, a specific criterion over-
rides these possible criteria: the aim becomes interference minimization. In the CELAR
case, one should minimize a weighted sum of violated distance constraints.

The problem is easy to model using one variable per link, whose domain is the set
of available frequencies for the link. Constraints of the form |fi − fj | ≥ δij are used
to specify the minimum frequency margin required between geographically close links.
Because the problem may be over-constrained, these constraints are actually cost functions:
a satisfactory assignment has cost ⊥ = 0 and otherwise a fixed pij cost. The aim is then to
minimize the sum of all costs, which is an instance of weighted MAXCSP.

If the problem is not over-constrained (that is, there is an assignment of cost ⊥ = 0),
and one wants to minimize the maximum frequency used, the problem can still be mod-
eled as a soft fuzzy (max-min) CN where, for each variable, unary constraints associate a
decreasing membership degree to increasing frequencies (for a given frequency, the same
degree should be used on all variables). The alternative criteria which consists in minimiz-
ing the number of frequencies used is best modeled using a soft global constraint.

These instances have been tackled using many different combinatorial optimization
techniques in 1994 (including integer linear programming techniques such as branch and
cut). All min-max problem have been solved using constraint network technology but
all over-constrained instances remained open until the first over-constrained instance was
solved using a combination of graph partitioning and russian doll search [16]. The graph
of the corresponding instance is visible in Figure 9.7. This very specific structure is an
excellent support to algorithms exploiting tree decompositions. Some other instances have
been later solved using such techniques in [63] but some problems remain open.

P. Meseguer, F. Rossi, T. Schiex 319

Figure 9.7: Frequency assignment graph structure of preprocessed CELAR instance 6 cov-
ered by a tree decomposition.

9.8.2 Diagnosis and Identification Problems in Bioinformatics

In diagnosis, we may build a constraint model of the normal behavior of the system that
describes how the components of the system behave in “normal” conditions. For a non-
working system, the observations are inconsistent with this model, and the conjunction of
the model and the observation is over-constrained.

A possible approach to diagnosis in this case is to find a minimum cardinality set of
components such that removing “normal behavior” constraints on these components re-
stores consistency. Such a parsimonious approach relies on the fact that components usu-
ally work and breakage is rare. More sophisticated (for example, probabilistic) approaches
can also be used. An instance of the diagnosis problem appears in bioinformatics. For other
examples of uses of soft constraints in bioinformatics see [111, 53, 52] and Chapter 26.

The cell of sophisticated organisms (such as animals, plants and human beings) carry
pairs of chromosomes which hold the genetic information of an individual. A position
that carries some specific information on a chromosome is called a locus (which typically
identifies the position of a gene) and the specific information contained at a locus is the
allele carried at the locus (the m possible alleles are identified by integers from 1 to m).
Since (non-sexual) chromosomes occur in (here unordered) pairs, each locus carries a pair
of alleles, called the genotype of the individual at this locus (there are m(m+1)

2 different
genotypes). Determining this genotype on a large population of individuals having parental
relationships is crucial for building genetic maps, locating genes involved in diseases, re-
sistances to diseases, etc.

A large population of related individuals, together with some (possibly partial) obser-
vation of their genotype at a locus of interest, is called a pedigree. The set of possible
genotypes for an individual is here called its phenotype. Each individual in a pedigree is
either a founder (that is, it has no parents in the pedigree) or not. In the latter case, par-

320 9. Soft Constraints

ents can be identified in the pedigree. A pedigree can therefore be described using one
variable by individual in the pedigree, whose domain is the set of possible pairs of alleles
given the experimental data. For each non-founder, it is also known that one of his alleles
comes from his father and the other from his mother. Therefore we may introduce a ternary
constraint linking the two parents and each children and stating exactly this.

36457

1 2

89

10 11 12

2/2

2/2

2/2 2/2

2/31/22/2

Figure 9.8: Pedigree example taken from [84] with 12 individuals.

A small example of pedigree is given in Figure 9.8. There are n = 12 individuals and
m = 3 distinct alleles. Each box corresponds to a male individual, and each ellipse to a
female. The arcs describe parental relations. For instance, individuals 1 and 2 have three
children: 3,4, and 5. The founders are individuals 1, 2, 6, and 7. The set of possible geno-
types is G = {1|1, 1|2, 1|3, 2|2, 2|3, 3|3} where i|j means that the genotype is composed
by allele i and allele j. The genotype of seven individuals (that is, 1, 3, 6, 7, 10, 11 and
12) has been experimentally determined, reducing the set of possible genotypes to just one.
The corresponding CN has 12 variables, with maximum domain size of 6, and 8 ternary
constraints. The problem is that this pedigree is inconsistent in the sense that there is no
assignment of genotypes to all individuals that satisfy all constraints. As such, pedigree
consistency checking offers an interesting NP-hard problem [1] for constraint networks.
The problem is easy when it is tree-structured, but this is rarely true for animal pedigree.

In practice, when the problem is inconsistent, it has to be diagnosed: likely sources of
the inconsistency have to be identified and removed so that further (probabilistic) analyzes
can be performed. One possible source of error lies in the genotyping process. One may
want to identify a set of genotyped individuals of minimum cardinality such that removing
the genotype information of these individuals (that is, allowing all possible genotypes for
them) restores consistency.

This problem can be simply modeled as a weighted CN. It has the same variables
and constraints as the previous classical CN (hard Mendelian constraints are modelled as
cost functions taking values ⊤ and ⊥ = 0 only). However, when an individual has been
genotyped, this is translated in a unary cost function that maps the observed genotype to
cost ⊥ and all other genotypes to cost 1. This represents the fact that if this is the actual
genotype, then there was 1 genotyping error.

The fact that only unary soft constraints arise here is not a simplification in itself with
respect to general weighted CSPs, since every n-ary weighted CN can be simply trans-
lated in an equivalent dual network with only unary soft constraints and hard binary con-
straints [66].

P. Meseguer, F. Rossi, T. Schiex 321

In the previous example of Fig. 9.8, the problem still has 12 variables, with domain size
of 6. It has 8 hard ternary constraints and 7 soft unary constraints. The minimum number
of typing errors is one.

In practice, the problem arises on pedigree involving thousands of animals with many
loops and is better modelled by taking into account probabilistic information. As shown
in [33], this can still be modelled as weighted CN for which existing general solvers are
more efficient and require weaker assumptions than existing specialized tools such as Ped-
Check [83, 84].

9.9 Promising Directions for Further Research

Research in the area of soft constraints, as an attempt to extend the classical constraint for-
malism to handle over-constraint problems and problems with preferences, started around
the late 80’s with Hierarchical CLP [13] and partial constraint satisfaction [49]. Then, in
the early 90’s specific extensions were considered, such as possibilistic constraints [99],
and in 1995 the two main general frameworks (semiring-based and valued constraints)
were presented [9, 100]. Since then, in the last ten years much work has been done in the
area of soft constraints, and we have tried to report most of it in this chapter: significant
results and improvements were obtained in search algorithms, lower bound computations,
soft constraint propagation, soft global constraints, and applications. Also, a better under-
standing of the relationship between soft constraints and other knowledge representation
formalisms has been achieved.

The future of soft constraints has many promising directions for further development.
Here we point out some of them, for which we hope to see a fast development in the near
future:

• Stronger local consistencies need further study in the context of soft constraints.
Current experimental studies tend to prove that we have not yet reached the ideal
compromise between cost and quality in existing lower bounds. This may also re-
quire global constraints, which are so conveniently exploited in classical constraint
programming.

• Soft constraints can be very useful in the context of multi-agent constraint optimiza-
tion and preference aggregation, which occurs often in web-based search engines.
Their use in this context needs the study of reasonable preference aggregation oper-
ators and the development of distributed soft constraint solvers.

• Soft constraints are more difficult to express than classical constraints, since ap-
propriate valuations to tuples (or constraints, or variables) have to be specified by
the user. To ease the specification process, appropriate learning or elicitation tools
should be developed to transform user-specified preferences into soft constraints.

• The presence of so many classes of soft constraints, and several different formalisms
to express them, needs the development of ways to pass from one formalism to an-
other one without loosing too much information. This would allow easier preference
elicitation and the possibility for solver reuse.

322 9. Soft Constraints

• The study of tractable classes of soft constraints is still at its infancy. Much work
is still needed to identify significant and practically useful classes of soft constraints
with good computational properties.

• Preferences are more varied than those that can be currently expressed with soft
constraints or other preference-based formalisms. We envision extensions of the
concept of soft constraint to model also other kinds of preferences, such as bipolar,
qualitative, and conditional preferences.

Another more practical issue is the practical integration of existing algorithms in pop-
ular constraint based tools which is still unsatisfactory. Significant developments in these
and other lines of research will allow soft constraints to be practically and widely used in
many real-life scenarios, as the main framework for the handling of over-constrained and
preference-based problems.

Bibliography

[1] L. Aceto, J. A. Hansen, A. Ingólfsdóttir, J. Johnsen, and J. Knudsen. The complexity
of checking consistency of pedigree information and related problems. J. Comput.
Sci. Technol., 19(1):42–59, 2004.

[2] K. R. Apt. Principles of Constraint Programming. Cambridge University Press,
2003.

[3] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability — a survey. BIT, 25:2–23, 1985.

[4] P. Baptiste, C. L. Pape, and L. Peridy. Global constraints for partial CSPs: a case-
study of resource and due date constraints. In Proc. of CP’98, volume 1520 of
LNCS, pages 87–101, Pisa, Italy, 1998.

[5] N. Beldiceanu and T. Petit. Cost Evaluation of Soft Global Constraints. In Proc. of
CPAIOR’04, volume 3011 of LNCS, pages 80–95, Nice, France, 2004.

[6] E. Bensana, M. Lemaı̂tre, and G. Verfaillie. Earth observation satellite management.
Constraints, 4(3):293–299, 1999.

[7] U. Bertelé and F. Brioshi. Nonserial Dynamic Programming. Academic Press, 1972.
[8] C. Bessière, A. Fabre, and U. Junker. Propagate the right thing: How preferences

can speed-up constraint solving. In Proc. of IJCAI’03, pages 191–196, Acapulco,
Mexico, 2003.

[9] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semirings. In Proc.
of IJCAI’95, pages 624–630, Montréal, Canada, 1995.

[10] S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constraint solving and
optimization. Journal of the ACM, 44(2):201–236, 1997.

[11] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie.
Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison.
Constraints, 4:199–240, 1999.

[12] S. Bistarelli, P. Codognet, Y. Georget, and F. Rossi. Labeling and partial local
consistency for soft constraint programming. In Proc. of PADL’00, volume 1753 of
LNCS, pages 230–248, 2000.

[13] A. Borning, M. Mahert, A. Martindale, and M. Wilson. Constraint hierarchies and
logic programming. In Proc. of ICLP’89, pages 149–164. MIT Press, 1989.

P. Meseguer, F. Rossi, T. Schiex 323

[14] C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: A
Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference
Statements. Journal of Artificial Intelligence Research, 21:135–191, 2004.

[15] J. L. Bresina. Heuristic-biased stochastic sampling. In Proc. of AAAI’96, pages
271–278, Portland, OR, USA, 1996.

[16] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. Warners. Radio link frequency
assignment. Constraints, 4:79–89, 1999.

[17] V. A. Cicirello and S. F. Smith. Amplification of search performance through ran-
domization of heuristics. In Proc. of CP’02, volume 2470 of LNCS, pages 124–138,
Ithaca, NY, USA, 2002.

[18] V. A. Cicirello and S. F. Smith. Heuristic selection for stochastic search optimiza-
tion: Modeling solution quality by extreme value theory. In Proc. of CP’04, volume
3258 of LNCS, pages 197–211, Toronto, Canada, 2004.

[19] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Soft constraints: complexity
and multimorphsims. In Proc. of CP’03, volume 2833 of LNCS, pages 244–258,
Kinsale, Ireland, 2003.

[20] D. Cohen, M. Cooper, and P. Jeavons. A complete characterization of complexity
for Boolean constraint optimization problems. In Proc. of CP’04, volume 3258 of
LNCS, pages 212–226, Toronto, Canada, 2004.

[21] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. A maximal tractable class of soft
constraints. Journal of Artificial Intelligence Research, 22:1–22, 2004.

[22] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Identifying efficiently solvable
cases of Max CSP. In Proc. of STACS’04, volume 2996 of LNCS, pages 152–163,
2004.

[23] D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability for
constraint satisfaction and spread cut decomposition. In Proc. of IJCAI’05, pages
72–77, Edinburgh, Scotland, 2005.

[24] M. Cooper. Cyclic consistency: a local reduction operation for binary valued con-
straints. Artificial Intelligence, 155(1-2):69–92, 2004.

[25] M. Cooper. High-order consistency in Valued Constraint Satisfaction. Constraints,
10:283–305, 2005.

[26] M. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelli-
gence, 154(1-2):199–227, 2004. (see arXiv.org/abs/cs.AI/0111038).

[27] M. C. Cooper. Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy
Sets and Systems, 134(3):311–342, 2003.

[28] N. Creignou, S. Khanna, and S. M. Complexity Classications of Boolean Constraint
Satisfaction Problems. Volume 7 of SIAM Monographs on Discrete Mathematics
and Applications, 2001.

[29] A. Darwiche. Recursive Conditioning. Artificial Intelligence, 126(1-2):5–41, 2001.
[30] S. de Givry. Soft constraint and MAXSAT web site.

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP.
[31] S. de Givry, J. Larrosa, P. Meseguer, and T. Schiex. Solving Max-Sat as weighted

CSP. In Proc. of CP’03, volume 2833 of LNCS, pages 363–376, Kinsale, Ireland,
2003.

[32] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency:
getting closer to full arc consistency in weighted CSPs. In Proc. of IJCAI’05, pages
84–89, Edinburgh, Scotland, 2005.

324 9. Soft Constraints

[33] S. de Givry, I. Palhiere, Z. Vitezica, and T. Schiex. Mendelian error detection in
complex pedigree using weighted constraint satisfaction techniques. In Proc. of
ICLP’05 Workshop on Constraint Based Methods for Bioinformatics, Sitges, Spain,
2005.

[34] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[35] R. Dechter. Mini-buckets: A general scheme for generating approximations in au-

tomated reasoning. In Proc. of IJCAI’97, pages 1297–1303, Nagoya, Japan, 1997.
[36] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial

Intelligence, 113(1–2):41–85, 1999.
[37] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-

gence, 38:353–366, 1989.
[38] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-

lems. Artificial Intelligence, 34:1–38, 1988.
[39] R. Dechter, K. Kask, and J. Larrosa. A general scheme for multiple lower bound

computation in constraint optimization. In Proc. of CP’01, volume 2239 of LNCS,
pages 346–360, Paphos, Cyprus, 2001.

[40] C. Domshlak and R. Brafman. CP-nets - Reasoning and Consistency Testing. In
Proc. of KR’02, pages 121–132, Toulouse, France, 2002.

[41] C. Domshlak, F. Rossi, B. Venable, and T. Walsh. Reasoning about soft constraints
and conditional preferences: complexity results and approximation techniques. In
Proc. of IJCAI’03, pages 215–220, Acapulco, Mexico, 2003.

[42] D. Dubois and H. Prade. Fuzzy sets and systems: theory and applications. Academic
Press, 1980.

[43] D. Dubois, H. Fargier, and H. Prade. Using fuzzy constraints in job-shop scheduling.
In Proc. of IJCAI’93/SIGMAN Workshop on Knowledge-based Production Plan-
ning, Scheduling and Control, Chambery, France, 1993.

[44] K. Evans, M. Konikoff, R. Mathis, J. Maden, and G. Whipple. Totally ordered
commutative monoids. Semigroup Forum, 62(2):249–278, 2001.

[45] H. Fargier. Problèmes de satisfaction de contraintes flexibles et application à
l’ordonnancement de production. Thèse de doctorat, Institut de Recherche en Infor-
matique de Toulouse (Université Paul Sabatier), Toulouse, France, 1994.

[46] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a proba-
bilistic approach. In Proc. of ECSQARU’93, volume 747 of LNCS, pages 97–104,
Granada, Spain, 1993.

[47] H. Fargier, J. Lang, and T. Schiex. Selecting preferred solutions in Fuzzy Con-
straint Satisfaction Problems. In Proc. of the 1st European Congress on Fuzzy and
Intelligent Technologies, 1993.

[48] E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence, 58:
21–70, 1992.

[49] E. C. Freuder. Partial constraint satisfaction. In Proc. of IJCAI’89, pages 278–283,
Detroit, MI, USA, 1989.

[50] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in con-
straint satisfaction problems. In Proc. of IJCAI’85, pages 1076–1078, Los Angeles,
CA, USA, 1985.

[51] P. Galinier and J.-K. Hao. Tabu search for maximal constraint satisfaction problems.
In Proc. of CP’97, volume 1330 of LNCS, pages 196–208, Schloss Hagenberg, Aus-
tria, 1997.

P. Meseguer, F. Rossi, T. Schiex 325

[52] C. Gaspin. RNA Secondary Structure Determination and Representation Based on
Constraints Satisfaction. Constraints, 6(2-3):201–221, 2001.

[53] C. Gaspin, S. de Givry, T. Schiex, P. Thébault, and M. Zytnicki. A new local consis-
tency for weighted CSP applied to ncRNA detection. In Proc. of ICLP’05 Workshop
on Constraint Based Methods for Bioinformatics, Sitges, Spain, 2005.

[54] G. Gottlob, N. Leone, and F. Scarcello. A comparison of strutural CSP decomposi-
tion methods. Artificial Intelligence, 124:243–282, 2000.

[55] F. Heras and J. Larrosa. Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In Proc. of IJCAI’05, pages 193–198, Edinburgh, Scotland, 2005.

[56] U. Junker. Preference-based search for scheduling. In Proc. of AAAI’00, pages
904–909, Austin, TX, USA, 2000.

[57] U. Junker. Preference-based search and multi-criteria optimization. In Proc. of
AAAI’02, pages 34–40, Edmonton, Alberta, Canada, 2002.

[58] U. Junker. Quickxplain: Preferred explanations and relaxations for over-constrained
problems. In Proc. of AAAI’04, pages 167–172, San Jose, CA, USA, 2004.

[59] K. Kask and R. Dechter. A general scheme for automatic generation of search
heuristics from specification dependencies. Artificial Intelligence, 129(1–2):91–
131, 2001.

[60] L. Khatib, P. Morris, R. Morris, and F. Rossi. Temporal constraint reasoning with
preferences. In Proc. of IJCAI’01, pages 322–327, Washington, USA, 2001.

[61] E. Klement, R. Mesiar, and E. Pap. Triangular Norms. Kluwer Academic Publish-
ers, 2000.

[62] A. Koster. Frequency assignment problem web site. http://fap.zib.de.
[63] A. M. Koster. Frequency assignment: Models and Algorithms. PhD

thesis, University of Maastricht, The Netherlands, 1999. Available at
www.zib.de/koster/thesis.html.

[64] J. Larrosa. Boosting search with variable elimination. In Proc. of CP’00, volume
1894 of LNCS, pages 291–305, Singapore, 2000.

[65] J. Larrosa. On arc and node consistency in weighted CSP. In Proc. of AAAI’02,
pages 48–53, Edmonton, Alberta, Canada, 2002.

[66] J. Larrosa and R. Dechter. On the dual representation of non-binary semiring-based
csps. In Proc. of the CP’00 Workshop on Modelling and Solving Soft Constraints,
2000. http://www.math.unipd.it/˜frossi/cp2000-soft/program.html.

[67] J. Larrosa and P. Meseguer. Exploiting the use of DAC in Max-CSP. In Proc. of
CP’96, volume 1118 of LNCS, pages 308–322, Cambridge, MA, USA, 1996.

[68] J. Larrosa and P. Meseguer. Partition-based lower bound for Max-CSP. In Proc. of
CP’99, volume 1713 of LNCS, pages 303–315, Alexandria, VI, USA, 1999.

[69] J. Larrosa and T. Schiex. In the quest of the best form of local consistency for
weighted CSP. In Proc. of IJCAI’03, pages 239–244, Acapulco, Mexico, 2003.

[70] J. Larrosa and T. Schiex. Solving weighted CSP by maintaining arc consistency.
Artificial Intelligence, 159(1-2):1–26, Nov. 2004.

[71] J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.
Artificial Intelligence, 107(1):149–163, 1999.

[72] J. Larrosa, P. Meseguer, and M. Sánchez. Pseudo-tree Search with Soft Constraints.
In Proc. of ECAI’02, pages 131–135, Lyon, France, 2002.

[73] J. Larrosa, E. Morancho, and D. Niso. On the practical applicability of bucket
elimination: Still-life as a case study. Journal of Artificial Intelligence Research,

326 9. Soft Constraints

23:421–440, 2005.
[74] M. Lemaı̂tre and G. Verfaillie. Daily management of an earth observation satellite

: comparison of ILOG Solver with dedicated algorithms for valued constraint sat-
isfaction problems. In Proc. of the Third ILOG International Users Meeting, Paris,
France, 1997.

[75] L. Lobjois, M. Lemâitre, and G. Verfaillie. Large neighbourhood search using con-
straint satisfaction for greedy reconstruction. In Proc. of ECAI’00 Workshop on
Modelling and Solving Constraint Problems, 2000.

[76] S. Loudni and P. Boizumault. Solving Constraint Optimization Problems in Anytime
Contexts. In Proc. of IJCAI’03, pages 251–256, Acapulco, Mexico, 2003.

[77] R. Marinescu and R. Dechter. AND/OR Tree Search for Constraint Optimization.
In Proc. of CP’04 Workshop on Preferences and Soft Constraints, 2004.

[78] R. Marinescu and R. Dechter. AND/OR Branch-and-Bound for Graphical Models.
In Proc. of IJCAI’05, pages 224–229, Edinburgh, Scotland, 2005.

[79] P. Meseguer and M. Sanchez. Specializing russian doll search. In Proc. of CP’01,
volume 2239 of LNCS, pages 464–478, Paphos, Cyprus, 2001.

[80] P. Meseguer, J. Larrosa, and M. Sanchez. Lower bounds for non-binary constraint
optimization problems. In Proc. of CP’01, volume 2239 of LNCS, pages 317–331,
Paphos, Cyprus, 2001.

[81] P. Meseguer, M. Sánchez, and G. Verfaillie. Opportunistic Specialization in Russian
Doll Search. In Proc. of CP’02, volume 2470 of LNCS, pages 264–279, Ithaca, NY,
USA, 2002.

[82] M. Moretti, F. Rossi, E. Freuder, C. Likitvivatanavong, and R. Wallace. Expla-
nations and optimization in preference-based configurators. In Proc. of the Joint
Workshop of the ERCIM Working Group on Constraints and the CologNet area on
Constraint and Logic Programming on Constraint Solving and Constraint Logic
Programming, 2002.

[83] J. O’Connell and D. Weeks. PedCheck: a program for identification of genotype
incompatibilities in linkage analysis. Am. J. Hum. Genet., 63(1):259–266, 1998.

[84] J. O’Connell and D. Weeks. An optimal algorithm for automatic genotype elimina-
tion. Am. J. Hum. Genet., 65(6):1733–1740, 1999.

[85] C. M. Papadimitriou. Computational Complexity. Addison-Wesley Publishing
Company, 1994.

[86] J. Pearl. Encyclopedia of Artificial Intelligence, chapter Bayesian Inference Meth-
ods, pages 89–98. John Wiley & Sons, 1992.

[87] T. Petit, J.-C. Régin, and C. Bessière. Meta-constraints on violations for over con-
strained problems. In Proc. of IEEE-ICTAI’00, pages 358–365, Vancouver, Canada,
2000.

[88] T. Petit, J.-C. Régin, and C. Bessière. Specific filtering algorithms for over-
constrained problems. In Proc. of CP’01, volume 2239 of LNCS, pages 451–463,
Paphos, Cyprus, 2001.

[89] T. Petit, J.-C. Régin, and C. Bessière. Range-based Algorithm for Max-CSP. In
Proc. of CP’02, volume 2470 of LNCS, pages 280–294, Ithaca, NY, USA, 2002.

[90] J.-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. New lower bounds of constraint
violations for over-constrained problems. In Proc. of CP’01, volume 2239 of LNCS,
pages 332–345, Paphos, Cyprus, 2001.

[91] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal

P. Meseguer, F. Rossi, T. Schiex 327

of the ACM, 12(1):23–41, 1965.
[92] A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation operations.

IEEE Trans. on Systems, Man, and Cybernetics, 6(6):173–184, 1976.
[93] F. Rossi and A. Sperduti. Acquiring Both Constraint and Solution Preferences in

Interactive Constraint Systems. Constraints, 9(4):311–332, 2004.
[94] H. Rudovà and K. Murray. University course timetabling with soft constraints. In

Proc. of PATAT’02, pages 73–89, Gent, Belgium, 2002.
[95] Z. Ruttkay. Fuzzy constraint satisfaction. In Proc. FUZZ-IEEE’94, pages 1263–

1268, Orlando, Florida, 1994.
[96] M. Sanchez, P. Meseguer, and J. Larrosa. Using Constraints with Memory to Im-

plement Variable Elimination. In Proc. of ECAI’04, pages 216–220, 2004.
[97] M. Sanchez, J. Larrosa, and P. Meseguer. Tree Decomposition with Function Filter-

ing. In Proc. of CP’05, volume 3709, pages 593–606, Sitges, Spain, 2005.
[98] T. Schiex. Arc consistency for soft constraints. In Proc. of CP’00, volume 1894 of

LNCS, pages 411–424, Singapore, 2000.
[99] T. Schiex. Possibilistic constraint satisfaction problems or “How to handle soft

constraints ?”. In Proc. of UAI’92, pages 268–275, Stanford, CA, USA, 1992.
[100] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:

hard and easy problems. In Proc. of IJCAI’95, pages 631–637, Montréal, Canada,
1995.

[101] L. Shapiro and R. Haralick. Structural descriptions and inexact matching. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 3:504–519, 1981.

[102] P. Shenoy. Valuation-based systems for discrete optimization. In Bonissone, Hen-
rion, Kanal, and Lemmer, editors, Uncertainty in AI. North-Holland Publishers,
1991.

[103] J. Slaney, A. Binas, and D. Price. Guiding a Theorem Prover with Soft Constraints.
In Proc. of ECAI’04, pages 221–225, Valencia, Spain, 2004.

[104] P. Snow and E. Freuder. Improved relaxation and search methods for approximate
constraint satisfaction with a maximin criterion. In Proc. of the Conf. of Canadian
Society for Comput. Studies of Intelligence, pages 227–230, 1990.

[105] C. Terrioux and P. Jégou. Bounded backtracking for the valued constraint satisfac-
tion problems. In Proc. of CP’03, volume 2833 of LNCS, pages 709–723, Kinsale,
Ireland, 2003.

[106] W. J. van Hoeve. A Hyper-Arc Consistency Algorithm for the soft AllDifferent
Constraint. In Proc. of CP’04, volume 3258 of LNCS, pages 679–689, Toronto,
Canada, 2004.

[107] W. J. van Hoeve, G. Pesant, and L.-M. Rousseau. On Global Warming (Softening
Global Constraints). In Proc. of CP’04 Workshop on Preferences and Soft Con-
straints, Toronto, Canada, 2004.

[108] J. Váncza and A. Márkus. Solving Conditional and Conflicting Constraints in Man-
ufacturing Process Planning. In Proc. of CPAIOR’01 Workshop, 2001.

[109] G. Verfaillie, M. Lemaı̂tre, and T. Schiex. Russian doll search. In Proc. of AAAI’96,
pages 181–187, Portland, OR, USA, 1996.

[110] R. J. Wallace. Directed arc consistency preprocessing. In M. Meyer, editor, Selected
papers from the ECAI’94 Workshop on Constraint Processing, volume 923 of LNCS,
pages 121–137. Springer, Berlin, 1995.

[111] S. Will, A. Busch, and R. Backofen. Efficient Constraint-based Sequence Alignment

328 9. Soft Constraints

by Cluster Tree Elimination. In Proc. of ICLP’05 Workshop on Constraint based
Methods for Bioinformatics, Sitges, Spain (see www.dimi.uniud.it/dovier/WCB05),
2005.

[112] M. Wilson and A. Borning. Hierarchical constraint logic programming. J. Log.
Program., 16(3):277–318, 1993.

Handbook of Constraint Programming 329
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 10

Symmetry in Constraint Programming

Ian P. Gent, Karen E. Petrie, Jean-François Puget

Symmetry in constraints has always been important but in recent years has become a ma-
jor research area in its own right. A key problem in constraint programming has long been
recognised: search can revisit equivalent states over and over again. In principle this prob-
lem has been solved, with a number of different techniques. As we write, research remains
very active for two reasons. First, there are many difficulties in the practical application
of the techniques that are known for symmetry exclusion, and overcoming these remain
important research problems. Second, the successes achieved in the area so far have en-
couraged researchers to find new ways to exploit symmetry. In this chapter we cover both
these issues, and the details of the symmetry exclusion methods that have been conceived.

Figure 10.1: The solution to the puzzle of finding a chess position containing nine queens
and a king of each colour, with the rule that no piece is on the same line (row, column or
diagonal) as any queen of the opposite colour. Up to symmetry, the solution is unique.

B.V.

330 10. Symmetry in Constraint Programming

To illustrate what we mean by symmetry, we consider the chess puzzle shown in Fig-
ure 10.1. The solution to this puzzle is unique “up to symmetry” [115], but what do
we mean by symmetry in this context? By a “symmetry”, we mean an operation which
changes the positions of the pieces, but whose end-state obeys all the constraints if and
only if the start-state does. Given a solution, which by definition satisfies all the con-
straints, we can find a new solution by applying any symmetry to the first solution we find.
For example, given the pictured solution to the puzzle, we can swap the colours of each
piece, so the black queens appear where the white queens are and vice versa. Similarly, we
can rotate the chessboard by any multiple of 90 degrees to yield a new solution. Finally,
we can reflect the chessboard about the horizontal axis, the vertical axis and both of the di-
agonal axes. Since these symmetries can be combined, there are 16 symmetries available,
including the identity operation of leaving everything where it is.

Why is symmetry important? The main reason is that we can exploit symmetry to
reduce the amount of search needed to solve the problem. This is of enormous potential
benefit. For example, suppose we search for a solution to our chess puzzle, and the first
assignment is to place a white queen in the top left hand corner. In fact, the search decision
was not really to try a white queen in the top left corner, but instead the decision was to
try all potential solutions with a queen of either colour in any corner of the board. Since
there are 16 symmetries, we have the potential to reduce search by a factor of 16. A second
reason for symmetry’s importance is that many constraint problems have symmetry in
them. Moreover, the act of modelling can introduce symmetries. For example, if we
modelled the chess puzzle above with a variable for each queen ranging from 1 to 64
expressing its placement, there would be 2(9!)2 symmetric versions of each solution, as
each set of queens can be permuted and the two sets swapped. Yet, this model might be
desirable for effective propagation and heuristics, and so we would like to be able to deal
with its symmetries effectively.

By far the most important application of symmetry in constraint programming is “sym-
metry breaking” in order to reduce search. The goal of symmetry breaking is never to
explore two search states which are symmetric to each other, since we know the result in
both cases must be the same.1 It is common to identify three main approaches to symme-
try breaking in constraint programming. The first approach is to reformulate the problem
so that it has a reduced amount of symmetry, or even none at all. The second is to add
symmetry breaking constraints before search starts, thereby making some symmetric solu-
tions unacceptable while leaving at least one solution in each symmetric equivalence class.
The final approach is to break symmetry dynamically during search, adapting the search
procedure appropriately. This breakdown is simplistic, in that there is enormous variation
within each approach, and great commonalities between approaches. However, it is a very
useful informal categorisation and we will structure our discussion around it.

In the rest of this chapter we hope to answer the following questions: How do we go
about achieving the search reductions that are possible? What general methods are there,
and what tradeoffs are involved? How can we make it as easy as possible for the day-to-day
constraint programmer to use? What research directions remain?

1The phrase “symmetry breaking” might be misleading, because not all methods actually break symmetry
in the sense of creating a problem without symmetry. However, the usage is entrenched in the community and it
would be even more confusing to try to change it.

I. P. Gent, K. E. Petrie, J.-F. Puget 331

10.1 Symmetries and Group Theory

The study of symmetry in mathematics is called group theory. We assume no background
in group theory for reading this chapter, so we introduce all the concepts we need. We
make no apologies for emphasising the role of group theory at this early stage, as it es-
sential to understanding the role of symmetry in constraint programming. We can only
introduce very briefly the key concepts, so this section should be taken only as the light-
est introduction to what is one of the largest research areas in mathematics. Fortunately
for most constraint programmers, a little knowledge of group theory is in fact enough to
understand most of the work done to date. Sadly, introductions to group theory for math-
ematicians often take for granted the link with symmetry, so we will spend a little time
explaining this. We will explain group theory through permutations. First, nothing is lost
since every group can be expressed as a set of permutations. Second, it makes it very
easy to understand the link between a symmetry as an element of a group and a symmetry
as an action. We will emphasise the notion of a group action, since this expresses how
symmetries transform search states, and this is our main interest.

Example 10.1. Chessboard Symmetries
Consider a 3 × 3 chessboard. We label the nine squares with the numbers 1 to 9. These
numbers are the points that will be moved by symmetries. There are eight natural symme-
tries of a chessboard. We always include the identity symmetry, which leaves every point
where it is. The identity is shown at the top left of Figure 10.2. Then, we can rotate the
chessboard by 90, 180, and 270 degrees in a clockwise direction. The resulting locations of
the points are shown in the rest of the top row of Figure 10.2. Finally, there are reflections
in the vertical axis, in the horizontal axis, and in the two main diagonal axes, and these are
shown in the bottom row.

1 2 3
4 5 6
7 8 9

id

7 4 1
8 5 2
9 6 3

r90

9 8 7
6 5 4
3 2 1

r180

3 6 9
2 5 8
1 4 7

r270

3 2 1
6 5 4
9 8 7

x

7 8 9
4 5 6
1 2 3

y

1 4 7
2 5 8
3 6 9

d1

9 6 3
8 5 2
7 4 1

d2

Figure 10.2: The 8 Symmetries of a 3× 3 chessboard

The link between symmetries and permutations can be seen very simply. A permu-
tation is a one-to-one correspondence between a set and itself. Each symmetry defines a
permutation of the set of points. An easy way to write down permutations is in Cauchy
form. Cauchy form is two rows of numbers. The top row is the complete set of elements,
in ascending order, that the permutation acts over. The second row shows which number
each element of the top rows maps to. For example, the identity symmetry and permutation
maps each point to itself, and is shown in Cauchy form on the top left of Figure 10.3. The

332 10. Symmetry in Constraint Programming

rotational symmetry by 90 degrees is shown in Cauchy form on the top right. We see that
the point 1 is replaced by 7 after r90, 7 in turn is replaced by 9, 9 by 3, and 3 by 1. This
gives a cycle (1 7 9 3). Another cycle is (2 4 8 6) and there is another trivial cycle just
containing (5). In the main, group theorists do not use Cauchy form, preferring a notation
based on the set of cycles a permutation defines.

id :

„

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

«

r90 :

„

1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

r180 :

„

1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

«

r270 :

„

1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

«

x :

„

1 2 3 4 5 6 7 8 9
3 2 1 6 5 4 9 8 7

«

y :

„

1 2 3 4 5 6 7 8 9
7 8 9 4 5 6 1 2 3

«

d1 :

„

1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

«

d2 :

„

1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

«

Figure 10.3: Permutations representing the symmetries of a chessboard, written in Cauchy
form

Example 10.2. Cyclic form
The symmetry r90 above contains cycles (1 3 9 7), (2 4 6 8), and (5). The cyclic form of
r90 is (1 3 9 7)(2 4 6 8)(5) although cycles of length one can be omitted. The permutation
maps each point to the succeeding element of the cycle it is in, except that the last element
is mapped to the first and a point in no cycle is mapped to itself. In cyclic form, we can
write the symmetries of the 3× 3 chessboard as shown in Figure 10.4.

id : () r90 : (1 3 9 7)(2 4 6 8)

r180 : (1 9)(2 8)(3 7)(4 8) r270 : (1 7 9 3)(2 4 8 6)

x : (1 3)(4 6)(7 9) y : (1 7)(2 8)(3 9)

d1 : (2 4)(3 7)(6 8) ha d2 : (1 9)(2 6)(4 8)

Figure 10.4: Permutations representing the symmetries of a chessboard, written in cyclic
form

Comparing Figures 10.3 and 10.4 shows that the cyclic form is far more concise, espe-
cially when many points are unmoved by a permutation. One disadvantage is that it does
not define exactly the set of points that the permutation is acting on: for example none of
the permutations above move the point 5, so the number 5 does not appear in Figure 10.4.
Also, the same permutation can be written down in many different ways, since cycles can
appear in any order and each cycle can start with any element in it. However, the cyclic
form is so natural for people to use that the computational group theory system GAP uses
it as its input language for permutations, even though it then converts them internally into
a more computationally efficient form.

I. P. Gent, K. E. Petrie, J.-F. Puget 333

Both forms of writing down permutations make it easy to see how a permutation acts
on a point. In general, if p is a point and g a permutation, then we will write pg to write
down the point that p is moved to under g. For example, 1r90 = 7, and 1r270 = 3. We
often extend this notation in the natural way to sets of other data structures containing
points. For example, we have {1, 3, 8}r90 = {1r90, 3r90, 8r90} = {7, 1, 6} = {1, 6, 7}:
the equivalence between the last two terms is simply because sets are unordered.

There are certain key facts about permutations which provide the link between them
and groups. We will explain these, then provide the fundamental definition of a group.
First, it is easy to work out the composition of two permutations, which for permutations f
and g we will write as f ◦ g. The result of f ◦ g is calculated by taking, for each point, the
result of moving that point under f and then by g. That is, for any point p, pf◦g = (pf)g.
It is important to notice the order of action, i.e. we do f and then g when we write f ◦ g,
which is the other way round compared to function composition such as sin(cos(x)). Since
both f and g are one-to-one correspondences, so is their composition, so the composition
of two permutations is another permutation. We can calculate the composition pointwise:
we simply work out what 1 moves to under f , then what the result moves to under g, and
repeat for each other point.

Example 10.3. Composition of Permutations

r90 =

„

1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

x =

„

1 2 3 4 5 6 7 8 9
3 2 1 6 5 4 9 8 7

«

r90 ◦ x =

„

1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

«

= d2

We have already described the existence of the identity permutation, which we call id.
This can be defined as the empty set of cycles for any set of points. For any permutation
f there is an inverse permutation, such that f ◦ f−1 = id. This is easily calculated: in the
cyclic form we just reverse the order of each cycle; and in the Cauchy form we swap the
two rows and then reorder the columns so that the first row is in numerical order.

Example 10.4. Inverse of a permutation

r90 =

„

1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

„

7 4 1 8 5 2 9 6 3
1 2 3 4 5 6 7 8 9

«

by swapping rows

r90−1 =

„

1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

«

by reordering = r270

Finally, we note that composition of permutations is associative. That is, f ◦ (g ◦ h) =
(f ◦ g) ◦ h. The truth of this relies on the definition of permutation composition, i.e. that
g ◦ h gives, for each point, the same result as applying g and then h. So, for example,
7(f◦g)◦h) is the result of applying f to 7, g to the result, and h to the result of that: but this
is exactly the same as 7f◦(g◦h), which is also found by applying f , to 7, g to the result, and
h to the result of that. We now, finally, present the axioms defining a group.

334 10. Symmetry in Constraint Programming

Definition 10.5. Group Axioms

A group is a non-empty set G with a composition operator ◦ such that:
- G is closed under ◦. That is, for all g, h ∈ G, g ◦ h ∈ G; and
- there is an identity id ∈ G. That is, for all g ∈ G, g ◦ id = id ◦ g = g; and
- every element g of G has an inverse g−1 such that g ◦ g−1 = g−1 ◦ g = id; and
- ◦ is associative. That is, for all f, g, h ∈ G, (f ◦ g) ◦ h = f ◦ (g ◦ h).

Definition 10.6. Order of a Group

The order of a group G is the number of elements in the set G. It is denoted by |G|.

Example 10.7. The set of symmetries of a chessboard {id, x, y, d1, d2, r90, r180, r270}
form a group of order 8. We have that r90−1 = r270, r270−1 = r90, and all other
elements g are self-inverse, i.e. g−1 = g. The group of a chessboard is non-commutative,
since d1 ◦ r90 = x but r90 ◦ d1 = y. In most applications in constraint programming,
the group is not commutative. Note that we omitted mention of the operation associated
with the group, i.e. permutation composition: this is often done where it will not cause
confusion.

Note that our (entirely standard) definition of a group nowhere mentions the action
done by the group element. It is vital to understand that group elements can operate in two
distinct ways. First, there is the action that a group element (i.e. symmetry) has on the
points that it acts on. In the chessboard example, the points were 1 . . . 9, and we wrote pg

for the result of the action of g on point p. This is what we have emphasised up to now.
Second, a group element g operates by the composition operator to permute the values of
other elements in the group. That is, f ◦ g gives another group element. The latter kind
of operation is the focus of most study in group theory. In contrast, it is the group action
which is of far more importance to us, since it is this action which represents the function
of a symmetry on the variables and values in a constraint problem.

For permutations, the operation ◦ is composition as described above. We have already
shown that there is an identity permutation, all permutations have inverses, and that com-
position of permutations is associative. The final condition is closure. We have shown that
the composition of two permutations is another permutation. However, for a set of permu-
tations to form a group, we have to have that the composition of any two permutations is
in the set. This depends on the set of permutations we have chosen. There is an easy way
to guarantee closure, which is to take a set of permutations and generate all permutations
which result from composing them arbitrarily.

Definition 10.8. The Generators of a Group

Let S be any set of elements (for example, permutations) that can be composed by the
group operation ◦ (for example, permutation composition). The set S generates G if every
element of G can be written as a product of elements in S and every product of any se-
quence of elements of S is in G. The set S is called a set of generators for G and we write
G = 〈S〉.

Example 10.9. Generators of Chessboard Symmetries
The chessboard symmetries are generated by {r90, d1} since:

I. P. Gent, K. E. Petrie, J.-F. Puget 335

id = r90 ◦ r90 ◦ r90 ◦ r90 =

„

1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

«

r90 = r90 =

„

1 2 3 4 5 6 7 8 9
7 4 1 8 5 2 9 6 3

«

r180 = r90 ◦ r90 =

„

1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

«

r270 = r90 ◦ r90 ◦ r90 =

„

1 2 3 4 5 6 7 8 9
3 6 9 2 5 8 1 4 7

«

d1 = d1 =

„

1 2 3 4 5 6 7 8 9
1 4 7 2 5 8 3 6 9

«

y = d1 ◦ r90 =

„

1 2 3 4 5 6 7 8 9
7 8 9 4 5 6 1 2

«

d2 = r90 ◦ r90 ◦ d1 =

„

1 2 3 4 5 6 7 8 9
9 6 3 8 5 2 7 4 1

«

x = r90 ◦ d1 =

„

1 2 3 4 5 6 7 8 9
3 2 1 6 5 4 9 8 7

«

Given any set of permutations, we can always work with the group generated by that
set, since it is by definition closed. Finding and working with generators can be a very
important means of representing groups. If there are |G| elements in a group, there is
always a generating set of size log2(|G|) or smaller.

Definition 10.10. Subgroup

A subgroupH of a groupG is a subset ofG that is itself a group, with the same composition
operator as G. Two simple and universal examples of subgroups are that G is always a
subgroup of G, as is {id}.

Example 10.11. Subgroup of Chessboard Symmetry:
The set {id, r90, r180, r270} form a subgroup of order 4. As can be seen from Exam-
ple 10.1, this can be generated by the element r90.

Given a subgroup H of a group G and an element g of G, the (right) coset H ◦ g is the
set of elements {h◦ g|h ∈ H}. Two cosets of H in G constructed with different elements
are either disjoint or the same, i.e. if H ◦ f ∩H ◦ g 6= ∅ then H ◦ f = H ◦ g. Thus the
cosets of H partition the elements of G. Furthermore, all the cosets of H have size |H|.
The number of cosets is called the index of H in G and is denoted by |G : H|. If one
element is chosen from each coset of H , then a set of coset representatives is formed, this
set is the right transversal. The group G is the union of the cosets formed by composing
the elements of H with these coset representatives.

Example 10.12. Cosets of Chessboard Symmetries
The group G is the full chessboard symmetries, and H is the rotations of the chessboard.
Then the two cosets of H are: {id, r90, r180, r270} and {d1, x, d2, y}, whereH = H ◦ id
and H = H ◦ d1. One set of coset representatives is {id, d1}, but there are a total of 16
possible sets of coset representatives, comprising one element from each coset.

336 10. Symmetry in Constraint Programming

The orbit of a point in G is a set of the different points that the point can be mapped to
by elements of G.

Definition 10.13. Orbit

The orbit of a point δ in G is the set δG = {δg | g ∈ G}.
Example 10.14. Orbits of Points on Chessboard
Looking back at the diagram of chessboard symmetries given in Example 10.1, the orbits
of a given point can be calculated. For example, the orbit of 1 is {1, 3, 7, 9}, because
1id = 1, 1r90 = 7, 1r180 = 9, 1r270 = 3, and because all other group elements map 1 to
one of these points.

The stabiliser of a point is the set of elements which fixes or stabilises the point. It
indicates which elements can be applied to a point, which do not cause the value of the
point to move.

Definition 10.15. Stabiliser

Let G be a permutation group acting on (amongst others) a point β. The stabiliser of β in
G is defined by: Gβ = {g ∈ G|βg = β}. The stabiliser Gβ is a subgroup of the groupG.

Example 10.16. Stabilisers of chessboard symmetries
From Figure 10.2 of chessboard symmetries, the stabiliser of any given point can be iden-
tified. For instance, the stabiliser of point 1 is G1 = {id, d1} as these elements map point
1 back to itself. The stabiliser of point 5 is the whole group G, i.e. G5 = G, since none of
the symmetries move point 5.

10.1.1 Group Theory in Constraint Programming

Whenever a constraint problem has symmetry, we can construct a group to represent the
symmetry in the problem. The elements of the group permute points, dependent on the
symmetries in the particular problem. The points that the elements of the group act on will
typically be variable-value pairs.

Example 10.17. Representing the Symmetry of the Chess problem in Figure 10.1
Variables - The CSP has n2 variables corresponding to the squares of the chessboard, to
represent the variables requires n2 labels
Values- There are 5 possible values for each square of the chessboard: a white queen, a
black queen, a white king, a black queen, or it is empty.
Variable-Value - There are n2 possible labels for the variables, and 5 possible labels for the
variables, to represent variable-value pairs requires 5n2 points.

There is one particularly important group of permutations. The set Sn of all permuta-
tions of n objects forms a group and is called the symmetric group over n elements. The
group Sn is of size n!. This group comes up frequently in constraints because we often
have n objects which are indistinguishable between each other, and which are thus acted
on by Sn. It also arises in combinations. For example, we will see that a commonly oc-
curring situation is a two-dimensional matrix of variables, where we can freely permute
m columns (preserving the rows) and n rows (preserving the columns). Since we can first
permute the columns and then the rows, the group we have is a combination known as the
direct product Sm × Sn.

I. P. Gent, K. E. Petrie, J.-F. Puget 337

10.1.2 Computational Group Theory

Computational Group Theory is a large interdisciplinary research area in mathematics and
computer science. Butler has written a text book on the algorithms used in this area [17]
and Holt et al. [65] have recently written a handbook of computational group theory. There
are two major packages for computational group theory called GAP [46] and Magma [14].
Constraint programmers using symmetry can often employ GAP or Magma as an external
function. However, if that is not available or appropriate, understanding of computational
group theory algorithms is important. The most important algorithm of all is the Schier
Sims algorithm, for which we give an extremely brief outline.

The Schreier Sims algorithm [108] is used to construct a stabiliser chain G0, G1, . . . ,
Gn as follows:

G0 = G

∀i ∈ In, Gi = Gi−1

By definition,

Gi = {σ ∈ G : 0σ = 0 ∧ . . . ∧ (i− 1)σ = i− 1}
Gn ⊆ Gn−1 ⊆ . . . G1 ⊆ G0

The Schreier Sims algorithm also computes set of coset representatives Ui. Those are
orbits of i in Gi: Ui = iGi .

By definition, Ui is the set of values which i is mapped to by all symmetries in G that
leave at least 0, . . . , (i− 1) unchanged.

In constraint programming terms the stabiliser is perhaps the most useful concept of
those outlined above. The stabiliser of a variable/value pair shows what symmetry is left
unbroken once that value is assigned to the given variable, during search. This is explained
in more detail, with regards to GAP-SBDS, in Section 10.5.4. The stabiliser chain rep-
resents the symmetry which remains, after a collection of variables have been assigned
during search.

10.2 Definitions

It might seem self-evident that in order to deal with symmetry in constraint satisfaction
problems (CSPs), practitioners must first understand what is meant by symmetry. This
appears not to be true: many papers on the topic do not offer a precise definition of what
a symmetry is. The papers which do offer definitions often give fundamentally different
ones to each other, while still identifying the same symmetries in a given problem and
dealing with them correctly. There are two broad types of definition: those that define
symmetry as a property of the solution set and those that define symmetry as a property
that can be identified in the statement of the problem, without solving it. These will be
referred to as solution symmetry and problem symmetry. In this section we give a brief
survey of the definitions contained in the literature, before concentrating in more depth on
recent definitions proposed by Cohen et al [21].

An example of a definition of solution symmetry in CSPs is given by Brown, Finkel-
stein & Purdom [16]: “A symmetry is a permutation that leaves invariant the set of so-
lutions sequences to a problem.” Backofen and Will [5] allow for a much broader class

338 10. Symmetry in Constraint Programming

of problem transformations: “A symmetry S for a constraint program CPr, where a set
of solutions for a given problem is denoted ‖ CPr ‖, is a bijective function such that S:
‖ CPr ‖→‖ CPr ‖.” Although not explicitly stated, Backofen and Will allow a symmetry
to be specified by its effect on each individual assignment of a value to a variable, this
allows them to consider symmetries with regard to partial assignments.

Many definitions define restricted forms of symmetry that affect only the variables or
only the values. Interchangeability, as outlined in Definition 10.18 by Freuder [39], is a
limited form of solution symmetry, which only operates over values.

Definition 10.18. Two values a, b for a variable v are fully interchangeable iff every solu-
tion to the CSP containing the assignment 〈v, a〉 remains a solution when b is substituted
for a, and vice versa.

As Freuder notes, in general identifying fully interchangeable values requires finding
all solutions to the CSP. He defines local forms of interchangeability that can be identified
by inspecting the problem. Definition 10.19 outlines neighbourhood interchangeability,
which is a form of constraint symmetry.

Definition 10.19. Two values a, b for a variable v are neighbourhood interchangeable iff
for every constraint C on the variable v, the set of variable-value pairs that satisfies the
constraint with the pair 〈v, a〉 is the same as the set of variable-value pairs that satisfies
the constraints with the pair 〈v, b〉.

Choueiry and Noubir extend the idea of interchangeability to compute another form of
local interchangeability, and showed how to exploit these results in practice [19].

Benhamou [8] extends the ideas of value interchangeability slightly and distinguishes
between semantic and syntactic symmetry in CSPs, corresponding to solution symmetry
and problem symmetry respectively. He defines two kinds of semantic symmetry. Two
values ai and bi for a CSP are symmetric for satisfiability if: there is a solution which
contains the value ai iff there is a solution which contains the value bi. Two values ai
and bi are symmetric for all solutions if: each solution containing the value ai can be
mapped to a solution containing the value bi, and vice versa. If two values are symmetric
for all solutions they are also symmetric for satisfiability. Identifying semantic symmetries
requires solving the CSP to find all solutions, and then examining them. Benhamou defines
syntactic symmetry to mean that the permutation does not change any constraint relation,
defined as a set of tuples.

The notion of interchangeable values has been and is still widely used and studied, e.g.
[72, 55]. However, for the purposes of this overview, we regard interchangeability as a
kind of value symmetry. Thus, we often discuss methods below which can be applied to
interchangeable values, but do not point this out explicitly.

In contrast to this value centric approach, variable centric definitions have also been
proposed. In CSPs, permuting the variables in a constraint defined intensionally will in
general change the constraints, e.g. the constraint x+y = z is not the same as the constraint
x+z = y. Puget [97] defines the notion of a symmetrical constraint, i.e. a constraint which
is not affected by the order of the variables. For instance, the 6= constraint is symmetrical.
Puget’s definition means that a symmetry of a CSP is a permutation of the variables which
maps the set of constraints into a symmetrically equivalent set: any constraint is either
unchanged by the permutation or is an instance of a symmetrical constraint and is mapped
onto a constraint on the same set of variables.

I. P. Gent, K. E. Petrie, J.-F. Puget 339

A similar idea was introduced by Roy and Pachet [105]. They define the notion of
intensional permutability. For two variables to be intensionally permutable they must have
the same domain; any constraints affecting either of the two variables must affect both; and
the two variables must be interchangeable in these constraints. The constraint is assumed
to be defined intensionally, i.e. in terms of a formula, hence the name. An example of
intensional permutability can be given by considering a linear constraint: in this case any
two variables with the same coefficient and the same domain are intensionally permutable
with respect to that constraint.

The definitions of symmetry given by Puget [97] and Roy & Pachet are restricted to
permuting variables of the problem. Meseguer and Torras [84] give a definition of symme-
try which acts on both the variables and the values of a CSP. Their definition allows both
variable symmetries (that permute only the variables) and value symmetries (that permute
only the values) as special cases. However, it does not fit every transformation of a CSP
that we would want to recognise as a symmetry. Meseguer and Torras use the chessboard
symmetries as an example, in a commonly used CSP formulation where only one piece
is placed per row, the variables correspond to the rows of the chessboard and the values
correspond to the columns. They show that reflection through 180◦ is a symmetry of the
CSP by their definition, but four symmetries are not: reflection in the diagonals, rotation
through 90◦, and 270◦.

McDonald and Smith [82] state that “a symmetry of P is a bijective function σ : A→
A where A is some representation of a state in search e.g. a list of assigned variables,
a set of current domains etc., such that the following holds: 1. Given A a partial or full
assignment of P, if A satisfies the constraints C, then so does σ(A); and 2. Similarly, if A
is a nogood, then so too is σ(A).” This allows symmetries operating on both the variables
and values; it gives a good intuitive view of problem symmetry space. However, due to
the undefined nature of A it does not provide a rigorous definition, that could be used to
identify the symmetry of a problem.

The above survey of symmetry definitions shows that symmetry definitions differ both
on what aspect of the CSP they act on (only the variables, only the values or variable-value
pairs) and in what they preserve (the constraints or the set of solutions). All definitions
agree that symmetries map solutions to solutions; they disagree over whether this is a
defining property, so that any bijective mapping of the right kind that preserves the solu-
tions must be a symmetry, or a consequence of leaving the constraints unchanged.

Defining symmetry as preserving the set of solutions does not seem to offer a practical
route to identifying symmetry in CSPs. Detecting semantic symmetries is, unsurprisingly,
intractable [85, 111]: to find the full symmetry group we might need all the solutions to the
CSP. On the other hand, the solution symmetry group is well-defined, whereas equivalent
CSPs differing only slightly in the way that constraints are expressed, may have different
problem symmetries. It may be possible, either deliberately or inadvertently, to write the
constraints of a CSP in such a way that the symmetry of the problem being modelled is not
apparent.

For the purpose of this chapter a definition of both solution symmetry, Definition 10.20,
and a definition of problem symmetry, Definition 10.21 are given. These are in the spirit
of [21], but are less formally defined.

Definition 10.20. Solution Symmetry

A solution symmetry is a permutation of the set of 〈variable, value〉 pairs which preserves

340 10. Symmetry in Constraint Programming

the set of solutions.

Definition 10.21. Problem Symmetry

A problem symmetry is a permutation of the set of 〈variable, value〉 pairs which preserves
the set of constraints.

Both problem and solution symmetry allow variable and value symmetries as special
cases.

In order for Definition 10.21 to be complete, a suitable interpretation of what it means
to preserve the sets of constraints is needed. Any constraint ci with scope Vi ⊆ V can
be defined by a set of satisfying 〈variable, value〉 tuples. A symmetry whose action on
the set of possible 〈variable, value〉 tuples has been specified can be applied to the set of
〈variable, value〉 tuples satisfying a constraint, yielding a new set of 〈variable, value〉
tuples. The resulting 〈variable, value〉 tuples may not all relate to the same set of vari-
ables as the original constraint or each other. However, if the results of applying the sym-
metry to all the 〈variable, value〉 tuples, defining all the constraints is the same set of
〈variable, value〉 tuples, it can be said that the constraints are unchanged by the action
of the symmetry. This definition does not require a symmetry to leave each individual
constraint unchanged, but rather the set of constraints.

A recent paper by Cohen et al., looks more closely at the differences between Solution
Symmetry and Problem Symmetry (which they call Constraint Symmetry) [21]. Cohen
et al. both give more rigorous definitions of the two concepts, and show the difference
between the two definitions in practice.

10.3 Reformulation

Modelling has a substantial effect on how efficiently a problem can be solved. An appro-
priate reformulation of a model can turn an infeasible problem in practical terms into a
feasible one. Modelling and reformulation are equally important for symmetry breaking.
Different models of the same problem can have different symmetries; one formulation can
have symmetries which are easier to deal with than another. In extreme cases, one formu-
lation can have no symmetry at all. In other cases, the amount of symmetry can be greatly
reduced from one model to another. Moreover, once a problem has been reformulated the
remaining symmetries can still be dealt with before or during search, while other symme-
try breaking methods can lead to great difficulties in combination with each other. Thus,
reformulation of a problem can be critical in dealing with symmetries.

For a first example we mention the well known “social golfers problem”, problem 10
in CSPLib, although we will only sketch the issues here since Smith goes into some detail
in her chapter.2 In this problem, 32 golfers want to play in 8 groups of 4 each week, so
that any two golfers play in the same group at most once, for as many weeks as possible,
the difficult case being 10 weeks. We can construct an otherwise sensible model with
32!10!8!104!80 symmetries: we can permute the 32 players; we can permute the 10 weeks;
within each week we can (separately) permute the groups; and within each group we can
(separately) permute the four players. In this model there are more than 10198 symmetric
versions of each essentially different solution, and there is a very good chance that search

2“Modelling”, by Barbara Smith, this Handbook.

I. P. Gent, K. E. Petrie, J.-F. Puget 341

will thrash impossibly. By remodelling, Smith reduces this number to 32!10! [113]. For
each pair of players we have a variable indicating which week they play together in (or
an extra variable if they never meet): the only symmetries left are the week and the player
symmetries. There are still huge numbers of symmetries left, but they are of a much simpler
form.

One important technique is the use of set variables where we have a number of in-
distinguishable variables. Set variables are available in most constraint solvers, and allow
us to express constraints on sets’ size, intersection, union, etc. In the golfers’ problem,
for example, one might encode the groups playing within each week as being eight set
variables. Each one is constrained to be of size 4 and they are pairwise constrained to have
no intersection. Because set variables are implemented with no implicit ordering between
elements, we have lost the 4! symmetries in each group, reducing the total symmetries by
a factor of 2480 in the problem. Furthermore, in the golfers’ problem we can represent
the constraint that two players play together no more than once, by saying that the inter-
section of any two groups in different weeks is of size 1 or 0. There are some theoretical
and practical difficulties associated with set variables. One is that different representations
of set variables by the solver have dramatically different behaviours in propagation [67]:
if a solver happens to use the representation least suitable for the constraints being used,
search can be dramatically increased. Another difficulty occurs when we wish to use a
mixture of set and integer variables. We may have constraints on elements of a set that
are most natural to express on integer variables. “Channelling” between set and integer
variables can be difficult and can again lead to a failure to propagate until late in search.
Alternatively, we might re-introduce integer variables to represent the elements of the set,
thereby bringing back many of the symmetry problems that the set variables avoided in
the first place. Despite these potential disadvantages, set variables remain a very impor-
tant modelling technique to consider in any problem where a number of variables have
the symmetry group Sn. Because of this, representation of set variables and propagation
techniques for them are an important area of study [56, 67, 75, 106]. Another chapter in
this Handbook describes set variables in detail.3

Another example of reformulation again illustrates the dramatic improvements that can
be achieved, while even more dramatically illustrating the extent to which reformulating
is an art more than a science. The all-interval series problem (problem 7 in CSPLib) is
to find a permutation of the n integers from 0 to n − 1 so that the differences between
adjacent numbers are also a permutation of the numbers from 1 to n − 1. There are 4 ob-
vious symmetries in the problem: the identity, reversing the series, negating each element
by subtracting it from n − 1, and doing both. Gent et al [54] report on a reformulation of
the problem based on the observation that we can cycle a solution to the problem about a
pivot to generate another solution. The location of this pivot is dependent on the assign-
ments made. As an example, here are two solutions for n = 11. Differences are written
underneath the numbers:

0 10 1 9 2 8 3 7 4 6 5 3 7 4 6 5 0 10 1 9 2 8

10 9 8 7 6 5 4 3 2 1 4 3 2 1 5 10 9 8 7 6

The difference between the first number (0) on the left and last number (5) is 5. This means
we can split the sequence between the 8 and 3, losing the difference 5. We can join the

3“Constraints over Structured Domains”, by Carmen Gervet, this Handbook.

342 10. Symmetry in Constraint Programming

rest of the sequence on to the start, because the 5 − 0 will now replace 8 − 3. This yields
exactly the solution shown on the right. In this case the pivot is between the values 8 and
3. The difference between first and last terms must always duplicate a difference in the
sequence, so this operation can be applied to any solution. Because of this, we do not
merely reformulate the constraint model, but actually move to solve a different problem,
whose solutions lead to solutions of the original. In the reformulated problem, we find a
permutation of the sequence 0, 1, . . . n − 1, but we now include the difference between
first and last numbers, giving n differences instead of n − 1. The sequence has to obey
two constraints: that the permutation starts 0, n− 1, 1; and that the n differences between
consecutive numbers contain all of 1, . . . n−1 with one difference occurring exactly twice.
[50] show that (for n > 4) each solution gives 8 distinct solutions to the all-interval series
problem, but the reformulation has no symmetry at all. Search in this model is about 50
times faster than any competing technique.

It is possible to take advantage of different ‘viewpoints’ [73] of a constraint problem.
To take a simple example, suppose we insist that n variables, each with the same n values,
must all take different values. We can look at this problem from two points of view: we can
find values for each variable, or we can find variables for each value. If there is symmetry,
then value symmetry in the first viewpoint is interchanged with variable symmetry in the
second viewpoint, and vice versa. This is useful if we have at hand a technique which is
good at one kind of symmetry: for example Roney-Dougal et al [103] used this idea to
break a group of variable symmetries using an efficient technique for value symmetries.
Flener et al [36]. showed how value symmetries in matrix models can be transformed to
variable symmetries by adding a dimension of 0/1 variables to the matrix, the new sym-
metries being broken using techniques described in Section 10.4.5 below. Law and Lee
studied this idea theoretically and generalised it to cases where the translation is not to 0/1
variables [74].

Recently, there has been one significant advance in understanding how reformulation
can be applied mechanically. Prestwich has shown that value symmetries can be eliminated
automatically by a new encoding from constraints into SAT, the ‘maximality encoding’
[93]. This breaks all value symmetries of a special kind Prestwich calls ‘Dynamic Sub-
stitutability’, a variant of Freuder’s value interchangeability [39]. A particular important
aspect of the contribution is that Prestwich’s encoding eliminates all dynamic substitutabil-
ity without any detection being necessary. This means that no detection program needs to
be run, nor does the constraint programmer need to specify the symmetry in any form. A
disadvantage of this technique is its limitation to certain types of value symmetry. How-
ever, as mentioned above, any remaining symmetry in the translated SAT problem can be
detected and broken using standard SAT techniques.

Sadly, for a method with so many advantages, there is very little we can say about
reformulation because there is no fully general technique known. Not only that, but the il-
lustrative examples above show considerable insight about their respective problems. Also,
there was no guarantee (before running the relevant constraint programs) that they would
lead to improved search. About the only truly general comment we can make is that the
very great importance of formulating problems to reduce symmetry is not fairly reflected
in the short space we devote to it in this chapter. There is a wonderful research opening for
the discovery of general techniques akin to the lex-leader method for adding constraints,
moving the area of reformulation from a black art to a science where questions were on
tradeoffs and implementation issues, rather than the need for magical insights.

I. P. Gent, K. E. Petrie, J.-F. Puget 343

10.4 Adding Constraints Before Search

Without doubt, the method of symmetry breaking that has been most used historically
involves adding constraints to the basic model. In this context, the term “symmetry break-
ing” is entirely appropriate. We move from a problem with a lot of symmetry to a new
problem with greatly reduced symmetry – ideally with none at all. The constraints we add
to achieve this are called “symmetry breaking constraints”.

Constraint programmers have always added symmetry breaking constraints in an ad
hoc fashion when they have recognised symmetry in a constraint problem. Often it is easy
to think of constraints that break all or a large part of symmetry. For example, suppose
that we have 100 variables in an array X which are indistinguishable (so that they can
be freely permuted). It is straightforward, and correct, to insist that the variables are in
nondecreasing order, X[1] ≤ X[2] . . . ≤ X[100]. If we further know that all variables
must be different, we can make this strictly increasing order: X[1] < X[2] . . . < X[100].
If it happens that the variables take the values 1..100, then simple constraint propagation
will deduce that X[1] = 1, X[2] = 2, . . . , X[100] = 100. If the programmer notices this
beforehand, then we can reformulate the problem to replace each variable X[i] with the
value i throughout our program. There are many examples where constraint programmers
have added more complicated constraints to break symmetries. A typical example from
the literature is adding constraints to break symmetry in the template design problem [96].
This is fine if done correctly, but can obviously lose solutions if done incorrectly. Standard
methods have been developed which can make the process easier and more likely to be
correct, in the situations where they apply. Even where these are not directly applicable,
a knowledge of them will serve constraint programmers well, as it should simplify the
derivation of correct constraints which can be added by hand.

10.4.1 The Lex-Leader Method

Puget [97] proved that whenever a CSP has symmetry, it is possible to find a ‘reduced
form’, with the symmetries eliminated, by adding constraints to the original problem.
Puget found such a reduction for three simple constraint problems, and showed that this
reduced CSP could be solved more efficiently than in its original form. Following this, the
key advance was to show a method whereby such a set of constraints could be generated.
Crawford, Ginsberg, Luks and Roy outlined a technique, called “lex-leader” for construct-
ing symmetry-breaking ordering constraints for variable symmetries [22]. In later work,
Aloul et al also showed how the lex-leader constraints for symmetry breaking can be ex-
pressed more efficiently [2]. This method was developed in the context of Propositional
Satisfiability (SAT), but the results can also be applied to CP.

The idea of lex-leader is essentially simple. For each equivalence class of solutions
under our symmetry group, we will predefine one to be the canonical solution. We will
achieve this by adding constraints before search starts which are satisfied by canonical
solutions and not by any others.

The technique requires first choosing a static variable ordering. From this, we induce
an ordering on full assignments. The ordering on full assignments is straightforward. The
tuple is simply the values assigned to variables, listed in the order defined by our static
ordering. Since the method is defined for variable symmetries, any permutation g converts
this tuple into another tuple, and we prefer the lexicographically least of these. This method

344 10. Symmetry in Constraint Programming

A B C
D E F

→ F E D
C B A

1. ABCDEF �lex ABCDEF
2. ABCDEF �lex ACBDFE
3. ABCDEF �lex BACEDF
4. ABCDEF �lex CBAFED
5. ABCDEF �lex BCAEFD
6. ABCDEF �lex CABFDE

7. ABCDEF �lex DEFABC
8. ABCDEF �lex DFEACB
9. ABCDEF �lex EDFBAC
10. ABCDEF �lex FEDCBA
11. ABCDEF �lex EFDBCA
12. ABCDEF �lex FDECAB

Figure 10.5: A 3 × 2 matrix containing 6 variables; and the result of swapping the two
rows and reversing the columns, giving the permutation mapping ABCDEF to FEDCBA.
Also shown are the 12 lex-leader constraints, including the trivial one, arising from its 12
symmetries. Note how each constraint corresponds to a permutation of the variables, as the
method is defined to work for variable symmetries: the illustrated matrix transformation
gives constraint 10.

is, in principle, simple to implement. Each permutation in the group gives us one �lex

constraint. So the set of constraints defined by the lex-leader method is

∀g ∈ G, V�lexV
g (10.1)

where V is the vector of the variables of the CSP, and �lex is the lexicographic ordering
relation. The lexicographic ordering is exactly as is standard in computer science, e.g.
AD�lexBC iff either A < B or A = B and D ≤ C.

A small example illustrates the method. Consider a 3×2 matrix depicted in Figure 10.5,
in a context where the rows and columns may be freely permuted. The symmetries form
the group S3 × S2, with order 3!2! = 12. We pick the variables in alphabetical order,
so the vector of the variables of the problem is ABCDEF. The 12 symmetries lead to the
12 lex-leader constraints shown in Figure 10.5, including the vacuous symmetry from the
identity.

An important practical issue with the lex-leader constraints is that they do not “respect”
the variable and value ordering heuristics used in search. That is, it may well be that the
leftmost solution in the search tree, which would otherwise be found first, is not canonical
and so is disallowed, leading to increased search. This is in contrast to techniques such
as SBDS and SBDD (Sections 10.5.1 and 10.5.2), which do respect the heuristic. Simple
examples have been reported where the “wrong” heuristic can lead to dramatic increases
in runtime [52]. This problem is inherent in the method, but in many cases it is easy to
work out what is the “right” heuristic. In particular, if the same static variable ordering is
used in search as was used to construct the lex-leader ordering, and values are tried from
smallest to largest, this conflict should not occur. However, this does limit the power of the
constraint programmer to use dynamic variable ordering heuristics.

A less easily solved problem with lex-leader is that many groups contain an exponential
number of symmetries. Lex-leader requires one constraint for each element of the group.
In the case of a matrix with m rows and n columns, this is m!n!, which is impractical
in general. Therefore there are many cases where lex-leader is applicable but impractical.

I. P. Gent, K. E. Petrie, J.-F. Puget 345

1. true
2. BE �lex CF
3. AD �lex BE
4. AD �lex CF
5. ABDE �lex BCEF
6. ABDE �lex CAFD

7. ABC �lex DEF
8. ABC �lex DFE
9. ABC �lex EDF
10. ABC �lex FED
11. ABCDE �lex EFDBC
12. ABCDE �lex FDECA

Figure 10.6: The lex-leader constraints for the 3×2 matrix reduced on an individual basis.

2. BE �lex CF
3. AD �lex BE
7. ABC �lex DEF
8. ABC �lex DFE

9. ABC �lex EDF
10. ABC �lex FED
11. ABCD �lex EFDB
12. ABC �lex FDE

Figure 10.7: The lex-leader constraints for the 3× 2 matrix reduced as a set.

However, lex-leader remains of the highest importance, because there are a number of ways
it is used to derive new symmetry breaking methods. We discuss these in the following
sections.

Finally we reiterate that the lex-leader method is defined only for variable symmetries:
i.e. those which permute the variables but always leave the value unchanged. Thus the
same restriction applies to the methods below based on lex-leader. It is not an issue in
the technique’s original domain, SAT, since there are only 2 values [22]. If necessary,
we can add a new variable to represent the negation of each variable, and so symmetries
which change values can be made into variable symmetries. Unfortunately, if we have
d values, we need d! versions of each variable to apply this simple idea. Therefore, a
proper generalisation of lex-leader to deal with value symmetries would be valuable, even
if restricted to some special cases.

10.4.2 Simplifying Lex-Leader Constraints

Lex-leader constraints can be simplified, or ‘pruned’ to remove redundancies [22, 77]. Fol-
lowing Frisch and Harvey [41], we can illustrate this using the example from Figure 10.5.
The first idea is to look at each constraint individually. For example, consider constraint 2
above, ABCDEF �lex ACBDFE. We can remove the first and fourth variables from each
tuple, since clearly A = A and D = D, giving BCEF �lex CBFE. But if B<C the con-
straint is satisfied whatever the other values, and otherwise we have B=C to satisfy the
constraint. In other words, if the second variables in the tuples are relevant, they must be
equal. Similarly for E and F, so in fact the constraint is equivalent to BE�lex CF. Applying
this reasoning everywhere we get the constraints shown in Figure 10.6. It is interesting
to note that constraints 2 and 3 show that the columns must be lexicographically ordered,
and that constraint 7 forces the rows to be lexicographically ordered. We return to this
observation in Section 10.4.5.

We can go further, treating the constraints as a set and not just individually. For ex-
ample, �lex is transitive, so constraints 2 and 3 imply constraint 4. A more complicated

346 10. Symmetry in Constraint Programming

example is in constraint 11. The last elements of each tuple are E and C. But if they are
relevant, we have A=E and B=F=D=C. But constraint 3 implies A≤B, from which it fol-
lows that E≤C, so the last elements of the tuple are irrelevant and may be deleted. This
reasoning leads to a set of 8 constraints shown in Figure 10.7, equivalent to the original 12
[41].

Unfortunately, the approach outlined here does not get round the fundamental problem
of the exponential number of symmetries. In general the number of symmetries even in
the reduced set will still be exponential [77]. However, the approach does illustrate how
the set of constraints can be simplified, and we will see in the next section a special case
where the results are quite dramatic.

10.4.3 Symmetry with All-Different

The ‘all-different’ constraint occurs very commonly in constraint programming. It perhaps
occurs even more often in problems with symmetry. Puget has shown that [101] if we have
only variable symmetry (the only case where lex-leader is defined) on a set of n variables
constrained by an all-different constraint, symmetry can be broken completely by only
n− 1 binary constraints. This result applies to any group G acting on the set of variables.
This remarkable result could hardly be bettered, but is in fact relatively simple.

We begin with an example, which contains only variable symmetries on a set of all-
different variables, but in which the group is not a straightforward group such as Sn.

Example 10.22. Graceful Graph
We say that a graph with m edges is graceful if there exists a labeling f of its vertices such
that:

• 0 ≤ f(i) ≤ m for each vertex i,

• the set of values f(i) are all-different,

• the set of values abs(f(i), f(j)) for every edge (i, j) are all-different.

A straightforward translation into a CSP exists where there is a variable vi for each ver-
tex vi, see [78]. The variable symmetries of the problem are induced by the automorphism
of the graph. There is one value symmetry, which maps v tom−v, but we ignore that sym-
metry to leave only value symmetries. More information on symmetries in graceful graphs
is available in [89]. Petrie and Smith have considered various forms of both dynamic and
static symmetry breaking methods in graceful graphs [89], using these techniques they
found instances of graceful graphs that were not previously known. As an example, let us
consider the the graph K3 × P2, which is shown in Figure 10.8. The group allows any of
the 3! permutations of K3, as long as the same permutation is applied to both copies of K3

at the same time, as well as swapping the two triangles. There are thus 12 symmetries. In
fact, the group is isomorphic to that of the matrix in Figure 10.5, so the constraints are the
same as we showed there.

Using the fact that the variable are subject to an all-different constraint, we can signif-
icantly reduce the number of symmetry breaking constraints. For example, consider the
symmetry breaking constraint

ABCDEF�lexACBDFE

I. P. Gent, K. E. Petrie, J.-F. Puget 347

�
�
�
�
�
�
��������@

@
@

@@ �
�
�
�
�
�
��������@

@
@

@@

0

2

3

5

1 4

Figure 10.8: The graph K3 × P2.

Since A = A is trivially true, and since B = C cannot be true because of the all-different
constraint, this constraint can be simplified to just be:

B < C

This simplification is true in general and can be formalized as follows. Given a permutation
g, let s(g) be the smallest i such that ig 6= i, and let t(g) be equal to (s(g))g.

Lemma 10.23. [101]
Given a CSP where the variables V are subject to an all-different constraint, and a variable
symmetry group G for this CSP, then all variable symmetries can be broken by adding the
following constraints:

∀σ ∈ G, vs(σ) < vt(σ)

Note that if two permutations g and h are such that s(g) = s(h) and t(g) = t(h), then
the corresponding symmetry breaking constraints are identical. Therefore, it is sufficient
to state only one symmetry breaking constraints for each pair i, j such that there exists a
permutation g with i = s(g) and j = t(h). The set of these pairs can be computed using
the Schreier Sims algorithm [108]. In our example, these constraints are :

A < B,A < C,A < D,A < E,A < F,B < C

Note that these constraints are redundant. The constraint A < C is entailed by the first
and the last constraints. This remark can be used to reduce the number of constraints further
by taking into account the transitivity of the < constraints. The Schreier Sims algorithm
gives us a stabiliser chain and sets of coset representatives Ui, as defined in Section 10.1.2.
Puget uses this to prove:

Theorem 10.24. [101]
Given a CSP with n variables V , such that there exists an all-different constraint on these
variables, then all variable symmetries can be broken by at most n− 1 binary constraints.

For our example, we get exactly 5 constraints: notice this is n− 1 in this case.

A < B,A < D,A < E,A < F,B < C

348 10. Symmetry in Constraint Programming

While this is only a reduction of a single constraint, that is simply because of the small size
of the example. In general, Puget has reduced the number of symmetries required from a
possibly n! to as little as n−1, for the commonly occurring case of variable symmetries in
the presence of an all-different constraint. As well as its value in its own right, this shows
the power of combining symmetry breaking constraints with constraints from a problem,
and this remains an area ripe for exploitation.

10.4.4 Subsets of Lex Leader

The previous section showed how, in the right circumstances, a polynomial number of
constraints can lead to equivalent reasoning to the full set of lex-leader constraints. Un-
fortunately, such a subset is not always available. Several researchers have proposed ways
to state only a polynomial number of constraints without preserving complete symmetry
breaking. Since the full set of lex-leader constraints leaves exactly one solution in each
equivalence class, using a subset must leave at least one in each class, but may leave more
than one. Thus, the symmetry breaking constraints do not guarantee to break all symme-
tries. In general the goal is to reach an acceptable tradeoff, with the greatly reduced number
of constraints leading to more efficient search. In some cases, sets of symmetry breaking
constraints have been proposed, and only later has it been realised that they represent a
subset of the lex-leader constraints. This is a testament to the generality and naturalness of
lex-leader.

Aloul et al have shown, in SAT, that very successful results can be obtained from very
small subsets of lex-leader constraints, on examples such as FPGA routing problems [1].
Unlike the constraint-based work described so far, the symmetry group of the SAT problem
was found using a graph-automorphism procedure on the instance. Surprisingly, the subset
of symmetry breaking predicates used was simply the generators of the group found by
the graph-automorphism check. It is remarkable that this gave good performance since,
for example, a set of 21 generators was used in a group with 1016 elements. Only very
special sets of generators are as effective as this, and it is not well understood what makes
the generators found by graph-automorphism programs so good. While this is in a SAT
context, similar results should apply to constraint programming.

Shlyakhter showed that good (though generally incomplete) subsets of lex-leader con-
straints could be found for acyclic digraphs, permutations, relations, and functions [109].
Apart from the individual contributions, this establishes the methodology of using the lex-
leader constraints as a means of finding incomplete sets of symmetry breaking constraints,
but subsets which are effective in practice. A particular case where this has proven to be of
great interest is that of matrix models, to which we turn next.

10.4.5 Specialised Ordering Constraints for Matrix Models

A number of authors have taken a rather different approach to choosing appropriate con-
straints to break symmetry. This is based on the kind of symmetries that seem to arise very
often in constraint programming. Given some class of symmetries we decide are impor-
tant, we can analyse in general a subset of the lex-leader constraints which typically break
a substantial number of symmetries and which can be reasoned with efficiently. The ad-
vantage of such a focus is that one can build special purpose methods for dealing with the

I. P. Gent, K. E. Petrie, J.-F. Puget 349

symmetry breaking constraints, for example specialised algorithms for propagating Gen-
eralised Arc Consistency for the given set of constraints. Most work has concentrated on
symmetry-breaking constraints for matrix models; where ‘a matrix model is a constraint
program that contains one or more matrices of decision variables’ [36]. Matrix models are
indeed very commonly occurring. For example the golfers problem can be modelled as a
3-d boolean matrix whose dimensions correspond to weeks, players and groups. A vari-
able xijk = 1 iff in week i, player j plays in group k [113]. Other problems one could use
as illustration are balanced incomplete block designs, steel meel slab design, progressive
party problem, rack configuration, template design, and the warehouse location problem
[35].

The prime example of this body of work is that on lexicographically ordering rows
and columns in matrix models [36]. We deal with matrices where rows and columns are
independently fully permutable. By this we mean that we can swap, at the same time,
all the variables in any two rows, preserving the order of the variables within each row.
Alternatively, we can swap any two columns, preserving the order of the variables within
a column. This kind of symmetry occurs very commonly because we often introduce
symmetry through modelling. For example, in the 3-d model of the golfers problem, the
order of players, groups and weeks are arbitrary and each can be permuted freely. An
n × m matrix with row and column symmetry is acted on by a group of order n!m!.
These symmetries change the orders of rows and columns, but important relationships are
preserved: specifically two elements in the same row are always in the same row, while
two elements in the same column remain in the same column.

The rows in a 2-d matrix are lexicographically ordered if each row is lexicographically
smaller (denoted �lex) than the next (if any). Adding lexicographic ordering on the rows
breaks all row symmetries. Similarly, we can break all column symmetry by ordering the
columns. But the interesting case is where we insist that both rows and columns should be
simultaneously lexicographically ordered [36]. It is not at all obvious that this is consistent,
i.e. that there is always a symmetry which will permute the rows and columns so that
both sets are lexicographically ordered. In fact, we can remove solutions if we insist on
the rows being in increasing order and the columns in decreasing order. However, it is
always possible if we insist that all dimensions are in increasing order, and the best way
to understand this is that the set of constraints are equivalent to a subset of the lex-leader
constraints [109]. In general a lexicographic ordering on both the rows and the columns
does not break all the compositions of the row and column symmetries. Nevertheless, in
practice it often breaks a useful amount of symmetry. This is important, because in general
it is NP-hard to find the lexicographical least representative of a matrix under row and
column symmetry [22, 10].

Because of the usefulness of lex-ordering rows and columns, and the simplicity of
the constraints, Frisch et al introduced an optimal algorithm to establish generalised arc-
consistency for the �lex constraint [40] between two vectors. Time complexity is O(nb),
where n is the length of the vectors and b is the time taken to adjust the bounds of an
integer variable (dependent on the implementation of variables being used). This therefore
gives an extremely attractive point on the tradeoff: a linear time to establish a high level
of consistency on constraints which often break a lot of the symmetry in matrix models.
The algorithm can be used to establish consistency in any use of �lex, so in particular is
useful for any use of lex-leader constraints. Carlsson and Beldiceanu [18] showed that
the propagation algorithm can be extended to generalised arc-consistency for a chain of

350 10. Symmetry in Constraint Programming

vectors V1�lexV2�lex . . .�lexVm. This can deduce information not available if vectors are
compared pairwise, and is done in linear time O(nbm) if there are m vectors.

Provided care is taken, lex ordering matrices can be combined with additional con-
straints to break more symmetry while still taking advantage of the efficient algorithms for
the lex constraints. Normally, this is done by choosing an appropriate subset of lex-leader
constraints. This is an easy way to guarantee correctness provided that the same ordering
of variables in the matrix is used as for the lex constraints: this means starting at the top
left and going either in row order or column order. A very common technique is to insist
that the top left hand corner is occupied by the (possibly equal) smallest element in the
matrix: this is not guaranteed by the lex constraints themselves. If all values in the entire
matrix are different, this additional constraint guarantees that all symmetry is broken [36].
There are other special cases where all symmetries are broken [36].

Other constraints have been developed in a similar way to the double-lex constraint, and
applied to breaking symmetries in matrices. Kiziltan and Smith investigated the multiset
ordering [70] following a suggestion of Frisch. The ordering is lexicographic ordering of
the multiset of elements of vectors written in increasing order. More formally, we have
V1 �ms V2 if either the smallest element of V1 is less than the smallest element of V2, or if
the smallest elements are the same, and V −

1 �ms V −
2 , where the new vectors result from

the deletion of a single occurrence of the smallest element. An advantage of the multiset
ordering is that it can be placed on (say) the rows without affecting the column symmetries
of a matrix. So it can for example be used even if the column symmetries do not form
the group Sn. Frisch et al proposed a linear propagation algorithm for it, giving it similar
efficiency to their algorithm for double-lex [43].

Another example of work in the same style was the introduction of the “allperm” con-
straint by Frisch, Jefferson and Miguel [42]. We have V1 �perm V2 if array V1 is lexico-
graphically less than any permutation of V2. Frisch et al study the ways in which this may
(and may not) be combined with other constraints such as double-lex and multiset. For ex-
ample, it is consistent to insist that rows and columns are lex ordered, and simultaneously
that the first row is�perm all others, but we may not demand that the second row is�perm
later rows. Again, a specialised propagation algorithm was given for allperm.

We can construct 2-dimensional 2n × 2n matrix model in which we insist that rows
and columns are lex ordered, yet still contains full matrix symmetry in an n×n submatrix.
An example for n = 3 is shown in Figure 10.9. The values of variables A to I are uncon-
strained, but if we insist that they form a latin square, the example is valid where rows are
columns are ordered by the multiset ordering. If we also insist that all of A to I are ≥ 0,
the example works if we insist that the first row is �perm all other rows.

10.5 Dynamic Symmetry Breaking Methods

Dynamic symmetry breaking methods are those that operate to break symmetry during the
search process. SBDD and SBDS are two such methods described in this section. In both
these methods symmetry acts on variable/value pairs. Symmetry breaking by heuristic is
included in this category, as although these variable and value ordering heuristics are fully
defined before search commences, they are used during search. These methods are outlined
in the subsequent sections.

I. P. Gent, K. E. Petrie, J.-F. Puget 351

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

0 0 1 A B C
0 1 0 D E F
1 0 0 G H I

⇒

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

1 0 0 G H I
0 1 0 D E F
0 0 1 A B C

⇓
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

0 0 1 G H I
0 1 0 D E F
1 0 0 A B C

Figure 10.9: An example to show that full matrix symmetry in a bottom right submatrix
can remain even when all rows and columns are lex ordered. The initial matrix (divided
into quarters for clarity) is first transformed by swapping the fourth and sixth rows, and
then by swapping the first and third columns. The result is still double-lex ordered but
we have swapped the first and third rows of the submatrix. We can swap two columns
similarly.

10.5.1 Symmetry Breaking During Search (SBDS)

Symmetry-excluding search trees were introduced by Backofen and Will [4, 5]. Gent and
Smith [51] described in more detail the implementation of this technique, using the name
“Symmetry Breaking During Search”, but it is this latter name and its acronym “SBDS”
which seems to have stuck as the general name for this method. This is perhaps slightly un-
fortunate since there are many other ways to break symmetry during search, most notably
SBDD to be discussed in Section 10.5.2.

The basic idea of SBDS is to add constraints to a problem so that, after backtracking
from a search decision, the SBDS constraints ensure that no symmetric equivalent of that
decision is ever allowed. This is a dynamic technique, since we cannot add the constraints
until we know what search decision is being made. In general terms, SBDS can work on
any kind of search decision. However, for simplicity of discussion we will assume that all
search decisions are of the form var = val, and a number of implementations of SBDS
make the same assumption.

We will first illustrate with an example the kind of constraints added by SBDS. A
search tree for the 8-Queens problem where the symmetry constraints added by SBDS are
indicated by ♦ can be found in Figure 10.10. It is easiest to explain SBDS by going over
the tree breadth-first, instead of the depth-first search the actual search algorithm would
explore.

• Starting from the root, the first search decision in the search tree in Figure 10.10 is
Q[1] = 2, i.e. the queen in row 1 goes in position 2. SBDS adds no constraints to
the positive decision Q[1] = 2. If we backtrack at the root, we can assert Q[1] 6= 2.
From that point on, we never want to try any state which contains any symmetric
equivalent toQ[1] = 2. We can achieve this by adding symmetric versions ofQ[1] 6=

352 10. Symmetry in Constraint Programming

Q[1] = 2

♦ (Q[1] 6= 2)r90 ≡ Q[2] 6= 8

♦ (Q[1] 6= 2)r180 ≡ Q[8] 6= 7

♦ (Q[1] 6= 2)r270 ≡ Q[7] 6= 1

♦ (Q[1] 6= 2)d2 ≡ Q[7] 6= 7

Q[1] 6= 2

Q[2] = 4 Q[2] 6= 4
♦ (Q[1] 6= 2)x ≡ Q[1] 6= 7♦ Q[1] = 2→ (Q[2] 6= 4)r90 ≡ Q[4] 6= 7

♦ (Q[1] 6= 2)d1 ≡ Q[2] 6= 1

♦ (Q[1] 6= 2)y ≡ Q[8] 6= 2♦ Q[1] = 2→ (Q[2] 6= 4)r180 ≡ Q[7] 6= 5

♦ Q[1] = 2→ (Q[2] 6= 4)r270 ≡ Q[5] 6= 2

Figure 10.10: Example of SBDS on a search tree with the 8-queens problem.

2, i.e. by adding (Q[1] 6= 2)g for each g in the group, although we can omit id if
the search algorithm itself asserts Q[1] 6= 2. The result of this in the case of the
chessboard symmetries is given on the right hand branch of Figure 10.10.

• At the next level of search, on the left hand side, the next search decision isQ[2] = 4.
Again we add no constraints to this positive decision. But if we backtrack from
this, we assert Q[2] = 4. It would no longer be correct to ban each symmetric
version of this decision, because the initial search decision Q[1] = 2 may have
broken some of the symmetry already. In this example, Q[1] = 2 rules out Q[1] =
7, Q[7] = 7, Q[2] = 1 and Q[8] = 2 since those squares are on the same row,
column, diagonal, and diagonal respectively. This means that no solution containing
Q[1] = 2 can possibly have the symmetries x, y, d1 or d2. There is no need to assert
any constraints for these symmetries below Q[1] = 2, and they are omitted from
Figure 10.10.

• Still considering the same node, the more complicated case is that of the symmetries
r90, r180 and r270. At this point in search we do not know whether or not these
symmetries apply. They may hold in some future states and not in others. We cannot
rule out, for example, (Q[2] = 4)r90 for all future states, as we might lose solutions
in states where r90 does not hold, but equally we will do redundant search if we do
not rule it out in states where r90 does hold. SBDS solves this dilemma by adding
constraints which rule out (Q[2] = 4)r90 conditionally. This conditional constraint
states that if the r90 is not broken (i.e. Q[2] 6= 8) then we have (Q[2] 6= 4)r90, i.e.
Q[4] 6= 7.

We can now state in general the constraints that SBDS adds, consider a node in search
where the partial assignment A is to be extended by the decision var = val. For any
problem symmetry g, we can add the constraint:

A & Ag & var 6= val ⇒ (var 6= val)g (10.2)

To understand this constraint’s soundness, note that it is equivalent to

(A⇒ var 6= val)⇒ (A⇒ var 6= val)g

which is almost a triviality. More significantly this equation is true before search begins,
since it holds for any A, var, val and g. From this point of view we can view SBDS

I. P. Gent, K. E. Petrie, J.-F. Puget 353

as making heuristic choices as to which of the (in practical terms) infinite variety of such
constraints to add. Practical implementations of SBDS do not normally add the full form of
(10.2). If we add the constraint at the point in search where we backtrack from the choice
of var = val, then we know A is true and we also know that var 6= val, leading to the
much simpler, but in context equivalent, form:

Ag ⇒ (var 6= val)g (10.3)

We can explain this simpler form by pointing out that it must be ensured that only unbroken
symmetries are dealt with, so it is checked that Ag still holds. Then to ensure that the
symmetrically equivalent subtree to the current subtree will not be explored, the (var 6=
val)g is placed.

Backofen and Will proved that this method is sound in that the full non-symmetric
search space will be explored [5], i.e. no solutions can be completely missed. Backofen
and Will also showed that as long as all symmetries are correctly supplied, all the symmetry
will be eliminated, i.e. no two solutions returned by SBDS can be equivalent.

A number of implementations of SBDS have been provided. The most publicly avail-
able to date is that in ECLiPSe [88]. These implementations always demand from the
constraint programmer a separate function to implement the action of each symmetry g, in
the programming language the system uses. If a problem has a large number of symmetries
there may be too many for the user to identify and implement by hand. SBDS has been
used successfully, despite this difficulty, with problems containing a few thousand symme-
tries [49]. We will see in Section 10.5.4 how computational group theory can be used to
ease the burden on the programmer.

There are some important implementation issues for SBDS. A feature of SBDS is that
it only breaks symmetries which are not already broken in the current partial assignment:
this avoids placing unnecessary constraints. A symmetry is broken when the symmetric
equivalent of the current partial assignment is not consistent with the problem constraints.
Since Ag involves all values set so far, it is potentially large, so checking that a symmetry
is unbroken could be expensive. However, it can be noted that if A is extended to the
next partial assignment A1 then A1 = A + (var = val) (where var = val is the next
decision on the search tree). Then Ag1 = Ag + (var = val)g. So a Boolean variable can
be constructed for each symmetry g representing whether Ag is satisfied or not: its value
for Ag1 is the conjunction of its values for Ag and var = valg. Hence, it can be decided
incrementally whetherAg holds. Further, when the value of one of these Boolean variables
becomes false, it is known that the corresponding symmetry is permanently broken, and
need no longer be considered on this branch.

One problem with SBDS is that when the number of symmetries is large, than a large
number of symmetry functions has to be described. In the worst case, there could be
too many to be successfully compiled. This difficulty can be addressed by choosing a
subset of the symmetry functions to use with SBDS. McDonald and Smith [82] explore
this idea of ‘partial symmetry breaking’ with random subsets of symmetries, and also give
an algorithm for choosing a subset of symmetry functions which should, heuristically,
break a large amount of the symmetry. Unfortunately, it is infeasible to use the method in
its entirety with all but the smallest problems with small symmetry groups.

SBDS has some major advantages over adding symmetry breaking constraints before
search. First, the symmetries do not need to be variable symmetries, in contrast to the lex-
leader method. Second, the solution found in each class of equivalent solutions is always

354 10. Symmetry in Constraint Programming

the leftmost one in the search tree being traversed. Again in contrast to lex-leader, this
means that arbitrary variable and value ordering heuristics may be used without changing
either SBDS or the set of symmetry functions supplied. We say that SBDS “respects” the
variable and value ordering heuristics used by the search.

10.5.2 Symmetry Breaking via Dominance Detection (SBDD)

The method of Symmetry Breaking via Dominance Detection (SBDD) was developed in-
dependently by Focacci & Milano [34], and by Fahle, Schamberger & Sellmann [33]. The
title of SBDD comes from the latter of these papers, and has been adopted by the CP com-
munity as the standard name for the method. A similar algorithm was proposed by Brown,
Finkelstein and Purdom in 1988 [16]. In fact, this paper describes a computational group
theoretic version of this algorithm which is now familiar to the CP community as GAP-
SBDD (described below in Section 10.5.5). Unfortunately, the paper by Brown et. al.,
while reasonably well known, seemed to have little influence on the constraints commu-
nity, perhaps being too far ahead of its time.

0:root

/

1:v1=1

/ \

2:v2=2 5:v2!=2

/ \ /

3:v3=3 4:v3!=3 6:v2=3

/ \

7:v3=2 8:v3!=2

node decisions v1 v2 v3 solution
0 - 1,2,3,4 1,2,3,4 1,2,3,4
1 v1 = 1 1 2,3,4 2,3,4
2 v1 = 1, v2 = 2 1 2 3,4
3 v1 = 1, v2 = 2, v3 = 3 1 2 3 yes
4 v1 = 1, v2 = 2, v3 6= 3 1 2 4 yes
5 v1 = 1, v2 6= 2 1 3,4 2,3,4
6 v1 = 1, v2 6= 2, v2 = 3 1 3 2,4
7 v1 = 1, v2 6= 2, v2 = 3, v3 = 2 1 3 2 yes
8 v1 = 1, v2 6= 2, v2 = 3, v3 6= 2 1 3 4 yes

Figure 10.11: A partial search tree to illustrate SBDD, and a table listing the search states
corresponding to each node.

SBDD operates by performing a check at every node in the search tree to see if the
node about to be explored is symmetrically equivalent to one already explored, and if so
prunes this branch. While a simple idea, this has the apparent problem that we will need to
store the whole, exponentially sized, tree already explored. A single key idea transforms
SBDD into a space-efficient method. This is that we need only store nodes at the roots of
fully explored subtrees. We do not check if a node is equivalent in full to one of our stored
nodes. Instead, we determine if a node is equivalent to any node which is an extension
of one of the stored nodes, i.e. a node which is in a fully explored subtree. Since search

I. P. Gent, K. E. Petrie, J.-F. Puget 355

has backtracked, we must have either visited the equivalent node before, or deduced for
some other reason that there was no need to visit it: in either case there is no need to visit
a symmetric equivalent.

Like SBDS, SBDD is based on binary branching between setting a variable and re-
moving the value from a variable’s domain. An example of how SBDD works in practice,
based on the example outlined in [34], here follows. Consider a problem with three vari-
ables v1, v2 and v3 subject to an ‘all different’ constraint. The domain of all the variables
is {1, 2, 3, 4}, and all the values can be permuted. There are 24 solutions of the problem.
Figure 10.11 shows a part of the tree search that will be explored by a depth first search
procedure to enumerate all solutions, assuming only a basic all-different propagation pro-
cedure. Decisions are selected in a lexicographic ordering. Nodes are represented by n : δ
where n means the node is the nth node to be expanded by the search procedure, and δ
is the decision or the negation of a decision for the arc between a node n and its parent.
The Figure also gives for each node n the set of decisions taken on the path from the root
node to n, as well as the domains of the variables corresponding to its state. Four solutions
have been obtained in the illustrated search. However the solution found at node 7 is sym-
metrical with the one found at node 3. Those solutions are {v1 = 1, v2 = 3, v3 = 2},
{v1 = 1, v2 = 2, v3 = 3} The first solution can be mapped into the second one by the
symmetry swapping variables v2 and v3. More generally, any variable permutation is a
symmetry of the problem.

SBDD is based on the notion of no-goods. No-goods are the roots of maximal sub
trees that are completely traversed by a depth first search before n. Those no-goods can be
found by traversing the path from the root node to n as follows. Each time the path goes
from a node to its right child, then the left child of that node is a no-good: before traversing
the right child of a given node a depth first search completely traverses the left sub tree of
that node. Note that we use the name “no-good” although where we are searching for all
solutions, fully explored trees may contain solutions. In such a case, we still wish to avoid
searching any symmetric equivalent to any node in the subtree, including the solutions. In
Figure 10.11, node 3 is a no-good w.r.t. node 4, node 2 is a no-good for node 5 and all the
nodes in its sub tree. The no-goods w.r.t. node 8 are nodes 2 and 7.

Definition 10.25. No-good.

Node ν is a no-good w.r.t. n if there exists an ancestor na of n s.t. ν is the left hand child
of na and ν is not an ancestor of n.

For each no-good, SBDD stores information to be compared against the current state.
We use the set of decisions labeling the path from the root of the tree to the no-good [99].
We write δ(n) for this. The column labeled “decisions” in the table in Figure 10.11 gives
the decision information corresponding to each node. We also use the state information
at the node being searched. Specifically, we write ∆(S) for set of pairs vi = ai for all
variables vi whose domains are reduced to a singleton. In node 8 in our example, the
decisions made from the root node are δ(8) = {v1 = 1, v2 = 3}, while ∆(8) = {v1 =
1, v2 = 3, v3 = 4}.

Definition 10.26. Dominance

We say that a node n is dominated if there exists a no-good ν w.r.t. n and a symmetry g s.t.
(δ(ν))g ⊆ ∆(n). We say that ν dominates n.

356 10. Symmetry in Constraint Programming

SBDD is then quite simple, conceptually: it never generates the children of dominated
nodes, and it excludes dominated solutions. Therefore, a node n is a leaf iff it is either
a solution, a failure, or a dominated node. In our example, no-good 2 dominates node 7.
We have δ(2) = {v1 = 1, v2 = 2}. Using the symmetry g which swaps variables v2 and
v3, we obtain (δ(2))g = {v1 = 1, v3 = 2} which is a subset of ∆(7) = {v1 = 1, v3 =
2, v2 = 3}.

Other definitions of dominance are possible: Definition 10.26 is from [99]. However,
if we know that search always chooses (var = val) before its negative (var 6= val) we
are free to ignore the negative decisions in δ(n) in Definition 10.26 [34, 59, 102]. For
example, consider the negative decision v2 6= 2 ∈ δ(7) in Figure 10.11, and now suppose
that some future node is dominated by δ(7) with v2 6= 2 removed. We can still terminate
search, because every leaf node in the future subtree either has the symmetric image of
v2 6= 2 or v2 = 2. If the former, the node is dominated by δ(7). But if the latter, the node
is dominated by δ(2) since the corresponding subtree fully explored v2 = 2 and we have
δ7\{v2 6= 2}∪{v2 = 2} ⊃ δ(2) = {v1 = 1, v2 = 2}. The structure of search trees makes
this observation general, so if positive differences are explored first, we can omit negative
decisions from dominance checks.

The original definition of dominance from [33] is rather more different and based on
state inclusion. A node n is dominated if there exists a no-good ν for n and a symmetry g
such that the domains of the variables in νg contains the domains of the variables in n. This
has the disadvantage that more space is required to store no-goods. Also, it goes against
the following intuition. Since we wish to establish that a set at this node is a superset of
a past no-good, we would like the set at this node to be big, and the set at the no-good
small: this should make it as easy as possible to pass the dominance test. On the other
hand, we also want the dominance check to be as easy as possible to implement and as fast
as possible to run. We might therefore be best to use a definition of dominance which fails
as quickly as possible, which may be an argument in favour of state inclusion dominance.
No definitive study of this issue has ever been performed, and perhaps is not possible any
more than deciding what the single best heuristic is for backtrack search.

The critical issue we have glossed over so far is just how the dominance check is per-
formed. The algorithm for SBDD requires a problem specific function Φ : (ν, n) →
{false, true} that yields true if the previous no-good ν dominates the current partial as-
signment n. For problems with small symmetry groups, provision of Φ can be a greater
load on the programmer than of the few symmetry functions required by SBDS. For larger
groups, SBDD has the enormous advantage that it has very limited space needs. However,
this does not solve the time complexity problems. For each pair ν and n, the search for g
amounts to solving a sub graph isomorphism problem, which is known to be NP-complete.
Although SBDD requires the solution of several NP-complete problems at each node, good
results have been obtained using the technique.

There seem to be three broad techniques for implementing dominance checks. First,
a programmer can implement a dominance checker for a particular class of problems, for
example instances of the social golfers’ problem [33]. The need for this is a major prob-
lem with SBDD. Encoding a function that will recognise when a node in the search tree
is symmetrically dominated by another one can be difficult, and it does not generalise be-
tween different problems with different types of symmetry. However, if such a function
can be found than SBDD is a very efficient method at breaking large amounts of symmetry.
Sellmann and Van Hentenryck have created a more general dominance detection function

I. P. Gent, K. E. Petrie, J.-F. Puget 357

[107]. This can lead to very efficient solutions tuned to a particular application, but this
approach relies on the skill and insight of the programmer and imposes a considerable bur-
den on them. Second, since it is an NP-complete problem, one can construct a constraint
encoding of the dominance problem [99]. This is particularly interesting since it amounts
to using constraint programming for computational group theory. However, it is still nec-
essary to construct a special purpose constraint problem for each new class of problems to
be solved. The third approach is to use computational group theory directly [16, 53], and
we describe this further in Section 10.5.5.

An important refinement of SBDD is to notice that sometimes failed dominance checks
can result in propagation [34, 33]. Suppose our dominance check can report that a certain
variable-value pair would, if set in the current node, lead to the current node being dom-
inated. Then we can remove that value from the domain of the variable and propagate
on the result. This can perform extremely useful propagation. As usual, we have to take
care that the benefits do not outweigh the costs of performing the necessary calculations.
Another point to note is that the dominance check does not need to be done at every node
of the search tree. As long as a check is undertaken at every leaf node then only the non-
isomorphic solutions will be returned. Deciding where to apply the check is a tradeoff
between the cost of checks and the search savings that result: unfortunately little is known
about the best place on this tradeoff.

Like SBDS, SBDD can be shown to be a sound and complete symmetry breaking
method provided that the dominance check is implemented correctly. That is, exactly one
solution from each equivalence class is returned. Like SBDS, the solution found is the
leftmost one in the search tree with respect to the variable and value ordering heuristics.
SBDD therefore respects the variable ordering heuristic, and dynamic variable ordering
may be used without any change to SBDD [33]. SBDD has also been applied to soft CSP’s
[11].

Harvey [59] discusses how SBDS and SBDD are related. The difference between the
two algorithms is where symmetry breaking takes place. SBDS places constraints to stop
nodes symmetrically equivalent nodes, to those previously explored in search, from ever
being reached. On the other hand, SBDD prunes nodes having reached them and found
them to be symmetrical to a previously explored part of search. In fact, it is entirely
reasonable to see the difference between it and SBDS as merely one of implementation.
As the set of acceptable solutions is the same in each case, an implementation of SBDS
is, in a sense, an implementation of SBDD, and vice versa. This view can be a useful way
of understanding the techniques in principle, but there are enormous practical differences.
SBDD can outperform SBDS on many problems, as it does not post constraints, so does
not have the overhead of waiting for large numbers of symmetry breaking constraints to
propagate. It can successfully be used with problems which have too much symmetry for
SBDS to be an appropriate technique.

10.5.3 Symmetry Excluding Heuristics

Meseguer and Torras [84] studied how symmetry can be used to guide search. Specifically,
they direct search towards subspaces with a high degree of non-symmetric assignments, by
breaking as many symmetries as possible with each variable assignment. The symmetry
breaking heuristic proposed breaks as many symmetries as possible. Meseguer and Torras
go on to propose the ‘variety-maximization’ heuristic which combines the smallest do-

358 10. Symmetry in Constraint Programming

main first heuristic, which can perform better than the symmetry breaking heuristic under
certain conditions, with the symmetry breaking heuristic. On a simple problem the variety-
maximization heuristic builds a slightly smaller search tree, than the smallest domain first
heuristic, to find all solutions. Variety-maximization does notably better to find the first
solution. Meseguer and Torras go on to combine the variety-maximization heuristic with
symmetric value pruning by no-good recording. The size of the set of no-goods is poten-
tially exponential, so only a subset is stored and used. The results of this combination are
rather disappointing; the inclusion of symmetric value pruning does not provide a major
advantage over variety-maximization alone, in any of the problems undertaken.

Using variable ordering heuristics (and indeed value ordering heuristics) to break sym-
metry is an attractive proposition, as it does not have the computational cost associated with
the other dynamic symmetry breaking methods. Despite the work of Meseguer and Torras,
there seems to be much more scope for using symmetry in heuristics than the community
has exploited to date. There is also considerable scope for other ways to use symmetry
heuristically. For example, if we are solving a problem with a large amount of symmetry,
we might look only for solutions with some symmetry. This excludes enormous parts of
the search space. On the one hand, this means that search will be incomplete, in that a
negative answer does not mean there are no solutions with less symmetry. On the other
hand, we might get lucky, and there may be such solutions: if there are we have all the
advantage of the reduced search. While this may seem incredibly optimistic, it has been
successful in practice [119].

10.5.4 SBDS with Computational Group Theory

To allow SBDS to be used in situations where there are too many symmetries to allow
a function to be created for each, Gent et al. [52] linked SBDS in ECLiPSe with GAP
(Groups, Algorithms and Programming) [46]. GAP is a system for computational algebra
and in particular Computational Group Theory (CGT). There is nothing fundamental about
the use of GAP or ECLiPSe, the point being that this is a co-operation between subsystems
to provide constraint algorithms and to provide computational group theory algorithms. A
library for GAP-SBDS is distributed with ECLiPSe.

GAP-SBDS allows the symmetry group, rather than its individual elements, to be de-
scribed. GAP-SBDS operates over a set of points, where each point corresponds to a
variable-value pair. One way to think of a point is in terms of a member of a n×m array,
where n is the number of variables, and m is the size of the domain of each variable. The
i, j-th element in the array denotes variable i and value j. The symmetry group, G, acts on
these n×m points, each point being represented by a single integer. The group generators
are given in ECLiPSe and passed to GAP in terms of points. This means that functions
are required in ECLiPSe which convert from variable/value pairs to integers representing
points and vice-versa. This is a possible source of error when using the GAP-SBDS sys-
tem. Even without error, to effectively use the system, the user must have some knowledge
of CGT. While it is enough to write down a set of generators, even this makes the system
inaccessible for many users. However, some progress has been made in this area, as we
describe in Section 10.8.

The GAP-SBDS algorithm can be described in terms of Equation 10.2 from Sec-
tion 10.5.1: A & Ag & var 6= val ⇒ (var 6= val)g, In GAP-SBDS, the only part
of this process that is controlled by GAP is g(A), the other components are controlled

I. P. Gent, K. E. Petrie, J.-F. Puget 359

by ECLiPSe as in the standard SBDS algorithm. g(A) is calculated with the use of
a right-transversal chain, a set calculated iteratively at every node in the search-tree, as
the Cartesian product of every right-transversal obtained so far. More formally RTchain
= RTk × RTk−1 × . . . × RT1 is defined as pk ◦ pk−1 ◦ . . . ◦ p1 where pi ∈ RTi. Each
member of RTchain is a representative of the set of symmetries which agree on what to
map each of the variable/value pairs in A ∧ var 6= val to. This means the symmetry
breaking constraint can be placed on backtracking, by transforming var 6= val according
to the elements in RTchain. However, doing this by iterating over every symmetry would
be infeasible for all but relatively small groups. To counter this difficulty Gent et al. use
lazy evaluation. The constraint g(var 6= val) is only imposed when g(A) is known to be
true, rather than placing conditional constraints as in the original SBDS. This means that
although GAP-SBDS is guaranteed to break all the symmetry, it may not break the sym-
metry as early in search as SBDS. This can lead to GAP-SBDS having a larger backtrack
count than SBDS.

In GAP-SBDS Gent et al. have created an efficient implementation of SBDS, which
can handle relatively large amounts of symmetry effectively. This moves the order of
groups that SBDS can be be used with from the thousands to the billions. The number of
symmetries is limited to this kind of scale because the number of constraints being added
during search can cause space problems. Even billions is a small number when groups can
grow exponentially.

10.5.5 SBDD and Computational Group Theory

We mentioned, in Section 10.5.2, that in practice SBDD can be difficult to implement. The
design of the dominance detection function may be complicated, and there are no general
rules for designing the function for problems with similar types of symmetry. In reality
two ‘similar’ problems may have completely different dominance functions; there may be
more than one dominance function for a problem, some of which prune more effectively
than others. Gent et al. [53], developed GAP-SBDD to address this problem by providing
a generic dominance checker, which is now available as an ECLiPSe library.

GAP-SBDD is a generic version of SBDD that uses the symmetric group of the prob-
lem, rather than an individual dominance detection function. Like GAP-SBDS, GAP-
SBDD works by way of an interface between GAP and ECLiPSe and performs calcula-
tions over points, with the symmetry groups defined by a generating set of permutations.
GAP-SBDD operates by maintaining both a failSet and a pointSet. The failSet corresponds
to the set of points attributed to the positive decisions made during search to reach the root
of completed subtrees. The pointSet denotes the set of points corresponding to variables
which have been set to a fixed value on the current branch of search (both through assign-
ments and propagation). The current node on the search tree is dominated by a complete
subtree if there exists a g in the symmetry group G and a s in the failSet S such that sg ⊆
pointSet.

The dominance check is implemented using a tree data structure which encodes all the
failSets currently applicable. Disjoint sets of points A1, . . . , Ak and B0, . . . , Bk can be
identified, the failSets associated with these points are A1 ∪ . . . ∪ Ai ∪Bi for each i. The
right branching elements of the tree are labelled with elements of A, the left ones elements
of B. Each node of the tree is associated with the sequence of labels on the path to it from
the root. The dominance check is performed using a recursive search, which traverses

360 10. Symmetry in Constraint Programming

the tree, entering each node once for every way of mapping the associated sequence of
points into the current point. This is implemented in GAP with the use of stabiliser chains.
While inherently just a backtracking search for an appropriate group element, the search in
GAP contains a number of optimisations which cause several orders of magnitude speedup
from a naive implementation [53]. As in regular SBDD, it is possible to identify cases
where all but the final element of a failSet can be mapped into a pointSet, and report them
back to ECLiPSe, so the value can be removed from the associated variables domain.
However, like GAP-SBDS, not all possible values are identified, as this would cause too
much increase in runtime.

GAP-SBDD is an efficient method for dealing with problems with large symmetry
groups. In principle, the size of groups that can be used is unlimited, and certainly it has
been used in practice on groups with 1036 elements. However, it provides no magic bullet
to the inherent hardness of the dominance check. This hardness can manifest itself with
individual dominance checks that take inordinate amounts of time to run. Also, it has been
found that subtle differences can make enormous differences to run time. For example,
while GAP-SBDD does respect the variable ordering heuristic, different heuristics on the
same instance can lead to dramatic changes in the time dominance checks take. This means
that the method can suffer from a lack of robustness. Nevertheless, from a very small input
with no algorithmic content, GAP-SBDD constructs a complete symmetry breaking tool
automatically.

10.5.6 GE-Trees

The idea of constructing GE-trees is the most recent idea to join the suite of dynamic sym-
metry breaking methods [103]. (GE stands for “Group Equivalence” but the abbreviation is
used universally.) It differs from the others in this class, as it is more a way of considering
symmetry breaking methods, than a symmetry breaking method in its own right. A GE-
tree is defined as a tree in which no two nodes are symmetrically equivalent, and in which,
for every solution to the problem, a symmetrically equivalent node is in the tree.4 GE-trees
are defined analogously to search trees in general: in particular, algorithms are free to stop
before they construct a complete tree, for example after finding a first solution. GE-trees
are intended in part to be viewed as a conceptual paradigm, to classify and compare sym-
metry breaking techniques. Any method of GE-tree construction will (by definition) break
all problem symmetries as the search for solutions proceed. SBDS and SBDS can both
be viewed as methods for constructing GE-trees, but so can lex-leader provided that all
constraints it requires are used. Careful analysis of properties of GE-trees (constructed by
different methods such as SBDS and SBDD, applied to the same instances) may allow the
refinement and extension of existing techniques and even the development of new ones.

In some cases GE-trees are almost in the folklore. For example, consider graph colour-
ing where each colour is indistinguishable. Many programmers have realised that the first
node can be coloured arbitrarily. For the second node, we only have to consider giving it
the same colour or an arbitrary different one. The third node need only be given the colours
given to the first two nodes, and an arbitrary different one. The process continues until we
have used all colours. This intuition can be generalised and formalised. Roney-Dougal et
al. used the GE-tree paradigm to create a polynomial time algorithm for breaking arbitrary

4The latter condition is easy to forget but otherwise legal GE-trees could exclude some or even all solutions.

I. P. Gent, K. E. Petrie, J.-F. Puget 361

value symmetries. This can be viewed as a computational group theory-based general-
isation of an algorithm presented in [64]. It is a special purpose algorithm which only
creates new nodes which are guaranteed to be unique in the tree. In general this is hard, but
Roney-Dougal et al. showed that the special nature of groups of value symmetries can be
used to construct GE-trees very efficiently [103]. They report on an experimental compar-
ison between this method and GAP-SBDD for problems which only have value symmetry.
GE-trees are found to be the best method in all cases. This is not surprising: GAP-SBDD
performs a potentially exponential search, at each node in the search tree, in order to break
symmetry, compared to the low-order polynomial algorithm to break all value symmetry.

10.5.7 The STAB Method

Symmetry Breaking Using Stabilizers (STAB), like SBDS, adds symmetry breaking con-
straints during search [98]. Unlike SBDS, which places constraints to break all the symme-
try of the problem, STAB places symmetry breaking constraints only for symmetries that
leave the partial assignment A at the current node unchanged. That is, instead of breaking
symmetry in the whole group, STAB breaks symmetry in the stabiliser GA. These con-
straints take the form of lexicographic ordering constraints. Stabilisers were introduced in
Section 10.1. In practice the size of stabilisers is often much smaller than the size of G.
The STAB method, amounts to adding the following set of constraints at each node A.

V �lex V
g , for all g ∈ GA

These constraints remove all the solutions that are not lexicographically minimum with
respect to the stabiliser GA in the sub tree rooted at A.

Example 10.27. Consider a 4× 5 matrix model. For simplicity we will refer to the matrix
of variable by V , i.e. we identify the vector of variables with its matrix representation:

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14 x15

x16 x17 x18 x19 x20

Consider a partial assignment A where the first 10 variables are assigned as follows:

0 0 0 1 1
0 1 1 0 0

Every symmetry for A is defined by a row permutation and a column permutation.We
can state constraints for each of these symmetries, except for the identity permutation. For
instance, let us state the constraint for the symmetry σ made up of the permutation (1 2) of
rows and (2 4 3 5) on columns. The matrix W = V σ is

x6 x9 x10 x8 x7

x1 x4 x5 x3 x2

x11 x14 x15 x13 x12

x16 x19 x20 x18 x17

362 10. Symmetry in Constraint Programming

The symmetry breaking constraint is then, allowing for the assignment A, is then

[0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]
�lex [0, 0, 0, 1, 1, 0, 1, 1, 0, 0, x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]

As the two vectors have the same first 10 elements, the constraint can be simplified into:

[x11, x12, x13, x14, x15, x16, x17, x18, x19, x20]
�lex [x11, x14, x15, x13, x12, x16, x19, x20, x18, x17]

Going back to the general case, the simplification based on identical prefixes is valid in
general. Given the n-vector V , let tail(V,n-d) be the vector obtained by removing the first
d elements of V . If A is a d-vector then constraints can be simplified into

tail(V, n− d) �lex (tail(V, n− d))g, for all g ∈ GA

It should be noted that STAB is an incomplete method with regard to symmetry break-
ing, meaning that it does not return only the non-isomorphic solutions.

10.6 Combinations of Symmetry Breaking Methods

We have described a variety of symmetry breaking methods, each with advantages and
disadvantages. It would naturally seem a good idea to combine two or more methods in
order to reap all of the advantages. Unfortunately, correctly combining symmetry breaking
methods has proven to be very difficult. Symmetry breaking methods try to preserve one
solution from each equivalence class. How this solution is chosen depends on the method
of symmetry breaking. Combining any two methods arbitrarily may mean that different
solutions are ruled out by each symmetry breaking method, and so solutions are lost.

For a while it was thought by many that if the same variable and value ordering are
used, then it was valid to apply several symmetry breaking methods at the same time, since
none of these methods remove canonical solutions. Therefore, any combination will keep
canonical solutions. For instance, one could state the Lex2 constraints and use SBDD
at the same time for matrix models. However, Smith [112] has shown this not to be the
case. Harvey [60] later documented an example of this result, then showed how SBDS and
SBDD can be modified so that they can be correctly combined with lexicographic ordering
constraints. Unfortunately, the empirical results for this combination were disappointing.
Another area which has received some study is combining a method to break variable
symmetry, with a method to break value symmetry. As both of these methods are acting on
different symmetry groups, this combination is intrinsically safe. Puget [101], showed how
all the variable symmetry can be broken by simple ordering constraints, when there is an
all-different constraint across all of the variables. He successfully combined this method
with GE-trees to also break the value symmetry. Another combination which includes GE-
trees has been tried [69]. This successfully combined GE-tree to break value symmetry and
GAP-SBDD to break variable symmetry. This method is provably complete and sound
with regard to breaking all symmetry, but is less efficient than GAP-SBDD alone on all
problems tried.

In Section 10.5.7 it was noted that STAB is an incomplete method with regard to sym-
metry breaking, meaning that it does not return only the non-isomorphic solutions. In order

I. P. Gent, K. E. Petrie, J.-F. Puget 363

to counter this drawback, Puget combined SBDD with STAB. This combined method pro-
duces good results, outperforming SBDD alone.

Another successful combination of symmetry breaking methods was completed by
Petrie [90]. Petrie showed that neither of GAP-SBDS or GAP-SBDD is universally bet-
ter, so combined the two methods. This was done by having one operate at the top of the
search tree, than switching to the other method at a lower level. The empirical analysis
of this method showed it to sometime outperform either of the methods alone. However,
perhaps more importantly it was shown to be a more robust method, in that the combined
method was never less efficient, than the least efficient of the two contributing systems.

10.7 Successful Applications

Many of the symmetry breaking methods outlined in the previous sections have been ap-
plied successfully to a variety of problems. We have already mentioned two successful
applications: the chess puzzle at the start of the chapter, and graceful graphs. In both
cases new results were obtained using symmetry breaking in constraint programming. We
briefly outline some more applications, and indicate which symmetry breaking methods
have been successfully applied to them. CSPLib (www.csplib.org), is an online directory
of constraint problems: whenever a problem is contained within this resource, the number
of the problem is given in this text to help the interested party find a detailed problem spec-
ification. The references provided are the papers which discuss symmetry breaking within
the applications.

Balanced Incomplete Block Design (BIBD) generation is a standard combinatorial
problem from design theory, originally used in the design of statistical experiments but
since finding other applications such as cryptography. It is a special case of Block De-
sign, which also includes Latin Square problems. BIBD’s are problem 28 in CSPLib,
Lam’s problem, which is problem number 25 in CSPLib is that of finding a specific BIBD
instance. BIBD’s can be easily modelled with the use of matrices, and so many of the
methods that place symmetry breaking constraints on matrices have been applied to them
[44]. This problem was also used as a test bed for STAB [98] and GAP-SBDD [53].

Steel Mill Slab Design is a simplification of a real industry problem, which is to sched-
ule the production of steel in a factory. It is problem number 38 in CSPLib. Gent et al.
have considered conditional symmetry breaking in this problem [54]

Maximum Density Still Life problem arises from the Game of Life, invented by John
Horton Conway in the 1960s and popularized by Martin Gardner in his Scientific American
columns. A stable pattern, or still-life, is not changed by the rules which cause the Game
of Life to iterate. The problem is to find the densest possible still-life pattern, i.e. the
pattern with the largest number of live cells, that can be fitted into an n × n section of
the board, with all the rest of the board dead. Maximum density still life is problem 38
in CSPLib. Smith [114] and both Bosch and Trick [12] have considered modelling and
symmetry breaking in Still Life. Petrie et al. have studied dynamic symmetry breaking in
a CP-LP hybrid, then applied this idea to this problem [90].

Social Golfers Problem is where the coordinator of a local golf club has the following
problem. In her club, there are 32 social golfers, each of whom play golf once a week, and
always in groups of 4. She would like you to come up with a schedule of play for these
golfers, to last as many weeks as possible, such that no golfer plays in the same group as

364 10. Symmetry in Constraint Programming

any other golfer on more than one occasion. The problem can easily be generalized to that
of scheduling m groups of n golfers over p weeks, such that no golfer plays in the same
group as any other golfer twice (i.e. maximum socialisation is achieved). Social Golfers is
problem number 10 in CSPLib. Harvey and Winterer at the time of writing have the most
efficient algorithm for this problem, which includes symmetry breaking [62].

Peaceable Coexisting Armies of Queens was introduced by Robert Bosch in his col-
umn in Optima in 1999 [13]. It is a variant of a class of problems requiring pieces to
be placed on a chessboard, with requirements on the number of squares that they attack:
Martin Gardner [47] discusses more examples of this class. In the “Armies of Queens”
problem, we are required to place two equal-sized armies of black and white queens on a
chessboard so that the white queens do not attack the black queens (and necessarily v.v.)
and to find the maximum size of two such armies. Bosch asked for an integer programming
formulation of the problem and how many optimal solutions there would be for a standard
8 × 8 chessboard. However, this problem can obviously be generalised to a n × n chess-
board. Various models for this problem in conjunction with dynamic symmetry breaking,
are considered by Smith et al., the puzzle at the start of this chapter being a spinoff of this
research [115].

Fixed Length Error Correcting Codes are defined as follows: A fixed length error
correcting code C of length n over an alphabet F is a set of strings from Fn. Given
two strings from Fn we can define the distance between them. The most commonly used
distance is the Hamming distance, defined as the number of positions where the strings
differ. Using this we define the minimum distance of C as the minimum of the distances
between distinct pairs of strings from C. Fixed Length Error Correcting codes are problem
36 in CSPLib. This problem is studied in conjunction with symmetry breaking constraints
by Frisch et al. [42].

Peg Solitare (also known as Hi-Q) is played on a board with a number of holes. In the
English version of the game, the board is in the shape of a cross with 33 holes. Pegs are
arranged on the board so that at least one hole remains. A number of different problems
arise from Solitaire, e.g. finding a path from the initial to a goal state, or finding the shortest
number of moves to a state where no more moves are possible. Peg solitare is problem 37
in CSPLib. Jefferson et al. have studied on how to solve this problem using various AI
paradigms, including a discussion of symmetry breaking [42].

Alien Tiles is available for play over the internet at www.alientiles.com. Alien Tiles
is problem 27 in CSPLib. Gent, Smith and Linton have studied how dynamic symmetry
breaking can be successfully applied to the problem of finding the hardest instance. [49].

We can see that symmetry methods are flexible enough to be applied to a great vari-
ety of problems, and we have by no means mentioned all the successful applications to
date. The most successful seem to be on combinatorial puzzles such as graceful graphs. It
therefore remains to be proved by the community that symmetry breaking has significant
applications on industrial scale problems.

10.8 Symmetry Expression and Detection

Most research on symmetry constraints has assumed that the symmetries of a problem can
be provided, in some form, by the programmer. For example, SBDS relies on program-
mers providing a list of functions to implement the actions of symmetries; SBDD needs

I. P. Gent, K. E. Petrie, J.-F. Puget 365

a dominance check to be written; and methods such as lex-leader and GAP-SBDS need
a group to be provided. Even for methods where this is not necessary, such as the use of
double-lex constraints in a matrix model, a programmer has to recognise that the matrix
symmetries occur and that the double-lex constraints are an appropriate technique to break
them with. In recent years, increasing amounts of work have been based on the premise
that this is an untenable position. Two ways of overcoming this flaw have been consid-
ered. First, it could be made easier for the programmers to write down the symmetries.
Second, the symmetries could be detected automatically so there is no work at all for the
programmer. This first method has been independently studied by both McDonald [48]
and Harvey et al. [63], with a view to creating a system which produces the group needed
for methods using computational group theory, without the user having to understand ex-
actly how groups are generated. There are three main aims to these systems. The first is
to get rid of the need for functions which map variable/value pairs to points (this concept
is outlined in Section 10.1.1). The second is to allow the expression of the symmetry in a
simple yet powerful way. The third is to create a system which requires the user to have
no prior knowledge of group theory. These objectives are achieved, by providing a set of
functions, which map expressions of the symmetry with regard to the variables and values
(e.g. all the rows of a matrix can be interchanged) to group generators. These techniques
to date are limited to the most commonly occurring kinds of symmetry, and do not allow
users to express arbitrary groups.

The automatic identification of the symmetry group of some CSPs is possible through
determining the automorphism group of the graph associated with the constraint problem.
Puget [100] showed that this could be done in connection with the microstructure graph,
which closely relates to the existential representation of the constraints. The concern with
this approach is that it may not scale well (it is in the complexity class of graph isomor-
phism in most cases). When the problem is large, so is the graph, and the automorphism
cannot be calculated in a reasonable time. Small problems can also have big graphs due
to non-binary constraints, which again would mean the automorphism could not be calcu-
lated in reasonable time. To counter this potential problem Puget also introduced a method
where he considered a graph related to intensional representation of each constraint. Puget
found that the symmetry could be detected very efficiently, using both methods, on a va-
riety of problems. Ramani and Markov have also has recently had some success [23],
with a method closely linked to Puget’s. This method undertakes graph isomorphism of
the parser trees associated with the intensional representation of the constraints. Although
this method is not guaranteed complete, in that it does not guarantee to find the full sym-
metry group, it has had some successful results in practice. It should be mentioned that
in the SAT community outstanding results have been obtained using automatic symmetry
detection, even on large problems [1]. This is particularly encouraging because natural
structures, such as the microstructure of constraint problems, correspond to encodings into
SAT. In order to know when this attractively simple method is feasible with regard to CP
empirical analysis is required.

Many symmetries are also added in the modelling process, as pointed out by Frisch et
al. [45]. If we can understand when this symmetry is added, it should be easy to pass those
symmetries to symmetry-breaking methods.

366 10. Symmetry in Constraint Programming

10.9 Further Research Themes

We now discuss a diverse range of research using symmetry, which is unified only by
not fitting easily elsewhere in this chapter. We do not to suggest that the work in this
section is less important than in the rest of this chapter. Indeed, the same reasons that
make this research hard to categorise makes some of it particularly innovative, and so it
has significant potential for future exploration.

Symmetry and inference: Almost all research on symmetry in constraints has focussed
on breaking symmetries to reduce search. When symmetry is present in a search problem,
its presence is information that we can exploit in other ways. A particular example is to en-
hance representation and inference of constraint problems. First, we can greatly compress
the size of the representation and thus enhance the representational power. Second, we can
exploit knowledge of the group structure to change our algorithms for inference and prop-
agation. This is necessary if we use a compressed representation based on the group, but
also offers advantages. If we perform some work to deduce that a value can be removed,
we need perform no more work to remove all symmetric equivalents of it. Similarly, if we
know that a given value cannot be removed, then we need perform no more work on trying
to propagate symmetric equivalents. A simple example of this idea was used to exploit the
bidirectionality of constraints in arc consistency to improve AC-6 [9]. More generally, we
may have arbitrary groups acting on the set of constraints. Dealing with groups correctly
and efficiently raises many difficult problems. These difficulties are now being seriously
attacked. By far the most significant body of work has been applied in the context of SAT,
by Dixon et al., in a three part journal paper spreading over almost 200 pages [27, 26, 28].
They have produced ZAP, a powerful SAT solver designed to allow concise expression
of problems using group theory, while exploiting the great efficiency advances made in
modern SAT solvers. At a much smaller scale, new propagation algorithms have been
introduced into Constraint Programming. Gent et al. introduced symmetric variants of
(i,j)-consistency and singleton consistency, together with algorithms for their enforcement.
While implementations have been provided, it has not yet been proved that symmetry-
based inference techniques will be powerful in practice. Nevertheless, the research area is
of high promise, as suggested by Dixon et al.’s conclusion to their mammoth effort: “it is
important to realize that our results only scratch the surface of what ZAP’s representational
shift allows” [28].

Symmetry and implied constraints: When constraints are added before search, it is
possible to use them to derive ‘implied’ constraints. These implied (or ‘redundant’) con-
straints may greatly reduce search, in ways which are not possible using the original prob-
lem constraints [44]. We saw, in Section 10.4.3, another example where symmetry break-
ing and problem constraints can interact very fruitfully. Dynamic symmetry breaking tech-
niques do not allow implied constraints to be added – at least not in the simple way that
static symmetry breaking methods do. Adding implied constraints suffers from similar
problems to reformulation. It can give very dramatic search reductions, but no automatic
technique for adding effective implied constraints is known.

I. P. Gent, K. E. Petrie, J.-F. Puget 367

Symmetry and local search: When we know about symmetry in a constraint problem,
there is no moral imperative to remove it: we can exploit the symmetry in any way we
choose. Where local search is used instead of backtracking search, Prestwich pointed out
that it is disadvantageous to add symmetry breaking constraints [94, 91]. While more so-
lutions are good for any search method, local search suffers particularly when solutions
are excluded. Since stochastic methods are designed to explore search spaces randomly,
it is hard to guide them away from parts of the search space where solutions have been
excluded, while each excluded solution becomes a new local optimum. In a detailed anal-
ysis, Prestwich and Roli identified two pathologies that symmetry breaking constraints
caused for local search methods: global solutions have relatively smaller basins of attrac-
tions while local optima become relatively larger [95]. Since excluding symmetries seems
bad for local search, can we improve it by introducing symmetries? Prestwich proposed
this lovely idea with some success [92, 91]. Exploiting symmetry within local search algo-
rithms remains an interesting but underdeveloped research area: Petcu and Faltings used
interchangeability to guide local search away from conflicts [87], but otherwise little has
been done in this direction.

Dominance and almost symmetries: Researchers have investigated cases where stan-
dard symmetry breaking methods are not applicable. For example, Beck and Prestwich
studied ‘dominances’ in constraint problems [7]. A dominance is a transition between as-
signments which is guaranteed to improve (or at least make no worse) some notion of a cost
function. We can see symmetries as special cases of dominances, where the cost is kept the
same, and hence the transitions are invertible. Beck and Prestwich argue that dominance
“should rank alongside symmetry breaking as a generic CP technique, and that it can be
profitable to treat both in a uniform way.” Another issue receiving recent attention is that
of “almost symmetries” [37], the subject of a recent workshop [29]. The general idea is
that these are symmetries which are almost, but not quite, there in the original problem.
They can arise by either adding or removing constraints on the problem [58]. Examples of
the former case would be symmetries which arise during search: dealing with these can be
difficult, because they cause significant problems for techniques such as SBDS or SBDD
[54]. The idea underlying relaxing constraints on a problem to give new symmetries is
as follows [61, 81]. If the relaxed problem is highly symmetric, its reduced search space
should help search. If the relaxed problem has no solutions, then neither does the original.
If we do find solutions to the relaxed problem, we need additional steps to ensure that they
correspond to solutions of the original.

Symmetry in other problems: Given the focus of this handbook to constraints, we have
naturally restricted our discussion to constraints and SAT. However, researchers interested
in symmetry in constraints should also be interested in how symmetry is tackled in other
domains. For example, can we apply ideas from symmetry in constraints to other prob-
lems? Can ideas developed in other domains be applied to constraints? While we now
point to some key literature in other areas, we do not even claim to provide an exhaus-
tive list of other search problems with symmetry, much less an exhaustive or analytical
study of relevant literature in those areas. In Integer Programming, Margot has shown
how algorithms can be adapted to exploit large symmetry groups [79, 80]. New cuts are
generated based on the symmetries, and large groups are handled using Schreier-Sims to

368 10. Symmetry in Constraint Programming

represent them. In Planning, Fox and Long have integrated symmetry reasoning into a
state-of-the-art planner, SymmetricStan [38, 37]. Fox and Long point out that symmetry
detection during search, and the presence of almost-symmetry, is very important due to the
nature of planning problems. It is perhaps surprising that there does not seem to be a more
significant body of work in these two research areas. This is less the case in Automated
Theorem Proving, where there is a substantial literature in adapting proof systems to deal
with symmetry, e.g. [3, 71, 86, 24, 117]. There have also been substantial efforts in Model
Checking over some years, e.g. [15, 20, 66, 110]. As in constraints, this work has tended
to assume that users recognise the symmetry, and they have also been limited to simple
cases of symmetry rather than using the power of computational algebra. Recently, Don-
aldson et al. have shown that more general symmetries in model checking using GAP and
graph isomorphism software [30, 31, 32]. Finally, we touch only in the slightest way on
the extensive mathematical literature on search with symmetry. We particularly mention
McKay’s nauty software for Graph Isomorphism [83] and Soicher’s GRAPE package for
dealing with graphs relating to groups [116]. The key algorithm is “partition backtrack”
[83, 76], a very subtle intermingling of backtrack search and group-theoretic computations.
The mathematical applications of such techniques are numerous: one is Design Theory,
which deals with combinatorial designs such as balanced incomplete block designs, and
for which an online repository is available at www.designtheory.org [6].

10.10 Conclusions

We have presented an overview of symmetry in constraint programming. We have been
unashamed in emphasising the links with group theory. The study of symmetry is group
theory, so anyone who has ever considered symmetry in constraints has been thinking
about group theory – though perhaps without realising it. We have also emphasised the
ability of computational group theory to contribute methods to the efficient exploitation
of symmetry in constraints. Researchers and users of constraint programming can access
these techniques either through linking to the existing computational algebra packages, or
by implementing their own algorithms. Again, anyone who has written code for exploit-
ing symmetry in constraints has been, whether unconsciously or not, doing computational
algebra.

The main part of this chapter is taken up by a study of symmetry breaking methods,
since this is by far the largest body of research that has been undertaken on symmetry
in constraints. We considered methods in three broad categories: reformulation of prob-
lems, adding symmetry breaking constraints before search, and dynamic symmetry break-
ing methods that operate during the search procedure. It is worth summarising in one place
the very broad advantages and disadvantages of each method. It will be seen that there is
no ‘one-size-fits-all’ method to recommend, but it should be noted that researchers have
proposed solutions which at least ameliorate many of the disadvantages we mention:

• Reformulation is when the problem is remodelled to eliminate some or all sym-
metry. It can be an astonishingly efficient method of breaking symmetry, but un-
fortunately there is no known systematic procedure for performing the remodelling
process in general. Where reformulation is possible, it can be combined easily with
other methods.

I. P. Gent, K. E. Petrie, J.-F. Puget 369

• Symmetry breaking constraints are perhaps the most natural technique and the
easiest to understand. Ideally, the new constraints should be satisfied by only one
assignment in any equivalence class, but it can be difficult to find simple constraints
that eliminate all the symmetry. A systematic method called ‘lex-leader’ is known
for generating symmetry breaking constraints, when the problem only contains vari-
able symmetry. The efficiency with which some kinds of symmetry breaking con-
straints can be propagated, for example in matrix models, means that adding sym-
metry breaking constraints can be very cost-effective even where they do not break
all the symmetry. Symmetry breaking constraints do have a disadvantage in that they
can interact badly with the search heuristics being used.

• Dynamic symmetry breaking includes many methods which adapt the search pro-
cess in some way. This includes SBDS, SBDD (and the computational group theo-
retic versions of these methods), and STAB. Both SBDD and SBDS are complete,
in that only one solution will be returned from each symmetric equivalence class.
Group-theoretic versions add the advantage that only a small number of symmetries
in a problem need be specified, but this is related to a disadvantage, that they often
require symmetries to be expressed in a mathematical language that is unnatural for
constraint programmers. A significant advantage of these methods is that they do
not conflict with search heuristics. As relatively new methods, a final drawback is
that they can only be used if a library package is available, or the user spends the
time to adapt the search program themselves.

Quite apart from its inherent importance, we conclude by commending the study of
symmetry in constraints as an enjoyable and rewarding research topic.

Acknowledgments

We thank all those who have helped us with this paper, most especially Barbara Smith, but
also Gene Freuder, Carmen Gervet, Chris Jefferson, Steve Linton, Ian Miguel, and Toby
Walsh. Parts of the writing of this paper were supported by EPSRC grants GR/R29673,
EP/C523229/1 and GR/S30580/01 and Science Foundation Ireland grant 00/PI.1/C075.

Bibliography

[1] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving difficult sat
instances in the presence of symmetry. In DAC, pages 731–736. ACM, 2002. ISBN
1-58113-461-4.

[2] F. A. Aloul, K. A. Sakallah, and I. L. Markov. Efficient symmetry breaking for
boolean satisfiability. In Gottlob and Walsh [57], pages 271–276.

[3] N. H. Arai and A. Urquhart. Local symmetries in propositional logic. In R. Dyck-
hoff, editor, TABLEAUX, volume 1847 of Lecture Notes in Computer Science, pages
40–51. Springer, 2000. ISBN 3-540-67697-X.

[4] R. Backofen and S. Will. Excluding symmetries in concurrent constraint program-
ming. In Workshop on Modeling and Computing with Concurrent Constraint Pro-
gramming held in conjunction with CP 98, 1998.

370 10. Symmetry in Constraint Programming

[5] R. Backofen and S. Will. Excluding symmetries in constraint-based search. In
J. Jaffar, editor, Principles and Practice of Constraint Programming - CP ’99, vol-
ume Lecture Notes in Computer Science 1713, pages 73–87. Springer, 1999.

[6] R. Bailey, P. Cameron, P. Dobcsányi, J. Morgan, and L. Soicher. Designs on the
web. Discrete Math. Forthcoming.

[7] J. C. Beck and S. D. Prestwich. Exploiting dominance in three symmetric prob-
lems. In Fourth International Workshop on Symmetry and Constraint Satisfaction
Problems, 2004.

[8] B. Benhamou. Study of symmetry in constraint satisfaction problems. In Proceed-
ings of the 2nd workshop on Principles and Practices of Constraint Programming -
PPCP’94, pages 246–254, 2003.

[9] C. Bessière and J.-C. Régin. Using bidirectionality to speed up arc-consistency
processing. In M. Meyer, editor, Constraint Processing, Selected Papers, volume
923 of Lecture Notes in Computer Science, pages 157–169. Springer, 1995. ISBN
3-540-59479-5.

[10] C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global con-
straints. In D. L. McGuinness and G. Ferguson, editors, AAAI, pages 112–117.
AAAI Press / The MIT Press, 2004. ISBN 0-262-51183-5.

[11] S. Bistarelli and B. O’Sullivan. Combining Branch & Bound and SBDD to
solve Soft CSPs. In Proceedings of CSCLP 2004: Joint Annual Workshop of
ERCIM/CoLogNet on Constraint Solving and Constraint Logic Programming, June
2004.

[12] R. Bosch and M. Trick. Constraint programming and hybrid formulations for three
Life designs. In Proc. of CP-AI-OR’02, pages 1396–1407, 2002.

[13] R. A. Bosch. Peaceably coexisting armies of queens. Optima (Newsletter of the
Mathematical Programming Society), 62:6–9, 1999.

[14] W. Bosma and J. Cannon. Handbook of MAGMA functions. sydneypm, Sydney
University, 1993.

[15] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. STTT, 4(1):92–106,
2002.

[16] C. A. Brown, L. Finkelstein, and P. W. Purdom. Backtrack Searching in the Presence
of Symmetry. In T. Mora, editor, Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, LNCS 357, pages 99–110. Springer, 1988.

[17] G. Butler. Fundamental Algorithms for Permutation Groups. LNCS 559. Springer-
Verlag, 1991.

[18] M. Carlsson and N. Beldiceanu. Arc-consistency for a chain of lexicographic order-
ing constraints, 2002.

[19] B. Y. Choueiry and G. Noubir. On the computation of local interchangeability in
discrete constraint satisfaction problems. In AAAI/IAAI, pages 326–333, 1998.

[20] E. M. Clarke, S. Jha, R. Enders, and T. Filkorn. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1/2):77–104, 1996.

[21] D. A. Cohen, P. Jeavons, C. Jefferson, K. E. Petrie, and B. M. Smith. Symmetry
definitions for constraint satisfaction problems. In van Beek [118], pages 17–31.
ISBN 3-540-29238-1.

[22] J. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In L. C. Aiello, J. Doyle, and S. Shapiro, editors, KR’96:
Principles of Knowledge Representation and Reasoning, pages 148–159. Morgan

I. P. Gent, K. E. Petrie, J.-F. Puget 371

Kaufmann, San Francisco, California, 1996.
[23] P. Darga, M. Liffiton, K. Sakallah, and I.L.Markov. Exploiting Structure in Sym-

metry Generation for CNF. In ACM/IEEE Design Automation Conference - DAC,
pages 530–534, 2004.

[24] T. B. de la Tour. Ground resolution with group computations on semantic symme-
tries. In M. A. McRobbie and J. K. Slaney, editors, CADE, volume 1104 of Lecture
Notes in Computer Science, pages 478–492. Springer, 1996. ISBN 3-540-61511-3.

[25] R. L. de Mántaras and L. Saitta, editors. Proceedings of the 16th European Con-
ference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, 2004. IOS
Press. ISBN 1-58603-452-9.

[26] H. E. Dixon, M. L. Ginsberg, E. M. Luks, and A. J. Parkes. Generalizing boolean
satisfiability ii: Theory. J. Artif. Intell. Res. (JAIR), 22:481–534, 2004.

[27] H. E. Dixon, M. L. Ginsberg, and A. J. Parkes. Generalizing boolean satisfiability i:
Background and survey of existing work. J. Artif. Intell. Res. (JAIR), 21:193–243,
2004.

[28] H. E. Dixon, M. L. Ginsberg, D. Hofer, E. M. Luks, and A. J. Parkes. Generalizing
boolean satisfiability iii: Implementation. J. Artif. Intell. Res. (JAIR), 23:441–531,
2005.

[29] A. F. Donaldson and P. Gregory. Almost-symmetry in search. Technical Report
TR-2005-201, University of Glasgow, 2005.

[30] A. F. Donaldson and A. Miller. Automatic symmetry detection for model checking
using computational group theory. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki,
editors, FM, volume 3582 of Lecture Notes in Computer Science, pages 481–496.
Springer, 2005. ISBN 3-540-27882-6.

[31] A. F. Donaldson, A. Miller, and M. Calder. Finding symmetry in models of concur-
rent systems by static channel diagram analysis. Electr. Notes Theor. Comput. Sci.,
128(6):161–177, 2005.

[32] A. F. Donaldson, A. Miller, and M. Calder. Spin-to-grape: A tool for analysing
symmetry in promela models. Electr. Notes Theor. Comput. Sci., 139(1):3–23, 2005.

[33] T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh, editor,
Principles and Practice of Constraint Programming - CP 2001, volume Lecture
Notes in Computer Science 2239, pages 93–107. Springer, 2001.

[34] F.Focacci and M.Milano. Global cut framework for removing symmetries. In
T. Walsh, editor, Principles and Practice of Constraint Programming - CP 2001,
volume Lecture Notes in Computer Science 2239, pages 77–92. Springer, 2001.

[35] P. Flener, A. Frisch, B. Hnich, Z. Kızıltan, I. Miguel, and T. Walsh. Matrix mod-
elling. In Proceedings of the CP’01 Workshop on Modelling and Problem Formula-
tion, pages 1–7, 2001.

[36] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In P. van Hentenryck,
editor, Principles and Practice of Constraint Programming - CP 2002, LNCS 2470,
pages 462–476. Springer, 2002.

[37] M. Fox and D. Long. Extending the exploitation of symmetries in planning. In
M. Ghallab, J. Hertzberg, and P. Traverso, editors, AIPS, pages 83–91. AAAI, 2002.
ISBN 1-57735-142-8.

[38] M. Fox and D. Long. The detection and exploitation of symmetry in planning prob-

372 10. Symmetry in Constraint Programming

lems. In T. Dean, editor, IJCAI, pages 956–961. Morgan Kaufmann, 1999. ISBN
1-55860-613-0.

[39] E. Freuder. Eliminating Interchangeable Values in Constraint Satisfaction Problems.
In AAAI-91, pages 227–233, 1991.

[40] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for
lexicographic orderings. In P. van Hentenryck, editor, Proceedings of the Eighth
International Conference on Principles and Practice of Constraint Programming,
pages 93–108, 2002.

[41] A. M. Frisch and W. Harvey. Constraints for breaking all row and column symme-
tries in a three-by-two matrix. In Proceedings of the Third International Workshop
on Symmetry in Constraint Satisfaction Problems”,, September 2003.

[42] A. M. Frisch, C. Jefferson, and I. Miguel. Constraints for breaking more row and
column symmetries. In Rossi [104], pages 318–332. ISBN 3-540-20202-1.

[43] A. M. Frisch, I. Miguel, Z. Kiziltan, B. Hnich, and T. Walsh. Multiset ordering
constraints. In Gottlob and Walsh [57], pages 221–226.

[44] A. M. Frisch, C. Jefferson, and I. Miguel. Symmetry breaking as a prelude to implied
constraints: A constraint modelling pattern. In de Mántaras and Saitta [25], pages
171–175. ISBN 1-58603-452-9.

[45] A. M. Frisch, C. Jefferson, B. Martinez-Hernández, and I. Miguel. The rules of
constraint modelling. In IJCAI, pages 109–116, 2005.

[46] GAP – Groups, Algorithms, and Programming, Version 4.2. The GAP Group, 2000.
(http://www.gap-system.org).

[47] M. Gardner. Chess queens and maximum unattacked cells. Math Horizon, pages
12–16, November 1999.

[48] I. Gent and I. McDonald. NuSBDS: Symmetry Breaking made Easy. In B. Smith,
I. Gent, and W. Harvey, editors, Proceedings of the Third International Workshop on
Symmetry in Constraint Satisfaction Problems, pages 153–160, 2003. URL http:

//scom.hud.ac.uk/scombms/SymCon03/notes.html.
[49] I. Gent, S. Linton, and B. Smith. Symmetry breaking in the alien tiles puzzle.

Technical Report APES-22-2000, APES Research Group, October 2000. Available
from http://www.dcs.st-and.ac.uk/˜apes/apesreports.html.

[50] I. Gent, I. McDonald, and B. Smith. Conditional symmetry in the all-interval series
problem. In B. Smith, I. Gent, and W. Harvey, editors, Proceedings of the Third
International Workshop on Symmetry in Constraint Satisfaction Problems, pages
55–65, 2003.

[51] I. P. Gent and B. M. Smith. Symmetry breaking in constraint programming. In
Proceedings of European Conference on Artificial Intelligence - ECAI 2000, pages
599–603. IOS press, 2000.

[52] I. P. Gent, W. Harvey, and T. Kelsey. Groups and Constraints: Symmetry Breaking
During Search, 2002.

[53] I. P. Gent, W. Harvey, T. Kelsey, and S. Linton. Generic SBDD Using Compu-
tational Group Theory. In F. Rossi, editor, Principles and Practice of Constraint
Programming - CP2003, LNCS 2833, pages 333–347. Springer, 2003.

[54] I. P. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, and B. M. Smith. Condi-
tional symmetry breaking. In van Beek [118], pages 256–270. ISBN 3-540-29238-1.

[55] I. P. Gent, P. Nightingale, and K. Stergiou. Qcsp-solve: A solver for quantified
constraint satisfaction problems. In Kaelbling and Saffiotti [68], pages 138–143.

I. P. Gent, K. E. Petrie, J.-F. Puget 373

ISBN 0938075934.
[56] C. Gervet. Interval propagation to reason about sets: Definition and implementation

of a practical language. Constraints, 1(3):191–244, 1997.
[57] G. Gottlob and T. Walsh, editors. IJCAI-03, Proceedings of the Eighteenth Interna-

tional Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15,
2003, 2003. Morgan Kaufmann.

[58] P. Gregory and A. F. Donaldson. Conclusions of the SymNET workshop on almost-
symmetry in search. In Almost-Symmetry in Search Donaldson and Gregory [29],
pages 60–61.

[59] W. Harvey. Symmetry Breaking and the Social Golfer Problem. In Proceedings
SymCon-01: Symmetry in Constraints, pages 9–16, 2001.

[60] W. Harvey. A note on the compatibility of static symmetry breaking constraints and
dynamic symmetry breaking methods. In Proceedings SymCon-04: Symmetry and
Constraint Satisfaction Problems, pages 42–47, 2004.

[61] W. Harvey. Symmetric relaxation techniques for constraint programming. In
Almost-Symmetry in Search Donaldson and Gregory [29], pages 50–59.

[62] W. Harvey and T. Winterer. Solving the molr and social golfers problems. In van
Beek [118], pages 286–300. ISBN 3-540-29238-1.

[63] W. Harvey, T. Kelsey, and K. Petrie. Symmetry Group Expressions for CSPs. In
Proceedings SymCon-03: Third International workshop on Symmetry in Constraint
Satisfaction Problems, pages 86–96, 2003.

[64] P. V. Hentenryck, P. Flener, J. Pearson, and M. Agren. Tractable Symmetry Break-
ing for CSPs with Interchangeable Values. In International Joint Conference on
Artificial Intelligence - IJCAI 2003, pages 277–282, 2003.

[65] D. F. Holt, B. Eick, and E. A. O’Brien. Handbook of Computational Group Theory.
Chapman and Hall/CRC, 2005. ISBN 1 58488 372 3.

[66] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal Methods in
System Design, 9(1/2):41–75, 1996.

[67] C. Jefferson and A. M. Frisch. Representations of sets and multisets in constraint
programming. In B. Hnich, P. Prosser, and B. Smith, editors, The Fourth Interna-
tional Workshop on Modelling and Reformulating Constraint Satisfaction Problems,
pages 102–116, 2005.

[68] L. P. Kaelbling and A. Saffiotti, editors. IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
July 30-August 5, 2005, 2005. Professional Book Center. ISBN 0938075934.

[69] T. Kelsey, S. Linton, and C. M. Roney-Dougal. New developments in symmetry
breaking in search using computational group theory. In B. Buchberger and J. A.
Campbell, editors, AISC, volume 3249 of Lecture Notes in Computer Science, pages
199–210. Springer, 2004. ISBN 3-540-23212-5.

[70] Z. Kiziltan and B. M. Smith. Symmetry-Breaking Constraints for Matrix Models.
In Proceedings SymCon-02: Symmetry in Constraints, pages 1–8, 2002.

[71] B. Krishnamurthy. Short proofs for tricky formulas. Acta Inf., 22(3):253–275, 1985.
[72] A. Lal, B. Y. Choueiry, and E. C. Freuder. Neighborhood interchangeability and

dynamic bundling for non-binary finite CSPs. In M. M. Veloso and S. Kambhampati,
editors, AAAI, pages 397–404. AAAI Press AAAI Press / The MIT Press, 2005.
ISBN 1-57735-236-X.

[73] Y. C. Law and J. H.-M. Lee. Model induction: A new source of CSP model redun-

374 10. Symmetry in Constraint Programming

dancy. In AAAI/IAAI, pages 54–60, 2002.
[74] Y. C. Law and J. H.-M. Lee. Symmetry breaking constraints for value symmetries

in constraint satisfaction. Constraints. Forthcoming.
[75] Y. C. Law and J. H.-M. Lee. Global constraints for integer and set value precedence.

In Wallace [120], pages 362–376. ISBN 3-540-23241-9.
[76] J. S. Leon. Permutation group algorithms based on partitions, i: Theory and algo-

rithms. J. Symb. Comput., 12(4/5):533–583, 1991.
[77] E. Luks and A. Roy. The complexity of symmetry-breaking formulas. Ann. Math.

Artif. Intell., 41(1):19–45, 2004.
[78] I. J. Lustig and J. F. Puget. Program Does Not Equal Program: Constraint Pro-

gramming and Its Relationship to Mathematical Programming. INTERFACES, 31
(6):29–53, 2001.

[79] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming,
94:71–90, 2002.

[80] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming Ser B.,
98:3–21, 2003.

[81] R. Martin. Approaches to symmetry breaking for weak symmetries. In Almost-
Symmetry in Search Donaldson and Gregory [29], pages 37–49.

[82] I. McDonald and B. Smith. Partial symmetry breaking. In P. V. Hentenryck, editor,
Principles and Practice of Constraint Programming, pages 431–445, 2002.

[83] B. D. McKay. Practical graph isomorphism. Congressium Numerantium, 30:45–87,
1981.

[84] P. Meseguer and C. Torras. Exploiting Symmetries within Constraint Satisfaction
Search. Artificial Intelligence, 129:133–163, 2001.

[85] J. Molony. Symmetry and Complexity in Propositional Reasoning. PhD thesis,
University of Edinburgh, 1999.

[86] N. Peltier. A new method for automated finite model building exploiting failures
and symmetries. J. Log. Comput., 8(4):511–543, 1998.

[87] A. Petcu and B. Faltings. Applying interchangeability techniques to the distributed
breakout algorithm. In Gottlob and Walsh [57], pages 1381–1382.

[88] K. E. Petrie. Constraint Programming, Search and Symmetry. PhD thesis, Univer-
sity of Huddersfield, 2005.

[89] K. E. Petrie and B. M. Smith. Symmetry breaking in graceful graphs. In Rossi
[104], pages 930–934. ISBN 3-540-20202-1.

[90] K. E. Petrie, B. M. Smith, and N. Yorke-Smith. Dynamic symmetry breaking in
constraint programming and linear programming hybrids. In In the proceedings of
the Second Starting AI Researchers’ Symposium - STAIRS 2004, volume Frontiers
in Artificial Intelligence and Applications 109, pages 96–106. IOS Press, 2004.

[91] S. Prestwich. Negative effects of modeling techniques on search performance. An-
nals of Operations Research, 118:137–150, 2003.

[92] S. Prestwich. Supersymmetric modeling for local search. In Second International
Workshop on Symmetry in Constraint Satisfaction Problems, 2002.

[93] S. D. Prestwich. Full dynamic substitutability by sat encoding. In Wallace [120],
pages 512–526. ISBN 3-540-23241-9.

[94] S. D. Prestwich. First-solution search with symmetry breaking and implied con-
straints. In CP-01 Workshop on Modelling and Problem Formulation, 2001.

[95] S. D. Prestwich and A. Roli. Symmetry breaking and local search spaces. In

I. P. Gent, K. E. Petrie, J.-F. Puget 375

R. Barták and M. Milano, editors, CPAIOR, volume 3524 of Lecture Notes in Com-
puter Science, pages 273–287. Springer, 2005. ISBN 3-540-26152-4.

[96] L. G. Proll and B. M. Smith. ILP and Constraint Programming Approaches to a
Template Design Problem. INFORMS Journal on Computing, 10:265–275, 1998.

[97] J.-F. Puget. On the satisfiability of symmetrical constraint satisfaction problems. In
Methodologies for Intelligent Systems (Proceedings of ISMIS’93), LNAI 689, pages
350–361. Springer, 1993.

[98] J.-F. Puget. Symmetry breaking using stabilizers. In Rossi [104], pages 585–599.
ISBN 3-540-20202-1.

[99] J.-F. Puget. Symmetry breaking revisited. Constraints, 10(1):23–46, 2005.
[100] J.-F. Puget. Automatic detection of variable and value symmetries. In van Beek

[118], pages 475–489. ISBN 3-540-29238-1.
[101] J.-F. Puget. Breaking symmetries in all-different problems. In IJCAI, pages 272–

277, 2005.
[102] J.-F. Puget. Symmetry breaking revisited. In P. V. Hentenryck, editor, CP, volume

2470 of Lecture Notes in Computer Science, pages 446–461. Springer, 2002. ISBN
3-540-44120-4.

[103] C. M. Roney-Dougal, I. P. Gent, T. Kelsey, and S. Linton. Tractable symmetry
breaking using restricted search trees. In de Mántaras and Saitta [25], pages 211–
215. ISBN 1-58603-452-9.

[104] F. Rossi, editor. Principles and Practice of Constraint Programming - CP 2003,
9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October
3, 2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, 2003.
Springer. ISBN 3-540-20202-1.

[105] P. Roy and F. Pachet. Using Symmetry of Global Constraints to Speed up the Reso-
lution of Constraint Satisfaction Problems. In Workshop on Non Binary Constraints,
ECAI-98, August 1998.

[106] A. Sadler and C. Gervet. Hybrid set domains to strengthen constraint propagation
and reduce symmetries. In Wallace [120], pages 604–618. ISBN 3-540-23241-9.

[107] M. Sellmann and P. V. Hentenryck. Structural symmetry breaking. In Kaelbling and
Saffiotti [68], pages 298–303. ISBN 0938075934.

[108] A. Seress. Permutation group algorithms. Number 152 in Cambridge tracts in
mathematics. Cambridge University Press, 2002.

[109] I. Shlyakhter. Generating effective symmetry-breaking predicates for search prob-
lems. Discrete Applied Mathematics, To appear. Earlier version presented at the
SAT 01 Workshop.

[110] A. P. Sistla, V. Gyuris, and E. A. Emerson. Smc: a symmetry-based model checker
for verification of safety and liveness properties. ACM Trans. Softw. Eng. Methodol.,
9(2):133–166, 2000.

[111] A. Smaill. Symmetry in boolean constraints: Some complexity issues. In Tenth
Workshop on Automated Reasoning, 2003.

[112] B. Smith. Personal communication to Warwick Harvey, 2004.
[113] B. M. Smith. Reducing Symmetry in a Combinatorial Design Problem. Technical

report, School of Computer Studies, University of Leeds, Jan. 2001.
[114] B. M. Smith. A dual graph translation of a problem in ‘Life’. In Principles and Prac-

tice of Constraint Programming - CP2002, LNCS 2470, pages 402–414. Springer,
2002.

376 10. Symmetry in Constraint Programming

[115] B. M. Smith, K. E. Petrie, and I. P. Gent. Models and symmetry breaking for ’peace-
able armies of queens’. In J.-C. Régin and M. Rueher, editors, CPAIOR, volume
3011 of Lecture Notes in Computer Science, pages 271–286. Springer, 2004. ISBN
3-540-21836-X.

[116] L. H. Soicher. Computing with graphs and groups. In L. Beineke and R. Wilson,
editors, Topics in Algebraic Graph Theory, pages 250–266. Cambridge University
Press, 2004.

[117] A. Urquhart. The symmetry rule in propositional logic. Discrete Applied Mathe-
matics, 96-97:177–193, 1999.

[118] P. van Beek, editor. Principles and Practice of Constraint Programming - CP 2005,
11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceed-
ings, volume 3709 of Lecture Notes in Computer Science, 2005. Springer. ISBN
3-540-29238-1.

[119] M. Vasquez and D. Habet. Complete and incomplete algorithms for the queen graph
coloring problem. In de Mántaras and Saitta [25], pages 226–230. ISBN 1-58603-
452-9.

[120] M. Wallace, editor. Principles and Practice of Constraint Programming - CP 2004,
10th International Conference, CP 2004, Toronto, Canada, September 27 - October
1, 2004, Proceedings, volume 3258 of Lecture Notes in Computer Science, 2004.
Springer. ISBN 3-540-23241-9.

Handbook of Constraint Programming 377
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 11

Modelling

Barbara M. Smith

Constraint programming can be a successful technology for solving practical problems;
however, there is abundant evidence that how the problem to be solved is modelled as
a Constraint Satisfaction Problem (CSP) can have a dramatic effect on how easy it is to
find a solution, or indeed whether it can realistically be solved at all. The importance
of modelling in constraint programming has long been recognized e.g. in invited talks by
Freuder [14] and Puget [34].

In this chapter, it will be assumed that the problem to be solved can be represented as a
CSP whose domains are finite; infinite domains are discussed in Chapter 16, “Continuous
and Interval Constraints”. In most of the examples, the variable domains will be sets of
integers; see Chapter 17, “Constraints over Structured Domains”, for more on set variables
and other variable types.

A complicating factor in modelling is the interaction between the model, the search
algorithm and the search heuristics. To simplify matters, it will be assumed that, having
modelled the problem of interest as a CSP, the CSP will be solved using a constraint solver
such as ILOG Solver, ECLiPSe, Choco, SICStus Prolog, or the like. The default com-
plete search algorithms provided by these solvers are sufficiently similar that they provide
a common context for discussing modelling. Furthermore, they are designed to solve large
problems of practical significance, and for such problems, it is worth the effort of develop-
ing the best model of the problem that we can find. Some of what follows will also apply
to other search techniques such as local search (covered in Chapter 5) or to other com-
plete search algorithms, but much will not, because the search algorithm has a profound
influence on modelling decisions.

In this chapter, it will be assumed that the problem to be solved is well-defined; al-
though eliciting a correct and full problem description can be a significant proportion of
the problem-solving effort, it will be assumed here that that step has been done. It will
also be assumed that the problem does not involve preferences or uncertainty, which are
covered in Chapters 9 and 21.

B.V.

378 11. Modelling

11.1 Preliminaries

In this section, the concepts needed in the rest of the chapter are defined.
A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 where: X is a set of

variables, {x1, ..., xn}; D is a set of domains, D1, ..., Dn associated with x1, ..., xn re-
spectively; and C is a set of constraints. Each constraint c ∈ C is a pair c = 〈σ, ρ〉 where
σ, the constraint scope, is a list of variables, and ρ, the constraint relation, is a subset of
the Cartesian product of their domains.

The domain of a variable is the set of possible values that can be assigned to it. In this
chapter, it will be assumed that the domain of a variable is a finite set.

An assignment is a pair (xi, a), which means that variable xi ∈ X is assigned the
value a ∈ Di. A compound assignment is a set of assignments to distinct variables in X .
A complete assignment is a compound assignment to all variables in X .

The relation of a constraint c = 〈σc, ρc〉 specifies the acceptable assignments to the
variables in its scope. That is, if the constraint scope σc is {xi1 , xi2 , ..., xik} and 〈a1, a2, ...,
ak〉 ∈ ρc, the compound assignment assigning ai to xik , 1 ≤ i ≤ k, is an acceptable
assignment; we say that the assignment satisfies the constraint c. A solution to the CSP
instance 〈X,D,C〉 is a complete assignment such that for every constraint c ∈ C, the
restriction of the assignment to the scope σc satisfies the constraint.

The relation of a constraint may be specified extensionally by listing its acceptable
(satisfying) tuples, or intensionally by giving an expression involving the variables in the
constraint scope such as x < y from which it can be determined whether or nor a given
tuple satisfies the constraint.

The arity of a constraint is the size of its scope. A unary constraint is defined on a
single variable, a binary constraint on two variables. There is no requirement that different
constraints must have different scopes.

Given a constraint c = 〈σc, ρc〉, the projection of c onto τ ⊂ σc is a constraint c′ whose
scope is τ and whose relation is the set of tuples derived by taking each tuple in ρc and
selecting only those components corresponding to the variables in τ .

Many forms of consistency have been defined for CSPs and individual constraints.
Here, only those commonly used by constraint solvers are defined. Consistency and con-
straint propagation are covered fully in Chapter 3.

A binary constraint is arc consistent if for every value in the domain of either variable,
there exists a value in the domain of the other such that the pair of values satisfies the
constraint. A non-binary constraint is generalized arc consistent or hyper-arc consistent
iff for any value for a variable in its scope, there exists a value for every other variable in
the scope such that the tuple satisfies the constraint. Domain propagation on a constraint
removes unsupported values (i.e. values which cannot be extended to a pair of tuple of
values satisfying the constraints) from the domains of the variables in its scope until the
constraint is (generalized) arc consistent.

A constraint c on variables with ordered domains (such as integers) is bounds consis-
tent if for every variable x in its scope, there exists a value dj for every other variable
xj (1 ≤ j ≤ k) in the scope of c, with minDj

≤ dj ≤ maxDj
, such that the com-

pound assignment {(x, l), (x1, d1), ..., (xk, dk)} satisfies c, where l is the minimum of the
domain of x, and similarly, values d′j can be found with minDj

≤ d′j ≤ maxDj
, such

that {(x, u), (x1, d
′
1), ..., (xk, d

′
k)} satisfies c, where u is the maximum of the domain of

x. (For arithmetic constraints, the values dj , d′j can be real values rather than integers.)

B. M. Smith 379

Bounds propagation on an arithmetic constraint reduces the bounds of the variables until
the constraint is bounds consistent.

11.2 Representing a Problem

It is difficult to define precisely what we mean when we say that a CSP represents a prob-
lem P . A possible definition is that: a CSP M = 〈X,D,C〉 represents a problem P , or M
is a model of P , if every solution of C corresponds to a solution of P and every solution
of P can be derived from at least one solution to C.

The definition does not require that there is a one-to-one correspondence between the
solutions of P and the solutions ofM . This is because modelling a problem as a CSP often
introduces symmetry, by representing entities that are indistinguishable in P by distinct
variables or values in M . Hence, multiple solutions of M may correspond to the same
solution to P .

Symmetry causes a further complication, because if there is symmetry in both P and
M , one way to deal with it is to add constraints toM ; the aim is to eliminate all but one so-
lution in every symmetry equivalence class. The symmetry-breaking constraints exist only
in M , not in P , so that multiple symmetrically-equivalent solutions to P can correspond
to the same solution to M . Hence, the correspondence between the solutions to M and the
solutions to P can be many-to-many. We might avoid this last complication by agreeing
that symmetry-breaking constraints are a special case, intended to eliminate solutions to
M and therefore also solutions to P , and that they can be ignored in considering whether
M is a model of P .

A final difficulty with the definition is that it implies that any CSP models a problem
that has no solutions. The definition of equivalence of CSPs given by Rossi, Petrie and
Dhar [36] similarly makes any CSPs with no solutions equivalent.

In practice, in modelling a problem as a CSP, we do not rely on this definition, but
choose variables and values to represent entities in P and write the constraints on these
variables to represent the rules and restrictions defining the solutions to P . However, it
must certainly be true that any solution to M yields exactly one solution to P , and that
any solution to P corresponds to a solution to M or is symmetrically equivalent to such a
solution, and that if M has no solutions, this is because P itself has no solutions.

The aim in choosing a model of a problem is to arrive at a CSP that can be solved
quickly; we typically require good run-time behaviour over the range of instances to be
solved. Note that the shortest run-time does not necessarily mean the least search (as
measured by nodes visited or backtracks, say).

11.3 Propagation and Search

In this chapter, it will be assumed, unless stated otherwise, that the CSP will be solved
by a complete search algorithm that interleaves search with constraint propagation. Such
search algorithms are dealt with in Chapter 4, “Backtracking Search Algorithms for CSPs”,
along with variable and value ordering heuristics. The search proceeds by constructing
a series of choice points, at each of which a set of mutually exclusive and exhaustive
choices is constructed, involving variables whose value is not yet assigned. Common sets
of choices are {xi = a, xi 6= a} (binary branching); {xi = 1, xi = 0} (when the variables

380 11. Modelling

are Boolean); {xi ≤ a, xi > a} (domain splitting); {xi = v1, xi = v2, ..., xi = vk},
where v1, v2, ..., vk are the values currently available in Di (k-way branching). Choices
can involve more than one variable, e.g. {xi ≤ xj , xi > xj}; this is common in scheduling,
for instance, where the choices might represent the two possible orders for the starting
times of two activities (see Chapter 22). Although all these types of choice, and more, are
possible, in the examples quoted in this chapter binary branching has been used.

The search pursues each choice in turn, first adding the constraint defining the choice
to the existing constraints and propagating it, until local consistency is restored in the
resulting subproblem. Typically, each type of constraint in the problem has an associ-
ated propagation algorithm, achieving the level of consistency specified for that constraint.
Constraint propagation continues until no further propagation can be done, and every con-
straint is again in its target state of consistency. Given a target level of consistency for each
constraint in C, the CSP 〈X,D,C〉 is locally consistent if every constraint achieves its tar-
get consistency level. If, at any stage during the search, constraint propagation results in an
empty domain for some future (not-yet-assigned) variable, the search backtracks, restoring
the domains to their state before the last choice was made, and exploring another of the
choices created at the last choice point; if no further choices remain, the search backtracks
to a previous choice point, and so on, until either a solution is found or all possible choices
have been explored.

This form of search is used by default in commercial constraint solvers. It has a pro-
found influence on the modelling process, because in taking many modelling decisions, the
user needs to consider their effect on constraint propagation.

Typically, constraint solvers will enforce arc consistency (AC) on some, but not all,
binary constraints and bounds consistency (BC) on arithmetic constraints. They will not
usually maintain generalized arc consistency (GAC) on non-binary constraints, except for
global constraints for which an efficient propagation algorithm exists. For some global
constraints, the user may be able to choose the level of consistency to be maintained. For
some complex constraints, the default may be to do very little consistency checking; the
propagation algorithm may take action only when all but one or two of the variables in its
scope have been instantiated.

These decisions in designing constraint solvers stem from a trade-off between the time
and space required to maintain generalized arc consistency on all constraints and the reduc-
tion in search that could result. Puget has explained the decision to maintain only bounds
consistency on arithmetic constraints in ILOG Solver by saying: “Solver is a compro-
mise between efficiency and completeness...In the example... [of constraint propagation of
arithmetic constraints] the incompleteness comes from the fact that arithmetic expressions
only propagate bounds.. This is an example of the choice we made. Propagating holes in
expressions would require much more memory and time than the current implementation.
¿From tests made on a very large set of examples, we found that the current compromise
is by far better.”

Even if we start from the assumption that the CSP will be solved using this general
search algorithm, the form of the choices made at choice points, as well as the specific
variable and value choices, will also affect the solution time.

Beacham, Chen, Sillito and van Beek [2] investigate the interaction between constraint
models, search algorithms and search heuristics, using crossword puzzle problems. They
compare three constraint models and two well-known search heuristics (minimum domain
and domain/degree); the search algorithms are forward checking and a search algorithm

B. M. Smith 381

that maintains generalized arc consistency, with three different ways of enforcing GAC.
They conclude that the three choices of model, algorithm and heuristic interact, and that
for the most efficient problem solving, none of the decisions can be made independently
of the others.

It is a moot point whether the choice of search heuristics is part of modelling or not. It is
certainly true that the performance of a model will be affected by the search heuristics, but
for the purposes of this chapter, choosing the search heuristics will be excluded. However,
for some types of model, there is a choice of which of the variables in the model should be
used to drive the search, i.e. which variables should participate in choice points, and this
will be considered as part of modelling.

11.4 Viewpoints

Different models of a problem P may result from viewing the problem P from different
angles or perspectives. The term viewpoint was introduced informally by Geelen [19], in
discussing permutation problems, and was subsequently adopted and formally defined by
Law and Lee [29]. A viewpoint is a pair 〈X,D〉, where X = {x1, . . . , xn} is a set of vari-
ables, and D is a set of domains; for each xi ∈ X , the associated domain Di is the set of
possible values for x. It must be possible to ascribe a meaning to the variables and values
of the CSP in terms of the problem P , and so to say what an assignment in the viewpoint
〈X,D〉 is intended to represent in terms of P . The complete assignments defined by the
viewpoint are intended to include all possible solutions of P . The constraints must then en-
sure that every solution to the CSP is a valid solution to P , and so are largely determined by
that requirement. Hence, it is different viewpoints that give rise to fundamentally different
models of a problem.

In principle, the values in the domain can be of any type. In practice, the types com-
monly supported by constraint solvers include integers, Booleans (perhaps only as a sub-
type of integers) and sets of integers. Other types have been proposed, e.g. multisets and
tuples; constraint solvers may directly support these, or provide facilities to allow new
types to be defined. Some of what follows may also apply to modelling using real-valued
variables, and since the domains of integer variables are sometimes represented as inter-
vals, the boundary can be blurred.

Except for some very small problems, the variables of a CSP are usually implemented
using some data structure such as a list or an array. Flener, Frisch, Hnich, Kiziltan and
Walsh [12] suggest that matrix models, based on matrices of variables, are a natural way
to model many problems; indeed, almost all the examples given in this chapter use 1- or
2-dimensional matrices of variables. For some applications, other structures are important;
for instance, models based on graphs are used in the network applications discussed in
Chapter 25.

There are usually different viewpoints that could be chosen in modelling a problem.
Although viewpoints can be combined, as will be described in section 11.9, it will be
assumed for now that only one will be used. Having chosen a viewpoint, the next step is to
express the constraints to ensure that the solutions to the CSP are correct, i.e. are solutions
to P . However, although correctness is a minimum requirement, it is not sufficient if we
are also concerned with how efficiently the CSP can be solved. A good rule of thumb
in choosing a viewpoint is that it should allow the constraints to be easily and concisely

382 11. Modelling

expressed; we should prefer viewpoints that allow the problem to be described using as
few constraints as possible, as long as those constraints have efficient, low-complexity
propagation algorithms.

Nadel [30] was possibly the first to discuss different ways of modelling a problem. He
lists nine different representations of the n-queens problem as a CSP (in fact, nine differ-
ent viewpoints), although two of these are derived from another two simply by swapping
the roles of rows and columns, and so result in identical CSPs. For instance, two of the
viewpoints are:

1. the variables r1, .., rn represent the rows of the board, and the domain of each vari-
able is the set of integers {1, 2, ..., n} representing the columns; an assignment (ri, c)
means that the queen in row i is in column c;

2. the variables q1, ..., qn correspond to the n queens and the domain of each variable
is the set of integers {1, 2, ..., n2}, representing the squares; an assignment (qi, a)
means that the ith queen is on square a.

In the first viewpoint, the rule that there is only one (in fact, exactly one) queen on each
row is covered by the fact that any variable can only be assigned one value. The rule that
there is only one queen in each column can be expressed by the constraints ri 6= rj for
1 ≤ i < j ≤ n or by an allDifferent constraint on r1, ..., rn.

In the second viewpoint, the rules are more awkward to express. Constraints are needed
to ensure that no two queens are in the same row; if the ‘row’ element of a value can
be extracted, there could be a constraint between every pair of variables that their row
elements are not equal; the column constraints could be dealt with similarly. The diagonal
constraints are more difficult to write. One possibility is to state an extensional constraint
between each pair of variables, listing for each of the n2 values, the values representing
squares that are not in the same row, column or diagonal, although domain propagation
would then be expensive. Furthermore, such constraints would only express that fact that
there is at most one queen in each row or column, not that there must be exactly one.
Although only correct solutions would be found using these constraints, the model would
allow partial solutions in which the queens already placed attack all the squares on a row
or column, since there is nothing explicit in the constraints to forbid this. Hence, a model
based on the second viewpoint would be less efficiently solved than the model based on
the first viewpoint.

11.5 Expressing the Constraints

Once we have arrived at a viewpoint that allows the constraints to be easily and concisely
expressed, there are often choices in exactly how to write the constraints; an example has
already been seen in the first viewpoint for the n-queens problem, where there is a choice
between binary 6= constraints and an allDifferent constraint.

The way in which the constraints are written affects the efficiency of the resulting
model, because it affects how the constraints will propagate during the search. Harvey and
Stuckey [22] observe that, “An unnerving and not well studied property of propagation
based solvers, is that the form of a constraint may change the amount of information that
propagation discovers.” They illustrate this with the constraints c1 ≡ (x = y), c2 ≡
(x + y = z) and c3 ≡ (2y = z), where x, y and z are integer variables. If C = {c1, c2}

B. M. Smith 383

and C ′ = {c1, c3}, C and C ′ are equivalent, in the sense that they have the same solutions.
However, if C and C ′ are made locally consistent, then in C ′, the domain of z (using AC)
or its upper and lower bounds (using BC) will be even integers, but this is not necessarily
true of C.

Unfortunately, to arrive at a good model of P , it is essential to be aware of the range of
constraints supported by the constraint solver and the level of consistency enforced on each
and to have some idea of the complexity of the corresponding propagation algorithms. This
is, of course, a long way from the declarative ideal. In this section, some of the choices
available when writing constraints are discussed.

11.5.1 Combining Constraints

Combining constraints with the same scope can be a way of expressing them more con-
cisely. The conjunction of two constraints with the same scope allows only the tuples that
are allowed by both. Enforcing the same level of local consistency on a conjunction c1∧c2
as on c1 and c2 separately will remove at least as many domain values. However, it may
or may not reduce the run-time, depending on how time-consuming it is to enforce local
consistency on the conjunction and on the separate constraints.

An example can be found in the n-queens problem. Using the first viewpoint listed
earlier (the standard CSP model for this problem), the variables x1, x2, ..., xn representing
rows 1 to n of the board, and the values are {1, 2, ..., n}, representing the columns. The
rule that two queens cannot be on the same column or diagonal can most simply be written
using more than one constraint between each pair of variables xi and xj , i < j. For
instance:

• xi 6= xj

• xi − xj 6= j − i

• xj − xi 6= j − i

Figure 11.1 shows a state that might be arrived at during search, when n = 6. Two
variables, x1 and x2, have already been assigned, and the crossed squares are no longer
available, because queens placed there would conflict with the two already placed; the
corresponding values will have been removed from the domains of the remaining variables
x3, x4, x5, x6. A queen cannot now be placed in row 5, column 3, because it would conflict

Q
Q

Figure 11.1: A search state in the 6-queens problem

with both remaining places for a queen in the 3rd row. However, the three constraints

384 11. Modelling

between x3 and x5 are arc consistent; the value 3 for x5 is supported by the value 1 for
x3 as far as the first constraint is concerned, and by the value 3 for x3 as far as the second
constraint is concerned. If the conjunction of the three constraints were expressed as a
single constraint, domain propagation would delete 3 from the domain of x5. (However,
since the conjunction is unlikely to be expressible as a single constraint using the standard
constraints provided by constraint solvers, it might require writing a special constraint or
forcing AC in some other way. Simply writing a single constraint as a conjunction of the
separate constraints will not guarantee that the solver will enforce GAC on it, and it may
in fact do less consistency checking than on the separate constraints.)

Katsirelos and Bacchus [28] discuss improving constraint propagation by enforcing
GAC on conjunctions of constraints, rather than the individual constraints. If c1 and c2 are
two constraints in a CSP, domain propagation on their conjunction c1 ∧ c2 removes at least
as many domain values as domain propagation on c1 and c2 separately. If the scopes of
c1 and c2 are disjoint, then domain propagation on the conjunction is equivalent to domain
propagation on the separate constraints, but the larger the overlap in the scopes, the larger
the potential domain pruning from conjoining the constraints. Katsirelos and Bacchus use
Bessière and Régin’s GAC-schema algorithm [4] in their experiments: for that algorithm,
if the scope of c1 is a subset of the scope of c2, it is less time-consuming to enforce GAC
on the conjunction than on the individual constraints. They propose, as a heuristic, to
combine constraints which share all or most of their variables. They use the Golomb ruler
problem, discussed in more detail in section 11.9, as an example. They model the problem
as a CSP by using the positions of the m ‘ticks’ on the ruler as the variables x1, ..., xm.
The constraints are that |xj − xi| 6= |xl − xk|, for 1 ≤ i, j, k, l ≤ m. In this model,
there are seven constraints of this kind over any set of four variables (four quaternary and
three ternary). They show that combining the quaternary and ternary constraints on each
set of four such variables reduces the number of backtracks slightly and the run-time a lot,
compared to using the individual constraints; they maintain GAC on constraints in either
case. (Note that this is not the model usually used for the Golomb ruler problem, so that
their results are not comparable with others.)

11.5.2 Eliminating Variables

Harvey and Stuckey [22] give a number of theorems on rewriting linear constraints and how
bounds propagation or domain propagation will be affected. For instance, one theorem
concerns using a two-variable linear equation to substitute for one of these variables in
a linear constraint: suppose c1 ≡ (

∑n
i=1 aixi op d), where op ∈ {=,≤, 6=} and c2 ≡

(bjxj + bkxk = e), j 6= k, bj 6= 0, bk 6= 0. Let c3 be the constraint resulting from
using c2 to remove xj in c1. Then bounds propagation on {c3, c2} is stronger than bounds
propagation on {c1, c2}. (i.e. each variable domain in the first case is a subset of its domain
in the second case). The same is true for domain propagation.

11.5.3 Global Constraints

Constraint solvers provide a range of global constraints, developed to replace particular
sets of constraints that occur frequently. Global constraints are the subject of Chapter 6.
They allow a single constraint on any number of variables to replace a set of constraints,
and provide a propagation algorithm that typically enforces GAC on the constraint.

B. M. Smith 385

There is sometimes a choice as to what level of consistency will be maintained on the
global constraint. A frequently occurring global constraint is the allDifferent constraint,
and it does provide such a choice. A constraint allDifferent(x1, x2, ..., xn) can either be
treated as if it had been written as n(n− 1)/2 binary 6= constraints on which AC is main-
tained; or bounds consistency (BC) can be maintained on the global constraint; or general-
ized arc consistency (GAC) can be maintained. Maintaining a higher level of consistency
takes more time; on the other hand, if more values can be removed from the domains of the
variables, the search effort will be reduced and this will save time. Whether or not the time
saved outweighs the time spent depends on the problem. In the case of the allDifferent
constraint, experience suggests that if the number of values in the union of the domains of
x1, x2, ..., xn is n or not much greater, maintaining GAC is likely to be worthwhile; but if
the number of values is much greater than n, so that the allDifferent constraint is looser, it
is less likely that domain propagation will remove more values than the 6= constraints, and
so it may not be cost-effective (see for instance [31]).

11.5.4 Extensional Constraints

Some constraint solvers give the user the option to enforce GAC on any constraint. CHIP,
for instance, had the facility to enforce arc consistency on arbitrary constraints defined by
Prolog predicates, and this was used in solving a microcode labelling problem, described in
[47]. ILOG Solver provides a table constraint, in which the set of allowed (or not allowed)
tuples can be explicitly listed. SICStus Prolog similarly has a case constraint that allows
the solutions to the constraint to be specified as a directed acyclic graph.

Cheng and Yap [7] demonstrate the usefulness of the SICStus Prolog case constraint
in Maximum Density Still Life, a problem derived from the Game of Life. The game is
played on a squared board and in the problem considered, each cell of the board is either
alive or dead according to the state of its eight neighbouring cells. The original model has
a Boolean variable for each cell, with the value 1 representing ‘alive’ and 0 representing
‘dead’. The constraint between a variable and the variables representing the neighbouring
cells is complex: the value of the cell is 1 if the sum of the neighbouring variables is exactly
3, or 0 if their sum is< 2 or> 4. The aim is to find a configuration of live and dead cells on
an n×n board that satisfies the constraints and maximizes the number of live cells. Cheng
and Yap use the case constraint to represent the constraint between the cells in a 3 × n
‘super-row’. They use the fact that the variables in the problem are Boolean to construct
a Binary Decision Diagram of the constraint and convert the BDD to a DAG. For a good
ordering of the variables, the size of the resulting BDD increases only linearly with n, so
that maintaining consistency of the case constraint remains efficient.

It can be useful to be able to express even binary constraints extensionally and ensure
that arc consistency is maintained. For instance, in the Black Hole patience game [20], a
pack of playing cards has to be arranged in sequence, in such a way that successive cards
in the sequence have consecutive values, so that for instance a five can only be followed
by a four or a six (of any suit). An ace can be either a high or a low value, and so can
be followed by a two or a king. (There are other conditions on the sequence that are not
relevant here.) The viewpoint used in solving Black Hole games using CP in [20] has a
variable xi for each position i in the sequence, 1 ≤ i ≤ 52; the domain of each variable
is {1, .., 52}, representing the cards, where the values 1 to 13 represent the ace to king of
spades respectively, 14 to 26 represent the ace to king of hearts, and so on. To ensure a

386 11. Modelling

correct sequence, there must be a binary constraint between xi and xi+1 for 1 ≤ i ≤ 51; for
instance, if xi is assigned the value 15 (representing the two of hearts), the possible values
for xi+1 are 1, 3, 14, 16, 27, 29, 40, 42, representing the aces and threes. The constraint is
expressed extensionally by listing the possible values for xi+1 for each possible value of
xi, using the table constraint in ILOG Solver, which maintains AC on the constraint.

11.5.5 Reified Constraints and Meta-Constraints

A reified constraint associates a 0/1 variable x with a constraint c, so that x takes the value
1 if the constraint c is satisfied and 0 otherwise. More or less equivalently, in terms of
expressivity, a meta-constraint is a constraint over constraints. Fernandez and Hill [11]
discuss representing a self-referential puzzle introduced by Henz [23] in a variety of con-
straint programming languages, using reified constraints and meta-constraints.

More significantly, they can be used to express disjunctions of constraints. For instance,
the condition that constraint c1 or constraint c2 (or both) must be satisfied can be expressed
by associating the constraints with the variables x1 and x2 respectively and adding the
constraint that x1 + x2 ≥ 1.

Van Hentenryck and Deville [48] introduced the cardinality operator to express such
disjunctive conditions; it allows upper and lower bounds to be stated on the number of
constraints in a set that must be satisfied. Of course, it is not sufficient simply to allow
disjunctive conditions to be expressed; changes to the domains of the variables involved
must also be propagated efficiently. The implementation of reified constraints in constraint
logic programming is discussed in Chapter 12.

11.6 Auxiliary Variables

In the last section, different ways of writing constraints on the variables in the chosen
viewpoint were discussed. However, more choices are available, and the potential for
more efficient models, if other variables can be introduced.

Auxiliary variables are variables introduced into a model, either because it is difficult
to express the constraints at all in terms of the existing variables, or to allow the constraints
to be expressed in a form that would propagate better, i.e. lead to more domain reductions.

An early example appears in a paper on the car sequencing problem (problem 1 in
CSPLib) by Dincbas, Simonis and van Hentenryck [9]. A number of cars are to be made
on a production line: each of them may require one or more options which are installed
at different stations on the line. The option stations have lower capacity than the rest of
the production line, e.g. a station may be able to cope with at most one car out of every
two. The cars are to be arranged in a production sequence so that these capacities are not
exceeded.

In [9], the initial viewpoint has variables si, 1 ≤ i ≤ n, where n is the number of
cars to be produced, and therefore the length of the production sequence. The value of si
represents the car to be produced in position i in the sequence, or more precisely the class
of car, since cars requiring the same set of options can be considered as identical.

It is straightforward to express some of the constraints required to model the problem
in this viewpoint, for instance, that the number of variables assigned a specific value is
equal to the number of cars in the corresponding class. However, the option capacities are
difficult to express using these variables alone.

B. M. Smith 387

Dincbas et al. introduce auxiliary Boolean variables oij , 1 ≤ i ≤ n, 1 ≤ j ≤ m, such
that oij = 1 iff the car in the ith slot in the sequence requires option j. The constraints
expressing the option capacities are expressed in terms of these variables; suppose that
the capacity of option 1 is one car in every two. Then the capacity of the option can be
enforced using the constraints:

oi,1 + oi+1,1 ≤ 1 for 1 ≤ i < n

Constraints are also needed to express the relationship between the auxiliary vari-
ables and the original variables. In this case, this could be done by the constraints oij =
λsi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, where the constant λkj = 1 iff car class k requires option j.

Usually, auxiliary variables are not sufficient to define a viewpoint, i.e. it would not be
possible to build a model of the problem using only the auxiliary variables. However, the
auxiliary variables in the car sequencing problem could constitute a viewpoint; every valid
production sequence can be specified as a complete assignment to these variables.

It is sometimes worthwhile to use auxiliary variables as search variables, alongside the
original variables. An example occurs in a network design problem arising from the de-
ployment of synchronous optical networks (SONET) [43]. The network contains a number
of client nodes and a number of SONET rings. A SONET ring joins a number of nodes;
a node is installed on a ring using an add-drop multiplexer (ADM). There are known de-
mands (in terms of numbers of channels) between pairs of nodes; in a simplified version
of the problem, the level of demand is ignored, but if there is a traffic demand between two
nodes, there must be a ring that they are both installed on. Each node can be installed on
more than one ring, and there is a maximum number of nodes that can be installed on each
ring. The objective is to minimise the total number of ADMs required, while satisfying all
the demands.

The viewpoint used in [43] has variables xik, 1 ≤ i ≤ n, 1 ≤ k ≤ m, where n is the
number of nodes and m is the number of available rings. xik = 1 if node i is assigned to
ring k, 0 otherwise.

A number of auxiliary variables are introduced, representing for instance the number of
rings that each node is on. It was found to be a successful search strategy to assign this last
set of variables first, before assigning the variables xik. In terms of the underlying problem,
although deciding how many rings each node is not sufficient to specify the network, it
greatly simplifies the remaining problem of deciding which rings each node is on.

Note that if the auxiliary variables would constitute a viewpoint in their own right, and
we assign values to these variables as well as the viewpoint variables, the resulting model
might be more appropriately considered as combining two viewpoints, as in section 11.9.

11.7 Implied Constraints

Implied constraints, also called redundant constraints, are constraints which are implied by
the constraints defining the problem. They do not change the set of solutions, and hence
are logically redundant. The aim in adding implied constraints to the CSP is to reduce the
search effort to solve the problem.

A necessary condition for an implied constraint to be useful in reducing search is that it
forbids one or more compound assignments that the existing constraints will allow (given
the level of propagation that will be maintained on the individual constraints during search).

388 11. Modelling

A compound assignment forbidden by an implied constraint cannot lead to a solution, since
it does not change the set of solutions. Without the implied constraint, such an assignment
may occur during the search, and determining that it cannot be completed may take a very
long time.

Dincbas, Simonis and van Hentenryck [9] used implied constraints in solving the car
sequencing problem described earlier. In section 11.6, the constraints on the variables oij
enforcing the option capacities are given. These constraints only express that fact that the
option capacities cannot be exceeded; there is nothing to prevent a partial sequence of cars
from using a particular option below capacity. However, a certain number of cars requiring
each option have to be fitted into the sequence, so that going below capacity in one part of
the sequence may make it impossible to avoid exceeding the capacity elsewhere. Hence,
there are implied constraints which have not yet been expressed.

For instance, suppose there are 30 cars, and 12 of them require option 1, with capacity
1 car in any 2. Then at least one of the cars in slots 1 to 8 of the production sequence
must require option 1; otherwise 12 of cars 9 to 30 will require option 1, which violates
the capacity constraint. Similarly, cars 1 to 10 must include at least two option 1 cars,
... , and cars 1 to 28 must include at least 11 of the option 1 cars. Dincbas et al. added
implied constraints of this kind for each option and for all sub-sequences starting with slot
1. Without these constraints, partial sequences in which one or more option stations are
under-utilized can be formed, and eventually the search will have to backtrack when it is
found that the sequence cannot be completed without exceeding the option capacity. The
implied constraints prevent wasted search of unsatisfiable subproblems.

11.7.1 Implied Constraints and Search Order

Ensuring that each implied constraint forbids an assignment that would be allowed other-
wise is not sufficient to guarantee that the added constraints will reduce the search effort.
It may be that the assignments forbidden by a proposed implied constraint would never
occur during the search anyway, given the search order. Hence, in backtracking search, the
order in which the variables are assigned can affect whether it will be beneficial to add an
implied constraint or not.

For instance, Borrett & Tsang [5] discuss adding an implied constraint between vari-
ables q and r when binary constraints between p and q and between p and r already exist
in the CSP. The constraint cqr could be derived by composing the constraints cpq and cpr
- effectively, making this triple of variables path consistent. Borrett & Tsang show that
using a simple backtracking algorithm (i.e. one doing no constraint propagation), if the
three variables p, q and r are assigned in that order, the implied constraint cqr will have
no effect on the number of nodes visited. On the other hand, if the CSP already contains
the constraints cpr and cqr, then adding the constraint cpq can reduce the number of nodes
visited, given the same search order.

Similarly, in the car sequencing problem, the usefulness of the implied constraints used
by Dincbas et al. depends on the search order [39]. In the example given earlier, at least
one car in slots i to i+7 of the sequence must require option 1, for any value of i from 1 to
23; hence, as well as the constraint added by Dincbas et al., there are many other equally
valid constraints. Overall, there are potentially very many implied constraints imposing
a lower limit on the number of cars requiring a particular option in any sub-sequence of
length k. However, if the search builds up the sequence of cars consecutively from slot

B. M. Smith 389

1, only the implied constraints on the first k cars affect the search. The other possible
implied constraints would always be consistent, but checking this whenever one of the
variables involved is assigned a value would slow down the search. On the other hand, if
the variables were assigned in a different order, a different set of implied constraints would
be useful.

11.7.2 Implied Constraints v. Global Constraints

Following the work of Dincbas et al. on the car sequencing problem, Régin and Puget
[35] later developed a global constraint specifically for sequence problems, using the car
sequencing problem as a test case. They noted that “our filtering algorithm subsumes all
the implied constraints” used by Dincbas et al. The global constraint makes the effort of
devising and implementing implied constraints redundant, in this case. It may often be true
that implied constraints are only useful because a suitable global constraint does not (yet)
exist. On the other hand, many implied constraints are simple and cheap to propagate,
whereas global constraints are often time-consuming to propagate. Moreover, it is only
worth the effort of implementing a global constraint if it can be used for a significant class
of problems; for a one-off problem, where good implied constraints can be found, the
implied constraints are likely to be more cost-effective.

11.7.3 Implied Constraints from Subproblems

Van Beek and Wilken [46] use implied constraints in finding minimum length instruction
schedules for the object code produced by a compiler. The implied constraints are lower
bounds on the number of steps between a pair of instructions, found by considering sub-
problems; if a consistency check in the subproblem shows that the current lower bound
on the distance between two instructions cannot be achieved, a constraint increasing the
bound can be added. Van Beek and Wilken comment that generating powerful implied con-
straints in this way was the key to being able to solve very large real instruction scheduling
problems. In the SONET problem, described in section 11.6, implied constraints were also
derived (in that case by hand) from considering subproblems; the SONET constraints are
lower bounds on the auxiliary variables that represent the number of times that each node
is installed on a ring. These examples suggest that subproblems might also be a useful
source of tighter variable bounds in other cases.

11.7.4 Finding Implied Constraints

Implied constraints can often be explained as projections of a conjunction of a few of the
problem constraints onto a subset of the variables in the union of their scopes. These con-
straints can be seen as partially enforcing some higher level of consistency in the problem.
Although the search algorithm only enforces consistency on single constraints, there are
forms of consistency that take all the constraints on a subset of the variables and find in-
consistent tuples. Enforcing consistency on subsets of the constraints is computationally
expensive, even if only done before search; if it generated the equivalent of useful implied
constraints, it would likely also generate a much larger number that would not be useful
during the search. Furthermore, consistency enforcing generates sets of forbidden tuples;
these would be presented to the constraint solver as extensional non-binary constraints,

390 11. Modelling

which are time-consuming to propagate. This does not at present appear a promising route
to generating implied constraints automatically; it is not sufficiently selective, and implied
constraints need to be expressed in form that can propagate efficiently, like other problem
constraints.

Alternatively, adding implied constraints to a CSP is often inspired by a search taking
an unacceptably long time to solve a problem, and discovering on examining the search
tree in detail that assignments that are obviously incorrect are being considered; implied
constraints are generalizations that state explicitly what is incorrect about these assign-
ments and other potential failed assignments of the same kind. On this view, implied
constraints are akin to nogoods (inconsistent compound assignments) that are uncovered
during search. However, individual nogoods have little effect on the search, and if there are
enough of them to be useful, checking them will hinder the constraint solver. An advan-
tage is that they do take account of the search heuristics. Again, automatically generating
implied constraints from nogoods identified during the search would require some means
of expressing the constraints in a form that can propagate efficiently.

Some attempts have been made to generate implied constraints automatically, by look-
ing for logical consequences of the existing constraints. Hnich, Richardson and Flener
[26] classify implied constraints, and discuss automatically generating implied constraints
of each type. Some of the types that they identify have been discussed separately here; for
instance, one of the types is a global constraint (such as an allDifferent constraint) used
to replace a set of constraints (a clique of 6= constraints). Other types require introducing
new variables. However, two of their types fit closely the implied constraints discussed in
this section: variable elimination (using one constraint to eliminate a variable in its scope
from other constraints involving that variable) and constraints over a new scope (using a
set of constraints to derive a new constraint over a subset of the union of their scopes).
Hnich et al. describe using PRESS (PRolog Equation Solving System) to try to derive
implied constraints from linear and nonlinear arithmetic constraints; in their test cases, it
can find some implied constraints of the variable elimination type, and also implied linear
constraints derived from nonlinear constraints, but not the other types.

Frisch, Miguel and Walsh [18] also make some initial steps towards automating the
generation of implied constraints by developing methods (analogous to methods in proof
planning) that can be applied to the set of constraints in a CSP to derive new constraints.
One is the eliminate method, which attempts to eliminate variables or terms from a
non-linear constraint, to give a constraint of lower arity that may propagate better. For
example:

A

BC
+

D

EF
+

G

HI
= 1 with

A

BC
≤ D

EF
≤ G

HI
yield: 3

A

BC
≤ 1

Neither of these approaches addresses the interaction of the search heuristics and the
implied constraints, but if a class of implied constraints can be identified for a type of prob-
lem, such as the car sequencing problem, it would be possible to identify the constraints
that are useful during search, and discard the rest. Simonis et al. [38] discuss using visual-
ization tools in a constraint solver to assess the value of implied constraints, by examining
the progress of the search in detail. This makes it possible to check that the implied con-
straints work well with the search heuristics or to find out which of the implied constraints
are effective.

B. M. Smith 391

11.8 Reformulations of CSPs

In the last sections, different ways of improving a model were discussed; the changes to
the model keep the same viewpoint but change or add to the constraints, or expand the
viewpoint by adding auxiliary variables. The alternative way to change the model is to
change the viewpoint. This may require literally looking at the problem from a different
perspective and developing some insight into the problem. However, some transformations
from one viewpoint to another are standard or are useful in specific problem classes.

There is an established and continuing body of work on transforming CSPs into sat-
isfiability problems (e.g. [49]). This work will not be discussed here, because its aim is
fundamentally different; rather than developing a model that can be solved more efficiently
as a CSP, using a constraint solver, it aims to solve the underlying problem more efficiently
as a SAT problem, using a SAT solver.

11.8.1 Non-Binary to Binary translations

Early search algorithms for CSPs only dealt with binary constraints; as a result, there are
some standard transformations of a CSP with non-binary constraints into a binary CSP
[1]. The hidden variable transformation adds a new variable hi to the CSP for each non-
binary constraint, ci; the values of hi correspond to tuples of variables in the scope of ci.
The original constraint ci is replaced by binary constraints between hi and the variables in
the scope of ci; each value of hi implies a value for each variable in the scope of ci, and
the binary constraints enforce this correspondence. In the terminology of this chapter, the
hidden variables would be classed as auxiliary variables, rather than a change of viewpoint.

The dual graph translation of a non-binary CSP replaces the original constraints by
new variables, and so produces a new CSP based on a different viewpoint. The dual vari-
able di represents the constraint ci, and its values represent the tuples satisfying ci. There
is a binary constraint between two dual variables di and dj if the scopes of ci and cj have
a non-empty intersection; the binary constraint forbids pairs of values which would assign
different values to any of the shared variables.

Bacchus and van Beek [1] investigate these transformations empirically, using a for-
ward checking algorithm: when applied to the original non-binary model, the algorithm
checks a k-ary constraint whenever all but one variable in its scope has been assigned.
They show that both the hidden variable and dual graph transformation can outperform
the original model; however, given constraint solvers that have better ways of dealing with
many types of non-binary constraint, these transformations have been little used in prac-
tice.

An exception is the use of dual variables to replace 9-ary constraints in the Maximum
Density Still Life problem, described earlier in section 11.5.4. In [42], the 9-ary constraints
between a cell and its eight neighbours are replaced by dual variables, exactly as in the
dual graph transformation. Unlike the dual graph transformation, the original variables
are also kept, although only in order to express the objective, that the number of live cells
should be maximized. The dual variables represent 3 × 3 ‘supercells’; one advantage of
the dual graph translation, as well as replacing the cumbersome 9-ary constraints, is that it
allows the supercells rather than the cells to be the search variables. Hence, the dual graph
translation in this case corresponds to a genuinely different perspective on the problem.

392 11. Modelling

A similar transformation has been used by Hnich, Prestwich and Selensky [25] in mod-
elling the covering test problem (problem 45 in CSPLib), arising in software testing. The
covering test problem is: for a given tuple (t, k, g, b) find a covering array CA(t, k, g) of
size b or show that none exists. The covering array has k columns and b rows, and in every
subset of t columns every possible t-tuple over the alphabet Zg = {0, 1, 2, ..., g− 1} must
occur in at least one row. A solution for t = 3, k = 5, g = 2, b = 10 is shown in Figure
11.2. Every triple of values from {0, 1}, from (0, 0, 0) to (1, 1, 1), occurs in the first three
columns of the array, and this is true of every other subset of three columns as required.

1 2 3 4 5
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

Figure 11.2: A covering array CA(3, 5, 2) of size 10.

A natural way to model the problem is to introduce a b× k matrix of integer variables,
xri, for 1 ≤ r ≤ b and 1 ≤ i ≤ k, such that xri = m if the value in column i and row
r of the array is m. However, it is hard to express the constraints that in every subset of t
columns, every possible t-tuple must occur.

To make these constraints easier to express, Hnich et al. introduced compound vari-
ables, analogous to the variables of the dual graph transformation, to represent every t-
tuple of columns in each row. In the case of a binary alphabet, each compound variable
has domain {0, ..., 2t}. There are still non-binary constraints on these variables: there is
a global cardinality constraint on the compound variables corresponding to a given t-tuple
in each row, to ensure that every value between 0 and 2t − 1 is assigned at least once. In
addition, just as in the dual graph translation, there are binary constraints between the com-
pound variables corresponding to a row that if they have columns in common, in terms of
the original variables, they must agree on the values that they give to their shared variables.

These examples show that the dual variables of the dual graph translation can be prac-
tically useful in rewriting non-binary constraints, even without eliminating the non-binary
constraints completely.

11.8.2 Permutation Problems

A well-studied class of problem with two standard viewpoints is the class of permutation
problems. A CSP is a permutation problem if the union of the domains has the same
number of elements as there are variables and each variable must be assigned a different

B. M. Smith 393

value. Any solution assigns a permutation of the values to the variables. Other constraints
in the problem determine which permutations are acceptable solutions.

Each possible value is assigned to exactly one variable and each variable is assigned
exactly one value. The dual viewpoint was identified by Geelen [19]; it switches the roles
of the variables and values. For example, the usual CSP model of the n-queens problem
in which the variables represent the rows and the values represent the columns is a permu-
tation problem; the dual model has the variables representing the columns and the values
representing the rows. In this instance, the two viewpoints give the same CSP, so that one
is not better than the other. In many permutation problems, however, the constraints are
easier to express and propagate better in one viewpoint than the other. For example, the
problem of finding an n×n magic square, containing the numbers 1 to n2 arranged so that
the sum of every row and column is the same, can be expressed as a permutation problem;
we can either find the number to go in each cell of square, or decide which cell to put
each number in. However, the constraints on the row and column sums are much easier to
express in the first viewpoint than the second.

As described in the next section, rather than choosing one viewpoint or its dual, we
can combine the two; much recent work on permutation problems has investigated this
possibility.

11.8.3 Boolean Models

Another possible viewpoint for a permutation problem has a Boolean variable xij for every
possible variable-value combination (or value-variable combination in the dual viewpoint).
For instance, in the n-queens problem, the variables xij , 1 ≤ i, j ≤ n correspond to the
squares of the board. The assignment (xij , 1) means that there is a queen on the square in
row i and column j, and (xij , 0) means that there is not.

Similarly, a Boolean viewpoint can be derived from and CSP viewpoint with integer or
set variables. For any assignment (xi, j) in an integer viewpoint, there is a Boolean variable
bij in the Boolean viewpoint; the assignment (bij , 1) corresponds to the assignment (xi, j),
whereas any other assignment to xi corresponds to (bij , 0). For any assignment (Xi, S)
in a viewpoint with set variables, and for any value j ∈ S, the Boolean variable bij is
assigned the value 1.

The variables of the Boolean viewpoint are closely similar to the variables of the direct
encoding of a CSP into SAT [49]. However, the Boolean viewpoint usually gives a less
efficient CSP than the integer or set model. The transformation to a Boolean viewpoint
is described here to emphasize that there is always a choice of models in representing a
problem as a CSP; in practice, it is often more useful to try to convert an initial Boolean
model into one with integer or set variables.

11.8.4 Different Perspectives

So far in this section, the examples of changing viewpoint have involved reformulating an
existing viewpoint. However, for some problems, it may be possible to find a new view-
point by viewing the problem from a different angle; this is potentially valuable, because
the constraints expressed in a radically different viewpoint may express different insights
into the problem and so show different ways of solving it.

394 11. Modelling

A problem where many different viewpoints have been devised is the ‘open stacks’
problem, set for the first Constraint Modelling Challenge, in connection with the Mod-
elling and Solving Problems with Constraints workshop at IJCAI’05. The submissions to
the Challenge can be found at www.dcs.st-and.ac.uk/˜ipg/challenge. The
problem, as stated for the Challenge, is: “A manufacturer has a number of orders from
customers to satisfy; each order is for a number of different products, and only one product
can be made at a time. Once a customer’s order is started (i.e. the first product in the
order has been made) a stack is created for that customer. When all the products that a
customer requires have been made, the order is sent to the customer, so that the stack is
closed. Because of limited space in the production area, the number of stacks that are in
use simultaneously i.e. the number of customer orders that are in simultaneous production,
should be minimized.”

A wide variety of viewpoints were represented amongst the Challenge entries. Perhaps
the most obvious viewpoint has variables representing positions in the production sequence
and values representing the products; this creates a permutation problem, so that this view-
point also has a dual. One insight into the problem is that although ostensibly requiring a
sequence of the products, it can in fact be solved by sequencing the customers; this gives
a viewpoint where the variables are the positions in a sequence of customers; the value
of the ith variable is the ith customer to have their order completed. Other viewpoints
focus on the stacks: one has variables representing the customers, and the value assigned
to a variable is the stack area that customer will use. Also focussing on the stacks, an-
other viewpoint has a Boolean variable for each pair of customers: the value 0 means that
they share a stack location, and 1 means that they do not. This last viewpoint relates very
directly to the objective, since minimizing the maximum number of open stacks is equiva-
lent to maximizing the number of customers that can share a stack location. Several other
viewpoints also feature in the entries.

Different viewpoints can be used individually as the basis of a model of the problem.
However, a more interesting approach is to combine different viewpoints; this will be
discussed in the next section. When the viewpoints being combined are based on different
insights into the problem, this potentially allows all these insights to contribute to solving
the problem, rather than forcing the modeller to choose just one.

11.9 Combining Viewpoints

If two viewpoints V1 = 〈X1, D1〉, V2 = 〈X2, D2〉 for the same problem have been iden-
tified, a complete model of the problem can be constructed from each viewpoint, say
M1 = 〈X1, D1, C1〉, M2 = 〈X2, D2, C2〉. Hence, the models are mutually redundant.
It can be beneficial to combine the two models rather than to choose between them. The
combined model has variables X1 ∪ X2 and (in the simplest form of combination) con-
straints C1 ∪ C2 ∪ Cc, where Cc is a set of channelling constraints. The channelling
constraints express the relationship between the two sets of variables, X1, X2, in such a
way that assignments in either viewpoint can be translated into assignments in the other.
This idea was introduced by Cheng, Choi, Lee and Wu [6].

The potential advantage of combining viewpoints in this way comes from propagating
the constraints of the two models during the search for a solution. The search variables
can be the variables of one of the viewpoints, say X1 (this is discussed further below). As

B. M. Smith 395

search proceeds, propagating the constraints C1 removes values from the domains of the
variables in X1. The channelling constraints may then allow values to be removed from
the domains of the variables in X2. Propagating these value deletions using the constraints
of the second model, C2, may remove further values from these variables, and again these
removals can be translated back into the first viewpoint by the channelling constraints. The
net result can be that more values are removed within viewpoint V1 than by the constraints
C1 alone, leading to reduced search. Cheng et al. give a detailed account of how the
propagation in a combined model works, using the n-queens problems as a case study.

Law and Lee [29] discuss a process they term model induction; this uses two view-
points, without combining them, and provides an insight into why multiple viewpoints
can be useful. Given two viewpoints 〈X,D〉 and 〈X ′, D′〉, the constraints of the second
viewpoint are translated into constraints in the first viewpoint, using the channelling con-
straints. The new constraints can be merged into the existing constraints with the same
scope in the first viewpoint. Law and Lee showed that this brings new information into the
first viewpoint and can speed up search.

In section 11.8, permutation problems were defined and the dual viewpoint described.
In solving a permutation problem, it is often beneficial to combine the two viewpoints.
In a permutation problem with k variables x1, x2, ..., xk, the domain of each variable is
{1, 2, ..., k}. The dual variables are d1, d2, ..., dk, also with domains {1, 2, ..., k}. The
channelling constraints defining the relationship between the variables of the two view-
points are: (xi = j) ≡ (dj = i), ∀i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ k. (Note that these can
be more efficiently represented by a global inverse constraint [3] rather than n2 binary
constraints, although the binary constraints give the same propagation.)

Hnich, Smith and Walsh [27] consider both permutation problems and injection prob-
lems (which are similar, but have more values than variables). Several possible combined
models for injection problems are investigated, in some cases using dummy values for the
dual variables, to allow for the values that are not assigned to the original variables.

Cheng et al. [6] also give an example of combining an integer variable viewpoint
with a set variable viewpoint in a nurse rostering problem; the problem can be viewed as
either allocating shifts to nurses or as allocating nurses to shifts. The first viewpoint has
an integer variable nij for each nurse i and day j; its value represents the shift that nurse i
works on day j. The second viewpoint has a set variable Skj for each shift k and day j; its
value represents the set of nurses that work shift k on day j. The channelling constraints
to combine the viewpoints are (nij = k) ≡ (i ∈ Skj).

As well as the inverse constraint already mentioned, a number of other global con-
straints such as the element constraint relate two sets of variables and so can often be
seen as channelling constraints between the variables of two viewpoints. (See Chapter 6,
“Global Constraints”.)

However, although it is not necessary for channelling constraints to be binary, they
must ensure that assignments in one viewpoint can trigger constraint propagation in the
other when only a few variables have been assigned. If constraint propagation via the
channelling constraints can only occur when a complete assignment has been made (i.e.
therefore when a solution has already been found) there is no benefit from the combination.

396 11. Modelling

11.9.1 Selecting Constraints

It is clearly safe to combine two or more models of a problem into a single combined
model, containing the variables and the constraints of both models, together with the chan-
nelling constraints. The constraints of either model will ensure that the solutions to the CSP
correspond to the solutions to the problem, so that this will also be true of the combined
model.

However, it is often unnecessary to include all the constraints of both models, and the
search will be speeded up if some of the constraints are dropped.

In many cases, a motivation for combining viewpoints is that some of the constraints
are hard to express (and propagate weakly) in one viewpoint and some are hard to express
in the other. The combined model allows the constraints to be expressed in the most con-
venient viewpoint. In this situation, it often happens that the two complete models, one for
each viewpoint, only exist in theory; the only model actually constructed is the combined
model, with a mixture of constraints expressed in each viewpoint.

In the Golomb ruler example, the requirement that the pairwise differences between the
marks on the ruler are all distinct can be expressed in terms of either viewpoint: either as
the 4-ary constraints xj−xi 6= xl−xk or as a single global constraint allDifferent(d12, d13,
..., dm−1,m). These are equally correct in ensuring that the solutions meet the condition;
however, they are not equivalent in terms of propagation. [44] shows empirically that the
allDifferent constraint (or a clique of 6= constraints) gives much better results than the 4-ary
constraints (if GAC is not maintained on the 4-ary constraints).

For permutation problems, where two viewpoints with variables x1, x2, ..., xn and
d1, d2, ..., dn can be combined as described earlier, with the channelling constraints xi =
j) ≡ (dj = i), these channelling constraints are sufficient to ensure that the values assigned
to x1, x2, ..., xk (and so also those assigned to d1, d2, ..., dk) are distinct [27]. Hence, the
constraints xi 6= xj , 1 ≤ i < j ≤ n or allDifferent(x1, x2, ..., xn), required in the original
model, are no longer needed in the combined model to ensure correct solutions. Main-
taining arc consistency on the binary channelling constraints can prune more values than
binary 6= constraints on these variables, though fewer than GAC on the allDifferent con-
straint. Enforcing AC on a set of binary 6= constraints, representing an allDifferent con-
straint, removes a value from the domain of a variable if that value is the only one value in
the domain of another variable (e.g. because it has been assigned that value). Enforcing AC
on the channelling constraints does the same pruning as the 6= constraints, and in addition
removes all values but one from the domain of a variable (and thereby effectively assigns
the remaining value to the variable) if the remaining value does not appear in the domain
of any other variable in {x1, x2, ..., xk}. Hence, in a combined model of a permutation
problem, binary 6= constraints between the variables of either viewpoint are a waste of
effort; an allDifferent constraint on one set of variables is not needed for correctness but
in some problems may do sufficient additional pruning to give a smaller run-time than the
channelling constraints alone.

[40] introduced the idea of a minimal dual model of a permutation problem: this has
both sets of variables, the constraints (excluding the allDifferent constraint) of only one
model and the channelling constraints. For some permutation problems, the constraints
of one model are strictly stronger than those of the other, so that including both sets of
constraints gives no benefit in terms of reducing search, and incurs an overhead in run-time.
In [40], it is demonstrated empirically that for Langford’s problem (problem 24 in CSPLib),

B. M. Smith 397

the minimal dual model generates the same search as a model using all constraints of both
models, but has a much shorter run-time.

Choi, Lee and Stuckey [8] investigate theoretically when some of the constraints in
one viewpoint are propagation redundant in a model which also has the constraints of
another viewpoint and the channelling constraints. A constraint is propagation redundant
if the propagation that it would cause is subsumed by the propagation resulting from other
constraints in the model. Propagation redundant constraints can clearly be removed from
the model, and should be removed since they only add an unnecessary overhead. (Note
that unlike many other changes to a model, removing propagation redundant constraints
does not depend on the search heuristics.) Choi et al. suggest that their approach can be
automated.

11.9.2 Choice of Search Variables

When combining two (or more) viewpoints of a problem, there is a choice of which set of
variables to use to drive the search. Since each viewpoint could be the basis for a model
of the problem, assigning values to either set of variables would be sufficient to solve the
problem. This is obviously true if the combined model contains all the constraints of both
individual models; the combined model could be treated as either of the original models,
together with some extra baggage. It is still true if the combined model does not contain
all the constraints of both models, provided that every condition defining the solutions to
the underlying problem is expressed as a constraint in one or other viewpoint.

For instance, in Langford’s problem the constraints expressed in one viewpoint propa-
gate better than those in the other, but searching on the variables of the second viewpoint,
in a combined model, leads to solutions with less search effort [27].

Another possibility is to use both sets of variables together as search variables. This
makes most sense if the variables are of the same type and if the variable ordering is
dynamic; the next variable can then be chosen from either set, according to the state of the
search (although one could imagine a static ordering which chose alternately from each
set of variables, say). When a variable from either set is assigned a value, the channelling
constraints ensure that the corresponding dual variable is immediately assigned a value too.
Hence, although the number of search variables may appear to be twice as large as it need
be, only half of them will be specifically assigned during the search. This search strategy,
choosing the variable with smallest domain, has been successfully used with problems that
can be modelled as permutation problems, by Hnich, Smith and Walsh [27].

11.9.3 Multiple Viewpoints

Models in which more than two viewpoints are combined are possible. Given that com-
bining mutually redundant models can lead to additional constraint propagation, Cheng et
al. [6] suggested that “it seems reasonable to combine and implement as many mutually
redundant models as one can dream of.” Dotú, del Val and Cebrián [10] investigated this
empirically in solving instances of the quasigroup completion problem, considered as a
multiple permutation problem. A quasigroup completion instance requires completion of
an n× n Latin square when some entries have already been filled.

The initial model has variables xij , 1 ≤ i, j ≤ n representing the cell in row i, column
j. The domain of every variable is the set {1, ..., n}. Since the values in every row and in

398 11. Modelling

every column of the Latin square must form a permutation of the values 1 to n, two other
models that are duals of this are possible: in one the variables rik, 1 ≤ i, k ≤ n represent
the column in which the value k appears in row i; in the other, the variables cjk, 1 ≤ j, k ≤
n represent the row in which the value k appears in column j. There are three sets of
channelling constraints that link each pair of models, for instance (xij = k) ≡ (rik = j).
Dotú et al. found that overall, a model combining three viewpoints linked by three sets of
channelling constraints performed well.

11.10 Symmetry and Modelling

Symmetry in CSPs, and symmetry breaking, is a large topic in its own right and dealt with
in Chapter 10, but some aspects of symmetry and its interaction with modelling are worth
discussing here.

As already mentioned, modelling a problem P as a CSP may introduce symmetry, by
using distinct variables and/or values to represent entities that are indistinguishable in P .

An example is the second viewpoint for the n-queens problem, given earlier, which has
a variable for each queen. This introduces an unnecessary notion of the 1st queen, the 2nd
queen and so on, so that different solutions to the CSP can correspond to exactly the same
layout of the board, but with the queen labelled 1 swapped with the queen labelled 2. Nei-
ther of the other two viewpoints given has this symmetry (although the n-queens problem
has inherent symmetry which does appear in the other viewpoints). This illustrates that
introducing symmetry can sometimes easily be avoided by choosing another viewpoint.

The golfers problem (problem 10 in CSPLib) is another case in which some viewpoints
introduce symmetry. One instance of the problem is stated as: 32 golfers want to play in 8
groups of 4 each week, in such a way that any two golfers play in the same group at most
once. How many weeks can they do this for? The problem can be generalised to different
sizes and numbers of groups. To model the problem of finding a schedule for n weeks,
using integer variables, a possible viewpoint has 0/1 variables xijkl, where xijkl = 1 if
player i is the jth player in the kth group in week l, and 0 otherwise. However, the players
within each group, the groups within each week, the weeks within the schedule and the
players themselves could all be permuted in any solution to give an equivalent solution.

The first symmetry (the players within the group) can be eliminated by using set vari-
ables to represent the groups: the set variable Gkl represents the kth group in week l, and
the value of this variable represents the set of players forming that group. The constraints
on these variables are that:

• the cardinality of each set is 4;

• the sets in any week do not overlap, i.e. for all l, the sets Gkl, k = 1, ..., 8 have an
empty intersection;

• any two sets in different weeks have at most one member in common.

Constraint solvers that support set variables provide cardinality constraints, and con-
straints on the intersection of set variables, to allow such constraints to be expressed. Using
set variables rather than integer variables is a common way to avoid introducing symmetry
in this way: where the order of objects within a group is immaterial, the group can be mod-
elled as a set rather than as a sequence, which would introduce symmetrically equivalent
sequences.

B. M. Smith 399

The model of the car sequencing problem described by Dincbas, Simonis and van
Hentenryck [9], discussed in section 11.6, is also a reformulation to avoid symmetry. The
statement of the problem asks for a sequence of the cars to be produced, so that one obvious
way to model it would be as a permutation problem, in which the variables are the slots
in the sequence and the values are the cars, or v.v. However, two cars requiring the same
options are effectively identical, so that this model would allow symmetrically equivalent
sequences in which identical cars are swapped. Dincbas et al. avoid this by introducing
classes of identical cars. This requires additional constraints to ensure that the correct
number of cars in each class appear in the sequence.

Both ideas can be useful in other contexts, such as staff rostering. Suppose a crew is
required for each shift. Some or all of the crew can often be treated as a set, e.g. if staff
are not allocated specific roles, and the only requirement is that a minimum number must
be provided, they can be represented as a set. If staff with identical skills can be treated as
interchangeable in constructing a roster, it may only be necessary to count how many staff
within each skill-set have been allocated.

In [41], further models of the golfers problem are given which eliminate more of the
symmetry. The first has an integer variable for each pair of players, i1, i2: the value as-
signed to the variable pi1,i2 represents the week in which this pair of players plays together,
with a dummy value in case they never play together. This viewpoint does not distinguish
between the players within a group, or between the groups within a week. To allow the
constraints to be expressed concisely, auxiliary set variables were also introduced, for each
player i and each week l, representing the set of players that player i plays with in week l.

A final model presented in [41] also eliminates the symmetry due to the fact that the
weeks of the schedule are interchangeable, although it only deals with the special cases of
the golfers problem in which every player plays every other player at some point during
the schedule. For each pair of players i1, i2, it has a set variable representing the group of
players that the pair plays with, and another representing the other pairs of players that play
together in the week that i1 and i2 play together. Unfortunately, the model has a very large
number of variables, but it proved better than the earlier models for solving small instances.
Note that it still has some of the original symmetry, due to the interchangeability of the
players. This work does demonstrate that designing models with the intention of reducing
the symmetry can sometimes be successful, although the resulting model may become
rather complex.

11.10.1 Symmetry-Breaking Constraints

When there is symmetry in the chosen model of a problem (either symmetry introduced
in modelling, or inherent in the problem), one possible way to eliminate or reduce it is to
add symmetry-breaking constraints. Devising such constraints is beyond the scope of this
chapter, but it is worth pointing out here that as a side-effect, such constraints often allow
implied constraints to be derived that would not otherwise be possible.

This was observed in the template design problem [33] (problem 2 in CSPLib). The
problem is to design templates for printing large sheets of card with items such as cat-food
boxes. An order quantity is specified for each product, such as different flavours of cat-
food. The overall objective is to minimize the total number of sheets that have to be printed
(and so minimize waste), while fulfilling the order quantities for each product.

400 11. Modelling

The t templates to be used are numbered in the model, but in practice are interchange-
able; constraints are added to the model to eliminate this symmetry. The variable ri rep-
resents the number of sheets of card to be printed from template i, and the symmetry-
breaking constraints specify that ri ≤ ri+1, for 1 ≤ i < t.

The objective is to minimize p =
∑

i ri, i.e. the total number of sheets of card to
be printed, and the number of templates needed, t, is at most 4 in the instances studied.
Implied constraints can be added, derived from the symmetry-breaking constraints. For
instance, if there are two templates, at most half the sheets are printed from one template
and at least half from the other. Because of the symmetry-breaking constraints, we can
add: if t = 2, r1 ≤ p/2 and r2 ≥ p/2; if t = 3, r1 ≤ p/3; r2 ≤ p/2 and r3 ≥ p/3; and so
on.

Deriving implied constraints from symmetry-breaking constraints has been discussed
in more detail by Frisch, Jefferson and Miguel [15]. They show, for instance, that adding
lexicographic ordering constraints on the rows and columns to reduce the symmetry in CSP
representing the Balanced Incomplete Block Design problem (prob28 in CSPLib) allows
powerful implied constraints and a considerable simplification of the other constraints,
giving for some instances a huge reduction in the time to solve the problem. In many
problems, there are several distinct ways of adding constraints to give the same reduction
in the symmetry; Frisch et al. suggest that in some cases the choice could be guided by
considering the implied constraints that can then be derived.

11.11 Optimization Problems

Tsang [45] defines a Constraint Satisfaction Optimization Problem (CSOP) as follows:
A CSOP 〈X,D,C, f〉 is defined as a CSP 〈X,D,C〉 together with an optimization

function f which maps every solution to a numerical value. The task in a CSOP is to find
the solution T such that the value of f(T) is either maximized or minimized, depending
on the requirements of the problem.

If P is an optimisation problem, and MO = 〈X,D,C, f〉 is a CSOP that models P ,
then every solution of C can be translated into exactly one solution of P and at least one
optimal solution of P can be derived from a solution to C. (There is no requirement in this
case that every optimal solution to P should be found as a solution of C.)

Typically, a CSOP is solved in a branch-and-bound fashion, adding a constraint when-
ever a solution T is found that the value of the optimization function must be better than
f(T) in any future solution. This constraint provides an increasingly tight bound and can
prune the search for future solutions; eventually, if it is proved that no solution satisfying
the current bound exists, the last solution found has been proved optimal. The adapta-
tion of the branch-and-bound principle from operational research was described by van
Hentenryck [47].

Often, however, an optimization problem is represented and solved as a CSP or as a
sequence of CSPs. This is especially appropriate when the optimization function measures
some feature of the CSP structure, typically the number of variables. Hnich, Prestwich
and Selensky [25], for instance, describe modelling a problem in software testing in which
the objective is to construct a set of test vectors with specified coverage properties: the
objective is to minimize the number of test vectors required. The CSP has a matrix of
variables to represent the test vectors and hence the optimization function is the number of

B. M. Smith 401

rows in the matrix. A sequence of CSPs is constructed, adding a row to the matrix each
time, and the first CSP in the sequence that has a solution represents an optimal solution to
the problem.

Even when the optimization function can easily be represented by an additional vari-
able within the CSP, the problem may be represented as a CSP rather than a CSOP. For
instance, in [43], the objective in the SONET problem described in 11.6 is represented as
a variable, and assigned first during the search. The values of the objective variable are
assigned in ascending order, and hence the first solution found has the smallest possible
value of the objective variable, i.e. is optimal. For the problem described, this was found
(empirically) to be more efficient than a branch-and-bound approach. However, it would
only be feasible if there were only a few values between the smallest value in the domain
of the objective variable, after initial constraint propagation, and the optimal value.

In an optimization problem, a compound assignment that satisfies the constraints can be
forbidden if it can be shown that for any solution that this assignment would lead to, there
must be another solution that is equally good or better. Dominance rules are constraints that
forbid compound assignments that are dominated in this way; they are similar to implied
constraints, in their effect, but are not logical consequences of the constraints C and do not
necessarily preserve the set of optimal solutions. Prestwich and Beck [32], on the other
hand, consider dominance rules as strongly related to conditional symmetry in satisfaction
problems.

Getoor, Ottosson, Fromherz and Carlson [21] describe a scheduling application (opti-
mal on-line scheduling of photo-copiers and similar machines) in which dominance rules
play an important part. (Note that Getoor et al. use the term redundant constraint.) They
classify the types of dominance rule that they found, including lower and upper bounds on
the schedule length for a job, derived by relaxing some of the constraints to give a simpler
problem.

Useful dominance rules can often be very simple and obvious. This can also be true
of implied constraints, but in satisfaction problems, the search heuristics tend to guide the
search away from obviously wrong compound assignments; in optimization problems, the
search at some point has to prove that there is no solution, unless there is a good bound
on the objective that makes the proof trivial. In proving that a problem has no solution by
exhaustive search, every possibility allowed by the constraints has to be explored.

For instance, in the SONET problem, described earlier [43], it is obviously suboptimal
to have a SONET ring with only one node on it, since installing a node on a ring contributes
to the cost, but the only reason to install a node on a ring is to allow it to communicate
with another node on that ring. A constraint that every ring must have at least two nodes
on it, and that there must be traffic between them, rules out these solutions and makes a
significant difference to the search.

Optimization problems arising in scheduling, and the importance of propagating the
value of the objective to prune the search, are discussed in Chapter 22.

11.12 Supporting Modelling and Reformulation

As will be clear from this chapter, there can often be many different ways to model a prob-
lem. Ideally, an automatic modelling system should generate the best model; but given the
interaction between the model, the search algorithm and the search heuristics, there is not

402 11. Modelling

likely to be a single best model. We could envisage a system that generates a number of
different models of a problem, and can advise that one is better than another under certain
circumstances. Flener, Pearson and Ågren [13] describe a system that refines a specifica-
tion to a model that uses matrices of Boolean variables. Systems that generate alternative
models from a specification of the problem are described by Hnich [24], and in two related
papers by Frisch, Hnich, Miguel, Smith & Walsh [16] and Frisch, Jefferson, Martinez
Hernandez and Miguel [17]. The system described in the last papers can generate models
with multiple viewpoints, linked by channelling constraints. [17] presents empirical results
based on a number of problems, comparing the models produced with those described in
the literature. For instance, the system generated 27 models of the SONET problem, de-
scribed earlier; even so, this did not include all of those described in [43]. Comparing the
models generated, other than empirically, is still a gap.

A completely different route to formalizing modelling is by identifying common pat-
terns that can be transferred from one problem to another. Flener et al. [12] advocated
a need to “identify, formalise and document these patterns of formulation and solution”.
Walsh [50] relates the idea to design patterns in architecture and software engineering. This
seems the most effective support available for modellers at present; for instance, since the
paper by Cheng et al. [6], the use of multiple viewpoints linked by channelling constraints
has become commonplace, and dual viewpoints of permutation problems in particular have
been thoroughly studied and understood.

Although there is some progress towards identifying a range of possible ways of mod-
elling a problem, there is less progress towards identifying good models, except by trying
them empirically. In the early days of constraint programming, models were sometimes
compared by estimating the sizes of their search spaces, i.e. the product of the domain
sizes. This could be a good indication of the search effort if the search algorithm simply
did generate and test, but it is too simplistic for any more sophisticated search algorithm.
Since the choice of model interacts with the choices of search algorithm and search heuris-
tics, models can only be compared in the context of the other choices. Simonis et al. [38]
describe the use of visualization tools to examine the progress of the search in detail and
to compare the performance of different models; in principle, such tools can also be used
to identify inefficiencies in the search and to guide further improvements to the model.

Some modelling advice has been devised; for instance, Simonis [37] gives ‘30 Golden
Rules’ for modelling. There are a few specific guidelines in the CP folk-lore, e.g. “Avoid
Boolean models”, and more generally, “Reduce the number of variables” or “Reduce the
number of constraints”. These guidelines are worth discussing, because although they have
a grain of truth, they should not be taken too literally:

• Reduce the number of variables. Clearly, reducing the number of variables conflicts
with using multiple viewpoints and/or auxiliary variables, which have been demon-
strated to be a good approach to modelling. Furthermore, increasing the number of
search variables, by assigning values to the extra variables, can reduce search. Even
so, it is likely that a model which requires fewer variable assignments to describe the
solutions to the problem will be a better model; hence, an integer model is likely to
be better than a Boolean model of the same problem. However, this is only true if
the variables chosen allow the constraints to be expressed in a way that propagates
well; it would be easy, for instance, to artificially reduce the number of variables by

B. M. Smith 403

making a single variable in the new model stand for a pair of variables in the old
model, but in general, this will not result in a better model.

• Reduce the number of constraints. Again, this conflicts with introducing implied
constraints, if taken literally. However, rewriting a set of constraints in a more
compact form is likely to be beneficial, if the resulting constraints can propagate
efficiently; this covers, for instance, combining constraints with the same scope or
using a global constraints to replace a set of constraints. As before, however, simply
conjoining constraints for the sake of reducing their number will not result in a better
model if the new constraints cannot propagate efficiently.

One could equally well reverse this advice, to say “Add more variables and constraints”.
New variables (whether auxiliary variables or a complete new viewpoint), and constraints
on these variables, that make explicit knowledge of the underlying problem that was not
hitherto expressed, can allow the problem to be solved more easily.

However, with any changes to the model, whether the changes are adding variables and
constraints or removing them, one caveat should be borne in mind: changes to the model
that reduce search may not always reduce run-time. It may be necessary to test a model
empirically in order to see whether a proposed change will in fact lead to solutions being
found more quickly.

Bearing in mind this caveat (and also the interaction between the model, the search
algorithm and the search heuristics), the best advice at present seems to be to aim for a rich
model, using multiple viewpoints, auxiliary variables and implied constraints, incorporat-
ing as much insight into the problem as possible. The more we understand the problem
and build that understanding into the model, the better we will be able to solve it.

Acknowledgements

I should like to thank Pascal van Hentenryck, Jimmy Lee, Jeff Choi and Yat Chiu Law for
useful comments, and Ian Miguel for his help. This material is based on works supported
by the Science Foundation Ireland under Grant No. 00/PI.1/C075.

Bibliography

[1] F. Bacchus and P. van Beek. On the Conversion Between Non-Binary and Binary
Constraint Satisfaction Problems. In Proceedings AAAI’98, pages 311–318, 1998.

[2] A. Beacham, X. Chen, J. Sillito, and P. van Beek. Constraint programming lessons
learned from crossword puzzles. In Proceedings of the 14th Canadian Conference on
Artificial Intelligence, pages 78–87, 2001.

[3] N. Beldiceanu. Global constraints as graph properties on structured network of ele-
mentary constraints of the same type. Technical Report Technical Report T2000/01,
SICS, 2000.

[4] C. Bessière and J. Régin. Enforcing arc consistency on global constraints by solving
subproblems on the fly. In Proceedings CP’99, pages 103–117, 1999.

[5] J. E. Borrett and E. P. Tsang. A Context for Constraint Satisfaction Problem Formu-
lation Selection. Constraints, 6:299–327, 2001.

404 11. Modelling

[6] B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, and J. C. K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4:167–192,
1999.

[7] K. C. K. Cheng and R. H. C. Yap. Applying Ad-hoc Global Constraints with the case
Constraint to Still-Life. Constraints, 11, 2006. (To appear).

[8] C. W. Choi, J. H. M. Lee, and P. J. Stuckey. Removing Propagation Redundant
Constraints in Redundant Modeling. ACM Transactions on Computational Logic,
2006. (To appear).

[9] M. Dincbas, H. Simonis, and P. van Hentenryck. Solving the car-sequencing problem
in constraint logic programming. In Y. Kodratoff, editor, Proceedings ECAI-88, pages
290–295, 1988.

[10] I. Dotú, A. del Val, and M. Cebrián. Redundant Modeling for the QuasiGroup Com-
pletion Problem. In F. Rossi, editor, Principles and Practice of Constraint Program-
ming - CP 2003, LNCS 2833, pages 288–302. Springer, 2003.

[11] A. Fernández and P. M. Hill. A comparative study of eight constraint programming
languages over the Boolean and finite domains. Constraints, 5:275–301, 2000.

[12] P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Matrix
Modelling: Exploiting Common Patterns in Constraint Programming. In Proceedings
of the International Workshop on Reformulating Constraint Satisfaction Problems -
Towards Systematisation and Automation, 2002.

[13] P. Flener, J. Pearson, and M. Ågren. Introducing ESRA, a relational language for
modelling combinatorial problems. In M. Bruynooghe, editor, LOPSTR’03: Revised
Selected Papers, LNCS 3018, pages 214–232. Springer, 2004.

[14] E. C. Freuder. Modeling: The Final Frontier. In Proceedings PACLP99, the 1st
International Conference on the Practical Applications of Constraint Technologies
and Logic Programming, pages 15–21, 1999. Keynote address.

[15] A. Frisch, C. Jefferson, and I. Miguel. Symmetry-breaking as a Prelude to Implied
Constraints: A Constraint Modelling Pattern. In Proceedings of ECAI 2004, pages
171–175, 2004.

[16] A. M. Frisch, B. Hnich, I. Miguel, B. M. Smith, and T. Walsh. Transforming and
Refining Abstract Constraint Specifications. In J.-D. Zucker and L. Saitta, editors,
Abstraction, Reformulation and Approximation, 6th International Symposium, Pro-
ceedings SARA 2005, LNCS 3607, pages 76–91. Springer, 2005.

[17] A. M. Frisch, C. Jefferson, B. Martinez Hernandez, and I. Miguel. The Rules of
Constraint Modelling. In Proceedings IJCAI05, pages 311–318, 2005.

[18] A. M. Frisch, I. Miguel, and T. Walsh. Extensions to proof planning for generating
implied constraints. In Proceedings of Calculemus-01, pages 130–141, 2001.

[19] P. A. Geelen. Dual Viewpoint Heuristics for Binary Constraint Satisfaction Problems.
In B. Neumann, editor, Proceedings ECAI’92, pages 31–35, 1992.

[20] I. Gent, C. Jefferson, I. Lynce, I. Miguel, P. Nightingale, B. Smith, and
A. Tarim. Search in the Patience Game ‘Black Hole’. Technical Report
CPPod-10-2005, CPPod Research Group, 2005. Available from http://www.dcs.st-
and.ac.uk/s˜cppod/publications/reports/.

[21] L. Getoor, G. Ottosson, M. Fromherz, and B. Carlson. Effective Redundant Con-
straints for Online Scheduling. In Proceedings of AAAI’97, pages 302–307, 1997.

[22] W. Harvey and P. J. Stuckey. Improving Linear Constraint Propagation by Changing
Constraint Representation. Constraints, 8:173 – 207, 2003.

B. M. Smith 405

[23] M. Henz. Don’t Be Puzzled! In Proceedings of Workshop on Constraint Program-
ming Applications, Aug. 1996.

[24] B. Hnich. Function Variables for Constraint Programming. PhD thesis, University
of Uppsala, 2003.

[25] B. Hnich, S. D. Prestwich, and E. Selensky. Constraint-Based Approaches to the Cov-
ering Test Problem. In B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors, Recent
Advances in Constraints, Joint ERCIM/CoLogNet International Workshop on Con-
straint Solving and Constraint Logic Programming, CSCLP 2004, Revised Selected
and Invited Papers, LNCS 3419, pages 172–186. Springer, 2005.

[26] B. Hnich, J. Richardson, and P. Flener. Towards Automatic Generation and Evalua-
tion of Implied Constraints. Technical Report Technical report 2003-014, Department
of Information Technology, Uppsala University, Sweden, 2003.

[27] B. Hnich, B. M. Smith, and T. Walsh. Dual Models of Permutation and Injection
Problems. Journal of Artificial Intelligence Research, 21:357–391, 2004.

[28] G. Katsirelos and F. Bacchus. GAC on conjunctions of constraints. In T. Walsh,
editor, Principles and Practice of Constraint Programming - CP 2001, LNCS 2239,
pages 610–614. Springer, 2001.

[29] Y. C. Law and J. H. M. Lee. Model Induction: a New Source of CSP Model Re-
dundancy. In Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI-2002), pages 54–60, 2002.

[30] B. A. Nadel. Representation Selection for Constraint Satisfaction: A Case Study
Using n-Queens. IEEE Expert, 5:16–23, June 1990.

[31] K. E. Petrie and B. M. Smith. Symmetry Breaking in Graceful Graphs. Technical Re-
port APES-56-2003, APES Research Group, 2003. Available from http://www.dcs.st-
and.ac.uk/˜apes/apesreports.html.

[32] S. Prestwich and J. C. Beck. Exploiting dominance in three symmetric problems. In
Fourth International Workshop on Symmetry and Constraint Satisfaction Problems,
2004.

[33] L. G. Proll and B. M. Smith. ILP and Constraint Programming Approaches to a
Template Design Problem. INFORMS Journal on Computing, 10:265–275, 1998.

[34] J.-F. Puget. Constraint programming next challenge: Simplicity of use. In M. Wal-
lace, editor, Principles and Practice of Constraint Programming - CP 2004, LNCS
3258, pages 5 – 8. Springer, 2004. Invited talk.

[35] J.-C. Régin and J.-F. Puget. A Filtering Algorithm for Global Sequencing Constraints.
In G. Smolka, editor, Principles and Practice of Constraint Programming - CP97,
LNCS 1330, pages 32–46. Springer-Verlag, 1997.

[36] F. Rossi, C. Petrie, and V. Dhar. On the Equivalence of Constraint Satisfaction Prob-
lems. In Proceedings of ECAI-90, pages 550–556, 1990.

[37] H. Simonis. Finite Domain Constraint Programming Methodology. Tutorial pre-
sented at the PACT 2000 conference. (Available as a Powerpoint presentation from
the author.), 2000.

[38] H. Simonis, T. Cornelissens, V. Dumortier, G. Fabris, F. Nanni, and A. Tirabosco.
Using Constraint Visualisation Tools. In P. Deransart, M. V. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint Program-
ming, LNCS 1870, pages 321–356. Springer, 2000.

[39] B. M. Smith. Succeed-first or Fail-first: A Case Study in Variable and Value Ordering
Heuristics. In M. Wallace, editor, Proceedings PACT97, 3rd International Conference

406 11. Modelling

on the Practical Application of Constraint Technology, pages 321–330. The Practical
Application Company, 1997.

[40] B. M. Smith. Modelling a Permutation Problem. Research Report 2000.18, School
of Computer Studies, University of Leeds, 2000.

[41] B. M. Smith. Reducing Symmetry in a Combinatorial Design Problem. In Pro-
ceedings of CP-AI-OR’01, the International Workshop on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems,
2001.

[42] B. M. Smith. A Dual Graph Representation of a Problem in ‘Life’. In P. van Henten-
ryck, editor, Principles and Practice of Constraint Programming - CP 2002, LNCS
2470, pages 402–414. Springer, 2002.

[43] B. M. Smith. Symmetry and Search in a Network Design Problem. In R. Bartak
and M. Milano, editors, Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, Proceedings of CPAIOR 2005 (2nd
International Conference), LNCS 3524, pages 336–350. Springer, 2005.

[44] B. M. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and implied con-
straints to model non-binary problems. In Proceedings AAAI-2000 (Conference of
the American Assocation for Artificial Intelligence), pages 182–187, 2000.

[45] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[46] P. van Beek and K. Wilken. Fast optimal instruction scheduling for single-issue pro-

cessors with arbitrary latencies. In T. Walsh, editor, Principles and Practice of Con-
straint Programming - CP 2001, LNCS 2239, pages 625–639. Springer, 2001.

[47] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.
[48] P. van Hentenryck and Y. Deville. The Cardinality Operator: A New Logical Connec-

tive and Its Application to Constraint Logic Programming. In Proceedings of the 8th
International Conference on Logic Programming (ICLP-91), pages 745–759, 1991.

[49] T. Walsh. SAT v CSP. In Proceedings CP’2000, pages 441–456, 2000.
[50] T. Walsh. Constraint patterns. In F. Rossi, editor, Principles and Practice of Con-

straint Programming - CP 2003, LNCS 2833, pages 53–64. Springer, 2003. Invited
talk.

Part II

Extensions, Languages, and
Applications

This page intentionally left blank

Handbook of Constraint Programming 409
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 12

Constraint Logic Programming

Kim Marriott, Peter J. Stuckey, Mark Wallace

Constraint Logic Programming (CLP) is the merger of two declarative paradigms: con-
straint solving and logic programming. As both constraint solving and logic programs are
based on mathematical relations the merger is natural and convenient. CLP encourages
experimentation and fast algorithm development by narrowing the gap between the logic
and the solving algorithms. This is because CLP can express both conceptual and design
models and, even more importantly, CLP can also express mappings from conceptual to
design models. By a conceptual model of a problem, we mean its precise formulation in
logic, and by the design model of the problem we mean its algorithmic formulation, which
maps to a sequence of steps for solving it. A single problem may have many different
conceptual models, and many different design models.

The first important characteristic of constraint logic programs is that they allow suc-
cinct, natural conceptual modeling of satisfaction and optimization problems.

Example 12.1. For example, the cryptarithmetic problem

SEND + MORE = MONEY

where each letter represents a different digit, is naturally conceptually modeled by the
following CLP program: (we will use the concrete syntax of ECLiPSe [20] throughout this
chapter)

smm(S,E,N,D,M,O,R,Y) :-

[S,E,N,D,M,O,R,Y] :: 0..9,

1000 * S + 100 * E + 10 * N + D

+ 1000 * M + 100 * O + 10 * R + E

#= 10000 * M + 1000 * O + 100 * N + 10 * E + Y,

M #>= 1, S #>= 1,

alldifferent([S,E,N,D,M,O,R,Y]).

The first line initiates a rule to define a new predicate (or user-defined constraint) smm
which has the variables of the problem as arguments. The remainder of the rule defines

c© 2006 Elsevier B.V. All rights reserved

410 12. Constraint Logic Programming

smm in terms of other constraints. The second line defines that each variable is an integer
in the range 0 to 9 (i.e. they are digits), the third to fifth constrains them to satisfy the
cryptarithmetic constraint, the sixth line constrains both M and S to be non-zero, and the
seventh uses a global constraint alldifferent to ensure that all the digits are different.

This example demonstrates the ability to define application specific constraints and
the use of data structures such as lists. As we shall see in Section 12.3, CLP languages
are much more expressive than most other approaches for defining constraint problems,
in particular the standard framework of constraint satisfaction problems (CSPs) or math-
ematical modeling languages such as GAMS or OPL. They allow local variables and re-
cursive definitions that together allow one to express problems with an unbounded number
of variables. They can also represent solutions without necessarily fixing all variables.
This enables CP languages to support interactive problem solving. For example the user
can control search, by posting search decisions one at a time, and observing the resulting
partial solution calculated by the CLP program, before deciding what to do next.

The second characteristic of CLP languages is that they allow the programmer to define
search strategies for solving their model. This is a core component of the design model.
This is possible because CLP languages inherit backtracking search from logic program-
ming. When combined with reflection predicates that provide information about the current
solver state, this allows the programmer to specify sophisticated, efficient, problem specific
search strategies.

Example 12.2. The most basic search procedure in a CLP system is called “labeling” and
can be defined by the following two rules:

labeling([]).

labeling([V|Rest]) :-

indomain(V),

labeling(Rest).

This recurses through a list of variables and uses the predicate indomain(V) to non-
deterministically set each variable V to each of its possible values in turn.

We can solve the original cryptarithmetic problem by combining this search predicate
with the model above in the goal

smm(S,E,N,D,M,O,R,Y), labeling([S,E,N,D,M,O,R,Y]).

This gives a design model for the problem assuming the existence of an underlying finite
domain constraint solver. When this goal is evaluated by the CLP system it will return the
answer S = 9, E = 5, N = 6, D = 7,M = 1, O = 0, R = 8, Y = 2. We explore
programmer-defined search further in Section 12.5,

The third characteristic of modern CLP languages, such as ECLiPSe [20] or SICStus
Prolog [99], is that they allow the programmer to (at least partially) define how the un-
derlying constraint solver processes the constraints. This of course is the core part of the
design model. A variety of mechanisms have been utilized including disjunction, reifica-
tion, indexicals, constraint handling rules and generalized propagation. We shall discuss
this more in Section 12.4, also see Chapter 14 “Finite Domain Constraint Programming
Systems”.

K. Marriott, P. J. Stuckey, M. Wallace 411

Finally, a fourth characteristic of constraint logic programming is that the CLP paradigm
is generic in the choice of the primitive constraints and constraint solving technology. Our
example above uses bounded integer constraints: one CLP system might use propagation-
based methods to solve these, while another might use a mixed integer programming (MIP)
solver, while a third might use local search techniques. Another CLP system might not pro-
vide bounded integer constraints, but instead provide linear constraints over the reals and
use simplex or interior point solving techniques. The key to this genericity is the CLP
Schema [50, 55]. This provides a common operational and declarative semantics for all
CLP languages, regardless of the constraints. We shall detail the semantic foundation of
CLP languages in Section 12.2.

As well as covering semantic foundations (Section 12.2), conceptual modeling (Sec-
tion 12.3), design modeling (Section 12.4), and search (Section 12.5), we provide a brief
history of CLP in Section 12.1, discuss its impact on other research fields in Section 12.6
before concluding with our thoughts on the future of CLP and important directions for
future research.

12.1 History of CLP

12.1.1 The Origins of CLP

The core ideas behind constraint logic programming were developed by three largely inde-
pendent research teams: that of Colmeraur in Marseilles; that of Jaffar and Lassez in Mel-
bourne (Australia) (then IBM T.J. Watson Research Center at Yorktown Heights); and the
CHIP team led by Dincbas at the European Computer-Industry Research Center (ECRC)
in Munich.

Constraint logic programming emerged as a generalization of logic programming. In
the CLP view of logic programming, standard logic programming languages such as Prolog
provide a single kind of constraint, syntactic equality solved with unification. However,
syntactic equality is quite restrictive and a major thrust of logic programming research in
the early 1980s was devoted to developing and formalizing equational logic programming
languages in which unification was generalized to handle different kinds of equality. One
of the aims of this research was to combine the logic and functional paradigms. See for
example the collection of papers in [32].

Another major thrust was the development of languages in which Prolog’s fixed left-
to-right literal selection strategy was generalized to allow goals to be delayed until their
arguments were sufficiently instantiated, thus allowing more flexible dynamic evaluation.
The limitations of a fixed literal selection strategy were recognized early in the develop-
ment of logic programming languages. Absys1 [38] a precursor to Prolog provided dy-
namic scheduling as did the logic programming languages IC-Prolog [23], Prolog-II [25]
and MU-Prolog [73]. Thus, for example, in MU-Prolog wait declarations can be used
to specify that evaluation of a particular predicate must “wait” until its arguments are
non-variable. Based on this, MU-Prolog provided syntactic disequations and arithmetic
predicates that provide simple constraint solving using local propagation techniques.

The CLP paradigm, in which arbitrary constraints are allowed, was the natural conse-
quence of these two research directions. The actual term Constraint Logic Programming
was coined by Jaffar and Lassez [50] in 1986(7) and they gave a schema and semantics
for the CLP class of languages. This was an extension of their work on semantic schema

412 12. Constraint Logic Programming

for equational logic programs [53] and semantics for disequations [52]. With others, they
developed the language CLP(R) [54] a language extending Prolog by providing arithmetic
constraints. This used an incremental Simplex algorithm for solving linear constraints
and delayed evaluation of non-linear arithmetic constraints until they became linear or
sufficiently ground. The utility of CLP (R) was demonstrated by using it for financial
modeling and for a variety of engineering applications.

Colmeraur and his team developed Prolog II [27] in the early 1980s and then Pro-
log III [26] in the late 1980s. Prolog II provided equations and disequations over ratio-
nal trees and was the first logic programming language explicitly described as using con-
straints. It also provided “freeze” the first kind of dynamic scheduling. Prolog III was a
true CLP language extending Prolog II by providing constraints over the Booleans, linear
arithmetic over the rational numbers, and constraints over lists (sequences). It was used for
applications such as chemical reasoning.

The team at ECRC (notably Dincbas, van Hentenryck and Simonis) developed CHIP
[34] in the period 1985-1988. It was developed for solving combinatorial optimization
problems for industry by marrying Prolog’s backtracking search with consistency tech-
niques from artificial intelligence research. It was the first CLP language to explicitly
provide finite domain constraints. It provided a limited form of dynamic scheduling by
way of demons. Showcase applications included circuit diagnosis, scheduling and cutting
stock problems.

Although constraint logic programming originated in logic programming related ideas
also arose in the artificial intelligence and operations research communities. Sutherland’s
SKETCHPAD [107] was one of the first computer systems to employ constraints. Other
notable precursors to CLP include research at MIT into languages and systems for con-
straint solving, for example the language CONSTRAINTS [106]. This research was moti-
vated by electrical circuit analysis and design. Steele [106] was probably the first to point
out the conceptual similarity between constraint solving and logic programming. Other
precursors are languages and systems such as REF-ARF [37] and ALICE [62] designed
to solve CSP style problems. ALICE allows models to be written using abstract functions
which may be injective, bijective, etc. Constraint solving is handled by consistency meth-
ods as well as by reasoning about abstract functions. Mathematical modeling languages
such as AMPL [7] and symbolic algebra manipulation packages such as MATLAB [69]
also share some similarities with CLP languages allowing one the specify problems in a
high level mathematical way and solve them (using an external solver in the case of mod-
eling languages; and using algebraic and numerical solving approaches supported by the
algebra packages). Precursors to CLP are discussed more fully in [51]

12.1.2 Subsequent CLP Research Directions

The CLP Schema provided a generic way of building new programming languages: simply
take a class of constraints and some solver for these constraints and pop these into a rule-
based language. It was a simple, appealing recipe and in the first few years of CLP research
there was an explosion in the number of CLP languages.

The languages LOGIN [5] and LIFE [4] provided equality over feature trees and closely
related structures. The languages clp(FD) (later GNU-Prolog [43]), Echidna [100] and
Flang provided finite domain constraints. BNR-Prolog [78] provides Boolean constraints,
finite domain constraints and real interval arithmetic, Trilogy [119] provided strings, inte-

K. Marriott, P. J. Stuckey, M. Wallace 413

ger and real arithmetic constraints. CAL [3] and RISC-CLP [46] provided more powerful
constraint solving over non-linear arithmetic constraints.

One of the most important directions in CLP research has been to move away from the
original “black box” view of the underlying constraint solver of the first CLP languages,
where the solver simply answered satisfiability questions, to languages and systems which
provide the programmer with a “glass box” view of the underlying constraint solving in
which the programmer can extend, combine and even write new solvers [118].

A recent direction in CLP research has been the investigation of hybrid-constraint solv-
ing techniques which combine propagator-based solving techniques with linear program-
ming and MIP solving techniques and with local search techniques [90, 121]. Such ap-
proaches have proven to be extremely useful in solving industrial applications [89, 123,
28, 81]. The CLP language ECLiPSe [20] was expressly designed to support the devel-
opment of such hybrid constraint solving techniques. It has demonstrated that constraint
logic programming provides a good basis for programming and experimenting with differ-
ent constraint solving techniques.

12.2 Semantics of Constraint Logic Programs

CLP languages extend logic-based programming languages by allowing constraints with
a pre-defined interpretation. The key insight of Jaffar and Lassez’s CLP Scheme is that
for these languages, the operational semantics, declarative semantics and the relationship
between these can be parameterized by a choice of constraints, solver and an algebraic and
logical semantics for the constraints. Our presentation of the main results follows:

We assume that the reader is familiar with the basics of first-order logic. See for exam-
ple [98, 35].

We let ∃WF denote the logical formula ∃V1∃V2 · · · ∃VnF where variable set W =
{V1, . . . , Vn}, and we let ∃̄WF denote the restriction of the logical formula F to the vari-
ables in W . That is, ∃̄WF is ∃vars(F)\WF , where the function vars takes a syntactic
object and returns the set of free variables occurring in it. We let ∃̃F denote the existential
closure of F and ∀̃F denote the universal closure of F .

A renaming is a bijective mapping between variables. We naturally extend renamings
to mappings between logical formulas, rules, and constraints. Syntactic objects s and s′

are said to be variants if there is a renaming ρ such that ρ(s) = s′.
The CLP scheme defines a class of languages, CLP (C), which are parametric in the

choice of constraint domain C. The constraint domain C is a pre-interpretation defining
the “built-in” primitive constraints and functions, and their interpretation. It contains the
following components:

• The constraint domain signature, ΣC , which defines a set of function and predicate
symbols and associates an arity with each symbol. This implicitly defines the terms
of the constraint language, built from function symbols and variables, and the primi-
tive constraints which are the atoms defined by ΣC , i.e. predicates symbol with term
arguments.

• The domain of computation, DC , which is the intended interpretation of the con-
straints. It consists of a set D and a mapping from the symbols in ΣC to relations
and functions over D which respects the arities of the symbols.

414 12. Constraint Logic Programming

• The constraint theory TC , which is a possibly infinite set of formulae that describe
the logical semantics of the constraints ΣC .

• A solver, solvC , which maps each conjunction of primitive constraints to one of
true , false or unknown , indicating that the solver can determine the conjunction is
satisfiable, unsatisfiable or it cannot tell.

The solver provides an operational semantics for the constraints, while the domain
of computation provides an algebraic interpretation and the constraint theory provides a
logical interpretation.

We assume that:

• The binary predicate symbol “=” is in ΣC , that = is interpreted as identity in DC
and that TC contains the standard equality axioms for =.

• The solver does not take variable names into account, that is, for all renamings ρ,
solvC(c) = solvC(ρ(c)).

• The domain of computation, solver and constraint theory agree in the sense that
DC is a model of TC , and for any primitive constraint c, if solvC(c) = false then
TC |= ¬∃̃c, and if solvC(c) = true then TC |= ∃̃c.

The example constraint domain we saw in the cryptarithmetic problem (Example 12.1)
consists of equality = over the uninterpreted functors (Herbrand terms) e.g. constructors
for lists: [] (the empty list) and [·|·] (cons), and bounded integer constraints constructed
from the usual integer constants e.g. 0, -1, 15, 167, . . . , integer functions +, −, ∗, and
integer comparison relations #=, #>=, #>, #<, #<= and the constraint :: restricting a list
of integer variables to a particular set of integers. The solver is incomplete (that is it some-
times returns unknown), and uses unification to solve equalities over the uninterpreted
functors and propagation methods to solve the integer constraints.

12.2.1 Syntax of Constraint Logic Programs

Constraint logic programs are statements in logic (more precisely definite clauses) which
extend a constraint domain by defining new constraints in terms of the primitive con-
straints. Constraint logic programs over the domain C are termed CLP (C) programs.

A constraint logic program (CLP), or program, is a finite set of rules. A rule is of the
form H :- B where H , the head, is an atom and B, the body, is a finite, non-empty
sequence of literals. We let � denote the empty sequence. We shall write rules of the form
H :- � simply as H . A literal is either an atom or a primitive constraint. An atom has
the form p(t1, ..., tn) where p is a user-defined predicate symbol and the ti are terms from
the constraint domain. For simplicity we assume that predicate symbols have a unique
arity.

We use the standard CLP convention that variables start with upper case letters, while
predicates and functions begin with lower case letters.

Example 12.3. The following simple CLP program defines the relation max(x, y, z) ↔
z = max{x, y}.
max(X,Y,Z) :- X #>= Y, Z #= X. %% M1

max(X,Y,Z) :- Y #>= X, Z #= Y. %% M2

K. Marriott, P. J. Stuckey, M. Wallace 415

Both the atom max(X,Y,Z) and the primitive constraint X #>= Y are literals. There
are two rules with head max(X,Y,Z). The body of the first rule is X #>= Y, Z #= X

The rules have names M1 and M2 given as comments which we shall use later.

The CLP schema provides an operational, algebraic and logical semantics for the user-
defined constraints in a CLP program which extends that of the underlying constraint do-
main.

12.2.2 Operational Semantics

The operational semantics allows us to compute with the predicates defined by the pro-
gram. In essence the operational semantics defines a way of repeatedly unfolding the user-
defined constraints in a goal (or conjunction of literals) until a conjunction of primitive
constraints is reached.

The definition of a user-defined predicate p in program P , defnP (p), is the set of vari-
ants of rules in P such that the head of each rule has form p(s1, ..., sn). To side step
renaming issues, we assume that each time defnP is called it returns variants with distinct
new variables.

The operational semantics is given in terms of the “derivations” from goals. Derivations
are sequences of reductions between “states”, where a state is a tuple 〈G c〉which contains
the current literal sequence or “goal” G and the current constraint store c (a conjunction of
primitive constraints). At each reduction step, the leftmost literal in the goal is rewritten as
follows. If the literal is a primitive constraint, and it is consistent with the current constraint
store, then it is added to it. If it is inconsistent then the derivation “fails”. If the literal is an
atom, it is reduced using one of the rules in its definition.

A state 〈L1, L2, ..., Lm c〉 can be reduced as follows:

1. If L1 is a primitive constraint and solv(c ∧ L1) 6= false , it is reduced to

〈L2, ..., Lm c ∧ L1〉

.

2. If L1 is a primitive constraint and solv(c ∧ L1) = false , it is reduced to 〈� false〉.

3. If L1 is an atom, then it is reduced to

〈s1 = t1, ..., sn = tn, B, L2, ..., Lm c〉

for some (A :- B) ∈ defnP (p) where L1 is of form p(s1, ..., sn) and A is of form
p(t1, ..., tn).

4. If L1 is an atom and defnP (p) = ∅, it is reduced to 〈� false〉 where L1 is of form
p(s1, ..., sn).

A derivation from a goal G in a program P is a sequence of states S0 ⇒ S1 ⇒ · · · ⇒
Sn where S0 is 〈G true〉 and there is a reduction from each Si−1 to Si, using rules in P .
The length of a derivation of the form S0 ⇒ S1 ⇒ · · · ⇒ Sn is n. A derivation from G
is finished if the last goal cannot be reduced. The last state in a finished derivation from
G must have the form 〈� c〉. If c is false the derivation is said to be failed. Otherwise

416 12. Constraint Logic Programming

the derivation is successful. The answers of a goal G for program P are the constraints
∃̄vars(G)c where there is a successful derivation from G to final state with constraint c.

In many implementations of CLP languages the answer is simplified into a logically
equivalent constraint, perhaps by removing existentially quantified variables, before being
shown to the user.

Example 12.4. Consider the execution of the goal max(A,B,C), B #= 2 with the
CLP program from Example 12.3. One successful derivation is:

〈max(A,B,C), B #= 2 true〉
⇓M1

〈A = X, B = Y, C = Z, X #>= Y, Z #= X, B #= 2 true〉
⇓

〈B = Y, C = Z, X #>= Y, Z #= X, B #= 2 A = X〉
⇓

〈C = Z, X #>= Y, Z #= X, B #= 2 A = X ∧B = Y 〉
⇓

〈X #>= Y, Z #= X, B #= 2 A = X ∧B = Y ∧ C = Z〉
⇓

〈Z #= X, B #= 2 A = X ∧B = Y ∧ C = Z ∧X ≥ Y 〉
⇓

〈B #= 2 A = X ∧B = Y ∧ C = Z ∧X ≥ Y ∧ Z = X〉
⇓

〈� A = X ∧B = Y ∧ C = Z ∧X ≥ Y ∧ Z = X ∧B = 2〉

The corresponding answer projected on to the original variables A, B, and C is A ≥
2 ∧B = 2 ∧ C = A.

Apart from returning answers to a goal, execution of a constraint logic program may
also return the special answer no indicating that the goal has “failed” in the sense that all
derivations of the goal are failed.

Definition 12.5. If a state or goal G has a finite set of derivations all of which are failed,
G is said to finitely fail.

Example 12.6. There are two possible derivations for the goal A #= 1, max(A,2,1)

K. Marriott, P. J. Stuckey, M. Wallace 417

with the CLP program from Example 12.3. The first is :

〈A #= 1, max(1,2,1) true〉
⇓

〈max(A,2,1) A = 1〉
⇓M1

〈A = X, 2 = Y, 1 = Z, X #>= Y, Z #= X A = 1〉
⇓

〈2 = Y, 1 = Z, X #>= Y, Z #= X A = 1 ∧A = X〉
⇓

〈1 = Z, X #>= Y, Z #= X A = 1 ∧A = X ∧ 2 = Y 〉
⇓

〈X #>= Y, Z #= X A = 1 ∧A = X ∧ 2 = Y ∧ 1 = Z〉
⇓

〈� false〉

The second is:

〈A #= 1, max(1,2,1) true〉
⇓

〈max(A,2,1) A = 1〉
⇓M2

〈A = X, 2 = Y, 1 = Z, Y #>= X, Z #= Y A = 1〉
⇓

〈2 = Y, 1 = Z, Y #>= X, Z #= Y A = 1 ∧A = X〉
⇓

〈1 = Z, Y #>= X, Z #= Y A = 1 ∧A = X ∧ 2 = Y 〉
⇓

〈Y #>= X, Z #= Y A = 1 ∧A = X ∧ 2 = Y ∧ 1 = Z〉
⇓

〈Z #= Y A = 1 ∧A = X ∧ 2 = Y ∧ 1 = Z ∧ Y ≥ X〉
⇓

〈� false〉

Hence the goal is finitely failed.

Examining the operational semantics defined above, it is clear that the only use of
the solver is to determine whether the constraint c ∧ L1 is unsatisfiable where L1 is a
new primitive constraint and the constraint solver has just previously determined that the
current constraint store c is not unsatisfiable. For this reason a significant component of
CLP system research has been the design of incremental constraint solving algorithms
specialised to answer this kind of problem. We return to this topic in Section 12.4.1.

418 12. Constraint Logic Programming

It is important to recognize that, because the solver can be incomplete, a successful
derivation may give an answer which is unsatisfiable since the solver may not be powerful
enough to recognize that the constraint is unsatisfiable. When dealing with incomplete
solvers it is useful to identify a class of goals for which the solver in known to be complete.
We say a solver is complete for a set of constraints if it returns either true or false . We say
a CLP program is solver complete for a goal G if the solver is complete for all answers to
G. Typically constraint logic programs are written so that they are solver complete for the
goals of interest.

For finite domain solvers, there is no guarantee that inconsistencies will be detected
until all the variables in a constraints are fixed, that is, explicitly constrained to take a
single value. However there is a guarantee in this case: the solver will fail if the ground
constraint is inconsistent and succeed otherwise, corresponding to the answers false and
true respectively. This is the reason for using the labeling predicate with the program from
Example 12.1 since this assigns a value to all variables in the problem.

For a simplex based linear inequality solver which handles non-linear constraints by
delaying them until enough variables are fixed for them to become linear (such as that
used in CLP(R) [54]), the solver is complete as long as no delayed non-linear constraints
remain.

12.2.3 The Semantics of Success

In this section we give an algebraic and a simple logical semantics for the answers to a
CLP program and show that these semantics accord with the operational semantics (and
each other).

Simple logical semantics

We can view each rule in a CLP program, say

A :- L1, . . . , Ln

as representing the implication

∀̃(A← L1 ∧ . . . ∧ Ln)
and the program is understood to represent the conjunction of its rules.

Example 12.7. For example, the max program represents

(∀X∀Y ∀Z.max(X,Y, Z)← (X ≥ Y ∧ Z = X)) ∧
(∀X∀Y ∀Z.max(X,Y, Z)← (Y ≥ X ∧ Z = Y))

Note that from this formula we can infer that max(1, 2, 2) holds, but we cannot infer
negative consequences such as ¬max(1, 2, 1).

The logical semantics of a CLP (C) program P is the theory obtained by adding the
rules of P to the constraint theory of the constraint domain C.

We can show that the operational semantics is sound and complete with respect to the
logical semantics where soundness means that the answers are logical consequences of
the information in the program and completeness means that the answers returned by the
operational semantics “cover” all of the constraints which imply the goal.

K. Marriott, P. J. Stuckey, M. Wallace 419

Theorem 12.8. (Logical Soundness of Success) Let TC be the constraint theory for con-
straint domain C and P be a CLP (C) program. If goal G has answer c, then

P, TC |= ∃̄vars(G)c→ G.

Theorem 12.9. (Logical Completeness of Success) Let TC be the constraint theory for
constraint domain C and P be a CLP (C) program. Let G be a goal and c a constraint. If
P, TC |= c→ G then G has answers c1, . . . , cn such that

TC |= c→ (∃̄vars(G)c1 ∨ . . . ∨ ∃̄vars(G)cn).

Algebraic semantics

We now turn our attention to the algebraic semantics. Such a semantics requires us to find
a model for the program which is the “intended” interpretation of the program. Clearly,
the intended interpretation of a CLP program should not change the interpretation of the
primitive constraints or function symbols: All it should do is to extend this intended inter-
pretation by providing an interpretation for each user-defined predicate symbol in P .

Definition 12.10. A C-interpretation for a CLP (C) program P is an interpretation which
agrees with the constraint interpretation DC on the interpretation of the symbols in C.

Definition 12.11. A C-model of a CLP (C) program P is a C-interpretation which is a
model of P .

Since the meaning of the primitive constraints is fixed by C we can identify each C-
interpretation with the subset of the C-base of P , written C-baseP , which it makes true
where C-baseP is the set

{p(d1, . . . , dn) | p is an n-ary user-defined predicate in P and
each di is a domain element of DC

}.

Every program has a least C-model, denoted lm(P, C) which is usually regarded as
the intended interpretation of the program since it is the most conservative C-model. This
result is analogous to that for logic programs in which the algebraic semantics of a logic
program is given by its least Herbrand model. The proof of existence of the least model is
almost identical to that for logic programs,

Theorem 12.12. (Algebraic Soundness of Success) Let P be a CLP (C) program. If goal
G has answer c, then lm(P, C) |= ∃̄Gc→ G.

Soundness of the algebraic semantics ensures that the operational semantics only re-
turns solutions which are solutions to the goal. However, we would also like to be sure that
the operational semantics is complete in the sense that the answers “cover” all solutions to
the goal.

Theorem 12.13. (Algebraic Completeness of Success)

Let P be a CLP (C) program and G be a goal. If for valuation θ

lm(P, C) |=θ G.

then G has an answer c such that DC |=θ ∃̄vars(G)c.

420 12. Constraint Logic Programming

12.2.4 Fixpoint Semantics

The standard proof for algebraic completeness of success relies on a fixpoint semantics to
bridge the gap between the algebraic and the operational semantics. This semantics is also
of independent interest so we will introduce it. For a more detailed treatment the reader is
referred to [55].

The fixpoint semantics is based on the “immediate consequence operator” which maps
the set of “facts” in a C-interpretation to the set of facts which are implied by the rules in
the program. In a sense, the function captures the Modus Ponens rule of inference. This
semantics generalizes the TP semantics for logic programs. The TTermP operator is due to
van Emden and Kowalski [108] (who called it T). Apt and van Emden [10] later used the
name TP which has become standard.

Definition 12.14. Let P be a CLP (C) program. The immediate consequence function for
P is the function T C

P . Let I be a C-interpretation, and let σ range over valuations for C.
Then T C

P (I) is defined as

{σ(A) | A :- L1, . . . , Ln is a rule in P for which I |=σ L1 ∧ . . . ∧ Ln}

This is quite a compact definition. It is best understood by noting that

I |=σ L1 ∧ · · · ∧ Ln

iff for each literal Li either Li is a primitive constraint and C |=σ Li or Li is a user-defined
predicate, say p(t1, ..., tm), and p(σ(t1), ..., σ(tm)) ∈ I .

Since T C
P is monotonic on the complete lattice C-baseP it has a least and greatest fix-

point which we denote by lfp(T C
P) and gfp(T C

P), respectively.
The key result relating the algebraic semantics and the fixpoint semantics is that the

least model of a program P is the least fixpoint of T C
P .

Theorem 12.15. Let P be a CLP (C) program. lm(P, C) = lfp(T C
P).

12.2.5 Semantics for Finite Failure

We have seen that in the operational semantics for CLP programs, goals can also finitely
fail. Intuitively, we would like a logical semantics such that if goal G finitely fails, then
¬G is a consequence of the semantics. Unfortunately, this is not true for the simple logical
semantics given in Section 12.2.3 since, as we have previously observed, it does not have
negative consequences. We now refine our logical and an algebraic semantics to provide a
semantics for finite failure.

We use a second logical semantics of the program called the Clark completion [21].
The Clark completion captures the reasonable assumption that the programmer really wants
the rules defining a predicate to be an “if and only if” definition—the rules should cover
all of the cases which make the predicate true.

Definition 12.16. The definition of n-ary predicate symbol p in the program P , is the
formula

∀X1 . . . ∀Xn p(X1, . . . , Xn)↔ B1 ∨ . . . ∨Bm

K. Marriott, P. J. Stuckey, M. Wallace 421

where each Bi corresponds to a rule in P of the form p(t1, . . . , tn) :- L1, . . . , Lk and
Bi is

∃Y1 . . . ∃Yj (X1 = t1 ∧ . . . ∧Xn = tn ∧ L1 . . . ∧ Lk)
where Y1, . . . , Yj are the variables in the original rule and X1, . . . , Xn are variables that
do not appear in any rule. Note that if there is no rule with head p, then the definition of p
is simply

∀X1 . . .∀Xn p(X1, . . . , Xn)↔ false

as
∨ ∅ is naturally considered to be false .
The (Clark) completion, P ⋆, of a constraint logic program P is the conjunction of the

definitions of the user-defined predicates in P .

Example 12.17. For example the (simplified) completion of the max program from Ex-
ample 12.3 is

∀X∀Y ∀Z.max(X,Y, Z)↔ (X ≥ Y ∧ Z = X) ∨ (Y ≥ X ∧ Z = Y)

With this interpretation we can determine that ¬max(1, 2, 1).

The completion semantics refines the logical semantics given earlier. In particular, both
semantics agree on the positive logical consequences of the program:

Theorem 12.18. Let TC be the constraint theory for constraint domain C and let P be a
CLP (C) program and G a goal. Then, P ⋆, TC |= ∃̃G iff P, TC |= ∃̃G

Thus, the completion semantics provides a logical semantics for success. Further, it
provides a logical semantics for finite failure:

Theorem 12.19. (Logical Soundness of Finite Failure) Let TC be the constraint theory
for constraint domain C and let P be a CLP (C) program. If goal G finitely fails then
P ⋆, TC |= ¬∃̃G.

We would also like to prove that the operational implementation of finite failure is
complete for this logical semantics. A goal is said to be finitely evaluable for a program if
it has no infinite derivations.

Theorem 12.20. (Logical Completeness of Finite Failure for a Finitely Evaluable Goal)

Let TC be a theory for constraint domain C, let P be a CLP (C) program, and let G be a
goal. If

P ⋆, TC |= ¬∃̃G

then G finitely fails provided G is finitely evaluable and P is solver complete for G.

The reason for requiring finite evaluability is that if there is an infinite derivation the
fixed left-to-right evaluation order may mean that the unsatisfiability of the derivation is
not found.

Example 12.21. Consider the program P ,

422 12. Constraint Logic Programming

q :- q.

and the goal G ≡ X = 2, q,X 6= 2. Clearly

P ⋆, TC |= ¬∃̃G

but G will not finitely fail.

However the requirement for finite evaluability can be weakened to only require that
processing of literals in (infinite) derivations is fair in the sense that no literal in the goal
remains ignored forever. Of course, this is not true for the standard operational semantics.
However, in practice the programmer is usually only interested in finitely evaluable goals.

Our algebraic semantics for success was provided by the least C-model of P . This
model also provides an algebraic semantics for finite failure of finitely evaluable goals.
If we take a program’s completion as the logical formula which captures the true mean-
ing of the program then the intended interpretation of the program should also be a C-
interpretation which is a model for the completion.

Definition 12.22. Let P be a CLP (C) program. We denote the least C-model of P ⋆ by
lm(P ⋆, C).

Fortunately, lm(P ⋆, C) = lm(P, C), thus our algebraic semantics can also be under-
stood as being the least C-model of P ⋆.

Soundness of finite failure for the algebraic semantics is an immediate consequence of
the soundness of finite failure for the logical semantics, as any intended interpretation of
the constraint domain is a model of the constraint theory.

Theorem 12.23. (Algebraic Soundness of Finite Failure) Let P be a CLP (C) program.
If goal G finitely fails then: lm(P ⋆, C) |= ¬∃̃G.

Theorem 12.24. (Algebraic Completeness of Finite Failure for a Finitely Evaluable

Goal) Let P be a CLP (C) program, and letG be a finitely evaluable goal. If lm(P ⋆, C) |=
¬∃̃G then G finitely fails provided P is solver complete for G.

Algebraic completeness of finite failure for non-finitely evaluable goals is difficult to
achieve. Even if we demand literal processing is fair we also require that the program is
canonical and the result only holds for ground goals and only with respect to the greatest
C-model of P ⋆. See [55] for details.

12.2.6 Extending the Semantics

Negation and general CLP programs

One of the major directions in logic programming research has been to extend the basic
Horn clause framework to allow negative literals in the body of a rule. The simplest oper-
ational semantics for such negative literals is to use negation as failure rule of Clark [21]
in which a negative literal succeeds if the literal finitely fails. This is called SLDNF. This
is in accord with our earlier discussion of finite failure of a goal. As long all variables in
the negative literal have a fixed value by the time it is evaluated it is possible to show that

K. Marriott, P. J. Stuckey, M. Wallace 423

this operational semantics is sound w.r.t. the program completion semantics [21]. Prov-
ing completeness is considerably more problematic. One difficulty for instance is that the
program completion may be inconsistent: Consider the program

p :- not p.

whose completion is p ⇔ ¬p. For more details the reader is referred to the survey paper
of Apt and Bol [8].

Most CLP languages provide negation as implemented by negation as failure. But for
this to be logically correct the programmer must ensure that the negative literal is ground
by the time it is evaluated and that the program is solver complete for the negative literal. In
essence the CLP system is providing a rather weak solver for negative literals. In practice
such negation is not very useful except for data structure manipulation.

A stronger operational semantics for negation that fits well with the CLP framework is
constructive negation. This was introduced for logic programming by Chan [61, 19] and
is related to intensional negation [11, 12] and to Sato and Tamaki’s earlier compile-time
technique for generating the negation of a predicate [93]. Stuckey [104] generalized con-
structive negation to CLP and it was further studied by Fages [36]. The idea is that negative
literals are allowed to construct answers. Recall the code for max given in Example 12.3

max(X,Y,Z) :- X #>= Y, Z #= X. %% M1

max(X,Y,Z) :- Y #>= X, Z #= Y. %% M2

The literal not max(X,Y,Z) is evaluated by unfolding the definition ofmax and negat-
ing this and transforming into a disjunction of conjuncts of literals:

¬((X ≥ Y ∧ Z = X) ∨ (Y ≥ X ∧ Z = Y))

which is equivalent to

(X 6≥ Y ∧ Y 6≥ X) ∨ (X 6≥ Y ∧ Z 6= Y) ∨ (Z 6= X ∧ Y 6≥ X) ∨ (Z 6= X ∧ Z 6= Y).

The system then tries each of the conjuncts in turn. Unfortunately, efficient implementation
of constructive negation is not straightforward so current systems do not support it. It
requires the underlying solver to support negated constraints and universally quantified
variables because of local variables and iterative unfolding of negated literals because of
recursion.

In practice, most CLP systems are designed so that the primitive constraints are closed
under negation and so allow the programmer to explicitly program the required negative
literal.

Example 12.25. We can define the negation of the max predicate explicitly as:

not_max(X,Y,Z) :- X #< Y, Z #\= Y.

not_max(X,Y,Z) :- Z #\= X, Y #< X.

not_max(X,Y,Z) :- Z #\= X, Z #\= Y.

where #\= encodes disequality (6=).

424 12. Constraint Logic Programming

Abductive CLP programming was recently introduced by Kakas et. al. [57] and gen-
eralizes abductive logic programming (see the review by Kakas et. al. [56]). This is based
on a dual view to the standard deductive operational semantics for CLP. The idea is that
the goal is an observation which must be explained by additional hypothesis which are
obtained by running the CLP program backwards. Somewhat related is inductive (con-
straint) logic programming in which the idea is to infer a logic program or CLP program
which best explains some data/observations. Muggleton and De Raedt [72] provides an
overview of inductive logic programming while the papers of Sebag and Rouveirol [96]
and Padmanabhuni and Ghose [82] generalize it to a CLP context.

Answer set programming (ASP) is a form of logic programming devised for improved
handling of negation, for programs that can be interpreted on small constraint domains.
While ASP supports only = as a built-in constraint, it has proven to be an elegant formalism
for modelling CSP. Programs are evaluated by model generation, as opposed to the query
reduction detailed above for CLP. Intuitively, program clauses are used both for generating
the search space and for constraining it. Efficient constraint solving is achieved through
specialized propositional satisfaction solvers, but there is little support for search control
[65].

Optimization

The classical semantics for CLP is restricted to answering satisfaction questions. Mod-
ern CLP languages provide minimization subgoals of the form minimize(G,E)1 which
require the system to find solutions of goal G which minimize the expression E.

In order to answer such minimization subgoals the underlying solver needs to provide
strong enough minimization capabilities. In analogy to solver completeness, we say a
program is minimization complete for goal G and expression E if the solver can determine
the minimum value E can take for each answer c of G. In other words, it can determine
min{θ(E) | DC |=θ c} if one exists. We assume that if a solver is minimization complete
for a goal it is also solver complete.

In practice this usually means that each answer c of G should fix all the variables of E,
which makes the minimization calculation trivial since there is only one value θ(E). For
solvers based on linear real constraints where the expression E was a linear expression we
can use a linear programming algorithm to determine the value of this expression. Hence
a CLP(R) program will be minimization complete for goal G and expression E if each
answer c of G is such that for c all nonlinear constraints have enough fixed variables to
become linear, and the expression E is linear once we simplify away the variables fixed by
c.

The operational semantics can be extended to handle minimization subgoals as follows:
A state 〈L1, . . . , Lm c〉 can be reduced as follows:

5. If L1 is a minimization subgoal minimize(G,E) there are two cases.

a) If there is at least one answer c′ of 〈G c〉 where m = min{θ(E) |DC |=θ c
′},

and for all other answers c′′ of 〈G c〉 we have that min{θ(E) |DC |=θ c
′′} ≥

1They also provide maximization subgoals maximize(G,E), but from a semantic viewpoint these are
equivalent to minimize(G,-E).

K. Marriott, P. J. Stuckey, M. Wallace 425

m then it is reduced to

〈G,L2 . . . , Lm c ∧ E = m〉

b) If 〈G c〉 is finitely failed or has an answer c′ where min{θ(E) |DC |=θ c
′} is

unbounded, then it is reduced to 〈� false〉.

Note that if the sub-derivation 〈G c〉 does not terminate then there will be no minimization
derivation step.

In practice this is not precisely the operational semantics used by most CLP systems
since these may use information about the current best minimum value m to prune ex-
ploration of the remaining search space. We discuss this more fully in Section 12.5.3.
However this idealized semantics captures the basic operational behavior of minimization.

It impossible to ascribe a logical or algebraic semantics to (this form of) minimization
subgoals in general (see [68] for a more complete treatment of the semantics of optimiza-
tion). For this chapter we restrict ourselves to the case that minimization is only used as
the topmost goal. In practice this is usual.

We define the logical reading of minimize(G,E) to be the formula

∃M(G ∧ E = M ∧ ¬∃̄{M}(G ∧E < M))

and denote this by mt(minimize(G,E)). This captures that we want the answers to the
minimization goal to be those solutions to G for which there is no other solution to G
which makes the value of E smaller.

Both the logical and algebraic semantics are sound and complete with respect to this
logical reading assuming that the goal to be minimized is finitely evaluable:

Theorem 12.26. (Soundness and Completeness for Minimization)

Let P be a CLP (C) program, G be a finitely evaluable goal and E an expression, where
P is minimization complete for G and E. Let TC be the constraint theory for constraint
domain C and DC the interpretation. Then,

P ⋆, TC |= mt(minimize(G,E))↔ (∃̄V c1 ∨ . . . ∨ ∃̄V cn)

and

lm(P ⋆, C) |= mt(minimize(G,E))↔ (∃̄V c1 ∨ . . . ∨ ∃̄V cn)

where c1, . . . , cn are the answers of minimize(G,E) and V = vars(minimize(G,E)).

12.3 CLP for Conceptual Modeling

Constraint logic programs provide an ideal conceptual modeling language since they pro-
vide a very expressive subset of first-order logic including existential quantification, and
implications defining new constraints in terms of conjunctions and disjunctions of other
constraints. We first demonstrate how CLP can be used to model constraint satisfaction
problems (CSP) and then discuss how CLP provides considerably more concise and pow-
erful ways of modeling problems than does the standard CSP formulation.

426 12. Constraint Logic Programming

12.3.1 Formulating Standard CSPs

The standard class of constraint satisfaction problems (CSPs), studied in many of the chap-
ters in this book, admits a fixed finite set of variables V , upon which are imposed a number
of constraints. A unary domain constraint is imposed upon each variable, restricting the
set of values it can take. The remaining constraints involve more than one variable. Each
n-ary constraint has a definition, formally expressed as a set of n-tuples, and a scope which
is a sequence of n variables from the set V . CLP offers a direct conceptual model for all
CSPs in this class.

As we have seen CLP provides a very natural way to express logical combinations of
constraints. Briefly, if the constraint C1 is the conjunction of C2 and C3, this can be
expressed in CLP as C1 :- C2, C3. If, on the other hand, the constraint C1 is the
disjunction of C2 and C3 then in CLP we can write

C1 :- C2.

C1 :- C3.

These two constructs allow us to naturally model CSPs.

Example 12.27. Consider the CSP which has variables X,Y, Z, with respective domains
{1, 2, 3}, {2, 3, 4}, {1, 3}, and it has two constraints, c1 and c2. The constraint c1 has
scope 〈X,Y 〉 and definition 〈1, 2〉, 〈1, 3〉, 〈2, 3〉, and the constraint c2 has scope 〈X,Z〉
and definition 〈1, 1〉, 〈2, 2〉, 〈3, 3〉. This CSP is captured by the following program:

solve(X,Y,Z) :-

X :: [1,2,3], Y :: [2,3,4], Z :: [1,3],

c1(X,Y), c2(X,Z).

c1(1,2). c1(1,3). c1(2,3).

c2(1,1). c2(2,2). c2(3,3).

We have arbitrarily named the main predicate solve. The definition of the predicate
solve/3 comprises a domain constraint for each of the variablesX , Y andZ, a constraint
c1 on the variablesX and Y , and a constraint c2 on the variablesX and Z. The definition
of c1 and c2 are given below.

In fact the above model of CSPs is a logic program whose execution requires no con-
straint solving beyond simple equality testing. As we shall see CLP languages allow us
define the same problem in a manner that will execute far more efficiently than the model
above.

12.3.2 Defining Constraints

The standard CSP formulation, in which a constraint is defined as a set of tuples, abstracts
away from one of the key modeling issues in CP: how to define each constraint.

CLP systems typically provide equality and disequality as well as standard mathemat-
ical functions and relations, as illustrated in Example 12.1 in the Introduction as built-in,
that is, primitive constraints. These built-in constraints also typically include so called

K. Marriott, P. J. Stuckey, M. Wallace 427

global constraints. Standard examples are alldifferent [110, 87] also used in Ex-
ample 12.1 and cumulative [2] which is useful in scheduling applications. Global
constraints are complex, compound constraints which are useful in high-level modeling
and which are logically equivalent to combination of simpler constraints but for which bet-
ter operational behavior (such as more propagation) is possible if they are implemented
as a single constraint rather than as a combination of simpler constraints. See Chapter 6
“Global Constraints” for a detailed discussion of global constraints.

As we have seen in Section 12.2, the code for max given in Example 12.3

max(X,Y,Z) :- X #>= Y, Z #= X.

max(X,Y,Z) :- Y #>= X, Z #= Y.

directly encodes the logical formula:

max(X,Y, Z)↔ ((X ≥ Y ∧ Z = X) ∨ (Y ≥ X ∧ Z = Y))

Note however that the use of multiple rules implies that search will be required to solve the
constraint.

CLP programs allow local variables in constraints. These are implicitly existentially
quantified.

Example 12.28. For example the following constraint requires that X is an even number.

even(X) :- X #= 2*Y.

Y is a local variable. Logically this corresponds to the constraint ∃Y.(X = 2× Y).2

Note that local variables do not need to be given an initial domain. This example also
illustrates a constraint whose “extent” is infinite. The number of solutions to the evenness
constraint is unbounded, so it cannot be represented extensionally as we represented c1

and c2 in Example 12.27 above.3

This ability to encapsulate a CSP as a constraint, and to make any of the variables
local to that constraint, makes it possible to construct complex CSPs from simple ones. In
particular by keeping variables as “local” as possible, it is possible to minimize the worst
case complexity for solving the complex CSP [70].

Moving further away from the standard CSP, we can define constraints recursively. The
following program is an example of a constraint logic program over the reals.

Example 12.29. The mortgage constraint was introduced in [49]. The mortgage constraint
relates the principal borrowed Principal; the interest rate paid on it in each time period In-
terest; the amount paid back in each time period Payment; the total number of time periods
until the mortgage is paid off Time, and the Balance owing at the end of the mortgage.4

2In ECLiPSe the relations symbols beginning with # (e.g. #>= and #=) constrain the variables involved to
be integers. Hence in this code X must be even, since Y is an integer.

3Of course given a finite domain for X we could represent it finitely, but then we need a possibly different
representation for each usage.

4In ECLiPSe the relation symbols beginning with $ allow the variables involved to be real or integer. Hence
for mortgage the variables involved are real numbers, except for Time which must be an integer.

428 12. Constraint Logic Programming

mortgage(Principal,Interest,Payment,Time,Balance) :-

Time #>= 1,

NewPrincipal $= Principal*(1+Interest) - Payment,

NewTime #= Time - 1,

mortgage(NewPrincipal,Interest,Payment,NewTime,Balance).

mortgage(Principal,Interest,Payment,Time,Balance) :-

Time #= 0,

Balance $= Principal.

In this version of the constraint:

1. The interest rate is the same in every time period

2. The payment is the same in every time period

3. The balance is the amount owing at the end of the last time period.

Note that the number of primitive constraints collected in the constraint store will depend
on the Time parameter. If Time takes the value n in the solution then 3n + 2 primitive
constraints will have been collected.

12.3.3 Data Structures

One of the strengths of CLP languages is that they inherit constraint solving over finite trees
(i.e. terms) from logic programming languages. These provide standard data structures
such as records, lists and trees. Such data structures are important because they allow the
conceptual model and other constraints to be parametric in the number of variables. This is
important because for many CSP problems and many constraints, the number of variables
depends on the runtime data.

Lists are often used in global constraints, such as alldifferent used in the smm
program of Example 12.1. In CLP the alldifferent constraint takes a single argument
which is a list of variables. Typically this constraint is built-in, so there is no need to pro-
vide its definition in a conceptual model. If we wish to impose the constraint that, say, three
variables X , Y and Z must take distinct values we write alldifferent([X,Y,Z]).
The syntax [X,Y,Z] denotes a list, with elements X , Y and Z.

Example 12.30. The well-known N -queens problem is to place N queens on an N ×N
chess board, so that no queen can take another. Below we given a CLP program defining
nqueens/2, which defines the constraints for the N -queens problems where N is the
first (integer) argument. Since each queen must be placed on a different row, we use a
model in which there is a single variable for each queen, representing the column it must
occupy. The first goal in the definition of nqueens/2 below is length(Queens,N)
This creates a list of N variables where the ith variable in the list represents the column
occupied by the queen on the ith row. The syntax Queens :: 1..N is a shorthand
which constrains each variable in the list Queens to take an integer value between 1 and
N . The constraint alldifferent(Queens) ensures that all the queens are on different
columns, while the constraint safe(Queens) is a recursively defined constraint which
ensures that all the queens are on different diagonals.

K. Marriott, P. J. Stuckey, M. Wallace 429

nqueens(N,Queens) :-

length(Queens,N),

Queens :: 1..N,

alldifferent(Queens),

safe(Queens).

safe([Q1|Queens]) :-

noattack(Queens, Q1, 1),

safe(Queens).

safe([]).

noattack([Q2|Queens],Q1,Diff) :-

Q1 + Diff #\= Q2,

Q1 - Diff #\= Q2,

Diff1 #= Diff + 1,

noattack(Queens,Q1,Diff1).

noattack([],_,_).

The definition of safe/1 breaks its argument list into the first queen Q1 and the remaining
queens Queens, checks the queen Q1 is on a different diagonal from the remaining queens
Queens using noattack/3, and then calls itself recursively on the remaining queens.

The noattack check itself iterates over each of the remaining queens in turn, in-
crementing a counter Diff, as it goes through the list of remaining queens. The counter
therefore reflects the number of rows between the first queen Q1 and the other queen Q2.
Consequently the constraints Q1+Diff #\= Q2 and Q1-Diff #\= Q2 ensure that
Q1 and Q2 are on different diagonals.

While space does not allow a complete introduction to programming in CLP, it is hoped
that this small example program can provide a flavor of the conceptual modeling power of
CLP. The reader is referred to [67, 110] for more examples.

Real constraint problems are rarely presented neatly as a set of decision variables under
a set of constraints. Like the n-queens example above, they are often presented in an
implicit form, from which the actual decision variables and constraints have to be extracted
when the runtime data becomes available. For this purpose the additional data structures
and programming constructs provide by CLP are required.

12.3.4 Optimization and Soft Constraints

Constraint problems arising in real applications are rarely just satisfaction problems. They
are almost always optimization problems, where the number of resources is to be mini-
mized or the value of activities carried out with the available resources is to be maximized.

This is modeled in a CLP conceptual model using the construct minimize(G,E) in-
troduced in Section 12.2.6. Since the semantics of multiple, possibly nested minimization
goals is unclear, CLP languages typically require that only one variable minimization goal
is allowed. Historically this restriction to a single minimization goal has been achieved
by associating the optimization requirement with the search component of the CLP design
model, to be covered in the next section. We will follow historical precedence and also
describe optimization in the next section.

430 12. Constraint Logic Programming

Industrial applications of CP often allow constraints to be violated, i.e. treated as soft
constraints, and maintain a measure of their violation to be included in the optimization
expression. This is modeled in CLP by adding an extra argument to the constraint, and
incorporating it in the expression to be optimized.

The following constraint succeeds without penalty if its arguments have different val-
ues, but incurs a penalty of one if they are the same:5

soft_diff(X,Y,0) :- X #\= Y.

soft_diff(X,X,1).

12.4 CLP for Design Modeling

Constraint logic programming not only provides a conceptual modeling language but also
a design modeling language since the primitive constraints expressed in the conceptual
model can be directly executed using the underlying constraint solver(s).

12.4.1 Constraint Solvers

One of the distinguishing features of CLP languages is that constraints are generated dy-
namically, and tests for satisfaction on the partially generated constraints controls subse-
quent execution and constraint generation. The mortgage program of Example 12.29
clearly illustrates this, the program will not terminate if we do not repeatedly check satis-
fiability during the derivation. This contrasts to say mathematical modeling languages in
which constraint solving only takes place after the constraints are generated.

Incremental constraint solvers keep an internal solver state which represents the con-
straints encountered so far in the derivation. As new constraints are added the solver state
is updated and checked for unsatisfiability. When the solver detects that the current state is
unsatisfiable execution returns to the last state with an unexplored child state. The solver-
state must be restored to a state equivalent to the solver-state at that point and continue
execution on the unexplored derivation. This is called backtracking.

Example 12.31. Consider execution of the goal A #= 1, max(A,2,1) as shown in
Example 12.6. The first derivation is tried, and on failure the solver-state represents the
unsatisfiable constraint A = 1 ∧ A = X ∧ 2 = Y ∧ 1 = Z ∧ X ≥ Y . Execution now
backtracks to the state 〈max(A,2,1) A = 1〉 and the solver-state must be returned to
represent the constraint A = 1.

As a consequence constraint logic programming has been the birthplace of a number
of constraint solving algorithms for supporting incremental backtracking constraint solv-
ing. In Prolog II an incremental algorithm for solving equations and disequations was
developed [27].

InCLP (R) incremental Simplex algorithms were developed [54, 105] that, opposed to
dual Simplex methods standard in operations research, handled strict inequalities, and de-
tected all variables fixed by the constraints in order to help evaluate non-linear constraints.
The solvers essentially use a dual Simplex method to be incremental. The incremental
Simplex algorithms are complete when the constraints in the solver are linear, or all the

5As we shall see in the next section soft diff is a reified disequality constraint.

K. Marriott, P. J. Stuckey, M. Wallace 431

non-linear constraints have had enough of the variables involved fixed by linear constraints
to become linear. Similar approached were also developed in [113]

Finite domain solvers utilizing artificial intelligence techniques were first incorporated
in CHIP [34]. Essentially the finite domain solver maintains a record of the possible values
of each variable, its domain, and implements constraints as propagators that are executed
when the domain of the variables involved change. Each propagator possibly reduces
the domains of the variables involved in the constraint. The process is repeated until no
propagator can change a domain of a variable. The solvers are incremental since adding
a new constraint simply involves scheduling its propagators, and then remembering the
propagators for later rescheduling. Finite domain solvers are guaranteed to be complete
when every variable is fixed to a unique value.

Another important class of domain constraints are interval domains over floating point
numbers. In this case propagation based techniques are also used to solve arithmetic con-
straints over the floating point numbers. The use of floating point intervals for constraint
solving was suggested by Cleary [24] and independently by Hyvönen [48]. The first im-
plementation in a CLP system was in BNR Prolog, and is discussed in [76, 77].

CLP solvers need to support backtracking. Typically backtracking is supported by
trailing (inherited from the WAM machine of Prolog [122, 6]) or copying [94]. Trailing
records changes made to the solver state, and then undoes the changes on backtracking.
Copying simply copies the solver state, and backtracks by moving back to an old copy.
There is also semantic backtracking [116] which rebuilds the previous state (or at least one
that is semantically equivalent) using a set of high-level descriptions of changes. For a
comparison of backtracking approaches see [95]

12.4.2 Understanding Solver Incompleteness

An important consideration in using a constraint logic programming system as a design
modeling language is understanding the incompleteness of the solver as well as the inter-
action of its modeling capabilities with search.

The design modeler will want to ensure that each goal of interest is solver complete,
that is, we are guaranteed the solver answers true or false at the end of each derivation.

When using a linear inequality solver based on the Simplex algorithm [54] for example
the design model must ensure that any primitive constraints sent to the solver eventually
become linear. Consider the mortgage example program, the nonlinear constraints for
NewPrincipal can be ensured to become linear by using mortgage in a manner where
Interest is eventually fixed, for example.

When using a finite domain propagation solver (e.g. [34]) or interval reasoning con-
straint solver (e.g. [78]) the design model must eventually ensure that every variable is
fixed to reach a solver complete constraint store. For mortgage this can be ensured by
eventually fixing Interest and Payment and one of Principal or Balance (since the
remaining variables will be fixed by propagation).

The considerations of incompleteness of the solver must be matched against its model-
ing and search capabilities. For example a Simplex-based solver is complete for linear
constraints, while interval reasoning is not. Nevertheless the interval reasoner returns
variable bounds which Simplex does not. These bounds can be exploited for search,
when constraints are posted to the interval solver. At each search node a variable is

432 12. Constraint Logic Programming

chosen, and its interval partitioned into subintervals which are explored on the differ-
ent branches under the node. The intervals provide a stopping condition for the search:
when all the intervals have a sufficiently small width. This kind of search is not pos-
sible if constraints are only posted to the Simplex-based solver.6 For example the goal
mortgage(100,I,60,2,0) will not lead to solver complete constraints for either
solver, but with the interval solver we can enter a search process seeking a solution for
I to an accuracy of 0.001 (locate([I],0.001) in ECLiPSe notation), which will
determine the unique answer I = 0.131. Since the constraints are non-linear, it is not
possible with a Simplex-based solver to follow a similar process of narrowing down the
variable intervals.

12.4.3 Modeling and Disjunction

As we have seen, the basic approach to modeling disjunction in CLP languages, is to use
multiple rules. The advantage of this form of disjunction is that it can be used with any
underlying solver, but the disadvantage is that it usually leads to large search spaces.

Consider the solve predicate from Example 12.27. We can model the domain con-
straint :: as

X :: L :- member(X,L).

member(X,[X|_]).

member(X,[_|R]) :- member(X,R).

The member(X,L) predicate effectively sets the variable X to each value in the list L
in turn. Now all domain constraints are managed by the backtracking through derivations
in the CLP system using only a solver that can test for term equality. The disadvantage of
this approach is that we will search through 3 × 3 × 2 × 3 × 3 = 162 derivations to find
the two solutions. Note that since the Herbrand equation solver is complete all states only
contain solver complete constraints.

Finite domain propagation solvers allow us express the “disjunctive” domain constraint
directly without using multiple rules. A finite domain solver running the solve predicate
from Example 12.27 will only require 3 × 3 = 9 derivations to be explored to find the 2
solutions. Here since the c1 and c2 constraints fix all the variables, again all derivations
eventually lead to solver complete constraints.

But there are far better ways of handling the constraints c1 and c2. We can model them
using a specific construct called a table which is handled by a finite domain propagation
solver [84]. This ensures during search that the variables remain arc-consistent for the
subproblem c1 ∧ c2. Alternatively we can model them in the usual way using multiple
rules, but model the problem in a special way. The CLP syntax makes it easy to wrap a
goal, or any part of it, in a higher-order predicate that can be used to control how it should
be evaluated.

Example 12.32. Supposing the control predicate prop is implemented so that it handles
its argument using constraint propagation. Then we can rewrite Example 12.27 as follows:

6Unless the problem is handled by maximising and minimising each variable in turn, which is computation-
ally very much more costly than interval reasoning.

K. Marriott, P. J. Stuckey, M. Wallace 433

solve(X,Y,Z) :-

X :: [1,2,3], Y :: [2,3,4], Z :: [1,3],

prop(c1(X,Y)), prop(c2(X,Z)).

c1(1,2). c1(1,3). c1(2,3).

c2(1,1). c2(2,2). c2(3,3).

CLP languages have offered different control predicates, with different names and con-
trol behaviours. Some of these will be presented in section 12.4.6 below.

12.4.4 Reified Constraints

Most finite domain constraint solvers allow the user to add an extra Boolean argument
to the simple primitive constraints, that enforces or prohibits the constraint according to
the value of the Boolean.7 For example the constraint 1 #= (X #= Y) enforces the
constraint X = Y and is equivalent to the constraint X #= Y. On the other hand the
constraint 0 #= (X #= Y) prohibits X = Y and is equivalent to X #\= Y. Hence
soft diff(X,Y,B) is equivalent to B #= (X #= Y), but the reified constraint does
not use multiple rules to define the “disjunctive” constraint.

CLP languages introduced reified constraints to finite domain constraint solvers, orig-
inally using a cardinality combinator [112] . They are now a standard feature of finite
domain constraint solvers.

Let us represent a reified constraint as c[B], where c is the original constraint, and B is
the extra Boolean variable. The ideal behavior of the reified constraint c[B] is to propagate
domain reductions on its variables as follows:

• If, with the current domains, c is unsatisfiable, then propagate B = 0.

• If the constraint is satisfied by every combination of values from the domains of its
variables, then propagate B = 1.

• If B = 0, then impose the constraint ¬c.

• If B = 1, then impose c

Some reified constraints in some CLP systems have weaker propagation than this, but all
systems propagate a fixed Boolean value as soon as all the variables in c are instantiated.

Reified primitive constraints can be straightforwardly extended to reify logical combi-
nations of primitive constraints using conjunction, disjunction, and implication. For ex-
ample we can model conjunction (c1 ∧ c2)[B] as c1[B1] ∧ c2[B2] ∧ B = B1 × B2, and
implication (c1 → c2)[B] as c1[B1]∧c2[B2]∧B2 ≥ B1. The power of reified constraints
is that they allow logical combinations of constraints to be expressed.

Example 12.33. We can re-define the max constraint of Example 12.3 using reification
as follows:

7The facility can also be provided for linear inequalities in a integer linear programming solver where the
variables have known finite possible ranges.

434 12. Constraint Logic Programming

max(X,Y,Z) :- 1 #= ((X #>= Y and Z #= X) or

(Y #>= X and Z #= Y)).

Unfortunately, most CLP languages do not allow reification of non-primitive constraints
and so the constraint must instead be defined by:

max(X,Y,Z) :-

B11 #= (X #>= Y), B12 #= (Z #= X),

B1 #= B11 * B12,

B21 #= (Y #>= X), B22 #= (Z #= Y),

B2 #= B21 * B22,

B1 + B2 #>= 1.

Here B11 represents whether X ≥ Y holds, while B12 represents whether Z = X holds.
B1 represents the conjunction of B1 and B2, i.e. that the first rule holds. Similarly
B2 represents the second rule similarly. Finally, at least one of B1 and B2 must be true.
Systems that support reification of non-primitive constraints automatically convert the first
form into the second.

The difference between this definition of max and the original definition is important.
Both definitions have the same meaning, but they have very different operational behavior.
The original definition selects the first clause in the definition of max, and imposes the
constraints that X ≥ Y and Z = X . Only if the problem is insoluble under these con-
straints, or failure occurs for some other reason, does the CLP system try the other clause
in the definition of max on backtracking.

By contrast, the definition using reified constraints does not make any “guesses” in or-
der to satisfy themax goal. It imposes all the primitive reified constraints in the definition,
and they propagate finite domain reductions according to their built-in propagation behav-
ior. But one needs to be careful: the reified constraints do not propagate strongly as one
might expect, as we shall see in the next example.

In the design model, to separate search from constraint propagation, it is necessary to
avoid introducing any choice points into the definitions of the constraints.

12.4.5 Redundant Constraints

Since we are dealing with incomplete solvers, we must take care to understand exactly how
completely our solver will deal with the design model that we create. In many cases we can
add information to the solver that is logically redundant, but since the solver is incomplete,
allows the solver to infer more information.

Example 12.34. Using the reified design model for max/3 from Example 12.33 we
might expect that after the goal [X,Y,Z] :: 1..10, max(X,Y,Z), X #>= 4

the solver would reduce the domain of Z to 4..10. But it does not, since neither B1 or B2
can be fixed to 0 or 1, no information can be inferred by the reified model.

We can improve the design model of max to ensure this happens by adding the redun-
dant constraints Z #>= X, Z #>= Y to the model. These are logically implied by the
reified description but give different propagation behavior.

Note that another form of redundant constraints can also be usefully used in design
modeling with CLP. When a predicate requires multiple rules in order to be expressed we

K. Marriott, P. J. Stuckey, M. Wallace 435

can add redundant information in order to make information that is true of all disjunctive
rules defining the constraint visible immediately.

Example 12.35. The constraint Time #>= 1 in the mortgage program of Example 12.29
is redundant in the sense that in any success of mortgage using this rule the constraint must
hold. If we omit it we will not change the answers to the program. But many goals, for
example

10 #>= Time, mortgage(100, 0.1, Time, 20, Balance)

that would terminate for the original program will not terminate for the modified program
since the first clause can succeed recursively infinitely many times with Time constrained
to become more and more negative.

Before leaving this subsection, it should be noted that no definition of max in terms of
reified constraints can maintain bounds or arc consistency.

Example 12.36. The troublesome case is illustrated by the following goal:

X :: 3..8, [Y,Z] :: 1..10, max(X,Y,Z), Y #=< 6.

We would expect that the domain of Z would be reduced to 3..8. Unfortunately, it is still
unknown whether X ≥ Y or X < Y and consequently none of the reified constraints can
propagate information about the upper bound of Z.

In the next section we shall therefore introduce facilities for propagating information
that cannot be expressed simply as a conjunction of the built-in constraints introduced
previously in this section.

12.4.6 Specifying Constraint Behavior

CLP systems offer many built-in constraints whose behavior is predefined. These include
a wide variety of global constraints: Beldiceanu lists over 60 global constraints in [13].

However, there is no expectation that CLP systems could ever have built-in all the
(global) constraints that will ever be needed. Accordingly CLP provides facilities to define
new constraints, and specify their behavior. One of the most important directions in CLP
research has been to move away from the original “black box” view of the underlying
constraint solver of the first CLP languages to languages and systems which provide the
programmer with a “glass box” view of the underlying constraint solving in which the
programmer can extend, combine and even write new solvers [118].

One simple mechanism for supporting this inherited from logic programming lan-
guages is dynamic scheduling. Dynamic scheduling in CLP languages simply allows an
atom to have an attached delay condition (usually in terms of arguments being fixed or
non-variable) which prevents its execution until the current constraint store makes the con-
dition true. Prolog-II [27] was the first system to incorporate dynamic scheduling using the
freeze meta-predicate. Most modern CLP languages provide dynamic scheduling facil-
ities. The use of dynamic scheduling for writing constraint solvers appears in the paper of
Kawamura et al [59]. However the power of dynamic scheduling is essentially limited to
writing local propagation based solvers or extensions where some variable become fixed
allows us to fix other variables.

436 12. Constraint Logic Programming

Holzbaur [45] has demonstrated that attributed variables are simple, powerful low-
level method for extending logic programming languages with constraint solvers. These
allow the programmer to associate arbitrary attributes with variables, i.e. named prop-
erties that can be used as storage locations as well as to extend the default unification
algorithm when such variables are unified with other terms or with each other. Attributed
variables are based on suspension (variables) provided in SICStus Prolog to support dy-
namic scheduling [18] and were introduced by Le Houitouze [47] and are very similar to
meta-structures, introduced by Neumerkel [74] to allow user defined unification. They are
provided in SICStus Prolog, ECLiPSe as well as other Prologs.

Support for solver extension is particularly useful for propagation-based finite domain
solvers as it allows the programmer to introduce new global constraints with better prop-
agation behavior. Almost all finite domain propagation solvers defined in CLP languages
offer support for building new propagators by providing hooks into the underlying data
structures and queuing mechanisms.

A higher level language construct for creating finite domain propagators, called index-
icals, was first proposed in [117, 118] and then popularized by [33, 17]. An indexical is a
primitive constraint of form of X in r, where X is a domain variable and r is a range ex-
pression. More complex finite domain arithmetic constraints are compiled into indexicals.
For instanceX ≤ Y is compiled toX in −∞..max(Y), Y in min(X)..∞. This not only
simplifies the implementation of finite domain solvers, but also allows the programmer to
extend the finite domain solver by defining new constraints in terms of indexicals. Indexi-
cals are provided in many recent CLP languages including GNU-Prolog [43] and SICStus
Prolog.

Example 12.37. An indexical definition for the max/3 predicate (using SICStus Prolog
syntax since ECLiPSe does not support indexicals) is:

max(X,Y,Z) +:

Z #>= X,

Z #>= Y,

Z in dom(X) \/ dom(Y).

The indexical constraint for Z ensures that it takes any possible value from the union of
possible values of X and Y . Hence it will provide the propagation missing in Exam-
ple 12.36.

Indexicals were inspired by concurrent constraint programming (CCP) languages [92]
and in fact can be understood to be a CCP language called cc(FD) [117, 118]. In gen-
eral this idea of defining a constraint solvers using CCP has proven very powerful. Such
approaches include residuation [103] and action rules [124] .

CHR (Constraint Handling Rules) [41, 40] extend this approach by allowing the left-
hand side of a rule to have multiple constraints. It can be used to program not only
constraint propagators but also constraint reasoning rules. CHR resembles a production
system. In CHR, the left-hand side of a rule specifies a pattern of constraints in the
constraint store and the right-hand side specifies new constraints to replace those on the
left-hand side or to be added into the store. Constraint handling rules were introduced
by Frühwirth [41] and are described more fully in [40] and Chapter 13 “Constraints in
Procedural and Functional Languages”. CHRs are provided in CLP languages ECLiPSe,
SICStus, and HAL [42].

K. Marriott, P. J. Stuckey, M. Wallace 437

Recent research has examined how to automatically define constraint handling rules [9,
1] given a disjunctive definition of a constraint using multiple rules. The constraint han-
dling rules generated are guaranteed to perform all the inferences possible of a certain
form, thus providing a powerful form of automating the construction of design model for
a constraint.

The last approaches we discuss for defining constraint behaviors are based on defining
the constraint using multiple clauses (which is the conceptual model of the constraint) and
then mapping this definition, automatically, to a design model.

Generalized propagation [63] is one mechanism for doing this. As we saw earlier in
Section 12.4.3, generalized propagation executes a multiple clause definition to extract the
information that is true of all possible solutions. As more information is known about the
arguments of the constraint re-execution will find less solutions and thus propagate more
information that is true of all of them.

Example 12.38. The max example can be defined straightforwardly using generalized
propagation as:

max(X,Y,Z) :- max_basic(X,Y,Z) infers most.

max_basic(X,Y,Z) :- X #>= Y, Z #= X.

max_basic(X,Y,Z) :- Y #>= X, Z #= Y.

This version of max/3 will infer the maximum possible information expressible as do-
mains for any goal. Consider the goal from Example 12.36, initially when max is run the
domain of X is 2..8. It will execute the two branches finding two answers: the first where
Y has domain 1..8 and Z has domains 3..8 and the second where Y and Z are in 3..10. So
the domain of Z is updated by the generalized propagator to 3..8 ∪ 3..10 = 3..10. When
the domain of Y changes to 1..6 as a result of Y #=< 6 the generalized propagator for
max is re-executed this time determining that in the first answer Z has domain 3..8 and
now in the second answer it has domain 3..6 so the domain is updated to 3..8. Note how
the generalized propagation definition extracts both the information from the redundant
constraints Z ≥ X ∧ Z ≥ Y as well as the information about the maximal value.

Another form of generalized propagation is simply to construct all the ground solutions
of the constraint and then define an arc consistency propagator on this table of ground
values. The resulting table is used to construct an arc consistency propagator using an
arc consistency algorithm such as AC3 or AC6. This was illustrated previously for the
constraints solve program of Example 12.32.

The different forms of generalisation are selected by a parameter, so for Example 12.32
we use Goal infers ac instead of prop(Goal).

12.5 Search in CLP

Search is an implicit part of constraint logic programming. Execution searches through
the possible derivations in a depth-first left right manner. Because of this it is relatively
straightforward to define specific search routines in constraint logic programs.

The aim of search is to overcome the incompleteness of the solver or its weakness in
modeling the constraints required by the user (hence requiring multiple rules). In the first

438 12. Constraint Logic Programming

case the constraint programmer will add search predicates to enforce that the derivations
are eventually solver complete. In the second case the constraint programmer should make
use of disjunctive definitions that efficiently determine solutions.

The first case is the more usual case. For finite domain propagation solvers the search
routine will almost always involve ensuring that enough variables are eventually fixed to
enforce solver completeness.

CLP is a form of declarative programming, so we can say what a search predicate
means, logically. A complete search routine finds all different ways of solving the problem,
on backtracking. Logically, therefore, a complete search routine does not constrain its
variables in any way that was not already implied by the constraints in the program. Given
a variable X is defined with an initial domain l..u, the built in predicate indomain(X)
is equivalent to x = l∨x = l+1∨· · ·∨x = u. The labeling predicate labeling shown
in Example 12.2 is logically equivalent to true , since it just applies indomain to each of
the variables in the list of its argument.

However, the search routine does something very important. Each path in the search
does impose extra constraints on the variables that were not imposed at the root of the tree.
Because the constraints at each leaf of the search tree are decided by the solver, this allows
us to ensure the goal is solver complete.

In summary, a complete search routine elicits a disjunction of conjunctions of con-
straints that is logically equivalent to the input problem constraints. Instantiating variables,
is just one way of adding constraints that drive the solver to a state where it will answer
true or false .

There is a wide variety of possible search procedures we can write. In a finite do-
main example we typically have choices on which order to treat the variables, which order
to treat values, whether we should explore the search tree in a depth-first or iterative-
deepening manner. There are many kinds of search such as limited discrepancy search. All
of these are programmable using constraint logic programs and reflection predicates.

12.5.1 Reflection

Programmable search is one of the most powerful features of constraint programming. In
order to program search in CLP reflection predicates are provided which allow the con-
straint programmer to query the current state of the constraint store.

For finite domain propagation and interval reasoning solvers the most important re-
flection predicates return information about the current domains of variables. Information
such as the current lower bound on a variable domain, current upper bound, the set of
current possible domain values for a variable, as well as aggregate data such as the num-
ber of current possible domain values. For ECLiPSe ic solver some reflection predicates
are e.g. get min(X,L) which returns the minimum possible value L of a variable X ,
get domain size(X,S) which returns the number of values S in the current domain
of variable X , is in domain(X,V) which succeeds if V is a value in the current do-
main of variable X .

It is difficult to give any logical reading of the reflection predicates. Their use is usually
restricted to programming search strategies, where the meaning of the program will not be
affected by their interpretation (since the entire search will be logically equivalent to true),
but of course the efficiency of the search in finding solutions will be highly dependent on
their usage.

K. Marriott, P. J. Stuckey, M. Wallace 439

12.5.2 Search Control

Search can be specified in most CLP languages (and other constraint programming para-
digms) by a single parameterized procedure with parameters for

• variable choice

• value choice

• method

The “method” specifies how the search tree is explored (for example depth-first), and al-
ternative forms of incomplete search (for example bounded backtracking).

This makes it very simple to invoke standard (complete or incomplete) search routines,
which instantiate variables in some order (which may be dynamic such as first fail where
we pick the variable with the least number of remaining values), to values in their do-
mains. CLP systems typically offer a parameterised search routine where the choices can
be expressed as parameter values.

CLP is a “higher-order” language, that allows goals to be passed as arguments to other
predicates. This makes CLP search very flexible. For example it enables the programmer to
define a highly problem-specific variable choice routine, and pass it to the search procedure
as an argument.

Example 12.39. We can define our own value selection strategy, in this case trying the
median value, and then removing it from the domain, programmed using reflection predi-
cates.

indomain_median(V) :-

get_domain_as_list(V,List),

median(List,M),

choose(V,M).

choose(V,M) :- V #= M.

choose(V,M) :- V #\= M, indomain_median(V).

The code indomain median gets the domain of V as a list D using the reflection predi-
cate get domain as list, finds the median M of the list D, and either sets V to M or
removesM from the domain of the list and repeats. The definition of median(List,M)
is omitted.

Again, because CLP supports a higher order syntax, such a user-defined value selection
strategy can be passed to a generic search routine as a parameter.

In the remainder of this section we shall explore ways in which CLP offers more than
just a set of search parameters. In particular we shall be looking at routines that program a
specific search, search without necessarily instantiating variables, and at repair search.

Search states and choices

Heuristics are key to efficient search. Good heuristics depend on access to all aspects of the
current search state. In CLP this information is typically linked to the decision variables.

440 12. Constraint Logic Programming

Naturally the user can define whatever heuristic works best for the problem at hand.
For scheduling it is sometimes best to choose the “start time” variable with the earliest
available time in its domain. This does not fit into the “generic” variable choice and value
choice search used previously, but we can straightforwardly program this heuristic using
reflection predicates.

Example 12.40. An example of a programmed search strategy used in scheduling is to set
the variable with the least possible value to this value or constrain it to be greater than this
value. It can be programmed using reflection predicates as:

label_earliest([]).

label_earliest([X0|Xs]) :-

get_min(X0, L0),

find_earliest(Xs, X0, L0, X, L, R),

try_earliest(X,L,R).

find_earliest([], X, L, X, L, []).

find_earliest([X1|Xs], X0, L0, X, L, [X0|R]) :-

get_min(X1,L1),

L1 #< L0,

find_earliest(Xs, X1, L1, X, L, R).

find_earliest([X1|Xs], X0, L0, X, L, [X1|R]) :-

get_min(X1,L1),

L1 #>= L0,

find_earliest(Xs, X0, L0, X, L, R).

try_earliest(X,L,R) :-

X #= L,

label_earliest(R).

try_earliest(X,L,R) :-

X #> L,

label_earliest([X|R]).

The code label earliest finds the variable with the least minimum value using the
predicate find earliest, and then either sets it to its minimal value (and removes
the variable from further consideration since it is now fixed), or sets it to be greater
than the minimal value (and continues considering it) using try earliest. The code
for find earliest(Xs, X0, L0, X, L, R) finds the variable X in Xs ∪ {X0}
(givenX0 has minimum domain value L0) with the least minimum domain value L, where
R is the remaining set of variables Xs ∪ {X0} − {X}.

To further illustrate the power of CLP we now consider a specific kind of heuristic in-
formation. This is a tentative value associated with each future variable. One very widely
used method of constructing tentative values is to solve a relaxed problem, in which the
awkward constraints are switched off and it is easy to find an optimal solution. The “linear
relaxed” problem is very often used because efficient solvers are available for linear prob-
lems of a huge size (millions of variables and hundreds of thousands of constraints). One
optimal solution is returned and the variable values in this solution are installed as tentative
values to support a CLP search heuristic.

K. Marriott, P. J. Stuckey, M. Wallace 441

The variable chosen for labeling is typically the one whose tentative value most violates
the relaxed constraints.

These heuristics often support more sophisticated choices than simply labeling a vari-
able. For example the linear relaxation may not even return an integer value for a finite
domain constraint (since finite domains cannot be expressed in terms of linear constraints).
If the tentative value is, say 1.5, the choice made at the search node might be X ≤ 1 on
one branch and X ≥ 2 on the other. This kind of choice is very easy to express in CLP by
defining a branch predicate with two clauses:

branch(Var,Tent) :-

Up is ceiling(Tent),

Var #>= Up.

branch(Var,Tent) :-

Down is floor(Tent),

Var #=< Down.

Here V ar is the chosen variable, and Tent is its current tentative value. The added con-
straints V ar ≥ Up and V ar ≤ Down are posted to the constraint solver used by the
programmer. This may be a linear constraint solver, a finite domain solver, or a continuous
interval solver, for example. The key point is that for the search to do its job, the constraints
imposed at each search step should accumulate until the constraint store becomes solver
complete.

Posting inequalities is the standard form of choice for problems involving continuous
decision variables. These problems arise on robotics, chemistry and many complex sci-
entific and engineering applications. The constraints in these kinds of applications are
typically non-linear and can only be handled by sophisticated “global optimization” tech-
niques.8 Constraint programming with interval solvers are proving very effective for solv-
ing such problems [111, 79].

Unfortunately, posting inequalities does not guarantee that solver completeness is
reached after any reasonable number of steps. Instead, at the leaves of the search tree
we require the variables to fall within a “sufficiently small interval”. The answer returned
by a CLP system is a conjunction of constraints which entail the goal. However in case
the goal is not solver complete, there is no guarantee that this conjunction is satisfiable. In
this case, therefore, the constraints comprise not only an interval for each constraint, but
also further constraints on the variables for which the solver can neither decide if they are
entailed nor if they are disentailed by the interval constraints. It is however guaranteed that
no solutions lie outside the final intervals returned on all the branches of the search tree.

Local search

The tentative values used as heuristics for tree search, as introduced above, can also be used
in a different way for local search. Many CLP systems support a facility for propagating
changes to the tentative values. To enforce the constraint Z = X + Y , these systems
recompute a new tentative value forZ whenever the tentative values ofX or Y are updated.
Moreover for other constraints a measure of the degree of violation can be propagated on

8See http://www.mat.univie.ac.at/˜neum/glopt.html.

442 12. Constraint Logic Programming

updates to the variables occurring in the constraints in the same way. This approach was
pioneered in the Localizer system [115].

To search for a solution, these CLP systems allow the programmer to simply change
the tentative values associated with one or more variables, propagating the changes auto-
matically. These updates can be used to compute the quality of the new tentative variable
assignment, in terms of the degree of constraint violation, or simply the tentative value of a
global cost variable. This facility supports a wide variety of local search mechanisms from
hill climbing, to simulated annealing and tabu search [114]. For more information on local
search, see Chapter 5 “Local Search Methods”.

12.5.3 Optimization and Search

We finish off the section by remarking on the interaction between search and optimization
in constraint logic programming. Mostly optimization search in constraint logic program-
ming is simply a combination of the search primitives discussed above with an optimization
subgoal such as minimize/2 introduced in Section 12.2.6.

There are typically at least two forms of minimization subgoal provided in CLP sys-
tems. The usual default minimization is a form of branch and bound, that once a new
answer is found with a better minimal value, effectively imposes a new constraint requir-
ing solutions to be smaller than the new best value obtained, and continues the search.
The second approach is to restart the search from the beginning whenever a new minimum
value is found, including a new constraint requiring solutions to be better than the new
best value. This may have better behavior than the branch and bound methods when the
variable choice heuristics are strongly influenced by the new bound.

Minimization exploits the higher-order syntax of CLP: any search goal can be given as
the first argument to the higher-order predicate minimize/2. After execution, the second
argument is instantiated to the minimum.

12.6 Impact of CLP

Research initiated in CLP, and covered in this volume

CLP provides a powerful and practical framework for thinking about constraint satisfac-
tion and optimization problems. Indeed it was within the CLP paradigm that many of the
concepts and research directions described in this handbook were first introduced. For ex-
ample global constraints were introduced in CLP [14]; it was within the CLP paradigm that
multiple cooperating constraint solvers were introduced [15]; it is within the CLP commu-
nity that much of the research has taken place exploring the interface between Operations
Research and Artificial Intelligence [120]; recently modeling languages for local search
have also emerged from CLP [115].

Constraint databases

Much early CLP-inspired research was based on the idea that if constraints could so suc-
cessfully be added to the logic programming paradigm, then why not add them to other
(usually declarative) paradigms. Two important outcomes of this were constraint databases
and concurrent constraint logic programming.

K. Marriott, P. J. Stuckey, M. Wallace 443

The paper [50] gave both a logical reading for a CLP program and a fixpoint seman-
tics which provided a theoretical bottom-up evaluation mechanism for CLP programs. A
natural consequence of this is to think of a CLP program as a kind of database, in the same
way as logic programs can be considered to be deductive databases. Kanellakis, Kuper
and Revesz [58] were the first to formally define a constraint database in terms of “gen-
eralized tuples” which extended standard relational databases by allowing tuples in the
database to have attributes implicitly defined by associated constraints. The topic of con-
straint databases is now a fertile research area. The recent book by Revesz [88] provides a
good introduction and overview.

Concurrent constraint programming

The concurrent constraint programming languages were another major offshoot of CLP.
They generalized research on concurrent logic languages to handle constraints. Clark and
Gregory introduced committed choice and don’t care non-determinism into Prolog [22].
For more information about concurrent logic languages see the survey by Shapiro [97].
Maher generalized concurrent logic languages to the constraint setting by recognizing that
the synchronization operator used in concurrent logic languages can be thought of as con-
straint entailment [66]. The formal properties of concurrent constraint programming lan-
guages have been widely studied since then. In particular, Saraswat has provided elegant
theoretical semantics for these languages [92] and was responsible for the term “concur-
rent constraint programming.” A number of concurrent constraint programming languages
have been designed and implemented [44, 118], but arguably their greatest impact has been
in the implementation of constraint solvers in CLP systems. One notable exception to this
is the Mozart [71] implementation of the Oz language which combines concurrent con-
straint programming with distribution and object oriented programming. For more details
on Oz see Chapter 13 “Constraints in Procedural and Concurrent Languages”.

Constraints and other programming paradigms

Given the success of CLP it was also natural to investigate the combination of solving
constraints with the other major declarative programming language paradigm–functional
programming. The first approach is due to Darlington et al [30]. The paper of Crossley et
al [29] describes the constrained lambda calculus approach in which only definite values
can be communicated from the constraint store. The Oz programming language has been
developed by Smolka. In addition to incorporating functional and concurrent constraint
programming, it also provides objects. It is introduced in [101, 102].

Combining constraints with term rewriting began with augmented term rewriting intro-
duced by Leler in [64]. Constrained term rewriting generalizes ordered rewriting systems.
An introduction is given by Kirchner [60]. Constraints have also been integrated into type
inference by Odersky et. al. [75] and Bürckett has given a resolution-based proof mecha-
nism for full logic that incorporates constraint solving [16].

Combining constraints with imperative programming languages has not been investi-
gated very fully. Kaleidoscope [39] developed by Borning and others, is one of the few
examples of such languages. The combination does not seem very successful because of
the conflict between the imperative programmer’s desire to fully know the state of every

444 12. Constraint Logic Programming

variable during execution and the constraint programming view of complex flow of infor-
mation.

Much more successful have been object-oriented constraint solving toolkits. In the
toolkit approach the programmer is limited in their handling of constraints and constrained
variables by the abstract data type provided by the toolkit. CHARME [80] and ILOG
SOLVER [84] are commercial constraint-solving toolkits for finite domain constraints.
They are both off shoots of the CLP language CHIP developed at ECRC and use similar
propagation based constraint solving techniques. An object oriented Lisp based toolkit
called PECOS [85] was the precursor to ILOG SOLVER.

CLP and problem modelling

One recent impact of CLP languages has been on mathematical modeling languages. Math-
ematical modeling languages were first introduced in the 1970’s, replacing matrix genera-
tors as the way of specifying large linear programs. The majority of mathematical model-
ing languages are designed for real linear arithmetic constraints with real linear optimiza-
tion functions, since these are the constraints supported by the underlying solvers used by
the modeling languages. Mixed integer constraints are supported by later modeling lan-
guages. AMPL [7] fits in this category and also provides additional forms of modeling such
as facilities for modeling graphs. There has been some research on extending MIP based
modeling languages to support CP-like global constraints [86] and more ambitiously to
support both CP and MIP solvers. Of particular note is the OPL modeling language [109]
which dramatically extends mathematical modeling languages by providing CP-like global
constraints and search as well as sophisticated data structures. Again the interested reader
is referred to Chapter 13 “Constraints in Procedural and Concurrent Languages.”

Industrial applications

Finally, CLP and CP constraint solving toolkits are widely used in industrial applications.
One of the first industrial applications of CLP was for the container port of Hong Kong in
1990. Since then several constraint-based technology companies have emerged in Europe,
America and Asia. ILOG, is a major such company with revenues of 125Million dollars
per annum. ILOG’s website claims that “Because only ILOG can boast a technology port-
folio that includes both ILOG CPLEX for mathematical programming and ILOG CP for
constraint programming—the proven foundation of planning and scheduling systems—8
of the Top 10 ERP/SCM vendors have embedded ILOG’s core technologies”.

CLP is used by major companies for production scheduling transport scheduling, finan-
cial planning and a host of resource planning and scheduling applications. CLP is not only
used for traditional resource planning and scheduling but for the new generation of compa-
nies and applications: Cisco uses CLP for its internet routing products, and Cadence—the
electronic design automation company—is a major user of constraint technology.

12.7 Future of CLP and Interesting Research Questions

It is almost exactly 20 years since the CLP paradigm was introduced. It has been an impor-
tant component in the success of CP, providing the initial reason for the “programming”
component. One impact has been on logic programming. CLP is now a cornerstone of

K. Marriott, P. J. Stuckey, M. Wallace 445

logic programming theory, systems and applications. Standard logic programming sys-
tems, such as GNU-Prolog and SICStus Prolog now provide constraint solving libraries.
It has also received substantial interest from researchers into computational logic and has
had considerable impact on database research, and we believe an increasing impact on
modeling language design.

It is worth summarizing the strengths of CLP. CLP languages are fully-fledged pro-
gramming languages meaning that they provide the constraint programmer with great
power for modeling problems, for specifying problem specific search heuristics and for
experimenting with hybrid constraint solving techniques. They provide powerful and flex-
ible search control and modern CLP languages provide a variety of techniques, such as
attributed variables, indexicals, CHRs, for extending the constraint solver.

However, CLP languages have some drawbacks, which are driving the current research
programs in this area.

First, some features inherited from logic programming—and more particularly Prolog—
need to be learnt and comprehended for modeling and especially for writing search or hy-
brid solvers. It is awkward to use recursion rather than iteration, compile time checking
is limited, there is an unwieldy syntax for arrays, overloading of standard mathematical
operators is not supported and standard mathematical syntax is not available for model-
ing problems. There is no sharp distinction between the conceptual and the design model,
and the data is part of the program. The difficulty of programming in CLP languages was
identified as a problem in [91].

One solution is to modify and extend the syntax of CLP languages to be closer to
standard mathematical modeling. For instance, the CLP language ECLiPSe provides iter-
ation allowing conceptual modeling closer to traditional modeling languages. Arguably,
the modeling language OPL can be viewed as a (very) restricted CLP language. Although
this seems easy, there is considerable tension between the aims of designing a simple,
mathematical like modeling language, and a language expressive enough to allow the pro-
grammer to specify problem-specific constraint solving techniques. Another approach is
to explore the use of a problem-domain specific visual front ends. Yet a third, is to build a
modeling language on top of the CLP systems.

A major strength of CLP is a simple, elegant declarative semantics which brings to-
gether logical, algebraic and operational viewpoints. As a result CLP is a powerful and
precise language for modelling problems. With the facilities for constraint solving and
search control, CLP is also a clean and powerful tool for solving problems. In this respect,
however, the declarative semantics serves little purpose: a highly efficient program can
have the same declarative semantics as a hopelessly inefficient one.

Programming semantics for CLP which allows design models to be compared for effi-
ciency is now required. This semantics must account for optimisation, reflection, search,
and constraint handling. Work on semantics for propagators is partially addressing this
issue but much more work is required to build CLP semantics that enables us to directly
compare CLP models with the same declarative semantics so that we can predict which
will use more computational resources and under what circumstances.

The chronological backtracking search model of CLP languages needs to be combined
with local search techniques in which the search state is updated by local changes. The
combination of backtrack-based tree search and local search is an exciting research area.

With the flexibility of CLP comes a runtime overhead, which especially penalises the
implementation of constraint solvers within the CLP language itself. The goal of increasing

446 12. Constraint Logic Programming

efficiency of CLP languages has been addressed for many years. Approaches include better
compilation, local and global analysis, and programmer mode and type declarations [42].
On the other hand the declarative nature of CLP makes it naturally parallelisable [83, 31].
Many feel that the coming generation of hardware will be dependent on parallelism for
continued speed improvements, and that declarative paradigms like CLP will therefore
become increasingly important.

Bibliography

[1] S. Abdennadher and C. Rigotti. Automatic generation of rule-based solvers for in-
tentionally defined constraints. International Journal of Artificial Intelligence Tools,
11(2):283–302, 2002.

[2] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing problems. In Proc. JFPL, Lille, 1992.

[3] A. Aiba, K. Sakai, Y. Sato, D. J. Hawley, and R. Hasegawa. Constraint logic pro-
gramming language CAL. In Proceedings of the International Conference on Fifth
Generation Computer Systems, pages 263–276, December 1988.

[4] H. Aı̈t-Kaci and P. Lincoln. LIFE: A natural language for natural language. Techni-
cal Report ACA-ST-074-88, MCC, 1988.

[5] H. Aı̈t-Kaci and R. Nasr. LOGIN: A logic programming language with built-in
inheritance. Journal of Logic Programming, 3(3):187–215, 1986.

[6] Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial reconstruction. MIT
Press, 1991.

[7] AMPL. Ampl: A modeling language for mathematical programming.
www.ampl.com.

[8] K. Apt and R. Bol. Logic programming and negation: A survey. Journal of Logic
Programming, 19/20:9–71, 1994.

[9] K. Apt and E. Monfroy. Constraint programming viewed as rule-based program-
ming. Theory and Practice of Logic Programming, 1(6):713–750, 2001.

[10] K. Apt and M. van Emden. Contributions to the theory of logic programming.
JACM, 29:841–862, 1982.

[11] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. Intensional negation of logic
programs: Examples and implementation techniques. In TAPSOFT, Vol.2. Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development,, volume 250 of Lecture Notes in Computer Science, pages 96–110.
Springer, 1987.

[12] R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. A transformational approach
to negation in logic programming. Journal of Logic Programming, 8(3):201–228,
1990.

[13] N. Beldiceanu. Global constraints as graph properties on a structured network of
elementary constraints of the same type. In Rina Dechter, editor, CP, volume 1894
of Lecture Notes in Computer Science, pages 52–66. Springer, 2000. ISBN 3-540-
41053-8.

[14] N. Beldiceanu and E. Contjean. Introducing global constraints in CHIP. Mathemat-
ical and Computer Modelling, 12:97–123, 1994.

[15] H. Beringer and B. De Backer. Combinatorial problem solving in constraint logic

K. Marriott, P. J. Stuckey, M. Wallace 447

programming with cooperating solvers. In Logic Programming: Formal Methods
and Practical Applications, pages 245–272. Elsevier, 1995.

[16] H.-J. Bürckert. A resolution principle for constrained logics. Artificial Intelligence,
66:235–271, 1994.

[17] B. Carlson, M. Carlsson, and D. Diaz. Entailment of finite domain constraints. In
Logic Programming — Proceedings of the Eleventh International Conference on
Logic Programming, pages 339–353. MIT Press, 1196.

[18] M. Carlsson. Freeze, indexing, and other implementation issues in the WAM. In
Proceedings of the Fourth International Conference on Logic Programming, pages
40–58. MIT Press, 1987.

[19] D. Chan. Constructive negation based on the completed database. In Proceedings,
5th Int. Conf. and Symp. on Logic Programming, pages 111–125. MIT Press, 1988.

[20] A. M. Cheadle, W. Harvey, A. Sadler, J. Schimpf, K. Shen, and M. Wallace.
ECLiPSe. Technical Report 03-1, IC-Parc, Imperial College London, 2003.

[21] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Databases, pages 293–322. Plenum Press, 1978.

[22] K. Clark and S. Gregory. A relational language for parallel programming. In Proc.
ACM Conference on Functional Languages and Computer Architecture, pages 171–
178. ACM Press, 1981.

[23] K. Clark and F. McCabe. IC-Prolog - language features. In K. Clark and S. Tarnlund,
editors, Logic Programming, pages 122–149. Academic Press, 1982.

[24] J. Cleary. Logical arithmetic. Future Computing Systems, 2(2):125–149, 1987.
[25] A. Colmerauer. PROLOG II reference manual and theoretical model. Technical

report, Groupe Intelligence Artificielle, Université Aix – Marseille II, October 1982.
[26] A. Colmerauer. Opening the PROLOG-III universe. BYTE Magazine, 12(9), August

1987.
[27] A. Colmerauer. Equations and inequations on finite and infinite trees. In Proceed-

ings of the International Conference on Fifth Generation Computer Systems, pages
85–99, Tokyo, 1984.

[28] W. Cronholm and Ajili F. Hybrid branch-and-price for multicast network design.
In Proceedings of the 2nd International Network Optimization Conference (INOC
2005),, pages 796–802, 2005.

[29] J. Crossley, L. Mandel, and M. Wirsing. First-order constrained lambda calculus.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems 96—First
International Workshop, pages 339–356. Kluwer, 1996.

[30] J. Darlington, Y.-K. Guo, and H. Pull. A new perspective on integrating functional
and logic languages. In Fifth Generation Computer Systems, pages 682–693, Tokyo,
Japan, 1992.

[31] M. Garcia de la Banda, M.Hermenegildo, and K. Marriott. Independence in CLP
languages. ACM Transactions on Programming Languages and Systems, 22(2):
296–339, 2000.

[32] D. DeGroot and G. Lindstrom, editors. Logic Programming: Relations, Functions,
and Equations, 1985. Prentice-Hall.

[33] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD). In
D.S. Warren, editor, Logic Programming: Proceedings of the 10th International
Conference, pages 774–792, Budapest, Hungary, June 1993. MIT Press.

[34] M. Dincbas, P. Van Hentenryck, H. Simonis, and A. Aggoun. The constraint logic

448 12. Constraint Logic Programming

programming language CHIP. In Proc. Second Int. Conf. Fifth Generation Com-
puter Systems, pages 249–264, 1988.

[35] H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
[36] F. Fages. Constructive negation by pruning. Journal of Logic Programming, 32(2):

85–118, 1997.
[37] R.E. Fikes. REF-ARF: A system for solving problems stated as procedures. Artifi-

cial Intelligence Journal, 1(1), 1970.
[38] A. Foster and E. Elcock. Absys1: An incremental compiler for assertions: An intro-

duction. In B. Melzer and D. Mitchie, editors, Machine Intelligence 4. Edinburgh
University Press, 1969.

[39] B. Freeman-Benson and A. Borning. The design and implementation of Kaleido-
scope’90: A constraint imperative programming language. In Proc. IEEE Int. Conf.
Computer Languages, pages 174–180. IEEE Computer Soc. Press, 1992.

[40] T. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, 37:95–138, 1998.

[41] T. Frühwirth. Constraint simplification rules. In A. Podelski, editor, Constraint
Programming: Basics and Trends, volume 910 of LNCS. Springer-Verlag, 1995.

[42] M. Garcı́a de la Banda, B. Demoen, K. Marriott, and P.J. Stuckey. To the gates
of HAL: a HAL tutorial. In Proceedings of the Sixth International Symposium on
Functional and Logic Programming, volume 2441 of LNCS, pages 47–66. Springer-
Verlag, 2002.

[43] GNU Prolog. www.gnu.org/software/gprolog/gprolog.html.
[44] D. Gudeman, K. De Bosschere, and S. Debray. jc: An efficient and portable im-

plementation of Janus. In K. Apt, editor, Logic Programming: Proceedings of the
1992 Joint International Conference and Symposium, pages 399–413, Washington,
November 1992. MIT Press.

[45] C. Holzbaur. Specification of Constraint Based Inference Mechanisms through Ex-
tended Unification. PhD thesis, Dept. of Medical Cybernetics & AI, University of
Vienna, October 1990.

[46] H. Hong. Non-linear constraint solving over real numbers in constraint logic pro-
gramming (introducing RISC-CLP). Technical Report 92-08, Research Institute for
Symbolic Computation, Johannes Kepler University, Linz, Austria, 1992.

[47] S. Le Huitouze. A new data structure for implementing extensions to Prolog. In Pro-
ceedings of the Conference on Programming Language Implementation and Logic
Programming, pages 136–150. Springer, 1990.

[48] E. Hyvönen. Constraint reasoning based on interval arithmetic. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence, pages 193–
199, Detroit, 1989.

[49] J. Jaffar and J.-L. Lassez. Constraint logic programming. In POPL, pages 111–119,
1987.

[50] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the
14th ACM Symposium on Principles of Programming Languages, pages 111–119,
Munich, Germany, January 1987. ACM Press.

[51] J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–582, 1994.

[52] J. Jaffar and P. Stuckey. Semantics of infinite tree logic programming. Theoretical
Computer Science, 42(4):141–158, 1986.

K. Marriott, P. J. Stuckey, M. Wallace 449

[53] J. Jaffar, J.-L. Lassez, and M. Maher. A logic programming language scheme. In
D. DeGroot and G. Lindstrom, editors, Logic Programming: Relations, Functions
and Equations, pages 441–468. Prentice Hall, 1986.

[54] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C. Yap. The CLP(R) language and
system. ACM Transactions on Programming Languages and Systems, 14(3):339–
395, 1992.

[55] J. Jaffar, M. Maher, K. Marriott, and P.J. Stuckey. The semantics of constraint logic
programs. Journal of Logic Programming, 37(1–3):1–46, 1998.

[56] A. Kakas, R. Kowalski, and F. Toni. Abductive logic programming. Journal of
Logic Programming, 2(6):719–770, 1992.

[57] A. Kakas, A. Michael, and C. Mourlas. Aclp: Abductive constraint logic program-
ming. Journal of Logic Programming, 44(1-3):129–177, 2000.

[58] P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal of
Computer and System Science, 51(1):26–52, 1995.

[59] T. Kawamura, H. Ohwada, and F. Mizoguchi. CS-Prolog: A generalized unification
based constraint solver. In K. Furukawa et al, editor, Sixth Japanese Logic Program-
ming Conference, volume 319 of LNCS, pages 19–39. Springer Verlag, 1987.

[60] H. Kirchner. Some extensions of rewriting. In H. Comon and J.-P. Jouannaud,
editors, Term Rewriting, volume 909 of LNCS, pages 54–73. Springer Verlag, 1994.

[61] K. Kunen. Negation in logic programming. Journal of Logic Programming, 4:
289–308, 1987.

[62] J.-L. Laurière. A language and a program for stating and solving combinatorial
problems. Artificial Intelligence, 10:29–127, 1978.

[63] T. Le Provost and M. Wallace. Generalised constraint propagation over the CLP
scheme. Journal of Logic Programming, 16(3):319–360, 1993.

[64] W. Leler. Constraint Programming Languages: Their Specification and Generation.
Addison–Wesley, 1988.

[65] V. Lifschitz. Introduction to answer set programming. URL http://www.cs.

utexas.edu/users/vl/mypapers/esslli.ps. 2004.
[66] M. Maher. Logic semantics for a class of committed-choice programs. In J.-L.

Lassez, editor, Logic Programming: Proceedings of the 4th International Confer-
ence, pages 858–876, Melbourne, Australia, May 1987. MIT Press.

[67] K. Marriott and P.J. Stuckey. Programming with Constraints: an Introduction. MIT
Press, 1998.

[68] K. Marriott and P.J. Stuckey. Semantics of constraint logic programs with opti-
mization. ACM Letters on Programming Languages and Systems, 2(1–4):197–212,
1993.

[69] MATLAB. Matlab. www.mathworkds.com.
[70] U. Montanari and F. Rossi. Perfect relaxation in constraint logic programming. In

ICLP, pages 223–237, 1991.
[71] Mozart. Mozart-oz. www.mozart-oz.org.
[72] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.

Journal of Logic Programming, 19/20:629–679, 1994.
[73] L. Naish. The MU-PROLOG 3.2db reference manual. Technical report, Department

of Computer Science, University of Melbourne, Victoria, Australia, 1985.
[74] U. Neumerkel. Extensible unification by metastructures. Metaprogramming in

Logic (META’90), 1990.

450 12. Constraint Logic Programming

[75] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with con-
strained types. TAPOS, 5(1):35–55, 1999.

[76] W. Older and A. Vellino. Extending Prolog with constraint arithmetic on real in-
tervals. In Proceedings of the Canadian Conference on Electrical and Computer
Engineering, pages 14.1.1–14.1.4, 1990.

[77] W. Older and A. Vellino. Constraint arithmetic on real intervals. In F. Benhamou and
A. Colmerauer, editors, Constraint Logic Programming: Selected Research, pages
175–195. MIT Press, 1993.

[78] W. Older and A. Vellino. Constraint arithmetic on real intervals. In F. Benhamou and
A. Colmerauer, editors, Constraint Logic Programming: Selected research, chap-
ter 10. MIT Press, 1993.

[79] W. J. Older and F. Benhamou. Programming in CLP(BNR). In PPCP, pages 228–
238, 1993.

[80] A. Oplobedu, J. Marcovitch, and Y. Tourbier. Charme: Un langage industriel de
programmation par contraintes, illustré par une application chez renault. In Ninth
International Workshop on Expert Systems and their Applications: General Confer-
ence, Volume 1, pages 55–70, Avignon, May 1989. EC2.

[81] W. Ouaja and Richards E. B. A hybrid multicommodity routing algorithm for traffic
engineering. Networks, 43(3):125–140, 2004.

[82] S. Padmanabhuni, J.-H. You, and A. Ghose. A framework for learning constraints:
Preliminary report. In Learning and Reasoning with Complex Representations, PRI-
CAI’96 Workshops on Reasoning with Incomplete and Changing Information and
on Inducing Complex Representations, volume 1359 of Lecture Notes in Computer
Science, pages 133–147. Springer, 1998.

[83] S. Prestwich and S. Mudambi. Improved branch and bound in constraint logic pro-
gramming. In U. Montanari and F. Rossi, editors, Constraint Programming: Pro-
ceedings of the 1st International Conference, volume 976 of LNCS, pages 533–548.
Springer Verlag, 1995.

[84] J.-F. Puget. A C++ Implementation of CLP. In Proceedings of SPICIS’94, Singa-
pore, November 1994.

[85] J.-F. Puget. PECOS: A High Level Constraint Programming Language. In Proceed-
ings of SPICIS’92, Singapore, September 1992.

[86] P. Refalo. Linear formulation of constraint programming models and hybrid solvers.
In Principles and Practice of Constraint Programming (CP’2000), number 1894 in
LNCS, pages 369–383. Springer, 2000.

[87] J.-C. Regin. A filtering algorithm for constraints of difference in CSPs. In Proc.
AAAI, pages 362–367, 1994.

[88] P. Revesz. Introduction to Constraint Databases. Springer, 2002.
[89] R. Rodosek and M. G. Wallace. A generic model and hybrid algorithm for hoist

scheduling problems. In CP ’98: Proceedings of the 4th International Conference
on Principles and Practice of Constraint Programming, pages 385–399, London,
UK, 1998. Springer-Verlag.

[90] R. Rodosek, M. G. Wallace, and M. Hajian. A new approach to integrating mixed
integer programming with constraint logic programming. Annals of Operations re-
search, 86:63–87, 1999.

[91] F. Rossi. Constraint (logic) programming: A survey on research and applications.
In New Trends in Constraints, volume 1865 of Lecture Notes in Computer Science,

K. Marriott, P. J. Stuckey, M. Wallace 451

pages 40–74. Springer, 1999.
[92] V. Saraswat. Concurrent Constraint Programming. ACM Distinguished Disserta-

tion Series. MIT Press, 1993.
[93] Taisuke Sato and Hisao Tamaki. Transformational logic program synthesis. In

FGCS, pages 195–201, 1984.
[94] C. Schulte. Comparing trailing and copying for constraint programming. In

Danny De Schreye, editor, Proceedings of the International Conference on Logic
Programming, pages 275–289. MIT Press, 1999.

[95] Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2002.

[96] M. Sebag and C. Rouveirol. Polynomial-time learning in logic programming and
constraint logic programming. In Inductive Logic Programming Workshop, volume
1314 of Lecture Notes in Computer Science, pages 105–126. Springer, 1997.

[97] E. Shapiro. The family of concurrent logic programming languages. ACM Comput-
ing Surveys, 21(3):412–510, 1989.

[98] J.R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
[99] SICStus Prolog. www.sics.se/sicstus/.
[100] G. Sidebottom and W. Havens. Hierarchical arc consistency for disjoint real inter-

vals in constraint logic programming. Computational Intelligence, 8(4):601–623,
1992.

[101] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343.
Springer-Verlag, Berlin, 1995.

[102] G. Smolka. An Oz primer. Technical report, Programming Systems Lab. DFKI,
Available at http://www.ps.uni-sb.de/oz/, 1995.

[103] G. Smolka. Residuation and guarded rules for constraint logic programming. Tech-
nical report, Digital Equipment Paris Research Laboratory Research Report, June
1991.

[104] P.J. Stuckey. Negation and constraint logic programming. Information and Compu-
tation, 118(1):12–33, 1995.

[105] P.J. Stuckey. Incremental linear constraint solving and detection of implicit equali-
ties. ORSA Journal of Computing, 3(4):269–274, 1991.

[106] G. Sussman and G. Steele. CONSTRAINTS — a language for expressing almost–
hierarchical descriptions. Artificial Intelligence, 14(1):1–39, 1980.

[107] I. Sutherland. Sketchpad: A man-machine graphical communication system. In
Proceedings of the Spring Joint Computer Conference, pages 329–346. IFIPS, 1963.

[108] M. van Emden and R. Kowalski. The semantics of predicate logic as a programming
language. JACM, 23:733–742, 1976.

[109] P. Van Hentenryck. The OPL Optimization Programming Language. MIT Press,
1999.

[110] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[111] P. Van Hentenryck. A gentle introduction to Numerica. Artificial Intelligence, 103:
209–235, 1998.

[112] P. Van Hentenryck and Y. Deville. The cardinality operator: A new logical con-
nective for constraint logic programming. In F. Benhamou and A. Colmerauer,
editors, Constraint Logic Programming: Selected Research, pages 383–403. MIT

452 12. Constraint Logic Programming

Press, 1993.
[113] P. Van Hentenryck and T. Graf. Standard forms for rational linear arithmetics in

constraint logic programming. Annals of Mathematics and Artificial Intelligence, 5:
303–319, 1992.

[114] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press,
2005.

[115] P. Van Hentenryck and L. Michel. Localizer: A modeling language for local search.
Constraints, 5:41–82, 2000.

[116] P. Van Hentenryck and R. Ramachandran. Backtracking without trailing in
CLP (ℜLin). ACM Transactions on Programming Languages and Systems, 17(4):
635–671, July 1995.

[117] P. Van Hentenryck, V. Saraswat, and Y. Deville. Constraint processing in cc(FD).
Technical report, unpublished manuscript, 1992.

[118] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation and eval-
uation of the constraint language cc(fd). In A. Podelski, editor, Constraint Pro-
gramming: Basics and Trends, number 910 in LNCS. Springer-Verlag, 1995.

[119] P. Voda. The constraint language trilogy: Semantics and computations. Technical
report, Complete Logic Systems, North Vancouver, BC, Canada, 1988.

[120] M. Wallace and F. Ajili. Hybrid problem solving in ECLiPSe. In Constraint and
Integer Programming Toward a Unified Methodology, volume 27 of Operations Re-
search/Computer Science Interfaces Series, chapter 6. Springer, 2004.

[121] M. G. Wallace and J. Schimpf. Finding the right hybrid algorithm - a combinatorial
meta-problem. Annals of Mathematics and Artificial Intelligence, 34(4):259 – 269,
2002.

[122] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical report, SRI Inter-
national, Artificial Intelligence Center, October 1983.

[123] T. H. Yunes, A. V. Moura, and C. C. de Souza. Hybrid column generation ap-
proaches for urban transit crew management problems. Transportation Science, 39
(2):273–288, 2002.

[124] N.-F. Zhou. Programming finite-domain constraint propagators in action rules. The-
ory and Practice of Logic Programming, 5, 2005.

Handbook of Constraint Programming 453
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 13

Constraints in Procedural and
Concurrent Languages

Thom Frühwirth, Laurent Michel, and Christian
Schulte

This chapter addresses the integration of constraints and search into programming lan-
guages from three different points of views. It first focuses on the use of constraints to
model combinatorial optimization problem and to easily implement search procedures,
then it considers the use of constraints for supporting concurrent computations and finally
turns to the use of constraints to enable open implementations of constraints solvers.

The idea of approaching hard combinatorial optimization problems through a combi-
nation of search and constraint solving appeared first in logic programming. The genesis
and growth of constraint programming within logic programming is not surprising as it
catered to two fundamental needs: a declarative style and non-determinism.

Despite the continued support of logic programming for constraint programmers, re-
search efforts were initiated to import constraint technologies into other paradigms (in par-
ticular procedural and object-oriented paradigms) to cater to a broader audience and lever-
age constraint-based techniques in novel areas. The first motivation behind a transition is a
desire to ease the adoption of a successful technology. Moving constraints to a platform and
paradigm widely accepted would facilitate their adoption within existing software systems
by reducing resistance to the introduction of technologies and tools perceived as radically
different. A second motivation is that constraints are versatile abstractions equally well
suited for modeling and supporting concurrency. In particular, concurrent computation
can be seen as agents that communicate and coordinate through a shared constraint store.
Third, constraint-based techniques can leverage the semantics of a target application do-
main to design specialized constraints or search procedures that are more effective than
off-the-shelves constraints. The ability, for domain specialists, to easily create, customize
and extend both constraints solvers and search is therefore a necessity for adaptability.

The continued success and growth of constraints depends on the availability of flexible,
extensible, versatile and easy to use solvers. It is contingent on retaining performance that

B.V.

454 13. Constraints in Procedural and Concurrent Languages

rival or exceed the ad-hoc methods they supplant. Therefore, efficiency remains a key
objective, often at odds with flexibility and ease of use.

Meeting these broad objectives, namely ubiquity, flexibility, versatility and efficiency
within traditional paradigms that lack support for declarative programming creates unique
challenges. First, a flexible tool must support mechanisms to let users define new con-
straints either through combinators or from first principles. The mechanisms should focus
on the specification of what each constraint computes (its declarative semantics) rather
than how it computes it (operational semantics) to retain simplicity without sacrificing ef-
ficiency. Second, search procedures directly supported by language abstractions, i.e., non-
determinism in logic programming, must be available in traditional languages and remain
under end-user control. Also, search procedures should retain their declarative nature and
style to preserve simplicity and appeal. Finally, a constraint tool must bridge the semantic
gaps that exists between a high-level model, its implementation and the native abstractions
of the host language to preserve clarity and simplicity while offering a natural embedding
in the target language that does not force its users to become logic programming experts.

Many answers to these challenges have been offered and strike different trade-offs.
Each answer can be characterized by features that address a subset of the objectives. Some
constraint tools favored ease of adoption and efficiency over preserving declarativeness and
flexibility. Others focused on the creation of new hybrid, multi-paradigm languages and
platforms that preserved declarative constructions, adopt constraints and concurrency as
first class citizens in the design, and preserve efficiency with a lesser emphasis on targeting
existing platforms. A third option focusing on flexibility and declarative constructions
brought rule-based systems where new solvers over entirely new domains can be easily
constructed, extended, modified and composed.

This chapter provides insights into the strengths, weaknesses and capabilities of sys-
tems that fall in one of these three classes: toolkits for procedural and object-oriented
languages, hybrid systems and rule-based systems.

13.1 Procedural and Object-Oriented Languages

Over the last decade, constraint programming tools have progressively found their way into
mainstream paradigms and languages, most notably C++. This transformation, however,
is not obvious and creates many challenges. To understand the nature of the difficulty, it is
useful to step back and consider the initial motivations. To apprehend the interactions be-
tween constraint toolkits and their procedural or object-oriented host languages, it is useful
to separate two key components of constraint programming, i.e., modeling with constraints
and programming the search. Each component brings its own challenges that vary with the
nature of the host language. Section 13.1.1 reviews the design objectives and inherent
challenges before turning to the issue of constraint-based modeling in section 13.1.2, and
search programming in section 13.1.3. Finally, section 13.1.4 discusses pragmatic issues
that permeate throughout all integration attempts.

13.1.1 Design Objectives

Modern constraint-based languages strive to simplify the task of writing models that are
readable, flexible and easy to maintain. This is naturally challenging as programs for

T. Frühwirth, L. Michel, C. Schulte 455

complex problems often requires ingenuity on the part of the developer to express multiple
orthogonal concerns and encode them efficiently within a language that imposes its own
limitations. Logic programming is the cradle of constraint programming for good reasons
as it offers two important supports: a declarative framework on which to build constraints
as generalizations of unification; and non-determinism to support search procedures, and,
in particular, depth-first search.

The challenges

Nonetheless, logic programming imposes a few limitations. First, it does not lend itself
to the efficient implementation of extensible toolkits. Early on, efficiency considerations
as well as simplicity pushed logic programming systems to implement all constraints as
“built-ins” of the language giving rise to closed black-box solvers. Second, it does not eas-
ily accommodate search procedures that deviate from the depth-first strategy. It therefore
raises significant challenges for potential users of strategies like BFS, IDFS [70] or LDS
[50] to name a few. Third, its target audience comprises almost exclusively computer-savvy
programmers, who feel comfortable writing recursive predicates for tasks as mundane as
generating constraints and constraint expressions. This relative difficulty does not appeal to
a much larger group of potential users of the technology: the mathematical programming
community. Mathematical solvers (LP, IP, MIP [56, 46]) and their modeling languages
[34, 26, 104] indeed offer facilities that focus on modeling and, to a large extent, relieve
their users from most (all) programming efforts.

The past two decades saw improvements on one or more of these fronts. The next
paragraphs briefly review two trends related to procedural and object-oriented languages.

Libraries and glass-box extensibility. Ilog Solver [58] is a C++ library implementing
a finite domain solver and is thus a natural example of an object-oriented embodiment.
The embedding of a solver within a C++ library offers opportunities to address the ex-
tensibility issues as both decision variables and constraints can be represented with object
hierarchies that can be refined and extended. However the move to C++, a language that
does not support non-deterministic computation, has increased the challenges one faces
to write, debug and maintain search procedures. Note that CHR [39] supports glass-box
extensibility through user-definable rules and is the subject of Section 13.3.

From programming to modeling. Numerica [111] is a modeling language for highly
non-linear global optimization. It was designed to address the third limitation and make
the technology of Newton [112] (a constraint logic programming language) available to
a much broader audience of mathematical programmers. The objective behind Numerica
was to improve the modeling language to a point where executable models were expressed
at the level of abstraction of their formal counterparts typically found in scientific papers.
The approach was further broadened with novel modeling languages for finite domain
solvers supporting not only the statement of constraints but also the specification of ad-
vanced search procedures and strategies. OPL [105, 104, 114] embodies those ideas in a
rich declarative language while OplScript [108] implements a procedural language for the
composition of multiple OPL models. Note that OPL is an interpreted language whose vir-
tual machine is implemented in terms of ILOG SOLVER constructions. The virtual machine
itself is non trivial given the semantic gap between OPL and ILOG SOLVER.

456 13. Constraints in Procedural and Concurrent Languages

At the same time, a finite domain solver was implemented in LAURE [21] and then
moved to CLAIRE [63], a language compiled to C++ that simplified LAURE’s construc-
tions to make it accessible to a broader class of potential users. CLAIRE was later en-
hanced with SALSA [63], a declarative and algebraic extension that focused on the im-
plementation of search procedures.

13.1.2 Constraint Modeling

Constraint modeling raises two concerns: the ease of use and expressiveness of the toolkit
and its underlying extensibility. Each concern is intrinsically linked to the host language
and has a direct impact on potential end users. This section discusses each one in turn.

Ease of use and expressiveness

The constraint modeling task within a procedural or an object-oriented language presents
interesting challenges. It is desirable to obtain a declarative reading of a high-level model
statement that exploits the facilities of the host language (e.g., static and strong typing
in C++). The difficulty is to leverage the language to simplify programs and raise their
modeling profile to a sufficient level of abstraction. Note that modeling languages (e.g.,
OPL) tightly couple the toolkit and the language to obtain the finest level of integration that
preserves a complete declarative reading of models despite an apparent procedural style.
Indeed, OPL looks procedural but is actually declarative as it is side effect free (i.e., it has
no destructive assignments).

Aggregation and combinators. Consider the classic magic series puzzle. The problem
consists of finding a sequence of numbers S = (s0, s1, · · · , sn−1) such that si represents
the number of occurrences of iwithin the sequenceS. For instance, (6, 2, 1, 0, 0, 0, 1, 0,0,0)
is a sequence of length 10 with 6 occurrences of 0, 2 occurrences of 1, 1 occurrence of 2
and finally 1 occurrence of 6. Clearly, any solution must satisfy the following property

n−1
∑

k=0

(sk = i) = si ∀i ∈ {0, 1, 2, · · · , n− 1}

To solve the problem with a constraint programming toolkit, it is first necessary to state
the n constraints shown above. Each constraint is a linear combination of the truth value
(interpreted as 0 or 1) of elementary constraints of the form sk = i. The difficulty is
therefore to construct a toolkit with automatic reification of constraints and with seamless
aggregation primitives, i.e., summations, products, conjunctions or disjunctions to name a
few that facilitate the combination of elementary primitives.

Figure 13.1 illustrates the differences between the OPL and ILOG SOLVER statements
for the magic series problem. The ILOG SOLVER model constructs an expression itera-
tively to build the cardinality constraint for each possible value. It also relies on conve-
nience functions like IloScalProd to create the linear redundant constraint. The OPL

model is comparatively simpler as the mathematical statement maps directly to the model.
It is worth noting that the level of abstraction shown by the OPL model is achievable within
C++ libraries with the same level of typing safety as demonstrated in [72]. Finally, both
systems implement constraint combinators (e.g., cardinality) and offer global constraints

T. Frühwirth, L. Michel, C. Schulte 457

ILOG SOLVER

1. int main(int argc,char* argv[]){
2. IloEnv env;int n;cin>>n;

3. try {
4. IloModel m(env);

5. IloIntVarArray s(env,n,0,n);

6. IloIntArray c(env,n);

7. for(int i=0;i<n;i++) {
8. IlcIntExp e = s[0] == i;

9. for(int k=1;k<n;k++)

10. e += s[k] == i;

11. m.add(s[i] == e);

12. }
13. for(int i=0;i<n;i++) c[i]=i;

14. m.add(IloScalProd(s,c) == n);

15. solve(m,env,vars);

16. } catch(IloException& ex) ...

17.}

OPL

1. int n<<"Number of Variables:";

2. range Dom 0..n-1;

3. var Range s[Dom];

4. solve {
5. forall(i in Dom)

6. s[i] = sum(j in Dom) (s[j]=i);

7. sum(j in Dom) s[j]*j = n;

8. };

Figure 13.1: The Magic Series statements.

that capture common substructures, simplify some of the modeling effort, and can exploit
the semantics of constraints for better performance.

Typing. A seamless toolkit integration depends on the adherence to the precepts and
conventions of the host language. For instance, C++ programmers often expect static and
strong typing for their programs and rely on the C++ compiler to catch mistakes through
type checking. From a modeling point of view the ability to rely on types and, in particular,
on finite domain variables defined over domains of specific types is instrumental is writing
clean and simple models. Consider the stable marriage problem. The problem is to pair
up men and women such that the pairings form marriages and satisfy stability constraints
based on the preferences of all individuals. A marriage between m and w is stable if and
only if whenever m prefers a woman k over his wife w, k also happens to prefer her own
husband overm so thatm andw have no reason to part. The OPL model is shown in Figure
13.2. The fragment husband[wife[m]] = m illustrates that the type of values in the
domain of wife[m] is an enumerated type Women that happens to be equal to the type of
the index for the array husband. Similarly, the type of each entry of the husband array is
Men and therefore equal to the type of the right hand side of the equality constraint. To the
modeler, the result is a program that can be statically type checked.

Matrices. From an expressiveness point of view, the ability to index arrays with finite
domain variables is invaluable to write concise and elegant models. It is equally useful on
matrices, especially when its absence implies a non trivial reformulation effort to derive
for an expression m[x, y] a tight reformulation based on an element constraint. The refor-
mulation introduces a ternary relation R(i, j, k) = {〈i, j, k〉 | i ∈ D(x) ∧ j ∈ D(y) ∧ k ∈
0..|D(x)| · |D(y)| − 1} that, for each pair of indices i ∈ D(x) and j ∈ D(y), maps the
entry m[i, j] to its location k in an array a. Then, m[x, y] can be rewritten as a[z] with the
addition of the constraint (x, y, z) ∈ R where z is a fresh variable.

458 13. Constraints in Procedural and Concurrent Languages

1. enum Women ...;

2. enum Men ...;

3. int rankW[Women,Men] = ...

4. int rankM[Men,Women] = ...

5. var Women wife[Men];

6. var Men husband[Women];

7. solve {
8. forall(m in Men) husband[wife[m]] = m;

9. forall(w in Women) wife[husband[w]] = w;

10. forall(m in Men & o in Women)

11. rankM[m,o] < rankM[m,wife[m]] => rankW[o,husband[o]] < rankW[o,m];

12. forall(w in Women & o in Men)

13. rankW[w,o] < rankW[w,husband[w]] => rankM[o,wife[o]] < rankM[o,w];

14. }

Figure 13.2: The OPL model for Stable Marriage.

Note that if the language supports a rich parametric type system (e.g., C++), it is pos-
sible to write templated libraries that offer both automatic reformulations and static/strong
typing as shown in [72].

Extensibility

Extensibility is crucial to the success of toolkits and libraries alike. It affects them in at
least two respects. First, the toolkit or library itself should be extensible and support the
addition of user-defined constraints and user-defined search procedures. This requirement
is vital to easily develop domain specific or application specific constraints and blend them
seamlessly with other pre-defined constraints. Given that constraints are compositional and
implemented in terms of filtering algorithms that task should be easily handled. Second,
it is often desirable to embed the entire constraint program within a larger application to
facilitate its deployment.

Solver extensibility. Object orientation is a paradigm for writing extensible software
through a combination of polymorphism, inheritance, and delegation. In the mid 90s, the
first version of ILOG SOLVER [79, 80] was developed to deliver an extensible C++ library.
The extensibility of its modeling component stems from a reliance on abstract classes
(interfaces) for constraints to specify the API that must be supported to react to events
produced by variables. For instance an ILOG SOLVER integer variable can expose notifi-
cations for three events whenDomain, whenRange, whenValue to report a change
in the domain, the bounds, or the loss of a value. A constraint subscribes to notifications
from specific variables to respond with its demon method. Figure 13.3 illustrates a user-
defined equality constraint implementing bound consistency. Its postmethod creates two
demons and attaches them to the variables. Both demons are implemented with a macro
(last line) that delegates the event back to the constraint. The demon method propagates
the constraint by updating the bound of the other variable. The extension mechanism heav-
ily depends on the specification of a filtering algorithm rather than a set of indexicals (e.g.,
clp(FD) [28]) or inference rules (e.g., CHR [39]) and therefore follows a far more pro-

T. Frühwirth, L. Michel, C. Schulte 459

1. class MyEqual : public IlcConstraintI {
2. IlcIntVar x, y;

3. public:

4. MyEqual(IloSolver s,IlcIntVar x,IlcIntVar y)

5. : IlcConstraintI(s), x(x), y(y) {}
6. void post() {
7. x.whenValue(equalDemon(getSolver(),this, x));

8. y.whenValue(equalDemon(getSolver(),this, y));

9. }
10. void demon(IlcIntVar x) {
11. IlcIntVar other = (x == x) ? y : x;

12. other.setMin(x.getMin());

13. other.setMax(x.getMax());

14. }
15. };
16. ILCCTDEMON1(equalDemon,MyEqual,demon,IlcIntVar,var);

Figure 13.3: ILOG SOLVER custom constraint.

cedural mind-set that requires a fair level of understanding to identify relevant events and
variables and produce a filtering procedure.

Solver embedding. Extensibility also matters for the deployment of constraint-based
technology. In this respect, the integration of a CP toolkit within a mainstream object-
oriented language is a clear advantage as models can easily be encapsulated within reusable
classes linked within larger applications. Modeling languages present an additional diffi-
culty but can nonetheless be integrated through component technology (COM or CORBA)
[57] or even as web-services as illustrated by the OSiL efforts [33].

13.1.3 Programming the Search

The second component of a constraint programming model is concerned with the search.
The search usually addresses two orthogonal concerns. First, what is the topology of the
search tree that is to be explored. Second, how does one select the next node of the search
tree to be explored. Or, given a search tree, what is the order used to visit its nodes? Both
can be thought of as declarative specifications but are often mixed to accommodate the
implementation language. The integration of the two elements in procedural and object-
oriented languages is particularly challenging, given the lack of language abstractions to
manipulate the search control flow.

Search tree specification

OPL is a classic example of declarative specification of the search tree. It supports state-
ments that specify the order in which variables and values must be considered. OPL pro-
vides default strategies and does not require the user to implement his own. However, as
problems become more complex, it is critical to provide this ability. Figure 13.4 illustrates
on the left-hand side the naive formulation for the n−queens model. The constraints are
stated for all pairs of indices i and j in Dom such that i < j. The right-hand side shows

460 13. Constraints in Procedural and Concurrent Languages

the search procedure. Lines 10-14 specify the search tree with a variable and a value or-
dering . It simply scans the variables in the order indicated by Dom (ascending) and, for
each variable i, it non-deterministically chooses a values v from Dom and attempts to im-
pose the additional constraint queen[i] = v. On failure, the non-deterministic choice
is reconsidered and the next value from Dom is selected.

1. int n = ...; range Dom 1..n;

2. var Dom queen[Dom];

3. solve {
4. forall(ordered i,j in Dom){
5. queen[i] <> queen[j];

6. queen[i]+i <> queen[j]+j;

7. queen[i]-i <> queen[j]-j;

8. }
9. }

10. search {
11. forall(i in Dom)

12. tryall(v in Dom)

13. queen[i] = v;

14. }

Figure 13.4: The OPL queens model.

Implementing a search facility in an object-oriented language like C++ or Java is hard
for a simple reason: the underlying language has no support for non-determinism and
therefore no control abstractions for making choices like tryall. To date, all libraries
have used some form of embedded goal interpreter whose purpose is to evaluate an and-or
tree data structure reminiscent of logic programming predicates where non-determinism
is expressed with or-nodes and conjunction with and-nodes. The approach was used in
ILOG SOLVER and more recently in CHOCO, a Java-based toolkit. Figure 13.5 shows
a goal-based implementation of the n−queens search tree. ILOG SOLVER also provides
pre-defined search tree specifications for the often-used methods.

1. ILCGOAL4(Forall,IloIntVarArray,x,IloInt,i,IloInt,low,IloInt,up) {
2. if (i <= up)

3. return IlcAnd(Tryall(getSolver(),x[i],low,up),

4. Forall(getSolver(),x,i+1,low,up));

5. else return IlcGoalTrue(getSolver());

6. }
7. ILCGOAL3(Tryall,IloIntVar,x,IloInt,v,IloInt up) {
8. if (x.isBound()) return 0;

9. else if (v > up) fail();

10. else return IlcOr(x=v,IlcAnd(x!=v,Tryall(getSolver(),x,v+1)));

11. }
12. ...

13. solver.solve(Forall(queens,1,1,n));

Figure 13.5: An ILOG SOLVER implementation of a search tree specification.

Lines 1 through 6 define a goal that performs the same variable selection as line 11
of the OPL model. Lines 7-11 define a goal to try all the possible values for the chosen
variable and correspond to lines 12 and 13 of the OPL model. The two macros ILCGOAL4
and ILCGOAL3 define two classes (ForallI and TryallI) together with convenience
functions (Forall and Tryall) to instantiate them1. The block that follows each macro

1Observe that the code in Figure 13.5 always uses the convenience functions and never directly refer to the
underlying implementation class

T. Frühwirth, L. Michel, C. Schulte 461

is the body of the goal whose purpose is to construct the And-Or tree on the fly.
Observe that the implementation of the search procedure is now broken down into

several small elements that are not textually close. A few observation are in order

• A goal-based solution relies on an embedded goal interpreter and is therefore in-
compatible with C++ development tools like a debugger. For instance, tracing the
execution is hard as there is no access to the state of the interpreter (e.g., current in-
struction, parameters’ value, etc..). To compensate, recent versions of ILOG SOLVER

provide debugging support through instrumented libraries to inspect and visualize
the state of the search tree.

• Every single operation that must occur during the search (e.g., printing, statistic
gathering, visualizations) must be wrapped up in user-defined goals that are inserted
into the search tree description.

• It is non-trivial to modularize entire search procedures in actual C++ functions or
classes to reuse search fragments. Again, the only option is to write a function or
class that will inline a goal data structure representing the search procedure to insert.
Note that a deep copy of the entire goal (the entire function) is required each time to
simulate the parameter passing as there is no call mechanism per se.

• The body of a goal’s implementation is both delicate and subtle as there is a temporal
disconnection between the execution of its various components. For instance, one
may be tempted to optimize the Forall goal shown in Figure 13.5 to eliminate the
creation of a fresh goal instance for each recursive goal and favor a purely recursive
solution as in

ILCGOAL4(Forall,IloIntVarArray,x,IloInt,i,IloInt,low,IloInt,up) {
if (i <= up) {
IloInt i0 = i; i = i + 1;

return IlcAnd(Tryall(getSolver(),x[i0],low,up),this);

} else return IlcGoalTrue(getSolver());

}

However, this would be wrong. Indeed, i is an instance variable of the goal that is
merely re-inserting itself back into the query resulting in making i = i + 1 visible
to the next invocation. However, on backtrack i is not restored to its original value.
Consequently, one must compensate wit a reversible integer (IlcRevInt). Yet,
this is insufficient as the modification (i = i + 1) should occur inside the Tryall
choice point and it is thus necessary to add a goal to increment i as in

ILCGOAL4(Forall,IloIntVarArray,x,IlcRevInt&,i,IloInt,low,IloInt,up) {
if (i <= up) {
return IlcAnd(IlcAnd(Tryall(getSolver(),x[i],low,up),

IncrementIt(i)),this);

} else return IlcGoalTrue(getSolver());

}

Finally, note how the arguments to goal instantiations are evaluated when the parent
goal executes, not when the goal itself is about to execute. For instance, a goal that
follows IncrementIt(i) should not expect i to be incremented yet.

Standard search procedures are not limited to static variable/value ordering but often rely
on dynamic heuristics in order to select the next variable/value to branch on. Such heuris-
tics can be implemented both within modeling languages and libraries.

462 13. Constraints in Procedural and Concurrent Languages

Variable selection heuristic. In OPL, the variable selection heuristic is specified with
a clause in the forall statement that associates with the selection a measure of how
desirable the choice is. For instance, the fragment

forall(i in Dom ordered by increasing dsize(queens[i])) ...

indicates that the queens should be tried in increasing order of domain size. Note that
OPL supports more advanced criteria based on lexicographic ordering of tuple-values to
automate a useful but tedious task. For instance, the fragment

forall(i in Dom ordered by increasing <dsize(queens[i]),abs(i - n/2)>)

tryall(v in Dom)

queen[i] = v;

implements a middle variable selection heuristic that considers first the variable with the
smallest domain and breaks ties by choosing the variable closest to the middle of the board.

ILOG SOLVER is equally capable at the expense of a few small additions to user-defined
goals. Indeed, the key change is that the index of the next variable to consider is no longer
a static expression (the i of the Forall goal in Figure 13.5), but is instead computed at the
beginning of the goal. Note that the selection is re-done at each invocation of the Forall
and can skip over bound variables.

Value selection heuristic. OPL provides an ordering clause for its tryall that matches
the variable ordering clause of the forall both in syntax and semantics. For instance the
statement

tryall(v in Domain ordered by increasing abs(v - n/2)) ...

would consider the values fromDomain in order of increasing distance from the middle of
the board. ILOG SOLVER goals for the value selection operate similarly with one caveat:
The value selection goal must track (with an additional data structure) the already tried
values to focus on only the remaining values, a task hidden by OPL’s implementation.

Control flow primitives. For the search, the most significant difference between a mod-
eling language and a library is, perhaps, the availability of traditional control statements.
As pointed out earlier, ILOG SOLVER’s level of abstraction for programming the search is
the underlying and-or tree. OPL, provides traditional control primitives such as iterations
(while loops), selections (select), local bindings (let expressions) and branchings
(if-then-else). Consider for instance the simple OPL fragment shown in Figure 13.6
which, upon failure, adds the negation of the failed constraint. The distance between a
goal-based specification and a high-level procedure is significant.

Exploration strategies

The specification of the search tree was concerned with what was going to be explored.
Exploration strategies are concerned with how the dynamic search tree is going to be ex-
plored. Many strategies are possible, ranging from the standard depth first search to com-
plex combination of iterated limited searches. Even though an exploration strategy sounds
like a very algorithmic endeavor, it is both possible and desirable to produce a declarative

T. Frühwirth, L. Michel, C. Schulte 463

1. search {
2. forall(in in Dom)

3. while (not bound(queens[i])) do

4. let v = dmin(queens[i]) in

5. try

6. queens[i] = v | queens[i] <> v

7. endtry;

8. }

Figure 13.6: Traditional Control Abstractions Example in OPL.

specification and let the search engine implement it automatically. This is especially true
in the context of a procedural (or object-oriented) language as a procedural specification
would force programmers to explicitly address the issue of non-determinism (and its im-
plementation). This section briefly reviews two approaches based on OPL [113] (or ILOG

SOLVER [78]) and COMET [73].

OPL and ILOG SOLVER strategy specifications. The key ingredient to specify an ex-
ploration strategy is to provide a search node management policy. Each time a choice is
considered during the search, it creates search nodes corresponding to the various alterna-
tives. Once created, the exploration must select the node to explore next and postpone the
less attractive ones. The evaluation of a node’s attractiveness is, of course, strategy depen-
dent. But once the attractiveness function and the postponement rules are encapsulated in a
strategy object, the exploration algorithm becomes completely generic with respect to the
strategy.

1.SearchStrategy dfs() {
2. evaluated to - OplSystem.getDepth();

3. postponed when OplSystem.getEvaluation()>OplSystem.getBestEvaluation();

4.}

5.applyStrategy dfs()

6. forall(i in Dom)

7. tryall(v in Dom)

8. queen[i] = v;

Figure 13.7: Exploration Strategy in OPL.

Consider the statement in Figure 13.7. It first defines a DFS strategy and uses it to
explore the search tree. The specification contains two elements: the evaluation function
that defines the node’s attractiveness and the postponement rule that states when to delay.
Each time the exploration produces a node, it is subjected to the strategy to evaluate its
attractiveness and decide its fate. To obtain DFS, it suffices to use the opposite of the
node’s depth as its attractiveness and to postpone a node whenever it is shallower than
the “best node” available in the queue. The system object (OplSystem gives access
to enough statistic about the depth, right depth, number of failures, etc..) to implement
advanced strategies like LDS or IDS to name a few. When the strategy is expressed as a
node management policy, one can implement the same mechanism in a library.

464 13. Constraints in Procedural and Concurrent Languages

COMET strategy specifications. COMET is an object-oriented programming language
for constraint-based local search offering control abstractions for non-determinism [71,
106]. These abstractions are equally suitable for local search methods (low overhead) and
complete methods.

COMET uses first-class continuations to represent and manipulate the state of the pro-
gram’s control flow. COMET’s tryall is semantically equivalent to OPL’s tryall.
Search strategies can be expressed via policies for the management of the captured contin-
uations and embedded in Search Controllers that parameterize the search.

1. DFS sc();

2. exploreall<sc> {
3. forall(i in Dom) {
4. tryall<sc>(v in Dom){
5. queen[i] = v;

6. }
7. }
8. }

1. class DFS implements SearchController {
2. Stack s; Continuation exit;

3. DFS() { s = new Stack();}
4. void start(Continuation c) { exit = c;}
5. void exit() { call(exit);}
6. void addChoice(Continuation c) {
7. s.push(c);

8. }
9. void fail() {
10. if (s.empty()) exit();

11. else call(cont.pop());

12. }
13.}

Figure 13.8: Exploration strategies with COMET.

The code fragment on the left hand side of Figure 13.8 is a COMET procedure whose
semantics are identical to the OPL statement from Figure 13.7. The key difference is
the search controller (sc) of type DFS whose implementation is shown on the right hand
side. The statements parameterized by sc (exploreall and tryall) delegate to the
search controller the management of the continuations that represent search nodes. To
derive DFS, it suffices to store in a stack the continuations produced by the branches in the
tryall. When a failure occurs (e.g., at an inconsistent node), the fail method transfers
the control to the popped continuation. If there is none left, the execution resumes after the
exploreall thanks to a call to the exit continuation.

COMET completely decouples the node management policy from the exploration algo-
rithm, allows both a declarative and an operational reading of the search specification and
provides a representation of the control flow’s state that is independent of the underlying
computation model.

13.1.4 Pragmatics

The integration of a constraint programming toolkit within a purely procedural or object-
oriented language presents challenges for the modeling and implementation of the search.

Constraint modeling

Constraint modeling is relatively easy if the host language supports first-class expressions
or syntactic sugar to simulate them. If operators cannot be overloaded (like in Java), the
expression of arithmetic and set-based constraint is heavier. See Figure 13.9 for a Java
fragment setting up the queens problem in the CHOCO solver.

T. Frühwirth, L. Michel, C. Schulte 465

1. Problem p = new Problem();

2. IntVar[] queens = new IntVar[n];

3. for(int i = 0; i < n; i++)

4. queens[i] = p.makeEnumIntVar("queen" + i, 1, n);

5. for (int i=0; i<n; i++) {
6. for (int j=i+1; j<n; j++) {
7. p.post(p.neq(queens[i], queens[j]));

8. p.post(p.neq(queens[i],p.plus(queens[j], j-i)));

9. p.post(p.neq(queens[i],p.minus(queens[j], j-i)));

10. }
11. }

Figure 13.9: The n−queens problem in CHOCO.

Search implementation

The lack of support for non-determinism is far more disruptive. One extreme solution
is to close the specification of the search and only offer pre-defined procedures. The clear
advantage is an implementation of non-determinism that can be specialized to deliver good
performance.

A second option, used with ILOG SOLVER [58], is to embed in the library a goal ori-
ented interpreter. With a carefully crafted API addressing the issues listed below, it is
possible to open the interface to support user-defined extensions.

Control transfer. The interface between the goal-based search and the rest of the pro-
gram must be as seamless as possible.

Mixed memory models. Multiple memory models must coexist peacefully (traditional
C Heap, logical variables Heap, traditional execution stack, search stack or trail to name a
few) to avoid leaks or dangling pointer issues.

Debugging support. A significant part of the program runs inside an embedded inter-
preter which renders the native debugging facilities virtually useless. This must be mit-
igated with the inclusion of dedicated and orthogonal debugging tools to instrument the
goal interpreter.

Control abstractions. The native control abstraction tend to be ineffective to express
search procedures and underscore the importance of hiding or isolating the semantic sub-
tleties associated with the goal interpreter. Note that the level of abstraction of search pro-
cedures can be lifted closer to OPL as demonstrated in [72]. However, this implementation
retains a goal-like interpreter that also fails to integrate with existing tools.

13.2 Concurrent Constraint Programming

At the end of the 1980s, concurrent constraint logic programming (CCLP) integrated ideas
from concurrent logic programming [97] and constraint logic programming (CLP):

• Maher [65] proposed the ALPS class of committed-choice languages.

466 13. Constraints in Procedural and Concurrent Languages

• The ambitious Japanese Fifth-Generation Computing Project relied on a concurrent
logic language based on Ueda’s GHC [103].

• The seminal work of Saraswat [82] introduced the ask-and-tell metaphor for con-
straint operations and the concurrent constraints (CC) language framework that per-
mits both don’t-care and don’t-know non-determinism.

• Smolka proposed a concurrent programming model Oz that subsumes functional and
object-oriented programming [101].

Implemented concurrent constraint logic programming languages include AKL, CIAO,
CHR, and Mozart (as an implementation of Oz).

13.2.1 Design Objectives

Processes are the main notion in concurrent and distributed programming. They are build-
ing blocks of distributed systems, where data and computations are physically distributed
over a network of computers. Processes are programs that are executed concurrently and
that can interact with each other. Processes can either execute local actions or communicate
and synchronize by sending and receiving messages. The communicating processes build
a process network which can change dynamically. For concurrency it does not matter if the
processes are executed physically in parallel or if they are interleaved sequentially. Pro-
cesses can intentionally be non-terminating. Consider an operating system which should
keep on running or a monitoring and control program which continuously processes in-
coming measurements and periodically returns intermediate results or raises an alarm.

In CCLP, concurrently executing processes communicate via a shared constraint store.
The processes are defined by predicates and are called agents, because they are defined by
logical rules and often implement some kind of artificially intelligent behavior. Constraints
take the role of (partial) messages and variables take the role of communication channels.
Usually, communication is asynchronous. Running processes are CCLP goals that place
and check constraints on shared variables.

This communication mechanism is based on ask-and-tell of constraints that reside in
the common constraint store. Tell refers to imposing a constraint (as in CLP). Ask is
an inquiry whether a constraint already holds. Ask is realized by an entailment test. It
checks whether a constraint is implied by the current constraint store. Ask and tell can be
seen as generalizations of read and write from values to constraints. The ask operation is a
consumer of constraints (even though the constraint will not be removed), the tell operation
is a producer of constraints.

For a process, decisions that have been communicated to the outside and actions that
have affected the environment cannot be undone anymore. Don’t-know non-determinism
(Search) must be encapsulated in this context. Also, failure should be avoided. Failure of
a goal atom (i.e., a single process) always entails the failure of the entire computation (i.e.,
all participating processes). In applications such as operating or monitoring systems this
would be fatal.

T. Frühwirth, L. Michel, C. Schulte 467

13.2.2 The CC Language Framework

We concentrate on the committed-choice fragment of Saraswat’s CC language frame-
work [83, 84, 81]. The abstract syntax of CC is given by the following EBNF grammar:

Declarations D ::= p(t̃)← A | D,D
Agents A ::= true | tell(c) | ∑n

i=1 ask(ci)→ Ai | A‖A | ∃xp(t̃) | p(t̃)

where t̃ stands for a sequence of terms, x for a variable, and where c and the ci’s are
constraints. Instead of using existential quantification (∃), projection is usually implicit in
implemented CC languages by using local variables as in CLP.

Each predicate symbol p is defined by exactly one declaration. A CC program P is a
finite set of declarations.

The operational model of CC is described by a transition system. States are pairs
consisting of agents and the common constraint store. The transition relation is given by
the transition rules in Fig. 13.10.

Tell 〈tell(c), d〉 → 〈true, c ∧ d〉

Ask 〈∑n
i=1 ask(ci)→ Ai, d〉 → 〈Aj , d〉 if CT |= d→ cj (1≤j≤n)

Composition 〈A, c〉 → 〈A′, c′〉
〈(A ‖ B), c〉 → 〈(A′ ‖ B), c′〉
〈(B ‖ A), c〉 → 〈(B ‖ A′), c′〉

Unfold 〈p(t̃), c〉 → 〈A ‖ tell(t̃ = s̃), c〉 if (p(s̃)← A) in program P

Figure 13.10: CC transition rules

Tell tell(c) adds the constraint c to the common constraint store. The constraint true
always holds.

Ask Don’t care non-determinism between choices is expressed as
∑n
i=1 ask(ci) → Ai.

One nondeterministically chooses one ci which is implied by the current constraint
store d, and continues computation with Ai.

Composition The ‖ operator enables parallel composition of agents. Logically, it is inter-
preted as conjunction.

Unfold Unfolding replaces an agent p(t̃) by its definition according to its declaration.

A finite CC derivation (computation) can be successful, failed or deadlocked depending
on its final state. If the derivation ends in a state with unsatisfiable constraints it is called
failed. Otherwise, the constraints of the final state are satisfiable. If its agents have reduced
to true, then it is successful, else it is deadlocked (i.e., the first component contains at least
one suspended agent). Deadlocks come with concurrency. They are usually considered
programming errors or indicate a lack of sufficient information to continue computation.

468 13. Constraints in Procedural and Concurrent Languages

13.2.3 Oz and AKL as Concurrent Constraint Programming Languages

The concurrent constraint programming model establishes a clean and simple model for
synchronizing concurrent computations based on constraints. On the other hand, CLP
(see Chapter 12, “Constraint Logic Programming”) provides support for modeling and
solving combinatorial problems based on constraints. The obvious idea to integrate both
models to yield a single and uniform model for concurrent and parallel programming and
problem solving however has proven itself as challenging. Besides merging concurrency
and problem solving aspects, the CCP model only captures synchronization based on a
single shared constraint store. Other common aspects such as controlling the amount of
concurrency in program execution and exchanging messages between concurrently running
computations are not dealt with.

These challenges and issues have been one main motivation for the development of
AKL and Oz as uniform programming models taking inspirations from both CCP and CLP.
The development of AKL started before that of Oz, and naturally Oz has been inspired by
many ideas coming from AKL. Later, the two development teams joined forces to further
develop Oz and its accompanying programming system Mozart [77]. As Oz integrates
all essential ideas but parallel execution from AKL, this section puts its focus on Oz and
mentions where important ideas have been integrated from AKL. Achieving parallelism
has been an additional motivation in AKL, this resulted in a parallel implementation of
AKL [76, 75].

Currently Oz and Mozart are used in many different application areas where the tight
combination of concurrency and problem solving capabilities has shown great potential.
Education is one particular area where many different programming paradigms can be
studied in a single language [115]. Oz as a multi-paradigm language is discussed in [117].

13.2.4 Expressive Concurrent Programming

The concurrent constraint programming model does not specify which amount of con-
currency is necessary or useful for program execution. This is clearly not practical: the
amount of concurrency used in program execution makes a huge difference in efficiency.
The rationale is to use as little concurrency as possible and as much concurrency as neces-
sary.

Experiments with Oz for the right amount of concurrency range from an early ultra-
concurrent model [52], over a model with implicit concurrency control [100] to the final
model with explicit concurrency control. Explicit concurrency control means that execu-
tion is organized into threads that are explicitly created by the programmer. Synchroniza-
tion then is performed on the level of threads rather than on the level of agents as in the
CCP model.

Many-to-one communication. Variables in concurrent constraint programming offer an
elegant mechanism for one-to-many communication: a variable serves as a communication
channel. Providing more information on that variable by a tell amounts to message send-
ing on that variable. The variable then can be read by many agents with synchronization
through entailment on the arrival of the message.

With constraints that can express lists (such as constraints over trees) programs can
easily construct streams (often referred to as open-ended lists). A stream is defined by a

T. Frühwirth, L. Michel, C. Schulte 469

current tail being a yet unconstrained variable t. Sending a message m tells the constraint
t = cons(m, t′) (expressing that the messagem is the first element of the stream t followed
by elements on the stream t′) where t′ is a new variable for the new current tail of the
stream.

This idea for stream-based communication is very useful for programming concurrent
applications [97, 82]. However, it has a serious shortcoming: it does not support many-to-
one communication situations where more than a single sender exists. The tail can be only
constrained at most once by a tell. Hence all potential senders need to know and update
the current tail of a stream.

AKL introduced ports to solve this problem and allow for general message-passing
communication [62]. The importance of supporting general message-passing communica-
tion is witnessed by concurrent programming languages where communication is entirely
based on message passing, for example Erlang [13].

A port provides a single point of reference to a stream of messages. It stores the current
tail of the stream that is associated with a port. Ports provide a send operation. The send
operation takes a port and a message, appends the message to the tail of the port’s stream,
and updates the stream’s tail as described above.

Naming entities. Ports in AKL require that they can be referred to for a send operation.
Modeling a port as a constraint in the concurrent constraint programming framework is im-
possible. The very idea of a port is that its associated tail changes with each send operation.
Changing the tail is in conflict with a monotonically growing constraint store.

A generic solution to this problem has been conceived in Oz by the introduction of
names [100]. A name can be used similar to a constant in a constraint. Additionally, the
state of a computation now also has an additional compartment that maps names to entities
(such as ports). For example, using a name n for a port means that constraints can be used
to refer to the port by using the name n. The additional compartment then stores that n
refers to a port and the current tail associated with that port. Names are provided in a way
that they cannot be forged and are unique, more details are available in [100].

Mutable state. Ports are not primitive in Oz. Ports are reduced to cells as a primitive
that captures mutable state. As discussed above, a cell is referred to by a name and the
only operation on a cell is to exchange its content. From cells, ports can be obtained
straightforwardly [101].

More expressive programming. Oz incorporates extensions to the concurrent constraint
model to increase its expressive power for programming. It adds first-class procedures by
using names to refer to procedural abstractions (closures). By this, the aspect of giving
procedures first-class status is separated from treating them in the underlying constraint
system. The constraint system is only concerned with names referring to procedural ab-
stractions but not with their denotation. This approach also supports functional computa-
tion by simple syntactic transformations [101].

The combination of names, first-class procedures, and cells for mutable state constitute
the ingredients necessary for object-oriented computing. Here names are used as refer-
ences to objects, mutable object state is expressed from cells, and classes are composed

470 13. Constraints in Procedural and Concurrent Languages

toplevel

nested propagation encapsulation

local space

Figure 13.11: Nested propagation and encapsulation for spaces.

from first-class procedures. This setup allows for full-fledged concurrent object-oriented
programming including object-based synchronization and class-based inheritance [51].

Distributed programming. The basic idea of distribution in Oz is to abstract away the
network as much as possible. This means that all network operations are invoked implicitly
by the system as an incidental result of using particular language operations. Distributed
Oz has the same language semantics as Oz by defining a distributed semantics for all
language entities such as variables or objects based on cells.

Network transparency means that computations behave the same independent of the
site they compute on, and that the possible interconnections between two computations
do not depend on whether they execute on the same or on different sites. Network trans-
parency is guaranteed in Distributed Oz for most entities.

An overview on the design of Distributed Oz is [48]. The distributed semantics of
variables is reported in [49]; the distributed semantics of objects is discussed in [116].

13.2.5 Encapsulation and Search

The main challenge in combining concurrency with problem solving is that constraint-
based computations used for problem solving are speculative in nature: their failure is a
regular event. Using backtracking for undoing the effect of a failed speculative compu-
tation is impossible in a concurrent context. Most computations including interoperating
with the external world cannot backtrack. The essential idea to deal with speculative com-
putations in a concurrent context is to encapsulate speculative computation so that the
failure of an encapsulated computation has no effect on other computations.

Computation spaces. The idea of encapsulation has been pioneered by AKL, where en-
capsulation has been achieved by delegating computations to so-called deep guards (to be
discussed later in more detail). Oz generalizes this idea as follows. Computations (roughly
consisting of threads of statements and a constraint store) are contained in a computation
space. Encapsulation in Oz then is achieved by delegating speculative computations to
local computation spaces. The failure of a local space leaves other spaces unaffected.

Computation spaces can then be nested freely resulting in a tree of nested computa-
tion spaces as sketched in Figure 13.11. Encapsulation prevents that constraints told by
computations in local computation spaces are visible in spaces higher up in the space tree.
Nested propagation makes sure that constraints told in computation spaces are propagated
to nested spaces.

T. Frühwirth, L. Michel, C. Schulte 471

NewSpace : Script→ Space
Ask : Space→ Status
Access : Space→ Solution
Clone : Space→ Space
Commit : Space× Int → Unit
Inject : Space× Script→ Unit

Figure 13.12: Operations on first-class computation spaces.

Stability. Given a setup with local spaces for encapsulation, it is essential to have a crite-
ria when a computation is not any longer speculative. A ground-breaking idea introduced
by Janson and Haridi in the context of AKL is stability [61, 47, 60]. A speculative com-
putation becomes stable, if it has entirely reduced to constraints and that these constraints
are entailed or disentailed (that is, the constraints do not make any speculative assumptions
themselves) by the constraints from computation spaces higher up in the space tree.

Stability naturally generalizes the notion of entailment by capturing when arbitrary
computations are not any longer speculative. In particular, both entailment and stability
are monotonic conditions: a stable computation space remains stable regardless of other
computations.

Deep guards. Stability has been first used as a control criteria for combinators using
so-called deep guards. A combinator can be disjunction, negation, or conditional, for ex-
ample. In the concurrent constraint programming model guards (that is, ask statements) are
flat as they are restricted to constraints. Deep guards allow arbitrary statements (agents) of
the programming language. Similar to how entailment defines when and how computation
can proceed for a flat guard, stability defines when and how computation can proceed for
a deep guard.

First-class computation spaces. Local computation spaces together with stability as
control regime serve as the foundation for both search and combinators in Oz. A gen-
eral idea in Oz is that important abstractions such as procedures, classes, and objects are
available as first-class citizens in the language. As discussed in Section 13.2.4, this is
achieved by names that separate reference to entities from the entities proper.

Similarly, local computation spaces are available as first-class computation spaces.
Having spaces available first-class, search and combinators become programmable within
Oz as programming language.

The operations on first-class computation spaces are listed in Figure 13.12. NewSpace
takes a script (a procedure that defines the constraint problem to be solved) and returns a
space that executes the script. Ask synchronizes until computation in the space has reached
a stable state. It then returns the status of the space, that is, whether the space is failed,
solved, or has alternatives. Alternatives are then resolved by search. Access

returns the solution stored in a space. Clone returns a copy of a space. Commit selects
an alternative of a choice point. Inject adds constraints to a space. How the operations
are employed for programming search becomes is sketched briefly below.

472 13. Constraints in Procedural and Concurrent Languages

fun {All S}

case {Ask S}

of failed then nil

[] solved then [{Access S}]

[] alternatives then C={Clone S} in

{Commit S 1} {Commit C 2}

{Append {All S} {All C}}

end

end

Figure 13.13: Depth-first exploration for all solutions.

Programming search. Most constraint programming systems (see Chapter 14, “Finite
Domain Constraint Programming Systems”) have in common that they offer a fixed and
small set of search strategies. The strategies covered are typically limited to single, all,
and best-solution search. Search cannot be programmed, which prevents users to construct
new search strategies. Search hard-wires depth-first exploration, which prevents even sys-
tem developers to construct new search strategies. With first-class computation spaces,
Oz provides a mechanism to easily program arbitrary search engines featuring arbitrary
exploration strategies.

Figure 13.13 conveys that programming search based on first-class computation spaces
is easy. The figure contains a formulation of depth-first exploration that returns all solu-
tions. All takes a space S containing the problem to be solved as input. It returns either
the empty list, if no solution is found, or a singleton list containing the solution. If a space
needs to be resolved by search, the space is copied (by application of Clone) and explo-
ration follows the left alternative (Commit S 1) and later the right alternative (Commit
C 2). Append then appends the solutions obtained from exploring both S and C.

The complete search engine is obtained by adding space creation according to the prob-
lem P (specified by a procedure P) to be solved:

fun {SearchAll P}

{All {NewSpace P}}

end

First-class computation spaces not only cover many standard search engines but have
been applied to interactive visual search [94], parallel search [92], and recomputation-
based search [95]. A complete treatment of search with first-class computation spaces
is [93]. Abstractions similar to first-class computation spaces are also used in the C++-
based libraries Figaro [54] and Gecode [44].

Programming combinators. First-class computations spaces can also be used to pro-
gram deep-guard combinators such as disjunction, negation, blocking implication, for ex-
ample. Here the motivation is the same as for programming search: the user is not re-
stricted to a fixed set of combinators but can devise application-specific combinators when
needed. By this they generalize the idea of deep-guard combinators introduced in AKL.
Programming combinators is covered in [91] and more extensively in [93].

T. Frühwirth, L. Michel, C. Schulte 473

13.3 Rule-Based Languages

Rule-based formalisms are ubiquitous in computer science, from theory to practice, from
modelling to implementation, from inference rules and transition rules to business rules.
Executable rules are used in declarative programming languages, in program transforma-
tion and analysis, and for reasoning in artificial intelligence applications. Rules consist of
a data description (pattern) and a replacement statement for data matching that descrip-
tion. Rule applications cause localized transformations of a shared data structure (e.g.,
constraint store, term, graph, database). Applications are repeated until no more change
happens.

Constraint Handling Rules (CHR) is a rule-based programming language in the tra-
dition of constraint logic programming, the only one specifically developed for the im-
plementation of constraint solvers. It is traditionally an extension to other programming
languages but has been used increasingly as a general-purpose programming language, be-
cause it can embed many rule-based formalisms and describe algorithms in a declarative
way.

The next section discusses design objectives and related work. Then we give an over-
view of syntax and semantics of CHR [35, 42] as well as of properties for program analysis
such as confluence and operational equivalence. Then we give constraint solvers written in
CHR, for Booleans, minima, arithmetic equations, finite and interval domains and lexico-
graphic orders.

13.3.1 Design Objectives

Constraint solver programming. In the beginning of CLP, constraint solving was hard-
wired in a built-in constraint solver written in a low-level procedural language. While
efficient, this so-called black-box approach makes it hard to modify a solver or build a
solver over a new domain, let alone debug, reason about and analyse it. Several proposals
have been made to allow more for flexibility and costumization of constraint solvers (called
glass-box, sometimes white-box or even no-box approaches):

• Demons, forward rules and conditionals of the CLP language CHIP [29], allow
defining propagation of constraints in limited ways.

• Indexicals, clp(FD) [25], allow implementing constraints over finite domains at a
medium level of abstraction.

• Given constraints connected to a Boolean variable that represents their truth [16, 98]
allow expressing any logical formula over primitive constraints.

• Constraint combinators, cc(FD) [110], allow building more complex constraints
from simpler constraints.

All approaches extend a solver over a given, specific constraint domain, typically finite
domains. The goal then was to design a programming language specifically for writing
constraint solvers. Constraint Handling Rules (CHR) [35, 42, 11, 87] is a concurrent
committed-choice constraint logic programming language consisting of guarded rules that
transform multi-sets of relations called constraints until no more change happens.

474 13. Constraints in Procedural and Concurrent Languages

Underlying concepts. CHR was motivated by the inference rules that are traditionally
used in computer science to define logical relationships and fixpoint computation in the
most abstract way.

In CHR, one distinguishes two main kinds of rules: Simplification rules replace con-
straints by simpler constraints while preserving logical equivalence, e.g., X≤Y∧Y≤X ⇔
X=Y. Propagation rules add new constraints that are logically redundant but may cause
further simplification, e.g., X≤Y∧Y≤Z⇒ X≤Z. Obviously, conjunctions in the head of a
rule and propagation rules are essential in expressing constraint solving succinctly.

Given a logical calculus and its transformation rules for deduction, its (conditional)
inference rules directly map to propagation rules and its (biconditional) replacement rules
to simplification rules. Also, the objects of logic, the (constraint) theories, are usually
specified by implications or logical equivalences, corresponding to propagation and sim-
plification rules.

Given a state transition system, its transition rules can readily be expressed with simpli-
fication rules. In this way, dynamics and changes (e.g., updates) can be modelled, possibly
triggered by events and handled by actions. This justifies the use of CHR as a general
purpose programming language.

Design influences. The design of CHR has many roots and combines their attractive
features in a novel way. Logic programming (LP), constraint logic programming (CLP)
[66, 42] and concurrent committed-choice logic programming (CCP) [96, 81] are direct
ancestors of CHR. Like automated theorem proving, CHR uses formulae to derive new
information, but only in a restricted syntax (e.g., no negation) and in a directional way
(e.g., no contrapositives) that makes the difference between the art of proof search and an
efficient programming language.

CHR adapts concepts from term rewriting systems [14] for program analysis, but goes
beyond term rewriting by working on conjunctions of relations instead of nested terms,
and by providing in the language design propagation rules, logical variables, built-in con-
straints, implicit constraint stores, and more. Extensions of rewriting, such as rewriting
Logic [69] and its implementation in Maude [24] and Elan [19] have similar limitations as
standard rewriting systems for writing constraints. The functional language Bertrand [64]
uses augmented term rewriting to implement constraint-based languages.

Executable rules with multiple head atoms were proposed in the literature to model
parallelism and distributed agent processing as well as objects [15, 12], but not for con-
straint solving. Other influences for the design of CHR were the Gamma computation
model and the chemical abstract machine [15], and, of course, production rule systems like
OPS5 [20].

Independent developments related to the concepts behind CHR were the multi-paradigm
programming languages CLAIRE [22], and OZ [99] as well as database research: con-
straint and deductive databases, integrity constraints, and event-condition-action rules.

Expressiveness. The paper [102] introduces CHR machines, analogous to RAM and
Turing machines. It shows that these machines can simulate each other in polynomial time,
thus establishing that CHR is Turing-complete and, more importantly, that every algorithm
can be implemented in CHR with best known time and space complexity, something that
is not known to be possible in other pure declarative programming languages like Prolog.

T. Frühwirth, L. Michel, C. Schulte 475

Applications. Recent CHR libraries exist for most Prolog systems, e.g., [55, 85], Java
[10, 119, 118, 67], Haskell [23] and Curry. Standard constraint systems as well as novel
ones such as temporal, spatial or description logic constraints have been implemented in
CHR. Over time CHR has proven useful outside its original field of application in con-
straint reasoning and computational logic2, be it agent programming, multi-set rewriting
or production rule systems: Recent applications of CHR range from type systems [31] and
time tabling [5] to ray tracing and cancer diagnosis [11, 87]. In some of these applications,
conjunctions of constraints are best regarded as interacting collections of concurrent agents
or processes. We will not discuss CHR as a general-purpose programming language for
space reasons.

Abstract syntax

We distinguish between two different kinds of constraints: built-in (pre-defined) con-
straints which are solved by a built-in constraint solver, and CHR (user-defined) con-
straints which are defined by the rules in a CHR program. Built-in constraints include
syntactic equality =, true, and false. This distinction allows to embed and utilize existing
constraint solvers as well as side-effect-free host language statements. Built-in constraint
solvers are considered as black-boxes in whose behavior is trusted and that do not need to
be modified or inspected. The solvers for the built-in constraints can be written in CHR
itself, giving rise to a hierarchy of solvers [88].

A CHR program is a finite set of rules. There are three kinds of rules:

Simplification rule: Name @ H ⇔ C B
Propagation rule: Name @ H ⇒ C B
Simpagation rule: Name @ H \H ′ ⇔ C B

Name is an optional, unique identifier of a rule, the head H , H ′ is a non-empty con-
junction of CHR constraints, the guard C is a conjunction of built-in constraints, and the
body B is a goal. A goal is a conjunction of built-in and CHR constraints. A trivial guard
expression “true” can be omitted from a rule.

Simpagation rules abbreviate simplification rules of the form H ∧H ′ ⇔ C H ∧B, so
there is no further need to discuss them separately.

Operational semantics

At runtime, a CHR program is provided with an initial state and will be executed until
either no more rules are applicable or a contradiction occurs.

The operational semantics of CHR is given by a transition system (Fig. 13.14). Let P
be a CHR program. We define the transition relation 7→ by two computation steps (tran-
sitions), one for each kind of CHR rule. States are goals, i.e., conjunctions of built-in and
CHR constraints. States are also called (constraint) stores. In the figure, all upper case let-
ters are meta-variables that stand for conjunctions of constraints. The constraint theoryCT
defines the semantics of the built-in constraints. Gbi denotes the built-in constraints of G.

2Integrating deduction and abduction, bottom-up and top-down execution, forward and backward chaining,
tabulation and integrity constraints.

476 13. Constraints in Procedural and Concurrent Languages

Simplify

If (r@H ⇔ C B) is a fresh variant with variables x̄ of a rule named r in P
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→r (B ∧G ∧H=H ′ ∧ C)

Propagate

If (r@H ⇒ C B) is a fresh variant with variables x̄ of a rule named r in P
and CT |= ∀ (Gbi → ∃x̄(H=H ′ ∧ C))
then (H ′ ∧G) 7→r (H ′ ∧B ∧G ∧H=H ′ ∧ C)

Figure 13.14: Computation steps of Constraint Handling Rules

Starting from an arbitrary initial goal, CHR rules are applied exhaustively, until a fix-
point is reached. A simplification rule H ⇔ C B replaces instances of the CHR con-
straints H by B provided the guard C holds. A propagation rule H ⇒ C B instead adds
B to H . If new constraints arrive, rule applications are restarted. Computation stops in a
failed final state if the built-in constraints become inconsistent. Trivial non-termination of
the Propagate computation step is avoided by applying a propagation rule at most once to
the same constraints (see the more concrete semantics in [1]).

In more detail, a rule is applicable, if its head constraints are matched by constraints
in the current goal one-by-one and if, under this matching, the guard of the rule is implied
by the built-in constraints in the goal. Any of the applicable rules can be applied, and the
application cannot be undone, it is committed-choice.

A computation (derivation) of a goal G is a sequence S0, S1, . . . of states with Si 7→
Si+1 beginning with the initial state (query, problem) S0 = G and ending in a final state
or not terminating. A final state (answer, solution) is one where either no computation step
is possible anymore or where the built-in constraints are inconsistent.

Example 13.1. We define a CHR constraint for a partial order relation ≤:

reflexivity @ X≤X⇔ true
antisymmetry @ X≤Y ∧ Y≤X ⇔ X=Y
transitivity @ X≤Y ∧ Y≤Z ⇒ X≤Z

The CHR program implements reflexivity, antisymmetry, transitivity and redundancy
in a straightforward way.

Operationally the rule reflexivity removes occurrences of constraints that match
X≤X. The rule antisymmetry means that if we find X≤Y as well as Y≤X in the current
goal, we can replace them by the logically equivalent X=Y. The rule transitivity

propagates constraints. It adds the logical consequence X≤Z as a redundant constraint, but
does not remove any constraints.

A computation of the goal A≤B ∧ C≤A ∧ B≤C proceeds as follows (rules are applied
to underlined constraints):

A≤B ∧ C≤A ∧ B≤C 7→transitivity

A≤B ∧ C≤A ∧ B≤C ∧ C≤B 7→antisymmetry

A≤B ∧ C≤A ∧ B=C 7→antisymmetry

A=B ∧ B=C

T. Frühwirth, L. Michel, C. Schulte 477

Starting from a circular relationship, we have found out that the three variables must
be the same.

Refined, parallel and compositional semantics. The high-level description of the op-
erational semantics of CHR given here does not explicitly address termination at failure
and of propagation rules, and leaves two main sources of non-determinism: the order in
which constraints of a query are processed and the order in which rules are applied (rule
scheduling). As in Prolog, almost all CHR implementations execute queries from left to
right and apply rules top-down in the textual order of the program. This behavior has been
formalized in the so-called refined semantics [32] that was proven to be a concretization
of the standard operational semantics given in [1]. In [41] a parallel execution model for
CHR is presented.

Search. Search in CHR is usually provided by the host language, e.g., by the built-in
backtracking of Prolog or by search libraries in Java. In addition, in all Prolog implemen-
tations of CHR, the disjunction of Prolog can be used in the body of CHR rules. This
was formalized in the language CHR∨ [7, 8]. An early implementation of CHR in Eclipse
Prolog also featured so-called labeling declarations [35], that allowed Prolog clauses for
CHR constraints. These can be directly translated into CHR∨, which we will use to define
labeling procedures.

Pragmatics. When writing CHR programs, manuals such as [55] suggest to prefer sim-
plification rules and to avoid propagation rules and multiple heads (although indexing often
helps to find partner constraints in constant time [85]). One will often modify and compose
existing CHR and other programs. Some possibilities are: Flat composition by taking the
union of all rules [4]; hierarchical composition by turning some CHR constraints into built-
in constraints of another constraint solver [90]; extending arbitrary solvers with CHR [30].
CHR are usually combined with a host language. In the host language, CHR constraints
can be posted; in the CHR rules, host language statements can be included as built-in
constraints.

Declarative semantics

Owing to the tradition of logic and constraint logic programming, CHR features – besides
an operational semantics – a declarative semantics, i.e., a direct translation of a CHR
program into a first-order theory. In the case of constraint solvers, this strongly facilitates
proofs of a program’s faithful handling of constraints.

The logical reading (meaning) of simplification and propagation rules is given below.

H ⇔ C B ∀(C → (H ↔ ∃ȳ B))
H ⇒ C B ∀(C → (H → ∃ȳ B))

The sequence ȳ are the variables that appear only in the body B of a rule.
The logical reading of a CHR program is the conjunction of the logical readings of

its rules united with the constraint theory CT that defines the built-in constraints. The
logical reading of a state is just the conjunction of its constraints. State transitions preserve
logical equivalence, i.e., all states in a computation are logically the same. From this result,

478 13. Constraints in Procedural and Concurrent Languages

soundness and completeness theorems follow that show that the declarative and operational
semantics coincide strongly, in particular if the program is confluent [9].

Linear-logic semantics. The classical-logic declarative semantics, however, does not
suffice when CHR is used as a general-purpose concurrent programming language. Many
algorithms do not have a correct first-order logic reading, especially when they crucially
rely on change through updates. This problem has been demonstrated in [41, 86] and led
to the development of an alternative declarative semantics. It is based on a subset of linear
logic [45] that can model resource consumption. It therefore more accurately describes the
operational behavior of simplification rules [18].

Program properties and their analysis

One advantage of a declarative programming language is the ease of program analysis. The
paper [27] introduces a fix-point semantics which characterizes the input/output behavior
of a CHR program and which is and-compositional. It allows to retrieve the semantics
of a conjunctive query from the semantics of its conjuncts. Such a semantics can be used
as a basis to define incremental and modular program analysis and verification tools. An
abstract interpretation framework for CHR is introduced in [89]. The basic properties
of termination, confluence and operational equivalence are traditionally analysed using
specific techniques as discussed below. Time complexity analysis is discussed in [36], but
details often rely on problem specific techniques.

Minimal states. When analysing properties of CHR programs that involve the infinitely
many possible states, we can sometimes restrict ourselves to a finite number of so-called
minimal states. For each rule, there is a minimal, most general state to which it is appli-
cable. This state is the conjunction of the head and the guard of the rule. Removing any
constraint from the state would make the rule inapplicable. Every other state to which the
rule is applicable contains the minimal state. Adding constraints to the state cannot inhibit
the applicability of a rule because of the monotonicity property of CHR [9].

Termination. A CHR program is called terminating, if there are no infinite computa-
tions. Since CHR is Turing-complete, termination is undecidable. For CHR programs that
mainly use simplification rules, simple well-founded orderings are often sufficient to prove
termination [37, 36]. For CHR programs that mainly use propagation rules, results from
bottom-up logic programming [43] as well as deductive and constraint databases apply. In
general, termination analysis is difficult for non-trivial interactions between simplification
and propagation rules.

Confluence. In a CHR program, the result of computations from a given goal will always
have the same meaning. However the answer may not be syntactically the same. The
confluence property of a program guarantees that any computation for a goal results in the
same final state no matter which of the applicable rules are applied.

The papers [1, 9] give a decidable, sufficient and necessary condition for confluence:
A terminating CHR program is confluent if and only if all its critical pairs are joinable.
For checking confluence, one takes two rules (not necessarily different) from the program.

T. Frühwirth, L. Michel, C. Schulte 479

The minimal states of the rules are overlapped by equating at least one head constraint
from one rule with one from the other rule. For each overlap, we consider the two states
resulting from applying one or the other rule. These two states form a so-called critical
pair. One tries to join the states in the critical pair by finding two computations starting
from the states that reach a common state. If the critical pair is not joinable, we have found
a counterexample for confluence of the program.

Example 13.2. Recall the program for≤ of Example 13.1. Consider the rules for reflexiv-
ity and antisymmetry and overlap them to get the following critical state and computations.

A≤A ∧A≤A
reflexivity

xxqqqqqqqqqqq antisymmetry

&&MMMMMMMMMMM

A≤A

reflexivity
''NNNNNNNNNNN

A=A

built-in
wwppppppppppp

true

The resulting critical pair is obviously joinable. The example also shows that multiplicities
matter in CHR.

Any terminating and confluent CHR program has a consistent logical reading [9, 1]
and will automatically implement a concurrent any-time (approximation) and on-line (in-
cremental) algorithm.

Completion. Completion is the process of adding rules to a non-confluent program until
it becomes confluent. Rules are built from a non-joinable critical pair to allow a transition
from one of the states into the other while maintaining termination.

Example 13.3. Given the ≤ solver, assume we want to introduce a < constraint by adding
just one rule about the interaction between these two types of inequalities.

X≤Y ∧ Y≤X ⇔ X=Y (antisymmetry)
X≤Y ∧ Y <X ⇔ false (inconsistency)

The resulting program is not confluent.

A≤B ∧B≤A ∧B<A

antisymmetry
yytttttttttt

inconsistency
$$

JJJJJJJJJ

A=B ∧B<A

��

B≤A ∧ false

��

A=B ∧A<A false

Completion uses the two non-joinable states to derive an interesting new rule, discovering
irreflexivity of <.

X<X ⇔ false

In contrast to other completion methods, in CHR we generally need more than one rule
to make a critical pair joinable: a simplification rule and a propagation rule [3].

480 13. Constraints in Procedural and Concurrent Languages

Operational equivalence. A fundamental and hard question in programming language
semantics is when two programs should be considered equivalent. For example correctness
of program transformation can be studied only with respect to a notion of equivalence.
Also, if modules or libraries with similar functionality are used together, one may be inter-
ested in finding out if program parts in different modules or libraries are equivalent. In the
context of CHR, this case arises frequently when constraint solvers written in CHR are
combined. Typically, a constraint is only partially defined in a constraint solver. We want
to make sure that the operational semantics of the common constraints of two programs do
not differ.

Two programs are operationally equivalent if for each goal, all final states in one pro-
gram are the same as the final states in the other program. In [2], the authors gave a
decidable, sufficient and necessary syntactic condition for operational equivalence of ter-
minating and confluent CHR programs3: The minimal states of all rules in both programs
are simply run as goals in both programs, and they must reach a common state. An ex-
ample for operational equivalence checking can be found with the minimum example in
Section 13.3.2.

13.3.2 Constraint Solvers

We introduce some constraint solvers written in CHR, for details and more solvers see [38,
42]. We will use the concrete ASCII syntax of CHR implementations in Prolog: Conjunc-
tion ∧ is written as comma ’,’. Disjunction ∨ is written as semi-colon ’;’. Let ’=<’ and
’<’ be built-in constraints now.

Boolean constraint solver

Boolean algebra (propositional logic) constraints can be solved by different techniques [68].
The logical connectives are represented as Boolean constraints, i.e., in relational form. For
example, conjunction is written as the constraint and(X,Y,Z), where Z is the result of
anding X and Y. In the following terminating and confluent Boolean constraint solver [42],
a local consistency algorithm is used. It simplifies one Boolean constraint at a time into one
or more syntactic equalities whenever possible. The rules for propositional conjunction are
as follows.

and(X,Y,Z) <=> X=0 | Z=0.

and(X,Y,Z) <=> Y=0 | Z=0.

and(X,Y,Z) <=> X=1 | Y=Z.

and(X,Y,Z) <=> Y=1 | X=Z.

and(X,Y,Z) <=> X=Y | Y=Z.

and(X,Y,Z) <=> Z=1 | X=1,Y=1.

The above rules are based on the idea that, given a value for one of the variables in a
constraint, we try to determine values for other variables. However, the Boolean solver
goes beyond propagating values, since it also propagates equalities between variables. For
example, and(1,Y,Z),neg(Y,Z) will reduce to false, and this cannot be achieved
by value propagation alone.

3To the best of our knowledge, CHR is the only programming language in practical use that admits decidable
operational equivalence.

T. Frühwirth, L. Michel, C. Schulte 481

Search. The above solver is incomplete. For example, the solver cannot detect inconsis-
tency of and(X,Y,Z),and(X,Y,W),neg(Z,W). For completeness, constraint solv-
ing has to be interleaved with search. For Boolean constraints, search can be done by trying
the values 0 or 1 for a variable. The generic labeling procedure enum traverses a list of
variables.

enum([]) <=> true.

enum([X|L]) <=> indomain(X), enum(L).

indomain(X) <=> (X=0 ; X=1).

Minimum constraint

The CHR constraint min(X,Y,Z) means that Z is the minimum of X and Y.

r1 @ min(X,Y,Z) <=> X=<Y | Z=X.

r2 @ min(X,Y,Z) <=> Y=<X | Z=Y.

r3 @ min(X,Y,Z) <=> Z<X | Y=Z.

r4 @ min(X,Y,Z) <=> Z<Y | X=Z.

r5 @ min(X,Y,Z) ==> Z=<X, Z=<Y.

The first two rules r1 and r2 correspond to the usual definition of min. But we also
want to be able to compute backwards. So the two rules r3 and r4 simplify min if the
order between the result Z and one of the input variables is known. The last rule r5

ensures that min(X,Y,Z) unconditionally implies Z=<X,Z=<Y. Rules such as these can
be automatically generated from logical specifications [6].

Example 13.4. Redundancy from a propagation rule is useful, as the goal min(A,2,2)
shows. To this goal only the propagation rule is applicable, but to the resulting state the
second rule becomes applicable:

min(A,2,2)

7→r5 min(A,2,2),2=<A
7→r2 2=<A

In this way, we find out that for min(A,2,2) to hold, 2=<A must hold.
Another interesting derivation involving the propagation rule is:

min(A,B,M),A=<M
7→r5 min(A,B,M),A=M,M=<B
7→r1 A=M,M=<B

It can be shown that the program is terminating and confluent. For example, the only
overlap of the minimal states for the first two rules, r1 and r2 is min(X,Y,Z),X=Y. For
both rules, their application leads to logically equivalent built-in constraints X=Y,Y=Z.

Operational equivalence. We would like to know if these two CHR rules defining the
user-defined constraint min with differing guards

min(X,Y,Z) <=> X=<Y | Z=X.

min(X,Y,Z) <=> Y<X | Z=Y.

482 13. Constraints in Procedural and Concurrent Languages

are operationally equivalent with these two rules

min(X,Y,Z) <=> X<Y | Z=X.

min(X,Y,Z) <=> Y=<X | Z=Y.

or if the union of the rules results in a better constraint solver for min.
Already the minimal state of the first rule of the first program, min(X,Y,Z),X=<Y,

shows that the two programs are not operationally equivalent, since it can reduce to Z=X
in the first program, but is a final state for the second program, since X=<Y does not apply
any of the guards in the second program. Thus the union of the two programs allows for
more constraint simplification. In the union, the two rules with the strict guards can be
removed as another operational equivalence test shows that they are redundant.

Linear polynomial equation solving

Typically, in arithmetic constraint solvers, incremental variants of classical variable elim-
ination algorithms [59] like Gaussian elimination for equations and Dantzig’s Simplex
algorithm for equations are implemented.

A conjunction of equations is in solved form if the left-most variable of each equation
does not appear in any other equation. We compute the solved form by eliminating multiple
occurrences of variables. In this solved form, all determined variables (those that take a
unique value) are discovered.

eliminate @ A1*X+P1 eq 0 \ P2X eq 0 <=>

find(A2*X,P2X,P2) |

normalize(A2*(-P1/A1)+P2,P3),

P3 eq 0.

constant @ B eq 0 <=> number(B) | zero(B).

The constant rule says that if the polynomial contains no more variables, then the num-
ber B must be zero. The eliminate rule performs variable elimination. It takes any pair
of equations with a common occurrence of a variable, X. In the first equation, the vari-
able appears left-most. This equation is used to eliminate the occurrence of the variable
in the second equation. The first equation is left unchanged. In the guard, the built-in
find(A2*X,P2X,P2) tries to find the expression A2*X in the polynomial P2X, where
X is the common variable. The plenum P2 is P2X with A2*X removed. The constraint
normalize(E,P) transforms an arithmetic expression E into a linear polynomial P.

The solver is complete, so no search is necessary. It is terminating but not confluent
due to the eliminate rule: Consider two equations with the same left-most variable,
then the rule can be applied in two different ways. The solver produces the solved form
as can be shown by contradiction: If a set of equations is not in solved form, then the
eliminate rule is applicable. The solver is concurrent by nature of CHR: It can reduce
pairs of equations in parallel or eliminate the occurrence of a variable in all other equations
at once.

T. Frühwirth, L. Michel, C. Schulte 483

Finite domains

Here, variables are constrained to take their value from a given, finite set. Choosing inte-
gers for values allows for arithmetic expressions as constraints. Influential CLP languages
with finite domains are CHIP [29], clp(FD) [25] and cc(FD) [110].

The domain constraintX inD means that the variableX takes its value from the given
finite domainD. For simplicity, we start with the bounds consistency algorithm for interval
constraints [109, 17]. The implementation is based on interval arithmetic. In the solver,
in, le, eq, ne, and add are CHR constraints, the inequalities <, >, =<, >=, and <> are
built-in arithmetic constraints, and min, max, +, and - are built-in arithmetic functions. X
in A..B constrains X to be in the interval A..B. The rules for local consistency affect
the interval constraints (in) only, the other constraints remain unaffected.

inconsistency @ X in A..B <=> A>B | false.

intersect@ X in A..B, X in C..D <=> X in max(A,C)..min(B,D).

le @ X le Y, X in A..B, Y in C..D <=> B>D |

X le Y, X in A..D, Y in C..D.

le @ X le Y, X in A..B, Y in C..D <=> C<A |

X le Y, X in A..B, Y in A..D.

eq @ X eq Y, X in A..B, Y in C..D <=> A<>C |

X eq Y, X in max(A,C)..B, Y in max(C,A)..D.

eq @ X eq Y, X in A..B, Y in C..D <=> B<>D |

X eq Y, X in A..min(B,D), Y in C..min(D,B).

The CHR constraint X le Y means that X is less than or equal to Y. Hence, X cannot
be larger than the upper bound D of Y. Therefore, if the upper bound B of X is larger than
D, we can replace B by D without removing any solutions. Analogously, one can reason on
the lower bounds to tighten the interval for Y. The eq constraint causes the intersection of
the interval domains of its variables provided the bounds are not yet the same.

Example 13.5. Here is a sample computation involving le:

U in 2..3, V in 1..2, U le V

7→le V in 1..2, U le V, U in 2..2

7→le U le V, U in 2..2, V in 2..2.

Finally, X+Y=Z is represented as add(X,Y,Z).

add @ add(X,Y,Z), X in A..B, Y in C..D, Z in E..F <=>

not (A>=E-D,B=<F-C,C>=E-B,D=<F-A,E>=A+C,F=<B+D) |

add(X,Y,Z),

X in max(A,E-D)..min(B,F-C),

Y in max(C,E-B)..min(D,F-A),

Z in max(E,A+C)..min(F,B+D).

For addition, we use interval addition and subtraction to compute the interval of one vari-
able from the intervals of the other two variables. The guard ensures that at least one inter-
val becomes smaller whenever the rule is applied. Here is a sample computation involving
add:

484 13. Constraints in Procedural and Concurrent Languages

U in 1..3, V in 2..4, W in 0..4, add(U,V,W) 7→add

add(U,V,W), U in 1..2, V in 2..3, W in 3..4

For termination, consider that the rules inconsistency and intersection from
above remove one interval constraint each. We assume that the remaining rules deal with
non-empty intervals only. This holds under the refined semantics and can be enforced by
additional guard constraints on the interval bounds. Then in each rule, at least one interval
in the body is strictly smaller than the corresponding interval in the head, while the other
intervals remain unaffected. The solver is confluent, provided the intervals are given. The
solver also works with intervals of real numbers of a chosen granularity, so that to ensure
termination rules are not applied anymore to domains which are considered too small.

Enumeration domains. Besides intervals, finite domains can be explicit enumerations
of possible values. The rules for enumeration domains are analogous to the ones for inter-
val domains and implement arc consistency [74], for example:

inconsistency @ X in [] <=> false.

intersect@ X in L1,X in L2 <=> intersect(L1,L2,L3) | X in L3.

Search. We implement the search routine analogous to the one for Boolean constraints.
For interval domains, search is usually done by splitting intervals in two halves. This
splitting is repeated until the bounds of the interval are the same.

indomain(X), X in A..B <=> A<B |

(X in A..(A+B)//2, indomain(X) ;

X in (A+B)//2+1..B, indomain(X)).

The guard ensures termination. For enumeration domains, each value in the domain (im-
plemented as a list) is tried. X=V is expressed as X in [V].

indomain(X), X in [V|L] <=> L=[_|_] |

(X in [V] ; X in L, indomain(X)).

The guard ensures termination. Calling indomain(X) in the second disjunct ensures
that subsequently, the next value for X from the list L will be tried.

N-queens. The famous n-queens problem asks to place n queens q1, . . . , qn on an n ∗ n
chess board, such that they do not attack each other. The problem can be solved with a
CHR program, where N is the size of the chess board and Qs is a list of N queen position
variables.

solve(N,Qs) <=> makedomains(N,Qs), queens(Qs), enum(Qs).

queens([Q|Qs]) <=> safe(Q,Qs,1), queens(Qs).

safe(X,[Y|Qs],N) <=> noattack(X,Y,N), safe(X,Qs,N+1).

Instead of implementing noattack with the usual three finite domain inequality con-
straints, we can use noattack directly:

noattack(X,Y,N), X in [V], Y in D <=>

remove(D,[V,V+N,V-N],D1) | Y in D1.

noattack(Y,X,N), X in [V], Y in D <=>

remove(D,[V,V+N,V-N],D1) | Y in D1.

T. Frühwirth, L. Michel, C. Schulte 485

The constraint between three lists remove(D,L,D1) holds if D1 is D without the values
in L and at least one value has been removed.

Lexicographic order global constraint

A lexicographic order�lex (lex) allows to compare sequences by comparing the elements
of the sequences proceeding from start to end. Given two sequences l1 and l2 of variables
of the same length n, [x1, . . . , xn] and [y1, . . . , yn], then l1�lexl2 if and only if n=0 or
x1<y1 or x1=y1 and [x2, . . . , xn]�lex[y2, . . . , yn].

The solver [40] consists of three pairs of rules, the first two corresponding to base cases
of the recursion (garbage collection), then two rules performing forward reasoning (recur-
sive traversal and implied inequality), and finally two for backward reasoning, covering a
not so obvious special case when the lexicographic constraint has a unique solution.

l1 @ [] lex [] <=> true.

l2 @ [X|L1] lex [Y|L2] <=> X<Y | true.

l3 @ [X|L1] lex [Y|L2] <=> X=Y | L1 lex L2.

l4 @ [X|L1] lex [Y|L2] ==> X=<Y.

l5 @ [X,U|L1] lex [Y,V|L2] <=> U>V | X<Y.

l6 @ [X,U|L1] lex [Y,V|L2] <=> U>=V, L1=[_|_] |

[X,U] lex [Y,V], [X|L1] lex [Y|L2].

The implementation is short and concise without giving up on linear time worst case
time complexity. It is incremental and concurrent by nature of CHR. It is provably correct
and confluent. It is independent of the underlying constraint system. In [40], also com-
pleteness of constraint propagation is shown, i.e., given a lex constraint and an inequality,
all implied inequalities are generated by the solver.

13.4 Challenges and Opportunities

The integration of constraint technology in more traditional or hybrid paradigms has been
a source of significant progress. Nonetheless, it is still shy of a comprehensive solution
that addresses all the motivating objectives. It has, however, created flexible platforms
particularly well-suited for experimenting with novel research ideas and directions. This
section considers some of these opportunities.

13.4.1 Cooperative Solvers

Cooperative solvers are already a reality. Linear Programming and Integer Programming
solvers have been used in conjunction with constraint solvers and the combination often
proved quite effective. New solvers are developed regularly either for domain specific
needs or as vertical extensions. In all cases, hybridization raises many issues: How should
solvers communicate? How do solvers compose? What is the composite’s architecture
(side-by-side, master-slave, concurrent,...)? What are the synchronization triggers and
events (variable bounds, heuristic information, objective function, impacts,...)? Should
the solvers operate on redundant statements of the same problems or on disjoint subset of

486 13. Constraints in Procedural and Concurrent Languages

constraints they are better suited for? Can solver-specific formulations be derived from a
unique master statement? Can the formulations be automatically refined over time?

13.4.2 Orthogonal Computation Models

Recent developments in constraint-based local search [107] clearly indicate that constraint-
based solvers can be developed for radically different computation models. From a declara-
tive standpoint, local search solvers rely on constraints to specify the properties of solutions
and write elegant, high-level, and reusable search procedures which automatically exploit
the constraints to guide the search. From a computational standpoint, the solver incremen-
tally maintains properties (e.g. truth value, violation degree, variable and value based vio-
lations) under non-monotonic changes to the decision variables that always have a tentative
value assignment. This organization is a fundamental departure from classic domain-based
consistency and filtering techniques found in traditional finite domain solvers.

The fundamental differences are related to the nature of the underlying computational
models. How can these solvers be effectively hybridized? What steps are required for an
efficient integration of the computation models that does not result in severe performance
degradation for either? Once the two technologies coexist, how can the solvers be com-
posed? How can each solver benefit from results produced by its counter-part? Which
form of collaboration is most effective?

13.4.3 Orthogonal Concerns

As solvers sophistication increases, it becomes difficult to anticipate the behavior of a
solver on a given problem formulation. The advances in solver technology (efficiency,
flexibility, openness) should be matched with equal progress in supporting abstractions for
model designers. For Rapid application development, it is essential to assist the develop-
ers of optimization models. Improvements should include better debugging tools (where
debugging occurs at the abstraction level of the model), explanation tools for post-mortem
analysis, but also tracing tools for live analysis of the solver’s behavior during the search
process. Tools like the OZ Explorer [94] or the tree visualizer of OplStudio [114] provide
initial insights into the dynamics of the search but fail to relate this behavior to modeling
abstractions (constraints) and their interplay. Novel tools should also support the explo-
ration of alternative model formulation and search heuristics to quickly identify successful
strategies, a task which becomes increasingly burdensome given the large number of po-
tential heuristics that ought to be considered.

13.5 Conclusion

Constraint solving and handling has moved from logic programming into more common
programming paradigms and faced the challenges that it found there.

• Generalizing search from built-in backtracking of Prolog to flexible search routines
as in OPL, OZ and SALSA.

• User friendliness by providing well-known metaphors resulting in modelling lan-
guages such as OPL and Comet.

T. Frühwirth, L. Michel, C. Schulte 487

• Integration into advanced multi-paradigm languages such as CLAIRE and OZ.

• The move from black-box solvers to glass-box solvers, that can be customized and
analysed more easily, with constraint handling rules (CHR) at the extreme end of
the spectrum.

These issues will remain a topic of research and development in constraint programming
for the near future, but impressive first steps have been done.

Acknowledgments

Christian Schulte is partially funded by the Swedish Research Council (VR) under grant
621-2004-4953.

Bibliography

[1] S. Abdennadher. Operational semantics and confluence of constraint propagation
rules. In 3rd International Conference on Principles and Practice of Constraint
Programming, LNCS 1330. Springer, 1997.

[2] S. Abdennadher and T. Frühwirth. Operational equivalence of constraint handling
rules. In Fifth International Conference on Principles and Practice of Constraint
Programming, CP99, LNCS 1713. Springer, 1999.

[3] S. Abdennadher and T. Frühwirth. On completion of constraint handling rules. In
4th International Conference on Principles and Practice of Constraint Program-
ming, CP98, LNCS 1520. Springer, 1998.

[4] S. Abdennadher and T. Frühwirth. Integration and optimization of rule-based con-
straint solvers. In M. Bruynooghe, editor, Logic Based Program Synthesis and
Transformation - LOPSTR 2003, Revised Selected Papers, LNCS 3018. Springer,
2004.

[5] S. Abdennadher and M. Marte. University course timetabling using Constraint Han-
dling Rules. Journal of Applied Artificial Intelligence, 14(4):311–326, 2000.

[6] S. Abdennadher and C. Rigotti. Automatic generation of chr constraint solvers.
Theory Pract. Log. Program., 5(4-5):403–418, 2005. ISSN 1471-0684. doi: http:
//dx.doi.org/10.1017/S1471068405002371.

[7] S. Abdennadher and H. Schütz. Model generation with existentially quantified vari-
ables and constraints. In 6th International Conference on Algebraic and Logic Pro-
gramming, LNCS 1298. Springer, 1997.

[8] S. Abdennadher and H. Schütz. CHR∨: A flexible query language. In Flexible
Query Answering Systems, LNAI 1495. Springer, 1998.

[9] S. Abdennadher, T. Frühwirth, and H. Meuss. Confluence and semantics of con-
straint simplification rules. Constraints Journal, Special Issue on the 2nd Inter-
national Conference on Principles and Practice of Constraint Programming, 4(2):
133–165, 1999.

[10] S. Abdennadher, E. Krämer, M. Saft, and M. Schmauss. Jack: A java constraint kit.
In Electronic Notes in Theoretical Computer Science, volume 64, 2000.

[11] S. Abdennadher, T. Frühwirth, and C. Holzbaur. Editors, Special Issue
on Constraint Handling Rules. Theory and Practice of Logic Programming

488 13. Constraints in Procedural and Concurrent Languages

(TPLP), 5(4–5), 2005. URL http://www.informatik.uni-ulm.de/pm/

mitarbeiter/fruehwirth/tplp-chr/index.html.
[12] J.-M. Andreoli and R. Pareschi. Linear objects: logical processes with built-in in-

heritance. In 7th International Conference on Logic programming (ICLP), pages
495–510, Cambridge, MA, USA, 1990. MIT Press. ISBN 0-262-73090-1.

[13] J. Armstrong, R. Virding, and M. Williams. Concurrent Programming in Erlang.
Prentice-Hall International, Englewood Cliffs, NY, USA, 1993.

[14] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press,
1998.

[15] J.-P. Banatre, A. Coutant, and D. L. Metayer. A parallel machine for multiset trans-
formation and its programming style. Future Generation Computer Systems, 4:
133–144, 1988.

[16] F. Benhamou. Interval constraint logic programming. In A. Podelski, editor, Con-
straint Programming: Basics and Trends, LNCS 910, pages 1–21. Springer, 1995.

[17] F. Benhamou and W. J. Older. Applying interval arithmetic to real, integer, and
boolean constraints. The Journal of Logic Programming, 32(1), 1997.

[18] H. Betz and T. Frühwirth. A linear-logic semantics for constraint handling rules.
In P. van Beek, editor, 11th Conference on Principles and Practice of Constraint
Programming CP 2005, volume 3709 of Lecture Notes in Computer Science, pages
137–151. Springer, Oct. 2005. URL http://www.informatik.uni-ulm.

de/pm/mitarbeiter/fruehwirth/Papers/llchr-final0.pdf.
[19] P. Borovansky, C. Kirchner, H. Kirchner, P. E. Moreau, and M. Vittek. ELAN:

A logical framework based on computational systems. In Proc. of the First
Int. Workshop on Rewriting Logic, volume ENTCS 4(1). Elsevier, 2004. URL
citeseer.ist.psu.edu/borovansky97elan.html.

[20] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming expert systems
in OPS5: an introduction to rule-based programming. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1985. ISBN 0-201-10647-7.

[21] Y. Caseau, P.-Y. Guillo, and E. Levenez. A Deductive and Object-Oriented Ap-
proach to a Complex Scheduling Problem. In Proc. of DOOD’93, Phoenix, AZ,
December 1989.

[22] Y. Caseau, F.-X. Josset, and F. Laburthe. Claire: combining sets, search and rules to
better express algorithms. Theory Pract. Log. Program., 2(6):769–805, 2002. ISSN
1471-0684. doi: http://dx.doi.org/10.1017/S1471068401001363.

[23] W.-N. Chin, M. Sulzmann, and M. Wang. A type-safe embedding of constraint han-
dling rules into haskell. Technical report, School of Computing, National University
of Singapore, Singapore, 2003.

[24] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewriting logic. Theor. Com-
put. Sci., 285(2):187–243, 2002. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/
S0304-3975(01)00359-0.

[25] P. Codognet and D. Diaz. Compiling constraints in clp(FD). Journal of Logic
Programming, 27(3):185–226, 1996.

[26] Mosel: An Overview. Dash Optimization White Paper, 2004.
http://www.dashoptimization.com/home/products/products mosel.html.

[27] G. Delzanno, M. Gabbrielli, and M. C. Meo. A compositional semantics for chr.
In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international conference on

T. Frühwirth, L. Michel, C. Schulte 489

Principles and practice of declarative programming, pages 209–217, New York,
NY, USA, 2005. ACM Press. ISBN 1-59593-090-6. doi: http://doi.acm.org/10.
1145/1069774.1069794.

[28] D. Diaz and P. Codognet. A minimal extension of the WAM for CLP(FD). In
Proceedings of the Tenth International Conference on Logic Programming (ICLP-
93), pages 774–792, Budapest (Hungary), June 1993.

[29] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The constraint logic programming language CHIP. In International Conference on
Fifth Generation Computer Systems, pages 693–702. Institute for New Generation
Computer Technology, 1988.

[30] G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. Extending ar-
bitrary solvers with constraint handling rules. In PPDP ’03: Proceedings of the
5th ACM SIGPLAN international conference on Principles and practice of declar-
itive programming, pages 79–90, New York, NY, USA, 2003. ACM Press. ISBN
1-58113-705-2. doi: http://doi.acm.org/10.1145/888251.888260.

[31] G. J. Duck, S. L. P. Jones, P. J. Stuckey, and M. Sulzmann. Sound and decidable
type inference for functional dependencies. In ESOP, pages 49–63, 2004.

[32] G. J. Duck, P. J. Stuckey, M. G. de la Banda, and C. Holzbaur. The Refined
Operational Semantics of Constraint Handling Rules. In B. Demoen and V. Lifs-
chitz, editors, 20th International Conference on Logic Programming (ICLP), LNCS.
Springer, 2004.

[33] R. Fourer, K. Martin, and J. Ma. Modeling systems & optimization services. Book
in preparation.

[34] R. Fourer, D. Gay, and B. Kernighan. AMPL: A Modeling Language for Mathemat-
ical Programming. The Scientific Press, San Francisco, CA, 1993.

[35] T. Frühwirth. Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming. Journal of Logic Programming, 37(1–3):95–
138, 1998. URL http://www.pst.informatik.uni-muenchen.de/

personen/fruehwir/drafts/jlp-chr1.ps.Z.
[36] T. Frühwirth. As Time Goes By: Automatic Complexity Analysis of Simplification

Rules. In 8th International Conference on Principles of Knowledge Representation
and Reasoning, Toulouse, France, 2002.

[37] T. Frühwirth. Proving termination of constraint solver programs. In E. M. K.R. Apt,
A.C. Kakas and F. Rossi, editors, New Trends in Constraints, LNAI 1865. Springer,
2000.

[38] T. Frühwirth. Constraint systems and solvers for constraint programming. Spe-
cial Issue of Archives of Control Sciences (ACS) on Constraint Programming for
Decision and Control, 2006. URL http://www.informatik.uni-ulm.

de/pm/mitarbeiter/fruehwirth/Papers/acs-systems3.pdf. To
appear.

[39] T. Frühwirth. Constraint handling rules. In A. Podelski, editor, Constraint Program-
ming: Basics and Trends, LNCS 910. Springer, March 1995.

[40] T. Frühwirth. Complete propagation rules for lexicographic order constraints
over arbitrary domains. In Recent Advances in Constraints, CSCLP 2005, LNAI.
Springer, 2006. To appear.

[41] T. Frühwirth. Parallelizing union-find in constraint handling rules using confluence.
In M. Gabbrielli and G. G., editors, Logic Programming: 21st International Con-

490 13. Constraints in Procedural and Concurrent Languages

ference, ICLP 2005, volume 3668 of Lecture Notes in Computer Science, pages
113–127. Springer, Oct. 2005. URL http://www.informatik.uni-ulm.

de/pm/mitarbeiter/fruehwirth/Papers/puf0.pdf.
[42] T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming. Springer,

2003.
[43] H. Ganzinger and D. McAllester. A new meta-complexity theorem for bottom-up

logic programs. In International Joint Conference on Automated Reasoning, LNCS
2083, pages 514–528. Springer, 2001.

[44] Gecode Team. Gecode (generic constraint development environment), 2005. Avail-
able from www.gecode.org.

[45] J.-Y. Girard. Linear logic: Its syntax and semantics. Theoretical Computer Science,
50:1–102, 1987.

[46] C. Guéret, C. Prins, M. Sevaux, and S. Heipcke. Applications of Optimization with
XpressMP. Dash Optimization Ltd., 2002.

[47] S. Haridi, S. Janson, and C. Palamidessi. Structural operational semantics for AKL.
Future Generation Computer Systems, 8:409–421, 1992.

[48] S. Haridi, P. Van Roy, P. Brand, and C. Schulte. Programming languages for dis-
tributed applications. New Generation Computing, 16(3):223–261, 1998.

[49] S. Haridi, P. Van Roy, P. Brand, M. Mehl, R. Scheidhauer, and G. Smolka. Effi-
cient logic variables for distributed computing. ACM Transactions on Programming
Languages and Systems, 21(3):569–626, May 1999.

[50] W. Harvey and M. Ginsberg. Limited Discrepancy Search. In Proceedings of the
14th International Joint Conference on Artificial Intelligence, Montreal, Canada,
August 1995.

[51] M. Henz. Objects for Concurrent Constraint Programming, volume 426 of Interna-
tional Series in Engineering and Computer Science. Kluwer Academic Publishers,
Boston, MA, USA, Oct. 1997.

[52] M. Henz, G. Smolka, and J. Würtz. Oz—A programming language for multi-agent
systems. In 13th International Joint Conference on Artificial Intelligence, volume 1,
pages 404–409, Chambéry, France, 1993. Morgan Kaufmann Publishers. Revised
version appeared as [53].

[53] M. Henz, G. Smolka, and J. Würtz. Object-oriented concurrent constraint program-
ming in Oz. In V. Saraswat and P. Van Hentenryck, editors, Principles and Practice
of Constraint Programming, pages 29–48. The MIT Press, Cambridge, MA, USA,
1995.

[54] M. Henz, T. Müller, and K. B. Ng. Figaro: Yet another constraint programming
library. In I. de Castro Dutra, V. S. Costa, G. Gupta, E. Pontelli, M. Carro, and
P. Kacsuk, editors, Parallelism and Implementation Technology for (Constraint)
Logic Programming, pages 86–96, Las Cruces, NM, USA, Dec. 1999. New Mexico
State University.

[55] C. Holzbaur and T. Frühwirth. Constraint Handling Rules Reference Manual for
Sicstus Prolog. Vienna, Austria, July 1998. URL http://www.sics.se/isl/

sicstus/sicstus 34.html.
[56] Ilog CPLEX 6.0. Reference Manual. Ilog SA, Gentilly, France, 1998.
[57] Ilog OPL Studio 3.0. Reference Manual. Ilog SA, Gentilly, France, 2000.
[58] Ilog Solver 4.4. Reference Manual. Ilog SA, Gentilly, France, 1998.
[59] J.-L. J. Imbert. Linear constraint solving in clp-languages. In A. Podelski, editor,

T. Frühwirth, L. Michel, C. Schulte 491

Constraint Programming: Basics and Trends, LNCS 910. Springer, 1995.
[60] S. Janson. AKL - A Multiparadigm Programming Language. PhD thesis, SICS

Swedish Institute of Computer Science, SICS Box 1263, S-164 28 Kista, Sweden,
1994. SICS Dissertation Series 14.

[61] S. Janson and S. Haridi. Programming paradigms of the Andorra kernel language.
In V. Saraswat and K. Ueda, editors, Logic Programming, Proceedings of the 1991
International Symposium, pages 167–186, San Diego, CA, USA, Oct. 1991. The
MIT Press.

[62] S. Janson, J. Montelius, and S. Haridi. Ports for objects. In Research Directions in
Concurrent Object-Oriented Programming. The MIT Press, Cambridge, MA, USA,
1993.

[63] F. Laburthe and Y. Caseau. SALSA: A Language for Search Algorithms. In Fourth
International Conference on the Principles and Practice of Constraint Program-
ming (CP’98), Pisa, Italy, October 1998.

[64] W. Leler. Constraint programming languages: their specification and generation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1988. ISBN
0-201-06243-7.

[65] M. J. Maher. Logic semantics for a class of committed-choice programs. In J.-L.
Lassez, editor, 4th International Conference on Logic Programming, pages 858–
876, Cambridge, Mass., 1987. MIT Press.

[66] K. Marriott and P. J. Stuckey. Programming with Constraints: An Introduction. MIT
Press, Cambridge, Mass., 1998.

[67] L. Menezes, J. Vitorino, and M. Aurelio. A High Performance CHRv Execution
Engine. In Second Workshop on Constraint Handling Rules, at ICLP05, Sitges,
Spain, October 2005.

[68] S. Menju, K. Sakai, Y. Sato, and A. Aiba. A study on boolean constraint solvers. In
F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming: Selected
Research, pages 253–268. MIT Press, Cambridge, Mass., 1993.

[69] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci., 96(1):73–155, 1992. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/
0304-3975(92)90182-F.

[70] P. Meseguer. Interleaved Depth-First Search. In Proceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence, Nagoya, Japan, August 1997.

[71] L. Michel and P. Van Hentenryck. A Constraint-Based Architecture for Local
Search. In Conference on Object-Oriented Programming Systems, Languages, and
Applications., pages 101–110, Seattle, WA, USA, November 4-8 2002. ACM.

[72] L. Michel and P. Van Hentenryck. A Modeling Layer for Constraint-Programming
Libraries. INFORMS Journal on Computing, 2004. in press.

[73] L. Michel and P. Van Hentenryck. Non-deterministic control for hybrid search. In
CPAIOR’05: Proceedings of the 2nd International Conference on the Integration of
Constraint Programming, Artificial Intelligence and Operations Research”, pages
1–15, Prague, Czech Republic, 2005. Springer-Verlag.

[74] R. Mohr and G. Masini. Good old discrete relaxation. In 8th European Conference
on Artificial Intelligence, pages 651–656, Munich, Germany, 1988.

[75] J. Montelius. Exploiting Fine-grain Parallelism in Concurrent Constraint Lan-
guages. PhD thesis, SICS Swedish Institute of Computer Science, SICS Box 1263,
S-164 28 Kista, Sweden, Apr. 1997. SICS Dissertation Series 25.

492 13. Constraints in Procedural and Concurrent Languages

[76] J. Montelius and K. A. M. Ali. An And/Or-parallel implementation of AKL. New
Generation Computing, 13–14, Aug. 1995.

[77] Mozart Consortium. The Mozart programming system, 1999. Available from
www.mozart-oz.org.

[78] L. Perron. Search procedures and parallelism in constraint programming. In CP
’99: Proceedings of the 5th International Conference on Principles and Practice
of Constraint Programming, pages 346–360, London, UK, 1999. Springer-Verlag.
ISBN 3-540-66626-5.

[79] J.-F. Puget. A C++ Implementation of CLP. In Proceedings of SPICIS’94, Singa-
pore, November 1994.

[80] J.-F. Puget and M. Leconte. Beyond the Glass Box: Constraints as Objects. In Pro-
ceedings of the International Symposium on Logic Programming (ILPS-95), pages
513–527, Portland, OR, November 1995.

[81] V. Saraswat. Concurrent Constraint Programming. MIT Press, Cambridge, Mass.,
1993.

[82] V. A. Saraswat. Concurrent Constraint Programming. ACM Doctoral Dissertation
Awards: Logic Programming. The MIT Press, Cambridge, MA, USA, 1993.

[83] V. A. Saraswat and M. Rinard. Concurrent constraint programming. In POPL
’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 232–245, New York, NY, USA, 1990. ACM Press.
ISBN 0-89791-343-4. doi: http://doi.acm.org/10.1145/96709.96733.

[84] V. A. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of con-
current constraint programming. In POPL ’91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
333–352, New York, NY, USA, 1991. ACM Press. ISBN 0-89791-419-8. doi:
http://doi.acm.org/10.1145/99583.99627.

[85] T. Schrijvers. Analyses, optimizations and extensions of constraint handling rules,
Ph.D. Thesis. Technical report, Department of Computer Science, K.U.Leuven,
Belgium, June 2005.

[86] T. Schrijvers and T. Frühwirth. Optimal union-find in constraint handling rules, pro-
gramming pearl. Theory and Practice of Logic Programming (TPLP), 6(1), 2006.
URL http://arxiv.org/abs/cs.PL/0501073.

[87] T. Schrijvers and T. Frühwirth. CHR Website, www.cs.kuleuven.ac.be/
∼dtai/projects/CHR/, 2006.

[88] T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Frühwirth. Automatic
implication checking for chr constraints. In 6th International Workshop on Rule-
Based Programming, Apr. 2005. URL http://www.cs.kuleuven.ac.be/
∼dtai/publications/files/41606.pdf.

[89] T. Schrijvers, P. J. Stuckey, and G. J. Duck. Abstract interpretation for constraint
handling rules. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 218–229,
New York, NY, USA, 2005. ACM Press. ISBN 1-59593-090-6. doi: http://doi.acm.
org/10.1145/1069774.1069795.

[90] T. Schrijvers, B. Demoen, G. Duck, P. Stuckey, and T. Frühwirth. Automatic Im-
plication Checking for CHR Constraints. Electronic Notes in Theoretical Computer
Science, Proceedings of 6th International Workshop on Rule-Based Programming,
Nara, Japan, 2005, 147(1):93–111, January 2006.

T. Frühwirth, L. Michel, C. Schulte 493

[91] C. Schulte. Programming deep concurrent constraint combinators. In E. Pontelli and
V. S. Costa, editors, Practical Aspects of Declarative Languages, Second Interna-
tional Workshop, PADL 2000, volume 1753 of Lecture Notes in Computer Science,
pages 215–229, Boston, MA, USA, Jan. 2000. Springer-Verlag.

[92] C. Schulte. Parallel search made simple. In N. Beldiceanu, W. Harvey, M. Henz,
F. Laburthe, E. Monfroy, T. Müller, L. Perron, and C. Schulte, editors, Proceedings
of TRICS: Techniques foR Implementing Constraint programming Systems, a post-
conference workshop of CP 2000, number TRA9/00, pages 41–57, 55 Science Drive
2, Singapore 117599, Sept. 2000.

[93] C. Schulte. Programming Constraint Services, volume 2302 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

[94] C. Schulte. Oz Explorer: A visual constraint programming tool. In L. Naish, editor,
Proceedings of the Fourteenth International Conference on Logic Programming,
pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

[95] C. Schulte. Programming constraint inference engines. In G. Smolka, editor, Pro-
ceedings of the Third International Conference on Principles and Practice of Con-
straint Programming, volume 1330 of Lecture Notes in Computer Science, pages
519–533, Schloß Hagenberg, Linz, Austria, Oct. 1997. Springer-Verlag.

[96] E. Shapiro. The family of concurrent logic programming languages. ACM Comput-
ing Surveys, 21(3):413–510, 1989.

[97] E. Shapiro. The family of concurrent logic programming languages. ACM Comput-
ing Surveys, 21(3):413–510, 1989.

[98] G. A. Sidebottom. A language for optimizing constraint propagation, Ph.D. Thesis.
Technical report, Simon Fraser University, Canada, 1993.

[99] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, LNCS 1000, Berlin, Heidelberg, New York, 1995. Springer.

[100] G. Smolka. A foundation for higher-order concurrent constraint programming. In J.-
P. Jouannaud, editor, 1st International Conference on Constraints in Computational
Logics, volume 845 of Lecture Notes in Computer Science, pages 50–72, München,
Germany, Sept. 1994. Springer-Verlag.

[101] G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Computer
Science Today, volume 1000 of Lecture Notes in Computer Science, pages 324–343.
Springer-Verlag, Berlin, 1995.

[102] J. Sneyers, T. Schrijvers, and B. Demoen. The Computational Power and Com-
plexity of Constraint Handling Rules. In Second Workshop on Constraint Handling
Rules, at ICLP05, Sitges, Spain, October 2005.

[103] K. Ueda. Guarded horn clauses. In Concurrent Prolog, pages 140–156, Cambridge,
MA, USA, 1988. MIT Press. ISBN 0-262-19255-1.

[104] P. Van Hentenryck. Constraint and Integer Programming in OPL. Informs Journal
on Computing, 14(4):345–372, 2002.

[105] P. Van Hentenryck. The OPL Optimization Programming Language. The MIT Press,
Cambridge, Mass., 1999.

[106] P. Van Hentenryck and L. Michel. Nondeterministic Control For Hybrid Search. In
Proceedings of the Second International Conference on the Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimisation Problems
(CP-AI-OR’04), Prague, Czech Republic, 2005. Springer-Verlag.

[107] P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press,

494 13. Constraints in Procedural and Concurrent Languages

Cambridge, Mass., 2005.
[108] P. Van Hentenryck and L. Michel. New Trends in Constraints, chapter OPL Script:

Composing and Controlling Models. Lecture Note in Artificial Intelligence (LNAI
1865). Springer Verlag, 2000.

[109] P. van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

[110] P. van Hentenryck, V. A. Saraswat, and Y. Deville. Constraint processing in cc(FD).
In A. Podelski, editor, Constraint Programming: Basics and Trends, LNCS 910.
Springer, 1995.

[111] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: a Modeling Language for
Global Optimization. The MIT Press, Cambridge, Mass., 1997.

[112] P. Van Hentenryck, L. Michel, and F. Benhamou. Newton: Constraint programming
over nonlinear constraints. Sci. Comput. Program., 30(1-2):83–118, 1998. ISSN
0167-6423. doi: http://dx.doi.org/10.1016/S0167-6423(97)00008-7.

[113] P. Van Hentenryck, L. Perron, and J.-F. Puget. Search and Strategies in OPL. ACM
Transactions on Computational Logic, 1(2):1–36, October 2000.

[114] P. Van Hentenryck, L. Michel, F. Paulin, and J. Puget. Modeling Languages in
Mathematical Optimization, chapter The OPL Studio Modeling System. Kluwer
Academic Publishers, 2003.

[115] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Program-
ming. The MIT Press, Cambridge, MA, USA, 2004.

[116] P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mo-
bile objects in Distributed Oz. ACM Transactions on Programming Languages and
Systems, 19(5):804–851, Sept. 1997.

[117] P. Van Roy, P. Brand, D. Duchier, S. Haridi, M. Henz, and C. Schulte. Logic pro-
gramming in the context of multiparadigm programming: the Oz experience. Theory
and Practice of Logic Programming, 3(6):715–763, Nov. 2003.

[118] P. V. Weert, T. Schrijvers, and B. Demoen. The K.U.Leuven JCHR System. In
Second Workshop on Constraint Handling Rules, at ICLP05, Sitges, Spain, October
2005.

[119] A. Wolf. Adaptive Constraint Handling with CHR in Java. In 7th International Con-
ference on Principles and Practice of Constraint Programming (CP 2001), LNCS
2239. Springer, 2001.

Handbook of Constraint Programming 495
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 14

Finite Domain Constraint Programming
Systems

Christian Schulte and Mats Carlsson

One of the main reasons why constraint programming quickly found its way into applica-
tions has been the early availability of usable constraint programming systems. Given the
wide range of applications using constraint programming it is obvious that one of the key
properties of constraint programming systems is their provision of widely reusable services
for constructing constraint-based applications.

A constraint programming system can be thought of as providing a set of reusable
services. Common services include constraint propagation, search, and services for inter-
facing to the system. This chapter looks in more detail at which services are provided by
a constraint programming system and in particular what are the key principles and tech-
niques in constructing and coordinating these services.

To give the chapter a clear focus and a reasonably uniform presentation, we mostly
restrict our attention to propagation-based finite domain constraint programming systems.
That is, systems that solve problems using constraint propagation involving variables rang-
ing over some finite set of integers. The focus on finite domain constraint programming
systems coincides with both practical relevance and known principles and techniques: sys-
tems at least offer services for finite domains; much of the known principles and techniques
have been conceived and documented for finite domains.

Essential for a system in providing the services mentioned above are some important
abstractions (or objects) to be implemented by a system: variables, implementations for
constraints, and so on. Important abstractions for propagation, search, and interfacing are
as follows.

Constraint propagation. To perform constraint propagation a system needs to imple-
ment variables ranging over finite domains. Constraints expressing a relation among vari-
ables are implemented by propagators: software abstractions which by execution perform
constraint propagation. Finally, a propagation engine coordinates the execution of propa-
gators in order to deliver constraint propagation for a collection of constraints.

B.V.

496 14. Finite Domain Constraint Programming Systems

Search. Search in a finite domain constraint programming system has two principal di-
mensions. The first dimension is concerned with how to describe the search tree, typically
achieved by a branching or labeling. The second dimension is concerned with how to ex-
plore a search tree, this is typically achieved by an exploration strategy or search strategy.
Any system implementing search must provide a state restoration service which maintains
computation states for the nodes of the search tree.

Interfacing. A system must provide access to the services mentioned above so that ap-
plications can use them. Depending on the underlying constraint programming system,
the services can be tightly integrated into some host language (such as Prolog) or being
provided by some library (pioneered by ILOG Solver as a C++-based library).

Different levels of interfaces can be observed with different systems. Clearly, all sys-
tems offer at least interfaces which allow to use the system-provided services in applica-
tions. Even though the constraints, search engines, and so on provided by a system are
sufficient for many applications, some applications might require more. For these applica-
tions, a system must be extensible by new propagators for possibly new constraints, new
branching strategies, and new exploration strategies.

Chapter structure. The structure of this chapter is as follows. The next section gives a
simple architecture for finite domain constraint programming systems. It describes what
a system computes and how computation is organized in principle. The following two
Sections 14.2 and 14.3 describe how systems implement this architecture. Section 14.2 de-
scribes how propagation is implemented while the following section describes how search
is implemented. An overview over existing finite domain constraint programming systems
is provided by Section 14.4. The last section of this chapter summarizes the key aspects of
a finite domain constraint programming system and presents current and future challenges.

14.1 Architecture for Constraint Programming Systems

This section defines a simple architecture of a finite domain constraint programming sys-
tem. The section describes what results a system computes and how it computes them. The
focus is on the basic entities and principles that are used in systems; the actual implemen-
tation techniques used in systems are discussed in the following sections.

Much of the content follows the presentation in [58]. Essential parts of the architecture
described here have been first identified and discussed by Benhamou in [13].

14.1.1 Propagation-Based Constraint Solving

This section defines terminology and what a system actually computes.

Domains. A domain D is a complete mapping from a fixed (countable) set of variables
V to finite sets of integers. A domain D is failed, if D(x) = ∅ for some x ∈ V . A variable
x ∈ V is fixed by a domain D, if |D(x)| = 1. The intersection of domains D1 and D2,
denoted D1 ⊓D2, is defined by the domain D(x) = D1(x) ∩D2(x) for all x ∈ V .

A domain D1 is stronger than a domain D2, written D1 ⊑ D2, if D1(x) ⊆ D2(x) for
all x ∈ V .

C. Schulte, M. Carlsson 497

We use range notation [l, u] for the set of integers {n ∈ Z | l ≤ n ≤ u}.

Assignments and constraints. An integer assignment a is a mapping of variables to
integer values, written {x1 7→ n1, . . . , xk 7→ nk}. We extend the assignment a to map
expressions and constraints involving the variables in the natural way.

Let vars be the function that returns the set of variables appearing in an assignment. In
an abuse of notation, we define an assignment a to be an element of a domain D, written
a ∈ D, if a(xi) ∈ D(xi) for all xi ∈ vars(a).

The minimum and maximum of an expression e with respect to a domain D are defined
as minD e = min{a(e) | a ∈ D} and maxD e = max{a(e) | a ∈ D}.

A constraint c over variables x1, . . . , xn is a set of assignments a such that vars(a) =
{x1, . . . , xn}. We also define vars(c) = {x1, . . . , xn}.

Propagators. A constraint is defined extensionally by a collection of assignments for its
variables. Typical systems do not compute with these extensional representations directly
for two reasons:

1. Representing all possible assignments of a constraint might take too much space
to be feasible (exponential space in the number of variables). In particular, space
becomes an issue if vars(c) contains more than two variables.

2. Common constraints have a certain structure (such as representing a linear equation
constraint or an alldifferent constraint). Representing a constraint extensionally will
make it difficult or even impossible to take advantage of this underlying structure.

Constraint propagation systems implement a constraint c by a collection of propaga-
tors. Propagators are also known as filters (implemented by some filtering algorithm) and
narrowing operators [13]. A propagator p is a function that maps domains to domains.
In order to make constraint propagation well-behaved (to be discussed in Section 14.1.2),
propagators are decreasing and monotonic.

• A propagator p must be a decreasing function: p(D) ⊑ D for all domains D. This
property is obvious and guarantees that constraint propagation only removes values.

• A propagator p must be a monotonic function: p(D1) ⊑ p(D2) wheneverD1 ⊑ D2.
That is, application of p to stronger domains also yields stronger domains.

Propagators must faithfully implement constraints. A propagator p is correct for a
constraint c iff it does not remove any assignment for c. That is, for all domains D

{a ∈ D} ∩ c = {a ∈ p(D)} ∩ c

This is a very weak restriction, for example the identity propagator i with i(D) = D for
all domains D is correct for all constraints c.

A propagator must also provide sufficient propagation to distinguish solutions from
non-solutions. Hence, a set of propagators P is checking for a constraint c, if for domains
D where all variables vars(c) are fixed the following holds: p(D) = D for all p ∈ P ,
iff the unique assignment a ∈ D where vars(a) = vars(c) is a solution of c (a ∈ c). In

498 14. Finite Domain Constraint Programming Systems

other words, all domains D corresponding to a solution of a constraint c on its variables
are required to be a fixpoint of the propagator p.

A set of propagators P implements a constraint c, if all p ∈ P are correct for c and P
is checking for c. We denote this fact by P = prop(c).

Systems consider sets of propagators rather than a single propagator as implementa-
tions of constraints to have more freedom in implementing a constraint. For example, a
common way to implement simple constraints is by indexicals (to be discussed in Sec-
tion 14.2.5): a collection of indexical propagators is used to implement a single constraint.
On the other hand, systems provide global constraints with the idea that a single propagator
implements a constraint involving many variables.

Note that only very little propagation is required for a set of propagators to be checking
(as the term suggests, checking is sufficient; no actual propagation is required). The level
of consistency provided by a propagator set is irrelevant to this model. Consistency levels
only provide a convenient way to refer to the strength of propagators. As far as achieving
good propagation is concerned, it does not matter whether a propagator set corresponds
to a predefined consistency level. What matters is that the propagator set offers a good
compromise between strength and cost of propagation.

To simplify our presentation we assume that propagators are defined for all variables V .
In a system, a propagator p will be only interested in some variables: the variables vars(c)
of the constraint c that is implemented by p. Two sets of variables which are important are
the input and output variables.

The output variables output(p) ⊆ V of a propagator p are the variables changed by
the propagator: x ∈ output(p) if there exists a domain D such that p(D)(x) 6= D(x).

The input variables input(p) ⊆ V of a propagator p is the smallest subset V ⊆ V such
that for all domains D1 and D2: D1(x) = D2(x) for all x ∈ V implies that D′

1(x) =
D′

2(x) for all x ∈ output(p) where D′
1 = D2 ⊓ p(D1) and D′

2 = D1 ⊓ p(D2). Only the
input variables are useful in computing the application of the propagator to the domain.
We say that a propagator p depends on a variable x, if x ∈ input(p).

Example 14.1 (Propagators). For the constraint c ≡ x1 ≤ x2 + 1 the function p1 defined
by p1(D)(x1) = {n ∈ D(x1) | n ≤ maxD x2 + 1} and p1(D)(x) = D(x), x 6= x1 is a
correct propagator for c. Its output variables are {x1} and its input variables are {x2}. Let
D1(x1) = {1, 5, 8} andD1(x2) = {1, 5}, then p1(D1) = D2 whereD2(x1) = D2(x2) =
{1, 5}.

The propagator p2 defined as p2(D)(x2) = {n ∈ D(x2) | n ≥ minD x1 − 1} is
another correct propagator for c. Here and in the following we assume that a propagator
is defined as identity for variables not mentioned in the definition. Its output variables are
{x2} and input variables {x1}.

The set {p1, p2} is checking for c. For example, the domain D(x1) = D(x2) = {2}
corresponding to a solution of c is a fixpoint of both propagators. The non-solution domain
D(x1) = {2}, D(x2) = {0} is not a fixpoint (of either propagator).

Now we are in the position to describe what a constraint programming system com-
putes. A propagation solver for a set of propagators P and some initial domain D,
solv(P,D), finds the greatest mutual fixpoint of all the propagators p ∈ P . In other words,
solv(P,D) returns a new domain defined by

solv(P,D) = gfp(λd. iter(P, d))(D) iter(P,D) = ⊓
p∈P

p(D)

C. Schulte, M. Carlsson 499

propagate(Pf ,Pn,D)
1: N ← Pn
2: P ← Pf ∪ Pn
3: while N 6= ∅ do
4: p← select(N)
5: N ← N − {p}
6: D′ ← p(D)
7: M ← {x ∈ V | D(x) 6= D′(x)}
8: N ← N ∪ {p′ ∈ P | input(p′) ∩M 6= ∅}

11: D ← D′

12: return D

Figure 14.1: Basic propagation engine propagate.

where gfp denotes the greatest fixpoint w.r.t ⊑ lifted to functions.

14.1.2 Performing Propagation

A constraint programming system is concerned with performing propagation and search.
In this section, we consider the propagation engine and postpone the discussion of search
to Section 14.1.5.

The propagation engine propagate shown in Figure 14.1 computes solv(P,D) for a
given set of propagators P and a domain D. Note that lines 9 and 10 are left out for an
extension to be discussed later. The engine propagate takes two sets of propagators as
input where Pf contains propagators already known to be at fixpoint for D. This is an im-
portant feature to obtain incremental propagation during search. If no fixpoint knowledge
on propagators is available, it is safe to execute propagate(∅, P,D).

The algorithm uses a set N of propagators to apply (N stands for not known to be
at fixpoint). Initially, N contains all propagators from Pn. Each time the while loop is
executed, a propagator p is deleted from N , p is applied, and the set of modified variables
M is computed. All propagators that share input variables with M are added to the set
of propagators not known to be at fixpoint. Adding a propagator p to the set N is called
scheduling p.

An invariant of the engine is that at the while statement p(D) = D for all p ∈ P −N .
The loop terminates, since in each iteration either a propagator is removed from N or
a strictly smaller domain D′ is computed (as a propagator is a decreasing function and
there are only finitely many domains). After termination, the invariant yields that D′ =
propagate(Pf , Pn, D) is a fixpoint for all p ∈ Pf ∪ Pn, that is propagate(Pf , Pn, D) =
solv(Pf ∪ Pn, D).

As mentioned, the fact that a propagator is a decreasing function is essential for ter-
mination. The fact that a propagator is monotonic guarantees that propagate(Pf , Pn, D)
actually computes solv(Pf ∪ Pn, D) and that the order in which propagators are executed
does not change the result of propagate(Pf , Pn, D). The propagation engine (assuming
Pf = ∅) is more or less equivalent to the propagation algorithm of Apt [7, Section 7.1.3].

500 14. Finite Domain Constraint Programming Systems

The engine is geared at simplicity, one particular simplification being that it does not
pay particular attention to failed domains. That is, even though the domain D becomes
failed, propagation continues until a domain is computed that is both failed and a fixpoint
for all propagators in P . A concrete system might optimize this, as is discussed in Sec-
tion 14.1.6.

Note that propagate leaves undefined how a propagator p is selected from N . Strate-
gies for selecting propagators are discussed in Section 14.2.1.

Example 14.2 (Propagation). Consider the propagator p1 for the constraint x1 ≤ x2 de-
fined by

p1(D)(x1) = {n ∈ D(x1) | n ≤ maxD x2}
p1(D)(x2) = {n ∈ D(x2) | n ≥ minD x1}

Also consider the propagator p2 for the constraint x1 ≥ x2 defined analogously.
Let us start propagation for the domain D0 with D(x1) = {0, 2, 6} and D(x2) =

{−1, 2, 4} by executing propagate(∅, {p1, p2}, D0). This initializes both P and N to
{p1, p2}.

Let us assume that p1 is selected for propagation. Then, p1 is removed from N and
yields D′(x1) = {0, 2} and D′(x2) = {2, 4}. The set of modified variables M is {x1, x2}
and hence after this iteration N is {p1, p2}.

In the second iteration, let us assume that p2 is selected for propagation. This yields
D′(x1) = D′(x2) = {2}. Again, the set of modified variables M is {x1, x2} and hence
N is {p1, p2}.

Assume that in the next iteration p1 is selected. Now D is already a fixpoint of p1 and
the set of modified variables M is empty. This in turn means that N is just {p2} after this
iteration.

The last iteration selects p2 for execution, does not modify the domain, andN becomes
empty. Hence, propagate(∅, {p1, p2}, D0) returns a domain D with D(x1) = D(x2) =
{2}.

14.1.3 Improving Propagation

The propagation engine shown in Figure 14.1 is naive in that it does not exploit additional
information about propagators. Improved engines being the base for existing systems try
to avoid propagator execution based on the knowledge whether a domain is a fixpoint for
a propagator.

In the following we discuss common properties of propagators, which help to avoid
useless execution. How a system implements these properties (or detects these properties)
is discussed in Section 14.2.

Idempotent propagators. Assume that a propagator p has actually made the domain
stronger, that is, D′ 6= D. This means that there exists a variable x ∈ V for which
D′(x) ⊂ D(x). Assume further that x ∈ input(p). Hence p will be included in N .

Quite often, however, propagators happen to be idempotent: a propagator p is idempo-
tent, if the result of propagation is a fixpoint of p. That is, p(p(D)) = p(D) for all domains
D.

Hence, to avoid inclusion of an idempotent propagator p, the following lines can be
added to the propagation engine after line 8:

C. Schulte, M. Carlsson 501

9: if (p idempotent) then
10: N ← N − {p}

Example 14.3 (Idempotent propagators). The propagators p1 and p2 from Example 14.2
are both idempotent as can be seen easily.

Taking this into account, propagation takes only three iterations. If the same selection
of propagators is done as above, then N is {p2} after the first iteration and {p1} after the
second iteration.

Note that in particular all domain consistent propagators are idempotent.

Entailment. An idempotent propagator can be exempted from being included in N di-
rectly after p has been applied. A much stronger property for a propagator p is entailment.
A propagator p is entailed by a domain D, if all domains D′ with D′ ⊑ D are fixpoints of
p, that is p(D′) = D′. This means that as soon as a propagator p becomes entailed, it can
be safely deleted from the set of propagators P .

Example 14.4 (Entailed propagator). Consider the propagator p1 for the constraint x1 ≤
x2 from Example 14.2. Any domain D with maxD x1 ≤ minD x2 entails p1.

Propagator rewriting. During propagation the domain D might fix some variables in
input(p) ∪ output(p) of a propagator p. Many propagators can be replaced by simpler
propagators after some variables have become fixed.

Example 14.5 (Propagator rewriting for fixed variables). Consider the propagator p with
p ∈ prop(c) where c ≡ x1 + x2 + x3 ≤ 4:

p(D)(x1) = {n ∈ D(x1) | n ≤ maxD(4− x2 − x3)}

Assume that propagation has computed a domain D which fixes x2 to 3 (that is,
D(x2) = {3}). Then p can be replaced by the simpler (and most likely more efficient)
propagator p′ defined by:

p′(D)(x1) = {n ∈ D(x1) | n ≤ maxD(1− x3)}

A propagator p can always be rewritten to a propagator p′ for a domain D, if p(D′) =
p′(D′) for all domains D′ with D′ ⊑ D. This means that propagator rewriting is not only
applicable to domains that fix variables.

This is for example exploited for the “type reduction” of [52] where propagators are
rewritten as more knowledge on domains (there called types) becomes available. For ex-
ample, the implementation of x0 = x1×x2 will be replaced by a more efficient one, when
all elements in D(x1) and D(x2) are non-negative.

14.1.4 Propagation Events

For many propagators it is simple to decide whether they are still at a fixpoint for a changed
domain based on how the domain has changed. How a domain changes is described by
propagation events (or just events).

502 14. Finite Domain Constraint Programming Systems

Example 14.6 (Disequality propagators). Consider the propagator p with {p} = prop(c)
for the constraint c ≡ x1 6= x2:

p(D)(x1) = D(x1)− single(D(x2))
p(D)(x2) = D(x2)− single(D(x1))

where single(N) for a set N is defined as N if |N | = 1 and ∅ otherwise.
Clearly, any domain D with |D(x1)| > 1 and |D(x2)| > 1 is a fixpoint of D. That is,

p only needs to be applied if x1 or x2 are fixed.
Similarly, the propagator p1 from Example 14.1 only needs to be applied to a domain

D if maxD x2 changes and p2 from the same example needs to be applied to a domain D
if minD x1 changes.

Assume that the domain D changes to the domain D′ ⊑ D. The usual events defined
in a constraint propagation system are:

• fix(x): the variable x becomes fixed.

• minc(x): the minimum of variable x changes.

• maxc(x): the maximum of variable x changes.

• any(x): the domain of variable x changes.

Clearly the events overlap. Whenever a fix(x) event occurs then a minc(x) event, a
maxc(x) event, or both events must also occur. If any of the first three events occur then
an any(x) event occurs. This is captured by the following definition of events(D,D′) for
domains D′ ⊑ D:

events(D,D′) = {any(x) | D′(x) ⊂ D(X)}
∪ {minc(x) | minD′ x > minD x}
∪ {maxc(x) | maxD′ x < maxD x}
∪ {fix(x) | |D′(x)| = 1 and |D(x)| > 1}

Events satisfy an important monotonicity condition: suppose domains D′′ ⊑ D′ ⊑ D,
then

events(D,D′′) = events(D,D′) ∪ events(D′, D′′).

So an event occurs on a change from D to D′′ iff it occurs in the change from D to D′ or
from D′ to D′′.

Example 14.7 (Events). Let D(x1) = {1, 2, 3}, D(x2) = {3, 4, 5, 6}, D(x3) = {0, 1},
and D(x4) = {7, 8, 10} while D′(x1) = {1, 2}, D′(x2) = {3, 5, 6} D′(x3) = {1} and
D′(x4) = {7, 8, 10}. Then events(D,D′) is

{maxc(x1), any(x1), any(x2), fix(x3),minc(x3), any(x3)}

For a propagator p, the set es(p) ⊆ {fix(x),minc(x),maxc(x), any(x) | x ∈ V} of
events is an event set for p if the following two properties hold:

1. For all domainsD′ andD withD′ ⊑ D andD(x) = D′(x) for all x ∈ V−input(p):
if p(D) = D and p(D′) 6= D′, then es(p) ∩ events(D,D′) 6= ∅.

C. Schulte, M. Carlsson 503

2. For all domains D with p(D) 6= p(p(D)): es(p) ∩ events(D, p(D)) 6= ∅.

The first clause of the definition captures the following. If the domain D is a fixpoint
and the stronger domain D′ (stronger only on the input variables) is not a fixpoint for a
propagator p, then an event occurring from changing the domainD toD′ must be included
in the event set es(p). The second clause refers to the case when a propagator p does not
compute a fixpoint (that is, p(d) 6= p(p(D))). In this case, an event must occur when
the domain changes from D to p(D). Note that the second clause never applies to an
idempotent propagator.

An event set plays an analogous role to the set of input variables: if an event from the
event set occurs when going from a domain D to a domain D′, the propagator is no longer
guaranteed to be at a fixpoint and must be re-applied.

Note that the definition of an event set is rather liberal as the definition does not require
the event set to be the smallest set: any set that guarantees re-application is allowed. In
particular, for any propagator p the set {any(x) | x ∈ input(p)} is an event set: this
event set makes propagation behave as if no events at all are considered. However, an
implementation will try to use event sets that are as small as possible.

Example 14.8 (Event sets). The propagator p1 from Example 14.2 depends on the event
set {minc(x1),maxc(x2)}. The propagator p from Example 14.6 depends on the event set
{fix(x1), fix(x2)}.

Now it is obvious how the propagation engine from Figure 14.1 can take advantage
of events: instead of considering the set of modified variables and the input variables of a
propagator for deciding which propagators are to be included into N , consider the events
and an event set for a propagator. In other words, replace line 8 by:

8: N ← N ∪ {p′ ∈ P | es(p′) ∩ events(D,D′) 6= ∅}

14.1.5 Performing Search

A constraint programming system evaluates solv(P,D) during search. We assume an ex-
ecution model for solving a constraint problem with a set of constraints C and an initial
domain D0 as follows. We execute the procedure search(∅, P,D0) for an initial set of
propagators P =

⋃

c∈C prop(c). This procedure (shown in Figure 14.2) serves as an
architecture of a constraint programming system.

The procedure requires that D be a fixpoint for all propagators in Pf (f for fixpoint).
The propagators included in Pn do not have this requirement (n for not at fixpoint). This
partitioning of propagators is used for incremental propagation with respect to recursive
calls to search (as discussed below).

The somewhat unusual definition of search is quite general. The default branching
strategy (also known as labeling strategy) for many problems is to choose a variable x such
that |D(x)| > 1 and explore x = minD x or x ≥ minD x+ 1. This is commonly thought
of as changing the domain D for x to either {minD x} or {n ∈ D(x) | n > minD x}.
Branching based on propagator sets for constraints allows for more general strategies, for
example x1 ≤ x2 or x1 > x2.

504 14. Finite Domain Constraint Programming Systems

search(Pf , Pn, D)
1: D ← propagate(Pf , Pn, D)
2: if D is failed domain then
3: return false
4: if ∃x ∈ V .|D(x)| > 1 then
5: choose {c1, . . . , cm} where C ∧D |= c1 ∨ · · · ∨ cm
6: for all i ∈ [1,m] do
7: if search(Pf ∪ Po, prop(ci), D) then
8: return true
9: return false

10: return true

Figure 14.2: Architecture of constraint programming system.

Note that search has two dimensions: one describes how the search tree looks and the
other describes how the search tree is explored. In the above architecture the selection of
the ci together with the selection of propagators prop(ci) for the ci describes the shape
of the search tree. The sets prop(ci) we refer to as alternatives and the collection of
all alternatives is called choice point. Completely orthogonal is how the search tree is
explored. Here, the architecture fixes exploration to be depth-first. Exploration is discussed
in more detail in 14.3.

Note that search performs incremental propagation in the following sense: when call-
ing propagate only the propagators prop(ci) for the alternatives are not known to be at a
fixpoint.

14.1.6 Implementing the Architecture

This section discusses general approaches to implementing the architecture for a constraint
programming system introduced above. The focus is on what needs to be implemented and
how the architecture (as an abstraction of a system) relates to a real system.

Detecting failure and entailment. In our architecture, failure is only detected inside
search after returning from propagate by testing whether the domain obtained by prop-
agation is failed. It is clear that a system should optimize detecting failure such that no
propagation is wasted if a domain becomes failed and that no inspection of a domain is
required to detect failure.

A typical way to make the detection of failure or entailment of a propagator more
efficient is to let the propagator not only return a domain but also some status information
describing whether propagation has resulted in a failed domain or whether the propagator
has become entailed.

Implementing domains. The architecture describes that a propagator takes a domain as
input and returns a new domain. This is too memory consuming for a real system. Instead,
a system maintains a single data structure implementing one domain and propagators up-
date this single domain when being applied.

C. Schulte, M. Carlsson 505

Inspecting propagate in Figure 14.1 it becomes clear that maintaining a single domain
is straightforward to achieve. The only reason for having a domain D and D′ is in order to
be able to identify the modified variables M .

State restoration. For propagation, systems maintain a single domain as has been argued
above. However, a single domain becomes an issues for search: when calling search re-
cursively as in Figure 14.2 and a domain is not transferred as a copy, backtracking (that is,
returning from the recursive call) needs to restore the domain.

State restoration is not limited to domains but also includes private states of propagators
and also whether propagators have become entailed. State restoration is a key service
required in a constraint programming system and is discussed in Section 14.3.2 in detail.

Finding dependent propagators. After applying a propagator, propagate must com-
pute the events (similar to the set of modified variables) in order to find all propagators that
depend on these events. Clearly, this requires that a system be able to compute the events
and find the dependent propagators efficiently.

Variables for propagators. In addition to the fact that propagators update a single do-
mains rather than returning domains, implementations need to be careful in how many
variables are referenced by a propagator. In our architecture, propagators are defined
for all variables in V . However, from the above discussion it is clear that a propagator
p is only concerned with variables input(p) ∪ output(p). Quite often, the variables in
input(p) ∪ output(p) are called the parameters of p.

A system will implement a propagator p such that it maintains its input(p)∪output(p)
in some datastructure, typically as an array or list of variables. While most of the properties
discussed for our architecture readily carry over to this extended setup, the case of multiple
occurrences of the same variable in the datastructure maintained by a propagator needs
special attention.

Multiple variable occurrences and unification. Depending on the actual system, mul-
tiple occurrences may both be common and appear dynamically. Here, dynamic means that
variable occurrences for a propagator p might become the same during some computation
not performed by p itself. This is typically the case when the constraint programming sys-
tem is embedded in a constraint logic programming host language featuring unification for
logical variables. Unification makes two variables x and y equal without the requirement
to assign the variables a particular value. In this case the variables x and y are also said to
be aliased.

The main issues with multiple occurrences of the same variable are that they make (a)
detection of idempotence and (b) achieving good propagation more difficult, as is discussed
in Section 14.2.3.

Private state. In our architecture, propagators are functions. In systems, propagators
often need to maintain some private state. Private state is for example used to achieve
incrementality, more information is given in Section 14.2.3.

506 14. Finite Domain Constraint Programming Systems

14.2 Implementing Constraint Propagation

In this section, we detail the software architecture introduced on an abstract level in Sec-
tion 14.1. This architecture can be roughly divided into domain variables, data structures
implementing the problem variables; propagators, coroutines implementing the problem
constraints by executing operations on the variables that it constrains; and propagation
services, callable by the propagators in order to achieve the overall fixpoint computation.

Domain variables and propagators form a bipartite graph: every propagator is linked to
the domain variables that it constrains, and every domain variable is linked to the propaga-
tors that constrain it.

In the following, we will not discuss issues related to the state restoration policy used,
this is discussed in Section 14.3.2.

14.2.1 Propagation Services

From an operational point of view, a constraint programming system can be described in
terms of coroutines (propagators) and events (domain changes). Propagators raise events,
which leads to other propagators being resumed, until a fixpoint is reached. The manage-
ment of events and selection (scheduling) of propagators are the main tasks of the propa-
gation services.

Events. Most integer propagation solvers use the events defined in Section 14.1.4, al-
though some systems collapse minc(x) and maxc(x) into a single event (for example,
ILOG Solver [32]). Choco [36] maintains an event queue and interleaves propagator exe-
cution with events causing more propagators to be added to the queue.

Other events than those discussed in Section 14.1.4 are also possible. For example,
neq(x, n): the variable x can no longer take the value n, that is, n ∈ D(x) and n 6∈ D′(x)
for domains D and D′. These events have been used in e.g. B-Prolog [75].

Selecting the next propagator. It is clear that the number of iterations performed by the
propagation engine shown in Figure 14.1 depends also on which propagator is selected to
be applied next. The selection policy is system-specific, but the following guiding princi-
ples can be observed:

• Events providing much information, for example fix events, yield quicker reaction
than events providing less information. This captures selecting propagators accord-
ing to expected impact.

• Propagators with low complexity, e.g. small arithmetic propagators, are given higher
priority than higher complexity propagators. This captures selecting propagators
according to cost.

• Starvation is avoided: no event or propagator should be left unprocessed for an un-
bounded amount of time (unless there is a propagator of higher priority or higher
impact to run). This is typically achieved by selecting propagators for execution in
a last-in last-out fashion (that is, maintaining the set N in Figure 14.2 as a queue).

C. Schulte, M. Carlsson 507

Most systems have some form of static priorities, typically using two priority levels (for
example, SICStus Prolog [35], Mozart [43]). The two levels are often not entirely based
on cost: in SICStus Prolog all indexicals (see Section 14.2.5) have high priority and global
constraints lower priority. While ECLiPSe [14, 28] supports 12 priority levels, its finite
domain solver also uses only two priority levels where another level is used to support
constraint debugging. A similar, but more powerful approach is used by Choco [36] using
seven priority levels allowing both LIFO and FIFO traversal.

Schulte and Stuckey describe a model for dynamic priorities based on the complexity of
a propagator in [58]. They describe how priorities can be used to achieve staged propaga-
tion: propagators dynamically change priority to first perform weak and cheap propagation
and only later perform stronger and more complex propagation. Another model for priori-
ties in constraint propagation based on composition operators is [25]. This model runs all
propagators of lower priority before switching propagation back to propagators of higher
priority.

Prioritizing particular operations during constraint propagation is important in general.
For (binary) arc consistency algorithms, ordering heuristics for the operations performed
during propagation can reduce the total number of operations required [72]. For interval
narrowing, prioritizing constraints can avoid slow convergence, see for example [38].

14.2.2 Variable Domains

In a reasonable software architecture, propagators do not manipulate variable domains
directly, but use the relevant propagation services. These services return information about
the domain or update the domain. In addition, they handle failure (the domain becomes
empty) and control propagation.

Value operations. A value operation on a variable involves a single integer as result
or argument. We assume that a variable x with D = dom(x) provides the following
value operations: x.getmin() returns min(D); x.getmax() returns max(D); x.hasval(n)
returns n ∈ D; x.adjmin(n) updates dom(x) to {m ∈ D | m ≥ n}; x.adjmax(n)
updates dom(x) to {m ∈ D | m ≤ n}; and x.excval(n) updates dom(x) to {m ∈ D |
m 6= n}. These operations are typical for finite domain constraint programming systems
like Choco, ILOG Solver, ECLiPSe, Mozart, and SICStus Prolog. Some systems provide
additional operators such as for fixing values.

Iterators. It is quite common for a propagator to iterate over all values of a given vari-
able. Suppose that i is a value iterator for some variable providing the following operations:
i.done() tests whether all values have been iterated; i.value() returns the current value; and
i.next() moves to the next value.

Domain operations. A domain operation supports simultaneous access or update of
multiple values of a variable domain. If the multiple values form a consecutive interval
[n,m], such operations need only take n and m as arguments. Many systems provide gen-
eral sets of values by supporting an abstract set type, e.g. Choco, ECLiPSe, Mozart and
SICStus Prolog. Schulte and Tack describe in [60] domain operations based on generic

508 14. Finite Domain Constraint Programming Systems

range and value iterators. Other systems like ILOG Solver only allow access by iteration
over the values of a variable domain.

Subscription. When a propagator p is created, it subscribes to its input variables. Sub-
scription guarantees that p is executed whenever the domain of one of its variables changes
according to an event. Options for representing the subscriber set of a given variable x
include the following:

1. A single suspension list of pairs Ei.pi where Ei denotes the event set for which
propagator pi requires execution. When an event on x occurs, the list is traversed
and the relevant propagators are selected for execution. Obviously, a lot of pairs that
do not match the event could be scanned.

2. Multiple suspension lists of propagators for different events. On subscription, the
propagator is placed in one of the lists. When an event on x occurs, all propagators
on the relevant lists are selected for execution. Typically, there is one list for each
event type e ∈ {fix(x),minc(x),maxc(x), any(x)} plus one list for propagators
whose event set contains both minc(x) and maxc(x). This is the design used in
Choco, ECLiPSe, Mozart, and SICStus Prolog. Other systems collapse minc(x)
and maxc(x) into a single event minmaxc(x) (for example, ILOG Solver [32] and
Gecode [24]).

3. An array of propagators, partitioned according to the various events. When an
event on x occurs, all propagators in the relevant partitions are selected for exe-
cution. This representation is particularly attractive if the possible events are e ∈
{fix(x),minmaxc(x), any(x)}, in which case the relevant partitions form a single
interval.

Domain representation. Popular representations of D = dom(X) include range se-
quences and bit vectors. A range sequence for a finite set of integers I is the shortest
sequence s = {[n1,m1] , . . . , [nk,mk]} such that I is covered

(

I = ∪ki=1 [ni,mi]
)

and
the ranges are ordered by their smallest elements (ni ≤ ni+1 for i ≤ i < k). Clearly, a
range sequence is unique, none of its ranges is empty, and mi + 1 < ni+1 for 1 ≤ i < k.
A bit vector for a finite set of integers I is a string of bits such that the ith bit is 1 iff i ∈ I .

Table 14.1 compares the worst-case complexity of the basic operations for these rep-
resentations. Range sequences are usually represented as singly or doubly linked lists.
Bit vectors are typically represented as a number of consecutive memory words, with an
implementation defined size limit, usually augmented with direct access to min(D) and
max(D). Range sequence thus seem to be more scalable to problems with large domains.

14.2.3 Propagators

A propagator p is a software entity with possibly private state (we allow ourselves to refer
to the function as well as its implementation as propagator). It (partially) implements a
constraint c over some variables or parameters. The task of a propagator is to observe
its parameters and, as soon as a value is removed from the domain of a parameter, try to
remove further values from the domains of its parameters. The algorithm employed in the

C. Schulte, M. Carlsson 509

Table 14.1: Complexity of basic operations for range sequences of length r and bit vectors
of size v augmented with explicit bounds.

Operations Range sequence Bitvector
x.getmin() O(1) O(1)
x.getmax() O(1) O(1)
x.hasval(n) O(r) O(1)
x.adjmin(n) O(r) O(1)
x.adjmax(n) O(r) O(1)
x.excval(n) O(r) O(v)
i.done() O(1) O(v)
i.value() O(1) O(1)
i.next() O(1) O(v)

process is called a filtering algorithm. Thus, the filtering algorithm is repeatedly executed
in a coroutining fashion.

The main work of a filtering algorithm consists in computing values to remove and to
perform these value removals via the value and domain operations described above. The
events raised by these operations cause other propagators to be scheduled for execution.

Life cycle. The life cycle of a propagator p is depicted in Figure 14.3. When a constraint
c is posted, its parameters are checked and subscribed to, p is created, its private state is
allocated, and it is scheduled for execution. If the constraint c is implemented by more
than one propagator, all propagators implementing c are created likewise.

One run of p has one of three possible outcomes:

• p may realize that the constraint has no solution, e.g. by a domain becoming empty.
The parameters are unsubscribed to, the private state is deallocated, and the current
search node fails.

• p may discover that the constraint holds no matter what of the remaining values are
taken by the parameters. The parameters are unsubscribed to and the private state is
deallocated,

• None of the above. p is moved to the set of suspended propagators, and will remain
there until the relevant events are raised.

Idempotent propagators. Suppose a propagator p runs and removes some values. This
raises some events, which would normally reschedule p for execution, as p subscribes to
the very variables whose domains it just pruned. But suppose now that p is idempotent.
Then by definition running p again would be useless. Thus, idempotence is a desirable
property of propagators: if p is known to be idempotent, then p itself can be excluded from
the set of propagators scheduled for execution by events raised by p.

However, guaranteeing idempotence may be a serious difficulty in the design of a fil-
tering algorithm—it is certainly more convenient to not guarantee anything and instead

510 14. Finite Domain Constraint Programming Systems

add p to suspended set add p to runnable set

some events

execute p

resume

allocate and subscribe to p

create

suspend

discard p

entail

discard p and fail

fail

Figure 14.3: Life cycle of propagator p

leave the fixpoint computation to the propagation loop, at the cost of some redundant runs
of p. Also, if the same variable occurs multiple times in the parameters, there is usually no
straightforward way to guarantee idempotence.

Most systems do not require of propagators to be idempotent; some optimize the
scheduling of propagators that are known to be idempotent. Mozart, as an exception, only
supports idempotent propagators [45].

Schulte and Stuckey describe dynamic idempotence in [58] as a generalization: a prop-
agator p signals after application whether the new domain is a fixpoint of p (similar to
signaling failure or entailment as described above).

Multiple value removals. Suppose a propagator p runs and multiple values are removed
by multiple operations from the same variable x. It would be very wasteful to traverse the
suspension list(s) of x and schedule subscribing propagators for each removal. A much
more reasonable design is to perform such traversal once per modified parameter, at the
end of executing p. Therefore, the value and domain operations described above usually
do not perform such scheduling. Instead, propagators call the relevant propagation services
near the end of the filtering algorithm.

This is already manifest in the propagate function described in Section 14.1.2: it
records the modified variables (or the events that occurred) and schedules the propagators
only after the propagator has been applied.

Amount of information available. When a propagator p is resumed, it is usually inter-
ested in knowing which values have been deleted from which parameters since last time.
The propagation services may provide part of this information, or even all of it. Of course,
there is a trade-off between the efforts spent by the propagation services maintaining this

C. Schulte, M. Carlsson 511

information and the efforts spent by the propagators discovering it. One can distinguish
three levels of granularity of the information provided to p:

coarse p is told that something has changed, but not what. This is the information provided
in SICStus Prolog and Mozart.

medium p is told which parameters have been changed. This is the information provided
in CHIP.

fine p is told which parameters have been changed, as well as the set of removed values.
This is the information provided in ILOG Solver.

Use of private state. The private state that each propagator maintains can be used for a
number of things:

auxiliary data structures Many filtering algorithms contain as components algorithms
operating on specific data structures (digraphs, bipartite graphs, heaps etc.). The
private state stores such data structures.

incrementality When a propagator is resumed, it is often the case that a single parameter
has been changed, and that a single change has been made to it. Many filtering algo-
rithms can exploit this fact and be incremental, i.e. perform its computation based on
a previous state and changes made since that state was saved. An incremental com-
putation is typically an order of magnitude cheaper than computing from scratch, but
if many changes have been made, it is not necessarily the case.

domain information Suppose that the propagation services do not provide fine-grained
information when a propagator is resumed. Nevertheless, by maintaining in its pri-
vate state a copy of the parameter domains, or some suitable abstraction, the propa-
gator can compute the required information.

fixed parameters It is often useful for a propagator of arity m to maintain a partitioning
of its parameters X into two sets Xf , whose values have been fixed, and Xv, whose
values have not yet been fixed. Most filtering algorithms focus their attention on
the set Xv. This partitioning is easily achieved by a simple array A of pointers or
indices, such that Xf occupies array elements A[1, . . . , k] and Xv array elements
A[k + 1, . . . ,m], where k = |Xf |. As a parameter is fixed, the relevant array
elements are simply swapped and k is incremented.

Multiple variable occurrences. The same variable may occur multiple times among the
parameters of a propagator p, initially as well as dynamically due to unification. This by
itself does not cause problems, except, as noted above, any guarantees of idempotence are
usually given under the assumption that no variable aliasing occurs.

Some propagators may also use variable aliasing in order to propagate more. For ex-
ample, suppose that in a propagator for the constraint x− y = z, x and y are aliased. The
propagator can then conclude z = 0, no matter what value is taken by x and y. Harvey
and Stuckey discuss multiple occurrences of the same variable for linear integer constraints
introduced by substitution in [29] and show how the amount of propagation changes with
allowing substitution.

512 14. Finite Domain Constraint Programming Systems

14.2.4 Daemons

So far, we have been assuming that an element of a suspension list is just a passive data
structure pointing at a propagator p to schedule for execution. One can extend this design
by associating with such elements a procedure called a daemon, which has access to p
and its private state. If during traversal of the suspension list a daemon is encountered,
instead of scheduling the propagator for execution, the daemon is simply run. This design
is motivated by the following reasons:

• If the propagation services do not tell propagators which parameters have been
changed, the daemon can maintain that information, since a daemon is always asso-
ciated with a given parameter.

• Scheduling and resuming a propagator often involves larger overhead than running
a daemon. If there is some simple test to determine whether the propagator can
propagate anything, then the daemon can run that test, and if successful, schedule
the propagator for execution.

• If there is some information in the private state that needs to be updated incremen-
tally as the parameters are modified, daemons are a convenient mechanism for doing
so.

Systems using daemons include CHIP, SICStus Prolog, and ILOG Solver.

14.2.5 Indexicals

Indexicals [66, 19, 15], also known as projection constraints [62], are a popular approach
to implement simple propagators using a high-level specification language.

An indexical is a propagator with a single output variable and is defined in terms of
a range expression. A constraint c(x1, . . . , xn) is then implemented by n indexicals pi.
Each indexical pi is defined by xi in ri where ri is a range expression (to be explained
later). Each of the indexicals pi has the input variables {x1, . . . , xn}.

Executing an indexical p of the form xi in ri with a current domain D computes the
projection ĉi of c onto xi from D(x1), . . . , D(xi−1), D(xi+1), . . . , D(xn). The domain
returned by p is p(D)(xi) = D(xi) ∩ ĉi and p(D)(xj) = D(xj) for all 1 ≤ i 6= j ≤ n.

Indexicals can be seen as a programming interface for fine-grained control over prop-
agation. They do not provide for the integration of sophisticated filtering algorithms for
global constraints. Figure 14.4 shows a subset of the range expressions used in SICStus
Prolog.

Example 14.9. To illustrate the use of indexicals for controlling the amount of propaga-
tion, consider the constraint x = y + c where c is assumed to be a constant. This may be
expressed with indexicals maintaining arc consistency:

(x in dom(y) + c, y in dom(x)− c)
or with indexicals maintaining bounds consistency:

(x in min(y) + c .. max(y) + c, y in min(x)− c .. max(x)− c)

C. Schulte, M. Carlsson 513

R ::= T .. T | R ∩R | R ∪R | R ? R | \R
| R+ T | R− T | R mod T | dom(x)
| a finite subset of Z

T ::= N | T + T | T − T | T ∗ T | ⌈T/T ⌉ | ⌊T/T ⌋ | T mod T
| min(x) | max(x) | card(x)

N ::= x | i, where i ∈ Z | ∞ | −∞

Figure 14.4: Range expressions in SICStus Prolog indexicals

As discussed in [66, 19, 15], range expressions for indexicals must comply with cer-
tain monotonicity rules to make sense logically and operationally (corresponding to the
properties that hold true for propagators and for propagators being the implementation of
a constraint).

14.2.6 Reification

A reified constraint (also known as meta constraint) c ↔ b reflects the truth value of the
constraint c onto a 0/1-variable b. So if c is entailed (disentailed) by the constraint store, b
is constrained to 1 (0), and if b = 1 (b = 0), c (¬c) is posted.

One way of providing reification of a class of constraints is by extending the indexical
mechanism, as proposed in [66] and implemented in SICStus Prolog [15]. Indexicals as
described above are used for posting a constraint c. For reification, however, we also need
to be able to post ¬c, and to check whether c is entailed or disentailed. This can be done
by introducing checking indexicals. A checking indexical has the same format as a regular
one, xi in ri, but instead of updating the domain for xi, it checks whether D(xi) ⊆ ĉi
holds for a given domain D.

14.3 Implementing Search

This section describes how systems implement search. As introduced in Section 14.1,
a system needs to implement branching, state restoration, and exploration. The section
discusses each of these issues in turn.

14.3.1 Branching

How a system implements branching depends in particular on whether the system is based
on a programming language that has search built-in (such as Prolog or Oz). In this case,
a branching strategy is expressed easily from the primitive of the language that controls
search. In Prolog-based systems, for example, several clauses of a predicate then define
the branching strategy. With relation to Figure 14.2, each clause corresponds to one of the
alternatives prop(ci)).

514 14. Finite Domain Constraint Programming Systems

Other languages provide special constructs that allow to express several alternatives.
OPL, for example, offers a try-statement with several clauses corresponding to the al-
ternatives [69]. A similar approach is taken in Oz, where a choice-statement serves the
same purpose [63, 54]. For Oz, Schulte gives in [54] a reduction to a primitive that only
allows one to assign an integer to a variable.

If the underlying language does not have search built-in (such as for libraries built on
top of C++) systems provide some other means to describe a choice point. ILOG Solver [32],
for example, provides the concept of a choice point (some data structure), which consists of
several alternatives called goals. Goals themselves can be composed from several subgoals.

A common pattern for branching strategies is to select a particular not-yet fixed variable
x according to some criteria. A common example is first-failure branching, which selects a
variable with smallest domain. Here it is important to understand what the strategy does in
case of ties: which one of the possibly many variables with a smallest domain is selected.
For example, Wallace, Schimpf, et al. note in [71] that comparing search in systems can
be particularly difficult due to a different treatment of ties in different systems.

14.3.2 State Restoration

As described in Section 14.1.6 search requires that a previous state of the system can
be restored. The state includes the domain of the variables, propagators (for example,
propagators that became entailed need to be restored), and private state of propagators.

Exploration (to be discussed in Section 14.3.3) creates a search tree where the nodes
of the search tree correspond to the state of the system. In relation to search as shown in
Figure 14.2, a new node is defined by each recursive invocation of search.

Systems use basically three different approaches to state restoration (the term state
restoration has been coined by Choi, Henz, et al. in [18]):

copying A copy of a node is created before the node is changed.

trailing Changes to nodes are recorded such that they can be undone later.

recomputation If needed, a node is recomputed from scratch.

Expressiveness. The main difference as it comes to expressiveness is the number of
nodes that are simultaneously available for further exploration. With copying, all nodes
that are created as copies are directly ready for further exploration. With trailing, explo-
ration can only continue at a single node at a time.

In principle, trailing does not exclude exploration of multiple nodes. However, they
can be explored in an interleaved fashion only and switching between nodes is a costly
operation.

Having more than a single node available for exploration is essential to search strategies
like concurrent, parallel, or breadth-first.

Trailing. A trailing-based system uses a trail to store undo information. Prior to per-
forming a state-changing operation, information to reconstruct the state is stored on the
trail. In a concrete implementation, the state changing operations considered are updates
of memory locations. If a memory update is performed, the location’s address and its old
content is stored on the trail. To this kind of trail we refer as single-value trail. Starting

C. Schulte, M. Carlsson 515

exploration from a node puts a mark on the trail. Undoing the trail restores all memory
locations up to the previous mark. This is essentially the technology used in Warren’s
Abstract Machine [74, 8].

In the context of trailing-based constraint programming systems two further techniques
come into play:

time-stamping With finite domains, the domain of a variable can be narrowed multiple
times. However it is sufficient to trail only the original value, intermediate values
need no restoration: each location needs to appear at most once on the trail. Other-
wise memory consumption is no longer bounded by the number of changed locations
but by the number of state-changing operations performed. To ensure this property,
time-stamping is used: as soon as an entity is trailed, the entity is stamped to prevent
it from further trailing until the stamp changes again.

The time-stamp changes every time a new mark is put on the trail. Note that time-
stamping concerns both the operations and the data structures that must contain the
time-stamp.

multiple-value trail A single-value trail needs 2n entries for n changed locations. A
multiple value trail uses the optimization that if the contents of n > 1 successive
locations are changed, n+ 2 entries are added to the trail: one for the first location’s
address, a second entry for n, and n entries for the locations’ values.

For a discussion of time-stamps and a multiple value trail in the context of the CHIP
system, see [1, 3].

Copying. Copying needs for each data structure a routine that creates a copy and also
recursively copies contained data structures. A system that features a copying garbage
collector already provides almost everything needed to implement copying. For example
in the Mozart implementation of Oz [43], copying and garbage collection share the same
routines parameterized by a flag that signals whether garbage collection is performed or
whether a node is being copied.

By this all operations on data structures are independent of search with respect to both
design and implementation. This makes search in a system an orthogonal issue.

Discussion. Trailing is the predominating approach used for state restoration in finite
domain constraint programming systems. Clearly, all Prolog-based systems use trail-
ing but also most other systems with the exception of Oz/Mozart [43], Figaro [31], and
Gecode [24].

Trailing requires that all operations be search-aware: search is not an orthogonal issue
to the rest of the system. Complexity in design and implementation is increased: it is a
matter of fact that a larger part of a system is concerned with operations rather than with
basic data structure management. A good design that encapsulates update operations will
avoid most of the complexity. To take advantage of multiple value trail entries, however,
operations require special effort in design and implementation.

Semantic backtracking as an approach to state restoration that exploits the semantics of
an underlying solver for linear constraints over the reals is used in CLP(R) [33] and also
in [65]. Semantic backtracking stores constraints that are used to reestablish an equivalent

516 14. Finite Domain Constraint Programming Systems

state of the system rather than trailing all changes to the underlying constraints. By this the
approach can be seen as a hybrid between trailing and recomputation. A similar technique
is used by Régin in [51], where the author describes how to maintain arc consistency by
restoring equivalent states rather than identical states.

Recomputation. Recomputation trades space for time, a node is reconstructed on de-
mand by redoing constraint propagation. The space requirements are obviously low: only
the path in the search tree leading to the node must be stored. Basing exploration on re-
computation alone is infeasible. Suppose a complete binary search tree of height n, which
has 2n leafs. To recompute a single leaf, n exploration steps are needed. This gives a total
of n2n exploration steps compared to 2n+1 − 2 exploration steps without recomputation
(that is, the number of arcs).

The basic idea of combining recomputation with copying or trailing is as follows: copy
(or start trailing) a node from time to time during exploration. Recomputation then can
start from the last copied (or trailed) node on the path to the root. The implementation of
recomputation is straightforward, see [56, 54] for example.

If exploration exhibits a failed node it is quite likely that not only a single node is failed
but that an entire subtree is failed. It is unlikely that only the last decision made in explo-
ration was wrong. This suggests that as soon as a failed node occurs during exploration,
the attitude for further exploration should become more pessimistic. Adaptive recompu-
tation [54] takes a pessimistic attitude by creating intermediate copies as follows: during
recomputation an additional copy is created at the middle of the path for recomputation.

Performance of recomputation depends critically on the amount of information stored
for the path. In naive recomputation, the path is stored as a list of integers identifying which
alternative (that is, the i in prop(ci)) needs to be recomputed. While this makes the space
requirements for recomputation problem independent, n fixpoints need to be computed for
a path of length n.

In batch recomputation [18], the alternatives prop(ci) are stored. To recompute a
node it is sufficient to compute a single fixpoint. Batch recomputation is shown to be
considerably more efficient than naive recomputation in [18]. Decomposition-based search
as a similar idea to batch recomputation is reported by Michel and Van Hentenryck in [41].
Here also the alternatives rather than just integers are stored for recomputation.

14.3.3 Exploration

The architecture for search in a finite domain constraint programming system described in
Section 14.1.5 only considers left-most depth-first exploration of the search tree. Clearly,
systems offer more exploration strategies to allow for example search for a best solution.
A few systems also provide abstractions from which new exploration strategies can be
programmed.

Predefined exploration strategies. All Prolog-based languages systems support single-
and all-solution search following depth-first exploration as sketched in Section 14.1.5.
Best-solution search is controlled by a single cost variable and amounts to search for a
solution with smallest or largest cost. CLP-based systems offer an interactive toplevel for
controlling exploration that allows the user to prompt for multiple solutions. The inter-
active toplevel cannot be used within programs. ECLiPSe provides visual search through

C. Schulte, M. Carlsson 517

the Grace tool [39] and other strategies such as LDS [30] and time and resource bounded
search.

ILOG Solver [32] and OPL [64] offer LDS [30], DDS [73], and IDFS [40]. Best-
solution search in ILOG Solver also uses a cost variable. To avoid recomputation of the
best solution, the program must be modified to explicitly store solutions. Search in ILOG
Solver is incremental in that solutions can be computed on request.

Programming exploration. The first system to offer support for programming explo-
ration has been Oz/Mozart. Schulte and Smolka introduce the solve combinator in [57],
which allows to program exploration based on the idea of having a first-class representation
of nodes in the search tree. Schulte describes computation spaces as a refinement [56, 54]
of the solve combinator, which also allows to program strategies supporting recomputa-
tion and parallel execution. Computation spaces have been used to realize user-controlled
interactive search [55] and parallel search on networked computers [53]. Curry [27] offers
the same programming model as the solve combinator.

Another system providing support for programming exploration is ILOG Solver [32]
(OPL [64] offers an equivalent model for programming exploration). Programming ex-
ploration in ILOG Solver is based on limits and node evaluators [47, 69]. Programmable
limits allow to stop exploration (time limit, for example). Node evaluators map search tree
nodes to priorities. Node priorities determine the exploration order of nodes. Additionally,
a special priority discards nodes.

ILOG Solver supports switching between arbitrary nodes in the search tree by full
recomputation. For example, best-first search needs to switch between arbitrary nodes. To
limit the amount of switching, Solver uses an additional threshold value. Only if the cost
improvement exceeds the threshold, nodes are switched. This results in an approximation
of best-first search. Fully interactive exploration is not feasible with full recomputation.

SALSA [37] is a language for the specification of search algorithms that cover ex-
ploration strategies for tree search as well as neighborhood-based search (local search).
SALSA requires a host language that supports search (for example, Claire [16]) as compi-
lation target.

14.4 Systems Overview

This section discusses different approaches used for finite domain programming systems
and a brief overview of existing systems.

14.4.1 Approaches

Several approaches and systems have been suggested to solve combinatorial problems with
finite domain constraints. Historically, many systems have been implemented by embed-
ding into an existing Prolog host system. There are many reasons for such an approach:

1. Much of the required infrastructure of the constraint solver is provided by the host
language: data structures, memory management, support for search and backtrack-
able updates.

518 14. Finite Domain Constraint Programming Systems

2. The high level and declarative nature of Prolog makes it a reasonable choice of lan-
guage for expressing combinatorial problems.

From the point of view of writing applications in mainstream object-oriented program-
ming languages such as C++ and Java, although they can readily interface to modules writ-
ten in other languages, providing a constraint solver as a class library is arguably a more
attractive approach. This requires a larger implementation effort to provide the necessary
infrastructure, but also gives more opportunities for optimization, as there are no design
constraints imposed by a host system.

14.4.2 Prominent Systems

This section gives a brief overview of some finite domain constraint programming systems.
As it is impossible to cover all systems that exist or have existed, we have selected systems
that introduced some new ground-breaking ideas or that are prominent in other ways. The
systems are partitioned into autonomous systems and library systems.

Autonomous systems

B-Prolog [75]. Extends a Prolog virtual machine with instructions for constraint propa-
gation. Introduces action rules, a generalization of indexicals.

cc(FD) [66, 67, 68]. A representative of the concurrent and glass-box constraint pro-
gramming research directions. Significant contributions include indexicals and constraint
combinators.

clp(FD) [22, 19]. A representative of the approach of extending a Prolog virtual ma-
chine [74] with instructions for constraint propagation. Uses indexicals. Precursor of GNU
Prolog.

CHIP [1, 2, 3]. A Prolog system with a constraint solver written in C. A pioneer in the
global constraints research area [4, 11]. Provides a rich set of global constraints. Also
available as C/C++ libraries.

ECLiPSe [70, 5, 14]. A Prolog system with constraint solving based on a general corou-
tining mechanism and attributed variables. A pioneer in the areas of integration with MIP
solvers such as CPLEX and XPRESS-MP and using hybrid methods for constraint solv-
ing [61].

GNU Prolog [20, 21]. The successor of clp(FD), compiles Prolog programs with con-
straints to native binaries, extending a Prolog virtual machine [74] with instructions for
constraint propagation. Uses indexicals.

Mozart [63, 43]. A development platform based on the Oz language, mixing logic, con-
straint, object-oriented, concurrent, distributed, and multi-paradigm programming. Search
in Mozart is based on copying and recomputation.

C. Schulte, M. Carlsson 519

Nicolog [62]. Extends a Prolog virtual machine with instructions for constraint propaga-
tion. Introduces projection constraints, extending indexicals with conditional expressions
and tests.

PaLM [34]. PaLM (Propagation and Learning with Move) is a constraint programming
system, based on the Choco constraints library. Its most important contributions are its
explanation-based features, which can be used to control the search as well as provide
answers to questions such as:

• Why does my problem not have any solution?

• Why can variable x not take value a in a solution?

• Why is variable x currently assigned to a?

SICStus Prolog [35, 15]. A Prolog system with constraint solving based on a general
coroutining mechanism and attributed variables. Constraint solver written in C using global
constraints as well as indexicals.

Library systems

CHIP [1, 2, 3]. C/C++ library version of the CHIP constraint solver as described above.

Choco [36]. A constraint solver kernel, originally written in the Claire programming lan-
guage. A more recent Java version is available. Designed to be a platform for CP research,
allowing for easy extensions and experimentation with event handling and scheduling poli-
cies. A library of global constraints, Iceberg, is available.

FaCiLe [9]. A constraint programming library written in OCaml, featuring constraints
over integer as well as integer set finite domains.

Gecode [24, 58, 60]. A constraint solver library implemented in C++. Designed to be not
used directly for modeling but for interfacing to systems offering modeling support (for
example, Alice [6] an extension to Standard ML, interfaces to Gecode). Gecode is based
on copying and recomputation rather than trailing.

ILOG Solver and JSolver [32]. A constraint solver library tightly integrated into the C++

and Java languages. Features constraints over integer as well as integer set finite domains.
A pioneer in constraint solver libraries and in integrating constraint and object-oriented
programming.

14.5 Outlook

Finite-domain constraint programming systems have proven useful tools for solving many
problems in a wide range of application areas. As witnessed by this chapter many useful
techniques for the implementation of constraint systems are available, both for constraint
propagation as well as for search.

520 14. Finite Domain Constraint Programming Systems

However, due to the change of available hardware platforms, the advent of new meth-
ods for problem solving and new constraints and propagators, and new requirements for
systems, it is quite clear that the development of constraint programming systems will be
faced with many new and difficult challenges. Some of the challenges are as follows.

Parallelism. Search for constraint programming offers great potential for parallelism:
rather than exploring a single node at a time, explore several nodes of the search tree in
parallel. There has been considerable work in the area of parallel search in general and
parallel search for logic programming in particular [17, 26], however only little attention
has been given to parallel search for constraint programming: only few systems support
parallel search (ECLiPSe [44, 50], ILOG Solver [47], and Mozart [53, 54]) and only little
experience in using parallel search for solving real-life problems is available [46, 48].

This is in sharp contrast to the fact that solving constraint problems is difficult and par-
allel computers are commodities. Networked computers are available everywhere and are
mostly being idle. Pretty much all desktop machines sold in the next few years will feature
processors providing parallel execution by multiple processing cores. The challenge for
systems is to exploit the resources provided by parallel computers and making their useful
exploitation simple.

Hybrid architectures. Propagation-based constraint programming is clearly not the only
approach for solving combinatorial optimization problems. Other approaches such as inte-
ger programming and local search have shown their potential and even hybrid approaches
are emerging. The questions for a system is how to best combine and provide services
based on different approaches. One of the key questions is of course how tight the integra-
tion can and should be. Shen and Schimpf discuss the integration of linear integer solvers
in ECLiPSe in [61].

Correctness. The last decade has seen the advent of an ever increasing number of pow-
erful filtering algorithms used in propagators for the implementation of global constraints.
However, implementing these propagators is typically complex and it is far from obvious
that an implementation is actually correct for a given constraint. Additionally, taking ad-
vantage of properties such as idempotence and entailment add additional complexity to the
implementation.

Ideally, a system should only offer propagators that are known to be correct. So far,
a systematic methodology for proving correctness of these algorithms is missing. Worse
still, even approaches for the systematic testing with sufficient coverage for propagators are
not available. Correctness is important as the usefulness of constraint programming relies
on the very fact that what is computed by a system is actually a solution to the problem
solved.

Open interfaces. Today’s development and deployment of constraint-based applications
is often system specific: a programmer develops a constraint-based solution to a problem
and integrates it into some larger software system. Development is system-specific as
the model used can not easily be ported or adapted to a different system. Deployment
is system-specific as many systems (notably language-based systems) require quite some
effort for integrating constraint-based components into larger software systems.

C. Schulte, M. Carlsson 521

The challenge is to devise open interfaces such that the same model can be used with
many different systems without any porting effort and that the integration into software
systems is easy. The former issue is partly addressed by using modeling languages such as
OPL [64] or ESRA [23], for example. Modeling languages, however, only address part of
the challenge as different systems offer vastly different services (think of what collection
of global constraints systems support).

Richer coordination. One of the beauties of constraint programming is the simplicity
of how constraint propagation can be coordinated: propagators are connected by variables
acting as simple communication channels enjoying strong properties such as being de-
creasing. The beauty comes at the price of making communication low-level: only value
removal is communicated.

The challenge is to provide richer communication to achieve stronger propagation. A
potential candidate for communication are graph properties expressing information on a
collection of constraints. Another approach, which chooses propagators for constraints
to minimize propagation effort while retaining search effort, is based on properties that
characterize the interaction among several constraints sharing variables [59].

Acknowledgments

The authors are grateful to Peter Stuckey for much of the material in Section 14.1, which
is based on joint work by Peter Stuckey and Christian Schulte. Martin Henz, Mikael
Lagerkvist, and Peter Stuckey provided helpful comments, which considerably improved
this chapter. The authors thank Pascal Van Hentenryck for convincing them to give an
invited tutorial at CP 2002 on finite domain constraint programming systems, which has
served as a starting point for this chapter. Christian Schulte is partially funded by the
Swedish Research Council (VR) under grant 621-2004-4953.

Bibliography

[1] Abderrahmane Aggoun and Nicolas Beldiceanu. Time Stamps Techniques for the
Trailed Data in Constraint Logic Programming Systems. In S. Bourgault and
M. Dincbas, editors, Actes du Séminaire 1990 de programmation en Logique, pages
487–509, Trégastel, France, May 1990. CNET, Lannion, France.

[2] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP Compiler
System. In Koichi Furukawa, editor, Proceedings of the Eight International Con-
ference on Logic Programming, pages 775–788, Paris, France, June 1991. The MIT
Press.

[3] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP compiler
system. In Frédéric Benhamou and Alain Colmerauer, editors, Constraint Logic Pro-
gramming: Selected Research, pages 421–437. The MIT Press, Cambridge, MA,
USA, 1993.

[4] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve
complex scheduling and placement problems. Journal of Mathematical and Com-
puter Modelling, 17(7):57–73, 1993.

522 14. Finite Domain Constraint Programming Systems

[5] Abderrahmane Aggoun, David Chan, Pierre Dufresne, Eamon Falvey, Hugh Grant,
Warwick Harvey, Alexander Herold, Geoffrey Macartney, Micha Meier, David
Miller, Shyam Mudambi, Stefano Novello, Bruno Perez, Emmanuel Van Rossum,
Joachim Schimpf, Kish Shen, Periklis Andreas Tsahageas, and Dominique Henry de
Villeneuve. ECLiPSe 5.0. User manual, IC Parc, London, UK, November 2000.

[6] Alice Team. The Alice system, 2003. Programming Systems Lab, Universität des
Saarlandes. Available from www.ps.uni-sb.de/alice/.

[7] Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[8] Hassan Aı̈t-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. Logic
Programming Series. The MIT Press, Cambridge, MA, USA, 1991.

[9] Nicolas Barnier and Pascal Brisset. FaCiLe: a functional con-
straint library. ALP Newsletter, 14(2), May 2001. Available from
www.recherche.enac.fr/opti/facile/.

[10] Peter Van Beek, editor. Eleventh International Conference on Principles and Practice
of Constraint Programming. Lecture Notes in Computer Science. Springer-Verlag,
Sitges, Spain, October 2005.

[11] Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in CHIP.
Journal of Mathematical and Computer Modelling, 20(12):97–123, 1994.

[12] Nicolas Beldiceanu, Warwick Harvey, Martin Henz, François Laburthe, Eric Mon-
froy, Tobias Müller, Laurent Perron, and Christian Schulte. Proceedings of TRICS:
Techniques foR Implementing Constraint programming Systems, a post-conference
workshop of CP 2000. Technical Report TRA9/00, School of Computing, National
University of Singapore, 55 Science Drive 2, Singapore 117599, September 2000.

[13] Frederic Benhamou. Heterogeneous Constraint Solving. In Proceedings of the Fifth
International Conference on Algebraic and Logic Programming (ALP’96), LNCS
1139, pages 62–76, Aachen, Germany, 1996. Springer-Verlag.

[14] Pascal Brisset, Hani El Sakkout, Thom Frühwirth, Warwick Harvey, Micha Meier,
Stefano Novello, Thierry Le Provost, Joachim Schimpf, and Mark Wallace. ECLiPSe
Constraint Library Manual 5.8. User manual, IC Parc, London, UK, February 2005.

[15] Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain
constraint solver. In Hugh Glaser, Pieter H. Hartel, and Herbert Kuchen, editors,
Programming Languages: Implementations, Logics, and Programs, 9th International
Symposium, PLILP’97, volume 1292 of Lecture Notes in Computer Science, pages
191–206, Southampton, UK, September 1997. Springer-Verlag.

[16] Yves Caseau, François-Xavier Josset, and François Laburthe. CLAIRE: Combin-
ing sets, search and rules to better express algorithms. In Danny De Schreye, edi-
tor, Proceedings of the 1999 International Conference on Logic Programming, pages
245–259, Las Cruces, NM, USA, November 1999. The MIT Press.

[17] Jacques Chassin de Kergommeaux and Philippe Codognet. Parallel logic program-
ming systems. ACM Computing Surveys, 26(3):295–336, September 1994.

[18] Chiu Wo Choi, Martin Henz, and Ka Boon Ng. Components for state restoration in
tree search. In Toby Walsh, editor, Proceedings of the Seventh International Con-
ference on Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, vol. 2239. Springer Verlag, 2001.

[19] Philippe Codognet and Daniel Diaz. Compiling constraints in clp(FD). The Jour-
nal of Logic Programming, 27(3):185–226, June 1996.

C. Schulte, M. Carlsson 523

[20] Daniel Diaz and Philippe Codognet. GNU prolog: Beyond compiling Prolog to C.
In Enrico Pontelli and Vı́tor Santos Costa, editors, Practical Aspects of Declarative
Languages, Second International Workshop, PADL 2000, volume 1753 of Lecture
Notes in Computer Science, pages 81–92, Boston, MA, USA, January 2000. Springer-
Verlag.

[21] Daniel Diaz and Philippe Codognet. Design and implementation of the GNU prolog
system. Journal of Functional and Logic Programming, 2001(6), 2001.

[22] Daniel Diaz and Philippe Codognet. A minimal extension of the WAM for clp(FD).
In David S. Warren, editor, Proceedings of the Tenth International Conference on
Logic Programming, pages 774–790, Budapest, Hungary, June 1993. The MIT Press.

[23] Pierre Flener, Justin Pearson, and Magnus Ågren. Introducing ESRA, a relational
language modelling combinatorial problems. In Maurice Bruynooghe, editor, Logic
Based Program Synthesis and Transformation: 13th International Symposium, vol-
ume 3108 of Lecture Notes in Computer Science, pages 214–229, Uppsala, Sweden,
August 2004. Springer-Verlag.

[24] Gecode. Gecode: Generic constraint development environment, 2005. Available
from www.gecode.org.

[25] Laurent Granvilliers and Eric Monfroy. Implementing constraint propagation by com-
position of reductions. In ICLP’03, volume 2916 of Lecture Notes in Computer Sci-
ence, pages 300–314. Springer-Verlag, 2003.

[26] Gopal Gupta, Enrico Pontelli, Khayri Ali, Mats Carlsson, and Manuel Hermenegildo.
Parallel execution of Prolog programs. ACM Transactions on Programming Lan-
guages and Systems, 23(4):472–602, July 2001.

[27] Michael Hanus. A unified computation model for functional and logic programming.
In Neil D. Jones, editor, The 24th Symposium on Principles of Programming Lan-
guages, pages 80–93, Paris, France, January 1997. ACM Press.

[28] Warwick Harvey. Personal communication, April 2004.
[29] Warwick Harvey and Peter J. Stuckey. Improving linear constraint propagation by

changing constraint representation. Constraints, 7:173–207, 2003.
[30] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Chris S.

Mellish, editor, Fourteenth International Joint Conference on Artificial Intelligence,
pages 607–615, Montréal, Québec, Canada, August 1995. Morgan Kaufmann Pub-
lishers.

[31] Martin Henz, Tobias Müller, and Ka Boon Ng. Figaro: Yet another constraint pro-
gramming library. In Inês de Castro Dutra, Vı́tor Santos Costa, Gopal Gupta, En-
rico Pontelli, Manuel Carro, and Peter Kacsuk, editors, Parallelism and Implementa-
tion Technology for (Constraint) Logic Programming, pages 86–96, Las Cruces, NM,
USA, December 1999. New Mexico State University.

[32] ILOG S.A. ILOG Solver 6.0: Reference Manual. Gentilly, France, October 2003.
[33] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(R)

language and system. Transactions on Programming Languages and Systems, 14(3):
339–395, 1992.

[34] Narendra Jussien and Vincent Barichard. The PaLM system: explanation-based con-
straint programming. In Beldiceanu et al. [12], pages 118–133.

[35] Intelligent Systems Laboratory. SICStus Prolog user’s manual, 3.12.1. Technical
report, Swedish Institute of Computer Science, Box 1263, 164 29 Kista, Sweden,
April 2005.

524 14. Finite Domain Constraint Programming Systems

[36] François Laburthe. CHOCO: implementing a CP kernel. In Beldiceanu et al. [12],
pages 71–85.

[37] François Laburthe and Yves Caseau. SALSA: A language for search algorithms. In
Michael Maher and Jean-François Puget, editors, Proceedings of the Fourth Interna-
tional Conference on Principles and Practice of Constraint Programming, volume
1520 of Lecture Notes in Computer Science, pages 310–324, Pisa, Italy, October
1998. Springer-Verlag.

[38] Olivier Lhomme, Arnaud Gotlieb, and Michel Rueher. Dynamic optimization of
interval narrowing algorithms. The Journal of Logic Programming, 37(1–3):165–
183, 1998.

[39] Micha Meier. Debugging constraint programs. In Montanari and Rossi [42], pages
204–221.

[40] Pedro Meseguer. Interleaved depth-first search. In Pollack [49], pages 1382–1387.
[41] Laurent Michel and Pascal Van Hentenryck. A decomposition-based implementa-

tion of search strategies. ACM Transactions on Computational Logic, 5(2):351–383,
2004.

[42] Ugo Montanari and Francesca Rossi, editors. Proceedings of the First International
Conference on Principles and Practice of Constraint Programming, volume 976 of
Lecture Notes in Computer Science. Springer-Verlag, Cassis, France, September
1995.

[43] Mozart Consortium. The Mozart programming system, 1999. Available from
www.mozart-oz.org.

[44] Shyam Mudambi and Joachim Schimpf. Parallel CLP on heterogeneous networks. In
Pascal Van Hentenryck, editor, Proceedings of the Eleventh International Conference
on Logic Programming, pages 124–141. The MIT Press, Santa Margherita Ligure,
Italy, 1994.

[45] Tobias Müller. Constraint Propagation in Mozart. Doctoral dissertation, Universität
des Saarlandes, Fakultät für Mathematik und Informatik, Fachrichtung Informatik,
Im Stadtwald, 66041 Saarbrücken, Germany, 2001.

[46] Claude Le Pape, Laurent Perron, Jean-Charles Régin, and Paul Shaw. Robust and
parallel solving of a network design problem. In Eigth International Conference on
Principles and Practice of Constraint Programming, volume 2470 of Lecture Notes
in Computer Science, pages 633–648, Ithaca, NY, USA, September 2002. Springer-
Verlag.

[47] Laurent Perron. Search procedures and parallelism in constraint programming. In
Joxan Jaffar, editor, Proceedings of the Fifth International Conference on Principles
and Practice of Constraint Programming, volume 1713 of Lecture Notes in Computer
Science, pages 346–360, Alexandra, VA, USA, October 1999. Springer-Verlag.

[48] Laurent Perron. Practical parallelism in constraint programming. In Narendra Jussien
and François Laburthe, editors, Proceedings of the Fourth International Workshop on
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimisation Problems (CP-AI-OR’02), pages 261–275, Le Croisic, France, March,
25–27 2002.

[49] Martha E. Pollack, editor. Fifteenth International Joint Conference on Artificial In-
telligence. Morgan Kaufmann Publishers, Nagoya, Japan, August 1997.

[50] Steven Prestwich and Shyam Mudambi. Improved branch and bound in constraint
logic programming. In Montanari and Rossi [42], pages 533–548.

C. Schulte, M. Carlsson 525

[51] Jean-Charles Régin. Maintaining arc consistency algorithms during the search with-
out additional cost. In Beek [10], pages 520–533.

[52] Pierre Savéant. Constraint reduction at the type level. In Beldiceanu et al. [12], pages
16–29.

[53] Christian Schulte. Parallel search made simple. In Beldiceanu et al. [12], pages
41–57.

[54] Christian Schulte. Programming Constraint Services, volume 2302 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, Germany, 2002.

[55] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee Naish,
editor, Proceedings of the Fourteenth International Conference on Logic Program-
ming, pages 286–300, Leuven, Belgium, July 1997. The MIT Press.

[56] Christian Schulte. Programming constraint inference engines. In Gert Smolka, edi-
tor, Proceedings of the Third International Conference on Principles and Practice of
Constraint Programming, volume 1330 of Lecture Notes in Computer Science, pages
519–533, Schloß Hagenberg, Linz, Austria, October 1997. Springer-Verlag.

[57] Christian Schulte and Gert Smolka. Encapsulated search in higher-order concurrent
constraint programming. In Maurice Bruynooghe, editor, Logic Programming: Pro-
ceedings of the 1994 International Symposium, pages 505–520, Ithaca, NY, USA,
November 1994. The MIT Press.

[58] Christian Schulte and Peter J. Stuckey. Speeding up constraint propagation. In Mark
Wallace, editor, Tenth International Conference on Principles and Practice of Con-
straint Programming, volume 3258 of Lecture Notes in Computer Science, pages
619–633, Toronto, Canada, September 2004. Springer-Verlag.

[59] Christian Schulte and Peter J. Stuckey. When do bounds and domain propagation lead
to the same search space? Transactions on Programming Languages and Systems,
27(3):388–425, May 2005.

[60] Christian Schulte and Guido Tack. Views and iterators for generic constraint imple-
mentations. In Beek [10], pages 817–821.

[61] Kish Shen and Joachim Schimpf. Eplex: An interface to mathematical programming
solvers for constraint logic programming languages. In Beek [10], pages 622–636.

[62] Gregory Sidebottom. A Language for Optimizing Constraint Propagation. PhD the-
sis, Simon Fraser University, 1993.

[63] Gert Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer
Science Today, volume 1000 of Lecture Notes in Computer Science, pages 324–343.
Springer-Verlag, Berlin, 1995.

[64] Pascal Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, Cambridge, MA, USA, 1999.

[65] Pascal Van Hentenryck and Viswanath Ramachandran. Backtracking without trailing
in clp(r-lin). ACM Trans. Program. Lang. Syst., 17(4):635–671, 1995.

[66] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Constraint processing in
cc(FD). Manuscript, 1991.

[67] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation
and evaluation of the constraint language cc(FD). In Andreas Podelski, editor, Con-
straint Programming: Basics and Trends, volume 910 of Lecture Notes in Computer
Science, pages 293–316. Springer-Verlag, 1995.

[68] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation,
and evaluation of the constraint language cc(FD). The Journal of Logic Programming,

526 14. Finite Domain Constraint Programming Systems

37(1–3):139–164, October 1998.
[69] Pascal Van Hentenryck, Laurent Perron, and Jean-François Puget. Search and strate-

gies in OPL. ACM Transactions on Computational Logic, 1(2):285–320, October
2000.

[70] Mark Wallace, Stefano Novello, and Joachim Schimpf. Eclipse: A platform for con-
straint logic programming. Technical report, IC-Parc, Imperial College, London, GB,
August 1997.

[71] Mark Wallace, Joachim Schimpf, Kish Shen, and Warwick Harvey. On benchmarking
constraint logic programming platforms. Constraints, 9(1):5–34, 2004.

[72] Richard J. Wallace and Eugene C. Freuder. Ordering heuristics for arc consistency
algorithms. In Ninth Canadian Conference on Artificial Intelligence, pages 163–169,
Vancouver, Canada, 1992.

[73] Toby Walsh. Depth-bounded discrepancy search. In Pollack [49], pages 1388–1393.
[74] David H. D. Warren. An abstract Prolog instruction set. Technical Note 309, SRI

International, Artificial Intelligence Center, Menlo Park, CA, USA, October 1983.
[75] Neng-Fa Zhou. Programming finite-domain constraint propagators in action rules.

Theory and Practice of Logic Programming, 6(1):1–26, 2006. To appear.

Handbook of Constraint Programming 527
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 15

Operations Research Methods in
Constraint Programming

John N. Hooker

A number of operations research (OR) methods have found their way into constraint pro-
gramming (CP). This development is entirely natural, since OR and CP have similar goals.

OR is essentially a variation on the scientific practice of mathematical modeling. It
describes phenomena in a formal language that allows one to deduce consequences in a
rigorous way. Unlike a typical scientific model, however, an OR model has a prescriptive as
well as a descriptive purpose. It represents a human activity with some freedom of choice,
rather than a natural process. The laws of nature become constraints that the activity must
observe, and the goal is to maximize some objective subject to the constraints.

CP’s constraint-oriented approach to problem solving poses a prescriptive modeling
task very similar to that of OR. CP historically has been less concerned with finding optimal
than feasible solutions, but this is a superficial difference. It is to be expected, therefore,
that OR methods would find application in solving CP models.

There remains a fundamental difference, however, in the way that CP and OR under-
stand constraints. CP typically sees a constraint as a procedure, or at least as invoking
a procedure, that operates on the solution space, normally by reducing variable domains.
OR sees a constraint set as a whole cloth; the solution algorithm operates on the entire
problem rather than the constraints in it. Both approaches have their advantages. CP can
design specialized algorithms for individual constraints or subsets of constraints, thereby
exploiting substructure in the problem that OR methods are likely to miss. OR algorithms,
on the other hand, can exploit global properties of the problem that CP can only partially
capture by propagation through variable domains.

15.1 Schemes for Incorporating OR into CP

CP’s unique concept of a constraint governs how OR methods may be imported into CP.
The most obvious role for an OR method is to apply it to a constraint or subset of con-
straints in order to reduce variable domains. Thus if the constraints include some linear

B.V.

528 15. Operations Research Methods in Constraint Programming

inequalities, one can minimize or maximize a variable subject to those inequalities, thereby
possibly reducing the variable’s domain. The minimization or maximization problem is a
linear programming (LP) problem, which is an OR staple.

This is an instance of the most prevalent scheme for bringing OR into CP: create a
relaxation of the CP problem in the form of an OR model, such as an LP model. Solution
of the relaxation then contributes to domain reduction or helps guide the search. Other OR
models that can play this role include mixed integer linear programming (MILP) models
(which can themselves be relaxed), Lagrangean relaxations, and dynamic programming
models. OR has also formulated specialized relaxations for a wide variety of common
situations and provides tools for relaxing global constraints.

A relaxation provides several benefits to a CP solver. (a) It can tighten bounds on a
variable. (b) Its solution may happen to be feasible in the original problem. (c) If not, the
solution can guide the search in a promising direction. (d) The solution may allow one to
filter domains in other ways, for instance by using reduced costs or Lagrange multipliers,
or by examining the state space in dynamic programming. (e) In optimization problems,
the solution can provide a bound on the optimal value that can be used to prune the search
tree. (f) More generally, by pooling relaxations of several constraints in a single OR-based
relaxation, one can exploit global properties of the problem that are only partially captured
by constraint propagation.

Other hybridization schemes decompose the problem so that CP and OR can attack
the parts of the problem to which they are best suited. To date, the schemes receiving
the most attention have been branch-and-price algorithms and generalizations of Benders
decomposition. CP-based branch and price typically uses CP for “column generation”; that
is, to identify variables that should be added dynamically to improve the solution during a
branching search. Benders decomposition often uses CP for “row generation”; that is, to
generate constraints (nogoods) that direct the main search procedure.

OR/CP combinations of all three types can bring substantial computational benefits.
Table 15.1 lists a sampling of some of the more impressive results. These represent only a
small fraction, however, of hybrid applications; over 70 are cited in this chapter.

Even this collection omits entire areas of OR/CP cooperation. One is the use of con-
cepts from operations research to design filters for certain global constraints, such as the
application of matching and network flow theory to all-different, cardinality, and related
constraints, and particularly to “soft” versions of these constraints. These ideas are cov-
ered in Chapter 6 and are therefore not discussed here. Two additional areas are heuristic
methods and stochastic programming, both of which have a long history in OR. These are
discussed in Chapters 5 and 21, respectively.

15.2 Plan of the Chapter

This chapter surveys the three hybridization schemes mentioned above: relaxation, branch-
and-price methods, and Benders decomposition.

Sections 15.3–15.9 are devoted to relaxation, and of these the first four deal primarily
with linear relaxations. Section 15.3 summarizes the elementary theory of linear program-
ming (LP), which is used repeatedly in the chapter, and the role of LP in domain filtering.
Section 15.4 briefly describes the formulation of MILP models. These are useful primarily
because one can find LP relaxations for a wide variety of constraints by creating a MILP

John N. Hooker 529

Table 15.1: Sampling of computational results for methods that combine CP and OR.

Problem Contribution to CP Speedup

CP plus relaxations similar to those used in MILP

Lesson timetabling [51] Reduced-cost variable fixing 2 to 50 times faster than CP.
using an assignment problem
relaxation.

Minimizing piecewise Convex hull relaxation of 2 to 200 times faster than MILP. Solved
linear costs [105] piecewise linear function two instances that MILP could not solve.

Boat party & flow shop Convex hull relaxation of Solved 10-boat instance in 5 min that
scheduling [77] disjunctions, covering MILP could not solve in 12 hours. Solved

inequalities flow shop instances 3 to 4 times faster.

Product Convex hull relaxation of 30 to 40 times faster than MILP (which
configuration [121] element constraints, reduced was faster than CP).

cost variable fixing.

Automatic digital Lagrangean relaxation 1 to 10 times faster than MILP (which
recording [113] was faster than CP).

Stable set problems [66] Semi-definite programming Significantly better suboptimal solutions
relaxation. than CP in fraction of the time.

Structural design [23] Linear quasi-relaxation of Up to 600 times faster than MILP.
nonlinear model with discrete Solved 2 problems in < 6 min that MILP
variables. could not solve in 20 hours.

Scheduling with LP relaxation. Solved 67 of 90 instances, while CP
earliness and solved only 12.
tardiness costs [14]

CP-based branch and price

Traveling tournament Branch-and-price framework. First to solve 8-team instance.
scheduling [44]

Urban transit crew Branch-and-price framework. Solved problems with 210 trips, while
management [133] traditional branch and price could

accommodate only 120 trips.

Benders-based integration of CP and MILP

Min-cost multiple MILP master problem, CP 20 to 1000 times faster than CP, MILP.
machine scheduling [81] feasibility subproblem

Min-cost multiple Updating of single MILP Additional factor of 10 over [81]
machine scheduling [120] master (branch and check)

Polypropylene batch MILP master problem, CP Solved previously insoluble problem
scheduling [122] feasibility subproblem. in 10 min.

Call center CP master, LP subproblem. Solved twice as many instances as
scheduling [16] traditional Benders.

Min cost and min MILP master problem, CP 100 to 1000 times faster than CP, MILP.
makespan planning optimization subproblem Solved significantly larger instances.
& cumulative sched. [71]

Min no. late jobs and MILP master problem, CP . Min late jobs 100-1000 times faster than
min tardiness planning optimization subproblem MILP, CP; min tardiness significantly
& cumulative sched. [72] with LP relaxation faster, better solutions when suboptimal.

530 15. Operations Research Methods in Constraint Programming

model for them and dropping the integrality restrictions on the variables. Section 15.5 is
a brief introduction to cutting planes, which can strengthen LP relaxations. Section 15.6
describes linear relaxations for some popular global constraints, while Section 15.7 pro-
vides continuous relaxations for piecewise linear constraints and disjunctions of nonlinear
systems. Sections 15.8 and 15.9 deal with Lagrangean relaxation and dynamic program-
ming, which can also provide useful relaxations.

Sections 15.10 and 15.11 are devoted to the remaining hybridization schemes discussed
here, branch-and-price methods and Benders decomposition. The final section briefly
explores the possibility of full CP/OR integration.

15.3 Linear Programming

Linear programming (LP) has a number of advantages that make it the most popular OR
model discussed here. Although limited to linear inequalities (or equations) with contin-
uous variables, it is remarkably versatile for representing real-world situations. It is even
more versatile as a relaxation. It has an elegant duality theory that lends itself to sensitivity
analysis and domain filtering. Finally, the LP problem is extremely well solved. It is rare
for a practical LP instance, however large, to present any difficulty for a state-of-the-art
solver.

LP relaxation provides all of the benefits of relaxation that were mentioned earlier. In
particular, a solution that is infeasible in the original problem can guide the search by sug-
gesting how to branch. If a variable xj is required to be integral in the original problem,
then an nonintegral value x̄j in the solution of the LP relaxation suggests branching by
requiring xj ≤ ⌊x̄j⌋ in one branch and xj ≥ ⌈x̄j⌉ in the other. Rounding of LP solu-
tions, a technique widely used in approximation algorithms, can also be used a guide to
backtracking [58].

Semidefinite programming [4, 129] generalizes LP and has been used in a CP context
as a relaxation for the stable set problem [66]. It can also serve as a basis for approximation
algorithms [57].

15.3.1 Optimal Basic Solutions

Without loss of generality an LP problem can be written

min cx

Ax ≥ b, x ≥ 0, x ∈ ℜn (15.1)

where A is an m × n matrix. This can be read, “minimize cx subject to the constraints
Ax ≥ b, x ≥ 0.” In OR terminology, any x ∈ ℜn is a solution of (15.1), and any x ≥ 0
for which Ax ≥ b is a feasible solution. The problem is infeasible if there is no feasible
solution. It is unbounded if (15.1) is feasible but has no optimal solution.

The feasible set of (15.1) is a polyhedron, and the vertices of the polyhedron correspond
to basic feasible solutions. Since the objective function cx is linear, it is intuitively clear
that some vertex is optimal unless the problem is unbounded. It is useful to develop this
idea algebraically.

John N. Hooker 531

The LP problem is first rewritten in equality form

min cx

Ax = b, x ≥ 0, x ∈ ℜn (15.2)

An inequality constraint ax ≥ a0 can always be converted to an equality constraint by
introducing a surplus variable s0 ≥ 0 and writing ax− s0 = a0.

Assume for the moment that (15.2) is feasible. Suppose further that m ≤ n and A has
rank m. If A is partitioned as [B N], where B is any set of m independent columns, then
(15.2) can be written

min cBxB + cNxN

BxB +NxN = b, xB, xB ≥ 0
(15.3)

The variables xB that correspond to the columns of B are designated basic variables be-
cause B is a basis for ℜm. One can solve the equality constraints for xB in terms of the
nonbasic variables xN :

xB = B−1b−B−1NxN (15.4)

Thus any feasible solution of (15.4) has the form (xB, xN) = (B−1b − B−1NxN , xN)
for some xN ≥ 0. Setting xN = 0 yields a basic solution (B−1b, 0), which corresponds
to a vertex of the feasible polyhedron if B−1b ≥ 0.

Substituting (15.4) into the objective function of (15.3) allows cost to be expressed as
a function of the nonbasic variables xN :

cBB
−1b+ (cN − cBB−1N)xN

Thus cBB−1b is the cost of the basic solution (B−1b, 0). The row vector r = cN −
cBB

−1N contains the reduced costs associated with the nonbasic variables xN . Since
every feasible solution of (15.3) can be obtained by setting xN to some nonnegative value,
the cost can be smaller than cBB−1b only if at least one reduced cost is negative. So the
basic solution (B−1b, 0) is optimal if r ≥ 0.

15.3.2 Simplex Method

Given a basic feasible solution (B−1b, 0), the simplex method can find a basic optimal
solution of (15.3) or show that (15.3) is unbounded. If r ≥ 0, the solution (B−1b, 0)
is already optimal. Otherwise increase any nonbasic variable xj with negative reduced
cost rj . If the column of B−1N in (15.4) that corresponds to xj is nonnegative, then
xj can increase indefinitely without driving any component of xB negative, which means
(15.3) is unbounded. Otherwise increase xj until some basic variable xi hits zero. This
creates a new basic solution. The column of B corresponding to xi is moved out of B and
the column of N corresponding to xj is moved in. B−1 is quickly recalculated and the
process repeated.

The procedure terminates with an optimal or unbounded solution if one takes care not
to cycle through solutions in which one or more basic variables vanish (degeneracy). A
starting basic feasible solution can be obtained by solving a “Phase I” problem in which

532 15. Operations Research Methods in Constraint Programming

the objective is to minimize the sum of constraint violations. The starting basic variables
in the Phase I problem are temporary slack or surplus variables added to represent the
constraint violations that result when the other variables are set to zero.

More than half a century after its invention by George Dantzig, the simplex method is
still the most widely used method in state-of-the-art solvers. Interior point methods are
competitive for large problems and are also available in commercial solvers.

15.3.3 Duality and Sensitivity Analysis

The dual of a linear programming problem (15.1) is

maxλb

λA ≤ c, λ ≥ 0, λ ∈ ℜm (15.5)

The dual can be understood as seeking the tightest lower bound v on the objective function
cx that can be inferred from the constraints Ax ≥ b, x ≥ 0. One consequence of the
Farkas Lemma, a classical result of mathematical programming, is that cx ≥ v can be
inferred from a feasible system Ax ≥ b, x ≥ 0 if and only if some nonnegative linear
combination λAx ≥ λb of Ax ≥ b dominates cx ≥ v. Since λAx ≥ λb dominates cx ≥ v
when λA ≤ c and λb ≥ v, (15.5) is simply the problem of finding the tightest lower bound
v. The dual (15.5) and the primal problem (15.1) therefore have the same optimal value if
both are feasible and unbounded (strong duality).

The dual provides sensitivity analysis, which in turn leads to domain filtering. Note
first that the value λb of any dual feasible solution provides a lower bound on the value cx
of any primal feasible solution (weak duality). This is because λb ≤ λAx ≤ cx, where
the first inequality is due to Ax ≤ b and λ ≥ 0, and the second inequality to λA ≥ c
and x ≥ 0. Now suppose x∗ is optimal in the primal and λ∗ is optimal in the dual. If
the right-hand side b of the primal constraints is perturbed to obtain a new problem with
constraints Ax ≥ b + ∆b, only the objective function of the dual changes, specifically to
λ(b + ∆b). Thus λ∗ is still dual feasible and provides a lower bound λ∗(b + ∆b) on the
optimal value of the perturbed primal problem. In other words, the perturbation increases
the optimal value λ∗b of the original problem by at least λ∗∆b.

The dual multipliers in λ∗ are readily available when the primal is solved. In fact,
λ∗ = cBB

−1, as can be verified by writing the dual of (15.3). These multipliers indicate
the sensitivity of the optimal cost to small changes in b. In addition the reduced costs
are closely related to the dual multipliers, since r = cN − cBB−1N = cN − λ∗N . The
reduced cost of a single nonbasic variable xj is rj = cj − λ∗Aj , where Aj is the column
of N (and of A) corresponding to xj .

A related property of the dual solution is complementary slackness, which means that
a dual variable can be positive only if the corresponding primal constraint is tight in an
optimal solution. Thus if x∗ and λ∗ are optimal in the primal and dual, respectively, then
λ∗(Ax∗ − b) = 0. This is because λ∗b = cx∗, by strong duality, which together with
λ∗b ≤ λ∗Ax∗ ≤ cx∗ implies λ∗b = λ∗Ax∗ or λ∗(Ax∗ − b) = 0.

15.3.4 Domain Filtering

The dual solution can help filter variable domains. Suppose that the LP problem (15.1) is
a relaxation of a problem that is being solved by CP. There is an upper bound U on the

John N. Hooker 533

cost cx. For instance, U might be the cost of the best feasible solution found so far in a
cost minimization problem, and there is no need to consider solutions with cost greater
than U . Suppose (15.1) has optimal value v∗, and the optimal dual solution is λ∗. Suppose
further that λ∗i > 0, which means the constraint Aix ≥ bi is tight (i.e., Aix∗ = bi), due to
complementary slackness. If the solution of (15.1) were to change, the left-hand side of the
ith constraint Aix ≥ bi of (15.1) could change, say by an amount ∆bi. This would affect
the optimal value of (15.1) as much as changing the constraintAix ≥ bi toAix ≥ bi+∆bi,
which is to say it would increase the optimal value by at least λ∗i∆bi. Since the optimal
value cannot rise to a value greater than U , one must have that λ∗i∆bi ≤ U − v∗, or
∆bi ≤ (U − v∗)/λi. Since ∆bi = Aix−Aix∗ = Aix− bi, this yields the valid inequality

Aix ≤ bi +
U − v∗
λi

(15.6)

for each constraint i of (15.1) with λ∗i > 0. The inequality (15.6) can now be propagated,
which is particularly useful if some of the variables xj have integer domains in the original
problem.

One can reduce the domain of a particular nonbasic variable xj by considering the
nonnegativity constraint xj ≥ 0. Since the reduced cost of xj measures the effect on
cost of increasing xj , the dual multiplier associated with xj ≥ 0 is the reduced cost rj =
cj − λ∗Aj . So (15.6) becomes xj ≤ (U − v∗)/rj . If xj has an integer domain in the
original problem, one can say xj ≤ ⌊(U − v∗)/rj⌋.

CP applications of reduced-cost-based filtering include the traveling salesman problem
with time windows [96], product configuration [121], fixed charge network flows [86],
lesson timetabling [51], and the traveling salesman problem with time windows [51]. The
additive bounding procedure [50], which uses reduced costs, has been applied to limited
discrepancy search [91].

15.3.5 Example: Traveling Salesman with Time Windows

A traveling salesman problem with time windows provides an example of domain filtering
[51]. Suppose a salesman (or delivery truck) must make several stops, perhaps subject to
such additional constraints as time windows. The objective is to minimize the total travel
time, which has upper bound U . The assignment problem relaxation of the constraint set
is

min
∑

ij

cijxij

∑

j

xij =
∑

j

xji = 1, all i, xij ∈ {0, 1}, all i, j
(15.7)

where cij is the travel time from stop i to stop j. Variable xij is 1 when the salesman visits
stop j immediately after stop i and is zero otherwise. One can now solve an LP relaxation
of (15.7) obtained by replacing xij ∈ {0, 1} with 0 ≤ xij ≤ 1. If rij is the reduced cost
associated with xij and v∗ the optimal value of (15.7), then xij can be fixed to zero if
(U − v∗)/rij < 1. This particular LP problem can be solved very rapidly, since there are
specialized methods (e.g. the Hungarian algorithm) for assignment problems.

Solving the LP relaxation of an assignment problem (15.7) actually solves the problem
itself, since every basic solution of (15.7) is integral. This is due to the total unimodularity

534 15. Operations Research Methods in Constraint Programming

of the matrix of constraint coefficients, which means that every square submatrix has a
determinant of 1, −1, or 0.

15.4 Mixed Integer/Linear Modeling

A mixed integer/linear programming (MILP) problem is an LP problem with the addi-
tional restriction that certain variables must take integer values. It is a (pure) integer/linear
programming (ILP) problem when all the variables are integer-valued, and a 0-1 linear
programming problem when all the variables have domain {0, 1}.

MILP problems are solved by a branch-and-bound search mechanism. An LP relax-
ation of the problem is solved at each node of a search tree. If the optimal value of the
relaxation is greater than or equal to the value of the best candidate solution found so far,
the search backtracks. Otherwise, if all variables in the LP solution are integral, then it be-
comes a candidate solution. If one or more variables are nonintegral, the search branches
on one of the nonintegral variables by splitting its domain. Cutting planes are commonly
added at the root node and possibly at other nodes, resulting in a branch-and-cut method.

Although MILP problems are generally much harder to solve that LP problems, the
solution technology has been the subject of intense development for at least three decades.
Commercial solvers have achieved orders-of-magnitude speedups through the right com-
bination of cutting planes, branching heuristics, and preprocessing.

The primary role of MILP in CP, however, is to provide an LP relaxation of a con-
straint or subset of constraints. One formulates an MILP model and drops the integrality
condition. MILP is a highly versatile modeling language if one is sufficiently ingenious.
Writing a model with a “good” LP relaxation, however, is often more an art than a science
[124]. A good relaxation is generally viewed as one whose optimal value is close to that
of the MILP problem.

15.4.1 MILP Representability

It is known precisely what sort of feasible set can be represented by an MILP model.
A subset S of ℜn is MILP-representable if and only if S is the union of finitely many
polyhedra, all of which have the same recession cone. The recession cone of a polyhedron
P is the set of directions in which P is unbounded, or more precisely, the set of vectors
r ∈ ℜn such that, for some u ∈ P , u+ αr ∈ P for all α ≥ 0.

The intuition behind this fact can provide a tool for writing MILP models when S has
a fairly simple structure. Since S is a union of polyhedra, it is described by a disjunction
of linear systems:

∨

k∈K

Akx ≤ bk (15.8)

in which each system Akx ≤ bk represents a polyhedron. To obtain an MILP model of
(15.8), one can introduce 0-1 variables yk that take the value 1 when the kth disjunct holds:

Akxk ≤ bkyk, k ∈ K
x =

∑

k∈K

xk,
∑

k∈K

yk = 1

x, xk ∈ ℜn, yk ∈ {0, 1}, k ∈ K

(15.9)

John N. Hooker 535

...

.....................
.....................

.....................
.....................

.....................
.....................

....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

...................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

x1

x2

f
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(i)

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.........................

...................

Recession
cone of P1

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.........................

...................

.....................
.....................

.....................
.....................

.....................
....................

.....................
.....................

.....................
.............................
...................

Recession
cone of P2

...

.....................
.....................

.....................
.....................

.....................
.....................

....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

.....................
.....................

...................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.....

x1

x2

f

M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(ii)

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.........................

...................

Recession
cone of P1, P2

Figure 15.1: (i) Feasible set of a fixed charge problem, consisting of the union of polyhedra
P1 (heavy line) and P2 (shaded area). (ii) Feasible set of the same problem with the bound
x1 ≤M , where P ′

2 is the shaded area.

Note that the vector x of continuous variables is disaggregated into variables xk. Thus
when yℓ = 1 and the other yks are zero, the constraints force x = xℓ and therefore require
x to satisfy Aℓx ≤ bℓ.

There are a number of devices for writing MILP formulations when (15.10) does not
yield a practical model. A comprehensive discussion of these may be found in [127].

15.4.2 Example: Fixed Charge Function

MILP representability is illustrated by the fixed charge function, which occurs frequently
in modeling. Suppose the cost x2 of producing quantity x1 is bounded below by zero when
the production quantity x1 is zero, and f + cx1 otherwise, where f is the fixed cost and c
the unit variable cost. If S is the set of feasible points (x1, x2), then S is the union of two
polyhedra P1 and P2 (Fig 15.1a). The recession cone of P1 is P1 itself, and the recession
cone of P2 is the set of all vectors (x1, x2) with x2 ≥ cx1 ≥ 0. Since these cones are not
identical, S is not MILP-representable.

However, in practice one can put a sufficiently large upper bound M on x1. Now the
recession cone of each of the resulting polyhedra P1, P

′
2 (Fig. 15.1b) is the same (namely,

536 15. Operations Research Methods in Constraint Programming

P1), and the feasible set S′ = P1 ∪ P ′
2 is therefore MILP-representable. P1 is the poly-

hedron described by x1 ≤ 0, x1, x2 ≥ 0, and P ′
2 is described by cx1 − x2 ≤ −f, x1 ≤

M, x1 ≥ 0. So (15.9) becomes

x1
1 ≤ 0

x1
1, x

2
2 ≥ 0

cx2
1 − x2

2 ≤ −fy2
0 ≤ x1 ≤My2

x1 = x1
1 + x2

1

x2 = x1
2 + x2

2

y1 + y2 = 1

y1, y2 ∈ {0, 1}
(15.10)

As often happens, (15.10) simplifies. Only one 0-1 variable appears, which can be renamed
y. Since x1

1 is forced to zero, x1 = x2
1, and the resulting model is x2 ≥ fy+cx1, x1 ≤My.

Obviously y encodes whether the quantity produced is zero or positive, in the former case
(y = 0) forcing x1 = 0, and in the latter case incurring the fixed charge f . “Big M”
constraints like x1 ≤My are common in MILP models.

15.4.3 Relaxing the Disjunctive Model

The disjunctive model (15.10) has the advantage that its continuous relaxation, obtained by
replacing yi ∈ {0, 1} with 0 ≤ yi ≤ 1, is a convex hull relaxation of (15.8)—the tightest
possible linear relaxation. The convex hull of a set S ∈ ℜn is the intersection of all half
planes that contain S. The LP relaxation of (15.10) is a convex hull relaxation in the sense
that the projection of its feasible set onto the original variables x1, x2 is the convex hull of
the feasible set of (15.8).

A model of (15.8) with fewer variables is

Akx ≤ bk +Mk(1− yk), k ∈ K
∑

k∈K

yk = 1, x ∈ ℜn, yk ∈ {0, 1}, k ∈ K (15.11)

where each component of Mk is a valid upper bound on the corresponding inequality of
Ak ≤ bk. The kth disjunct is enforced when yk = 1. The LP relaxation of (15.11) is not
in general a convex hull relaxation, but (15.11) is a correct model even if the polyhedra
described by the systems Akx ≥ bk do not have the same recession cone. The LP relax-
ation of (15.10), incidentally, is a valid convex hull relaxation of (15.10) even when the
polyhedra do not have the same recession cone.

The LP relaxation of (15.11) simplifies when each system Ak ≤ bk is a single in-
equality akx ≤ ak and 0 ≤ x ≤ m [13]. The variables yk drop out and the relaxation
becomes

(

∑

k∈K

ak

Mk

)

x ≤
∑

k∈K

bk
Mk

+ |K| − 1, 0 ≤ x ≤ m

where Mk = bk −
∑

j min{0, akj }mj .

15.5 Cutting Planes

Cutting planes, variously called cuts or valid inequalities, are linear inequalities that can
be inferred from an integer or mixed integer constraint set. Cutting planes are added to

John N. Hooker 537

...

x1

x2

..•

•

•

•

•

..........
.......................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
..

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

.......

......

Figure 15.2: Feasible set (shaded area) of the LP relaxation of a system x1 + x2 ≤ 2,
x1 − x2 ≤ 0 with domains xj ∈ {0, 1, 2}, and a cutting plane x1 ≤ 1 (dashed line).

the constraint set to “cut off” noninteger solutions of its LP relaxation, thus resulting in a
tighter relaxation.

Cutting planes can also exclude redundant partial assignments (redundant compound
labels), even if is not their intended purpose. In some cases they may achieve consistency
of one kind or another, even though the concept of consistency never developed in the OR
community. It is therefore likely that cutting planes reduce backtracking in branch-and-
bound algorithms by excluding redundant partial assignments, quite apart from their role
in strengthening relaxations.

For example, x1 ≤ 1 is a cutting plane for the system x1 + x2 ≤ 2, x1 − x2 ≤ 1 in
which each xj has domain {0, 1, 2}. As Fig. 15.2 shows, x1 ≤ 1 is valid because it cuts
off no feasible (0-1) points. Yet it cuts off part of the feasible set of the LP relaxation
and therefore strengthens the LP relaxation, in fact resulting in a convex hull relaxation.
Adding the cut also achieves arc consistency for the constraint set, since it reduces x1’s
domain to {0, 1}.

A few basic types of cutting planes are surveyed here. General references on cut-
ting planes include [93, 99, 130], and the role of cutting planes in CP is further dis-
cussed in [20, 22, 38, 52, 69, 77]. CP-based application of cutting planes include the
orthogonal Latin squares problem [6], truss structure design [23], processing network
design [60, 77], single-vehicle routing [110], resource-constrained scheduling [40], multi-
ple machine scheduling [22], boat party scheduling [77], and the multidimensional knap-
sack problem [100]. Cutting planes for disjunctions of linear systems have been applied to
factory retrofit planning, strip packing, and zero-wait job shop scheduling [111].

538 15. Operations Research Methods in Constraint Programming

15.5.1 Chvátal-Gomory Cuts

One can always generate a cutting plane for an integer linear system Ax ≤ b by taking a
nonnegative linear combination uAx ≤ ub of the inequalities in the system and rounding
down all fractions that result. This yields the cut ⌊uA⌋x ≤ ⌊ub⌋, where u ≥ 0. For
example, one can obtain the cut x1 ≤ 0 from x1 + x2 ≤ 1 and x1 − x2 ≤ 0 (Fig. 15.2) by
giving each a multiplier of 1

2 in the linear combination.
After generating a cut of this kind, one can add it to Ax ≤ b and repeat the process.

Any cut generated recursively in this fashion is a Chvátal-Gomory cut. A fundamental
result of cutting plane theory is that every cut is a Chvátal-Gomory cut [31].

A subset of Chvátal-Gomory cuts are enough to achieve consistency. If two particular
types of cuts, resolvents and diagonal sums, are recursively derived from 0-1 inequalities
that are dominated by inequalities in Ax ≤ b, then every inequality implied by Ax ≤ b
(up to equivalence) is implied by one of the generated cuts; see [67, 70] for details. This
fact leads to a logic-based method for 0-1 linear constraint solving [12]. The derivation of
resolvents alone is enough to achieve strong n-consistency and therefore hyperarc consis-
tency.

15.5.2 General Separating Cuts

Since it is impractical to generate all Chvátal-Gomory cuts, a more common approach is
to identify one or more cuts that exclude or “cut off” a nonintegral solution of the current
LP relaxation. These are known as separating cuts because they separate the nonintegral
solution from the convex hull of the original problem’s feasible set. For instance, if the LP
relaxation of the example in Fig. 15.2 has the solution (3

2 ,
1
2), then x1 ≤ 1 is a separating

cut.
A general-purpose separating cut can be generated by solving the LP relaxation of an

integer system in equality form (15.2) to obtain a basic solution (b̂, 0), where b̂ = B−1b.
If xi is any basic variable with a nonintegral value in this solution, the valid inequality

xi ≤ ⌊b̂i⌋ − ⌊N̂i⌋xN (15.12)

cuts off (b̂, 0). Here N̂ = B−1N , and N̂i refers to the ith row of N̂ . This cut is popularly
known as a Gomory cut.

For many years Gomory cuts were believed to be ineffective, but now it is known that
they can be very useful if sufficiently many are generated. Multiple cuts can be obtained
by generating one for each nonintegral xi, or perhaps by re-solving the LP with cuts added
and generating further Gomory cuts.

Gomory cuts have an analog for MILP systems, known as separating mixed integer
rounding cuts [94], that are equally important in practice. Let the MILP system in equality
form be A1y + A2x = b with x, y ≥ 0 and y integer. Let B and N be basic and nonbasic
columns in the LP relaxation as before, and suppose that a basic variable yi is nonintegral.
Define J to be the set of indices j for which yj is basic and K to be the set of indices
for which xj is basic. Also let J1 = {j ∈ J | frac(N̂ij) ≥ frac(b̂i)} and J2 = J \ J1,
where frac(α) = α− ⌊α⌋ is the fractional part of α. Then the following is a mixed integer

John N. Hooker 539

rounding cut that cuts off the nonintegral solution:

yi ≥ ⌊b̂i⌋ −
∑

j∈J1

⌈N̂ij⌉yj −
∑

j∈J2

(

⌊N̂ik⌋+
frac(N̂ij)

frac(b̂i)

)

yj −
1

frac(b̂i)

∑

j∈K

N̂+
ijxj

where N̂+
ij = max{0, N̂ij}.

15.5.3 Knapsack Cuts

Knapsack cuts, also known as lifted covering inequalities, are defined for an integer linear
inequality ax ≤ α with a ≥ 0. (One can always obtain a ≥ 0 by replacing each xj that
has a negative coefficient with Uj−xj , where Uj is an upper bound on xj .) Knapsack cuts
do not affect consistency, since they are generated for one constraint at a time, but they
tighten the LP relaxation and are often useful in practice.

Suppose first that ax ≤ α is a 0-1 inequality. A cover for ax ≤ α is an index set
J ∈ {1, . . . , n} for which

∑

j∈J aj > α. A cover is minimal if no proper subset it is a
cover. If J is a cover, the covering inequality

∑

j∈J xj ≤ |J | − 1 is obviously valid for
ax ≤ α. (Only minimal covers need be considered, since nonminimal covering inequalities
are redundant of minimal ones.) For example, J = {1, 2, 3, 4} is a minimal cover for the
inequality

5x1 + 5x2 + 5x3 + 5x4 + 8x5 + 3x6 ≤ 17

and gives rise to the covering inequality x1 + x2 + x3 + x4 ≤ 3.
A covering inequality can often be strengthened by adding variables to the left-hand

side; that is, by lifting the inequality into a higher dimensional space. Sequential lifting
is presented here, in which terms are added one at a time; there are also techniques for
adding several terms simultaneously [93]. If

∑

j∈J xj ≤ |J | − 1 is a covering inequality,
then πkxk +

∑

j∈J xj ≤ |J | − 1 is also valid for ax ≤ α, provided

πk ≤ |J | − 1−max

∑

j∈J

xj

∣

∣

∣

∣

∣

∣

∑

j∈J

ajxj ≤ α− ak, xj ∈ {0, 1} for j ∈ J

For example, x1+x2+x3+x4 ≤ 3 can be lifted to x1+x2+x3+x4+2x5 ≤ 3. If it is lifted
further by adding x6, the inequality is unchanged since π6 = 0. The order of lifting can
affect the outcome; if x6 is added before x5, the resulting cut is x1+x2+x3+x4+x5+x6 ≤
3. Lifted inequalities are useful only when they can be generated quickly, as when the
covering inequality has only a few variables, or the problem has special structure. The
coefficients πk can be computed sequentially by dynamic programming [93].

Covering inequalities can also be derived for an inequality ax ≥ α with general integer
variables. Here J is a cover if

∑

j∈J ajxj > α, where xj is an upper bound on xj . Any
cover J yields the covering inequality

∑

j∈J xj ≤ α/maxj∈J{aj}. Lifting is possible
but more difficult than in the 0-1 case.

15.6 Relaxation of Global Constraints

Linear relaxations for a few common global constraints are presented here: element, all-
different, circuit and cumulative. Some relaxations are continuous relaxations of MILP

540 15. Operations Research Methods in Constraint Programming

models, and others are derived directly without recourse to an MILP model. These and
other relaxations are surveyed in [70, 106].

15.6.1 Element Constraint

An element constraint has the form

element(x, (t1, . . . , tm), v) (15.13)

and requires that v = tx. (15.13) implies the disjunction
∨

k∈Dx
(v = tk), where Dx is

the current domain of x. This disjunction can be given an MILP model (15.10), which
leads immediately to a convex hull relaxation of (15.13). If each tk is a constant, then the
relaxation is trivial: mink∈Dx

{tk} ≤ v ≤ maxk∈Dx
{tk}. However, if each tk is a variable

with interval domain [Lk, Uk], (15.10) yields a more interesting convex hull relaxation:

Ljyk ≤ tkj ≤ Ujyk, j, k ∈ Dx

v =
∑

k∈Dx

tkk,
∑

k∈Dx

yk = 1

tk =
∑

j∈Dx

tjk, yk ≥ 0, k ∈ Dx

Since this relaxation contains a large number of variables tki , one may wish to use the
simpler relaxation

∑

k∈Dx

tk − (|Dx| − 1)Umax ≤ v ≤
∑

k∈Dx

tk − (|Dx| − 1)Lmin

Lk ≤ tk ≤ Uk, k ∈ Dx

(15.14)

where Lmin = mink∈Dx
{Lk} and Umax = maxk∈Dx

{Uk}. This is a convex hull relax-
ation when Lk = Lmin and Uk = Umax for all k [70]. One can also use the LP relaxation
of (15.11). Another relaxation is

(

∑

k∈Dx

1

Umax − Lk

)

v ≤
∑

k∈Dx

tk
Umax − Lk

+ |Dx| − 1

(

∑

k∈Dx

1

Uk − Lmin

)

v ≥
∑

k∈Dx

tk
Uk − Lmin

− |Dx|+ 1

Lk ≤ tk ≤ Uk, k ∈ Dx

This is in general not redundant of (15.14), unless of course (15.14) is a convex hull relax-
ation.

15.6.2 All-Different Constraint

The constraint

all-different(y1, . . . , yn)) (15.15)

John N. Hooker 541

requires that y1, . . . , yn be distinct. If the domain Dyi
of each yi is a finite set of real

numbers and
⋃n
i=1Dyi

= {a1, . . . , am}, (15.15) can be given the MILP formulation:

yi =
m
∑

j=1

ajxij ,
m
∑

j=1

xij = 1, i ∈ {1, . . . , n}

n
∑

i=1

xij ≥ 1, j ∈ {1, . . . ,m}

xij = 0, all i, j with j 6∈ Dyi

(15.16)

where the binary variable xij = 1 when yi = j. A continuous relaxation can be obtained
by replacing xij ∈ {0, 1} with xij ≥ 0. This is a convex hull relaxation, in the sense that
the projection of its feasible set onto the variables yi is the convex hull of the feasible set
of (15.15).

The MILP formulation (15.16) is convenient for some problems and not for others.
Suppose for instance the problem is to find a minimum-cost assignment of jobs to workers,
where cij is the cost of assigning job j to worker i. The constraint (15.15) requires that
every worker get a different job, and the problem is to minimize

∑n
i=1 ciyi

subject to
(15.15). MILP solves the problem by minimizing

∑

ij cijxij subject to (15.16).
However, if one wishes to find a minimum-cost route in a traveling salesman problem,

the objective function becomes nonlinear in the integer model. (15.15) is a correct model
for this problem only if yi is the ith stop visited, rather than the stop visited immediately
after i as in (15.7). So if cij is the travel time from i to j as before, the problem is to mini-
mize

∑n
i=1 cyiyi+1

subject to (15.15), where yn+1 is identified with y1. The integer model
must minimize the nonlinear expression

∑

ijk cjkxijxi+1,k subject to (15.16). However,
there are linear 0-1 models for this problem, the most popular of which is presented in the
next section.

If Dyi
is the same set of numbers {a1, . . . , am} for each i, with a1 ≤ · · · ≤ am, a

convex hull relaxation [70, 75, 128] can be written in the original variables:

|J|
∑

j=1

aj ≤
∑

j∈J

xj ≤
m
∑

j=m−|J|+1

aj , all J ⊂ {1, . . . , n}

There are exponentially many constraints, but one can start by using only the constraints

n
∑

j=1

aj ≤
n
∑

j=1

xj ≤
m
∑

j=m−n+1

aj

and bounds on the variables, and then generate separating cuts as needed. Let x̄ be
the solution of the current relaxation of the problem, and renumber the variables so that
x̄1 ≤ · · · ≤ x̄n. Then for each i = 2, . . . , n− 1 one can generate the cut

i
∑

j=1

xj ≥
i
∑

j=1

aj

542 15. Operations Research Methods in Constraint Programming

if
∑i
j=1 x̄j <

∑i
j=1 aj . Also for each i = n− 1, . . . , 2 generate the cut

n
∑

j=i

xj ≤
m
∑

j=m−n+i

aj

if
∑n
j=i x̄j >

∑m
j=m−n+i aj . There is no separating cut if x̄ lies within the convex hull of

the alldiff feasible set.
Relaxation of multiple all-different constraints is discussed in [5] and of two overlap-

ping all-different constraints in [34].

15.6.3 Circuit Constraint

The constraint

circuit(y1, . . . , yn) (15.17)

requires that z1, . . . , zn be a permutation of 1, . . . , n, where each zi = yzi−1
(and z0 is

identified with zn). The domain Dyi
of each yi is a subset of {1, . . . , n}. The elements

1, . . . , n may be viewed as vertices of a directed graph G that contains an edge (i, j)
whenever j ∈ Dyi

. An edge (i, j) is selected when yi = j, and (15.17) requires that the
selected edges form a hamiltonian circuit.

The circuit constraint can be modeled with a traveling salesman formulation. Let the
0-1 variable xij (for i 6= j) take the value 1 when yi = j:

n
∑

j=1

xij =
n
∑

j=1

xji = 1, i ∈ {1, . . . , n} (a)

∑

(i,j)∈δ(S)

xij ≥ 1, all S ⊂ {1, . . . , n} with 2 ≤ |S| ≤ n− 2 (b)

(15.18)

Here δ(S) is the set of edges (i, j) of G for which i ∈ S and j 6∈ S. If j 6∈ Dyi
, the

formulation (15.18) omits variable xij . Constraints (a) comprise the assignment relaxation
(15.7) already discussed. The subtour elimination constraints (b) exclude circuits within
proper subsets S of {1, . . . , n} by requiring that at least one edge connect a vertex in S to
one outside S.

The traveling salesman problem minimizes
∑

i cixi
subject to (15.17). Its MILP formu-

lation minimizes
∑

ij cijxij subject to (15.18) and xij ∈ {0, 1}. There are exponentially
many subtour elimination constraints in this formulation, but one can begin with a relax-
ation of the problem (such as the assignment relaxation) and add separating cuts as needed.
If x̄ is a solution of the current relaxation, let the capacity of edge (i, j) be x̄ij . Select a
proper subset S of the vertices for which the total capacity of edges leaving S is a mini-
mum. The subtour elimination constraint (15.18b) corresponding to S is a separating cut
if the minimum capacity is less than 1. There are fast algorithms for finding S ([49, 103]).

If j ∈ Dyi
if and only if i ∈ Dyj

, and cij = cji, for every pair i, j, the problem
becomes the symmetric traveling salesman problem and can be given a somewhat more
compact model that uses a 2-matching relaxation. The OR literature has developed differ-
ent (albeit related) analyses and algorithms for the symmetric and asymmetric problems;
see [61] for a comprehensive discussion.

John N. Hooker 543

Several families of cutting planes have been developed to strengthen the LP relaxation.
By far the most widely used are comb inequalities. Suppose H is a subset of vertices of
G, and T1, . . . , Tm are pairwise disjoint sets of vertices (wherem is odd), such thatH∩Tk
and Tk \H are nonempty for each k. H is the handle of the comb and each Ti is a tooth.
Then the following is a comb inequality for the asymmetric problem:

∑

(i,j)∈δ(H)

xij +
m
∑

k=1

∑

(i,j)∈δ(Tk)

xij ≥ 1
2 (3m+ 1)

One can get some intuition as to why the cut is valid by considering a comb with three
teeth and six vertices. Various proofs of validity are given in [97]. The comb inequalities
are facet-defining when G is a complete graph.

15.6.4 Cumulative Constraint

The fundamental constraint for cumulative scheduling is

cumulative(s, p, c, C) (15.19)

where variables s = (s1, . . . , sn) represent the start times of jobs 1, . . . , n. Parameters
p = (p1, . . . , pn) are the processing times and c = (c1, . . . , cn) the resource consumption
rates. Release times and deadlines are implicit in the domains [Rj , Dj] of the variables sj .
The constraint (15.19) requires that the total resource consumption rate at any time be less
than or equal to C. That is,

∑

j∈Jt
cj ≤ C for all t, where Jt = {j | sj ≤ t < sj + pj}.

The most straightforward MILP model discretizes time and introduces a 0-1 variable
xjt that is 1 when job j starts at time t. The variable appears for a particular pair j, t only
when Rj ≤ t ≤ Dj − pj . The model is

∑

j

∑

t′∈Tjt

cjxjt′ ≤ C, all t (a)

∑

t

xjt = 1, all j (b)
(15.20)

where each xij ∈ {0, 1} and Tjt = {t′ | t − pj < t′ ≤ t}. Constraints (a) enforce the
resource limit, and (b) requires that each job start at some time.

Model (15.20) is large when there are a large number of discrete times. In such
cases it may be advantageous to use one of two discrete-event formulations that employ
continuous-time variables, although these models provide weaker relaxations. In each
model there are 2n events, each of which can be the start of a job or the finish of a job. The
continuous variable sk is the time of event k.

In one model, the 0-1 variable xjkk′ is 1 if event k is the start of job j and event k′ is
the finish of job j. The inventory variable zk keeps track of how much resource is being

544 15. Operations Research Methods in Constraint Programming

consumed when event k occurs; obviously one wants zk ≤ C. The model for (15.19) is

zk = zk−1 +
∑

j

∑

k′>k

cjxjkk′ −
∑

j

∑

k′<k

cjxjk′k, all k (a)

z0 = 0, 0 ≤ zk ≤ C, all k (b)
∑

k

∑

k′>k

xjkk′ = 1, all j (c)

sk′ − sk ≥
∑

j

pjxjkk′ , all k, k′ with k < k′ (d)

sk ≥
∑

j

∑

k′>k

xjkk′Rj , all k (e)

tk ≤ Dmax

1−
∑

j

∑

k′<k

xjk′k

+
∑

j

∑

k′<k

xjk′kDj , all k (f)

(15.21)

where each xjkk′ ∈ {0, 1} and Dmax = maxj{Dj}. Constraint (a) keeps track of how
much resource is being consumed, and (b) imposes the upper limit. Constraint (c) makes
sure that each job starts once and ends once. Constraint (d) presents jobs from overlapping,
and (e) enforces the release times. Constraint (f) uses a big-M construction (where Dmax

is the big-M) to enforce the deadlines.
Model (15.21) can grow quite large if there are too many events, due to the triply

indexed variables xjkk′ . An alternative is to use separate variables for start-events and
finish-events, which requires that the deadlines be enforced in a different way. This reduces
the triple index to a double index at the cost of producing a weaker relaxation. Let the 0-1
variable xjk be 1 when event k is the start of job j, and yjk = 1 when event k is the finish
of job j. The new continuous variable fj is the finish time of job j.

zk = zk−1 +
∑

j

cjxjk −
∑

j

cjyjk, all k (a)

z0 = 0, zk ≤ C, all k (b)
∑

k

xjk = 1,
∑

k

yjk = 1, all j (c)

∑

j

xjk + yjk = 1, all k (d)

sk−1 ≤ sk, xjk ≤
∑

k′<k

yjk′ , all k > 1 (e)

sk ≥
∑

j

Rjxjk, all k (f)

sk + pjxjk −Dmax(1− xjk) ≤ fj
≤ sk +Dmax(1− yjk), all j, k (g)

fj ≤ dj , all j (h)

where each xjk, yjk ∈ {0, 1}. Constraints (a) and (b) perform the same function as before.
Constraints (c) and (d) require that each job start once and end once but not as the same

John N. Hooker 545

event. Constraints (e) are redundant but may tighten the relaxation. One constraint requires
the events to occur in chronological order, and one requires a job’s start-event to have a
smaller index than its finish-event. Constraint (f) observes the release times. The new
element is constraint (g). The first inequality defines the defines the finish time fj of each
job by forcing it to occur no earlier than pj time units after the start time. The second
inequality forces the time associated with the finish-event to be no earlier than the finish
time. Finally, constraint (h) enforces the deadlines.

A fourth relaxation uses only the original variables sj [75]. Let J = {j1, . . . , jm} be
any subset of the jobs {1, . . . , n}, indexed so that pj1cj1 ≤ · · · ≤ pjmcjm . Then

∑

j∈J

sj ≥ mRmin +
1

C

m
∑

i=1

(m− i+ 1)pjicji −
m
∑

i=1

pji

∑

j∈J

sj ≤ mDmax −
1

C

m
∑

i=1

(m− i+ 1)pjicji

whereRmin = mini{Rji} andDmax = maxi{Dki
}. A relaxation can be created by using

these inequalities for selected subsets of jobs. One need only consider subsets J of the
form {j | [Rj , Dj] ⊂ [Ri, Dk]} for pairs i, k with Ri < Dk. Larger subsets tend to yield
much stronger inequalities.

15.7 Relaxation of Piecewise Linear and Disjunctive Constraints

Specialized relaxations can be devised for a number of additional constraints that com-
monly occur in modeling. Two such constraints are bounds on piecewise linear, semicon-
tinuous cost functions, and disjunctions of nonlinear inequality systems. There are also
convex hull relaxations (not discussed here) for various logical constraints [70], such as
cardinality rules requiring that if at least k of a given set of propositions are true, then at
least ℓ of another set are true ([132], generalized in [10]).

15.7.1 Semicontinuous Piecewise Linear Functions

Piecewise linear functions are often useful in modeling, partly because they can approxi-
mate nonlinear functions. A semicontinuous piecewise linear function f(x) can be written

f(x) =
Uk − x
Uk − Lk

ck +
x− Lk
Uk − Lk

dk for x ∈ [Lk, Uk], k = 1, . . . ,m

and is illustrated in Fig. 15.3.
The function f(x) can be given an MILP model by replacing all occurrences of f(x)

with a new continuous variable v and writing

v =
∑

k

λkak + µkbk, x =
∑

k

λkLk + µkUk,
∑

k

λk + µk = 1,
∑

k

yk = 1

0 ≤ λk ≤ yk, 0 ≤ µk ≤ yk, all k

where each yk ∈ {0, 1}. An LP relaxation is obtained by replacing yj ∈ {0, 1} by
0 ≤ yj ≤ 1. The MILP model for continuous piecewise linear functions is slightly sim-
pler; see [127]. An MILP model is used with a probe backtrack algorithm in [2].

546 15. Operations Research Methods in Constraint Programming

..
x

v = f(x)

x xL1 U1 L2 U2 L3

c1

d1
c2

d2

c3

d3

•

•

.......
........
.......
........
.......
........
.......
........
.......
........
........
.......
........
.......
........
.......
........
.......
........
........
.......
........
.......
........
.......
...

•

•

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.....

•

•

..........
..........
..........
..........
...........
..........
..........
...........
..........
..........
...........
..........
...........
..........
..........
...........
..........
..........
...........
..........
..........
...........
..........
...........
..........
........

..

..
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.......
.
.....

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

............
.
..........
...
...........
..
..........
...
..........
...
...........
..
..........
...
..

...
.............

.............
.......................................

.............
.............

.............
.............

.............
.............

.............
.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.
.
.
.
.
.
.

Figure 15.3: Semicontinuous piecewise linear function f(x) (solid line segments) and its
convex hull relaxation (shaded area), where [x, x] is the current domain of x.

Computational studies [101, 102, 105] suggest that it is often more efficient to write
a convex hull relaxation directly in the original variables and dispense with the auxiliary
variables λk, µk, yk. One simply writes an inequality in v, x to represent each edge of the
convex hull, illustrated in Fig. 15.3.

15.7.2 Disjunctions of Nonlinear Systems

Methods for relaxing disjunctions of linear systems were presented in Section 15.4.3. They
have proved useful for relaxing problems that combine discrete and continuous linear
elements. Many applications, however, mix discrete and continuous nonlinear elements.
Fortunately, the convex hull relaxation for the linear case can be generalized to the convex
nonlinear case. It has been used to solve several chemical process engineering problems
[89, 90, 104, 112, 125]

The task is to relax

∨

k∈K

gk(x) ≤ 0 (15.22)

where gk(x) is a vector of convex functions and x ∈ ℜn. It is assumed that x and each
gk(x) are bounded, and in particular that L ≤ x ≤ U . A convex hull relaxation for (15.22)
can be derived by writing x as a convex combination of points x̂k that respectively satisfy

John N. Hooker 547

the disjuncts of (15.22):

x =
∑

k∈K

βkx̂
k,

∑

k∈K

βk = 1

gk(x̂k) ≤ 0, βk ≥ 0, L ≤ x̂k ≤ U, all k ∈ K

Using the change of variable xk = βkx̂
k and multiplying the nonlinear constraints by βk

yields a continuous relaxation for (15.22):

x =
∑

k∈K

xk,
∑

k∈K

βk = 1

βkg
k

(

xk

βk

)

≤ 0, βk ≥ 0, βkL ≤ xk ≤ βkU, all k ∈ K
(15.23)

It can be shown that the functions βkgk(xk/βk) are convex and moreover that (15.23) is a
convex hull relaxation of (15.22) [89, 119]. Since βk can vanish, it is common in practice to
introduce a perturbation ǫ, which preserves convexity. The nonlinear constraints of (15.23)
become

(βk + ǫ)gk
(

xk

βk + ǫ

)

≤ 0, all k ∈ K

One can also relax (15.22) with a big-M relaxation similar to the LP relaxation of
(15.11):

gk(x) ≤Mk(1− βk), βk ≥ 0, all k ∈ K
∑

k∈K

βk = 1

where each component of Mk is an upper bound on the corresponding function in gk(x).

15.8 Lagrangean Relaxation

Many relaxations are formed simply by removing constraints. Lagrangean relaxation
refines this process by imposing a penalty for violation of the deleted constraints, provided
they have inequality form. This tends to make the minimum value of the relaxed prob-
lem larger and may therefore provide a tighter bound on the optimal value of the original
problem.

A Lagrangean relaxation is actually a family of relaxations, since one can choose the
penalty (i.e., the Lagrange multiplier) for each constraint violation. The problem of select-
ing the multipliers that result in the tightest bound is the Lagrangean dual.

Since solution of the Lagrangean dual tends to be time consuming, the general prac-
tice in CP applications is to solve it only at the root node and use the resulting Lagrange
multipliers at all subsequent nodes. These multipliers not only define a relaxation that can
be quickly solved or propagated, but they allow domain filtering in the same fashion as the
dual multipliers of an LP relaxation. In fact, dual multipliers are a special case of Lagrange
multipliers.

548 15. Operations Research Methods in Constraint Programming

Lagrangean relaxation is particularly useful in CP when a full linear relaxation is in-
compatible with the very rapid processing of search tree nodes that often characterizes
CP methods. In such cases one may be able to solve a Lagrangean dual of the LP at the
root node, which is itself an LP problem, to obtain a weaker but specially-structured LP
relaxation that can be solved quickly at the remaining nodes.

CP-based Lagrangean methods have been applied to network design [36], automatic
digital recording [113], traveling tournament problems [17], the resource-constrained short-
est path problem [54], and the general problem of filtering domains [85].

15.8.1 The Lagrangean Dual

Lagrangean relaxation is applied to problems of the form

min f(x)

gi(x) ≤ 0, i = 1, . . . ,m

x ∈ S, x ∈ ℜn
(15.24)

where x ∈ S represents an arbitrary constraint set but in practice is carefully chosen to have
special structure. Lagrangean relaxation dualizes the constraints gi(x) ≤ 0 by penalizing
their violation in the objective function:

min θ(x, λ) = f(x) +
m
∑

i−1

λigi(x)

x ∈ S, x ∈ ℜn
(15.25)

where each λi ≥ 0 is a Lagrange multiplier. The motivation for using the relaxation is that
the special structure of the constraints x ∈ S makes it easy to solve. The term “penalty”
is not quite right for the expression λigi(x), however, since a penalty should vanish when
the solution is feasible; λigi(x) can go negative when x is feasible, resulting in a “saddle”
function.

Clearly θ(x, λ) ≤ f(x) for any x that is feasible in the relaxation (15.25), since λ ≥ 0
and each gi(x) ≤ 0. Thus for any λ ≥ 0, the optimal value θ(λ) of the Lagrangean
relaxation (15.25) is a lower bound on the optimal value v∗ of the original problem (15.24)
(weak duality). The tightest lower bound on v∗ is obtained by solving the Lagrangean dual
problem: maximize θ(λ) subject to λ ≥ 0. The amount by which this bound falls short of
v∗ is the duality gap.

15.8.2 Solving the Dual

Since the Lagrangean function θ(λ) is concave, it can be maximized by finding a local
maximum. A popular approach is subgradient optimization, which begins with a starting
value λ0 ≥ 0 and sets each λk+1 = λk + αkσ

k, where σk is a subgradient of θ(λ) at
λ = λk. Conveniently, if θ(λk) = f(xk, λ), then (g1(x

k), . . . , gm(xk)) is a subgradient.
The stepsize αk should decrease as k increases, but not so quickly as to cause premature
convergence. A simple option is to set αk = α0/k, or perhaps αk = α0(θ−θ(λk))/||σk||,
where θ is a dynamically adjusted upper bound on the maximum value of θ(λ). The step-
size is highly problem-dependent and must be tuned for every problem class. Solution
methods are further discussed in [11, 98].

John N. Hooker 549

Typically the Lagrangean dual is solved only at the root node. As one descends into
the search tree, branching adds constraints to the problem, and the dual solution λ∗ ceases
to be optimal. Nonetheless the optimal value of the Lagrangean relaxation, with λ set to
λ∗ and branching constraints added, continues to be a valid lower bound of the optimal
solution. In fact there is no need to obtain optimal λis even at the root node, and frequently
the subgradient algorithm is terminated early.

One must take care that branching constraints do not destroy the special structure of
the Lagrangean relaxation. For instance, one may wish to branch by fixing one or variables
rather than adding inequality constraints.

15.8.3 Special Case: Linear Programming

The Lagrangean dual of an LP problem is easy to solve, since it is equivalent to the LP
dual. Suppose the original problem (15.24) is an LP problem

min cx

Ax ≥ b, Dx ≥ d, x ≥ 0
(15.26)

in which the linear system Dx ≥ d has some kind of special structure. If Ax ≥ b is
dualized, then θ(λ) is the optimal value of

min θ(x, λ) = cx+ λ(b−Ax) = (c− λA)x+ λb

Dx ≥ d, x ≥ 0
(15.27)

Suppose x∗ is an optimal solution of the original LP problem (15.26), and (λ∗, µ∗) is an
optimal dual solution in which λ∗ corresponds to Ax ≥ b and µ∗ to Dx ≥ d. Thus

cx∗ = λ∗b+ µ∗d (15.28)

by strong duality. It will be shown below that θ(λ∗) = cx∗. This implies that λ∗ is an
optimal dual solution of the Lagrangean dual problem, since θ(λ) is a lower bound on cx∗

for any λ ≥ 0.
One can therefore solve the Lagrangean dual of (15.26) at the root node by solving

its LP dual. If (λ∗, µ∗) solves the LP dual, then λ∗ solves the Lagrangean dual in which
Ax ≥ b is dualized. At subsequent nodes one solves the specially structured LP problem
(15.27), with λ set to the value λ∗ obtained at the root node, to obtain a valid lower bound
on the value of the LP relaxation at that node.

To see that θ(λ∗) = cx∗, note first that x∗ is feasible in

min
x≥0
{(c− λ∗A)x | Dx ≥ d} (15.29)

and µ∗ is feasible in its LP dual

max
µ≥0
{ud | µD ≤ c− λ∗A} (15.30)

where the latter is true because (λ∗, µ∗) is dual feasible for (15.26). But the corresponding
objective function value of (15.29) is

(c− λ∗)x∗ = cx∗ + λ∗(b−Ax∗)− λ∗b = cx∗ − λ∗b
where the second equation is due to complementary slackness. This is equal to the value
µ∗d of (15.30), due to (15.28). So cx∗ − λ∗b is the optimal value of (15.29), which means
that cx∗ is the optimal value θ(λ∗) of (15.27) when λ = λ∗.

550 15. Operations Research Methods in Constraint Programming

15.8.4 Domain Filtering

Lagrangean duality provides a generalization of the filtering mechanism based on LP dual-
ity. Suppose that there is an upper bound U on the cost f(x) in (15.24), and let v∗ = θ(λ∗)
be the optimal value of the Lagrangean dual. Let x∗ solve (15.25) when λ = λ∗, so
that θ(λ∗) = θ(λ∗, x∗), and suppose further that gi(x∗) = 0. If the solution of (15.24)
were to change, function gi(x) could decrease, say by an amount ∆i. This would in-
crease the optimal value of (15.24) as much as changing the the constraint gi(x) ≤ 0 to
gi(x) + ∆i ≤ 0. The function θ(λ) for the altered problem is θ′(λ) = minx∈S{θ′(λ, x)},
where θ′(λ, x) = f(x) +

∑

j λjgj(x) + λi∆i. Since θ′(λ∗, x) differs from θ(λ∗, x) only
by a constant, any x that minimizes θ(λ∗, x) also minimizes θ′(λ∗, x). So

θ′(λ∗) = θ′(λ∗, x∗) + λ∗i∆i = v∗ + λ∗i∆i

is a lower bound on the optimal value of the altered problem, by weak duality. Thus one
must have v∗ + λ∗∆i ≤ U , or ∆i ≤ (U − v∗)/λ∗i . Since ∆i = gi(x

∗)− gi(x) = −gi(x),
this yields a valid inequality parallel to (15.6) that can be propagated:

gi(x) ≥ −
U − v∗
λ∗i

(15.31)

If constraint i imposes a lower bound L on a variable xj (i.e., −xj + L ≤ 0), then
(15.31) becomes xj ≤ L + (U − v∗)/λ∗i . This can be used to reduce the domain of xj if
λ∗i > 0, and similarly if there is an upper bound on xj .

15.8.5 Example: Generalized Assignment Problem

The generalized assignment problem is an assignment problem (15.7) with the complicat-
ing constraint that the jobs j assigned to each resource i satisfy

∑

j αijxij ≤ βi. Let’s
suppose that an LP relaxation of the problem is to be solved at each node of the search
tree to obtain bounds. If solving this LP with a general-purpose solver is too slow, the
complicating constraints can be dualized, resulting in a pure assignment problem with cost
function

∑

ij(cij−λ∗iαij)xij . The optimal multipliers λ∗i can be obtained at the root node
by solving the full LP relaxation.

At subsequent nodes one can solve the Lagrangean relaxation very quickly with the
Hungarian algorithm. The relaxation provides a weak bound, but the dual variables allow
useful domain filtering. The search branches by setting some xij to 0 or 1, which in turn
can be achieved by giving xij a very large or very small cost in the objective function of
the Lagrangean relaxation, thus preserving the problem structure.

15.9 Dynamic Programming

Dynamic programming (DP) exploits recursive or nested structure in a problem. A DP
model provides one more opportunity for an OR-based relaxation of a CP problem, and the
DP model can itself be relaxed to reduce time and space consumption. Since DP models
express the optimal value as a recursively defined function, they can often be coded in a
CP modeling language. DP models are also particularly amendable to filtering discrete
domains, including cost-based filtering.

John N. Hooker 551

15.9.1 Recursive Optimization

Given the problem of minimizing f(x) subject to x ∈ S, a DP model defines a sequence
of state variables s1, . . . , sn. The original variables x = (x1, . . . , xn) are viewed as a
sequence of controls. Each control xk brings about a transition from state sk to state
tk(xk, sk). The optimization problem is viewed as finding a minimum-cost sequence of
controls.

The key property of a DP model is that each state sk must contain enough information
to determine the set Xk(sk) of feasible controls and the cost gk(sk, xk) of applying each
control xk, without knowing how one got to state sk. Thus if each xk ∈ Xk(sk) and each
sk+1 = tk(xk, sk), then x ∈ S and f(x) =

∑n
k=1 gk(sk, xk).

This structure immediately leads to recursive equations, known as Bellman’s equations,
that solve the problem. The computation works backward from a final state sn+1:

fk(sk) = min
xk∈Xk(sk)

{gk(sk, xk) + fk+1(t(xk, sk))} , k = n, . . . , 1 (15.32)

where s1 is the initial state and f1(s1) is the optimal value min{f(x) | x ∈ S}. The cost
fk(sk) is interpreted as the minimum cost of going from state sk to a final state. The final
costs fn+1(sn+1) are given as boundary conditions.

A DP algorithm compiles a table of each fk(sk) for all values of sk based on the previ-
ously computed table of fk+1(sk+1). At each stage k the set X∗

k(sk) of controls that yield
the minimum in (15.32) for each sk is recorded. When f1(s1) is obtained, the algorithm
works forward to obtain an optimal solution (x∗1, . . . , x

∗
n) and optimal sequence of states

s∗1, . . . , s
∗
n by letting each x∗k be any element of X∗

k(s
∗
k) and each s∗k = gk(x

∗
k−1, s

∗
k−1),

where s∗1 = s1.
For instance, suppose one wishes to find a shortest path from every vertex of a directed

acyclic graph (V,E) to vertex n + 1. If the length of edge (i, j) is cij with cii = 0, the
recursion is fk(i) = minj∈E(i) {cij + fk+1(j)}, where E(i) = {i} ∪ {j | (i, j) ∈ E}.
The cost fk(i) is interpreted as the length of the shortest path from vertex i to vertex n+ 1
having n− k + 1 or fewer edges. The boundary condition is fn+1(n+ 1) = 0.

The art of dynamic programming lies in identifying state variables sk that do not have
too many possible values. Only certain problems have a recursive structure that can be
exploited in this manner, but many examples of these can be found in [19, 42]

15.9.2 Domain Filtering

An important special case arises when DP is applied to finding feasible solutions of a
constraint C, since this allows one to achieve hyperarc consistency for C. In this case one
can view the objective function f(x) as equal to 1 when x violates C and 0 otherwise.
The boundary conditions are defined by letting fn+1(sn+1) be 0 for all final states sn+1

that satisfy C and 1 for all other states. All other costs gk(sk, xk) = 0. So if fk(sk) = 0,
X∗
k(sk) is the set of all controls xk that can lead to a feasible solution when they are applied

in state sk. This means
⋃

sk|fk(sk)=0X
∗
k(sk) is the set of values of xk that can lead to a

feasible solution, and hyperarc consistency is achieved by reducing the domain of xk to
this set.

552 15. Operations Research Methods in Constraint Programming

15.9.3 Example: Cost-Based Filtering

Suppose that a cost constraint ax ≤ b is given, and one wishes to filter the variable domains
Dxk

. A classical DP recursion for finding all feasible solutions defines the state variable
sk to be the sum

∑

j<k ajxj of the first k − 1 terms on the left-hand side of ax ≤ b. The
recursion is

fk(sk) = min
xk∈Dxk

{fk+1(sk + akxk)}

with the boundary condition fn+1(sn+1) = 0 for sn+1 ≤ b and fn+1(sn+1) = 1 for
sn+1 > b. Note that gk(sk, xk) = 0 in this recursion.

If the absolute value of the coefficients ak is bounded, then the number of states (values
of sk for all k) is polynomially bounded and the DP recursion has polynomial complexity.

DP therefore provides a pseudopolynomial algorithm that achieves hyperarc consis-
tency for ax ≤ b. For instance, if ax ≤ b is 4x1 +2x2 +3x3 ≤ 12 and eachDxk

= {1, 2},
then possible states sk are illustrated in Fig. 15.4. Every solution (x1, x2, x3) defines a
path s1 → s2 → s3 → s4 through the network. Heavy lines show paths that correspond to
optimal solutions (i.e., f(x) = 0) and therefore feasible solutions of 4x1+2x2+3x3 ≤ 12.
For instance, f3(6) = f3(8) = 0 since s3 = 4x1 + 2x2 can be either 6 or 8 in an optimal
solution, but f3(s3) = 1 for all other s3.

One can read the filtered domains from the network. For instance, the filtered domain
of x3 is

⋃

s3|f(s3)=0X
∗
3 (s3) = X∗

3 (6) ∪ X∗
3 (8) = {1, 2} ∪ {1} = {1, 2}. The reduced

domains of x1 and x2 are {1} and {1, 2}, respectively. This idea is developed further in
[123].

15.9.4 State Space Relaxation

When the state variables sk have too many values, state space relaxation can reduce the
number of values and make the problem easier to solve. State space relaxation in ef-
fect uses a hash code for the states; it defines a function φ(sk) that maps many values of
sk to the same state. Every control xk ∈ Xk(sk) is mapped to a control that takes the
system from φ(sk) to φ(gk(sk, xk)). The cost function ĝk for the relaxation must satisfy
ĝk(φ(sk), φ(yk)) ≤ gk(sk, xk). The optimal value of the relaxed problem is a lower bound
on the optimal value of the original recursion.

This can be illustrated by relaxing a DP formulation of the traveling salesman problem
on a graph (V,E). The objective is to minimize

∑

i cxixi+1
subject to alldiff(x1, . . . , xn)

and (xi, xi+1) ∈ E. Let x1 be the first customer visited after leaving home base i0, and fix
the last customer visited xn to be home base. The classical DP formulation defines state
variable sk to be (i, Vk), where Vk is any set of n − k + 1 vertices and i ∈ Vk. The cost
fk(i, Vk) is interpreted as the cost of the minimum-cost tour that starts at i and covers all
the vertices in Vk. If Ei = {j | (i, j) ∈ E}, the recursion is

fk(i, Vk) = min
xk∈(Vk∩Ei)\{i}

{cixk
+ fk+1(xk, Vk \ {i})} (15.33)

with boundary condition fn(i, {i}) = cii0 for all vertices i with i0 ∈ Ei and fn(i, {i}) =
∞ for all other i.

The recursion (15.33) is not computationally useful because there are exponentially
many states (i, Vk). However, this DP model can be relaxed, for example by mapping all

John N. Hooker 553

0

8

4

12

10

8

6

18

16

15

14

13

12

11

9

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.

...

...

..............
..............

..............
..............

..............
..............

..............
..............

..............
..

...

...

..

...............
..............

...............
...............

...............
...............

..............
...............

...............
..

...............
...............

...............
...............

..............
...............

...............
...............

...............
.

............................
............................

............................
.........................

...

...

..

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

..........
.........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.......

...

...

..

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.

k = 1 2 3 4

1

Figure 15.4: States sk for the constraint 4x1 + 2x2 + 3x3 ≤ 12 with xj ∈ {1, 2}. Edges
leaving state 0 correspond to x1 = 1, 2, and similarly for other edges. Costs associ-
ated with the terminal states (k = 4) are 0 for the boldface states and 1 for the others.
Heavy lines correspond to paths that lead to optimal solutions (i.e. solutions feasible for
4x1 + 2x2 + 3x3 ≤ 12).

states (i, Vk) for a given k to φ(i, Vk) = (i, k). The cost of a transition from (i, k) to
(j, k + 1) is the same as that from any (i, Vk) to any (j, Vk+1), namely cij . The recursion
(15.33) becomes

f̂k(i) = min
xk∈Ei

{

cixk
+ f̂k+1(xk)

}

(15.34)

with the same boundary condition as before. A CP solution of (15.34) and other issues are
discussed in [53].

15.9.5 Nonserial Dynamic Programming

DP is based on the principle that each state sk depends only on the previous state sk−1 and
control xk−1. In nonserial dynamic programming (NSDP), a state may depend on several
previous states.

NSDP has been known in OR for more than 30 years [18]. Essentially the same idea
has surfaced in a number of contexts, including Bayesian networks [88], belief logics [115,

554 15. Operations Research Methods in Constraint Programming

117], pseudoboolean optimization [35], location theory [28], k-trees [7, 8], and bucket
elimination [39].

In the simplest form of NSDP, the state variables sk are the original variables xk. This
is the form most relevant to CP, since it permits solution of a constraint set C in time that
is directly related to the width of the dependency graph G of C.

The width of a directed graph G is the maximum in-degree of vertices of G. The
induced width of G with respect to an ordering of vertices 1, . . . , n is the width of G′ with
respect to this ordering, whereG′ is constructed as follows. Remove vertices n, n−1, . . . , 1
from G one a time, and when each vertex i is removed, add edges as necessary so that the
vertices adjacent to i at the time of its removal form a clique. Then G′ consists of G plus
all edges added in this process.

The dependency graph G for constraint set C contains a vertex for each variable xj of
C and an edge (xi, xj) when xi and xj occur in a common constraint. Let Sk be the set of
vertices in {1, . . . , k − 1} that are adjacent to k in G′, and let xi be the set of variables in
constraintCi ∈ C. Define the cost function ci(xi) to be 1 if xi violatesCi and 0 otherwise.
Then the NSDP recursion again works backward:

fk(Sk) = min
xk∈Dxk

∑

i∈Ik

ci(x
i) +

∑

j∈Jk

fj(Sj)

, k = 1, . . . , n (15.35)

where Ik is the set of indices i for which xi contains xk but none of xk+1, . . . , xn. Jk is the
set of indices j ∈ {k + 1, . . . , . . . , n} for which Sj contains xk but none of xk+1, . . . , xn.
Note that the computation of fk(Sk) may use previously computed costs fi(Si) for several
i ∈ {k + 1, . . . , n}. The process gets started by computing fn(Sn), which requires no
previous results. The optimal value

∑

k|Sk=∅ fk(∅) is 0 if and only if C has a feasible
solution. A feasible solution is recovered by recording for each k the set X∗

k(Sk) of values
of xk that achieve the minimum value of zero in (15.35). The for k = 1, . . . n one can
select any x∗k ∈ X∗

k(S
∗
k), where S∗

k contains the previously selected values for xj ∈ Sk.
The complexity of the recursion (15.35) is at worst proportional to nDw+1, whereD is

the size of the largest variable domain, and w is the size of the largest set Sk. But w is the
width of G′ and therefore the induced with of G with respect to the ordering x1, . . . , xn.
So the complexity of solving a constraint set C by NSDP is at worst exponential in the
induced width of C’s dependency graph with respect to the reverse order of recursion.
These ideas are further discussed in [70].

15.10 Branch-and-Price Methods

Branch and price is a well-known OR technique that is applied to MILP problems with
a very large number of variables. In fact, the MILP model is sometimes reformulated
so as to have exponentially many variables, since this may simplify the model while yet
allowing solution by branch and price.

The basic idea is to solve the MILP initially with only a few variables, and add variables
to the problem as they are needed to improve on the current solution. A subproblem is
solved to identify promising variables. Since a variable is added to the problem by adding a
column to the MILP constraint matrix, this approach is often known as column generation.

John N. Hooker 555

Complicating constraints can be dealt with implicitly by restricting what sort of columns
can be generated by the subproblem.

It is in the column generation phase that CP can be useful, since the subproblem may
have complicated constraints that make it more amenable to solution by CP rather than
OR methods. CP-based branch and price has proved successful in several applications that
involve assignment of resources under complex constraints.

15.10.1 The Algorithm

Branch and price is applied to an MILP problem

min cy

Ay = b, y ≥ 0, yℓ integer for ℓ ∈ I (15.36)

where I ⊂ {1, . . . , n}. The algorithm is a branch-and-bound search that solves the LP
relaxation at each node of the search tree by column generation.

The column generation procedure begins with an LP relaxation that contains a subset
of the variables:

min
∑

ℓ∈L

cℓyℓ

∑

ℓ∈L

Aℓyℓ = b; yℓ ≥ 0, ℓ ∈ L
(15.37)

where Aℓ is column ℓ of A and L ⊂ {1, . . . , n}. If λ∗ = (λ∗1, . . . , λ
∗
m) is the optimal

dual solution of (15.37), then any nonbasic variable yℓ has reduced cost cℓ − λ∗Aℓ (see
Section 15.3). A subproblem is solved to find a column (cℓ, Aℓ) with the smallest reduced
cost. Thus the subproblem minimizes z0 −

∑m
i=1 λ

∗
i zi subject to (z0, z1, . . . , zm) ∈ Z,

where Z is the set of all columns (cℓ, Aℓ). If a column with negative reduced cost is found,
it is added to (15.37). The process is repeated until no column with negative reduce cost
is found in the subproblem, whereupon (15.37) is solved. If all goes well, only a small
fraction of the columns of A will have been generated.

15.10.2 Example: Generalized Assignment Problem

Most applications of branch and price involve an assignment problem with complicating
constraints. One example is the generalized assignment problem, which again is an as-
signment problem (15.7) with the complicating constraint that the jobs j assigned to each
resource i satisfy

∑

j αijxij ≤ βi.
The problem is reformulated for branch and price by letting k index all possible assign-

ments of jobs to a given resource i that satisfy
∑

j αijxij ≤ βi. The 0-1 variable yik = 1
if the kth assignment to resource i is selected. So if δijk = 1 when job j is assigned to
resource i in assignment k, an LP relaxation of the problem has the form (15.36) with

556 15. Operations Research Methods in Constraint Programming

ℓ = (i, k):

min
∑

ik

∑

j

cijδijk

 yik

∑

ik

δijkyik = 1, all j (a)

∑

k

yik = 1, all i (b)

yik ≥ 0, all i, k

(15.38)

If dual variables λj are associated with constraints (a) and µi with constraints (b), the
reduced cost of a variable yik in (15.38) is

∑

j

cijδijk −
∑

j

λjδijk − µi =
∑

j

(cij − λj)δijk − µi

The subproblem of finding a variable yik with negative reduced cost can be solved by
examining each resource i separately and solving the 0-1 knapsack problem

min
∑

j

(cij − λj)zj − µi
∑

j

αijzj ≤ βi; zj ∈ {0, 1}, all j

0-1 knapsack problems can be solved by a number of methods [95], including CP [48].

15.10.3 Other Applications

One of the most successful applications of CP-based branch and price is to airline crew
assignment and crew rostering [26, 47, 82, 87, 114]. In [47], for example, a path constraint
is used to obtain a permissible roster with a negative reduced cost. The search tree is
pruned by solving a relaxation of the problem (a single-source shortest path problem) so
as to obtain a lower bound on the reduced cost.

CP-based branch and price has also been applied to transit bus crew scheduling [133],
aircraft scheduling [59], vehicle routing [109], network design [27], employee timetabling
[41], physician scheduling [55], and the traveling tournament problem [43, 44]. Several
implementation issues are discussed in [45, 108].

15.11 Benders Decomposition

Benders decomposition was developed in the context of mathematical programming, but
the root idea has much wider application. It solves a problem by enumerating, in a master
problem, possible values of a pre-selected subset of variables. Each set of values that might
be assigned to these variables defines the subproblem of finding the best values for the
remaining variables. Solution of the subproblem generates a nogood, known as a Benders
cut, that excludes that particular assignment to the master problem variables, and perhaps

John N. Hooker 557

other assignments that can be no better. The master problem is re-solved with the new
Benders cut in order to find a better solution, and the process continues until no further
improvement is possible.

Benders decomposition can profitably combine OR and CP, since one approach can
be applied to the master problem and one to the subproblem, depending on which best
suits the problem structure. This sort of combination has yielded substantial speedups in
computation.

15.11.1 Benders Decomposition in the Abstract

In classical Benders decomposition, the subproblem is a linear or nonlinear programming
problem [15, 56], and the Benders cuts are generated using dual or Lagrange multipliers.
However, if one recognizes that LP duality is a special case of a more general inference
duality, the concept of a Benders cut can be generalized [70, 80]. In fact the basic idea of
Benders decomposition is best seen in this more general setting and then specialized to the
classical case.

Benders decomposition applies to problems of the form

min f(x, y)

(x, y) ∈ S, x ∈ Dx, y ∈ Dy
(15.39)

Each iteration k of the Benders algorithm begins with a fixed value xk for x and solves a
subproblem for the best y:

min f(xk, y)

(xk, y) ∈ S, y ∈ Dy
(15.40)

Solution of the subproblem yields an optimal solution yk and an optimal value vk =
f(xk, yk). The solution process is analyzed to identify a proof that f(xk, y) ≥ vk; such a
proof can be regarded as solving the inference dual of (15.40). (The inference dual of an
LP problem is the classical LP dual.) If xk is changed to some other value x, this same
proof may still show that f(x, y) is bounded below by some function Bk(x). This yields
the Benders cut z ≥ Bk(x), where Bk(xk) = vk and z is a variable indicating the optimal
value of the original problem (15.39).

At this point one solves the master problem, which contains the Benders cuts so far
generated.

min z

z ≥ Bi(x), i = 1, . . . k, x ∈ Dx
(15.41)

The solution xk+1 of (15.41) begins the next iteration. Since the master problem (15.41) is
a relaxation of the original problem and the subproblem (15.40) a restriction if it, the opti-
mal value zk+1 of the master problem is a lower bound on the optimal value of (15.39), and
the optimal value of any subproblem is an upper bound. The algorithm terminates with an
optimal solution when the two bounds converge; that is, when zk+1 = mini∈{1,...,k}{vi}.
They converge finitely under fairly weak conditions, for instance if the domainDx is finite,
as it is in examples considered here.

558 15. Operations Research Methods in Constraint Programming

15.11.2 Classical Benders Decomposition

The historical Benders decomposition applies to problems of the form

min f(x) + cy

g(x) +Ay ≥ b, x ∈ S, y ≥ 0, x ∈ Dx, y ∈ ℜn

The subproblem (15.40) is the LP problem

min f(xk) + cy

Ay ≥ b− g(xk), y ≥ 0, y ∈ ℜn (15.42)

Suppose first that (15.42) has optimal value vk and an optimal dual solution λk. By strong
duality vk − f(xk) = λk(b− g(xk)), which means

Bk(x) = f(x) + λk(b− g(x)) (15.43)

is the tightest lower bound on cost when x = xk. That is, λk specifies a proof of the
lower bound vk by defining a linear combination λkAy ≥ λk(b − g(xk)) that dominates
cy ≥ vk − f(xk). But since λk remains dual feasible when xk in (15.42) is replaced by
any x, (15.43) remains a lower bound on cost for any x; that is, λk specifies a proof of the
lower bound Bk(x). This yields the Benders cut

z ≥ f(x) + λk(b− g(x)) (15.44)

If the dual of (15.42) is unbounded, there is a direction or ray λk along which its solution
value can increase indefinitely. In this case the Benders cut is λk(b− g(x)) ≤ 0 rather than
(15.44). The Benders cuts z ≥ Bk(x) in the master problem (15.41) therefore take the form
(15.44) when the subproblem dual is bounded in iteration k, and the form λk(b−g(x)) ≤ 0
when the subproblem dual is unbounded. The master problem can be solved by any desired
method, such as branch and bound if it is an MILP problem.

15.11.3 Example: Planning and Scheduling

A basic planning and scheduling problem illustrates the use of nonclassical Benders to
combine MILP and CP [71]. Each n jobs must be assigned to one of m facilities for
processing. Each job j has processing time pij and uses cij units of resource on facility
i. Every job has release time 0 and deadline d. Jobs scheduled on any facility i may run
simultaneously so long as the total resource consumption at any one time is no greater than
Ci (cumulative scheduling). The objective is to minimize makespan (i.e., finish the last job
as soon as possible).

If job j has start time sj on machine yj , the problem can be written

min z

z ≥ sj + pyjj , 0 ≤ sj ≤ d− pyjj , all j

cumulative
(

si(y), pi(y), ci(y), Ci
)

, all i

where si(y) = (sj | yj = i) and similarly for pi(y), ci(y).

John N. Hooker 559

The master problem assigns jobs to facilities and is well suited for MILP solution. The
subproblem schedules jobs assigned to each facility and is suitable for a CP approach.

Given an assignment yk obtained by solving the master problem, the subproblem sep-
arates into an independent scheduling problem for each facility i:

min zi

zi ≥ si + pij , 0 ≤ sj ≤ d− pij , all j ∈ Jki
cumulative(si(yk), pi(yk), ci(yk), Ci)

where Jki = {j | ykj = i} is the set of jobs assigned to facility i. Let zik be the optimal
makespan obtained in the subproblem Pi for facility i. A Benders cut can be constructed
by reasoning as follows.

First let P̂i be the problem that results when jobs in set R are removed from problem
Pi, and let ẑ be the optimal makespan for P̂i. Then

ẑ ≥ zik −∆ (15.45)

where ∆ =
∑

j∈R pij . To see this, construct a solution S for Pi by scheduling the jobs in

R sequentially after the last job in the optimal solution of P̂i. The resulting makespan is
ẑ + ∆. If ẑ + ∆ ≤ d, then S is feasible for Pi, so that zik ≤ ẑ + ∆ and (15.45) follows.
On the other hand, if ẑ + ∆ > d, then (15.45) follows because zik ≤ d.

Since the master problem will be solved by MILP, it is convenient to write the Benders
cuts in terms of 0-1 variables xij , where xij = 1 when yj = i. In subsequent iterations of
the Benders algorithm, the jobs in Jki that are removed from facility i are those for which
xij = 0. So (15.45) yields the following lower bound on the minimum makespan z for
facility i, which is also a lower bound on the minimum makespan z for the problem as a
whole:

z ≥ zik −
∑

j∈Jki

pij(1− xij) (15.46)

Each Benders cut z ≥ Bk(x) in the master problem is therefore actually a set of inequali-
ties (15.46), one for each facility i. The master problem becomes

min z
∑

i

xij = 1, all j (a)

z ≥ ziℓ −
∑

j∈Jiℓ

pij(1− xij), all i, ℓ = 1, . . . , k (b)

z ≥ 1

Ci

n
∑

j=1

cijpijxij , all i (c)

(15.47)

The expression (c) is a simple relaxation of the subproblem, which can be important to
obtain good computational performance.

The Benders cuts (b) in (15.47) use only the solution of the subproblem and no infor-
mation regarding the solution process. If additional information is available from the CP
solver, one can trace which jobs play no role in proving optimality. These jobs can be

560 15. Operations Research Methods in Constraint Programming

removed from the sets Jiℓ in the Benders cuts as described in [74], resulting in stronger
cuts. The solution of the master problem can be accelerated by updating the solution of the
previous master, as proposed in [70] and implemented in [120].

15.11.4 Other Applications

Classical Benders can be applied in a CP context when the subproblem is an LP problem,
leaving CP to solve the master problem. This approach was used in [46] to solve minimal
perturbation scheduling problems in which the sequencing is decided in the master problem
and the assignment of start times in the subproblem. A similar approach was applied to
scheduling the workforce in a telephone call center [16].

Most applications, however, have used nonclassical Benders methods in which CP or
logic-based techniques solve the subproblem. CP is a natural approach to solving the
inference dual of the subproblem, since inference techniques play a major role in CP
solvers. Explanations [25, 83, 84, 118] for CP solutions are particularly relevant, since
an explanation is in effect a proof of correctness or optimality and therefore solves the
inference dual.

Nonclassical Benders was first used to solve circuit verification problems [80], and un-
derlying theory was developed in [70, 78]. Application to CP-based planning and schedul-
ing was proposed in [70] and has been implemented for min-cost planning and disjunctive
scheduling [81] (later extended to multistage problems [63]), and planning and cumula-
tive scheduling to minimize cost and makespan [71, 30] as well as tardiness [72]. Simi-
lar methods were applied to dispatching of automated guided vehicles [34], steel produc-
tion scheduling [62], batch scheduling in a chemical plant [92] and polypropylene batch
scheduling in particular [122]. CP was used to solve the master problem in a nonclas-
sical Benders approach to real-time scheduling of computer processors [24]. In [131] a
traffic diversion problem is solved with a Benders method that has an LP subproblem but
generates specialized cuts that are not based on dual variables.

Nonclassical Benders methods for integer programming are studied in [29, 78] and for
the propositional satisfiability problem in [70, 78].

15.12 Toward Integration of CP and OR

Importing OR into CP is part of a trend that has been taking shape over the last decade: the
integration of OR and CP, or at least portions of them, into a unified approach to problem
solving. Several paradigms for integration have emerged.

One general scheme is double modeling: some (or all) constraints are formulated in a
CP model, some in an MILP model, and some in both. The two models then exchange
information during the solution process (e.g., [64, 107, 126]). The relaxation and decom-
position strategies discussed here may be seen as special cases in which one of the two
models is subservient to the other (see also [37]).

Double modeling, however, is perhaps more a matter of cooperation than unification.
Schemes that move closer to full integration point to underlying commonality between
CP and OR. Types of commonality include: the role of logical inference in CP and OR
[68, 70]; the parallel between CP’s filtering algorithms and domain store on the one hand,
and MILP’s cutting planes and linear constraint store on the one hand [20, 21, 69]; for-
mulability in a single modeling framework based on conditional constraints [76, 77, 116];

John N. Hooker 561

analogous roles of duality [79]; and a common search-infer-and-relax algorithmic structure
[9, 73]. The ultimate goal is to view OR and CP as special cases of a single methodology.

The evolution of ideas in this area, as well as growing interest in integrated methods,
can be traced in the development of such hybrid solvers as ECLiPSe, OPL Studio, Mosel,
SCIP, and SIMPL. ECLiPSe [107] is a Prolog-based constraint logic programming system
that provides an interface with linear and MILP solvers. The CP solver in ECLiPSe com-
municates tightened bounds to the MILP solver, while the MILP solver detects infeasibility
and provides a bound on the objective function that is used by the CP solver. The optimal
solution of the linear constraints in the problem can be used as a search heuristic. Recent
developments are described in [3].

OPL Studio [65] provides an integrated modeling language that expresses both MILP
and CP constraints. It sends the problem to a CP or MILP solver depending on the nature
of constraints. A script language allows one to implement cooperation between the CP and
MILP solvers.

Mosel [32, 33] is “both a modeling and programming language” that interfaces with
various solvers, including MILP and CP solvers. SCIP [1] is a programming language that
gives the user “total control” of a solution process that can involve both CP and MILP
solvers. SIMPL [9] uses a high-level modeling language in which the choice of constraints
and their parameters determine how techniques interact at the micro level.

There will perhaps always be a role for specialized solvers. However, one can also
foresee a future in which today’s general-purpose CP-based and OR-based solvers evolve
into integrated systems in which there is no longer a clear distinction, nor any need to make
a distinction, between CP and OR components.

Bibliography

[1] T. Achterberg. SCIP: A framework to integrate constraint and mixed integer
programming. ZIB-report, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
2004.

[2] F. Ajili and H. El Sakkout. LP probing for piecewise linear optimization in schedul-
ing. In C. Gervet and M. Wallace, editors, Proceedings of the International Work-
shop on Integration of Artificial Intelligence and Operations Research Techniques
in Constraint Programming for Combintaorial Optimization Problems (CPAIOR
2001), Ashford, U.K., 2001.

[3] F. Ajili and M. Wallace. Hybrid problem solving in ECLiPSe. In M. Milano, editor,
Constraint and Integer Programming: Toward a Unified Methodology, pages 169–
206. Kluwer, Dordrecht, 2004.

[4] F. Alizadeh. Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM Journal of Optimization, 5:13–51, 1995.

[5] G. Appa, D. Magos, and I. Mourtos. Linear programming relaxations of multiple all-
different predicates. In J. C. Régin and M. Rueher, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science, pages 364–
369. Springer, 2004.

[6] G. Appa, I. Mourtos, and D. Magos. Integrating constraint and integer programming
for the orthogonal Latin squares problem. In P. Van Hentenryck, editor, Principles

562 15. Operations Research Methods in Constraint Programming

and Practice of Constraint Programming (CP2002), volume 2470 of Lecture Notes
in Computer Science, pages 17–32. Springer, 2002.

[7] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic and Discrete Mathematics, 8:277–284,
1987.

[8] S. Arnborg and A. Proskurowski. Characterization and recognition of partial k-trees.
SIAM Journal on Algebraic and Discrete Mathematics, 7:305–314, 1986.

[9] I. Aron, J. N. Hooker, and T. H. Yunes. SIMPL: A system for integrating optimiza-
tion techniques. In J. C. Régin and M. Rueher, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science, pages 21–36.
Springer, 2004.

[10] E. Balas, A. Bockmayr, N. Pisaruk, and L. Wolsey. On unions and dominants of
polytopes. Mathematical Programming, 99:223–239, 2004.

[11] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with
a subgradient algorithm. Mathematical Programming, 87:385–399, 2000.

[12] P. Barth. Logic-based 0-1 Constraint Solving in Constraint Logic Programming.
Kluwer, Dordrecht, 1995.

[13] N. Beaumont. An algorithm for disjunctive programs. European Journal of Opera-
tional Research, 48:362–371, 1990.

[14] C . Beck and P. Refalo. A hybrid approach to scheduling with earliness and tardiness
costs. Annals of Operations Research, 118:49–71, 2003.

[15] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252, 1962.

[16] T. Benoist, E. Gaudin, and B. Rottembourg. Constraint programming contribution
to Benders decomposition: A case study. In P. Van Hentenryck, editor, Principles
and Practice of Constraint Programming (CP2002), volume 2470 of Lecture Notes
in Computer Science, pages 603–617. Springer, 2002.

[17] T. Benoist, F. Laburthe, and B. Rottembourg. Lagrange relaxation and con-
straint programming collaborative schemes for traveling tournament problems. In
C. Gervet and M. Wallace, editors, Proceedings of the International Workshop on
Integration of Artificial Intelligence and Operations Research Techniques in Con-
straint Programming for Combintaorial Optimization Problems (CPAIOR 2001),
Ashford, U.K., 2001.

[18] U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, new
York, 1972.

[19] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and 2.
Athena Scientific, Nashua, NH, 2001.

[20] A. Bockmayr and T. Kasper. Branch-and-infer: A unifying framework for inte-
ger and finite domain constraint programming. INFORMS Journal on Computing,
10:287–300, 1998.

[21] A. Bockmayr and T. Kasper. Branch-and-infer: A framework for combining CP and
IP. In M. Milano, editor, Constraint and Integer Programming: Toward a Unified
Methodology, pages 59–88. Kluwer, Dordrecht, 2004.

[22] A. Bockmayr and N. Pisaruk. Detecting infeasibility and generating cuts for mixed
integer programming using constraint programming. In M. Gendreau, G. Pesant,
and L.-M. Rousseau, editors, Proceedings of the International Workshop on Inte-

John N. Hooker 563

gration of Artificial Intelligence and Operations Research Techniques in Constraint
Programming for Combintaorial Optimization Problems (CPAIOR 2003), Montréal,
2003.

[23] S. Bollapragada, O. Ghattas, and J. N. Hooker. Optimal design of truss structures
by mixed logical and linear programming. Operations Research, 49:42–51, 2001.

[24] H. Cambazard, P.-E. Hladik, A.-M. Déplanche, N. Jussien, and Y. Trinquet. Decom-
position and learning for a hard real time task allocation problem. In M. Wallace,
editor, Principles and Practice of Constraint Programming (CP2004), volume 3258
of Lecture Notes in Computer Science, pages 153–167. Springer, 2004.

[25] H. Cambazard and N. Jussien. Identifying and exploiting problem structures using
explanation-based constraint programming. In R. Barták and M. Milano, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2005), volume 3524 of Lecture Notes in Computer
Science, pages 94–109. Springer, 2005.

[26] A. Chabrier. A cooperative CP and LP optimizer approach for the pairing generation
problem. In Proceedings of the International Workshop on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming for
Combintaorial Optimization Problems (CPAIOR 1999), Ferrara, Italy, 2000.

[27] A. Chabrier. Heuristic branch-and-price-and-cut to solve a network design problem.
In M. Gendreau, G. Pesant, and L.-M. Rousseau, editors, Proceedings of the Inter-
national Workshop on Integration of Artificial Intelligence and Operations Research
Techniques in Constraint Programming for Combintaorial Optimization Problems
(CPAIOR 2003), Montréal, 2003.

[28] D. Chhajed and T. J. Lowe. Solving structured multifacility location problems effi-
ciently. Transportation Science, 28:104–115, 1994.

[29] Y. Chu and Q. Xia. Generating benders cuts for a class of integer program-
ming problems. In J. C. Régin and M. Rueher, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science, pages 127–
141. Springer, 2004.

[30] Y. Chu and Q. Xia. A hybrid algorithm for a class of resource-constrained schedul-
ing problems. In R. Barták and M. Milano, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2005), volume 3524 of Lecture Notes in Computer Science, pages 110–
124. Springer, 2005.

[31] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 4:305–337, 1973.

[32] Y. Colombani and S. Heipcke. Mosel: An extensible environment for modeling
and programming solutions. In N. Jussien and F. Laburthe, editors, Proceedings of
the International Workshop on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2002), Le Croisic, France, 2002.

[33] Y. Colombani and S. Heipcke. Mosel: An overview. White paper, Dash Optimiza-
tion, 2004.

[34] A. I. Corréa, A. Langevin, and L. M. Rousseau. Dispatching and conflict-free rout-
ing of automated guided vehicles: A hybrid approach combining constraint pro-
gramming and mixed integer programming. In J. C. Régin and M. Rueher, editors,

564 15. Operations Research Methods in Constraint Programming

Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2004), volume 3011 of Lecture Notes in Computer
Science, pages 370–378. Springer, 2004.

[35] Y. Crama, P. Hansen, and B. Jaumard. The basic algorithm for pseudoboolean pro-
gramming revisited. Discrete Applied Mathematics, 29:171–185, 1990.

[36] W. Cronholm and Farid Ajili. Strong cost-based filtering for Lagrange decompo-
sition applied to network design. In M. Wallace, editor, Principles and Practice
of Constraint Programming (CP2004), volume 3258 of Lecture Notes in Computer
Science, pages 726–730. Springer, 2004.

[37] E. Danna and Claude Le Pape. Two generic schemes for efficient and robust co-
operative algorithms. In M. Milano, editor, Constraint and Integer Programming:
Toward a Unified Methodology, pages 33–58. Kluwer, Dordrecht, 2004.

[38] I. de Farias, E. L. Johnson, and G. L. Nemhauser. Branch-and-cut for combinato-
rial optimization problems without auxilliary variables. In C. Gervet and M. Wal-
lace, editors, Proceedings of the International Workshop on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming for
Combintaorial Optimization Problems (CPAIOR 2001), Ashford, U.K., 2001.

[39] R. Dechter. Bucket elimination: A unifying framework for several probabilistic
inference algorithms. In Proceedings of the Twelfth Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI 96), pages 211–219, Portland, OR, 1996.

[40] S. Demassey, C. Artiques, and P. Michelon. A hybrid constraint propagation-cutting
plane procedure for the RCPSP. In N. Jussien and F. Laburthe, editors, Proceedings
of the International Workshop on Integration of Artificial Intelligence and Opera-
tions Research Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems (CPAIOR 2002), Le Croisic, France, 2002.

[41] S. Demassey, G. Pesant, and L.-M. Rousseau. Constraint-programming based col-
umn generation for employee timetabling. In R. Barták and M. Milano, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2005), volume 3524 of Lecture Notes in Computer
Science, pages 140–154. Springer, 2005.

[42] E. V. Denardo. Dynamic Programming: Models and Applications. Dover Publica-
tions, Mineola, NY, 2003.

[43] K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem descrip-
tion and benchmarks. In T. Walsh, editor, Principles and Practice of Constraint
Programming (CP2001), volume 2239 of Lecture Notes in Computer Science, pages
580–584. Springer, 2001.

[44] K. Easton, G. Nemhauser, and M. Trick. Solving the traveling tournament problem:
A combined integer programming and constraint programming approach. In Pro-
ceedings of the International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2002), 2002.

[45] K. Easton, G. Nemhauser, and M. Trick. CP based branch and price. In M. Milano,
editor, Constraint and Integer Programming: Toward a Unified Methodology, pages
207–231. Kluwer, Dordrecht, 2004.

[46] A. Eremin and M. Wallace. Hybrid Benders decomposition algorithm in constraint
logic programming. In T. Walsh, editor, Principles and Practice of Constraint Pro-
gramming (CP2001), volume 2239 of Lecture Notes in Computer Science, pages
1–15. Springer, 2001.

John N. Hooker 565

[47] T. Fahle, U. Junker, S. E. Karish, N. Kohn, M. Sellmann, and B. Vaaben. Constraint
programming based column generation for crew assignment. Journal of Heuristics,
8:59–81, 2002.

[48] T. Fahle and M. Sellmann. Constraint programming based column generation with
knapsack subproblems. In Proceedings of the International Workshop on Integration
of Artificial Intelligence and Operations Research Techniques in Constraint Pro-
gramming for Combintaorial Optimization Problems (CPAIOR 2000), pages 33–44,
Paderborn, Germany, 2000.

[49] M. Fischetti, A. Lodi, and P. Toth. Solving real-world atsp instances by branch-and-
cut. In M. Jünger, G. Reinelt, and G. Rinaldi, editors, Combinatorial Optimization—
Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, volume 2570 of Lecture
Notes in Computer Science, pages 64–77. Springer, 2003.

[50] M. Fischetti and P. Toth. An additive bounding procedure for combinatorial opti-
mization problems. Operations Research, 37:319–328, 1989.

[51] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In J. Jaffar,
editor, Principles and Practice of Constraint Programming (CP1999), volume 1713
of Lecture Notes in Computer Science, pages 189–203. Springer, 1999.

[52] F. Focacci, A. Lodi, and M. Milano. Cutting planes in constraint programming:
An hybrid approach. In R. Dechter, editor, Principles and Practice of Constraint
Programming (CP2000), volume 1894 of Lecture Notes in Computer Science, pages
187–201. Springer, 2000.

[53] F. Focacci and M. Milano. Connections and integrations of dynamic programming
and constraint programming. In C. Gervet and M. Wallace, editors, Proceedings of
the International Workshop on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming for Combintaorial Optimization
Problems (CPAIOR 2001), Ashford, U.K., 2001.

[54] T. Gellermann, M. Sellmann, and R. Wright. Shorter-path constraints for the re-
source constrained shortest path problem. In R. Barták and M. Milano, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2005), volume 3524 of Lecture Notes in Computer
Science, pages 201–216. Springer, 2005.

[55] B. Gendron, H. Lebbah, and G. Pesant. Improving the cooperation between
the master problem and the subproblem in constraint programming based col-
umn generation. In R. Barták and M. Milano, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2005), volume 3524 of Lecture Notes in Computer Science, pages 217–
227. Springer, 2005.

[56] A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization
Theory and Applications, 10:237–260, 1972.

[57] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using using semidefinite programming.
Journal of the ACM, 42:1115–1145, 1995.

[58] C. P. Gomes and D. B. Shmoys. The promise of LP to boost CSP techniques for
combinatorial problems. In N. Jussien and F. Laburthe, editors, Proceedings of
the International Workshop on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2002), Le Croisic, France, 2002.

566 15. Operations Research Methods in Constraint Programming

[59] M. Grönkvist. Using constraint propagation to accelerate column generation in air-
craft scheduling. In M. Gendreau, G. Pesant, and L.-M. Rousseau, editors, Pro-
ceedings of the International Workshop on Integration of Artificial Intelligence and
Operations Research Techniques in Constraint Programming for Combintaorial Op-
timization Problems (CPAIOR 2003), Montréal, 2003.

[60] I. E. Grossmann, J. N. Hooker, R. Raman, and H. Yan. Logic cuts for processing
networks with fixed charges. Computers and Operations Research, 21:265–279,
1994.

[61] G. Gutin and A. P. Punnen, editors. The Traveling Salesman Problem and Its Vari-
ations. Kluwer, Dordrecht, 2002.

[62] I. Harjunkoski and I. E. Grossmann. A decomposition approach for the scheduling
of a steel plant production. Computers and Chemical Engineering, 25:1647–1660,
2001.

[63] I. Harjunkoski and I. E. Grossmann. Decomposition techniques for multistage
scheduling problems using mixed-integer and constraint programming methods.
Computers and Chemical Engineering, 26:1533–1552, 2002.

[64] S. Heipcke. Integrating constraint programming techniques into mathematical pro-
gramming. In H. Prade, editor, Proceedings, 13th European Conference on Artificial
Intelligence, pages 259–260. Wiley, New York, 1999.

[65] P. Van Hentenryck, I. Lustig, L. Michel, and J. F. Puget. The OPL Optimization
Programming Language. MIT Press, Cambridge, MA, 1999.

[66] W. J. Van Hoeve. A hybrid constraint programming and semidefinite programming
approach for the stable set problem. In F. Rossi, editor, Principles and Practice
of Constraint Programming (CP2003), volume 2833 of Lecture Notes in Computer
Science, pages 407–421. Springer, 2003.

[67] J. N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of Mathe-
matics and Artificial Intelligence, 6:271–286, 1992.

[68] J. N. Hooker. Logic-based methods for optimization. In A. Borning, editor, Prin-
ciples and Practice of Constraint Programming (CP2002), volume 874 of Lecture
Notes in Computer Science, pages 336–349. Springer, 1994.

[69] J. N. Hooker. Constraint satisfaction methods for generating valid cuts. In D. L.
Woodruff, editor, Advances in Computational and Stochastic Optimization, Logic
Programming and Heuristic Search, pages 1–30. Kluwer, Dordrecht, 1997.

[70] J. N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. Wiley, New York, 2000.

[71] J. N. Hooker. A hybrid method for planning and scheduling. In M. Wallace, edi-
tor, Principles and Practice of Constraint Programming (CP2004), volume 3258 of
Lecture Notes in Computer Science, pages 305–316. Springer, 2004.

[72] J. N. Hooker. Planning and scheduling to minimize tardiness. In Principles and
Practice of Constraint Programming (CP2005), volume 3709 of Lecture Notes in
Computer Science, pages 314–327. Springer, 2005.

[73] J. N. Hooker. A search-infer-and-relax framework for integrating solution methods.
In R. Barták and M. Milano, editors, Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CPAIOR 2005),
volume 3524 of Lecture Notes in Computer Science, pages 243–257. Springer, 2005.

[74] J. N. Hooker. A hybrid method for planning and scheduling. Constraints, to appear.
[75] J. N. Hooker. Integrated Methods for Optimization. To appear.

John N. Hooker 567

[76] J. N. Hooker, H.-J. Kim, and G. Ottosson. A declarative modeling framework that
integrates solution methods. Annals of Operations Research, 104:141–161, 2001.

[77] J. N. Hooker and M. A. Osorio. Mixed logical/linear programming. Discrete Applied
Mathematics, 96–97:395–442, 1999.

[78] J. N. Hooker and G. Ottosson. Logic-based Benders decomposition. Mathematical
Programming, 96:33–60, 2003.

[79] J. N. Hooker, G. Ottosson, E. S. Thornsteinsson, and H.-J. Kim. A scheme for
unifying optimization and constraint satisfaction methods. Knowledge Engineering
Review, 15:11–30, 2000.

[80] J. N. Hooker and H. Yan. Logic circuit verification by benders decomposition. In
V. Saraswat and P. Van Hentenryck, editors, Principles and Practice of Constraint
Programming: The Newport Papers, pages 267–288, Cambridge, MA, 1995. MIT
Press.

[81] V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models for a class of
optimization problems. INFORMS Journal on Computing, 13:258–276, 2001.

[82] U. Junker, S. E. Karish, N. Kohl, B. Vaaben, T. Fahle, and M. Sellmann. A frame-
work for constraint programming based column generation. In J. Jaffar, editor, Prin-
ciples and Practice of Constraint Programming (CP1999), volume 1713 of Lecture
Notes in Computer Science, pages 261–275. Springer, 1999.

[83] N. Jussien. The versatility of using explanations within constraint programming.
Research report, École des Mines de Nantes, France, 2003.

[84] N. Jussien and S. Ouis. User-friendly explanations for constraint programming.
In Eleventh Workshop on Logic Programming environments (WLPE 2001), Paphos,
Cyprus, 2001.

[85] M. O. Khemmoudj, H. Bennaceur, and A. Nagih. Combining arc consistency and
dual Lagrangean relaxation for filtering CSPs. In R. Barták and M. Milano, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2005), volume 3524 of Lecture Notes in Computer
Science, pages 258–272. Springer, 2005.

[86] H.-J. Kim and J. N. Hooker. Solving fixed-charge network flow problems with a
hybrid optimization and constraint programming approach. Annals of Operations
Research, 115:95–124, 2002.

[87] N. Kohl. Application of OR and CP techniques in a real world crew scheduling
system. In Proceedings of the International Workshop on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming for
Combintaorial Optimization Problems (CPAIOR 2000), Paderborn, Germany, 2000.

[88] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society B, 50:157–224, 1988.

[89] S. Lee and I. Grossmann. Generalized disjunctive programming: Nonlinear con-
vex hull relaxation and algorithms. Computational Optimization and Applications,
26:83–100, 2003.

[90] S. Lee and I. E. Grossmann. Global optimization of nonlinear generalized dis-
junctive programming with bilinear equality constraints: Applications to process
networks. Computers and Chemical Engineering, 27:1557–1575, 2003.

[91] A. Lodi and M. Milano. Discrepancy-based additive bounding. In M. Gendreau,
G. Pesant, and L.-M. Rousseau, editors, Proceedings of the International Workshop

568 15. Operations Research Methods in Constraint Programming

on Integration of Artificial Intelligence and Operations Research Techniques in Con-
straint Programming for Combintaorial Optimization Problems (CPAIOR 2003),
Montréal, 2003.

[92] C. T. Maravelias and I. E. Grossmann. Using MILP and CP for the scheduling of
batch chemical processes. In J. C. Régin and M. Rueher, editors, Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2004.

[93] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in inte-
ger and mixed integer programming. Discrete Applied Mathematics, 123:397–446,
2002.

[94] H. Marchand and L. A. Wolsey. Aghgregation and mixed integer rounding to solve
mips. Operations Research, 49:363–371, 2001.

[95] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York, 1990.

[96] M. Milano and W. J. van Hoeve. Reduced cost-based ranking for generating promis-
ing subproblems. In P. Van Hentenryck, editor, Principles and Practice of Con-
straint Programming (CP2002), volume 2470 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer, 2002.

[97] D. Naddef. Polyhedral theory and branch-and-cut algorithms for the symmetric
TSP. In G. Gutin and A. P. Punnen, editors, The Traveling Salesman Problem and
Its Variations, pages 29–116. Kluwer, Dordrecht, 2002.

[98] A. Nedic and D. P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM Journal on Optimization, 12:109–138, 2001.

[99] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley,
New York, 1999.

[100] M. Osorio and F. Glover. Logic cuts using surrogate constraint analysis in the multi-
dimensional knapsack problem. In C. Gervet and M. Wallace, editors, Proceedings
of the International Workshop on Integration of Artificial Intelligence and Opera-
tions Research Techniques in Constraint Programming for Combintaorial Optimiza-
tion Problems (CPAIOR 2001), Ashford, U.K., 2001.

[101] G. Ottosson, E. Thorsteinsson, and J. N. Hooker. Mixed global constraints
and inference in hybrid IP-CLP solvers. In Proceedings of CP99 Post-
Conference Workshop on Large-Scale Combinatorial Optimization and Constraints,
http://www.dash.co.uk/wscp99, pages 57–78, 1999.

[102] G. Ottosson, E. Thorsteinsson, and J. N. Hooker. Mixed global constraints and in-
ference in hybrid CLP-IP solvers. Annals of Mathematics and Artificial Intelligence,
34:271–290, 2002.

[103] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut
problem. Mathematical Programming, 47:19–36, 1990.

[104] R. Raman and I. E. Grossmann. Modeling and computational techniques for logic
based integer programming. Computers and Chemical Engineering, 18:563–578,
1994.

[105] P. Refalo. Tight cooperation and its application in piecewise linear optimization.
In J. Jaffar, editor, Principles and Practice of Constraint Programming (CP1999),
volume 1713 of Lecture Notes in Computer Science, pages 375–389. Springer, 1999.

[106] P. Refalo. Linear formulation of constraint programming models and hybrid

John N. Hooker 569

solvers. In R. Dechter, editor, Principles and Practice of Constraint Programming
(CP2000), volume 1894 of Lecture Notes in Computer Science, pages 369–383.
Springer, 2000.

[107] R. Rodošek, M. Wallace, and M. Hajian. A new approach to integrating mixed
integer programming and constraint logic programming. Annals of Operations Re-
search, 86:63–87, 1997.

[108] L.-M. Rousseau. Stabilization issues for constraint programming based column
generation. In J. C. Régin and M. Rueher, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science, pages 402–
408. Springer, 2004.

[109] L. M. Rousseau, M. Gendreau, and G. Pesant. Solving small VRPTWs with con-
straint programming based column generation. In N. Jussien and F. Laburthe, ed-
itors, Proceedings of the International Workshop on Integration of Artificial Intel-
ligence and Operations Research Techniques in Constraint Programming for Com-
bintaorial Optimization Problems (CPAIOR 2002), Le Croisic, France, 2002.

[110] R. Sadykov. A hybrid branch-and-cut algorithm for the one-machine schedul-
ing problem. In J. C. Régin and M. Rueher, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems
(CPAIOR 2004), volume 3011 of Lecture Notes in Computer Science, pages 409–
415. Springer, 2004.

[111] N. W. Sawaya and I. E. Grossmann. A cutting plane method for solving linear
generalized disjunctive programming problems. Research report, Department of
Chemical Engineering, Carnegie Mellon University, 2004.

[112] N. W. Sawaya and I. E. Grossmann. Computational implementation of non-linear
convex hull reformulations. Research report, Department of Chemical Engineering,
Carnegie Mellon University, 2005.

[113] M. Sellmann and T. Fahle. Constraint programming based Lagrangian relaxation
for a multimedia application. In C. Gervet and M. Wallace, editors, Proceedings of
the International Workshop on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming for Combintaorial Optimization
Problems (CPAIOR 2001), Ashford, U.K., 2001.

[114] M. Sellmann, K. Zervoudakis, P. Stamatopoulos, and T. Fahle. Crew assignment via
constraint programming: Integrating column generation and heuristic tree search.
Annals of Operations Research, 115:207–225, 2002.

[115] G. Shafer, P. P. Shenoy, and K. Mellouli. Propagating belief functions in qualitative
markov trees. International Journal of Approximate Reasoning, 1:349–400, 1987.

[116] H. M. Sheini and K. A. Sakallah. A SAT-based decision procedure for mixed log-
ical/integer linear problems. In R. Barták and M. Milano, editors, Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2005), volume 3524 of Lecture Notes in Computer Science,
pages 320–335. Springer, 2005.

[117] P. P. Shenoy and G. Shafer. Propagating belief functions with local computation.
IEEE Expert, 1:43–52, 1986.

[118] M. H. Sqalli and E. C. Freuder. Inference-based constraint satisfaction supports
explanation. In National Conference on Artificial Intelligence (AAAI 1996), pages
318–325, 1996.

570 15. Operations Research Methods in Constraint Programming

[119] R. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex pro-
gramming. Mathematical Programming, 86:515–532, 1999.

[120] E. Thorsteinsson. Branch and check: A hybrid framework integrating mixed integer
programming and constraint logic programming. In T. Walsh, editor, Principles and
Practice of Constraint Programming (CP2001), volume 2239 of Lecture Notes in
Computer Science, pages 16–30. Springer, 2001.

[121] E. Thorsteinsson and G. Ottosson. Linear relaxations and reduced-cost based prop-
agation of continuous variable subscripts. Annals of Operations Research, 115:15–
29, 2001.

[122] C. Timpe. Solving planning and scheduling problems with combined integer and
constraint programming. OR Spectrum, 24:431–448, 2002.

[123] M. Trick. A dynamic programming approach for consistency and propagation for
knapsack constraints. In C. Gervet and M. Wallace, editors, Proceedings, Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2001), pages 113–124, Ashford, U.K., 2001.

[124] M. Trick. Formulations and reformulations in integer programming. In R. Barták
and M. Milano, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems (CPAIOR 2005), volume 3524
of Lecture Notes in Computer Science, pages 366–379. Springer, 2005.

[125] A. Vecchietti, S. Lee, and I. E. Grossmann. Characterization and formulation of
disjunctions and their relaxations. In Proceedings of Mercosul Congress on Pro-
cess Systems Engineering (ENPROMER 2001), volume 1, pages 409–414, Santa
Fe, Chile, 2001.

[126] M. Wallace, M. S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint
logic programming. ICL Systems Journal, 12:159–200, 1997.

[127] H. P. Williams. Model Building in Mathematical Programming, 4th Ed. Wiley, New
York, 1999.

[128] H. P. Williams and H. Yan. Representations of the all different predicate of con-
straint satisfaction in integer programming. INFORMS Journal on Computing,
13:96–103, 2001.

[129] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite
Programming. Kluwer, Dordrecht, 2000.

[130] L. A. Wolsey. Integer Programming. Wiley, New York, 1998.
[131] Q. Xia, A. Eremin, and M. Wallace. Problem decomposition for traffic diversions.

In J. C. Régin and M. Rueher, editors, Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems (CPAIOR 2004),
volume 3011 of Lecture Notes in Computer Science, pages 348–363. Springer, 2004.

[132] H. Yan and J. N. Hooker. Tight representations of logical constraints as cardinality
rules. Mathematical Programming, 85:363–377, 1995.

[133] T. H. Yunes, A. V. Moura, and C. C. de Souza. Hybrid column generation ap-
proaches for urban transit crew management problems. Transportation Science, to
appear.

Handbook of Constraint Programming 571
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 16

Continuous and Interval Constraints

Frédéric Benhamou and Laurent Granvilliers

Continuous Constraint Solving

Continuous constraint solving has been widely studied in several fields of applied mathe-
matics and computer science. In computer algebra [13, 16, 24, 25], continuous constraints
are viewed as formulas from first-order logic interpreted over the real numbers. The sym-
bolic algorithms transform the constraint systems within the same equivalence class in the
interpretation domain according to some simplification ordering. These techniques, for
instance Gröbner bases and quantifier elimination, are mainly devoted to polynomial con-
straints and require a preprocessing of the non-polynomial functions. Exact computations
are guaranteed, provided that rational numbers in infinite precision or algebraic numbers
are used. These algorithms generally run in exponential time and space and reaching good
practical complexities is a main challenge.

In numerical analysis [119], continuous constraints are viewed as equations or inequal-
ities between real functions. The numerical methods mainly implement fixed-point opera-
tors processing (linear) relaxations of the nonlinear systems. The computations are approx-
imate whenever floating-point numbers are used. In this area, the quality of the algorithms
is determined by the convergence rate, the tightness of the relaxations, and the method for
controlling rounding errors. Interval analysis [98] is a set extension of numerical analysis
such that the floating-point numbers are replaced with the intervals. The interval approx-
imations are defined so as to enclose the computed real quantities and the algorithms are
said to be complete.

In constraint programming, continuous constraints are viewed as relations. The com-
plete solving of nonlinear systems is implemented by exhaustive search techniques that
compute solution space coverings by means of multi-dimensional boxes. The search is
commonly accelerated through propagation-based algorithms. In this framework, the con-
straint projections can be computed by constraint inversion and interval evaluation steps.
We often employ the term interval constraints to emphasize that continuous constraints
are solved by means of interval-based techniques. One of the main advantages of this
approach is that it does not require specific properties of the systems. Moreover, the prop-

c© 2006 Elsevier All rights reservedB.V.

572 16. Continuous and Interval Constraints

agation framework is general enough to allow the use of more specific techniques like
numerical or symbolic algorithms [2].

Continuous and interval constraints are generally contrasted with non negative integer
or more generally discrete constraints. These last constraints, sometimes also called finite
domain constraints, are generally studied in the Constraint Satisfaction Problems (CSP)
framework and are basic components of most current constraint-based languages, includ-
ing CHIP [36], Eclipse [128], GNU Prolog [35], ILOG Solver [107] and Choco [85]. In
reality, continuous and discrete constraints are two areas of constraint programming that
have much in common. One of the main purposes of this paper, besides the introduction of
interval constraints, is to discuss their similarities, their differences and their complemen-
tarities.

Introduced in the mid eighties by Cleary [21], interval constraints have been developed
with several objectives in mind:

• Extend the CLP and CSP technologies to continuous, non linear constraints;

• Design efficient and sound propagation-based methods over the reals;

• Study, compare and combine these methods with numerical analysis approaches;

• Provide a theoretical and algorithmic propagation-based framework to mix discrete
and continuous constraints.

Nearly two decades later, most of these objectives were met, at least in part, considering
that this technology is now routinely used in a number of nonlinear global optimization
software packages and has made its way into several application areas including robotics
and design.

A Brief History

Back in the mid eighties, the constraint programming community originated from the meet-
ing of researchers in declarative programming paradigms such as (Constraint) Logic Pro-
gramming [70, 71] and researchers in Artificial Intelligence, mostly coming from the CSP
world. Although working on computation domains presenting opposite finiteness proper-
ties (Herbrand terms vs finite domains) both communities shared a view of the universe
that was relational, symbolic and ruled by fixed point operators.

Prolog II, designed by Colmerauer [27], is generally considered as the first CLP lan-
guage. The constraints of Prolog II are equations and disequalities over terms. The next
generation of CLP languages, Prolog III [26], CHIP [36] and CLP(ℜ) [72], went a step fur-
ther by introducing constraints over new computation domains including rational and real
numbers, integers, Boolean and lists. It is in fact remarkable that in these three languages,
one of the common computational domains is the set of rational or real numbers. More-
over the numerical constraints are made of linear constraints, with a delay mechanism to
process nonlinear constraints. In other words, the first constraint logic programming lan-
guages introduced, among other things, continuous constraints as first class citizens.

At this point, the designers of CHIP showed that the finite domain technology they
had developed (roughly arc consistency embedded in a Prolog-like language, see [123])
was particularly efficient on a number of difficult combinatorial problems. This basically

F. Benhamou, L. Granvilliers 573

paved the way to the most successful research area in constraint programming of the last
two decades1.

Meanwhile, on the continuous front, Cleary [21] independently combined results from
interval analysis [98] to address the non-relational processing of numerical equations in
standard Prolog. He then modified the Prolog engine to introduce a relational form of in-
terval arithmetic. This work was rapidly followed by the implementation of BNR Prolog
by Older and Vellino [105] and its sequel CLP(BNR) where mixed continuous/discrete and
reified constraints were introduced [6]. In parallel, several works by different researchers
among whose Hyvönen [68], Lhomme [88] and Faltings [37] explored the extension of
Constraint Satisfaction Problems to continuous domains. Another branch of similar re-
search emerged in Russia (see for example [122]), following the pioneering work on sub-
definite models developed by Narin’yani [100].

The second milestone in the interval constraint research is centered on the design and
development of Numerica by Van Hentenryck et al. [125]. The language combined a mod-
eling language adapted to nonlinear constraints and various algorithmic improvements that
led to a number of massive speedups. The central algorithm of Numerica [8, 124] was later
improved in [9] and most of the current interval constraint solvers implement some variants
of this algorithm. It was shown in [124] that these techniques were particularly effective
to solve problems where local methods are either inefficient or not adapted (e.g. involv-
ing singularities, multiple solutions or inconsistencies). One spectacular result concerns a
benchmark called “the transistor problem” and is described in [108].

Finally, more recent advances in interval and continuous constraints include inner ap-
proximations and quantified continuous constraints [22], and new application domains like
control theory and robotics [79], computer graphics and graphical interfaces [10, 66], and
engineering design [117].

Chapter Structure

The purpose of Section 16.1 is to present the basic ideas of the continuous constraint pro-
gramming approach and to discuss the shift from discrete to continuous constraints. The
general solving framework is introduced in Section 16.2 and specific cases like quantified
constraint solving and global optimization are motivated. Interval consistency techniques
for continuous constraints are described in Section 16.3. Interval methods from interval
analysis are presented in Section 16.4. In Section 16.5, we discuss the possible hybridiza-
tions of symbolic and numerical techniques within the constraint programming approach.
Section 16.6 is focused on quantified constraint solving. In particular, we show that con-
sistency techniques can be used to process first order constraints and not only existentially
quantified conjunctive constraints. A few software packages and applications are described
in Section 16.7 and we finally conclude in Section 16.8.

1It is remarkable that, in the expression “constraint programming”, the meaning of the term “programming”
has very consistently evolved with the research area, starting from a “programming language” flavor to reach a
semantics closer to what we have in “mathematical programming”.

574 16. Continuous and Interval Constraints

16.1 From Discrete to Continuous Constraints

In this section, we introduce interval constraint techniques, dedicated to continuous con-
straints solving and based on interval consistency techniques [21, 32, 105]. Our goal here
is to present the main intuitions by way of examples. Let us consider nonlinear equations
of the form f(x1, . . . , xn) = 0, where f is a real function. We also assume that the domain
of every variable xk is a closed interval of real numbers Ik. As a consequence, the search
space, that is the set of potential solutions, is a Cartesian product of intervals called an
interval box (or simply a box). If x = (x1, . . . , xn), we denote as Ix the box I1×· · ·× In.

As is the case with discrete CSPs, the main goal of (interval) consistency techniques
is to eliminate values of variables that do not belong to constraint solutions. For example,
a relational definition of (generalized) arc consistency can be stated as follows [90, 129].
Given k ∈ {1, . . . , n}, the set of real numbers

{ak ∈ Ik : ∃a1 ∈ I1, . . . ,∃ak−1 ∈ Ik−1,

∃ak+1 ∈ Ik+1, . . . ,∃an ∈ In f(a1, . . . , an) = 0} (16.1)

defines the values of Ik that are consistent with the constraint, that is an arc consistent do-
main for xk which corresponds to the projection of the constraint over xk. In a continuous
context, due to the finiteness of machine arithmetic, this set is in general uncomputable. As
a consequence, arc consistency must be weakened over the real numbers. The basic idea of
interval consistencies is to define a superset of the set (16.1) using interval numbers [98].
These techniques are said to be complete since no constraint solution is lost. The following
example shows various instantiations of (16.1):

Example 16.1. Let y − x2 = 0 be a constraint and let y ∈ [1, 2]. Each of the following
pair represents an initial domain of x and the corresponding arc consistent set for x:

([0, 1], {1}) ([−1, 1], {−1, 1}) ([0, 2], [1,
√

2]) ([−1, 2], {−1} ∪ [1,
√

2])

We notice that the set (16.1) cannot always be represented using machine arithmetic since√
2 is not a machine number. Moreover, the set can be connected or disconnected. To

handle these problems, several approximation notions are defined, based on floating point
intervals. The issue is then to devise efficient computational methods. �

Hull consistency is a complete approximation of arc consistency obtained by replacing
the set defined in equation (16.1) with the smallest enclosing interval, which is called
the interval hull. The domain reduction rules combine interval arithmetic and constraint
inversion steps, as illustrated by the following example:

Example 16.2. Let y − x2 = 0 be a constraint, and let x ∈ [0, 2] and y ∈ [−1, 2]. Given
the smallest machine number a >

√
2, the reduction rules are defined as follows:

{

Iy := [0, 2] = Iy ∩ I2
x

Ix := [0, a] = Ix ∩
√

Iy

The key point is to express every variable as a function of the other variables. This is im-
mediate for y while it needs an inversion of the square operation for x. Interval arithmetic
is used for the evaluation step, which allows one to control rounding operations in order to
compute a superset of the set defined by equation (16.1). �

F. Benhamou, L. Granvilliers 575

The solving method is a search algorithm that maintains local consistency at each node
of the search tree. The local consistency of a set of constraints is computed by constraint
propagation using the reduction rules. This process is convergent and computes a set of lo-
cally consistent domains in finite time, since the set of intervals is finite and the reductions
rules are contracting and monotonic [2].

Example 16.3. Let c1 : y − x2 = 0 and c2 : y − x − 1 = 0 be two constraints, and
let (x, y) ∈ [−4, 4]2. The following sequence describes a propagation process such that a
constraint is used to reduce one variable domain at every step:

(c1, y ∈ [0, 4]), (c1, x ∈ [−2, 2]), (c2, y ∈ [0, 3]),
(c2, x ∈ [−1, 2]), (c1, x ∈ [−1, 1.73 . . .]), . . .

The final hull consistent set is the product [−1, 1.61 . . .]× [0, 2.61 . . .]. �

In the spirit of numerical computations, the approximate solutions have to be known
in general at a given precision ε > 0. The precision of an interval [a, b] can be defined by
the real number (b − a). In this framework, the search tree must be made of inconsistent
terminal nodes, consistent terminal nodes such that the precision of every interval is smaller
than ε, and non-terminal nodes, which are processed by splitting. Bisecting the largest
domain is a good heuristic on average.

Example 16.4. Let {y − x2 = 0, y − x− 1 = 0} be a set of constraints, and let (x, y) ∈
[−4, 4]2. This problem has two solutions. Given a precision of 10−8, two approximate
solutions can be computed:

[−0.61 . . . ,−0.61 . . .]×[0.38 . . . , 0.38 . . .] and [1.61 . . . , 1.61 . . .]×[2.61 . . . , 2.61 . . .]

Each approximate solution encloses one solution. This is a good case since interval com-
putations are complete but not necessarily sound. Soundness can be obtained in particular
cases by means of theorems from real analysis, e.g., Brouwer’s [15] and Miranda’s [94].
Let us remark that the hull of the solution set is much tighter than the hull consistent do-
main of Example 16.3, which comes from the weakness of local consistency. �

To conclude, the shift from discrete to continuous domains requires an approximation
domain, new reduction rules and splitting heuristics. Interval arithmetic provides good
properties, since every computation is convergent and complete. In the following, we
will describe advanced interval-based techniques such as the combination of consistency
techniques and numerical operators from interval analysis.

16.2 The Branch-and-Reduce Framework

The problem of solving constraint-based mathematical models over the real numbers is
uncomputable in general [111]. It is only possible to calculate approximations to the so-
lutions by using machine arithmetic. Along these lines, the main goal of interval-based
techniques is to solve combinatorial problems defined as relaxations of the exact continu-
ous problems [98]. More precisely, we address the problem of covering solution sets with
finite sets of interval boxes of reasonable precision. This problem is NP-hard in the general
case. Our goal is to design solving techniques whose practical time complexity is better

576 16. Continuous and Interval Constraints

Table 16.1: The general branch-and-reduce algorithm for solving constraint problems.

BranchAndReduce(C : constraint model , I : interval box , . . .)
begin

L := {I} % set of interval boxes
repeat

J := Choose(L) % choice of a current box
K := Reduce(C, J) % reduction of the current box
L := Branch(L,K) % branching operation on the covering
L := Revise(L) % simplification of the current covering

until L is terminal
return L % covering of the solutions of C within I

end

than the exponential worst case. Another important issue related to numerical computa-
tions is to prove the existence of solutions within an interval box in order to provide safe
results.

The problem of covering the solution set of a constraint-based model within an interval
box can be handled by branch-and-reduce algorithms [1, 61, 98, 101, 125]. The main prin-
ciple of these algorithms is to recursively refine the initial interval box, which is trivially a
covering. At least two solving procedures must be implemented. A branching procedure
splits an interval box from the covering in such a way that the result is a covering of the
box (a partition in the best case). A reduction procedure narrows down an interval box
in such a way that no solution belongs to the eliminated sub-boxes. Furthermore, for an
optimization problem, a bounding procedure computes lower and upper bounds of the ob-
jective function within feasible boxes. This leads to the elimination of interval boxes for
which the evaluation of the objective is out of the bounds. A general branch-and-reduce
scheme is presented in Table 16.1, where the revise function may implement a bounding
procedure or more generally a simplification algorithm. The algorithm stops when the cur-
rent covering is declared to be final according to some criteria such as precision, cardinality
of the covering, and computation time. This scheme can be specialized to process different
problems:

• Solving a constraint system with isolated solutions can be based on interval numer-
ical operators or constraint propagation techniques (see Sections 16.4 and 16.3). In
general, the algorithm stops when the size of every domain from the covering is
smaller than a given threshold. A simple branching heuristics is the bisection of the
largest domain.

• Solving a constraint system having a continuum of solutions, for example a set of
inequality constraints, is more complex since it requires managing inner boxes in-
cluded in the continuum. Inner boxes can be computed using interval-based op-
erators applied on the negations of the constraints [4]. An efficient representation
inspired from computational geometry has been introduced in [127]. When comput-
ing inner approximations, a main issue is to avoid separating continuums in order to
minimize the covering size. To this end, specific branching operators can be imple-
mented.

F. Benhamou, L. Granvilliers 577

• Solving a quantified formula requires the propagation of interval boxes through con-
nectives and quantifiers [109]. For instance, a conjunction of constraints leads to
domain intersection; a disjunction leads to domain union; the existential quantifier
amounts to computing a projection. The main problem is to design numerical oper-
ators that are able to eliminate the quantifiers. For instance, it can be very difficult
to compute inner boxes with respect to existentially quantified equations. These
questions will be discussed in Section 16.6.

• Globally solving a constrained optimization problem requires maintaining reliable
bounds on the objective function over the feasible solution space [61]. These bounds
are typically obtained by processing linear relaxations [121]. Furthermore, new
bounds can be reliably obtained only over regions that must contain at least one
solution. To this end, existence proof algorithms based on theorems from fixed-
point theory have been proposed [15, 82], see Section 16.4.3. Finally, the ordering
of boxes to be processed and the branching method are two important components
of the algorithm since the goal is to quickly find boxes that give good values of the
objective in order to prune the rest of the search space [30].

16.3 Consistency Techniques

The approximation of consistency properties over the real numbers introduces several diffi-
cult problems such as the computation over sets of values, the control of numerical errors,
the inversion of nonlinear functions, and the acceleration of slow convergence. Several
techniques based on interval arithmetic [1, 98] have been proposed to handle these prob-
lems. Interval arithmetic is an efficient and reliable implementation of set computations
that allows the propagation of interval domains through nonlinear constraints. These tech-
niques have been pioneered in [21, 32, 68, 105].

In this section, we consider nonlinear constraints from a real-based structure such as
equations and inequality constraints involving arithmetic operations and elementary func-
tions over the real numbers. In this framework, integer values can be processed as specific
real values.

16.3.1 Interval Arithmetic

Interval arithmetic is the arithmetic of interval numbers. Every interval [a, b] is defined as
a set of real numbers {a 6 x 6 b}. The set of intervals I is a lattice for set inclusion.
Furthermore, interval arithmetic is defined as a set extension of real arithmetic. Given a
real operation ◦ ∈ {+,−,×}, the corresponding interval operation is defined by

(I, J) 7→ �{x ◦ y : x ∈ I, y ∈ J}

where the symbol � stands for the hull of a set of real numbers. These operations are
implemented by computations over the interval bounds, as follows:

[a, b] + [c, d] = [a+ b, c+ d]
[a, b] − [c, d] = [a− d, b− c]
[a, b] × [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

578 16. Continuous and Interval Constraints

Elementary functions are defined in the same way.
Interval arithmetic can be used to compute the range of a real function over a domain.

The so-called interval evaluation algorithm is the standard term evaluation procedure us-
ing interval arithmetic, where every variable is replaced with its domain. The result is a
superset of the range of the function, which is equal to the exact set if every variable in
the function expression occurs only once [98]. This process is the base case of a general
approach to approximating a real function by an interval function:

Definition 16.5. An interval function F : I
n → I is an interval extension of a function

f : Rn → R if for every I ∈ I
n the inclusion {f(x) : x ∈ I} ⊆ F (I) holds.

There exist many kinds of interval extensions based on symbolic transformations or
numerical relaxations such as Bernstein forms, Horner forms or Taylor expansions [17, 18,
65, 110].

In practice, the interval bounds are represented by machine numbers such as floating-
point numbers [69, 99]. Since the interval domain is finite it follows that an interval cannot
be indefinitely reduced. The bounds must be rounded: every lower bound is downward
rounded, and every upper bound is upward rounded. By so doing, every computed interval
is larger than the exact set, which is the price to pay for completeness.

16.3.2 Computing Projections from Tree Representations

Hull consistency is a direct approximation of arc consistency. More precisely, if the hull of
the set defined by equation (16.1) is equal to Ik, then the domain of xk is hull consistent;
otherwise, the domain can be reduced. The goal is to compute the largest hull consistent
domain included in Ik. However, this set is uncomputable in general due to the accumula-
tion of rounding errors in interval computations. It can also be difficult to isolate variables
in complex constraints. As a consequence, hull consistency is generally computed over a
decomposition of the constraints.

The decomposition is a symbolic procedure that transforms every constraint into a set
of constraints having at most one operation symbol. Given a constraint c, the decomposi-
tion C is obtained from c by introducing a set of new variables V such that the equivalence
c ⇐⇒ ∃V C holds.

Example 16.6. Let xy − z2 = 1 be a constraint. The main idea is to introduce a new
variable for every operation symbol:

{v1 = xy, v2 = z2, v3 = v1 − v2, v3 = 1}

The projection of this set over the variables x, y, z is trivially equivalent to the initial con-
straint. �

Consistency over the decomposed set of constraints is obtained by constraint prop-
agation. Every constraint is processed by a projection operator until no domain can be
modified, as shown in Section 16.1. This strategy is optimal if the constraint network is a
tree, which happens when every variable occurs only in one constraint [34, 40, 97]. This
situation seldom arises in practice for the whole network. However, the set of constraints
computed after the decomposition of one constraint is a tree if no variable occurs twice.
This remark has led to a specialized algorithm to compute hull consistency [9, 49, 52]. The

F. Benhamou, L. Granvilliers 579

main idea is to propagate the variable domains from the leaves to the root, and from the
root to the leaves in the tree-representation of the constraint. The bottom-up phase is an
evaluation of the terms using interval arithmetic. The top-down phase is a projection of the
constraint over every term.

Example 16.7. Let xy − z2 = 1 be a constraint and let {v1 = xy, v2 = z2, v3 =
v1 − v2, v3 = 1} be its decomposition. Let x ∈ [−1, 1], y ∈ [0, 2] and x ∈ [−4, 4]. The
bottom-up phase is just an evaluation of the new variables:

v1 = xy Iv1 := Ix × Iy := [−2, 2]
v2 = z2 Iv2 := I2

z := [0, 16]
v3 = v1 − v2 Iv3 := Iv1 − Iv2 := [−18, 2]

The top-down phase is a projection of the constraint onto every variable:

v3 = 1 Iv3 := Iv3 ∩ [1, 1] := [1, 1]
v1 = v2 + v3 Iv1 := Iv1 ∩ (Iv2 + Iv3) := [1, 2]
v2 = v1 − v3 Iv2 := Iv2 ∩ (Iv1 − Iv3) := [0, 1]

z =
√
v2 Iz := Iz ∩

√

Iv2 := [−1, 1]
x = v1/y Ix := Ix ∩ (Iv1/Iy) := [0.5, 1]
y = v1/x Iy := Iy ∩ (Iv1/Ix) := [1, 2]

It is clear that the new variables are used for intermediary computations in order to ex-
change information between the user variables. In practice, their introduction is then un-
necessary.

=

1 [1, 1]−[1, 1] [−18, 2]

sqr[0, 1] [0, 16]×[1, 2] [−2, 2]

x[0.5, 1] [−1, 1] y[1, 2] [0, 2] z[−1, 1] [−4, 4]

This computation is depicted in the previous figure where each node is labelled by the inter-
val evaluation of the corresponding term (right-hand interval) and the constraint projection
onto the term (left-hand interval). �

This strategy can be seen as a single operator for processing a complex constraint,
which has been called HC4revise. It has been shown in [49] that this operator is idempo-
tent only if the approximation domain is the set of unions of intervals. The use of unions
of intervals has been discussed in [3, 9], but its practical efficiency is still doubtful. This
operator can also be used in the general case, when some variables have many occurrences,
with no guarantee of optimality. To improve accuracy in the general case, three issues have

580 16. Continuous and Interval Constraints

to be tackled: multiple occurrences of variables, locality of reasoning and propagation
strategies.

Example 16.8. Set computations may be imprecise when the variables have many occur-
rences in one constraint. Let x+ x = 0 be a constraint and let x ∈ [−1, 1]. The reduction
rule is Ix := Ix ∩ (−Ix), which is useless. However, the constraint is equivalent to x = 0.
In this case, the occurrences of x are handled as different variables, and no elimination of
values happens as in the real domain. This problem will be addressed in Section 16.3.3. �

Example 16.9. Local consistency reasoning may be weak when the variables occur in
many constraints. Let x+y = 0 and x−y = 0 be two constraints and let (x, y) ∈ [−1, 1]2.
These domains are hull consistent with respect to both constraints. However, the constraint
system is equivalent to x = y = 0. In this case, the constraints are handled independently,
and no reduction is performed with respect to the conjunction of constraints. This problem
will be addressed in Section 16.3.4. �

16.3.3 Box Consistency

Box consistency is a relaxation of hull consistency [8]. The principle is to replace the
constraint satisfaction test over the real domain with a refutation procedure over the interval
domain. More precisely, let us examine the definition of arc consistency. A value ak ∈ Ik
is inconsistent, and so does not belong to the set (16.1), if we have

∀a1 ∈ I1, . . . ,∀ak−1 ∈ Ik−1, ∀ak+1 ∈ Ik+1, . . . ,∀an ∈ In f(a1, . . . , an) 6= 0.

An equivalent statement is that the range of f over the domain I1 × · · · × Ik−1 × {ak} ×
Ik+1 × · · · × In is nonzero. The key idea is to compute a superset of this range using any
interval extension F of f . Once computed, a value can be eliminated if any superset of the
range is nonzero. The definition of box consistency then follows. If we have

Ik = �{ak ∈ Ik : 0 ∈ F (I1, . . . , Ik−1,�{ak}, Ik+1, . . . , In−1)} (16.2)

then the domain of xk is box consistent. Otherwise, the goal is to find the extreme values
in Ik that are consistent. The standard implementation uses a bisection search procedure,
which exploits the monotonicity property of interval evaluation.

Example 16.10. Let y − x2 = 0 be a constraint and let (x, y) ∈ [0, 1] × [0, 4]. The left
bound of Iy is box consistent since 0 belongs to the interval 0 − I2

x = [−1, 0]. On the
contrary, the right bound is inconsistent. Then the domain of y can be divided to find the
rightmost consistent value, as follows:

[2, 4] − I2
x = [1, 4] → [2, 4] eliminated

[0, 2] − I2
x = [−1, 2]

[1, 2] − I2
x = [0, 2]

[1.5, 2] − I2
x = [0.5, 2] → [1.5, 2] eliminated

.

The final computed domain is the interval Iy = [0, 1]. However, it is clear that the search
converges slowly. The univariate interval Newton method described in Section 16.4 can be
used to accelerate the convergence [8]. �

F. Benhamou, L. Granvilliers 581

The main capability of box consistency is the ability to handle the elimination problem
of set computations. In fact, computing hull consistency is equivalent and cheaper when
the considered variable occurs only once in the constraint [23, 9].

Example 16.11. Once again, let us consider the constraint x+ x = 0 and let x ∈ [−1, 1].
The refutation procedure fails for the whole domain since 0 belongs to the interval [−1, 1]+
[−1, 1] = [−2, 2]. However, it succeeds for every sub-domain that does not contain 0. In
this case, the domain can be reduced to 0. �

16.3.4 Strong Consistencies

Strong consistency techniques are designed to compute the projections of sets of con-
straints over the variables [39, 96]. The goal is to combine the constraints in order to
improve the precision of domain reductions. These techniques can be organized in a hierar-
chy, from local consistencies such as hull consistency and box consistency to the strongest
global consistency, which corresponds to the projection of the whole set of constraints.

The principle of 3B consistency [88] is to eliminate a variable value if the set of con-
straints is not locally consistent when the variable takes this value. More precisely, a
constraint system S is 3B consistent if for every variable x, for every bound x = a, the
system S ∪ {x = a} is locally consistent.

Example 16.12. Let x+y = 0 and x−y = 0 be two constraints and let (x, y) ∈ [−1, 1]2.
This domain is hull consistent. However, it is not 3B consistent. For instance, for x = −1,
the constraints implies that y = 1 and y = −1, which may be detected by constraint
propagation. �

The reduction of a variable domain can be implemented by a search procedure similar
to the box consistency algorithm. However, the sub-domains are eliminated by a constraint
propagation approach using a local consistency technique on the whole constraint system.
This approach has been experimented with using hull consistency and box consistency [88,
108]. But the practical time complexity may be prohibitive with respect to some local
consistency alone if all the variables are processed.

Example 16.13. Let x+y = 0 and x−y = 0 be two constraints and let (x, y) ∈ [−1, 1]2.
In this case, the propagation algorithm using hull consistency is able to eliminate any sub-
domain of x or y if it does not contain 0. For instance, if we have x ∈ [0.5, 1] then the
propagation on y gives

Iy := Iy ∩ Ix ∩ −Ix = ∅.

As a consequence, the sub-domain [0.5, 1] of x can be removed. The search procedure
converges towards a small domain enclosing the solution x = y = 0. �

The notion of kB consistency is a generalization of 3B consistency [88] defined by
induction as follows. A constraint system S is kB consistent (for k ≥ 3) if for every vari-
able x, for every bound x = a, the system S ∪ {x = a} is (k − 1)B consistent. There
were several other attempts at enforcing strong consistency algorithms over nonlinear con-
straints [37, 67, 68]. A nice implementation of global (hull) consistency has been realized
by combining local consistency, complete search, and local search [29]. In [38], local ex-
trema of ternary constraints as well as intersection points between constraints are computed

582 16. Continuous and Interval Constraints

using gradient-based numerical methods applied on the constraint curves. In [117], every
ternary constraint is represented by a set of consistent regions of the 3D space. That allows
the combination of constraints using Boolean operations, and then to implement strong
consistency algorithms. This approach has been used to solve engineering problems, but it
must be limited to weak precisions.

16.3.5 Acceleration Techniques

Constraint propagation is an iterative algorithm that applies local consistency operators
until equilibrium. It is known that the final domain does not depend on the order of appli-
cation of the operators [2]. However, the convergence speed is determined by the strategy
as well as the kind of operators associated with the constraints [54].

The creation of the set of operators from the set of constraints may depend on several
parameters such as the form of constraints, the form of the constraint network, the size of
domains, etc. For instance, the combination of hull consistency and box consistency in the
BC4 algorithm is based on a theorem that states that these techniques are equivalent if the
variables have at most one occurrence per constraint [9]. Since computing hull consistency
is cheaper than computing box consistency, the strategy is as follows: for every constraint
c, the HC4revise operator is created if there exists a variable occurring once in c; the box
consistency operator is used for every variable occurring at least twice in c. Doing so, we
have a family of algorithms adapted to the form of constraints.

Example 16.14. Given (x, y) ∈ [−10, 10], let us consider the constraint c : x2 + y2 = 1
and two equivalent forms c1 : xx+y2 = 1 and c2 : xx+yy = 1. The following table show
the results of the constraint propagation algorithm when the different operators are used.
In each case, we give the reduced domain and the number of computed interval operations.

Hull consistency Box consistency BC4
c [−1, 1]2 15 [−1, 1]2 1178 [−1, 1]2 15

c1 [−10, 10]2 16 [−1, 1]× [−
√

2,
√

2] 1238 [−1, 1]× [−
√

2,
√

2] 625
c2 [−10, 10]2 17 [−10, 10]2 40 [−10, 10]2 40

The domains are the same for constraint c since the variables occur once in c but the hull
consistency technique is much faster. The box consistency technique is more powerful for
c1 because the many occurrences of y are efficiently handled. In this case, the combination
is as powerful but cheaper since hull consistency is used for x. Finally, there is no reduction
for c2 since no operator is able to handle two variables having multiple occurrences. �

It has been observed that local computations can be weakened during constraint propa-
gation while maintaining the global convergence [88]. The goal is to prevent slow conver-
gence arising with respect to one constraint and to alternate more often the reductions for
different constraints. This strategy has been used to accelerate box consistency [56]. The
dichotomous search algorithm has been modified in order to stop when intervals of size
w > 0 at domain bounds cannot be eliminated. Moreover, a globally converging strategy
is used to decrease the value of w until w = 0.

Example 16.15. The system (x− 2)x(x+ 1) = (x− 1)x(x+ 2) = 0 with x ∈ [−10, 10]
can be solved by box consistency alone. The computed domains are [−1, 2] with the first

F. Benhamou, L. Granvilliers 583

constraint, [0, 1] with the second constraint, and then [0, 0] using the first constraint. Ev-
ery local zero in {−1, 1, 2} is computed at the highest precision, which is useless. The
accelerated strategy is one order of magnitude faster. �

The elimination of cycles during propagation is a long studied topic that has been
considered for nonlinear constraints [89]. During a cycle, some variable domains may be
reduced by several different operators, which do not lead to the same amount of reductions.
A good strategy is then to select the best operators, to apply them until equilibrium, and
then to propagate the domain modifications through the other operators. A parallel version
of this algorithm has been successfully implemented in [53].

Another approach consists in accelerating the convergence of domain bounds [86].
Given a sequence of reduced domains [a0, b0] ⊇ [a1, b1] ⊇ · · · , the idea is to accelerate
the sequences a0 6 a1 6 · · · and b0 > b1 > · · · independently. Well-known numerical
methods such as Aitken’s ∆2 are applied to compute approximate limits a and b of the
two sequences. It can then be interesting to prove that the domains [a0, a) and (b, b0] are
inconsistent. This heuristic has been shown to be useful in implementing 3B consistency.

16.4 Numerical Operators

Interval analysis has been defined as an extension of numerical analysis over the inter-
vals [98]. In general, the main goal is to implement complete and efficient set computations
in order to enclose the solution set of a given problem. In this section, we are interested
in constraint solving techniques. The basic principle of the direct interval methods is to
replace real arithmetic with interval arithmetic. The main idea of the iterative methods is
to extend the classical operators so as to compute tight enclosures. More precisely, given
an initial point x0 ∈ R

n and an operator φ, the general expression of an iterative method
is as follows:

{

x0

xk+1 := φ(xk), k > 0.

A finite sequence of approximate solutions is computed from the initial point until some
precision criterion is verified. Given an initial set I0 ∈ I

n and the interval counterpart Φ of
φ, the corresponding interval-based iterative method is as follows:

{

I0
Ik+1 := Ik ∩ Φ(Ik), k > 0.

A finite sequence of nested intervals is computed until stabilization. The result is an inter-
val enclosing the solution set of the given problem within I0.

16.4.1 The Newton Method

Let f : R → R be a function which is continuous on a closed interval [a, b] and differen-
tiable on its interior (a, b). The mean value theorem states that for all x, x0 ∈ [a, b] there
exists c ∈ R strictly lying between x and x0 such that

f(x)− f(x0) = f ′(c)(x− x0). (16.3)

584 16. Continuous and Interval Constraints

It follows that any root x of f verifies the relation

x = x0 − f(x0)/f
′(c), f ′(c) 6= 0. (16.4)

The classical Newton method is obtained from (16.4) by approximating c by x0. The
interval Newton method follows from the following membership relation:

x ∈ {x0 − f(x0)/f
′(y) : y ∈ (a, b), f ′(y) 6= 0} . (16.5)

Since the set (16.5) can be enclosed by means of interval arithmetic and interval extensions
of the functions, we obtain the following interval Newton step:

Ik+1 := Ik ∩ (xk − F (xk)/F
′(Ik)) , 0 6∈ F ′(Ik), k > 0. (16.6)

The result of this iteration is a sequence of nested intervals enclosing the solution set. The
necessary condition is that the computed range of the derivative of f does not contain the
zero value. The point xk is generally taken as the midpoint of the current interval Ik.
Geometrically, this method amounts to approximating a function around a point xk by a
cone whose shape is determined by the range of the derivative of f over Ik.

Example 16.16. Let f(x) = x2 − 2 be a function and let x ∈ [1, 10]. Since the derivative
is non-zero on the given domain, the Newton method can be applied:

Ix := [1, 10] ∩
(

4.5− (4.52 − 2)/(2× [1, 10])
)

= [1, 3.5825]

After 5 iterations, an enclosure of
√

2 with 8 significant digits is computed:

Ix := [1.414213559529903, 1.414213565673288]

In the vicinity of the solution, the Newton method converges with order 2, i.e., the size of
a thin interval is approximately the square of the size of the previously computed one. �

16.4.2 Solving Linear Systems

A heavily studied topic in interval analysis is the solving of linear systems of equations,
see for instance [1, 101, 61, 113]. Let A ∈ I

n×n be an interval matrix and let B ∈ I
n be

an interval vector. The solution set of the interval linear system Ax = B is defined by

Σ(A, B) := {x ∈ R
n : Ax = b for some A ∈ A, b ∈ B}.

Informally speaking, any solution of a real system included in the interval system must
belong to Σ(A, B). It has been shown that the problem of exactly enclosing this solution
set is NP-hard [112]. In practice, the goal is to compute good enclosures.

As an example, we describe the interval Gauss-Seidel method. Every row i of the linear
system can be rewritten as

xi =
1

Aii

Bi −
∑

j 6=i

Aijxj

 .

F. Benhamou, L. Granvilliers 585

If we have interval bounds Ij on xj then new bounds on xi are computed as

Ii := Ii
⋂ 1

Aii

Bi −
∑

j 6=i

AijIj

 (16.7)

provided that Aii does not contain the zero value. The interval Gauss-Seidel method iter-
ates the step (16.7) from i := 1 to n until stabilization. We remark that this procedure is
very similar to constraint propagation using hull consistency to invert the linear equations.
The main difference is that hull consistency is generally applied on every variable with
respect to every constraint, which can be more precise but also more expensive.

If we have 0 ∈ Aii the classical interval division returns the interval (−∞,+∞) and
the step is useless. In this case, several techniques may lead to tighter bounds:

• The extended interval division can be more precise depending on the value of the
numerator [64, 80]. This operation corresponds to the computation of the projection
of the constraint x = y/z over x using unions of intervals.

• Another row can be used to prune the domain of xi. The general problem is then to
choose a good transversal in the system, namely the row which leads to the largest
reduction for a given variable [48].

• The system can be transformed before solving. In fact, it is recommended to mul-
tiply it by a well-chosen matrix called a preconditioner [62]. In practice, a good
preconditioner is the inverse of the midpoint matrix of coefficients of I .

Rigorously solving linear programming problems with interval data is a difficult prob-
lem, see for instance [75]. The main basic idea is to use the classical Simplex algorithm to
determine optimal points and then to use interval methods to verify the optimality and to
compute rigorous error bounds [74, 102].

16.4.3 Solving Nonlinear Systems

In the general case, completely solving nonlinear systems requires an exhaustive search
by means of branch-and-reduce algorithms. In this framework, interval methods can be
used to early prune the search space by removing infeasible regions. In the following,
we will present the multivariate interval Newton method for solving systems of nonlin-
ear equations [63, 98, 101, 103] and reformulation-linearization techniques [87, 118] that
can be used for nonlinear equations and inequalities. Another well-known method is the
Krawczyk operator [83]. The main idea of these techniques is to iterate an inner step where
a linear relaxation of the nonlinear system is determined and solved using linear interval
methods.

Let f : R
n → R

n be a vector of continuously differentiable nonlinear functions and
let x ∈ R

n be bounded by I ∈ I
n. The multivariate interval Newton method is an iterative

method for solving the problem f(x) = 0, x ∈ I , which is an obvious extension of the
univariate Newton method presented in Section 16.4.1. Let Jf be a matrix of interval
extensions of the partial derivatives of f and let F be an interval extension of f . Given
x0 ∈ I , an enclosure of the solution set can be obtained by solving the following interval
linear system on x:

Jf (I)(x− x0) = −F (x0)

586 16. Continuous and Interval Constraints

Given y = x − xk (initially y = x − x0), the inner step of the iterative method trivially
follows:

Iy := Ik − xk
Iy := solve system Jf (Ik)y = −F (xk)
N(Ik, xk) := Iy + xk

The interval linear system on y is generally solved by means of the interval Gauss-Seidel
method. Many strategies can be implemented according to the precision of the inner step,
the precision of the computed enclosure, and the Gauss-Seidel strategy. The following
properties hold:

• N(Ik, xk) is an enclosure of the solution set. As a consequence, the new domain
can be computed as

Ik+1 := N(Ik, xk) ∩ Ik.
In particular, if the resulting domain is empty, then the problem has no solution.

• If N(Ik, xk) ⊆ Ik, then there exists an x ∈ Ik such that f(x) = 0. This existence
property is derived from the fixed-point theory [15, 41].

Example 16.17. Let us consider the system x2
1+x

2
2 = 1/16, x2 = 4x2

1 with x ∈ [0, 0.25]2.
We describe the first step of the Newton method. The following linear relaxation is created
after preconditioning:

(

[0, 2] [−0.5, 0.5]
[−1, 1] [0.5, 1.5]

)

y =

(

5/32
3/32

)

with y ∈ [−0.125, 0.125]2. Then the domain y2 can be reduced during the Gauss-Seidel
method:

Iy2 :=

[

−1

8
,
1

8

]

∩
(

1

[0.5, 1.5]

(

3

32
− [−1, 1]

[

−1

8
,
1

8

]))

=

[

− 1

16
,
1

8

]

Then the new domain of x2 can immediately be computed:

Ix2
:=

([

− 1

16
,
1

8

]

+
1

8

)

∩
[

0,
1

4

]

=

[

1

16
,
1

4

]

It can be observed that the initial system is arc consistent. In this case, the Newton method
is clearly more powerful. �

Rectangular systems can be also be tackled by Newton-like methods. The most com-
mon approach is to fix the variables to which the system is least sensitive using for instance
the midpoint values [61].

The purpose of reformulation-linearization techniques is to rewrite nonlinear systems
using convex and concave linear approximations and to solve them by means of linear
methods [87, 118]. As an example, we describe the simple case of quadratic equations
defined as sums of linear terms and quadratic terms x2 and xy. The first step is to replace
the quadratic terms by new variables w = x2 and z = xy. The second step is to constrain
the new variables. Given x ∈ [a, b] and y ∈ [c, d], the following constraints are verified:

w > 2ax− a2, w > 2bx− b2, w 6 (a+ b)x− ab,
z > cx+ ay − ac, z 6 dx+ ay − ad, z > dx+ by − bd, z 6 cx+ by − bc

F. Benhamou, L. Granvilliers 587

Finally, the resulting set of linear constraints can be solved. For instance, the Simplex
algorithm can be used to minimize and to maximize every variable in order to reduce its
domain.

Example 16.18. Once again, let us consider the system x2
1 + x2

2 = 1/16, x2 = 4x2
1 with

x ∈ [0, 0.25]2. The nonlinear system can be rewritten as follows using z1 = x2
1 and

z2 = x2
2:

z1 + z2 = 0.0625, x2 = 4z1,
0 6 x1 6 0.25, 0 6 x2 6 0.25,

z1 > 0, z1 > 0.5x1 − 0.0625, z1 6 0.25x1,
z2 > 0, z2 > 0.5x2 − 0.0625, z2 6 0.25x2

After solving the four optimization problems, new bounds are obtained:

x ∈ [0.125, 0.209]× [0.125, 0.167].

The new bounds can then be used for the next iteration. We may remark that these bounds
are much tighter than the ones given by the Newton method (see Example 16.17). �

To conclude, we may say that the strategy remains a main issue, since solving 2n linear
systems to reduce n domains may be expensive. More generally, this is the problem of
designing efficient hybrid methods by combining different solvers, which will be discussed
in the next section.

16.5 Hybrid Techniques

There is no unique algorithm for efficiently solving constraints over the real numbers. Con-
versely, every algorithm is parametrized by an input model, time and space complexities,
efficiency conditions, and properties on the output. Depending on the context, it can be
useful to combine several algorithms in a super algorithm [57]. However, the work of de-
signing hybrid strategies may be very difficult since that may demand a lot of experience
on the algorithms to be combined. In the following, we will present some features lead-
ing to combine symbolic methods, numerical methods, and consistency techniques for real
constraint solving and optimization.

16.5.1 Symbolic and Consistency Techniques

Consistency techniques are known to be subject to the locality problem. Informally speak-
ing, the propagation of local consistency-based reductions may not lead to a tight enclosure
of the solution set. An objective is then to symbolically transform the constraints in order
to strengthen constraint propagation techniques.

The elementary approach is to share common expressions occurring in the constra-
ints [52, 125]. This can be done by introducing a new variable for every shared expression.
In order to keep the dimension of the problem, a more efficient method is to represent the
constraint network as a directed acyclic graph (DAG). In this case, stronger consistency
reasoning can be obtained by propagating domain modifications through the DAG. How-
ever, that requires a slight reshaping of classical algorithms since some information must
be attached to the nodes of the graph.

588 16. Continuous and Interval Constraints

Example 16.19. Consider the unsatisfiable constraint system xy = 1, xy = −1 and let
(x, y) ∈ [−1, 1]2. This problem is trivially bound consistent: for example, given x = 1
there exist y1 = 1 and y2 = −1 such that xy1 = 1 and xy2 = −1. Now, sharing the
expression xy leads to check the consistency of the relation 1 = −1, which trivially fails.

�

A more difficult approach is to rewrite the constraints [5, 91, 95]. The main principle
is to symbolically create constraint relaxations and then to apply symbolic algorithms. For
example, one would apply Gaussian elimination on linear systems of equations or Gröbner
bases on polynomial systems of equations. These algorithms may be used to calculate
quasi-triangular systems that can be easily solved by constraint propagation. However,
the control of symbolic processing is a main issue. For example, the linear relaxations
are mostly rectangular (there are more variables than constraints) and it may be difficult
to eliminate the linear variables. More difficult, computing a Gröbner basis may require
exponential time and space, which is not realistic for implementing efficient symbolic-
numeric algorithms.

Example 16.20. Gaussian elimination is powerful when the linear relaxations are not very
rectangular. For example, consider the system

xk −
1

2n

n
∑

i=1

(

x3
i + k

)

= 0, 1 6 k 6 n

with the initial domain [−108,+108]n. A linear relaxation is obtained if each term x3
i is

abstracted by one variable yi. After applying Gaussian elimination on the linear system, a
new equivalent system is obtained by replacing yi by x3

i :

xk+1 = x1 +
k

2n
, 1 6 k 6 n− 1, x1 −

1

2n

n
∑

i=1

(

(

x1 +
i− 1

2n

)3

+ k

)

= 0

The original system is very hard for constraint propagation techniques even for low di-
mensions (e.g., n = 4). Conversely, the new system, which is triangular, is immediately
solved. �

The principle of symbolic algorithms is to combine and then to simplify the constraints.
However, the simplification of nonlinear constraints is not trivial in general. A weaker
approach is to combine the constraints only if they can be simplified enough [55]. For
example, consider two constraints f [s] = 0 and g[t] = 0 where s and t are terms occurring
in f and g. A combination procedure may create a redundant constraint h[s, t] = 0 only if
the combination of s and t in h can be rewritten. This approach requires that simplification
rules are known in order to guide the combination strategy.

16.5.2 Symbolic and Interval Methods

The main tool of interval analysis is the computation of the range of a real function over
a domain. However, a computed interval can be much larger than the true range, which is
known as the overestimation problem of interval arithmetic.

F. Benhamou, L. Granvilliers 589

Example 16.21. The range of x − x over [0, 1] can be estimated as [0 − 1, 1 − 0] :=
[0, 1] − [0, 1]. The problem comes from the fact that the two occurrences of x are con-
sidered as different variables, since different values are used during evaluation. A trivial
simplification can lead to computing 0. �

A main issue is then to rewrite a function in order to compute tight enclosures of its
range. Various techniques have been proposed such as Horner forms, Bernstein polynomi-
als, or Taylor models [18, 65, 11]. Another approach is based on affine arithmetic [33, 93].
The main idea is to define an interval [a, b] by the affine expression such as

b+ a

2
+
b− a

2
· ε, ε ∈ [−1, 1].

The evaluation procedure is defined to manage the linear variables ε. For example, the
range of x− x over [0, 1] is computed as

0 :=

(

0 +
2

2
· ε
)

−
(

0 +
2

2
· ε
)

.

However, the nonlinearities are incompatible with affine expressions. In this case, it is
necessary to compute linear relaxations. The efficiency of this approach clearly depends
on the quality of the relaxations.

16.5.3 Interval and Consistency Techniques

The behaviors and requirements of interval methods and consistency techniques are very
different. Informally, the efficiency of interval methods is related to the combination of
linear constraint relaxations and the good rates of convergence near the solutions. Consis-
tency techniques are able to quickly reduce large domains by means of constraint projec-
tions and to exploit the constraint network structure in order to implement fast propagation
algorithms. Their cooperation naturally follows.

The purpose of box consistency is to calculate the extreme zeros of an equation f(x) =
0 over a domain. The master algorithm is a bisection procedure implementing an interval
test to remove the inconsistent sub-domains. The goal is to accelerate the search having an
exponential time complexity in the worst case. To this end, the uni-dimensional Newton
method can be used to prune any sub-domain provided that the derivative of f is non-
zero [8].

Example 16.22. Let x2 − 2 = 0 be a constraint and let x ∈ [0, 4]. If the interval test
is implemented by interval evaluation, five domains are created during the search: [0, 4],
[0, 2], and [1, 2] are declared to be consistent, and [2, 4] and [0, 1] are rejected. Then the
Newton method is applied on [1, 2] since the range of the derivative is [2, 4]. The result is
a tight enclosure of the square root of 2. �

The hybridization of constraint propagation and the multidimensional interval Newton
method can be efficient for solving nonlinear systems. In this case, constraint propagation
is very useful during the early phases of domain reductions and the Newton method is effi-
cient only for small domains. In this spirit, the master algorithm of Numerica is an iteration
of constraint propagation using box consistency before applying the Newton method, until
reaching a sufficient precision [125].

590 16. Continuous and Interval Constraints

16.5.4 Towards a General Framework

The hybridization of symbolic algorithms, interval methods and constraint propagation is
a general framework to solving continuous nonlinear constraints. The symbolic algorithms
can be used to rewrite the constraints according to properties or requirements of the nu-
merical tools. For example, constraint propagation is improved provided that redundant
constraints are generated and the constraint network is represented as a DAG. The DAG
allows the sharing of numerical computations such as the interval evaluations of functions
and derivatives [52].

More generally, the analysis of constraint systems must be the first phase of general
purpose solving tools. In particular, the solving strategy strongly depends on static char-
acteristics such as the form of the constraints and the shape of the constraint network. For
example, the structure of the network can be detected by decomposition algorithms [12].
We believe that the design of intermediary languages based on symbolic constraint trans-
formations may lead to important components of solving strategies.

16.6 First Order Constraints

16.6.1 Extending Interval Constraints

Among the possible generalizations of the interval constraint framework, some extend the
expressive power (modeling) while others improve the efficiency (solving). The first cat-
egory includes optimization, differential equations, mixed constraints, and quantified con-
tinuous constraints. The second category is mainly concerned with solver cooperation
and in particular numerical-symbolic cooperation. The optimization aspect was for ex-
ample developed in the design and implementation of the systems Numerica [125] and
Baron [121]. Some of the most important aspects reside in the appropriate combinations
of continuous constraint propagation, interval analysis and branch and bound techniques.
The use of interval constraints for ordinary differential equations solving was addressed,
for instance, in [28, 73, 104]. It was shown in [6] that mixed constraints (constraints
involving real and integer variables) are a special case of a general framework for numer-
ical constraints but there is a need for specific, efficient algorithms and implementations.
Concerning solver cooperation for continuous constraints, some results are presented in the
survey paper [57]. We will focus here on the last of these extensions, quantified continuous
constraints.

16.6.2 Quantified Continuous Constraints

As we mentioned, constraints can be defined as first order formulas over a given domain
(here the real numbers). Yet, practically, they are most often restricted to atomic con-
straints. In this last case, models are generally defined as existentially quantified conjunc-
tions of atomic constraints. In a number of problems ranging from robust control and
camera control to motion planning, this existential definition of models is not satisfactory.
Let us take an example from robotics: given a mobile robot arm, find all points that do not
collide with the robot hand. Since we want to avoid collision for all positions of the hand,
the variables defining the hand position of the robot in the model are universally quantified.

F. Benhamou, L. Granvilliers 591

The general problem is undecidable when it involves transcendental functions like
the sine and the exponential [120], and doubly exponential when restricted to polynomi-
als [31]. In this context, a number of authors, from computer algebra, numerical analysis
or constraint programming, have devised techniques to approximate the solution set or to
handle specific instances.

For example, a strongly related problem from control theory is called the “guaranteed
tuning problem” [78] and amounts to finding the values for some tuning parameter such
that a set of inequalities can be verified for all the possible values of some perturbation
vector. More precisely, given I a box of feasible values for some tuning parameter vector
x and J , a box of feasible values for some perturbation vector p, find the set

S = {x ∈ I : ∀p ∈ J f(x, p) > 0}.

One of the first approaches to solve arbitrarily quantified constraints over the real num-
bers was developed by Collins and called cylindrical algebraic decomposition [24]. The
presentation of this method is beyond the scope of this paper, but let us mention that it is
restricted to polynomials.

Another track of research, which is of major interest for constraint programming based
techniques, relies on the computation of sub-pavings of real relations. Given a relation, a
sub-paving is a set of boxes that covers the relation. These boxes can be separated in three
categories: the set of boxes that are proved to be included in the relation, the set of boxes
that are proved not to intersect the relation, and the remaining set of boxes that may be
accumulated on the frontier. Boxes from these different sets can be used to compute outer
and inner approximations of solution sets and, combined with local consistency notions,
to reason about quantifiers. The computation of these sub-pavings is essentially based
on search methods. To compute these sub-pavings, some authors have used Bernstein
polynomials [43], ternary constraint octree representations [117] or inner approximation
expansion [22]. In [76, 77] a combination of recursive splitting, interval evaluations and
properties of interval arithmetic is used to compute sub-pavings and address some forms
of quantified constraints. The introduction of universal quantifiers is then based on interval
inclusion tests. An interval inclusion test uses simple interval inferences to prove that a
formula of the type (∀x ∈ I)f(x) ⋄ 0, where x is an nary vector of variables over R, I a
box, f a vector of continuous real functions in R

n → R
m. For example, the constraint

(∀x1 ∈ [−2, 2])(∀x2 ∈ [3, 5]), x1 + x2 > 0 can be shown true since evaluating the natural
interval extension gives [−2, 2] + [3, 5] = [1, 7] and every value in [1, 7] is greater than 0.

To go a step further some authors have used properties of interval consistencies. As we
have seen, interval constraint algorithms can discard inconsistent boxes and separate them
from boxes possibly containing solutions. Based on this property, in [10] an algorithm
computes interval-based pruning of negated inequalities and recursively construct an inner
approximation of the solution space. This algorithm is then used to approximate constraint
sets containing exactly one universally quantified variable.

This idea was generalized in [109] to handle arbitrary first order inequalities over the
reals. In this paper the main idea is to design an algorithm whose inputs are a quantified
constraint C with n free variables, a box I ⊆ R

n and a positive real number ε. The
outputs of the algorithm are two sets of boxes A and B verifying that all points of A are
in the solution set of C and all points of B are not in the solution set of C. Furthermore,
the precision of the approximation is parameterized with ε and the volume of the space

592 16. Continuous and Interval Constraints

I \ (A ∪ B) is smaller than ε. To compute these sets of boxes, the proposed algorithm
is built on a branch and prune architecture. Branching is done by interval bisections on
the domains of the free variables but also on the domains of the quantified variables (e.g.,
∃x ∈ I can be replaced with ∃x ∈ I1 ∨ ∃x ∈ I2). Pruning is achieved recursively
on atomic, conjunctive, disjunctive formulas and on formulas of the form ∃x ∈ I C or
∀x ∈ I C. The main idea is to use standard pruning operators implementing consistency
properties to narrow down the boxes wrt. the formula and to apply the same algorithm on
the negation of the formula to compute an inner approximation of the solution set.

Finally another related area concerns the use of modal intervals [42] for quantified
constraints. As stated in [46], modal interval theory can be viewed as a useful interpreta-
tion of an extension of interval arithmetic called directed interval arithmetic, or Kaucher
arithmetic [81]. Directed interval arithmetic is obtained as an extension of the set of stan-
dard intervals by improper intervals and a corresponding extension of the definitions of the
interval arithmetic operations.

A modal interval İ = (I,Q), where I is a real interval and Q ∈ {∃, ∀}, defines a set of
real intervals in the following way:

(I, ∃) = {K ∈ I : (∃x) x ∈ I |= x ∈ K} = {K ∈ I : I ∩K 6= ∅}
(I, ∀) = {K ∈ I : (∀x) x ∈ I |= x ∈ K} = {K ∈ I : I ⊆ K}

Directed (or generalized) intervals and modal intervals being isomorphic (see for exam-
ple [46]) one can use the equivalent following definition:

İ = [a, b] =

{

([a, b]′, ∃) if a 6 b
([a, b]′, ∀) if a > b

where [a, b]′ = [b, a]′ = {x ∈ R : min(a, b) 6 x 6 max(a, b)}. This formulation is
very useful for simplifying a number of definitions, proofs and computations on modal
intervals. For example, inclusion, union and intersection of modal intervals are defined
in a natural way over the sets of real intervals but the practical definitions are based on
generalized interval arithmetic. Modal interval extensions of continuous real functions,
also called semantic extensions are defined as follows. Let f be a continuous function over
the reals and let Ḟ be a modal interval function. The function Ḟ is a semantic interval
extension of f on İ if and only if we have

(∀K ∈ I)(K ∈ İ |= f(K) ∈ Ḟ (İ)).

Then, Ḟ is a semantic interval extension of f if it is a semantic interval extension of f for
all modal interval İ . The extension to n-ary real continuous functions is done in the usual
way.

A very important semantic extension in modal interval analysis is the *-semantic ex-
tension of a continuous function f to a modal interval vector İ = ((I1, Q1), . . . , (In, Qn)),
defined by:

f∗(İ) = [min
I∈IE

max
I∈IF

f(x),max
I∈IE

min
I∈IF

f(x)]

whereE and F are respectively the sets of indexes corresponding to the proper (existential)
and improper (universal) components of İ .

Finally, the fundamental link between modal interval analysis and first order interval
constraints is established by the so-called *-semantic theorem from [59]. Let f be a real

F. Benhamou, L. Granvilliers 593

n-ary function, İ = ((I1, Q1), . . . , (In, Qn)) a modal interval vector and J̇ = (J,QJ̇) a
modal interval. Slightly simplified, the theorem states that following two conditions are
equivalent:

1. f∗(İ) ⊆ J̇ ;

2. (∀xE ∈ IE)(QJ̇z ∈ J)(∃xA ∈ IA)(f(x) = z)

When z = 0, one can fix J = [0, 0] and this theorem shows that proving a formula of the
form:

(∀x ∈ I)(∃y ∈ J) f(x, y) = 0

is equivalent to the computation of the *-semantic extension of the function f . Based
on this theorem, some recent works have extended this idea to solve several classes of
quantified equations and inequalities [116, 126].

To conclude, computing guaranteed inner and outer approximations of first order con-
straints over the reals has many applications in areas like engineering, robotics, design, and
computer graphics. Current results on this field are basically based on combinations of in-
terval propagation and other techniques, and in particular methods from computer algebra
and interval analysis results.

16.7 Applications and Software packages

16.7.1 Applications

Interval constraints have recently been used in various application fields with different
goals: to prove that a given problem is not satisfiable, to compute a numerical enclosure of
the solution set, or to derive global optima according to some objective function.

In engineering conceptual design, the goal is to generate classes of solutions that satisfy
a given high-level specification of the product to be designed [117, 106]. The architecture
of the product can be described by compositions of components, while some parts have
several possible design options. To this end several formalisms such as dynamic and com-
posite discrete constraint satisfaction problems have been devised [44]. Another approach
is to express the problem as a first-order formula involving conjunctions and disjunctions
of constraints. On top of these configuration constraints, product dimensioning is often re-
lated to physical requirements and can be processed by numerical constraint solving. The
general goal is to solve mixed problems involving dimensioning continuous parameters
and discrete configuration choices. An example of a design support software based on in-
terval consistency techniques is the design platform CE [130]. This platform has recently
been used to realize aeronautical systems.

In robotics constraint-based techniques have successfully been used to compute the
workspace of manipulators, i.e. the space of configurations [19, 92]. For instance one
interesting result is the computation of the discrete set of solutions of the well-known
Gough-Stewart parallel platform. In this framework there are many geometric constraints,
which can be efficiently processed by combinations of consistency techniques and linear
relaxations [118]. An important challenge is to compute non-singular trajectories in the
workspace. In general, singularities are described by nonlinear constraints and their nega-
tions have to be taken into account to keep the allowed regions. Since a trajectory is derived

594 16. Continuous and Interval Constraints

from a connected set of regions, path algorithms can be implemented. Similar techniques
have been exploited in biological engineering to determine the structure of proteins [84].

In automatic control there are many interesting problems for constraint-based appro-
aches such as parameter estimation and state estimation [77, 79]. Parameter estimation is
the problem of computing the parameters of a given model according to experimental data
of the observed system. If the data are associated with an upper bound of the error of mea-
surement then interval constraints can be used to determine the range of the parameters. In
this framework the efficiency of interval-based constraint propagation is strongly related
to the number of measurements obtained from different sensors. In fact different mea-
surements of the same phenomenon may lead to redundant constraints and consequently
to more powerful local consistency reasonings. Another challenge is to cope with invalid
data. In this case the constraint satisfaction problem can be relaxed in order to maximize
the number of data that fit into the model.

In image synthesis and animation numerical constraints have been used to tackle cam-
era control applications [10, 45]. For instance, given a 3D animated scene, consider the
problem of computing a 3D camera trajectory that fulfills a given specification of the fi-
nal movie, involving for instance time-dependent camera positions, positions of objects on
the screen, and relative positions of objects. This general problem involves 3D geometric
constraints to be verified in a time interval, which implies the time variable is universally
quantified. Since the solution set is huge in general, solutions can be filtered according to
objective criteria modeling for instance realistic motions of the camera. More recent work
has been focused on characterizing semantic decompositions of the space [20]. Decom-
positions are computed by geometric techniques based on implicit surfaces and numerical
solutions are further derived from decompositions using local and global numerical algo-
rithms.

16.7.2 Software Packages

The interval constraint software packages are based on several components such as an
interval arithmetic library, a constraint propagation engine and a search module. This
framework is general enough to plug in various techniques such as projection algorithms,
numerical operators and even optimization procedures. We describe a few systems in the
following.

• The interval arithmetic libraries provide operations and elementary functions on in-
tervals defined by their bounds. The bounds are generally implemented by floating-
point numbers. Bound types are defined as parameters in modern libraries like
Boost [14] and Gaol [47]. There also exist multi-precision interval packages [58]
such as MPFI. A generic interface definition between those libraries and constraint
solving procedures like projections has been proposed in [50] but the implementation
can be quite inefficient.

• Intlab [114] is a main software achievement of the interval analysis community. Like
C-XSC [60], it provides an interval arithmetic library and a collection of interval
algorithms derived from real analysis. To our knowledge, constraint programming
techniques have not yet been integrated into these packages. Addressing this issue
is an important challenge if one wants constraint technology to become a standard
tool, in particular in engineering and applied sciences.

F. Benhamou, L. Granvilliers 595

• Interval methods are at the core of many constraint programming systems. Two
language types are generally distinguished: the constraint language, devoted to nu-
merical constraints, and the host language that can be derived from different pro-
gramming paradigms such as logic programming and object-oriented programming.
CLP(BNR) [105], derived from BNR-Prolog, was the first constraint logic program-
ming system which implemented Cleary’s algorithms. The same techniques have
been implemented in the object-oriented software ILOG Solver [107]. A coopera-
tive hybrid strategy has been defined in Prolog IV [7], using consistency techniques
and linear algebraic algorithms that communicate through fixed variables. More
recent tools include Eclipse [128], RealPaver [51], Constraint Explorer [130] and
ICOS [87].

• Interval consistency techniques have been shown to be powerful for constrained
global optimization. They are particularly useful in the early steps of the search
by pruning infeasible regions at a low cost. Numerica [125] was one of the first
languages to prove that the approach can be very efficient for actual applications.
Its core solving algorithm mainly combines box consistency, a multidimensional in-
terval Newton operator and local optimization algorithms. Consistency techniques
have been further implemented in GlobSol [82] and BARON [115]. The former is
well-known in the interval community. The latter is a leading mixed integer nonlin-
ear programming software package. In this tool, relaxation techniques are used to
compute bounds on the objective function but interval arithmetic is not implemented.

16.8 Conclusion

This chapter is primarily devoted to giving a broad overview on the basics of continuous
and interval constraint solving and to showing the main similarities and differences with
discrete constraints. Based on the same theoretical framework (fixed point computations
over complete lattices) the algorithmic approach differs in taking much of its foundations
in numerical analysis when discrete constraints rely on graph theory and integer program-
ming. We have shown how a number of algorithms from interval analysis and the do-
main reduction-propagation-search cycle from constraint programming can be integrated
to tackle non-trivial problems from a variety of domains. These domains extend the number
of areas in which constraint programming may have a real technological impact. Finally,
interval constraint programming appears to be a promising approach for the integration, in
an efficient and flexible way, of continuous optimization and discrete constraint program-
ming. This leads to many promising research tracks like global continuous constraints,
mixed integer-real constraints programming and soft interval constraints. Any significant
progress in these areas is likely to have important applications in engineering and decision
support systems.

Acknowledgements

We are indebted to many researchers with whom we have worked and have had fruitful
discussions on continuous and intervals constraints these last years. In particular, we would
like to thank wholeheartedly Pedro Barahona, Alexandre Goldsztejn, Luc Jaulin, Michel

596 16. Continuous and Interval Constraints

Rueher, Peter van Beek and Pascal Van Hentenryck for their careful reading and their
numerous remarks on previous versions of this chapter.

Bibliography

[1] Götz Alefeld and Jürgen Herzberger. Introduction to Interval Computations. Aca-
demic Press, 1983.

[2] Krzysztof R. Apt. The Essence of Constraint Propagation. Theoretical Computer
Science, 221(1-2):179–210, 1999.

[3] Heikel Batnini, Claude Michel, and Michel Rueher. Mind the Gaps: A New Splitting
Strategy for Consistency Techniques. In P. G. Van Beek, editor, Proceedings of
International Conference on Principles and Practice of Constraint Programming,
volume 3709 of Lecture Notes in Computer Science, pages 77–91. Springer, 2005.

[4] Frédéric Benhamou and Frédéric Goualard. Universally Quantified Interval Con-
straints. In R. Dechter, editor, Proceedings of International Conference on Prin-
ciples and Practice of Constraint Programming, volume 1894 of Lecture Notes in
Computer Science, pages 67–82, Singapore, 2000. Springer.

[5] Frédéric Benhamou and Laurent Granvilliers. Automatic Generation of Numerical
Redundancies for Non-Linear Constraint Solving. Reliable Computing, 3(3):335–
344, 1997.

[6] Frédéric Benhamou and William J. Older. Applying Interval Arithmetic to Real,
Integer and Boolean Constraints. Journal of Logic Programming, 32(1):1–24, 1997.

[7] Frédéric Benhamou and Touraivane. Prolog IV: Langage et Algorithmes. In J.-
J. Chabrier, editor, Journées Francophones de Programmation en Logique, pages
51–65, Dijon, France, 1995. Teknea.

[8] Frédéric Benhamou, David McAllester, and Pascal Van Hentenryck. CLP(Intervals)
Revisited. In M. Bruynooghe, editor, Proceedings of International Symposium on
Logic Programming, pages 124–138, Ithaca, New York, USA, 1994. MIT Press.

[9] Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François
Puget. Revising Hull and Box Consistency. In D. De Schreye, editor, Proceedings
of International Conference on Logic Programming, pages 230–244, Las Cruces,
New Mexico, USA, 1999. The MIT Press.

[10] Frédéric Benhamou, Frédéric Goualard, Eric Languénou, and Marc Christie. Inter-
val Constraint Solving for Camera Control and Motion Planning. ACM Transactions
on Computational Logic, 5(4):732–767, 2004.

[11] Martin Berz and Georg Hoffstaetter. Computation and Application of Taylor Poly-
nomials with Interval Remainder Bounds. Reliable Computing, 4:83–97, 1998.

[12] Christian Bliek, Bertrand Neveu, and Gilles Trombettoni. Using Graph Decom-
position for Solving Continuous CSPs. In M. J. Maher and J.-F. Puget, editors,
Proceedings of International Conference on Principles and Practice of Constraint
Programming, volume 1520 of Lecture Notes in Computer Science, pages 102–116,
Pisa, Italy, 1998. Springer.

[13] Alexander Bockmayr and Volker Weispfenning. Handbook of Automated Reason-
ing, chapter Solving Numerical Constraints, pages 752–842. Elsevier Science Pub-
lishers, 2001.

[14] Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion. The Boost Interval

F. Benhamou, L. Granvilliers 597

Arithmetic Library. Theoretical Computer Science, Special Issue on Real Numbers
and Computers, 2006. To appear.

[15] Luitzen Egbertus Jan Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathema-
tische Annalen, 71:97–115, 1912.

[16] Bruno Buchberger. Gröbner Bases: an Algorithmic Method in Polynomial Ideal
Theory. In N. K. Bose, editor, Multidimensional Systems Theory, pages 184–232.
D. Reidel Publishing Company, 1985.

[17] Ole Caprani and Kaj Madsen. Mean Value Forms in Interval Analysis. Computing,
25:147–154, 1980.

[18] Martine Ceberio and Laurent Granvilliers. Horner’s Rule for Interval Evaluation
Revisited. Computing, 69(1):51–81, 2002.

[19] Damien Chablat, Philippe Wenger, Félix Majou, and Jean-Pierre Merlet. An In-
terval Analysis Based Study for the Design and the Comparison of 3-DOF Parallel
Kinematic Machines. International Journal of Robotics Research, 23(6):615–624,
2004. Forthcoming.

[20] Marc Christie and Jean-Marie Normand. A Semantic Space Partitionning Approach
to Virtual Camera Control. In J. Marks and M. Alexa, editors, Proceedings of the
Annual Eurographics Conference, volume 24 of Computer Graphics Forum, pages
247–256, 2005.

[21] John G. Cleary. Logical Arithmetic. Future Computing Systems, 2(2):125–149,
1987.

[22] Hélène Collavizza, François Delobel, and Michel Rueher. Extending Consistent
Domains of Numeric CSPs. In T. Dean, editor, Proceedings of International Joint
Conference on Artificial Intelligence, pages 406–413, Stockholm, Sweden, 1999.
Morgan Kaufmann.

[23] Hélène Collavizza, François Delobel, and Michel Rueher. Comparing partial con-
sistencies. Reliable Computing, 5(3):213–228, 1999.

[24] George E. Collins. Quantifier elimination for real closed fields by cylindrical alge-
braic decomposition. In Proceedings of the 2nd GI Conference on Automata Theory
and Formal Languages, pages 134–183, London, UK, 1975. Springer-Verlag.

[25] Georges E. Collins and Hoon Hong. Partial Cylindrical Algebraic Decomposition
for Quantifier Elimination. Journal of Symbolic Computation, 12:299–328, 1991.

[26] Alain Colmerauer. An Introduction to Prolog III. Communications of the ACM, 33
(7):69–90, 1990.

[27] Alain Colmerauer. Equations and Inequations on Finite and Infinite Trees. In Insti-
tute for New Generation Computer Technology, editor, Proceedings of International
Conference on Fifth Generation Computer Systems, pages 85–99, Tokyo, Japan,
1984. OHMSHA Ltd. Tokyo and North-Holland.

[28] Jorge Cruz and Pedro Barahona. Constraint Satisfaction Differential Problems. In
Francesca Rossi, editor, Proceedings of International Conference on Principles and
Practice of Constraint Programming, volume 2833 of Lecture Notes in Computer
Science, pages 259–273, Kinsale, Ireland, 2003. Springer.

[29] Jorge Cruz and Pedro Barahona. Global Hull Consistency with Local Search for
Continuous Constraint Solving. In P. Brazdil and A. Jorge, editors, Proceedings of
Portuguese Conference on Artificial Intelligence, volume 2258 of Lecture Notes in
Computer Science, pages 349–362, Porto, Portugal, 2001. Springer.

[30] Tibor Csendes and Dietmar Ratz. Subdivision Direction Selection in Interval Math-

598 16. Continuous and Interval Constraints

ods for Global Optimization. SIAM Journal on Numerical Analysis, 34(3):922–938,
1997.

[31] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly expo-
nential. Journal of Symbolic Computation, 5:29–35, 1988.

[32] Ernest Davis. Constraint Propagation with Interval Labels. Artificial Intelligence,
32:281–331, 1987.

[33] Luis H. de Figueiredo and Jorge Stolfi. Adaptive Enumeration of Implicit Surfaces
with Affine Arithmetic. Computer Graphics Forum, 15(5):287–296, 1996.

[34] Rina Dechter and Judea Pearl. Network-based Heuristics for Constraint Satisfaction
Problems. Artificial Intelligence, 34:1–38, 1988.

[35] Daniel Diaz and Philippe Codognet. GNU Prolog: Beyond Compiling Prolog to C.
In E. Pontelli and V. Santos Costa, editors, Proceedings of International Workshop
on Practical Aspects of Declarative Languages, volume 1753 of Lecture Notes in
Computer Science, pages 81–92, Boston, MA, USA, 2000. Springer.

[36] Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrahmane Ag-
goun, Thomas Graf, and Françoise Berthier. The constraint logic programming
language chip. In Institute for New Generation Computer Technology, editor, Pro-
ceedings of International Conference on Fifth Generation Computer Systems, pages
693–702, Tokyo, Japan, 1988. OHMSHA Ltd. Tokyo and Springer-Verlag.

[37] Boi Faltings. Arc Consistency for Continuous Variables. Artificial Intelligence, 65
(2):363–376, 1994.

[38] Boi Faltings and Esther Gelle. Local Consistency for Ternary Numeric Constraints.
In M. E. Pollack, editor, Proceedings of International Joint Conference on Artificial
Intelligence, pages 392–397, Nagoya, Japan, 1997. Morgan Kaufmann.

[39] Eugene C. Freuder. Synthesizing Constraint Expressions. Communications of the
ACM, 21(11):958–966, 1978.

[40] Eugene C. Freuder. A sufficient condition for backtrack-free search. Journal of the
ACM, 29:29–32, 1982.

[41] Andreas Frommer, Bruno Lang, and Marco Schnurr. A Comparison of the Moore
and Miranda Existence Tests. Computing, 72:349–354, 2004.

[42] Ernest Gardenes, Miguel A. Sainz, Lambert Jorba, Remei Calm, Rosa Estela, Hon-
orino Mielgo, and Albert Trepat. Modal intervals. Reliable Computing, 7(2):77–
111, 2001.

[43] Jürgen Garloff and Birgit Graf. Solving Strict Polynomial Inequalities by Bernstein
Expansion. In N. Munro, editor, Symbolic Methods in Control System Analysis and
Design, pages 339–352. The Institution of Electrical Engineers, London, 1999.

[44] Esther Gelle and Boi Faltings. Solving Mixed and Conditional Constraint Satisfac-
tion Problems. Constraints, 8:107–141, 2003.

[45] Michael Gleicher and Andrew P. Witkin. Through-the-lens Camera Control. In
J. J. Thomas, editor, Proceedings of Annual Conference on Computer Graphics and
Interactive Techniques, pages 331–340, Chicago, IL, USA, 1992. ACM.

[46] Alexandre Goldsztejn. Définition et Applications des Extensions des Fonctions
Réelles aux Intervalles Généralisés: Nouvelle Formulation de la Théorie des In-
tervalles Modaux et Nouveaux Résultats. PhD thesis, Université de Nice, 2005. In
French.

[47] Frédéric Goualard. Gaol: NOT Just Another Interval Library. University of Nantes,
France, 2005. http://sourceforge.net/projects/gaol/.

F. Benhamou, L. Granvilliers 599

[48] Frédéric Goualard. On Considering an Interval Constraint Solving Algorithm as a
Free-steering Nonlinear Gauss-Seidel Procedure. In A. Omicini and R. L. Wain-
wright, editors, Proceedings of ACM Symposium of Applied Computing, pages
31434–1438, Santa Fe, New Mexico, USA, 2005. ACM Press.

[49] Frédéric Goualard and Laurent Granvilliers. Controlled Propagation in Continuous
Numerical Constraint Networks. In A. Omicini and R. L. Wainwright, editors, Pro-
ceedings of ACM Symposium of Applied Computing, pages 377–382, Santa Fe, New
Mexico, USA, 2005. ACM Press.

[50] Laurent Granvilliers. An Interval Component for Continuous Constraints. Journal
of Computational and Applied Mathematics, 162(1):79–92, 2004.

[51] Laurent Granvilliers. On the Combination of Interval Constraint Solvers. Reliable
Computing, 7(6):467–483, 2001.

[52] Laurent Granvilliers and Frédéric Benhamou. Progress in the Solving of a Circuit
Design Problem. Journal of Global Optimization, 20(2):155–168, 2001.

[53] Laurent Granvilliers and Gaétan Hains. A Conservative Scheme for Parallel Interval
Narrowing. Information Processing Letters, 74:141–146, 2000.

[54] Laurent Granvilliers and Eric Monfroy. Implementing Constraint Propagation by
Composition of Reductions. In C. Palamidessi, editor, Proceedings of International
Conference on Logic Programming, volume 2916 of Lecture Notes in Computer
Science, pages 300–314, Mumbai, India, 2003. Springer.

[55] Laurent Granvilliers and Mina Ouabiba. Combination of Nonlinear Terms in In-
terval Constraint Satisfaction Techniques. In B. Buchberger and J. A. Campbell,
editors, Proceedings of International Conference on Artificial Intelligence and Sym-
bolic Computation, volume 3249 of Lecture Notes in Computer Science, pages 118–
131, Linz, Austria, 2004. Springer.

[56] Laurent Granvilliers, Frédéric Goualard, and Frédéric Benhamou. Box Consistency
through Weak Box Consistency. In W. Meng, editor, Proceedings of IEEE Con-
ference on Tools with Artificial Intelligence, pages 373–380, Chicago, USA, 1999.
IEEE Computer Society.

[57] Laurent Granvilliers, Eric Monfroy, and Frédéric Benhamou. Symbolic-Interval
Cooperation in Constraint Programming. In G. Villard, editor, Proceedings of In-
ternational Symposium on Symbolic and Algebraic Computation, pages 150–166,
London, Ontario, Canada, 2001. ACM Press.

[58] Markus Grimmer, Knut Petras, and Nathalie Revol. Multiple Precision Interval
Packages: Comparing Different Approaches. In R. Alt, A. Frommer, R. B. Kearfott,
and W. Luther, editors, Numerical Software with Result Verification, volume 2991
of Lecture Notes in Computer Science, pages 64–90. Springer, 2004.

[59] SIGLA/X Group. Modal Intervals. In Proceedings of Workshop on Applications of
Interval Analysis to Systems and Control, pages 139–207, 1999.

[60] Rolf Hammer, Matthias Hocks, Ulrich Kulisch, and Dietmar Ratz. C++ Toolbox
for Verified Computing. Springer-Verlag, 1995.

[61] Eldon Robert Hansen. Global Optimization using Interval Analysis. Marcel Dekker,
1992.

[62] Eldon Robert Hansen. Interval Arithmetic in Matrix Computations. SIAM Journal
of Numerical Analysis, 2:308–320, 1965.

[63] Eldon Robert Hansen and Saumyendra Sengupta. Bounding Solutions of Systems
of Equations using Interval Analysis. BIT, 21(2):203–211, 1981.

600 16. Continuous and Interval Constraints

[64] Timothy J. Hickey, Qu Ju, and Maarten H. van Emden. Interval Arithmetic: From
Principles to Implementation. Journal of the ACM, 48(5):1038–1068, 2001.

[65] Hoon Hong and Volker Stahl. Bernstein Form is Inclusion Monotone. Computing,
55:43–53, 1995.

[66] Hiroshi Hosobe. A Modular Geometric Constraint Solver for User Interface Ap-
plications. In B. Mynatt, editor, Proceedings of Annual ACM Symposium on User
Interface Software and Technology, pages 91–100, Orlando, Florida, USA, 2001.
ACM.

[67] Eero Hyvönen. Constraint Reasoning based on Interval Arithmetic. The Tolerance
Propagation Approach. Artificial Intelligence, 58:71–112, 1992.

[68] Eero Hyvönen. Constraint Reasoning Based on Interval Arithmetic. In N. S. Sridha-
ran, editor, Proceedings of International Joint Conference on Artificial Intelligence,
pages 1193–1198, Detroit, MI, USA, 1989. Morgan Kaufmann.

[69] IEEE. IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical
and Electronics Engineers, 1985. IEEE Std 754-1985, Reaffirmed 1990.

[70] Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. In M. J.
O’Donnell, editor, Proceedings of ACM Symposium on Principles of Programming
Languages, pages 111–119, Munich, Germany, 1987. ACM Press.

[71] Joxan Jaffar and Michael Maher. Constraint Logic Programming: A Survey. Journal
of Logic Programming, 19–20:503–581, 1994.

[72] Joxan Jaffar, Spiro Michaylov, Peter Stuckey, and Roland Yap. The CLP(ℜ) lan-
guage and system. ACM Transactions on Programming Languages and Systems, 14
(3):339–395, 1992.

[73] Micha Janssen, Pascal Van Hentenryck, and Yves Deville. A Constraint Satisfaction
Approach for Enclosing Solutions to Parametric Ordinary Differential Equations.
SIAM Journal on Numerical Analysis, 40(5):1896–1939, 2002.

[74] Christian Jansson. Rigorous Lower and Upper Bounds in Linear Programming.
SIAM Journal on Optimization, 14(3):914–935, 2004.

[75] Christian Jansson and Siegfried M. Rump. Rigorous Solution of Linear Program-
ming Problems with Uncertain Data. Methods and Models of Operations Research,
35:87–111, 1991.

[76] Frank Jardillier and Eric Languénou. Screen-space constraints for camera move-
ments: the virtual cameraman. Computer Graphics Forum, 17(3):175–186, 1998.

[77] Luc Jaulin and Eric Walter. Set Inversion via Interval Analysis for Nonlinear
Bounded-Error Estimation. Automatica, 29(4):1053–1064, 1993.

[78] Luc Jaulin and Eric Walter. Guaranteed tuning, with application to robust control
and motion planning. Automatica, 32(9):1217–1221, 1996.

[79] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied Interval
Analysis: With Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer, 2001.

[80] William Kahan. A More Complete Interval Arithmetic. Technical report, University
of Toronto, Canada, 1968.

[81] Edgar W. Kaucher. Interval Analysis in the Extended Interval Space IR. Computing
Supplementum, 2:33–49, 1980.

[82] Ralf Baker Kearfott. Rigorous Global Search: Continuous Problems. Nonconvex
Optimization and Its Applications. Kluwer Academic Publishers, 1996.

[83] Rudolf Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit

F. Benhamou, L. Granvilliers 601

Fehlerschranken. Computing, 4:187–201, 1969.
[84] Ludwig Krippahl and Pedro Barahona. Applying Constraint Programming to Pro-

tein Structure Determination. In J. Jaffar, editor, Proceedings of International Con-
ference on Principles and Practice of Constraint Programming, volume 1713 of
Lecture Notes in Computer Science, pages 289–302, Alexandria, Virginia, USA,
1999. Springer.

[85] François Laburthe and the OCRE project team. CHOCO: implementing a CP ker-
nel. In Proceedings of International Workshop on Techniques for Implementing
Constraint Programming Systems, 2000.

[86] Yahia Lebbah and Olivier Lhomme. Accelerating Filtering Techniques for Numeric
CSPs. Artificial Intelligence, 139(1):109–132, 2002.

[87] Yahia Lebbah, Claude Michel, Michel Rueher, David Daney, and Jean-Pierre Mer-
let. Efficient and Safe Global Constraints for handling Numerical Constraint Sys-
tems. SIAM Journal on Numerical Analysis, 42(5):2076–2097, 2005.

[88] Olivier Lhomme. Consistency Techniques for Numeric CSPs. In R. Bajcsy, editor,
Proceedings of International Joint Conference on Artificial Intelligence, pages 232–
238, Chambéry, France, 1993. Morgan Kaufmann.

[89] Olivier Lhomme, Arnaud Gotlieb, and Michel Rueher. Dynamic Optimization of
Interval Narrowing Algorithms. Journal of Logic Programming, 37(1–2):165–183,
1998.

[90] Alan K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8(1):99–118, 1977.

[91] Philippe Marti and Michel Rueher. A Distributed Cooperating Constraints Solving
System. International Journal on Artificial Intelligence Tools, 4(1-2):93–113, 1995.

[92] Jean-Pierre Merlet. Solving the Forward Kinematics of a Gough-type Parallel Ma-
nipulator with Interval Analysis. International Journal of Robotics Research, 23(3):
221–236, 2004.

[93] Frédéric Messine. Extensions of Affine Arithmetic: Application to Global Opti-
mization. Journal of Universal Computer Science, 8(11):992–1015, 2002.

[94] C. Miranda. Un’osservatione su un teorema di Brouwer. Boll. Un. Mat. Ital., 3(2):
5–7, 1940.

[95] Eric Monfroy, Michael Rusinowitch, and René Schott. Implementing Non-Linear
Constraints with Cooperative Solvers. In K. M. George, J. H. Carroll, D. Oppen-
heim, and J. Hightower, editors, Proceedings of ACM Symposium on Applied Com-
puting, pages 63–72, Philadelphia, PA, USA, 1996. ACM Press.

[96] Ugo Montanari. Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Information Science, 7(2):95–132, 1974.

[97] Ugo Montanari and Francesca Rossi. Constraint Relaxation may be Perfect. Artifi-
cial Intelligence, 48(2):143–170, 1991.

[98] Ramon Edgar Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.
[99] Jean-Michel Muller. Elementary Functions: Algorithms and Implementation.

Birkhäuser, 1997.
[100] Alexander S. Narin’yani. Subdefinite Models and Operations with Subdefinite Val-

ues. Preprint, USSR academy of sciences, Siberian Division, 400, 1982.
[101] Arnold Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-

sity Press, 1990.
[102] Arnold Neumaier and Oleg Scherbina. Safe Bounds in Linear and Mixed-Integer

602 16. Continuous and Interval Constraints

Programming. Mathematical Programming A, 99:283–296, 2004.
[103] Karl Nickel. On the Newton Method in Interval Analysis. MRC Report 1136,

Mathematics Research Center, University of Wisconsin, Madison, 1971.
[104] William J. Older. Application of relational interval arithmetic to ordinary differential

equations. In Proceedings of the first Workshop on Constraint Languages and their
Use in Problem Modelling, pages 60–69, Ithaca, New York, 1994.

[105] William J. Older and André Vellino. Extending Prolog with Constraint Arithmetic
on Real Intervals. In Proceedings of IEEE Canadian Conference on Electrical and
Computer Engineering, New York, 1990. IEEE Computer Society Press.

[106] Barry O’Sullivan. Constraint-Aided Conceptual Design. PhD thesis, University
College Cork, 1999.

[107] Jean-François Puget and Michel Leconte. Beyond the Glass Box: Constraints as
Objects. In J. W. Lloyd, editor, Proceedings of International Symposium of Logic
Programming, pages 513–527, Portland, USA, 1995. MIT Press.

[108] Jean-François Puget and Pascal Van Hentenryck. A Constraint Satisfaction Ap-
proach to a Circuit Design Problem. Journal of Global Optimization, 13(1):75–93,
1998.

[109] Stephan Ratschan. Approximate Quantified Constraint Solving by Cylindrical Box
Decomposition. Reliable Computing, 8(1):21–42, 2002.

[110] Helmut Ratschek and Jon Rokne. About the Centered Form. SIAM Journal of
Numerical Analysis, 17(3):333–337, 1980.

[111] David Richardson. Some Unsolvable Problems Involving Elementary Functions of
a Real Variable. Journal of Symbolic Logic, 33:514–520, 1968.

[112] Jiri Rohn. Enclosing Solutions of Linear Interval Equations is NP-hard. Computing,
53:365–368, 1994.

[113] Jiri Rohn, Siegfried M. Rump, and Tetsuro Yamamoto, editors. Linear Algebra
in Self-Validating Methods, volume 324 of Linear Algebra and its Applications.
Elsevier Science, 2001.

[114] Siegfried M. Rump. Developments in Reliable Computing, chapter INTLAB - IN-
Terval LABoratory, pages 77–104. Kluwer Academic Publishers, 1999.

[115] Nikolaos V. Sahinidis. BARON: A General Purpose Global Optimization Software
Package. Journal of Global Optimization, 8(2):201–205, 1996.

[116] Miguel Sainz, Pau Herrero, Joaquim Armengol, and Joseph Vehi. An extended
interval inclusion test for proving first order logic formulas over the reals. Technical
report, Universitat de Girona, 2005.

[117] Djamila Sam-Haroud and Boi Faltings. Consistency Techniques for Continuous
Constraints. Constraints, 1:85–118, 1996.

[118] Hanif D. Sherali and Warren P. Adams. A Reformulation-Linearization Technique
for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Pub-
lishers, Dordrecht/Boston/London, 1999.

[119] Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Springer,
1991.

[120] Alfred Tarski. A decision method for elementary algebra and geometry. Univ. of
California Press, 1951.

[121] Mohit Tawarmalani and Nikolaos V. Sahinidis. Global Optimization of Mixed-
Integer NonLinear Programs: A Theoretical and Computational Study. Mathemati-
cal Programming A, 99(3):563–591, 2004.

F. Benhamou, L. Granvilliers 603

[122] Vitaly Telerman and Dmitry Ushakov. Subdefinite Models as a Variety of Constraint
Programming. In B. Manaris and P. Marquis, editors, Proceedings of International
Conference on Tools with Artificial Intelligence, pages 157–164, Toulouse, France,
1996. IEEE Computer Society.

[123] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. MIT Press, Cambridge, MA, 1989.

[124] Pascal Van Hentenryck, David McAllester, and Deepak Kapur. Solving Polynomial
Systems Using a Branch and Prune Approach. SIAM Journal of Numerical Analysis,
34(2):797–827, 1997.

[125] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica: a Modeling
Language for Global Optimization. MIT Press, 1997.

[126] Pau Herrero Vinas, Miguek A. Sainz, Josep Vehi, and Luc Jaulin. Quantified Set
Inversion Algorithm with Applications to Control. Reliable Computing, 11(5):369–
382, 2005.

[127] Xuan-Ha Vu, Djamila Sam-Haroud, and Marius-Calin Silaghi. Approximation
Techniques for Nonlinear Problems with Continuum of Solutions. In S. Koenig
and R. C. Holte, editors, Proceedings of International Symposium on Abstraction,
Reformulation and Approximation, volume 2371 of Lecture Notes in Computer Sci-
ence, pages 224–241. Springer, 2002.

[128] Marc Wallace, Stefano Novello, and Joachim Schimpf. ECLiPSe : A Platform for
Constraint Logic Programming. ICL Systems Journal, 12(1):159–200, 1997.

[129] David L. Waltz. Generating Semantic Descriptions from Drawings of Scenes with
Shadows. In P. H. Winston, editor, The Psychology of Computer Vision. McGraw
Hill, 1975.

[130] Laurent Zimmer, Alexis Anglada, Marc Christie, and Laurent Granvilliers. Con-
straint Explorer: a Modelling and Sizing Tool for Engineering Design. In Pro-
ceedings of World Multi-Conference on Systemics, Cybernetics and Informatics,
Orlando, USA, 2004.

This page intentionally left blank

Handbook of Constraint Programming 605
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 17

Constraints over Structured Domains

Carmen Gervet

The computer will be the most marvellous
of all tools as soon as program writing and

debugging will be no longer necessary
—Jean-Louis Laurière (1976)

A wide range of combinatorial search problems find a natural formulation in the lan-
guage of sets, multisets, strings, functions, graphs or other structured objects. Bin-packing,
set partitioning, set covering, combinatorial design problems, circuits and mapping prob-
lems are some of them. They are NP-complete problems originating from areas as diverse
as combinatorial mathematics, operations research or artificial intelligence. These prob-
lems deal essentially with the search for discrete structured objects. While a high-level
modeling approach seems more natural, many solutions have exploited the effectiveness
of finite domains or mixed integer programming solvers. In this chapter we present higher
level modeling facilities utilizing constraints over structured domains.

What is a structured object? Let us consider the example of a bin-packing problem.
The main constrained objects are the different bins, each describing a collection of un-
ordered distinct elements, subject to disjointness constraints among them, weight con-
straints reflecting on each bin capacity and possible cardinality restrictions on the number
of items allowed in each bin. Informally, such objects are structured in the sense that they
involve more than one element in a specific setting.

When Fikes introduced the notion of finite domain in 1970 [31], the idea was to ap-
proximate the range of an unknown integer (an integer variable) and to prune inconsistent
values from such a domain that cannot belong to any solution. Already in the description
of the language REF-ARF, Fikes proposed directions for future work such as: “considering
the addition to the program of capabilities for handling unordered sets”. Mid-eighties the
seminal work of Van Hentenryck et al. integrated consistency techniques over finite integer
domains into logic programming [90], and gave birth to the first finite domain constraint
logic programming language CHIP (Constraint Handling In Prolog) [23], leading to a new

B.V.

606 17. Constraints over Structured Domains

generation of academic and industrial constraint programming systems. The successes of
CHIP and its peers also raised the questions of the languages limitations. While Finite Do-
main (FD) solvers grew in efficiency, it remained that models lacked generic and natural
formulations when representing structured objects, making the programming effort more
cumbersome and sometimes ad-hoc.

As an example, let us consider the structured object, “set”, constrained to be subset of
a known base set. A finite domain approach would consider two possible representations:

• a list of FD variables taking their value from a finite set of integers that represents
the base set. This approach requires the removal of order and multiplicity among the
elements of the list, which is achieved by adding ordering constraints. For example
the list [X1, X2, X3] :: [0..5], X1 < X2 < X3 represents a set of 3 elements subset
of the set {0, 1, 2, 3, 4, 5}. If the size of the set is unknown some dummy FD vari-
ables are also necessary. Clearly this does not make easy the modeling of additional
set constraints such as intersection, or union.

• a list of 0-1 FD variables. This second formulation is equivalent to the semantics
of a finite set subset of a known set. It uses 0-1 variables, and originates from 0-1
Integer Programming (ILP). Basically, this approach exploits the one-to-one corre-
spondence that exists between a subset s of a known set S and a Boolean algebra.
The correspondence is defined by the characteristic function:

f : yi → {0, 1} f(yi) = 1 iff i ∈ s

In other words, a 0-1 variable is associated with each element in the base set S
and takes the value 1 if and only if the element belongs to the unknown set s. Set
constraints are then simply represented within the Boolean algebra with arithmetic
operators. The main drawback of this representation is that it looses the semantics
and structure of the problem addressed. Operationally it can benefit from global
reasoning from mathematical programming, but in a constraint programming envi-
ronment lacks conciseness and does not best exploit the problem structure. We give
further on some comparisons between 0-1 and set models.

Approach. This chapter is not intended to give a complete coverage of all results avail-
able in softwares and systems that embed constraints over structured domains. Instead
we try to cover a number of significant research topics in more detail. This should give
a context and picture for the research and its methodology, provide the most important
references, and enable the reader to study research papers on the topic.

17.1 History and Applications

Before the research field of “constraint programming” even existed, the seminal work of
Laurière in 1976 proposes constrained structured objects in the design and development
of ALICE [61]. Laurière’s idea was to combine generality and efficiency in addressing
combinatorial problems. He defines an input language, purely descriptive, with high level
objects such as functions and relations between two known sets, constrained by some prop-
erties, such as injection and bijection. ALICEwas a pioneer in the use of structured objects
to model combinatorial problems.

C. Gervet 607

In a parallel line of research, most proposals to extend constraint reasoning over new
structured domains came as extensions of the logic programming system, Prolog. Logic
programming is a powerful programming framework which enables the user to state non-
deterministic programs in relational form [56, 20]. The extension to Constraint Logic
Programming (CLP) combines the positive features of logic programming with constraint
solving techniques, where the concept of constraint solving replaces the unification proce-
dure in logic programming and provides, among others, a uniform framework for handling
new structured domains. Previous chapters have presented in depth the state of the art in
the precursors constraint domains (rationals, Boolean algebra, finite integer domains, real
intervals). This chapter is interested in discrete and structured domains such as strings,
finite sets in different forms, relations, maps and graphs.

In 1989 Walinsky presented CLP(Σ∗), an instance of the CLP scheme over the com-
putation domain of strings, represented as regular sets [92]. The practical motivation was
to incorporate strings into logic programming to strengthen the standard string-handling
features (e.g. concat, substring). It constitutes the first attempt to compute regular sets by
means of constraints like the membership relation. For example A in (X.‘‘ab’’.Y)

states that any string assigned to variable A must contain the substring ab. This approach
was further developed by Golden and Pang in 2003 [42] even though they did not seem
aware of Walinsky’s work. Their main contribution is to use finite automata to represent
regular sets. Both approaches consider possibly infinite sets of strings. More recently Pe-
sant proposed a global constraint on a fixed length sequence of finite domain variables with
application to rostering and car sequencing problems [74].

The most widely studied structured domain is most definitely that of sets. The moti-
vations to embed sets in constraint based languages are quite diverse and address different
issues ranging from program analysis, software prototyping and specification, set theory
axiomatization and combinatorial problem solving. The terminology of “set constraints”
is worth a few words even though it does not relate directly to constraint satisfaction prob-
lems. Heintze and Jaffar [46] coined the term of set constraints in 1990 to handle a class
of sets of trees (possibly infinite) and to deal with relations of the form s1 ⊆ s2 where s1
and s2 denote specific set expressions, possibly recursive, defined over trees. This line of
research applies to program analysis systems ([6, 2] among others) which was pioneered
by John Reynolds in 1969 [81]. Besides the terminology of set constraints, these systems
do not relate to constraint programming over a specific computation domain, as they do not
interpret set operations but rather show the expressiveness of “set constraints” for the anal-
ysis of programs developed in logic or functional programming. For further information,
please refer to survey articles such as [72].

Ironically it was about the same time that the notion of finite sets was embedded as a
high level programming abstraction in logic-based and then constraint (logic) based lan-
guages, in quite a different setting. We refer to the term set to denote a finite set. A set is
basically a collection of distinct elements commonly described by {x1, ..., xn}. The use
of a logic-based language as the underlying framework came from proposals in database
query languages where the aim was to strengthen typical existing set facilities of languages
like Prolog (e.g. setof, bagof) to handle sets of terms and complex data structures.
In this line of work sets have been embedded in [10, 57, 87, 25]. All these languages con-
verge on one aspect: representing a set variable by a set constructor so as to nest objects
in a natural manner. This constructor is specified either by an extensional representation
{x1, ..., xn} ([10, 57]) or by an iterative one {x} ∪E where E can be unified with a set of

608 17. Constraints over Structured Domains

terms containing possibly set variables (concept of sets of finite depth, or hereditarily finite
sets in {log } [25], CLPS [63], and [89]).

Even though these languages use constraints to reason upon sets, they do face the NP-
completeness of the equality relation over constructed sets (as a particular case of Asso-
ciative, Commutative and Idempotent (ACI) relation [65]). The main reason is the absence
of a unique most general unifier when unifying constructed sets. For example, the equality
{X,Y } = {3, 4} derives two solution sets: {X = 3, Y = 4} and {X = 4, Y = 3} neither
of which is more general than the other. This means that the satisfaction of the ACI axioms,
introduces nondeterminism in the unification procedure by deriving disjunctions of a finite
number of equalities.

While such approaches did not offer a practical solution to set unification they were
not essentially motivated by effective solving of combinatorial problems. In 1992, a new
class of finite set constraint solvers was designed to expand the modeling facilities of finite
domain solvers when tackling set-based combinatorial search problems (e.g. bin packing,
set partitioning, combinatorial designs or more recently network design). The idea was
developed independently by Puget [75, 76], and Gervet [37, 38]. The objective was to pro-
pose a high-level modeling language which enabled us to model a set-based combinatorial
problem as a set domain CSP – where set variables range over set intervals – and which
tackled set constraints by using consistency techniques. A set domain is a collection of
known sets of arbitrary elements like {{1, 2}, {1, 4}, {1, 5}}. It is specified by a set in-
terval, [{1}, {1, 2, 4, 5}], where the lower bound contains the definite elements of the set,
and the upper bound extends it with possible elements. Gervet formalized the concepts
and ideas when presenting the Conjunto language in [39, 40]. Though implementa-
tion details vary, at their core the set constraint solvers of solver [77], ECLiPSe[86],
MOZART-OZ [67, 69], FACILE [7], B-Prolog [94], CHOCO [58], all have the subset
bounds as domain representation. The availability of all these solvers both in academia
and industry, has enabled the design of new models and solutions to problems from com-
binatorial mathematics [8], VLSI circuit verification and warehouse location [3], as well
as network design problems (e.g. weight setting [29], SONET [88, 85]).

However, it has also raised the question of the limitations of the core Conjunto-like
set interval solver, leading to further research in this area. Research advances in finite
set solvers include: i) the extension of the core subset bound solver with new inferences
relative to the set cardinality constraint (mainly described in Cardinal [3] and OZ [68]),
ii) the development of global set constraint propagators, iii) the search for more expressive
set domain representations.

Regarding global set constraints propagators, Sadler and Gervet investigated the case
of n-ary constraints on fixed cardinality sets such as atmost1, distinct, stating re-
spectively that n sets of known cardinality should intersect pairwise in atmost one element,
or not be equal [82]. This first attempt was followed by challenging results both theoreti-
cally and algorithmically. Walsh in [93] addresses the question of whether such global con-
straints could infer anything more than their decompositions and with Bessière et al. started
a systematic investigation of determining the tractability of a range of global set constraints
[14]. New global propagators were presented for the disjoint and partition con-
straints for sets of known cardinality, independently by Sadler and Gervet in [83] and
Bessière et al. in [13]. Such constraints have been present in Ilog SOLVER with similar
algorithms [50].

Regarding the effectiveness of finite set intervals, Lagoon and Stuckey propose in [60]

C. Gervet 609

a radically different approach to the standard subset domain bounds. They show that Re-
duced Ordered Binary Decision Diagrams (ROBDDs) can be used to represent full do-
mains efficiently. The same year, the set interval representation was also reconsidered by
Sadler and Gervet in [84] in order to make better use of the cardinality information and
break set symmetries in problems such as combinatorial designs [85]. They define a hy-
brid set domain whereby the conventional subset domain is enriched with a lexicographic
domain that shows to better exploit the cardinality information and symmetry breaking
constraints. As this chapter was compiled, Gervet and Van Hentenryck proposed a length-
lex representation of set domains that encodes directly cardinality and lexicographic infor-
mation, and shows promise in reaching powerful and cost effective pruning [41].

Other structured objects have been considered to expand the modeling facilities of
finite domain constraints. Multisets (sets where an element may occur more than once),
commonly referred to as bags, have been embedded in few constraint languages and seem
an adequate choice of model for template design problems [54]. Existing approaches to
multiset reasoning make use of constructors or domains. For example CLPS uses multiset
constructors while SOLVER uses multiset domains. In [93], Walsh formalizes the idea
of multiset domains and discusses the expressiveness of different domain representations.
Quimper and Walsh also recently proposed in [78] to use efficient enumeration procedures
(see Knuth [55]) to extend the use of some global constraint on large domains over sets,
but also tuples represented as lists of integer variables.

Finally, higher level structured domains have recently been re-discovered (graph and
map variables) or proposed (ontologies, lattices). The proposals follow two main trends:
i) high level constructors that are part of a specification or modelling language compiled
into an executable code such as the works of Flener et al. [32] leading to the modeling
language ASRA [32], and the PhD thesis of Hnich in L [48], ii) high level computation
domains to reason with and about relations and graphs as in Conjunto[39], CP(Graph)
[24], and CP(Graph + Map)[22], and order-sorted domains introduced by Caseau and
Puget [17], as well as ontology domains introduced by Laburthe [59]. Fernándex and Hill
generalized all interval reasoning approaches over structured domains that are lattices into
a single framework, deriving the clp(L) language [30].

17.2 Constraints over Regular and Constructed Sets

Most of the recent proposals (late eighties) to embed strings or constructed sets as a high
level programming abstraction aim at extending a logic-based language and thus assume
such a language as the underlying framework. In this section we review the major ap-
proaches which embed strings and constructed sets in constraint programming.

17.2.1 Regular Sets

CLP(Σ∗). This language represents an instance of the CLP scheme over the computation
domain of regular sets[92]. A regular set is a finite set composed of strings which are gen-
erated from a finite alphabet Σ. CLP(Σ∗) has been designed and implemented to provide a
logic-based formalism for incorporating strings into logic programming in a more expres-
sive manner than the standard string-handling features (eg. concat, substring). A
CLP(Σ∗) program is a Prolog program enriched with regular set terms and built-in con-
straints.

610 17. Constraints over Structured Domains

Operations on regular sets comprise concatenation R1.R2, disjunction or union R1 +
R2 (i.e., R1 ∪ R2) and the closure operator R∗

1 which describes the least set R′ such
that R′ = ǫ + (R′, R1). These operations allow us to build any regular expression when
combined with the identity elements under concatenation (1) and union (∅). This language
provides an atomic constraint over set expressions which is the membership constraint of
the form x in e where x is either a variable or a string and e is a regular expression. For
example A in (X.′′ab′′.Y) states that any string assigned to variable A must contain the
substring ab.

The satisfiability of membership constraints over regular sets clearly poses the problem
of termination. In the above example, if Y is a free variable there is an infinite number of
instances for A. The solver guarantees termination by: (i) applying a scheduling strategy
which selects the constraints capable of generating a finite number of instances, (ii) ap-
plying a satisfiability procedure based on deduction rules which check and transform the
selected atomic constraints. The non selected ones are simply floundered.

The selected constraints x in e are such that either e is a string or e is a variable and x a
string. The conditional deduction rules over each of these constraints infer a new constraint
or a simplified one if a given condition is satisfied. Each condition represents a possible
form of selected set constraints.

As an example, the following rules describe the derivation of concatenated expressions
under idempotent substitutions:

w = w1.w2

σ1 ⊢ ′′w′′
1 in e1

σ2 ⊢ ′′w′′
2 in e2

 and

(

σ1 ⊢ X1 in e1
σ2 ⊢ X2 in e2

)

σ1 ∪ σ2 ⊢ ′′w′′ in e1.e2 [X = (X1σ1).(X2σ2)] ⊢ X in e1.e2

The σi are idempotent substitutions, which means that given two substitutions σ1 and
σ2, σ1 ∪ σ2 produces the most general idempotent substitution if one exists that is more
specific than the two previous ones.

Soundness and completeness of the deduction rules are guaranteed only if there are no
variables within the scope of any closure expression e∗ in addition to the criteria of con-
straint selection. This approach constitutes a first attempt to compute regular sets by means
of constraints like the membership relation. The complexity of the satisfiability procedure
is not given, but infinite computations are avoided thanks to the use of floundering.

Regular sets and finite automata. The key challenges when reasoning about string con-
straints effectively are 1) to represent infinite string sets without actually requiring infinite
space, and 2) to enforce constraints over infinite string sets without exhaustively listing
the consistent values [42]. To do so one would use regular languages, i.e. sets of strings
accepted by regular expressions or finite automata, which are widely used for instance in
string matching or lexical analysis.

Constraints over the string variables extend the ones presented in CLP(Σ∗) with con-
straints on the length of a string length. Two different representations of regular lan-
guages are used: regular expressions and finite automata (FAs) [49]. Regular expressions
that represent a regular language over an alphabet Σ, are used as input and are converted
to FAs, which are used computationally. This system has been used within a constraint

C. Gervet 611

based planner for NASA. The solver performs set operations on Finite Automata to prune
the string domains and reach a consistent state. All of the set operations and string con-
straints are either linear or quadratic in the size of the FAs representing the string domain.
However, the FA can grow exponentially with the number of operations, i.e. the number
of constraints that contain the variable whose domain is represented by the FA. Ultimately
how the FA grows will depend on the nature of the problem at hand.

Such languages allow variables to range over an infinite set of strings. This is suit-
able for their motivational problems but is not a requirement in all application domains
involving strings.

The use of membership constraints for sequences of finite domain variables also exists
in the constraint programming literature to address in particular combinatorial search prob-
lems such as rostering and car sequencing. The objective is usually to identify or enforce
patterns of values, specified over finite domain variables. The approaches are commonly
embedded as global constraints with associated propagator. We refer the reader to the
sequence constraint (constrains the number of times a certain pattern of length l appears
in a sequence of variables) introduced in [80], solver’s IlcTableConstraint [50]
(takes a sequence of n finite-domain variables and a set of n-tuples representing the valid
assignments of values to these variables), or the more recent regular(x,M) constraint
[74]. This constraint is a regular language membership constraint that constrains “any se-
quence of values taken by the finite domain variables of x to belong to the regular language
recognized by M”. It reasons upon strings of the regular language that have a given length
n which is powerful enough for its purpose.

The embedding and use of regular sets in constraint (logic) programming has a clear
diversity from enhancing the string manipulation of Prolog to enforcing patterns of values
in combinatorial search problems.

17.2.2 Constraints over Constructed Sets

The first steps towards embedding sets in constraint programming first assumed a logic-
based language as the underlying framework. This follows from the declarative nature
of logic programming, which well combines with set constructs, and its nondeterminism
which is suited to stating set-based programs. The presented languages are the main ones
relating to constraint reasoning. More literature exists relating solely to logic program-
ming.

{log} and CLP(SET). {log} [25, 26, 27] has been designed and implemented mainly
for theorem proving. Consequently, it embeds an axiomatized set theory whose properties
guarantee soundness and completeness of the language.

Set terms are constructed using the interpreted functors with and {}, e.g. ∅ with x
with (∅ with y with z) = {{z,y},x}. The language includes a limited collection of
predicates (∈,=, 6=, /∈) as set constraints. The axiomatized set theory consists of a set of
axioms which describe the behaviour of the constructor with. For example the extension-
ality axiom shows how to decide if two sets can be considered equal:

v with x = w with y →
(x = y ∧ v = w) ∨ (x = y ∧ v with x = w) ∨
(x = y ∧ v = w with y) ∨∃z (v = z with y ∧ w = z with x)

612 17. Constraints over Structured Domains

Using the axioms, a set of properties are derived describing the permutativity (right asso-
ciativity) and absorption of the with constructor. For example, the permutativity property
is depicted by:

(x with y) with z = (x with z) with y (permutativity)

The complete solver consists of a constraint simplification algorithm defined by a set of
derivation rules with respect to each primitive constraint. A derivation rule for the equality
constraint is, for example:

h with {tn, ..., t0} = k with {sm, ..., so}
If h and k are not the same variables then select non-deterministically one action among

a set of possible substitutions (minimal set of unifiers). The nondeterministic satisfaction
procedure of constructed sets reduces a given constraint to a collection of constraints in
a suitable form by introducing choice points in the constraint graph itself. This leads to
a hidden exponential growth in the search tree. In this approach, completeness of the
solver is required if one aims at performing theorem proving. Thus, there is no possible
compromise here between completeness and efficiency. The soundness and completeness
of its solver allow us to use it for theorem proving and problem specification.
{log} has been revisited from a LP to a CLP framework in order to provide a uniform

framework for the handling of set constraints (∈,=, 6=, /∈). The CLP counterpart called
CLP(SET) is described in [28]. The design and implementation of {log} and subsequently
CLP(SET) have settled the theoretical foundations for embedding constructed sets of the
form {x} ∪ S into (constraint) logic programming.

CLPS. The CLPS language (Constraint Logic Programming with Sets) was designed for
prototyping combinatorial search problem dealing with sets, multisets, or sequences. It
is based on a three sorted logic, the three sorts being: sets, multisets and sequences of
finite depth (eg. s = {{{e, a}}, c} is a set of depth three) [63]. The concept of depth is
equivalent for each sort.

In CLPS, set expressions are built from the usual set operator symbols (∪,∩, \,#).
Set variables are constructed either iteratively by means of the set constructor {x} ∪ s
or by extension by grouping elements within braces (eg. {x1, ..., xn}). The language
also embeds finite integer domains and allows set elements to range over a finite domain.
Sequences and multisets are built using, respectively, the constructors sq{...} and m{...}.
Basic constraints are relations from {∈,=, /∈, 6=,⊆} interpreted in the usual mathematical
way together with a depth (::) and a type checking operator.

The satisfiability problem for sets, sequences and multisets is NP -complete [65]. To
cope with this, CLPS provides several methods whose use depends on the characteristics
of the CLPS program at hand. The solver makes use of various techniques comprising: (i)
a set of semantical-consistency rules, (ii) an arc-consistency algorithm of type AC-3 [66]
combined with a local search procedure (forward checking) and (iii) a transformation pro-
cedure which transforms the set constraint system into an equivalent mathematical model
based on integer linear programming [47]. The rules in (i) check the consistency of each
set constraint with respect to homogeneity of types, depth and cardinality. For example the
system

{x} = {y, z} is semantically-consistent if y = z

C. Gervet 613

A semantically-consistent system of set constraints is then solved in two stages. The solver
first divides the system in two independent subsets: 1) the first one, SCfd, contains set con-
straints whose constrained sets are sets of integer domain variables, 2) the other one, writ-
ten SCv contains sets and set constraints where set elements are free variables or known
values. The solver applies (ii) and (iii) respectively to check satisfiability over SCfd and
SCv.

An interesting component is the resolution of SCv using (iii). A system SCv is sat-
isfiable if its equivalent integer linear programming form is satisfiable [47]. To check
satisfiability, the system provides a correct and complete procedure which transforms the
set constraint system into an equivalent mathematical model based on integer linear pro-
gramming. This procedure consists in flattening each set constraint and reducing the sys-
tem of flattened formulas to an equivalent system of linear equations and disequations
over finite domain variables. The derived system is then solved using consistency tech-
niques. The flattening algorithm works by adding additional variables to reach forms from
(x = y, x ∈ y, x = {x1, ..., xn}, x = y ∪ z, x = y ∩ z, x = y \ z, etc.). The reduction
to linear form is performed by associating to each set variable xi a new variable Cxi which
represents its cardinality and to each pair of variables (xi, xj) a new binary variable Qij
denoting possible set equality constraints. If there are n constraints the complexity of the
reduction procedure is in O(n3).

The proposed solving methods are among the most appropriate for handling set con-
straints over constructed sets. They fit the application domain of the language which aimed
initially at combinatorial problem prototyping. Unfortunately the nondeterminism in the
unification of set/multisets/strings constructs prevents an efficient pruning of the domains
attached to set elements (in case they represent domain variables). The focus is put on the
expressive power of the language rather than on the efficient solving.

Since its first release, the CLPS kernel has been extended in many ways. In particular,
new solvers on constructed terms for multisets and sequences have been defined based on
PQR-trees and proved to be appropriate for modelling and solving scheduling problems
with a reasonable efficiency [9]. The application domain of CLPS has since migrated and
a new solver called CLPS-B has been designed and implemented to animate and generate
test sequences from B and Z formal specifications [15]. The B method, developed by
Abrial, forms part of a formal specification model based on first order logic extended to set
constructors and relations, (see [1] for a description of the B method).

17.3 Constraints over Finite Set Intervals

As we mentioned earlier on, many combinatorial search problems find a natural formula-
tion in the language of sets. The embedding of finite set intervals in constraint program-
ming languages builds upon the successes of finite domain constraint satisfaction problem
(CSP) in order to allow for natural and concise modeling of a set-based combinatorial
search problems as set domain CSP – where set variables range over finite set domain
– and set constraints are handled using consistency techniques. The motivations differ
slightly from the previous languages since the approach compromises expressiveness (sets
don’t contain variables) with efficiency (trivial deterministic unification of finite sets). We
present the main components of the finite set solver, since it is available in most CP lan-

614 17. Constraints over Structured Domains

guages and lead to much further research and improvements in recent years. Comprehen-
sive theoretical and practical descriptions can be found in [39, 77, 40].

Notations. Set variables will be represented by the letters x, y, z, s, set constants by the
letters a, b, c, d, natural numbers by the letters m,n and integer variables by v, w. All these
symbols can be subscripted.

17.3.1 Subset Domain Bounds and Convex Closure Operator

A set domain can be specified in extension as a collection of known sets of arbitrary ele-
ments like {{a, b}, {c, d}, {e}}. However, such domains can be large (e.g., if s ⊆ {1, . . . ,
100}, its domain contains 2100 elements). A common approach to tackling large domains
is to approximate the domain reasoning by an interval reasoning as in many FD solvers.
This is why the notion of set domain has been approximated by a set interval specified by
its upper and lower bounds, defined by some appropriate ordering on the domain values.
In this case the partial ordering under set inclusion is considered. This enables the use
of consistency techniques [66] by reasoning in terms of interval variations, when dealing
with a system of set constraints. The set interval [{}, {a, b, c, d, e}] represents the convex
closure of the set domain above.

The core idea is to approximate the domain of a set variable by a closed interval denoted
[glb, lub], specified by its unique least upper bound glb, and unique greatest lower bound
lub, under set inclusion. Any such interval within a powerset lattice is necessarily convex
allowing us to perform correct computations over the set intervals. This approach finds
similarities with other interval reasoning approaches like real intervals or Booleans (see
[71, 11]).

The glb of the set domain contains the definite elements of s and the lub contains in
addition possible elements of s.

Example 17.1. The constraint s ∈ [{3, 1}, {3, 1, 5, 6}] means that the elements 3, 1 belong
to s and that 5 and 6 are possible elements of s.

Regarding set expressions, the domain of a union or intersection of sets is not a set in-
terval because it is not a convex subset of the P({1, 2, 3, 4, 5, 6}), the domain of discourse
(e.g. I = [{1}, {1, 3}] ∪ [{}, {2, 6}], {1, 3}, {6} ∈ I but [{}, {1, 3, 6}] 6⊆ I). It is possible
to maintain such disjunctions of domains during the computation, but this leads to a com-
binatorial explosion. This handling of “holes” can be avoided by considering the convex
closure of a set expression domain. To do so one needs a convex closure operation over a
subset of a powerset lattice equipped with set inclusion ordering.

Convex closure operation. Let DS be the powerset lattice 〈P(Hu),⊆〉 with the partial
order ⊆ where P(s) denotes the powerset of s and the universe of discourse Hu refers to
the Herbrand universe. To ensure that any set domain is a set interval, we define a convex
closure operation which associates to any DS its convex closure as being a set interval.

Definition 17.2. Given any subset x = {a1, ..., an} of DS we have:

~conv (x) = x = [
⋂

ai∈x

ai,
⋃

ai∈x

ai]

C. Gervet 615

The convex closure of the set{{3, 2}, {3, 4, 1}, {3}} belonging to P(DS) is the set
interval [{3}, {1, 2, 3, 4}].

The operations
⋂

ai∈x
ai and

⋃

ai∈x
ai derive respectively glb(x)and lub(x). The op-

eration ~conv(x) = x = [glb(x), lub(x)] satisfies the properties of extension (x ⊆ x),
idempotence (x = x), and monotony (if x ⊆ y, then x ⊆ y)

The existence of limit elements for any set {a, b} belonging to DS allows us to define
a notion of set domain as a convex subset of DS , that is a set interval [a ∩ b, a ∪ b].

Set interval calculus. The powerset algebraDS interprets the set function symbols ∪, ∩,
\ in their usual set theoretical sense (i.e., ∅ is the empty set, \ the set difference, etc.). The
interpreted set union and intersection symbols have the usual algebraic properties (com-
mutativity, associativity, idempotence, absorption). By making use of the convex closure
operation we ensure that the union and intersection of set intervals yield intervals as well.
The resulting set interval calculus is described as follows:

[a, b] ∪ [c, d] = [a ∪ c, b ∪ d]
[a, b] ∩ [c, d] = [a ∩ c, b ∩ d]
P(Ds) = P(Ds) and ∅ = ∅

With regard to the set difference operation [a, b] \ [c, d], its set theoretical definition
is x \ y = x ∩ y′ where y′ is the complement of y. The complement of a set interval is
characterized only by the fact that it does not contain the elements in the lower bound (e.g.
c in this case). So the convex closure of a set interval difference is:

[a, b] \ [c, d] = [a \ d, b \ c]

17.3.2 Set Constraints and Graduations

Primitive set constraints apply to set variables or ground sets. They constrain at most two
set variables or a set variable and an integer (for graduated constraints). They can be of the
form S ∈ [a, b], S ⊆ S1, S = S1 ∪ S2, S = S1 ∩ S2, S = S1 \ S2, e ∈ S, e /∈ S, |S| ≥
c, |S| ≤ c.

Many more constraints can be specified but will be rewritten in term of the primitive
ones. For instance, n-ary constraints of the form s1 ∪ s2 ⊆ s3 ∩ s4. Th reason is that
the partial solving of constraints requires us to express each set variable in terms of the
others. Since there is no inverse operation for ∪,∩, \ there is no way to move all the
operation symbols on one side of the constraint relation. So it is necessary to decompose
n-ary constraints into primitive ones unless some global reasoning is sought with dedicated
propagators (see next section). The decomposition approach is similar to the relational
form of arithmetic constraints over real intervals [18].

To increase the expressiveness of a set solver, and in particular to be able to deal with
optimization functions, we apply graduation functions to sets. A graduation maps a no
quantifiable term to an integer value denoting a measure of the term. The set cardinality is
one example of such a function. Another one is the weight function that sums the element
values of the set. Both can then be restricted by arithmetic constraints. The following
definitions give necessary conditions to consider graduations for a given set.

616 17. Constraints over Structured Domains

Definition 17.3. A set S provided with an order relation � is graduated if there exists a
function f from S to Z (positive and negative integers) which satisfies:

x ≺ y ⇒ f(x) < f(y) (≺ is a strict ordering, < the arithmetic inequality)
x precedes y ⇒ f(x) = f(y) + 1

An element xi precedes an element xi+1 if in the chain of elements x = x0 ≺ x1 ≺
... ≺ xn = y in S there is no other element between them.
f is the graduation of S.

The existence of a graduation of a set which does not correspond to a chain (e.g. a set
of set intervals) is guaranteed for the closed set intervals under set inclusion [40]. Further-
more, if there exists one such graduation of a set, then there exists an infinite number of
graduations of this set. The weight function is a case in point.

Definition 17.4. A graduation f is a function from [DS ,⊆] to Z (set of positive and neg-
ative integers) which maps each element x ∈ DS to a unique m such that f(x) = m.

The convex closure of a graduation f is required to deal with elements from ΩDS . The
closure function, written f , maps elements from ΩDS to a subset of the powerset P(Z)
containing intervals of positive and negative integers. This subset is designated by ΩZ .

Example 17.5. Let s be a set and |s| its cardinality (a positive integer). Consider the
constraint s ∈ [{}, {1, 2}]. The cardinality function is approximated by ||. Intuitively we
have ||(s) = [0, 2].

Definition 17.6. Let f : DS → Z . The function f : ΩDS → ΩZ is derived from f as
follows:

f([a, b]) = [f(a), f(b)]

Property 17.7. If x ∈ [a, b] then f(x) ∈ f([a, b]).

This property guarantees that the output of the function f applied to a set domain
contains the actual graduation value of the concerned set variable.

17.3.3 Local Consistency

Local consistency for the primitive constraints individually ensure that the set interval cal-
culus holds. This can be captured in the following definition of bound consistency for
constraints over combined domains [13].

Definition 17.8. A constraint is Bound Consistent (denoted BC), iff for each set (holds also
for multiset domain variables), its lub(s) (respectively glb(s)) is the union (respectively
intersection) of all the values for s that belong to a valid assignment, and for each integer
variable x there is a valid assignment that satisfies the constraint for the max and min
values in the domain of x. An assignment is valid if the value given to each set (or multiset)
is within its domain bounds, and the value given to each integer variable is between the
min and max in its domain.

For the sole case of set and multiset variables, BC can be defined using the character-
istic function for each set variable (or occurrence representation for multiset variables). A
set constraint is BC if its characteristic function is bounds consistent in the common finite
domain terminology [93].

C. Gervet 617

17.3.4 Enforcing BC

The consistency notion defines conditions to be satisfied by set domain bounds, and integer
domains so that a set constraint is BC. If such conditions are not satisfied this means that
elements in the domain are irrelevant. BC can be inferred by moving such elements “out
of the boundaries of the domain” which means pruning the bounds of the domain. The
essential point is that a refinement of both bounds allows us to prune a domain. Reducing
the set of possible values a set could take can be achieved either by extending the collection
of definite elements of a set i.e., adding elements to the glb of a set domain, or by reducing
the collection of possible elements i.e., removing elements from the lub of a set domain.
Both computations are deterministic. The inference rules are presented as deterministic
rewrite rules that operate when the conditions are met:

conditions
constraint store changes

For set constraints

Consider the constraint s ⊆ s1 such that s ∈ [a, b], s1 ∈ [c, d]. Inferring its local consis-
tency amounts to possibly extending the lower bound of the domain of s2 and to possibly
reducing the upper bound of the domain of s1. This is depicted by the following inference
rule:

I1.
b′ = b ∩ d , c′ = c ∪ a

{s ∈ [a, b], s1 ∈ [c, d], s ⊆ s1} 7−→ {s ∈ [a, b′] , s1 ∈ [c′, d], s ⊆ s1}
When s, s1 denote set expressions, the relational forms are created and the following

additional inference rule is necessary to deal with the projection functions. For each pro-
jection function ρi describing the domain of an si appearing in a set expression, we have:

I2.
a′i = ai ∪ c , b′i = bi ∩ d

{ si ∈ [ai, bi], ρi = [c, d] } 7−→ { si ∈ [a′i, b
′
i]}

For primitive graduated constraints

The constraint f(s) ∈ [m,n] such that s ∈ [a, b] describes a mapping from an element
belonging to a partially ordered set to an element belonging to a totally ordered set. Con-
sequently, it might occur that two distinct elements in [a, b] have the same valuation in
[m,n]. This implies that inferring the local consistency of this constraint might require
refining [a, b] only if a single element in [a, b] satisfies the constraint. If this element exists,
it corresponds necessarily to one of the domain bounds since they are uniquely defined and
are strict subset (or superset), of any element in the domain. Thus, the value of the graded
function mapped onto them cannot be shared. The inference mechanism is depicted by
the following rules. min() and max() are functions which take as input a collection of
integers and return respectively the minimal and maximal integer value of this collection.

I3.
[m′, n′] = [max(m, f(a)),min(n, f(b))]

{ s ∈ [a, b] , f(s) ∈ [m,n]} 7−→ {s ∈ [a, b] , f(s) ∈ [m′, n′] }

618 17. Constraints over Structured Domains

I4.
n = f(a)

{ s ∈ [a, b] , f(s) ∈ [m,n]} 7−→ {s = a }

I5.
m = f(b)

{ s ∈ [a, b] , f(s) ∈ [m,n]} 7−→ {s = b }
By their definition, the inference rules are correct (all possible solutions are kept), con-

tracting (final domains are subset of the initial domains), idempotent (the smallest domains
have been computed the first time) and inclusion monotone (smaller initial domains yield
smaller final domains). The consistency of a system of constraints results from the con-
sistency of each constraint appearing in it. A generic algorithm is used to call the relevant
inference rules dedicated to enforcing BC. It reduces the set bounds until a fixed point is
reached. In the case of set intervals, the algorithm resembles the relaxation algorithm used
by CLP(Intervals) systems [62] commonly referred to as fixed point algorithm [11], see
Chapter 16, “Continuous and interval constraints”.

17.3.5 Illustrative Model

We illustrate a 0-1 model versus a subset-bound set model of a simple bin packing problem
[39]. Bin packing problems belong to the class of set partitioning problems. A multiset
of n integers is given {w1, ..., wn} and specifies the weight elements to partition. Another
integer Wmax is given and represents the weight capacity. The aim is to find a partition of
the n integers into a minimal number of m bins (or sets) {s1, .., sk} such that in each bin
the sum of all integers does not exceed Wmax. This problem is usually stated in terms of
arithmetic constraints over 0-1 variables and solved using MIP techniques or finite domain
constraint programming. It requires one matrix (aij) to represent the elements of each
set, one vector xj to represent the selected subsets sk and one vector wi to represent the
weights of the elements aij . The set model uses a weight graded constraint that sums the
weights of the items in a set domain.

IP abstract formulation set abstract formulation

∑m
j=1 aij xj = 1 ∀i ∈ {1, .., n} s1 ∩ s2 = {}, s1 ∩ s3 = {}, .., sn−1 ∩ sm = {}

s1 ∪ s2 ∪ ... ∪ sm = {(1, w1), .., (n,wn)}
where:
xj = 0..1 (1 if sj ∈ {s1, .. , sk}) sj ∈ [{}, {(1, w1), .., (n,wn)}]
aij = 0..1 (1 if i ∈ sj) weight(i, wi) = wi;
∑n
i=1 aij wi ≤Wmax ∀j ∈ {1, ...,m} ∀sj ,

∑#glb(sj)
i=1 weight(i, wi) ≤Wmax

Under these assumptions, the program to solve is to minimize the number of bins:
minx0 =

∑m
j=1 xj minx0 = #{sj | sj 6= {}}

17.3.6 Multiset Domains

Multisets can also be used to model the bin packing problem by considering essentially the
weights and not the items. They were introduced in the previous section in the context of
constructed sets. We present here approaches towards introducing multiset objects that are
specified using domains, as they can be naturally seen as extensions to set domains where

C. Gervet 619

the occurrence needs to be taken into account. Multiset domains are not present in many
languages yet, but can be found in SOLVER under the name bags [50]. As described in
[54], the main difference between set and multiset domains in a Constraint Satisfaction
Problem sense lies in the maintenance of the occurrence functions. And in fact multisets
can be solely defined by means of the occurrence function. Let occ(m, s) be the number
of occurrences of m in the multiset s. Multiset operations such as union, intersection,
difference, etc, are defined by properties of the occurrence function. We have:

occ(m, s1 ∪ s2) = max(occ(m, s1), occ(m, s2))
occ(m, s1 ∩ s2) = min(occ(m, s1), occ(m, s2))
occ(m, s1 \ s2) = max(0, occ(m, s1)− occ(m, s2))
s1 = s2 iff ∀m, occ(m, s1) = occ(m, s2)
s1 ⊆ s2 iff ∀m, occ(m, s1) ≤ occ(m, s2)

Just like sets, different representations are possible for multiset domains. The subset
bound representation can be generalized to sets allowing multiple occurrence of elements,
and the characteristic function can be generalized to the occurrence vector. Also the list
of finite domain variables commonly used to represent sets in Finite Domain (FD) solvers
can be used for multisets with the difference that the variables are not constrained to be
distinct but each element should appear in a number of variables describing its occurrence.
We can compare the expressiveness of the different representations in terms of the multiset
values it represents. For instance, the occurrence representation is more expressive than
the bound representation (see proofs in [93]). The FD list, also referred to as cardinality
representation, is incomparable to either.

Example 17.9. A multiset ms1 with possible values {{1, 1, 2}}, {{2, 2, 2}}can be repre-
sented by the “occurrence” vector of integer variables [x1, x2] with:

x1 = occ(1,ms) ∈ 0..2, and x2 = occ(2,ms) ∈ 1..3
The bound representation for this multiset domain is specified by:
ms1 ∈ [{1, 1, 2}..{2, 2, 2}]

The FD list representation for the same multiset variable is specified by:
[y1, y2, y3], y1 ∈ 1..2, y2 ∈ 1..2, y3 = 2

Enforcing BC is done by applying inference rules similar to the ones for set constraints
taking into account the semantics of the occurrence element (see [93]).

17.4 Influential Extensions to Subset Bound Solvers

Conjunto and its peers provide a natural and concise modeling facility for set-based
CSPs, space efficient in the representation of large domains, integrated with finite domain
solvers through graded function constraints. However, the growing use of such solvers
has raised some important shortfalls over the past years, the main ones being the loose
approximation of the subset bounds when the actual domains are sparse, and the passive
use of the cardinality information, ubiquitous in set-based combinatorial problems, and
the breaking of problem symmetries. We present the most influential approaches towards
improving finite set solvers.

620 17. Constraints over Structured Domains

So far, there has been four research directions to strengthen constraint propagation of
the first subset bound solvers, built upon Conjunto inference rules. These comprise
(1) additional cardinality inferences to enrich a subset bound solver; (2) a hybrid set do-
main that complements the conventional subset domain with lexicographic bounds; (3) a
set solver based on a full domain representation using Reduced Ordered Binary Decision
Diagrams (ROBDD); (4) global constraint propagators over subset bounds. This section
surveys the four of them.

17.4.1 Cardinal

The Cardinal solver [3] is a finite set solver in the Conjunto style (i.e. subset bound
solver) with enhancements to strengthen the use of the cardinality information. Conjunto
uses the cardinality (and other graded functions like weight) in a unidirectional way, mean-
ing that when a set domain gets refined its cardinality is pruned. The possible inferences
from the cardinality to the set have not been considered, mainly due to the practical ob-
jective of the language then to remain cost effective in addressing large set-based CSPs
(bin-packing, partitioning). However, finite set solvers have a wider applicability. In par-
ticular Azevedo applies subset bound solvers to tackle digital circuit diagnosis [4, 3]. For
such problems active use of the cardinality information is essential.

Conventional Boolean representations of digital signals consider a pair: a set of faults
on which the signal depends, and a Boolean value that the signal takes if there were no
faults at all. Both are variables. For instance, X = {{f/0, g/0}, {i/1}} − 0 means that
signal X is normally 0 but if both gates f and g are stuck-at-0 or gate i is stuck-at-1, then
its actual value is 1. Thus ∅-N represents a signal with constant value N , independent of
any fault [4]. The idea of using sets to represent digital circuits is to join the two domains
in one by using a transformation, based on a single set domain that approximates both with
minimal loss of information. A set representing a pair S-0 is simply represented by the
set S, while the pair S-1 is represented by the set S. The set S can have values ∅ or D
(known set) and is thus given a set interval domain [0, D] whose corresponding cardinality
should ideally have only the two possible values {0, |D|}. Such disjunctive cardinality
domains, mapped to sparse set domains, makes the subset bound approximation very loose
and ineffective.

New inferences rules are added to the solver to strengthen constraint propagation over
the cardinality information, and would benefit such combinatorial problems in particular
[4]. Additional cardinality inferences are associated with each basic set operation. To
illustrate the pruning power of Cardinal, we consider the set difference operation. The
following example shows the benefits of additional inference rules using the cardinality
information:

Example 17.10. Let s1, s2 and s3 be three set variables such that we have the following
system of constraints:

s1, s2 ⊆ {a, b, c, d}, |s1| = 2, s3 = s2 \ s1

While traditional subset bound solvers do not infer any information, the Cardinal
system would infer that |s3| ≤ 2. Then any further constraint upon the cardinality of s3
such as |s3| = 3 would lead to a failure.

C. Gervet 621

The inference rules defined to achieve bounds consistency for the cardinality variables
c1, c2, c3 amount to adding new constraints on the cardinality variables to the constraint
store. In the case of the set difference constraint we have:

c3 ≥ c1 − c2
c3 ≤ c1 − |glb(s1) ∩ glb(s2)|
c3 ≤ |lub(s1) ∪ lub(s2)| − c2

Note that the Cardinal solver first infers arc consistency over the cardinality bounds,
at constraint set up which can be useful when cardinality domains are disjunctive like in
digital circuits models, but costly in the general case. Thus it maintains bounds consistency
over these bounds to remain effective while strengthening constraint propagation. For each
primitive set constraints as the set difference above, an inference rule leading to AC for the
cardinality domains is first applied.

c3 ∈ {n | ∃ i ∈ D1, j ∈ D2, max(i− j, i− |lub(s1) ∩ lub(s2)|) ≤ n
n ≤ min(i− |glb(s1) ∩ glb(s2)|, |lub(s1) ∪ lub(s2)| − j)}

Example 17.11 ([3]). Consider two sets s1 and s2 that can only be ∅ or {f, g, h, i} (i.e.
cardinality 0 or 4). To find the initial cardinality domain of their difference s3 = s1 \ s2,
we examine cardinality pairs 〈0, 0〉, 〈0, 4〉, 〈4, 0〉, 〈4, 4〉 and conclude that the set difference
cardinality is also the pair 〈0, 4〉.

The Cardinal solver has been implemented atop ECLiPSe [86] and is fully described
in [3, 5]. This solver has shown how finite set solvers can be competitive on problems
which were the realm of Boolean algebra. It has demonstrated the expressiveness of finite
sets and their applicability to digital circuit design in particular.

17.4.2 Lexicographic Bounds

The ubiquity of the set cardinality information goes beyond digital circuit design and en-
compasses the large class of combinatorial design problems (e.g. see [19] for a survey)
for which set-based CSP models are ideally suited. Examples are sport scheduling, Steiner
systems, error-correcting codes. Traditional subset bound solvers have difficulty with such
problems as they do not make strong use of the set cardinality information. Cardinal
offers more in terms of cardinality inferences but such inferences do not propagate onto
the subset bounds except for instantiation. This issue is addressed in [84], by extending the
domain representation to more closely approximate the true domain of a set variable. This
is a complementary approach to Cardinal that strengthens the propagation of finite set
constraints in a tractable way.

The idea is to consider a set domain ordering that better exploits the cardinality infor-
mation, and that is also effective at breaking symmetries (when using symmetry breaking
constraints) [85]. The new bound representation for set domains is based on an ordering
different from the set inclusion (subset order). It is a lexicographic ordering with lexico-
graphic bounds specified by 〈inf, sup〉. This ordering relation defines a total order on sets
of natural numbers, in contrast to the partial order ⊆. We use the symbols � (and ≺) to
denote a total strict (respectively non-strict) lexicographic order.

Definition 17.12. Let � be a total order on sets of integers defined as follows:

622 17. Constraints over Structured Domains

s1 � s2 iff s1 = ∅ ∨m1 < m2 ∨
(

m1 = m2 ∧ s1 \ {M1} � s2 \ {m2}
)

where m1 = max(s1) and m2 = max(s2)

Example 17.13. Consider the sets {1, 2, 3}, {1, 3, 4}, {1, 2}, {3}, the list that orders these
sets w.r.t. � is [{1, 2}, {3}, {1, 2, 3}, {1, 3, 4}].

A common use of this ordering is in search problems to break symmetries (e.g. [21] on
SAT clauses or [33, 36] on vectors of FD variables). However, this is not the use to which
this ordering is put here. It is used on ground sets as a means to approximate the domain
of a finite set variable by upper and lower bounds w.r.t. this order.

A lex bound domain overcomes one major weakness of the subset bounds, in that the
lex bounds denote possible solution sets that satisfy the cardinality restrictions imposed on
the set variable.

Example 17.14. Consider a variable X ranging over a subset domain [{1, 2}, {1, 2, 3, 4}],
such that X is of size 3. The subset bounds are not a possible instance for X as the domain
cannot be pruned to satisfy the cardinality restriction. The lexicographic bounds on the
other hand are [{1, 2, 3}, {1, 2, 4}], denoting the min and max sets of size 3 (w.r.t. to the
ordering) containing {1, 2}.

Despite its success allowing cardinality constraint to filter the domain more actively, the
lex bound representation is unable to always represent certain critical constraints. Primary
amongst these constraints is the inclusion or exclusion of a single element. Such constraints
are not always representable in the domain because the lex bounds represent possible set
instances and not definite and potential elements of a set. In the example above there are
sets in between the lex bounds that do not contain {1, 2}, such as {4, 1}. It is the inability
to capture such fundamental constraints efficiently in the domain which lead to a hybrid
domain of both subset and lexicographic bounds.

The lexicographic ordering for sets is not the only possible definition, nor is it, perhaps,
the most common when talking about sets. Its use comes from two reasons: 1) for sets of
cardinality 1 it is equivalent to the ≤ ordering of FD variables and 2) usefully, it extends
the ⊆ ordering and we have:

Theorem 17.15. [84] ∀s1, s2 ∈ P(U) : s1 ⊆ s2 ⇒ s1 � s2

Theorem 17.15 is used in the hybrid domain to make inferences between the two
bounds representations for set variables.

A collection of inference rules have been defined to propagate primitive set constraints
with respect to the lex bounds, subset bounds and cardinality bounds. A prototype hy-
brid solver has been implemented in ECLiPSe atop the ic_sets library. First results
showed spectacular improvements over traditional subset bound solvers, on the network
design SONET problem [85] and more pruning but at a substantial computational cost on
some combinatorial design problems such as the Steiner triple problems and binary error
correcting codes. The main novelty of the approach is the introduction of a new domain
representation whose bounds account for the cardinality restrictions and can be used for
effective symmetry breaking (using symmetry breaking constraints).

C. Gervet 623

17.4.3 ROBDDs

The problem of efficient finite set reasoning in a constraint logic programming context
can also be addressed from a radically different perspective as described in [60]. The idea
was first motivated by rejecting the belief that the very large number of values of a finite
set domain precludes a precise and un-approximated representation, and instead to show
how Reduced Order Binary Decision Diagrams (ROBDDs) can be used to represent full
set domains and set constraints in a compact manner. Using existing efficient libraries to
represent and manipulate these compact data structures, Lagoon and Stuckey demonstrate
techniques for combining ROBDDs in ways that correspond to basic finite set constraints
(e.g. \, ∩, ∪, ||) which minimize the size of the resulting ROBDD [60]. An ROBDD is a
canonical function representation (up to reordering) of a Binary Decision Diagram which
permits and efficient implementation of many Boolean function operations [16].

Let s be a set variable, and let {1, .., N} be its domain of possible values. The ROBDD
domain representation makes use of the characteristic function that defines the one-to-one
correspondence between a subset s of a known set S and a Boolean algebra:

f : xi → {0, 1} such that f(xi) = 1 iff i ∈ s

Hence a set variable s is represented by a vector of Boolean variables < x1, .., xN >.
Now if we consider an assignment A of values to variables, each xi will take value one if
and only if i ∈ s. The i’s are first drawn from a universe of discourse. Such an assignment
can be represented as a Boolean formula B(A):

B(A) =
∧

i∈U

yi where yi =

{

xi if i ∈ A
¬xi otherwise

Each known set can be seen as an assignment, hence the full domain of a set variable
D(s) can itself be represented by a Boolean formula B(D(s)). This formula is a disjunc-
tion of B(A) over all possible sets A in D(s) [45]:

B(D(s) =
∨

A∈D(s)

B(A) where B(A)is defined above

Example 17.16. Let U = {1, 2, 3} and let s be a set variable with D(s) = {{1}, {1,3},
{2,3}}. We associate Boolean variables {v1, v2, v3} with s given U . D(s) is the Boolean
formula (v1 ∧¬v1 ∧¬v3)∨ (v1 ∧¬v2 ∧ v3)∨ (¬v1 ∧ v2 ∧ v3). The three solutions to this
formula correspond to the elements of D(s).

While such a formula can be constructed using an ROBDD, in practice the approach
only ever constructs the ROBDD for a domain implicitly through constraint propagation.
The ROBDDs are used to model the constraint themselves. Indeed any set constraint can
be converted to a Boolean formula.

Example 17.17. Let U = {1, 2, 3}, and the constraint s1 ⊆ s2. Assume that the Boolean
variables associated with s1 and s2 respectively are v1, v2, v3 and w1, w2, w3. The in-
clusion constraint can be represented by the Boolean formula: (v1 → w1) ∧ (v2 →
w2) ∧ (v3 → w3). This formula can be represented by two different ROBDDs depending
on the variable ordering.

624 17. Constraints over Structured Domains

ROBDDs are ordered and thus require an ordering of the Boolean variables used. The
order can have a drastic effect on the size of the ROBDDs when constraints are represented,
i.e. when there is a specific relationship between elements of the universe.

The Boolean approach allows the ROBDD-based modeling to be extended to handling
integer and multiset constraint problems as well as some global set constraints (compre-
hensive description in [45]). While initially motivated by using a full set domain repre-
sentation that do not approximate the possible set values, ROBDD have also been used
to model less strict consistency notions and domain approximations, such as set bounds,
cardinality bounds and lexicographic bounds consistency; with a thorough comparative
evaluation of the different domain representations [44, 45].

The ROBDD-based solver offers a flexible modelling facility and has shown high per-
formance results on several standard combinatorial design constraint problems. However,
it does require the use of Boolean formula and variables to model such problems.

17.4.4 Global Set Constraints

The above works strengthen constraint propagation in complementary ways by revising the
concept of set domain or enriching the local inference rules. A more traditional approach in
constraint programming to offer a better tradeoff “natural formulation”/efficiency consists
in deriving global propagators for a class of symbolic constraints, see Chapter 6, on Global
Constraints. This was not considered in finite set solvers till recently, at least in published
academic articles, but is now contributing interesting results.

Global reasoning on a class of symbolic set constraints, first considered some n-ary
constraints like the atmost1 (sets intersecting pairwise in atmost one element), or its
complement, the distinct constraint (sets that differ pairwise in atleast one element)
over sets of fixed cardinality [82]. Such constraints and other n-ary constraints like union
and disjoint have been used in set-based constraint languages but essentially as syntac-
tic abstractions of collections of binary or ternary constraints, solved with local consistency
techniques. The ubiquity of set intersection in conjunction with cardinality restrictions in
set-based combinatorial problems drove the research agenda towards more efficient prop-
agators.

Example 17.18.
[s1, s2, s3] ∈ {{}..{a, b, c, d}}
|s1| = |s2| = |s3| = 2
disjoint({s1, s2, s3}

BC on this system of constraints does not detect inconsistency. However, if the cardi-
nality constraints are combined with the disjointness constraint one can see that there are
no solutions by doing a simple pigeon hole test. This can be deduced if we consider the
set of constraints globally. In fact, the representation of sets within powersets specified as
set intervals can be used to derive some global inferences based on combinatorial analysis
formulas. A simple satisfiability test can first be checked (ie. pigeon hole test), determin-
ing whether a set of 4 elements can be partitioned into 3 sets of 2 which fails (4

3 6= 2).
A more elaborate test that does not require the sets to have same cardinalities derives an
upper bound on the number of possible partitions of 4 elements into 3 sets of cardinality 2.
Such numbers are known as a Stirling number 4!

(2!)3(3!) = 1
2 [12]. If it is less than one, the

C. Gervet 625

problem is unsatisfiable since there isn’t a single possible partition. However if the number
is greater than one we would know how many different partitions there are.

There exist some counting functions that determine the maximum number of configu-
rations allowed in a superset S, given some shared properties, see [82]. When considering
the values of these functions on can then investigate how and when they can be used ef-
fectively, first to detect unsatisfiability but also to prune further irrelevant set values in an a
priori manner. The counting functions provide a mathematical information that is not eas-
ily deducible in logic. They enable the definition of a set of inference rules to strengthen
propagation on global constraints such as atmost1 , distinct over fixed cardinality sets.
Such rules do not infer BC but are tractable.

Decomposition and complexity

The problematic of deriving inference rules without a clear idea of how much we do or
can infer, and how far we can go towards global reasoning raises fundamental theoretical
issues. This lead to a systematic study of several aspects of global constraints and global
set and multiset constraints in particular. The approach determined whether decomposition
hinders Bounds Consistency (BC), and when it does whether there exists a polynomial
algorithm to infer BC on the considered global constraint [93, 13].

For instance, BC on the n-ary disjoint is equivalent to BC on its decomposition
into binary constraints (pairwise empty intersection). Basically, this holds because any
set can be assigned the empty set. However, when the set cardinalities are constrained
(and not zero), –which is frequent in combinatorial design problems for example– the
equivalence no longer holds. It was also proved that decomposition of the atmost1

constraint hinders propagation and that enforcing BC on this constraint is NP-hard.
We summarize the complexity results in Table 17.1. Decomposable implies polyno-

mial, since existing algorithms to infer BC on a set of binary or ternary set constraints are
indeed polynomial. Results hold for both set and multiset domains unless specified other-
wise. The acronyms stand for: NE (non empty), FC (fixed cardinality). The constraints are
classified in terms of the intersection constraints and cardinality restrictions involved. For
example the atmost1 constraint corresponds to pairwise intersect in at most one element
(k = 1) for fixed cardinality sets, which is the second column of first table.

If now we add the union constraint (
⋃

i si = s) to the intersection ones we obtain
covering problems. The first left column above becomes a partition constraint for which
results are known. The other columns are yet open problems.

|si ∩ sj | = 0 Partition is decomposable and polynomial
+ ∀k, |sk| > 0, NEpartition is not decomposable but polynomial
+ ∀k, |sk| = ck, FCpartition also referred to as partition
is not decomposable and is polynomial on sets, NP-hard on multisets

It is important to note that the global constraints applied to multisets versus sets diverge
on the two most important constraints (from an application point of view): fixed cardinality
disjoint and partition constraints. We describe below the existing algorithms to infer BC
when the constraints apply to sets, however doing so over multisets has been proved to be
NP-hard [13].

626 17. Constraints over Structured Domains

Table 17.1: Summary of complexity results (based on [13]).

∀k... |si ∩ sj | = 0 |si ∩ sj | ≤ k |si ∩ sj | ≥ k |si ∩ sj | = k

- Disjoint Intersect≤k Intersect≥k Intersect=k

decomposable decomposable decomposable not decomp.
polynomial polynomial polynomial NP-hard

|sk| > 0 NEdisjoint NEintersect≤k NEintersect≥k NEintersect=k

not decomposable decomposable decomposable not decomp.
polynomial polynomial polynomial NP-hard

|sk| = ck FCdisjoint FCintersect≤k FCintersect≥k FCintersect=k

disjoint atmost1

not decomposable not decomposable not decomposable not decomp.
polynomial on sets NP-hard NP-hard NP-hard
NP-hard on multisets

Algorithms for the disjoint and partition constraints

The basic case of disjoint and partition is decomposable for the reasons we gave above.
However, when sets have fixed cardinality, decomposition of these constraints hinders con-
straint propagation and thus deriving a global propagator is necessary to ensure BC. We
describe how these constraints have been solved in the literature. Two lines of work have
been undertaken to derive similar algorithms for the global disjoint and partition.

Based upon counting functions from design theory, the first approach derived four
global conditions which must hold for disjoint sets of fixed cardinality [83]. Using an
extension of Hall’s theorem [43], the authors proved that these conditions, if satisfied,
were sufficient to ensure BC. The actual proof procedure constitutes the basis of the al-
gorithm which actually corresponds to an augmenting network in a max-flow problem,
and is similar to a combination of a flow/matching and a Strongly Connected Compo-
nent (SCC) algorithm (see [83]). Interestingly this implementation corresponds closely
to the GAC algorithm for the Global Cardinality Constraint (GCC) [79], see Chapter 6,
“Global Constraints”, and we show the reasons why below. This algorithm also holds for
the partition constraint since the only pruning achievable on the disjoint is when one
can identify minimal partitions within the constraint (i.e strongly connected components).
So one needs to identify partitions in order to do any global pruning on the disjoint con-
straint.

Using the GCC constraint. The GCC constraint applies to a family of finite domain
variables with set of values inB. It constrains the number of times (cardinality) an element
of B can be assigned among the different variables.

The use of the GCC constraint to resolve the disjoint and partition constraints
is offered in ILOG solver and Configurator [50, 51] and has been recently described in [13].

C. Gervet 627

The main idea is to formulate each of the two global set constraint with a dual FD model
based upon the GCC constraint. The semantics of the disjoint constraint is as follows.
Let disjoint(s1, .., si, .., sm) constrains the set variables si such that ∀i ∈ B, si ∈
A, |si| = c. The disjointness constraint ensures that no element of A (domain of the si) is
added to two different set variables.

This constraint has an equivalent formulation in the language of finite integer variables
where one seeks to assign a set identifier to a FD variable. This formulation is called dual
because the initial set variables become values and the set elements become variables. The
equivalent dual formulation uses the GCC constraint, as presented below.

Consider the GCC({y1, .., yj , .., yn}, B′, C) constraint such that ∀j ∈ A, yj ∈ B′ (with
B′ = B ∪ ε with ε being a dummy value for the case where j is unassigned). The global
cardinality constraint limits toC[j] = 1 in the disjoint case, the number of times an element
i from B′ is assigned to a variable yj (ranges between 0..∞ for the dummy variable). We
have n = m × c FD variables. The dummy value is necessary since there might be some
values in A that don’t belong to any set at all. The set model and dual FD model with GCC
constraint are equivalent. A solution to the first model can be mapped to a solution of the
second model and vice versa by applying the following one-to-one mapping:

for i ∈ A : yj = i iff j ∈ si

Thus a solution is consistent with the set model if and only if its dual FD representa-
tion is consistent with the GCC model. The complexity of both the GCC and set based
algorithm is in O(m2c), with m the number of sets and c their cardinality [83, 13].

Further remarks.

• Note that the equivalence between the two models holds because the constraints
represent an injective mapping from a set of elements into a set of sets (each element
belongs to at most one set). As soon as an element can belong to more than one set
we have a surjective mapping and the dual approach based on bipartite graph, and
network flow model would not apply.

• This dual approach also holds for the partition constraints over fixed cardinality
sets with the only difference that all elements must be assigned and thus the dummy
value is removed.

More recently, the application of existing global constraints over finite domain vari-
ables to other domains has been considered. For instance, the all-different and
GCC global constraints have been extended to variables whose values are multisets, sets
or tuples [78]. Note that a tuple is represented as a list of finite domain variables as op-
posed to having a tuple domain with tuples as elements. The issue for such domains is the
large domain size. A binomial representation is proposed to address this aspect. Existing
global propagators are used in combination with efficient enumeration algorithms for large
domains.

628 17. Constraints over Structured Domains

17.5 Constraints over Maps, Relations and Graphs

17.5.1 ALICE Legacy

As mentioned earlier, the seminal work of Laurière was motivated by a need to state com-
binatorial problems simply by constraining relation and graph objects over finite sets [61].
It aimed at clearly separating the problem statement from its solving. The motivation was
to allow a combinatorial search problem to be formulated in the most concise and natural
manner.

The constrained object was not associated with a domain (set of values the relation
can take) and was not “pruned” using consistency techniques, rather it was mapped to an
internal representation based on a bipartite graph structure. Operations were performed on
this structure.

In ALICE, constraints are expressed in a mathematical language based on relation the-
ory and some notions of graph theory. The searched objects are functions which should
satisfy a set of constraints. The solver combines a depth-first search method with sophis-
ticated constraint manipulation techniques and a set of powerful heuristics. The lack of
flexibility of this seminal system both in the language representation and the solving strat-
egy motivated the design and implementation of CHIP.

It has also motivated numerous works in the development of high level specification
languages for combinatorial problems. Such proposals have been revived in the past years
and we can now see two clear trends in the design of high level constraint languages over
maps, relations and graphs objects:

• a class of programming languages over new constraint domains, where functions
relations or graphs become constrained objects. The resolution algorithms depend
then upon the representation of the new constrained objects. Most of these works
are still novel and currently mapped down to finite set solvers as we will see below.

• a class of modeling languages offering high level constructs such as functions, maps
and sequences to model combinatorial problems in a concise manner. Such ap-
proaches do not reason directly about the constrained object to solve the specified
problem. Instead, the formulation is compiled into a lower language benefiting usu-
ally from existing solvers.

17.5.2 Constraint Programming Beyond Sets

The extension of constraint solvers with high modelling and programming facilities has
lead to the definition of new constraint domains over binary relations, graph and maps
essentially. We will present their main components.

Relation variables. When dealing with sets, it sounds quite natural to deal with relations
as well. The Conjunto language —mainly designed to handle finite set constraints—
also provides relations at the language level to extend the expressive power of the language
when dealing for example with circuit problems and matching problems originating from
Operations research. Relation terms are basically built using set terms.

C. Gervet 629

A relation R is commonly represented as a set of ordered pairs (xi, yj) such that xi
belongs to the DS-domain d ofR and yj to its AS-range1 a. In other words, a relationR on
two ground sets d and a is a subset of the Cartesian product d× a. Keeping this represen-
tation to deal with relations as specific set terms containing pairs of elements can be very
costly in memory. Indeed, the statement of the Cartesian product referring to a relation
requires us to consider explicitly a huge set of pairs. This is very inconvenient. Instead,
a relation in Conjunto is represented as a specific data structure which is characterized
by two ground sets (DS-domain and AS-range) and a list containing the successor sets
attached to each element of DS-domain.

Considering one successor set per element splits the domain of a relation into a collec-
tion of set domains. The resulting value of a relation is clearly the union of the successor
sets. This approach is close to the one introduced in ALICE which dealt essentially with
functions. However, in ALICE there is no explicit notion of set domain.

Definition 17.19. Let a relation be r ⊆ d× a. The successor set s of an element x ∈ d is
the set s = {y ∈ a | (x, y) ∈ r}.

The definition of constraints applied to relation variables abstracts from stating directly
constraints over the set DS-domain and AS-range or over the successor sets. The following
injection, map, surjection, bijection constraints over a relation r have been embedded in
Conjunto. We illustrate some of them below. They are represented using the cardinality
operation ||, the usual set operation symbols (∪,∩) and the arithmetic inequality (≥).

Constraints Interpretation

r bin_r d --> a r = birel(l, d, a) where l = {si | ∀i ∈ d, si ∈ {}..a}
(i, j) in_r r if i ∈ d, j ∈ a then j ∈ si
funct(r) ∀i ∈ d, |si| = 1
inj(r) |d| ≤ |a|, |d| = n

s1 ∩ s2 = ∅, s1 ∩ s3 = ∅, ..., sn−1 ∩ sn = ∅
∀i ∈ d, |si| = 1

surj(r) |d| ≥ |a|, |d| = n
s1 ∪ s2... ∪ sn = a
∀i ∈ d, |si| = 1

These constraints do not require any specific solver since the reasoning is based on the
successor set variables. Such constraints were used to prototype partitioning problems.

Graph and map variables. In the same line of work, the CP(Graph) language has
been designed to tackle combinatorial problems involving “subgraph findings” common in
the fields of communication networks, route planning and more recently bio-informatics
[24].

CP(Graph) deals more specifically with graphs and graph constraints and represents
a graph domain by considering its nodes and arcs, that is a graph g = (sn, sa) is defined
by a set of nodes sn and a set of arcs sa ⊆ sn×sn. It handles both directed and undirected
graphs and offers a set of kernel constraints used to derive other graph constraints.

Similarly to subset bound solvers, CP(Graph) builds upon a partial ordering among
graphs to reason upon graph domains. We have, given g1 = (sn1, sa1) and g2 = (sn2, sa2):

1DS-domain and AS-range stand respectively for departure and arrival sets

630 17. Constraints over Structured Domains

g1 ⊆ g2 iff sn1 ⊆ sn2 ∧ sa1 ⊆ sa2

Graph domains are represented by the lattice of graphs partially ordered by set inclu-
sion and specified by a graph interval [gL, gU] such that gL is the greatest lower bound and
gU the least upper bounds of the lattice. It also considers the arcs and nodes as set vari-
ables. The use of additional node and arc variables adds expressiveness to the language
when describing complex graph constraints.

Dooms et al. show that any complex graph constraint can be expressed using a combi-
nation of the following kernel graph constraints:

• Arcs(g, sa) ∈ [saL, saU] where sa describes the set of arcs of g that range over
the subset bound domain

• Nodes(g, sn) ∈ [snL, snU] where sn describes the set of nodes of g that range
over a subset bound domain

• ArcNode(a, n1, n2) states that the arc variable a is an arc between
two nodes n1 and n2

A set of propagation rules allows to infer arc consistency over these constraints. The
expressiveness of the constraints allows CP(Graph) to define more complex graph con-
straints based upon the kernel constraints. We illustrate some of them. The functional form
of the kernel constraints is used to ease readability.

The SubGraph(g1, g2) constraint can be specified by:

SubGraph(g1, g2) ≡ Nodes(g1) ⊆ Nodes(g2) ∧Arcs(g1) ⊆ Arcs(g2)

The InNeighbors(g, n, sn) constrains sn to be the nodes in g for which an inward arc
incident to n is present.

InNeighbors(g, n, sn) ≡ sn ⊆ Nodes(g) ∧ (|sn| > 0⇔ n ∈ Nodes(G)
∧∀i ∈ Nodes(gU) : n ∈ sn⇔ (i, n) ∈ Arcs(G)

Clearly even tough the kernel allow us to express any graph constraints, such formula-
tions might not be effective. Thus CP(Graph) also offers global graph constraints based on
existing results from literature in the field, see Chapter 6, “Global Constraints”.

Recent advances in CP(Graph) include its extension to manipulate map terms as well
in CP(Graph + Map)[22]. The main application of CP(Map) is for graph pattern problems.
The language extends the relation terms of Conjunto (built upon domain and range lim-
ited to ground sets) where domain and range become variables. As the departure set of the
map is not a ground set, instead of using a list of successor sets, CP(Map) uses an indexed
array. As maps are functions and not general relations, the domain variables stored in this
indexed array are not finite sets but finite domain variables.

17.5.3 High Level Modeling/Specification Languages

Recent proposals have considered Map variables as high level type constructors, simplify-
ing the modeling of combinatorial optimization problems, which would then be compiled
into another programming language. We outline recent results in this related area of con-
straint modeling. The language ASRA defines a relation or map variable from a set v to a

C. Gervet 631

set w, where supersets of v and w must be known [32]. While the map variables and con-
straints are used to model a constraint problems, the resolution of the model is handled by
another system. In this proposal, the derived model are compiled into OPL[91]. This idea
can also be found in the language L where v and w are ground sets[48]. Finally, relation
and map variables are also described in [35] as a useful abstraction in constraint modelling.
Rules are proposed for refining constraints on these complex variables into constraints on
finite integer and set variables.

17.6 Constraints over Lattices and Hierarchical Trees

Proposals for higher computation domains have been made recently which deserve atten-
tion. These include the generalization of existing interval based approaches to propose a
generic framework for defining and solving interval constraints on any set of domains (fi-
nite or infinite) that are lattices [30]. The approach is based on the use of a single form of
constraint similar to that of an indexical used by Constraint Logic Programming for finite
domains and on a particular generic definition of an interval domain built from an arbi-
trary lattice. They provide the theoretical foundations for this framework and a schematic
procedure for the operational semantics. Examples are provided that illustrate how new
(compound) constraint solvers can be constructed from existing solvers using lattice com-
binators and how different solvers (possibly on distinct domains) can communicate and
hence, cooperate in solving a problem.

Another challenging domain is that of order-sorted domains and ontologies. Both pro-
posals are driven by industrial needs. The first one shows how constraint satisfaction tech-
niques can be extended to address order-sorted domains, from class taxonomies with an
object oriented perspective [17]. The use of ontologies, is itself motivated by applications
for the configuration of product and services, for instance in the e-commerce [59]. This
second approach defines a constraint domain where all values that a variable may take are
organized into a hierarchy. Such hierarchies are often called ontologies or thesauri in Ar-
tificial Intelligence. Both approaches are quite close. The objective is to define a system
that would allow the use of order-sorted domains in constraint programming for model-
ing purposes. The outlined algorithmic approach to reason about ontologies follows the
bound and convex interval reasoning of finite set intervals. Other approaches to deal with
hierarchies have essentially used the standard CSP formalism and constrain the values of
properties as opposed to the entities in a hierarchy itself [34].

17.7 Implementation Aspects

We present some of the core implementation issues mainly relating to subset bound solvers
since they are the main practical language implementations and are used by higher level
constructs as well. For example the CP(Graph) prototype is built over the FD and finite
set solver of OZ.

17.7.1 Existing Subset Bound Solvers

Subset bound solvers can be found atop different types of kernel languages such as Prolog
enriched with constraint solving and replacing the standard Prolog variable by an attributed

632 17. Constraints over Structured Domains

variable [52] subject to a dedicated unification algorithm. Prolog based set solvers can be
found in ECLiPSe, B-Prolog and Cardinal for instance. Other kernel systems are
based on object oriented language such as C++(SOLVER), concurrent object-oriented lan-
guage like OZ (MOZART), a functional language OCaml (FACILE), and java (the open
source Choco system) to name the main ones. Each offers different modeling and resolu-
tion facilities.

17.7.2 Set Data Structures

Most existing finite set solvers make use of the subset bound representation for space and
computational efficiency reasons. The ROBDD proposal investigates the use of binary
decision diagram to represent set domains, allowing for full domains as well as intervals.

The internal representation of sets plays a role in the time complexity of the different
set operations on the domains since such operations cannot be considered constant unlike
arithmetic operations over integers. For the bound representation we can use 2 sorted lists
one for each bound, an array of 0-1 variables (both bounds in a single array) or bitmaps
representing the characteristic function of the set. The same structures can be used for
ground set representations if the two bounds are stored separately as well as more elaborate
ones such as binomial trees or binary trees.

Since set operations on domains are performed by reasoning on either or both bounds
we give hereafter the time complexity for basic set operations on ground sets. When one
structure is used to embed both bounds the same reasoning applies. Let s be the set with
largest domain such that d = |lub(s)| + |glb(s)|. The cardinality information is usually
maintained dynamically as part of the set variable data structure.

ROBDDs correspond to directed acyclic graphs. Recall that the ROBDD approach
transforms set constraints into Boolean operations and can model domain reasoning as
well as interval reasoning. The complexity of basic set operations depends on the ordering
of the Boolean variables. For a given constraint we can generate an exponential as well as
a linear representation in a Boolean formula. We consider N as the size of the set domain
which can potentially correspond to 2lub(s). The main thing is that each basic set operation
generates an ROBDD. So the complexity issue relates to the size of the generated ROBDD.

17.7.3 Complexity of Set Operations

For bound domains the corresponding initial ROBDD corresponds to the size of the lower
bound independent of the upper bound size and any update can be represented in O(|
glb(s) | +N− | lub(s) |). For an extensive domain representation the size of the ini-
tial ROBDD is linear relative to N [60]. The size of the ROBDD for the different basic set
operations is given below where N is the size of the largest set domain and k a bound on
the cardinality. The cardinality constraint is quite tricky to express in Boolean formula and
requires a quadratic number of formula defined recursively hence the complexity results.

The strength of hash tables is the constant time on average to retrieve information. “+”
represents the “capacity” of the backing (the number of buckets).

Alternative approaches exist based on the representation of a ground set. They are
used mainly for dynamic set operations (add, remove, and sometimes union) and corre-
spond to tree structures (B-tree, binary search tree, binomial tree). The worst case time
complexity for ground sets operations is usually measured by the height of the tree. For

C. Gervet 633

sets of cardinality c we have: h = log c where h is the height of the tree. For such
structures the efficiency lies in the membership test O(log c), union is in O(c log c).

= ⊆ ∪ ∩ \ ∈ ||

sorted list O(d) O(glb(s)) O(d) O(d) O(d) O(| glb(s) |) O(1)
0-1 array (1) (d) O(d) O(d) O(d) O(1) O(1)
hash table O(1) O(k+) O(k+) O(k+) O(k+) O(1) O(1)
ROBDD O(N) O(N) O(N) O(N) O(N) O(1) O(k(N − k))

17.8 Applications

Each structured domain was developed to address particular application needs. For in-
stance, the graph domain was motivated by a problem for biochemical network analysis
[24]. The order-sorted and ontology domains were driven by industrial problems, for in-
stance in the area of e-commerce for ontologies.

The structured domain which has been the most widely developed and used is certainly
that of finite sets. The reason is probably that sets are the underlying structured objects for
the other domains. Set solvers have been used to tackle small and large size benchmark
and “real-world” problems ranging from bin packing ([39]), set partitioning ([40, 70, 68]),
digital circuit and warehouse location [3], combinatorial design ([8, 60, 45]), and network
design ([29, 88, 85]) among others. Recently, combinatorial designs have shown to have
a wide applicability in error-correcting codes, sport scheduling, Steiner systems and more
recently networking and cryptography (e.g. see [19] for a survey). Set constraints have
shown their adequacy for such problems, and powerful models have been derived com-
bined with symmetry breaking techniques and heuristic techniques. We draw particular
attention, to the solving of the challenging Kirkman school girl problem in few seconds,
with an elaborate approach which uses a set model extended with redundant constraints and
symmetry breaking techniques[8]. More discussions on symmetry breaking and modeling
aspects can be found respectively in Chapter 10, “Symmetry in Constraint Programming”,
and Chapter 11 “Modelling”.

Another application area of increasing interest for constraint practitioners, is network
design. Various successful set-based models have been proposed to tackle the network de-
sign SONET problem from a constraint programming perspective [88, 85]. They demon-
strate the strength of applying dual models, redundant constraints and symmetry breaking
techniques to set models.

17.9 Further Topics

Constraint reasoning over structured domains has mainly been motivated by the devel-
opment of high level modeling and specification languages that ease the formulation of
complex combinatorial problems while retaining efficiency.

Research on high level specification languages has long existed but is now growing in
constraint programming [32, 48, 15]. Many constraint programming languages –both in
academia and industry– utilizing structured domains have been proposed, demonstrating

634 17. Constraints over Structured Domains

important progress (e.g. graphs [24], order-sorted domains [17], ontologies [59], multi-
sets [93], and lattices [30]). Much progress has also been made on improving language
effectiveness, in particular with respect to set solvers (e.g. cardinality inferences [5], the
use of ROBDDs [45], more expressive domain representations [84, 41], global propagators
[82, 13, 51]). This research area is extremely active.

Finally, a programming language that allows practitioners to state the problem in a nat-
ural and concise form without needing to worry about the solution method does not yet
exist. However, certain steps have been taken towards this goal. In particular, a high level
problem formulation allows language designers and programmers, to see the actual prob-
lem structure and components, and consequently to identify combinations of constraints
that best exploit the problem structure.

Acknowledgements

The author is thankful to Jean-François Puget for his comments during the preparation of
this chapter. The author was partially supported by the Royal Academy of Engineering, on
a Global Research Award.

Bibliography

[1] J-R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University
Press, ISBN = 0521496195, 1996.

[2] A. Aiken. Set Constraints: Results, Applications andFuture Directions. In Proceed-
ings of PPCP’04, 1994.

[3] F. Azevedo. Constraint Solving over Multi-Valued Logics. Application to Digital
Circuits. Frontiers in Artificial Intelligence and Applications, 2003.

[4] F. Azevedo and P. Barahona. Cardinal: an extended set solver. in Proceedings of
Computational Logic, 2000.

[5] F. Azevedo. Cardinal: A Finite Set Constraints Solver. In Constraint journal, (to
appear), 2006.

[6] L. Bachmaier, H. Ganzinger, and U. Waldmann. Set Constraints are the Monadic
Class. In Proceedings of LICS-1993.

[7] N. Barnier and P. Brisset. Facile: A Functional Constraint Library. In CICLOPS’01
workshop, help alongside with CP-2001.

[8] N. Barnier and P. Brisset. Solving the Kirkman’s Schoolgirl Problem in a Few Sec-
onds. In M. Wallace, editor, Proceedings of CP-2004.

[9] P. Baptiste, B. Legeard, and H. Zidoum. Sequence Constraint Solving in Constraint
Logic Programming. In ICTAI-1994.

[10] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set constructors in a logic database
language. In Journal of Logic Programming, pages 181–232, 1991.

[11] F. Benhamou. Interval Constraint Logic Programming. In A. Podelski, editor, Con-
straint Programming: Basics and Trends, LNCS 910, 1995.

[12] C. Berge. Principle of combinatorics. Volume 72 of Mathematics in science and
engineering. Academic Press, 1971.

C. Gervet 635

[13] C. Bessière, B. Hnich, E. Hébrard, and T. Walsh. Disjoint, Partition and Intersection
Constraints for Sets and Multiset Variables. In M. Wallace, editor, Proceedings of
CP-2004, LNCS 3258.

[14] C. Bessière, B. Hnich, E. Hébrard, and T. Walsh. The Tractability of Global Con-
straints. In M. Wallace, editor, Proceedings of CP-2004, LNCS 3258.

[15] F. Bouquet, B. Legeard, and F. Peureux. CLPS-B: A Constraint Solver to Animate
a B Specification. International Journal on Software Tools for Technology Transfer,
STTT. 6:2, pp 143–157, Springer Verlag, 2004.

[16] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Comput. Surv., 24(3), 293–318, 1992.

[17] Y. Caseau and J.-F. Puget. Constraints on Order-Sorted Domains. In ECAI workshop,
1996.

[18] J.G. Cleary. Logical arithmetic. In Future Generation Computing Systems, chapter
2(2),1987.

[19] Colbourn, Dinitz, and Stinson. Applications of Combinatorial Designs to Communi-
cations, Cryptography, and Networking. In Surveys in Combinatorics, London Math-
ematical Society Lecture Note Series 187. Cambridge University Press, 1999.

[20] A. Colmerauer, H. Kanoui, and M. Van Caneghem. Prolog, bases théoriques et
développements actuels. T.S.I. (Techniques et Sciences Informatiques), 2(4),1983.

[21] J. Crawford, M. Ginsberg, E.M. Luks, and A. Roy. Symmetry breaking predicates
for search problems. In Fifth Int. Conf. on Knowledge Rep. and Reasoning, 1996.

[22] Y. Deville, G. Dooms, S. Zampelli, and P. Dupont. CP(Graph + Map) for Approx-
imate Graph Matching. In Proceedings of BeyondFD’05, First International Work-
shop on CP beyond FD, held alongside CP-2005.

[23] M. Dincbas, H. Simonis, and P. Van Hentenryck et al. The Constraint Logic Pro-
gramming Language CHIP. In Proceedings of FGCS-1988.

[24] G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a Graph Computation
Domain in Constraint Programming. In Proceedings of CP-2004.

[25] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Logic Programming
Language with Finite Sets. In Proceedings of ICLP-1991.

[26] A. Dovier. Computable Set Theory and Logic Programming. PhD Thesis TD-1/96,
Universitad̀egli Studi di Pisa, dip. di Informatica, March 1996.

[27] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. {log}: A Language for Pro-
gramming in Logic with Finite Sets. In Journal of Logic Programming, 28(1), 1996.

[28] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and Constraint Logic Program-
ming. In ACM Transaction on Programming Language and Systems, 22(5) 2000.

[29] A. Eremin, F. Ajili, and R. Rodosek . A Set-based Approach to the Optimal IGP
Weight Setting Problem. In Proceedings of INOC-2005.

[30] A.J. Fernandez and P.M. Hill. An Interval Constraint System for Lattice Domains. in
ACM Transactions on Programming Languages and Systems (TOPLAS), 26(1), ACM
Press, 2004.

[31] R. E. Fikes. Ref-arf: A system for solving problems stated as procedures. Artificial
Intelligence, 1:27–120, 1970.

[32] P. Flener, B. Hnich, Z. Kiziltan. Compiling high level type constructors in constraint
programming. In Proceedings of PADL-2001, LNCS 1990.

[33] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In Proceedings of CP-2002,

636 17. Constraints over Structured Domains

LNCS.
[34] D. W. Fowler, D. Sleeman, G. Wills, T. Lyon, and D. Knott The Designers’ Work-

bench: Using Ontologies and Constraints for Configuration. In 24th International
Conference on Innovative Techniques and Applications of AI, 2004.

[35] A.M. Frisch, C. Jefferson, B.M. Hernandez, and I. Miguel. The Rules of Constraint
Modelling. In Proceedings of IJCAI-2005.

[36] I.P. Gent, P. Prosser, and B.M. Smith. A 0/1 encoding of the gaclex for pairs of
vectors. In ECAI/W9 Modelling and Solving Problems with Constraints, 2002.

[37] C. Gervet. New Structures of Symbolic Constraint Objects: Sets and Graphs. In
Third Workshop on Constraint Logic Programming (WCLP’93), 1993.

[38] C. Gervet. Sets and Binary Relation Variables Viewed as Constrained Objects. In
Workshop on Logic Programming with Sets, held alongside ICLP-1993.

[39] C. Gervet. Conjunto : Constraint Logic Programming with Finite Set Domains. In
M. Bruynooghe, editor, Proceedings of ILPS-1994.

[40] C. Gervet. Interval Propagation to Reason about Sets: Definition and Implementation
of a Practical Language. In Constraints journal 1(3), 1997.

[41] C. Gervet and P. Van Hentenryck. A New Set Domain Representation Using Length-
Lex Ordering. Technical Report, TR-06-02, Brown University, 2006.

[42] K. Golden and W. Pang. Constraint Reasoning over Strings. In Proceedings of CP-
2003.

[43] P. Hall. On Representatives of Subsets. Journal of London Mathematical Society, 10,
1935.

[44] P. Hawkins, V. Lagoon, and P.J. Stuckey. Set bounds and (split) set domain propa-
gation using ROBDDs. In G. Webb and X. Yu, editors, Proceedings of AI’04: Aus-
tralian Joint Conference on Artificial Intelligence, LNCS 3339, 2004.

[45] P. Hawkins, V. Lagoon, and P. Stuckey. Solving Set Constraint Satisfaction Problems
using ROBDDs. Journal of Artificial Intelligence Research 24, 2005.

[46] N. Heintze and J. Jaffar. A Decision Procedure for a Class of SetConstraints. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
1990.

[47] M. Hibti, H. Lombardi, and B. Legeard. Deciding in HFS-Theory via Linear Integer
Programming with Application to Set Unification. In Proceedings of LPAR-1993.

[48] B. Hnich. Function variables for Constraint Programming. PhD thesis, Uppsala
University,Department of Information Science, 2003.

[49] J. Hopcraft and J. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, Philippines, 1979.

[50] Ilog. User’s manual. ILOG Solver 6.0 Sept., 2003.
[51] Ilog. User’s manual. ILOG Configurator 2.3, 2004.
[52] S. Le Huitouze. A New Datastructure for Implementing Extensions to Prolog. In

Proceedings of PLILP-1990, LNCS 456.
[53] D. Kapur and P. Narendran. NP-completeness of the set unification and matching

problems. In Proceedings of CADE, 1986.
[54] Z. Kiziltan and T. Walsh. Constraint Programming with Multisets. In Proceedings of

the SymCon-02 workshop, held alongside CP-2002.
[55] D. Knuth. The Art of Programming, Volume 4, Pre-Fascicle 2a: Generating all tuples.
[56] R.A. Kowalski. Predicate Logic as a Programming Language. In Proceedings of

IFIP-1974.

C. Gervet 637

[57] G. Kuper. Logic Programming with Sets, volume 41 of 1, Academic Press, 1990.
[58] F. Laburthe. CHOCO: Implementing a CP Kernel. http://www.choco-constraints.net/,

2000. In Proceedings of TRICS, held alongside CP-2000.
[59] F. Laburthe. Constraints over Ontologies. In F. Rossi, editors, Proceedings of CP-

2003.
[60] V. Lagoon and P.J. Stuckey. Set domain propagation using ROBDDs. In M. Wallace,

editor, Proceedings CP-2004, LNCS 3258.
[61] J. L. Laurière. A Language and a Program for Stating and Solving Combinatorial

Problems. Artificial Intelligence, 10, 1978.
[62] J.H.M. Lee and H. van Emden. Interval Computation as Deduction in CHIP. In

Journal of Logic Programming, 16 (3-4), Elsevier, 1993.
[63] B. Legeard and E. Legros. Short overview of the CLPS System. In Proceedings of

PLILP-1991.
[64] C.C. Lindner and A. Rosa. Topics on Steiner Systems, volume 7 of Annals of Discrete

Mathematics. North Holland, 1980.
[65] M. Livesey and J. Siekmann. Unification of Sets and Multisets. Memo seki-76-ii,

University of St. Andrews (Scotland) and Universitât Karlsruhe (Germany) Depart-
ment of Computer Science, 1976.

[66] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 1977.
[67] Mozart/Oz, http://www.moxart-oz.org/.
[68] T. Müller. Constraint Propagation in Mozart. PhD dissertation, Universität des

Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik,
SaarbrÄucken, Germany, 2001.

[69] T. Müller and M. Müller. Finite Set Constraints in Oz. In Workshop Logische Pro-
grammierung, Burkhard Freitag and Dietmar Seipel, editors, 13, 1997.

[70] T. Müller. Solving Set Partitioning Problems with Constraint Programming. In Pro-
ceedings of PAPPACT-1998.

[71] W. Older and A. Vellino. Constraint Arithmetic on Real Intervals. In F. Benhamou
and A. Colmerauer, editors, Constraint Logic Programming: Selected Papers. MIT
Press, 1993.

[72] L. Pacholski and A. Podelski. Set Constraints: a Pearl in Research and Constraints.
Tutorial at CP-1997.

[73] K. J. Perry, K. V. Palem, K. MacAloon, and G. M. Kuper. The Complexity of Logic
Programming with Sets. Computer Science, 1986.

[74] G. Pesant. A Regular Language Membership Constraint for Finite Sequences of
Variables. In Proceedings of CP-2004.

[75] J-F. Puget. PECOS a High Level Constraint Programming Language In Proceedings
of Spicis, 1992.

[76] J-F. Puget. Set Constraints and Cardinality Operator: Application to Symmetri-
cal Combinatorial Problems. In Third Workshop on Constraint Logic Programming
(WCLP’93), 1993.

[77] J.F. Puget. Finite set intervals. In Workshop on set constraints, held alongside CP-
1996.

[78] C.-G. Quimper and T. Walsh. Beyond Finite Domains: the All Different and Global
Cardinality Constraints. in Proc. of CP-2005, 2005.

[79] J.C. Régin. Generalized arc consistency for global cardinality constraints. In Pro-
ceedings of AAAI-1996, AAAI Press/The MIT Press.

638 17. Constraints over Structured Domains

[80] J.C. Régin and J.-F. puget. A Filtering Algorithm for Global Sequencing Constraints.
In Proceedings of CP-1997, LNCS.

[81] J.C. Reynolds. Automatic Computation of Data Set Definitions. In Information Pro-
cessing, 68, 1969.

[82] A. Sadler and C. Gervet. Global Reasoning on Sets. In FORMUL’01 workshop on
modelling and problem formulation held alongside CP-2001.

[83] A. Sadler and C. Gervet. Global Filtering for the Disjointness Constraint on Fixed
Cardinality Sets. Technical report ICPARC-04-02, March 2004.

[84] A. Sadler and C. Gervet. Hybrid Set Domains to Strengthen Constraint Propagation
and Reduce Symmetries. In M. Wallace, editor, Proceedings of CP-2004, LNCS.

[85] A. Sadler. Strengthening Finite Set Constraint Solvers through Active Use of Prob-
lem Structure, Symmetries and Cardinality Information. PhD thesis, University of
London, Imperial College, April 2005.

[86] J. Schimpf, A. Cheadle, W. Harwey, A. Sadler, K. Shen, and M. Walllace.
ECLiPSe Technical report 03-1, IC-Parc, Imperial College London, 2003.

[87] O. Shmueli, S. Tsur, and C. Zaniolo. Compilation of set terms in the logic data
language (LDL). The Journal of Logic Programming, 12(12):89–119, 1992.

[88] B. M. Smith. Symmetry and Search in a Network Design Problem. In Proceedings
of CP-AI-OR-2005, LNCS 3524, Springer, 2005.

[89] F. Stolzenburg. Membership-constraints and complexity in logic programming with
sets. In Franz Baader and Klaus U. Schulz, editors, Frontiers in Combining Systems,
Kluwer Academic, 1996.

[90] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Program-
ming Series. The MIT Press, 1989.

[91] P. Van Hentenryck. The OPL Optimization Programming Language. The MIT Press,
1999.

[92] C. Walinsky. CLP(Σ∗): Constraint Logic Programming with Regular Sets. In Pro-
ceedings of ICLP-1989.

[93] T. Walsh. Consistency and Propagation with Multiset Constraints: A Formal View-
point. In Proceedings of CP-2003, LNCS.

[94] N.F. Zhou. B-Prolog http://www.probp.com/.

Handbook of Constraint Programming 639
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 18

Randomness and Structure

Carla Gomes and Toby Walsh

This chapter covers research in constraint programming (CP) and related areas involving
random problems. Such research has played a significant role in the development of more
efficient and effective algorithms, as well as in understanding the source of hardness in
solving combinatorially challenging problems.

Random problems have proved useful in a number of different ways. Firstly, they pro-
vide a relatively “unbiased” sample for benchmarking algorithms. In the early days of CP,
many algorithms were compared using only a limited sample of problem instances. In
some cases, this may have lead to premature conclusions. Random problems, by compar-
ison, permit algorithms to be tested on statistically significant samples of hard problems.
However, as we outline in the rest of this chapter, there remain pitfalls waiting the unwary
in their use. For example, random problems may not contain structures found in many
real world problems, and these structures can make problems much easier or much harder
to solve. As a second example, the process of generating random problems may itself be
“flawed”, giving problem instances which are not, at least asymptotically, combinatorially
hard.

Random problems have also provided insight into problem hardness. For example, the
influential paper by Cheeseman, Kanefsky and Taylor [12] highlighted the computational
difficulty of problems which are on the “knife-edge” between satisfiability and unsatisfi-
ability [84]. There is even hope within certain quarters that random problems may be one
of the links in resolving the P=NP question.

Finally, insight into problem hardness provided by random problems has helped inform
the design of better algorithms and heuristics. For example, the design of a number of
branching heuristics for the Davis Logemann Loveland satisfiability (DPLL) procedure has
been heavily influenced by the hardness of random problems. As a second example, the
rapid randomization and restart (RRR) strategy [45, 44] was motivated by the discovery
of heavy-tailed runtime distributions in backtracking style search procedures on random
quasigroup completion problems.

B.V.

640 18. Randomness and Structure

18.1 Random Constraint Satisfaction

We begin by introducing the random problems classes studied in constraint satisfaction,
and discussing various empirical and theoretical results surrounding them.

18.1.1 Models A to D

Most experimental and theoretical studies use one of four simple models of random con-
straint satisfaction problems. In each, we generate a constraint graph G, and then for
each edge in this graph, we choose pairs of incompatible values for the associated conflict
matrix. The models differ in how we generate the constraint graph and how we choose
incompatible values. In each case, we can describe problems by the tuple 〈n,m, p1, p2〉,
where n is the number of variables, m is the uniform domain size, p1 is a measure of the
density of the constraint graph, and p2 is a measure of the tightness of the constraints.

model A: we independently select each one of the n(n − 1)/2 possible edges in G with
probability p1, and for each selected edge we pick each one of the m2 possible pairs
of values, independently with probability p2, as being incompatible;

model B: we randomly select exactly p1n(n − 1)/2 edges for G, and for each selected
edge we randomly pick exactly p2m

2 pairs of values as incompatible;

model C: we select each one of the n(n − 1)/2 possible edges in G independently with
probability p1, and for each selected edge we randomly pick exactly p2m

2 pairs of
values as incompatible;

model D: we randomly select exactly p1n(n − 1)/2 edges for G, and for each selected
edge we pick each one of the m2 possible pairs of values, independently with prob-
ability p2, as being incompatible;

Whilst p1 and p2 can be either a probability or a fraction, similar results are observed
with the four different models. Most experimental studies typically fix n and m, and vary
p1 and/or p2. Typical parameter ranges include 〈10, 10, p1, p2〉, 〈20, 10, p1, p2〉, 〈10 −
200, 3, p1, 1/9〉, and 〈10 − 200, 3, p1, 2/9〉. The penultimate of these parameter ranges
resembles graph 3-colouring. See Table 1 in [27] for a more extensive survey.

18.1.2 Phase Transition

Random problems generated in this way exhibit phase transition behaviour similar to that
seen in statistical mechanics [12]. Loosely constrained problems are almost surely satisfi-
able. As we increase the parameters and constrain the problems more, problems become
almost surely unsatisfiable. As n increase, the transition between satisfiable and unsatisfi-
able problems becomes sharper and sharper. In the limit, it is a step function [22]. Using a
Markov first moment method, the location of this phase transition can be predicted to oc-
cur where the expected number of solutions is approximately 1 [73, 80]. Associated with
this rapid transition in satisfiability of problems, is a peak in problem hardness for a wide
range both of systematic and local search methods [12, 67, 73, 80]. Such problems are
on the “knife-edge” between satisfiability and unsatisfiability [84]. It is very hard to tell if
they are satisfiable or unsatisfiable. If we branch on a variable, the resulting subproblem is

C. Gomes, T. Walsh 641

smaller but otherwise tends to look similar. We can only determine if the current subprob-
lem is satisfiable deep in the search tree. See Figure 18.1 for some graphs displaying the
“easy-hard-easy” pattern associated with phase transitions.

Figure 18.1: Phase transition for Model B problems with 〈n, 3, p1, 2/9〉 (a) percentage
satisfiability and (b) median search effort for FC-CBJ with the fail-first heuristic against
p1, and n from 10 to 110. Graphs taken from [27].

Whilst the hardest problems typically occur close to this rapid transition in satisfiability,
hard problems can occur elsewhere. In particular, in the easy and satisfiable region, prob-
lems can occasionally be very hard to solve, especially for systematic search procedures
like forward checking [32, 47, 46]. Such exceptionally hard problems (EHPs) appear to
be a consequence of early branching mistakes. Better branching heuristics, more informed
backtracking mechanisms, greater constraint propagation and restart strategies can all re-
duce the impact of EHPs greatly. Since curves of median search effort may disguise the
appearance of EHPs, experimentalists are encouraged to look for outliers.

18.1.3 Constrainedness

Williams and Hogg introduced the first comprehensive theoretical model of such phase
transition behaviour for constraint satisfaction problems [86]. More recently, Gent et al.
presented a theory that works across a wide range of problems and complexity classes in-
cluding constraint satisfaction and satisfiability problems [30]. This theory is based around
the definition of the “constrainedness” of a problem using the parameter κ. For an ensem-
ble of problems:

κ = 1− log2(〈Sol〉)
N

Where 〈Sol〉 is the expected number of solutions for a problem in the ensemble, and N is
the number of bits needed to represent a solution (or equivalently the log base 2 of the size
of the state space). For instance, for model B, this is:

κ =
n− 1

2
p1 logm(

1

1− p2
)

642 18. Randomness and Structure

This constrainedness parameter, κ lies in the interval [0,∞). For κ < 1, problems are
under-constrained and are typically easy to show satisfiable. For κ > 1, problems are over-
constrained and are typically relatively easy to show unsatisfiable. For κ ≈ 1, problems
are critically constrained and exhibit a sharp transition in satisfiability. For instance, for
random constraint satisfaction problem, graph k-colouring problems, number partitioning,
and travelling salesperson problems, a rapid phase transition in problem satisfiability has
been observed around κ ≈ 1 [27].

Exact theoretical results about the location of the phase transition and of the hardness
of random constraint satisfaction problems have been harder to obtain than either empirical
results or approximate results using “theories” like that of constrainedness. One exception
is work in resolution complexity. Most of the standard backtracking algorithms like for-
ward checking and conflict-directed backjumping explore search trees bounded in size by
the size of a corresponding resolution refutation. Resolution complexity results can thus be
used to place (lower) bounds on problem hardness. For example, random constraint prob-
lems almost surely have an exponential resolution complexity when the constraint tightness
is small compared to the domain size [68, 66, 25, 89].

18.1.4 Finite-Size Scaling

The scaling of the phase transition with problem size can be modelled using finite-size
scaling methods taken from statistical mechanics [60, 30]. In particular, around some
critical value of constrainedness κc, problems of all sizes are indistinguishable except for a
simple change of scale given by a power law in N . Once rescaled, macroscopic properties
like the probability that a problem is satisfiable obey simple equations. For example, the
probability of satisfiability can be modelled with the simple equation:

prob(Sol > 0) = f(
κ− κc
κc

N1/ν)

Where f is some universal function, κ−κc

κc
plays the roles of the reduced temperature T−Tc

Tc

as it rescales around the critical point, and N1/ν is a simple power law that describes the
scaling with problem size. See Figure 18.2 for some graphs which illustrate this finite-
size scaling. Finite-size scaling is used in statistical mechanics to describe systems like
Ising magnets with 1020 or more atoms (and thus with 21020

or so states). It is remarkable
therefore that similar mathematics can be used to describe a constraint satisfaction problem
with tens or hundreds of variables and therefore just 2100 or so states.

Finite-size scaling also appears to be useful to model the change in problem hardness
with problem size and problem constrainedness [31]. Finally, parameters like κ and proxies
for them which are cheaper to compute appear useful as branching heuristics [27]. A good
heuristic is to branch on the “most constrained” variable. This will encourage propagation
and tend to give a new subproblem to solve which is much smaller.

18.1.5 Flaws and Flawless Methods

Random problems may contain structures which make them artificially easy. One issue
is trivial flaws which a polynomial algorithm could easily discover. In a binary constraint
satisfaction problem, the assignment of a value to a variable is said to be flawed if there
exists another variable that cannot be assigned a value without violating a constraint. The

C. Gomes, T. Walsh 643

Figure 18.2: Finite-size scaling of the phase transition for Model B problems with
〈n, 3, p1, 2/9〉. (a) percentage satisfiability and (b) median search effort for FC-CBJ with
the fail-first heuristic against the rescaled parameter, κ−κc

κc
N1/ν for κc = 0.625 and

ν = 2.3. Graphs taken from [27].

value is supported otherwise. A variable is flawed iff each value is flawed. A problem
with a flawed variable cannot have a solution. Achlioptas et al. [4] identify a potential
shortcoming of all four random models. They prove that if p2 ≥ 1/m then, as n goes to
infinity, there almost surely exists a flawed variable. Such problems are not intrinsically
hard as a simple arc-consistency algorithm can solve them in polynomial time.

Fortunately, such flaws are unlikely in the size of problems used in practice [27]. We
can also define parameters for existing methods and new generation methods which prevent
flaws. For example:

model B: the parameter scheme m = nα, p1 = β log(n)/(n − 1) for some constants α,
β [91, 89]; Xu and Li also present a similar parameter scheme for model D in which
domain size grows polynomially with the number of variables; such problems are
guaranteed to have a phase transition and to give problems which almost surely have
an exponential resolution complexity;

model D: Smith proposes a somewhat more complex scheme which increases m and the
average degree of the constraint graph with n [81];

model E: a new generation method in which we select uniformly, independently and with
repetition, exactly pm2n(n − 1)/2 nogoods out of the m2n(n − 1)/2 possible for
some fixed p [4];

modified models A to D: we ensure the conflict matrix of each constraint is flawless by
randomly choosing a permutation πi of 1 tom, and insist that (i, πi) is a good before
we randomly pick nogoods from the other entries in the conflict matrix; each value
is thereby guaranteed to have some support [27].

Model E is very similar to the one studied by Williams and Hogg [86]. One possible
shortcoming of Model E is that it generates problems with a complete constraint graph for
quite small values of p. It is hard therefore to test the performance of algorithms on sparse
problems using Model E [27].

644 18. Randomness and Structure

The modified versions of models A to D are guaranteed not to contain trivial flaws
which would be uncovered by enforcing arc-consistency. However, more recent results
have shown that such problems may still be asymptotically unsatisfiable and can be solved
in polynomial time using a path consistency algorithm [25]. In response, Gao and Culber-
son propose a method to generate random problems which are weakly path-consistent, and
which almost surely have an exponential resolution complexity.

18.1.6 Related Problems

Phase transition behaviour has also been observed in other problems associated with con-
straint satisfaction problems. This includes problems in both higher and lower complexity
classes. For example, phase transition behaviour has been observed in polynomial prob-
lems like establishing the arc-consistency of random constraint satisfaction problems [29].
The probability that the problem can be made arc-consistent goes through a rapid transition,
and this is associated with a peak for the complexity of coarse grained arc-consistency al-
gorithms. As a second example, phase transition behaviour has been observed in PSPACE-
complete problems like the satisfiability of quantified Boolean formulae. We have to be
again carefully of generating flawed problems, but if we do, there is a rapid transition in
satisfiability, and this is associated with a complexity peak for many search algorithms [37].
As a third and final example, phase transition behaviour has been observed in PP-complete
problems like deciding if a Boolean formulae can be satisfied by at least the square-root of
the total number of assignments [8].

18.2 Random Satisfiability

One type of constraint satisfaction problem with a special but very simple structure is
propositional satisfiability (SAT). In a SAT problem, variables are only Boolean, and con-
straints are propositional formulae, typically clauses. Many problems of practical and
theoretical importance can be easily mapped into SAT. Random SAT problems have been
the subject of extensive research. As a result, some of our deepest understanding has come
in this area.

18.2.1 Random k-SAT

There exist a number of different classes of random SAT problem. One such problem class
is the “constant probability” model in which each variable is included in a clause with a
fixed probability. However, this gives problems which are often easy to solve. Following
[67], research has focused on the random k-SAT problem class. A random k-SAT problem
in n variables consists of m clauses, each of which contains exactly k Boolean variables
drawn uniformly and at random from the set of all possible k-clauses. A rapid transition
in satisfiability is observed to occur around a fixed ratio of clauses to variables and this
appears to be correlated with a peak in search hardness [67]. Such problems are routinely
used to benchmark SAT algorithms.

For random 2-SAT, which is polynomial, the phase transition has been proven to occur
at exactly m/n = 1 [14, 38]. For random k-SAT for k ≥ 3, exact results have been
harder to obtain. For k = 3, the phase transition occurs between 3.42 ≤ m/n ≤ 4.51.
Experiments suggest that the transition is atm/n = 4.26. Asymptotically, the satisfiability

C. Gomes, T. Walsh 645

transition is “sharp” (that is, it is a step function) [22]. A very recent result proves that
the threshold is at 2k log(2) − O(k), confirming “approximate” results from statistical
mechanics using replica methods [5]. Finite-size scaling methods can again be used to
model the sharpening of the phase transition with problem size [60].

0

2000

4000

6000

8000

10000

12000

2 3 4 5 6 7 8

#
 o

f
D

P
 c

a
ll
s

Ratio of clauses-to-variables

Composite
Satisfiable

Unsatisfiable
50%--satisfiable point

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8

F
ra

c
ti
o

n
 o

f
u

n
s
a

ti
s
fi
a

b
le

 f
o

rm
u

la
e

Ratio of clauses-to-variables

50%--satisfiable point

Figure 18.3: Median search cost for DPLL to solve 50 variable random 3-SAT problems
and fraction of unsatisfiable clauses, both plotted against the ratio of clauses to variables.
Graphs adapted from [67].

At least one note of caution needs to be sounded about the using random 3-SAT as
the distribution of solutions is highly skewed. In particular, at the phase transition, the
expected number of solutions is exponentially large [57]. Thus, whilst many problems
have no solutions, a few problems will have exponentially many.

18.2.2 Backbone

A possible “order parameter” for such phase transitions is the backbone. For a satisfiable
problem, the backbone is the fraction of variables which take fixed values in all satisfying
assignments. Such variables must be assigned correctly if we are to find a solution. For
an unsatisfiable problem, the backbone is the fraction of variables which take fixed values
in all assignments which maximize the number of satisfied clauses. A satisfiable problem
with a large backbone is likely to be hard to solve for systematic methods like DPLL since
there are many variables to branch incorrectly upon. For random 3-SAT, the backbone
size jumps discontinuously at the phase transition, suggesting that it behaves like a first-
order (or discontinuous) phase transition in statistical mechanics. For random 2-SAT, on
the other hand, the backbone size varies smoothly over the phase transition suggesting that
it behaves like a second-order (or continuous) phase transition. However, the order (or
continuity) of the phase transition does not appear to be directly connected to the problem
complexity as there are NP-complete problems with second-order (or continuous) phase
transitions.

646 18. Randomness and Structure

18.2.3 2+p-SAT

Significant insight into phase transition behaviour has come from “interpolating” between
random 2-SAT (which is polynomial and quite well understood theoretically) and random
3-SAT (which is NP-hard and much less well understood theoretically). The random 2+p-
SAT problem class consists of SAT problems with a mixture of (1 − p)m clauses with 2
variables and pm clauses with 3 variables, each clause drawn uniformly and at random
from the space of all possible clauses of the given size. For p = 0, we have random 2-SAT.
For p = 1, we have random 3-SAT. For 0 < p < 1, we have problems with a mixture
of both 2-clauses and 3-clauses. From the perspective of worst-case complexity, 2+p-SAT
is rather unexciting. For any fixed p > 0, the problem class is NP-complete. However,
problems appear to be behave polynomially for p < 0.4 [69, 3]. It is only for p ≥ 0.4 that
problems appear hard to solve. This increase in problem hardness has been correlated with
a rapid transition in the size of the backbone, and with a change from a continuous to a
discontinuous phase transition [69]. For 0 ≤ p ≤ 0.4, the satisfiability phase transition for
random 2+p-SAT occurs at a simple lower bound, 1/(1−p) constructed by simply consid-
ering the satisfiability of the embedded 2-SAT subproblem. In other words, the 2-clauses
alone determine satisfiability. It is not perhaps so surprising therefore that average search
costs appears to be polynomial. Note that, having made some branching decisions on a
3-SAT problem, DPLL is effectively solving a 2+p-SAT subproblem. The performance of
such procedures can thus be modelled by mapping trajectories through p and m/n space
[15].

0

500

1000

1500

2000

2500

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
ed

ia
n

co
st

N

p = 0.0
p = 0.2
p = 0.4
p = 0.6

Figure 18.4: Median computational cost for DPLL to solve random 2+p-SAT problems
plotted against the number of variables, N for a range of values of p. Graph adapted from
[15].

18.2.4 Beyond k-SAT

Phase transition behaviour has been observed in other satisfiability problems including:

1 in k-SAT: each “clause” contains k literals, exactly one of which must be true. This was
the first problem NP-complete class in which the exact location of its satisfiability

C. Gomes, T. Walsh 647

phase transition was proven [1]. For all k ≥ 3, random 1 in k-SAT problems have a
sharp, second-order or continuous phase transition at m/n = 2/k(k − 1).

NAE-SAT: each “clause” contains k literals, all of which cannot take the same truth value.
For k = 3, the phase transition for random NAE SAT problems occurs somewhere
between 1.514 < m/n < 2.215 [1]. Empirical results put the phase transition at
around m/n ≈ 2.1. A NAE SAT problem can be mapped into a SAT problem with
twice the number of clauses. Although these clauses are correlated, it is remark-
able that these correlations appear to be largely irrelevant and the phase transition
occurs at almost exactly half the clause to variable ratio of the random 3-SAT phase
transition.

XOR SAT: each “clause” contains k literals, an odd number of which must be true in
any satisfying assignment. For k = 3, random NAE SAT has a sharp threshold
in the interval 0.8894 ≤ m/n ≤ 0.9278 [17]. Experiments put the transition at
m/n ≈ 0.92, whilst statistical mechanical calculations put it at m/n = 0.918 [21].

non-clausal SAT: formulae have a fixed shape (a given structure of and and or connec-
tives) which are labelled with literals at random [71]. This model displays a phase
transition in satisfiability with an associated easy-hard-easy pattern in search cost.

quantified SAT: in a quantified Boolean formula (QBF) we have variables which are both
existentially quantified and universally quantified. If we generate random QBF for-
mulae, we need to throw out clauses containing just universally quantified variables
(as these are trivially unsatisfiable). If we eliminate such “flaws”, there is a rapid
phase transition, and an associated complexity peak [37]

18.2.5 Satisfiable Problems

Random problems have been a driving force in the design of better algorithms. To bench-
mark incomplete local search procedures, standard random problem generators are unsuit-
able as they produce both satisfiable and unsatisfiable instances. We could simply filter
out unsatisfiable instances using a complete method. However, we are then unable to
benchmark incomplete search methods on problems that are beyond the reach of complete
methods. Designing generators, on the other hand, that generate only satisfiable problems
has proven surprisingly difficult.

One approach is to “hide” at least one solution in a problem instance. For example, we
can choose a random truth assignment T ∈ {0, 1}n and then generate a formula with n
variables and αm random clauses, rejecting any clause that violates T . Unfortunately, this
method is highly biased to generating formulas with many assignments. They are much
easier for local search methods like Walksat [74] than formulas of comparable size obtained
by filtering a random 3-SAT generator. More sophisticated versions of this “1-hidden as-
signment” scheme provide improvements but still lead to biased samples [7]. Achlioptas
et al. [6] proposed a “2-hidden assignment” approach in which clauses that violate both
T and its complement are rejected. Whilst DPLL solvers find such problems as hard as
regular random 3-SAT problems, local search methods find them easy. An improved ap-
proach, called “q-hidden” [56], hides a single assignment but biases the distribution so that
each variable is as likely to appear positively as as negatively, and the formula no longer

648 18. Randomness and Structure

points toward the satisfying assignment T . Indeed, we can even make it more likely that a
variable occurrence disagrees with T , so that the formula becomes “deceptive” and points
away from the hidden assignment. Empirical results suggest that the q-hidden model pro-
duces formulas that are much harder for Walksat.

Recently Xu et al [90] gave modifications of the random models B and D to gener-
ate “forced” solvable instances whose hardness is comparable to “unforced” solvable in-
stances, based on the theoretical argument that the number of expected solutions in both
cases is identical. They also provide empirical results showing that the unforced solvable
instances, unforced solvable and unsolvable instances, and forced solvable instances ex-
hibit a similar hardness pattern. In section 18.3 we will discuss a quite different strategy
for generating guaranteed satisfiable random instances for structured CSP problems.

18.2.6 Optimization Problems

Phase transition behaviour has also been identified in a range of optimization problems.
Some of our best understanding has come in satisfiability problems related to optimization
like MAX-SAT (for example, [94, 79]. However, insight has also come from other domains
like number partitioning [34, 36] and the symmetric and asymmetric travelling salesperson
problems [35, 96, 95]. The simplest view is that optimization problems naturally push
us to the phase boundary [33]. For systematic backtracking algorithms like branch and
bound, we essentially solve a pair of decision problems right at the phase transition: we
first find a solution to the decision problem with an optimal objective and then prove that
the decision problem with any smaller objective is unsatisfiable. A more sophisticated view
is that optimization problems like MAX-SAT can be viewed as bounded by a sequence of
decision problems at successive objective values [94].

The concept of backbone has also been generalized to deal with optimization problems
[78]. As with decision problems, transitions in problem hardness have been correlated
with rapid transitions in backbone size [78, 94, 95]. These views suggest that there is
a relatively simple connection between the hardness of decision and the corresponding
optimization problem. Indeed, by solving (easy) decision problems away from the phase
boundary, we can often predict the cost of finding optimal solutions [77].

18.3 Random Problems with Structure

Uniform random problems like random k-SAT are unlikely to contain structures found in
many real world problems. Such structures can make problems much easier or much harder
to solve. Researchers have therefore looked at ways of generating structured random prob-
lems. For example, the question of the existence of discrete structures like quasigroups
with particular properties gives some of the most challenging search problems [76]. How-
ever, such problems may be too uniform and highly structured when compared to messy
real-world problems. In order to bridge this gap, a number of random problem classes
have been proposed that incorporate structures rarely seen in purely uniform random prob-
lems. For example, Gomes and Selman [39] proposed the quasigroup completion problem
(QCP). As another example, Walsh proposed small-world search problems [85].

C. Gomes, T. Walsh 649

18.3.1 Quasigroup Completion

An order n quasigroup, or Latin Square , is defined by n× n multiplication in which each
row and column is a permutation of the n symbols. A partial Latin square with p pre-
assigned cells is an n×nmatrix in which p cells of the matrix have been assigned symbols
such that no symbol occurs repeated in a row or a column. The Quasigroup Completion
Problem (QCP) is to determine if the remaining n2−p cells (or “holes”) can be assigned to
obtain a complete Latin square (see Figure18.5). QCP is NP-complete [16]. The structure
in QCP is similar to that found in real-world domains like scheduling, timetabling, routing,
and experimental design. One problem that directly maps onto the QCP is that of assigning
wavelengths to routes in fiber-optic networks [61].

Figure 18.5: Quasigroup Completion Problem of order 4, with 5 holes.

To generate a random QCP instance, we randomly select p cells and assign each a sym-
bol. We have a choice in the level of consistency enforced between such assignments to
eliminate “obvious” inconsistencies. The most commonly used model enforces forward
checking [39]. Shaw et al [75] studied a model which enforces generalized arc consis-
tency on the all-different constraints on the rows and the columns of the matrix. This
gives harder problems but biases the sampling. Empirical studies have identified phase
transition behaviour in QCP [39]. The computationally hardest instances again lie at the
phase transition. almost all unsolvable (“over-constrained” region). Figure 18.6 shows the
computational cost (median number of backtracks) and phase transition in solvability for
solving QCP instances of different orders.

18.3.2 Quasigroup with Holes

The QCP model generates both satisfiable and unsatisfiable instances. A different model,
the Quasigroup With Holes problem (QWH), generates only satisfiable instances with good
computational properties [2]. QWH instances are generated by starting with a full quasi-
group and “punching” holes into it. Achlioptas et al [2] proposed the following QWH
generator: (1) Generate a complete Latin square uniformly from the space of all Latin
squares using a Markov chain; (2) punch a fraction p of “holes” into the full Latin square
(i.e., unassign some of the entries) in a uniform way. The resulting partial Latin square
is guaranteed to be satisfiable. Achlioptas et al [2] demonstrated a rapid transition in the
size of the backbone of QWH instances, coinciding with the hardest problem instances for
both incomplete and complete search methods. Note that this transition is different from
the standard transition in satisfiability as QWH only contains satisfiable instances. The
location of this transition appears to scale as n2 − p/n1.55 [2].

650 18. Randomness and Structure

1

10

100

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7

l
o
g

m
e
d
i
a
n

n
u
m
b
e
r

o
f

b
a
c
k
t
r
a
c
k
s

fraction of pre-assigned elements

order 11
order 12
order 13
order 14
order 15

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f
r
a
c
t
i
o
n

o
f

u
n
s
o
l
v
a
b
l
e

c
a
s
e
s

fraction of pre-assigned elements

order 12
order 13
order 14
order 15

Figure 18.6: Top panel: computational cost of solving QCP instances (order 11–15). X-
axis: fraction of pre-assigned cells; Y-axis - median number of backtracks for solution
(log scale). Bottom panel: phase transition in solvability for QCP instances (order 12–
15). X-axis: fraction of pre-assigned cells; Y-axis - fraction of instances for which the
partial Latin square could not be completed into a full Latin square. (Each data point was
computed based on 100 instances. Graphs from [39].)

C. Gomes, T. Walsh 651

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.25 0.3 0.35 0.4 0.45

P
er

ce
nt

ag
e

of
 b

ac
kb

on
e

an
d

se
ar

ch
 c

os
t

Num. Holes / (N^2)

backbone
local search cost

Figure 18.7: Backbone phase transition with cost profile for QWH. Graph from [2].

18.3.3 Other Structured Problems

A number of other random problem classes with structure have been studied. For instance,
Walsh looked at search problems like graph coloring where the underlying graph has a
“small-world” structure [85]. Although small-world graphs are sparse, their nodes tend to
be clustered and the path length between any two nodes short. Walsh showed that a small-
world structure often occurs in graphs associated with many real-world search problems.
Unfortunately the cost of coloring random graphs with a small-world structure can have
a heavy-tailed distribution (see next section) in which a few runs are exceptionally long.
However, the strategy of randomization and restarts can eliminate these heavy tails.

To generate random small-world graphs, Walsh merged together random graphs with a
structured ring lattice [85]. Inspired by this method, Gent et al. proposed a general method
called morphing to introduce structure or randomness into a wide variety of problems [28].
They show that a mixture of structure and randomness can often make search problems
very hard to solve. A little structure added to a random problem, or a little randomness
added to a structured problem may be enough to mislead search heuristics. They argue that
morphing provides many of the advantages of random and structured problem classes with-
out some of the disadvantages. As in random problem classes, we can generate large, and
statistically significant samples with ease. However, unlike random problems, morphed
problems can contain many of the structures met in practice.

18.4 Runtime Variability

Broadly speaking, random problems tend to display “easy-hard-easy” patterns in difficulty.
However, there has been some research into variability within this simple picture, and into
ways such variability can be exploited.

652 18. Randomness and Structure

18.4.1 Randomization

A randomized complete algorithm can be viewed as a probability distribution on a set of
deterministic algorithms. Behaviour can vary even on a single input, depending on the
random choices made by the algorithm. The classical adversary argument for establishing
lower bounds on the run-time of a deterministic algorithm is based on the construction
of a input on which the algorithm performs poorly. While an adversary may be able to
construct an input that foils one (or a small fraction) of the deterministic algorithms in
the set, it is more difficult to devise inputs that are likely to defeat a randomly chosen
algorithm. Furthermore, as we will discuss below, the introduction of a “small” random
element allows one to run the randomized method on the same instance several times,
isolating the variance inherent in the search procedure from e.g., the variance that would
result from considering different instances.

There are several opportunities to introduce randomization in a backtrack search method.
For example, we can add randomization to the branching heuristic for tie-breaking [41, 43].
Even this simple modification can dramatically change the behavior of a search algorithm.
If the branching heuristic is particular decisive, it may rarely need to tie-break. In this case,
we can tie-break between some of the top ranked choices. The look-ahead and look-back
procedures can also be randomized. Lynce et al. random backtracking which randomizes
the backtracking points, and unrestricted backtracking which combines learning to main-
tain completeness [64, 65]. Another example is restarts of a deterministic backtrack solver
with clause learning: each time the solver is restarted, with the additional learned clauses, it
behaves quite differently from the previous run, appearing to behave “randomly” [70, 65].

18.4.2 Fat and Heavy Tailed Behavior

The study of the runtime distributions instead of just medians and means often provides
a better characterization of search methods and much useful information in the design of
algorithms. For instance, complete backtrack search methods exhibit fat and heavy-tailed
behavior [47, 41, 23]. Fat-tailedness is based on the kurtosis of a distribution. This is
defined as µ4/µ

2
2 where µ4 is the fourth central moment about the mean and µ2 is the

second central moment about the mean, i.e., the variance. If a distribution has a high
central peak and long tails, than the kurtosis is large. The kurtosis of the standard normal
distribution is 3. A distribution with a kurtosis larger than 3 is fat-tailed or leptokurtic.
Examples of distributions that are characterized by fat-tails are the exponential distribution,
the lognormal distribution, and the Weibull distribution. Heavy-tailed distributions have
“heaver” tails than fat-tailed distributions; in fact they have some infinite moments. More
precisely, a random variable X is heavy-tailed if it has Pareto like decay in its distribution,
i.e:

1− F (x) = P [X > x] ∼ Cx−α, x > 0,

where α > 0 and C > 0 are constants. When 1 < α < 2, X has infinite variance, and
infinite mean and variance when 0 < α <= 1. The log-log plot of 1 − F (x) of a Pareto-
like distribution (i.e., the survival function) shows linear behavior with slope determined
by α.

Backtrack search methods exhibit dramatically different statistical regimes across the
constrainedness regions of random CSP models [11]. Figure 18.8 illustrates the phe-
nomenon. In the first regime (the bottom two curves in figure 18.8, p ≤ 0.07), we see

C. Gomes, T. Walsh 653

 1e-04

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

S
u

rv
iv

a
l
fu

n
c
ti
o

n
 (

1
-C

D
F

)

Number of wrong decisions

model E <17,8,p> BT Random

Non-Heavy-Tailed

Heavy-Tailed

Phase transition

p=0.25

p=0.05
p=0.07
p=0.19
p=0.24

Figure 18.8: Heavy-tailed (linear behavior) and non-heavy-tailed regime in the runtime of
instances of model E 〈17, 8, p〉. CDF stands for Cumulative Density Function. Graphs
adapted from [11].

heavy-tailed behavior. This means that the runtime distributions decay slowly. When we
increase the constrainedness of our model towards the phase transition (higher p), we en-
counter a different statistical regime in the runtime distributions, where the heavy-tails
disappear. In this region, the instances become inherently hard for the backtrack search
algorithm, all the runs become homogeneously long, the variance of the backtrack search
algorithm decreases and the tails of its survival function decay rapidly (see top two curves
in figure 18.8, with p = 0.19 and p = 0.24; tails decay exponentially).

Heavy-tailed behavior in combinatorial search has been observed in several other do-
mains, in both random instances and real-world instances: QCP [41], scheduling [45],
planning[44], graph coloring [85, 55], and inductive logic programming [92]. Several for-
mal models generating heavy-tailed behavior in search have been proposed [13, 87, 88,
55, 11, 51]. If a runtime distribution of a backtrack search method is heavy-tailed, it will
produce runs over several orders of magnitude, some extremely long but also some ex-
tremely short. Methods like randomization and restarts try to exploit this phenomenon.
(See section 18.4.4.)

18.4.3 Backdoors

Insight into heavy-tailed behaviour comes from considering backdoor variables. These are
variables which, when set, give us a polynomial subproblem. Intuitively, a small backdoor
set explains how a backtrack search method can get “lucky” on certain runs, where back-
door variables are identified early on in the search and set the right way. Formally, the
definition of a backdoor depends on a particular algorithm, referred to as sub-solver, that

654 18. Randomness and Structure

solves a tractable subcase of the general constraint satisfaction problem [87].

Definition 18.1. A sub-solver A given as input a CSP, C, satisfies the following:
• (Trichotomy) A either rejects the input C, or “determines” C correctly (as unsatisfi-

able or satisfiable, returning a solution if satisfiable),
• (Efficiency) A runs in polynomial time,
• (Trivial solvability) A can determine if C is trivially true (has no constraints) or

trivially false (has a contradictory constraint),
• (Self-reducibility) if A determines C, then for any variable x and value v, then A

determines C[v/x].1

For instance, A could be an algorithm that performs unit propagation, or arc consis-
tency, or hyper-arc consistency for the alldiff constraint, or an algorithm that solves a
linear programming problem, or any algorithm satisfying the above four properties. Using
the definition of sub-solver we can now formally define the concept of backdoor set. Let A
be a sub-solver, and C be a CSP. A nonempty subset S of the variables is a backdoor in C
for A if for some aS : S → D, A returns a satisfying assignment of C[aS]. Intuitively, the
backdoor corresponds to a set of variables, such that when set correctly, the sub-solver can
solve the remaining problem. A stronger notion of the backdoor, considers both satisfiable
and unsatisfiable (inconsistent) problem instances. A nonempty subset S of the variables
is a strong backdoor in C for A if for all aS : S → D, A returns a satisfying assignment
or concludes unsatisfiability of C[aS]. From a logical perspective, there is no formal con-
nection between the backbone and the backdoor of a problem. Indeed, whilst it is possible
to exhibit problems where they are identical, it is also possible to exhibit problems where
they are disjoint. In practice, the overlap between backbones and backdoors appears to be
slight [59].

Cutsets [18] are a particular kind of backdoor sets. A cutset is a set of variables such
that, once they are removed from the constraint graph, the remaining graph has a property
that enables efficient reasoning, an induced width of at most a constant bound b; for exam-
ple, if b = 1 then the graph is cycle-free, i.e., it can be viewed as a tree, and therefore it
can be solved using directed arc consistency. Backdoor sets can thus be seen as a general-
ization of cutsets, i.e., any cutset is a backdoor set. Backdoors are more general than the
notion of cutsets since they consider any kind of polynomial time sub-solver. Note that,
while cutsets (and W-cutsets) use a notion of tractability based solely on the topology of
the underlying constraint graph, backdoor sets rely on a polynomial time solver to define
the notion of tractability. A related issue is the fact that backdoor sets factor in the values
of variables and the semantics of constraints (via the propagation triggered by the polytime
solver) and therefore backdoor sets can be significantly smaller than cutsets. For exam-
ple, if we have a constraint graph that contains a clique of size k, the cutset has at least
k − 2 variables, while the backdoor set can be substantially smaller. Another example,
considering CNF theories, is that while a Horn theory can have a cutset of size O(n), the
backdoor with respect to unit propagation has size 0 - unit propagation immediately detects
(in)consistency of Horn theories. Stated differently, given two CNF theories, one of them a
Horn theory and the other one an arbitrary CNF theory but with the same constraint graph
as the Horn theory, there is no difference between the two theories from the perspective of

1We use the notation C[v/x] to denote the simplified CSP obtained from a CSP, C, by setting the value of
variable x to value v.

C. Gomes, T. Walsh 655

cutsets, but the difference between them from the perspective of backdoors is likely to be
substantial.

Figure 18.9: Cutset vs. backdoor sets. Any cutset is a backdoor set. However, backdoor
sets can be considerably smaller since they factor in the semantics of the constraints, via
the propagation triggered by the sub-solver. Any clique of size k has a cutset of size k− 2.
In this picture, the size of the cutset is 4 while the size of the backdoor set is 1 if the
sub-solver performs forward checking or anything stronger.

A key issue is therefore the size of the backdoor set. Random formulas do not appear
to have small backdoor sets. For example, for random 3-SAT problems, the backdoor set
appears to be a constant fraction (roughly 30%) of the total number of variables [53]. This
may explain why the current DPLL based solvers have not made significant progress on
hard randomly generated instances. Seizer considers the parameterized complexity of the
problem of whether a SAT instance has a weak or strong backdoor set of size k or less
for DPLL style sub-solvers, i.e., subsolvers based on unit propagation and/or pure literal
elimination [82]. He shows that detection of weak and strong backdoor sets is unlikely to
be fixed-parameter tractable. Nishimura et al. [72] provide more positive results for de-
tecting backdoor sets where the sub-solver solves Horn or 2-cnf formulas, both of which
are linear time problems. They prove that the detection of such a strong backdoor set is
fixed-parameter tractable, whilst the detection of a weak backdoor set is not. The expla-
nation that they offer for such a discrepancy is quite interesting: for strong backdoor sets
one only has to guarantee that the chosen set of variables gives a subproblem with the cho-
sen syntactic class; for weak backdoor sets, one also has to guarantee satisfiability of the
simplified formula, a property that cannot be described syntactically.

Empirical results based on real-world instances suggest a more positive picture. Struc-
tured problem instances can have surprisingly small sets of backdoor variables, which may
explain why current state of the art solvers are able to solve very large real-world instances.
For example the logistics-d planning problem instance, (log.d) has a backdoor set of just 12
variables, compared to a total of nearly 7,000 variables in the formula, using the polytime
propagation techniques of the SAT solver, Satz [62]. Hoffmann et al proved the existence
of strong backdoor sets of size just O(log(n) for certain families of logistics planning
problems and blocks world problems domains [54].

Even though, computing backdoor sets is typically intractable, even if we bound the
size of the backdoor [82], heuristics and techniques like randomization and restarts may
nevertheless be able to uncover a small backdoor in practice [87, 59, 52]. For example
one can obtain a complete randomized restart strategy that runs in polynomial time when

656 18. Randomness and Structure

(a) (b) (c)

Figure 18.10: Constraint graph of a real-world instance from the logistics planning do-
main. The instance in the plot has 843 vars and 7,301 clauses. One backdoor set for this
instance w.r.t. unit propagation has size 16 (not necessarily the minimum backdoor set).
(a) Constraint graph of the original constraint graph of the instance. (b) Constraint graph
after setting 5 variables and performing unit propagation on the graph. (c) Constraint graph
after setting 14 variables and performing unit propagation on the graph.

the backdoor set contains at most log(n) variables [87]. Dequen and Dubois introduced
a heuristic for DPLL based solvers that exploits the notion of backbone that outperforms
other heuristics on random 3-SAT problems [19, 20].

18.4.4 Restarts

One way to exploit heavy-tailed behaviour is to add restarts to a backtracking procedure. A
sequence of short runs instead of a single long run may be a more effective use of compu-
tational resources. Gomes et al. proposed a rapid randomization and restart (RRR) to take
advantage of heavy-tailed behaviour and boost the efficiency of complete backtrack search
procedures [44]. In practice, one gradually increases the cutoff to maintain completeness
([44]). Gomes et al. have proved formally that a restart strategy with a fix cutoff eliminates
heavy-tail behavior and therefore all the moments of a restart strategy are finite [43].

When the underlying runtime distribution of the randomized procedure is fully known,
the optimal restart policy is a fixed cutoff [63]. When there is no a priori knowledge
about the distribution, Luby et al. also provide a universal strategy which minimizes the
expected cost. This consists of runs whose lengths are powers of two, and each time a pair
of runs of a given length has been completed, a run of twice that length is immediately
executed. The universal strategy is of the form: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, · · · . Although
the universal strategy of Luby et al. is provably within a constant log factor of the the
optimal fixed cutoff, the schedule often converges too slowly in practice. Walsh introduced
a restart strategy, inspired by Luby et al.’s analysis, in which the cutoff value increases
geometrically [85]. The advantage of such a strategy is that it is less sensitive to the details
of the underlying distribution. State-of-the-art SAT solvers now routinely use restarts.
In practice, the solvers use a default cutoff value, which is increased, linearly, every given
number of restarts, guaranteeing the completeness of the solver in the limit ([70]). Another
important feature is that they learn clauses across restarts. The work on backdoor sets also
provides formal results on restart strategies. In particular, even though finding a small
set of backdoor variables is computationally hard, the presence of a small backdoor in a

C. Gomes, T. Walsh 657

problem provides a concrete computational advantage in solving it with restarts [87].

0.0001

0.001

0.01

0.1

1

1 10 100 1000

fr
a
c
ti
o
n
 u

n
s
o
lv

e
d

total number of backtracks

effect of restarts (cutoff 4)

no restarts

with restarts

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

 (
 b

a
c
k
t
r
a
c
k
s
)

(a) (b)

Figure 18.11: Restarts: (a) Tail (1− F (x)) as a function of the total number of backtracks
for a QCP instance, log-log scale; the left curve is for a cutoff value of 4; and, the right
curve is without restarts. (b) The effect of different cutoff values on solution cost for the
logistics.d planning problem. Graph adapted from [41, 43].

In reality, we will be somewhere between full and no knowledge of the runtime distri-
bution. [48] introduce a Bayesian framework for learning predictive models of randomized
backtrack solvers based on this situation. Extending that work, [58], considered restart
policies that can factor in information based on real-time observations about a solver’s
behavior. In particular, they introduce an optimal policy for dynamic restarts that consid-
ers observations about solver behavior. They also consider the dependency between runs.
They give a dynamic programming approach to generate the optimal restart strategy, and
combine the resulting policy with real-time observations to boost performance of backtrack
search methods.

Variants of restart strategies include randomized backtracking [64], and the random
jump strategy [93] which has been used to solve a dozen previously open problems in
finite algebra. Finally, one can also take advantage of the high variance of combinatorial
search methods by combining several algorithms into a “portfolio,” and running them in
parallel or interleaving them on a single processor [50, 40, 42].

18.5 History

Research in this area can be traced back at least as far as Erdös and Rényi’s work on phase
transition behaviour in random graphs [10]. One of the first observations of a complexity
peak for constraint satisfaction problems was Gaschnig in his PhD thesis where he used
〈10, 10, 1, p2〉 model B problems (these resemble 10-queens problems) [26]. Fu and An-
derson connected phase transition behaviour with computational complexity [24], as did
Huberman and Hogg [49]. However, it was not till 1991, when Cheeseman, Kanefsky and
Taylor published an influential paper [12] that research in this area accelerated rapidly.

658 18. Randomness and Structure

Cheeseman et al. correlated complexity peaks for search algorithms with rapid transitions
in problem satisfiability. They conjectured that all NP-complete problems display such
phase transition behaviour and that this is correlated with the rapid change in solution prob-
ability. More recently, phase transition behaviour has been correlated with rapid changes in
the size of the backbone. However, problem classes have been identified like Hamiltonian
Cycle whose phase transition does not seem to throw up hard instances [83], as well as
NP-complete problem classes which do not have any backbone [9]. Cheeseman, Kanefsky
and Taylor also conjectured that polynomial problems do not have such phase transition
behaviour or if they do it occurs only for a bounded problem size (and hence bounded cost)
[12]. However, as we noted, even polynomial problems like establishing arc-consistency
display similar phase transition behaviour [29]. Another polynomial problem class which
displays phase transition behaviour is 2-SAT [38, 14].

18.6 Conclusions

As the many examples in this chapter have demonstrated, research into random problems
has played a significant role in our understanding of problem hardness, and in the de-
sign of efficient and effective algorithms to solve constraint satisfaction and optimization
problems. We need to take care when using random problems as there are a number of
pitfalls awaiting the unwary. For example, random problems may lack structures found in
real world problems. Research into areas like random quasigroup completion attempts to
address such issues directly. As a second example, random problems may be generated
with “flaws”. However, if care is taken, such flaws can easily be prevented. There are
many areas that look promising for future research. For example, we are only starting to
understand the connection (if any) between the backbone and backdoor [59]. As another
example, random problems capturing structural properties of real world problems [54] are
starting to provide insight into key issues like backdoors. As a final example, search meth-
ods inspired by insights from random problems like randomization and restarts offer a
promising new way to tackle hard computational problems. What is certain, however, is
that random problems will continue to be a useful tool in understanding (and thus tackling)
problem hardness.

Bibliography

[1] D. Achlioptas, A. Chtcherba, G. Istrate, and C. Moore. The phase transition in 1-in-k
SAT and NAE SAT. In Proceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’01), pages 719–720, 2001.

[2] D. Achlioptas, C. Gomes, H. Kautz, and B. Selman. Generating Satisfiable Instances.
In Proceedings of the Seventeenth National Conference on Artificial Intelligence
(AAAI-00), New Providence, RI, 2000. AAAI Press.

[3] D. Achlioptas, L.M. Kirousis, E. Kranakis, and D. Krizanc. Rigorous results for
(2+p)-SAT. Theoretical Computer Science, 265(1-2):109–129, 2001.

[4] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O. Molloy, and Y.C.
Stamatiou. Random constraint satisfaction: A more accurate picture. In G. Smolka,
editor, Proceedings of Third International Conference on Principles and Practice of
Constraint Programming (CP97), pages 107–120. Springer, 1997.

C. Gomes, T. Walsh 659

[5] D. Achlioptas and Y. Peres. The threshold for random k-SAT is 2k log(2) − o(k).
Journal of the AMS, 17(4):947–973, 2004.

[6] D. Achlioptas, H. Jia, and C. Moore. Hiding satisfying assignments: Two are better
than one. In Proceedings of AAAI 2004. AAAI, 2004.

[7] Y. Asahiro, K. Iwama, and E. Miyano. Random generation of test instances with
controlled attributes. Contributed to the DIMACS 1993 Challenge archive, 1993.

[8] D.D. Bailey, V. Dalmau, and P.G. Kolaitis. Phase transitions of PP-complete satis-
fiability problems. In Proceedings of the 17th IJCAI, pages 183–189. International
Joint Conference on Artificial Intelligence, 2001.

[9] A.J. Beacham. The complexity of problems without backbones. Master’s thesis,
Department of Computing Science, University of Alberta, 2000.

[10] B. Bollobás. Random Graphs. London, Academic Press, 1985.
[11] C. Gomes and C. Fernandez and B. Selman and C. Bessiere. Statistical Regimes

Across Constrainedness Regions. In M. Wallace, editor, Proceedings of 10th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP2004).
Springer, 2004.

[12] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems are.
In Proceedings of the 12th IJCAI, pages 331–337. International Joint Conference on
Artificial Intelligence, 1991.

[13] H. Chen, C. Gomes, and B. Selman. Formal Models of Heavy-tailed Behavior in
Combinatorial Search. In T. Walsh, editor, Proceedings of 7th International Confer-
ence on Principles and Practice of Constraint Programming (CP2001), pages 408–
421. Springer, 2001.

[14] V. Chvatal and B. Reed. Mick gets some (the odds are on his side). In Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science, pages 620–627.
IEEE, 1992.

[15] S. Cocco and R. Monasson. Trajectories in phase diagrams, growth processes and
computational complexity: how search algorithms solve the 3-satisfiability problem.
Physical Review Letters, 86(8):1654–1657, 2001.

[16] C. Colbourn. The complexity of completing partial Latin squares. Discrete Applied
Mathematics, 8:25–30, 1984.

[17] N. Creognou, H. Daude, and O. Dubois. Approximating the satisfiability threshold
for random k-XOR-formulas. Technical Report LATP/UMR6632 01-17, Laboratoire
d’Informatique Fondamentale de Marseille, 2001.

[18] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning
and cutset decomposition. Artificial Intelligence, 41(3):273–312, 1990.

[19] G. Dequen and O. Dubois. Kcnfs: An efficient solver for random k-SAT formu-
lae. In Proceedings of Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT-03), 2003.

[20] O. Dubois and G. Dequen. A backbone search heuristic for efficient solving of hard
3-SAT formulae. In Proceedings of the 18th IJCAI. International Joint Conference
on Artificial Intelligence, 2003.

[21] S. Franz, M. Leone, F. Ricci-Tersenghi, and R. Zecchina. Exact solutions for diluted
spin glasses and optimization problems. Phys. Rev. Letters, 87(12):127209, 2001.

[22] E. Friedgut and J. Bourgain. Sharp thresholds of graph properties and the k-SAT
problem. Journal of the American Mathematical Society, 12(4):1017–1054, 1999.

[23] D. Frost, I. Rish, and L. Vila. Summarizing CSP Hardness with Continuous Prob-

660 18. Randomness and Structure

ability Distributions. In Proceedings of the 14th National Conference on AI, pages
327–333. American Association for Artificial Intelligence, 1997.

[24] Y. Fu and P. Anderson. Application of statistical mechanics to NP-complete problems
in combinatorial optimisation. J. Phys. A, 19:1605–1620, 1986.

[25] Y. Gao and J. Culberson. Consistency and random constraint satisfaction problems.
In M. Wallace, editor, Proceedings of 10th International Conference on Principles
and Practice of Constraint Programming (CP2004). Springer, 2004.

[26] J. Gaschnig. Performance measurement and analysis of certain search algorithms.
Technical report CMU-CS-79-124, Carnegie-Mellon University, 1979. PhD thesis.

[27] I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. Random constraint
satisfaction: Flaws and structure. Constraints, 6(4):345–372, 2001.

[28] I.P. Gent, H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure and
randomness. In Proceedings of the 16th National Conference on AI. American Asso-
ciation for Artificial Intelligence, 1999.

[29] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The constrainedness
of arc consistency. In 3rd International Conference on Principles and Practices of
Constraint Programming (CP-97), pages 327–340. Springer, 1997.

[30] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search.
In Proceedings of the 13th National Conference on AI, pages 246–252. American
Association for Artificial Intelligence, 1996.

[31] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The scaling of search cost. In
Proceedings of the 14th National Conference on AI, pages 315–320. American Asso-
ciation for Artificial Intelligence, 1997.

[32] I.P. Gent and T. Walsh. Easy Problems are Sometimes Hard. Artificial Intelligence,
70:335–345, 1994.

[33] I.P. Gent and T. Walsh. Phase transitions from real computational problems. In
Proceedings of the 8th International Symposium on Artificial Intelligence, pages 356–
364, 1995. URL http://apes.cs.strath.ac.uk/papers/ISAI95crc.

ps.gz.
[34] I.P. Gent and T. Walsh. Phase transitions and annealed theories: Number partitioning

as a case study. In Proceedings of 12th ECAI, 1996.
[35] I.P. Gent and T. Walsh. The TSP phase transition. Artificial Intelligence, 88:349–358,

1996.
[36] I.P. Gent and T. Walsh. Analysis of heuristics for number partitioning. Computational

Intelligence, 14(3):430–451, 1998.
[37] I.P. Gent and T. Walsh. Beyond NP: the QSAT phase transition. In Proceedings of

the 16th National Conference on AI. American Association for Artificial Intelligence,
1999.

[38] A. Goerdt. A threshold for unsatisfiability. In I. Havel and V. Koubek, editors, Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science, pages
264–274. Springer Verlag, 1992.

[39] C. Gomes and B. Selman. Problem Structure in the Presence of Perturbations. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-
97), pages 221–227, New Providence, RI, 1997. AAAI Press.

[40] C. P. Gomes and B. Selman. Algorithm Portfolio Design: Theory vs. Practice. In
Proceedings of the Thirteenth Conference On Uncertainty in Artificial Intelligence
(UAI-97), Linz, Austria., 1997. Morgan Kaufman.

C. Gomes, T. Walsh 661

[41] C. Gomes, B. Selman, and N. Crato. Heavy-tailed Distributions in Combinatorial
Search. In G. Smolka, editor, Proceedings of Third International Conference on Prin-
ciples and Practice of Constraint Programming (CP97), pages 121–135. Springer,
1997.

[42] C. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126:43–62,
2001.

[43] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. Journal of Automated Reasoning, 24
(1/2):67–100, 2000.

[44] C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search Through Ran-
domization. In Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI-98). American Association for Artificial Intelligence, 1998.

[45] C. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomization in back-
track search: Exploiting heavy-tailed profiles for solving hard scheduling problems.
In The Fourth International Conference on Artificial Intelligence Planning Systems
(AIPS’98), 1998.

[46] S. Grant and B.M. Smith. Where the Exceptionally Hard Problems Are. In Proceed-
ings of the CP-95 workshop on Really Hard Problems, 1995. Available as University
of Leeds, School of Computer Studies Research Report 95.35.

[47] T. Hogg and C.P. Williams. The Hardest Constraint Problems: a Double Phase Tran-
sition. Artificial Intelligence, 69:359–377, 1994.

[48] E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and D. Chickering. A bayesian
approach to tackling hard computational problems. In Proceedings of 17th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-01), pages 235–244, 2001.

[49] B.A. Huberman and T. Hogg. Phase Transitions in Artificial Intelligence Systems.
Artificial Intelligence, 33:155–171, 1987.

[50] B. Huberman, R. Lukose, and T. Hogg. An economics approach to hard computa-
tional problems. Science, (265):51–54, 1993.

[51] T. Hulubei and B. O’Sullivan. Optimal Refutations for Constraint Satisfaction Prob-
lems. In Proc. of the 19th International Joint Conference on Artificial Intelligence
(IJCAI-05), 2005.

[52] T. Hulubei and B. O’Sullivan. The impact of search heuristics on heavy-tailed be-
haviour. Constraints, 11(2), 2006.

[53] Y. Interian. Backdoor sets for random 3-SAT. In Proceedings of 6th International
Conference on Theory and Applications of Satisfiability Testing, 2003.

[54] J. Hoffmann and C. Gomes and B. Selman. Structure and problem hardness: Asym-
metry and DPLL proofs in SAT-based planning. In Proceedings of the Second Inter-
national Workshop on Constraint Propagation and Implementation, CP 2005, 2005.

[55] H. Jia and C. Moore. How much backtracking does it take to color random graphs?
Rigorous results on heavy tails. In M. Wallace, editor, Proceedings of 10th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP2004).
Springer, 2004.

[56] H. Jia, C. Moore, and D. Strain. Generating hard satisfiable formulas by hiding
solutions deceptively. In Proceedings of AAAI 2005. AAAI, 2005.

[57] A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for occupancy and
the satisfiability threshold conjecture. Randomized Structure and Algorithms, 7:59–
80, 1995.

662 18. Randomness and Structure

[58] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic restart policies.
In Proceedings of the 18th National Conference on AI, pages 674–681. American
Association for Artificial Intelligence, 2002.

[59] P. Kilby, J. Slaney, S. Thiebaux, and T. Walsh. Backbones and backdoors in satisfia-
bility. In Proceedings of the 20th National Conference on AI. AAAI, 2005.

[60] S. Kirkpatrick and B. Selman. Critical behaviour in the satisfiability of random
Boolean expressions. Science, 264:1297–1301, 1994.

[61] S. R. Kumar, A. Russell, and R. Sundaram. Approximating Latin square extensions.
Algorithmica, 24:128–138, 1999.

[62] C.M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability prob-
lems. In Proceedings of the 15th IJCAI, pages 366–371. International Joint Confer-
ence on Artificial Intelligence, 1997.

[63] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47:173–180, 1993.

[64] I. Lynce, L. Baptista, and J. Marques-Silva. Stochastic systematic search algorithms
for satisfiability. In Proceedings of LICS workshop on Theory and Applications of
Satisfiability Testing (SAT 2001), 2001.

[65] I. Lynce and J. Marques-Silva. Complete unrestricted backtracking algorithms for
satisfiability. In Fifth International Symposium on the Theory and Applications of
Satisfiability Testing (SAT’02), 2002.

[66] D. Mitchell. The resolution complexity of constraint satisfaction. In Proceedings of
8th International Conference on Principles and Practice of Constraint Programming
(CP2002). Springer, 2002.

[67] D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions of SAT Prob-
lems. In Proceedings of the 10th National Conference on AI, pages 459–465. Amer-
ican Association for Artificial Intelligence, 1992.

[68] M. Molloy and M. Salavatipour. The resolution complexity of random constraint sat-
isfaction problems. In Proceedings of 44th Symposium on Foundations of Computer
Science (FOCS 2003). IEEE Computer Society, 2003.

[69] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. 2+p SAT:
Relation of typical-case complexity to the nature of the phase transition. Random
Structures and Algorithms, 15(3-4):414–435, 1999.

[70] W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of Design Automation Conference, pages
530–535, 2001.

[71] J.A. Navarro and A. Voronkov. Generation of hard non-clausal random satisfiability
problems. In Proceedings of the 20th National Conference on AI, pages 436–442.
American Association for Artificial Intelligence, 2005.

[72] N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to horn
and binary clauses. In Proceedings of SAT 2004. AAAI, 2004.

[73] P. Prosser. Binary constraint satisfaction problems: Some are harder than others.
In Proceedings of the 11th ECAI, pages 95–99. European Conference on Artificial
Intelligence, 1994.

[74] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In
Proceedings of 12th National Conference on Artificial Intelligence, pages 337–343,
1994.

[75] P. Shaw, K. Stergiou, and T. Walsh. Arc Consistency and Quasigroup Completion. In

C. Gomes, T. Walsh 663

Proceedings of the ECAI-98 workshop on non-binary constraints, 1998.
[76] J. Slaney, M. Fujita, and M. Stickel. Automated reasoning and exhaustive search:

quasigroup existence problems. Computers and Mathematics with Applications, 29:
115–132, 1995.

[77] J. Slaney and S. Thiébaux. On the hardness of decision and optimisation problems.
In Proceedings of the 13th ECAI, pages 244–248. ECAI, 1998.

[78] J. Slaney and T. Walsh. Backbones in optimization and approximation. In Proceed-
ings of 17th IJCAI. IJCAI, 2001.

[79] J. Slaney and T. Walsh. Phase transition behavior: from decision to optimization. In
Proceedings of the 5th International Symposium on the Theory and Applications of
Satisfiability Testing, SAT 2002, 2002.

[80] B.M. Smith. The phase transition in constraint satisfaction problems: A closer look
at the mushy region. In Proceedings of the 11th ECAI. European Conference on
Artificial Intelligence, 1994.

[81] B.M. Smith. Constructing an asymptotic phase transition in random binary constraint
satisfaction. Theoretical Computer Science, 265:265–283, 2000.

[82] S. Szeider. Backdoor sets for DLL solvers. Journal of Automated Reasoning, 2006.
Special issue, SAT 2005. To appear.

[83] B. Vandegriend and J. Culberson. The Gn,m phase transition is not hard for the
Hamiltonian Cycle problem. Journal of Artificial Intelligence Research, 9:219–245,
1998.

[84] T. Walsh. The constrainedness knife-edge. In Proceedings of the 15th National
Conference on AI. American Association for Artificial Intelligence, 1998.

[85] T. Walsh. Search in a small world. In Proceedings of 16th IJCAI. International Joint
Conference on Artificial Intelligence, 1999.

[86] C. Williams and T. Hogg. Exploiting the deep structure of constraint problems. Arti-
ficial Intelligence, 70:73–117, 1994.

[87] R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In
Proceedings of 18th IJCAI. International Joint Conference on Artificial Intelligence,
2003.

[88] R. Williams, C. Gomes, and B. Selman. On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In Proceedings of Sixth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT-03),
2003.

[89] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A simple model to generate
hard satisfiable instances. In Proceedings of the 19th International Conference on AI.
International Joint Conference on Artificial Intelligence, 2005.

[90] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A simple model to generate hard
satisfiable instances. In Proceedings of IJCAI 2005. IJCAI, 2005.

[91] K. Xu and W. Li. Exact phase transitions in random constraint satisfaction problems.
Journal of Artificial Intelligence Research, 12:93–103, 2000.

[92] F. Zelezny, A. Srinivasan, and D. Page. Lattice-search runtime distributions may be
heavy-tailed. In Proceedings of the Twelfth International Conference on Inductive
Logic Program, 2002.

[93] H. Zhang. A random jump strategy for combinatorial search. In Proceedings of
International Symposium on AI and Math, Fort Lauderdale, Florida, 2002.

[94] W. Zhang. Phase transitions and backbones of 3-SAT and Maximum 3-SAT. In

664 18. Randomness and Structure

T. Walsh, editor, Proceedings of 7th International Conference on Principles and
Practice of Constraint Programming (CP2001). Springer, 2001.

[95] W. Zhang. Phase transitions and backbones of the asymmetric traveling salesman
problem. JAIR, 21:471–497, 2004.

[96] W. Zhang and R.E. Korf. A study of complexity transitions on the asymmetric trav-
eling salesman problem. Artificial Intelligence, 81(1-2):223–239, 1996.

Handbook of Constraint Programming 665
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 19

Temporal CSPs

Manolis Koubarakis

Reasoning with temporal constraints has been a hot research topic for the last twenty years.
The importance of this topic has been recognized in many areas of Computer Science and
Artificial Intelligence e.g., planning [4], scheduling [23], natural language understanding
[91], knowledge representation [79], spatio-temporal databases and geographical informa-
tion systems [62], constraint databases [89], medical information systems [102], computer-
aided verification [5], multimedia presentations [2] etc.

Temporal reasoning is an area that has greatly benefited by the application of tech-
niques from constraint programming ever since the early papers by James Allen and others
[3, 107, 31, 108, 34]. The CSP framework introduced in Chapter 2 of this handbook is
immediately applicable for representing and reasoning about temporal information, and
so are the algorithms of Chapters 3, 4 and 5. Temporal CSPs have been proved to be a
robust framework where general CSP results such as the ones surveyed in Chapters 7 and
8 of this handbook could be applied profitably. Moreover, specific results about temporal
CSPs have often provided the motivation for deriving general results about CSPs. Tempo-
ral CSPs have been studied in depth, not only because of intellectual curiosity, but mostly
due to their importance for applications such as planning, scheduling, temporal databases
and others mentioned above. In many cases, the problems studied come straight from the
application front and developed solutions are immediately put into practical use.

In this chapter, we survey work on temporal CSPs starting from the papers that ap-
peared in the early nineties [3, 107, 31, 108, 34] and continue with contributions that have
been published as recently as last year. We have covered all of the influential works, but due
to space, we have sometimes been brief in our presentation. Our presentation is sometimes
historical; we hope this will turn out to be useful for the readers. For more information
on temporal CSPs and temporal reasoning in general, the reader can read the Handbook of
Temporal Reasoning in Artificial Intelligence [41] or the original papers that have appeared
in the literature.

The rest of this chapter is organized as follows. Section 19.1 introduces some prelimi-
nary concepts of temporal reasoning and temporal CSPs. Section 19.2 introduces the most
influential temporal reasoning formalisms based on constraint networks that have been

c© 2006 Elsevier All rights reservedB.V.

666 19. Temporal CSPs

proposed in the literature and relevant algorithmic problems. Then, Section 19.3 discusses
efficient constraint satisfaction algorithms for these formalisms. Section 19.4 introduces
the application need for more expressive queries over temporal constraint networks (es-
pecially queries combining temporal and non-temporal information) and surveys various
proposals that address this need. Sections 19.5 and 19.6 introduce the scheme of indefinite
constraint databases that is, up to today, the most comprehensive proposal for querying
hybrid representations consisting of a relational database component and a constraint net-
work component. In the case of temporal CSPs, the constraint network can be used to store
temporal constraints on various temporal objects, and the relational database to store facts
referring to these objects. Finally, Section 19.7 concludes the chapter and points out some
open problems.

19.1 Preliminaries

In this section, we introduce the topic of representing and reasoning about temporal in-
formation, and discuss the representational choices that have been made in the temporal
reasoning literature. We also introduce some basic concepts of CSPs that will subsequently
be used throughout the chapter.

19.1.1 Temporal Representation and Reasoning: Basic Concepts

In everyday life, most people are able to communicate their knowledge and understanding
of temporal phenomena without any major difficulties. However, quite different intuitions
surface as soon as people undertake to construct a formal temporal representation. The
literature distinguishes among three approaches for representing temporal phenomena: the
change-based approach (exemplified by situation calculus [74] or event calculus [64]), the
time-based approach (exemplified by various temporal logics [106]) or temporal database
models [62]) and their combination [86]. Research on temporal CSPs adopts a time-based
approach to temporal representation and inference. Time is introduced explicitly via an
appropriate set of times (called the time structure) and change is manifested when proposi-
tions become true or false at different elements of this set. Once one adopts this approach,
the time structure must be precisely defined. The relevant issues here are:

• What are the elements of the time structure? Points, intervals or both? Research in
temporal CSPs has usually adopted some set of numbers P (e.g., the rationals) to
be the set of points and pairs (x, y) ∈ P such that x < y to be the set of intervals.
Conventional time unit systems have also been studied (e.g., see the TUS system of
[70]).

• Is time totally ordered, partially ordered, branching or cyclic? Research in temporal
CSPs usually assumes time to be totally ordered. There has recently been some inter-
esting work on CSPs for other models of time e.g., partially ordered time, branching
time etc. [16].

• Is time discrete or dense?The issue here is whether there exists a unit of time which
cannot be decomposed. Discrete time is usually considered to be isomorphic to the
integers (Z). Proponents of dense time have a choice between rationals (Q) and reals

M. Koubarakis 667

(R). Various kinds of temporal CSPs have been studied that deal nicely with all three
cases.

• Is time bounded or unbounded?Time is unbounded when for every element of the
time structure there is a “previous” and a “next” element. Temporal CSPs can easily
handle both cases.

Once one adopts an ontology and a structure for time, one usually turns to another,
equally important, consideration: what are the kinds of temporal knowledge that must be
represented? There are many kinds of temporal information that are useful in applications:

• Definite temporal information. We have definite temporal information when the time
associated with an event or fact is known to be equal to an absolute time i.e., a point
or interval on the time line. In other words, the time associated with an event or
fact is known to full precision in the desired level of granularity. For example, the
sentences “The car was on service throughout March 25th, 1993” and “The car has
gone for service every March 25th for the years 1993-2000” give definite temporal
information with respect to the time line of the Gregorian calendar. Note that the
information in the second sentence is periodic.

• Indefinite or indeterminate temporal information.We have indefinite temporal infor-
mation when the time associated with an event or fact is either unknown or has not
been fully specified. The time associated with an event or fact can be under-specified
in various ways [39]:

– The time associated with an event or fact might be specified via a qualitative
relationship (different than equality) to some absolute time. As an example,
consider the sentence “John became manager after March, 1993”.

– The time associated with an event or fact might be specified via a relationship
to the time associated with another event or fact. In this case, the two times
can be related through a qualitative, metric (or quantitative) or mixed tempo-
ral constraint.For example, consider the statements “The explosion occurred
after John left the scene” (qualitative temporal information), “The explosion
occurred 5 to 10 minutes after John left the scene” (metric temporal informa-
tion), and “The explosion occurred 5 to 10 minutes after John left the scene
while he was getting into his car” (mixed temporal information).

– The granularity of the system time line does not match the precision to which
the time associated with an event or fact is known. As an example, consider
storing the information “John was hired on January 25, 1993” in a system with
time-stamps in the granularity of a second.

– Dating techniques can be imperfect. All clocks have inherent imprecision.

Temporal CSPs are an expressive framework and they can represent all the above types of
temporal information.

19.1.2 Background on CSPs

The area of temporal CSPs was initiated by James Allen in his seminal paper [3]. Allen
proposed to represent qualitative temporal knowledge by interval constraint networks. An

668 19. Temporal CSPs

interval constraint network (see Figure 19.1) is a directed graph where nodes represents
intervals and edges are labelled with vectors (i.e., disjunctions) of the thirteen binary qual-
itative interval relations presented in [3]. Following [3], many researchers concentrated
on CSPs (or, equivalently, constraint networks) as a means for representing and reasoning
about temporal knowledge. Their proposals are surveyed in Section 19.2 of this chapter.

In this chapter, the equivalent terms CSP, constraint network and set (conjunction) of
constraints will be used interchangeably. We now define formally some of the concepts
from the standard CSP literature that we will use in this chapter. We use dom(xi) to refer
to the domain of variable xi.

Definition 19.1. Let C be a set of constraints in variables x1, . . . , xn. The solution set of
C, denoted by Sol(C), is the following relation:

{(v1, . . . , vn) ∈ dom(x1)×· · ·×dom(xn) : for every c ∈ C, (v1, . . . , vn) satisfies c}.

Each member of Sol(C) is called a solution of C.

Definition 19.2. A set of constraints is called consistent or satisfiable if and only if its
solution set is non-empty.

We now define the standard concepts of i-consistency, strong i-consistency and global
consistency (or decomposability).

Let C be a set of constraints in variables x1, . . . , xn. For any i such that 1 ≤ i ≤ n,
C(x1, . . . , xi) will denote the set of constraints in C involving only variables x1, . . . , xi.

Definition 19.3. Let C be a set of constraints in variables x1, . . . , xn and 1 ≤ i ≤ n. C is
called i-consistent iff for every i − 1 distinct variables x1, . . . , xi−1, every valuation u =
{x1 ← v1, . . . , xi−1 ← vi−1} such that v1 ∈ dom(x1), . . . , vi−1 ∈ dom(xi−1) and u sat-
isfies the constraints C(x1, . . . , xi−1), and every variable xi different from x1, . . . , xi−1,
there exists a value vi ∈ dom(xi) such that u can be extended to a valuation u′ =
u ∪ {xi ← vi} which satisfies the constraints C(x1, . . . , xi−1, xi). C is called strong
i-consistent if it is j-consistent for every j, 1 ≤ j ≤ i. C is called globally consistent or
decomposable iff it is i-consistent for every i, 1 ≤ i ≤ n.

We now define the standard concept of minimal set of constraints. Minimal sets of
constraints are especially important in temporal CSPs because they make explicit all im-
plied binary constraints (e.g., the strictest constraints between the endpoints of an interval
or the constraints capturing the strictest qualitative relation between two points etc.). In a
constraint network representation of binary constraints, the concept of minimal constraint
set is equivalent to the concept of minimal network.

Definition 19.4. A set of constraints C will be called minimal if any instantiation of two
variables, which satisfies the constraints involving these variables only, can be extended to
a solution of C.

In temporal CSPs, the variables are used to represent time elements (points or inter-
vals), the domains are time structures (usually Z,Q or R for time points, and the set of
intervals over Z,Q or R for time intervals), and the constraints represent temporal relation-
ships. Section 19.2 presents various temporal CSP frameworks with appropriate choices
for variables, domains and temporal constraints.

The following reasoning problems have been traditionally associated with CSPs:

M. Koubarakis 669

• Deciding whether a set of constraints is consistent.

• Finding a solution or all the solutions of a consistent constraint set.

• Computing the minimal set of constraints equivalent to a given one.

• Determining if a set of constraints is i-consistent, strong i-consistent or globally
consistent.

The above reasoning problems have also been the main focus of algorithms for temporal
CSPs proposed in the literature. These algorithms are surveyed in Section 19.3 of this
chapter.

19.2 Constraint-Based Formalisms for Reasoning About Time

In this section we initiate our survey of temporal representation and reasoning formalisms
based on constraint networks. We distinguish the proposed formalisms depending on the
kind of temporal information they allow: qualitative, metric or mixed temporal informa-
tion.

19.2.1 Qualitative Temporal Reasoning

As we already said earlier, the first important paper that proposed to represent qualitative
temporal information by CSPs was [3] by James Allen. In [3], Allen introduced a formal-
ism for reasoning about intervals in time. An interval i is a pair (i−, i+) where i− and i+

are endpoints on the real line and i− < i+ holds. Allen’s formalism is based on thirteen
mutually exclusive binary relations which can capture all the possible ways two intervals
can be related. These atomic relations are

before, meets, overlaps, during, starts, finishes, equals

and their inverses (equals is its own inverse). Figure 19.2 defines these relations in terms of
endpoint constraints, and gives a shorthand notation and pictorial representation for them.

Allen’s formalism has received a lot of attention and has been the formalism of choice
for representing qualitative interval information. Whenever the interval information to
be represented is indefinite, a disjunction of some of the thirteen atomic relations can be
used to represent what is known. There are 213 such disjunctions representing qualitative
relations between two intervals. Each one of these relations will be denoted by the set of
its constituent basic relations e.g., {b, bi, d,m}. The empty relation will be denoted by ⊥,
and the universal relation will be denoted by ⊤. The set of all 213 relations expressible in
Allen’s formalism will be denoted by IA. The operations of intersection (∩), complement
(·−1) and composition (◦) can be defined on IA as follows:

(∀x, y)(x r−1 y ⇔ y r x)

(∀x, y)(x (r ∩ r′) y ⇔ (x r y ∧ x r′ y))

(∀x, y)(x (r ◦ r′) y ⇔ (∃z)(x r z ∧ z r′ y))

The set IA equipped with these operations forms an algebra [82], called the interval alge-
bra.

670 19. Temporal CSPs

breakfast

paper walk

coffee

{o, s, d}

{d} {b}

 { o, o –1, s, s -1, d, d -1, f, f -1, =}

Figure 19.1: An IA network

Example 19.5. Let us consider the following text [103]:

Fred was reading the paper while eating his breakfast. He put the paper down
and drank the last of his coffee. After breakfast, he went for a walk.

If we use breakfast, paper, walk and coffee to stand for appropriate time intervals, the
information included in the above sentences is captured by the IA network of Figure 19.1.

In [3], Allen presented a constraint propagation algorithm for IA networks based on
path consistency which runs in O(n3) time where n is the number of intervals in the net-
work. When constraints are propagated, some temporal knowledge that has been implicit
before is made explicit. Later on, Vilain and Kautz showed that Allen’s constraint propaga-
tion algorithm is not complete because deciding the consistency of a set of IA constraints
is an NP-complete problem and so is computing the minimal network [107].

In the same paper, Vilain and Kautz introduced the point algebra PA which allows
one to relate two time points using the binary qualitative relations <, > and = and their
disjunctive combinations (see Figure 19.2). [107] also identified the pointisable subclass
PIA of IA which consists of all elements of IA that can be expressed as a conjunction
of binary constraints using only elements of PA.

In [107], Vilain and Kautz claimed that Allen’s constraint propagation algorithm com-
putes the minimal network for PA. Subsequently, van Beek pointed out that this result is
true only for the subset of PA which does not include the disequality relation 6=; this is the
convex point algebraCPA [101, 108, 104]. The same result is true for the continuous end-
point subclass CEIA of IA which consists of all elements of IA that can be expressed as
a conjunction of binary constraints using only elements of CPA [101, 108, 104]. Van Beek
also pointed out that enforcing strong 4-consistencyin an PIA or PA network results in
an equivalent minimal network [101, 108, 104]. However, enforcing strong 4-consistency
does not result in global consistency for these networks. As shown by Koubarakis in
[57], strong 5-consistency is necessary and sufficient for achieving global consistency in
PIA and PA. Van Beek has also presented two efficient algorithms for PA and PIA

M. Koubarakis 671

Basic Symbol Pictorial Endpoint
Relation Representation Constraints
i before j b iiiiiiiii i− < j−, i− < j+,
j after i b−1 jjjjjjjjj i+ < j−, i+ < j+

i meets j m iiiiiiiii i− < j−, i− < j+,
j met-by i m−1 jjjjjjjjjjj i+ = j−, i+ < j+

i overlaps j o iiiiiiiii i− < j−, i− < j+,
j overlapped-by i o−1 jjjjjjjjjjjj i+ > j−, i+ < j+

i during j d iiiiiiiii i− > j−, i− < j+,
j includes i d−1 jjjjjjjjjjjjjjjjjj i+ > j−, i+ < j+

i starts j s iiiiiiiiii i− = j−, i− < j+,
j started-by i s−1 jjjjjjjjjjjjjjjj i+ > j−, i+ < j+

i finishes j f iiiiiiiiiii i− > j−, i− < j+,
j finished-by i f−1 jjjjjjjjjjjjjjjjj i+ > j−, i+ = j+

i equals j = iiiiiiiiiiii i− = j−, i− < j+,
jjjjjjjjjjj i+ > j−, i+ = j+

Basic Symbol Pictorial Point
Relation Representation Constraints
p before i b p p < i−

i after p b−1 iiiiiiiii
p starts i s p p = i−

i started-by p s−1 iiiiiiiii
p during i d p i− < p < i+

i includes p d−1 iiiiiiiii
p after i a p i+ < p
i before p a−1 iiiiiiiii

Basic Symbol Pictorial
Relation Representation
p before q < p
q after p > q
p equals q = p

q
p after q > q
q before p < p

Figure 19.2: Interval-to-interval, point-to-interval and point-to-point relations

672 19. Temporal CSPs

networks: an O(n2) algorithm for consistency checking and finding a solution, and an
O(maxmn2, n3) for computing the minimal network [103]. The parameter n here is again
the number of nodes in the network, while m is the number of edges labelled with 6=.

The work by Vilain, Kautz and van Beek [108] motivated the search for new subclasses
of IA that are tractable. The most widely studied subclass discovered so far is the Ord-
Horn subclassH introduced by Nebel and Bürckert in [82]. H consists of all relations r ∈
A which satisfy the following condition. If i and j are intervals, i r j can be equivalently
expressed as a conjunction of Ord-Horn constraints on the endpoints of i and j. An Ord-
Horn constraint is a disjunction d1∨ · · ·∨dn where at most one of the di’s is an inequality
of the form x ≤ y, the rest of the di’s are disequations of the form x 6= y, and x and y are
variables ranging over the real numbers.

It is interesting to notice that H, the most expressive tractable subclass of IA among
the ones introduced above, consists of 868 relations i.e., it covers more than 10% of A. H
is maximal i.e., it cannot be extended without losing tractability [82].

Recently, Krokhin, Jeavons and Jonsson showed that there are exactly 18 maximal
tractable subclasses of IA; reasoning in any subset of IA not included in these subclasses
is NP-complete [65]. This is an important dichotomy result: it classifies all subproblems
of an NP-complete problem as either tractable or NP-complete. It is important to point
out that this result is proved analytically while previous work had resorted to systematic
computerized analysis (see e.g., [38]).

Koubarakis [59] has demonstrated that, in general, there is no low level of local con-
sistency that can achieve global consistency of H constraints. Earlier, Bessière, Isli and
Ligozat [12] had presented some subclasses of H for which path consistency achieves
global consistency.

Gerevini [42] considers PA and H and studies incremental algorithms for checking
consistency, maintaining a solution and maintaining the minimal network. The algorithms
of [42] improve the static algorithms for these problems by a factor ofO(n) orO(n2) when
a sequence of O(n2) operations (assertions or relaxations of constraints) are processed. In
related work, Delgrande and Gupta [36] consider the problem of updating chains of ≤ or
< relations.

In [75], Meiri defines the qualitative algebra QA, an expressive formalism for qual-
itative temporal reasoning on points and intervals. In QA, one is able to express binary
constraints of the form oi r1 oj ∨ · · · ∨ oi rk oj where oi, oj are points or intervals and
r1, . . . , rk are:

• interval-to-interval relations from IA

• point-to-point relations from PA

• point-to-interval or interval-to-point relations [109]. These five, mutually exclusive
relations and their inverses can hold between a point and an interval. They are shown
pictorially in Figure 19.2.

[75] presents several results on QA and its subclasses including how to combine it with
metric information (see Section 19.2.3 below). Recently, [50] presented a dichotomy the-
orem which gives a complete classification of all subclasses of QA as either tractable or
NP-complete.

M. Koubarakis 673

The expressive power of the qualitative temporal reasoning algebras defined in this
section can be summarized as follows (the symbol ⊂ should be read as “contains” or “is
less expressive than”) :

CPA ⊂ PA ⊂ QA and CEIA ⊂ PIA ⊂ H ⊂ IA ⊂ QA

19.2.2 Metric Temporal Reasoning

Dechter, Meiri and Pearl studied metric temporal information using disjunctive binary dif-
ference (DBD) constraints1 of the form

a1 ≤ xi − xj ≤ b1 ∨ · · · ∨ an ≤ xi − xj ≤ bn

where xi, xj are real variables representing time points and a1, . . . , an, b1, . . . , bn are real
numbers [34]. To deal with these constraints, [34] introduced DBD networks where nodes
represent variables and arcs represent binary constraints.

Example 19.6. Let us consider the following text [34]:

John goes to work either by car (30-40 minutes) or by bus (at least 60 min-
utes). Fred goes to work either by car (20-30 minutes) or in a car pool (40-50
minutes). Today John left home between 7:10 and 7:20, and Fred arrived at
work between 8:00 and 8:10. We also know that John arrived at work about
10-20 minutes after Fred left home.

Let x0 be a special time point (real variable) denoting the “beginning of time” (7:00 in
our case). Let x1, x2, x3, x4 be real variables such that [x1, x2] is the interval corresponding
to John’s travel to work, and [x3, x4] is the interval corresponding to Fred’s travel to work.
The left part of Figure 19.3 shows a DBD network capturing the temporal relations in the
above text.

Deciding consistency of DBD networks is NP-complete [34]. An important tractable
subcase occurs when all constraints have a single disjunct i.e., they are of the form a ≤ xi−
xj ≤ b. We will call these constraints simply binary difference (BD) constraints. For the
class of BD constraints, deciding consistency and at the same time computing the minimal
network can be done in O(n3) time (where n is the number of variables) by running any
all-pairs shortest-paths algorithm (e.g., Floyd-Warshall [29]) on an equivalent weighted,
directed graph representation of the constraints called the distance graph [34]. The right
part of Figure 19.3 shows the distance graph equivalent to the BD constraint network
obtained from the DBD constraint network on the left part of the figure after dropping the
interval [60, infty] from the edge (x1, x2) and [20, 30] from the edge (x3, x4).

For the class of BD constraints, computing the shortest-paths among all pairs of nodes
in the distance graph is equivalent to enforcing path consistency in the original network.
Notice also that path consistency is necessary and sufficient for achieving global consis-
tency for the class of BD constraints [34]. Deciding consistency only can alternatively be

1In this section, we deviate from the usual terminology of the literature and name classes of metric temporal
constraints by referring to what relationships they can express (e.g., difference, disjunctions etc.). In this way,
we avoid using names formed with adjectives such as simple, complex etc. that do not say much about the
expressivity of the particular constraint class they are used to name.

674 19. Temporal CSPs

 X2
 X1

 X0

 X4

 X3

 {[10,20]}

 {[30,40], [60, infty]}

 {[10,20]}

 {[20,30], [40, 50]} {[60,70]}

 X2 X1

 X0

 X4

 X3

20

-10

40

-30

20

-10

50-40

70

-60

Figure 19.3: A DBD network (left) and a distance graph for a part of it (right)

achieved by a single-source shortest-paths algorithm (e.g., Bellman-Ford [29]) in O(nE)
time where n is the number of nodes and E the number of edges in the distance graph.
Alternatively, one can use a directional path consistency algorithm on the given network
which runs in O(nW ∗(d)2) time where W ∗(d) is the maximum number of parents that a
node possesses in the resulting network [34].

The framework of difference constraints of [34] has been influential in much future
work in this area. For example, Koubarakis [57] and, independently, Gerevini and Christani
[43] have introduced the class of binary difference constraints with disequations (BD 6=) by
extending the class of BD constraints to include disequations of the form x − y 6= r (r is
a real constant). Deciding consistency in BD 6= can be checked in O(n3) time by trivially
modifying any all-pairs shortest path algorithm used for the class of BD constraints so
that it reports inconsistencies resulting from any disequation x− y 6= r and any (implied)
equality of the form x− y = r. Computing the minimal network for BD 6= constraints can
be done in O(maxmn2, n3) where n is the number of variables and m is the number of
disequations [57, 43]. [57] has also shown that strong 5-consistency is the necessary and
sufficient condition for achieving global consistency in the case of BD 6= constraints. Re-
cently, [63] extended this result to the class of unit two-variable per inequality/disequation
(UTV PI 6=) constraints. In addition to terms of the form x − y, this class allows terms of
the form x+ y and the same comparison operators as BD 6=.

Extensions to the framework of [33] also explored more practical directions. For ex-
ample, [13] has shown how to extend this framework so that multiple time granularities
are supported.

A related but more expressive class of temporal constraints which has also been studied
widely in the literature is the class of n-ary disjunctive difference constraints. An n-ary
disjunctive difference (NDD) constraint is a formula of the form

a1 ≤ x1 − y1 ≤ b1 ∨ · · · ∨ an ≤ xn − yn ≤ bn

where x1, y1, . . . , xn, yn are real variables representing time points and a1, . . . , an, b1, . . . ,
bn are real numbers [6, 96, 97].

M. Koubarakis 675

Example 19.7. The following are examples of NDD constraints:

x1 − y1 ≤ 2, x1 − y1 ≤ 5 ∨ −2 ≤ x2 − y2 ≤ 2 ∨ x3 − y3 ≤ 4,

0 ≤ x4 − y4 ∨ 2 ≤ x5 ≤ 5

Disjunctive constraints with disjuncts having different pairs of variables cannot be ex-
pressed in the DBD constraints framework of [34].

Example 19.8. Let I, J be intervals, I−, J− their beginning points and I+, J+ their end-
ing points. The following NDD constraints express the fact that intervals I and J have
duration between 5 and 10 minutes and they cannot overlap.

5 ≤ I+ − I− ≤ 10, 5 ≤ J+ − J− ≤ 10, I+ − J− ≤ 0 ∨ J+ − I− ≤ 0

Example 19.9. Let I and J be intervals corresponding to the execution of operations OI
and OJ . OI and OJ will be executed on a machine that can handle only one operation at
a time and has a set up time of 2 minutes. Let I−, J− be the beginning points of I and J
and I+, J+ their ending points.

The following is an appropriate constraint on the scheduling of operations OI and OJ :

I+ − J− ≤ −2 ∨ J+ − I− ≤ −2

Deciding the consistency of a set of NDD constraints is also NP-complete. Boolean
combinations of binary difference (BCBD) constraints have also been studied recently
[98].

The quest for tractability of metric temporal CSPs received a big push forward when
Koubarakis [59] and Jonsson and Bäckström [49] independently introduced the class of
Horn-disjunctive linear constraints. A linear constraint (LIN) is a formula of the form
(
∑n
i=1 aixi) θ r where a1, ..., an, r are rational constants, x1, ..., xn are variables and θ is

≤ or <. We freely use≥, > and = as well. A Horn-disjunctive linear (HDL) constraint is
a disjunction d1∨· · ·∨dn where each di is a weak linear inequality or a linear disequation,
and the number of inequalities among d1, . . . , dn does not exceed one.

Example 19.10. The following are examples ofHDL constraints:

3x1 + x5 − 3x4 ≤ 10, x1 + x3 + x5 6= 7,

3x1 + x5 − 4x3 ≤ 7 ∨ 2x1 + 3x2 − 4x3 6= 4 ∨ x2 + x3 + x5 6=
5

2
,

4x1 + x3 6= 3 ∨ 5x2 − 3x5 + x4 6= 6

Deciding the consistency of a set of HDL constraints can be done in PTIME [56, 59,
49]. The main intuition behind this result is that disequations can be dealt with indepen-
dently from one another for the purposes of consistency checking.

There are currently no relevant maximality results regarding the tractability of HDL
constraints. [16] give two such maximal tractable subclasses of the class of disjunctions of
PA relations.

[15] demonstrates how to implement efficiently consistency checking for HDL con-
straints when disjuncts are constrained to be of the form xi − xj ≤ a or xi − xj 6= a.

676 19. Temporal CSPs

The properties of the class ofHDL constraints have partly motivated Cohen et al. [27]
to study questions of tractability for constraints that are obtained as disjunctions of simpler
constraints with certain useful properties (e.g., independence, guaranteed satisfaction etc.).
The importance of such results is that they are obtained in an abstract CSP framework and
turn out to be useful for many kinds of specific CSPs e.g., temporal, spatial, etc. For some
of the results in this area, the reader should see [26, 17] and Chapter 8 of this handbook

Recently, Kumar [68] pioneered the use of randomized algorithms for temporal CSPs.
[68] initially presents a randomized algorithm for BD constraints. Then, the intuitions
derived from this class are used to develop a strongly-polynomial deterministic algorithm,
and a simple randomized algorithm for a restricted class of NDD constraints, denoted by
RNDD, which includes the following three types of constraints:

lij ≤ xi−yj ≤ uij , a1 ≤ xi ≤ b1∨· · ·∨an ≤ xi ≤ bn, li ≤ xi ≤ ui∨ lj ≤ xj ≤ uj
The expressive power of the metric temporal CSPs defined in this section can be sum-

marized as follows:

LIN ⊂ HDL, BD ⊂ BD 6= ⊂ DBD ⊂ NDD ⊂ BCBD, BD 6= ⊂ HDL,

and BD ⊂ RNDD ⊂ NDD

19.2.3 Qualitative and Metric Temporal Reasoning Combined

Meiri [75] has combined the expressive power of the qualitative algebraQA and theDBD
constraint framework of [34] to come up with a framework of binary mixed temporal con-
straint networks where nodes are points or intervals and constraints are qualitative from
QA or quantitative from DBD. Independently, Kautz and Ladkin [53] have proposed a
very similar framework that combines qualitative constraints from the interval algebra IA
and the BD constraints of [34].

Example 19.11. Let us consider the following text [75]:

John and Fred work for a company that has local and main offices in Los
Angeles. They usually work at the local office, in which case it takes John less
than 20 minutes and Fred 15-20 minutes to get to work. Twice a week, John
works at the main office, in which case his commute to work takes at least 60
minutes. Today John left home between 7:00-7:05 a.m. and Fred arrived at
work 7:50-7:55 a.m. We also know that Fred and John met at a traffic light on
their way to work.

Let x0 be the real variable denoting the “beginning of time” (7:00 again). Let J =
[x1, x2] be the time interval corresponding to John’s travel to work, and F = [x3, x4] be the
time interval corresponding to Fred’s travel to work where x1, x2, x3, x4 are real variables
representing the interval endpoints. Figure 19.4 shows a constraint network capturing the
temporal relations in the above text.

More recently, Krokhin et al. presented another framework that combines qualitative
and metric temporal reasoning [66]. In this case, the objects of interest are intervals and
qualitative information is expressed in IA. In addition, metric temporal information on in-
terval endpoints can be expressed using HDL constraints. The important result of [66] is

M. Koubarakis 677

 X2

 X1 X0
 X4

 X3

J F

 {(0,5)} {(50,55)}

 {(15,20)} {(0,20), (60,infty)}

 {s}

 {s} {f}

 {f}

 {s, s -1, d, d -1, f, f -1, o, o -1, =}

Figure 19.4: A network with qualitative and metric temporal constraints

a dichotomy theorem that settles the standard tractability question for the proposed frame-
work by completely characterizing all subproblems that are tractable; all the remaining
ones are shown to be NP-complete. Since the framework of [66] subsumes the framework
of [53], the tractability question for this framework has also been settled. The exact char-
acterization of all tractable classes of the framework of [75] remains an open problem.

Qualitative reasoning about durations has also been considered in [80] and other papers
and a formalism called point-duration networks has been defined. Point-duration networks
start from PA networks and enrich them with binary comparisons of the times elapsed
between pairs of points (i.e., durations of intervals). The comparison of these durations is
also done using the relations of PA. Similarly, Pujari et al. [84] have defined a similar
framework called INDU for reasoning about intervals using IA and interval durations us-
ing PA. It is not clear up to now, how far one can go with these two duration frameworks
since, as pointed out in [10], the framework is not closed under the composition opera-
tion. Recently, Renz and Ligozat [88] discussed this issue in a general CSP context and
differentiated between composition as defined in Section 19.2.1 for IA (and most other
frameworks studied here) and weak composition. In general, the frameworks of [80, 84]
are not as well developed currently as the rest of the frameworks surveyed in this chapter
so we will not deal with them any further in this chapter.

19.3 Efficient Algorithms for Temporal CSPs

In the previous section, we have surveyed work on temporal CSPs, complexity results and
algorithms for deciding consistency, computing the minimal network and enforcing global
consistency. In typical temporal reasoning applications (e.g., planning and scheduling) the
databases of temporal constraints to be handled are very large thus scalability of temporal
reasoning algorithms becomes important. Unfortunately, the algorithms of Section 19.2
are not scalable. Even for the case of tractable temporal reasoning formalisms such as
PA, typical algorithms [103] require O(n2) space and O(maxmn2, n3) time to answer
queries. Researchers in temporal reasoning quickly recognized this problem and imple-

678 19. Temporal CSPs

mented efficient reasoners for various formalisms described in Section 19.2. This is the
work that we survey in this section.

19.3.1 Efficient Algorithms for Qualitative Temporal CSPs

The work on efficient algorithms for qualitative temporal constraints can be distinguished
into two categories: scalable algorithms for constraint classes with PTIME reasoning prob-
lems (especially PA) and backtracking or local search algorithms for classes with NP-
complete reasoning problems (especially IA).

Efficient algorithms for PA
Len Schubert, Alfonso Gerevini and colleagues implemented and experimentally evaluated
the temporal reasoners TimeGraph I and II for handling constraints expressed in PA [44].
The main idea in TimeGraph II, which is the most advanced version, is to represent sets of
PA constraints by directed labelled graphs, partition these graphs into chains (i.e., linearly
ordered points) where constant time reasoning is possible, and use a meta-graph to reason
about points belonging to different chains. TimeGraph II also handles binary disjunctions
of PA constraints using an intelligent backtracking algorithm [44]. TimeGraph I and II
have been used in various planning and natural language understanding projects e.g., [91].

The work of [45] has also addressed scalability for PA networks using an approach
which also relies heavily on an underlying directed graph structure. In this case, spanning
trees are the basic data structure where efficient reasoning with respect to the ≤ relation is
performed. The algorithms of [45] are incomplete for PA since they cannot handle cases
involving the relation 6= [44]. The work of [45] has been extended with metric constraints
and has been utilized in the temporal reasoner of the IxTeT temporal planner [69].

[37] further extend the ideas of TimeGraph II by relying on series-parallel graphs
(instead of chains) as their basic efficient data structure. [37] provides new intuitions re-
garding the techniques of TimeGraph II, and shows experimentally what improvements are
possible when series-parallel graphs become the basic data structure.

Efficient algorithms for IA
Ladkin and Reinfeld [72] were the first to implement and evaluate experimentally back-
tracking algorithms for solving IA constraints. The backtracking algorithm of [72] has
the following characteristics: a preprocessing step based on path consistency, instantiation
of disjunctions by any set of IA relations for which path consistency is complete, chrono-
logical backtracking, and forward checking using path consistency. [105] improves [72]
with a more efficient version of path consistency and heuristics for dynamic variable order-
ing. [81] shows that performance improvements can be obtained if we use the class H for
instantiating disjunctions in the backtracking algorithm of [72]. [72] and [81] also studied
the phase transition of the problem of solving IA constraints.

[99] shows how to solve IA consistency checking problems using local search. In [99],
a given IA problem with m interval variables is first translated into an equivalent (with re-
spect to satisfiability) problem where the endpoints of the intervals are constrained to range
over the integers 1, . . . , 2m. Then, this problem is solved using the discrete Langrangian
method.

M. Koubarakis 679

Let us now turn our attention to efficient algorithms for metric temporal CSPs. Here
attention has been focused on BD, DBD and NDD constraints. For BD constraints, the
emphasis has been on improving existing polynomial time algorithms as well as devising
incremental versions of such algorithms that are important in applications (e.g., planning
or scheduling). Since the reasoning problems for classes DBD and NDD have exponen-
tial complexity, the emphasis there has been on backtracking algorithms and local search
algorithms with influences from CSP and SAT solvers.

19.3.2 Efficient Algorithms for BD and DBD Constraints

[21] and [22] has considered incremental algorithms for networks of BD constraints. The
idea in these algorithms is that when a new constraint is added or retracted, a constraint
propagation algorithm is not run from scratch, but only some processing local to the in-
sertion or deletion takes place. [21] concentrates on incremental arc-consistency algo-
rithms for BD constraints while [22] presents an incremental version of the well-known
Bellman-Ford algorithm for the single-source shortest-paths problem [29]. Similarly, [24]
has presented an incremental version of the directional path consistency algorithm of [33].

Recently, Xu and Choueiry [111] presented an efficient algorithm for deciding the con-
sistency of BD constraints. This algorithm essentially improves the partial path consis-
tency algorithm of [14] (which operates on a triangulated constraint graph) and applies it
to the case of BD constraints. [111] demonstrates experimentally that this algorithm im-
proves on many of its competitors that have appeared in the literature [34] in the case of
large and sparse constraint graphs.

[92, 32] consider checking the consistency of DBD constraints using backtracking al-
gorithms that operate on the equivalent meta-CSP (i.e., the CSP with variables correspond-
ing to disjunctions and values corresponding to BD disjuncts) and utilize local consistency
algorithm like path consistency for preprocessing and forward checking. [92] points out
that enforcing path consistency in networks of DBD constraints can result in the creation
of an exponential number of intervals. Then, it develops alternative local processing algo-
rithms that compute looser constraints than path consistency but do so in polynomial time.
Finally, [92] demonstrates that significant savings are achieved when these local process-
ing algorithms are combined with backtracking to check the consistency of sets of DBD
constraints.

Xu and Choueiry [110] show alternative ways to improve on chronological backtrack-
ing algorithms for DBD constraints [92, 32]. Their techniques include utilizing the algo-
rithm of [111] to check the consistency of the set of BD constraints considered at each
node of the search tree, exploiting the constraint topology, having good variable-ordering
heuristics, and reducing the domains with a special form of arc consistency [25]. More re-
cently, [95] have also investigated using the incremental all-pairs-shortest-path algorithm
of [22] instead of [111] at each node of the search tree.

TMM (Time Map Manager) is another important temporal reasoning system with sup-
port for BD constraints [31]. The main contribution of TMM is not its CSP features but
rather its querying facilities, its good support for temporal persistence and causality, and
its sophisticated indexing algorithms for handling large databases of temporal propositions
[30]. TMM will be again discussed in Section 19.4.

680 19. Temporal CSPs

19.3.3 Efficient Algorithms for NDD Constraints and Extensions

The papers [97, 6, 100, 83, 98, 7] have tackled the problem of checking the consistency
of sets of NDD constraints efficiently. As it is explained nicely in [7], all these works
propose algorithms that consist of the following basic steps:

• Generation step: Generate all possible sets of BD constraints that satisfy the dis-
junctions.

• Consistency checking step: Check consistency of these sets.

The papers [97, 100, 83] do the generation step by solving a meta-CSP with variables
corresponding to disjunctions and values corresponding toBD disjuncts. The papers [6, 98,
7] do the generation step by solving the corresponding propositional satisfiability problem
(where BD disjuncts are represented by propositional variables). The consistency checking
step in both cases is carried out using various incremental algorithms for BD constraints
e.g., incremental directional path consistency [24] or incremental full path consistency
[77].

Stergiou and Koubarakis [97] were the first to discuss various backtracking algorithms
(chronological backtracking, backjumping and forward checking with backjumping) and
related heuristics for NDD constraints. [97] presents theoretical results that characterize
these algorithms in terms of number of search tree nodes visited and consistency checks
performed by extending [54] where backtracking algorithms for binary CSPs are com-
pared (NDD constraints are n-ary). [97] also evaluate the performance of their algorithms
experimentally using randomly generated hard problems.

Armando et al. [6] subsequently showed how to improve the results of [97] by an
algorithm, called TSAT, which is built on top of a SAT solver that implements the Davis-
Putnam procedure efficiently. The SAT solver produces the sets of BD constraints to be
checked for consistency. In addition, TSAT has a preprocessing step that produces a more
accurate SAT encoding than the obvious one, and a constraint propagation step as in the
forward checking algorithm of [97].

[83] presents CSPi, an extension of the forward checking algorithm of [97] with a
semantic branching step and a heuristic method for reducing the number of forward checks
performed. The semantic branching step, which is available for free in SAT methods such
as [6], is as follows. If the current valuation (set of BD disjuncts) {c1, c2, . . . , ci} cannot
be extended by another disjunct ci+1 so that we reach a satisfying valuation, then CSPi
adds ¬ci to the current valuation and proceeds to choose another literal from the (i+ 1)-th
disjunction. [83] shows that CSPi improves on [97] and is competitive with TSAT.

[100] adopts the CSP framework of [97] and improves it by introducing no-good
recording as well as the other pruning techniques introduced by earlier literature (a differ-
ent form of the backjumping used in [97], semantic branching as used in [83] and removal
of subsumed variables as used in [83]). The resulting system, called Epilitis, is shown to
dominate all earlier algorithms [97, 6, 83].

[98] was the earliest paper to deal with deciding BCBD constraints. The approach of
[98] is to transform a given BCBD formula φ into a propositional logic formula and then
use the SAT solver Chaff [78] to decide it. The transformation involves essentially the
following two steps:

M. Koubarakis 681

• Introduce a new propositional variable for each BD constraint in φ, and transform φ
into a new propositional logic formula φ′.

• Conjoin to φ′ a new propositional logic formula that encodes transitive relations
among variables derived from the original BD constraints.

Finally, [7] presents the system TSAT++ which is able to deal with Boolean combina-
tions of difference constraints using a SAT-based approach (in particular, the SIMO solver
[46]) and a powerful combination of preprocessing, constraint propagation, branching and
intelligent backtracking techniques. [7] demonstrates that TSAT++ is more efficient than
the systems of [97, 6, 100, 83, 98] presented above, but also MathSAT [8] which is able to
deal with Boolean combinations of linear constraints. The performance analysis of [7] is
based on randomly generated hard problems and instances of real-world applications.

Recently, Schwartz and Pollack studied incremental algorithms for NDD constraints
[93]. They consider three update operations (tightening the bound of a BD constraint, add
a BD constraint or add an NDD constraint) and present incremental algorithms to handle
these updates using techniques from dynamic CSPs such as no-good recording and oracles.

Finally, [76] shows how to solve NDD constraints using local search. Contrary to
earlier complete algorithms using a meta-CSP approach [97, 100, 83], the algorithm of
[76] searches over the space defined by the original CSP using an algorithm which derives
from GSAT [94] and Tabu search [47].

19.4 More Expressive Queries for Temporal CSPs

When constraint networks are used to represent temporal information (see Section 19.2),
their nodes represent the times when certain facts are true, or when certain events take
place, or when events start or end. By labeling nodes with appropriate natural language
expressions (e.g., breakfast or walk in Example 19.5) and arcs by temporal relations,
temporal constraint networks can be queried in useful ways. The typical query targeted by
most of the algorithms discussed in Sections 19.2 and 19.3 is: “What is the strictest tempo-
ral relationship between intervals (or points) A and B?”. This query is typically answered
by consulting the minimal network corresponding to the given temporal constraints.

Van Beek [102] was the first to consider more expressive queries for databases with
temporal constraints. In [102], a database is a set of IA constraints among appropriately
named interval constants (representing events). The first class of queries considered by
[102] is modal (possibility or certainty) queries. A certainty (resp. possibility) query is a
formula of the form

OP φ(e1, . . . , en)?

where OP is � (resp. ♦), and φ is a Boolean combination of IA constraints that use event
constants e1, . . . , en. As an example, consider the query “Is it possible that event walk
happened after event breakfast?”.

The second class of queries considered by [102] is aggregation queries. An aggregation
query is of the form

x1, . . . , xn : x1 ∈ E ∧ · · · ∧ xn ∈ E ∧OP φ(x1, . . . , xn)

682 19. Temporal CSPs

where E is the set of all events in the database, OP is the modal operator ♦ or �, and φ
is a Boolean combination of IA constraints that use variables x1, . . . , xn. As an example,
consider the query “What are the known events that come after event breakfast?”.

The temporal reasoning system LATER [18, 28] is another proposal for querying tem-
poral CSPs in sophisticated ways. LATER allows users to define symbolic time points and
time intervals and assert temporal constraints relating them with other symbolic objects, or
time constants representing conventional dates, times and durations. LATER offers a prac-
tical temporal reasoning framework that includes vocabulary for expressing many useful
qualitative and metric temporal constraints. Only certain kinds of disjunctive relations are
allowed so that the expressive power of LATER does not become greater than the expres-
sive power of BD constraints [19]. The complete set of LATER functions and predicates
can be found in [18].

The following types of queries are supported by LATER [18]:

1. Queries extracting temporal information (e.g., when, how long, duration and relation
queries).

2. Modal queries as in [102].

3. Hypothetical queries. These queries allow one to query the database using queries
of types 1 and 2 under the assumption that certain additional temporal constraints
hold.

Although [102] and LATER offer expressive languages for querying databases of tem-
poral constraints, queries combining non-temporal as well as temporal information (e.g.,
“Who is certainly having breakfast before taking a walk?”) cannot be asked in these sys-
tems, even though the knowledge required to answer them might have been available in the
first place. This problem arises because temporal CSPs do not have the required expressive
power for representing all kinds of knowledge needed in a real application.

This situation has been understood by temporal reasoning researchers, and application-
oriented systems where temporal reasoners were combined with general-purpose data and
knowledge representation frameworks have been proposed (and in most cases implemented).
These proposals include EPILOG2, Shocker3, TMM [31], Telos [79], and the relational
temporal constraint databases of [55] and [20]. EPILOG and Shocker use the temporal
reasoners Timegraph I and II, Telos uses a subclass of IA, TMM uses BD constraints, the
proposal of [55] uses BD constraints and the system of [20] uses LATER.

In the rest of this chapter, we study the scheme of indefinite constraint databases pro-
posed by Koubarakis [58, 63], as the formalism that unifies the proposals of [102, 55,
18, 20]. This formalism is a scheme because it can be instantiated with various kinds of
constraints defined by a first-order language (e.g., temporal, spatial etc. [63]). When the
constraints chosen are temporal, the resulting formalism can be used to represent temporal
constraints on various temporal objects, and the relational database can be used to store
facts referring to these objects.

Sections 19.5 and 19.6 show that in order to be able to answer queries in this scheme,
we must be prepared to go from temporal CSPs to first-order theories of temporal con-
straints as studied in [71, 58]. We identify variable elimination (and its logical analogue

2 See http://www.cs.rochester.edu/research/epilog/.
3 See http://www.cs.rochester.edu/research/cisd/projects/kr-tools/.

M. Koubarakis 683

quantifier elimination) as the main technical tool needed by the proposed framework. We
then show that query evaluation in the proposed formalism can be viewed as quantifier
elimination in a first-order language of temporal constraints.

The indefinite constraint database scheme has been presented in the past as a constraint-
based extension of the relational data model [58] or as a constraint-based extension of an
equivalent subset of first-order logic [63]. We follow the second approach in this chapter
using material directly from [63].

19.5 First-Order Temporal Constraint Languages

We start by introducing some concepts useful for the developments in forthcoming sec-
tions. We will deal with many-sorted first-order languages [40]. For each first-order lan-
guage L, we will define a structureML that will give the intended interpretation of for-
mulas of L (this is called the intended structure for L). The theory Th(ML) (i.e., the set
of sentences of L that are true inML) will also be considered. Finally, for each language
L a special class of formulas called L-constraints will be defined.

Ladkin [71] and Koubarakis [58, 63] have defined various first-order temporal con-
straint languages where the atomic formulas come from the temporal CSP frameworks
defined in Section 19.2. As an example, we define below the first-order languages PA, IA
and LIN that are based on the classes of PA, IA and LIN constraints respectively.4

19.5.1 The Languages PA and IA

The language PA is a simple first-order language that we can use for talking about points in
time. The logical symbols of PA include: parentheses, a countably infinite set of variables,
the equality symbol = and the standard sentential connectives. There is only one non-
logical symbol: the predicate symbol <.

The intended structure MPA has the set of rational numbers Q as its domain, and
interprets predicate symbol < as the relationship “less than” over the rational numbers.
We will freely use other defined predicates like ≤ and 6=. We define PA-constraints to be
exactly the constraints of the class PA.

In a similar way, we can define the first-order language IA which has as atomic formu-
las the interval constraints expressible in the class IA (see [60, 61] for a precise definition).

19.5.2 The Language LIN

The language LIN is the first order language of linear constraints. The logical symbols of
LIN include: parentheses, a countably infinite set of variables, the equality symbol = and
the standard sentential connectives. The non-logical symbols of LIN include: a countably
infinite set of constants (one for each rational numeral), the binary function symbols + and
∗ (the symbol ∗ can only be applied to a variable and a constant) and the binary predicate
symbol <.

4 We use the calligraphic type style to write classes of constraints and italic type style to write the corre-
sponding first-order language.

684 19. Temporal CSPs

The intended structureMLIN has the set of rational numbers Q as its domain.MLIN

assigns to each constant symbol an element of Q, to function symbol + the addition oper-
ation for rational numbers, to function symbol ∗ the multiplication operation for rational
numbers, and to predicate symbol < the relation “less than” over Q. We define LIN -
constraints to be the constraints of the class LIN .

19.5.3 Quantifier and Variable Elimination

In this section we define the operations of quantifier and variable elimination. Quantifier
elimination is an operation from mathematical logic [40]. Variable elimination is an alge-
braic operation [90]. As we will see below, quantifier elimination algorithms utilize vari-
able elimination algorithms as subroutines. In the scheme of indefinite constraint databases
to be introduced in Section 19.6, the operation of quantifier elimination is very useful be-
cause it can be used for query evaluation. [35] discuss variable elimination and related
concepts for arbitrary CSPs.

Definition 19.12. Let Th be a theory in some first-order language L. Th admits elim-
ination of quantifiers iff for every formula φ there is a disjunction φ′ of conjunctions of
L-constraints such that Th |= φ ≡ φ′.

This definition is stronger than the traditional one where φ′ is simply required to be
quantifier-free [40]. We require φ′ to be in the above form because we do not want to deal
with negations of L-constraints.

Let Th be a theory in some first order language L, and let φ be a formula. If Th
admits elimination of quantifiers, then a quantifier-free formula φ′ equivalent to φ can be
computed in the following standard way [40]:

1. Compute the prenex normal form (Q1x1) · · · (Qmxm)ψ(x1, . . . , xm) of φ.

2. If Qm is ∃ then let θ1 ∨ · · · ∨ θk be a disjunction equivalent to ψ(x1, . . . , xm) where
the θi’s are conjunctions of L-constraints. Then eliminate variable xm from each θi
to compute θ′i using a variable elimination algorithm forL-constraints. The resulting
expression is θ′1 ∨ · · · ∨ θ′k.

IfQm is ∀ then let θ1∨· · ·∨θk be a disjunction equivalent to ¬ψ(x1, . . . , xm) where
the θi’s are conjunctions of L-constraints. Then eliminate variable xm from each θi
to compute θ′i as above. The resulting expression is ¬(θ′i ∨ · · · ∨ θ′k).

3. Repeat step 2 to eliminate all remaining quantifiers and obtain the required quantifier-
free formula.

Step 2 of the above algorithm assumes the existence of a variable elimination algo-
rithm for conjunctions (or, equivalently, sets) of L-constraints. The operation of variable
elimination can be defined as follows.

Definition 19.13. The operation of variable elimination takes as input a set C of L-
constraints with set of variables X and a subset Y of X , and returns a new set of con-
straints C ′ such that Sol(C ′) = ΠX\Y (Sol(C)) where ΠZ is the standard operation of
projection of a relation on a subset Z of its set of columns.

M. Koubarakis 685

For the class of LIN -constraints defined above variable elimination can be performed
using Fourier’s algorithm. Fourier’s algorithm can be summarized as follows [90]. Any
weak linear inequality involving a variable x can be written in the form x ≤ ru or x ≥ rl
i.e., it gives an upper or a lower bound on x. Thus if we are given two linear inequalities,
one of the form x ≤ ru and the other of the form x ≥ rl, we can eliminate x and obtain the
inequality rl ≤ ru. Obviously, rl ≤ ru is a logical consequence of the given inequalities.
In addition, any solution of rl ≤ ru can be extended to a solution of the given inequalities
(simply by choosing for x any value between the values of rl and ru). Following this
observation, Fourier’s elimination algorithm forms all pairs x ≤ ru and x ≥ rl, eliminates
x and returns the resulting constraints. The generalization of this algorithm to strict linear
inequalities is obvious.

Example 19.14. Let us consider the following set of LIN -constraints:

x3 ≤ x1, x5 < x1, x1 − x2 ≤ 2, x4 ≤ x5

The elimination of variable x1 using Fourier’s algorithm results in the following new set:

x3 − x2 ≤ 2, x5 − x2 < 2, x4 ≤ x5.

The following theorem will be useful below. The result for PA and IA are due to [71].

Theorem 19.15. The theories Th(MPA), Th(MIA) and Th(MLIN) admit quantifier
elimination.

The presentation of preliminary concepts is now complete. We can therefore proceed
to define the scheme of indefinite constraint databases.

19.6 The Scheme of Indefinite Constraint Databases

In this section, we present the scheme of indefinite constraint databases originally proposed
in [58]. We follow the spirit of the original proposal but use first-order logic instead of
relational database theory.

We assume the existence of a many-sorted first-order language L with a fixed intended
structure ML. Let us also assume that Th(ML) admits quantifier elimination (Section
19.5.3 has defined this concept precisely). For the purposes of this section, L can be a
language like PA, IA and LIN that can be used to talk about temporal objects (i.e., points
or intervals).

Let us now consider, as an example, the information contained in the following two
sentences:

Mary took a walk in the park. After walking around for a while, she met Fred
and started talking to him.

The information in the above sentences is about activities (e.g., walking, talking), con-
straints on the times of their occurrence (e.g., after) and, finally, other information about
real-world entities (e.g., names of persons). Temporal CSPs as discussed in Section 19.2
can be used to represent such information.

In the scheme of indefinite constraint databases (and in similar formalisms like [31, 18])
information like the above is represented by utilizing a first-order temporal language like

686 19. Temporal CSPs

LIN and extending it to represent non-temporal information. Let us now show how to
do this formally in an abstract setting by considering an arbitrary many-sorted first-order
language L with the properties discussed above.

19.6.1 From L to L ∪ EQ and (L ∪ EQ)∗

Let EQ be a fixed first-order language with only equality (=) and a countably infinite
set of constant symbols. The intended structure MEQ for EQ interprets = as equality
and constants as “themselves”. EQ is a very simple language which can only be used to
represent knowledge about things that are or are not equal. EQ-constraints or equality
constraints are formulas of the form x = v or x 6= v where x is a variable, and v is a
variable or a constant.

We now consider the language L ∪ EQ. The set of sorts for L ∪ EQ will contain the
special sort D (for terms of EQ) and all the sorts of L. The intended structure for L ∪ EQ
isML∪EQ =ML ∪MEQ.

The following lemma is straightforward.

Lemma 19.16. If theory Th(ML) admits quantifier elimination then the same holds for
Th(ML∪EQ).

Finally, we define a new first-order language (L ∪ EQ)∗ by augmenting L ∪ EQ with
a countably infinite set of database predicate symbols p1, p2, . . . of various arities. These
predicate symbols can be used to represent information about our application domain. The
arguments of these predicates will be constants and variables constrained by formulas of
L ∪ EQ. The indefinite constraint databases and queries defined below are formulas of
(L ∪ EQ)∗.

In the following example and all the examples of subsequent sections, we assume L to
be the languageLIN defined in Section 19.5. The languageLIN∪EQ is now multi-sorted
with sorts D (for the constants of EQ) and Q (for the rational constants of LIN).

Example 19.17. Let walk be a ternary database predicate symbol with arguments of sort
D, Q and Q respectively. The following is a formula of the language (LIN ∪ EQ)∗

capturing the fact that somebody took a walk during some unknown interval of time:

(∃x/D)(∃t1/Q)(∃t2/Q)(t1 < t2 ∧ walk(x, t1, t2))

19.6.2 Databases and Queries

In this section, the symbols x̄, ȳ, x̄i, ȳi, etc. will denote vectors of variables while ω̄ will
stand for a vector of Skolem constants. In addition, the symbols T̄ and T̄i will denote
vectors of sorts of L. Similarly, the symbol D̄ will denote a vector with all its components
being the sort D.

Indefinite constraint databases and queries are special formulas of (L ∪ EQ)∗ and are
defined as follows [63].

Definition 19.18. An indefinite constraint database is a formula DB(ω̄) of (L ∪ EQ)∗ of
the following form:

m
∧

i=1

(∀x̄i/D̄)(∀t̄i/T̄i)(
li
∨

j=1

Localj(x̄i, t̄i, ω̄) ≡ pi(x̄i, t̄i)) ∧ ConstraintStore(ω̄)

M. Koubarakis 687

where

• Localj(x̄i, t̄i, ω̄) is a conjunction of L-constraints in variables t̄i and Skolem con-
stants ω̄, and EQ-constraints in variables x̄i.

• ConstraintStore(ω̄) is a conjunction of L-constraints in Skolem constants ω̄.

The second component of the above formula defining a database is a constraint store.
This store is a conjunction of L-constraints i.e., a CSP. ω̄ is a vector of Skolem constants
denoting time entities (e.g., points and intervals) about which only partial knowledge is
available. This partial knowledge has been coded in the constraint store as a CSP using the
language L.

The first component of the database formula is a set of equivalences completely defining
the database predicates pi. This is an instance of the well-known technique of predicate
completion in first-order databases [85].

These equivalences may refer to the Skolem constants of the constraint store. In tempo-
ral reasoning applications, the constraint store will contain the temporal constraints usually
captured by a CSP, while the predicates pi will encode, in a flexible way, the events or facts
usually associated with the variables of this CSP.

For a given database DB the first conjunct of the database formula will be denoted by
EventsAndFacts(DB), and the second one by ConstraintStore(DB). For clarity, we
will sometimes write sets of conjuncts instead of conjunctions. In other words, a database
DB can be seen as the following pair of sets of formulas:

(EventsAndFacts(DB), ConstraintStore(DB)).

We will feel free to use whichever definition of database fits our needs in the rest of this
section.

The new machinery in the indefinite constraint database scheme (in comparison with
relational or Prolog databases) is the Skolem constants inEventsAndFacts(DB) and the
constraint store which is used to represent “all we know” about these Skolem constants.
Essentially this proposal is a combination of constraint databases (without indefinite infor-
mation) as defined in [52], and the marked null values proposal of [48, 1]. Similar ideas
can also be found in the first-order databases of [85].

Let us now give some examples of indefinite constraint databases. The constraint lan-
guage used is LIN but the constraints are simpler than full linear: rational order con-
straints, difference constraints and bounds on variables.

Example 19.19. The following is an indefinite constraint database which formalises the
information in the paragraph considered at the beginning of this section.

({ (∀x/D)(∀t1, t2/Q)((x = Mary ∧ t1 = ω1 ∧ t2 = ω2) ≡ walk(x, t1, t2)),
(∀x/D)(∀y/D)(∀t3, t4/Q)

((x = Mary ∧ y = Fred ∧ t3 = ω3 ∧ t4 = ω4) ≡ talk(x, y, t3, t4)) },
{ ω1 < ω2, ω1 < ω3, ω3 < ω2, ω3 < ω4 })

This database contains information about the events walk and talk in which Mary and
Fred participate. The temporal information expressed by order constraints is indefinite
since we do not know the exact constraint between Skolem constants ω2 and ω4.

688 19. Temporal CSPs

Example 19.20. Let us consider the following planning database used by a medical labo-
ratory for keeping track of patient appointments for the year 2006.

({ (∀x, y/D)(∀t1, t2/Q)
(((x = Smith ∧ y = Chem1 ∧ t1 = ω1 ∧ t2 = ω2)∨
(x = Smith ∧ y = Chem2 ∧ t1 = ω3 ∧ t2 = ω4)∨

(x = Smith ∧ y = Radiation ∧ t1 = ω5 ∧ t2 = ω6)) ≡ treatment(x, y, t1, t2)) },
{ ω1 ≥ 0, ω2 ≥ 0, ω3 ≥ 0, ω4 ≥ 0, ω5 ≥ 0, ω6 ≥ 0,

ω2 = ω1 + 1, ω4 = ω3 + 1, ω6 = ω5 + 2, ω2 ≤ 91, ω3 ≥ 91, ω4 ≤ 182,
ω3 − ω2 ≥ 60, ω5 − ω4 ≥ 20, ω6 ≤ 213 })

Since we use LIN , the set of rationals Q is our time line. The year 2006 is assumed
to start at time 0 and every interval [i, i+ 1) represents a day (for i ∈ Z and i ≥ 0). Time
intervals will be represented by their endpoints. They will always be assumed to be of the
form [B,E) where B and E are the endpoints.

The above database represents the following information:

1. There are three scheduled appointments for treatment of patient Smith. This is rep-
resented by three conjuncts in the disjunction defining the extension of predicate
treatment.

2. Chemotherapy appointments must be scheduled for a single day. Radiation appoint-
ments must be scheduled for two consecutive days. This information is represented
by constraints ω2 = ω1 + 1, ω4 = ω3 + 1, and ω6 = ω5 + 2.

3. The first chemotherapy appointment for Smith should take place in the first three
months of 2006 (i.e., days 0-91). This information is represented by the constraints
ω1 ≥ 0 and ω2 ≤ 91.

4. The second chemotherapy appointment for Smith should take place in the second
three months of 2006 (i.e., days 92-182). This information is represented by con-
straints ω3 ≥ 91 and ω4 ≤ 182.

5. The first chemotherapy appointment for Smith must precede the second by at least
two months (60 days). This information is represented by constraint ω3 − ω2 ≥ 60.

6. The radiation appointment for Smith should follow the second chemotherapy ap-
pointment by at least 20 days. Also, it should take place before the end of July
(i.e., day 213). This information is represented by constraints ω5 − ω4 ≥ 20 and
ω6 ≤ 213.

Let us now define queries. The concept of query defined here is more expressive than
the query languages for temporal CSPs discussed in Section 19.4 above, and it is similar
to the concept of query in TMM [31].

Definition 19.21. A first order modal query over an indefinite constraint database is an
expression of the form x̄/D̄, t̄/T̄ : OP φ(x̄, t̄) where OP is the modal operator ♦ or �,
and φ is a formula of (L∪ EQ)∗. The constraints in formula φ are only L-constraints and
EQ-constraints.

M. Koubarakis 689

Modal queries will be distinguished in certainty queries (�) and possibility queries (♦)
as in [102].

Example 19.22. The following query refers to the database of Example 19.19 and asks
“Who was the person who possibly had a conversation with Fred during this person’s walk
in the park?”:

x/D : ♦(∃t1, t2, t3, t4/Q) (walk(x, t1, t2) ∧ talk(x, Fred, t3, t4) ∧ t1 < t3 ∧ t4 < t2)

Let us observe that each query can only have one modal operator which should be
placed in front of a formula of (L∪EQ)∗. Thus we do not have a full-fledged modal query
language. Such a query language can be interesting in a formal framework dealing with
indefinite information, but we will not consider this issue further in this chapter.

We now define the concept of an answer to a query.

Definition 19.23. Let q be the query x̄/D̄, t̄/T̄ : ♦φ(x̄, t̄) over an indefinite constraint
database DB. The answer to q is a pair (answer(x̄, t̄), ∅) such that

1. answer(x̄, t̄) is a formula of the form

k
∨

j=1

Localj(x̄, t̄)

where Localj(x̄, t̄) is a conjunction of L-constraints in variables t̄ and EQ-con-
straints in variables x̄.

2. Let V be a variable assignment for variables x̄ and t̄. If there exists a model M of
DB which agrees withML∪EQ on the interpretation of the symbols of L∪EQ, and
M satisfies φ(x̄, t̄) under V then V satisfies answer(x̄, t̄) and vice versa.

We have chosen the notation (answer(x̄, t̄), ∅) to signify that an answer is also a
database which consists of a single predicate defined by the formula answer(x̄, t̄) and the
empty constraint store. In other words, no Skolem constant (i.e., no uncertainty) is present
in the answer to a modal query. Although our databases may contain uncertainty, we know
for sure what is possible and what is certain.

Example 19.24. The answer to the query of Example 19.22 is (x = Mary, ∅).
The definition of answer in the case of certainty queries is the same as Definition 19.23

with the second condition changed to:

2. Let M be any model of DB which agrees withML∪EQ on the interpretation of the
symbols of L ∪ EQ. Let V be a variable assignment for variables x̄ and t̄. If M
satisfies φ(x̄, t̄) under V then V satisfies answer(x̄, t̄) and vice versa.

Definition 19.25. A query is called closed or yes/no if it does not have any free variables.
Queries with free variables are called open.

Example 19.26. The query of Example 19.22 is open. The following is its corresponding
closed query:

: ♦(∃x/D)(∃t1, t2, t3, t4/Q) (walk(x, t1, t2)∧ talk(x, Fred, t3, t4)∧ t1 < t3∧ t4 < t2)

690 19. Temporal CSPs

By convention, when a query is closed, its answer can be either (true, ∅) (which means
yes) or (false, ∅) (which means no).

Example 19.27. The answer to the query of Example 19.26 is (true, ∅) i.e., yes.

Example 19.28. Let us consider the database of Example 19.20 and the query “Find all
appointments for patients that can possibly start at the 92th day of 2006”. This query can
be expressed as follows:

{ x, y/D : ♦(∃t1, t2/Q)(treatment(x, y, t1, t2) ∧ t1 = 92) }
The answer to this query is the following:

((x = Smith ∧ y = Chem2) ∨ (x = Smith ∧ y = Radiation), ∅)

19.6.3 Query Evaluation is Quantifier Elimination

Query evaluation over indefinite constraint databases can be viewed as quantifier elimina-
tion in the theory Th(ML∪EQ). Th(ML∪EQ) admits quantifier elimination. This is a
consequence of the assumption that Th(ML) admits quantifier elimination (see beginning
of this section) and the fact that Th(MEQ) admits quantifier elimination (proved in [52]).
The following theorem is essentially from [58] and [63].

Theorem 19.29. Let DB be the indefinite constraint database

m
∧

i=1

(∀x̄i/D̄)(∀t̄i/T̄i)(
li
∨

j=1

Localj(x̄i, t̄i, ω̄) ≡ pi(x̄i, t̄i)) ∧ ConstraintStore(ω̄)

and q be the query ȳ/D̄, z̄/T̄ : ♦φ(ȳ, z̄). The answer to q is (answer(ȳ, z̄), ∅) where
answer(ȳ, z̄) is a disjunction of conjunctions of EQ-constraints in variables ȳ and L-
constraints in variables z̄ obtained by eliminating quantifiers from the following formula
of L ∪ EQ:

(∃ω̄/T̄ ′)(ConstraintStore(ω̄) ∧ ψ(ȳ, z̄, ω̄))

In this formula the vector of Skolem constants ω̄ has been substituted by a vector of appro-
priately quantified variables with the same name (D̄′ is a vector of sorts of L). ψ(ȳ, z̄, ω̄)
is obtained from φ(ȳ, z̄) by substituting every atomic formula with database predicate pi
by an equivalent disjunction of conjunctions of L-constraints. This equivalent disjunction
is obtained by consulting the definition

li
∨

j=1

Localj(x̄i, t̄i, ω̄) ≡ pi(x̄i, t̄i)

of predicate pi in the database DB.
If q is a certainty query then answer(ȳ, z̄) is obtained by eliminating quantifiers from

the formula

(∀ω̄/T̄ ′)(ConstraintStore(ω̄) =⇒ ψ(ȳ, z̄, ω̄))

where ConstraintStore(ω̄) and ψ(ȳ, z̄, ω̄) are defined as above.

M. Koubarakis 691

Example 19.30. Using the above theorem, the query of Example 19.22 can be answered
by eliminating quantifiers from the formula:

(∃ω1, ω2, ω3, ω4/Q)
(ω1 < ω2 ∧ ω1 < ω3 ∧ ω3 < ω2 ∧ ω3 < ω4∧

(∃t1, t2, t3, t4/Q)((x = Mary ∧ t1 = ω1 ∧ t2 = ω2)∧
(x = Mary ∧ t3 = ω3 ∧ t4 = ω4) ∧ t1 < t3 ∧ t4 < t2)

The result of this elimination is the formula x = Mary.

Koubarakis and Skiadopoulos [58, 63] have studied the complexity of query answering
in the scheme of indefinite constraint databases for various temporal and spatial constraint
languages L. Their results precisely outline the frontier between tractable and possibly
intractable query answering problem. [63] shows that if one wants to be able to answer
modal queries in PTIME, it is no longer sufficient to have a constraint class (e.g., BD)
with PTIME reasoning problems (e.g., consistency checking for BD can be done in O(n3)
time); further conditions should be imposed on queries and databases.

19.7 Conclusions

We have surveyed work on temporal CSPs starting from early papers such as [3, 107, 31,
108, 34] and continuing with influential contributions that have been published as recently
as last year. There are certain topics of work in temporal CSPs that we did not cover due
to limited space. These include:

• Temporal CSPs for non-totally-ordered time e.g., partially ordered time, branching
time etc. [16].

• Representing periodic temporal information by constraints [51].

• Non-convex intervals and their CSPs [9].

• Soft constraints or preferences in temporal CSPs [67].

• Overconstrained temporal CSPs [73].

• Connections with spatial CSPs [87].

We expect research on temporal CSPs to continue healthily in the years to come due to
their importance in applications. In our opinion, the following topics are likely to be in the
front line of future developments:

• New algorithmic techniques for temporal constraint solving e.g., randomized algo-
rithms [68] or local search [76, 11].

• Theory and algorithms for combining temporal CSPs and optimization concepts [67,
73].

• Theory and algorithms for quantified formulas with temporal constraints [71, 58,
63].

692 19. Temporal CSPs

• Tractability results for the classes where this question has not been answered com-
pletely e.g., [75].

• Integration with spatial CSPs to deal with spatio-temporal scenarios [62].

Acknowledgements

I would like to thank Peter van Beek, Kostas Stergiou, Spiros Skiadopoulos, Peter Jonsson
and Berthe Choueiry for comments on various versions of this chapter.

Bibliography

[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the Representation and Querying of
Sets of Possible Worlds. Theoretical Computer Science, 78(1):159–187, 1991.

[2] S. Adali, L. Console, M. L. Sapino, M. Schenone, and P. Terenziani. Represent-
ing and reasoning with temporal constraints in multimedia presentations. In TIME,
pages 3–12, 2000.

[3] J. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the
ACM, 26(11):832–843, November 1983.

[4] J. Allen, H. Kautz, and R. Pelavin, editors. Reasoning About Plans. Morgan-
Kaufmann, 1991.

[5] R. Alur. Timed automata. In CAV, pages 8–22, 1999.
[6] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal

reasoning. In ECP, pages 97–108, 1999.
[7] A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based decision

procedure for the Boolean combination of difference constraints. In SAT, 2004.
[8] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT

based approach for solving formulas over Boolean and linear mathematical propo-
sitions. In CADE, pages 195–210, 2002.

[9] P. Balbiani, J.-F. Condotta, and G. Ligozat. Reasoning about generalized intervals:
Horn representability and tractability. In TIME, pages 23–30, 2000.

[10] P. Balbiani, J.-F. Condotta, and G. Ligozat. On the consistency problem for the
INDU calculus. In TIME, pages 203–211, 2003.

[11] M. Beaumont, J. Thornton, A. Sattar, and M. J. Maher. Solving over-constrained
temporal reasoning problems using local search. In PRICAI, pages 134–143, 2004.

[12] C. Bessière, A. Isli, and G. Ligozat. Global consistency in Interval Algebra net-
works: Tractable subclasses. In ECAI, pages 3–7, 1996.

[13] C. Bettini, X. S. Wang, and S. Jajodia. Solving multi-granularity temporal constraint
networks. Artificial Intelligence, 140(1/2):107–152, 2002.

[14] C. Bliek and D. Sam-Haroud. Path consistency on triangulated constraint graphs.
In IJCAI, pages 456–461, 1999.

[15] M. Broxvall. A method for metric temporal reasoning. In AAAI/IAAI, pages 513–
518, 2002.

[16] M. Broxvall and P. Jonsson. Point algebras for temporal reasoning: Algorithms and
complexity. Artificial Intelligence, 149(2):179–220, 2003.

[17] M. Broxvall, P. Jonsson, and J. Renz. Disjunctions, independence, refinements.
Artificial Intelligence, 140(1/2):153–173, 2002.

M. Koubarakis 693

[18] V. Brusoni, L. Console, B. Pernici, and P. Terenziani. LaTeR: an efficient, general
purpose manager of temporal information. IEEE Expert, 12(4):56–64, August 1997.

[19] V. Brusoni, L. Console, and P. Terenziani. On the computational complexity of
querying bounds on differences constraints. Artificial Intelligence, 74(2):367–379,
1995.

[20] V. Brusoni, L. Console, P. Terenziani, and B. Pernici. Qualitative and Quantitative
Temporal Constraints and Relational Databases: Theory, Architecture, and Appli-
cations. IEEE Transactions on Knowledge and Data Engineering, 1(6):948–968,
1999.

[21] R. Cervoni, A. Cesta, and A. Oddi. Managing dynamic temporal constraint net-
works. In AIPS, pages 13–18, 1994.

[22] A. Cesta and A. Oddi. Gaining efficiency and flexibility in the simple temporal
problem. In TIME, 1996.

[23] A. Cesta, A. Oddi, and S. F. Smith. A constraint-based method for project schedul-
ing with time windows. Journal of Heuristics, 8(1):109–136, 2002.

[24] N. Chleq. Efficient algorithms for networks of quantitative temporal constraints. In
Proceedings of CONSTRAINTS-95, pages 40–45, Melbourne Beach, Florida, USA,
April 1995.

[25] B. Y. Choueiry and L. Xu. An efficient consistency algorithm for the temporal
constraint satisfaction problem. AI Communications, 17(4):213–221, 2004.

[26] D. Cohen, P. Jeavons, P. Jonsson, and M. Koubarakis. Building tractable disjunctive
constraints. Journal of the ACM, 47(5):826–853, 2000.

[27] D. A. Cohen, P. Jeavons, and M. Koubarakis. Tractable disjunctive constraints. In
CP, pages 478–490, 1997.

[28] L. Console and P. Terenziani. Efficient processing of queries and assertions about
qualitative and quantitative temporal constraints. Computational Intelligence, 15
(4):442–465, 1999.

[29] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1990.

[30] T. Dean. Using temporal hierarchies to efficiently maintain large temporal
databases. Journal of the ACM, 36(4):687–718, 1989.

[31] T. Dean and D. McDermott. Temporal Data Base Management. Artificial Intelli-
gence, 32(1):1–55, 1987.

[32] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[33] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. In KR, pages

83–93, 1989.
[34] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. Artificial Intelli-

gence, 49(1-3):61–95, 1991.
[35] R. Dechter and P. van Beek. Local and global relational consistency. Theoretical

Computer Science, 173(1):283–308, 1997.
[36] J. P. Delgrande and A. Gupta. Updating <=, <-chains. Information Processing

Letters, 82(5):261–268, 2002.
[37] J. P. Delgrande, A. Gupta, and T. V. Allen. A comparison of point-based approaches

to qualitative temporal reasoning. Artificial Intelligence, 131(1-2):135–170, 2001.
[38] T. Drakengren and P. Jonsson. A complete classification of tractability in allen’s

algebra relative to subsets of basic relations. Artificial Intelligence, 106(2):205–
219, 1998.

694 19. Temporal CSPs

[39] C. Dyreson and R. Snodgrass. Valid-time Indeterminacy. In ICDE, pages 335–343,
1993.

[40] H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
[41] M. Fisher, D. Gabbay, and L. Vila, editors. Handbook of Temporal Reasoning in

Artificial Intelligence. Elsevier, 2005.
[42] A. Gerevini. Incremental qualitative temporal reasoning: Algorithms for the Point

Algebra and the ORD-Horn class. Artificial Intelligence, 166(1-2):37–80, 2005.
[43] A. Gerevini and M. Cristani. Reasoning with Inequations in Temporal Constraint

Networks. Technical report, IRST - Instituto per la Ricerca Scientifica e Tecno-
logica, Povo TN, Italy, 1995. A shorter version appears in the Proceedings of the
Workshop on Spatial and Temporal Reasoning, IJCAI-95.

[44] A. Gerevini and L. Schubert. Efficient Algorithms for Qualitative Reasoning about
Time. Artificial Intelligence, 74:207–248, 1995.

[45] M. Ghallab and M. Alaoui. Managing Efficiently Temporal Relations through In-
dexed Spanning Trees. In IJCAI, pages 1297–1303, 1989.

[46] E. Giunchiglia, M. Maratea, and A. Tacchella. Look-ahead vs. look-back techniques
in a modern SAT solver. In SAT, 2003.

[47] F. Glover and M. Laguna. Tabu Search. Dordrecht, 1997.
[48] T. Imielinski and W. Lipski. Incomplete Information in Relational Databases. Jour-

nal of ACM, 31(4):761–791, 1984.
[49] P. Jonsson and C. Bäckström. A unifying approach to temporal constraint reasoning.

Artificial Intelligence, 102:143–155, 1998.
[50] P. Jonsson and A. A. Krokhin. Complexity classification in qualitative temporal

constraint reasoning. Artificial Intelligence, 160(1-2):35–51, 2004.
[51] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling Infinite Temporal Data. Jour-

nal of Computer and System Sciences, 51(1):3–17, 1995.
[52] P. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languages. Journal of

Computer and System Sciences, 51:26–52, 1995.
[53] H. Kautz and P. Ladkin. Integrating Metric and Qualitative Temporal Reasoning. In

AAAI, pages 241–246, 1991.
[54] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking

algorithms. Artificial Intelligence, 89(1-2):365–387, 1997.
[55] M. Koubarakis. Database Models for Infinite and Indefinite Temporal Information.

Information Systems, 19(2):141–173, March 1994.
[56] M. Koubarakis. Tractable Disjunctions of Linear Constraints. In CP, pages 297–

307, Boston, MA, August 1996.
[57] M. Koubarakis. From Local to Global Consistency in Temporal Constraint Net-

works. Theoretical Computer Science, 173:89–112, February 1997.
[58] M. Koubarakis. The Complexity of Query Evaluation in Indefinite Temporal Con-

straint Databases. Theoretical Computer Science, 171:25–60, January 1997. Special
Issue on Uncertainty in Databases and Deductive Systems, Editor: L.V.S. Laksh-
manan.

[59] M. Koubarakis. Tractable disjunctions of linear constraints: basic results and appli-
cations to temporal reasoning. Theoretical Computer Science, 266(1-2):311–339,
2001.

[60] M. Koubarakis. Querying temporal constraint networks: A unifying approach. Ap-
plied Intelligence, 17(3):297–311, 2002.

M. Koubarakis 695

[61] M. Koubarakis. Indefinite temporal databases with temporal information: Represen-
tational power and computational complexity. In M. Fisher, D. Gabbay, and L. Vila,
editors, Handbook of Temporal Reasoning in Artificial Intelligence. Elsevier, 2005.

[62] M. Koubarakis, T. K. Sellis, A. U. Frank, S. Grumbach, R. H. Güting, C. S.
Jensen, N. A. Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Schek,
M. Scholl, B. Theodoulidis, and N. Tryfona, editors. Spatio-Temporal Databases:
The CHOROCHRONOS Approach, volume 2520 of Lecture Notes in Computer Sci-
ence, 2003. Springer.

[63] M. Koubarakis and S. Skiadopoulos. Querying Temporal and Spatial Constraint
Networks in PTIME. Artificial Intelligence, 123(1-2):223–263, 2000.

[64] R. Kowalski and M. Sergot. A Logic-based Calculus of Events. New Generation
Computing, 1(4):67–95, 1986.

[65] A. A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations:
The tractable subalgebras of Allen’s interval algebra. Journal of the ACM, 50(5):
591–640, 2003.

[66] A. A. Krokhin, P. Jeavons, and P. Jonsson. Constraint satisfaction problems on in-
tervals and lengths. SIAM Journal on Discrete Mathematics, 17(3):453–477, 2004.

[67] T. K. S. Kumar. A polynomial-time algorithm for simple temporal problems with
piecewise constant domain preference functions. In AAAI, pages 67–72, 2004.

[68] T. K. S. Kumar. On the tractability of restricted disjunctive temporal problems. In
ICAPS, pages 110–119, 2005.

[69] P. Laborie and M. Ghallab. Planning with sharable resource constraints. In IJCAI,
pages 1643–1649, 1995.

[70] P. Ladkin. Primitives and Units for Time Specification. In AAAI, pages 354–359,
1986.

[71] P. Ladkin. Satisfying First-Order Constraints About Time Intervals. In AAAI, pages
512–517, 1988.

[72] P. B. Ladkin and A. Reinefeld. Effective solution of qualitative interval constraint
problems. Artificial Intelligence, 57(1):105–124, 1992.

[73] M. H. Liffiton, M. D. Moffitt, M. E. Pollack, and K. A. Sakallah. Identifying con-
flicts in overconstrained temporal problems. In IJCAI, pages 205–211, 2005.

[74] J. McCarthy and P. J. Hayes. Some Philosophical Problems From the Standpoint of
Artificial Intelligence. In B. Meltzer and D. Mitchie, editors, Machine Intelligence,
pages 463–502. Edinburg University Press, 1969.

[75] I. Meiri. Combining qualitative and quantitative constraints in temporal reasoning.
Artificial Intelligence, 87(1-2):343–385, 1996.

[76] M. D. Moffitt and M. E. Pollack. Applying local search to disjunctive temporal
problems. In IJCAI, pages 242–247, 2005.

[77] R. Mohr and T. C. Henderson. Arc and path consistency revisited. Artificial Intelli-
gence, 28(2):225–233, 1986.

[78] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 39th Design Automation Conference (DAC), 2001.

[79] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: A Language for
Representing Knowledge About Information Systems. ACM Transactions on Infor-
mation Systems, 8(4):325–362, October 1990.

[80] I. Navarrete, A. Sattar, R. Wetprasit, and R. Marı́n. On point-duration networks for
temporal reasoning. Artificial Intelligence, 140(1/2):39–70, 2002.

696 19. Temporal CSPs

[81] B. Nebel. Solving hard qualitative temporal reasoning problems: Evaluating the
efficiency of using the ORD-Horn class. Constraints, 1(3):175–190, 1997.

[82] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal
tractable subclass of Allen’s interval algebra. Journal of the ACM, 42(1):43–66,
January 1995.

[83] A. Oddi and A. Cesta. Incremental forward checking for the disjunctive temporal
problem. In ECAI, pages 108–112, 2000.

[84] A. K. Pujari, G. V. Kumari, and A. Sattar. INDU: An interval and duration network.
In Australian Joint Conference on Artificial Intelligence, pages 291–303, 1999.

[85] R. Reiter. Towards a logical reconstruction of relational database theory. In
M. Brodie, J. Mylopoulos, and J. Schmidt, editors, On Conceptual Modelling:
Perspectives from Artificial Intelligence, Databases and Programming Languages,
pages 191–233. Springer Verlag, 1984.

[86] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, 2001.

[87] J. Renz. A Spatial Odyssey of the Interval Algebra: 1. Directed Intervals. In IJCAI,
pages 51–56, 2001.

[88] J. Renz and G. Ligozat. Weak composition for qualitative spatial and temporal
reasoning. In CP, pages 534–548, 2005.

[89] P. Revesz. Introduction to Constraint Databases. Springer, 2002.
[90] A. Schrijver, editor. Theory of Integer and Linear Programming. Wiley, 1986.
[91] L. Schubert and C. Hwang. Episodic logic meets Little Red Riding Hood: A

comprehensive, natural representation for language understanding. In L. Iwanska
and S. Shapiro, editors, Natural Language Processing and Knowledge Represen-
tation: Language for Knowledge and Knowledge for Language, pages 111–174.
MIT/AAAI Press, 2000.

[92] E. Schwalb and R. Dechter. Processing disjunctions in temporal constraint networks.
Artificial Intelligence, 93:29–61, 1997.

[93] P. Schwartz and M. E. Pollack. Two approaches to semi-dynamic disjunctive tem-
poral problems. In ICAPS Workshop on Constraint Programming for Planning and
Scheduling, 2005.

[94] B. Selman, H. J. Levesque, and D. G. Mitchell. A new method for solving hard
satisfiability problems. In AAAI, pages 440–446, 1992.

[95] Y. Shi, A. Lal, and B. Y. Choueiry. Evaluating consistency algorithms for temporal
metric constraints. In AAAI, pages 970–971, 2004.

[96] S. Staab. From binary temporal relations to non-binary ones and back. Artificial
Intelligence, 128(1-2):1–29, 2001.

[97] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of tem-
poral constraints. Artificial Intelligence, 120(1):81–117, 2000.

[98] O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation formulas with
SAT. In CAV, pages 209–222, 2002.

[99] J. Thornton, M. Beaumont, A. Sattar, and M. J. Maher. A local search approach to
modelling and solving Interval Algebra problems. Journal of Logic and Computa-
tion, 14(1):93–112, 2004.

[100] I. Tsamardinos and M. E. Pollack. Efficient solution techniques for disjunctive tem-
poral reasoning problems. Artificial Intelligence, 151(1-2):43–89, 2003.

[101] P. van Beek. Approximation Algorithms for Temporal Reasoning. In IJCAI, pages

M. Koubarakis 697

1291–1296, 1989.
[102] P. van Beek. Temporal Query Processing with Indefinite Information. Artificial

Intelligence in Medicine, 3:325–339, 1991.
[103] P. van Beek. Reasoning About Qualitative Temporal Information. Artificial Intelli-

gence, 58:297–326, 1992.
[104] P. van Beek and R. Cohen. Exact and Approximate Reasoning about Temporal

Relations. Computational Intelligence, 6:132–144, 1990.
[105] P. van Beek and D. W. Manchak. The design and experimental analysis of algorithms

for temporal reasoning. Journal of Artificial Intelligence Research, 4:1–18, 1996.
[106] J. van Benthem. The Logic of Time. D. Reidel Publishing Company, 1983.
[107] M. Vilain and H. Kautz. Constraint Propagation Algorithms for Temporal Reason-

ing. In AAAI, pages 377–382, 1986.
[108] M. Vilain, H. Kautz, and P. van Beek. Constraint Propagation Algorithms for Tem-

poral Reasoning: A Revised Report. In D. Weld and J. de Kleer, editors, Readings in
Qualitative Reasoning about Physical Systems, pages 373–381. Morgan Kaufmann,
1989.

[109] M. B. Vilain. A system for reasoning about time. In AAAI, pages 197–201, 1982.
[110] L. Xu and B. Y. Choueiry. Improving backtrack search for solving the TCSP. In

CP, pages 754–768, 2003.
[111] L. Xu and B. Y. Choueiry. A new efficient algorithm for solving the simple temporal

problem. In TIME, pages 212–222, 2003.

This page intentionally left blank

Handbook of Constraint Programming 699
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 20

Distributed Constraint Programming

Boi Faltings

Constraint satisfaction and optimization problems often involve multiple participants. For
example, producing an automobile involves a supply chain of many companies. Schedul-
ing production, delivery and assembly of the different parts would best be solved as a
constraint optimization problem ([35]). A more familiar task for most of us is meeting
scheduling: arrange a set of meetings with varying participants such that no two meet-
ings involving the same person are scheduled at the same time, while respecting order
and deadline constraints ([18, 22]). Another application that has been studied in detail is
coordinating a network of distributed sensors ([2]).

Such problems can of course be solved by gathering all constraints and optimization
criteria into a single large CSP, and then solving this problem using a centralized algorithm.
In practice there are many cases where this is not feasible, because it is impossible to bound
the problem to a manageable set of variables.

For example, in meeting scheduling, once two people are planning a common meeting,
this meeting is potentially in conflict with many other meetings either of them are planning
and whose times are decided in parallel. A centralized solver does not know beforehand
which of these potential conflicts will become important, and thus will have to gather
information about all of them. Since any two people in the world are connected through
on average six degrees, this constraint problem is likely to involve a substantial part of the
world’s population! In contrast, in a distributed solution, changes need to propagate only
when there are conflicts between meetings. As such conflicts can usually be resolved by
local adjustments, propagation will be limited and the problem can usually be solved with
a reasonable amount of effort. This is a typical application where distributed algorithms
for constraint satisfaction are attractive.

As an another example, consider a configuration system for vacations that composes
information obtained from the internet. Even though there are only a finite number of
elements to be composed, the number of information sources that could be considered is
unboundedly large. Thus, even with a small number of variables it may be impossible for a
constraint solver to know the entire space of admissible values and tuples for variables and
constraints. Fortunately, the semantics of CSP allows to prove the validity of a solution

B.V.

700 20. Distributed Constraint Programming

even without knowing the entire problem. The open constraint satisfaction formulation
addresses this form of distributed CSP.

There are also other reasons why distributed constraint satisfaction may be necessary:

• cost of formalization: when problem solving is centralized, each participant will
have to formulate its constraints on all imaginable options beforehand. This may be
excessively complex: a part supplier, for example, might have to give all feasible
delivery dates and quantities beforehand, requiring it to explicitly plan and evaluate
a huge number of different scenarios.

In contrast, when using open constraint satisfaction, agents are asked to evaluate
only a minimal number of constraints. Furthermore, if solving is distributed they
can use whatever software they have for this purpose.

• privacy: in a meeting scheduling scenario, the fact that person A is also meeting
with person B may be private information that A wants to keep from another per-
son C. When problem solution is centralized, the solver will see all meetings and
constraints, and thus gains valuable private information that can easily be leaked or
stolen.

In contrast, a distributed solution can be constructed in such a way that agents only
reveal information piecemeal when evaluating constraints, and other agents only see
information they are required to see for the solving process.

• dynamicity: the problem may change dynamically in that new agents appear while
others disappear. When a centralized solver is used, these changes would have to be
managed by the central server, which may not be feasible.

• brittleness: a centralized solver creates a central point of failure that leads to brittle-
ness of the entire system. In contract, when solving is distributed among different
agents, it allows load balancing and redundant and thus fault-tolerant computation
among different agents, leading to more reliable systems. Also, parallel execution
might make the entire process more efficient.

A distributed algorithm involves a considerable amount of message exchange, which
means that the overall solution may well be slower than a centralized process. In general,
distributed techniques work well only when the problem is sparse and loose, i.e. each
variable has constraints with only few other variables, and for each constraint there are
many value combinations that satisfy it. When problems are dense and tight, usually the
distributed solution requires so much information exchange among the agents that it would
be much more efficient to communicate the problem to a central solver.

The topic has been studied for quite some time; Sycara et al. ([35]) has considered
heuristics for distributed constrained search, and Dechter ([5]) has considered the feasi-
bility of distributed constraint satisfaction in a network of identical agents. Since then, a
considerable range of techniques has been developed.

This chapter gives an overview of the main techniques that have been developed for
constraint satisfaction and optimization in distributed settings. It first covers methods for
synchronous and asynchronous distributed solving by backtracking, local search and dy-
namic programming. It then describes methods for open constraint programming and op-
timization, and finally considers the issues of self-interest and privacy. In the interest of a

B. Faltings 701

coherent description, I unified different algorithms, and thus occasionally present concepts
with different names and simplifications. I believe that the algorithms illustrate the main
techniques of the field in a concise and coherent manner.

20.1 Definitions

In this section, we formally define two variations to the standard formulation of constraint
satisfaction problems. The first, which we call distributed constraint satisfaction, formal-
izes the fact that constraint solving happens under the control of different independent
agents. The second, called open constraint satisfaction, formalizes the fact that informa-
tion about the CSP is distributed among different agents.

A distributed constraint satisfaction problem is commonly defined as follows:

Definition 20.1. A distributed constraint satisfaction problem (DisCSP) is a tuple < X ,
D, C, A > where:

• X = {x1, .., xn} is a set of n variables.

• D = {d1, .., dn} is a set of n domains.

• C = {c1, .., cm} is a set of m constraints.

• A = {a1, .., an} is a set of n agents, not necessarily all different.

The main difference to a classical CSP, as defined in Chapter 1, is that every variable
xi is controlled by a corresponding agent ai, meaning that this agent sets the variable’s
value. When an agent controls more than one variable, this would be modelled by a single
variable whose values are combinations of values of the original variable. It is further
assumed that agent ai knows xi’s domain di and all constraints involving xi, and that
it can reliably communicate with all other agents. The values of n and m need not be
known to any agent, thus allowing for problems of unbounded size as mentioned in the
introduction. The main challenge is to develop distributed algorithms that solve the CSP
by exchanging messages among the agents in A.

As in Chapter 1, each constraint cj is a pair < rsj
, sj > where sj is a tuple of variables

and rsj
is a cost function sj ⇒ {0, 1} that maps every value combination of sj into 0 if it

is consistent, and 1 if it is not. A solution to the DisCSP is an assignment of values to all
variables that is consistent for all relations.

A distributed constraint satisfaction problem can be extended to a distributed constraint
optimization problem by letting the functions rsj

map to ℜ+, representing a cost. A so-
lution to the optimization problem is an assignment of values to all variables such that
the sum of the costs of all constraints is minimized. Hard constraints can be incorporated
by mapping consistent value combinations to cost 0, and inconsistent ones to cost ∞ (in
practice, some very large number). It is possible to extend this formulation to general soft
constraints (see Chapter 9) but little work has been done on that.

Note that the assumption that each agent controls a variable and knows all the con-
straints involving that variable may not be applicable to all situations. For example, in
meeting scheduling agents usually do not have unilateral power to fix the time of a meet-
ing, and do not know the constraints of the other participants. Silaghi et al. ([28]) have

702 20. Distributed Constraint Programming

proposed an alternative formulation where each agent applies its constraints find an agree-
ment on the value of variables. Their asynchronous aggregation search (AAS) algorithm
shows how the asynchronous backtracking techniques for distributed search can be modi-
fied to accommodate this formulation which can be more appropriate for applications.

The definition of open constraint satisfaction problems is somewhat more complex,
since we need to take into account the fact that the problem itself varies. The definition
thus follows that given for dynamic constraint satisfaction (Chapter 21), except that here
its is the variable domains rather than the set of constraints that vary, and that the domains
are monotonically increasing:

Definition 20.2. An open constraint satisfaction problem (OCSP) is a possibly unbounded,
partially ordered set {CSP (0), CSP (1), ...} of constraint satisfaction problems, where
CSP(i) is defined by a tuple < X,D(i), C > where

• X = {x1, x2, ..., xn} is a set of n variables,

• D(i) = {d1(i), d2(i), ..., dn(i)} is the set of domains for CSP(i), with dk(0) = {}
for all k, and

• C = {(xi, xj), (xk, xl), ...} is a set of m binary constraints, given by the pairs of
variables they involve and intensional relations between them.

The set is ordered by the relation ≺ where CSP (i) ≺ CSP (j) if and only if (∀k ∈
[1..n])dk(i) ⊆ dk(j) and (∃k ∈ [1..n])dk(i) ⊂ dk(j).

An assignment to an OCSP is a combination of value assignments from the correspond-
ing domains to all variables. An assignment is consistent in instance CSP (i) if and only
if all intensional constraints are satisfied. A solution of an OCSP is an assignment that is
consistent for some instance CSP (i) and any instance CSP (j) ≻ CSP (i).

Open CSP can be extended to open constraint optimization problems (OCOP) by adding
a set of cost functions:

• W (i) = {w1(i), w2(i), ..., wn(i)} is a set of cost (weight) functions on the domains
in D, where wi : di → ℜ+ gives the cost associated with each value in the domain
di.

Note that in order to not require all costs to be known, they are associated with variable
domains rather than constraints. Note also that the two variants can be combined, i.e. it is
possible to have an open CSP where control of the variables is distributed among different
agents.

In this chapter, we consider only unary and binary constraints. Most algorithms for
DisCSP can be generalized to n-ary constraints.

20.2 Distributed Search

20.2.1 Synchronous Backtracking

The simplest algorithm for solving constraint satisfaction problems is backtrack search.
In backtrack search, a partial assignment of values to a subset of variables {x1, .., xk} is

B. Faltings 703

iteratively extended by adding an assignment to another variable xk+1 such that all con-
straints with already assigned variables are satisfied. When no such extension is possible,
the algorithm backtracks and changes one or more of the earlier assignments.

The backtrack search algorithm can be readily extended to a distributed algorithm by
passing the partial assignments from agent to agent. Thus, agent ak passes the partial
assignment {x1 = v1, .., xk = vk} to ak+1 who adds a consistent assignment for xk+1,
if possible, or otherwise returns a message to ak signalling the need to backtrack. This is
basically a centralized backtrack algorithm where the thread of control passes to different
agents during the execution. Such an algorithm is described for example in [40].

Most of the well-known search techniques for centralized backtracking also apply to
synchronous distributed backtracking:

• forward checking and higher degrees of consistency can be implemented by letting
each agent ai maintain a label that contains the admissible values for its variable
xi. Constraint propagation between different variables is implemented by sending
messages between the corresponding agents.

• the variable ordering can be chosen statically or dynamically according to various
heuristics, again by exchanging messages among agents.

• backjumping can be implemented by passing the backtrack not to the last involved
agent, but to the one that is responsible for the variable to be backtracked to.

Considerable efficiency gains can be obtained by exploiting the parallelism inherent
in the agents. Synchronous search can be extended with asynchronous forward check-
ing ([17]). Here, forward checking is executed in parallel by sending messages to all agents
that are responsible for unassigned variables, rather than treating them sequentially. This
parallelism can also be extended to subsequent propagation that achieves higher degrees of
consistency.

In dynamic distributed backjumping ([20]), instantiation continues in parallel with for-
ward checking, and agents are informed of domain wipeouts by nogood messages. An
additional heuristic identifies potential conflicts with variable assignments and orders val-
ues to avoid these conflicts. These two modifications bring improvements of about 1-2
orders of magnitude in cycles, constraint checks and number of messages.

However, synchronous backtracking has essentially the same restrictions as centralized
solutions, except that there may be a small advantage in privacy in that constraints do
not have to be communicated to any other parties. Furthermore, they do not exploit the
potential for parallel execution among the different agents, as essentially only one agent is
active at any one time.

20.2.2 Asynchronous Backtracking

Most of the research effort in distributed constraint satisfaction has focussed on asyn-
chronous distributed search algorithms. These are characterized by the fact that all agents
are active in parallel and only coordinate as needed to ensure consistency of the constraints
their variables are involved in.

The first category of asynchronous search algorithms are asynchronous backtracking
algorithms that perform a systematic exploration of the entire search space. The first of

704 20. Distributed Constraint Programming

Algorithm 20.1: ABT-opt: Asynchronous backtracking adapted for optimization.
1: Procedure receive-add-link(xj)
2: add xj.agent to self.lower-agents
3: call(receive-ok(xj.agent,self.x))

1: Procedure receive-ok(var)
2: for ng ∈ nogoods do
3: if ∃vc ∈ conds(ng) vc.agent=var.agent ∧ vc.v 6= var.v then
4: eliminate ng from nogoods
5: replace v ∈ self.agentview s.th. v.agent = var.agent by var
6: adjust-value

1: Procedure receive-nogood(new-ng)
2: for var ∈ new-ng.cond do
3: if (cv← x ∈ self.agentview s.th. x.agent = var.agent) = NIL then
4: add var to self.agentview
5: call(var.agent,receive-add-link(self.x))
6: else
7: if cv.v 6= var.v then
8: return
9: for ng ∈ self.nogoods s.th. ng.v = new-ng.v ∧ new-ng.tag ∩ ng.tag = ng.tag do

10: eliminate ng from self.nogoods
11: self.nogoods← self.nogoods ∪{new-ng}
12: adjust-value

1: Procedure adjust-value
2: old-value← self.x.v ; self.cost←∞
3: for v ∈ self.domain do
4: δ← r(v) ; LB← 0 ; tag← { self } ; exact← true
5: for xj ∈ self.agentview do
6: δ← δ + r(xj,v)
7: for ng ∈ self.nogoods s.th. ng.v = v do
8: LB← LB + ng.cost
9: tag← tag ∪ ng.tag

10: exact← exact ∧ ng.exact
11: exact← exact ∧ (tag ∩ self.lower-agents = self.lower-agents)
12: if δ + LB ≤ self.cost then
13: self.x.v← v ; self.cost← δ + LB; self.tag← tag; self.exact← exact
14: if (self.cost 6= 0) ∨ self.exact then
15: if (self.agentview = φ) ∧ self.exact terminate(self.cost)
16: xj← lowest priority variable in self.agentview
17: call(xj.agent,receive-nogood(nogood(xj.v,

agentview\xj,self.tag,self.cost,self.exact))
18: if self.x.v 6= old-value then
19: for a ∈ self.lower-agents do
20: call(a,receive-ok(self.x))

B. Faltings 705

self:

x own variable
domain (constant) domain of the own variable
r (constant) r(xj,vi) gives the cost r{xj,self.x}(xj.v, vi) (associated with

the constraint with xj) and r(vi) gives the cost r{self.x}(vi)
if there is unary constraint on the own variable, and 0 otherwise

agentview set of variables
lower-agents set of pointers to agents
nogoods set of nogoods
cost estimate of the cost of self and lower priority variables
tag set of agents, used to keep track of received nogoods
exact true if cost is exact and false if only a lower bound

variable:

v value
agent pointer to responsible agent

nogood:

v variable value that nogood refers to
cond set of variable
tag set of pointers to agents
cost cost of the nogood
exact true/false depending on whether cost is exact or only a lower bound.

1: Procedure ABT-opt
2: self.x.v← NIL; self.lower-agents← {lower priority agents sharing a constraint}
3: self.agentview← {higher priority variables sharing a constraint}
4: adjust-value

Figure 20.1: Data structures and main procedure for ABT-opt.

these algorithms, Asynchronous Backtracking(ABT), was published by Yokoo et al. ([37],
and it has become a reference in the field on which many other algorithms are built. It
was formulated for binary constraints and here we will also assume that all constraints are
binary.

Figure 20.1 shows the data structures used for the ABT algorithm. Each agent has a
data structure self that contains its own variable, constants that represent the domain of
its variable as well as the constraints it has with other variables, and several fields that are
used to store the current state of the search. The other data structures are variables and
nogoods that will be explained in more detail below.

Algorithm 20.1 shows the main procedures of the ABT algorithm. Its presentation is
slightly adapted so that it can also be used for optimization, following ([31]) and ([34]).
It uses the construct call to indicate that the agent sends a message to another agent, thus
invoking the receiving agent’s procedure for receiving this message. These invocations are

706 20. Distributed Constraint Programming

x1:
{a,b}

x2:
{a,b}

=

==

=
=

x3:
{a,b}

x4:
{a,b,c}

x5:
{a,b}

Figure 20.2: Example of a distributed constraint satisfaction problem. Circles represent
different agents, directed arrows represent constraints between variables. Here, all con-
straints are inequality constraints. The dashed arrow indicates a link that might have to be
added during the execution and is not part of the problem.

made asynchronously, i.e. they do not return any values and the invoking process does not
wait for them to finish. However, it is assumed that no invocations are lost, all invocations
by the same agent are handled in the order in which they were made, and no agents crash1

ABT explores a backtrack search tree with a fixed variable ordering that we assume to
be x1, x2, .., xn, without loss of generality. The ordering is assumed to be known to all
agents, and establishes priorities in that a variable xi has priority over another variable xj
whenever i < j. Note that this does not imply that any agent has knowledge of the entire
problem: the order could be established for example by assigning each agent a unique
number (e.g. serial number of the processor and the process id of the agent) and letting the
ordering be identical to this numbering.

The variable ordering is used to decide a direction for each constraint: the agent con-
trolling the first variable in the ordering is called the value-sending agent, and the other is
called the constraint-evaluating agent.

As an example, consider the problem shown in Figure 20.2, where variables are as-
sumed to be ordered according to their index. The constraints are thus directed as indicated
by the arrows.

The algorithm is initially called by invoking each agent with the procedure ABT-opt,
shown at the bottom of Figure 20.1. This initializes the own value, identifies the initial set
of lower priority agents, and initializes the agentview to the higher priority variables,
which are initialized with values that could be randomly chosen. The agent then picks an
own value by calling adjust-value, which also causes it to be sent in OK messages to
the lower priority agents. Once all these messages have been received, every agent has a
correct agentview. During the search, agents continue to set their value asynchronously
whenever they receive new information.

When an agent receives an OKmessage, it is invoked through the procedure receive-
ok. The agent keeps a record of nogoods that identify assignment combinations that have

1When agents do crash, the algorithm still terminates, but the constraints enforced by crashed agents are not
necessarily satisfied in the final result.

B. Faltings 707

xi:
{v,w,..}

ADD−LINK

NOGOOD(...)

OK(...)

NOGOOD(...)

OK(...)xj xk

j,l < i < kxl

Figure 20.3: Messages used in asynchronous backtracking. The agent responsible for xi
receives OK messages from higher priority agents aj (j < i) and nogood message from
lower priority agents ak (k > i) when their variables have common constraints with xi. It
may send add-link messages to request the value of other higher priority variables xl.

been found to lead to inconsistencies or costs as explained further below. In order to
avoid a combinatorial explosion in its memory requirements, the agent first eliminates any
nogoods that are no longer valid given the new assignment. It then integrates the received
value into its agentview. This is a data structure that keeps track of all values of higher
priority agents that are relevant for its search.

Next, it adjusts its own value to optimally satisfy the constraints. This is done in the
procedure adjust-value. It first evaluates the constraints with earlier variables to de-
termine which values in its domain cause the least amount of inconsistency. For each
value v in the domain, the variable δ is used to compute a lower bound on the cost that
this value would imply. We assume here that the constant r returns a value of 0 if the
combination given as an argument is allowed by the constraint, and 1 otherwise, so that
the cost measures the number of constraint violations. The agent first sums the number
of constraint violations with higher priority variables given in agentview(Steps 5-6). In
LB, it adds any nogoods that may exist on the value, indicating violations in lower priority
variables(Steps 7-10). The tag and exact variables are used for termination detection
and are explained later (see 20.2.4).

The agent computes the number of violations in cost as δ + LB, and chooses the value
with the smallest cost(Steps 12-13). Ideally, this cost is 0, in which case it has found a
consistent value. If no consistent value can be found, the minimum cost is > 0, and the
agent sends a nogood to the lowest higher-priority agent in its agent view(Steps 14-17).
Finally, if this leads to choosing a different value, it is sent to the lower priority agents via
OK messages(Steps 18-20).

In the example, assume that all variables are initially set to a. We consider one possible
execution where all messages take about the same time, so that it can be understood as a
sequence of parallel rounds. However, such synchrony is not required to obtain the correct
results. In the first round, agents receive the following messages and make the following
changes:

708 20. Distributed Constraint Programming

message(s) action
a2 OK(x1=a) x2 ← b

a3 OK(x2=a) x3 ← b

a4 OK(x1=a) x4 ← b

a5 OK(x3=a) x5 ← b

OK(x4=a)

which leads to a second round:

message(s) action
a3 OK(x2=b) x3 ← a

a5 OK(x3=b) x5 ← a

OK(x4=b)

and a third round:

message(s) action
a5 OK(x3=a) inconsistent!

If no value consistent with the agent view can be found, as is the case for a5, the agent
can conclude that the current agent view is responsible for this failure. It constitutes a
nogood: a combination of assignments that makes it impossible to assign a value to the
variable, and thus cannot be part of any solution of the CSP. The nogood is constructed as
a resolvent of all constraints and existing nogoods. It is sent in a nogood message to the
agent responsible for the lowest priority variable in the nogood.

Nogoods are generated whenever an agent ai does not find a consistent value for its
variable xi. In this case, each value in di entails at least one constraint violation, i.e. the
minimum cost for all values is > 0. In this case, the agent concludes that its current agent
view does not allow any solution, and passes this up as a nogood to the lowest priority
agent in its agentview.

Here, d5 has possible values a and b. where:

x3 = a ⇒ x5 6= a

x4 = b ⇒ x5 6= b

Thus, the minimum cost is equal to 1, so that the current agent view, (x3 = a, x4 = b) is
passed up as a nogood with v = b, cond = (x3 = a), tag = x5 and cost = 1 to a4,
the lowest priority agent in the agent view.

For each of the values v ∈ di, agent ai stores one or more nogoods whose cost field
gives a lower bound on the cost that will be incurred by variables in the field nogood.tag:

(xj = vj ∧ xk = vk ∧ ... ∧ xi = v)⇒ cost(nogood.tag) ≥ nogood.cost

which, assuming that xi is the lowest-priority variable, is written in explanatory form as:

nogood.cond ⊆ self.agentview ∧ nogood.v = self.x.v ⇒
cost-sum(nogood.tag) ≥ nogood.cost

and stored with agent ai. In the version of ABT shown here, agents ensure that all nogoods
for the same value refer to disjoint tags and that they are all applicable in the current agent
view.

B. Faltings 709

An agent receives a nogood by being invoked through the receive-nogood mes-
sage. Note that an agent may receive a nogood that contains variables that it previously had
no constraint with, and thus are not part of its agent view. In order to decide whether the
nogood is applicable, it thus has to add a link with this variable so that it will be informed
whenever it changes. This is done using an add-link message(Steps 2-5).

An agent applies its nogoods when checking for consistency of its current value assign-
ment. It has to only apply those nogoods that are consistent with the current agent view.
In fact, any nogoods that are no longer consistent with the agent view can be discarded
as they will in any case be rediscovered should the agent view again become compatible
with it. This means that the amount of storage required at each agent grows at most lin-
early with the size of the domain and the number of variables. As a consequence, when an
agent receives a nogood which is no longer applicable to the current agentview, it discards
it(Steps 7-8).

Next, it eliminates all existing nogoods that already cover part or all of the variables
covered by the nogood just received, as indicated by the tags. These may exist because
the agent may have already received nogoods resulting from partial propagation among
the lower-priority agents. Finally, it adds the nogood to the nogood list, and adjusts its
current value. This may result in further nogood messages being passed to higher priority
agents(Steps 9-10).

In this example, a4 has now received a nogood that involves x3, and it can no longer
evaluate its applicability. Thus, it sends an add-link message to a3 and is informed that
the current value of x3 is a, so that the nogood is indeed applicable and its own value is no
longer consistent. Thus, a4 now searches for a new value for x4 and finds value c, which
now makes the entire problem consistent, and no further messages result.

Bessière et al. [3] show that adding links can be skipped if after sending a nogood of
nonzero value, all nogoods involving a variable that is not linked with the current one are
immediately discarded. If they are indeed required, they will eventually be rediscovered,
but the algorithm will repeat a portion of the search and thus become less efficient.

Algorithm 20.1 terminates when the highest priority agent derives a nogood that is ei-
ther exact or has non-zero cost. In the first case, the algorithm has found an assignment
without constraint violation and thus a solution to the CSP. In the second case, the prob-
lem has no solution. The termination is initiated by a procedure terminate that should
also inform the other agents that the process is now terminated. For more detail see Sec-
tion 20.2.4.

When agents operate asynchronously, it can happen that some agents change value
faster than others. This can lead to an agent receiving several OK messages for the same
variable before processing them. In this case, only the last message has to be kept. Times-
tamps can be used to identify this when message delivery times are not predictable.

20.2.3 Asynchronous Distributed Constraint Optimization

Constraint optimization most commonly uses the branch-and-bound algorithm. This al-
gorithm is difficult to adapt to an asynchronous, distributed setting because it requires
agreement among all agents on a global upper bound on the solution cost. However, opti-
mization can be carried out purely on the basis of lower bound propagation.

As has been observed in [31], the asynchronous backtracking algorithm (Algorithm
20.1) can also be used for constraint optimization by assuming that constraints no longer

710 20. Distributed Constraint Programming

x1

x2

x3

x4

x5

Figure 20.4: DFS tree ordering.

just return values of 0 (consistent) and 1 (inconsistent), but a more general cost measure in
ℜ+. The algorithm works exactly as in the constraint satisfaction problem. However, while
in the case of constraint satisfaction, most of the time a variable’s nogood ends up having
a value of 0 and is thus not transmitted, in this case most nogoods will have a positive cost
and thus travel up the hierarchy.

To show the correctness of the optimization, consider in more detail the computation
of local costs. An agent responsible for variable xi the local cost δ(v) of value v of its own
variable as

δ(v) = r{xi}(v) +
∑

xj∈agentview

r{xi,xj}(v, vj)

i.e. the cost of this value at the variable itself plus the sum of all costs for the constraints
with higher priority variables. It uses this value to compute for each value v the lower
bound

LB(xi = v) = δ(v) +
∑

ng∈compatible−nogoods(xi=v)

ng.cost

as the sum of the local value and all nogoods for this value that are compatible with the
current agent view. It always chooses its own value as the value v that minimizes the lower
bound. If this is different from the current value, it sends OK message to lower priority
agents.

The nogoods that agents receive express lower bounds on the total cost of constraints
evaluated by lower priority agents. They supersede any earlier nogoods that refer to the
same or a subset of the variables. Thus, Algorithm 20.1 checks for this in lines 9 and 10 of
procedure receive-nogood and discards any obsolete nogoods.

However, it would still be possible for several nogoods to refer to the same variable and
thus for the corresponding costs to be summed up multiple times. When we only consider
constraint satisfaction, this is not a problem because it is not necessary to compute the
exact number of violations, but only to detect that some violation is present. However, in
optimization such overlaps lead to inaccurate results.

B. Faltings 711

We now show that if agents are ordered in a DFS tree order, such overlaps can never
occur. A DFS tree is a rooted and directed spanning tree of the constraint graph such that
any edge not in the tree, called a back edge, can only exist between an ancestor and a
descendant in the tree, but never to a sibling or descendant of a sibling. Figure 20.4 shows
an example of a DFS tree consisting of 5 nodes. Tree-edges are shown as solid lines, and
back-edges as dashed lines. Any graph can be ordered as a DFS tree, for example using
depth-first search traversal to find the tree-edges and order. This process can also be carried
out as a distributed algorithm.

In a DFS tree, backedges from a node xi can only lead to nodes xj that are on the path
from the root to xi. Since agents always send nogoods to their lowest-priority ancestor,
no nogood can ever be sent between agents connected by a back-edge, but only along tree
edges. Thus, there is always a unique path from any agent to any other agent, and so a given
variable xk can participate in only one chain of nogoods. This means that the nogoods sent
by the children always give an exact bound on the actual cost of the lower priority agents.

Thus, ordering the agents as a DFS tree simplifies the algorithm and guarantees non-
overlapping nogoods. A similar observation underlies the AND/OR search trees discovered
recently ([15]).

This algorithm is essentially the ADOPT algorithm described in [19]. However, ADOPT
also includes a mechanism of backtrack thresholds to avoid excessive recomputation of
nogoods. It addresses the problem that the algorithm frequently recomputes earlier partial
solutions as the bounds change.

Consider a variable xi and three states s1, s2 and s3 such that all higher-priority vari-
ables have identical values, but xi changes first from a to b, then back to a since the no-
good for b turns out to be bigger than that of a. When xi changes state, all lower-priority
variables discard their nogoods. Thus, when xi changes back to a, they will again have to
search to re-establish the solution they had already reached earlier. However, xi’s ancestor
still has a nogood for value a, and can indicate this as the cost of the best solution that
the lower-priority agents must find. The lower-priority agents can use this information to
speed up their search that reconstructs the optimal solution for value a. Backtrack thresh-
olds involve some further bookkeeping issues that are addressed in detail in the ADOPT
algorithm ([19]).

20.2.4 Termination Detection

In the context of the ABT algorithm as we have described it here, termination detection can
be achieved by also propagating upper bounds on the quality of the solution. This has been
first proposed in the ADOPT algorithm ([19]). Note first that in ABT-opt, when all agents
below xk have received all nogood messages, the lower bound computation returns the
exact cost of the subproblem below the sending agent. Thus, we include in the nogood an
extra field that indicates if the nogood is exact or not. This is then used by higher priority
agents to see if their costs are exact: only if they have received exact nogoods covering all
lower priority agents will their costs become exact as well. Note that exact nogoods are
passed on even when their cost is zero so that the receiving agents can tell whether their
cost is exact.

Finally, when the highest-priority agent derives an exact nogood, the algorithm ter-
minates. In a constraint satisfaction problem, if the cost is non-zero, the problem has no

712 20. Distributed Constraint Programming

consistent solution. Otherwise, the current assignment to all variables is a consistent or
optimal solution.

20.2.5 Soundness, Termination and Completeness of ABT

Soundness and termination of the ABT algorithm can be proven inductively as follows.
Consider variable xk and assume as inductive hypothesis that as long as variables x1..xk−1

do not change value, variables xk..xn will converge in finite time on an assignment whose
cost is minimal given the values of x1..xk−1, and that this cost is transmitted to xk as a
nogood with the exact field set to true.

Clearly, the inductive hypothesis holds for xn since there are no lower priority vari-
ables, it chooses its optimal value instantly and transmits its exact cost to its parent.

Now consider variable xk. It will change value only when the nogood for its current
value increases so that its cost becomes greater than that of another value. As the nogoods
form lower bounds on the optimal costs, they cannot increase beyond this optimal cost.
Since each nogood is the sum of costs taken from a finite set, this implies a bounded
number of increases. Thus, xk must eventually reach quiescence, and by the inductive
hypothesis, it will receive exact nogoods with the costs of the optimal assignments for
xk+1..xn. Since the algorithm chooses the value of xk to minimize the cost of xk..xn
given the value of x1..xk−1, xk can only stabilize on the optimal value and then sends an
exact nogood with the optimal cost of xk..xn given the values of its ancestors. Thus, it also
satisfies the inductive hypothesis. By induction, the hypothesis also holds for x1, which
proves soundness and termination of the algorithm.

For the constraint satisfaction case, completeness follows from termination and the
fact that the algorithm finds an optimal solution. If there is an assignment that satisfies all
constraints, it has cost 0 and so the algorithm will terminate with an assignment that has
cost 0 and violates no constraints.

20.2.6 Performance Evaluation

The complexity of constraint satisfaction algorithms is commonly measured by counting
the number of constraint checks. In asynchronous search algorithms, a more accurate
measure of the expected execution time is to count the number of concurrent constraint
checks, given as the smallest number of cycles required when each agent can execute a con-
straint check in parallel, thus considering the interdependency of their execution. Meisels
et al. ([16]) presents an algorithm called CCA for computing the number of concurrent
constraint checks during a simulation run of an algorithm.

In a distributed execution, sending a message often takes much longer than a constraint
check. For example, sending a message through e-mail can take minutes, amounting to
millions of constraint checks. Thus, many researchers measure message complexity as
the main measure of expected execution time. Here again, one can simply count the total
number of messages, or obtain a measure of concurrent messages that more accurately
reflects the interdependencies among them.

An issue here is also the size of messages, as some algorithms may be able to package
information into fewer but larger messages. This applies particularly to techniques based
on dynamic programming, described later in this chapter.

B. Faltings 713

It has been customary in distributed systems research to show a graph of complexity vs.
the ratio between the time required to send a message and the time required for a constraint
check. This measure has been used in the original paper on ABT ([37]) and in several other
algorithm evaluations, and is the most comprehensive performance measure since it also
makes apparent parallelism between message delivery and computation.

20.3 Improvements and Variants

20.3.1 Agents Controlling Constraints Instead of Variables

In ABT, it was assumed that each variable is under the control of an agent, and that this
agent knows all constraints relevant to that variable. In many applications, variables are
public knowledge and it is necessary to generate a consensus among agents as to their
value. On the other hand, agents are free to set constraints as they wish.

Silaghi et al. ([28]) have shown how ABT can be adapted to this situation. It involves
treating a dual problem where agents exchange constraints or parts of constraints rather
than variable assignments. To represent them efficiently, their asynchronous aggregation
search(AAS) algorithm uses aggregations of values that are described next.

20.3.2 Value Aggregation to Reduce Message Traffic

When variables in a DisCSP have large domains, it is often the case that several values
behave the same with respect to constraints. It is then more useful to aggregate them into
a single value that can be treated in a single message.

This idea is developed in the AAS algorithm ([28, 33]). AAS is similar to ABT, but
uses the dual of the original problem so that agents are now responsible for constraints, and
variables are shared between agents that have constraints on them. Each agent decomposes
the space of value combinations of a constraint into equivalent groups such that all value
combinations within them have the same cost. These can be considered the values of the
dual variables, and the algorithm then performs the ABT algorithm on this dual problem.
Some complications occur since the decompositions may have to be refined during search.
On randomly generated problems, aggregation brings improvements of several orders of
magnitude in search efficiency ([33]).

20.3.3 Distributed Consistency Maintenance

One of the most successful techniques in (centralized) CSP is consistency, in particular arc
consistency. They can be adapted to asynchronous settings as well, but labels now have to
refer to the context of higher priority variables that has been used to generate them so that
they can be reset whenever this context is no longer valid.

The MHDC algorithm ([33]) maintains arc consistency during distributed search in
AAS by adding a separate type of message called a propagate message. It again results in
very significant performance gains on randomly generated problems.

714 20. Distributed Constraint Programming

20.3.4 Asynchronous Weak-Commitment Search

An important weakness of ABT is that it uses a static variable order, which is known to
lead to inefficient search in CSP. In asynchronous weak-commitment search (AWC) [38]),
agent priorities are dynamically adjusted so that whenever a backtrack occurs, the agent
initiating the backtrack becomes the highest priority agent. This focusses the search on the
most difficult parts of the problem space, and AWC is reported to be significantly (at least
1 order of magnitude) more efficient than ABT. However, a major drawback is that AWC
is complete only when all nogoods are stored, leading to exponential storage requirements.

20.3.5 Asynchronous Reordering

Reordering is one of the most powerful techniques for speeding up search algorithms for
constraint satisfaction and optimization. In asynchronous search, reordering is significantly
more complex as there is no central view of the problem.

A first algorithm that uses reordering is AWC, described above. AWC needs to store
an exponential number of nogoods to be complete and is thus not considered practical.

However, it is possible to allow a more limited form of reordering if agents are only
allowed to change the orders of lower priority agents. Such reorderings do not affect the
validity of the nogoods that have been received from these agents, and thus termination in a
finite number of steps after the last reordering is still guaranteed. This has been proposed by
Silaghi et al. ([29]) in the ABTR algorithm and more recently by Zivan and Meisels ([42])
in the ABT DO algorithm.

In these algorithms, each agent can impose a new ordering of the agents below itself,
and inform these lower-priority agents of the new order. When an agent receives a message
informing it of a new order, it adjusts its agent-view to add all agents that now have a
higher priority, and discards all nogoods that mention agents that now have a lower priority.

When several agents propose reorderings, their priority is decided using a signature
scheme. It consists of a set of counters, one for each position in the ordering: (c1..cn).
When the k-th agent in the current ordering proposes a new order, the signature of this new
order is derived from the old one by keeping all ci,i < k the same, increasing ck by 1, and
setting all cj ,j > k to 0. Priority between orderings can now be decided by comparing
their signatures lexicographically, i.e. letting l be the first position where two signatures
differ, the signature with a higher cl has higher priority.

Note that given the restrictions on allowable orders, the highest priority agent can never
leave its position. Silaghi et al. ([30]) show a protocol based on proxy agents that allows
general reorderings, but at the expense of a more complex algorithm where roles are ex-
changed between agents.

Both Silaghi et al. [29] and Zivan and Meisels ([42]) report gains in efficiency for
certain reordering heuristics; however, these gains are not nearly as significant as what can
be observed in centralized algorithms.

20.3.6 Storing Nogoods

One of the main problems with asynchronous search is that in order to limit the amount of
storage required, nogoods are erased as soon as they become inapplicable due to changes
in the agent view. This means that the algorithms derive the same information over and

B. Faltings 715

over again. Much efficiency can be gained by systematically storing all nogoods that are
discovered during search. This is particularly interesting when variables are ordered as a
DFS tree so that nogoods form tight bounds on the cost of possible solutions. It has been
shown experimentally ([33]) that such storage can tremendously increase the efficiency of
asynchronous backtracking algorithms.

The amount of memory required for systematically storing all nogoods can be bounded
using the following consideration. The maximum number of nogoods that need to be stored
at an agent is equal to the size of its own domain times the number of possible contexts,
i.e. assignment combinations to higher-priority variables that are the target of edges or
back-edges from lower-priority variables. It can be shown ([24]) that for any variable, the
number of variables in this context can never exceed the induced width of the DFS tree
ordering. Thus, the maximum amount of space required at any agent is exponential in the
induced width of this ordering.

In many practical distributed problems, this width is actually not very large. For ex-
ample, in meeting scheduling, most meetings are between people in similar groups. It
has been shown ([22]) that this leads to graphs with relative low induced width. Other
examples, such as sensor networks, also typically have low induced width.

20.3.7 Cooperative Mediation

Another way to deal with the complexity of distributed optimization problems is to detect
particularly difficult parts and solves those in a centralized fashion. The optimal asyn-
chronous partial overlay (OptAPO) algorithm ([14]) dynamically calls upon certain agents
to mediate by determining the optimal solution for itself and its neighbours using a central-
ized branch-and-bound algorithm. When message delivery is slow, as is usually the case,
this can bring significant performance increases over algorithms based on asynchronous
backtracking such as ADOPT.

20.3.8 Distributed Dynamic Programming

A fundamental problem with distributed backtracking algorithms is that they explore the
search space sequentially by changing variable assignments. As variables are distributed,
each change in assignment requires message exchange between agents. Since the search
space has exponential size in the number of variables, the algorithms inevitably require an
exponentially growing number of messages. Messages are costly and slow to send, so this
is usually unacceptable.

Dynamic programming techniques such as bucket elimination ([7]) are interesting as
they allow exploring all assignments in parallel. Thus, instead of sequentially exploring all
assignments of a variable xi and passing this on to a lower-priority variable xj , variable xj
sends a single message to xi that gives the optimal cost for each of the possible values of xi.
In the DPOP algorithm ([24]), agents are arranged in a DFS tree, as described above, and
each agent communicates with its direct parent/children in the tree. Children send UTIL
messages to their parents, while parents send VALUE messages to their children. Each
UTIL message specifies, for each possible value combination of the parent and possibly
a number of ancestors the optimal cost for the sending variable and all its descendants in
the pseudotree. Value messages are similar to OK messages in that they specify the value
assigned to the parent variable.

716 20. Distributed Constraint Programming

x3x2

x1

x0

util(x0,x1)

util(x1)

util(x0)

value(x0)

value(x1)

Figure 20.5: Example of a distributed optimization problem and its solution using DPOP.

Agents use the following rules:

1. an agent that has received UTIL messages from all its children and VALUE messages
from all its parents decides on its optimal value and sends VALUE messages to all
its children.

2. otherwise, if it has received UTIL messages from all its children it constructs a UTIL
message to its parent.

Figure 20.5 shows an example of a distributed constraint optimization problem solved
using the DPOP algorithm. Assume that each variable can take values w(hite) and b(lack),
and that we have the following constraints:

c(x0, x3) = x0

x3

w b
w 3 0
b 3 3

c(x0, x1) = x0

x1

w b
w 1 0
b 2 2

c(x1, x2) = x1

x2

w b
w 1 0
b 0 1

c(x1, x3) = x1

x3

w b
w 2 0
b 0 2

Initially, only agents a2 and a3 satisfy the second behavior rule and send the following
messages to their parent a1:

UTIL(x1) =
x1

w b
0 0

UTIL(x0, x1) = x0

x1

w b
w 0 2
b 3 3

They give the lowest costs that can be obtained for these values of x1 and x0 given the
best choices for x2 and x3, and are obtained by combining the constraints on x2 and x3,

B. Faltings 717

respectively, using the bucket elimination operation ([7]). As soon as these messages have
been received by a1, a1 also satisfies the second behavior rules and generates the following
UTIL message to its parent a0:

UTIL(x0) =
x0

w b
1 3

a0 has no parents and has received UTIL messages from all its children, so it satisfies the
first behavior rule, decides its value to be w and sends this to a1 as a VALUE message.
a1 now has all the required information to decide on its best value, w, and sends VALUE
messages (x0 = w, x1 = w) to x2 and x3 who can finally decide on their own values b.
Propagation then stops since no agent satisfies any of the rules. All agents know that they
have decided on the optimal value so that no further termination detection is necessary.

It is interesting to consider solving the same example as above using asynchronous
backtracking. When nogoods are systematically stored for all combinations of higher-
priority agents, agents exchange exactly the same information as in dynamic program-
ming, but through a sequence of nogoods. The memory required in each agent to store all
nogoods is identical to the size of the largest message in dynamic programming. When
nogoods are not stored systematically, a high price is paid for rediscovering nogoods over
and over again. Thus, in the distributed case we can understand backtracking and dynamic
programming as two related approaches.

In the DPOP algorithm, the number of messages grows only linearly with the size of
the problem. However, messages may become very large. It can be shown ([24]) that
the maximum message size is exponential in the induced width of the pseudotree ordering
used. This growth can be dealt with using a technique similar to that of mini-bucket elim-
ination ([8]). Here, we need to identify higher priority variables that are involved in the
highest-dimensional messages. These variables will then change their values incremen-
tally while informing the lower-priority agents, similar to what is done in asynchronous
backtracking. While this reintroduces the problem of message explosion due to the state
changes of these variables, growth is much more moderate since in a problem with low
width, there are only few such variables.

The dynamic programming formulation also has several other advantages:

• it is possible to limit memory consumption by dropping dimensions of UTIL mes-
sages, and propagate upper and lower bounds ([25]). This allows computing solu-
tions that are optimal within these bounds.

• it is possible to stop propagation of UTIL messages when the differences between
values are insignificant, either because they have no influence on the rest of the prob-
lem or because their influence can be bounded by an approximation tolerance ([25]).

• for settings where the problem undergoes dynamic changes, it is possible to incre-
mentally adapt the solution using a self-stabilization technique ([23]): each agent
that observes a change initiates new UTIL messages that propagate through the
network and initiate changes wherever necessary. All agents know simultaneously
when the new optimal value has been reached and can change to this value without
any further synchronization mechanism, thus achieving super-stabilization. Such a

718 20. Distributed Constraint Programming

=

==

=
= x2=a

{a,b}
x1=a
{a,b}

x3=a
{a,b}

x5=a
{a,b}

x4=a
{a,b}

Figure 20.6: Distributed local search.

property is interesting for using distributed optimization as a method for controlling
a distributed system.

It can be argued that for problems with high width constraint graphs, the distributed
CSP approach does not offer significant advantages and would be solved better by central-
izing the problem. As the search is likely to explore a large portion of the possible states,
agents need to reveal information about their constraints to many other agents and so there
is little privacy advantage. Furthermore, due to the high cost of message exchange, it is
unlikely that the parallelism inherent in the distributed algorithm will bring any practical
advantage.

20.4 Distributed Local Search

Recall that local search (see Chapter 5) works by starting with an initial configuration
where values are assigned to all variables, and then makes incremental modifications to
reduce the number of inconsistencies or minimize the cost of the configuration. Each
modification is applied to individual variables or small sets of variables. Because of this
local nature, they can be carried out by a single agent. This makes local search extremely
well suited to distributed implementation.

Researchers have considered distributed local search algorithms where moves are re-
stricted to modifications of single variables, and each variable is controlled by a single
agent. Figure 20.6 shows an example of such a problem. We assume that initially, all
variables are set to the value a, and thus all inequality constraints are violated.

The basic algorithm is hill-climbing: make local changes to the variables such that the
number of constraint violations is reduced as much as possible. However, changes must be
coordinated so that neighbouring agents in the constraint graph never change value at the
same time. Otherwise, in the example each agent would change its local value to b, but not
reduce constraint violations at all.

Algorithm 20.2 implements distributed hill-climbing with coordination. It requires
synchronous execution with two rounds of message exchange with the set of neighbours
N(x) in each cycle: first, to exchange the actual values, and later to exchange the best
improvements. Note that each agent only has to know N(x), but nothing about the rest of

B. Faltings 719

the problem, so that in spite of synchronous execution this algorithm can still be applied to
unbounded problems.

Algorithm 20.2: Distributed local search algorithm.
1: v(x)← initial-value; tc1(x)← 0; tc2(x)← 0
2: repeat
3: send current value v(x) to all neighbours in N(x)
4: receive current values v(xj) from all xj ∈ N(x)
5: currentCost←∑

xj∈n(x) c(x,xj=v(xj))
6: if currentCost 6= 0 then tc1(x)← 0 else tc1(x)← tc1(x)+1
7: dmax← 0; vmin← NIL
8: for v ∈ d do
9: δ ← currentCost −∑xj∈n(x) c(x=v,xj=v(xj))

10: if δ > dmax then
11: dmax← δ; vmin← v
12: if dmax 6= 0 then tc2(x)← 0 else tc2(x)← tc2(x)+1
13: send improvement dmax and termination counts tc1(x), tc2(x) to all xj ∈ N(x)
14: receive improvements dm(xj) and tc1(xj), tc2(xj) from all xj ∈ N(x)
15: for xj ∈ N(x) do
16: if dm(xj) > dmax ∨ (dm(xj)=dmax ∧ xj ≻ self) then
17: vmin← NIL
18: tc1(x)← min(tc1(x),tc1(xj)+1); tc2(x)← min(tc2(x),tc2(xj)+1)
19: if vmin 6= NIL then
20: v(x)← vmin
21: until tc2(x) > max-dist
22: if tc1(x) > max-dist then success else failure

Thus, if an agent finds a neighbour that obtains a bigger improvement than itself, it
will not change its value. The effect of this simple coordination is that no neighbours ever
change value simultaneously. For the example, a consistent solution is achieved in the first
round of execution:

var current-cost vmin dmax change
x1 1 b 1 -
x2 3 b 3 b
x3 2 b 2 -
x4 2 b 2 -
x5 2 b 2 b

Note that only x2 and x5 change values: x2 wins over its neighbours because it has the
best improvement, and x5 because it has the highest index. Since they are not neighbours,
they can change in the same cycle.

To detect termination, Algorithm 20.2 uses two termination counters tc1 and tc2.
tc1 measures the minimum distance of any variable that could be involved in a constraint
violation. tc2 measures the minimum distance of any variable that could be unable to
make further improvement. Agents extend their knowledge by exchanging counters in the

720 20. Distributed Constraint Programming

second message exchange (Steps 13-14), and update their distances by taking the minimum
of their values in (Step 18).

The algorithm must terminate when no agent can find any improvement. This is the
case when the distance of any such agent is larger than the maximum distance of any
agent in the constraint graph, given by the constant max-dist. This constant must be global
knowledge of the problem, but can be an overestimation without affecting the correctness
of the algorithm. If at termination the minimum distance of an agent with a violation,
tc1(x), also exceed this distance, then a consistent solution has been found (Step 22).

It is well-known that hillclimbing algorithms can easily get stuck in local minima where
no local improvement is possible, but the best solution has not yet been found. Two types
of solutions to this problem have been given for distributed local search.

The first solution is distributed stochastic search, where with some probability the al-
gorithm also accepts changes that do not result in an improvement in the quality of the con-
figuration. A detailed description and analysis of several such algorithms is given in [44].
The implementation of these techniques is a straightforward modification of the hillclimb-
ing procedure given above. One way to do this is to insert a step following the computation
of δ in Step 9:

9a. if δ ≤ 0 then with probability p, δ ← 1

where the probability might be varied as optimization progresses.
Another solution is to adjust the problem topology using the breakout algorithm [39,

13]. Here, we associate with each constraint a weight that is initially set to 1 and varies
over time. In the hillclimbing procedure, we do not simply sum the costs, but multiply
each constraint by its weight.

Whenever the main loop of the algorithm terminates (Step 21) and the algorithm has
not found a consistent solution (tc1(x)≤ max-dist), the agent increases the weight of
all currently violated constraints by 1. This has the effect of making the current optimum
less attractive and thus driving the search to a different configuration in subsequent moves.
Then, the procedure is restarted from the beginning. This process repeats until either a
consistent solution is found or some timeout limit is reached. Basharu et al. ([1]) report that
resetting weights periodically or in response to observing agent behavior further improves
performance.

While the breakout algorithm often performs quite well at getting search out of local
optima, there are simple situations that it fails to solve, as pointed out in [43]. Figure 20.7
shows an example of such a situation. Here, each node represents a variable that must be
colored either black or white, and each arc is an inequality constraint between neighbouring
nodes. Note that the problem is solvable by coloring the nodes alternatively black and
white. Assume that the breakout algorithm starts in the configuration shown on the top
left. There are conflicts between nodes 2 and 3, and between nodes 6 and 7, that both
cannot be eliminated by a local change. Thus, a breakout step increases the constraint
weights from 1 to 2, as indicated in the next step on the right. Now, the algorithm can
make an improvement in the weighted sum of constraint violations by changing the color
of nodes 2 and 6. However, this generates a similar situation to the initial one, with 2 local
minima. The algorithm again increases the weight, makes changes to variables 1 and 5,
and the cycle continues until finally we reach the same situation as the initial one, except
that all constraint weights have increased by 1. Thus, the breakout algorithm will never
find a solution to this problem, but infinitely cycle and increase the constraint weights.

B. Faltings 721

1 3

7
8

6 5
4

2
1 3

7
8

6 5
4

2
1 3

7
8

6 5
4

2
1 3

7
8

6 5
4

2

1 3

7
8

6 5
4

2
1 3

7
8

6 5
4

2
1 3

7
8

6 5
4

2
1 3

7
8

6 5
4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

2 2

2

2

2

2

2

2

2

Figure 20.7: Problem that is unsolvable for the distributed breakout algorithm.

Note that such a behavior can be detected by the fact that constraint weights are contin-
uously increasing in some subproblem. In fact, if there is a subproblem that the breakout
algorithm is unable to solve - either because it has no solution or because of the algorithm’s
incompleteness - it must be the case that during each breakout cycle, at least one of the con-
straints has its weights increased. If the subproblem is small, it is possible to identify this
subproblem and then solve it using a complete backtrack search algorithm. Such schemes,
as described in [9], can be applied to solve large-scale distributed CSP with hundreds of
variables.

20.5 Open Constraint Programming

In open constraint programming, the set of variables may be bounded and commonly
known, but variable domains and admissible constraint tuples are distributed among a pos-
sibly unboundedly large set of information sources, so that the problem can never be com-
pletely centralized. Using transformations such as hidden-variable encoding (see Chap-
ter 11), constraints can be treated as tuple-valued variables. It is therefore sufficient to
consider distributed variable domains.

As an example of a problem requiring such an approach, consider a configuration sys-
tem for financial portfolios. It can obtain information about available financial products
from a large set of information sources. Furthermore, many of these products are them-
selves configured on demand by their providers. It is thus not possible to place a bound on
the space of possible parts that can be considered in such a configuration.

The challenge in open constraint programming is to solve such a problem without
knowing the complete domains. Algorithms are defined based on a model where variable
domains are discovered incrementally by querying a mediator. We say that an algorithm for
open constraint programming is complete if it always terminates with a solution when there
is one; however, a complete algorithm may never terminate when there are unboundedly
large domains. Note that a more restricted version that requires domains to be finite has
been proposed as interactive constraint satisfaction in [6].

722 20. Distributed Constraint Programming

x1 x2=

A(0)

B(4)

C(6)

D(7)

..

A(0)

B(3)

C(5)

D(7)

..

Figure 20.8: The principle underlying open constraint optimization.

Open constraint satisfaction Open constraint satisfaction is feasible since by the se-
mantics of constraint satisfaction, a solution to a CSP remains a solution even when values
are added to the domains of one or more variables:

Lemma 20.3. Let A be a consistent assignment to an instance CSP (i) of an OCSP. Then
A is also a consistent assignment to all instances CSP (j), CSP (i) ≺ CSP (j) of the
same OCSP.

Proof. As the domains of CSP (i) are contained in those of CSP (j), A is also an assign-
ment in CSP (j). As the constraints remain the same, it remains consistent.

Thus, if we find a consistent assignment to an instance CSP (i), we have found a
solution to the OCSP, and do not need to examine any further values.

Algorithms for open constraint satisfaction incrementally query information sources
for additional domain values until they find either a solution, or detect a subproblem where
all domains have been completely obtained and that has no solution. The key issue is
to query values in a balanced way so that the problem becomes solvable as quickly as
possible, and to detect unsolvable problems even in the presence of unbounded domains
without falling into infinite queries of these values. Centralized algorithms for open CSP
can be found in [12].

Open constraint optimization In open constraint optimization, a solution is not just any
variable assignment that satisfies the constraints, but an assignment that maximizes a utility
(or, equivalently, minimizes a cost). We assume that utilities are given by additional soft
constraints that are formulated on the values of individual, possibly tuple-valued variables.

Open constraint optimization is feasible under the condition that queries to the mediator
always return the most preferred values or value combinations first. It is shown in [12] that
if this condition does not hold, it is not possible to prove that a solution is optimal without
retrieving the entire domains of variables, and thus not possible to have a general algorithm
for solving open constraint optimization problems.

The reason for this fact is illustrated by Figure 20.8. It shows a COP with just two
variables x1 and x2, connected by an inequality constraint. The variables can take different
values with their costs shown in parentheses. The optimal solution is x1 = a, x2 = b with
a total cost of 0 + 3 = 3. To show that this solution is indeed optimal, it is sufficient to
know the first two values of each domain, since:

B. Faltings 723

• any solution that would use a value of x1 beyond the second value (b) would have
cost of at least 4 for x1 and 0 for x2 (cost of the best possible value), yielding a sum
of 4 which is more than the 3 we get in the proposed solution.

• any solution that would use a value of x2 beyond the second value (b) would have
cost of at least 3 for x2 and 0 for x1, yielding a total of 3 which again is no better
than the proposed solution.

Based on this principle, it is possible to construct algorithms that determine the optimal
solution without querying the entire variable domains. While there can not be any deter-
ministic algorithm that always examines only the minimal number of values necessary to
prove optimality, it is possible to come close to this limit using techniques based on the A∗

algorithm ([12]).

Algorithm 20.3: fo-opt: an incremental algorithm for solving OCOP.
1: Function fo-opt(OCOP)
2: For i ∈ {1..n}, di ← (more(xi))
3: OPEN← {(first(d1),..,first(dn))}
4: loop
5: M← {a ∈ OPEN|cost(a) = minb∈OPEN cost(b)}
6: a← lexicographically smallest element of M
7: remove a from OPEN
8: if consistent(a) then
9: return a

10: else
11: c← c(xk,...,xl) such that max(k,...,l) is the smallest and c is violated in a (first

violated constraint)
12: for j ∈ vars(c) do
13: if a(j) = last(dj) then
14: dj ← append(dj ,more(xj))
15: nxj← succ(a(j),dj)
16: b← (a(1),..,a(j-1),nxj,a(j+1),..,a(n))
17: if b 6∈ OPEN then
18: OPEN← OPEN ∪{b}

Algorithm 20.3 is an example of such an algorithm. Search nodes are complete (but
possibly inconsistent) assignments to all variables. Initially, the algorithm uses the function
more to query the best value for all variables, and thus becomes the initial search node.

Following the best-first search heuristic, the OPEN list of nodes is kept ordered by
decreasing utility, and the best node is chosen to be expanded next(Steps 5-7). When this
node is a consistent assignment, an optimal solution has been found(Steps 8-9).

Successors to a search node could be generated by assigning one of the variables the
next best value, thus giving each node n successors. When the domain is not sufficiently
known, it is queried to obtain the new value. However, as shown in [12], it is only neces-
sary to generate successors that include new values for the variables involved in the first
violated constraint, where constraints are ordered according to the highest variable they

724 20. Distributed Constraint Programming

involve, according to some fixed ordering. This leads to a significantly lower memory con-
sumption as well as a much smaller number of value queries, and significantly improves the
performance of the algorithm which now comes close to the minimal number of queries.
Algorithm 20.3 thus picks out the first violated constraint in Step 11 and generates the
successors in Step 15. Note that the function more is used to query the next best domain
value if necessary.

Algorithm 20.3 is guaranteed to produce the optimal solution because search nodes are
explored in the order of non-increasing utility. Thus, when a consistent solution is found,
it will necessarily be the one with the minimum possible cost.

While Algorithm 20.3 is a centralized algorithm, open constraint optimization can also
be carried out by distributed algorithms. In particular, [27] shows how open constraint
optimization can be integrated with the DPOP algorithm (Section 20.3.8) to produce a
distributed constraint optimization algorithm that can deal with unbounded domains and
exchanges significantly less information than the DPOP, ADOPT and ABT algorithms.

20.6 Further Issues

20.6.1 Incentive-Compatibility

Agents may have conflicting interests regarding the solution to a distributed CSP. If they are
allowed to post any hard or soft constraints they like, it is in their best interest to enforce
their preferences by exaggerating their constraints. If all agents adopt this behavior, the
solution computed by the algorithm will no longer be meaningful. Another problem is that
agents can manipulate the outcome by not correctly executing the distributed optimization
algorithm ([21]).

Both problems can be avoided by mechanisms where agents are required to pay a tax
corresponding to the constraints they impose on others. The tax is calculated so that it is in
the best interest of agents to report their constraints truthfully. Such mechanisms are called
truthful or incentive-compatible mechanisms.

Another property that is important in multi-agent settings is that of individual ratio-
nality. It means that each agent is better off by participating in the joint mechanism rather
than remaining on its own. If a tax scheme is used, it means that the amount of tax an agent
may be forced to pay is never greater than the gain it gets out of influencing the choice of
the algorithm.

A well-known mechanism for incentive-compatibility is the Vickrey-Clarke-Groves
tax(VCG) mechanism. It can be shown that it is the only general mechanism that guar-
antees both incentive-compatibility and individual rationality for all agents. Its application
for multi-agent decision making has first been proposed in [10] and its application to dis-
tributed CSP described in [11]. [26] describes in detail how the DPOP algorithm can be
combined with a completely distributed VCG tax mechanism, resulting in a scheme that is
completely resistant to manipulation.

In the VCG mechanism, each agent pays the difference in cost to all other agents be-
tween the optimal solution when it is present and the solution when it is not:

payment(A) =
∑

rk∈R−RA

rk(v
∗
R)− rk(v∗R−RA

)

B. Faltings 725

where R is the set of all relations, RA is the set of relations imposed by agent A, and v∗R,
v∗R−RA

are the solutions that minimize the sum of costs in R and R − RA, respectively.
The tax must be paid to an uninterested party (charity).

The following argument shows why this tax makes it optimal for an agent to tell the
truth:

• suppose that agent A overstates the importance of his constraints. Then it will gain
an advantage for those cases where his claimed cost is higher than his real cost.
However, it turns out that in these cases, he will also have to pay a tax which is
higher than the benefit it gets out of having his solution chosen - consequently, this
behavior is not rational for the agent.

• suppose on the other hand that the agent understates its costs. Then it will save the
tax in those cases where it would fall between its stated and its true cost for the value
that is chosen. However, in all these cases the tax would be lower than the loss it
incurs by having this value chosen, so again it is not individually rational for the
agent to act this way.

It has been shown ([21, 26]) that VCG taxes can also eliminate the potential for agents to
manipulate the outcome by unfaithfully executing a distributed search algorithm.

The VCG tax mechanism applies only to constraint optimization with soft constraints.
A hard constraint can cause an unbounded amount of utility loss to the remaining agents,
and thus by the principle of VCG taxes an unbounded amount of tax for the agent that
imposes it. Such a tax may be considered to violate that agent’s individual rationality.
Therefore, in general hard constraints should only be used to model commonly verifiable
knowledge.

20.6.2 Privacy

One of the possible motivations for using distributed constraint satisfaction is to protect
the privacy of agents’ constraints. The ultimate protection is achieved when solving a CSP
using cryptographic techniques. Here, no agent learns anything about other agents’ con-
straints except that a certain combination of assignments - the final solution - is consistent
with all constraints.

Secure distributed constraint satisfaction, as described by Yokoo in [41], is based on
cryptographic techniques that achieve three properties:

1. constraints are encrypted, and consistency of a value assignment is decided without
decrypting the constraints;

2. values are permuted in a random-looking way so that no agent can tell what value
corresponds to what position;

3. algorithms search the entire search space so that no information can be drawn from
the time it takes to find a solution.

Each agent encrypts all its constraints by generating a constraint matrix that includes en-
crypted versions of the elements 1 (consistent) and another number z (inconsistent). Using
randomized encryption techniques, each of these is made to look like a completely random
number so that an observer cannot tell whether two cells contain identical elements.

726 20. Distributed Constraint Programming

When the algorithm checks for the consistency of an assignment, it collects the rele-
vant constraint entries and multiplies them together. Thanks to a second property of the
encryption scheme, that of being homomorphic, the product of the encrypted numbers is
equivalent to the encryption of their product. Thus, the product can subsequently be de-
crypted and checked for whether it contains a 1 - meaning that all constraints were 1, and
thus satisfied - or another number, meaning that at least one constraint was not satisfied.
This decryption must in fact be done by passing the result through all involved agents, and
thus invariably leads to a very large number of messages.

To ensure that no agent can know what values were found consistent or inconsistent,
the scheme furthermore involves a permutation of all domain values. Each agent permutes
all constraint matrices referring to its own values with the same permutation of domain
values, and applies a renewed randomization of the encryption so that the permutation
cannot be discovered by comparing values.

Search can use a centralized or decentralized algorithm, but each constraint check re-
quires a cooperative decryption of the result of multiplying the relevant constraints. When
a consistent solution is found, each agent can apply the permutation of its domain in reverse
and thus finds out what its value was.

In subsequent work it has been noted that since the computation time of the search al-
gorithm reveals information about the constraints, and that even this protocol is not entirely
secure. For an example of a protocol that is also secure against this kind of attack, see [32].

Cryptographic privacy protection is very costly to implement, and so far has not been
used in practical applications of realistic size. In principle, all distributed CSP algorithms
provide some level of privacy protection, since constraints are only revealed to neighbour-
ing agents, and even here only when backtracking is required. An analysis of privacy loss
is found for example in [36]. Researchers have also explored whether constraints could
be shared by participants, allowing them to be enforced even though no agent knows the
entire constraint ([4]).

20.7 Conclusion

Many applications of constraint satisfaction and optimization occur in settings with mul-
tiple agents and may even be unbounded. In that case, it is no longer feasible to solve
them by centralizing all problem information on a single server. Distributed constraint sat-
isfaction techniques address such naturally unbounded problems. The localized nature of
constraint satisfaction is a major advantage in such settings; classical optimization tech-
niques such as linear programming are not easily applied in a distributed and possibly
asynchronous manner.

Unboundedness can occur in two ways. The first is that the set of variables and con-
straints involved in the problem is not bounded. This is the classical distributed constraint
satisfaction problem, and it occurs for example in meeting scheduling. The second is that
the admissible values and value tuples are unbounded. This is the open constraint satis-
faction problem, and it occurs for example in product or supply chain configuration. This
chapter has presented an overview of the main algorithms that have been developed for
these scenarios.

Applications of distributed constraint satisfaction algorithms are just beginning to ap-
pear. Since many of these problems were impossible to solve by computer before, the

B. Faltings 727

technology is in fact an enabler for future applications that are now beginning to be ex-
plored.

Bibliography

[1] M. Basharu, I. Arana and H. Ahriz: ”Solving DisCSPs with Penalty Driven Search,”
Proceedings of the 20th AAAI, pp. 47-52, 2005

[2] R. Béjar, C. Domshlak, C. Fernández, C. Gomes, B. Krishnamachari, B. Selman, and
M. Valls: “Sensor networks and distributed CSP: communication, computation and
complexity,” Artificial Intelligence 161(1-2), pp. 117-147, 2005

[3] C. Bessière, A. Maestre, I. Brito and P. Meseguer: “Asynchronous backtracking with-
out adding links: a new member in the ABT family,” Artificial Intelligence 161(1-2),
pp. 7-24, 2005

[4] I. Brito and P. Meseguer: ”Distributed Forward Checking,” Proceedings of the 9th
CP, Springer LNCS 2833, pp. 801-806, 2003

[5] Z. Collin, R. Dechter and S. Katz: “On the Feasibility of Distributed Constraint Sat-
isfaction,” Proceedings of the 12th IJCAI, pp. 319-324, Sydney, 1991

[6] R. Cucchiara, M. Gavanelli, E. Lamma, P. Mello, M. Milano, and M. Piccardi: “Con-
straint propagation and value acquisition: why we should do it interactively,” Pro-
ceedings of the 16th IJCAI, pp.468-477, 1999

[7] R. Dechter: “Bucket elimination: A unifying framework for reasoning,” Artificial
Intelligence 113, pp.41-85, 1999

[8] R. Dechter and I. Rish: “Minibuckets: A general scheme for approximating infer-
ence,” Journal of ACM, pp. 107-153, 2003

[9] C. Eisenberg and B. Faltings: “Hybrid Solving Method for Large-Scale Distributed
Constraint Satisfaction Problems, in W. Zhang and V. Sorge (eds.): Distributed Prob-
lem Solving and Reasoning in Multi-agent Systems, IOS Press, pp. 19-33, 2004

[10] E. Ephrati and J. S. Rosenschein: “The Clarke tax as a consensus mechanism among
automated agents,” Proceedings of the 9th AAAI, pp. 173-178, 1991

[11] B. Faltings: “Incentive-compatible Open Constraint Optimization,” Proceedings of
the 4th ACM Conference on Electronic Commerce, 2003

[12] B. Faltings and S. Macho-Gonzalez: “Open Constraint Programming,” Artificial In-
telligence 161(1-2), pp. 181-208, 2005

[13] K. Hirayama, M. Yokoo, “Coordinated Multi-agent Local Search”, Artificial Intelli-
gence 161(1-2), pp. 89-116, 2005

[14] R. Mailler and V. Lesser: ”Solving Distributed Constraint Optimization Problems
Using Cooperative Mediation,” Proceedings of the 3rd AAMAS, pp. 438-445, 2004

[15] R. Marinescu and R. Dechter: “AND/OR Branch-and-Bound for Graphical Models,”
Proceedings of the 19th IJCAI, pp. 224-229, 2005

[16] A. Meisels, E. Kaplansky, I. Razgon and R. Zivan: ”Comparing Performance of Dis-
tributed Constraints Processing Algorithms,” Proceedings of 3rd Workshop on Dis-
tributed Constraint Reasoning pp. 86-93, 2002

[17] A. Meisels and R. Zivan: “Asynchronous Forward-Checking for DisCSPs,” in W.
Zhang and V. Sorge (eds.): Distributed Problem Solving and Reasoning in Multi-
agent Systems, IOS Press, pp. 93-107, 2004

728 20. Distributed Constraint Programming

[18] P. J. Modi, M. Veloso: “Multiagent Meeting Scheduling with Rescheduling,” 5th
Workshop on Distributed Constraint Reasoning, 2004

[19] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo: “An Asynchronous Complete
Method for Distributed Constraint Optimization,” Artificial Intelligence 161(1-2), pp.
149-180, 2005

[20] V. Nguyen, D. Sam-Haroud and B. Faltings: “Dynamic Distributed Backjumping,”
Recent Advances in Constraints, Springer LNAI 3419, pp. 71-85, 2005

[21] D. C. Parkes and J. Shneidman: ”Distributed implementations of Vickrey-Clarke-
Groves mechanisms,” Proceedings of the 3rd AAMAS, pp. 261-268, 2004

[22] A. Petcu and B. Faltings: “An Efficient Constraint Optimization Method for Large
Multiagent Systems, ” AAMAS Workshop on large-scale multi-agent systems, 2005.

[23] A. Petcu and B. Faltings: “Superstabilizing, Fault-containing Multiagent Combina-
torial Optimization,” Proceedings of the 20th AAAI, pp. 1406-1411, 2005

[24] A. Petcu and B. Faltings: “A Scalable Method for Multiagent Constraint Optimiza-
tion,” Proceedings of the 19th ICJAI, pp 266-271, 2005

[25] A. Petcu and B. Faltings: “Approximations in Distributed Optimization,” Proceedings
of the 11th CP, Springer LNCS 3709, pp. 802-806, 2005

[26] A. Petcu, B. Faltings and D. Parkes: ”MDPOP: Faithful Distributed Implementation
of Efficient Social Choice Problems,” Proceedings of the 5th AAMAS, 2006

[27] A. Petcu and B. Faltings: ”ODPOP: An Algorithm for Open Distributed Constraint
Optimization,” AAMAS 06 Workshop on Distributed Constraint Reasoning, 2006

[28] M. Silaghi, D. Sam-Haroud and B. Faltings: “Asynchronous Search with Aggrega-
tions,” Proceedings of the 17th AAAI, pp. 917-922, 2000

[29] M. Silaghi, D. Sam-Haroud and B. Faltings: ”ABT with Asynchronous Reordering,”
Proceedings of 2nd A-P Conference on Intelligent Agent Technology IEEE press, pp.
54-63, 2001

[30] M. Silaghi, D. Sam-Haroud and B. Faltings: ”Hybridizing ABT and AWC into a poly-
nomial space, complete protocol with reordering,” EPFL Technical Report 01/364,
2001

[31] M. Silaghi: “Asynchronously Solving Distributed Problems with Privacy Require-
ments,” Ph.D. Thesis 2601, EPFL, 2002

[32] M. Silaghi: ”Meeting Scheduling System Guaranteeing n/2-Privacy and Resistant to
Statistical Analysis (Applicable to any DisCSP),” Proceedings of the 3rd Interna-
tional Conference on Web Intelligence, IEEE press, pp. 711-715, 2004

[33] M. Silaghi and B. Faltings: “Asynchronous Aggregation and Consistency in Dis-
tributed Constraint Satisfaction,” Artificial Intelligence 161(1-2), pp. 25-54, 2005

[34] M. Silaghi and M. Yokoo: ”Nogood-based Asynchronous Distributed Optimization
(ADOPT-ng),” Proceedings of the 5th AAMAS, 2006

[35] K. Sycara, S.F. Roth, N. Sadeh-Koniecpol, and M.S. Fox: “Distributed Constrained
Heuristic Search,” IEEE Transactions on Systems, Man, and Cybernetics, 21(6), pp.
1446-1461, 1991

[36] R. J. Wallace and E. C. Freuder: “Constraint-based reasoning and privacy/efficiency
tradeoffs in multi-agent program solving,” Artificial Intelligence 161(1-2), pp. 209-
227, 2005

[37] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara: “Distributed Constraint Sat-
isfaction for Formalizing Distributed Problem Solving”, Proceedings of the 12th
ICDCS, pp.614-621, 1992.

B. Faltings 729

[38] M. Yokoo: “Weak-commitment Search for Solving Constraint Satisfaction Prob-
lems”, Proceedings of the 12th AAAI, pp.313–318, 1994.

[39] M. Yokoo, K. Hirayama: “Distributed Breakout Algorithm for Solving Distributed
Constraint Satisfaction Problems” Proceedings of the 2nd ICMAS, pp.401–408, 1996

[40] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara: “Distributed Constraint Sat-
isfaction Problem: Formalization and Algorithms,” IEEE Trans. on Knowledge and
Data Engineering 10(5), 1998

[41] M. Yokoo, K. Suzuki, and K. Hirayama, “Secure Distributed Constraint Satisfaction:
Reaching Agreement without Revealing Private Information”, Artificial Intelligence
161(1-2), pp. 229-246, 2005

[42] R. Zivan and A. Meisels: ”Dynamic Ordering for Asynchronous Backtracking on
DisCSPs,” Proceedings of the 11th CP, Springer LNCS 3709, pp. 32-46, 2005

[43] W. Zhang and L. Wittenburg: “Distributed breakout revisited,” Proceedings of the
18th AAAI, pp.352-357, 2002

[44] W. Zhang, G. Wang, Z. Xing and L. Wittenberg: “Distributed stochastic search and
distributed breakout: Properties, comparison and applications to constraint optimiza-
tion problems in sensor networks,” Artificial Intelligence 161(1-2), pp. 55-87, 2005

This page intentionally left blank

Handbook of Constraint Programming 731
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 21

Uncertainty and Change

Kenneth N. Brown and Ian Miguel

Constraint Programming (CP) has proven to be a very successful technique for reasoning
about assignment problems, as evidenced by the many applications described elsewhere in
this book. Much of its success is due to the simple and elegant underlying formulation:
describe the world in terms of decision variables that must be assigned values, place clear
and explicit restrictions on the values that may be assigned simultaneously, and then find
a set of assignments to all the variables that obeys those restrictions. Thus, CP makes two
assumptions about the problems it tackles:

1. There is no uncertainty in the problem definition: each problem has a crisp and
complete description.

2. Problems are not dynamic: they do not change between the initial description and
the final execution of the solution.

Unfortunately, these two assumptions do not hold for many practical and important ap-
plications. For example, scheduling production in a factory is, in practice, fundamentally
dynamic and uncertain: the full set of jobs to be scheduled is not known in advance, and
continues to grow as existing jobs are being completed; machines break down; raw mate-
rial is delivered late; employees become ill; jobs take longer than expected; or processes
have inherently random aspects, and so some jobs may have to be repeated. Alternatively,
in engineering or architectural design, the constraints themselves are not known with cer-
tainty — this may be because the designer is not aware of the detail of the constraints, or
because the constraints are inherently vague — or may be changing because the designer
is exploring the problem space, reformulating the problem as the consequences of each
modelling decision become clearer.

Current constraint solving tools provide very little support for explicit reasoning about
uncertain and dynamic problems. In many cases, an approximated deterministic and static
model may suffice, and provides the user with enough information about the structure of
the problem to make good enough decisions. In other cases, though, the user is required
to re-formulate the problem repeatedly, in response to each change or to each discovery of

B.V.

732 21. Uncertainty and Change

more detail of the problem. What support should CP tools offer in those situations? For
many problems, all that may be required is a sufficiently fast solver, reacting to the changes
with new solutions, or producing many initial solutions to different formulations in the case
of uncertainty. At other times, for dynamic problems, the new solutions should be as close
as possible to the previous ones, to minimise the cost of change. More advanced methods
should generate solutions that are robust to the likely changes, or that are sufficiently flex-
ible to allow the changes to be accommodated. Particular attention should also be paid to
time limits, since the dynamic changes may occur too quickly to allow exhaustive analysis
— in that case, time-bounded or anytime reasoning is required.

In this chapter, we consider the uses and extensions of constraint programming for
handling problems subject to change and uncertainty. We classify the research into two
broad categories based on the problem type:

(i) uncertain problems, which require a single solution; and

(ii) Dynamically changing problems, which require multiple solution stages.

Within (ii), we consider three further sub-categories:

(ii-a) problems where the solver simply reacts each time the problems change;

(ii-b) problems where the solving process is adapted to record information about the prob-
lem structure, which can be used during the reaction phase; and

(ii-c) problems where the solver proactively searches for solutions that anticipate the ex-
pected changes.

We will begin by briefly reviewing the definitions of constraint satisfaction and optimi-
sation problems, and presenting a small example problem which we will use throughout the
chapter. We will then consider each of the categories and sub-categories in turn. Finally,
we will conclude with a discussion of challenges for future research.

21.1 Background and Definitions

The finite-domain constraint satisfaction problem (CSP) consists of a triple 〈X,D,C〉,
where X is a set of variables, D is a set of domains, and C is a set of constraints. Each
xi ∈ X is associated with a finite domain Di ∈ D of potential values. An assignment
to a variable xi is the selection of a value vi from its domain Di. A constraint c ∈ C,
constraining variables xi, . . . , xj , specifies a subset of the Cartesian productDi× . . .×Dj

indicating mutually-compatible variable assignments. A tuple of values v = (vi, . . . , vj)
satisfies a constraint c over xi, . . . , xj if v ∈ c. A partial assignment to a problem is
a collection of assignments to a subset of the variables in the problem, and a complete
assignment is an assignment for every variable. A solution is a complete assignment that
satisfies all constraints. A constrained optimisation problem is a CSP with some objective
function, which is to be optimised.

21.2 Example: Course Scheduling

To illustrate the various problems and techniques, we will use as a basis the following sim-
ple example (adapted from [22]) throughout the chapter. Consider the task of scheduling

K. N. Brown, I. Miguel 733

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

x11 x12 x13

x21 x22 x23

x31 x23 x33

j
i

∀i
3
∑

j=1

xij ≥ 2 sessions per day (21.1)

∀j
3
∑

i=1

xij ∈ {1, 2, . . . , 5} no. of session type (21.2)

3
∑

i=1

3
∑

j=1

xij ∈ {10, 11, 12} total sessions (21.3)

Figure 21.1: Course Scheduling Problem

a short course over three days consisting of a number of lectures, practical sessions, and
tutorial sessions. The constraints are that there must be at least two sessions a day and,
over the three days, there must be between 1 and 5 of each type of session and between 10
and 12 sessions in total. This problem can be cast as a CSP by using 9 variables, xij with
i and j in {1, 2, 3}, where i denotes the day and j the session type with 1 = lecture, 2 =
practical, 3 = tutorial. Each variable has domain {0, 1, 2, 3, 4, 5} denoting the number of
sessions of the corresponding type on a particular day. The constraints are expressed on
these variables as presented in Figure 21.1. Figure 21.2 presents one possible solution to
this problem in which there are two lectures, three practical and five tutorial sessions over
the three days.

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

1 1 0

0 2 4

Figure 21.2: A Solution to Course Scheduling Problem

21.3 Uncertain Problems

First we consider problems where a complete crisp description of the problem will not be
revealed at all, and so we must produce a single initial solution that cannot be changed.
In order to produce the solutions, we have to consider how the imprecision in the problem
description is expressed. We consider three cases: (i) the problem itself is intrinsically im-
precise — for example, where the price of a configuration must be ‘cheap’, where ‘cheap’

734 21. Uncertainty and Change

∀i
3
∑

j=1

xij ≥ 2 sessions per day

3
∑

i=1

3
∑

j=1

xij ∈ {10, 11, 12} total sessions

Sums of Assignment Tuples
1 2 3 4 5 Otherwise

lectures
∑3
i=1 xi1 0.4 0.6 0.8 1.0 0.8 0

practicals
∑3
i=1 xi2 0.6 0.8 1.0 0.8 0.6 0

tutorials
∑3
i=1 xi3 0.6 0.8 1.0 0.8 0.6 0

Figure 21.3: The Fuzzy Course Scheduling Problem. Fuzzy constraints show satisfaction
degrees for different possible assignment tuples.

is defined by a fuzzy membership function, (ii) we have a set of possible realisations of the
problem, one of which will be the final version of the problem, and (iii) we have proba-
bility distributions over the full realisations — for example, a distribution over the values
that might be available to us, or over the legal tuples in the constraints. Secondly, for (ii)
and (iii), we also consider problems where the description will eventually be revealed, but
requires an instant response. In such cases, we can extend the techniques to include contin-
gencies — families of solutions, one of which will be selected depending on the revealed
problem.

21.3.1 Fuzzy Problems

Fuzzy constraint satisfaction [22] (see also Chapter 9) captures imprecision in the defini-
tion of a constraint by allowing constraints to be partially satisfied, as well as completely
satisfied or completely unsatisfied. To continue the above example, a constraint specifying
that an expression in certain cost variables must be “cheap”, rather than being satisfied or
violated, can be satisfied to a greater or lesser extent according to the assignments to the
cost variables. This allows us to capture notions such as “fairly cheap” and “relatively
expensive”.

In a fuzzy constraint satisfaction problem, a constraint c(xi, . . . , xj) is represented by
a fuzzy relation, which is in turn defined by a membership function that associates a degree
of satisfaction in a totally ordered scale (usually [0, 1], with 0 and 1 representing complete
violation and complete satisfaction respectively) with each tuple in Di × . . . × Dj . The
conjunction of two fuzzy relations is usually interpreted as the minimum membership value
assigned by either relation. To produce a satisfaction degree for a given partial or complete
assignment, the conjunction operator is used to aggregate the satisfaction degrees of all
constraints on the assigned variables. This allows us to rank different assignments and
therefore search for optimal solutions to a fuzzy CSP.

To illustrate, we consider a fuzzy version of the course scheduling problem given in
Figure 21.1. Professor A is to give the lectures in the course. She prefers to give four

K. N. Brown, I. Miguel 735

Constraint Assignment Sum Sat Degree
Sessions per Day 2, 4, 4 1.0

Total Sessions 10 1.0
Lectures 3 0.8
Practicals 3 1.0
Tutorials 4 0.8

Overall Satisfaction Degree: 0.8

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

1 1 0

0 2 4

Constraint Assignment Sum Sat Degree
Sessions per Day 2, 4, 4 1.0

Total Sessions 10 1.0
Lectures 4 1.0
Practicals 3 1.0
Tutorials 3 1.0

Overall Satisfaction Degree: 1.0

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

2 1 1

1 2 1

Figure 21.4: Sub-optimal and Optimal Solutions to the Fuzzy Course Scheduling Problem

of these sessions. Dr B is organising the practical sessions, and he prefers to give about
three of these. Finally, Dr C is responsible for the tutorial sessions, and also prefers that
there should be about three of these. These preferences are captured in fuzzy constraints
on the lecture, practical and tutorial session variables, as presented in Figure 21.3. Note
that constraints on the number of sessions per day and the total number of sessions remain
as hard constraints. Hard constraints are simple to represent with fuzzy constraints: the
satisfaction degree of each assignment tuple is either 0 or 1.

Figure 21.4 presents two solutions to the fuzzy course scheduling problem. The first is
the same as the solution to the crisp course scheduling problem given in Figure 21.2. This
solution has satisfaction degree 0.8 because there are three lecture sessions (from Figure
21.2, the satisfaction degree of the constraint on the number of lectures is therefore 0.8)
and three tutorial sessions (also satisfaction degree 0.8). Hence, the fuzzy conjunction of
the satisfaction degrees of all the constraints is 0.8. The second solution has satisfaction
degree 1.0 and is therefore optimal. The reader will be able to confirm that the satisfaction
degree of each constraint is 1.0.

21.3.2 Problems with Possible Realisations

For problems with a set of possible realisations, we first need to consider the ways in
which the problem definition could be incomplete — i.e. what is missing from the original
description that will be revealed. Based on the definition in 21.1, this could be:

1. The complete set of variables is not known;

736 21. Uncertainty and Change

2. The domains of the variables are not completely specified; or

3. The constraints are not completely specified — either the full set of constraints is
not known, or the individual constraints are not fully described.

In fact, we could reformulate the definition of a CSP so that only the constraints need to
be specified explicitly (the domains would be unary constraints restricting values from a
universal set, and the variables are implicitly defined to be those appearing anywhere in
the constraint set), and thus formally we only need to consider uncertainty in the constraint
set. In practice, the different types of uncertainty are treated separately, to model spe-
cific features of different application domains, and give rise to different formalisms and
algorithms.

In Mixed CSPs [27], we model the case where some of the variables are not controlled
by the solver, but will be assigned by some external source (which may be a user, another
agent, later knowledge discovery, or a random process). Thus the variables of the problem
are divided into two classes: controlled decision variables and uncontrollable parameters.
The decision variables are normal CSP variables, but the parameters will be set by the
external source (and thus essentially fix the domains of those variables to a singleton set).
The possible realisations of the problem are then defined by the sets of possible values that
the parameters may take. Constraints restrict the assignments of values to variables in the
normal way. A pure decision is an assignment of values to all the decision variables, which
should be a solution to one or more of the possible realisations. If there are no constraints
on the realisations (i.e. the parameters are independent), then it is NP-complete to deter-
mine whether there exists a single pure decision which is a solution to all realisations in
a binary mixed CSP. For cases where the true realisation will be revealed, a conditional
decision associates different assignments of values to different realisations, and an optimal
conditional decision has a solution for each possible realisation. Fargier et al [27] give an
anytime algorithm for finding conditional decisions.

As an example, consider the course scheduling problem as before, but now we assume
that the number of tutorials on day 1 (x13) will be decided later (based on the availability of
tutors). That is, the variable x13 becomes an uncontrollable parameter. Suppose we know
that x13 can take one of two possible values, 0 or 1. Figure 21.5a shows a pure decision
for all the other variables that satisfies both possible realisations. Suppose now that the
number of lectures on day 2 (x21) will also be fixed at a later date, and that the value of x21

may be 0, 1 or 2, independently of the value of x13. There are now six possible realisations,
based on the possible values of (x13, x21): {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}. No
single pure decision is possible (since it will not be possible to satisfy the constraint on the
total number of sessions); however, figure 21.5b shows an optimal conditional decision, by
associating a decision with each possible realisation.

To cover problems with uncertain data, Yorke-Smith and Gervet define Uncertain CSPs
[77], in which the constraints are uncertain — specifically, they use an algebraic represen-
tation of the constraints, with uncertainty over the coefficients. Their goal is to define the
certainty closure, the set of all solutions to possible realisations of the constraints, and then
to search for specific types of closure, including a covering set, which contains at least one
solution for each realisation, or the most robust solution, which is a solution to the greatest
number of realisations. Their suggested solution method is to transform the UCSP into
a standard CSP, such that the set of all solutions to the CSP is equivalent to the desired
closure of the UCSP.

738 21. Uncertainty and Change

∀i
3
∑

j=1

wjxij > 2 (21.4)

∀j
3
∑

i=1

wjxij ∈ {1, . . . , 5} (21.5)

3
∑

i=1

3
∑

j=1

wjxij = t (21.6)

Figure 21.6: The Uncertain Course Scheduling Problem

practicals on day 3 must be greater than the number of practicals on day 1, with probability
0.5; and the total number of practicals must be no higher than 2, with a probability of 0.2.

There is no assignment with a probability of 1.0 of being a solution; an assignment with
maximal probability of being a solution is shown in figure 21.9. This first type of proba-
bilistic CSP could be thought of as the probabilistic equivalent of uncertain CSPs described
above, assigning a probability distribution to the values of coefficients in the constraints.
Probabilistic CSPs can be represented using the two general soft constraint frameworks
valued CSP [69] and semi-ring[12] CSP described in Chapter 9, “Soft Constraints”.

The second type of probabilistic CSPs [26] correspond to mixed CSPs, with the addi-
tion of a probability distribution over the possible assignments to the uncontrollable param-
eters. The aim here is to find a pure decision with maximal probability of being a solution
to the full problem. A branch and bound algorithm based on forward checking is described.
Again, we can also consider conditional decisions, and an algorithm is given for generating
them. Consider now the same problem as described in Figure 21.5, but with two probability
distributions over the values of x13 : {0 : 0.3, 1 : 0.7} and x21 : {0 : 0.5, 1 : 0.4, 2 : 0.1}.
Again, no decision can have a probability of 1.0 of being a solution to the full problem
(since the two realisations 〈x13 = 1, x21 = 2〉 and 〈x13 = 0, x21 = 0〉 cannot be satisfied
by the same assignment due to the total sessions constraint; figure 21.10 shows a maxi-
mal pure decision, with total probability of 0.93 of being a solution (failing only on the
realisation 〈x13 = 1, x21 = 2〉).

1-stage stochastic CSPs [76] are similar to (the second) probabilistic CSPs, but with
the difference that a problem is defined to be θ-satisfiable if there exists a (pure) decision
with a probability higher than θ of being a solution. The complexity of 1-stage stochastic
CSPs is shown to be NPPP -complete. Stochastic CSPs in general encompass multiple
stages and will be discussed further in Section 21.4.3.

21.4 Problems that Change

Now we consider problems that are subject to change over time, and where the opportunity
exists to respond to each change via a new solution step. The changes may be imposed by
a user, an external agent or the environment. Typically, this occurs during the execution of

K. N. Brown, I. Miguel 741

Restrictions: Constraints added

Relaxations/Retractions: Constraints removed

…
Initial

Problem

Evolving

Problem

= CSP Instance

Figure 21.11: Dynamically Changing Problem Represented as a Sequence of Static CSPs.

21.4.1 Pure Reaction

We will begin by assuming no knowledge of how the problem is likely to change. Naively,
each new problem can be solved from scratch. However, efficient solvers exploit the past
history of problems and solutions to guide them in solving the new problem, while attempt-
ing to minimise the cost of changeover. Local Repair methods maintain all assignments
from the solution to the previous problem to use as a starting point. The initial assign-
ment is then progressively modified until an acceptable solution to the current problem is
obtained.

Minton et al [52] describe a local repair method that searches through the space of pos-
sible repairs. This search is guided by the min-conflicts heuristic that seeks to minimise the
number of unsatisfied constraints after each step. The heuristic repair method can be used
naturally in a non-systematic (hill-climbing) or systematic (backtracking) search strategy.
In the following example, we will illustrate systematic heuristic repair. Reconsider the
solution to the Course Scheduling Problem given in Figure 21.2. This solution, although
satisfying the constraints given in Figure 21.1, does have a very busy final day. Therefore,
the next time the course is run, a new constraint is added that places a maximum on the
number of sessions per day. Figure 21.12 presents this variant of the problem, which we
will call the Balanced Course Scheduling Problem.

Heuristic repair performs a standard backtracking search, with a value ordering heuris-
tic that prefers the assignment that conflicts least with the values assigned by the solution to
the previous problem to future variables. Consider solving the Balanced Course Schedul-
ing Problem having obtained the solution to the original Course Scheduling Problem given
in Figure 21.2. We use a variable ordering scheme that assigns lecture, then practical then
tutorial variables in ascending day order. We also assume that ties are broken by preferring
an assignment that matches the previous solution. The current assignments to x11 and x21

do not conflict with any of the future variables, and so are left unchanged. Consider now
the assignment of x31. This variable cannot be assigned 4 or 5, since this would violate
constraint (21.2). The remaining values all conflict with the values assigned by the previ-
ous solution to x32 and x33 and constraint (21.10). Since the value 0 is closest to satisfying

742 21. Uncertainty and Change

∀i
3
∑

j=1

xij ≥ 2 sessions per day

∀j
3
∑

i=1

xij ∈ {1, 2, . . . , 5} no. of session type

3
∑

i=1

3
∑

j=1

xij ∈ {10, 11, 12} total sessions

∀i
3
∑

j=1

xij ≤ 4 max sessions per day (21.10)

Figure 21.12: The Balanced Course Scheduling Problem

the constraint2, it is assigned to x31. The search proceeds in this manner as presented in
Figure 21.13.

The Local Changes algorithm [73] is also a local repair method, but it uses a more
sophisticated search strategy than Minton et al’s heuristic repair to focus on resolving
the conflicts in a particular sub-problem. Local Changes partitions the variable set X

2As noted in [52], for non-binary constraints the measure of conflict depends on the nature of the constraint
itself.

x12

x22

x32

x33

x23

x13

0

1

2

1

0

Type

L(1) P(2) T(3)
D

a

y

s

1

2

3

1 0 1

j
i

1 1 2

0 2 2

1 2

1 20

Unsuccessful assignment

Successful assignment

Figure 21.13: Partial Search Tree for Balanced Course Scheduling Problem using Min-
conflicts Heuristic

K. N. Brown, I. Miguel 743

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32 x33

1 0 1

1 1 0

0 2 4

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32

1 0 1

1 1 0

0 2

x33

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32

1 0 1

1 1 0

0 2 2

Constraint (1.7)

unsatisfied.

Unassign x33

x33 = 2 Constraint (1.3)

unsatisfied.

Unassign x11

X1 X2 X3
x12 x13

x21 x22 x23
x31 x32

0 1

1 1 0

0 2 2

x33

X1 X2 X3
x11 x12 x13
x21 x22 x23
x31 x32

3 0 1

1 1 0

0 2 2

x33
x11

x11 = 1

Figure 21.14: Solving the Balanced Course Scheduling Problem using Local Changes

into three subsets, X1, X2 and X3: variables in X1 have fixed assignments (this is to
ensure termination, as will be shown); variables in X2 have assignments, but which may
be modified; variables in X3 are unassigned. When solving a new problem in a dynamic
sequence, all variables are in X2, with assignments taken from the solution to the previous
problem in the sequence. Hence, when solving the Balanced Course Scheduling Problem,
search begins with X2 containing all nine xij variables, assigned as shown in Figure 21.2.

If this assignment satisfies all constraints, then there is already a solution to the current
problem and Local Changes terminates. Otherwise, it unassigns at least one variable for
each unsatisfied constraint (placing each in X3) and attempts to repair their assignments in
order to resolve the conflict. Returning to the solution of the Balanced Course Scheduling
Problem, as depicted in Figure 21.14, the only constraint that is unsatisfied is the instance
of constraint (21.10) concerning day 3. The choice of which of the variables constrained
by constraint (21.10) is heuristic. Assume x33 is chosen, unassigned and therefore moved
into X3. Local Changes now recurses over X3, re-assigning the variables to repair the
conflicts.

In the example, X3 contains only x33, which is selected for re-assignment. We assume
a reasonably informed value heuristic, assigning x33 = 2. However, this assignment does
not satisfy Constraint (21.3). At this point, Local Changes fixes the assignment of x33,
moving it into X1 and attempts to repair the problem with respect to this choice. The fix-
ing step is to avoid an endless cycle of repairs. If the problem cannot be solved with respect
to this assignment, Local Changes will backtrack over it and try another assignment. In the
example, x11 is re-assigned to 3, producing a solution to the problem. We have demon-
strated the operation of Local Changes on a standard dynamic CSP. The algorithm has also
been extended to work with fuzzy dynamic CSPs [51] (see Section 21.3.1).

The use of a local repair technique promotes stability by tending to find a solution to the

744 21. Uncertainty and Change

new problem that is close to the solution of the previous problem, as demonstrated by the
Min-conflicts and Local Changes examples above. There is no guarantee, however, that the
solution will be optimally stable. The alternative is to make stability an explicit criterion
when solving each problem in a dynamic sequence, and insist that each new solution is
optimally stable. The algorithm RB-AC [66] follows exactly this approach, starting with
the solution to the previous problem in the sequence and iteratively testing whether re-
assigning one variable, two variables, three variables, and so on, is sufficient to solve the
current problem. Petcu and Faltings [59] also search explicitly for stable solutions, but
do not restrict stability to mean simply the number of assignments in common. Instead,
special stability constraints are added that must be satisfied in order for the solution to be
stable. Similarly, El Sakkout and Wallace [23] define linear minimal perturbation functions
for dynamic scheduling problems. Following a change the minimal perturbation function
is defined with respect to the solution to the previous problem and used as an objective
for the new problem. Bartak et al [2] extend this formulation to support over-constrained
problems.

21.4.2 Preparing to React by Recording Information

While maintaining our assumption that we have no information about how the problem is
likely to change, it is still possible to prepare for these changes by recording information
during the search for a solution that is likely to be useful when solving the changed prob-
lem, under the reasonable assumption that the latest problem in a dynamic sequence will
retain some structure in common with the previous problems.

For each problem in a dynamic sequence, the oracles approach [71] records the path
taken to the solution. For every new problem in the sequence, search begins from scratch,
but these oracles are used to guide the search and prune the search space. Consider first
constraint restriction. Figure 21.15 presents a partial search tree for the solution given in
Figure 21.2 to the Course Scheduling Problem.

Having solved the Course Scheduling Problem, to solve the Balanced Course Schedul-
ing Problem using the oracles approach, search begins from scratch, using the solution
path from Figure 21.15 as the oracle. The search branch down to x22 is identical to that
explored in finding the previous solution. However, when considering x32, it is possible
to prune the sub-tree rooted with x32 = 1 without exploring it (see Figure 21.15): since
there was no solution in this sub-tree for the less-constrained previous problem there can-
not be a solution in the sub-tree following constraint restriction. Search continues in this
way, as presented in Figure 21.15 following the oracle and pruning fruitless sub-trees un-
til the constraints added cause failure, at which point the search defaults to chronological
backtracking while recording a new oracle for future use.

When both restriction and relaxation/retraction are allowed, to retain soundness the or-
acle chosen must be associated with a previously-solved problem that is less constrained
(i.e. contains a subset of the constraints) than the current problem. Van Hentenryck and
Provost [71] show how to select an oracle that prunes maximally without sacrificing sound-
ness. Having identified such an oracle, it is used exactly as in the foregoing example.

A popular and powerful approach to preparing for change is to record explanations.
Jussien [42] defines explanations informally as ”subsets of constraints justifying solver
events”. Usually, the solver events are constraint additions, either unary (value removals)
or higher arity. Crucially, explanations support change to the problem structure during

K. N. Brown, I. Miguel 745

x12

x22

x32

x33

x23

x13

0

1

1 2

1

4321

0

0

0

No solutions

Type

L(1) P(2) T(3)

D

a

y

s

1

2

3

1 0 1

j
i

1 1 0

0 2 4

Unsuccessful assignment

Successful assignment

Figure 21.15: Partial Search Tree for Course Scheduling Problem

search, as well after a solution has been found and is being executed. Note, however, that
supporting changes during systematic search requires a more sophisticated search strategy
than simple chronological backtracking, such as Dynamic Backtracking [33, 44] or the
Local Changes algorithm discussed in the previous sub-section.

A significant amount of attention in the literature has been devoted to employing ex-
planations in maintaining arc consistency (the reader is directed to Chapter 3 for an expla-
nation of arc consistency) in the face of changes to the problem. Specifically, the problem
is assumed to be in an arc consistent state, a change to the problem structure occurs and the
goal is to restore arc consistency. Since it is common practice to maintain arc consistency
during search, following a change it is natural to restore arc consistency before proceeding.
We might also wish to maintain the problem in an arc consistent state, rather than solve
it immediately. For instance, Debruyne [15] describes how a bioinformatics problem is
configured through a process of interaction with a biologist. The biologist adds or removes
constraints from the problem until the current problem is acceptable to him/her. The prob-
lem is sufficiently difficult to make solving it following each change impractical, but if
enforcing arc consistency does not show that the current problem is unsolvable then this is
a good indicator that the problem has solutions. Boyd and Bowen also use explanations to
support a similar interactive process [13].

As has been pointed out by many authors, constraint restriction alone is simple to deal
with in this setting: a standard arc consistency algorithm can be run as normal following
the addition of new constraints. Constraint relaxation/retraction is, however, more difficult
to support. This is because value removals resulting from enforcing arc consistency before
constraint retraction may no longer be valid. Hence, following retraction, some values
typically must be reinstated. Explanations are used to support the identification of these
values.

746 21. Uncertainty and Change

x12

x22

x32

x33

x23

x13

0

1

2

1

0

4

Type

L(1) P(2) T(3)

D

a

y

s

1

2

3

1 0 1

j
i

1 1 2

0 2 2

1 2

1 25 0

Divergence

from oracle
Unsuccessful assignment

Successful assignment

Pruned branch

Figure 21.16: Partial Search Tree for Balanced Course Scheduling Problem using Oracles

One common explanation scheme for this purpose, as embodied by the algorithms
DnAC-4 [9], DnGAC4 [10], DnAC-6 [15] as well as the work of Prosser et al [64], is based
on recording justifications for value removals similar to those used in truth maintenance
schemes [21]. This is simply the constraint c whose revision caused the value v to be
removed from the domain of some variable x. If c is subsequently retracted, v is tentatively
restored to x’s domain (tentatively because there may be alternative justifications for its
removal). Of course the reinstatement of v calls into question all values v′ removed from
the domains of other variables, specifically where the removal is justified by a constraint
involving x. If a constraint check reveals that a v′ is supported by v, it is also tentatively
restored. This process propagates through the network, restoring values as appropriate.
The final step is to run a modified arc consistency algorithm, which removes all tentatively
restored values for which it can find an alternative justification.

One variant of this scheme, appearing in the AC|DC algorithm [56] and its descen-
dants [55, 70, 1] saves space by extracting explanations directly from the constraint graph.
Another, such as [16], strengthens the justifications recorded to the set of original prob-
lem constraints that imply a value removal. The tradeoff is the time and space required to
record explanations versus the time required to react to a change in the problem. Although
maintaining arc consistency was the original focus of much of this research, explanations
have also been used to support the re-use of nogoods discovered during search [68], and
have been generalised to arbitrary constraint propagators in, for example, the PaLM system
[16] and Constraint Logic Programming [32].

To illustrate, we present a simple example of the utility of explanations. Returning to
the original Course Scheduling problem from Figure 21.1, consider that the different ses-
sion types are indistinguishable — in any (non-)solution, the assignments to one column of
variables representing a session can be exchanged with another to produce a (non-)solution.

K. N. Brown, I. Miguel 747

This is a symmetry (see Chapter 10)3, which can be exploited by imposing an ordering on
the session types, for instance by insisting that the sum of the columns is non-decreasing:

3
∑

i=1

xi1 ≤
3
∑

i=1

xi2 ≤
3
∑

i=1

xi3 Order Constraints on Session Types (21.11)

From the total sessions constraint (21.3), one can reason that the session type with the
smallest number of assigned sessions can have at most 4 sessions assigned. The ordering
constraints (21.11) allow us to identify this session type as the lectures. Hence we can add
the implied constraint:

3
∑

i=1

xi1 ≤ 4 Lectures — Revised Maximum (21.12)

The explanation for constraint (21.12) is the pair of constraints (21.3) and (21.11).
Consider now the transition to the Balanced Course Scheduling Problem. Assuming that
the ordering constraints to exploit symmetry are retained, the explanation for constraint
(21.12), and therefore the constraint itself, remains valid. The saving made is that the
cost of deriving the implied constraint is incurred only once, but the benefit, in terms of
reducing search following changes to the problem, remains for as long as its explanation is
valid.

21.4.3 Predicting Changes

In many real-world problem domains, we have some uncertain knowledge of what the
changes might be. For example, in a scheduling problem, we may know the characteristics
of all jobs set for production, even if we don’t know when the work can begin; a dispatch
service may have extensive histories of previous work requests and thus can predict the
pattern of future request; or in a manufacturing environment, we may have knowledge
of the reliability of a process, and thus can compute the probability of errors. In all of
these cases, we can improve our initial solutions by reasoning about the likely changes. In
general, we wish to produce robust solutions that, when change occurs, are likely to remain
solutions or can be modified at little cost.

In recurrent CSP [75], changes to problems are assumed to be temporary and recurring
— for example, the occasional temporary loss of a resource due to reliability problems.
The authors assume that they have no a priori knowledge of the changes, and thus must
learn the distribution by monitoring changes while solutions are being executed. They
propose a min-conflicts [52] repair-based method, to recover solutions when the changes
happen, and as they learn the distribution of the changes, they penalise solutions which
use values that are frequently lost. In their supersolutions framework [37], Hebrard et al.
address a similar problem, in that values may be unavailable when the solution is executed.
Their aim is to find initial solutions that are robust to this loss, or that can be repaired with
a small number of changes. They define the concept of an (a, b)-super solution, which is a
solution to the original problem which, if any a value assignments are lost, can be repaired
by reassigning the relevant variables plus another b variables. In particular, a (1, 0)-super

3The reader will have noticed that the days are also indistinguishable, but we focus on the session types for
simplicity.

748 21. Uncertainty and Change

∀i Di = {yij : j = 1 . . . 6}, count(Di, φ) ≤ 4 (21.13)

S = {yij : i = 1 . . . 3, j = 1 . . . 6} (21.14)

count(S,L) ∈ {1, 2, . . . , 5} (21.15)

count(S, P) ∈ {1, 2, . . . , 5} (21.16)

count(S, T) ∈ {1, 2, . . . , 5} (21.17)

count(S, φ) ∈ {6, 7, 8} (21.18)

Figure 21.17: The Extended Course Scheduling Problem

solution is essentially robust to the loss of any single value — for each variable, there is a
backup value which could be assigned without violating any of the constraints.

As an example, consider a more detailed version of the course scheduling problem.
We now assume there are six possible time slots each day (giving 18 variables yij , where
i ∈ {1, 2, 3} and j ∈ {1, . . . , 6}), which we may fill will a lecture (L), a practical (P) or a
tutorial (T), or leave empty (φ). The new model is given in Figure 21.17, where we assume
a constraint count(S, v), which counts the number of times a variable from the set S takes
the value v.

We now assume that after we construct and advertise the timetable, we may be told
that certain time slots cannot be filled with sessions of a given type (for example, because
of room changes elsewhere). Can we find a (1, 0)-supersolution — that is, a solution that
can be adapted by reassigning only the affected variable? Figure 21.18a shows one such
supersolution — any class (L,P or T) can be replaced by another class, and any empty slot
can be filled by a class. Figure 21.18b shows a solution that is not a (1, 0)-supersolution,
since if we lose the value T from y14, then we cannot find another satisfying solution
reassigning only that time slot (since we cannot satisfy the constraint on the number of
tutorials).

Periods

L P P

L P T

L L T

1 2 3
D

a

y

s

1

2

3

j
i

T 0 0

0 0 0

0 0 0

4 5 6

(a)

L P P

L P P

L L P

1 2 3

1

2

3

j
i

T 0 0

0 0 0

0 0 0

4 5 6

(b)

Figure 21.18: supersolutions: (a) (1, 0)-supersolution; (b) not a (1, 0)-supersolution.

Finding an (a, b)-super solution is shown to be NP -complete for any fixed a. The
authors develop a MAC algorithm for finding (1, 0)-super solutions, and extend it to a

K. N. Brown, I. Miguel 749

branch-and-bound algorithm for finding the most robust solution when a (1, 0)-super so-
lution does not exist (the most robust solution is defined to be one in which a maximal
number of variables can be repaired without violating any constraints). This work has
been extended [38] to consider (1, b)-super solutions, with the ability to place restrictions
on the repairs that are considered — for example, to model scheduling problems, where
values represent the times at which activities start, the repairs are restricted to using higher
values representing later times, so that the repair can be carried out when the break arises
during execution. The supersolutions concept has then further extended [39] to include the
probability of a value assignment being lost, and the cost of making the repair: specifically,
a (α, β)-weighted supersolution is one in which any set of value assignments with a total
probability greater then α of being lost can be repaired by changing any variables at a total
cost of less then β. Weighted supersolutions have been defined to model combinatorial
auctions, where each winning bid has a probability of being withdrawn.

Stochastic CSPs [76] (introduced in subsection 21.3.3) allow us to model problems
with multiple phases: first the solver must assign a set of variables, then the environment
reveals the values of a set of parameters, the solver must then assign another set, and so on.
The values of the parameters are assumed to be described by probability distributions. The
solution to a multi-stage stochastic CSP is then a tree, in which the assignment of values to
the later decision variables are conditional on the previous decisions and the revealed val-
ues of the parameters. This allows us to model, for example, production planning, in which
the volume to be manufactured in the 2nd quarter depends on the volume manufactured in
the 1st quarter, on the realised demand for the 1st quarter, and on the uncertain demand in
the future. In the general case, multi-stage stochastic CSPs are PSPACE-complete. This
work is then extended to use scenario-based semantics [50], and allows chance constraints,
which must be satisfied over a proportion of the scenarios. The framework has been imple-
mented as Stochastic OPL, in which multiple futures are represented as separate scenarios
which are then reformulated as a single larger CSP.

Branching CSP [30] also considers multiple phases, but models problems which grow
by the uncertain addition of variables and their associated constraints — for example, on-
line scheduling, where new tasks arrive as the existing tasks are being executed. The model
of future arrivals is a probabilistic tree, in which the arrival of any variable is conditional
on the preceding arrival sequence. Each variable that arrives may be accepted and as-
signed a value which does not violate any constraint over the arrived variables, or rejected
and assigned no value; a specified utility is gained for each variable that is accepted. The
aim is then to assign values to nodes in the tree, such that no constraint is violated and
expected utility is maximised. The solution is thus a policy, specifying actions for each
possible arrival sequence. Branching CSP has similarities to Markov Decision Problems
[65], since the arrivals tree is essentially a finite horizon markov process; however, it is
complicated by the fact that choice available at each node is constrained by the previous
choices, and formulating the problem as an MDP may require exponentially many states.
The Branching CSP algorithms use backtrack search and constraint propagation to reduce
this combinatorial explosion [29].

Consider now a special case of the course scheduling problem, in which the resource
allocator must decide on initial room requests, but should also cater for new timetabling
requests. For simplicity, we consider a simpler problem (Figure 21.19), with one room
suitable for lectures, and one for practicals, and three time periods. We assume one initial
request: (A) a one hour lecture to be followed by a later one-hour practical. There are also

K. N. Brown, I. Miguel 751

sensus, in which each sample is solved to optimality, and from the solutions the immediate
decision which occurs most often is selected; and regret, in which each sample is again
solved to optimality, and then the possible decisions are evaluated with respect to how
much of the objective value would be lost compared to the other decisions. The expec-
tation method produces the best results, but is infeasible for real problems because of the
number of optimisations required. The regret method approaches the quality of expectation
when there is time to optimise, but is similar to consensus when only a small number of
samples are possible, and thus is particularly effective in real-time situations or where the
underlying optimisation problem is hard. In common with the approaches that use explicit
probability distributions, there is a question as to where the underlying distribution for the
black-box generator comes from; the authors have proposed an online learning method [8],
which gradually constructs the distribution as it receives requests. [5] also considers prob-
lems that grow, examining a number of different approaches to generating robust initial
solutions and regular updates

The most significant application area for constraint problems that change is schedul-
ing. Many practical scheduling problems can be expressed as Simple Temporal Problems
[20], in which constraints specify single intervals between two time points, and solved in
polynomial time. [74] considers an extension in which the durations of some tasks are un-
certain, and hence some timepoints are decision variables, while others are uncontrollable
(using the same terminology as for mixed CSP [27]). The aim is then to find a policy for
executing tasks: problems are defined to be strongly controllable if a single decision (i.e.
an assignment of a value to each decision variable) will produce an executable schedule re-
gardless of the eventual values of the uncontrollable timepoints; and weakly controllable if
there exists a decision for each possible realisation of the timepoints. The work was further
extended [54] to include dynamically controllable problems, for which there exists an on-
line policy: the values assigned to the decision variables need depend only on the observed
timepoints in order to get an executable schedule. Checking whether a problem is strongly
or dynamically controllable is in P , but weak controllability is in co−NP . This work has
recently been extended to include soft temporal constraints [78], and it is shown that this
does not increase the complexity class: in particular, a polynomial algorithm is presented
for generating online execution algorithms that optimise over the soft constraints.

Uncertainty in the duration of tasks is a significant issue in more general scheduling
problems. [14] examines the introduction of slack time to handle such uncertainty in job-
shop problems. They consider three variations: adding extra time to the duration of every
task, modifying the constraints to ensure that slack time exists between tasks, and modify-
ing the constraints dependent on the location of the task in the problem. For a given con-
straint Yst ≥ Xst + dur(x), the first would change the value of dur(x) to dur(x) + σ(x),
while the latter two would change the constraint by adding the term slack(x) to the right
hand side. The resultant problem can then be solved using existing scheduling algorithms.
Experimental evidence shows that the latter two consistently outperform a simple right-
shift reactive solution in terms of tardiness, while the former is significantly poorer, but
can give better predictions of execution time in problems with high levels of uncertainty.
More recent work [3, 4] considers the problem of producing schedules with a given prob-
ability of being executed inside a time limit, and with good probabilistic makespans. The
authors develop branch and bound algorithms with Monte Carlo simulation at each node,
and heuristic algorithms which generate deterministic problems from the means and vari-
ances of the task durations. The heuristic algorithms are shown to scale well with larger

752 21. Uncertainty and Change

problems.
For project scheduling problems, Policella et al [61] consider notions of robustness

based on initial solutions that are partial orders of tasks. They assume that some pairs of
tasks have minimum separation constraints, and that each task occupies a known amount
of resource. They consider dynamic changes to the problem in the form of partial resource
unavailability, or changes in task duration. Their aim is to produce a partial ordering of
the tasks such that any allocation of start times consistent with it also satisfies the time and
resource constraints. A partial order is then deemed to be robust if it can absorb changes
to the problem details during execution — that is, start times can still be assigned with
violating the partial order or the problem constraints. Their approach is first to generate
a single schedule with fixed start times, and then to “robustify” it by generating a partial
order from it. Previous research has shown that this approach can generate more robust
schedules than starting with a least commitment approach [62]. The partial orders are
based on chains of precedence constraints for individual units of the resource, and greater
robustness is obtained by generating independent chains.

Finally, we note some recent research integrating constraint programming techniques
with belief networks, for reasoning about a combination of probabilistic and deterministic
information. Belief networks have been studied in AI for many years, and represent the
probabilistic dependencies between random variables. They can be used to find the most
probable value of a variable, given a set of observations of other variables, and can be
used to update beliefs as observations are made incrementally. Constraints can be inte-
grated into the networks by representing them implicitly as conditional probability tables
on boolean random variables [58], mapping valid combinations to true with probability
1.0, and invalid combinations to false. However, this loses the benefits of constraint-based
search and propagation. [18] instead represent the constraints explicitly, and show how
variable elimination methods can be significantly faster on such representations for com-
puting the probability that a given tuple is a solution. That approach, however, requires
large amounts of space. Therefore [19] instead develop search algorithms, which combine
constraint propagation with search over AND/OR graphs, requiring only linear space.

21.5 Pseudo-dynamic Formalisms

In this section we describe extensions to classical CSP that, while closely related to dy-
namic CSPs by name or definition, have important differences that we should be careful to
recognise.

We begin by emphasising the difference between dynamic CSPs and what are now
known [67] as conditional CSPs [53]4. In a conditional CSP, the whole problem is known
statically, but parts of it are made active or inactive depending on the assignments of certain
variables. For example, in configuring a car it is only necessary to decide the details of a
sunroof if the decision has been made that a sunroof is to be fitted. Conditional CSPs are a
natural way to model both configuration [53] (see Chapter 24) and planning problems [45]
(see Chapter 22).

4The potential for confusion stems from the fact that this work was originally presented with the title ‘Dy-
namic Constraint Satisfaction Problems’, where ‘dynamic’ is refers to the fact that the structure of the problem
changed based on decisions made during search

K. N. Brown, I. Miguel 753

Open Constraint Satisfaction Problems (OCSPs [24]) assume a distributed environment
and an open-world setting, in which the set of variables and constraints is known statically
but the variable domains and tuples allowed by the constraints are incrementally discovered
by querying different information sources in a network. This is a natural representation for,
for example, many e-commerce problems where suppliers might be queried as necessary as
to the specifications and possible configurations of their products. Returning to our running
example of course scheduling, one might imagine scheduling a larger course, or multiple
courses, taught by several people. In this case, the people involved might be queried to
discover acceptable numbers of sessions they were willing to teach and constraints on their
timetabling. If the problem remained unsolvable, further queries could be made, and so
on.

Open CSP makes the further assumption that information-gathering queries are by far
the most expensive individual operation that the solver performs, hence the emphasis is
on producing a solution with a minimal number of queries. Faltings and Macho-Gonzalez
show that, since domains and allowed tuples increase monotonically with each new query,
it is unnecessary to know the entire problem structure in order to solve the problem —
a solution to a partially-discovered problem is guaranteed to be a solution to the whole
problem [24]. They give the o-search algorithm to solve OCSPs that improves over the
naive approach of simply gathering all domain values and constraint tuples before solving
the problem by interleaving querying and solving: new domain values and constraint tu-
ples are sought only if the currently known sub-problem has no solution. The fo-search
algorithm refines o-search by only gathering new domain values and constraint tuples for
the portion of the currently-known sub-problem identified as being responsible for the sub-
problem having no solution.

OCSP has also been extended to fuzzy CSPs (see Section 21.3.1) and to optimisation
problems [24]. In both cases to be able to find an optimal solution without knowing the
whole problem structure there is a monotonicity assumption: domain elements and tuples
are returned in non-increasing order of membership degree / non-decreasing order of cost.
This is a realistic assumption — the participants in the open course scheduling example
described above are likely to be happy to respond to queries with their most preferred
option first.

Open CSP is very closely related to Interactive CSP (ICSP [47]) in which again do-
main elements are acquired incrementally in solving a problem. The key difference is
that, since at least one of the solution algorithms presented (Interactive Forward Check-
ing) acquires all domain values for a particular variable that are consistent with respect
to the current assignment, there is an implicit assumption that variable domains are finite.
OCSP is also closely related to dynamic CSP, since the incremental addition of domain
elements and constraint tuples can be viewed as a sequence of problems linked by the
relaxation/retraction of unary constraints disallowing the acquired domain elements [49].

21.6 Challenges and Future Trends

As we have seen, there have been many attempts to extend constraint reasoning to han-
dle dynamic and uncertain problems. The attempts all appear to be isolated, with little
commonality between them; they define different problem types, and different types of
objectives. In particular, it is difficult to compare techniques, since each is typically ad-

754 21. Uncertainty and Change

dressing its own problem variation, and testing them requires generators of the uncertain
and dynamic aspects. There is a need for general purpose, parameterisable, problem gener-
ators and execution simulators. Such tools should allow the different types of uncertainty
and change to be expressed, and should allow the temporal nature of the changes to be
described. An initial scheme for a generator for scheduling problems has been proposed
[60]. Tools of this sort would be a start on the road to classifying techniques, and identify-
ing which methods are best suited to which problem types. A common library of problems
would be useful in itself, to give an indication of the range and frequency of the different
problem types in practical applications. For example, CSPLib5, an otherwise invaluable
repository of benchmark constraint problems, contained no problems with explicit uncer-
tainty or dynamism.

A related challenge is to bring all the different frameworks together. There are some
foundational approaches, like Dynamic CSP [17], but nothing as yet with a similar cov-
erage to semiring CSP [12] or valued CSP [69] for soft constraints. Can we find a single
framework that encompasses all the different features proposed so far? One such frame-
work has recently been proposed [63], and the question remains open as to whether such
a framework should have a rich language allowing the direct expression of many different
features, or a simpler more restricted language which would require the reformulation of
problems.

On an abstract level, there are three main solution techniques: extending the repre-
sentational power and reasoning methods to represent uncertain and dynamic problems
explicitly, and generate their solutions; reformulating problems into large deterministic
problems, and generating the solutions using existing techniques; or generating scenarios
or samples, and then solving each one using standard deterministic techniques. It is an
open question as to where the boundary lies, to allow us to decide which technique should
be applied to which class and size of problem. In particular, more tractability results are
required for the different formulations.

In general, constraint solving under change and uncertainty is in its infancy. Closer
links need to be established with the existing techniques in other areas of artificial intel-
ligence, mathematics and optimisation, including belief networks [40], MDPs [65] and
POMDPs [57], queuing theory [35], stochastic processes [41], stochastic programming
[11], Monte Carlo methods [28], stochastic satisfiability [48], decision theory [34] and
fuzzy logic [46]. See Halpern [36] for an overview of uncertainty reasoning in general.

Finally, the biggest challenge is to integrate dynamic and uncertain reasoning meth-
ods with industrial strength constraint programming tools — as has begun to be the case
with, for example, the PaLM system [43]. This would allow the approaches discussed
in this chapter and future techniques to be put into practice for real-world decision and
optimisation problems, without requiring users to write their own search and propagation
algorithms. Towards this goal, Fromherz and Conley [31] describe a general constraint
solver design to support a dynamic environment. Further progress is likely to be made by
integrating principled simulation and sampling techniques first — see for example [50] —
since they will allow existing CP tools to be used without modification.

5http://www.csplib.org, 29th September, 2005

K. N. Brown, I. Miguel 755

21.7 Summary

Many real and important problems involve change and uncertainty. Solutions are required
that take account of vagueness in the problem description, or that minimise the effect of the
uncertainty on the solution. Basic approaches to handling change include rapid reaction
through re-specifying the problems and re-solving when the changes occur, preparing to
change by maintaining explanations and data structures that will allow the solver to avoid
repeating work, or proactively generating solutions that are robust, by explicitly reasoning
about the possible changes. A number of different techniques have been developed, and
they have demonstrated that constraint programming methods can be extended to handle
many different forms of dynamism and uncertainty, and that many exemplar problems can
be solved efficiently. Constraint programming toolkits need to be extended with facilities
to handle such problems. Further work is required to establish which of the techniques and
frameworks are practical candidates, and to integrate this body of research with the many
other research fields which deal with change and uncertainty. Finally, for an alternative
viewpoint on the material in this chapter, the reader is directed to the survey by Verfaillie
and Jussien [72].

Acknowledgments

We thank the anonymous referee for useful comments on a draft of this chapter. Ken
Brown’s work was supported in part by grants 03/CE3/I405 (SFI Centre for Telecom-
munications Value-chain Research) and SC/2003/81 (Enterprise Ireland). Ian Miguel is
supported by a UK Royal Academy of Engineering/EPRSC Research Fellowship.

Bibliography

[1] R. Bartak and P. Surynek. An improved algorithm for maintaining arc consistency
in dynamic constraint satisfaction problems. In FLAIRS’05: Proceedings of the
Eighteenth International Florida Artificial Intelligence Research Society Conference,
pages 161–166. AAAI Press, 2005.

[2] R. Bartak, T. Muller, and H. Rudova. A new approach to modeling and solving
minimal perturbation problems. In Recent Advances in Constraints, volume 3010,
pages 223–249. Springer Lecture Notes in Artificial Intelligence, 2004.

[3] J. C. Beck and N. Wilson. Job shop scheduling with probabilistic durations. In
ECAI’04: Proceedings of the Sixteenth European Conference on Artificial Intelli-
gence, pages 652–656. IOS Press, 2004.

[4] J. C. Beck and N. Wilson. Proactive algorithms for scheduling with probabilistic
durations. In IJCAI’05: Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, pages 1201–1206. Professional Book Center, 2005.

[5] T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic con-
straint programming: A study of online multichoice knapsack with deadlines. In
CP’01: Proceedings of the Seventh International Conference on Principles and Prac-
tice of Constraint Programming, volume 2239, pages 61–76. Springer Lecture Notes
in Computer Science, 2001.

756 21. Uncertainty and Change

[6] R. Bent and P. van Hentenryck. The value of consensus in online stochastic schedul-
ing. In ICAPS’04: Fourteenth International Conference on Automated Planning and
Scheduling, pages 219–226. AAAI Press, 2004.

[7] R. Bent and P. van Hentenryck. Regrets only! online stochastic optimization under
time constraints. In AAAI’04: Proceedings of the Nineteenth National Conference on
Artificial Intelligence, pages 501–506. AAAI Press, 2004.

[8] R. Bent and P. van Hentenryck. Online stochastic optimization without distribu-
tions. In ICAPS’05: Fifteenth International Conference on Automated Planning and
Scheduling, pages 171–180. AAAI Press, 2005.

[9] C. Bessiere. Arc-consistency in dynamic constraint satisfaction problems. In
AAAI’91: Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 221–226. AAAI Press/MIT Press, 1991.

[10] C. Bessiere. Arc-consistency for non-binary dynamic CSPs. In ECAI’92: Proceed-
ings of the Tenth European Conference on Artificial Intelligence, pages 23–27. John
Wiley and Sons, 1992.

[11] J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer
Verlag, 1997.

[12] S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semi-rings. In
IJCAI’95: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pages 624–630. Morgan Kaufmann, 1995.

[13] D.B. Boyd and J. Bowen. Using dependency records to generate design coordina-
tion advice in a constraint-based approach to concurrent engineering. Computers in
Industry, 33(2):191–199, 1997.

[14] A. J. Davenport, C. Gefflot, and J. C. Beck. Slack-based techniques for robust sched-
ules. In ECP’01: Proceedings of the Sixth European Conference on Planning, pages
7–18, 2001.

[15] R. Debruyne. Arc-consistency in dynamic CSPs is no more prohibitive. In ICTAI’96:
Proceedings of the Eighth International Conference on Tools with Artificial Intelli-
gence, pages 299–307. IEEE Computer Society, 1996.

[16] R. Debruyne, G. Ferrand, N. Jussien, W. Lesaint, S. Ouis, and A. Tessier. Correctness
of constraint retraction algorithms. In FLAIRS’03: Proceedings of the Sixteenth Inter-
national Florida Artificial Intelligence Research Society Conference, pages 172–176.
AAAI Press, 2003.

[17] R. Dechter and A. Dechter. Belief maintenance in dynamic constraint networks. In
AAAI’88: Proceedings of the Ninth National Conference on Artificial Intelligence,
pages 37–42. AAAI Press/MIT Press, 1988.

[18] R. Dechter and D. Larkin. Hybrid processing of belief and constraints. In UAI’01:
Proceedings of the Seventeenth Annual Conference on Uncertainty in Artificial Intel-
ligence, pages 112–119. Morgan Kaufmann, 2001.

[19] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks and
their and/or search space. In UAI’04: Proceedings of the Twentieth Annual Confer-
ence on Uncertainty in Artificial Intelligence, 2004.

[20] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelli-
gence, 49:61–95, 1991.

[21] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
[22] D. Dubois, H. Fargier, and H. Prade. Possibility theory in constraint satisfaction

problems. Applied Intelligence, 6:287–309, 1996.

K. N. Brown, I. Miguel 757

[23] H. El Sakkout and M. Wallace. Probe backtrack search for minimal perturbation in
dynamic scheduling. Constraints, 5(4):359–388, 2000.

[24] B. Faltings and S. Macho-Gonzalez. Open constraint programming. Artificial Intel-
ligence, 161, 2005.

[25] H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a probalistic
approach. In ECSQARU’93: Proceedings of the Second European Conference on
Symbolic and Qualitative Approaches to Reasoning with Uncertainty, volume 747,
pages 97–104. Springer Lecture Notes in Computer Science, 1995.

[26] H. Fargier, J. Lang, R. Martin-Clouaire, and T. Schiex. A constraint satisfaction
framework for decision under uncertainty. In UAI’95: Proceedings of the Eleventh
Conference on Uncertainty in Artificial Intelligence, pages 167–174. Morgan Kauf-
mann, 1995.

[27] H. Fargier, J. Lang, and T. Schiex. Mixed constraint satisfaction: a framework
for decision problems under incomplete knowledge. In AAAI’96: Proceedings of
the Thirteenth National Conference on Artificial Intelligence, pages 175–180. AAAI
Press/MIT Press, 1996.

[28] G. S. Fishman. Monte Carlo: Concepts, Algorithms and Applications. Springer
Verlag, 1996.

[29] D. Fowler and K. Brown. Branching constraint satisfaction problems and markov
decision problems compared. Annals of Operations Research, 118:85–110, 2003.

[30] D. W. Fowler and K. N. Brown. Branching constraint satisfaction problems for solu-
tions robust under likely changes. In CP2000: Proceedings of the Sixth International
Conference on Principles and Practice of Constraint Programming, volume 1894,
pages 500–504. Springer Lecture Notes in Computer Science, 2000.

[31] M. Fromherz and J. Conley. Issues in reactive constraint solving. In COTIC’97: Pro-
ceedings of the Workshop on Concurrent Constraint Programming for Time Critical
Applications, 1997.

[32] Y. Georget, P. Codognet, and F. Rossi. Constraint retraction in CLP(FD): Formal
framework and performance results. Constraints, 4(1):1–41, 1999.

[33] M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research, 1:
25–46, 1993.

[34] P. Goodwin and G. Wright. Decision Analysis for Management Judgment (3e). Wiley,
2004.

[35] D. Gross and C. M. Harris. Fundamentals of Queueing Theory (3e). Wiley, 1998.
[36] J. Halpern. Reasoning about Uncertainty. MIT Press, 2003.
[37] E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming.

In CPAIOR’04: Proceedings of the First International Conference on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimisation
Problems, volume 3011, pages 157–172. Springer Lecture Notes in Computer Sci-
ence, 2004.

[38] E. Hebrard, B. Hnich, and T. Walsh. Robust solutions for constraint satisfaction and
optimization. In ECAI’04: Proceedings of the Sixteenth European Conference on
Artificial Intelligence, pages 186–190. IOS Press, 2004.

[39] A. Holland and B. OŚullivan. Weighted super solutions for constraint programs.
In AAAI’05: Proceedings of the Twentieth National Conference on Artificial Intelli-
gence, pages 378–383. AAAI Press/MIT Press, 2005.

[40] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2001.

758 21. Uncertainty and Change

[41] P. W. Jones and P. Smith. Stochastic Processes. Oxford University Press, 2001.
[42] N. Jussien. The versatility of using explanations within constraint programming.

Technical Report 03-04-INFO, Ecole des Mines de Nantes, 2003.
[43] N. Jussien and V. Barichard. The PaLM system: Explanation-based constraint pro-

gramming. In TRICS’00: Proceedings of the International Workshop on Techniques
for Implementing Constraint Programming Systems, pages 118–133, 2000.

[44] N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency within
dynamic backtracking. In CP’2000: Proceedings of the Sixth International Confer-
ence on Principles and Practice of Constraint Programming, volume 1894, pages
249–261. Springer Lecture Notes in Computer Science, 2000.

[45] S. Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and
other CSP search techniques in graphlan. Journal of Artificial Intelligence Research,
12:1–34, 2000.

[46] G. Klir and Yuan B. Fuzzy sets and fuzzy logic: theory and applications. Prentice
Hall, 1995.

[47] E. Lamma, P. Mello, M. Milano, R. Cucchiara, M. Gavanelli, and M. Piccardi. Con-
straint propagation and value acquisition: Why we should do it interactively. In
IJCAI’99: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 467–473. Morgan Kaufmann, 1999.

[48] M. Littman, S. Majercik, and T. Pitassi. Stochastic boolean satisfiability. Journal of
Automated Reasoning, 27(3):251–296, 2001.

[49] S. Macho-Gonzalez and P. Meseguer. Open, interactive and dynamic CSP. In Pro-
ceedings of the International Workshop on Constraint Solving under Change and
Uncertainty, pages 13–17, 2005.

[50] S. Manander, A. Tarim, and T. Walsh. Scenario-based stochastic constraint program-
ming. In IJCAI’03: Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, pages 257–262. Morgan Kaufmann, 2003.

[51] I. Miguel and Q. Shen. Fuzzy rrDFCSP and planning. Artificial Intelligence, 148
(1–2):11–52, 2003.

[52] S. Minton, M.D. Johnston, A.B. Philps, and P. Laird. Minimizing conflicts: A heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial Intel-
ligence, 58:161–205, 1992.

[53] S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In AAAI’90:
Proceedings of the Eighth National Conference on Artificial Intelligence, pages 25–
32. AAAI Press/MIT Press, 1990.

[54] P. Morris, N. Muscettola, and T. Vidal. Dynamic control of plans with temporal uncer-
tainty. In IJCAI’01: Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, pages 494–502. Morgan Kaufmann, 2001.

[55] M. Mouhoub. Arc consistency for dynamic CSPs. In KES’03: Proceedings of the
Seventh International Conference on Knowledge-based Intelligent Information and
Engineering Systems, volume 2773, pages 393–400. Springer Lecture Notes in Com-
puter Science, 2003.

[56] B. Neveu and P. Berlandier. Maintaining arc consistency through constraint retrac-
tion. In ICTAI’94: Proceedings of the Sixth International Conference on Tools with
Artificial Intelligence, pages 426–431. IEEE Computer Society, 1994.

[57] L. Pack Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

K. N. Brown, I. Miguel 759

[58] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[59] A. Petcu and B. Faltings. Optimal solution stability in continuous-time optimiza-

tion. In DCR’05: Proceedings of the Sixth International Workshop on Distributed
Constraint Reasoning, pages 207–221, 2005.

[60] N. Policella and R. Rasconi. Looking for a common scheduling perturbations bench-
mark. In Changes’05: Proceedings of the International Workshop on Constraint
Solving under Change and Uncertainty, Sitges, pages 23–27, 2005.

[61] N. Policella, A. Oddi, S. F. Smith, and A. Cesta. Generating robust partial order
schedules. In CP’04: Proceedings of the Tenth International Conference on the
Principles and Practice of Constraint Programming, volume 3258, pages 406–511.
Springer Lecture Notes in Computer Science, 2004.

[62] N. Policella, S. F. Smith, and A. Cesta, A.and Oddi. Generating robust schedules
through temporal flexibility. In ICAPS’04: Fourteenth International Conference on
Automated Planning and Scheduling, pages 209–218. AAAI Press, 2004.

[63] C. Pralet, G. Verfaillie, and T. Schiex. Composite graphical models for reasoning
about uncertainties, feasibilities, and utilities. In Soft’05: Proceedings of the Seventh
International Workshop on Preferences and Soft Constraints, Sitges, pages 104–118,
2005.

[64] P. Prosser, C. Conway, and C. Muller. A constraint maintenance system for the dis-
tributed resource allocation problem. Intelligent Systems Engineering, 1(1), 1992.

[65] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, 1994.

[66] N. Roos, Y. Ran, and J. van den Herik. Combining local search and constraint propa-
gation to find a minimal change solution for a dynamic CSP. In AIMSA’00: Proceed-
ings of the Ninth International Conference on Artificial Intelligence: Methodology,
Systems, and Applications, volume 1904, pages 272–282. Springer Lecture Notes in
Computer Science, 2000.

[67] M. Sabin and E. Freuder. Detecting and resolving inconsistency and redundancy in
conditional constraint satisfaction problems. In Proceedings of the CP’98 Workshop
on Constraint Problem Reformulation, 1998.

[68] T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint
satisfaction problems. International Journal of Artificial Intelligence Tools, 3(2):
187–207, 1994.

[69] T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems: Hard
and easy problems. In IJCAI’95: Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 631–637. Morgan Kaufmann, 1995.

[70] P. Surynek and R. Bartak. A new algorithm for maintaining arc consistency after
constraint retraction. In CP’04: Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming, volume 3258, pages 767–
771. Springer Lecture Notes in Computer Science, 2004.

[71] P. van Hentenryck and T. L. Provost. Incremental search in constraint logic program-
ming. New Generation Computing, 9:257–275, 1991.

[72] G. Verfaillie and N. Jussien. Constraint solving in uncertain and dynamic environ-
ments: A survey. Constraints, 10(3):253–281, 2005.

[73] G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction prob-
lems. In AAAI’94: Proceedings of the Twelfth National Conference on Artificial
Intelligence, pages 307–312. AAAI Press, 1994.

760 21. Uncertainty and Change

[74] T. Vidal and H. Fargier. Handling contingency in temporal constraint networks: From
consistency to controllabilities. Journal of Experimental and Theoretical Artificial
Intelligence, 11:23–45, 1999.

[75] R. J. Wallace and E. C. Freuder. Stable solutions for dynamic constraint satisfac-
tion problems. In CP’98: Proceedings of the Fourth International Conference on
Principles and Practice of Constraint Programming, volume 1520, pages 447–461.
Springer Lecture Notes in Computer Science, 1998.

[76] T. Walsh. Stochastic constraint programming. In ECAI’02: Proceedings of the Fif-
teenth European Conference on Artificial Intelligence, pages 111–115. IOS Press,
2002.

[77] N. Yorke-Smith and C. Gervet. Certainty closure: A framework for reliable con-
straint reasoning with uncertainty. In CP’03: Proceedings of the Ninth International
Conference on Principles and Practice of Constraint, volume 2833, pages 769–783.
Springer Lecture Notes in Computer Science, 2003.

[78] N. Yorke-Smith, K. B. Venable, and F. Rossi. Temporal reasoning with preferences
and uncertainty. In IJCAI’03: Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence, pages 1385–1386. Morgan Kaufmann, 2003.

Handbook of Constraint Programming 761
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 22

Constraint-Based Scheduling and
Planning

Philippe Baptiste, Philippe Laborie, Claude Le
Pape, Wim Nuijten

Solving a scheduling problem generally consists in allocating scarce resources to a given
set of activities over time. Planning can be seen as a generalization of scheduling where
the set of activities to be scheduled is not known in advance. The additional complexity
of planning thus lies in the fact one also has to decide on the set of activities that will
be scheduled. Constraint-Based Scheduling is the discipline that studies how to solve
scheduling problems by using Constraint Programming (CP). Constraint-Based Planning
in turn is the discipline that studies how to solve planning problems by CP. As the use of
CP in scheduling is more mature, we first turn to Constraint-Based Scheduling after which
we will come back to Constraint-Based Planning.

Constraint-Based Scheduling has over the years grown into one of the most successful
application areas of CP. One of the key factors of this success lies in the fact that a com-
bination was found of the best of two fields of research that pay attention to scheduling,
namely Operations Research (OR) and Artificial Intelligence (AI). Traditionally, a lot of
the attention in OR has been paid to rather “pure” scheduling problems that are based on
relatively simple mathematical models. For solving the problem at hand, the combinatorial
structure of the problem is heavily exploited, leading to improved performance characteris-
tics. We could say that an OR approach often aims at achieving a high level of efficiency in
its algorithms. However, when modeling a practical scheduling problem using these clas-
sical models, one is often forced to discard degrees of freedom and side constraints that
exist in the practical scheduling situation. Discarding degrees of freedom may result in
the elimination of interesting solutions, regardless of the solution method used. Discarding
side constraints gives a simplified problem and solving this simplified problem may result
in impractical solutions for the original problem.

In contrast, AI research tends to investigate more general scheduling models and tries
to solve the problems by using general problem-solving paradigms. We could say an AI

B.V.

762 22. Constraint-Based Scheduling and Planning

approach tends to focus more on the generality of application of its algorithms. This,
however, implies that AI algorithms may perform poorly on specific cases, compared to
OR algorithms.

So, on one hand we have OR which offers us efficient algorithms to solve problems that
in comparison have a more limited application area. On the other hand we have AI that of-
fers us algorithms that are more generally applicable, but that might suffer from somewhat
poor performance in the specific cases an efficient OR algorithm exists. An important way
to combine the two was found by incorporating OR algorithms inside global constraints.
Such algorithms are able to take into account a set of constraints from a global point of
view in an efficient way. The typical scheduling example of a global constraint is the con-
straint that propagates on the combination of all activities requiring capacity from a shared
resource. The basics of many of the algorithms inside global constraints, certainly in the
early stages of the field, can be found in OR. By applying the locality principle [70], such
specialized algorithms can work side by side with general propagation algorithms that take
care of the rest of the constraints. In this way one can preserve the general modeling and
problem-solving paradigm of CP while the integration of efficient propagation algorithms
improves the overall performance of the approach. Stated in another way, efficient OR
algorithms integrated in a CP approach allow the user to benefit from the efficiency of OR
techniques in a flexible framework. Translated to the area of Constraint-Based Scheduling
two strengths emerge: i) natural and flexible modeling of scheduling problems as Con-
straint Satisfaction Problems (CSPs) [72] and ii) powerful propagation of temporal and
resource constraints. All this said, we want to remark that over the years the distinction
between AI and OR is often becoming less and less clear and is also deemed less and less
important.

Let us now step from Constraint-Based Scheduling to Constraint-Based Planning. There
are basically two approaches for applying CP to planning:

• The first approach (see Section 22.2.2) dates back to the first attempts to build non-
linear plans in the 70s [62, 17, 53] and consists in refining a partial plan made of a
temporal network of activities. Similarly to Constraint-Based Scheduling, constraint
propagation can be used in this temporal network to propagate temporal, state, and
resource constraints. These approaches are flexible enough to handle complex and
realistic planning problems [66]. Although in these approaches the idea of constraint
propagation has been present since the beginning, it is only in recent years that ef-
ficient global propagation algorithms, partially inspired from the ones available in
Constraint-Based Scheduling have been designed [75].

• The second approach (see Section 22.2.1) consists in compiling the planning prob-
lem into a CSP and use CSP or SAT solvers as a blackbox to solve the problem
[6, 73, 23, 51]. These approaches work on a simplification of the real planning prob-
lem expressed in a STRIPS-like formalism and tend to focus on efficiency rather than
on generality of application. Several ideas stemming from this approach can be used
to provide efficient global constraint propagation algorithms and heuristics to guide
the search [75].

Although the use of CP in planning is, due to the problem complexity, less mature
than its use in scheduling, Constraint-Based Planning thus follows the same pattern as

Baptiste et al. 763

Constraint-Based Scheduling where CP is used as a framework for integrating efficient
special purpose algorithms into a flexible and expressive paradigm.

Besides the strengths mentioned above, we want to mention two more reasons that con-
tributed to the success of Constraint-Based Scheduling: a natural fit of expressing schedul-
ing specific heuristics with CP tree search, and a proven good potential of combining the
CP approach with solution techniques as Local Search, Large Neighborhood Search, and
Mixed Integer Programming. The first allows to both exploit all the work done on schedul-
ing heuristics in the past as to write new scheduling heuristics with easy to understand
scheduling semantics. The second allows to get improved performance in the cases where
that is needed. The same strengths should also benefit Constraint-Based Planning.

The remainder of this chapter is organized as follows. Section 22.1 presents CP models
for scheduling together with descriptions of propagation techniques for constraints used
in these models. Section 22.2 does the same for planning problems. As over the years
dedicated global constraint propagation techniques for resource constraints have received a
lot of attention, they are discussed in more detail in Section 22.3. In Section 22.4 constraint
propagation techniques on optimization criteria are discussed, after which Section 22.5
pays attention to the search procedures that are used in Constraint-Based Planning and
Scheduling to solve resource constraints. Finally in Section 22.6 conclusions are presented
together with identification of potential future research directions.

22.1 Constraint Programming Models for Scheduling

In this section we give an overview of the kind of scheduling problems that are studied
by the Constraint-Based Scheduling community. We present the different components
together with a description of how these components can be modeled as a part of a CSP.

Throughout this chapter we use the following notation. Let {A1, . . . , An} be a set
of n activities and {R1, . . . , Rm} a set of m resources. Let’s for now consider a basic
scheduling problem where each of the activities has a processing time and requires a certain
capacity from one or several resources. The resources have a given capacity that can not
be exceeded at any point in time. There may furthermore be a set of temporal constraints
between activities and an objective function. The problem to be solved is to decide when
to execute each activity to optimize the objective function, while respecting both temporal
and resource constraints. Later on in this section several extensions are discussed, but for
now this basic scheduling problem suffices for the discussion.

22.1.1 Activities

When looking at the type of activities in a problem, we distinguish non-preemptive schedul-
ing, preemptive scheduling, and elastic scheduling. In non-preemptive scheduling, activ-
ities cannot be interrupted. Each activity must execute without interruption from its start
time to its end time. In preemptive scheduling, activities can be interrupted at any time,
e.g., to let some other activities execute. In elastic scheduling the amount of resource as-
signed to an activity Ai can, at any time t, assume any value between 0 and the resource
capacity, provided that the sum over time of the assigned capacity equals a given value
called energy. The equivalent notion of energy in the case of a non-preemptive activity is
the product of its processing time and the capacity required.

764 22. Constraint-Based Scheduling and Planning

A non-preemptive scheduling problem can be efficiently encoded as a CSP in the fol-
lowing way. For each activity three variables are introduced, start(Ai), end(Ai), and
proc(Ai). They represent the start time, the end time, and the processing time of Ai,
respectively. We are not aware of CP approaches not using this encoding.

With ri the release date and di the deadline of activity Ai as defined in the initial data
of the scheduling problem, [ri, di] is the time window in which Ai has to execute. Based
on that the initial domains of start(Ai) and end(Ai) are [ri, lsti] and [eeti, di], respectively.
Here lsti and eeti stand for the latest start time and the earliest end time of Ai. For conve-
nience, we also use this notation to denote the current domains of start(Ai) and end(Ai),
i.e., the domains when we are in the process of propagating constraints. Of course in that
case instead of the initial release date and deadline, ri and di denote the current earliest
start time and latest end time

The processing time of the activity is defined as the difference between the end time
and the start time of the activity: proc(Ai) = end(Ai)− start(Ai). pi denotes the smallest
value in the domain of proc(Ai). All data related to an activity are summarized in Figure
22.1. Light gray is used to depict the time window [ri, di] of an activity and dark gray is
used to represent the processing time of the activity.

Figure 22.1: Data related to an activity

Preemptive scheduling problems are more difficult to represent since a schedule is more
complex than a simple set of start and end times of activities. We discuss two possibili-
ties. One can either associate a set variable (i.e., a variable the value of which will be a
set) set(Ai) with each activity Ai, or alternatively define a 0-1 variable X(Ai, t) for each
activity Ai and time t. set(Ai) represents the set of times at which Ai executes, while
X(Ai, t) takes value 1 if and only if Ai executes at time t. The processing time proc(Ai)
of Ai is defined as the number of time points t at which Ai executes, i.e., as |set(Ai)|. In
practice, the X(Ai, t) variables are not represented explicitly as the value of X(Ai, t) is 1
if and only if t belongs to set(Ai).

Assuming time is discretized, start(Ai) and end(Ai) can be defined by start(Ai) =
mint∈set(Ai) t and end(Ai) = maxt∈set(Ai) t + 1. Notice that in the non-preemptive case,
set(Ai) = [start(Ai), end(Ai)), with the interval [start(Ai), end(Ai)) closed on the left
and open on the right so that |set(Ai)| = end(Ai)− start(Ai) = proc(Ai).

These constraints are easily propagated by maintaining a lower bound and an upper
bound for the set variable set(Ai). The lower bound lb(set(Ai)) is a series of disjoint

Baptiste et al. 765

intervals ILBui such that each ILBui is constrained to be included in set(Ai). The upper
bound ub(set(Ai)) is a series of disjoint intervals IUBvi such that set(Ai) is constrained to
be included in the union of the IUBvi . If the size of the lower bound (i.e., the sum of the
sizes of the ILBui) becomes larger than the upper bound of proc(Ai) or if the size of the
upper bound (i.e., the sum of the sizes of the IUBvi) becomes smaller than the lower bound
of proc(Ai), a contradiction is detected. If the size of the lower bound (or of the upper
bound) becomes equal to the upper bound (respectively, lower bound) of proc(Ai), set(Ai)
receives the lower bound (respectively, the upper bound) as its final value. Minimal and
maximal values of start(Ai) and end(Ai), i.e., earliest and latest start and end times, are
also maintained. Each of the following rules, considered independently one from another,
is used to update the bounds of set(Ai), start(Ai) and end(Ai). Let t be any point in time,
then

t < ri ⇒ t /∈ set(Ai)

t ∈ lb(set(Ai))⇒ start(Ai) ≤ t
di ≤ t⇒ t /∈ set(Ai)

t ∈ lb(set(Ai))⇒ t < end(Ai)

[∀u<t u /∈ ub(set(Ai))]⇒ t ≤ start(Ai)

[∀u≥t u /∈ ub(set(Ai))]⇒ end(Ai) ≤ t
start(Ai) ≤ max{u | ∃S⊆ub(set(Ai)) |S| = pi ∧min(S) = u}
end(Ai) ≥ min{u | ∃S⊆ub(set(Ai)) |S| = pi ∧max(S) = u− 1}

Needless to say, whenever any of these rules leads to a situation where the lower bound of
a variable is larger than its upper bound, a contradiction is detected.

In the following, we may occasionally use the notations X(Ai, t) and set(Ai) for an
activity Ai that cannot be interrupted. In such a case, the following rules are also applied:

X(Ai, t) = 0 ∧ t < eeti ⇒ start(Ai) > t

X(Ai, t) = 0 ∧ lsti ≤ t⇒ end(Ai) ≤ t

Elastic activities are discussed in the following section.

22.1.2 Resource Constraints

When looking at the type of resources found in a problem, we distinguish disjunctive
scheduling and cumulative scheduling. In a disjunctive scheduling problem, all resources
are of capacity 1 (such resources are often called machines) and thus can execute at most
one activity at a time. In a cumulative scheduling problem, resources exist that can execute
several activities in parallel, of course provided that the resource capacity is not exceeded.

Resource constraints represent the fact that activities require some amount of resource
throughout their execution. Given an activity Ai and a resource R whose capacity is
cap(R), generally a variable cap(Ai, R) is introduced that represents the amount of re-
source R required by activity Ai. Where no confusion is possible we will often omit
“R” and use cap(Ai) to denote cap(Ai, R). For fully elastic activities, the cap(Ai, R)
variable is not meaningful and a variable E(Ai, R) that represents the energy required by
the activity on the resource R is introduced. Note that for non-elastic activities, we have

766 22. Constraint-Based Scheduling and Planning

E(Ai, R) = cap(Ai, R)proc(Ai). To represent a schedule, a set of variables E(Ai, t, R)
is required that denote the number of units of the resource R used by activity Ai at time t.
In all cases, we have the constraint stating that enough resource capacity must be allocated
to activities to cover the energy requirement:

E(Ai, R) =
∑

t

E(Ai, t, R)

If Ai is not an elastic activity, there are some strong relations between E(Ai, t, R) and
X(Ai, t):

E(Ai, t, R) = X(Ai, t)cap(Ai, R)

For elastic activities, we have a weaker relation between the variables:

[E(Ai, t, R) > 0]⇔ [X(Ai, t) > 0]

Generally speaking, the resource constraint can be written as follows. For each point in
time t

n
∑

i=1

E(Ai, t, R) ≤ cap(R) (22.1)

Depending on the scheduling situation, (22.1) can be rewritten. In the non-preemptive
case, (22.1) leads for all times t to

∑

Ai|start(Ai)≤t<end(Ai)

cap(Ai, R) ≤ cap(R)

In the preemptive case, (22.1) leads for all times t to
∑

Ai|start(Ai)≤t<end(Ai)

X(Ai, t)cap(Ai, R) ≤ cap(R)

22.1.3 Temporal Constraints

Temporal relations between activities can be expressed by linear constraints between start
and end variables of activities. For instance, a standard precedence constraint between two
activitiesA1 andA2 stating thatA2 is to be started afterA1 is ended can be modeled by the
linear constraint end(A1) ≤ start(A2). In general, with both x and y a start or end variable
and d an integer, temporal relations can be expressed by constraints of the type x− y ≤ d.

When the temporal constraint network is sparse, as it is usually the case in scheduling,
such constraints can be easily propagated using a standard arc-B-consistency algorithm
[49]. In addition, a variant of Ford’s algorithm (see for instance [37]) proposed by Cesta
and Oddi [15] can be used to detect any inconsistency between such constraints, in time
polynomial in the number of constraints and independent of the domain sizes.

When the temporal network is dense or when it is useful to compute and maintain
the minimal and maximal delay between any pair of time points in the schedule, path
consistency can be enforced on the network [21] for example by applying Floyd-Warshall’s
All-Pairs-Shortest-Path algorithm [27].

Baptiste et al. 767

22.1.4 Extensions of the Basic Model

Although the model presented until now covers quite a number of scheduling problems, in
this section we pay attention to extensions that are frequently found in industrial applica-
tions.

Alternative resources

In some scheduling situations an activity Ai can be scheduled on any one resource from
a set S of resources. We say that S is the set of alternative resources for Ai. A common
way to model this is to for each activity Ai introduce a variable altern(Ai) representing
the chosen resource among the resource alternatives. To simplify notation, we assume
that resources are numbered from 1 to m and that altern(Ai) denotes the variable whose
value represents the index of the resource on which Ai is executed. We remark that quite
commonly the processing time of the activity depends on the resource on which the given
activity is executed, i.e., the resources are unrelated. The same goes for the cost of exe-
cuting the activity, i.e., different alternatives can have different costs. Another commonly
found type of constraints reasons on interdependencies of resource allocations, e.g., a con-
straint like “if A1 is scheduled on resource R1 then A3 has to be scheduled on resource
R2”. These constraints are used to model things like alternative production lines.

Alternative resource constraints are propagated as if the activity Ai were split into
|domain(altern(Ai))| fictive activities Aui where each activity Aui requires resource Ru
[47]. Following this notation rui denotes the earliest start time of Aui , etc. The alternative
resource constraint maintains the constructive disjunction between the alternative activities
Aui for u ∈ domain(altern(Ai)), i.e., it ensures that:

ri = min{rui | u ∈ domain(altern(Ai))}
lsti = max{lstui | u ∈ domain(altern(Ai))}
eeti = min{eetui | u ∈ domain(altern(Ai))}

di = max{dui | u ∈ domain(altern(Ai))}
lb(proc(Ai)) = min{lb(proc(Aui)) | u ∈ domain(altern(Ai))}
ub(proc(Ai)) = max{ub(proc(Aui)) | u ∈ domain(altern(Ai))}

Constraint propagation will deduce new bounds for alternative activities Aui on the
alternative resource Ru. Whenever the bounds of an activity Aui turn out to be incoherent,
the resourceRu is simply removed from the set of possible alternative resources for activity
Ai, i.e., domain(altern(Ai)) becomes domain(altern(Ai))− {u}.

In some approaches the fictive activities Aui are actually generated together with a way
to express that only one of them per original activity Ai will really require one of the
alternative resources. In this context the generated activities Aui are often referred to as
optional activities. See below for a discussion on optional activities.

Setup times and setup costs

Setup times and setup costs are of great importance in industrial applications. They are
found abundantly and the correct treatment of them is often crucial, both because they are

768 22. Constraint-Based Scheduling and Planning

a mandatory component to express the problem in the required detail as it is needed to find
good solutions with respect to them as they represent a substantial part of the real-life cost.
The setup time (also transition time) setup(A1, A2) between two activities A1 and A2 is
defined as the amount of time that must elapse between the end of A1 and the start of A2,
when A1 immediately precedes A2 on a given resource. A setup cost setupCost(A1, A2)
can also be associated to the transition betweenA1 andA2. The objective of the scheduling
problem can be to find a schedule that minimizes the sum of the setup costs.

In a vast majority of problems activities subjected to setups are to be scheduled on
the same machine (the semantics of setups is much more complex on resources of ca-
pacity greater than 1). Setup considerations can be combined with alternative resources.
In such a case, two parameters are associated to each tuple (Ai, Aj , Ru): the setup time
setup(Ai, Aj , Ru) and the setup cost setupCost(Ai, Aj , Ru) between activities Ai and Aj
if Ai and Aj are scheduled sequentially on the same machine Ru. The attached constraint
is that start(Auj) ≥ end(Aui) + setup(Ai, Aj , Ru). There may furthermore exist a setup
time setup(−, Ai, Ru) (with corresponding cost setupCost(−, Ai, Ru)) that has to elapse
before the start of Ai when Ai is the first activity on Ru and, similarly, a teardown time
setup(Ai,−, Ru) (with corresponding cost setupCost(Ai,−, Ru)) that has to elapse after
the end ofAi whenAi is the last activity onRu. Section 22.4.2 pays attention to constraint
propagation methods for setup times and setup costs constraints.

Breakable activities and calendars

In [58] a problem is described that has a lot of properties frequently found in industrial
applications. One such property is the fact resources can be governed by a calendar under
which activities scheduled on the resource are executed. Such a calendar thus defines the
execution conditions for activities and consists of a list of breaks and a productivity profile.
An activity scheduled on the resource at hand can be interrupted by breaks smaller than
the maximal break duration mBD. An activity is thus breakable when mBD > 0 and not
breakable when mBD = 0. The productivity profile defines the efficiency of the activity
execution. If an activity is scheduled in a time interval with productivity p%, p% of a
processing time unit is executed per time unit. A productivity below 100% thus means
that per time unit less than one processing time unit is executed which in turn implies that
the duration of an activity will exceed its processing time. For productivities exceeding
100% obviously the inverse holds. The processing time of an activity is therefore equal to
the integral, from start to end, of the productivity. We refer to [65] for a more extensive
discussion on breakable activities and productivity profiles.

A CP model for this consists in introducing a duration variable per activity and re-
defining the meaning of the processing time variable. The duration variable dur(Ai) of
an activity is then defined as the difference between the end time and the start time of the
activity: dur(Ai) = end(Ai) − start(Ai). The processing time variable is defined as the
time it will take to execute the activity when it is not interrupted by breaks and all along
the execution the productivity is exactly 100%. All four activity variables start, end, dur,
and proc are governed by the break constraint and the productivity profile constraint of the
resource on which the activity is executed. For sake of clarity we do not use this mean-
ing for the processing time variable in the rest of this chapter, i.e., the processing time is
defined as the difference between the end time and the start time of an activity.

Baptiste et al. 769

Optional activities/leaving activities unperformed

Whether coming from alternative resources (see above) or directly present in the model, in
many scheduling problems activities exist for which it is not yet decided whether they will
be executed on a resource or not. Such activities are often referred to as optional activities.

Modeling an optional activity is often obtained by allowing the processing time variable
to take on the value 0. Care is to be taken then that non-standard precedence constraints
are not still active. If for instance an optional activity A1 is part of a chain of activities
and a precedence constraint of the type end(A1) + d ≤ start(A2) is defined, setting the
processing time variable to become 0 and keeping the precedence constraint active will still
induce a possibly unwanted delay d between the predecessors of A1 and A2. Another way
to model optional activities is to introduce a variable per activity expressing whether the
activity really exists or not. This is obviously a more direct way of modeling but requires
the adaptation of propagation algorithms to deal with this additional variable and concept
[78].

In industrial scheduling problems one often finds the possibility of subcontracting an
activity Ai, this against a certain incurred cost costi. This means that the activity does
not use resource capacity but does take time. A way to model this is to allow the capacity
variable cap(Ai) to take on the value 0 and to introduce a variable cost representing the cost
together with the constraint cap(Ai) = 0⇒ cost = costi. Another way to model this is to
introduce an alternative resource corresponding to the subcontracting alternative. This can
be interesting if subcontracting is subject to a different calendar than in-house production,
which of course is not uncommon. The cost of the alternative would correspond to costi.
On the “subcontracting” resource one would in this case not enforce the capacity constraint,
even though this model can easily be extended to enforce the capacity constraint to model
restricted subcontracting possibilities.

In [58] a model is described where one can decide that an activity will be left unper-
formed, meaning that the activity will not require capacity, but will obey potential temporal
constraints, etc., and will also obey the calendar of the chosen resource. This corresponds
to the situation where one wants to include the possibility to temporarily increase the pro-
duction capacity in its own production facility, this of course against a certain cost. Other
useful constraints included are performance compatibility constraint between two activi-
ties expressing that either they are both performed or they are both unperformed.

State resources

A state resource represents a resource of infinite capacity, the state of which can vary over
time. Each activity may, throughout its execution, require a state resource to be in a given
state (or in any of a given set of states). Consequently, two activities may not overlap if
they require incompatible states of a state resource during their execution. Adaptations
of the Timetable Constraint (see Section 22.3.2) and Disjunctive Constraint (see Section
22.3.1) are used as basic propagation algorithms on those resources.

Reservoirs

A reservoir resource is a multi-capacity resource that can be consumed and/or produced by
activities. A reservoir has an integer maximal capacity and may have an initial level. As
an example of a reservoir you can think of a fuel tank. Note that a cumulative resource can

770 22. Constraint-Based Scheduling and Planning

be seen as a special case of a reservoir that is consumed at the beginning of the activity
and produced in the same quantity at the end of the activity when the activity releases the
resource.

The Timetable Constraint presented in Section 22.3.2 can be generalized to the case
of reservoirs and is classically used as the basic propagation algorithm on those resources.
However, we will see in Section 22.3.3 that other techniques are available to provide addi-
tional propagation.

22.1.5 Objective Function

Finally, decision problems and optimization problems are distinguished. In decision prob-
lems, one has only to determine whether a schedule exists that meets all constraints. In
optimization problems, an objective function has to be optimized. In this chapter we con-
centrate on problems where there is one objective function, i.e., we do not consider cases
where multiple objective functions are defined.

The commonly used way of modeling an objective function is simply by introducing
a variable criterion that is constrained to be equal to the value of the objective function.
Although the minimization of the makespan, i.e., the end time of the schedule, is commonly
used, other criteria are of great practical interest e.g., the sum of setup times or costs,
the number of late activities, the maximal or average tardiness or earliness, storage costs,
alternative costs, the peak or average resource utilization, etc. We will come back to these
criteria later.

Many of the classical scheduling criteria take into account a due date δi that one would
like to meet for each activity. In contrast to a deadline di which is mandatory, a due date δi
can be seen as a preference. In the following, Ci denotes the completion time of activity
Ai. Lateness Li of Ai is defined as the difference between the completion time and the
due date of Ai, i.e., Li = Ci − δi. The tardiness Ti of Ai is defined as max(0, Li), while
earliness of Ai is defined as max(0,−Li). The notation Ui is used to denote a unit penalty
per late job, i.e., Ui equals 0 when Ci ≤ δi and equals 1 otherwise. See also Figure 22.2.

 Ci

cost

Lateness

Ci

cost

Completion time

Ci

cost

Tardiness

Ci

cost

Earliness

Ci

cost

Late jobs

Figure 22.2: Some scheduling related objective functions

The commonly studied criteria F are either formulated as a sum or as a maximum. A
weight per activitywi may be used to give more importance to some activities. We mention
the following well-known optimization criteria:

• Makespan: F = Cmax = maxCi

Baptiste et al. 771

• Total weighted flow (or completion) time: F =
∑

wiCi

• Maximum tardiness: F = Tmax = maxTi

• Total weighted tardiness: F =
∑

wiTi

• Total weighted number of late jobs: F =
∑

wiUi

For these simple cases which are the most often studied in the literature, the objective
function is thus a function of the end variables of the activities.

criterion = F (end(A1), . . . , end(An))

In that case, the objective constraint is a simple arithmetic expression on which arc-B-
consistency can be easily achieved.

Considering the objective constraint and the resource constraints independently is not
a problem when F is a maximum such as Cmax or Tmax. Indeed, the upper bound on
criterion is directly propagated on the completion time of each activity, i.e., latest end
times are tightened efficiently. The situation is much more complex for sum functions
such as

∑

wiCi,
∑

wiTi, or
∑

wiUi. For these functions, efficient constraint propagation
techniques must take into account the resource constraints and the objective constraint
simultaneously. We pay attention to propagation for sum functions in Section 22.4. There
we will also pay attention to objective functions that are not a function of the end variables
of the activities like sum of setup times and sum of setup costs.

Once all constraints of the problem are added, the most commonly used technique to
look for an optimal solution is to solve successive decision variants of the problem. Several
strategies can be considered to minimize the value of criterion. One way is to iterate on the
possible values, either from the lower bound of its domain up to the upper bound until one
solution is found, or from the upper bound down to the lower bound determining each time
whether there still is a solution. Another way is to use a dichotomizing algorithm, where
one starts by computing an initial upper bound ub(criterion) and an initial lower bound
lb(criterion) for criterion. Then

1. Set D =

⌊

lb(criterion) + ub(criterion)

2

⌋

2. Constrain criterion to be at most D. Then solve the resulting CSP, i.e., determine
a solution with criterion ≤ D or prove that no such solution exists. If a solution
is found, set ub(criterion) to the value of criterion in the solution; otherwise, set
lb(criterion) to D + 1.

3. Iterate steps 1 and 2 until ub(criterion) = lb(criterion).

22.2 Constraint Programming Models for Planning

While the previous section presented CP models for scheduling, in this section we pay
attention to CP models for planning as studied by the Constraint-Based Planning commu-
nity. In this section and in general throughout this chapter we assume that the readers are
familiar with basic planning techniques and terminology. For more information on such
planning techniques and terminology, we refer to [36].

772 22. Constraint-Based Scheduling and Planning

A general formulation of the planning problem defines three inputs in some formal
language:

1. A description of the initial state and expected changes of the world,

2. A description of the agent’s goal (i.e., what behavior is desired), and

3. A description of the possible actions that can be performed. This last description is
often called a domain theory.

The planner’s output is a feasible sequence of actions referred to as a plan which, when
executed in any world satisfying the initial state and undergoing the expected changes, will
achieve the agent’s goal.

22.2.1 CSPs for Planning-Graph Techniques

The classical STRIPS [26] representation describes the initial state of world with a com-
plete set of ground propositions. The representation is restricted to goals of attainment, and
these goals are defined as a conjunction of propositions; all world states satisfying the goal
formula are considered equally good. A domain theory completes a planning problem. In
the STRIPS representation, each operator is described with a conjunctive precondition and
conjunctive effect that define a transition function from states to states. An action is a fully
grounded operator. An action can be executed in any state s satisfying the precondition
formula. The effect of executing an action in a state s is described by eliminating from s
each proposition of the action delete-list and adding to s each proposition from the action
add-list. The add-list and delete-list of the action are called the effect of the action. This
defines the so called classical planning problem.

For instance in a blocks world domain, the propositions for describing the state of the
world are shown in Table 22.1. The operators of this planning domain move a clear block
onto another clear block or the table as shown in Table 22.2.

clear(X): There is no block on block X.
onT (X): Block X is on the table.
on(X, Y): Block X is on block Y.

Table 22.1: Propositions for the blocks world domain

In this section, we will consider the planning problem with initial state: [on(C,A) ∧
onT (A) ∧ onT (B)] and goal state: [on(A,B) ∧ on(B,C)] depicted in Figure 22.3.

In recent years, researchers have investigated the reformulation of planning problems
as constraint satisfaction problems (CSPs) in an attempt to use powerful algorithms for
constraint satisfaction to find plans more efficiently [73, 23, 51]. In these approaches, each
CSP typically represents the problem of finding a plan with a fixed number of steps. A
solution to the CSP can be mapped back to a plan; if no solution exists, the number of
steps permitted in the plan is increased and a new CSP is generated.

Graphplan [6] works on STRIPS domains by creating a planning graph which repre-
sents the set of propositions which can be achieved after a number of steps along with
mutual exclusion (mutex) relationships between propositions and actions. Mutually exclu-
sive actions are actions that cannot be executed in the same step. Two actions in the same

Baptiste et al. 773

BB(X,Y,Z) Move X from atop Y to atop Z
preconditions: clear(X) ∧ clear(Z) ∧ on(X, Y)

add-list: clear(Y) ∧ on(X, Z)
delete-list: clear(Z) ∧ on(X, Y)

TB(X,Y) Move X from the table to atop Y
preconditions: clear(X) ∧ clear(Y) ∧ onT (X)

add-list: on(X, Y)
delete-list: clear(Y) ∧ onT (X)

BT(X,Y) Move X from atop Y to the table
preconditions: clear(X) ∧ on(X, Y)

add-list: onT (X) ∧ clear(Y)
delete-list: on(X, Y)

Table 22.2: Operators for the blocks world domain

Initial state Goal state

AA

AA

BB
BB

CC
CC

Figure 22.3: A planning problem

step are mutex if either of the actions deletes a precondition or add-effect of the other.
Two propositions p and q in the same step are mutex if all possible actions for establishing
proposition p are exclusive with all possible actions for establishing proposition q. If two
actions a and b have some mutex precondition then they are mutex. Note that the persis-
tence of a proposition between two steps is considered as a particular type of action called
a persistence action.

This planning graph is then searched for a plan which achieves the goals from the initial
state and that is mutex-free in each step. The planning graph corresponding to our blocks
world example with 3 developed steps is shown in Figure 22.4. Note that this planning
graph is not complete, some mutex are missing in all steps and some actions are missing
in step 2.

While the original algorithm performed backward search, the plan graph can also be
transformed into a CSP which can be solved by any CSP solver.

In [23], variables of this CSP are propositions distinguished by step. Values are possible
actions for establishing those propositions with a special dummy value (⊥) stating that
the proposition is inactive. Constraints say that preconditions of actions that are used to
establish active propositions cannot be inactive and mutex action/proposition pairs must
be satisfied. For instance, a constraint on A B G = TB A B ⇒ (onT A3 6= ⊥ ∧
clear A3 6= ⊥ ∧ clear B3 6= ⊥) means that if proposition on A B in the goal state is to
be established by action TB A B, then, it means that propositions onT A, clear A and
clear B must hold in step 3, that is, they must have been established by some action. A
fragment of the CSP corresponding to the planning graph of Figure 22.4 is shown in Table
22.3.

774 22. Constraint-Based Scheduling and Planning

on_C_A

onT_A

onT_B

clear_B

clear_C

on_C_A

onT_A

onT_B

clear_B

clear_C

onT_A

onT_B

clear_B

clear_C

on_A_B

BT_C_A

BB_C_A_B

TB_B_C

on_C_B

clear_A

onT_C

on_B_C

Propositions

step 1

Actions

step 1

Propositions

step 2

Actions

step 2

Propositions

step 3

Actions

step 3

Goals

Opprecond.
add

delete

persistence

mutex

on_B_Con_B_C

BB_A_C_B

TB_A_B

on_A_C

clear_A

clear_C

clear_B

TB_B_C

onT_B

TB_B_C

on_A_B

BB_B_A_C

on_B_A on_B_A

TB_A_B

Figure 22.4: Planning graph with 3 steps

Variables: on C A1, onT A1, clear B1 , clear C1, onT B1,
on C B2, clear A2, onT C2, on C A2, onT A2, clear B2, clear C2, onT B2 , on B C2,
on A C3, on A B3, clear A3, on B A3, onT A3, clear B3, clear C3, onT B3, on B C3 ,
on A BG, on B CG,...

Domains: on C A1 : {Init}, onT A1 : {Init}, clear B1 : {Init}, clear C1 : {Init}, onT B1 : {Init},
on C B2 : {BB C A B,⊥}, clear A2 : {BB C A B,BT C A,⊥}, onT C2 : {BT C A,⊥},
on C A2 : {Persist,⊥}, onT A2 : {Persist,⊥}, clear B2 : {Persist,⊥},
clear C2 : {Persist,⊥}, on B C2 : {TB B C,⊥}, onT B2 : {Persist,⊥}, ...
on A BG : {BB A C B, TB A B,Persist,⊥}, on B CG : {TB B C,BB B A C,⊥}

Constraints: activity preconditions
on A B G = TB A B ⇒ (onT A3 6= ⊥ ∧ clear A3 6= ⊥ ∧ clear B3 6= ⊥)
on A B G = BB A C B ⇒ (on A C3 6= ⊥ ∧ clear A3 6= ⊥ ∧ clear B3 6= ⊥)
...

Constraints: mutexes
on C B2 = BB C A B ⇒ onT C2 6= BT C A
...

Constraints: goal state
on C BG 6= ⊥, on A BG 6= ⊥

Table 22.3: Fragment of the generated CSP problem for 3 steps

Baptiste et al. 775

If no solution is found, the planning graph is extended by adding an additional step and
the CSP is extended accordingly until it is feasible. In the example, the CSP with 3 steps
is feasible and a solution is: step 1: BT C A, step 2: TB B C, step 3: TB A B.

In [51], a slightly different CSP model is used with only boolean variables, one variable
for each proposition in each step and one variable for each action in each step. Some
redundant constraints (other than mutex) are identified and added to the CSP model. For
instance the fact that an action cannot be immediately followed by its opposite action in a
plan of optimal length.

In general, the reformulated problem is solved using classical CSP techniques (arc-
consistency, dynamic variable ordering, memoization) and does not require specific con-
straint propagation techniques this is the reason why we will not focus on this family of
approaches in the sequel of this chapter.

22.2.2 CSPs in Plan-Space Search

A second growing trend in planning is the extension of planning systems to reason about
both time and resources. STRIPS is simply not expressive enough to represent more real-
istic planning problems. This demand for increased sophistication has led to the need for
more powerful techniques to reason about time and resources during planning.

In Constraint-Based Planning, each search node represents a partial plan and consists
of a set of time intervals, connected by constraints. The partial plan may be incomplete,
in that constraints are not necessarily satisfied and pending choices have not been made.
The planning process then involves modifying a partial plan until it has been turned into
a complete and valid plan. Traditional search-based methods accomplish this by trying
different options for completing partial plans, and backtracking when constraints are found
to be violated. Constraint reasoning methods, such as propagation and consistency checks
can be used to help out in that process.

The scheduling community has used constraint satisfaction techniques to perform this
sort of reasoning. The main difference between constraint-based planning and scheduling
is that, in planning, the set of activities of the plan is not completely known a-priori and
must be determined during the search. The rules that govern the insertion of new activities
in the plan are expressed as implicit or explicit constraints and, although they slightly differ
from one planning system to the other [35, 42, 18, 40, 32], they all have the same flavor.

To fix the ideas, we will use in this section the IxTeT formalism [35, 42]. In this
planning language the state of the world is described by a set of multi-valued state attributes
together with a set of resource attributes. Each state attribute describes a particular feature
of the world, for instance the position of a block. A resource is an object (or a set of
objects) that can be simultaneously shared by several actions provided its maximal capacity
is not exceeded. Operators (or tasks) are temporal structures composed of a set of events
describing the changes of the world induced by the task (event), a set of assertions on state
attributes describing conditions that must remain true during some time intervals (hold)
and a set of resource usage (use, produce, consume) describing how the task uses some
resources. All the above statements refer to time points that can be constrained with respect
to the time interval [start,end] of the task. An example of model for the blocks world
domain is shown in Table 22.4. Note that the domain is represented here with a finer grain
than the STRIPS definition in Section 22.2.1: the operator is defined with internal time
points, delays between these time points (duration) are expressed together with resource

776 22. Constraint-Based Scheduling and Planning

requirements (here, the task requires one hand from the two hands that are available to
move the blocks). Beside resource usage, note that state attributes are very similar to state
resources used in scheduling (see section 22.1.4) in that no task requiring a given state
attribute to take different value can overlap in time.

constant blocks = {a, b, c};
positions = {a, b, c, table, hand};

attribute clear(?x) { ?x in blocks; ?value in {yes, no}; }
on(?x) { ?x in blocks; ?value in positions; }

resource hands() { capacity = 2; }
task TB(?x, ?y)(start, end) {

// Move ?x from the table to atop ?y
timepoint t1, t2;
event(clear(?x):(yes,no), start);
event(on(?x):(table,hand), t1);
event(on(?x):(hand,?z), t2);
event(clear(?z):(yes,no), t2);
hold(on(?x):hand, (t1, t2));
event(clear(?x):(no,yes), end);
hold(clear(?x):no, (start, end));
use(hands(): 1, (start, end));
(t1 - start) in [00:10, 00:20];
(t2 - t1) in [00:15, 00:25];
(end - t2) in [00:10, 00:20];
}

Table 22.4: Part of the blocks world domain in IxTeT

A partial plan is a set of tasks together with a set of constraints between the tasks
variables (including temporal constraints between the task time points). The initial plan
only contains a fake start task that asserts all the state attributes of the initial state and
a fake end task that has the goal as (non-established) preconditions. A partial plan is
complete and valid if and only if each instantiation of all the variables of the partial plan
lead to a feasible fully-grounded plan where (1) the change of state attributes over time
is non-ambiguously defined by and consistent with the events and assertions of the tasks
of the plan and (2) resource constraints are satisfied. Figure 22.5 shows an example of a
partial plan.

Partial plans are iteratively refined at each search node until the partial plan is complete
and valid. Three types of plan refinements are considered:

• Non-established conditions are those events or assertions that are still not established
by a task or the initial state. For instance, in the partial plan of Figure 22.5, the con-
dition clear(A) : yes related with the event at the start time point of task TB(A,B)
is still not established. Non-established conditions can be established by an exist-
ing event in the plan or by inserting a new task. In the case of the example, a new
task BT (C,A) could be added before the start of task TB(A,B) to establish the
condition.

• Possible conflicts between unordered events/assertions are pairs of statements that
may require the same state attribute to take different values at the same moment.

Baptiste et al. 777

Initial state Goal state

AA BB
CC

AA
BB
CC

TB(B,C)

start endt1 t2

on(B):hand→C

on(B):table→hand

on(B):C

on(A):B

on(B):table

on(A):table

on(C):A

clear(A):no

clear(B):yes clear(B):yes→no

TB(A,B)

start endt1 t2

on(A):hand→B

on(A):table→hand

clear(A):yes→no?

?

[10,20] [10,20]

[10,20] [10,20][15,25]

[15,25]

use(hands():1)

use(hands():1)

Figure 22.5: Partial plan

These incompatibility constraints can be solved by posting precedence constraints
to order the conflicting events/assertions.

• Possible resource conflicts are subsets of resource requirements that may overlap in
time and would in this case over-consume the resource. This would be the case of
the two tasks in the example if the maximal capacity of the resource hands is 1.
These resource conflicts can be solved by ordering the tasks or, in case the resource
can be produced, by inserting a task that produces the resource.

In Constraint-Based Planning, the partial plan is usually represented as a CSP with
variables representing the task time points together with non-temporal variables appearing
in the task definition as well as special variables representing the tasks that can be used to
establish conditions in the partial plan. Specialized constraint propagation algorithms can
be used to reduce the domain of variables or to deduce new temporal constraints. As far
as time and resources are concerned, these propagation algorithms are essentially the same
as the ones developed for pure scheduling problems, which will be described in Section
22.3. Indeed, unless stated otherwise, all the algorithms described in Section 22.3 can
be implemented so as to accept other tasks and variables as the search evolves. We also
sketch in that section how some of these algorithms can be adapted to propagate on state
attributes. See [75] for recent advances in the field of using Constraint Programming in
Plan-Space Search.

778 22. Constraint-Based Scheduling and Planning

22.3 Constraint Propagation for Resource Constraints

Resource constraints represent the fact that activities require some amount of resource
throughout their execution. In this section propagation for resource constraints is described
for unary resources (machines), cumulative resources, and reservoirs. As we will see,
the propagation of resource constraints is a purely deductive process that allows to de-
duce inconsistencies and to tighten the temporal characteristics of activities and resources.
Throughout this section, we will concentrate on non-preemptive scheduling. We refer the
reader to [5] for the generalization of the described constraint propagation techniques to
preemptive and elastic scheduling.

22.3.1 Unary Resources

Several mechanisms have been developed to propagate unary resource constraints. Here
we restrict the discussion to the disjunctive constraint propagation scheme and to the well-
known edge-finding algorithm. Also note that the time tabling mechanism described in
Section 22.3.2 can be applied to unary resources. We refer to [5] for a detailed introduction
and comparison of several other constraint propagation techniques.

Disjunctive constraint propagation

Two activities Ai and Aj requiring the same unary resource cannot overlap in time. So,
either Ai precedes Aj or Aj precedes Ai. If n activities require the resource, one thus
has n(n − 1)/2 (explicit or implicit) of such disjunctive constraints. Variants exist in the
literature [24, 8, 44, 68, 74, 4], but in most cases the propagation consists of maintaining
arc-B-consistency on the formula:

[end(Ai) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai)]

Enforcing arc-B-consistency on this formula is done as follows. Whenever the earliest
end time of Ai exceeds the latest start time of Aj , Ai cannot precede Aj ; hence Aj must
precede Ai. The time bounds of Ai and Aj are consequently updated with respect to the
new temporal constraint end(Aj) ≤ start(Ai). Similarly, when the earliest end time of
Aj exceeds the latest start time of Ai, Aj cannot precede Ai. When neither of the two
activities can precede the other, a contradiction is detected.

In Constraint-Based Planning, the disjunctive constraint can easily be adapted to prop-
agate conflicts between mutually exclusive statements [75].

Edge-finding

The edge-finding constraint propagation technique consists of deducing that some activities
from a given set Ω must, can, or cannot, execute first (or last) in Ω. Such deductions
lead to new ordering relations (“edges” in the graph representing the possible orderings of
activities) and new time bounds, i.e., strengthened earliest start times and latest end times
of activities.

In the following, rΩ, dΩ, and pΩ denote the smallest of the earliest start times, the
largest of the latest end times, and the sum of the minimal processing times of the activities
in Ω, respectively. Let Ai ≪ Aj (Ai ≫ Aj) mean that Ai executes before (after) Aj and

Baptiste et al. 779

Ai ≪ Ω (Ai ≫ Ω) mean that Ai executes before (after) all the activities in Ω. Once again,
variants exist [9, 10, 11, 12, 54, 7, 52, 59, 77] but the following rules capture the “essence”
of the edge-finding propagation technique:

∀Ω ∀Ai /∈Ω [dΩ∪{Ai} − rΩ < pΩ + pi]⇒ [Ai ≪ Ω]

∀Ω ∀Ai /∈Ω [dΩ − rΩ∪{Ai} < pΩ + pi]⇒ [Ai ≫ Ω]

∀Ω ∀Ai /∈Ω [Ai ≪ Ω]⇒ [end(Ai) ≤ min
∅6=Ω′⊆Ω

(dΩ′ − pΩ′)]

∀Ω ∀Ai /∈Ω [Ai ≫ Ω]⇒ [start(Ai) ≥ max
∅6=Ω′⊆Ω

(rΩ′ + pΩ′)]

If n activities require the resource, there are a priori O(n ∗ 2n) pairs (Ai,Ω) to consider.
Still, it is easy to see that when a rule is applied for some set Ω, the same rule provides even
better deductions for the superset Ω′ = {Ai | [ri, di) ⊆ [rΩ, dΩ)}. This makes that one
can restrict the rules to sets ΩI made of all activities whose time window belongs to some
interval I . As there are no more that O(n2) such intervals I , we have a straightforward
polynomial algorithm, running in cubic time, to implement the edge-finding rules. Algo-
rithms that perform all the time bound adjustments in O(n2) are presented in [10, 56, 54].
Another variant of the edge-finding technique is presented in [11]. It runs in O(n logn)
but requires much more complex data structures. [77] presents another variant running in
O(n logn) that requires less complex data structures than the ones used in [11].

Techniques similar to edge-finding have been proposed to propagate groups of mutex
relations in planning [75].

“Not-first” and “not-last” rules

“Not-first” and “not-last” propagation rules have also been developed as a “negative” coun-
terpart to edge-finding. These rules deduce that an activity Ai cannot be the first (or the
last) to execute in Ω ∪ {Ai}.

∀Ω ∀Ai /∈Ω [dAi
− rΩ < pΩ + pi]⇒ [end(Ai) ≤ max

B∈Ω
lstB]

∀Ω ∀Ai /∈Ω [dΩ − rAi
< pΩ + pi]⇒ [start(Ai) ≥ min

B∈Ω
eetB]

The corresponding time bound adjustments can be made in O(n2) [3, 71].

Conjunctive reasoning between temporal and resource constraints

The above given propagation techniques reason on the time bounds of activities on one
unary resource. In [57, 69] propagation techniques are presented that reason on the combi-
nation of time bounds of activities on multiple unary resources and the temporal constraints
linking these activities. Even though these techniques have led to good computational re-
sults, they have not yet been studied much. Propagation techniques that reason on the
combination of activity time bounds and temporal constraints on one cumulative resource
or reservoir have been studied. We discuss these techniques in the Section 22.3.3.

780 22. Constraint-Based Scheduling and Planning

22.3.2 Cumulative Resources

Cumulative resource constraints represent the fact that activities Ai use some amount
cap(Ai) of resource throughout their execution. Many algorithms have been proposed
for the propagation of the non-preemptive cumulative constraint. A limited subset of these
algorithms is presented in this section. In the remainder of this chapter, ci denotes the
minimal value of cap(Ai), i.e., the minimal capacity required by Ai.

Timetable constraint

First we consider the timetable mechanism, widely used in Constraint-Based Schedul-
ing tools, that allows to propagate the resource constraint in an incremental fashion. The
“timetable” is used to maintain information about resource utilization and resource avail-
ability over time. Resource constraints are propagated in two directions. From resources
to activities, to update the time bounds of activities (earliest start times and latest end
times) according to the availability of resources; and from activities to resources, to up-
date the timetables according to the time bounds of activities. Although several variants
exist [44, 31, 45, 67, 50] the propagation mainly consists of maintaining for any time t
arc-B-consistency on the formula:

∑

Ai|start(Ai)≤t<end(Ai)

cap(Ai) ≤ cap(R)

Disjunctive constraint

LetAi andAj be two activities such that ci+cj > cap(R). As such they cannot overlap in
time and thus eitherAi precedesAj orAj precedesAi, i.e., the disjunctive constraint holds
between these activities. In general the disjunctive constraint achieves arc-B-consistency
on the formula

[cap(Ai) + cap(Aj) ≤ cap(R)] ∨ [end(Ai) ≤ start(Aj)] ∨ [end(Aj) ≤ start(Ai)]

Energy reasoning

Energy based constraint propagation algorithms compare the amount of energy provided
by a resource over some interval [t1, t2) to the amount of energy required by activities
that have to be processed over this interval. [25] proposes the following definition of the
required energy consumption that takes into account the fact that activities cannot be in-
terrupted. Given an activity Ai and a time interval [t1, t2),WSh(Ai, t1, t2), the “Left-Shift
/ Right-Shift” required energy consumption of Ai over [t1, t2) is ci times the minimum of
the three following durations.

• t2 − t1, the length of the interval;

• p+
i (t1) = max(0, pi −max(0, t1 − ri)), the number of time units during which Ai

executes after time t1 if Ai is left-shifted, i.e., scheduled as soon as possible;

Baptiste et al. 781

• p−i (t2) = max(0, pi −max(0, di − t2)), the number of time units during which Ai
executes before time t2 if Ai is right-shifted, i.e., scheduled as late as possible.

This leads toWSh(Ai, t1, t2) = ci min(t2−t1, p+
i (t1), p

−
i (t2)). In Figure 22.6 an example

is given where the required energy consumption of A1 over [2, 7) is 8. Indeed, at least 4
time units of A1 have to be executed in [2, 7); i.e., WSh(A, 2, 7) = 2 min(5, 5, 4) = 8.

Figure 22.6: Left-Shift / Right-Shift.

The Left-Shift / Right-Shift overall required energy consumption WSh(t1, t2) over an
interval [t1, t2) is then defined as the sum over all activitiesAi ofWSh(Ai, t1, t2). The Left-
Shift / Right-Shift slack SSh(t1, t2) over [t1, t2) is defined as C(t2 − t1) −WSh(t1, t2). It
is obvious that if there is a feasible schedule then SSh(t1, t2) ≥ 0 for all t1 and t2 such that
t2 ≥ t1.

It is shown in [5] how the values of WSh can be used to adjust activity time bounds.
Given an activity Ai and a time interval [t1, t2) with t2 < di, it is examined whether Ai
can end before t2. If there is a time interval [t1, t2) such that

WSh(t1, t2)−WSh(Ai, t1, t2) + cip
+
i (t1) > C(t2 − t1)

then a valid lower bound of the end time of Ai is

t2 +
1

ci
(WSh(t1, t2)−WSh(Ai, t1, t2) + cip

+
i (t1)− C(t2 − t1))

Similarly, when

WSh(t1, t2)−WSh(Ai, t1, t2) + ci min(t2 − t1, p+
i (t1)) > C(t2 − t1),

Ai cannot start before t1 and a valid lower bound of the start time of Ai is

t2 −
1

ci
(C(t2 − t1)−WSh(t1, t2) +WSh(Ai, t1, t2)).

[5] presents a O(n3) algorithm to compute these time bound adjustments for all n ac-
tivities. It is first shown there are O(n2) intervals [t1, t2) of interest. Given an interval
and an activity, the adjustment procedure runs in O(1). As such the obvious overall com-
plexity of the algorithm is thus O(n3). An interesting open question is whether there is a
quadratic algorithm to compute all the adjustments on the O(n2) intervals under consid-
eration. Another open question at this point is whether the characterization of the O(n2)

782 22. Constraint-Based Scheduling and Planning

time intervals in [5] can be sharpened in order to eliminate some intervals and reduce the
practical complexity of the corresponding algorithm. Finally, it seems reasonable to think
that the time bound adjustments could be sharpened. Even though the energy tests can be
limited (without any loss) to a given set of intervals, it could be that the corresponding
adjustment rules cannot.

22.3.3 Conjunctive Reasoning between Temporal and Resource Constraints

The propagation algorithms described in the previous section reason on the time bounds
of activities (ri, lsti, eeti,di) and do not directly take into account the precedence con-
straints that may exist between them. We describe in this section two recently proposed
propagation algorithms respectively on cumulative resources and reservoirs. Like previous
propagation algorithms, both of them are used to discover new time bounds and/or new
precedence relations. The main originality lies in the fact that they analyze the relative po-
sition of activities (precedence relations in the precedence graph) rather than their absolute
position only, as was the case for the previously discussed propagation techniques. As a
consequence, they allow a much stronger propagation when the time windows of activities
are large and when the current schedule contains a lot of precedence relations, which is
typically the case when integrating planning and scheduling.

Precedence graph

The algorithms presented in this section require that a temporal network representing the
relations between the time points of all activities (start and end times) using the Point Al-
gebra [76] is maintained during search. We denote the set of qualitative relations between
time points by {∅,≺,�,=,≻,�, 6=, ?}. The temporal network is in charge of maintaining
the transitive closure of those relations.

If si and ei denote the start and end time-point of activity Ai, the initial set of relations
consist of the precedences si ≺ ei for each activity Ai and xi � xj or xi ≺ xj for each
precedence constraint xi ≤ xj + dij depending on the value of dij . For instance, for a
precedence constraint end(Ai) ≤ start(Aj) between two activities Ai and Aj , the initial
precedence graph contains the relation ei � sj .

During search additional precedence relations can be added as decisions or as the result
of constraint propagation.

Energy precedence constraint

The energy precedence propagation [41] for an activity Ai on a cumulative resource Rk
ensures that for each subset φ of predecessor activities of activity Ai the resource provides
enough energy to execute all activities in φ between rφ and si. More formally, it performs
the following deduction rule

∀φ⊆{Aj |ej�si} start(Ai) >= rφ + ⌈Eφ/cap(Rk)⌉
where Eφ is the sum of the minimal value of E(Aj, Rk) (minimal energy) over all Aj
in φ. The propagation of the energy precedence constraint can be performed for all the
activities on a resource and for all the subsets φ with a total worst-case time complexity of
O(n(p + log(n)) where n is the number of activities on the resource and p the maximal
number of predecessors of a given activity in the temporal network (p < n).

Baptiste et al. 783

Balance constraint

On a reservoir resource, if x is the start or end time of an activity that changes the reservoir
level, we denote by q(x) the integer variable representing the relative change of the reser-
voir level due to the activity. By convention, 0 < q(x) represents a production event and
q(x) < 0 a consumption event. The basic idea of the balance constraint [41] is to for each
event x compute an upper and lower bound on the reservoir level at the time of x. Using
the temporal network, an upper bound on the reservoir level at date x− ǫ just before x can
be computed assuming that:

• All the production events y that may be executed strictly before x are executed
strictly before x and produce as much as possible, i.e., produce ub(q(y)) (denoted
by qmax(y)). Let Poss�(x) = {y | ¬(x ≺ y)} denote the set of events that may be
executed before or at the same time as x.

• All the consumption events y that need to be executed strictly before x are executed
strictly before x and consume as little as possible, i.e., consume qmax(y)1. Let
Nec≺(x) = {y | (y ≺ x)} denote the set of events that necessarily execute strictly
before x.

• All the consumption events that may execute simultaneously or after x are executed
simultaneously or after x.

More formally, if P is the set of production events and C the set of consumption events,
the upper bound can be computed as follows:

L<max(x) =
∑

y∈P∩Poss�(x)

qmax(y) +
∑

y∈C∩Nec≺(x)

qmax(y) (22.2)

For symmetry reasons, we describe only the propagation based on L<max(x). Using this
bound, the balance constraint is able to discover four types of information: dead ends, new
bounds for required capacity variables, new bounds for time variables, and new precedence
relations.

• Discovering dead ends. This is the most trivial propagation. Whenever L<max(x) <
0, we know that the level of the reservoir will surely be negative just before event x
so the search has reached a dead end.

• Discovering new bounds on required capacity variables. Suppose there exists a con-
sumption event y ∈ Nec≺(x) such that qmax(y)− qmin(y) > L<max(x). If y would
consume a quantity q such that qmax(y) − q > L<max(x) then, simply by replacing
qmax(y) by q in (22.2), we see that the level of the reservoir would be negative just
before x. Thus, we can deduce that q(y) ≥ qmax(y)− L<max(x).

• Discovering new bounds on time variables.

\Nec≺(x) consists of the set of events that may but need not necessarily execute
strictly before x, i.e., they can also execute at the same time as or after x. Let P (x)

1For a consumption event, q < 0 and thus, qmax really corresponds to the smallest consumption of the
event.

784 22. Constraint-Based Scheduling and Planning

denote the set of production events in Poss�(x) \Nec≺(x). The reasoning behind
the deduction here is that if the maximal reservoir level of all events necessarily ex-
ecuted strictly before x is negative, then some production events in P (x) need to be
scheduled before x, more specifically x needs to be scheduled after a sufficient num-
ber of these production events to not have a negative reservoir level. More formally,
let’s rewrite (22.2) as follows:

L<max(x) =
∑

y∈Nec≺(x)

qmax(y) +
∑

y∈P∩(Poss�(x)\Nec≺(x))

qmax(y)

The first term of this equation is the sum of the maximal production and minimal
consumption of the events that necessarily execute strictly before x, thus giving the
maximal reservoir level. As L<max(x) ≥ 0, we know that if this term is negative, it
means that some production events in P (x) will have to be executed strictly before
x in order to produce at least:

∆<
min(x) = −

∑

y∈Nec≺(x)

qmax(y)

We suppose the production events (y1, · · · , yi, · · · , yp) in P (x) are ordered by non-
decreasing minimal time tmin(y). tmin(y) is either the earliest start time or earliest
end time, depending on whether y is a start or end time. Let k be the index in [1, p]
such that:

k−1
∑

i=1

qmax(yi) < ∆<
min(x) ≤

k
∑

i=1

qmax(yi)

If event x is executed at a date t(x) ≤ tmin(yk), not enough producers will be able
to execute strictly before x in order to ensure a positive level just before x. Thus,
tmin(yk) + 1 is a valid lower bound of t(x).

• Discovering new precedence relations. There are cases where one can perform an
even stronger propagation. P (x) is again the set of production events in Poss�(x)\
Nec≺(x). If there is one production event y in P (x) that is needed to produce before
x to not get a negative reservoir level, a precedence relation can be deduced between
y and x. So, suppose there exists a production event y in P (x) such that:

∑

z∈P (x)∩Poss�(y)

qmax(z) < ∆<
min(x)

Then, if we had t(x) ≤ t(y), we would see that again there is no way to produce
∆<
min(x) before event x as the only events that could produce strictly before event

x are the ones in P (x)∩ Poss�(y). Thus, we can deduce the necessary precedence
relation: t(y) < t(x). Note that a weaker version of this propagation has been
proposed in [16] that runs in O(n2) and does not analyze the precedence relations
between the events of P (x).

Baptiste et al. 785

The balance algorithm can be executed for all the events x on a reservoir with a global
worst-case complexity inO(n2) if the propagation that discovers new precedence relations
is not turned on, and in O(n3) for a full propagation. In practice, there are many ways to
shortcut this worst case and in particular, it has been noticed that the algorithmic cost of
the extra propagation that discovers new precedence relations was in general negligible.
Unlike all the other propagation algorithms we have seen in this section 22.3, the balance
constraint cannot directly be applied in planning problems because it assumes that the
set or producer and consumer events is completely known. The extension of the balance
constraint to planning problems is discussed in [41].

22.4 Constraint Propagation on Optimization Criteria

As said in Section 22.1.5, the commonly used way of modeling an objective function is by
introducing a variable criterion that is constrained to be equal to the value of the objective
function. In cases where the objective function F is a function of the end variables of the
activities and F is a maximum such as Cmax or Tmax, considering the objective constraint
and the resource constraints independently is not a problem. Indeed, the upper bound on
criterion is directly propagated on the end time of each activity, i.e., latest end times are
tightened efficiently.

The situation is more complex for sum functions such as
∑

wiCi,
∑

wiTi, or
∑

wiUi,
and for objective functions that are not a function of the end variables of the activities like
sum of setup times and sum of setup costs. For several of these cases, dedicated constraint
propagation techniques have been developed often taking the resource constraints and the
objective function simultaneously into account.

In this section we describe such dedicated constraint propagation techniques for two
objective functions in more detail: weighted number of late activities (

∑

wiUi) and sum
of setup times and setup costs. For more general considerations on cost-based constraint
propagation we refer to [28].

22.4.1 Weighted Number of Late Activities

In this section we pay attention to constraint propagation for the objective function
∑

wiUi,
i.e., minimizing the weighted number of late activities, as described in [5].

The basis for this constraint propagation is formed by calculating a good lower bound
on the weighted number of late activities. Such a lower bound is obviously also a lower
bound for the variable criterion. Relaxing non-preemption is a well-known technique
to obtain good lower bounds in scheduling. Unfortunately, the preemptive problem re-
mains NP-Hard. A “relaxed preemptive lower bound”, i.e., a slightly stronger relaxation
than the preemptive relaxation, can be used. As explained below, it can be computed in
O(n2 log n).

Let us recall a well-known result for the One-Machine Scheduling Problem (i.e., the
problem of scheduling activities on a unary resource). Its preemptive relaxation is polyno-
mial and has the very interesting property that there exists a feasible preemptive schedule
if and only if over any interval [t1, t2), the sum of the processing times of the activities in
{Ai | [t1 ≤ ri] ∧ [di ≤ t2]} is at most t2 − t1. It is well-known that relevant values for t1
and t2 are respectively the release dates and the deadlines [8].

786 22. Constraint-Based Scheduling and Planning

A decision variable xi per activity is introduced that equals 1 when the activity is on-
time and 0 otherwise. Notice that if di ≤ δi, Ai is on-time in any solution, i.e., xi = 1.
In such a case we adjust the value of δi to di (this has no impact on solutions) so that
due dates are always smaller than or equal to deadlines. We also assume that there is a
preemptive schedule that meets all deadlines (if not, the resource constraint does not hold
and a backtrack occurs). The following Mixed Integer Program (MIP) [64] computes the
minimum weighted number of late activities in the preemptive case:

min

n
∑

1

wi(1− xi)

u.c.

∀t1 ∀t2>t1
∑

S(t1,t2)

pi +
∑

P (t1,t2)

pixi ≤ t2 − t1

∀i∈{1,...,n} xi ∈ {0, 1}

(22.3)

where S(t1, t2) is the set of activities that are sure to execute between t1 and t2 and where
P (t1, t2) is the set of activities that are preferred to execute between t1 and t2.

S(t1, t2) = {Ai | ri ≥ t1 ∧ di ≤ t2}
P (t1, t2) = {Ai | ri ≥ t1 ∧ di > t2 ∧ δi ≤ t2}

Actually, it is easy to see that the relevant values of t1 correspond to the release dates and
those of t2 to the due dates and deadlines. Hence, there are O(n2) constraints in the MIP.
We now focus on the continuous relaxation of (22.3) in which for any activity Ai such that
ri + pi > δi, i.e., for any late activity, the constraint xi = 0 is added.

min
n
∑

1

wi(1− xi)

u.c.

∀t1∈{ri} ∀t2∈{di}∪{δi} | t2>t1

∑

S(t1,t2)

pi +
∑

P (t1,t2)

pixi ≤ t2 − t1

∀i ri + pi > δi ⇒ xi = 0
∀i∈{1,...,n} xi ∈ [0, 1]

(22.4)

The linear program (22.4) can be solved with an LP solver and we can use reduced
costs to prove that some activities can, must or cannot end before their due date. In [5] an
O(n2 log n) algorithm is described solving the same problem.

22.4.2 Sum of Setup Times and Sum of Setup Costs

In this section we pay attention to constraint propagation of setup time and setup cost
constraints. We discuss the constraint propagation as described in [30]. We also refer to
[29, 28] that extend work of Brucker and Thiele [7] in the context of CP. To simplify the
presentation, we only consider the case where there are no cumulative resources. We do
include the possible presence of alternative resources (see Section 22.1.4).

The basis for the constraint propagation of setup times and setup costs described in this
section is formed by using a routing problem as a relaxation of the scheduling problem. In
this problem, one has a set of start nodes, a set of internal nodes, and a set of end nodes.
Each internal node i represents an activity Ai. When having m alternative machines, one

Baptiste et al. 787

is looking form disjoint routes or paths in the graph defined by these three sets. Each route
corresponds to a different machine, starting in the start node of the machine, traversing a
sequence of internal nodes, and ending in the end node of the machine. More precisely,
let I = {1, . . . , n} be a set of n nodes, and E = {n + 1, . . . , n + m} and S = {n +
m + 1, . . . , n + 2 ∗m} two sets of m nodes. Nodes in I represent internal nodes, nodes
in S represent start nodes, and nodes in E represent end nodes. A global constraint is
defined ensuring that m different routes ρ1, . . . , ρm exist such that all internal nodes are
visited exactly once by a route starting from a node in S and ending in a node in E. Start
nodes n + m + 1, . . . , n + 2 ∗ m belong to routes ρ1, . . . , ρm, respectively. End nodes
n + 1, . . . , n + m belong to routes ρ1, . . . , ρm, respectively. Moreover, sets of possible
routes can be associated to each internal node.

In the CP model three variables per node are defined. Variables nexti and previ iden-
tify the nodes visited directly after and directly before node i, respectively. Variables
routei identify the route node i belongs to. Variables nexti and previ take their values in
{1, . . . , n+2m}. Variables routei take their values in {1, . . . ,m}. Each start and end node
has its route variable bound, i.e., routen+1 = 1, . . . , routen+m = m, routen+m+1 = 1,
. . . , routen+2m = m. In order to have a uniform treatment of all nodes inside the con-
straint, each start node n+m+ u has its prevn+m+u variable bound to the corresponding
end node (prevn+m+u = n+ u), and each end node n+ u has its nextn+u variable bound
to the corresponding start node (nextn+u = n + m + u). There furthermore exists a
setup cost cuij that expresses that if node j is visited directly after node i on a route u
(nexti = j, routei = routej = u), a cost cuij is induced. A feasible solution is defined
as an assignment of distinct values to each next variable, while avoiding sub-tours (tours
containing only internal nodes), and respecting the constraints

nexti = j ⇔ prevj = i

nexti = j ⇒ routei = routej

The problem is then to find an optimal feasible solution, i.e., a feasible solution that
minimizes

n
∑

i=1

cui nexti (22.5)

As said, the routing problem described constitutes a relaxation of the global scheduling
problem. If an internal node i has its next variable assigned to another internal node j,
activityAi directly precedes activityAj . If an internal node i has its next variable assigned
to an ending node n+u, activityAi is the last activity scheduled on machineRu. The setup
cost function cuij of the routing problem corresponds to the setup times setup(Ai, Aj , Ru)
or setup costs setupCost(Ai, Aj , Ru) between activities (see Section 22.1.4). As such
the minimization of the total setup cost (22.5) in the routing problem corresponds to the
minimization of the sum of setup times or setup costs in the scheduling problem.

Route optimization constraint

One of the basic ideas of the constraint propagation in [30] is to create a global constraint
having a propagation algorithm aimed at removing those assignments from variable do-
mains which do not improve the best solution found so far. Domain reduction is achieved

788 22. Constraint-Based Scheduling and Planning

by optimally solving an Assignment Problem [22] which is a relaxation of the routing prob-
lem described and thus also of the global scheduling problem. The Assignment Problem is
the graph theory problem of finding a set of disjoint sub-tours such that all the vertices in
a graph are visited and the overall cost is minimized.

In the routing problem we look for a set of m disjoint routes each of them starting
from a start node and ending in the corresponding end node covering all nodes in a graph,
i.e., considering that each end node is connected to the corresponding start node, we look
for a set of m disjoint tours each of them containing a start node. This problem can be
formulated as an Assignment Problem on the graph defined by the set of nodes in the
routing problem and the set of arcs (i, j) such that j ∈ domain(nexti). The cost on arc
(i, j) is the minimal setup cost (or time), i.e.,

min
u∈domain(routei)∩domain(routej)

setupCost(Ai, Aj , Ru).

The value of the optimal solution of the Assignment Problem is obviously a lower bound
on the value of the optimal solution of the routing problem. The primal-dual algorithm
described in [34] provides an optimal integer solution for the Assignment Problem. Besides
this optimal assignment with the corresponding lower bound LB on the original problem,
a reduced cost matrix c̄ is obtained. Each c̄ij estimates the additional cost to be added
to LB if variable nexti takes the value j. These results can be used both in constraint
propagation as in the definition of search heuristics. The lower bound LB is trivially
linked to the criterion variable representing the objective function through the constraint
LB ≤ criterion. More interesting is the propagation based on reduced costs. Given the
reduced cost matrix c̄, it is known that LBnexti=j = LB + c̄ij is a valid lower bound for
the problem where nexti takes the value j. Therefore we can impose

LBnexti=j > ub(criterion)⇒ nexti 6= j

For more details on the use of reduced costs for setup constraints we refer to [30]. We
remark that reduced cost fixing appears to be particularly suited for CP. In fact, while re-
duced cost fixing is extensively used in OR frameworks, it is usually not exploited to trigger
other constraints, but only in the following lower bound computation, i.e., the following
node in the search tree. When embedded in a CP framework, the reduced cost fixing pro-
duces domain reductions which usually trigger propagation from other constraints in the
problem through shared variables.

Precedence graph constraint

Linking the routing model and the scheduling model is done thanks to a precedence graph
constraint. This constraint maintains for each machine Ru an extended precedence graph
Gu that allows to represent and propagate temporal relations between pairs of activities
on the machine as well as to dynamically compute the transitive closure of those relations.
More precisely, Gu is a graph whose vertices are the alternative activitiesAui that may exe-
cute on machineRu (see Section 22.1.4). A nodeAui is said to surely contribute if machine
Ru is the only possible machine on which Ai can be processed. Otherwise, if activity Ai
can also be processed on other machines, the node Aui is said to possibly contribute. Two
kinds of edges are represented on Gu:

Baptiste et al. 789

• A precedence edge between two alternative activities Aui → Auj means that if ma-
chine Ru is chosen for both activities Ai and Aj , then Aj will have to be processed
after Ai on Ru.

• A next edge between two alternative activities Aui ⇒ Auj means that if machine Ru
is chosen for both activities Ai and Aj then Aj will have to be processed directly
after Ai on Ru. No activity may be processed on Ru between Ai and Aj .

The first role of the precedence graph is to incrementally maintain the closure of this
graph when new edges or vertices are inserted, i.e., to deduce new edges given the ones
already present in the graph. The following five rules [30] are used by the precedence
graph:

1. If Aui → Auj , Auj → Aui , and Aui surely contributes then Auj does not contribute
(Incompatibility rule).

2. If Aui → Aul , Aul → Auj , and Aul surely contributes then Aui → Auj (Transitive
closure through contributor).

3. If Aul ⇒ Aui , Aul → Auj , and Aul surely contributes then Aui → Auj (Next-edge
closure on the left).

4. If Auj ⇒ Aul , Aui → Aul , and Aul surely contributes then Aui → Auj (Next-edge
closure on the right).

5. If for all Aul either Aul → Aui or Auj → Aul then Aui ⇒ Auj (Next-edge finding).

New edges are added on the precedence graph Gu by the scheduling constraints (prece-
dence and resource constraints) and by the route optimization constraint (whenever a vari-
able nexti is bound a new next-edge is added). Besides computing the incremental closure,
the precedence graph also incrementally maintains the set of activities that are possibly
next to a given activity Aui given the current topology of Gu. As such it allows to effec-
tively reduce the domain of the variables nexti and previ. Furthermore, the precedence
graph constraint propagates the current set of precedence relations expressed on Gu on the
start and end variables of activities.

22.5 Heuristic Search

The general principles around search in CP apply to both the planning and scheduling
domain:

• Since for complexity reasons constraint propagation cannot remove all impossible
values from the domains of variables, heuristic search is required to generate a solu-
tion to the problem instance under consideration.

• Once a solution with a given cost is found, this heuristic search can be either contin-
ued or restarted with an additional constraint stating that only solutions with a lower
cost are searched for. In the case of multiple criteria, this additional constraint can
be replaced by a set of constraints authorizing the solution to deteriorate for some
criteria if it improves for others.

790 22. Constraint-Based Scheduling and Planning

• Some variables are more constrained than others, depending on the problem in-
stance: some activities lie on a critical path of the precedence graph, some resources
are more heavily loaded than others, etc. Focusing on the more constrained variables
first is more likely to quickly lead to a solution.

However, the significance of temporal and resource constraints makes it possible to use
these principles in domain-specific manners. Let us first consider the case of the pure Job
Shop Scheduling Problem [33]. The variables of the problem are basically just the start
and end times of activities and the criterion variable representing the makespan (Cmax).
Temporal constraints relating these variables are propagated in a perfect manner, i.e., the
earliest and latest start and end times resulting from constraint propagation guarantee that
the temporal constraints are satisfied. The only remaining constraints are the resource
constraints. As there are only unary resources, no two activities Ai and Aj requiring the
same resource can overlap in time, i.e., either Ai precedes Aj or Aj precedes Ai (see
Section 22.3.1). Following this basic observation, rather than attempting to instantiate the
start and end variables, an appealing and often much more efficient strategy consists in
deciding in which order activities shall execute, i.e., whether Ai shall execute before Aj or
Aj before Ai.

Although it is less immediate, the same type of branching strategy can also be consid-
ered for cumulative resources. Indeed, whenever n non-preemptible activities are such that
the sum of the capacities required exceeds the available capacity (for a given resource),
at least two of these activities cannot overlap in time, and hence must be ordered. An al-
ternative but equivalent view consists in considering a cumulative resource R of capacity
cap(R) as a set of cap(R) “lines” of capacity 1, on which activities cannot overlap. Hence,
if the activities can be organized along at most c sequences such that (i) an activity Ai re-
quiring capacity cap(Ai) appears in cap(Ai) sequences and (ii) activities in each sequence
are totally ordered by temporal constraints, then the satisfaction of the temporal constraints
guarantees the satisfaction of the resource constraint.

In practice, the right branching strategy also depends on the optimization criterion (or
multiple criteria) to optimize:

• An optimization criterion to minimize is called “regular” if it increases with the
end times of the activities. In other terms, a solution S cannot be strictly better than
another solution S′ if no activityAi finishes earlier in S than in S′. Examples of reg-
ular criteria include the makespan, the average completion time of the activities, the
maximal or weighted tardiness of activities, the weighted number of late activities.
When the optimization criterion is regular, it is particularly appropriate to solve the
resource constraints by ordering activities: on any given branch of the search tree,
the value of the criterion obtained by replacing each end time variable by its lower
bound is a lower bound for the optimization function. In addition, if at a given node
the earliest start and end times satisfy all the constraints of the problem (which is
the case for resource constraints if they have been replaced by appropriate temporal
constraints and these temporal constraints have been propagated), then these earliest
start and end times provide the best solution attainable from this node. “Dominance
properties” can also be applied to prune some nodes: whenever it can be shown that
for any schedule attainable from a node, an equivalent or better schedule is attainable
from another node, the first node can be discarded. For example, if a partial schedule
contains a hole on a resource (an interval of time over which it can be shown that

Baptiste et al. 791

no activity requiring the resource can execute), and an activity is scheduled after the
hole for no good reason, then the node can be discarded since another branch will
lead to a schedule in which this activity (or another) occupies the hole [48].

• An optimization criterion is called “sequence-dependent” if it depends only on the
relative order in which activities are executed. Typical example are of course the sum
of setup times and the sum of setup costs. When optimizing sequence-dependent
criteria, it is once again particularly appropriate to solve the resource constraints by
ordering activities: once activities are sequenced, the earliest start and end times that
result from constraint propagation can be used as a solution. Note however that the
dominance properties that exist for regular criteria cannot be applied to sequence-
dependent criteria: for example, it might be worth leaving a hole in a schedule by
executing a specific activity later if it enables to save a costly setup.

• Other optimization criteria are more difficult to optimize. For example, work in
process time, i.e., the average difference between the end time of the last activity
composing a given job and the start time of the first activity of the job, is an irregular
criterion which is difficult to optimize as the first activity of each job shall be exe-
cuted as late as possible while the last activity of each job shall be executed as early
as possible. Storage costs, in particular the cost of storing intermediate products,
are difficult to optimize for the same reason. In such cases, it is not sufficient to se-
quence the activities. It is however often the case that once the resource constraints
have been solved by sequencing activities, a linear program can be used to determine
the optimal solution for the chosen sequences. Hybrid algorithms based on both CP
and Mixed Integer Programming (MIP) [64] can be used for this purpose [2].

22.5.1 The Use of Local Search

Even when search can be simplified by looking for good sequences and using dominance
properties, search spaces for planning or scheduling problems tend to be very large. In
practice, it is often impossible to explore a search space completely and guarantee the
delivery of an optimal solution. For an industrial planning or scheduling application it
however generally suffices to provide “good” solutions within reasonable time. It is for
such applications more important to be robust with respect to variations in the problem
instances like variations in problem size, variations in numerical characteristics, and ad-
dition of side constraints. This is often achieved by mixing constraint-based tree search
with Local Search (LS) or by actually implementing LS with constraints. Local search is
taken as an alternative way to explore the search space. Explored neighborhoods vary a
lot from an application to another, so it is difficult to establish a general taxonomy of the
approaches reported in the literature. We will use two examples to convey the basic ideas.

Caseau and Laburthe [13] describe an algorithm for the Job Shop Scheduling Problem
which combines CP and LS. The overall algorithm finds an approximate solution to start
with, makes local changes and repairs on it to quickly decrease the makespan and, finally,
performs an exhaustive search for decreasing makespans. Given a schedule, a critical path
is defined as a sequence of activities where i) for each activity Ai that appears before
activity Aj in the sequence Ai indeed precedes Aj in the schedule and ii) the sum of the

792 22. Constraint-Based Scheduling and Planning

processing times of the activities in the sequence equals the makespan of the schedule.
Two types of local moves are considered:

• “Repair” moves swap two activities scheduled on the same machine to shrink or
reduce the number of critical paths.

• “Shuffle” moves [1] keep part of the solution and search through the rest of the so-
lution space to complete it. Each shuffle move is implemented as a constraint-based
search algorithm with a limited number of backtracks (typically 10, progressively
increased to 100 or 1000), under the constraint that the makespan of the solution
must be improved (with a given improvement step, typically 1% of the makespan,
progressively decreased to one time unit).

Excellent computational results have been obtained with this approach [13, 14] as well as
with other constraint-based implementations of shuffle moves, as reported in [4, 55].

In the same spirit, the best algorithm used by Le Pape and Baptiste [46] for the Pre-
emptive Job Shop Scheduling Problem relies on the combination of:

• a strong constraint propagation algorithm (edge-finding);

• a local optimization operator called “Jackson derivation”;

• limited discrepancy search [38] around the best schedule found so far.

Limited discrepancy search is an alternative to depth-first search, which relies on the as-
sumption that a heuristic makes few mistakes throughout the search. Thus, considering
the path from the root node of the tree to the first solution found by a depth-first search
algorithm, there should be few “wrong turns” (i.e., few nodes which were not immediately
selected by the heuristic). The basic idea is to restrict the search to paths that do not di-
verge more than w times from the choices recommended by the heuristic. Each time this
limited search fails to improve on the best current schedule, w is incremented and the pro-
cess is iterated, until either a better solution is found or it is proven that there is no better
solution. It is easy to prove that when w gets large enough, limited discrepancy search is
complete. Yet it can be seen as a form of LS around the recommendation of the heuristic.
On ten well-known problem instances, each with 100 activities, experimental results show
that each of the three techniques mentioned above brings improvements in efficiency, the
average deviation to optimal solutions after 10 minutes of CPU time falling from 13.72%
when none of these techniques is used to 0.23% when they are all employed.

Globally, the integration of LS and CP is promising whenever LS operators provide a
good basis for the exploration of the search space and either side constraints or effective
constraint propagation algorithms can be used to prune the search space. The examples
presented in the literature represent a significant step toward the understanding of the pos-
sible combinations of LS and CP. Yet the definition of a general approach and methodology
for integrating LS and CP remains an important area of research.

22.5.2 The Use of Mixed Integer Programming

In industrial applications, scheduling issues are often mixed with resource allocation, ca-
pacity planning, or inventory management issues for which MIP is a method of choice.

Baptiste et al. 793

Several examples have been reported where a hybrid combination of CP and MIP was
shown to be more efficient than pure CP or MIP models (cf., for example, [60, 61, 63, 2,
19, 43]). As in the case of local search, there are many ways to combine CP and MIP, and
we will just focus on two particular examples.

A dynamic scheduling problem is solved in [63]. In this example, the linear solver
includes only temporal constraints (some of which have been added to the initial problem
in order to ensure the satisfaction of resource constraints) and the definition of the opti-
mization criterion as the total deviation of start times of activities from the start times of
the same activities in a reference schedule. An interesting characteristic of this model is
that the optimal continuous solution of the linear sub-problem is guaranteed to be integral;
hence, either this solution satisfies all the resource constraints and it is optimal, or it vio-
lates some resource constraint which can be used to branch on the order of two conflicting
activities. CP is used to limit and select the explored branches.

[19] and [43] consider the case in which it is not certain that an activity will use a given
resource, either because there are alternative resources, or because the activity can be left
unperformed against a certain cost (see Section 22.1.4). We recall that an unperformed
activity will not require capacity, but will obey potential temporal constraints, etc., and
will also obey the calendar of the chosen resource. [19, 43] do not consider resource
calendars, so an unperformed activity requires its normal processing time to be completed.
Note that to our knowledge no MIP approach exists that handles resource calendars.

Also without resource calendars this problem is already challenging for any optimiza-
tion technique. MIP is a good candidate for representing the cost function, but no good
MIP model is known to state that a resource can only perform one activity at a time. CP
usually deals well with precedence and resource constraints, but adding an upper bound on
the optimization criterion does in general not result in effective constraint propagation. LS
operators based on permuting activities are easy to design, but the impact of a permutation
on the total cost is hard to estimate. In [19], several cooperative optimization algorithms
centered on a MIP model have been proposed and compared with a pre-existing combina-
tion of CP and LS:

• The MIP algorithm relies on the default search strategy of CPLEX 9.0 [39].

• The IS+MIP algorithm consists in using CP to construct an initial solution to the
problem. This solution is then used as a starting point for CPLEX.

• The IS+MIP+RINS algorithm is similar to IS+MIP but activates the relaxation in-
duced neighborhood search option of CPLEX [20]. Relaxation induced neighbor-
hood search is a form of LS which relies on the continuous relaxation to define a
neighborhood of the current solution: the integer variables that have the same values
in the solution of the continuous relaxation and in the best solution known so far are
fixed to these values and a sub-MIP on the remaining variables is solved (with a limit
on the number of nodes explored).

• The IS+MIP+RINS+GD algorithm adds the guided dives option of CPLEX [20] to
the IS+MIP+RINS algorithm. When a variable is selected for branching, the “guided
dives” strategy will explore first the node in which this variable is fixed to the value
that it takes in the best solution known so far.

794 22. Constraint-Based Scheduling and Planning

• The IS+MIP+RINS+GD+MCORE algorithm adds to the IS+MIP+RINS+GD algo-
rithm another form of LS which defines a neighborhood by heuristically reducing
the values of “big-M” coefficients of the MIP model.

These algorithms have been tested on 22 job shop instances from the Manufacturing Sched-
uling Library (MaScLib) [58], with up to 260 activities. The results have shown the interest
of all the components that have been added to the initial MIP algorithm. They also show
that on pure problems, hybrid algorithms based on MIP can compete with state-of-the-art
techniques.

The generalization of these examples into a principled approach is an important re-
search issue for the forthcoming years. In particular, MIP models are often difficult to
extend to the representation of additional constraints such as setup times and costs, calen-
dars, etc.

22.6 Conclusions

In the introduction of this chapter we have seen that one of the key factors of the success of
Constraint-Based Scheduling lies in the fact that a powerful combination was found of the
research fields of Operations Research (OR) and Artificial Intelligence (AI). From OR its
efficient algorithms and its culture for searching for efficient algorithms were used. From
AI the general modeling and problem-solving paradigm of CP and its culture for searching
for natural ways of modeling a problem in the needed real-life detail were used.

In this way Constraint-Based Scheduling preserves the general modeling and problem-
solving paradigm of CP while the integration of efficient propagation algorithms improves
the overall performance of the approach. Efficient OR algorithms integrated in a CP ap-
proach allow the user to benefit from the efficiency of OR techniques in a flexible frame-
work. Although the use of CP in planning is, due to the problem complexity, less ma-
ture than its use in scheduling, Constraint-Based Planning follows the same pattern as
Constraint-Based Scheduling where CP is used as a framework for integrating efficient
special purpose algorithms into a flexible and expressive paradigm. As in several other
areas of application, an important way to integrate efficient algorithms in CP for schedul-
ing and planning was found by incorporating them inside global constraints. Sections 22.3
and 22.4 pay attention to such constraint propagation.

Besides the powerful propagation, another strength was identified namely the capacity
to in a natural and flexible way model the scheduling or planning problem at hand in the
required real-life detail. We want to stress that this capacity is becoming more and more
important. Indeed through the widespread adoption of ERP (Enterprise Resource Planning)
systems, more and more companies have access to the data that allows them to capture the
reality in the detail they need. One of the reasons Advanced Planning and Scheduling
systems (APS’s) are not as widely adopted as one would think following this observation,
is that these offerings often fail to model reality in sufficient detail. This leads to the
aforementioned classical drawbacks of one being forced to discard degrees of freedom and
side constraints. It’s especially on the side constraints that APS’s tend to be weak, thus
leading to the system solving an oversimplified problem resulting in producing impractical
solutions for the original problem. It is here that we believe Constraint-Based Planning
and Scheduling have a great, largely unused, potential.

Baptiste et al. 795

Two other strengths identified in this chapter are i) a natural fit of expressing scheduling
specific heuristics using CP tree search, and ii) a proven good potential of combining the
CP approach with solution techniques as Local Search, Large Neighborhood Search, and
Mixed Integer Programming. We have seen several examples of this in Section 22.5. These
strengths are thus about having the flexibility in the approach to adapt the search such that
the needed performance to solve the problems is obtained. Although this has indeed been
a strength over the years, we want to stress that we believe the field should pay increased
attention to providing good default search, i.e., a search procedure that works “out-of-the-
box” at least for a certain class of problems. This is much like a lot of the work done
in the area of Mixed Integer Programming. That latter work has led to a broadening of
the audience that can use Mixed Integer Programming to solve their problems. A similar
effect should be obtained for CP in general and Constraint-Based Planning and Scheduling
in particular. This, combined with the natural way of modeling problems present in CP,
should open up CP for a much broader use than today.

Another main research challenge is on doing planning and scheduling under uncer-
tainty. Uncertainty is inherent to planning and scheduling environments and correctly deal-
ing with it is of invaluable practical importance. Two basic ways for dealing with uncer-
tainty, together with different combination of them, have been studied: reactive (reschedul-
ing) and proactive (robust scheduling). Lots of research has been done starting many years
ago but surprisingly few approaches have been applied in practice. We feel the field is
ripe to adopt rescheduling and robust scheduling more broadly and believe CP can play an
important role there.

Further, more detailed, research challenges link back to the strengths already men-
tioned. It remains a challenge to study industrial properties in detail. Studies around
breakable activities, productivity profiles, continuous production and consumption, unper-
formed activities, etc., are rare while there is a great need in practice to correctly handle
such properties.

In Section 22.4 constraint propagation methods related to the minimization of the
weighted number of late activities and to the minimization of setup times and setup costs
have been presented. They drastically improve the behavior on problems involving these
criteria. However, there are many other interesting optimization criteria. In particular, total
tardiness is widely used in industry but until now poor results are obtained on this problem.
Constraint propagation on such specific optimization criteria constitutes a very interesting
research area. Following the observation that users of planning and scheduling applications
often want to define their own criteria, a possibly even more interesting research challenge
is to design generic lower-bounding techniques and constraint propagation algorithms that
could work for any criterion.

Finally, a research challenge in Constraint-Based Planning is to still better exploit the
combination of AI and OR, i.e., to continue to follow the same pattern as Constraint-
Based Scheduling where CP is used as a framework for integrating efficient special purpose
algorithms into a flexible and expressive paradigm. This will bring all the strengths of
Constraint-Based Scheduling mentioned in this chapter to Constraint-Based Planning.

796 22. Constraint-Based Scheduling and Planning

Bibliography

[1] D. Applegate and W. Cook. A computational study of the job-shop scheduling prob-
lem. ORSA Journal on Computing, 3(2):149–156, 1991.

[2] Ph. Baptiste and S. Demassey. Tight LP bounds for resource constrained project
scheduling. OR Spektrum, 26:251–262, 2004.

[3] Ph. Baptiste and C. Le Pape. Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling. In Proc. 15th Workshop of the U.K. Planning
Special Interest Group, 1996.

[4] Ph. Baptiste, C. Le Pape, and W. Nuijten. Incorporating efficient operations research
algorithms in constraint-based scheduling. In Proc. 1st International Joint Workshop
on Artificial Intelligence and Operations Research, 1995.

[5] Ph. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Apply-
ing Constraint Programming to Scheduling Problems. Kluwer Academic Publishers,
2001.

[6] A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis. Artificial
Intelligence, 90(1-2):281–300, 1997.

[7] P. Brucker and O. Thiele. A branch and bound method for the general shop problem
with sequence dependent setup-times. OR Spektrum, 18:145–161, 1996.

[8] J. Carlier. Problèmes d’Ordonnancement à Contraintes de Ressources : Algorithmes
et Complexité. Thèse de doctorat d’Etat, Université Paris VI, 1984. In French.

[9] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management
Science, 35(2):164–176, 1989.

[10] J. Carlier and E. Pinson. A practical use of Jackson’s preemptive schedule for solving
the job shop problem. Annals of Operations Research, 26:269–287, 1990.

[11] J. Carlier and E. Pinson. Adjustment of heads and tails for the job-shop problem.
European Journal of Operational Research, 78:146–161, 1994.

[12] Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In Proc.
11th International Conference on Logic Programming, 1994.

[13] Y. Caseau and F. Laburthe. Disjunctive scheduling with task intervals. Technical
report, Ecole Normale Superieure, 1995.

[14] Y. Caseau, F. Laburthe, C. Le Pape, and B. Rottembourg. Combining local and global
search in a constraint programming environment. Knowledge Engineering Review,
16:41–68, 2001.

[15] A. Cesta and A. Oddi. Gaining efficiency and flexibility in the simple temporal prob-
lem. In Third International Conference on Temporal Representation and Reasoning
(TIME-96), 1996.

[16] A. Cesta and C. Stella. A time and resource problem for planning architectures. In
ECP-97, 1997.

[17] D. Chapman. Planning for Conjunctive Goals. Artificial Intelligence, 33:333–377,
1987.

[18] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin,
B. Smith, F. Fisher, T. Barrett, G. Stebbins, and D. Tran. ASPEN - Automating Space
Mission Operations using Automated Planning and Scheduling. In Proc. SpaceOps
2000, 2000.

[19] E. Danna. Intégration des techniques de recherche locale à la programmation linéaire
en nombres entiers. PhD thesis, Université d’Avignon et des Pays de Vaucluse, 2004.

Baptiste et al. 797

In French.
[20] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods

to improve MIP solutions. Mathematical Programming, 102:71–90, 2005.
[21] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelli-

gence, 49(1-3):61–96, 1991.
[22] M. Dell’Amico and S. Martello. Linear assignment. In Annotated Bibliographies in

Combinatorial Optimization. John Wiley and Sons, 1997.
[23] M.B. Do and S. Kambhampati. Planning as constraint satisfaction: Solving the plan-

ning graph by compiling it into CSP. Artificial Intelligence, 132(2):151–182, 2001.
[24] J. Erschler. Analyse sous contraintes et aide à la décision pour certains problèmes

d’ordonnancement. Thèse de doctorat d’etat, Université Paul Sabatier, 1976.
[25] J. Erschler, P. Lopez, and C. Thuriot. Raisonnement temporel sous contraintes de

ressource et problèmes d’ordonnacement. Revue d’Intelligence Artificielle, 5:7–32,
1991. In French.

[26] R. Fikes and N. Nilsson. STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[27] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345,
1962.

[28] F. Focacci. Solving Combinatorial Optimization Problems in Constraint Program-
ming. PhD thesis, Università di Ferrara, 2001.

[29] F. Focacci and W. Nuijten. A constraint propagation algorithm for scheduling with
sequence dependent setup times. In Proc. CPAIOR ’00, 2000.

[30] F. Focacci, P. Laborie, and W. Nuijten. Solving scheduling problems with setup
times and alternative resources. In Proc. Fifth International Conference on Artificial
Intelligence Planning and Scheduling, AIPS’00, pages 92–101. AAAI Press, 2000.

[31] M.S. Fox. Constraint-guided scheduling: A short history. Computers in Industry, 14:
79–88, 1990.

[32] J. Frank and A. Jónsson. Constraint-Based Attribute and Interval Planning. Con-
straints, 8(4):339–364, 2003.

[33] S. French. Sequencing and Scheduling: An Introduction to the Mathematics of the
Job-Shop. Wiley & Sons, 1982.

[34] S. Martello G. Carpaneto and P. Toth. Algorithms and code for the assignment prob-
lem. Annals of Operations Research, 13:193–223, 1988.

[35] M. Ghallab and H. Laruelle. Representation and control in IxTeT, a temporal planner.
In Proc. AIPS-94, pages 61–67, 1994.

[36] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

[37] M. Gondran and M. Minoux. Graphs and Algorithms. John Wiley and Sons, 1984.
[38] W. Harvey and M. Ginsberg. Limited discrepancy search. In Proc. 14th International

Joint Conference on Artificial Intelligence, 1995.
[39] ILOG CPLEX. ILOG CPLEX 9.0 User’s Manual and Reference Manual. ILOG,

S.A., Gentilly, France, 2003.
[40] A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and B. Smith. Planning in Interplan-

etary Space: Theory and Practice. In Proc. AIPS-00, 2000.
[41] P. Laborie. Algorithms for propagation resource constraints in AI planning and

scheduling: Existing approaches and new results. Artificial Intelligence, 143:151–
188, 2003.

798 22. Constraint-Based Scheduling and Planning

[42] P. Laborie and M. Ghallab. Planning with sharable resource constraints. In Proc.
IJCAI-95, pages 1643–1649, 1995.

[43] C. Le Pape. Experiments with cooperative optimization algorithms for production
scheduling. In Proc. Oberwolfach Workshop on Mathematics in the Supply Chain,
2004.

[44] C. Le Pape. Des systèmes d’ordonnancement flexibles et opportunistes. PhD thesis,
University Paris XI, 1988. In French.

[45] C. Le Pape. Implementation of resource constraints in ILOG Schedule: A library for
the development of constraint-based scheduling systems. Intelligent Systems Engi-
neering, 3(2):55–66, 1994.

[46] C. Le Pape and Ph. Baptiste. Heuristic control of a constraint-based algorithm for the
preemptive job-shop scheduling problem. Journal of Heuristics, 5:305–325, 1999.

[47] C. Le Pape and S. F. Smith. Management of Temporal Constraints for Factory
Scheduling. In F. Bodart C. Roland and M. Léonard, editors, Temporal Aspects in
Information Systems. North-Holland, 1988.

[48] C. Le Pape, P. Couronné, D. Vergamini, and V. Gosselin. Time-versus-capacity com-
promises in project scheduling. AISB Quarterly, 91:19–31, 1995.

[49] O. Lhomme. Consistency techniques for numeric CSPs. In Proc. 13th International
Joint Conference on Artificial Intelligence, 1993.

[50] H. C. R. Lock. An implementation of the cumulative constraint. Working Paper,
University of Karlsruhe, 1996.

[51] A. Lopez and F. Bacchus. Generalizing GraphPlan by Formulating Planning as a
CSP. In Proc. IJCAI-03, pages 954–960, 2004.

[52] P.D. Martin and D.B. Shmoys. A new approach to computing optimal sched-
ules for the job shop scheduling problem. In S.T. McCormick W.H. Curnigham
and M. Queyranne, editors, Proc. Fifth International IPCO conference, Vancouver,
Canada, pages 389–403. LNCS 1084, 1996.

[53] D. McAllester and D. Rosenblitt. Systematic Nonlinear Planning. In Proc. AAAI-91,
pages 634–639, 1991.

[54] W. Nuijten. Time and Resource Constrained Scheduling: A Constraint Satisfaction
Approach. PhD thesis, Eindhoven University of Technology, 1994.

[55] W. Nuijten and C. Le Pape. Constraint-based job shop scheduling with ILOG Sched-
uler. Journal of Heuristics, 3:271–286, 1998.

[56] W.P.M. Nuijten, E.H.L. Aarts, D.A.A. van Erp Taalman Kip, and K.M. van Hee. Job
shop scheduling by constraint satisfaction. Computing Science Note 93/39, Eind-
hoven University of Technology, 1993.

[57] W. Nuijten and F. Sourd. New time-bound adjustment techniques for shop scheduling.
In Proc. PMS 2000, pages 224–226, 2000.

[58] W. Nuijten, T. Bousonville, F. Focacci, D. Godard, and C. Le Pape. Towards an
industrial manufacturing scheduling problem and test bed. In Proc. 9th International
Conference on Project Management and Scheduling, pages 162–165, 2004.

[59] L. Peridy. Le problème de job-shop : arbitrage et ajustements. PhD thesis, Université
de Technologie de Compiègne, 1996. In French.

[60] R. Rodosek and M. Wallace. A generic model and hybrid algorithm for hoist schedul-
ing problems. In Proc. 4th International Conference on Principles and Practice of
Constraint Programming, 1998.

[61] R. Rodosek, M. Wallace, and M. T. Hajian. A new approach to integrating mixed inte-

Baptiste et al. 799

ger programming and constraint logic programming. Annals of Operations Research,
86:63–87, 1999.

[62] E.D. Sacerdoti. A Structure for Plans and Behaviours. Technical Note 109, SRI,
1975.

[63] H. El Sakkout and M. Wallace. Probe backtrack search for minimal perturbation in
dynamic scheduling. Constraints, 5:359–388, 2000.

[64] A. Schrijver. Combinatorial Optimization. Springer-Verlag, 2003.
[65] C. Schwindt. Resource Allocation in Project Management. Springer-Verlag, 2005.
[66] D.E. Smith, J. Frank, and A.K. Jonsson. Bridging the gap between planning and

scheduling. Knowledge Engineering Review, 15(1), 2000.
[67] S. F. Smith. OPIS: A Methodology and Architecture for Reactive Scheduling. Intel-

ligent Scheduling, 1994. M. Zweben and M. Fox (editors). Morgan Kaufmann.
[68] S.F. Smith and C.-C. Cheng. Slack-based heuristics for constraint satisfaction. In

Proc. 11th National Conference on Artificial Intelligence, 1993.
[69] F. Sourd and W. Nuijten. Multiple-machine lower bounds for shop scheduling prob-

lems. INFORMS Journal on Computing, 12(4):341–352, 2000.
[70] G.L. Steele, Jr. The Definition and Implementation of a Computer Programming

Language Based on Constraints. PhD thesis, Massachusetts Institute of Technology,
1980.

[71] Ph. Torres and P. Lopez. On not-first/not-last conditions in disjunctive scheduling.
European Journal of Operational Research, 127:332–343, 2000.

[72] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[73] P. van Beek and X. Chen. A constraint programming approach to planning. In Proc.

AAAI-99, pages 585–590, 1999.
[74] C. Varnier, P. Baptiste, and B. Legeard. Le traitement des contraintes disjonctives

dans un problème d’ordonnancement : exemple du hoist scheduling problem. In
Actes 2èmes journées francophones de programmation logique, 1993.

[75] V. Vidal and H. Geffner. Branching and Pruning: An Optimal Temporal POCL Plan-
ner based on Constraint Programming. Artificial Intelligence, 2005. To appear.

[76] M. Vilain and H. Kautz. Constraint propagation algorithms for temporal reasoning. In
Proceedings of Fifth National Conference on Artificial Intelligence, pages 377–382,
1986.

[77] P. Vilim. O(n log n) filtering algorithms for unary resource constraint. In Proc.
CPAIOR ’04, pages 319–334, 2004.

[78] P. Vilim, R. Bartak, and O. Cepek. Unary resource constraint with optional activities.
In Proc. CP 2004, pages 62–76, 2004.

This page intentionally left blank

Handbook of Constraint Programming 801
Edited by F. Rossi, P. van Beek and T. Walsh

Chapter 23

Vehicle Routing

Philip Kilby and Paul Shaw

This chapter looks a the use of Constraint Programming on an important industrial prob-
lem: that of constructing routes for vehicles to visit a set of customers at minimum cost,
such as depicted in Figure 23.1. The methods are particularly aimed at the movement of
people and goods by road.

This is a very important problem. In the USA in 2001, large trucking (6 or more tyres)
logged more than two billion miles. Intercity trucking accounted for more than 1 trillion
ton-miles of freight moved – 28% of the total freight ton-miles for the USA [15]. The
costs of such movements are huge, so even small fractions of a percent in savings can have
a substantial impact at a national level. Supply Chain Optimisation has become a key area
for improvement by companies across the world, and vehicle operations will often play a
key role in such a system.

The importance of the topic is reflected in the research interest. The literature on the

Figure 23.1: A Vehicle Routing Problem with 40 customers, 5 vehicles, and maximum 8
customers per vehicle.

c© 2006 Elsevier All rights reservedB.V.

802 23. Vehicle Routing

topic is now very extensive – the variety of problems and solution methods explored is
indicated in the surveys [111, 13, 14, 76, 35, 73].

An important factor in these problems is that no two companies will operate exactly
alike – each has its own operational methods, and each brings their own constraints – like
defined areas for drivers, vehicle/customer incompatibilities, and delivery time preferences.
While traditional approaches capture the essence of the problem, a software system that is
to deliver finished routes must be able to incorporate these myriad individual constraints.

Constraint Programming offers a valuable tool for specifying and solving these dirty,
real-world problems. The ability to specify and add new constraints easily is very impor-
tant.

We will begin by defining and formulating the VRP, and looking at some related prob-
lems. We then look at some of the methods employed to solve this problem – methods from
the Operations Research literature, and those using a Constraint Programming formulation.

23.1 The Vehicle Routing Problem

The simplest Vehicle Routing Problem (VRP, also called the Capacitated Vehicle Routing
Problem, CVRP) is defined formally as follows. The symbols defined here are summarised
in Table 23.1 in Section 23.2.1.

A set of n customers is to be served by m vehicles. Each customer must be visited
by exactly one vehicle. Customer i has demand ri, and the sum of demands of customers
assigned to vehicle k must be less than the vehicle capacity Q. All vehicles begin and end
their route at a single depot.

The objective is to minimise the sum of travel costs, where the generalised cost of trav-
elling from i to j is cij . Symmetric (cij = cji) and asymmetric variants exist. For brevity
the models presented in this chapter assume symmetric costs, but are easily extended to the
asymmetric case.

A number of extensions to the problem have been studied. In the VRP with hetero-
geneous fleet, vehicle capacities and cost of use differ. Multiple resource problems allow
demands to be expressed in terms of a number of different resources l (rli), and each vehicle
has capacities specified in terms of each resource (Qlk). For example, both load and volume
may be restricted in a vehicle, so must be accounted separately. A maximum dimension
(for example length) may also be enforced.

The VRP with Time Windows (VRPTW) is often studied [13, 14]. A time window
[ai, bi] when delivery may commence is specified for each customer i, or multiple time
windows may be specified. A vehicle arriving early is usually allowed to wait at the cus-
tomer’s location for the start of the time window. The addition of time constraints makes
the problem much more difficult – even finding a feasible (let alone optimal) solution is
NP-hard [102].

An “open” version of the problem does not require the vehicle to return to the depot
after the last customer. And finally, the multiple depot VRP allows vehicles to be housed
at different depots. Usually the number of vehicles at each depot is given, although this
may be a decision variable.

P. Kilby, P. Shaw 803

23.1.1 Side Constraints

A key feature of vehicle routing problems, as faced in industry, is the variety of constraints
that can be added for individual companies. Examples include

• Particular vehicles may be physically constrained from visiting particular customers.

• Customers may have preferences for particular drivers.

• Drivers may have established but fuzzy delivery areas.

• A maximum time or length may be imposed on a route.

• A maximum time or distance between customers may be imposed.

• There may be a requirement to visit one customer before or after another.

• There may be incompatibilities between customers – for example their orders may
not be safely carried on the same vehicle.

• Customer orders may be able to be “split”, and carried on separate vehicles.

• A particular type of customer must appear on each route – for example each vehicle
may be required to pick up a co-driver within the first hour, but the co-drivers are not
assigned to specific vehicles a-priori.

• Customers may be able to be skipped at a cost.

23.1.2 Related Problems

A number of problems related to the vehicle routing problem have been studied.
The Travelling Salesman Problem (TSP) is the problem of finding the shortest path

that visits a set of customers and returns to the first. It is a very well studied problem –
see for example the recent book [56] or the reviews [78, 72, 64]. Given an assignment
of customers to vehicles, the problem of routing the customers of a single vehicle is a
TSP. The TSP with Time Windows ([39, 17]) is the analogous problem for the VRPTW
– the VRPTW with a single vehicle. Many heuristics for the VRP and VRPTW work by
allocating customers to vehicles, and then solving the resulting TSP or TSPTW problems.

Another related problem class is Pickup and Delivery (PDP) problems [83, 38]. Here,
rather than goods being delivered from a depot, the goods are picked up en-route, and
delivered later. Dial-a-Ride problems [29] are pickup and delivery problems where the
cargo is people rather than goods. PDP problems have a rich set of constraints: time
windows are usually present and precedence constraints ensure that goods are picked up
before being delivered. In Dial-a-Ride problems, there may be constraints on maximum
length of travel for a passenger, the maximum deviation, and/or the maximum number
of intervening stops. The VRP with back-hauls [37] is another pickup-and-delivery type
problem with the extra condition that all pickups occur after deliveries are complete. It
models a situation where the vehicle is used to make a set of deliveries, and then picks up
some items on the way back to the depot.

804 23. Vehicle Routing

23.1.3 Reformulation

The VRP also has strong connections to classical scheduling. Several formulations for the
VRP have been suggested which cast it as a Job Shop Scheduling Problem with transition
times [8] or as an Open Shop Scheduling Problem [7]. Similarly, scheduling problems can
be cast as Vehicle Routing Problems with precedence constraints.

However, the reformulation does not seem to offer any advantages on pure problems.
Perhaps not surprisingly, scheduling software performs better on pure scheduling problems
than VRP software on reformulated problems. Similarly VRP software is able to solve pure
VRP instances better than scheduling software.

Beck et al.[7] offer some insights into why this is so. They identify five character-
istics that distinguish the two problems: alternative resources, temporal constraints, ratio
of operation duration to transition time, optimisation criterion, and temporal slack. They
demonstrate that converted problems are atypical in each of these five areas. For example,
under alternative resources, the authors note that in the VRP there are typically many ve-
hicles capable of making a delivering; whereas in pure job-shop scheduling (JSP) there is
exactly one feasible machine for each job. Other scheduling variants also limit the number
of feasible machines for a job. When such a scheduling problem is converted to a rout-
ing problem, it has a structure not usually found in routing problems. Briefly, the other
characteristics, in order, point to the following differences:

• In the VRP time windows on visits are usually independent, whereas time windows
on the JSP are interdependent, making long chains.

• In the VRP a visit has small duration compared to the transit time. In the JSP, the
reverse is true.

• In the VRP the usual optimisation criteria is first minimise vehicles, then to min-
imise travel. In the JSP the number of “vehicles” is fixed. The usual JSP criteria –
minimise makespan, which equates to minimising the length of the longest route –
is not usually studied in connection with the VRP.

• In the JSP the important temporal data is the operation’s duration, while in the
VRPTW it is the time window applied to the operation.

Constraint programming toolkits [61, 62] were applied to reformulated problems that
fall between pure VRP and pure JSP. The study identified the problem impurities that af-
fected the solving technologies, and in particular the impurities that could lead to technol-
ogy failure. The study also demonstrated that under certain conditions pre-treating impure
VRP with JSP technology (and vice versa, pre-treating impure JSP with VRP technology)
could significantly improve performance.

23.2 Operations Research Approaches

The vehicle routing problem and its variants have been widely studied. Recent surveys are
[111] on the VRP, and [13, 14] for the VRPTW. It is beyond the scope of this chapter to
fully review these solution methods.

Constraint Programming approaches make extensive use of methods from the Opera-
tions Research literature. It is useful therefore to begin with a brief review of some of the

P. Kilby, P. Shaw 805

methods that have been proposed by the Operations Research community to solve these
problems.

A variety of Constraint Programming approaches have also been developed – many
of which use algorithms from the OR literature as building-blocks. These methods are
reviewed in more detail in Section 23.3.

We begin by formulating the VRP and VRPTW more formally, using integer linear
programming (ILP).

23.2.1 ILP Formulation

The standard VRP and VRPTW problems can be formulated as an ILP in a number of ways.
A study of formulations is given in [80]. We use the following “3-index” formulation (from
[67]).

Let the set of customers beC = {1 . . . n}, and vehiclesM = {1 . . .m}. Use 0 to index
the depot at route start, and n+1 to index the depot at route end. DefineN = C∪{0, n+1}.

The decision variables are xijk for i, j ∈ N, k ∈M where xijk is 1 if vehicle k travels
directly from customer i to customer j, 0 otherwise. The constants used in the formulation
are given in Table 23.1.

cij The cost of travelling from i to j, i, j ∈ N
τij The time to travel from i to j, i, j ∈ N , incorporating the service time at

customer i
δij The distance from i to j, i, j ∈ N
ri The demand at customer i ∈ N
Qk The capacity of vehicle k ∈M
ai The earliest time service can start at customer i ∈ N
bi The latest time service can start at customer i ∈ N
K A large integer

Table 23.1: Problem constants

For convenience, define r0 = 0, rn+1 = 0, a0 = 0, an+1 = 0, b0 = K, bn+1 = K.
For time-window constrained problems, bn+1 can instead be set to a maximum route time
if required.

Problem VRP =

minimise zVRP =
∑

k∈M

∑

i∈N

∑

j∈N

cijxijk (23.1)

806 23. Vehicle Routing

subject to
∑

k∈M

∑

j∈N

xijk = 1 ∀i ∈ C (23.2)

∑

i∈C

ri
∑

j∈N

xijk ≤ Qk ∀k ∈M (23.3)

∑

j∈N

x0jk = 1 ∀k ∈M (23.4)

∑

i∈N

xihk −
∑

j∈N

xhjk = 0 ∀h ∈ C, ∀k ∈M (23.5)

∑

i∈N

xi(n+1)k = 1 ∀k ∈M (23.6)

∑

i,j∈S

xijk ≤| S | −1 ∀S ⊆ C (23.7)

xijk ∈ {0, 1} ∀i, j ∈ N, ∀k ∈M (23.8)

The objective 23.1 is to minimise the sum of the costs of used arcs. Constraints 23.2
ensures that each customer is visited exactly once. Constraints 23.3 enforce the capacity
constraints (assuming a heterogeneous fleet). Constraints 23.4 to 23.6 together enforce
the flow of vehicles from the start depot, through 0 or more customers to the end depot.
Constraints 23.7 are required to ensure there are no subtours (cycles that do not include
the depot). Unfortunately, this expands to an exponetial number of constraints, making
formulation of this type impractical for real problems.

The VRPTW can be formulated using an extra decision variable tik, the time vehicle
k ∈M begins service at customer i ∈ N .

Problem VRPTW = minimise zVRP subject to constraints 23.2 to 23.6 and 23.8, plus

tik + τij −K(1− xijk) ≤ tjk ∀i, j ∈ N, ∀k ∈M (23.9)

ai ≤ tik ≤ bi ∀i ∈ N, ∀k ∈M (23.10)

Constraints 23.9 define the arrival times at each customer, and constraints 23.10 enforce
the time windows. Constraints 23.7 are no longer required, as the time constraints will
ensure there are no subtours.

23.2.2 Methods from the OR Literature

Since the VRP and its variants areNP-hard, the focus has been very strongly on heuristic
solution methods. We will describe the usual heuristic approach – initial route construction,
improvement through local search, and meta-heuristic methods to escape local optima. We
will also indicate the exact methods that have been described.

23.2.3 Construction Methods

Construction methods are used to create an initial solution. Many reported methods are
based on an insertion procedure where a customer is selected, then inserted in a route in
such a way as to minimise an incremental cost function. A number of constraints can be

P. Kilby, P. Shaw 807

enforced during construction. It is particularly easy to check within-route constraints (i.e.
constraints that only deal with a single route), including time, precedence and capacity
constraints. Methods vary in a number of ways.

Parallel versus sequential Sequential procedures focus on a single route, adding cus-
tomers until no more will fit (e.g. [63]). Parallel methods build a set of routes
simultaneously (e.g. [93]). Examples of both can be found in [107]

Seed customers The most successful parallel methods (such as Solomon’s I1 method
[107]) use seed customers as the sole customer on a chosen number of routes. These
customers act to guide the emerging routes.

Insertion order The order in which customers are inserted can be crucial. Some methods
use a scoring system based proximity and other measures ([107, 63]. Some use
regret (difference in cost between best and next-best insertion points) [36].

Insert position The objective function used to determine insert position may simply try
to minimise the additional travel required to visit a customer. Others attempt to take
time and other constraints into account, guiding the selection process to maximise
the spare time or resources in resulting routes. (The same function may be used for
both choosing the customer to insert and the insert position.)

Perhaps the most famous VRP construction method is the “Savings” method of Clarke
and Wright [25]. The method starts with each customer on their own route. The “savings”
obtained by combining two routes is Sij = ci0 + c0j − cij . The method selects the
maximum Sij for which the combined route is feasible, and iterates.

Other approaches to route construction include the “sweep” heuristic of Gillet and
Miller [51]. Here, a ray centred at the depot is swept in a clockwise direction. Each
customer it touches is added to the route until no more will fit. A new route is then begun.

23.2.4 Local Search Methods

Local search looks at the neighbourhood of the current solution to find improved solutions.
The neighbourhood is defined in terms of one or more move operators: The neighbourhood
of a solution is those solutions which can be generated by applying the move operator. The
size of the neighbourhood is a key factor: the larger the neighbourhood, the more likely it
is to contain good solutions. However, larger neighbourhoods are also more expensive to
search.

Several of the operators used in solving routing problems are described below.

2-opt [81] Choose nodes i and j from the same tour, with i+1 < j. Delete arcs i→ i+1
and j → j + 1. Replace with i → j and i+ 1 → j + 1. This reverses the order of
nodes from i+ 1 to j. Neighbourhood size is O(n2)

3-opt [81] Analogous to 2-opt, 3 arcs are deleted and re-attached in such as way that
intermediate sections are not re-ordered. Neighbourhood size is O(n3). k-opts for
k > 3 are also possible, but the cost is prohibitive.

808 23. Vehicle Routing

Or-opt [86] Choose a parameter K, the maximum length considered. Remove each se-
quence of customers of length k =K, . . . down to 1 customers. Test re-inserting them
in forwards and backwards orientation between each remaining pair of customers.
Re-insert in the cheapest position. Neighbourhood size is O(Kn2).

Relocate [103] Subset of Or-opt moves – move a single customer from one route to the
best position in another. Neighbourhood size is O(n2).

Exchange [103] Choose two customers in different routes, and swap their positions.

Cross [103] Extension of Exchange: Choose a sequence of customers i1 . . . j1 of length
at most K in one route, and i2 . . . j2 of length at most K in another, and exchange
the two sections. Neighbourhood size is O(K2n2).

λ-exchange [87] As for cross except that the routes are re-optimised after the customers
are exchanged. Neighbourhood size depends on re-optimisation method, but is at
least O(K3n3).

GENI exchange [50] An extension of the relocate that allows the receiving route to be
minimally re-ordered to accommodate the new customer. It allows i to be inserted
into the new route between non-consecutive nodes j and k by reinserting the segment
j + 1 . . . k − 1 to a different position.

Ejection chains [54] A sequence of customers is selected and inserted into another route.
This may cause some sequence of customers to be “ejected” in order to accom-
modate the new ones. The procedure forms a chain of such ejections until no
customers are left unassigned. This has proved to be a very powerful operator
[96, 104, 21, 108]. Neighbourhood size depends on the restrictions imposed on
the chain length, but is potentially very large.

Guided Local Search and Limited Discrepancy Search [106, 59] are methods intro-
duced in the context of constraint programming and are discussed in Section 23.4.2.

Local search typically looks at a subset of these operators. The neighbourhood of the
current solution will be examined to find cost-reducing moves. Either the first found, or
the best found will then be executed. This leads the procedure to a local minimum within
the specified neighbourhood.

23.2.5 Meta-Heuristics

Meta-heuristics are used to escape local minima. They do this in one of two ways – either
the controlled acceptance of cost-increasing moves, or by neighbourhood expansion.

Many meta-heuristics have been applied to the VRP and related problems. Again, we
can only give a brief indication of the variety.

Simulated Annealing [1] Acceptance of cost-increasing moves is controlled by a sys-
tem parameter called temperature by analogy with a crystal annealing process. An
increase in cost δ is accepted with probability proportional to e−δ/T . An updat-
ing procedure increases T as the process continues so that solutions converges to a
(hopefully better) local minimum. Any combination of the local search operators
just described can be used to form a search neighbourhood [10, 113, 23].

P. Kilby, P. Shaw 809

Tabu Search [52, 53] Tabu search allows a cost-increasing move, and then places the
reversal on a “tabu list” so that the move cannot be “undone”. This allows the neigh-
bourhood of the new solution can be properly explored. A large number of methods
have been suggested using Tabu search for vehicle routing problems – Bräysy and
Gendreau [14] highlight fourteen notable applications. A few of the most successful
are [26, 110, 24, 112].

Genetic [55] Genetic (also Memetic and Evolutionary) algorithms use an Darwinian evo-
lution analogy. In the basic form, a population of solutions is created. Individuals
are “crossed” to form a new solution with characteristics from both parents. Muta-
tion operators (similar to the local search operators above) can also be applied. Im-
plementations differ in initialisation, mutation and crossing methods. Again, many
genetic methods have been suggested – Bräysy and Gendreau select seventeen for
comparison. A few of the more successful are [60, 11, 79].

Variable Neighbourhood Search [58] This method considers a sequence of neighbour-
hoods of increasing size around the current solution. It exhausts one neighbourhood
before moving on to the next largest, and will return to the smallest if a significant
change has been made. This allows the solution to be improved as much as possible
from low-cost, small neighbourhoods before investing the time to examine the larger
neighbourhoods. Examples include [92, 12, 28]

23.2.6 Exact Methods

While much emphasis has been placed on heuristic solution, several optimal methods have
been developed. Two such approaches are Column Generation and Lagrangian Relaxation.
These methods are examined more closely in Section 23.5, where we look at using CP as
a subproblem solver.

Other approaches are based on exploiting polyhedral properties of ILP formulations
of the VRP. These have benefited from work done in the context of the TSP (e.g. [88]).
Naddef and Rinaldi [85] review the branch and cut approach to solving the VRP. The
Branch and Cut approach is based on an mixed-integer linear programming formulation
of the problem. The linear relaxation of the problem is first solved. If the solution is
not integer, cuts are then applied. These take the form of new constraints which remove
fractional solutions without affecting the optimum. If an integer solution has not been
found but no more effective cuts can be generated, a typical branch-and-bound search is
employed. New cuts are applied at each branch. The process repeats until an integer
solution is found and proved optimal in the usual way.

Cuts of various kinds have been explored [49, 84, 3, 2, 6, 27, 18, 75, 74].

23.3 Constraint Programming Approaches

The Constraint Programming approach to many problem types is to incrementally build
a solution, backtracking when an infeasibility is detected, until a solution is found or the
problem is proven to have no solution.

This method can be applied to the VRP, but it is usually too inefficient to even consider.
In the vast majority of real-world cases, the existence of a solution is never in doubt. The
real question is about the quality of the solution found.

810 23. Vehicle Routing

In common with all applications of CP to optimisation problems, the search is over a
large number of feasible solutions to find the best or near-best, rather than searching a large
number of infeasible solutions to find the feasible one.

This change in emphasis is reflected in the way search is conducted. Local search
and repair methods have been developed which are able to take advantage of a Constraint
Programming framework.

These search methods are discussed in Section 23.5. We begin by presenting two
effective constraint-based formulations of the VRP.

23.3.1 Formulating Routing Problems with Constraints

This section details a constraint programming formulation of the VRP with time and quan-
tity of goods constraints maintained along each route. This model can be used as a basis for
the capacitated vehicle routing problem, the vehicle routing problem with time windows,
the pickup and delivery problem, and other vehicle routing problem variants. The main
virtue of constraint programming is versatility, i.e. it allows the modeller to add different
complications and extensions without adjustment to the basic model.

The constraint programming model described here is an extension of those described
in [19, 90, 31], and also [94], one of the earliest references on the use of Constraints in
routing problems. These works all use essentially the same method to model for the routing
aspects: path constraints. The multi-vehicle aspects come from [31, 69]. The propagation
rules that we describe in this section are implemented in the model described by [90]. They
are also used by ILOG Solver [62] sand ILOG Dispatcher [61], which are C++ toolkits for
general constraint programming and constraint-based vehicle routing respectively.

As previously, we have n customers orders and a fleet of m vehicles. The term visit
will be used for each time a vehicle makes a stop. There is one visit per customer and two
special visits per vehicle. These two additional visits per vehicle model the starting and
stopping places for the vehicle. Let C = {1 . . . n} form the customers, M = {1 . . .m}
form the vehicles and V = {1 . . . n + 2m} form the visits. For the special first and last
visits of each vehicle k we introduce the notations fk and lk. Visit n+ k is the first visit of
vehicle k (fk = n + k), while lk is the last visit of vehicle k (lk = n +m + k). The sets
F = {n+ 1 . . . n+m} and L = {n+m+ 1 . . . n+ 2m} indicate the set of first and last
visits respectively.

To model routes, the integer variable pi, i ∈ V with domain {1 . . . n + 2m} models
the direct predecessor of each visit i. By convention, each “first” visit of a vehicle has as
predecessor the vehicle’s “last” visit (∀k∈M pfk

= lk). The predecessor variables form a
permutation of V and are subject to the difference constraints:

pi 6= pj ∀i, j ∈ V ∧ i < j (23.11)

This is equivalent to stating (in the ILP model) that the in-degree and out-degree of each
node must be equal to one. A difference constraint propagates according to the rule below.
Following [90], we represent the current domain of variable x by {{x}}

x 6= y : {{x}} = {a} → y 6= a (23.12)

where x and y are constrained integer variables, and a is an integer. Propagation rules
here will be written as LHS → RHS where LHS is a logical combination of conditions

P. Kilby, P. Shaw 811

on the variable domains whose truth can be easily checked. RHS is a unary constraint
or conjunction thereof which can be enforced by simple domain filtering. The above rule
only fires when the domain of x is reduced to the single value a. The RHS is enforced by
removing the value a from the domain of y.

For each visit i, si models its direct successor. The successor variables are kept “co-
herent” (consistent) with the predecessor variables via the following constrained element
expressions:

spi
= i ∀i ∈ V − F psi

= i ∀i ∈ V − L (23.13)

The element constraint takes two integer variables y and z and a vector of integers or, in
this case, integer variables x. The constraint specifies that z must be equivalent to the yth
element of x. This type of constraint is nearly ubiquitous in constraint programming mod-
els, and, to the authors’ knowledge, supported by all well-known constraint programming
engines. It propagates as shown below.

z = x[y]
{{y}} = {a} ∧ ∃b 6∈ {{z}} → x[a] 6= b
∃a {{x[a]}} ∩ {{z}} = ∅ → y 6= a
∃b(∀a ∈ {{y}} b 6∈ {{x[a]}})→ z 6= b

(23.14)

The coherence constraints 23.13 can then be implemented as follows (we show only one
of the two forms):

spi
= i : z = s[pi] ∧ z = i (23.15)

Note that the use of the predecessor and successor variables creates a symmetric model
which will be reflected in the constraints that will now be introduced. Strictly speaking, the
VRP solution space could be specified using only one of the variable sets (predecessor or
successor) without changing the set of solutions of the problem. However, by adding both
(redundant modelling), additional inferences can be made which can significantly prune
the search space.

To model multiple vehicles, a “vehicle variable” vi of domain {1 . . .m} is introduced
for each visit i which represents the vehicle which performs visit i. Naturally, for the first
and last visits, the constraints ∀k ∈ M vfk

= vlk = k are imposed. Along a route, all
visits are performed by the same vehicle. This is maintained by constraints of the following
form:

vi = vpi
∀i ∈ V − F vi = vsi

∀i ∈ V − L (23.16)

These constraints form what is termed a path constraint as they maintain information along
a path. The above is the simplest form of path constraint; more complex ones will be used
to maintain the time and quantity of goods along a path. The above path constraint can be
implemented using only element constraints.

Alternatively, less stringent form of consistency can be maintained, called “bounds
consistency”. This only requires the bounds – lowest and highest legal values – to be
maintained. This is much cheaper to store and to use, but can be less powerful. In particular
cases, however, it can be sufficient. We will write the bounds as as x := e, meaning that

812 23. Vehicle Routing

all values i < e are removed from the domain of x; and x := e, meaning that all values
i > e are removed from the domain of x.

The quantity of goods on the vehicle is one such variable for where the size of the
domain and the mode of use means it is more efficient to maintain only bounds consistency.
It is modelled by the introduction of a real or integer valued variable at each visit. Let
qi ≥ 0 be a constrained variable representing the quantity of goods on the vehicle after
performing visit i. Let ri 6= 0 be the quantity of goods to be picked up at visit i, if this
quantity is negative, it represents a drop off of goods. Then, the following path constraints
maintain the load on the vehicles at each point in their route.

qi = qpi
+ ri ∀i ∈ V − F qi = qsi

− rsi
∀i ∈ V − L (23.17)

As the q variables typically have large domains, only bounds consistency is maintained for
efficiency. Propagation rules to maintain the above constraints are as follows:

qi = qpi
+ ri

Let P = {k | k ∈ {{pi}} ∧
min{{qk}}+ ri ≤ max{{qi}} ∧
max{{qk}}+ ri ≥ min{{qi}}}

Then
∃k ∈ {{pi}} k 6∈ P → pi 6= k
∃k ∈ P ∀l ∈ P min{{qk}} ≤ min{{ql}} → qi ≥ min{{qk}}+ ri
∃k ∈ P ∀l ∈ P max{{qk}} ≥ max{{ql}} → qi ≤ max{{qk}}+ ri

(23.18)

qi = qsi
− rsi

Let S = {k | k ∈ {{si}} ∧
min{{qk}} − rk ≤ max{{qi}} ∧
max{{qk}} − rk ≥ min{{qi}}}

Then
∃k ∈ {{si}} k 6∈ S → si 6= k
∃k ∈ S ∀l ∈ S min{{qk}} ≤ min{{ql}} → qi ≥ min{{qk}} − rk
∃k ∈ S ∀l ∈ S max{{qk}} ≥ max{{ql}} → qi ≤ max{{qk}} − ri

(23.19)

Vehicles have limited capacity. To model this, element constraints are used to deter-
mine limits for the q variables: simple inequalities then restrict the a variables. Assume
that the goods capacity of vehicle k is Qk. The following constraints are then imposed:

qi ≤ Qvi
∀i ∈ V (23.20)

This formulation models heterogeneous fleets where each vehicle may have different
capacity. Note that no constraints of the form ∀i ∈ F qi = 0 are added, which would
require that vehicles begin empty. By leaving these quantities otherwise unconstrained,
different problems can be modelled. These include mixed pickup and drop off, where the
vehicle can begin (partially) full and end (partially) full, and en route pickup and delivery
problems (see next section).

Time is maintained roughly in the same manner as vehicle load except that waiting is
normally allowed and so that path constraint maintains an inequality rather than an equality.
Let ti ≥ 0 be a constrained variable which represents the time at which service for visit i
begins.

P. Kilby, P. Shaw 813

The following constraints maintain time along vehicle routes:

ti ≥ tpi
+ τpi,i ∀i ∈ V − F ti ≤ tsi

− τi,si
∀i ∈ V − L (23.21)

The propagation methods are omitted as the correspond closely to those already presented
for propagating load (23.18, 23.19), the only difference being a cumulative inequality
rather than a cumulative equality is maintained to allow waiting time.

Time windows on customers are specified by adding constraints on the t variables. For
example, the constraint a ≤ ti ≤ b states that customer i must be visited between times a
and b. Multiple time windows [90] can also be modelled; for example, the two constraints
a ≤ ti ≤ d and ti ≤ b ∨ ti ≥ c indicates that customer i must be visited either between
times a and b, or between times c and d (a ≤ b ≤ c ≤ d).1

Different vehicles can have different availability windows; Suppose that Ok is the ear-
liest starting time, or origin, of vehicle k and Hk is its latest finishing time, or horizon.
Limits on the availability of vehicles are then expressed (again using element constraints
and inequalities) as:

Ovi
≤ ti ≤ Hvi

∀i ∈ V (23.22)

To avoid cycles of visits which do not involve a first and last visit (subtour elimination),
a specialised constraint is described in section 23.3.3. However, one other simple way
which propagates less, but has the advantage of not requiring custom constraints, is to
make sure that each vehicle has a finite horizon, and that time for service for each visit is
strictly positive.

Finally the cost function, which is normally the total distance travelled d, but can more
generally involve other components, such as the number of vehicles used, is constrained as
follows:

d =
∑

i∈V−F

δpi,i d =
∑

i∈V−L

δi,si
(23.23)

where δi,j is the travel distance from visit i to j. Note the use of both the predecessor
and successor variables to constrain the cost, which is nearly always more effective during
search than using one single set. Each term in the sums is maintained by an element
constraint, and the total sum by a summation constraint, whose propagation details will be
skipped here, except to say that again, only bounds on variables are maintained in the sum.

When the cost-per-kilometer varies according to the vehicle used, the cost function can
be generalised. Let Ck be the cost per unit distance of vehicle k. The cost function is then
specified as:

d =
∑

i∈V−F

Cvi
δpi,i d =

∑

i∈V−L

Cvi
δi,si

(23.24)

These costs are maintained as those above, except that there is an additional multiplication
constraint per term. This second cost function will not be considered further here.

1There are various ways of handling constraint disjunction in constraint programming systems. ILOG Solver
takes a simple approach to propagating the constraint c1 ∨ c2—when one of the disjuncts becomes violated,
the other disjunct is added as a hard constraint in the system. Implication can also be implemented this way by
rewriting c1 ⇒ c2 as ¬c1 ∨ c2).

814 23. Vehicle Routing

23.3.2 Extensions of the Model

The constraint programming model of the vehicle routing problem described encompasses
various standard OR models, such as the vehicle routing problem with capacity constraints
(CVRP), the vehicle routing problem with (multiple) time windows (VRPTW), the multi-
depot vehicle routing problem (MDVRP), the open vehicle routing problem (OVRP), and
the site-dependent vehicle routing problem (SDVRP). (See [98] for a full description of
these classifications.) Moreover, any a problem with a mix of features of these basic prob-
lems types can be easily accommodated.

By adding additional constraints the model can also be used on pickup-and-delivery
problems (PDP), including problems with back-hauls. PDP problems are modelled with
negative values of ri for a delivery, and positive ri for a pickup.

Assume that each pickup and deliver order o has a pickup visit op and a delivery visit
od. For each order o, the following constraints are imposed, which state the the pickup
and delivery visits must be carried out by the same vehicle and that the pickup must be
performed before the delivery.

vop
= vod

top
< tod

(23.25)

For a back-haul problem, interleaving of pickup and delivery visits is excluded via the
following unary constraints on successor and predecessor variables:

si 6= j ∀i ∈ P ∀j ∈ D where P = {i | ri > 0} and D = {i | ri < 0} (23.26)

which state that no direct link from pickup to delivery is allowed.

23.3.3 Increased Propagation

The model already detailed is a valid and general model for various flavours of vehicle
routing problem. The basic model can also be further enriched to solve more complex
real-world problems (see section 23.6). However, the constraint propagation of this model
can be significantly improved by considering the problem structure as a whole rather than
individual constraints. This section deals with such additional propagation algorithms.

Eliminating cycles

This constraint was introduced in [19, 90] and is a very efficient way of avoiding cycles in
constraint programming vehicle routing models. The essence is simple: for any chain of
customers, it is forbidden to go from the end of a chain to its start. This idea is illustrated
in figure 23.2 adapted very slightly from the one shown in [90].

To maintain consistency of this constraint, first assume that a notification is sent to any
interested parties whenever a variable is changed (as proposed in [114]). In particular, the
NOCYCLE constraint need only be informed when a p variable is bound to a particular
value.

Two values bi, ei are associated with each visit i ∈ V −F which represent respectively,
the visits which begin and end the chain involving i. The value of bi is only valid if i is at
the end of a chain. Likewise, the value of ei if only valid if i is at the beginning of a chain.
With these variables, the NOCYCLE constraint can be propagated in O(1) time each time
a p variable is bound to a value. The method is as follows:

P. Kilby, P. Shaw 815

CHAIN 1 CHAIN 2

FORBIDDEN ARC

NEW ARC

Figure 23.2: Operation of the NOCYCLE constraint

INITIALISE

forall i in V − F , bi = ei = i
forall i in V − F

if HASVALUE(pi)
SENDEVENT(BOUND(pi)) { see below }

when BOUND(pi)
π = value(pi) { π → i is new arc }
B = bπ { B is first visit of new chain }
E = ei { E is the last visit of new chain }
eB := E { := is reversible assignment }
bE := B { := is reversible assignment }
pB 6= E { disallow the chain looping }

Where “reversible assignment” is noted, this means that the assignment is undone on back-
tracking, so that the chains maintain their integrity after returning from a dead end.

Connectivity

Caseau and Laburthe [19] propose to go further than subtour eliminations for the TSP by
performing a strong connection check to see if all nodes can be reached from the start
node. This can be generalised to the model described here by performing a connection
check to find the set of visits that can be reached by each vehicle. Let RFk be the set of
visits reachable from visit fk (including fk) in a forwards direction—that is, following
directed arcs i → j where i ∈ V − L ∧ j ∈ {{si}} ∧ k ∈ vi ∧ k ∈ vj . This set can be
computed by a marking algorithm of complexity linear in the number of arcs considered.
Likewise, let RBk be the set of visits reachable from visit lk (including lk) in a backwards
direction. Let the set of reachable visits of vehicle k be Rk = RFk ∩ RBk . There are two
situations where search has reached a dead end and can backtrack. First, if fk 6∈ Rk, then
it means that their is no route from the first visit of vehicle k to its last visit. Second, if
∪k∈MRk 6= V , then there are some visits which cannot be visited by any vehicle. In fact,
the second condition subsumes the first, but we highlight the first condition as it can be
more efficient to test.

Caseau and Laburthe [19] also propose that this pruning rule can be transformed into a
propagation rule, fixing any arcs which are necessary to a connection (that it, without the

816 23. Vehicle Routing

arc, the already outlined algorithm would detect a dead end). Such an arc i → j would
then be fixed by setting si = j.

Unfortunately the authors reported that the reduction in search space realized was very
small, and did not compensate the large computational cost – detecting such arcs with their
algorithm has complexity O(|V |a), where a is the number of arcs considered. However, it
is interesting to note here as an indication of the type of search space reduction that can be
investigated.

Permutation of predecessor variables

Constraints 23.11 state that all p variables must be different. The well known global all-diff
constraint of Régin [95] can be used to efficiently maintain generalised arc consistency for
a set of variables that must all take different values. See Chapter 6 “Global Constraints”
for more information.

23.3.4 An Alternative Formulation

In the formulation presented here, the solution requires a single value for successor and
predecessor of a visit to be identified. Pesant et al.[90] present an alternative formulation
in the context of the TSP that requires the set of all successors and predecessors of the visit
to be identified.

Two set variables, Bi and Ai, are maintained for each visit that determine all visits
which must come before (respectively after) visit i. In a TSP, any visit j other than i
must either come before or after i. In a VRP, this is not the case, and we identify three
possibilities (a) i before j on the same vehicle route (i ∈ Bj ∧ j ∈ Ai) (b) j before i
on the same vehicle route (j ∈ Bi ∧ i ∈ Aj) (c) i and j served by different vehicles
(i 6∈ Bj ∪ Aj ∧ j 6∈ Bi ∪ Ai). The A and B sets are maintained by examination of the
time constraints between pairs of visits. This leads to the following constraints for all visits
i ∈ V :

(a) Bi ∩Ai = ∅ (b) j ∈ Ai ⇔ i ∈ Bj
(c) si = j ⇔ Ai = Aj ∪ {j} (d) j ∈ Ai ∧ l ∈ Aj ⇒ l ∈ Ai
(e) vi 6= vj ∨ j ∈ Bi ∨ j ∈ Ai (f) Ai ∩Bj 6= 0⇒ si 6= j
(g) j ∈ Ai ⇒ tj ≥ ti + τ⋆i,j (h) j ∈ Bi ⇒ tj ≤ ti − τ⋆j,i

(23.27)

Here τ⋆i,j is the shortest path (in terms of time) between the start of service of i and the start
of service of j. This can be found using a shortest path algorithm, but any lower bound is
legal to use, including τi,j (making the reasonable assumption that the triangle inequality
holds on travel times). In fact in [90] τ⋆i,j = τi,j .

In the above, constraint (a) says that no visit can be both before and after another visit;
constraint (b) states that if i is before j, then j is after i; constraint (c) links the direct suc-
cessors with the complete successors; constraint (d) enforces the transitive closure which
states that if i is before j and j is before l, then i is before l; constraint (e) says that if i
and j are served by the same vehicle, they must be ordered; constraint (f) says that when at
least one visit occurs between two other visits, those two visits cannot be directly linked;
finally constraint (h) requires that when visits i and j are ordered in a certain sense, there
must be a minimal time gap between them.

P. Kilby, P. Shaw 817

These constraints result in more powerful propagations eliminating certain arcs from
consideration, or enforcing that two visits must be performed by different vehicles, for
example. The before and after sets can also be used to tighten time bounds on visits to
strengthen the method proposed in [90]. The following constraints are valid for any cus-
tomer visit i ∈ C.

dB =
∑

j∈Bi
tj,sj

{Total duration before i}
dA =

∑

j∈Ai
tpj ,j {Total duration after i}

ti ≥ tfvi
+ dB ti ≤ tlvi

− dA
(23.28)

That is, the earliest time that visit i can be started is the start time of the vehicle on which
i will be serviced, plus the travel for all visits up to i. A symmetrical constraint limits the
latest time that visit i can be completed.

23.3.5 Lower Bounds and Cost-Based Propagation

The cost can be used to limit search through a global constraint. The basic constraint
programming model described in Section 23.3.1 will perform propagation through con-
straints 23.23. Consider in particular, the first of the constraints: CST: d =

∑

i∈V−F δpi,i.
Suppose further that a goal cost G has been identified, so that we require d ≤ G. (Such a
cost is usually provided by finding a solution to the VRP with some costG+ ǫ, resulting in
the new tighter cost bound G.) Constraint CST will maintain lower and upper bounds on d
computed from a sum of terms, each term of which is the distance from each node’s prede-
cessor to the node. During search, not all pi variables will be bound to a single value, and
bounds on the contribution of each term will be computed by propagation of the element
constraints which constitute each term. Assume that Ti is the term in CST corresponding
to visit i. Then:

Ti := min
j∈pi

δj,i Ti := max
j∈pi

δj,i (23.29)

The summation will then maintain bounds on d, the total distance travelled, notably the
lower bound:

dLB =
∑

i∈V−F

Ti (23.30)

The propagation rule d := LB, ensures that this lower bound is enforced.
Of course, whenever

∑

i∈V−F Ti > G, the domain of d will become empty and force
the search to backtrack. However, what happens more often is that propagation will occur,
removing arcs which would, if they appeared in the final solution, exceed the cost bound
G. Consider the lower bounds on the cost when one visit i has as predecessor a visit h
other than its closest predecessor. The new lower bound di,hLB would then be:

di,hLB =
∑

j∈V−F\i

Ti + δh,i (23.31)

The following propagation rule then applies:

∃h ∈ pi di,hLB > G→ pi 6= h ∀i ∈ V − F (23.32)

818 23. Vehicle Routing

This logic can also be symmetrically applied to the successor variables.
Although the above method performs cost-based propagation, the lower bound dLB

is poor as it does not consider any routing aspects, such as the fact that all predecessor
(or successor) variables must take different values. This has the effect of significantly
weakening the propagation. Accordingly, better bounds have been proposed in the context
of constraint programming, as well as a cost-based propagation methods based on reduced
costs.

Better lower bounds

Several better lower bounds have been introduced in the literature which have different
complexity/strength trade offs. A simple, strong bound was introduced by Caseau and
Laburthe [19] for the TSP, based on a regret concept. In general terms, the regret Rx of a
variable x is the difference in the cost to assign the variable its best value compared to the
cost to assign it to its second best. Maximum regret is often used as a variable ordering
heuristic.

Although the bound was introduced for the TSP, it can be used for the VRP without
any significant change. First, let each visit i have associated its closest allowable visit
κi = argminj∈pi

δj,i. Also for each visit i ∈ V − F where |{{pi}}| > 1 the second
closest visit can be defined as: κ2

i = argminj∈pi\κi
δj,i. Then the regret Ri of a visit i as

Ri = δκ2
i ,i
− δκi,i.

The regret-based bound recognises that if i is the closest direct predecessor to both visit
j and visit l, then in any solution at least one of j and l cannot be directly followed by i. In
this case, an extra distance can be added to dLB equal to the minimum regret of j and l.

In the general case, suppose that for any visit i ∈ V − L, i is the closest allowable
direct predecessor of a set of visits Ki. Then the regret based lower bound dLBR is given
by:

dLBR = dLB +
∑

i∈V−L

R(i,Ki) (23.33)

where R(∅) = 0 and R(X) =
∑

j∈X Rj −maxj∈X Rj otherwise.
This bound adds the smallest |Ki| regrets to the basic bound dLB for each contested

visit (the visit with the largest regret in the set is assume to link to its closest visit). The
bound works very well in practice, as it significantly strengthens the basic bound and is
efficient to maintain. A symmetric bound can be computed using the successor variables
in place of the predecessor variables, and both can be used for pruning.

Other bounds (for the TSP) have also been introduced based either on minimum span-
ning trees (MST) and minimum spanning aboresences (MSA). For instance Pesant et
al.[90] maintain a minimum spanning tree via an incremental version of Kruskal’s algo-
rithm [4] which adjusts the MST when required. Again for the TSP, [19] proposes comput-
ing the MSA rooted at a single node. The latter goes further, proposing that a bound based
on Lagrangian relaxation of the MSA problem can provide very good bound – very often
within 1% of the optimum solution. However, the authors emphasise that because of the
cost of computing the lower bounds, these methods should be used when appropriate and
with care. For instance, such bounds become much weaker when side constraints such as
time windows (especially tight ones) are added. In this case, the high investment does not
pay off.

P. Kilby, P. Shaw 819

Cost-based propagation

Focacci, Lodi and Milano [46, 47, 45] propose a more effective global constraint allowing
cost-based propagation for the TSP and TSP with time windows which can also be applied
to the VRP. The idea is that the assignment problem relaxation of the TSP is used (where
the subtour constraint is relaxed) to provide a lower bound on the objective. The Hungarian
algorithm [71], or an incremental version of it, provides this lower bound dH (which is a
minimum cost matching of visits to visits according to the domains of the predecessor or
successor variables).

However, the Hungarian algorithm also produces a reduced cost c̄i,j for each possi-
ble arc i, j. This reduced cost is a lower bound on the increase in dH if j was used as
the successor of visit for i, instead of the one proposed in the solution to the assignment
problem.

A new propagation rule based on the cost goal G and reduced costs can then be used:

∃i ∈ V − L ∃j ∈ {{si}} dH + c̄i,j > G→ si 6= j (23.34)

This method is covered in detail in Chapter 6 “Global Constraints”, or see [46] for a
description in the context of the TSPTW.

23.4 Constraint Programming in Search

We have seen that Constraint Programming can offer many advantages when solving rout-
ing problems, due to the increased pruning achieved through propagation. We have also
seen, in Section 23.2.4, that local search methods have been effective in solving the prob-
lems.

However, a difficulty arises when one attempts to put these two methods together in a
naı̈ve way. In local search, we may move a customer from one route to another, assign-
ing a new successor si = j. Later, we may decide to move node j, so that si receives
a new value. However, this contradicts a basic operating principle in classic Constraint
Programming: so called “chronological backtracking”. Under chronological backtracking,
decisions must be undone in the reverse of the order they were made. So in order to undo
the decision si = j, we would have to undo all operations performed since that time. This
would undo all the progress made by local search, and hence is unacceptable.

Two ways around this problem seem to have been identified so far.
The first is to allow a heuristic or meta-heuristic to control search. In this case, the con-

straint system is used simply as a rule checker. The second way is to insulate the Constraint
Programming system from the changes being made at the lower level, by wrapping up local
search changes within an operator, which is then used within the constraint system. The
use of these sorts of operators also allows the user to identify parts of the search that can
be handled using traditional backtrack search. These methods are discussed in more detail
below.

A third way of using CP is as a subproblem solver. Here, an independent search pro-
cess generates a sequence of subproblems – usually closely related to the original routing
problem – which are solved by CP. This sort of use has more of the flavour of the second
class identified above, as the CP system is being used as more than just a rule checker;
a full CP framework is being used repeatedly. We will look at some of these methods in
Section 23.5.

820 23. Vehicle Routing

See also Chapter 5 “Local Search” for methods for doing local search. Focacci et
al.[48] also look at the use of local search within a constraint framework.

23.4.1 Constraint Programming as a Rule-Checker

Perhaps the easiest way to use a constraint programming framework in solving the Vehicle
Routing Problem is to simply use CP-based methods as a rule checker to be applied to
individual routes, or collections of routes. The main advantage over other possible methods
is that CP is very expressive, and a wide variety of side constraints can be specified and
checked efficiently. In addition, a CP-based solver that can handle the core VRP constraints
can often be used without algorithmic modification to handle a problem with additional
side constraints ([31, 106]).

Using CP as a rule-checker means that the search procedure is handled outside the
constraint system. The constraint system is simply called each time a new route (or partial
route) is to be tested. However, the CP system is still able to perform the usual propaga-
tions, limiting the scope of decision variable and potentially identifying infeasible partial
solutions.

De Backer et al.[31] discuss in detail the use of CP within a non-chronological frame-
work. They use two representations of the solution – an active representation within a con-
straint programming system that is only instantiated when a constraint check is required,
and an passive representation used by the local search routines. Within this framework, a
full test of all constraints through the whole (partial) solution can be very expensive. They
therefore describe a number of methods for improving the efficiency of the CP system. We
site three examples – details can be found in the reference.

First, many local search operators operate using a particular criterion – for example
identifying the node that can be moved at least cost or maximum regret. A large gain in ef-
ficiency can be made by simply testing that criterion first, before performing any constraint
checks. So rather than seeing whether it is legal to perform a particular move, the system
should first see whether the cost of the move is less that the best found so far. If not, then
the constraint checks can be skipped altogether.

Another possibility for improving efficiency is to have specialised propagators for the
core constraints. For example, each “move operator” within a local search method may
have its own propagator which examines the values produced during the path variable
propagation. Illegal moves can then be identified very quickly. Even though they concen-
trate on the core constraints, since any side constraints will also be potentially affecting the
path constraints, these propagators make good use of information from all constraints.

Finally it is important to observe that many move operators affect only a subset of the
routes in a solution. Most constraint checking can therefore be limited to just those routes
that have changed.

De Backer et al.[31] describe the use a CP framework for implementing several of the
local search and meta-heuristic methods described in Section 23.2.4. The methods proved
to be effective – several new “best known” solutions where produced.

23.4.2 Local Search within a Constraint framework

As noted above, operators can be defined within a Constraint Programming framework
to insulate the Constraint System from non-chronological backtrack. This allows more of

P. Kilby, P. Shaw 821

the search to take place within a Constraint framework, and hence allows more scope for
propagations and other techniques to prune the search space.

Many of the operators used within this type of framework are based on serial insertion
and block deletion. These types of modification are well suited to use within a Constraint
Programming framework, as they allow the propagations described in Section 23.3.1 to
be used in full – both narrowing the potential sites for insertion, and quickly identifying
partial solutions that cannot lead to a feasible solution. The formulation is also able to
cope with arbitrary side constraints easily. Within-route constraints (like capacity) – which
usually form the bulk of constraints – can be checked during insertion.

One such insertion-based technique, developed specifically for use in constraint pro-
gramming environment, is Large Neighbourhood Search [106]. In this method, a group
of “related” customers is removed, and then re-inserted into the existing runs with optimal
cost. The customers are related geographically, temporally, or by use of a particular re-
source. For example, a simple relatedness function is R(i, j) = 1

cij+Vij
where cij is the

cost of travel from i to j, and Vij is K > 0 if i and j are on the same vehicle, 0 otherwise.
K is chosen to be comparable to the cijs.

The number of visits removed starts at one, and increases if no improvements have been
found, up to some maximum (30 is used in the cited reference). Re-insertion uses exact
branch-and-bound procedure with constraint propagation, which can find the minimum
insertion cost rapidly.

The method has proved particularly successful on Vehicle Routing Problems, and has
since been used in Constraint-based methods for other problems, including crew schedul-
ing [105] and maximal satisfaction problems [82].

The strength of propagations from insertion-style local search is further exploited in a
technique proposed by Caseau et al.[21]. Three meta-heuristics that involve repeated in-
sertion – Large Neighbourhood Search, Limited Discrepancy Search, and Ejection Chains
– are combined. The paper uses these three methods as building-blocks in a system de-
signed to discover new heuristics based on automated “learning”. Depending on the data
presented, the methods produces heuristics, made up of calls to these building blocks, that
are able to produce good solutions. The CP system is acting as a rule checker here, but in
addition, traditional CP techniques are used to solve small TSPs with side constraints as
described in [19] that appear as subproblems.

Another general-purpose search procedure that has been developed within the con-
straint literature is Limited Discrepancy Search (LDS) [59, 20, 21]. Many problem-solving
methods involve a sequence of steps, a set of actions that can be taken at each step, and
a heuristic for ordering the preference for those actions. Following the first preference at
each step gives a solution to the problem. LDS systematically looks at the solutions that
differ from the heuristic solution by making a different choice at a number of points. So
for instance a 1-discrepancy would follow the heuristic at all but one step. At that step it
would take the second-best choice according to the heuristic. Going against the heuristic
at stage one (then following it for the rest of the procedure) gives a 1-discrepancy solution.
Going against the heuristic at stage two gives another such solution, etc. So if there were n
steps in the solution, n different 1-discrepancy solutions can be generated. A 2-discrepancy
solution either twice uses the heuristic’s second-best choice during construction, or once
uses the third-best choice. In the context of the VRP, LDS can be used during construction.
For example, in choosing the next customer to insert, or the insert position.

822 23. Vehicle Routing

The Constraint framework is exploited in a method described by Pesant and Gendreau
[89] to implicitly search large neighbourhoods. As mentioned previously, large neighbour-
hoods are more likely to contain good solutions, or allow good solutions to be discovered in
fewer steps. However, such neighbourhoods can be expensive to search. Pesant and Gen-
dreau describe a method that allows these larger neighbourhoods to be searched efficiently
using branch and bound.

They characterise a neighbourhood N of a particular solution by a set of finite-domain
variables V = {v1, . . . , vn}, so that each feasible combination of values v̄ = v1 ×
. . . × vn maps to exactly one neighbour of the current solution, and vice-versa. A sys-
tematic, branch and bound exploration of feasible values of v̄ then implicitly explores the
neighbourhood efficiently. Using lower-bounding functions allows non-productive areas
of the neighbourhood to be identified and eliminated.

For example, in the TSP with time windows, an effective neighbourhood is the or-
ientation-preserving 3-opt neighbourhood described in Section 23.2.4. This can be char-
acterised using 3 indices – I, J and K – defining the break points, with the constraint
I ≺ J ≺ K (where I ≺ J means “I precedes J in the current tour”). Each feasible
I, J,K combination represents one possible 3-opt exchange (and all 3-opt exchanges are
represented by an I, J,K combination). Peasant and Gendreau describe how this I, J,K
space can be explored using a branch and bound tree of depth three, using two bounding
procedures to prune the search.

Bounding, propagation and pruning are being used to implicitly eliminate subsets
of neighbours. This allows the more complex and larger neighbourhood structures (e.g.
[109]) to be explored effectively.

Rousseau et al.[99] describe an approach, based strongly on the ideas presented in [89].
In this hybrid CP/OR approach, methods such as (Large Neighbourhood Search, GENI
exchange, Ejection Chains) are embedded as operators within a constraint programming
framework. Again, the building blocks chosen are based on serial insertion and deletion –
precisely the operators able to benefit most strongly from propagation.

Basic operators are defined which remove and insert customers in a route. New oper-
ators can then be defined – for instance the following code implements a simple ejection
chain:

NEC(c) :- Insert(c, R) ∨ (Remove(C,R) ∧ Insert (c,R) ∧ NEC(C))

where R and C are variables representing any route or customer. The code attempts to
insert c in a feasible route or, if no such route can be found, removes another customer
from a route, inserts c in that route, and recurses to find a new home for C. Obviously this
method must be modified to prevent cycling etc, but the flavour of CP-based programming
is evident.

In the method described, the construction phase, a local search phase and a post-
optimisation improvement phase are all defined in terms of the operators. They follow
the ideas of [89], exploring the neighbourhoods defined by each operator using branch-
and-bound search within a CP framework. As with the previous method, propagation and
pruning are working to reduce the number of solutions actually visited.

P. Kilby, P. Shaw 823

23.5 Using Constraint Programming as a Subproblem Solver

We focus here on methods that involve solving a sequence of constrained subproblems.
These subproblems often share many of the constraints of the original problem, and hence
Constraint Programming may be a useful technique to employ.

An example is the method described by Caseau and Laburthe [20] for the VRP. This
is an insertion-based technique that interleaves insertion with local search. It uses CP to
check the feasibility of insertions and of the neighbourhood moves used in local search.
However, it also uses a constraint-based framework to solve the TSPTW sub-problems
exactly, using the method described in [19]. Because the whole system is set up within a
constraint-based framework, it is easy to implement Limited Discrepancy Search [59] as a
solution improvement technique.

Shaw [106] uses a CP-based solver to find exact solutions to the TSPTW subproblems
arising in the context of the Large Neighbourhood Search procedure (see Section 23.2.4).

Easton et al.[40] use a branch-and-price algorithm to solve the Tavelling Tournament
Problem – which is related to the routing problems we examine here. In this approach,
integer programming is used to solve the master problem, while constraint programming
is used to solve the pricing problem. This approach is discussed in more detail in [66]. The
branch-and-price approach is also used in [30] to solve the Vehicle Routing Problem with
Time Windows.

Other examples of CP subproblem solvers are given in the next two sections.

23.5.1 Set Covering or Set Partitioning with Column Generation

Set Covering/Partitioning with Column Generation is a linear programming technique used
commonly in the Operations Research literature to solve a variety of routing, scheduling
and related problems [34, 97, 22, 5, 16, 32, 116]. Column Generation is also the subject of
a recent book [33].

In the VRP context, indicator variables are used to specify potential routes: aik = 1
if customer i is visited by route k, 0 otherwise. Columns therefore represent a potential
route, indicating which customers are covered, but not the order. The order and the cost ck
of route k can be calculated when the column is constructed, and stored separately.

The approach is to generate a large setK of potential routes (columns), then solve a set
partitioning or set covering problem to choose the set of routes which covers all customers
at minimum cost. The decision variable is yk, yk = 1 if route k is used in the solution, 0
otherwise.

SP: minimise
∑

k∈K

ckyk (23.35)

subject to

∑

k∈K

ykaik = 1 ∀i ∈ N (23.36)

yk ∈ {0, 1} ∀k ∈ K (23.37)

824 23. Vehicle Routing

The formulation above is the Set Partitioning formulation, requiring each customer to
be covered exactly once. SP has the advantage that special structure within the constraint
matrix can allow the problem to have integer properties [101]. However, the Set Covering
formulation, which allows customers to be visited more than once, is generally somewhat
easier to solve. The formulation (SC) is obtained by replacing “=” by “≥” in equation
23.36. Repeat visits can usually be handled by simply deleting one. In the following all
comments regarding formulation SP apply equally to SC

Due to the number of potential columns, it is not practical to include all possible routes
in K. However, the method of Column Generation allows us to converge to the optimum
solution. After solving SP, reduced costs for each customer can be obtained using the dual
variable associated with each equation 23.36. The Column Generation subproblem can
then be solved, where columns are generated by finding paths with negative reduced cost –
i.e. sets of customers where the cost of travel is exceeded by the sum of customer reduced
costs. This is a type of prize-collecting TSP [42]. An optimal solution to the relaxed form
of SP is obtained when no more negative reduced-cost paths can be generated.

Constraint programming can be used both in initial column construction phase, and
again in the column generation phase. One of the main advantages of the method is that
any within-route constraints can be enforced by the column construction procedure, in-
dependent of the Set-Partitioning solution mechanism. The method can therefore handle
classical VRP, and VRPTW problems, as well as a variety of side constraints. Previously,
Dynamic Programming was used [34], but this does not have the flexibility of CP which
allows, for example, multiple time windows to be added without fuss [91].

Solving the prize-collecting TSP subproblem in the column generation phase has to
obey the same constraints as the original route-construction method (including any side
constraints) – it simply has a modified objective. The same constraint-based formulation
can therefore be used to solve the prize collection sub-problem.

This approach has been described by Rouseau et al.[100] in the context of the TSPTW,
but most of the discussion applies to the VRPTW as well. They describe arc elimination
and search strategies which speed up solving the prize-collection subproblem.

Junker et al.[65] discuss a framework for embedding efficient algorithms into a con-
straint framework for solving problems that arise in column generation methods. These
methods are developed further in [41].

23.5.2 Lagrangian Relaxation

Lagrangian Relaxation is also a standard Operations Research technique, and descriptions
can be found in many Operations Research texts (e.g. [70, 115]). The technique is applied
to linear programming formulations of a problem where an “easy” problem is being com-
plicated by some additional constraints. The idea is to move the complicating constraints
into the objective with a penalty (Lagrangian) multiplier, leaving a much simpler subprob-
lem. Using duality theory, optimal multipliers can then be found by solving a series of
subproblems, yielding optimal solutions to the original problem.

There are various ways to apply this technique to the VRP, or VRPTW, depending on
the relaxed constraints. Fisher [43, 44] used Lagrangian Relaxation to solve the VRP and
VRPTW problems. The relaxation used there leaves a “minimum K-tree” subproblem.
More recently, Lagrangian relaxation has been applied to the VRPTW [67]. In the ap-
proach described there, the constraints which ensure that each customer is visited exactly

P. Kilby, P. Shaw 825

once are relaxed – these are constraints 23.2 in the formulation in Section 23.2.1. This
gives the Lagrangian objective

minimise zLR(λ) =
∑

i∈N

∑

j∈N

∑

k∈M

cijxijk −
∑

i∈N

λi

∑

j∈N

∑

k∈M

xijk − 1

 (23.38)

We wish to find the optimal set of multipliers λi, and must therefore solve
Problem LR = maximizeλ∈Rn zLR(λ) subject to constraints 23.3 to 23.10 (without the
redundant subtour constraints 23.7).

LR divides intom independent (difficult) problems – one for each vehicle. As with the
Column Generation method described above, the subproblem is a sort of prize-collecting
TSP, with the Lagrange multiplier λi associated with each customer quantifying the “prize”
for a vehicle to visit. (At termination, λi therefore gives an indication of the “cost” of
visiting each customer.) For the strict definition of VRPTW, [67] develop a dynamic
programming-based method to solve the elementary shortest path with time windows and
capacity constraints subproblem. However, a constraint-based approach could be used
which would allow arbitrary side constraints to be applied.

The Lagrangian Relaxation method is an iterative procedure. At iteration t, the current
solution is xtijk The Lagrangian problem is then solved to find the optimal multiplier λti
for i ∈ N . Unfortunately, in the case of the VRPTW, this optimization is also a difficult
problem. [67] describe a cutting plane algorithm using trust regions to solve the Lagrangian
dual problem for the pure VRPTW. Given these multipliers, a new xt+1

ijk is calculated using
the subproblem solver – CP or Dynamic Programming.

Traditionally Lagrangian Relaxation methods have suffered from being tied to a spe-
cific formulation of the problem. Constraint Programming allows the possibility to solve
subproblems in the presence of a wide variety of side constraints, making the method more
widely applicable. However, an exact solution to the subproblem is usually required in
order to guarantee convergence of the method.

Benoist et al.[9] used Lagrange Relaxation within a constraint programming frame-
work to solve a related routing problem - the “Travelling Tournament Problem” faced
in constructing round-robin sports schedules. The method allows for a variety of con-
straints in composing a draw while minimising the travel time for players. This work is
also interesting for the collaborative architecture described that allows CP and Lagrangian
Relaxation to work effectively together.

23.6 CP-VRP in the Real World

23.6.1 Real-World Constraints

Up to this point, we have discussed the Vehicle Routing Problem and its variants as they are
studied in academia. Starting from the very pure statement of the VRP originally proposed,
new constraints and variants reflecting real-world practice have been studied over time.

However, the main difference between VRP in academe and routing practice in the
real world remains the almost incredible variety of constraints and objective functions that
are seen in day-to-day use – many of which have never been examined in the academic
literature.

826 23. Vehicle Routing

To bring this into focus, we present a number of examples of operating practice that
have been seen by staff at a leading supplier of software for Vehicle Routing.

• Minimising vehicles is seldom an optimisation criteria in day-to-day scheduling.
The fleet size is determined periodically, but in between times, drivers are typically
on contract, and so are paid for some minimum time whether they drive or not. As
a result of this, there is often a constraint that route time exceeds the paid minimum,
while being less than the contracted maximum time.

• Meal and rest breaks, within a certain time of starting, and importantly, within a
certain time relative to one another, must be inserted into the route automatically

• Subcontracting is common, whereby a shipment is sent using another carrier. The
constraint that all visits are completed is therefore often dropped in favour of a cost
term in the objective that will automatically drop uneconomic visits.

• A situation has been seen whereby the company only pays for travel to and from
the first and last visits of the route, not for the distance on the route itself. There
is a constraint which forces the route to be linear, rather than petal-shaped, which
in effect forces the last visit to be one of the most distant from the first. In fact the
constraint is that the total length of the route is no more than 30% greater than the
distance from the first to the last stop.

• In some workplaces, some drivers have secured a strong negotiation position which
allows them to choose which stops they wish to perform. Others are able to choose
some of their route.

• Cross-docking is another very common practice. For example, a major supermarket
has a regional distribution centre. This centre receives goods from suppliers, and
distributes goods to stores. To avoid double handling and storage costs, where-ever
possible the deliveries are “cross-docked”: the goods are taken straight across the
dock from a suppliers vehicle to the distribution vehicle. If the supermarket is using
its own vehicles to pick up from the supplier, then this constraint is a movable time-
window linking two or more routes.

• A similar inter-tour constraint occurs when one vehicle delivers to a scheduled ser-
vice, such as a ferry or train, and another picks up from the other end. There may be
a choice of many scheduled services to use, but two routes must coordinate on the
same service. Note that the receiving vehicle is not necessarily identified, but one of
a number of vehicles must be tasked to meet the scheduled service.

• In (telecommunications) technician dispatching there can be a requirement to have
two technicians at different locations at the same time, so that they can perform end-
to-end tests of communications hardware. A constraint is required to force these two
visits into different vehicles and for the two visits to occur in the same time window.

• Some long-haul companies use trailer change-over. Here, one vehicle (perhaps while
making other deliveries) carries a trailer. At some location and time (decision vari-
ables) it meets another vehicle and the trailer is moved to the second vehicle for
onward travel. This may be repeated a number of times. Each such change-over
represents an inter-tour constraint. Again the vehicles involved are variable.

P. Kilby, P. Shaw 827

• The resources at a site may be limited. For instance there may be a limited number
of docks or forklifts. The number of vehicles visiting at any one time must therefore
be limited. This will be a consideration for example in a supermarket where multiple
vehicles are sent to replenish stocks.

• Overtime rates must be taken into account in the objective, but are often expressed
in a complicated fashion, including discontinuities, and penalty payments. E.g. $x
up to the first half hour, $y for each subsequent half hour, plus $z meal allowance
(plus 30 minutes break) if working more than 2 hours.

• In technician dispatching, the truck inventory must be maintained. The inventory of
up to 300 types of parts may have to be tracked, and only technicians with sufficient
supplies assigned. The technician must return to base to restock when appropriate,
or may be able to be resupplied en-route by either meeting another technician and
swapping parts, or by a special delivery from base.

• Lots of little, but still important, preferences have been seen, for example shipments
to a particular customer in a week must be done by the same driver; or a husband
and wife must/may not work together as a team.

Note that while many of the situations listed can be addressed using the models dis-
cussed here, some require more elaborate models, and some can only be approximately
modelled. In addition, some would require bespoke techniques to find good solutions.

23.6.2 Dynamic Operation

Another important aspect of solving vehicle routing problems in the real world is the dy-
namic nature of the problems: the problem is shifting even as it is being solved.

The dynamism may be small - where some visits may be added or deleted without
changing the general structure of the route, or the entire routing process may be driven by
the stops being added, such as in taxi or parcel delivery operations.

Other dynamic aspects of operations include

• A company may have a list of clients it visits, but not all clients will require visiting
each day. The stops to be performed may only be finalised as close to dispatch time
– or even after.

• Traffic incidents and road works can alter the time taken to drive between two stops.

• It may be difficult to calculate a-priori how long a visit will require. If visits take
longer than expected, parts of a planned route may have to be re-scheduled.

• Vehicles may break down, requiring visits to be re-scheduled

Algorithms to address these dynamic features of the problem are just beginning to be
addressed in the literature [68, 77].

828 23. Vehicle Routing

23.6.3 Vehicle Routing Software

The importance of vehicle routing to companies’ operations is reflected in the use of ve-
hicle routing software packages. The journal OR/MS Today conducts a regular survey of
routing software. In their most recent survey [57], twenty routing software systems were
analysed. The companies involved reported a total of more than 8,000 systems sold. We
refer the reader to a survey such as this for details of available systems.

It should be remembered that the routing aspects are only small part of a routing system.
Other features required of software include

• The ability to geo-code addresses - that is turn an address into a map location.

• The ability to calculate travel distances and times from one map point to another.

• A graphical user interface for displaying routes.

• The ability to change routes manually, preferably using a graphical interface.

• A method of easily specifying and entering constraints.

• Interfacing with other systems, such as billing and invoice systems.

23.7 Conclusions

We have seen how Constraint Programming can be applied to an important industrial prob-
lem. The Constraint Programming approaches have used, and advanced, the substantial
body of research on the problem from the Operations Research community. Methods from
the OR literature form the basis for many successful CP approaches.

Before the advent of Constraint Programming, the usual approach to solving these
problems was to formulate the problem at hand in such a way that the main objectives and
core constraints could be handled efficiently. If any side constraints were present, these
were often handled in an “ad-hoc” manner. Unfortunately this leads to a wide variety of
formulations, each of which is often specific to a fairly narrow class of problems.

The advantage Constraint Programming brings is a much more general method of han-
dling the core and side constraints of routing problems. The formulation presented here
is able to model a very wide variety of problems classes seen in the literature and in the
real world with the same set of variables and core constraints. This formulation can handle
capacity, time and incompatibility constraints, and various types of pickup and delivery
problem.

In addition, a very wide variety of side constraints can be modelled without affecting
the core model. We have already mentioned many different types of side constraints, but
there are a large number of others in used in companies around the world. Many of these
can be incorporated into the model with very low cost. We have shown how the expressive
nature of the model allows constraints to be specified and checked efficiently.

Routing problems of the sort examined here are all NP-hard. Efficiency in exploring
a chosen search space is therefore paramount. We have shown how a combination of
propagators for generic constraints, along with bespoke propagations, can substantially
reduce the number of search nodes actually visited, without affecting the solution quality.

P. Kilby, P. Shaw 829

We have shown how performing local search within a Constraint Programming framework
can benefit from the pruning of the search space.

Constraint Programming systems allow flexibility in how a new type of constraint, seen
for the first time in a particular company, is handled. First, the new constraint can usually be
incorporated relatively simply into the model described. As soon as this is done, automatic
methods within the Constraint system are usually able to immediately use the constraint
to prune search trees. In addition, if the constraint is seen as being core to solving the
problem, bespoke propagators can be fashioned which increase the degree to which the
search tree is pruned.

We have also seen how Constraint Programming systems offer advantages when used
as subproblem solvers. In methods such as Column Generation and Lagrangian Optimisa-
tion, subproblems are often generated with an eclectic mix of constraints. Some of these
are common to other routing systems, and others are particular to the subproblem environ-
ment. Constraint Programming allows the methods developed to solve the routing aspects
to be leveraged to solve the related subproblem.

In the future, it would appear that there is still much to be done in terms of hybrid
OR and CP methods. This is a very active area of research, and some very interesting
methods using advanced techniques from both disciplines are already being seen. It is
clear that techniques from Constraint Programming will continue influence developments
in this area.

Acknowledgements

The authors wish to acknowledge the immense contribution of Patrick Prosser to their un-
derstanding of constraint techniques, particularly as applied to the Vehicle Routing Prob-
lem. Thanks Pat.

Philip Kilby is supported by the Australian Research Council and National ICT Aus-
tralia (NICTA). NICTA is funded through the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research Council.

Bibliography

[1] E. Aarts, J. H. M. Korst, and P. J. M. Van Laarhoven. Simulated annealing. In
E. Aarts and J. Lenstra, editors, Local Search in Combinatorial Optimization, pages
91–120. John Wiley & Sons, Chichester, 1997.

[2] N. R. Achuthan, L. Caccetta, and S. P. Hill. A new subtour elimination constraint
for the vehicle routing problem. European Journal of Operational Research, 91(3):
573–586, 1996.

[3] N. R. Achuthan, L. Caccetta, and S. P. Hill. An improved branch-and-cut algorithm
for the capacitated vehicle routing problem. Transportation Science, 37(2):153–169,
2003.

[4] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983.

[5] R. Anbil, J. J. Forrest, and W. R. Pulleyblank. Column generation and the airline
crew pairing problem. Documenta Mathematica Journal, Extra Volume ICM III:
677–686, 1998.

830 23. Vehicle Routing

[6] J. Araque, G. Kudva, T. Morin, and J. Pekny. A branch-and-cut algorithm for vehicle
routing problems. Annals of Operations Research, 50:37, 1994.

[7] J. Beck, P. Prosser, and E. Selensky. Vehicle routing and job shop scheduling:
What’s the difference? In M. Kaufmann, editor, 13th International Conference
on Automated Planning and Scheduling ICAPS’03, 2003.

[8] J. C. Beck, P. Prosser, and E. Selensky. On the reformulation of vehicle routing
problems and scheduling problems. In Proceedings of SARA 2002, Symposium on
Abstraction, Reformulation and Approximation, volume 2371 of Lecture Notes in
Computer Science, pages 282–289, Berlin, 2002. Springer-Verlag.

[9] T. Benoist, F. C. Laburthe, and B. Rottembourg. Lagrange relaxation and constraint
programming collaborative schemes for traveling tournament problems. In Proceed-
ings CP-AI-OR’01, Ashford 2001, 2001.

[10] R. Bent and P. Van Hentenryck. A two-stage hybrid local search for the vehicle
routing problem with time windows. Transportation Science, 38(4):515, 2004.

[11] J. Berger, M. Barkaoui, and O. Bräysy. A route-directed hybrid genetic approach
for the vehicle routing problem with time windows. INFOR, 41:179–194, 2003.

[12] O. Bräysy. A reactive variable neighborhood search for the vehicle-routing problem
with time windows. INFORMS Journal on Computing, 15(4):347 – 368, 2003.

[13] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part
I: Route construction and local search algorithms. Transportation Science, 39(1):
104–118, 2005.

[14] O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part II:
Metaheuristics. Transportation Science, 39(1):119, 2005.

[15] Bureau of Transportation Statistics. National Transportation Statistics (NTS) 2004.
Bureau of Transportation Statistics, 2005.

[16] S. Butt and D. Ryan. An optimal solution procedure for the multiple tour maximum
collection problem using column generation. Computers and Operation Research,
26(4):427–441, 1999.

[17] R. W. Calvo. A new heuristic for the traveling salesman problem with time windows.
Transportation Science, 34(1):113–124, 2000.

[18] V. Campos, A. Corberán, and E. Mota. Polyhedral results for a vehicle routing
problem. European Journal of Operations Research, 52:75, 1991.

[19] Y. Caseau and F. Laburthe. Solving small TSPs with constraints. In Proceedings
of the 14th International Conference on Logic Programming, pages 316–330. The
MIT Press, 1997.

[20] Y. Caseau and F. C. Laburthe. Heuristics for large constrained vehicle routing prob-
lems. Journal of Heuristics, 5(3):281–303, 1999.

[21] Y. Caseau, F. C. Laburthe, and G. Silverstein. A meta-heuristic factory for vehi-
cle routing problems. In J. Jaffar, editor, Proceedings, Principles and Practice of
Constraint Programming – CP’99. Alexandria, VA, USA, October 11-14, 1999., vol-
ume 1713 of Lecture Notes in Computer Science, pages 144–159, Heidelberg, 2004.
Springer.

[22] D. G. Cattrysse, M. Salomon, and L. N. Van Wassenhove. A set partitioning heuris-
tic for the generalised assignment problem. Europenal Journal of Operational Re-
search, 72:167–174, 1994.

[23] W. Chiang and R. Russell. Simulated annealing metaheuristics to vehicle routing
problems with time windows. Annals of Operations Research, 63:3–27, 1996.

P. Kilby, P. Shaw 831

[24] W.-C. Chiang and R. A. Russel. A reactive tabu search metaheuristic for the vehicle
routing problem with time windows. INFORMS Journal on Computing, 9(4):417–
430, 1997.

[25] G. Clarke and J. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568–581, 1964.

[26] J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational Research Society,
52(8):928–936, 2001.

[27] G. Cornuéjols and F. Harche. Polyhedral study of the capacitated vehicle routing
problem. Mathematical Programming, 60:21, 1993.

[28] P. I. Cowling and R. Keuthen. Embedded local search approaches for routing opti-
mization. Computers & Operations Research, 32(3):465–490, 2005.

[29] T. G. Crainic, F. Malucelli, M. Nonato, and F. C. Guertin. Meta-heuristics for a
class of demand-responsive transit systems. INFORMS Journal on Computing, 17
(1):10–24, 2005.

[30] E. Danna and C. Le Pape. Accelerating branch-and-price with local search: A
case study on the vehicle routing problem with time windows. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 99–130.
Kluwer Academic Publishers, 2005.

[31] B. De Backer, V. Furnon, P. Prosser, P. Kilby, and P. Shaw. Solving vehicle routing
problems using constraint programming and metaheuristics. Journal of Heuristics,
6(4):501–523, 2000.

[32] G. Desaulniers, J. Lavigne, and F. Soumis. Multi-depot vehicle scheduling problems
with time windows and waiting costs. European Journal of Operational Research,
111:479–494, 1998.

[33] G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors. Column Generation.
Springer, 2005.

[34] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for
the vehicle routing problem with time windows. Operations Research, 40(2):342–
354, March 1992.

[35] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. C. Soumis. Time constrained
routing and scheduling. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L.
Nemhauser, editors, Network Routing, volume 8 of Handbooks in Operations Re-
search and Management Science, chapter 2, pages 35–139. North-Holland, Amster-
dam, 1995.

[36] M. Diana and M. M. Dessouky. A new regret insertion heuristic for solving large-
scale dial-a-ride problems with time windows. Transportation Research Part B:
Methodological, 38(6):539–557, 2004.

[37] C. Duhamel, J.-Y. Potvin, and J.-M. Rousseau. A tabu search heuristic for the vehi-
cle routing problem with backhauls and time windows. Transportation Science, 31
(1):49–59, Feb 1997.

[38] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time
windows. European Journal of Operational Research, 54(1):7–22, 1991.

[39] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon. An optimal algorithm for
the traveling salesman problem with time windows. Operations Research, 43(2):
367–371, 1995.

[40] K. Easton, G. Nemhauser, and M. Trick. Solving the travelling tournament problem:

832 23. Vehicle Routing

A combined integer programming and constraint programming approach. In Prac-
tice and Theory of AutomatedTimetabling IV, pages 100 – 109. Springer-Verlag,
Heidelberg, 2003.

[41] T. Fahle, U. Junker, S. E. Karisch, N. Kohl, M. Sellmann, and B. Vaaben. Constraint
programming based column generation for crew assignment. Journal of Heuristics,
8(1):59–81, 2002.

[42] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with profits.
Transportation Science, 39(2):188, 2005.

[43] M. L. Fisher. Optimal solution of vehicle routing problems using minimum K-trees.
Operations Research, 42(4):626–642, 1994.

[44] M. L. Fisher and K. O. Jörnsten. Vehicle routing with time windows: Two optimiza-
tion algorithms. Operations Research, 45(3):488–492, 1997.

[45] F. Focacci, A. Lodi, and M. Milano. Solving TSP with time windows with con-
straints. In D. De Schreye, editor, Logic Programming – Proceedings of the 1999
International Conference on Logic Programming, pages 515–529, Cambridge, MA.,
1999. MIT Press.

[46] F. Focacci, A. Lodi, and M. Milano. Embedding relaxations in global constraints
for solving TSP and TSPTW. Annals of Mathematics and Artificial Intelligence, 34:
291–311, 2002.

[47] F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the TSPTW.
INFORMS Journal on Computing, 14(4):403–417, 2002.

[48] F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 369–
403. Kluwer Academic Publishers, 2003.

[49] R. Fukasawa, J. Lysgaard, M. P. de Aragao, M. Reis, E. Uchoa, and R. Werneck.
Robust branch-and-cut-and-price for the capacitated vehicle routing problem. In
D. Bienstock and G. Nemhauser, editors, Integer Programming and Combinato-
rial Optimization - IPCO 2004, volume 3064, pages 1–15, Berlin, 2004. Springer-
Verlag.

[50] M. Gendreau, A. Hertz, and G. Laporte. New insertion and postoptimization proce-
dures for the traveling salesman problem. Operations Research, 40(6):1086–1094,
1992.

[51] B. Gillet and L. R. Miller. A heuristic algorithm for the vehicle dispatch problem.
Operations Research, 22:340–349, 1974.

[52] F. Glover. Tabu search, part I. ORSA Journal on Computing, 1(3):190–206, 1989.
[53] F. Glover. Tabu search, part II. ORSA Journal on Computing, 2(1):4–32, 1990.
[54] F. Glover. Ejection chains, reference structures and alternating path methods for

traveling salesman problems. Discrete Applied Mathematics, 65(1-3):223–253,
1996.

[55] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, Reading, 1989.

[56] G. Gutin and A. Punnen, editors. The Traveling Salesman Problems and its Varia-
tions. Kluwer Academic Publishers, Dordrecht, 2002.

[57] R. Hall. Vehicle routing software survey. OR/MS Today, 31(3), 2004.
[58] P. Hansen and N. Mladenovic. Variable neighborhood search: Principles and appli-

cations. European Journal of Operational Research, 130(3):449–467, 2001.
[59] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In C. S. Mellish,

P. Kilby, P. Shaw 833

editor, Proceedings of the Fourteenth International Joint Conference on Artificial In-
telligence (IJCAI-95), volume 1, pages 607–615, Montréal, Québec, Canada, 1995.
Morgan Kaufmann.

[60] J. Homberger and H. Gehring. A two-phase hybrid metaheuristic for the vehicle
routing problem with time windows. European Journal of Operational Research,
162(1):220–238, 2005.

[61] ILOG S.A. ILOG Dispatcher 4.0 User’s Manual. ILOG S.A., 9 Rue de Verdun,
94253 Gentilly Cedex, France, .

[62] ILOG S.A. ILOG Solver 6.0 User’s Manual. ILOG S.A., 9 Rue de Verdun, 94253
Gentilly Cedex, France, .

[63] G. Ioannou, M. Kritikos, and G. Prastacos. A greedy look-ahead heuristic for the
vehicle routing problem with time windows. Journal of the Operational Research
Society, 52(5):523–537, 2001.

[64] M. Junger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In
M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies in
Combinatorial Optimization, Wiley Interscience Series in Discrete Mathematics.
John Wiley & Sons, 1997.

[65] U. Junker, S. E. Karisch, N. Kohl, B. Vaaben, T. Fahle, and M. Sellmann. A frame-
work for constraint programming based column generation. In J. Jaffar, editor,
5th International Conference of Principles and Practice of Constraint Program-
ming – CP’99, volume 1713 of Lecture Notes in Computer Science, pages 261–275.
Springer, 2004.

[66] G. N. K. Easton and M. Trick. CP based branch and price. In M. Milano, editor,
Constraint and Integer Programming: Toward a Unified Methodology, chapter 7.
Springer, 2004.

[67] B. Kallehauge, J. Larsen, and O. B. Madsen. Lagrangean duality applied on vehicle
routing with time windows. Technical Report IMM-TR-2001-9, IMM, Technical
University of Denmark, DK-2800 Kgs. Lyngby - Denmark, 2001.

[68] P. Kilby, P. Prosser, and P. Shaw. Dynamic VRPs: A study of scenarios. APES Tech-
nical Report APES-06-1998, Department of Computer Science, Strathclyde Univer-
sity, Glasgow, Scotland, September 1998.

[69] P. Kilby, P. Prosser, and P. Shaw. A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints, 5
(4):389–414, 2000.

[70] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithms and Combinatorics. Springer, Berlin, 2nd edition, 2002.

[71] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

[72] G. Laporte. The traveling salesman problem: an overview of exact and approximate
algorithms. European Journal of Operational Research, 59:231–247, 1992.

[73] G. Laporte. The routing problem: An overview of exact and approximate algo-
rithms. European Journal of Operations Research, 59:345–358, 1992.

[74] G. Laporte and Y. Nobert. Comb inequalities for the vehicle routing problem. Meth-
ods of Operations Research, 51:271, 1984.

[75] G. Laporte, Y. Nobert, and M. Desrouchers. Optimal routing with capacity and
distance restrictions. Operations Research, 33:1050, 1985.

[76] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet. Classical and modern heuris-

834 23. Vehicle Routing

tics for the vehicle routing problem. International Transactions in Operational Re-
search, 7(4-5):285–300, 2000.

[77] A. Larsen, O. B. G. Madsen, and M. M. Solomon. The a priori dynamic traveling
salesman problem with time windows. Transportation Science, 38(4):459, 2004.

[78] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley and
Sons, Chichester, 1985.

[79] A. Le Bouthillier and T. G. Crainic. A cooperative parallel meta-heuristic for the
vehicle routing problem with time windows. Computers & Operations Research, 32
(7):1685–1708, 2005.

[80] A. N. Letchford and J.-J. Salazar-González. Projection results for vehicle routing.
Mathematical Programming, 105(2):251–274, 2006.

[81] S. Lin. Computer solutions of the traveling salesman problem. Bell Systems Tech-
nical Journal, 44:2245–2269, 1965.

[82] L. Lobjois, M. Lemaı̂tre, and G. Verfaillie. Large neighbourhood search using con-
straint propagation and greedy reconstruction for valued CSP resolution. In ECAI
Workshop on ”Modelling and Solving Problems with Constraints” (14th European
Conference on Artificial Intelligence, ECAI 2000), Berlin, Germany, 20 - 25 August
2000. ECAI, 2000.

[83] Q. Lu and M. Dessouky. An exact algorithm for the multiple vehicle pickup and
delivery problem. Transportation Science, 38(4):503, 2004.

[84] J. Lysgaard, A. N. Letchford, and R. W. Eglese. A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming, 100(2):
423–445, 2004.

[85] D. Naddef and G. Rinaldi. Branch and cut. In P. Toth and D. Vigo, editors, Vehicle
Routing, volume 9 of SIAM Monographs on Discrete Mathematics and Applications.
SIAM, 2000.

[86] I. Or. Travelling Salesman-Type Combinatorial Problems and Their Relation to the
Logistics of Blood-Banking. PhD thesis, Department of Industrial Engineering and
Management Sciences, Northwest University, Evanston, IL., 1976.

[87] I. H. Osman. Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of Operations Research, 41:421–451, 1993.

[88] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review, 33:60, 1991.

[89] G. Pesant and M. Gendreau. A view of local search in constraint programming. In
E. C. Freuder, editor, Principles and Practice of Constraint Programming - CP96,
volume 1118 of Lecture Notes in Computer Science, pages 353–366. Springer, 1996.

[90] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic pro-
gramming algorithm for the travelling salesman with time windows. Transportation
Science, 32(1), 1998.

[91] G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau. On the flexibility of con-
straint programming models: From single to multiple time windows for the traveling
salesman problem. European Journal of Operational Research, 117(2):253–263,
1999.

[92] M. Polacek, R. F. Hartl, K. Doerner, and M. Reimann. A variable neighborhood
search for the multi depot vehicle routing problem with time windows. Journal of
Heuristics, 10(6):613–627, 2004.

P. Kilby, P. Shaw 835

[93] J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. European Journal of Opera-
tions Research, 66:331–340, 1993.

[94] J.-F. Puget. Object oriented constraint programming for transportation problems. In
Proceedings of Advanced Software Technology in Air Transport ASTAIR’92, Lon-
don, 1992. Royal Aeronautical Society.

[95] J.-C. Regin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),
Volume 1, pages 362–367. AAAI, 1994.

[96] C. Rego and C. Roucairol. Parallel tabu search heuristic based on ejection chains
for the vehicle routing problem. In I. Osman and J. Kelly, editors, Metaheuristics:
Theory and Applications. Kluwer Academic Publishers, 1996.

[97] C. C. Ribeiro and F. Soumis. A column generation approach to the multiple-depot
vehicle scheduling problem. Operations research, 42(1):41–52, 1994.

[98] S. Ropke and D. Pisinger. A unified heuristic for vehicle routing problems with
backhauls. European Journal of Operational Research. To appear.

[99] L.-M. Rousseau, M. Gendreau, and G. Pesant. Using constraint-based operators to
solve the vehicle routing problem with time windows. Journal of Heuristics, 8(1):
43–58, 2002.

[100] L.-M. Rousseau, M. Gendreau, G. Pesant, and F. Focacci. Solving VRPTWs with
constraint programming based column generation. Annals of Operations Research,
130:199–216, 2004.

[101] D. M. Ryan and J. C. Falkner. On the integer properties of scheduling set partitioning
models. European Journal of Operational Research, 35(3):442–456, 1988.

[102] M. Savelsbergh. Local search in routing problems with time windows. Annals of
Operations Research, 4(285-305), 1985.

[103] M. W. P. Savelsbergh. The vehicle routing problem with time windows: Minimizing
route duration. ORSA Journal on Computing, 4(2):146–154, 1992.

[104] J. Schulze and T. Fahle. A parallel algorithm for the vehicle routing problem with
time window constraints. Annals of Operations Research, 86:585–607, 1999.

[105] M. Sellmann, K. Zervoudakis, P. Stamatopoulos, and T. Fahle. Crew assignment via
constraint programming: Integrating column generation and heuristic tree search.
Annals of Operations Research, 115(1):207–225, 2002.

[106] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In M. Maher and J.-F. Puget, editors, Fourth International Con-
ference on Principles and Practice of Constraint Programming (CP ’98). Springer-
Verlag, 1998.

[107] M. Solomon. Algorithms for the vehicle routing and scheduling problem with time
window constraints. Operations Research, 35(254-265), 1987.

[108] H. Sontrop, P. van der Horn, and M. Uetz. Fast ejection chain algorithms for vehicle
routing with time windows. In M. J. Blesa, C. Blum, A. Roli, and M. Sampels,
editors, Hybrid Metaheuristics, volume 3636 of Lecture Notes in Computer Science,
pages 78–89. Springer-Verlag, Berlin, 2005.

[109] E. Taillard, P. Badeau, M. Gendreau, F. Guertain, and J.-Y. Potvin. A new neigh-
bourhood structure for the vehicle routing problem with time windows. Technical
Report CRT-95-66, Centre de Recherche sur les Transports, University of Montreal,
1995.

836 23. Vehicle Routing

[110] É. D. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J. Potvin. A tabu search
heuristic for the vehicle routing problem with soft time windows. Transportation
Science, 31:170–186, 1997.

[111] P. Toth and D. Vigo, editors. The Vehicle Routing Problem, volume 9 of SIAM
Monographs on Discrete Mathematics and Applications. SIAM, 2002.

[112] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle-
routing problem. INFORMS Journal on Computing, 15(4):333–346, 2003.

[113] A. Van Breedam. Improvement heuristics for the vehicle routing problem based on
simulated annealing. European Journal of Operational Research, 86(3):480–490,
1995.

[114] P. Van Hentenryck, Y. Deville, and C. Teng. A generic arc consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

[115] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-
Interscience, New York, 1999.

[116] H. Xu, Z. Chen, S. Rajagopal, and S. Arunapuram. Solving a practical pickup and
delivery problem. Transportation Science, 37(3):347–364, 2003.

Handbook of Constraint Programming 837
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 24

Configuration

Ulrich Junker

Configuration is the task of composing a customized system out of generic components.
This task is of concern to everybody as component-based systems are omnipresent in mod-
ern industry. Prominent examples of component-based systems are computers, home cin-
emas, cars, and trucks. Classic examples are kitchen and furniture that can be assembled
from a given catalog of components. As the need for customization is growing, more and
more products follow the pattern of a component system. New examples are service packs
such as telecommunication offers, loans and insurance products, but also travel packages
and other examples from the service industry. Finally, we should not forget component-
based software systems.

Components are generic in nature and can be produced in mass, but are destined to
support customized solutions. The available components for a given type of system are
usually described in the form of a catalog. Each catalog item is a product type and describes
the functional and technical characteristics of the component. For example, take a printer
component. The function is printing. The functional characteristics include printing quality
and support of colors. The technical characteristics include printing type (laser, jet) and
printing speed.

Whereas the catalog describes the generic knowledge of components, a customer usu-
ally has specific requirements for the desired component-based system. For example, the
customer wants to set up a home movie studio that allows the filming, editing, and showing
of movies and optionally the printing of snapshots and insertion of photos. To match the
specific customer requirements, a configuration of the components needs to be determined.
A configuration is a set of instances of the available component types that are customized
and combined to meet the requirements. A configuration for the home movie studio con-
sists of a video camera with analog output, a video recorder with analog input, and a TV
screen. Another configuration consists of a video camera with digital output, a computer
with a card for digital video capture, software for video editing, a DVD reader/writer, a
printer, and a scanner.

The task of finding a suitable configuration encounters several difficulties. Firstly, there
can be a huge number of configurations responding to the customer requirements. The

B.V.

838 24. Configuration

number of alternatives may be large even if a single component needs to be chosen. The
customer usually is not satisfied with an arbitrary choice, but has preferences on multiple
criteria of the catalog items such as the color or seat material of a desired car. Hence, a
configuration problem may correspond to a multicriteria decision-making problem. Nor-
mally, a configuration does not consist of a single component, but multiple components.
Car configuration problems allow the choice of multiple options that are subject to techni-
cal constraints. For example, the choices of a roof rack and of a cabriolet are incompatible.
In this case, the configuration problem is a combinatorial problem. In more complex ex-
amples such as the configuration of instrumentation and control systems, the number of
required components is initially unknown. The problem space of the configuration task
then contains a possibly infinite number of candidate configurations. Universally quanti-
fied constraints can be used to represent knowledge about unknown parts and we obtain a
satisfiability problem in a (decidable) fragment of first-order logic. Finally, a configuration
problem can be large in size and involve huge numbers of product types and constraints.

Complex configuration problems are, for example, encountered in the engineering and
manufacturing departments of the computer and automotive industries, which need to com-
plete customized sales orders by choosing suitable parts from huge catalogs. This situation
has led to the development of configurators that do this completion automatically while
respecting difficult technical constraints. However, configurators can also support the sales
process and assist the user in choosing options while guaranteeing their compatibility.

Although the first configurators were based on production rules, Constraint Program-
ming (CP) nowadays appears to be the method of choice for solving diverse forms of
configuration problems. CP addresses the complete space of possible configurations, no
more and no less. End users can formulate arbitrary requirements without taking the risk
that their favorite configurations are forgotten. CP handles the combinatorial aspects of
configuration problems. CP is able to discover unforeseen interactions between different
components and constraints thanks to propagation, search, and learning algorithms. CP
can also profit from existing expertise in solving configuration problems by using it for
guiding the search.

However, classic CP methods lacked appropriate techniques to represent complex con-
figuration knowledge, to reason about an unknown number of components, to handle user
preferences, or to provide explanations when interactive solving ran into failure. Specific
research on constraint-based configurators has addressed those points by incorporating
techniques from fields such as knowledge representation, theorem proving, and preference
handling. This handbook chapter gives a survey of the main techniques.

Section 24.1 explains the diversity of configuration problems and extracts specific chal-
lenges for CP. Section 24.2 distinguishes different kinds of knowledge used in configura-
tion problems, which can be used to build rather different constraint models as explained in
section 24.3. Section 24.4 presents the problem-solving tasks occurring in configuration.

24.1 What Is Configuration?

24.1.1 A Whole Spectrum of Problems

Configuration has been an outgrowth of research on rule-based expert systems. John Mc-
Dermott [41] used the term configuration for a specific form of a design task [9], where
a system was assembled out of predefined components that are connected in predefined

U. Junker 839

�

�

�

�

DVD
Player

�

�

�

�

TV

�

�

�

�

Computer
�

�

�

�

Hard

Disk

�

�

�

�

........
.................................
... Device
devices

�

�

�

�

Camera

�

�

�

�

Software
Video Editing

�

�

�

�

Video Editing
System

video file format

edit capacity

�

�

�

�

.............
.....

.....
..........................

.....

........
.................................
...

........
.................................

...

........
.................................
...

.................................
...

Home Movie
Studio 0..n

0..n

disks

filming capability

editing capability

show capability

1..1

edit system

computer

0..1

1..1

software

storage capacity

Figure 24.1: Component types of a home movie studio.

ways. Whereas more innovative design tasks often require a suitable modeling of the
physical behavior of components [64], work on rule-based configurators focused on the
functional aspects of components. Frayman and Mittal summarized those approaches by a
general definition of the configuration task [44] and thus provided a foundation of the field
of configuration similar to Reiter’s for the fault diagnosis in technical systems [49]. The
essence of this definition is as follows: A configuration problem is characterized by two
constituents:

1. A catalog which describes the generic components in terms of their functional and
technical properties and the relationship between both.

2. User requirements and user preferences about the functional characteristics of the
desired configuration.

The configuration task consists of finding the following answer:

1. One or more configurations that satisfy all requirements and that optimize the pref-
erences if those requirements are consistent.

2. An explanation of failure in the other case.

A configuration is a set of customized components together with a description of their con-
nections. A component itself is defined by its type, its attributes, and its subcomponents.
Attributes may express functional properties such as filming capability or edit capacity in
terms of filmed hours (see Figure 24.1). However, attributes may also express technical
properties that describe how a given functional property is achieved. For example, the
video file format (AVI, MPEG2) used for editing and the storage capacity are technical
characteristics. If a given functional property is fulfilled by a single component, then this
component is primitive and has no subcomponents. In the movie studio example, a video
camera directly realizes the filming functionality. However, a function may also be ful-
filled by a combination of components. The combination can be achieved by a composite
component that has subcomponents. For example, the storage capacity of a movie studio
system may be supplied by a computer as well as the external disks of the computer, which
thus all together achieve the required edit capacity. The combination can also be achieved
by an architecture that defines how components need to be combined to fulfill the function.
For example, the home movie studio may have a video editing system, which consists of a
computer, editing software, and other components such as a video capture card and a video

840 24. Configuration

recording facility. This video editing system is not a component that can be chosen from a
catalog, but a ‘functional unit’ that describes how other components need to be combined
for the purpose of video editing.

The general description of the configuration task covers a large spectrum of concrete
configuration problems and can be simplified depending on the application domain and
the purpose of the configurator. As explained in [28, 51], it is useful to distinguish con-
figuration for sales and configuration for manufacturing and engineering. Sales configu-
rators address the needs of laymen in business-to-customer applications (B2C) or buyers
in business-to-business applications (B2B). Components are described in terms of sales
categories and correspond to items that customers can order. Their level of detail is much
smaller than that of the parts that can be manufactured. The result of the sales configu-
ration can be used as input for a technical configurator that checks whether the ordered
system can be produced. The configurator uses existing product models in the form of bill-
of-materials and compatibility tables and chooses a structure and the parts of the product.
Whereas sales configurators are highly interactive and user-driven, manufacturing requires
configurators that automatically complete given requirements.

The structure of a configured system depends on the application domain. A car con-
figuration usually consists of a small number of features. A configured computer is typi-
cally described by a small hierarchy of parts. A custom kitchen may have an unbounded
number of parts. An instrumentation-and-control system may additionally require that an
unbounded number of parts is packed into an unknown number of racks and boards.

This difference in structure explains why so many different techniques have been ap-
plied to configuration problems. A first survey of configuration techniques given by [51]
distinguishes rule-based reasoning [41], model-based reasoning [44], and case-based rea-
soning for configuration. The model-based branch covers approaches based on description
logic [42], constraint programming [43, 59], and resource models [31]. The survey now
needs to be completed by approaches based on SAT [55], binary decision diagrams [29],
integer programming [62], and also answer-set programming [54]. Furthermore, there have
been various attempts to combine several techniques in order to enhance the modeling and
solving capabilities of a configurator. The diversity of techniques is confirmed by other
surveys [27, 58].

Independent of the problem and the approach, a configurator needs to address the fol-
lowing requirements concerning problem solving:

1. Generation of components to carry out the functional requirements.

2. Reasoning about the interactions of multiple components.

3. Detection of cases where the desired functionality cannot be implemented.

A further requirement concerns modeling. The configurator needs to provide a high-level
modeling language that allows the configuration expert to model complex systems and to
maintain these models.

Rule-based approaches represent functional requirements in terms of assertions in the
working memory and map them to components through rules. A rule for selecting a com-
ponent is fired if there is a requirement needing this component. When executed, a rule
can generate new components, customize existing components, or add subcomponents.
Depending on the context, the same function may be achieved differently, meaning that we
obtain multiple rules of the form:

U. Junker 841

if function and context 1 and constraints okay then component 1
...
if function and context m and constraints okay then component n

The rule conditions need to check possible interactions with other components and may
become very complex. If compatibility constraints between components are changing, then
they need to be incorporated into the conditions of multiple rules. This lack of modularity
caused a severe maintenance problem in the R1/XCON configurator of DEC computers
[41, 4]. Furthermore, rule-based systems usually do not have the capability of detecting
cases that cannot be achieved by the given catalog. Nevertheless, rule-based systems may
be useful for very simple configuration problems requiring a small number of choices only.

Model-based reasoning addresses the deficiencies of rule-based reasoning. Firstly, it
separates the problem description from the solving algorithm, thus allowing an analysis
of the problem independent of the chosen approach. Secondly, it requires that the prob-
lem description is based on a model of the system to be configured. This model consists
of decomposable entities and the interactions between these elements. Modularity or com-
posability is thus well-addressed since components can easily be added or removed without
changing the whole model. Thirdly, it requires that this problem description is complete
and defines a closed space of possible configurations. If no element of this space satisfies
the given requirements, then the problem has no solution.

Description logic (DL) is well-suited to describe component types and their relations. It
organizes components types in a taxonomy. Description logic allows us to define complex
types out of primitive types. It is able to detect specialization relations between complex
types and to test the consistency of types by a process called classification. Classification
can be used to solve configuration problems if the configuration knowledge can be com-
pletely expressed in the description logic. In most cases, the expressiveness of the descrip-
tion logic is not sufficient and a rule-based or constraint-based engine is used in addition to
deal with complex compatibility and numerical constraints. Such a hybrid approach has,
for example, been pursued in the CLASSICS-project [42] and in the PLAKON-project
[10]. DL-based configurators have been applied to the configuration of telecommunication
equipment [42], elevators [61], passenger cabins in aircrafts [27], and many other systems
that have a complex structure. They also address the problem of generating a hierarchy of
parts and can exploit this hierarchy for problem decomposition [39].

Resource-based approaches [31] are dedicated to complex equipment configuration
problems where components provide and consume given resources. For example, the stor-
age devices of a computer system provide storage capacity, but they consume power and
slots. The slots are provided by the racks of the computer system. The purpose of the
resource-based configuration process is to bring produced and consumed resources in bal-
ance, meaning that the consumed resource does not exceed the produced resource. The
process starts from initial resource requirements such as a minimal storage capacity, which
are consumed from outside and which need to be produced by generating and customizing
suitable parts. The resource-based approach is necessary for many configuration problems,
but is not sufficient on its own. As such, it is best integrated with other approaches.

Constraint satisfaction problems (CSP) are well-suited to defining a closed space of
configurations. They use variables with domains. If the number of variables is fixed, then
the space is obtained as the Cartesian product of the domains. Constraints also handle the
interaction of multiple components. Compatibility constraints specify which components

842 24. Configuration

can be combined. Aggregation constraints (such as sums) are able to deduce global proper-
ties such as the produced or consumed amount of a resource. Variables express the possible
choices for fulfilling a functional requirement. Since the choice should only be made if the
requirement is present, we obtain a conditional disjunction of the form:

if function then component 1 or ... or component n

The disjunction is encoded by a variable x having as domain the components that can be
chosen. However, this variable should only be introduced if the function is indeed required
and this may depend on other choices. Hence, new variables and constraints may be acti-
vated or generated during the problem solving. A rule-based constraint engine can add new
constraints when executing rules and retract them during search thanks to a truth mainte-
nance system (TMS) [15, 12]. For example, the configurator in [28] is based on a TMS.
However, the dynamic nature of configuration problems provides a particular challenge for
Constraint Programming approaches that maintain local consistency during search. Mit-
tal and Falkenhainer therefore introduced Dynamic CSPs (now called Conditional CSPs)
which have optional variables and constraints. Local consistency algorithms for Condi-
tional CSPs have been elaborated in [43, 52]. Stumptner and Haselböck [60, 59, 17] intro-
duced resource-based reasoning into CP and Mailharro [40] extended it with cardinality-
based reasoning. The CP approach has successfully been applied to the configuration of
cars, computers [18], instrumentation and control systems [40], web services [3].

SAT approaches can be seen as a special case of CP. They mainly handle requirement
and compatibility constraints, but no numerical constraints such as resource constraints.
They have successfully been applied to car configuration [55]. Answer-set programming
[54] formulates configuration knowledge through form of default rules, while ensuring
functionally well-justified configurations through groundedness conditions [56]. This ap-
proach has been applied to software configuration [65].

Interactive sales configurators are simultaneously solving the configuration problems
of multiple customers and require rapid response times. As these problems differ only in
the requirements, but not in the catalog, preprocessing techniques can be used to compute
configurations in advance. For problems involving a fixed number of parts with small finite
domains, it may be possible to represent the whole configuration space compactly by a
binary decision diagram [29], an automaton [2], or the decomposable negation normal form
[11]. Other knowledge-compilation techniques include synthesis trees [63] and clustertrees
[14, 46]. All these techniques are compatible with respect to a CP approach. Knowledge
compilation has successfully been applied to car configuration problems [29, 46].

CP is well-suited to define a clear configuration space. It ensures composability by
treating interactions between arbitrary components and by deriving global properties of
sets of components. It also offers a high freedom in modeling and the modeling is com-
pletely declarative. Thus, CP meets the requirement for an expressive and maintainable
modeling capability that has been stated above. All these advantages made it the method
of choice for configuration. However, configuration problems posed several challenges to
CP which are summarized in the next sections.

24.1.2 Modeling Challenges for CP

Most applications of Constraint Programming (CP) concern real-world systems that are
modeled in an object-oriented way. CP addresses the combinatorial aspect of the applica-

U. Junker 843

tion to be solved. It is often possible to isolate this aspect by generating a constraint model
from the given object model. For example, a production plan in a scheduling application is
translated into a set of start- and end-time variables and precedence constraints. The object
model can be completely ignored when solving the scheduling problem. However, this
complete separation of object model and constraint model is not possible for configuration
problems, which poses new challenges for the modeling and the modeling language:

Product catalogs: Configurators need to be deeply embedded in business processes and
reuse existing product models in order to facilitate modeling and maintenance. Existing
product catalogs in the form of database tables need to be mapped to constraint models.
Since they strongly influences the structure of the constraint model, they cannot be ignored
when discussing constraint models for configuration.

Knowledge representation: Knowledge of the component structure is usually repre-
sented in the form of a taxonomy of component types. More specific types add attributes,
domain restrictions, and subcomponents. Whereas object-oriented programming assumes
that the type of an object is static, it is represented as a variable in constraint-based con-
figuration. Constraint reasoning can specialize the component by reducing the domain of
the type variable. The component then inherits the properties of the more specialized types
during the solving process, which leads to the activation of new variables and constraints.
The constraint engine has to support this inheritance process.

Resource constraints: The number of parts of a configuration may not be bounded, but
depends on global resource requirements. Hence, the set of components is not given in
this case, but has to be determined as a result of the configuration task. In order to express
constraints on those unknown parts, universally quantified constraints are necessary. Fur-
thermore, variables representing the choice of an unknown part will have an open domain
that is extended during constraint solving. Constraints on variables with open domains
such as resource constraints need to deal with this situation.

Preference models: A further challenge is obtained by the potentially huge set of so-
lutions. Since these solutions differ much in their characteristics, user preferences need to
be taken into account when solving the configuration problem.

24.1.3 Problem Solving Challenges for CP

The solving process faces additional challenges that depend on the type of the configuration
problem. Configurators for manufacturing and engineering need to handle the following
issues in addition to normal solving strategies for CP:

Top-down refinement: a search strategy for finding a configuration cannot make deci-
sions in an arbitrary order, but needs to implement top-down refinement that configures
components before their subcomponents and that specializes the type variable before in-
stantiating inherited attributes.

Component generation: resource requirements may require the generation of an un-
bounded number of parts. Generation steps need to be incorporated into the solving strat-
egy. A careful control of the generation is needed in order to avoid cyclic reproduction of
the same state and to avoid the inclusion of parts that do not fulfill any function.

Although interactive sales configurators are treating much simpler problems, they are
facing challenges as well:

User Scalability: web-based configurators need to solve many similar problems and
this within short response times. It is therefore reasonable to share information between

844 24. Configuration

different threads (e.g. learning of strategies, conflicts, and solutions) or to preprocess the
catalog by knowledge-compilation techniques.

Explanations: interactive configurators let the user make the choices. As the user
may easily encounter over-constrained problems, an explanation of failure in the form
of conflicting requirements is needed. An explanation facility is a critical feature for an
interactive configurator.

Preference elicitation: interaction cycles can be shortened if the configurator remem-
bers or acquires user preferences. The configurator can thus offer a preferred solution
and automatically reactivate preferred choices when the user takes back options that are in
conflict with those choices.

24.2 Configuration Knowledge

This section introduces the knowledge that exists about components, namely component
catalogs in sub-section 24.2.1, component structure in sub-section 24.2.2, and component
constraints in sub-section 24.2.2. It introduces the different ingredients of a component
such as functions (features), attributes, subcomponents and connections, and resources and
provides the basic vocabulary for formulating constraint models.

24.2.1 Configuration Catalog

The literature distinguishes a large variety of configuration problems. In spite of this di-
versity, all those problems are based on the notion of a primitive component that does not
contain subcomponents and that directly fulfills a required function.

Each primitive component has a concrete type and a set of attributes describing the
functional and technical characteristics of the component. Functional characteristics are
either capabilities which are described by boolean attributes (such as printing) or capacities
which are described by numerical attributes (such as storage capacity). A concrete type is
a product type that can be ordered by the customer (in the case of a sales configurator)
or that can be produced (in the case of a configurator for manufacturing). The technical
characteristics are represented by further attributes that are either uniquely specified for the
concrete type or that have multiple options. A primitive component is thus characterized
by its type and the values of its attributes.

Knowledge about the available primitive components is available in the form of prod-
uct catalogs. The product catalogs are an integral part of enterprise resource planning
(ERP) systems that support engineering and manufacturing. As it is important to embed
configurators into those business processes, configurators need to reuse existing product
models to facilitate modeling and maintenance. The product catalogs are available in the
form of database tables. Each table describes a technical (component) type. There may be
a table for hard disks, another one for video cameras, and another one for DVD players.
A technical type defines the functional and technical attributes of a component, but does
not specify the values for those characteristics. A technical component can be realized by
multiple concrete (component) types. A concrete type specifies a concrete value for each
attribute or gives the set of possible attribute values. For example, a concrete screen type
may have a fixed size or a small set of possible sizes. The set of possible values can be
expressed by an enumeration of values or by a range of two numerical bounds. The domain

U. Junker 845

Table 24.1: Catalog (video camera).

Type Output Input price
cam1 analog none 200
cam2 AVI none 300
cam3 anal.+AVI. AVI 400
cam4 AVI AVI 500

of an attribute for a concrete type can thus be a singleton, an interval, or an enumeration of
values. Whereas a single database column is sufficient for singleton domains, two columns
are needed to represent interval domains. Attributes with enumerated domains may be rep-
resented by further tables. As a consequence, a product catalog in the form of a database
does not directly reflect the product model. Annotations of the database are needed to
interpret them in terms of a product model and to transform them into the following form:

Definition 24.1 (Catalog knowledge). A configuration catalog is described by a set T of
technical types, a set L of concrete types (the leaf types), and a set A of attributes that are
all mutually disjoint. Each technical type t in T has a set attrs(t) ⊆ A of attributes and a
(non-empty) set subtypes(t) ⊆ L of concrete types. The set of leaf types of two different
technical types are mutually disjoint. Each technical type t has a table which defines a
domain D(a, t′) for each attribute a ∈ attrs(t) and each product type t′ ∈ subtypes(t).

Table 24.1 describes the catalog of video cameras. The first column describes the
camera type. The other columns specify the values for the input and output formats and
the price.

This catalog is important when setting up a constraint model. Firstly, it provides the
domains for the variables that are introduced for attributes. Secondly, it defines a constraint
between the concrete type of a component and its attributes. We call this the catalog con-
straint. This constraint expresses a relationship between functional requirements and the
technical characteristics of a primitive component, including its type. Given a user require-
ment on a functional property (e.g. a maximal price of 300), local consistency methods will
remove all concrete types that are unable to provide this property (such as the camera types
cam3 and cam4). As a consequence, the remaining types are able to meet this functional
requirement. Thus, existing product models yield an important part of a constraint-based
configuration model. Catalog constraints are particularly important since they are able to
classify a component by reducing the domain of its type variable.

24.2.2 Partonomies and Taxonomies

Whereas sales configurators often deal only with primitive components, manufacturing and
engineering needs to refine those components by suitable parts. The part-of-structure of
components is therefore of central importance for configuration.

A composite component has a concrete type, a set of attributes, and a set of subcom-
ponents (or parts), which may be primitive or composite components. Following [16, 39],
it makes sense to stipulate that components own their subcomponents. Hence, a subcom-
ponent cannot be a part of two different components. Furthermore, the part-of-relation
between components must neither contain cycles, nor infinite descending chains. A (sub)-

846 24. Configuration

�

�

�

�

........
.................................

... Hard
disk1..n

disks

........
.................................

...

...................
.........

................
�

�

�

� �

�

�

�

�

�

�

�

Home Movie
Studio

computer

camera

0..1
Computer

Camera
1..1

Figure 24.2: A partonomy of functional and technical types.

component may also have a set of connections to other (sub)-components of the configu-
ration. There are no restrictions concerning connections. Subcomponents as well as con-
nected components can be grouped together into subsets of components, which are called
ports in [44]. A port contains components that are functionally equivalent for the given
problem. We distinguish partonomic ports that contain subcomponents and connection-
ports that contain connected components. Partonomic ports own their elements and are
mutually disjoint.

The structure of a composite component is defined by a structural product model. The
partonomy describes the possible decompositions of components of a given type. Figure
24.2 shows the partonomy of a simple home movie studio. It consists of a camera and an
optional computer which can have several hard disks. Such a partonomy can be comple-
mented by a ‘topology’, which defines the connections between components and which
consists of arbitrary relations between the types of a partonomy.

Product models in ERP systems contain information about the partonomy. The bill-of-
material (BoM) describes how many subcomponents of which type are needed to assemble
or to manufacture a component. A BoM is represented by a graph. The nodes are compo-
nent types. The edges represent has-Part-relations and are labeled with a cardinality. An
edge from type t1 to type t2 with label k means that a component of type t1 contains k sub-
components of type t2. It can be assumed that a bill-of-material of configurable products
is a directed acyclic graph. A BoM can easily be translated into a partonomy. Each node in
the BoM corresponds to a technical type and each edge from type t1 to type t2 with label
k in the BoM is translated into a 1 : k-relation from t1 to t2.

Concrete types specify or restrict the attribute values of a component. They may also
specify the number of parts of a component (e.g. the number of wheels of a car). Techni-
cal types define the functional and technical attributes and the component structure. They
regroup together multiple concrete types. However, it makes sense to further regroup tech-
nical types according to their functional characteristics. For example, the device for storing
an edited movie can be a hard disk, a DVD writer, or a video recorder, or the camera it-
self. It therefore makes sense to regroup these technical types under a functional type
called storage device. This functional type defines functional attributes such as a writing
capability and the storage capacity.

We thus obtain a taxonomy of types that consists of three layers: 1. A hierarchy of
functional types. 2. A layer of technical types. 3. The leaf layer of concrete types. It is then
possible to create an instance of a functional type, such as a storage device, and to configure
it by specializing its type. This process will add new attributes to the component and refine
its structure incrementally. A taxonomy thus describes alternative ways to map functional
requirements to structure and to refine structural skeletons. Partonomies with taxonomies
correspond to bill-of-materials with alternatives. Figure 24.3 shows the partonomy of the

U. Junker 847

�

�

�

�

Hard
Disk

........
.................................

...
.................................
...

�

�

�

�

�

�

�

�

.............
.....

..................
.....

�

�

�

�

�

�

�

�

�

�

�

�

.............
.....

�

�

�

�

�

�

�

�

�

�

�

�

...................
.........

................

.............
.....�

�

�

�

�

�

�

�

.............
.....

.............
.....

�

�

�

�

.............
.....

�

�

�

�

.............
.....

.....

�

�

�

�

.............
.....

.....

�

�

�

�

�

�

�

�

........
.................................
...

devicesfunctions

Home Movie
Studio

Manual Computer-
based

Device

CameraComputer

disks

0..n 0..n

Edit
Unit

Film
Unit

Unit
Functional

Show
Unit

Manual
based

Computer-

Video
Device

Recorder
VideoDVD

1..1

computer

edit format

total price

output format
input format0..n

storage capacity

edit capacity

Figure 24.3: A partonomy with taxonomy.

home movie studio which consists of functional units and devices. The functional units
describe how the filming, editing, showing functions are realized. The edit and show unit
can be manual or computer-based. Depending on these choices, different kind of devices
need to be added. There is also a connection port indicated by a dashed line. A partonomy
with a taxonomy can be represented in the form of a UML-diagram [16] or by a description
logic. We define the structure of a component independent of a formal language:

Definition 24.2 (Structural knowledge). A structural configuration model consists of a set
T̂ of functional types, a set T of technical types, a set Â of attributes, a set P̂ of partonomic
ports, and a set of Q̂ of connection ports, all mutually disjoint:

1. Each functional type t ∈ T̂ has a (possibly empty) set subtypes(t) ⊆ T̂ ∪T of direct
subtypes. The set of direct subtypes of two types are mutually disjoint meaning that
each type has at most one direct supertype.

2. Each functional or technical type t in T̂ ∪ T has a set attrs(t) ⊆ Â of attributes
and a set ports(t) ⊆ P̂ ∪ Q̂ of partonomic and connection ports. Each port p has a
destination type type(t, p) ∈ T̂ ∪ T , a minimal cardinality min(t, p), and a maximal
cardinality max(t, p).

3. There is no sequence t1, . . . , tn of types in T̂ ∪ T such that t1 = tn and ti is a
subtype of ti−1 or the destination type of a partonomic port of ti−1.

A structural configuration model can be extended by a configuration catalog if both coin-
cide in their technical types as well as in the attributes attrs(t) of each technical type.

A configuration can be obtained from a structural model by instantiating a compo-
nent type. Table 24.2 shows the instance ourStudio of the Home Movie Studio which
inherits the attributes and ports of this type. The attributes are assigned to values from
the attribute domain and the ports are filled by part lists. For each part, a type is cho-
sen and the part inherits the attributes and ports of this type, meaning that this process is
repeated recursively. Hence, a structural configuration model generates a nested data struc-
ture when being instantiated. This data structure is central for the modeling and solving
of configuration problems. In the remainder of this chapter, we need to refer to differ-
ent elements of this data structure. Firstly, we will define a view on all the parts of the

848 24. Configuration

Table 24.2: A configuration.

ourStudio: a Home Movie Studio
. total price: 2000 $ (an attribute)
. functional units: (a partonomic port)
. . unit(ourStudio,1): a Film Unit (a part)
. . unit(ourStudio,2): a Computerized Video Edit Unit (a part)
. . . edit capacity: 20 hours
. . . edit format: AVI
. . . computer: device(ourStudio,2) (a connection port)
. devices: (a partonomic port)
. . device(ourStudio,1): a Cam4 Camera (a catalog part)
. . . output format: AVI
. . . input format: AVI
. . device(ourStudio,2): a Computer (a catalog part)
. . . external hard disks (a partonomic port)
. . . . disk(device(ourStudio,2),1): a Hard Disk (a catalog part)
. storage capacity: 120 GB
. . . . disk(device(ourStudio,2),2): a Hard Disk (a catalog part)
. storage capacity: 160 GB

component. This view includes also the indirect parts, i.e. the parts of the parts of the
component and so on. In the example, the part view contains ourStudio, unit(ourStudio,1),
unit(ourStudio,2), device(ourStudio,1), device(ourStudio,2), disk(device(ourStudio,2),1),
disk(device(ourStudio,2),2). The part view contains all parts that are generated for a con-
figuration. This information will be needed when we model connection ports as these ports
are filled with the generated parts. Secondly, we define a view on all ports of a component.
This includes the direct ports of a component, but also the ports of all components that
are contained in a given port. As a port describes a set of parts that play the same role in
a configuration, most configuration constraints are formulated with the help of ports. For
example, if we want to sum the storage capacities of all the hard disks of the home movie
studio, we need an indirect port that contains all the hard disks of the studio. Thirdly, we
introduce a view on the properties of a direct or indirect port. An example is the storage
capacities of our indirect hard disk port. In addition to the attributes, we include other
properties, namely the types and the port cardinalities. All these properties can be subject
to constraints. The property view is thus essential for the formulation of constraint models.
All three views need to have counterparts in an expressive modeling language.

We will define all the three views for an anonymous instance of a component type t.
Not only does this instance inherit attributes and ports from the direct supertype super(t)
of t, but also from the indirect supertypes super∗(t) :=

⋃∞
i=0 superi(t). As the anonymous

component can be specialized to any subtype of t, we take also attributes and parts of all
the subtypes of t into account when defining the views. The direct and indirect subtypes are
contained in subtypes∗(t) := {t′ ∈ T̂ ∪T ∪L | t ∈ super∗(t′)}. As components need to be
specialized to leaf types, we also define the set of leaf types leaves(t) := subtypes∗(t)∩ L̂
where L̂ includes the types from T̂ , T , and L that have no subtype.

Now we formally define the part view. The set parts(x : t) of direct parts of a compo-
nent x of type t is the smallest set which satisfies the following properties:

1. If p is a single-valued partonomic port of a type in super∗(t) or subtypes∗(t) then
the port has a unique part p(x) in parts(x : t) which is an instance of the port’s
destination type.

U. Junker 849

2. If p is a multi-valued partonomic port of a type in super∗(t) or subtypes∗(t) then
the port has multiple parts p(x, 1), p(x, 2), p(x, 3), . . . in parts(x : t), which are all
instances of the port’s destination type.

If a set X of components is given, then their parts are determined by the element-wise
application of the parts-function and we obtain the set of all direct and indirect parts of x
by taking the reflexive and transitive closure:

parts(X) :=
⋃

x:t∈X
parts(x : t) and parts∗(x : t) :=

∞
⋃

i=0

partsi({x : t}) (24.1)

The infinite set parts∗(x : t) contains all potential parts for a component x. A configuration
of the component x consists of a finite subset of this part universe.

Next we define the port view. The set of ports ports(x : t) of a component x of type
t is the set of all ports p(x) such that p is a (partonomic or connection) port of a type
in super∗(t). The set of ports of multiple components is obtained by the element-wise
application of this operator. The reflexive and transitive closure defines the port view of x:

ports(X) :=
⋃

x:t∈X
ports(x : t) and ports∗(x : t) :=

∞
⋃

i=0

portsi({x : t}) (24.2)

Each element p1(p2(. . . pk(x))) of ports∗(x : t) has a minimal cardinality that is obtained
by multiplying the minimal cardinalities of all the pi’s and a maximal cardinality that is
obtained by multiplying the maximal cardinalities of all the pi’s. If the maximal cardinality
is strictly greater than 1 then the port is called multi-valued. If the maximal cardinality is
equal to 1 then it is called single-valued. If the minimal cardinality of a single-valued port
is 0 then this port is called optional.

Finally, we define the property view. The set props(x : t) of properties of a component
of type t is the smallest set that has the following properties:

1. The leaf type type(x) of component x is in props(x : t).

2. If a is an attribute of a type in super∗(t) then the attribute a(x) of x is in props(x : t).

3. If p is a multi-valued port of a type in super∗(t) then the cardinality #p(x) of the
port p(x) is in props(x : t)

The set of properties of multiple components is obtained by the element-wise application
of this operator:

props(X) :=
⋃

x:t∈X

props(x : t) (24.3)

Given this, we introduce the properties props(ports∗(x : t)) of the component and of all its
direct and indirect ports. A property of a single-valued port is called single-valued, that of
a multi-valued port is called multi-valued, and that of an optional port is called optional.

The constraint model needs to take into account the knowledge of the component struc-
ture. If an instance of a functional type is configured, then its type variable has all leaf types
of the functional type as possible values. When constraint propagation reduces the domain
of this variable, it automatically classifies the component, meaning that the component now
belongs to a more specialized type. It then needs to inherit the properties of the specialized
type. These properties can require further choices, meaning that new variables and their
constraints need to be included in the constraint model. Constraint models that model this
inheritance reasoning are therefore dynamic or conditional (see section 24.3.4).

850 24. Configuration

Table 24.3: Compatibility of storage device and video format.

Storage device Video Format
hard-disk AVI
hard-disk MPEG2

DVD MPEG2
VCR analog

Digital Camera AVI
Analog camera analog

24.2.3 Configuration Constraints

If a catalog specifies unique values for all attributes, then functional requirements can sim-
ply be fulfilled by choosing a concrete type for each component. However, additional
choices are necessary in the general case in order to configure a component. Firstly, a
concrete component type may allow different possible values for technical attributes. Sec-
ondly, a component type may not have a fixed function, but permit a choice of alternative
functions. In both cases, the attributes of the components may have multiple possible
values even if the component type has been chosen. Not all the combinations of those
values are legal. Configuration constraints describe which combinations correspond to le-
gal product configurations. There are different kinds of configuration constraints, namely
compatibility constraints, requirement constraints and resource constraints.

A compatibility constraint specifies which value combinations are legal. It corresponds
to a standard constraint in CSPs and has a relation R and a scope. The relation can be
specified by a compatibility table which contains the valid value combinations or by an
incompatibility table which contains the invalid combinations. These tables can usually
be imported from the existing product model of an ERP system. However, the relation
can also be specified by a predicate such as equality, inequality, greater-than. The relation
is used to restrict the possible values of direct and indirect properties of a component
x of a type t. Hence, the scope is an n-ary tuple a1(x), . . . , an(x) of properties from
props(ports∗(x : t)). If these properties are all single-valued, then the constraint is satisfied
by a configuration of a component x of type t if the configuration satisfies

∃(v1, . . . , vn) ∈ R : (a1(x) = v1 ∧ . . . ∧ an(x) = vn) (24.4)

The configuration satisfies ai(x) = vi iff it assigns the value vi to the property ai of x.
Compatibility constraints may, in particular, be used to restrict combinations of the types
of subcomponents. For example, figure 24.3 shows a compatibility constraint between the
storage device type of the edit unit and the video file format of the edited movie.

A requirement constraint is also specified by a table and a scope of component prop-
erties. However, it expresses a requirement relation between two component properties.
A tuple (v1, v2) in the requirement table means that the value v1 of the first property re-
quires the value v2 for the second property. A requirement constraint for type t has a
requirement table R and a scope a1(x), a2(x) consisting of single-valued properties from
props(ports∗(x : t)). The constraint is satisfied by a configuration of a component x of
type t if the configuration satisfies

∀(v1, v2) ∈ R : (a1(x) = v1 ⇒ a2(x) = v2) (24.5)

U. Junker 851

Table 24.4: Requirements for devices.

Functional unit Required Device
Film Unit Camera

Manual Edit Unit Video Recorder
Computer-based Edit Unit Computer

Manual Show Unit TV
Manual Show Unit DVD Player

Computer-based Show Unit Computer

Requirement constraints can be used to restrict combinations of the types of subcompo-
nents. Figure 24.4 shows a requirement constraint between types of the functional units of
the home movie studio and the types of its devices. For example, if the functional units
include a film unit and a manual show unit, then the devices must include a camera, a TV,
and a DVD player.

Compatibility constraints can also be applied to multi-valued properties. For example,
a computer component may contain a set of peripheries. This set will be subject to multi-
ple compatibility and requirement constraints. However, these constraints are not applied
to the components themselves, but to their types. For example, a scanner may require
a printer. Two additional difficulties are arising then. Firstly, it is necessary to specify
whether the constraint applies to all or to one value as the set of periphery types can con-
tain multiple elements. Secondly, the table entry itself can represent sets of types, namely
all the leaf types that specialize the functional or technical type originally listed in the ta-
ble. The equality tests ai(x) = vi are therefore replaced by intersection tests of the form
ai(x) ∩ Vi 6= ∅. This test is satisfied by a configuration of x if the configuration assigns at
least one element of the set Vi to the property ai of the component x. Hence, a compati-
bility constraint for type t has a compatibility table R and a scope a1(x), . . . , an(x) over
props(ports∗(x : t)). The constraint is satisfied by a configuration of a component x of
type t if the configuration satisfies

∃(V1, . . . Vn) ∈ R : (a1(x) ∩ V1 6= ∅ ∧ . . . ∧ an(x) ∩ Vn 6= ∅) (24.6)

A requirement constraint for type t has a requirement table R and a scope a1(x), a2(x)
over props(ports∗(x : t)). The constraint is satisfied by a configuration of a component x
of type t if the configuration satisfies

∀(V1, V2) ∈ R : (a1(x) ∩ V1 6= ∅)⇒ (a2(x) ∩ V2 6= ∅) (24.7)

Functional properties such as capacities can be seen as a resource that is provided by a
system. An example is the storage capacity of a PC that is obtained as the sum of storage
capacity of all its disks. The functional requirements usually state that a minimal amount
of such a resource should be provided. To meet those requirements, a sufficient number of
parts need to be created and configured. Not only can resources be provided by a system,
but they can also consumed by it. An example is the total power consumption of a PC,
which is the sum of the power consumption of the PC and of its parts. The functional
requirements usually state that the consumption of such a resource should not exceed a
maximal amount. It is also possible that intermediate components consume resources that

852 24. Configuration

need to be provided by other components. Following [31], resources thus express a bal-
ancing task between consumers and producers. Resource constraints [59] ensure that the
amount of a produced resource is greater than or equal to the amount of a consumed re-
source. A resource constraint is applied to all components of a given type t. The consumers
and the producers are both represented by subsets of ports∗(x : t). The produced resource
is expressed by a numerical attribute that must be defined for all producers. The consumed
resource is expressed by a numerical attribute that must be defined for all consumers. Since
both attributes can be different, the root component for the resource constraint can play the
role of a producer and consumer. Hence, a resource constraint for a component x of type t
is specified by a tuple (Producers, Consumers, produced, consumed). This constraint
is satisfied by a configuration if this configuration satisfies:

∑

p(x)∈P roducers

o∈p(x)

produced(o) ≥
∑

p(x)∈Consumers

o∈p(x)

consumed(o) (24.8)

This model covers also the case where an initial requirement for a minimal amount of a
resource (such as storage capacity) needs to be provided by a component. In this case, the
producers are the parts of the component (e.g. the storage devices) and the consumer is the
component itself, which has a specific consumed-attribute for formulating the requirement
(such as required-storage-capacity). Requirements that limit the amount of a consumed
resource (e.g. the price) can be formulated as well. In this case, the consumers are the
parts of the component and the producer is the component as well, which has a specific
produced-attribute corresponding to the maximal amount.

It is important to understand that resource constraints express a constraint between
the total amount of the resource (i.e. the result of the sum), the bounds of the produced or
consumed attributes defined in the catalog, and the number of components. In order to meet
minimal cardinalities of ports, new components may be generated during the configuration
process. This generation is limited to partonomic ports.

Resource constraints can involve other aggregation operators than the sum. Alterna-
tives are min, max, average. Resource constraints can also operate on sets and use a set-
union as aggregation operator and the super-set-operator as comparison operator. This is
needed to establish a domain for connection-ports. The connection-port (e.g. the storage
device of an edit-unit) is a consumed resource that is produced by the actual parts (such as
the disks of the computer, the DVD writer of the computer, or the camera).

The constraint knowledge for a component x of type t can be summarized as follows:

Definition 24.3 (Constraint knowledge). Each type t ∈ T̂ ∪ T has a set Compat(x : t)
of compatibility constraints, a set Requires(x : t) of requirement constraints, and a set
Resources(x : t) of resource constraints. These sets are possibly empty.

Component types have thus been enriched with three types of constraints, namely com-
patibility, requirement, and resource constraints. They are formulated on expressions that
are defined by the structural model. The compatibility and requirement constraints addi-
tionally refer to database-tables that can be imported from existing ERP-systems.

U. Junker 853

24.3 Constraint Models for Configuration

A configuration problem is defined by functional requirements and by a configuration
model that describes the possible configurations according to the given configuration knowl-
edge. The configuration models in the literature differ quite substantially in the way
choices and constraints are represented, although they use the same product models at
their origins. It is indeed possible to build different constraint models for the given con-
figuration knowledge. It is even possible to use different constraint models for different
component types, meaning that the configuration model is a hybrid one.

We first define configuration problems in a general way. In particular, we explain when
a configuration model satisfies the given functional requirements.

Without loss of generality, it can be assumed that all components that need to be con-
figured are direct or indirect parts of a single root component, which represents the system
to be configured. This root component is an instance of a suitable component type, which
regroups all the principal components of the system and which contains suitable attributes
to describe the functional properties of the system. If such a type does not exist in the given
configuration knowledge, then it is straightforward to add such a type description.

Given the type t of the system to be configured, we define a functional space for t and
a configuration space. The functional space describes the set of complete combinations of
functions that can be achieved by an instance of t and the configuration space describes
the set of complete configurations for an instance of type t. Such a configuration needs to
describe the leaf type t∗ of the instance, the values of each attribute of t∗ (including those
inherited from supertypes), the number of elements in each partonomic port of t∗ (includ-
ing those inherited from supertypes), the configuration of each element of the partonomic
port, and the values of each connection port of t∗ (including those inherited from super-
types). Hence, a configuration, in its fully expanded form, is a tree of property-value-pairs.
Whereas the function space is finite and obtained as Cartesian product of the domains of the
functional attributes of the root component, the configuration space is infinite, but contains
finite elements.

The function and the configuration spaces usually are not described explicitly, but im-
plicitly by means of a suitable constraint language. Examples for constraint languages are
OPL, the CLP(X)-family, or the API’s of constraint libraries. All these languages can be
understood as fragments of first-order logic (cf. e.g. [25]) over a fixed structure. They
provide a set of predicate symbols, which have a fixed interpretation and which are used
to represent the relations of constraints. They also provide a set of function symbols,
which have a fixed interpretation and which are used to formulate constrained expressions.
Hence, a constraint language can be specified by a first-order language and a structure. For
the purpose of configuration, the language is enriched by function symbols representing
the ports and properties of components. The interpretation of these additional function
symbols can be freely chosen when determining a configuration.

A configuration problem for an instance x of type t is then specified by a set of func-
tional requirements F (x : t) and a configuration model K(x : t). The functional require-
ments are expressed as constraints on the direct functional properties of the root compo-
nent. The configuration model1 is expressed by constraints on arbitrary properties and

1The term ‘configuration model’ should not be confused with a logical model of the configuration constraints.
The logical model indeed corresponds to a configuration that satisfies those constraints.

854 24. Configuration

ports of the root component, including the functional and technical characteristics. The
constraints can contain universal quantifiers, logical connectives, numerical operations,
equalities, and comparisons. Compared to Solvers for classical CSPs, a configurator needs
to handle these kinds of constraints as well as optional variables, partonomic ports, and
variables and constraints with open domains.

A configuration problem has a solution iff the union of the functional requirements
and the configuration model is satisfiable, i.e. F (x : t) ∪ K(x : t) 6|= ⊥ [23]. As noted
in [28], it is important that the resulting configurations are functionally complete. This
means that the configuration S contains sufficient information to decide whether it satisfies
an arbitrary requirement or whether it does not satisfy it. S is functionally complete iff
either S |= F (x : t) or S 6|= F (x : t) holds for all requirements F (x : t). Functional
completeness is easy to achieve in a constraint-based approach. It is sufficient to include
the functional properties in the configuration. Or more formally: functional completeness
is straightforward if the function space is obtained as a projection of the configuration
space on the functional properties.

As the configuration model is expressed in first-order logic, it is not evident whether
a configuration problem is decidable. However, configuration problems satisfy the finite
model property meaning that the (part) universe of a configuration is finite. The solution
can thus be found by an enumeration of the universes. Secondly, the particular partonomic
structure and constraint structure used in this chapter allows a complete calculus for prov-
ing non-satisfiability of an infeasible configuration problem. The proof can thus be found
by enumerating all candidate proofs. The configuration problems considered in this chapter
are therefore decidable.

In its most general form, a configuration model must be able to describe configurations
in its fully extended form where all parts are clearly distinguished and exhaustively de-
scribed. However, it often is not necessary to distinguish all parts. For example, it may
be reasonable to assume that the wheels of a car have the same characteristics. It is then
sufficient to represent their number and their product type, which uniquely determines their
attribute values. In even simpler problems such as option selection, it is even sufficient to
characterize the set of options by a set of types. Hence, the representation of configurations
can be simplified and this simplification leads to simpler problems. Simplified configura-
tion problems are also obtained if the given configuration knowledge has a particular form.

In the next sections, we introduce several kinds of configuration problems. We distin-
guish static problems describing a configuration by a fixed set of properties and dynamic
problems that involve optional properties or even an unbounded number of properties.
Static problems include option selection, shopping lists, or the configuration of systems
with a fixed and deterministic structure (car configuration). Dynamic problems include sys-
tems with optional parts (computer configuration) and systems with an unbounded number
of parts (such as rack configuration or bin packing).

24.3.1 Boolean Models for Option Selection

A very simple configuration problem is obtained if the configured system consists of a set
of parts which are entirely characterized by their concrete types. An example is the selec-
tion of optional parts for the home movie studio such as a scanner, a printer, an external
hard disk. Each option is described by an option type, which has no particular attributes,
and each option type can be chosen once only. The options may be organized in a taxonomy

U. Junker 855

and are subject to requirement and compatibility constraints. The functional properties of
the system are simply represented by boolean attributes that are linked with the option
types via requirement constraints.

Definition 24.4 (Option selection problem). The structural model of an option selection
problem consists of a type S corresponding to the configured system, a functional type F
regrouping all the functions and a functional typeO regrouping all the options. The type S
has a partonomic port that contains functions from F and a partonomic port that contains
the optionsO. The type F is the root of a function taxonomy and the typeO is the root of an
option taxonomy, which has concrete types as leaf types. None of the types has attributes.
There are requirement constraints between the types of the functions in the function-port
and the types of the options in the options-port. There are requirement and compatibility
constraints between the types of options in the options-port.

The configurations of an option selection problem can be described by a boolean con-
straint model. This model has the following boolean variables:

• A boolean variable fi for each type in the function taxonomy subtypes∗(F). This
variable has the value 1 iff the configured system has a function of this type.

• A boolean variable tj for each type in the option taxonomy subtypes∗(O). This
variable has the value 1 iff the configured system has an option of this type.

An entry (f, t) in a requirement constraint between the types of the functions in the function-
port and the types of the options in the option ports is represented by an implication:

f ⇒ t (24.9)

The direct subtypes t1, . . . , tn of t in the options or function-taxonomy are modeled by a
disjunction:

t ≡ t1 ∨ . . . ∨ tn (24.10)

A compatibility constraint between the types of the options in the option port can be rep-
resented by a set of negative clauses supposing that the constraint has a negative table N
which contains the forbidden tuples:

¬t1 ∨ ¬t2 for all (t1, t2) ∈ N (24.11)

User requirements can be represented by constraints involving the boolean variables f for
the function. A boolean problem can be solved by a SAT-solver.

Option selection problems are interesting because they can appear as subproblems of
more complex problems. This means that the type S is not the root type of a partonomy,
but describes the parts of another type. In this case, the boolean variables need to be
skolemized since they depend on a component y. The result of the skolemization are terms
such as fi(y) and tj(y). An alternative is to use set variables [48] to describe the set of
types of all elements in a port. For example, a set variable t(y) could describe all the option
types that have been chosen.

856 24. Configuration

24.3.2 Cardinality Models for Shopping Lists

A more complex type of configuration problem is obtained if the functional requirements
specify how often a certain functionality should be provided. For example, the home movie
studio may require a certain storage capacity for videos and multiple hard disks are needed
to provide this capacity. We thus obtain a shopping list and it is necessary to choose the
number of instances of a product type. However, the instances need not be distinguished
for computing the amount of the consumed and the produced resources as long as these
resources have unique values for leaf types.

Definition 24.5 (Shopping list problem). The structural model of a shopping list problem
consists of a type S corresponding to the configured system (the shopping basket), a func-
tional type F regrouping all the functions, and a functional type I regrouping all the items.
The type S has a partonomic port that contains functions from F and a partonomic port
that contains the items from I . The type F is the root of a function taxonomy and the type I
is the root of an item taxonomy, which has concrete types as leaf types. The types can have
attributes, but the values of an attribute a need to be uniquely specified by the leaf types
t in the form of a value value(t, a). There are binary requirement constraints between a
type of a function in the functions-port and the type of an item in the items-port. There
are binary requirement and compatibility constraints between the types of the items in the
items-port. Furthermore, there are resource constraints between the function-port and the
items-port. The consumed resource is an attribute of F and the produced resource is an
attribute of I .

The configurations of a shopping-list problem can be described by a cardinality model.
This model has the following integer variables:

• A positive integer variable #fi for each type in the function taxonomy subtypes∗(F).
This variable indicates how many times the configured system provides a function
of this type.

• A positive integer variable #tj for each type in the item taxonomy subtypes∗(I).
This variable indicates the number of items of this type in the configured system.

An entry (f, t) in a requirement constraint between the types in the function-port and the
types in the items-ports is represented by an implication:

(#f ≥ 1)⇒ (#t ≥ 1) (24.12)

The direct subtypes t1, . . . , tn of t in the item taxonomy or the function taxonomy are
modeled by a sum. This is possible since two different subtypes have no leaf type in
common:

#t = #t1 + . . .+ #tn (24.13)

A compatibility constraint between the types of the items in the item-port can be encoded
by negative clauses if it is specified by an incompatibility table N :

#t1 = 0 ∨#t2 = 0 for all (t1, t2) ∈ N (24.14)

U. Junker 857

A resource constraint between a resource c that is consumed by the functions in the function
port and a resource p that is produced by the items in the item-port can be modeled by a
linear constraint:

∑

t∈leaves(F) value(t, c) ·#t ≤∑t∈leaves(I) value(t, p) ·#t (24.15)

User requirements can be represented by constraints involving the integer variables #f for
functions. A shopping-list problem can be solved by an Integer Programming approach
similar to that in [62].

Shopping list problems can also appear as subproblems of more complex problems.
Similar to option selection problems, a single multi-valued variable can be introduced to
describe the number of types in a function port or the number of types in an item port. In
the case of shopping-lists, the multi-valued variable is a multi-set or bag variable.

24.3.3 CSP-Models for Customizing Flat Components

The configuration model needs to distinguish individual components if the attribute values
of the components are not fully determined by the concrete product type. In this case, ad-
ditional choices are needed to characterize the components and it is necessary to introduce
variables for the attributes. For example, the video edit facility requires the customization
of several technical components such as the computer, the editing software, the printer, and
the scanner. Each of those components has several attributes which are naturally encoded
by variables. Those variables are subject to constraints and we obtain a standard constraint
satisfaction problem for this flat configuration problem.

Definition 24.6 (Flat Customization Problem). The structural model of a flat customiza-
tion problem consists of a type S corresponding to the configured system, technical types
T1, . . . , Tn representing the principal components. The types need not be all different. The
type S has a partonomic port pi that contains exactly one instance of type Ti. The type Ti
is a technical type that has concrete types as subtypes. The types S and the types Ti have
multiple attributes containing functional and technical characteristics. The attributes can
have a boolean domain, an enumerated domain, or an interval of integer values. There
are arbitrary requirement and compatibility constraints between the direct and indirect at-
tributes of the configured system. There are resource constraints between direct attributes
of the configured systems and the attributes of the components.

The configurations of a flat customization problem can be described by a constraint
satisfaction problem. The model has the root component o0 of type S, the components oi
which are equal to the ports pi(o0), and the following variables:

• A variable aj(o0) for each attribute aj of the configured system o0.

• A variable aj(oi) for each attribute aj of the component oi.

• A type variable type(oi) for the type of the component oi. The domain of this
variable are the subtypes of Ti.

The catalog is translated into an element constraint for each attribute aj and each compo-
nent oi where i = 1, . . . , n. If subtype t of type Ti restricts the domain of attribute aj to
D(t, aj) then the element constraint is as follows:

∀t ∈ leaves(Ti) : type(oi) = t⇒ aj(oi) ∈ D(t, aj) (24.16)

858 24. Configuration

Compatibility constraints can be applied to arbitrary direct and indirect attributes of the
configured system, which are represented as variables aj1(oi1), aj2(oi2) where i1, i2 are in
{0, . . . , n}. Hence, the compatibility constraint is expressed as a standard constraint:

∃(v1, v2) ∈ R : (aj1(oi1) = v1 ∧ aj2(oi2) = v2) (24.17)

Requirement constraints are expressed similarly in their natural form:

∀(v1, v2) ∈ R : (aj1(oi1) = v1 ⇒ aj2(oi2) = v2) (24.18)

Finally, resource constraints can sum up a produced resource aj of multiple components
in P ⊆ ports∗(o0 : S) and a consumed resource aj′ of multiple components in C ⊆
ports∗(o0 : S). As the set ports∗(o0 : S) is equal to the set of components o0, o1, . . . , on,
the resource constraint is expressed in terms of a numerical constraint:

∑

oi∈P

aj(oi) ≥
∑

oi∈C

aj′(oi) (24.19)

The functional requirements for flat component properties can be expressed in terms of any
functional attribute, whether it is a direct attribute of the configured system or an attribute
of one of its components.

A flat customization problem can be solved by a constraint solver. If the constraint
graph is not dense, appropriate decomposition [13, 26] and clustering techniques can be
applied [14] to solve it efficiently.

24.3.4 Conditional CSPs for Taxonomic Reasoning

The same functionality can often be realized by components differing greatly in their tech-
nical characteristics. As described in section 24.2.2, technical types fulfilling the same
functionality are therefore organized in a taxonomy. Subtypes add further attributes, which
means that the set of attributes of a component depend on its precise type. We thus obtain
taxonomic customization problems. Formulating this problem as a standard CSP would
require including a variable for each possible attribute that can be inherited and ensuring
that its value is not meaningful in case it is not inherited. As an alternative, Mittal and
Falkenhainer [43] introduced dynamic CSPs with optional variables that are activated un-
der certain conditions. As the term dynamic CSP was later used for CSPs able to support
constraint addition and retraction, it was proposed to rename the approach into Condi-
tional CSPs [52]. As observed by Bowen and Bahler [7], it is also possible to directly use
first-order logic to model taxonomic customization problems. A further proposal is that of
composite CSPs [50], where the variable domains may contain sub-CSPs which are acti-
vated when this value is chosen. We model taxonomic customization as a Conditional CSP
model, since dedicated algorithms have been elaborated for this approach [52, 24].

Definition 24.7 (Taxonomic Customization Problem). The structural model of a taxo-
nomic customization problem consists of a type S corresponding to the configured system,
functional types T1, . . . , Tn representing the principal components. The types are not nec-
essarily different to each other. The type S has a partonomic port that contains exactly
one instance of Ti. The type Ti is the root of a taxonomy, which has concrete types as
leaf types. The types S, the types Ti, and the subtypes of the Ti’s have multiple attributes

U. Junker 859

containing functional and technical characteristics. The attributes can have a boolean do-
main, an enumerated domain, or an interval of integer values. A constraint on a type t of
the taxonomies can involve any property of type t.

There are different possibilities to represent the type variables of the components. It is
not only necessary to model that components are instances of concrete product types, but
also that they are instances of functional or technical types, such as the technical DVD-type
in the following example: if the video edit device is a DVD, then it requires an MPEG2
format. A possibility is to represent type variables as hierarchical variables [38]. An
alternative is to use the same representation as for flat problems and to express an instance-
of-constraint by a constraint that is satisfied if the value of the type variable is an element
of the set of leaves of the type t. This approach has an efficient implementation [40] and is
conceptually simpler. For example, the element-constraint representing the catalogs need
not be extended to range over functional and technical types. The element-constraint from
section 24.3.3 is therefore valid for taxonomic customization problems.

Attributes are represented by variables, which can be optional. If type t has an attribute
aj and oi is an instance of a supertype of t then the variable aj(oi) is activated if oi is
an instance of t. The activation is denoted by active : aj(oi), which is a (non-optional!)
boolean variable attached to the attribute:

type(oi) ∈ leaves(t)⇔ active : aj(oi) (24.20)

The solution of a Conditional CSP just contains the variables for which the active-condition
is true. It is convenient to represent such a solution by a set of attribute-value pairs. Com-
patibility constraints for type t are only activated if the component is an instance of t:

∃(v1, . . . , vk) ∈ R :
(active : aj1(oi)⇒ aj1(oi) = v1)
∧ . . .
∧(active : ajk(oi)⇒ ajk(oi) = vk)

(24.21)

Requirement constraints can, however, activate variables:

∀(v1, v2) ∈ R :
(active : aj1(oi) ∧ aj1(oi) = v1)
⇒ (active : aj2(oi) ∧ aj2(oi) = v2)

(24.22)

The activation of attributes has also an impact on resource constraints. A resource of
type t is provided (or consumed) by a component only if this component is an instance of
t. Hence, a resource constraint can only take active resources into account. It may activate
produced resources and deactivate consumed resources:

∑

o∈P

active:aj(o)

aj(o) ≥
∑

o∈C

active:aj′ (o)

aj′(o) (24.23)

Although Conditional CSPs handle the inheritance of attributes, they require that all
optional variables and their constraints are created explicitly. The use of universally quan-
tified constraints avoids the creation of optional variables and their constraints if they are
not needed. If a component o is an instance of type t, then instances of the constraints of
t will be created. For this purpose, the quantified variable of the constraint will be sub-
stituted by the component o. It is important to note that a quantified constraint of type

860 24. Configuration

t will only be applied to instances of type t. To achieve this, a set variable instances(t)
is introduced to represent the instances of type t. It is linked to the type-variables via an
inverse-constraint:

∀i ∈ {0, . . . , n}∀t ∈ subtypes∗(Ti) : type(oi) ∈ leaves(t)⇔ oi ∈ instances(t) (24.24)

The type variable is needed for the catalog constraints, whereas the instance-set variable
is used to replace the active-variable. By definition, x ∈ instances(t) is equivalent to
active : aj(x) and we can reformulate a compatibility constraint as a universally quantified
constraint of type t:

∀x ∈ instances(t) : C(ai1(x), . . . , aik(x)) (24.25)

If o is an element of instances(t), the forall-constraint adds the variables ai1(o), . . . , aik(o)
and the constraint C(ai1(o), . . . , aik(o)) to the current CSP. Resource constraints can be
adapted by sums that range only over the instances of the types for which the resource is
defined.

24.3.5 Conditional CSPs for Simple Partonomic Reasoning

Configurable systems such as computers usually consist of a partonomic hierarchy that has
more than two levels. The first level corresponds to the system to be configured and the
second level contains the principal components of this system. These principal components
may themselves have subcomponents some of which may be optional and some of which
depend on the type of the principal component. Furthermore, the subcomponents may
be connected to each other. An example is a PC, which has a central unit, which has
a processor, which has an optional co-processor. Another example is car configuration
with options [43]. We thus obtain a partonomic customization problem which requires the
recursive configuration of possibly optional subcomponents and the choice of connections.
The problem can again be modeled by a Conditional CSP or by first-order logic.

Definition 24.8 (Simple Partonomic Customization Problem). The structural model of a
simple partonomic customization problem consists of a type S corresponding to the con-
figured system. S is the root of a partonomy with a taxonomy and a topology such that all
partonomic and connection ports contain at most one component. The types in the parton-
omy can have multiple attributes describing functional and technical characteristics. The
attributes can have a boolean domain, an enumerated domain, or an interval of integer
values. A constraint on a type t of the partonomy can involve any property of type t.

Special attention needs to be paid naming the properties of subcomponents. Indepen-
dent of the formalisms, the terms as introduced in section 24.2.2 appear to be the appropri-
ate way. We use the single-valued ports in ports∗(x : t) and the single-valued properties in
props(ports∗(x : t)) for this purpose.

Not only can a component have optional attributes, it can also have optional subcom-
ponents and optional connections, which become active if the component is an instance
of the corresponding type. However, there may also be subcomponents and connections
that are optional in the sense that the corresponding relation has a minimal cardinality of
0 and a maximal cardinality of 1. If the subcomponent or connected component does not
exist, then they are considered inactive as well. If a component is not active then none

U. Junker 861

of its properties and of its ports are active. Therefore, only a subset of ports∗(x : t)
and props(ports∗(x : t)) are active in a solution. A solution consists of a set of value-
assignments to the active properties and to the active connections.

The activation of ports can be well addressed by a Conditional CSP or a first-order
approach if the properties and ports are modeled as follows:

1. The partonomic ports are treated as variables that are assigned to themselves.

2. The properties of partonomic ports are modeled by variables as before.

3. A connection-port p of a component o of type t is treated as a variable p(o). The
domain of p(o) contains the possible instances of the destination type t′ := type(t, p)
from the set of all parts parts∗(o0 : S) of the root type S. A constraint ensures that
the value of p(o) has the type t′:

∀o′ ∈ parts∗(o0 : S) : p(o) = o′ ⇒ type(o′) = t′ (24.26)

4. The properties and ports ξ(p(o)) of connection-ports are equal to the properties
and ports of the component that is assigned to this connection-port. An element-
constraint is needed to express this correspondence:

∀o′ ∈ parts∗(o0 : S) : p(o) = o′ ⇒ ξ(p(o)) = ξ(o′) (24.27)

Hence, single-valued partonomic ports can be handled in a straightforward way. Connec-
tion ports, however, are variables that require a special domain management.

24.3.6 Generative CSPs for Complex Partonomic Reasoning

The general case of a configuration problem is obtained when partonomic ports and con-
nection ports can contain an arbitrary number of components. Typical examples occur
in equipment configuration where given resource requirements (e.g. on storage capacity)
need to be covered by an unknown number of components. Conditional CSPs are no longer
appropriate to treat these unbounded configuration problems, since they require the precre-
ation of an infinite number of possible parts. Generative CSPs [60, 59, 17] have been
elaborated to handle these complex customization problems. The essence of the generative
approach can be described in terms of a first-order formulation.

Definition 24.9 (Complex Partonomic Customization Problem). The structural model of
a complex partonomic customization problem consists of a type S corresponding to the
configured system. S is the root of a partonomy with a taxonomy and a topology. The
partonomic and connection ports can contain an arbitrary number of components. The
types in the partonomy can have multiple attributes describing functional and technical
characteristics. The attributes can have a boolean domain, an enumerated domain, or
an interval of integer values. A constraint on a type t of the partonomy can involve any
property of type t.

The ports of complex partonomic customization are arbitrary elements of ports∗(x : t)
and the properties are arbitrary elements of props(ports∗(x : t)). Constraints can thus be

862 24. Configuration

formulated on the properties of multi-valued ports. In contrast to an optional port, a multi-
valued port is active even if it has no element. Hence, there is not need to dynamically
activate multi-valued ports. However, it is necessary to dynamically generate new compo-
nents to meet cardinality constraints on ports. It is sufficient to generate parts for direct
ports p(x) ∈ ports(x : t) of a component x. This is achieved by a generative constraint
that creates the parts when the lower bound of the cardinality is increased and that adds
them to the instance-set of t. This instance-set needs to be represented by a set variable
[48] with an open domain [40]:

∀i ∈ {1, 2, 3, . . .} : #p(o) ≥ i⇒ p(o, i) ∈ instances(t) (24.28)

If a configuration assigns the value k to the cardinality of a direct partonomic port p of a
component x, then the configuration will contain the parts p(x, 1), . . . , p(x, k), but not any
other part p(x, k′) with k′ > k. Since the partonomy is acyclic, each configuration can
only contain a finite number of parts.

The generative constraint thus generates components on a by-need-basis. It also im-
poses an important constraint on the port cardinality. If the configuration of the k-th part
fails, then it cannot belong to the instance-set meaning that the cardinality of the port is
strictly smaller than k. Hence, infinite chains for generating parts are broken as soon as
a part cannot be configured. However, infinite ascending chains could be obtained by a
search procedure that successively increases the lower bound for the cardinality #p(o) in
a search branch. It is nevertheless possible to impose an upper bound on the cardinality
based on the following argument. Since components are generated to meet requirement
and resource constraints, we determine how many components each such constraint may
generate for the port p(o) and use the sum of those upper bounds as an upper bound of
the cardinality. We can compute the upper bound for a resource constraint as soon as the
total resource consumption has been established. We suppose that the produced resource
of each component in the port is greater than a strictly positive lower bound. We can then
calculate the upper bound of the number of components by dividing the total amount of the
resource by this lower bound. It is important to note that this upper bound on the cardinality
imposes an additional constraint on the configuration space. It eliminates configurations
with a large number of parts that don’t have any function.

Ports of multi-valued partonomic ports can be modeled by recursive constraints. Let ξ
be a single-valued port of the destination type of the partonomic port p. The port ξ(p(x))
is then multi-valued. We introduce auxiliary set variables ξ(p(o), i) for the subset that is
contributed by the parts p(o, i+ 1), p(o, i+ 2), . . . , p(o, k), where k is the cardinality:

ξ(p(o)) := ξ(p(o), 0)

ξ(p(o), i) =

{

{ξ(p(o, i+ 1))} ∪ ξ(p(o), i+ 1) if #p(o) ≥ i+ 1
∅ otherwise

(24.29)

Multi-valued ports ξ are handled by a similar recursive constraint that directly uses the
port ξ(p(o, i+ 1)) of the i + 1st component in the union-operation instead of {ξ(p(o, i+
1))}. Properties of partonomic ports are calculated in a similar way except that they are
formulated on multi-set (or bag) variables instead of the set variables.

If r is a resource of the destination type of a partonomic port, then the resource of the
port can be modeled in a recursive way as well. Auxiliary variables r(p(o), i) denote the

U. Junker 863

contribution of the parts p(o, i+ 1), p(o, i+ 2), . . . , p(o, k), where k is the cardinality:

r(p(o)) := r(p(o), 0)

r(p(o), i) =

{

r(p(o, i+ 1)) + r(p(o), i+ 1) if #p(o) ≥ i+ 1
∅ otherwise

(24.30)

A connection port of type t is modeled by an open set variable that is a subset of
instances(t). As the elements of connection ports are not ordered, specific union- and
sum-over-set-constraints have been introduced in the generative CSP-approaches [40]. The
sum-over-set constraint maintains a local consistency among the lower and upper bounds
on the port cardinality, the lower and upper bounds on the sum, the set of required ele-
ments in the set variable, and the lower and upper bounds of the resources provided by the
required elements.

24.3.7 Complex Cases

Complex configuration models can be obtained by combinations of the previously defined
models. In particular, components at the leaf level of the partonomy often do not need to
be distinguished, thus allowing the use of a boolean or cardinality model.

Complex problems are also obtained by more sophisticated representations of the func-
tional properties. Functions can be composed of sub-functions meaning that they are rep-
resented by a function partonomy. Functions are then assigned to components and sub-
functions need to be assigned to their subcomponents. The sub-functions fulfilled by the
subcomponents of a component need to be equal to the sub-functions of the function that
is fulfilled by the component. This homomorphism can be expressed by an equality of two
union-over-set-constraints. The refinement of function occurs, for example, in the con-
figuration of instrumentation-and-control systems [40] and electrical wiring systems [1].
Complex connection reasoning leads to similar problems if connections between principal
components are refined by connections between subcomponents.

24.4 Problem Solving for Configuration

Whereas Constraint Programming is used to find a solution or an optimal solution of a
CSP, configuration brings in new problem-solving tasks, such as the maintenance of global
consistency in interactive configuration, the computation of an explanation if a given set
of requirements cannot be satisfied, or the computation of a relaxation of those require-
ments. The automatic computation of configurations also has particularities. Solution
search should produce functionally well-justified configurations instead of an arbitrary
configuration. If optimal configurations are required, then the user preferences are rarely
specified in terms of a single criterion, but typically involve multiple criteria.

24.4.1 Interactive Configuration

Sales configurators are usually interactive as the functional requirements evolve during the
decision-making process. An interactive configurator shows the functional characteristics
of the configured system in the form of a web page or a GUI. Each functional attribute
is characterized by its possible values. The user can express bounds on these attributes,

864 24. Configuration

eliminate possible values, or choose a value. The configurator typically reacts to those user
inputs by propagating their logical effects. If a value is no longer possible for an attribute,
then the configurator can eliminate it. Interactive configuration has, for example, been
studied in [2] and in the CAWICOMS-project [3].

Definition 24.10 (Interactive configuration task). Given a configuration model K(x : t),
user requirement F (x : t), and a set of variables Y representing the functional character-
istics, the task consists in finding the set D(y) of legal values for each variable y ∈ Y . A
value v is legal for y iff there exists a configuration that satisfies K(x : t) ∪ F (x : t) and
that assigns v to y.

This task is solved by maintaining global consistency [19] for the functional require-
ments. A domain D(y) of a variable is globally consistent iff each value v in D(y) is
legal for y. An initial domain Dinit(y) taken from the configuration model K(x : t) can
be reduced to a maximally global consistent domain D∗(y) by inspecting each value v of
Dinit(y) and by checking whether F (x : t) ∪ K(x : t) ∪ {y = v} is consistent. If this
problem is inconsistent, then v will be removed from y’s domain. In the other case, the
value v for y is supported by a configuration of F (x : t) ∪K(x : t).

The exhaustive application of a procedure for maintaining global consistency requires
n · d consistency checks in the worst case, where n is the number of attributes and d is the
initial domain size. If a check has been positive and produced a solution, then this solution
will support a value for each functional attribute. Strategies for computing diversified
solutions can thus significantly reduce the number of checks. Furthermore, the procedure
need not be applied to exhaustion, but may compute a lower bound for D∗(y) that contains
only supported values and an upper bound that only excludes illegal values.

Local consistency methods such as arc consistency [37] can be used to compute the
upper bound. In certain cases, when the constraint network is acyclic, then arc consistency
coincides with global consistency [20], meaning that the task has a polynomial cost only.
For example, this condition is met if only catalog constraints are given.

Configuration problems that additionally contain compatibility constraints on variables
of the same catalog constraint are not acyclic and arc consistency does not remove all
illegal values. Preprocessing techniques can then be used to find all solutions of K(x :
t). Cluster techniques limit this preprocessing to the clusters of a cluster-tree [14, 46].
An alternative is to use decision diagrams to store the set of precomputed solutions in
a factorized way [2, 29]. However, it is also possible to use suitable strategies for the
consistency checks performed by the global consistency procedure. Cutset decomposition
[13] and learning of strategies (detection of critical variables [36]) are good candidates for
performance increases. Further speed-ups can be obtained by algorithms such as LazyAC
[53] or PrefAC [5].

It should also be noted that an interactive configurator solves many configuration prob-
lems that share the same configuration modelK(x : t) and that differ only in the functional
requirements. Preprocessing and learning techniques can therefore pay off significantly.

24.4.2 Explanations and Relaxations

The functional requirement F (x : t) is typically a conjunction of user requirements and
can alternatively be represented by a set of requirements, which will be supposed in this
sub-section. If F (x : t) ∪ K(x : t) has no solution, then the configuration problem is

U. Junker 865

overconstrained and some requirements need to be relaxed. In this case, the requirements
no longer express hard constraints, but desiderata that are satisfied whenever possible.
There are two scenarios where such a situation can arise:

1. The user enters one requirement after the other and the interactive configurator re-
duces the domains of functional attributes after each entry. As the propagation might
not eliminate all illegal values, the propagation can reach a dead-end. To recover
from the failure, the user needs to find a minimal set of requirements for which prop-
agation is failing, to choose a culprit from this set, and to remove it. This procedure
is iterated until the set of the non-relaxed requirements is consistent.

2. The user enters multiple requirements at once, possibly augmented with a preference
order. This set of requirements may be inconsistent, meaning that the configurator
will compute a relaxation by removing some requirements. Removed requirements
are (globally) inconsistent with respect to the selected requirements. The user needs
to understand which requirements are causing the failure of a removed requirement.
This explanation will allow the user to change the preferences if the removal of a
requirement was not acceptable.

Hence, overconstrained problems lead to a relaxation and an explanation task.

Definition 24.11 (Relaxation task). Given a set of requirements F (x : t), find a maximal
relaxation, i.e. a subset that is consistent with respect to the configuration model K(x : t).
If additionally a strict partial order on F (x : t) is given, then find a preferred solution in
the sense of [8, 33]. It is obtained by choosing a complete ranking of the requirements and
by doing a lexicographic maximization based on this ranking.

Definition 24.12 (Explanation task). Given an overconstrained set of requirements F (x :
t), find a minimal conflict, i.e. subset that is inconsistent with respect to the configuration
model K(x : t). If additionally a strict partial order on F (x : t) is given, then find a
preferred conflict in the sense of [33]. It is obtained by choosing a complete ranking of the
requirements and by doing an anti-lexicographic minimization based on this ranking.

Relaxations are usually computed by adding one requirement after the other in the
chosen order and by testing the consistency of the current selection after each step. If a
solution has been found, then the requirement is kept. Otherwise, it is removed.

Conflicts have traditionally been computed by truth maintenance system (TMS) [15]
and several attempts have been made to integrate a TMS into a constraint solver [35, 57].
However, the computed explanations can be far from minimal, in particular if resource
constraints are involved (see [33] for an example).

A method for computing minimal and preferred conflicts is presented in [33]. The
algorithm called QuickXplain solves the explanation problem by successively removing
requirements and by checking the consistency of the remaining requirements. If the re-
maining requirements are inconsistent, the problem has been reduced in size. If not, then
some of the removed requirements do necessarily belong to the conflict. QuickXplain is
recursively dividing the explanation problem into subproblems of the same size. For ex-
ample, the initial set F (x : t) will be split into two subsets C1 and C2. It first seeks for
conflict elements in C2 while keeping C1 in the background (i.e, all constraints of C1 are
active, but they will not be removed while solving the second problem). The first step then

866 24. Configuration

consists in removing all elements of C2 and testing the consistency ofK(x : t)∪C1. If this
fails, the empty set is a minimal conflict of the second problem, meaning that the problem
has been reduced to C1. If the test succeeds, then at least one requirement in the second
problem is needed for the failure. If the second problem is a singleton, then its element is
added to the conflict. If the second problem has multiple elements, it is again split into two
parts and the procedure is applied recursively. When the second subproblem has been suc-
cessfully solved, its minimal conflict is added to the background and the first subproblem
is removed from the background. Then the first subproblem is solved. A minimal conflict
for the complete problem is then obtained by merging the minimal conflicts of the first and
second subproblems.

Evolutions of QuickXplain have been proposed to explain the values chosen in a solu-
tion [22] and to find the parts of an overconstrained problem that need to be repaired when
restoring the consistency [45].

24.4.3 Searching Solutions

Whereas interactive configurators mainly support propagation and explanation, the auto-
matic search of solutions if an important features of configurators in manufacturing. We
discuss the search of solutions for the most general form of configuration problem, which
corresponds to a generative CSP. A search procedure for a generative CSP does not only
need to choose a value for the different variables of the initial problem. It also needs to
take into account variables that are added by inheritance or by the generation of subcom-
ponents. These variables are added when the search procedure is making decisions about
a component type or about the cardinality of a partonomic port. It is important to note that
decisions about newly generated variables cannot precede the decisions that lead to their
generation. As a consequence, the sequence of search decisions that produces a solution
needs to respect this order. By doing this, the search configures a component by top-down
refinement.

The dynamic nature of complex configuration problems also contradicts some basic
postulates of constraint programming that state that it is better to eliminate inconsistent
choices a priori by a propagation procedure than doing this a posteriori by analyzing and
learning a conflict. Configurators need to make wrong decisions in order to discover that
they are wrong. For example, it is possible that a given computer type t is incompatible
with respect to the given requirements. However, it may be necessary to generate all the
variables and constraints that are inherited from this type in order to discover the incom-
patibility. This is only possible if the computer has been specialized to the type t. The
conflict between the type assignment and the functional requirements that is discovered in
this way provides useful information for the ongoing configuration process. Therefore, it
is recommended to keep those conflicts [47].

Another issue is obtained by search decisions that choose the number of parts or that
choose the functionality of the part. The search should avoid under-charged components
and over-fulfilled functions. An example of under-charged components is obtained if two
servers are provided for 10 users, although a single one is sufficient. Over-fulfilled func-
tions are obtained if there is a single demand for a printing capability, but two printers
are provided. Whereas over-fulfilled functions can be avoided by a suitable constraint
model, under-charged components cannot be avoided by constraints. If the search proce-
dure chooses the number of components before configuring them, it can easily end up with

U. Junker 867

under-charged components. Furthermore, it can produce under-charged components if it
chooses more components than necessary or if it chooses less functionality than possible.

These problems can be avoided if configurations are produced by decision sequences
that respect certain properties. When a component is configured, then the following kinds
of decisions should be taken in the following order:

1. First, the values for the functional attributes of the root type of the component are
chosen. The functions of the component can be maximized by applying the follow-
ing preferences. The presence of a capability is preferred to its absence, meaning
that the value true is preferred to the value false for boolean attributes. For numeri-
cal capacities, higher values are preferred. The search procedure should then assign
the best value to each functional attribute. However, trade-off considerations be-
tween multiple functional attributes allow the procedure to abandon a best value for
an attribute a1(o) if this allows an improvement for a later attribute a2(o). The pro-
cedure can avoid a high penalization of a2(o) by auxiliary decisions a2(o) ≥ v that
are made before assigning a value to a1(o). As shown in [32], any Pareto-optimal
combination of the attribute values can be found in this way.

2. Once the functional characteristics are chosen, the type variable is specialized by
decisions of the form type ∈ leaves(t). Multiple specialization decisions can occur
for the same type variable. Inherited properties and ports can be configured as soon
as they are generated by such a decision. There is no predefined order among the
inherited properties and ports, meaning that technical attributes, cardinalities, and
connections can be configured in any order if not otherwise specified.

3. The values of the technical attributes are chosen by standard value assignments.
There are no predefined preferences between these values.

4. The cardinalities of partonomic ports are chosen by decisions of the form #p(o) ≤ k
and smaller values for the bound k are preferred. If such a decision fails, then its
negation #p(o) > k is added to the constraints. This generates a new subcomponent
p(o, k+ 1) that needs to be configured before the next cardinality decision #p(o) ≤
k + 1 is tried out. The component p(o, k + 1) is configured by applying the whole
configuration process recursively.

5. Connection ports are configured by membership decisions of the form o′ ∈ p(o).
There are no predefined preferences.

The task for searching a functionally well-justified solution can be expressed as follows:

Definition 24.13 (Solution search task). Find a configuration that satisfies the given func-
tional requirements and the given configuration model by a sequence of search decisions
that have the form discussed above and that respect the preferences between values and
variables as discussed above.

Preference programming [34] proposes a language for expressing decisions and prefer-
ences for configuration problems. In addition to the structural preferences, specific prefer-
ences among the attributes of a component can be expressed as well. Whereas preference
programming defines a strategy for producing a solution, other strategies may be needed
to recover from a failure. Blind strategies such as min-domain-first ignore the specific

868 24. Configuration

structure of a configuration problem and do not appear to be well-adapted for this case.
Strategies that move up the failure [36], cutset decomposition [13], or dependency-directed
backtracking [15] are better candidates. Learning methods may also be a good way in order
to identify critical variables for proving the infeasibility of a subproblem.

Difficult configuration problems can also profit from symmetry-breaking methods [21].
However, the most important issue is to avoid the introduction of symmetries by the con-
figuration model. The partonomic model presented in section 24.2.2 avoids symmetries
between parts. The elements of a partonomic port are ordered and the individual ele-
ments cannot be referenced inside constraints. They are indistinguishable before being
configured. A sequence of search decisions that is inconsistent for one part, will also be
inconsistent for the next part. Hence, the configuration of the k + 1-st part can start where
the configuration of the k-th part has stopped.

24.4.4 Satisfying User Preferences

An advanced issue in configuration is the satisfaction of user preferences. As the layman
user does not know the configuration model, she or he will often run into underconstrained
or overconstrained situations when specifying the requirements through the form of con-
straints. Underconstrained situations leave a large set of choices and there is a high risk that
users miss their favorite choice. Overconstrained situations are obtained if the users choose
their preferred value for each attribute. In the first case, users will not feel very confident
about the obtained configuration since they have not explored the limits. In the second
case, the users need to toggle through an inconsistent set of requirements and manage the
preferences on their own. The need for preference handling for configuration problems has
for example been expressed in [28].

Preference-based configurators offer a simple way to specify preferences in an intuitive
and qualitative way. CP-nets are a successful formalism for ordering the values of an at-
tribute dependent on the values of parent attributes [6]. Symbolic preference programming
permits the user to order the requirements and to specify an order for numerical or quali-
tative attributes [34]. Given such preferences on multiple attributes (also called criteria), a
multi-criteria optimization problem has to be solved. Although any Pareto-optimal solution
of this problem may be interesting, it is often more appropriate to guide the user through
the set of possible compromises by generating multiple extreme solutions (lexicographic-
optimal for different rankings) and balanced solutions [32]. This approach thus generates
a small set of preferred solutions of a good diversity. Diversity is ensured by changing the
importance of criteria. Diversity can also be enforced by global constraints [30].

Future work on preference-based configurators is needed to develop the full potential
of this feature. This includes work on algorithms, on the preference language, and on the
preference elicitation methods. Explanations of failure provide a good opportunity to ask
for preferences between the possible relaxations. Hence, explanations can play a key role
in making preference elicitation more interactive and more efficient.

24.5 Conclusion

This chapter has given an overview on constraint-based configuration while stressing the
particularities of configuration. Configuration is not a classical application of Constraint

U. Junker 869

Programming. The constraint networks are not static, but evolve during problem solving.
As such, the formalism of constraint networks is not sufficient to specify a configuration
problem and it is necessary to go up to a higher modeling level, which describes the config-
uration knowledge independent of a problem-solving formalism. Configuration knowledge
covers product data as found in the databases of an ERP system, structural models that can
be formulated within UML or within a description logic, and the configuration constraints.
The structural model includes a description of the functional characteristics and of the
alternative ways to map them to a structure.

Depending on the characteristics of the configured system, this knowledge can be com-
piled into various kinds of constraint models including boolean models, cardinality models,
static and dynamic CSP models, and generative CSP models. The latter ones support dy-
namic activation or generation of variables and constraints and thus create new issues for
the search process. The search process has to take dynamically generated variables into
account and needs to respect the generation order. The search process is function-driven
and should make choices only when they contribute to given functional requirements.

Searching for solutions is not the only problem-solving task that occurs in configura-
tion. Interactive configurators often support a form of (strong) propagation and let the user
make the decisions. The user thus has the freedom to try out all of her or his preferred
choices with the risk of running into overconstrained problems. Explanation facilities then
allow the user to identify conflicting requirements, but still leave them the burden of choice.
An alternative is the emerging idea of a preference-based configurator where users enter
preferences among the possible values instead of making categoric choices. Preferences
are heavily used in recommender systems and the lessons learned in this area may be ben-
eficial for configuration. However, interactive configurators and their explanation facilities
can also lead to new possibilities for preference elicitation, meaning that there is a potential
for a cross-fertilization between both fields.

Bibliography

[1] Michel Aldanondo, Jacques Lamothe, and Khaled Hadj Hamou. Configurator and
CAD: gathering the best of two worlds. In IJCAI-01 Workshop on Configuration,
pages 1–14, 2001.

[2] Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis. Consistency restoration and
explanations in dynamic CSPs application to configuration. Artificial Intelligence,
135(1-2):199–234, 2002.

[3] Liliana Ardissono, Alexander Felfernig, Gerhard Friedrich, Anna Goy, Dietmar Jan-
nach, Giovanna Petrone, Ralph Schäfer, and Markus Zanker. A framework for the
development of personalized, distributed web-based configuration systems. AI Mag-
azine, 24(3):93–110, 2003.

[4] Virginia E. Barker, Dennis E. O’Connor, Judith Bachant, and Elliot Soloway. Expert
systems for configuration at Digital: XCON and beyond. Commununications of the
ACM, 32(3):298–318, 1989.

[5] Christian Bessière, Anaı̈s. Fabre, and Ulrich Junker. Propagate the right thing: how
preferences can speed-up constraint solving. In Eighteenth International Joint Con-
ference on Artificial Intelligence, pages 191–196, Acapulco, 2003.

[6] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and David

870 24. Configuration

Poole. Preference-based constrained optimization with CP-nets. Computational In-
telligence, 20:137–157, 2004.

[7] James Bowen and Dennis Bahler. Conditional existence of variables in generalised
constraint networks. In Ninth National Conference on Artificial Intelligence (AAAI),
pages 215–220, 1991.

[8] Gerhard Brewka. Preferred subtheories: An extended logical framework for de-
fault reasoning. In Eleventh International Joint Conference on Artificial Intelligence,
pages 1043–1048, 1989.

[9] David C. Brown and B. Chandrasekaran. Design problem solving: knowledge struc-
tures and control strategies. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1989.

[10] Roman Cunis, Andreas Günter, Ingo Syska, Heino Peters, and Heiner Bode. Plakon
- an approach to domain-independent construction. In Second International Confer-
ence on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems (IAE/AIE), pages 866–874, 1989.

[11] Adnan Darwiche. New advances in compiling CNF into decomposable negation nor-
mal form. In Sixteenth European Conference on Artificial Intelligence, pages 328–
332, 2004.

[12] Johan de Kleer. An assumption–based truth maintenance system. Artificial Intelli-
gence, 28:127–162, 1986.

[13] Rina Dechter. Enhancement schemes for constraint processing: Backjumping, learn-
ing, and cutset decomposition. Artificial Intelligence, 41(3):273–312, 1990.

[14] Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38:353–366, 1989.

[15] Jon Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
[16] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach. UML as domain spe-

cific language for the construction of knowledge-based configurations systems. In-
ternational Journal of Software Engineering and Knowledge Engineering, 10(4):449
– 469, 2000.

[17] Gerhard Fleischanderl, Gerhard Friedrich, Alois Haselböck, Herwig Schreiner, and
Markus Stumptner. Configuring large systems using generative constraint satisfac-
tion. IEEE Intelligent Systems, 13(4):59–68, 1998.

[18] Felix Frayman and Sanjay Mittal. COSSACK: A constraint-based expert system for
configuration. In Knowledge-Based Expert Systems in Engineering: Planning and
Design, pages 143–166. Computational Mechanics Publications, 1987.

[19] Eugene C. Freuder. Synthesizing constraint expressions. Communications of the
ACM, 21(11):958–966, 1978.

[20] Eugene C. Freuder. A sufficient condition for backtrack-free search. Journal of the
ACM, 29(1):24–32, 1982.

[21] Eugene C. Freuder. Eliminating interchangeable values in constraint satisfaction
problems. In Proceedings of the Ninth National Conference on Artificial Intelligence
(AAAI), pages 227–233, 1991.

[22] Gerhard Friedrich. Elimination of spurious explanations. In Sixteenth European
Conference on Artificial Intelligence, pages 813–817, 2004.

[23] Gerhard Friedrich and Markus Stumptner. Consistency-based configuration. In AAAI-
99 Workshop on Configuration, pages 35–40, 1999.

[24] Felix Geller and Michael Veksler. Assumption-based pruning in conditional CSP.

U. Junker 871

In Eleventh International Conference on Principles and Practice of Constraint Pro-
gramming, pages 241–255, 2005.

[25] Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial Intelli-
gence. Morgan Kaufmann, Palo Alto, CA, 1987.

[26] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural
CSP decomposition methods. Artificial Intelligence, 124(2):243–282, 2000.

[27] Andreas Günter and Christian Kühn. Knowledge-based configuration: Survey and
future directions. In 5th Biannual German Conference on Knowledge-Based Systems,
volume 1570 of Lecture Notes in Computer Science, pages 47–66, 1999.

[28] Albert Haag. Sales configuration in business processes. IEEE Intelligent Systems,
13(4):78–85, 1998.

[29] Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M. Jensen, Henrik R. Andersen,
Jesper Moller, and Henrik Hulgaard. Fast backtrack-free product configuration us-
ing a precompiled solution space representation. In International Conference on
Economic, Technical and Organisational aspects of Product Configuration Systems,
pages 131–138, 2004.

[30] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding
diverse and similar solutions in constraint programming. In The Twentieth National
Conference on Artificial Intelligence (AAAI), pages 372–377, 2005.

[31] Werner E. Juengst and Michael Heinrich. Using resource balancing to configure
modular systems. IEEE Intelligent Systems, 13(4):50–58, 1998.

[32] Ulrich Junker. Preference-based search and multi-criteria optimization. Annals of
Operations Research, 130:75–115, 2004.

[33] Ulrich Junker. QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In Nineteenth National Conference on Artificial Intelligence
(AAAI), pages 167–172, 2004.

[34] Ulrich Junker and Daniel Mailharro. Preference programming: Advanced problem
solving for configuration. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 17(1):13–29, 2003.

[35] Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Sixth International Conference on Prin-
ciples and Practice of Constraint Programming, pages 249–261, 2000.

[36] Olivier Lhomme. Quick shaving. In Twentieth National Conference on Artificial
Intelligence (AAAI), pages 411–415, 2005.

[37] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977.

[38] Alan K. Mackworth, Jan A. Mulder, and William S. Havens. Hierarchical arc consis-
tency: exploiting structured domains in constraint satisfaction problems. Computa-
tional Intelligence, 1:118–126, 1985.

[39] Diego Magro and Pietro Torasso. Decomposition strategies for configuration prob-
lems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
17(1):51–73, 2003.

[40] Daniel Mailharro. A classification and constraint based framework for configura-
tion. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
12(4):383–397, 1998.

[41] John P. McDermott. R1: A rule-based configurer of computer systems. Artificial
Intelligence, 19:39–88, 1982.

872 24. Configuration

[42] Deborah L. McGuinness and Jon R. Wright. Conceptual modelling for configuration:
A description logic-based approach. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 12(4):333–344, 1998.

[43] Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction problems. In
Eighth National Conference on Artificial Intelligence (AAAI), pages 25–32, 1990.

[44] Sanjay Mittal and Felix Frayman. Towards a generic model of configuration tasks. In
Eleventh International Joint Conference on Artificial Intelligence, pages 1395–1401,
1989.

[45] Barry O’Callaghan, Barry O’Sullivan, and Eugene C. Freuder. Generating corrective
explanations for interactive constraint satisfaction. In Eleventh International Confer-
ence on Principles and Practice of Constraint Programming, pages 445–459, 2005.

[46] Bernard Pargamin. Extending cluster tree compilation with non-boolean variables
in product configuration: A tractable approach to preference-based configuration. In
IJCAI-03 Workshop on Configuration, pages 32–37, Acapulco, Mexico, 2003.

[47] Charles J. Petrie. Constrained decision revision. In Tenth National Conference on
Artificial Intelligence (AAAI), pages 393–400, 1992.

[48] Jean-François Puget. PECOS: a high level constraint programming language. In
Proceedings of the 1st Singapore International Conference on Intelligent Systems
(SPICIS’92), pages 137–142, Singapore, 1992.

[49] Raymond Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32:57–952, 1987.

[50] Daniel Sabin and Eugene C. Freuder. Configuration as composite constraint satis-
faction. In George F. Luger, editor, Proceedings of the Artificial Intelligence and
Manufacturing Research Planning Workshop, pages 153–161. AAAI Press, 1996,
1996.

[51] Daniel Sabin and Rainer Weigel. Product configuration frameworks - a survey. IEEE
Intelligent Systems, 13(4):42–49, 1998.

[52] Mihaela Sabin, Eugene C. Freuder, and Richard J. Wallace. Greater efficiency for
conditional constraint satisfaction. In Ninth International Conference on Principles
and Practice of Constraint Programming, pages 649–663, 2003.

[53] Thomas Schiex, Jean-Charles Régin, Christine Gaspin, and Gérard Verfaillie. Lazy
arc consistency. In Thirteenth National Conference on Artificial Intelligence (AAAI),
pages 216–221, 1996.

[54] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[55] Carsten Sinz, Andreas Kaiser, and Wolfgang Küchlin. Formal methods for the valida-
tion of automotive product configuration data. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 17(1):75–97, 2003.

[56] Timo Soininen, Esther Gelle, and Ilkka Niemelä. A fixpoint definition of dynamic
constraint satisfaction. In Fifth International Conference on Principles and Practice
of Constraint Programming, pages 419–433, 1999.

[57] Mohammed H. Sqalli and Eugene C. Freuder. Inference-based constraint satisfaction
supports explanation. In Thirteenth National Conference on Artificial Intelligence
(AAAI), pages 318–325, 1996.

[58] Markus Stumptner. An overview of knowledge-based configuration. AI Communica-
tions, 10(2):111–125, 1997.

[59] Markus Stumptner, Gerhard Friedrich, and Alois Haselböck. Generative constraint-

U. Junker 873

based configuration of large technical systems. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 12(4):307–320, 1998.

[60] Markus Stumptner and Alois Haselböck. A generative constraint formalism for con-
figuration problems. In Advances in Artificial Intelligence, Third Congress of the
Italian Association for Artificial Intelligence, AI*IA’93, pages 302–313, 1993.

[61] Gruber T., Olsen G.R, and Runkel J.T. The configuration design ontologies and
the VT elevator domain theory. International Journal of Human-Computer Studies,
44(4):569–598, 1996.

[62] Erlendur S. Thorsteinsson and Greger Ottosson. Linear relaxations and reduced-cost
based propagation of continuous variable subscripts. Annals of Operations Research,
115:15–29, 2002.

[63] Rainer Weigel and Boi Faltings. Compiling constraint satisfaction problems. Artifi-
cial Intelligence, 115(2):257–287, 1999.

[64] Brian C. Williams. Interaction-based invention: Designing novel devices from first
principles. In Proceedings of the Eighth National Conference on Artificial Intelli-
gence (AAAI), pages 349–356, 1990.

[65] Katariina Ylinen, Tomi Männistö, and Timo Soininen. Configuring software products
with traditional methods - case LINUX family. In ECAI-02 Workshop on Configura-
tion, pages 17–22, 2002.

This page intentionally left blank

Handbook of Constraint Programming 875
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 25

Constraint Applications in Networks

Helmut Simonis

In this chapter we discuss the use of Constraint Programming (CP) for network applica-
tions. Network problems arise in many different domains, we take a rather narrow view in
this presentation and concentrate on three areas:

• electrical networks

• water (oil) networks

• data networks

Some of the earliest examples for CLP(R) were for analysing analog circuits, whose behav-
ior can be described by Ohm’s law for the relation between resistance, voltage and current
and Kirchhoff’s laws which defines how connected circuits behave. This early analysis
later was extended to more complex, hybrid networks. One of the most interesting practi-
cal problems in this domain is the configuration of electrical power distribution networks
(section 25.1), which has been studied with different constraint techniques and for which
operational systems exist.

The work on CP models for electrical power distribution networks later led to the study
of water distribution networks (section 25.2), which have similar importance in the utilities
area. Water networks differ from electrical networks in a number of fundamental ways:

• Water can be stored in the network, reservoirs and water towers are key elements of
water distribution systems.

• Water quality can vary. Keeping track of relevant properties is important when mix-
ing water from different sources.

• Many water networks were built in the 19th century. Old pipes may be leaking,
losing up to 30 % of the water sent through them. The exact loss rate is typically
unknown.

B.V.

876 25. Constraint Applications in Networks

Networks for oil distribution have similar properties, but face additional challenges.
The bulk of constraint applications for networks [60] are in the context of data net-

works (section 25.3), covering either traditional, connection oriented networks or packet-
switched, routed networks like the Internet. We look at a number of different applications
in this domain:

• We start with a problem of application placement (section 25.3.1) for the Italian
Inter banking network, which was one of the first large scale CLP applications in the
network domain.

• In many networks, the task of path placement (section 25.3.2) is to define the route
on which a demand will be sent through the network. This is a fundamental net-
working problem, for which many competing CP methods have been proposed.

• One possible extension is the use of multiple paths (section 25.3.3) for demands,
where the secondary path is only active when the primary connection has failed.

• Another possible extension is to add a time dimension, where traffic demands have
given start and end times, and demands compete for network bandwidth if they over-
lap in time. This application is called Bandwidth on Demand (section 25.3.4).

• In the previous problems, the network structure and capacity was fixed. The problem
of Network Design (section 25.3.5) deals with defining connectivity and finding the
right link capacity to satisfy a projected set of demands.

• IP (Internet Protocol) networks usually do not use explicit routes for traffic demands.
Instead, packets are routed based on a distributed shortest path algorithm. Metric
optimization (section 25.3.6) deals with choosing metric weights to influence the
routing in the network and to optimize the network utilization.

• Many traditional algorithms assume a demand matrix of all communication needs
between network nodes. In IP networks this demand matrix is not readily avail-
able, Resilience Analysis (section 25.3.7) tries to predict network behavior in failure
scenarios without explicit knowledge of the demand structure.

• Secondary paths and routing algorithms provide some methods to maintain network
communications in case of element failure. The idea of Bandwidth Protection (sec-
tion 25.3.8) offers an alternative, purely local mechanism for improving network
resilience.

25.1 Electricity Networks

Electrical networks are controlled by the application of three fundamental relations, Ohm’s
law and the two Kirchhoff’s laws:

Ohm’s Law Ohm’s Law relates the three fundamental electrical quantities: voltage V ,
current I and resistance Ω, V = I ∗ Ω.

Kirchhoff’s Current Law The current flowing into a node or branching point is equal to
the sum of the currents leaving the node or branching point.

H. Simonis 877

Kirchhoff’s Voltage Law The sum of all the voltages around any closed path in a circuit
equals zero.

As an early example for CLP(R), it was shown in [35] (see also [36, 46]), that simple
electrical networks can be modeled using linear constraints over continuous domains. The
use of constraints allows a very flexible query structure, were given, partial information
about voltages, currents and resistance can be used to deduce the missing information.
The solver in CLP(R) was restricted to linear constraints only, so that most interesting
electrical and electronic circuits can not be modeled. By combining the finite domain and
the continuous solver in CHIP, the LOGICIM tool [32] extended the modeling capabilities
to hybrid circuits with state. It is perhaps surprising that after the development of non-linear
solvers in the nineties (see Chapter 16 “Continuous and Interval Constraints”) there has
not been a systematic study of the simulation of analog electronic systems with Constraint
Programming.

On the other hand there are application problems where the basic laws above are
enough to model quite complex electrical circuits. This is the case for electrical power
distribution networks, first studied for CLP in [18, 19]. Power distribution networks are
formed of high (medium) voltage transmission lines, which link power stations (the pro-
ducers) to transformer stations (the consumers), which convert the high voltage to lower
voltage for actual consumers. The transmission lines form a graph, of which only a sub-
graph is in active use at any one time. Lines can be enabled and disabled by switches,
which can be opened or closed as required. At any time point, the active transmission net-
work forms a forest, with trees rooted in the power stations and consumers at the leaves of
the network. Cycles in the network must be avoided, since they will result in malfunctions
and equipment damage. The configuration task for a power network consists in controlling
the transmission switches in such a way that

• there are no cycles

• all customers are reached

• the capacity of the power stations is not exceeded

• the currents limits of the transmission lines are not exceeded

• loss due to resistance in the transmission lines is minimized

If an element failure occurs in a network, then there is a reconfiguration task to restore
supply to all or at least to the most important customers as quickly as possible, while
minimizing the number of switch changes. Reaction times in seconds (or faster) is required
as a rule.

For maintenance or extension work it is necessary to isolate certain components in the
network, so that they are safe to work on. Given a set of such maintenance jobs, we have
a planning problem to define the best schedule of operations. This is typically further
constrained by release and due dates, resource and manpower limits and other scheduling
constraints.

The PlaNets system [18, 19] was developed by the University of Catalonia in Barcelona
(UCB) for the Spanish electricity company Enher to tackle these problems. It uses the
rational solver of CHIP [25] for the electrical network constraints, and the finite domain
solver for the temporal and scheduling aspects of the system.

878 25. Constraint Applications in Networks

Recently, other constraints approaches for the reconfiguration problems have been at-
tempted. In [33], the use of a Boolean, BDD [12] based solver is advocated to allow fast
reaction times. The use of propositional calculus to represent open or closed switches is
natural, but in order to be able to use the Boolean solver also for the electrical constraints,
massive simplifications are required. For example, all consumers are assigned the same,
unit demand size, and Kirchoff’s current laws are represented with small integers. The
system currently is in experimental use at the Danish power company NESA.

25.2 Water (Oil) Networks

The team at UCB working on the PlaNets system cooperated with experts on water dis-
tribution systems to form the CLOCWISe consortium to study the use of constraint pro-
gramming for operational control of water systems [11]. Water distribution system share
many aspects with electrical power supply networks. The system forms a network with
supply stations (water wells), transmission lines (pipes) and distribution nodes. The flow
through nodes follow flow conservation (Kirchhoff’s current law), there are capacity limits
for wells and pipes, etc. The scheduling scenarios are similar as well, there are configu-
ration and reconfiguration tasks, and more complex planning scenarios. But there are also
significant differences:

• Water supply systems use storage facilities, reservoirs and water towers. Levels in
these storage nodes evolve over time, producer/consumer models [61] can be used
to describe these constraints.

• Pipes can be operated at different flow rates, with significant differences in the en-
ergy expended.

• Many pipes are old and therefore leaky, losing water at an unknown, but significant
rate. Therefore flow conservation is not preserved, the flow of water entering a pipe
is different from the flow leaving the pipe.

• Chemical properties of water from different sources vary, and may be further changed
by processing in the network. Mixing laws are quite complex and often non-linear.

The CLOCWISe system deals with these additional constraints using the rational solver
of CHIP and its finite domain solver, especially global constraints for scheduling. A qual-
ity estimator for water mixing scenarios uses the linear solver, dealing with non-linear
constraints by piece-wise linear approximation.

Pipeline transport for petro-chemical products is closely related. The FORWARD C
system of Technip [58] contains a module for pipeline transport between a tank farm at a
deep water harbor and the tank farm associated with the refinery. The transmission plan
can be seen as a sequencing operation in a schedule. Crude oil mixing plays an important
role, as it can be used to optimize the throughput of the refinery by mixing crudes with
different properties to more closely match the design specification of the refinery.

Studies to schedule more general oil distribution networks with Constraint Program-
ming were largely unsuccessful. There are many non-linear, continuous constraints, the
pipes can be used bi-directionally, requiring a detailed view of the contents of the pipe
at any given time. When sending two different products, one after the other, through the

H. Simonis 879

pipe, the products partially mix at the interface, requiring down-grading of the product, or
even producing scrap that needs to be reworked at a refinery. An exception was the pipeline
scheduling tool developed by PrologIA for AirLiquide, which was designed to handle parts
of their European pipeline system.

25.3 Data Networks

We now consider data network applications, which form the core of this chapter.

25.3.1 Application Placement

The system described in [16] was one of the first constraint applications dealing with net-
works. It was developed for the Italian Inter-banking network and deals with the placement
of applications on servers in the network.

The problem is to place a set of applications K on different servers in a network, so
that they can run over-night batch jobs with data transmitted by users on nodes in the
network. Each server j has limited CPU capacity, denoted cpu(j), while many nodes of
the network can not host any applications. Each user request states that a user on node i
needs dem(i, k) CPU units for application k. If we run application k on a server j, we
have to pay a cost lic(j, k), typically license fees. Transmitting data from user i to server
j creates a transport cost dist(i, j) per unit transported.

We introduce {0, 1} decision variables Aj,k to indicate if application k is running on
server j, and decision variables Ukij to indicate that the demand of user i for application k
is satisfied by server j. We can then express the model in this form

min
{Ajk,Uk

ij}

∑

k∈K

∑

j∈N

lic(j, k)Ajk +
∑

k∈K

∑

i∈N

∑

j∈N

dist(i, j)dem(i, k)Ukij (25.1)

st.

∀j ∈ N :
∑

k∈K

∑

i∈N

dem(i, k)Ukij ≤ cpu(j) (25.2)

∀k ∈ K, ∀i ∈ N :
∑

j∈N

Ukij = 1 (25.3)

∀k ∈ K, ∀i ∈ N, ∀j ∈ N : Ukij =⇒ Ajk (25.4)

Ajk ∈ {0, 1}
Ukij ∈ {0, 1}

The objective function (25.1) is to minimize the total cost of the system which consists of
the license costs and the transportation cost over the network. Each server can handle only
jobs up the the limit of its CPU, this is controlled by equation (25.2). Equation (25.3) states
that each customer job must be handled by exactly one server. The last constraint (25.4)
states that if a customer application is assigned to a server, then the corresponding applica-
tion must be provided on the server.

Looking at the constraints we see that this model is an extended version of the ca-
pacitated warehouse location problem [48]. This is related to the (simpler) uncapacitated

880 25. Constraint Applications in Networks

warehouse location problem described in [66], one of the first models developed with finite
domain constraint programming. Not surprisingly, the problem in [16] was also expressed
using the finite domain solver of CHIP [25]. It is doubtful whether for this problem the
approach is competitive with state of the art local search methods [47].

Note that the network view of this model is quite simplistic. We only have to pay a
transmission cost which depends on the choice of source and sink for each demand. We do
not consider if there is enough network capacity to transport the traffic over the network,
or which routes should be used. For the application placement model, network capacity
is infinite. We will see in the following section how a more detailed view of the network
could be used to add more constraints to the problem.

25.3.2 Path Placement

In many data networks we can decide which path is used for a demand, and a central control
algorithm is responsible for assigning paths to demands under the capacity constraints of
the network. There are three main alternative models for solving this problem, they are
called

link-based For each demand we have one decision variable per link which states if the
link is used for this demand or not.

path-based For every demand we have one decision variable per possible path between
source and destination. We can choose one path per demand.

node-based For every demand we have a decision variable for every node in the network.
If its value is 0, then the node is not used by the demand, if it is non-zero, then it
gives the successor node. The variables for each demand form a cycle in the graph.

We also present two variants of the path placement problem in this section.

• In the demand acceptance problem, we are given a set of demands and have to decide
which demands we can accept without exceeding the capacity limits of the network.
We are interested in finding a solution which maximizes the value of the accepted
demands.

• The traffic placement problem uses a fixed set of demands, which all have to be
placed. We search for a solution which minimizes the maximal utilization over all
network links.

The base-line comparison for these problems is the CSPF (Constrained Shortest Path
First) algorithm [24], which applies a simple greedy heuristic to place the demands in order
of decreasing demand size. For each demand we attempt to place it on the network using a
shortest path algorithm in a residual graph, where only edges with more than the required
bandwidth are considered. If the demand can be placed, it is accepted, and the free capacity
in the network is reduced by its demand size.

We now discuss the different models in more detail, using the following conventions.
The network consists of a set of nodes N and a set of directed edges E. The set OUT(n)
consists of all edges leaving node n, the set IN(n) of all edges leading to node n. The ca-
pacity of an edge is given by cap(e). The source of an edge is denoted as source(e), the

H. Simonis 881

sink as sink(e). For every demand in the set D, we have a source (orig(d)) and a des-
tination (dest(d)), a bandwidth requirement bw(d) and a value val(d) which indicates
the benefit of accepting demand d.

Link-based model

We start with the demand acceptance problem in a link-based model, where we use one
decision variable for every demand and link of the network. The {0, 1} variable Xde

denotes whether demand d is routed over edge e of the network. For every demand d we
also have one {0, 1} decision variable Zd which indicates if the demand is accepted or not.
The following model gives a MILP formulation.

max
{Zd,Xde}

∑

d∈D

val(d)Zd (25.5)

st.

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =

−Zd n = dest(d)

Zd n = orig(d)

0 otherwise

(25.6)

∀e ∈ E :
∑

d∈D

bw(d)Xde ≤ cap(e) (25.7)

Zd ∈ {0, 1}
Xde ∈ {0, 1}

The path constraint (25.6) states that there is a single path for each accepted demand,
linking the Zd and Xde variables. Equation (25.7) states the capacity constraint, that for
each link the amount of traffic routed over it must be smaller than the link capacity. The
objective (25.5) is to maximize the value of the accepted demands.

We often also have quality of service constraints attached to the demands. For each
demand d we have a quality requirement req(d) which should not be exceeded in our
solution. The quality of the assigned path is calculated as the sum of constants del(e) for
all edges which are used by the path. A typical quality indicator is delay (also called
latency), which is calculated as the sum of the propagation delays of the links on the
selected path. This delay must be smaller than the latency requirement expressed for the
demand. The constraints take the form given in equation (25.8). If the required latency is
too small, then we may not be able to find any path which satisfies the demand.

∀d ∈ D :
∑

e∈E

del(e)Xde ≤ req(d) (25.8)

The traffic placement problem is expressed in a similar form. Here all demands must
be accepted, we therefore no longer need Zd variables. The only variables in the model are
{0, 1} variables Xde which indicate whether demand d is routed over edge e. We still have
the path constraint (equation 25.10) and an objective function (25.9) which is to minimize
the maximal relative utilization of any edge in the network. For this we divide the amount
of traffic routed over the edge by the capacity of the edge. A solution with a cost of less

882 25. Constraint Applications in Networks

than 1 means that the traffic routed over all edges stays within the link capacity, if the cost
is greater than 1, then some links exceed their capacity.

min
{Xde}

max
e∈E

1

cap(e)

∑

d∈D

bw(d)Xde (25.9)

st.

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =

−1 n = dest(d)

1 n = orig(d)

0 otherwise

(25.10)

Xde ∈ {0, 1}

In this model the capacity constraints (25.7) are folded into the objective function, they will
appear as linear constraints in a MILP representation. Unfortunately, there seems to be no
consensus about the objective function. There are at least two other versions proposed in
different papers. One is to minimise the overall network utilization

min
{Xde}

∑

e∈E

∑

d∈D

bw(d)Xde (25.11)

while imposing the capacity constraints (25.7). This objective function is closely related to
the formulation of the Integer Multi-Commodity Flow Problem [3]. The other alternative
is proposed in [51] as a compromise which is supposed to return better overall solutions.
It minimizes the average link utilization.

min
{Xde}

∑

e∈E

∑

d∈D

bw(d)

cap(e)
Xde (25.12)

Overall, demand acceptance and these versions of traffic placement are closely related,
but their objectives are different enough to make a direct comparison between results dif-
ficult. In later section, we will only describe the demand acceptance problem, the traffic
placement variant can be derived in a similar way.

We now discuss a number of proposed algorithms that use the link based model.

Lagrangian relaxation/CP hybrid - path decomposition A hybrid method for traffic
placement is proposed in [51, 52]. It combines Lagrangian Relaxation (LR) (see Chapter
15, “Operations Research Methods in Constraint Programming”) with constraint program-
ming. Both models are set up in parallel and exchange information during a depth-first
search. In the Lagrangian subproblem we dualize the capacity constraints (25.7) into the
cost function and keep the path constraints (25.6).

The constraint model uses finite domain {0, 1}Xde variables and finite domain versions
of the path constraints, strengthened by some redundant inequality constraints to remove
cycles. In a preprocessing step, some capacity constraints based on s-t cuts are added. The
LR model starts with an initial heuristic, possibly infeasible assignment obtained with a
CSPF variant.

H. Simonis 883

At each node of the search tree, a limited number of subgradient steps [3] are performed
in the LR model. This involves solving |D| shortest path problems with an LP solver. The
results are used to generate new constraints for the FD model, which, through propagation,
may lead to further assignments, which are then returned to the LR model. When the LR
model is stopped, the current Lagrangian solution is used to decide on the next branching
choice, assigning some undecided Xde variable. Nodes in the search can be pruned ei-
ther because the LR model becomes infeasible or because constraint propagation detects a
failure.

The results obtained in [51, 52] can not be directly compared with other methods,
since the model uses a different cost function (25.12). But [53, 21] describe experiments
with a modified version of this decomposition where the more commonly accepted cost
function (25.11) is used.

Lagrangian relaxation/CP hybrid - knapsack decomposition As an alternative La-
grangian Relaxation [53] proposes to relax the path constraints (25.6) while keeping the
capacity constraints (25.7). This means that at each subgradient step, we have to solve |E|
independent knapsack ILP problems.

Both [51] and [53] use cost-based filtering [29] from the reduced cost of theX variables
of the LP relaxation solved at each subgradient step to fix some values to either 0 or 1.
This idea is extended in [22, 23], which adds three more filtering rules. Comparative
experiments show that this produces stronger pruning, which improves the quality of the
solutions, reduces the number of nodes in the search tree significantly and can lead to
overall savings in computation time.

Probe backtracking Probe Backtracking Search (PBT) [27] is used in [43] to solve the
traffic placement problem with a link-based model. The idea behind PBT is to split the
constraints into two groups, considered ”easy” and “hard”. The hard constraints and the
optimization are handled by a branch&bound backtracking scheme. In each node, one of
the hard constraints is replaced by a disjunction of easy constraints, which form the basis of
the branching decisions. The system starts with a tentative assignment based on a heuristic.
In each node the current set of easy constraints is used to solve a subproblem called prober
which either detects infeasibility or returns a new tentative, partial assignment. Violations
of the hard constraints are resolved by branching on the introduction of additional simple
constraints.

For the traffic placement problem the prober finds a cycle-free path for one demand
which respects the delay constraint (25.8) and any imposed forbidden and required links.
The prober is implemented as an incremental ILP which adds no-good cuts until a valid so-
lution is returned. The search component checks for violations of the capacity constraints;
if there are none, a solution has been found. Otherwise, it heuristically selects a link with
a capacity violation and a demand routed over it, and calls the prober again, branching on
either forbidding or enforcing the selected link for the selected demand.

The probe backtracking scheme can be used with a variety of probing methods, [37]
considers the combination with local search, and [38] applies this combination to demand
acceptance. The local probe consists of a simulated annealing local search routine which
tries to find paths for a set of demands. One of the challenges for the implementation lies
in how to incorporate forced links into the neighborhood operator.

884 25. Constraint Applications in Networks

Path-based model

The second type of formulation for the path placement problem is the path-based model. In
this model we consider for each demand the paths on which it can be routed. Assume that
there are path(d) possible paths for demand d. We introduce a {0, 1} decision variable
Yid for each possible path for each demand d. The constants heid indicate whether path i
for demand d is routed over edge e. The {0, 1} variables Zd again state whether demand d
is accepted or not.

max
{Zd,Yid}

∑

d∈D

val(d)Zd (25.13)

st.

∀d ∈ D :
∑

1≤i≤path(d)

Yid = Zd (25.14)

∀e ∈ E :
∑

d∈D

bw(d)
∑

1≤i≤path(d)

heidYid ≤ cap(e) (25.15)

Zd ∈ {0, 1}
Yid ∈ {0, 1}

The objective function (25.13) is the same as for the link based model (25.5). Equa-
tion (25.14) links the Zd and the Yid variables and states that at most one path may be
selected for each demand. Equation (25.15) is a modified capacity constraint, stating that
the bandwidth required for all selected paths routed over an edge must be smaller than the
edge capacity.

Column generation The direct implementation of a path based model will be difficult
due to the very large number of possible paths even in a small graph. This model therefore
is a natural candidate for techniques like column generation, where only a limited subset of
all possible paths are considered and the objective function can drive the search for finding
new paths which improve overall solution quality.

We will discuss this approach used for example in [14] in more detail in section 25.3.5.

Blocking islands A different, more CSP oriented view of a path-based model is given in
[30]. It considers the traffic placement problem without objective function, i.e. all demands
must be placed, but we only require a feasible solution. This can be modelled as a CSP
where each demand is a variable which ranges over all possible paths. The main idea of
this paper is that it is not necessary to describe the domains of the variables explicitly, it is
sufficient if we can check whether there still is a possible path for each demand at each step.
This corresponds to a forward-checking based constraint propagation, which can be used
inside a search routine that assigns paths to demands. Heuristics like dynamic variable and
value selection can also be applied, making this a nice example of an implied constraint
model.

Key to the implementation of this implied model is the concept of a blocking island.
For a given demand size d, we can partition the nodes in the network into equivalence

H. Simonis 885

classes, called d blocking islands. All nodes inside one blocking island can reach each
other with paths of at least size d. We know that a demand of size d can be satisfied if both
source and sink are in the same d island, and can not be satisfied if they are in different d
islands. The blocking islands for different capacity values form a tree, where the root is
one island connecting all nodes with capacity 0.

When a path is assigned to a demand, we can update the blocking island tree effectively,
and can check if there still is a path for every demand in the new tree. If not, the node in
the search tree can be pruned, and we backtrack to a previous choice. The experiments in
[30] showed that it can be worthwhile to replace chronological backtracking with a form
of conflict-driven backjumping.

The approach can be easily extended to handle the objective function for traffic place-
ment, but it is unclear how to adapt this technique to the demand acceptance problem.

Local search/CP hybrid Another hybrid solver for the demand acceptance problem is
described in [41, 42]. It combines local search with finite domain constraint programming
in a multi-step procedure, and also combines elements of a path based and a link based
model. It starts with a heuristic, CSPF based initial selection of paths to be chosen. In
a second step, it tries to add additional demands one by one, at each step calling a local
search based repair method to remove any capacity bottlenecks. This repair works by
replacing an existing path with a new one. As a third step it uses a hybrid branch&bound
routine combining finite domains with local search. The finite domain model initially only
consists of the acceptance variables Zd, the Xde variables are only lazily generated on
demand. The system finds necessary links for a demand, and imposes capacity constraints
on them. It also considers certain cut sets and createsXde variables for each of those links.
It then adds a constraint stating that their sum must be equal to the demand variable Zd as
well as the link capacity constraints over all demands on that link.

The local search routine identifies capacity violations and builds a neighborhood by se-
lecting demands currently routed through a violation, and choosing a new shortest path for
each demand, using the capacity violation as link metric. The neighborhood is evaluated
based on the improvement of the capacity violations, and a move selected using a random-
ized choice which allows some decrease in quality for some moves. A restart method was
incorporated to go back to a previous state if no improvement had been achieved within a
given number of steps.

A comparison of this method with a variant of [43] for demand acceptance showed that
both were complementary, each method was more successful on some problem instances,
while both clearly outperformed CSPF.

Node-based model

In the node-based model the decision variables define successor relations between network
nodes, defining paths through a network via the nodes that are traversed. This model is
due to [56], which describe this model in terms of a Bandwidth on Demand application
(see section 25.3.4). For each demand d and each node k in the network, we introduce an

886 25. Constraint Applications in Networks

integer decision variable Skd with the following domain:

Skd ::

{sink(e)|e ∈ OUT(k)} k = orig(d)

orig(d) k = dest(d)

{0} ∪ {sink(e)|e ∈ OUT(k)} otherwise

(25.16)

For each demand the domain for a node contains all possible successors and the value 0,
which indicates that the node is not used to route the demand. We add a back-link from
the destination of the demand to the source, which does not correspond to an edge in the
graph. We now require that for every demand d the set

{< k, Skd > |Skd 6= 0} (25.17)

forms a cycle in the graph (augmented with the back link). In [56], this condition is ex-
pressed with the cycle constraint [7, 10] of CHIP. This constraint does not allow conditional
nodes, the model therefore needs dummy nodes and edges to connect all unused nodes in
a second cycle.

The capacity constraint for each node can be expressed with a cumulative constraint
[2], which uses two arguments, a set of tasks given by start, duration and resource use and
a resource profile, given as a set of tuples time point and resource limit.

cumulative({< Sid, 1,bw(d) > |d ∈ D},

{< l,m > |0 ≤ l ≤ n,m =

∞ l = 0

cap(e) ∃e ∈ Est.source(e) = i,sink(e) = j

0 otherwise

})

(25.18)

In this model we need |D| cycle constraints and |N| cumulative constraints to express the
conditions of the routing problem, we then have to define a search routine and a min max

[55] optimization routine to find the optimal solution. Additional conditions like quality of
service constraints can be handled by using extra arguments of the cycle constraints.

The cycle constraint probably is not the best choice for this application, the need for
dummy nodes and edges in the model destroys much of its propagation potential.

25.3.3 Multiple Paths

In the models of section 25.3.2 we have looked for a single path for each demand. This
path is used to transmit the traffic between the source and the destination of the demand.
What happens if one of the elements on the path fails? There are three possible scenarios:

• The transmission for the demand is interrupted until the element failure is repaired.
This may lead to an outage of several hours and is normally not acceptable.

• We dynamically search for a new path in the modified network and set up the path for
transmission. The outage will be much shorter, and is limited by the time required
to find a new path.

H. Simonis 887

• We have pre-computed an alternative path, which is link disjoint to the original path,
so that the element failure does not affect this additional, secondary path. We can
immediately switch to the alternative, minimizing the outage.

We will now look at the problem of finding multiple (primary and secondary) paths for
demands, where the primary path is used in normal operation, and the secondary is only
active when some link on the primary path has failed. We present a link-based, demand
acceptance model for this problem, which is an extension of the model in section 25.3.2. In
addition to the {0, 1} variables Zd for demand acceptance, and Xde for the primary path,
we need additional decision variables Wde, which indicate whether edge e is used for the
secondary path of demand d.

max
{Zd,Xde,Wde}

∑

d∈D

val(d)Zd (25.19)

st.

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =

−Zd n = dest(d)

Zd n = orig(d)

0 otherwise
(25.20)

∀e ∈ E :
∑

d∈D

bw(d) ∗Xde ≤ cap(e) (25.21)

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Wde −
∑

e∈IN(n)

Wde =

−Zd n = dest(d)

Zd n = orig(d)

0 otherwise
(25.22)

∀e ∈ E, ∀e′ ∈ E \ e :
∑

d∈D

bw(d) ∗ (Xde −Xde′ ∗Xde +Xde′ ∗Wde) ≤ cap(e)

(25.23)

∀d ∈ D, ∀e ∈ E : Xde +Wde ≤ 1 (25.24)

Zd ∈ {0, 1}
Xde ∈ {0, 1}
Wde ∈ {0, 1}

The model is quite similar to the model in section 25.3.2. The objective function (25.19) is
the same, and we also find the path constraint (25.20) and the capacity constraints (25.21)
for the primary path. To this we add a path constraint for the secondary path (equa-
tion 25.22) and the link-disjoint constraint (25.24) which states that primary and secondary
paths for a demand can not share a link. The only complicated, additional constraint is the
capacity constraint for the secondary paths (equation 25.23). This expresses the capacity
for link e in the case of failure of link e′. The traffic we have to consider is the sum of
all primary paths through link e, except for those that were also routed through link e′.
In addition we need to consider all secondary paths routed through e, where the primary
was routed through the failed link e′. We therefore need a capacity constraint for each link

888 25. Constraint Applications in Networks

under each failure scenario. This dramatically increases the number of constraints that are
required.

The link disjoint constraint is only one way of keeping the primary and secondary paths
apart. We can also consider two stronger alternatives, the paths may be node disjoint or
SRLG disjoint.

For node disjoint primary and secondary paths we enforce that, except for the source
and destination nodes, the paths do not cross the same nodes. This protects the connection
even in case of a node failure. We can express this constraint by the equations

∀d ∈ D, n ∈ N \ {orig(d),dest(d)} :
∑

e∈IN(n)

Xde +Wde ≤ 1 (25.25)

∀d ∈ D, n ∈ N \ {orig(d),dest(d)} :
∑

e∈OUT(n)

Xde +Wde ≤ 1 (25.26)

Using either (25.25) or (25.26) together with the path constraint is enough to ensure the
condition.

The SRLG disjoint constraint is a generalization to arbitrary sets of links. A shared risk
link group (SRLG) is a set of links that we consider might fail together. This can happen
for example if several (physical) links are run through the same cable duct, or if multiple
logical (layer-3) connections are mapped to the same physical (layer-1) connections, for
example multiple carriers using the same sea-cable for a intercontinental connection. To
express this constraint, we assume we are given a set S of SRLG sets. For each SRLG
SRLG and each demand d , we express the constraint that primary and secondary path can
not share any links in the set.

∀d ∈ D, ∀SRLG ∈ S :
∑

e∈SRLG

Xde +Wde ≤ 1 (25.27)

The model above is the basis for the solver described in [68]. A linearization of the
non-linear constraints (25.23) adds a many new variables and linear constraints. To han-
dle this very large number of capacity constraints required for the failure cases the au-
thors suggested the following decomposition. Initially, the problem is set up without con-
straints (25.23) and solved with a MILP solver. For the optimal solution the secondary
path capacity constraints are checked and, if violated, added (linearized) to the constraint
set. The process iterates until no secondary path capacity constraints are violated, in which
case an optimal solution to the whole problem is found. This can be seen as a form of
Benders decomposition (see Chapter 15, “Operations Research Methods in Constraint Pro-
gramming”), where the secondary path capacity constraints form the sub problems, and all
other constraints form the master problem. The Benders cuts that are generated take the
form of the linearized capacity constraints. This approach allowed a significant speed-up
over a standard MILP formulation of the problem.

25.3.4 Bandwidth on Demand

So far, the traffic demands we encountered were all for a single snapshot in time, i.e. all
demands were simultaneous. We now consider the Bandwidth on Demand scenario where
each demand has a fixed start start(d) and end end(d) time, and demands only interact

H. Simonis 889

if they overlap in time. The problem is to accept demands so that at no time point the
capacity of the network is exceeded. Instead of looking at every time point between the
earliest start and the latest end of any demand, we can restrict ourselves to time points
when new demands are starting. The set of time points T to consider is then given by

T = {start(d)|d ∈ D} (25.28)

We can now formulate the demand acceptance problem for Bandwidth on Demand with
the following MILP, which uses the Zd and Xde {0, 1} decision variables already familiar
from section 25.3.2.

max
{Zd,Xde}

∑

d∈D

val(d)Zd (25.29)

st.

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =

−Zd n = dest(d)

Zd n = orig(d)

0 otherwise
(25.30)

∀t ∈ T, ∀e ∈ E :
∑

d∈D
start(d)≤t
t<end(d)

bw(d)Xde ≤ cap(e) (25.31)

Zd ∈ {0, 1}
Xde ∈ {0, 1}

We find the objective function (25.29), the path constraint for each demand (25.30) and a
modified capacity constraint (equation 25.31). This capacity constraint is now quite similar
to the global cumulative constraint [2]. For every time point and every link, the sum of the
accepted traffic routed over the link may not exceed the link capacity.

There are many ways to extend the basic Bandwidth on Demand model. Simple mod-
ifications are changes of the link capacity over time or general topology changes at fixed
time points. We may also consider that demands may be moved from one path to another
during their life-time, in order to accommodate changes in the demand structure.

Another natural extension is some form of on-line algorithm, where new demands for
future time periods are added from time to time. Previous commitments must be respected,
i.e. demands that were accepted at an earlier time point can not be rejected later on. This
is easily handled by forcing some of the Zd variables to be 1.

A much more challenging extension is to relax the fixed start and end times. If demands
can be moved in time, we obtain a very difficult combination of the path placement and a
cumulative scheduling problem.

France Telecom The problem first described in [39], and then reconsidered in [44] is an
on-line version of the Bandwidth on demand problems for ATM networks. When a new

890 25. Constraint Applications in Networks

demand is entered, we have to check if it can be accepted, possibly by rerouting previously
accepted demands. There is a time limit of one minute to decide on acceptance. But once
a demand has been accepted, it can not be rejected at a later point in time.

The model of [39] uses a constraint based conflict resolution mechanism which is called
when a demand can not be placed on top of the existing set of connections. It selects short
paths for the new demands and finds all existing connections which would be in conflict
when accepting the new demand on one of the routes. It then creates a constraint model
which tries to repair the solution by moving one of the existing connections to a new path.
The resulting capacity checks are quite complex, since they have to be performed for every
time point between the start and the end of the task considered. A specialized calendar data
structure is used to minimize the overhead.

The constraint model for the path constraint takes an unusual form in this model. It is
based on an assignment from a n-th hop variable to the links of the network. Therefore,
the length of each path must be bounded a priori, and a dummy value for “not used” must
be introduced.

The procedure is compared to the on-line CSPF algorithm, which does not consider
rerouting of existing connections, and achieves some improvement in the percentage of
accepted demands.

The approach in [44] uses the same basic problem formulation, but uses Valued CSP
(VCSP) (see Chapter 9, “Soft Constraints”) as the conflict resolution mechanism. The
VCSP is solved by a combination of finite domain, local search and limited discrepancy
search [34].

Schlumberger dexa.net The Bandwidth on demand system for Schlumberger’s dexa.net
[64] decomposes the problem on a temporal basis. For each time point, a specialized solver
for the demand acceptance problem is run, its results form new constraints for the next time
point.

This technique is expanded in [17], which proposes three alternative models. In the
first one, all orders starting at the same time are processed together, with different events
being treated sequentially. In the second model, the overall planning horizon is split into
intervals, and all tasks starting in that interval are planned together. In the last model, a
Benders decomposition is used to link subproblems for each interval together in the master
problem. Tasks which extend over several intervals cause inter-dependency between the
sub problems, the generated Benders cuts guide the procedure to the optimal solution.
The first two methods are incomplete, the third one is complete. Experiments and the
comparison with a MILP formulation show that the temporal decomposition is much faster
than, but can not reach the quality of, the Benders decomposition, which in turn is similar
to the MILP solution in quality, while requiring significantly less computational effort.

Global constraint model As described in section 25.3.2, the approach of [56] uses a
node-based model. To handle the time dimension of the Bandwidth on Demand prob-
lem, the authors replace the cumulative constraints (25.18) with a four dimensional diffn
constraint [7].

H. Simonis 891

25.3.5 Network Design and Capacity Planning

The problems in sections 25.3.2 to 25.3.4 were all considering a fixed network structure.
The topology of the network and the link capacities were given, the variables were intro-
duced by demands and the overall utilization of the network. When planning to build a
network, a different question arises: How should I connect the nodes in my network, and
which capacity should I use for each link? A similar problem is considered in capacity
planning. Given the current network and set of projected demands, how should I extend
the network to cope with future demands. We now consider this problem, following the
problem specification in [40]. For every potential edge in the network, we have a set of
alt(e) possible design alternatives with bandwidth cap(i, e) and cost cost(i, e). One
of these alternatives might be not to use that link. This alternative may have non-zero cost
in the case of capacity planning, when the link already exists and we have to pay a de-
commissioning cost in order to remove it. In our model we have two types of variables, the
Xde {0, 1} variables which indicate whether a link is used by a demand, and Wie decision
variables which indicate if design alternative i for edge e is chosen.

min
{Xde,Wie}

∑

e∈E

∑

1≤i≤alt(e)

cost(i, e)Wie (25.32)

st.

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =

−1 n = dest(d)

1 n = orig(d)

0 otherwise

(25.33)

∀e ∈ E :
∑

d∈D

bw(d)Xde ≤
∑

1≤i≤alt(e)

cap(i, e)Wie (25.34)

∀e ∈ E :
∑

1≤i≤alt(e)

Wie = 1 (25.35)

Wie ∈ {0, 1}
Xde ∈ {0, 1}

The objective function (25.32) is to minimize the total cost of the design. Equa-
tion (25.33) states the usual path constraint for each demand. The design choice con-
straints (25.35) state that for each edge we have to choose one alternative (which might
be not to use the link). The capacity constraint (25.34) compares the traffic volume routed
over the link with the capacity provided by the chosen design alternative.

ROCOCO benchmarks Reference [40] provides an evaluation of five alternative solu-
tion methods for a set of benchmark problems from France Telecom, and also introduces
combinations of additional constraints for this problem to create a broader set of test cases.
It looks at a CP, a MILP and a column generation alternative in an attempt to improve
first results, and further develops the constraint model into a hybrid with local search and
parallel execution on multiple processors. An initial heuristic solution is created with CP,
a local search module then tries to improve the solution found, and finally a tree search is
started with the best current solution as an upper bound.

892 25. Constraint Applications in Networks

The problem sizes range from very small (4-10 nodes) to medium size (15-25 nodes),
and a timeout of 10 minutes is imposed. For a design problem that is a very small ex-
ecution time, this might be explained by the large number of problem variations being
tested. Over the implemented variants, the CP+local search routine is the most effective,
but unfortunately details of the different models are quite sparse.

The model used by [14] is path based, using column generation in a branch and price
and cut framework. The paper describes various cutting planes, which strengthen the basic
branch and price framework, which alone is not competitive. But even with the cuts added,
the system does not find solutions within the timeout using the default search method. A
custom search routine based on limited discrepancy search [34] was used to find solutions,
results indicated that is was performing better than [40].

Design for multicast In [20, 21] a variant of the design problem is studied. Instead of
designing a network for point to point demands, the authors consider multi-cast traffic de-
mands. In multi-cast, a traffic source injects traffic to the network which must be delivered
to a number of subscribers. The traffic is routed over a tree rooted in the traffic source,
with consumers located on the leaf nodes. Multi-cast traffic on IP networks is becoming
more and more significant, as it is a much cheaper form of content distribution for applica-
tions like video-on-demand, broadcasting, or large scale software updates. The two papers
differ in the method used, [20] describes a hybrid of Lagrangian relaxation with constraint
programming, while [21] considers a hybrid of a branch-and-price column generation with
a finite domain constraint component.

SONET network design Although also a network design problem, the problem studied
in [63] bears little relation to the model shown above. [63] shows results for using Con-
straint Programming on a design problem of a SONET/SDH optical network. Instead of
point-to-point links, SONET networks use fiber rings to which a number of users can be
connected via hardware devices. The ring capacity can be filled with traffic between users
on the same ring. The objective is to choose the minimal number of rings and of hardware
interfaces to satisfy all communication demands.

25.3.6 IGP Metric Optimization

The problems considered in sections 25.3.2 to 25.3.4 were all about explicit traffic place-
ment, i.e. a central control algorithm computed single paths for demands which together
satisfied the global capacity constraints. In marked contrast stand networks that use rout-
ing and packet switching. Here each packet is forwarded locally not by following a fixed
connection between source and destination, but by local routing decisions which control
at each node where the packet is sent next. A distributed routing algorithm is used so
that each router makes its forwarding decisions only based on local knowledge, and con-
trol messages are sent between the nodes to inform them about the overall topology and
changes to the connectivity. The routing protocols are designed to converge to a con-
sistent routing after each change within a limited time period, the re-convergence time.
Routing inside the network is controlled by the Interior Gateway Protocol (IGP), routing
to destinations outside the current network is controlled by the Border Gateway Protocol
(BGP) [54]. There are many variants of IGP routing protocols (like RIP, OSPF [49], IS-

H. Simonis 893

IS, EIGRP) [45], which mainly differ in the way the distributed network nodes exchange
information and what global view of the network is maintained in each node.

From the outside, IGP routing in a steady state can be seen as an application of shortest
path finding. Each link in the network is assigned an edge weight, the routing metric, and
traffic through the network follows a shortest path between source and destination. By
changing the routing metric we can (indirectly) control which paths are chosen and how
much traffic can be placed on the network.

An important question is what happens if multiple shortest paths exist between two
nodes. Depending on the protocol and its configuration, the system may

• select one of the paths at random

• split traffic between multiple alternatives in a balanced way

• split traffic between multiple alternatives in arbitrary fashion

There typically is also a hardware-based limit on how many (typically 8 or 16) shortest
path alternatives can be handled in each node.

All this makes it very hard to predict where traffic will be placed when multiple shortest
paths exist. Some of the systems for IGP metric optimization therefore enforce a constraint
that only a single shortest path can exist between any two nodes in the network.

We now present an example of a path-based model for IGP metric optimization, which
enforces the single shortest path rule. The model uses positive integer (not {0, 1}) variables
We for the edge weights. We have {0, 1} variables Yid for each demand d and each of the
path(d) possible paths for the demand, which indicate whether this path is used. We
also introduce continuous variables Pid which describe the total weight of the path i for
demand d as the sum of the weights of the edges traversed. The {0, 1} constants heid
indicate whether path i for demand d traverses edge e.

min
{Yid,We}

max
e∈E

1

cap(e)

∑

d∈D

bw(d)
∑

1≤i≤path(d)

heidYid (25.36)

st.

∀d ∈ D :
∑

1≤i≤path(d)

Yid = 1 (25.37)

∀d ∈ D, 1 ≤ i ≤ path(d) : Pid =
∑

e∈E

heidWe (25.38)

∀d ∈ D, 1 ≤ i, j ≤ path(d) : Pid = Pjd =⇒ Yid = Yjd = 0 (25.39)

∀d ∈ D, 1 ≤ i, j ≤ path(d) : Pid < Pjd =⇒ Yjd = 0 (25.40)

Yid ∈ {0, 1}
integer We ≥ 1

Pid ≥ 0

The objective function (25.36) is to minimize the maximal relative utilization of any link
in the network. Constraint (25.37) enforces that there is a single, selected shortest path.
The weight of each path is controlled by equation (25.38) as the sum of the weights of the

894 25. Constraint Applications in Networks

traversed edges. Constraint (25.39) states that paths for one demand with the same weight
must have identical Yid values, which must be zero, as only one shortest path is allowed.
Equation (25.40) states that a path will not be selected if a shorter one exists. Note that
this is not intended as an effective model to generate weights, but serves as a declarative
problem specification. We now discuss a number of solution approaches to this problem:

Branch and price A complete method for the unique path weight setting problem is
given in [4]. It is based on a path-based model using column generation in a branch and
price framework using a hybrid with finite domain constraints. Paths for demands are
created lazily using the pricing information from the master problem as a guide.

Preliminary experimental results indicate that the hybrid outperforms more straightfor-
ward MILP models, but has difficulty scaling to larger problem instances. One problem is
the lack of a good initial solution which can be used as a starting point for the tree search.

Tabu search A combination of a tabu based local search and a MILP is presented in
[5]. It is based on the observation that if a weight setting with fractional values achieves
unique paths, then it can be easily converted into a weight setting using integer weights. So
a tabu-based local search is first used to derive fractional weight settings, with the MILP
converting the result into (small) integer weights. To come up with unique paths in the
local search, an ingenious weight assignment is used which assigns weights 2−i to the
edges with a different exponent i for each edge. Therefore each path in the network has
a unique weight, and the search consists in finding a permutation of the edge assignments
which minimizes the traffic load.

This algorithms scales well, although care must be taken not to cause rounding errors
in the shortest path calculations due to the extreme range of weight values. Experimental
results indicate that in the second part of the algorithm the weights can be re-assigned to
integer values ranging from 1 to 200.

Set constraint solver A more generic problem is solved in [28]. The set based (see
Chapter 17, “Beyond Finite Domains”) model presented in the paper allows to impose
limits on the splitting of flows in each router. This can be used to express the condition
mentioned above that the router hardware limits branching in a node to no more than m
alternatives.

The model is a combination of set-valued variables describing the paths, continuous
variables describing the flow volumes on each edge directed towards a node and integer
variables for the edge weights and distance values. It is a good example for the use of
different domain types within one model.

Experimental results show that feasible solutions which satisfy the branching limits are
obtained easily, but that their quality is not close to the lower bound.

25.3.7 Flow Analysis and Resilience Analysis

So far we have assumed that as part of our problem definition we have a well-defined set
of demands: We know who wants to use the network for connections between specific
points and how much bandwidth they require. For IP based networks this assumption is

H. Simonis 895

not valid. In an operational network there is no (simple) way of collecting data about end-
to-end traffic flows, we don’t know who is talking to whom and how much bandwidth they
use. The only information we can collect is the overall traffic on each edge on the network
traf(e) and the external traffic entering extin(i) and leaving extout(j) at each node of
the network. We can try to reconstruct a demand matrix from these measurements, this is
an active research area called traffic flow analysis.

A model for this problem is shown below. We use non-negative flow variables Fij to
denote the traffic flow from node i to node j in the network. The [0, 1] constants reij define
the routing in the network, they indicate what fraction of the flow between nodes i and j is
routed over edge e.

∀i, j ∈ N : min
{Fij}

/max
{Fij}

Fij (25.41)

st.

∀e ∈ E :
∑

i,j∈N

reijFij = traf(e) (25.42)

∀i ∈ N :
∑

j∈N

Fij = extin(i) (25.43)

∀j ∈ N :
∑

i∈N

Fij = extout(j) (25.44)

Fij ≥ 0

For every flow, we try to find a lower and an upper bound as the result of an optimiza-
tion run with the objective (25.41). We know that the sum of all flows routed over an
edge is equal to the observed traffic on the edge (25.42), and that the sum of all flows
starting (25.43) or ending (25.44) in a node must be equal to the observed external traffic.

The fundamental problem with this approach is that it is very under-constrained. We
have |N|2 flow variables Fij , but only |E| + 2|N| constraints. Results in [59] show that
the values for the flows can vary in a very wide interval, with no clear preference for
any particular value. It is therefore unclear how to use the results for answering further
questions about the network, for example how the traffic will change in case of an element
failure.

The idea behind resilience analysis is to avoid the generation of the intermediate de-
mand matrix, and to pose questions about the network behavior directly in the initial model.
For example, we may be interested in understanding the traffic in the network under an el-
ement failure and resulting re-routing. The routing in the normal network operation is
denoted with reij , the routing after the element failure is given by r̄eij . The model for re-
silience analysis below uses the flow variables Fij only internally, without trying to deduce
particular values.

∀e ∈ E : min
{Fij}

/max
{Fij}

∑

i,j∈N

r̄eijFij (25.45)

896 25. Constraint Applications in Networks

st.

∀e ∈ E :
∑

i,j∈N

reijFij = traf(e) (25.46)

∀i ∈ N :
∑

j∈N

Fij = extin(i) (25.47)

∀j ∈ N :
∑

i∈N

Fij = extout(j) (25.48)

Fij ≥ 0

The objective function (25.45) now tries to find a value for each edge in the network under
the failure scenario, and finds bounds by running minimization and maximization opti-
mization queries. The constraints (25.46, 25.47 and 25.48) are the same as for the traffic
flow analysis.

Results in [59] indicate that the bounds on the link traffic in failure scenarios are much
tighter, and are close enough for most practical purposes.

In the discussion above, we have oversimplified the use of the actual traffic measure-
ments. The models above only work if a consistent snapshot of all values can be collected.
In practice, this poses significant problems. If the data are not collected for exactly the
same time periods, then inconsistencies may occur. There are further problems caused by
queues in the routers and bugs in implementing data collection facilities in devices of mul-
tiple vendors. The data collection process itself uses unreliable communications (UDP) so
that some measurements may be lost due to dropped packets. One approach to overcoming
these issues is the use of a separate error correction model, which tries to correct values
before feeding them into the models above. Another, shown in [71, 70, 72] deals with
the problem by integrating incomplete and inconsistent data into the constraint solving
process.

25.3.8 Bandwidth Protection

It is very important that a network functions not only when all its elements are working,
but that it continues to provide its services when some network elements fail. So far, we
have seen two methods of dealing with that issue. In section 25.3.3, we looked at the
provisioning of primary and secondary paths in the network, where the secondary path is
used when an element on the primary path fails. Depending on the constraint used, this will
protect against single link failures, node failures or SRLG failures. In section 25.3.7 we
have studied the problem of resilience analysis which considers a routed network without
an explicit traffic matrix. The resilience analysis provides bounds on the link utilization
in a failure event; if the upper bounds are below a given capacity limit, then the service is
guaranteed not to be affected after the re-convergence of the routing protocol.

In this section we discuss a different method for bandwidth protection, first described
in [69]. We consider node failures in a network, and try to provide local detours for the
traffic around each failed element.

To explain the basic idea, we look at the small example in figure 25.1 taken from [67].
In this network we consider the failure of node j, which is currently used to forward traffic
from node c to nodes e and f . A set of possible detours will be to use the paths c, k, l, e and

H. Simonis 897

j e

c f

k l

20

10

30

ce, cf

ce, cf

cf

ce

Figure 25.1: Bandwidth Protection Problem

c, k, l, f . But how much capacity do we need to allocate on each link of these detours? We
don’t know the actual values for the flows between c and e or f , but we can come up with
bounds on these values from the bandwidth of the links cj, jf and je. The flow between
c and f must be less than 20, and the flow between c and e less than 10. But reserving
20 + 10 = 30 on the detour links ck and kl is wasteful, the combined value of the flows
must be below 20, since they both pass through link cj in the normal state of the network.
For the link lf we have to allocate 20, and for the link le 10 units of capacity. Indeed, for
every link on the detours we have to allocate the maximal amount that could flow through
this link, no matter how the flows through node j are allocated. This leads to the nested
optimization problem in (25.49).

min
{Xfe}

X

f∈F

X

e∈E

Xfe

st.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

∀f ∈ F :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

∀n ∈ N \ {orig(f),dest(f)} :
X

e∈IN(n)

Xfe =
X

e∈OUT(n)

Xfe

n = orig(f) :
X

e∈OUT(n)

Xfe = 1

n = dest(f) :
X

e∈IN(n)

Xfe = 1

∀e ∈ E : cap(e) ≥

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

max
{Qfe}

X

f∈F

XfeQfe

st.

8

>

>

<

>

>

:

∀o ∈ orig(F) : ocap(o) ≥
X

f :orig(f)=o

Qfe

∀d ∈ dest(F) : dcap(o) ≥
X

f :dest(f)=d

Qfe

Xfe ∈ {0, 1}

quan(f) ≥ Qfe ≥ 0

(25.49)

We consider the set F of all local flows f through the failed element. For each of these
flows, we want to provide a single detour around the failure via a link based model from
the origin of the flow orig(f) to its destination dest(f). For this we introduce {0, 1}

898 25. Constraint Applications in Networks

variables Xfe which state whether edge e is used in the detour for flow f . We also use
continuous variables Qfe to describe the flow volume for flow f that we need to consider
for edge e. These flow quantities are constrained by the capacity of the network around the
failed element. For every edge, we have to solve a maximization problem, which finds the
flow volume that could be forced through that link in the failure case. A feasible solution
consists in a choice of the Xfe variables which forms a path from source to destination
of flow f and which ensures that on each edge the required capacity is below the edge
capacity cap(e).

We have to solve this problem for every failure we want to consider, and then need
a mechanism which remembers and activates the detours when a failure occurs. The big
advantage of this approach is that it is independent of the traffic pattern at the time of
failure. Indeed, we don’t need any information about traffic flows, or even the routing
method used.

How can we actually solve this type of nested optimization problem? In [69], two
methods are proposed. The first is a transformation into a MILP, using the Karush-Kuhn-
Tucker condition [50] and introducing a set of new variables. This method does not scale
well, and can not solve most of the data sets considered in [69].

The second alternative is to decompose the problem into an integer multi-commodity
flow problem [3] as the master problem and capacity optimization problems for each edge
as subproblems. The master problem generates tentative assignments for the detours,
which are checked by the capacity problems. If the capacity of the edge is exceeded,
then a cut is generated which is passed back to the master problem and which will change
the path assignment. When no capacity constraints are violated, then a solution is found
and the procedure stops. The simplest form of cut that can be generated is a no-good which
excludes the current solution, but more effective cuts are possible and are described in [69].

Experimental results in [69, 67] show that while the decomposition method works for
some large problem instances, it can be beaten by a different transformation of the embed-
ded optimization problem into MILP model. Scalability of the algorithms is still an issue,
as the number of flows to be considered increases with increased connectivity in the graph,
which also has an impact on the number of possible detours to be considered.

25.4 Conclusion

Before we try to summarize the results in this chapter, we want to mention some related
problems where constraint programming has been applied. The problem of frequency
assignment in radio networks [1] has been studied quite successfully with different soft
constraint methods, this is discussed in some detail in Chapter 9, “Soft Constraints”. Con-
straint programming has also been used for a study of the location of wireless base stations
[31]. An emerging domain with interesting challenges for constraint programming is the
area of ad-hoc networks [57].

In this chapter we have looked at applications for different network problems, con-
sidering electrical, water and especially data networks. The applications for data networks
cover a wide range of problems, from design, to risk analysis and operational control. Clas-
sical finite domain constraint programming currently seems to be rather limited for these
problems, this clearly is a field where hybrid systems are achieving much better results. As
an explanation we can see two main contributing factors: one is the important role of cost

H. Simonis 899

optimization, the other the large scale of the problems together with the fine granularity of
the decisions. LP relaxations and Lagrangian Relaxation (see Chapter 15, “Operations Re-
search Methods in Constraint Programming”) seem to provide a much better reasoning on
cost bounds than we achieve from individual finite domain or set constraints. At the same
time, we often find it easier to construct some feasible solutions and changing them with
a restricted neighborhood operator, rather than building very large domain representations
from the start.

Limiting factors for the use of hybrid systems are the complexity of designing and eval-
uating the schemes and the implementation effort required to build a working application.
A flexible constraint toolkit like ECLiPSe [15] can help to speed up development, but at
the moment building hybrid systems remains still very much a task for specialists.

Is there a way to encapsulate the structure of the problem in some global constraints
(see Chapter 6, “Global Constraints”), which hide the algorithmic complexity and pro-
vide more high-level abstractions for application developers? Global constraints for graph
based problems have been around for some time [7, 10, 9] and have been very useful for
rapid application development in other domains [10, 58, 62]. As we have seen in sec-
tion 25.3.2, they are probably not the right abstraction for the applications discussed here.
But there are a number of proposals for new global constraints [8, 13, 26] which may help
to solve some of these problems in a more declarative way. Much will depend on how well
these constraints will integrate cost reasoning, and which problem size can be handled
effectively.

Bibliography

[1] K. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano.
Models and solution techniques for frequency assignment problems. 4OR, 1(4):261–
317, 2003.

[2] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex schedul-
ing and placement problems. Mathematical and Computer Modelling, pages 57–73,
1993.

[3] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.
[4] F. Ajili, R. Rodosek, and A. Eremin. A branch-price-and-propagate approach for

optimising IGP weight setting subject to unique shortest paths. In Proceedings of the
20th Annual ACM Symposium on Applied Computing (ACM SAC ’05), Santa Fe, New
Mexico, March 2005.

[5] F. Ajili, R. Rodosek, and A. Eremin. A scalable tabu search algorithm for optimising
IGP routing. In 2nd International Network Optimization Conference (INOC ’05),
pages 348–354, March 2005.

[6] R. Barták and M. Milano, editors. Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, Second International Con-
ference, CPAIOR 2005, Prague, Czech Republic, May 30 - June 1, 2005, Proceedings,
volume 3524 of Lecture Notes in Computer Science, 2005. Springer. ISBN 3-540-
26152-4.

[7] N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathemat-
ical and Computer Modelling, 12:97–123, 1994.

900 25. Constraint Applications in Networks

[8] N. Beldiceanu, P. Flener, and X. Lorca. The tree constraint. In Barták and Milano
[6], pages 64–78. ISBN 3-540-26152-4.

[9] A. Bockmayr, N. Pisaruk, and A. Aggoun. Network flow problems in constraint pro-
gramming. In Principles and Practice of Constraint Programing - CP 2001, Paphos,
Cyprus, November 2001.

[10] E. Bourreau. Traitement de Contraintes sur les Graphes en Programmation par
Contraintes. PhD thesis, L’Universite de Paris 13 - Institut Galilee Laboratoire
d’Informatique de Paris Nord (L.I.P.N.), March 1999.

[11] M. Brdys, T. Creemers, H. Goosens, J. Riera, A. Heinsbroek, and Z. Lisiak. CLOC-
WiSe: Constraint logic for operational constrol of water systems. Technical report,
UPC, 2003.

[12] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

[13] H. Cambazard and E. Bourreau. Conception d’une contrainte global de chemin. In
JNPC’04, 2004.

[14] A. Chabrier. Heuristic branch-and-price-and-cut to solve a network design problem.
In Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems CP-AI-OR 03, Montreal, Canada, May 2003.

[15] A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen, and M. G. Wallace.
ECLiPSe: An introduction. Technical Report IC-Parc-03-1, IC-Parc, Imperial Col-
lege London, 2003.

[16] C. Chiopris and M. Fabris. Optimal management of a large computer network with
CHIP. In 2nd Conf Practical Applications of Prolog, London, UK, April 1994.

[17] Y. Chu and Q. Xia. Bandwidth-on-demand problem and temporal decomposition.
In 2nd International Network Optimization Conference (INOC ’05), pages 542–550,
Lisbon, Portugal, March 2005.

[18] T. Creemers, L. R. Giralt, J. Riera, C. Ferrarons, J. Rocca, and X. Corbella.
Constrained-based maintenance scheduling on an electric power-distribution net-
work. In 3rd Conference on Practical Applications of Prolog (PAP95), Paris, France,
April 1995.

[19] T. Creemers, L. Ros, J. Riera, C. Ferrarons, and J. Roca. Smart schedules streamline
distribution maintenance. IEEE Computer Applications in Power, July 1998.

[20] W. Cronholm and F. Ajili. Strong cost-based filtering for Lagrange decomposition
applied to network design. In M. Wallace, editor, 10th International Conference
on Principles and Practice of Constraint Programming (CP 2004), pages 726–730,
Toronto, Canada, 2004. Springer-Verlag.

[21] W. Cronholm and F. Ajili. Hybrid branch-and-price for multicast network design.
In 2nd International Network Optimization Conference (INOC ’05), pages 796–802,
Lisbon, Portugal, March 2005.

[22] W. Cronholm, W. Ouaja, and F. Ajili. Strengthening optimality reasoning for a net-
work routing application. In 4th International Workshop on Cooperative Solvers in
Constraint Programming (CoSolv ’04), Toronto, Canada, September 2004.

[23] W. Cronholm, W. Ouaja, and F. Ajili. Strong reduced cost fixing in network routing.
In 2nd International Network Optimization Conference (INOC ’05), pages 688–694,
Lisbon, Portugal, March 2005.

[24] B. Davie and Y. Rekhter. MPLS: Technology and Applications. Morgan Kauffmann
Publishers, 2000.

H. Simonis 901

[25] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The constraint logic programming language CHIP. In FGCS, pages 693–702, 1988.

[26] G. Dooms, Y. Deville, and P. Dupont. CP(Graph): Introducing a graph computation
domain in constraint programming. In van Beek [65], pages 211–225. ISBN 3-540-
29238-1.

[27] H. El Sakkout and M. Wallace. Probe backtrack search for minimal perturbation in
dynamic scheduling. Constraints, 5(4):359–388, 2000.

[28] A. Eremin, F. Ajili, and R. Rodosek. A set-based approach to the optimal IGP weight
setting problem. In 2nd International Network Optimization Conference (INOC ’05),
pages 386–392, Lisbon, Portugal, March 2005.

[29] F. Focacci, A. Lodi, and M. Milano. Cost-based domain filtering. In Principles and
Practice of Constraint Programing - CP 1999, Alexandria, Virginia, October 1999.

[30] C. Frei and B. Faltings. Resource allocation in networks using abstraction and con-
straint satisfaction techniques. In Principles and Practice of Constraint Programing
- CP 1999, Alexandria, Virginia, October 1999.

[31] T. Fruehwirth and P. Brisset. Optimal placement of base stations in wireless indoor
telecommunication. In Principles and Practice of Constraint Programing - CP 1998,
Pisa, Italy, October 1998.

[32] T. Graf, P. Van Hentenryck, C. Pradelles, and L. Zimmer. Simulation of hybrid cir-
cuits in constraint logic programming. In IJCAI-89: Proceedings 11th International
Joint Conference on Artificial Intelligence, pages 72–77, Detroit, 1989.

[33] T. Hadzic and H. Andersen. Interactive reconfiguration in power supply restoration.
In van Beek [65], pages 767–771. ISBN 3-540-29238-1.

[34] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In IJCAI (1), pages
607–615, 1995.

[35] N. Heintze, S. Michaylov, and P. Stuckey. CLP(R) and some electrical engineering
problems. In J.-L. Lassez, editor, Logic Programming: Proceedings of 4th Inter-
national Conference, pages 675–703, Melbourne, Australia, September 1987. MIT
Press.

[36] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

[37] O. Kamarainen. Local Probing - A New Framework for Combining Local Search
with Backtrack Search. PhD thesis, IC-Parc, Imperial College London, University of
London, December 2003.

[38] O. Kamarainen and H. El Sakkout. Local probing applied to network routing. In
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems CP-AI-OR 04, Nice, France, April 2004.

[39] M. Lauvergne, P. David, and P. Bauzimault. Connections reservation with rerouting
for ATM networks: A hybrid approach with constraints. In P. Van Hentenryck, editor,
Principles and Practice of Constraint Programing - CP 2002, Cornell University,
Ithaca, N.Y., September 2002.

[40] C. Le Pape, L. Perron, J. Regin, and P. Shaw. Robust and parallel solving of a network
design problem. In P. Van Hentenryck, editor, Principles and Practice of Constraint
Programing - CP 2002, Cornell University, Ithaca, N.Y., September 2002.

[41] J. Lever. A local search/constraint propagation hybrid for a network routing prob-
lem. In The 17th International FLAIRS Conference (FLAIRS-2004), Miami Beach,
Florida, May 2004.

902 25. Constraint Applications in Networks

[42] J. Lever. A local search/constraint propagation hybrid for a network routing problem.
International Journal on Artificial Intelligence Tools, 14(1-2):43–60, 2005.

[43] V. Liatsos, S. Novello, and H. El Sakkout. A probe backtrack search algorithm for
network routing. In Proceedings of the Third International Workshop on Cooperative
Solvers in Constraint Programming, CoSolv’03, Kinsale, Ireland, September 2003.

[44] S. Loudni, P. David, and P. Boizumault. On-line resource allocation for ATM net-
works with rerouting. In Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems CP-AI-OR 03, Montreal, Canada,
May 2003.

[45] R. Malhotra. IP Routing. O’Reilly, Sebastopol, CA, 2002.
[46] K. Marriott and P. Stuckey. Programming with Constraints: an Introduction. MIT

Press, 1998.
[47] L. Michel and P. Van Hentenryck. A simple tabu search for warehouse location.

European Journal on Operations Research, pages 576–591, 2004.
[48] P. Mirchandani and R. Francis. Discrete Location Theory. Wiley, New York, 1990.
[49] J. T. Moy. OSPF : Anatomy of an Internet Routing Protocol. Addison-Wesley,

Boston, Ma, 1998.
[50] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. Wiley, New

York, NY, 1988.
[51] W. Ouaja and B. Richards. A hybrid solver for optimal routing of bandwidth-

guaranteed traffic. In INOC2003, pages 441–447, 2003.
[52] W. Ouaja and B. Richards. A hybrid multicommodity routing algorithm for traffic

engineering. Networks, 43(3):125–140, 2004.
[53] W. Ouaja and E. B. Richards. Hybrid Lagrangian relaxation for bandwidth-

constrained routing: Knapsack decomposition. In 20th Annual ACM Symposium on
Applied Computing (ACM SAC ’05), pages 383–387, Santa Fe, New Mexico, March
2005.

[54] L. L. Peterson and B. Davie. Computer Networks. Morgan Kaufmann, San Francisco,
CA, second edition, 2000.

[55] S. Prestwich. Three CLP implementations of branch-and-bound optimization. In Par-
allelism and Implementation of Logic and Constraint Logic Programming, volume 2.
Nova Science Publishers, Inc, 1999.

[56] L. Ros, T. Creemers, E. Tourouta, and J. Riera. A global constraint model for in-
tegrated routeing and scheduling on a transmission network. In 7th International
Conference on Information Networks, Systems and Technologies, Minsk, October
2001.

[57] Y. Shang, M. P. Fromherz, Y. Zhang, and L. S. Crawford. Constraint-based routing
for ad-hoc networks. In IEEE Int. Conf. on Information Technology: Research and
Education (ITRE 2003), pages 306–310, Newark, NJ, USA, August 2003.

[58] H. Simonis. Building industrial applications with constraint programming. In
H. Comon, C. Marché, and R. Treinen, editors, CCL, volume 2002 of Lecture Notes
in Computer Science, pages 271–309. Springer, 1999. ISBN 3-540-41950-0.

[59] H. Simonis. Resilience analysis in MPLS networks. Technical report, Parc Technolo-
gies Ltd, 2003.

[60] H. Simonis. Challenges for constraint programming in networking. In M. Wallace,
editor, Principles and Practice of Constraint Programming - CP 2004. 10th Inter-
national Conference, volume 3258 of LNCS, Toronto, Canada, September/October

H. Simonis 903

2004. Springer Verlag.
[61] H. Simonis and T. Cornelissens. Modelling producer/consumer constraints. In

U. Montanari and F. Rossi, editors, CP, volume 976 of Lecture Notes in Computer
Science, pages 449–462. Springer, 1995. ISBN 3-540-60299-2.

[62] H. Simonis, P. Charlier, and P. Kay. Constraint handling in an integrated transporta-
tion problem. IEEE Intelligent Systems and their applications, 15(1):26–32, Jan/Feb
2000.

[63] B. M. Smith. Symmetry and search in a network design problem. In Barták and
Milano [6], pages 336–350. ISBN 3-540-26152-4.

[64] J. Symes. Bandwidth-on-demand services using MPLS-TE. In MPLS World
Congress 2004, Paris, France, February 2004.

[65] P. van Beek, editor. Principles and Practice of Constraint Programming - CP 2005,
11th International Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceed-
ings, volume 3709 of Lecture Notes in Computer Science, 2005. Springer. ISBN
3-540-29238-1.

[66] P. Van Hentenryck and J. Carillon. Generality versus specificity: An experience with
AI and OR techniques. In AAAI, pages 660–664, 1988.

[67] Q. Xia. Traffic diversion problem: Reformulation and new solutions. In 2nd In-
ternational Network Optimization Conference (INOC ’05), pages 235–241, Lisbon,
Portugal, March 2005.

[68] Q. Xia and H. Simonis. Primary/secondary path generation problem: Reformulation,
solutions and comparisons. In 4th International Conference on Networking, Reunion
Island, France, 2005. Springer Verlag.

[69] Q. Xia, A. Eremin, and M. Wallace. Problem decomposition for traffic diversions. In
Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems CP-AI-OR 2004, pages 348–363, Nice, France, April 2004.

[70] N. Yorke-Smith. Reliable Constraint Reasoning with Uncertain Data. PhD thesis,
IC-Parc, Imperial College London, University of London, June 2004.

[71] N. Yorke-Smith and C. Gervet. On constraint problems with incomplete or erroneuos
data. In P. Van Hentenryck, editor, Principles and Practice of Constraint Programing
- CP 2002, Cornell University, Ithaca, N.Y., September 2002.

[72] N. Yorke-Smith and C. Gervet. Tight and tractable reformulations for uncertain CSPs.
In CP ’04 Workshop on Modelling and Reformulating Constraint Satisfaction Prob-
lems, Toronto, Canada, September 2004.

This page intentionally left blank

Handbook of Constraint Programming 905
Edited by F. Rossi, P. van Beek and T. Walsh
c© 2006 Elsevier All rights reserved

Chapter 26

Bioinformatics and Constraints

Rolf Backofen and David Gilbert

In this chapter we aim to introduce the topic of bioinformatics to an audience of com-
puter scientists, highlight an illustrative selection of those areas in bioinformatics to which
constraint techniques have been applied, and suggest where they may be applicable. Bioin-
formatics is an exciting and rapidly developing field, and we hope that we haven’t predicted
all the developments in the next few years – indeed we hope that readers of this chapter
will contribute to future applicatiions of constraints in bioinformatics!

One of the first issues that needs to be addressed is the what is meant by “bioinformat-
ics” – it is already almost a colloquial word in the scientific community, but its interpre-
tation varies widely. The word bioinformatics has two obvious components – “bio-” and
“informatics”; we deal with each of these in turn.

At present the widely accepted interpretation of the “bio” part is molecular biology,
i.e. the study of the structure and activity of macromolecules essential to life. However are
other areas within biology which can be considered to be within the remit of bioinformat-
ics, for example the study of evolution, and genetics.

Informatics is a word which has only recently entered the English language, following
the French, German and Russian traditions which broadly agree that its meaning coincides
with “computer science”. Thus one definition of informatics is “the science of systematic
processing of information, using modeling and abstraction of the concrete realization”.

Thus, when considering both parts of the word, we consider the proper meaning to be
solving problems arising from biology using methodology from computer science, applied
mathematics and statistics. We have decided to focus our contribution on work in bioinfor-
matics that involves either the design of a variant of an existing algorithm from the domain
of computer science, or the design of a new algorithm.

An alternative term, more or less coinciding with bioinformatics is computational bi-
ology, used more in North America than in Europe. Waterman[107] considers that there
are three interpretations, all of which are valid:

One, that it is a subset of biology proper and any required mathematics
and computer science can be made up on demand; two, that it is a subset of

B.V.

906 26. Bioinformatics and Constraints

the mathematical sciences and that biology remains a remote but motivating
presence; three: that there are genuine interdisciplinary components, with the
original motivation from biology suggesting mathematical problems, which
suggest biological experiments.

A good overall introduction to Bioinformatics for computer scientists is [22]. Books
that concentrate more on the required mathematical/algorithmic basis of bioinformatics are
e.g. [107, 21, 59].

The amount and variety of biological data now available, together with techniques
developed so far have enabled research in Bioinformatics to move beyond the study of
individual biological components (genes, proteins etc) albeit in a genome-wide context to
attempt to study how individual parts cooperate in their operation [60]. Bioinformatics as
a scientific activity has now moved closer to the area of Systems Biology [65] which seeks
to integrate biological data as an attempt to understand how biological systems function.
By studying the relationships and interactions between various parts of a biological sys-
tem it is hoped that an understandable model of the whole system can be developed. For
example the determination that some interaction, and its strength, exists between two en-
tities is a first step to determining network structure and is a crucial step in the modelling
and analysis of networks such as gene regulation networks, metabolic pathways and sig-
nalling networks. The advent of the new high-throughput technologies (for example gene
expression arrays, mass spectrometry) has meant more challenges for computer scientists
in terms of the type and quantity of data available for analysis.

There are other fields which broadly apply principles from biology to derive novel
approaches in computer science, for example biocomputing, neural computing, genetic
algorithms, and evolutionary computing. These are not directly part of Bioinformatics,
other than being some of the techniques from computer science which can be applied to
biological data.

Since it is rare to find researchers who are both computer scientists and biologists, it
is generally the case that effective research in bioinformatics requires the joint effort from
scientists in both fields. An important corollary is that in order to achieve such cooperation
all parties must use a common language and be prepared to learn about issues from the
other side. In fact many researchers from the biological and physical sciences working in
bioinformatics have acquired significant computing skills, and may have greater specialist
knowledge in mathematics and statistics than do many computer scientists. An illustration
of this is the heavy use of Hidden Markov Models in bioinformatics, a topic about which
most computer scientists know very little. It is the computer scientist’s task to apply the
approach of problem abstraction together with efficient algorithm design to the problems
from the biological domain.

A challenge for computer scientists who are involved in research in bioinformatics is
to achieve results that make a contribution to computer science. Of course this is not the
main motivation for biologists; moreover there are some exciting projects in bioinformatics
which in the short to medium term are unlikely to contribute to computer science.

26.1 What Biologists Want from Bioinformatics

The great aim of research in bioinformatics is to understand the functioning of living or-
ganisms in order to “improve the quality of life”. This improvement will be achieved by

R. Backofen, D. Gilbert 907

many means including drug design, identification of genetic risk factors, gene therapy, ge-
netic modification of food crops and animals, etc. Some of these, especially the last, are
proving to be controversial.

26.2 The Central Dogma

The study of proteins, how they interact with each other, and how genes are regulated is
central to the understanding of the basic principles of the functioning of living organisms.

Proteins comprise approximately 60% of the dry mass of a living cell, and are linear
heteropolymers that are constructed from a chain or sequence of monomers called amino
acids, of which twenty different types are involved in the composition of proteins. It is
widely accepted that the function of proteins (and RNA) is determined by their structure,
and it is known that in the majority of cases structure is uniquely determined by the se-
quence of amino acids, or nucleotides in the case of RNA. The case of prions is one ex-
ample of exception to the latter rule where misfolding causes prion disease [56]. More
generally, protein folding can be assisted by molecular chaperones and folding catalysts
. Folding catalysts accelerate specific steps in folding, whereas the main function of the
molecular chaperones seems to be in preventing off-pathway reactions that lead to protein
aggregation and possibly misfoilding. [52]

The central dogma of information flow in biology essentially states that the sequence of
amino acids making up a protein and hence its structure (folded state) and thus its function,
is determined by a two-stage process. The first stage is transcription – the process of
copying DNA to RNA by an enzyme called RNA polymerase, and the second is that of
translation – where messenger RNA is decoded to produce polypeptide chains according
to the rules specified by the genetic code. This code enables the 20 amino-acids which
form proteins to be coded by triples (codons) of the 4 bases of RNA.

The central dogma states that once ‘information’ has passed into a protein it
cannot get out again. The transfer of information from nucleic acid to nucleic
acid, or from nucleic acid to protein, may be possible, but transfer from protein
to protein, or from protein to nucleic acid, is impossible. Information here
means the precise determination of sequence, either of bases in the nucleic
acid or of amino acid residues in the protein.

Francis Crick [25]

Although some proteins, for example transposases, can modify genetic material by
inserting DNA sequences, it is not the case that the amino-acid sequences of those proteins
is reverse-coded to make sequences of nucleotides.

Thus bioinformatics is concerned in a major way with the elicitation of DNA sequences
from genetic material, the annotation of delimited segments (e.g. with information about
their function), the control of gene expression (i.e. under what circumstances proteins are
transcribed from DNA), and the relationship between the amino acid sequence of proteins
and their structure. At present, the only physical methods to determine protein structure
are X-ray crystallography and NMR (nucleo-magnetic resonance), both of which are not
only very time-consuming, but cannot be applied to all classes of proteins. One of the holy
grails of bioinformatics is to develop computational methods to determine protein structure
from amino-acid sequence.

908 26. Bioinformatics and Constraints

26.3 A Classification of Problem Areas

The problem areas in Bioinformatics can be broadly divided into three classes:

Problems specifically related to the Central Dogma: This includes both those related
to a specific level of information (i.e., sequence, structure or function), and those that
encompass more than one level.

Problems related to data in general: With the exponential growth of knowledge in
(molecular) biology, there are rapidly growing problems such as storage, retrieval, and
analysis of the data. Hence there are issues of database design for biological resources,
representation and visualization of biological knowledge, and the application of data anal-
ysis methods such as data mining. A key underlying technique is that of abstraction of
the data; it is of course imperative that the operations over the abstract data preserve the
biological meaning of the operations on the original form of the data.

Simulation of biological processes: This means the prediction of dynamic behavior of
a biological system on the basis of its components. Examples include the simulation of
protein folding (molecular dynamics) or of metabolic pathways.

In the following we concentrate on the first class of problems, i.e. sequence, structure
and function, and select a subset of illustratory examples.

26.4 Sequence Related Problems

26.4.1 Physical Map

In this problem, one has a collection of short, known substrings of the DNA called probes
with the property that they occur exactly once in the DNA, and a set of fragments of the
DNA (called clones), which (ideally) cover a specific region of interest on the DNA. For
both the clones and the probes, the exact location on the DNA and the ordering of the
locations are unknown. The goal is to find the ordering of the probes and/or clones in the
DNA.

The first step is to check for every probe Pi and every clone Cj , whether Cj contains
the substring denoted by Pi. This is done by performing hybridization experiments. Hy-
bridization is the process of forming a (possibly imperfect) double helix out of two DNA
or RNA molecules. This can be used to determine which probes occurs in which clones.
The result is a matrix A = (aij), where aij is 1 if probe Pi is hybridizes with clone Cj ,
otherwise 0. Now if there were no errors in the hybridization experiments, then the order-
ing of the probes could be found be reordering the rows and columns of the matrix such
that the resulting matrix has the consecutive ones property. But since the experiments are
faulty, the problem of finding the ordering minimizing the errors is NP-complete (see e.g.,
[48, 20])

The ordering of the probes (denoted by a permutation π on the set of probe indices),
usually together with a good bound on the distance between to successive probes, consti-
tutes a physical map, which can be used for different purposes. One is to use this map
when sequencing the genome. The reason is that sequencing is done by splitting DNA into

R. Backofen, D. Gilbert 909

fragments, which are sequenced in the sequel. The remaining problem is to generate the
original DNA-sequence out of sequenced fragments. This is usually done by searching for
overlapping fragments. The problem is that DNA contains so-called repeats. This are long
fragments of DNA which are repeated several times on the DNA. Clearly, such repeats may
not be used for the process of generating the original DNA sequence out of overlapping
fragments. One way to check this is to use a physical map.

In practical applications, the major problem is the occurrence of errors in the hybridiza-
tion experiments. False positives are entries aij = 1 although probe Pi is not contained
in clone Cj . Vice versa, false negatives are entries aij = 0, where Pi is contained in
clone Cj . In [20], Christof et al. considered a variant of the problem that uses additional
information stemming from end-probes. These are probes where it is known that they are
stemming from the end of the clones (but we do not know which is the left or right end).
Let Pi and Pk be the end probes for Cr, and let Pj be another probe different from Pi and
Pk that hybridizes with Cr (i.e., ajr = 1). Then we know that in the correct ordering π, the
value πj must be between πi and πk (i.e., either πi < πj < πk is true, or πj < πj < πi),
which gives rise to additional betweenness constraints. They presented an integer linear
programming approach for the above described problem, where a maximum likelihood
model is used as an objective function to model the errors in the matrix A. The idea be-
hind the maximum likelihood model is to search for the corrected matrixB that maximizes
the likelihood P [A|B], given probabilities for producing false positive and false negative
entries in A.

26.4.2 Comparison and Alignment

Overview

The goal of this activity is to compare two sequences, and in addition to return an align-
ment, i.e. some information regarding those parts which are very similar. When comparing
the sequences, additional information e.g. stemming from known structures may be used.
In general, sequence alignment is fast, whereas alignment involving structure is slow due
to its high complexity.

One of the first fields in bioinformatics was DNA sequence alignment. The reason for
the interest in sequence alignment stems from the fact that there are many different pro-
teins which have common ancestors, and that these homologous (i.e., related by evolution)
proteins have a similar structure and function. In addition, homologous proteins often have
similar sequences. Using a reverse reasoning, sequence similarity is used to detect the
homology of protein structures.

Clearly, the quality of this approach depends on the similarity measure used, which is
determined by a model of evolution. The usual approaches use a model with substitution,
deletion or insertion of a single amino-acid (see e.g. [107] for an overview). In this case,
sequence alignment can be performed in polynomial time using a dynamic programming
approach. There are also new approaches which deal with more complex models of evolu-
tion such as [10], who considers in addition duplication of substrings (tandem repeats). A
more complex problem is that of multiple sequence alignment [63], which is known to be
NP-complete.

On the level of structure comparison, there are many different problems that have been
considered. Protein threading extends sequence alignment by incorporating structural in-

910 26. Bioinformatics and Constraints

formation. In this approach an alignment is made between two sequences, one with an
unknown structure and the other with a known structure, taking into account the known
structure [69]. Again, this problem has been shown to be NP-hard.

Another problem is to compare two different structures by superposing elements using
translation and rotation to minimize the atomic coordinate Root Mean Square Deviation
(RMSD) [34]. Structures can also be compared at a higher level of abstraction than atomic
coordinates by using a topological approach based on secondary structure elements [47]
(see Section 26.5.4; this can be performed over topology graphs by detecting maximal
cliques [66] or by pattern discovery and structural alignment [44]).

Pairwise sequence alignment

Pairwise sequence alignment is the problem of determining the similarity of two sequences.
An alignment of two sequences a, b ∈ Σ∗ consists of two sequences u, v of the same length
that are generated from a, b via the insertion of gaps. Alignments are evaluated according
to scoring functions, which evaluates the number of inserted gaps, and the similarity of dif-
ferent letters ui and vi at the same position in the alignment (called substitutions). Multiple
sequence alignment is the generalization of the problem to several sequences.

There are different possibilities for constraint-based formalizations of sequence align-
ment. We will start with a formalization that is commonly used in standard approaches to
sequence alignment. We will start with the formal definition of an alignment.

Definition 26.1 (Alignment and Alignment Distance). Let Σ be an alphabet with 6∈ Σ.
For every u ∈ (Σ ∪ { })∗ we define u|Σ to be the restriction of u to Σ (by deleting all
occurrences of in u). An alignment is a pair (a⋄, b⋄) with a⋄, b⋄ ∈ (Σ ∪ { })∗ such that
|a⋄| = |b⋄| and there is no position i such that a⋄i = = b⋄i . An alignment (a⋄, b⋄) is an
alignment of (a, b) with a, b ∈ Σ∗ if

1. a⋄|Σ = a, and

2. b⋄|Σ = b.

Given a cost function w, we define the cost of an alignment by

w(a⋄, b⋄) =

|a⋄|
∑

i=1

w(a⋄i , b
⋄
i).

The alignment distance of a, b is

D(a, b) = min{w(a⋄, b⋄) | (a⋄, b⋄) alignment of (a, b)}.

The alignment (a⋄, b⋄) is optimal if D(a, b) = w(a⋄, b⋄).

Instead of using distance-based scoring function, one can also use a similarity mea-
surement for evaluating alignments. Then, one searches for an alignment that maximizes
the similarity between the two sequences. As [93] have shown, one can transform each
distance-based (global) scoring scheme into a similarity-based, without changing the op-
timal alignment. Hence, we will consider only the distance-based scoring scheme in the
following.

R. Backofen, D. Gilbert 911

The standard approach to solve the pairwise sequence alignment problem for two
sequences a, b is to use to define a dynamic programming matrix (Di,j), which stores
the cost of the best alignment between the prefixes a1 . . . ai and b1 . . . bj . I.e., Di,j =
D(a1 . . . ai, b1 . . . bj). This matrix can then be calculated using the following recursion
equation:

D0,0 = 0,

D0,j =

j
∑

k=1

w(−, bk),

Di,0 =
i
∑

k=1

w(ak,−),

∀i, j > 0 : Di,j = min

Di,j−1 + w(−, bj),
Di−1,j−1 + w(ai, bj),
Di−1,j + w(ai,−)

. (26.1)

Thus, the standard sequence alignment problem can be solved in quadratic time and
space. This changes if one considers different extensions of the original problem. One
extension is to consider parametric sequence alignment, where the cost parameter for dele-
tion δ = w(σ,) and substitution µ = w(σ, σ′) are variable. The reason for considering
this parametric version is that it is hard to determine these parameter (especially the cost
for deletion). Hence, one is interested in checking whether a given alignment is the same
for a complete range of parameters. Yap [110] considered a constraint-based approach
for this problem, where he directly encodes the entries of the dynamic programming table
Di,j as variables, and the recursion equations as constraints. He considered then different
possibilities of pruning in the case that δ and µ are not known (i.e., are not ground).

Other variants extend sequence alignment by considering additional conditions that
stem from information on the secondary or ternary structure of the associated molecule.
By and large one can say that the difference to sequence alignment is that the scoring
function evaluates not single positions in the alignment, but pairs of positions that are
related (or close) in the structure. This is especially useful when comparing two RNA-
sequences, where it is known that the structure is more conserved than the sequence. Both
global [86, 23, 73, 57, 55] and local [5] versions of the RNA sequence/structure align-
ment have been considered. The multiple RNA sequence/structure alignment problem is
even harder than the multiple sequence alignment problem, since successful heuristic ap-
proaches like progressive alignment can only be applied either in special cases (like the
PMMulti system [55]), or via the combination of sequence/structure and sequence align-
ment (like the MARNA-system [92]).

There many are other problems that extend sequence alignment (or related problems)
using additional information. Examples are the alignment methods used for the detection
of alternative spliceforms of proteins [41, 49, 54, 39], or the design of similar protein
sequence whose mRNA form a specific RNA-structure [8]. Currently, most of these prob-
lems are solved via special dynamic programming approaches. A first approach to apply a
general technique for sequence alignment under additional constraints has been presented
in [109], where cluster tree elimination was used to efficiently solve pairwise sequence
alignment problems with additional constraints.

912 26. Bioinformatics and Constraints

Multiple sequence alignment

The problem of multiple sequence alignment is to align not only two different sequences,
but any number of sequence. This is required to detect biologically important motifs.
Formally, a multiple alignment for n sequences S1, . . . , Sn is given by a character matrix

A = (Aij)1≤i≤n,1≤j≤K

over the alphabet Σ = Σ∪{ } with the property that Si can be obtained from Ai1 . . . AiK
by removing the gaps. In the general formalization, the jth column A1j , . . . , Anj of the
alignment is evaluated using an n-ary function w(A1j , . . . , Anj), and the distance D(A)
of an alignment A is given by

D(A) =
∑

1≤j≤K

w(A1j , . . . , Anj).

There is a special formalization of the scoring function that is used in most practical
applications, namely the sum-of-pairs score. The basic idea of this score is to evaluate an
alignment by the sum of all pairwise alignments, which was introduced by Carrillo and
Lipman [17]. Here, the distance of an alignment D(A) is given by given by

D(A) =
∑

i<i′

∑

1≤j≤K

wp(Aij , Ai′j),

where wp : Σ′ × Σ′ → R is a usual pairwise cost function. Of course, this is equivalent to

D(A) =
∑

1≤j≤K

∑

i<i′

wp(Aij , Ai′j),

and is hence a special case of the general multiple sequence alignment problem, where the
cost for a column is given by

w(a1, . . . , an) =
∑

i<i′

wp(Aij , Ai′j)

Kececioglu [64, 63] introduced a graph-based formalization of multiple sequence align-
ment with sum-of-pairs cost function, the complete maximum-weight trace (CMWT) for-
malization. An ILP (integer linear programming) solution for this problem was presented
in [84, 62]. In CMWT, the letters of the strings Si = si1 . . . sini

are considered to be the
set of vertices V = V1 ⊎ . . . ⊎ Vn1 of a complete n-partite graph G = (V,E) (i.e., G
satisfies that for every sij ∈ Vi and si′j′ ∈ Vi′ , we have e = (sij , si′j′) ∈ E if and only
if i 6= i′). G is called the complete alignment graph for the sequences S1, . . . , Sn. An
alignment graph G′ is a subgraph of the complete alignment graph. Alignment graphs can
be used to restrict the search for a multiple sequence alignment to a subset of all possible
alignments to reduce the search space. For example, let S1 be AACG and S2 be AGG. Then
the complete alignment graph for AACG and AGG is the 2-partite graph

.

1Where ⊎ is the disjoint union, and Vi is {si1, . . . , sini
}.

R. Backofen, D. Gilbert 913

With every edge e ∈ E, there is a positive weight w(e) associated. An alignment A
for the sequences S1, . . . , Sn realizes an edge e = (sij , si′j′) ∈ E of an alignment graph
G = (V,E) for the sequences S1, . . . , Sn if the jth character of Si and the j′th character
of Si′ are aligned in A. For example, consider the alignment

A A C G

A G G
.

Then this alignment realizes three edges, indicated by straight lines:

Given an alignment A, the set of all edges realized by A is called the trace of A. A set
T ⊂ E of edges is called a trace if it is the trace of some alignment A. Given the weight
function w, the weight of a trace T is

∑

e∈T w(e).

Definition 26.2 ((Complete) Maximum-Weight Trace). Let S1, . . . , Sn be sequences, let
G = (V,E) be the complete alignment graph for S1, . . . , Sn, and let w be a weight func-
tion. The complete maximum-weight trace problem is to find a trace T ⊂ E that has
maximal weight (under w). The maximum-weight trace problem is defined analogously
for an alignment graph G = (V,E) for S1, . . . , Sn.

A remaining problem is that not any subset of edges is a trace (i.e., not every subset
of E corresponds to a real alignment). Consider again the two sequences AACG and AGG,
and consider the following subset of edges indicated by straight lines:

.

By the definition of a realized edge, this set of edges would correspond to the alignment

A C A G

A G G
,

which is an alignment for the sequences ACAG and AGG instead of AACG and AGG. Hence,
this subset of edges is not a trace. The problem are the two crossing edges indicated in
grey above.

An ILP-formalization for the pairwise alignment characterizing traces was given in
[73]2, which is a follows. Let G = (V,E) be an alignment graph, and let e1, . . . , en be an
enumeration of all alignment edges in E. We say that ek is in conflict with el iff ek and el
are crossing edges, i.e., ek = (s1i, s2j), el = (s1i′ , s2j′) with neither i < i′ ∧ j < j′ nor
i′ < i∧ j′ < j. Then one introduces for every edge ei a boolean variable xi, where xj = 1

2In this work, structural condition where formulated in addition to the pure sequence alignment problem

914 26. Bioinformatics and Constraints

implies that ei is contained in the trace. Furthermore, let wi = w(ei). Then the constraint
problem is

maximize
∑

ei∈E

wi · xi

subject to the following constraints:

xi ∈ {0, 1} (26.2)

xk + xl ≤ 1 ∀ek, el ∈ E s.t. ek is in conflict with el (26.3)

For the multiple sequence alignment step, the condition of non-crossing edges is not
so simple. Whether a pair of edges is conflicting might depend on other edges contained
in the trace. Consider the following two set of edges for three sequences ABC, ABD and
ABCD:

A B C D

A B C

A B D

A C D

A B C

A B D

B

The the first represents for example the following valid alignment:

A B C

A B D

A B C D

.

The second one does not represent a valid alignment, but we cannot identify pairs of con-
flicting edges.

Hence, we have to extend the definition for the multiple case. For the pairwise case,
a trace is nothing else than a set of edges which are strictly ordered in both components.
I.e., a trace is an ordered set of edges e1 = (s1i1 , s2j1), . . . , em = (s1im , s2jm) with the
property that ∀1 ≤ k < m : ik < ik+1 ∧ jk < jk+1. The corresponding definition for the
multiple alignment case is as follows.

Given sequences S1, . . . , Sn with Si = si1 . . . sini
, one defines the extended alignment

graph G = (V,E,≺) for S1, . . . , Sn to be a triple such that (V,E) is an alignment graph
for S1, . . . , Sn, and ≺ is defined by

≺= {(sij , sij+1) | 1 ≤ i ≤ n ∧ 1 ≤ j < ni}.

With ≺∗, we denote the transitive closure of ≺. Note that ≺∗ is a strict partial order of V .
Using the extended alignment graph, one can characterize traces. A connected compo-

nent of a graphG = (V,E) is a⊆-maximal set V ′ ⊆ V such that for all vertices v, v′ ∈ V ′

there is a path of edges inE connecting v and v′. For any two subsetsX,Y ⊆ V , we define

X ⊳ Y if and only if ∃v ∈ X ∃v′ ∈ Y : v ≺ v′.

R. Backofen, D. Gilbert 915

We define ⊳∗ to be the transitive closure of ⊳. For the sequences AACG and AGG the
extended complete alignment graph is

where we have indicated the edges for ≺ by arrows.

Theorem 26.3. Let S1, . . . , Sn be sequences, and let G = (V,E,≺) be the extended
alignment graph for S1, . . . , Sn. Then a subset T ⊆ E is a trace if and only if it does not
contain two edges sharing the same node, and ⊳∗ is a strict partial order on the connected
components of G′ = (V, T).

The question is of course how to enforce the above stated condition in a constraint-
based or ILP formalization. For the pairwise case, this is achieved by excluding all con-
flicting edges with the constraint given in (26.3), thus forcing a strict partial order on the
edges. Following [62], then every pair of conflicting edges for the pairwise case corre-
sponds in the extended alignment graph to a mixed cycle. This is a cycle in the extended
alignment graph that uses at least one alignment edge and at least one edge from the ≺-
order. Such a mixed cycle is called critical if in every sequence, all the nodes used by
the cycle occur consecutively in the sequence. Then condition (26.3) is replaced in [62]
by excluding all critical mixed cycles, which then gives an ILP-formalization for multiple
alignment.

The main problem with the above formulation is that in general, one has to add ex-
ponentially many cycle constraints. For this reason, Prestwich et al. proposed in [83] an
alternative ILP model, which is transformed to linear pseudo-Boolean (PB, a generalization
of SAT which significantly improves expressiveness) form. The model is of polynomial
size, and therefore better suited to a generic SAT solver.

Pairwise alignment with conditions: example protein threading

The previous formalization is based on a graph based model of sequence alignment, where
one has Boolean variables for every possible alignment edge. The major drawback of this
approach is that it uses a huge number of variables. E.g., for pairwise sequence alignment,
this model requires quadratically many variables.

Another possible formalization for pairwise sequence alignment that requires less vari-
ables has one variable Xi for each position 1 ≤ i ≤ |S1| of the first sequence S1. The
domain of each variable is the set {1, . . . , |S2|} of positions in the second sequence. In
principle, Xi = j is interpreted as “position i of the first sequence is aligned with position
j of the second one”.

The next step is to encode gaps. An unaligned position j in the second sequence, which
correspond to a gap in the first one, are already encoded by the fact that there is no i with
Xi = j. In addition, one has to encode that a position i in the first sequence is aligned with
a gap in the second sequence. One possible way to encode this is by allowing Xi−1 = Xi,
which is then interpreted as position i is aligned with a gap. On the other hand, position i is

916 26. Bioinformatics and Constraints

matched (i.e., aligned with some position j in the second sequence) if and only if Xi = j
and Xi > Xi−1. Note that this kind of encoding was considered in [109].

In the following, we will consider a special instance of pairwise sequence alignment
with additional conditions using a formalization similar to the one described above, namely
protein threading. The additional conditions stem from information about the structure of
one sequence. For protein threading, we have a sequence s with known structure, and we
want to determine the structure of a sequence s′ that is homologous (i.e. related via evo-
lution) to s via an appropriate pairwise alignment. The idea is to use the known structure
of s to guide structure prediction for s′ by simultaneously aligning s′ with s and with the
known structure of s.

The basic approach for protein threading is to identify first parts of the structure of
s that are more likely to be conserved. This is called a core model for s, and consists
usually of secondary structure elements. The secondary structure of a sequence consist
of structural elements of high local order. There are two main elements considered for
protein threading, namely α-helices (a helical structure) and β-sheets (two or more strands
of the protein sequence that are regularly connected). It is assumed that the core models are
highly conserved in their length as well as in their interactions. The stretches between two
core elements are called loops, and the lengths of these loops can vary in the homologous
sequence s′. This is captured by the definition of a core model.

Definition 26.4 (Core Model). Let s be a sequence. A core model for s is a tuple (m, ~c,
~λ, ~lmin), where ~c = (c1, . . . , cm) is the sequence of lengths for the core elements in s, and
~λ = (λ0, . . . , λm) is the sequence of lengths for the loops between the core elements such
that

|s| = λ0 +
∑

1≤i≤m

(ci + λi).

The sequence ~lmin = (lmin
0 , . . . , lmin

m), consists of the minimal length required to connect
the corresponding ends of the core elements (i.e., the minimal length of the loop regions)
with ∀1 ≤ i ≤ m : lmin

i ≤ λi.

Note that the value λ0 is the length of the initial loop (i.e., the N-terminal loop), while
λm is the length of the final loop (i.e., the C-terminal loop).

Given a core model (m,~c,~λ,~lmin) for s, we define the ith core region of s to be the set
of positions

Ci =

{

λ0 +
∑

1≤j<i

(cj + λj) + k

∣

∣

∣

∣

1 ≤ k ≤ ci
}

.

The jth position of the ith core is denoted by Ci,j . Figure 26.1 illustrates a core model
with 4 core regions, where the lengths of the core regions is given by the vector (4, 3, 4, 3).

In the following, we will define a threading of sequence s′ through the core model
for s to be a mapping of the core positions to consecutive positions of s′. Since we are
using consecutive regions, a threading is uniquely determined by the mapping of the first
position of every core region. Furthermore, this implies that there are no gaps allowed in
core regions. All gaps in the alignment must occur in the loop regions. In inserting and
deleting positions in the loop regions, one must obey the length restrictions imposed by

R. Backofen, D. Gilbert 917

11 242 18

24

11

18

2

s: A A A A A AG TV H E T N D B Z I L M K P C KG FA F W

Figure 26.1: Core model. It is supposed that the grey parts of the given structure are the
conserved regions. The define the core of the structure. This leads to the definition of 4
core elements.

918 26. Bioinformatics and Constraints

R. Backofen, D. Gilbert 919

The relaxation is given by the fact that for the calculation of g2, for every i a different
threading ~u can be used. Thus, there is no dependencies anymore for the calculation of
the g2 terms (with the exceptions of the terms g2(i− 1, i, ti−1, ti)), which implies that the
bound can be calculated in polynomial time using dynamic programming.

26.4.3 Search and Pattern Discovery

In both sequences (DNA and RNA) and structure (RNA and protein), there are function-
ally significant regions that are repeated in different entities; these regions can be often
described by patterns. A need has arisen to be able to search through genome or protein
databases (which may be very large), and identify entries which match the pattern. Ob-
viously, this has a parallel in formal language theory, see for example Searls’ excellent
discussion in [87]. In reality, biological data is noisy, and in the case of string languages,
stochastic approaches have been developed using for example Hidden Markov Models [33]
and stochastic context-free grammars [71]. It is of interest to note here that although Dy-
namic Bayesian Networks [43] can represent Hidden Markov Models, the use of DBNs in
bioinformatics for sequence analysis remains an under-exploited area.

Although patterns can be constructed by hand, its preferable to use a mechanized (ma-
chine learning) approach, i.e., pattern discovery [15, 85]. Finding gene expression sites in
DNA may require context sensitive patterns.

One active research field is to design appropriate pattern languages and associated dis-
covery mechanisms which are able to express significant properties of structures as op-
posed to strings [47, 58].

Pattern discovery can also be performed over protein structures [45] and metabolic
pathways.

Sequence pattern matching

The basic biochemical properties of DNA and RNA permit some constraints to be exploited
in pattern matching over nucleotide sequences:

• The first property is that of the total ordering of the nucleotides in a sequence, by
convention from the 5′ to the 3′ end, which can be exploited in pattern matching
algorithms.

• The second property is the name associated with a nucleotide. A DNA nucleotide
consists of a base – adenine, cytosine guanine, or thymine — plus a molecule of
sugar and one of phosphoric acid; such nucleotides are often known by the initial
letter of the base that they contain, a, c, g or t. In the case of RNA, thymine is
replaced with uracil (u). Thus the names of nucleotides are drawn from a restricted
alphabet of size 4: a, c, g, t in the case of DNA, and a, c, g, u in the case of RNA,
and patterns can be defined with characters drawn from (a subset of) the alphabet.

• Thirdly, two nucleotides can interact due to the Watson-Crick base pairs: in the case
of DNA, a-t and c-g, with both pairs being of roughly equal strength. RNA pairs
are a-u, c-g, as well as the weaker g-u, and some other even weaker pairs. This
base paring can cause nucleotide sequences to adopt particular conformations due to
long-range interactions. This pairing can be exploited both in formal models of the
conformations, and also associated techniques to compute over these models.

920 26. Bioinformatics and Constraints

Sequential Patterns
Tandem repeat αα acg acg
Simple repeat αβα acg aaa acg
Multiple repeat αβαβ1α acg aa acg uu acg

Structural Patterns
Stem loop αβαrc acg aa cgu
Attenuator αβαrcβ1α acg aa cgu au acg
Palindrome, even ααr acg gca
Palindrome, odd αxαr acgagca
Pseudoknot α1βα2β1 α

rc
1 β2α

rc
2 acg aa ucu gc cgu aua aga

Table 26.1: Patterns in nucleotide sequences, from [35]

Protein sequences comprise amino-acids which have properties corresponding to the
first two above: firstly that they are totally ordered (in this case from the N terminus to the
C terminus), and secondly that there are 20 amino acids, i.e. the names are drawn from an
alphabet of 20 names (or corresponding letters).

Eidhammer et al. [35] have defined patterns in sequences as consisting of a logical
expression on components, where a component is a description of a string of symbols, and
a set of constraints. An input string S matches a pattern P if every component in P is
matched by some substring of S, such that all the constraints are satisfied and the logical
expression evaluates to True.

Sequential patterns can be defined using the following constraints:
(1) length of a substring to match a specific component;
(2) distance in the input string between substrings to match the different components

of a pattern;
(3) contents of a substring to match a component;
(4) positions on the input string where a particular component can match;
The patterns in the PROSITE data base [9] are examples of the sequential class; thus

[AC]-x(2,3)-D describes a pattern comprising three components, the first being an A or a
C, the second of length 2 or 3 and the last being a D.

Structural patterns have in addition at least one correlation constraint, between two
substrings matching different components, e.g. the substrings should be identical, or the
reverse of each other. Examples are repetitions or palindromes, and can correspond to
conformations that the sequence can adopt.

Example patterns in nucleotide sequences identified from the literature by Eidhammer
et al [35] are given in Table 26.1 below. Pattern components (strings) are indicated by
letters from the Greek alphabet: α, β, . . . (with or without indices) and x is a wildcard.
The reverse of a component α is indicated by αr, and αc is the complement of α. These
annotations can be combined: αrc is the reverse complement of α. Strings corresponding
to pattern components are underlined.

The CLP version of the Eidhammer et al. system is now no longer available for general
use. from the paper describing it. A related but more sophisticated, and faster approach
by Thebault e al. is described in [100]. They use a CSP approach, representing structured
RNA motifs which interact with other molecules. These motifs occur on more than one

R. Backofen, D. Gilbert 921

sequence and which are related together by possible hybridization. Together with pattern
matching algorithms, constraint satisfaction techniques have been implemented in a proto-
type software system called “MilPat” (http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl) and
can be applied to search for tRNA and snoRNA genes on genomic sequences.

Another related approach using CSP is by Morgante et al [82]; the software system
SMaRTFinder can be downloaded from http://bioinf.dimi.uniud.it/software/smartfinder.
The algorithm locates structured models which are sequences of simple motifs and dis-
tance constraints. It combines standard pattern matching procedures with a constraint
satisfaction solver, and can search for partial matches. A significant feature of their ap-
proach is that the (potentially) exponentially many solutions are represented in compact
form as a graph. The time and space necessary to build the graph are linear in the number
of occurrences of the component patterns.

Staden’s program [97] is an early system which permits search for structural patterns in
sequences. A pattern comprises elements, called motifs. There are nine classes of motifs,
the simplest of which is just a string of characters. Two other classes include structures:
inverted repeat or stem-loop and (direct) repeat. Logical operators AND, OR and NOT
can be used to specify whether each motif must be present, is an alternative to another, or
must be absent. Constraints can be specified on the length of a motif, the distance between
two motifs and the contents of a motif; for the structure classes, constraints can be given
on an individual part of the structure, e.g. on the loop of a stem-loop. Percentage match
and scoring matrices can be used in searching. In Staden’s system there is no possibility to
define general correlations or relations between parts.

An example of a pattern which can be decribed in Staden’s language is

tata(〈(at OR cg),−5,−2〉 AND 〈tt(〈¬ga,−3, 3〉), 2, 6〉)
which describes a pattern whose ‘root’ motif is the string tata, with two further required
motifs. The first of these is between 5 and 2 bases upstream of the tata motif, and can be
either at or cg. The second is a tt motif located between 2 and 6 bases downstream of the
tatamotif, and there must not be a ga motif within 3 bases upstream or downstream of the
tt.

As can be seen, the language permits motifs to be overlaid on each other. Although this
may seem counter-intuitive when describing biochemical sequences, there are situations
when such overlays occur during processing of nucleotides, for example ’cassette genes’
[50].

Other languages and associated systems are: SCRUTINEER [90], RNAmot [40], RNAMo-
tif [75] (http://www.scripps.edu/mb/case/casegr-sh-3.5.html), OVERSEER [91], Palingol
[12], PatScan [32] (http://www-unix.mcs.anl.gov/compbio/PatScan/HTML/patscan.html),
and PALM [53]. However GENLANG (Searls [89, 88]) is the most general system which
has been implemented for searching for structural patterns in nucleotide sequences. It uses
an indexed language which has an expressive power between context-free and context-
sensitive languages. String variables are used to define structures and constraints on the
length and contents of the string variables can be specified.

Eidhammer et al. [35] have defined a constraint-based structure description language
for biosequences, and give an algorithm plus associated program to solve the structure
searching problem as a CSP as well as an implementation in the constraint logic program-
ming language clp(FD) [27]. The language is able to describe two-dimensional structure
of biosequences, such as tandem repeats, stem loops, palindromes and pseudo-knots.

922 26. Bioinformatics and Constraints

26.4.4 Phylogenetic Trees

If we have any set of species that are related, then the relationship between these species
(resp. entities) is called a phylogeny. When constructing a phylogenetic tree, the task is
to set up a tree to show how the different species have evolved from a common ancestor.
In addition, the trees generated are often labelled. The labels indicate the time when the
species evolved from a common ancestor, or any other measure of the distance between the
different species. Note that the construction phylogenetic trees is not necessarily applied to
species, but to any kind of entities where we can set up some sort of distance information
(e.g., phylogenetic trees can be constructed for languages). In this case the tree constructed
may not be rooted.

The problem of constructing phylogenetic trees can be formulated in different ways.
The first one is to have a finite set of species or entities S = {e1, . . . , en}, and a distance
matrix (dij)i,j∈[1..n] containing the pairwise distances between the entities. The problem
is to construct a tree, where the edge are labelled by distances and the nodes are labelled
entities (using new entities for the inner nodes). The tree is correct if for each two enti-
ties ej , ek from S, the distance in the tree (by summing up the edges distances along the
path connecting them) out of the ordinal set in the tree is djk. Trees can be constructed
from pairwise distances by variety of methods, including UPGMA (unweighted pair group
method using arithmetic averages) [96].

Another formulation of the phylogenetic tree construction problem is parsimony [38].
Here, one has a set S of sequences (DNA or protein), and a method for calculating costs
for relating any two sequences (not restricted to S). The task is then to find a tree, where
the leafs are labelled by elements of S and the inner nodes are labelled by other sequences.
Furthermore, the tree should have minimal costs according to the given method (i.e., the
sum of distances between any two sequences that are directly connected in the tree should
be minimal).

Since one, or in the case of parsimony several, optimal trees can be generated by tree
building algorithms, an approach such as the bootstrap method [37] is commonly used
to assess the significance of some phylogenetic feature and thus give some measure of
confidence for the tree.

Although the concept of ‘constraints’ is widely used in the phylogentic literature, for
example in the application to parsimony and maximum likelihood in terms of constraints
over edge parameters between substitution sites, [98], almost no work has been done by the
computational constraint community. However, related work certainly exists, for example
the work by Gent et al [42] on the application of constraint programming to supertrees.

26.5 Structure Related Problems

26.5.1 Structure Prediction

Here one is concerned about the relation between sequence and structure. The sequence
can either be from a protein, in which case the problem is sometimes referred as the protein
folding problem; a more simple variant is that of RNA folding.

Now for natural protein sequences, the protein folds into one stable structure (which is
believed to be a structure where the free energy has a global minima), which is completely
determined by its amino acids sequence. This native structure determines the function

R. Backofen, D. Gilbert 923

of a protein. Since it is very easy to determine the sequence of a protein, the structure
prediction problem consists of determining the structure from a given sequence. This is one
of the holy grail of bioinformatics, since protein structure prediction is a very important but
notoriously hard problem. It is subject of many ongoing attempts to solved this problem
by a variety of methods (see for example the CASP competitions [18] [99]) Note that
for artificial sequences, the sequence usually does not determine the structure (i.e., the
artificially designed protein will not fold to a stable structure in general).

Proteins have a high level of local organisation (called secondary structure), which con-
sist of α-helices, β-strands and turns). For that reason, there are approaches for predicting
secondary structure first, before the overall tertiary structure is determined, as well as ap-
proaches with try to predict tertiary structure directly. It is presently believed that protein
structure prediction cannot be done purely on the level of secondary structure alone.

A problem related to the protein folding problem is the inverse protein folding, which
consists of the following. Given a three-dimensional structure, generate a sequence that
will fold uniquely into the given structure. Naively, this can be solved using structure
prediction (generate a sequence, then predict the structure, and compare the result with
the given structure). Clearly, this problem is of interest for drug design, although inverse
protein folding is not used in drug design yet. The reason simply that the problem is
unsolved (see e.g. [51], where this problem is treatment for lattice proteins).

For RNA, secondary structure is usually related to base pair bonding, and structure
prediction is possible on this level (under some restrictions) taken into account thermody-
namical energies [113].

26.5.2 Structure-Prediction for Lattice Models of Proteins

Introduction

To tackle protein structure prediction and related problems simplified protein models have
been introduced. These simplified models have been successfully used by several groups
in the international contest on automated structure prediction. The most important class of
simplified models are the so-called lattice models. The simplifications commonly used in
this class of models are: 1.) monomers (or residues) are represented using a unified size 2.)
bond length is unified 3.) the positions of the monomers are restricted to lattice positions,
and 4.) a simplified energy function.

Apart from their use in structure prediction, they have became a major tool for investi-
gating general properties of protein folding. They constitute a genotype (protein sequence)
versus phenotype (protein conformation) mapping that can be dealt with using computa-
tional methods. Thus, they can be used to investigate evolutionary processes. An example
is [14], where so-called neutral networks have been investigated. The edges of the net-
work are pairs of sequences which differ only in one sequence positions, but have the same
minimal energy conformation. Thus, a neutral network represents all protein sequences
encoding the same protein conformation. The question is whether one can switch between
two different neutral networks using only a small number of amino-acid substitutions. If
this is the case, then this suggest a way evolution could have produced the diversity of
protein conformations found in nature.

The simplest model is the HP-model, which is an important representative of lattice
models. It has been introduced by Lau and Dill in [70]. In this model, the 20 letter al-

924 26. Bioinformatics and Constraints

(a)
H P

H -1 0
P 0 0

(b)

Figure 26.2: Energy matrix and sample conformation for the HP-model

phabet of amino acids is reduced to a two letter alphabet, namely H and P. H represents
hydrophobic amino acids, whereas P represent polar or hydrophilic amino acids. In natural
proteins, the hydrophobic amino-acids tend to be in the middle of the protein (forming a
compact hydrophobic core), whereas the hydrophilic ones tend to be on the surface of the
protein, thus interacting with the surrounding water. This is modeled in the energy func-
tion for the HP-model, which is given by the matrix as shown in Figure 26.2(a). It simply
states that the energy contribution of a contact between two monomers is−1 if both are H-
monomers, and 0 otherwise. Two monomers form a contact in some specific conformation
if they are not connected via a bond, and the euclidian distance of the positions is 1. A con-
formation with minimal energy (also called optimal conformation) is just a conformation
with the maximal number of contacts between H-monomers. Just recently, the structure
prediction problem has been shown to be NP-complete even for the HP-model [11, 24].

A sample conformation for the sequence PHPHPPHHPH in the two-dimensional lattice
with energy −2 is shown in Figure 26.2(b). The white beads represent P, the black ones H
monomers. The two contacts are indicated via dashed lines.

So far, most of the existing approaches are heuristic methods like the hydrophobic zip-
per [28], the genetic algorithm by Unger and Moult [103], the chain growth algorithm
by Bornberg-Bauer [13], or monte-carlo approaches with simulating annealing like [7],
which is a monte-carlo method applicable for any regular lattice. There are only two ap-
proaches available that are able to prove optimality of the found conformations, namely the
constraint-hydrophobic core construction (CHCC) [112], and the constraint-based protein
folding method [4], which we will describe here in more detail. It is the first methods that
is applicable to two different lattices (the cubic lattice, and the face-centered-cubic lattice),
and to different energy functions (namely the HP-model and its extension HPNX, which
also encodes charged amino acids). Using this constraint-based approach, we were able to
find minimal energy conformations (and prove their optimality) for sequences up to length
300. In contrast, the CHCC method, which is not based on constraint programming, was
only applied to sequences up to length 86. In the following, we will handle only the cu-
bic lattice, albeit the face-centered-cubic lattice (FCC) is more suited for modeling protein
conformations, but is also more complex.

A simple constraint-based formalization

A sequence is an element in {H,P}∗. With si we denote the ith element of a sequence s.
We say that a monomer with number i in s is even (resp. odd) if i is even (resp. odd). A
conformation c of a sequence s is a function

c : [1..|s|]→ Zd

R. Backofen, D. Gilbert 925

(where d = 2 or d = 3 depending on whether we consider a 2-dimensional or a 3-
dimensional lattice) such that

1. ∀1 ≤ i < |s| : ||c(i)− c(i+ 1)|| = 1 (where || · || is the euclidian norm on Zd)

2. and ∀i 6= j : c(i) 6= c(j).

The first condition is imposed by the lattice constraint and implies that the distance vector
between two successive elements must be a unit-vector (or a negative unit-vector) in every
admissible conformation. The second condition is the constraint that the conformation
must be self-avoiding.

Given a conformation c of a sequence s, the number of contacts Contacts(c) in c is
defined as the number of pairs (i, j) with i+ 1 < j such that

si = H ∧ sj = H ∧ ||c(i)− c(j)|| = 1

(in other words, the number of pairs of H-monomers that have distance 1 in the conforma-
tion c, but are not successive in the sequence s). The energy of c is just −Contacts(c).
With ~ex, ~ey and ~ez we denote the unit vectors (1, 0, 0), (0, 1, 0) or (0, 0, 1), respectively.
We say that two points ~p, ~p′ ∈ Z3 are neighbors if ‖~p− ~p′‖ = 1. This is equivalent to the
proposition that ~p = ~p′ ± ~e with ~e ∈ {~ex, ~ey, ~ez}.

This can now be directly encoded as a constraint problem. Our constraint problem
consists of finite domain variables. We use also Boolean constraint and reified constraints.
With reified constraints we mean a constraint x =: (φ), where φ is a finite domain con-
straint. x is a Boolean variable which is 1 if and only if φ holds. Technically, this can
be achieved via setting x to 1 if the constraint store entails φ, and to 0 if the constraint
store disentails φ. A constraint store entails a constraint φ if every valuation that makes the
constraint store valid also makes φ valid. We use also entailment constraints of the form
φ → ψ, which are interpreted as follows. If a constraint store entails φ, then ψ is added
to the constraint store. We have implemented the problem using the language Oz [94],
which supports finite domain variables, Boolean constraints, reified constraints, entailment
constraints and a programmable search module.

Now we can encode the space of all possible conformations for a given sequence as a
constraint problem as follows. We introduce for every monomer i new variables Xi, Yi and
Zi, which denote the x-, y-, and z-coordinate of c(i). Since we are using a cubic lattice,
we know that these coordinates are all integers. But we can even restrict the possible
values of these variables to the finite domain [1..2n].3 This is expressed by introducing the
constraints

Xi ∈ [1..(2 · length(s)] ∧ Yi ∈ [1..(2 · length(s)] ∧ Zi ∈ [1..(2 · length(s)]

for every 1 ≤ i ≤ n. The self-avoidingness is just (Xi,Yi,Zi) 6= (Xj ,Yj ,Zj) for i 6= j.4

For expressing that the distance between two successive monomers is 1, we introduce
for every monomer i with 1 ≤ i < length(s) three variables Xdiffi, Ydiffi and Zdiffi.

3We even could have used [1..n]. But the domain [1..2n] is more flexible since we can assign an arbitrary
monomer the vector (n, n, n), and still have the possibility to represent all possible conformations.

4This cannot be directly encoded in Oz [94], but we reduce these constraints to difference constraints on
integers.

926 26. Bioinformatics and Constraints

The value range of these variables is [0..1]. Then we can express the unit-vector distance
constraint by

Xdiffi =: |Xi − Xi+1| Zdiffi =: |Zi − Zi+1|
Ydiffi =: |Yi − Yi+1| 1 =: Xdiffi + Ydiffi + Zdiffi.

The constraints described above span the space of all possible conformations. I.e.,
every valuation of Xi,Yi,Zi satisfying the constraints introduced above is an admissible
conformation for the sequence s, i.e. a self-avoiding walk of s. Given partial information
about Xi,Yi,Zi (expressed by additional constraints as introduced by the search algo-
rithm), we call a conformation c compatible with these constraints on Xi,Yi,Zi if c is
admissible and c satisfies the additional constraints.

The most simplest way to search for conformations with maximal number of contacts
would be to add constraints for counting the number of contacts. Then one can directly
enumerate the variables Xi, Yi and Zi. For HP-type models, we have to count contacts
which are always generated between two neighboring H-monomers. For this purpose, one
introduces a variable Contacti,j that is 1 if i and j have a contact in every conformation
which is compatible with the valuations of Xi,Yi,Zi, and 0 otherwise. Then

Xdiffi,j = |Xi − Xj | Zdiffi,j = |Zi − Zj |
Ydiffi,j = |Yi − Yj | Contacti,j ∈ {0, 1}

(Contacti,j = 1)↔ (Xdiffi + Ydiffi + Zdiffi = 1) (26.9)

where Xdiffi,j , Xdiffi,j and Zdiffi,j are new variables. The variable HHContacts counts
the number of contacts between H-monomers, and is defined by

HHContacts =
∑

i+1<j∧

s(i)=H∧s(j)=H

Contacti,j . (26.10)

Now we could start to apply constraint-based enumeration on Xi,Yi,Zi searching for a
conformation with maximal number of contacts.

The main problem using this approach alone is that it is very difficult to define good
bounds and to find a search heuristic for enumerating low-energy conformation first. Nev-
ertheless, this formulation is in part required for lattice models with an extended alpha-
bet like the HPNX-model [6], which models also electrostatic contacts in addition to hy-
drophobicity.

Dal Palù et al. [80] considered an extension of the above problem for a much more
sophisticated energy function. Since it is not possible to solve the problem optimally or
near-optimally in the case of extended energy functions, they integrated additional bio-
logical knowledge to achieve good predictions. Starting from a formulation of the pro-
tein folding problem for the face-centered cubic lattice similar to the one described in
Eq (26.9), they integrated secondary structure information in the prediction process. In
a later work, Dal Palù et al. [79] extended the simple formulation Eq (26.9) by introduc-
ing variable that have three-dimensional domains (called Box-domains) associated, and
described a constraint system and propagation techniques for this kind of variables. A
similar approach of using variables with three-dimensional domains was successfully used

R. Backofen, D. Gilbert 927

X=1
n=3

fr=2x2

X=2
n=6

fr=2x3

X=3
n=4

fr=2x2

⇒

X=1
n=3

fr=2x2

X=2
n=6

fr=2x3

X=3
n=4

fr=2x2

⇒

X=1
n=3

fr=2x2

X=2
n=6

fr=2x3

X=2
n=4

fr=2x2

Figure 26.3: The overall approach

Finding all maximally compact hydrophobic cores is an optimization problem itself,
which was solved in [4] again in a two-level step. First, the distribution of H-monomers
to layers of the form X = i is calculated. Such a distribution is called a frame sequence,
and consists of the number of H-monomer in each layer, as well as the minimal rectangle
around these monomers. As we will see later, this information can be used to calculate an
upper bound on the number of contacts for a specific frame sequence, which allows one to

5If there is no conformation found for the maximally compact core, then sub-optimal cores have to be con-
sidered as well, which is not very often the case.

928 26. Bioinformatics and Constraints

discard many frame sequences. Then, for a given frame sequence, all possible maximally
compact hydrophobic cores having the corresponding frame sequence are generated. Thus,
we have the overall 3-level approach depicted in Figure 26.3.

a) layer contacts

interlayer contacts
x=2x=1

b)

Layer1 Layer2
a1 = 2 a2 = 2
b1 = 3 b2 = 2
n1 = 5 n2 = 4

Figure 26.4: a) Layer and Interlayer Contacts b) Corresponding Frame Sequence

R. Backofen, D. Gilbert 929

quadratic frame with a = ⌈√n⌉ and b = ⌈na ⌉ will have minimal surface, which used as a
bound when enumerating number sequences.

For the interlayer contacts in the cubic lattice, one simply observes that every monomer
in one layer can have at most one contact in the following layer. Thus, the maximal number
of interlayer contacts for two successive layers X = i and X = i+ 1 having ni and ni+1

monomers is min(ni, ni+1). Using this upper bounds for layer and interlayer contacts, one
can calculate the optimal frame sequence using a dynamic programming approach.

For the face-centered cubic lattice, the calculation of the bound is more complicated.
Albeit one can uses also a splitting of the core into successive layers and apply the same
bound for layer contacts, the bound for the interlayer contacts is more difficult. The reason
is that every H-monomer in one layer can have up to 4 contact in the successive layer. For
details the reader is referred to [2].

Construction of hydrophobic cores Once we have a frame sequence ak, bk, nk for k =
1 . . .m, one has to enumerate the possible hydrophobic cores for this frame sequence. The
first step is to fix the frame positions in each layer. That is, we have finite domain variables
syk and szk for the lower left corner of the frame in layer x = k. We can choose sy1 =
sz1 = 0 for the first frame. For the remaining frames, we have to enumerate in principle all
possible starting positions. But again, we can use bounds to discard combination of values
for syk, szk that may not result in a maximal compact hydrophobic core.

An example of such a bound is the following. A combination is unfavorable if a frame
does not completely overlap with the previous frame. Then only the part of the two frames
that do overlap can generate interlayer contacts. Hence, we can use the bounds on the in-
terlayer contacts described in the last section to calculate the number of interlayer contacts
for the overlapping sub-frames.

Once we have fixed the frames (via determining their lower left corners), we start be
enumerating the positions that are actually contained in the core. This can be done by
inserting for every position a Boolean variable c~p for every position ~p that is in one of the
fixed frames. Then

c~p = 1 iff ~p is in the core.

Clearly, we have

∑

~p is in Layer x = k

c~p

 = nk.

Since a frame is usually tightly filled, this constraint provides good propagation. Finally,
we have to encode contacts by using a Boolean variableContact~p,~p′ for each pair of neigh-
bors ~p, ~p′. Then

Contact~p,~p′ = 1⇔ (c~p = 1 ∧ c~p′ = 1).

Counting Contact~p,~p′ will gives us the total number of contacts for the core.
We can improve propagation by the following consideration. Usually, hydrophobic

cores do not have too many caveats. A caveat is a P-monomer which is part of the hy-
drophobic core and thus buried by H-monomers. This usually produces a non-optimal

930 26. Bioinformatics and Constraints

P−position

undet.

positions
H−position

frame bound.

P−positions via entailment

Figure 26.5: Example of the caveat-freeness constraint

core, but must be considered in the case that the optimal cores do not correspond to a valid
sequence conformation. If a frame does not contain any caveat, then we know that for any
line through the frame, the H-monomers must be consecutive on this line. Now suppose we
have two positions ~p and ~p′ in the same frame with the property that ~p is the left neighbor
of ~p′, c~p = 0 (P-position) and c~p = 1 (H-position). Then all positions to the left of ~p on
the line through ~p, ~p′ must be P-positions as well (see Figure 26.5). For a given pair of left
neighbors ~p = (k, s, t) and ~p′ = (k, s+1, t), this can be simply expressed by the following
entailment constraint:

c~p = 0 ∧ c~p′ = 1 =⇒
∧

~p′′ = (k, s, t)
in frame

with r < s

c~p′′ = 0

Of course, we have to introduce such a constraint for every pair of left, right or vertical
neighbors. For more details, the reader is referred to [1] and [108]. If caveats are allowed,
then one can enumerate them explicitly and add the constraint for the remaining positions.

26.5.3 Protein Docking and Ligand Binding

Protein docking attempts to find the most stable mode of association between two protein
molecules, starting from the atomic coordinates of the two isolated components. It can be
likened to a ‘lock and key’ mechanism , where both lock and key are plastic, and distort
according to mutual interactions. The protein-protein interfaces are closely packed, similar
to protein cores. The aim of any docking algorithm is to optimise the surface area and at-
tractive forces and to minimise the loss of energy due to interaction with the solvent. This
is a difficult area of research, but there are general rules. Optimisation must be performed
on many degrees of freedom, since this is an example of 6-D problem of rigid body move-
ment - 3 translations and 3 rotations, all of which must be searched. The approaches to
rigid surfaces are broadly

1. Given the information of a pair of proteins crystallised together, to reconstruct the
docking

R. Backofen, D. Gilbert 931

2. Given the individual proteins separately crystallised, to predict their docking. re-
quires trying all combinations of degrees of freedom note that ligand binding - small lig-
ands tend to bind in big pockets; ligands are more flexible than proteins

26.5.4 Structure Motif Matching

Protein structures can be described at various levels of detail, ranging from atomic coordi-
nates, through vector approximations to secondary structures elements (SSEs), to ‘topolog-
ical’ models. These latter abstractions typically consider a sequence of SSEs, i.e. helices
or strands, together with relationships like spatial adjacency within the fold and approxi-
mate orientation, neglecting details like lengths and structures of loops, and the lengths of
the secondary structure elements themselves. This level of abstraction can be useful to per-
mit very fast algorithms for structure motif matching, discovery and structure comparison.
Further, by neglecting many of the details which typically vary between related structures,
like lengths and structures of loops, and exact lengths, spatial positions and orientations of
SSEs, it has the potential to detect more distant structural relationships than could be found
by methods based on more geometrical descriptions. On the other hand, its disadvantages
are that there may be structures which, although related at the topological level, are very
different from a geometric point of view, and have no meaningful biological relationship.

A TOPS structure is a triple (E,H,C) where E = S1, . . . , Sk is a sequence of length
k of secondary structure elements (SSEs) and H and C are relations over the SSEs, called
respectively H-bonds and chiralities. In this description an H-bond constraint refers to
a ladder of individual hydrogen bonds between adjacent strands in a sheet. An SSE S
is a character from the alphabet {α, β} standing for helix and strand respectively. Since
each SSE in a TOPS structure is associated with a direction up or down we associate a
direction symbol, + or−, with each letter of this alphabet. Both H-bonds and chiralities are
symmetric relations (non-directed arcs in the graph). An H-bond constrains the types of the
two SSE’s involved to be strands, and each bond is associated with a relative direction δ ∈
{P,A}, indicating whether the bond is between parallel or anti-parallel strands. Chiralities
are associated with handedness χ ∈ {L,R} (left and right respectively), and only occur
between pairs of SSEs of the same type. We denote the H-bond relationship between two
SSEs Si and Sj by (Si, δ, Sj) and a chirality relationship by (Si, χ, Sj).

Definition 26.8 (TOPS structure). Given Σ = {α+, α−, β+, β−}, then
a TOPS structure D is defined by the triple (S,Hd, Cd), where
S = (S1, . . . , Sk), Si ∈ Σ
Hd = {(Si, δ, Sj)|Si, Sj ∈ {β+, β−}, δ = P ↔ Si = Sj , δ = A↔ Si 6= Sj}
Cd = {(Si, χ, Sj)|Si, Sj ∈ Σ, χ ∈ {R,L, }}

As an example, in Figure 26.6 we give a TOPS structure for the protein structure
“2bop” (Protein Databank code) both in a form with ‘2-D’ layout as well as in a linear
form form. The textual form of the TOPS description for 2bop is:

2bop = (E,H,C), where
E = (β+1

, α−2
, α−3

, β+4
, β+5

, β−6
, α+7

, β−8
)

H = {(β+1
, A, β−6

), (β+1
, A, β−8

), (β+4
, A, β−6

), (β+5
, A, β−6

)}
C = {(β+1

, R, β+4
), (β−6

, R, β−8
)}

A TOPS pattern, or motif , is similar to a TOPS structure, but is a generalisation which
can describe several structures conforming to some common topological characteristics.

932 26. Bioinformatics and Constraints

R

1

23

4

6

7

8

5

CN

A
A A

A R

A

N 1
2

C3 4 5 6 7 8

R
R

A

A

A

Figure 26.6: TOPS structure for 2bop. Circles represent α-helical secondary structure ele-
ments, triangles represent β-strand secondary structure elements, arrows represent loop re-
gions, heavy dotted lines represent hydrogen-bond relationships (‘A’ – anti-parallel), light
dotted lines represent chiralities (’R’ — right-handed)

This generalisation is achieved by permitting ‘gaps’, standing for the insertion of SSEs (and
any associated H-bond and chiralities), in the sequence of secondary structure elements;
indeed a structure is just a pattern where no inserts are permitted. A gap is described by
a pair (n,m) where n stands for the minimum and m for the maximum number of SSEs
which can be inserted at that position. The range of n and m is from zero to the largest
number of SSE’s in any TOPS structures (approximately 60).

In principle, just as for TOPS structures, each SSE in a TOPS pattern is associated with
a direction up or down (+ or − respectively) relative to the X-axis, and is a character from
the alphabet {α, β}.

However, since any TOPS description of pattern (or a structure) can be flipped about
the X-axis without loss of meaning, in order to facilitate pattern matching we associate a
direction variable, ⊕ or ⊖ with each SSE in a pattern P s.t. they satisfy the constraint

∀⊕,⊖ ∈ P : opp(⊕,⊖)↔ (⊕ = + ∧ ⊖ = −) ∨ (⊕ = − ∧⊖ = +)

Note that it is possible, but redundant if we are to perform pattern matching, to associate a
similar constraint with each SSE in a structure description.

Definition 26.9 (TOPS pattern). Given Σ = {α⊕, α⊖, β⊕, β⊖} then a TOPS pattern
P = (T,Hp, Cp), ∀⊕,⊖ ∈ P : opp(⊕,⊖), where T = (n0,m0) − V1 − (n1,m1) −
V2 − . . .− (nk−1,mk−1)− Vk − (nk,mk), Vj ∈ Σ, nj ≤ mj

Hp = {(Si, δ, Sj)|Si, Sj ∈ {β⊕, β⊖}, δ = P ↔ Si = Sj , δ = A↔ Si 6= Sj}
Cp = {(Si, χ, Sj)|χ ∈ {R,L, }, Si, Sj ∈ Σ}

For example a TOPS pattern which describes plaits (2bop is an instance of a plait) is
illustrated in Figure 26.7; arrows between SSEs in the sequence have been annotated with
pairs of integers standing for (ni,mj), in this case (0,N).

Definition 26.10 (Size of a TOPS structure (resp pattern)). The size of a TOPS structure
D = (S,H,C) (resp. pattern) is |S|, the number of SSEs in the structure (pattern).

Gilbert et al [47] have defined a simple backtracking algorithm which is guaranteed to
find all the ways in which a TOPS pattern matches a TOPS structure; for each match it

R. Backofen, D. Gilbert 933

1

R

CN

2

3

4

5

6
A

A A

R

(0,N)

(0,N)

(0,N)

(0,N)

(0,N) C(0,N)N 1 2 3 4 5 6

R
R

A

A

A

(0,N)
(0,N)

(0,N) (0,N)

Figure 26.7: TOPS plait motif

returns the set of pairs of corresponding SSEs between the pattern and the structure, and
the set of corresponding insert sizes in the pattern.

Finite domain constraints over integers are used in the algorithm in order to prune the
search space. A correspondence is established between the SSE numbers in a structure size
j and the SSE numbers in a pattern size k Corr := (d1, d2, . . . , dk), where di (i ∈ 1 . . . k)
is a constraint variable representing the number of the SSE in the structure matching SSE i
in the pattern. In addition Ins := (I1, I2, . . . , Ik−1) is the sequence of insert sizes, where
Ii (i ∈ 1 . . . k−1) is a constraint variable representing the number of inserts between SSEs
i and i+ 1 in the pattern, The matching algorithm imposes constraints on the SSEs in the
pattern by setting up constraints for i ∈ 1..k, C1: 1 ≤ di ≤ j
C2: ni ≤ Ii ≤ mi,
C3: di + Ii + 1 = di+1

Constraint C1 gives the range of di (a pattern cannot have more SSEs than a matching
structure); C2 sets up a constraint variable for each insert in the pattern, and C3 ensures
that the insert sizes are respected in the matching.

The simple algorithm then proceeds by matching the H-bonds (respecting the paral-
lel/antiparallel labels), the chiralities (respecting the right/left-hand labels) and the SSEs
(respecting the type and orientation) between the pattern and the structure.

In fact, matching of TOPS motifs to TOPS structures is an instance of the subgraph
isomorphism problem which remains NP-complete for such vertex ordered graphs. There
are several non-polynomial algorithms for subgraph isomorphism problem, the most pop-
ular being by Ullmann [102] and McGregor [76]. Although these are not straightforwardly
adaptable to vertex ordered graphs, the vertex ordering seems to be the property that could
considerably improve the algorithm efficiency.

Viksna et al. [106] give a fast matching algorithm for TOPS structures, which is a
variant of a method based on constraint satisfaction [76]. The algorithm tries to match
edges in the increasing order of edge positions and backtracks if for some edge match can
not be found. Since the graphs are ordered, the positions in the target graph to which a given
edge may be mapped and which have to be checked can only increase. Two additional
ideas are used to make this process more efficient. Firstly, a number of additional labels
are assigned to vertices and edges; they comprise the numbers of incoming and outgoing
edges of all possible types for a given vertex, whilst for an edge they describes how many
“shorter” or “longer” other edges are connected to the endpoints of a given edge. describes
how many shorter or longer other edges are connected to the endpoints of a given edge
Secondly, if an edge e can not be mapped according to the existing mapping for previous
edges, then the next place where this edge can be mapped according to the labels is found,
and the minimal match positions of previous edges are advanced in order to be compatible

934 26. Bioinformatics and Constraints

with the minimal position of e. The full algorithm is given in [106].

26.5.5 Structure Motif Discovery

Pattern discovery for sequences is a well-established technique [15] which could be applied
to TOPS structures as follows. The first, “pattern driven” (PD) is based on enumerating
candidate patterns in a given solution space and picking out the ones with high fitness; the
second, “structure driven” (SD) comprises algorithms that try to find patterns by comparing
given diagrams and looking for local similarities between them. In SD an algorithm may be
based on constructing a local multiple alignment of given sequences and then extracting the
patterns from the alignment by combining the segments common to most of the sequences.

Essentially the difference between pattern discovery for sequences and TOPS structures
is that techniques for the former assume that the grammar of the former is regular whilst
that of the latter is context–sensitive. Thus in a naive version of a PD approach for TOPS
diagrams not only would we have to enumerate an exponentially large number of patterns
comprising not only all the possible combinations of the SSEs (and their orientations) in a
pattern of length k, but also all the possible H-bond and chirality connections over them.

Viksna et al [106] find maximal common subgraphs for a set of TOPS graphs by an
exhaustive search comprising repeated extension of an initial subgraph and checking for
subgraph isomorphisms in the target set of graphs. In doing so, they exploit the speed of
their specialised subgraph isomorphism algorithm for TOPS graphs. Starting with a simple
(one vertex) pattern graph, subgraph isomorphism is used to check against all graphs in a
given set and in the case of success attempt to extend the already matched pattern graph
in all possible ways. Some restrictions on the number of different types of edges and
vertices can be deduced from the given set of target graphs and are used by the algorithm.
Apart from that, the previous successful match may be used to deduce information about
extensions which are more likely to be successful in the next match. In general this does
not prune the search space but may help to discover large common subgraphs earlier. The
advantage of this approach is that the algorithm has time complexity that is linear with
respect to the number of graphs in the given input set.

Gilbert et al. [45] report an heuristic algorithm which discovers patterns of H-bonds
(and chiralities) based on the properties of sheets for TOPS diagrams; they also derive pat-
terns on the associated sequences of SSEs and insert sizes. Briefly, the algorithm attempts
to discover a new sheet by finding, common to all the target set of diagrams, a (fresh)
pair of strands, sharing an H-bond with a particular direction. Then it attempts to extend
the sheet by repeatedly inserting a fresh strand which is H-bonded to one of the existing
strands in the (current) sheet. The algorithm then finds all further H-bonds between all
the members of the current sheet. The entire process is repeated until no more sheets can
be discovered; any chirality arcs between the H-bonds in the pattern are then discovered
by a similar process. The numbers of inserts between each strand in the pattern are then
computed for all the patterns in the learning set, and the minimum and maximum size of
the gaps in the corresponding insert positions in the pattern are thus found, and combined
with the SSE sequence to give the T-pattern. The result is the least general common TOPS
pattern characterising the target set of protein descriptions.

Other methods that are known mostly correspond to the SD approach outlined above,
for example as described by Koch et al. [66]. These may be more efficient for sets con-

R. Backofen, D. Gilbert 935

taining a small number (basically just two) of graphs, but in general cannot be used to find
the exact answer to the problem for larger sets.

The goodness of a pattern can be stated in several ways, including the size of the pattern,
its discriminative performance against a set of positive and negative examples, and its
compression value. In [46] Gilbert et al describe how to compute the compression of a
TOPS pattern with respect to a set of graphs of structures using a general data compression
measure applied to the size of the pattern graph and the total size of the components of the
structures which are not included in the pattern. This value can be normalised to the range
1 (best) to 0 (worst).

Definition 26.11 (Raw compression). The raw compression of a pattern length k w.r.t. a
set of n structures of lengths l1, . . . , ln is

Σni=1li − (n− 1) ∗ k

Definition 26.12 (Normalised compression). The normalised compression of a pattern
length k w.r.t. a set of n structures of lengths l1, . . . , ln is

(n−1)∗k

Σn
i=1li−minn

i=1(li)

These definitions can be extended in a natural way to include complete structural defini-
tions (H-bonds and chiralities). When there are only two structures in the set, the compres-
sion measure can be used as a measure of structure comparison, as ultilised in the online
TOPS system reported by Torrance et al [101] which operates over the TOPS database
[77].

26.6 Function Related Problems

26.6.1 Metabolic Pathways

Living organisms function by a complex set of interactions at the molecular level which
occur in a highly organised manner. They involve metabolic reactions which transform
some compounds (substrates) into others (products). In general a reaction S → P can
be described by a transition S → S′ → P , transforming the set of substrates S into the
set of products P via a transition state S′ in which the substrate molecules are distorted
into some electronic conformation which more readily converts to the products. In order to
occur, S → P has a negative free energy, i.e. the free energy of S is greater than that of P ;
however S → S′ has a positive free energy change, termed the energy of activation. This
energy is a barrier preventing S → P occurring spontaneously, without which all reactions
would occur in an uncontrolled way. Most reactions are catalysed by special proteins
called enzymes which control the reaction by lowering the energy barrier (i.e. increasing
the rate of flow). They do this by binding substrates at combining sites within active sites,
positioning substrate molecules in the most favourable orientations for reactions to occur,
as well as distorting them in order to favour transition state formation. During this process
the enzyme may change shape in order to induce a fit with the substrate, rather than just
rely on a rigid ‘lock and key’ mechanism. In general, reactions can be chained together
into paths so that the products of one reaction become the substrates of another [36].

936 26. Bioinformatics and Constraints

26.6.2 Regulatory Networks

Metabolic reactions can be regulated in two ways. The first is by the direct activation or
inhibition of activity of enzymes by small molecules. This method is relatively fast in
action, since it directly affects the chain of reactions. Another method of regulation is that
of transcriptional regulation, in which the production of the enzyme itself is controlled by
a transcription factor (a protein which activates the capacity of a gene to produce another
protein). This method is relatively slow, since it indirectly affects the reaction path.

Reactions can be self-regulated using either the direct or transcriptional method, since
it is common that products of an immediate or eventual reaction act have a direct or tran-
scriptional effect on enzymes involved earlier in the chain of reactions. These regulatory
relationships can be quite complex in that products from one path can regulate enzymes
involved in another path.

26.6.3 Querying and Analysing Networks of Cellular Function

In [105] van Helden et al. give a data model for representing and analysing networks of
cellular function (metabolic and regulatory pathways). This has been extended by Deville
et al. [26] to the general case including signalling pathways. Often the information is
stored in a database, with the associated the database model permitting simple analysis to
be directly be performed on through a database query language which are often unsuitable
for algorithmic use. Specific algorithms with their own data structures are required for
more sophisticated analyses. Often graphs are used as representational data structures
– these can be compound, reaction, bipartite and hyper-graphs. Object-oriented models
can be seen as a generalization of bipartite graphs, where the nodes are typed, permiting
detailed descriptions, and the use of inheritance to structure data.

Current computational systems often path navigation routines in addition to simple
data retrieval. A simple query is to get all the reactions catalysed by a gene product More
complex queries require the application of specialised algorithms, often involving the use
of graph analysis. These are for example (adapted from [105])

• find all metabolic pathways that convert compound A into compound B in less than
X steps

• find all genes whose expression is directly or indirectly affected by a given com-
pound.

• find all compounds that can be synthesised from a given precursor in less than X
steps

• in the complete set of metabolic reactions, find all feedback loops including a given
compound, or, in a defined biochemical pathway, find all feedback loops.

Another type of complex queries involve sub-graph extraction. Here the user specifies a set
of seed nodes in the network the system is required to extract the portions of the network or
sub-graphs that interconnect each pair of seed nodes via the smallest number of individual
links. The user can specify the maximum number of individual links, or graph arcs, that
can be inserted between any two seed nodes. The resulting sub-graph can then be displayed
and analysed. Algorithms for sub graph extraction and maximal path enumeration used in

R. Backofen, D. Gilbert 937

this context have been described in van Helden et al [104]. Examples of major databases
and computational systems for storing and analysing biochemical pathway and network
data include KEGG (Kyoto Encyclopedia of Genes and Genomes) [61], BioCyc [68], and
Amaze [72].

In recent work Dooms et al have described an approach using constraint programming
to solve constrained path finding problems in metabolic networks [29] [30], and have ap-
plied it to discover pathways from a set of their reactions. [78]. This approach builds on
earlier work by the same authors [31] in which they defined a graph computation domain
for constraint programming in order to provide a high level modeling language with the
data and results are graphs.

26.7 Microarrays

DNA microarrays (“DNA chips”) are made by the deposition of DNA spots on a solid
support, often a coated glass surface. For an in-depth review, see e.g. [19]. Two main
procedures have been used to produce these: photolithography (e.g. by as developed and
marketed by Affymetrix Inc. [74], and mechanical gridding [16]. Photolithography is a
technique used in the computer microchip industry. There is, however, an inherent length
restriction with this in situ synthesis technology limiting the probes to about 25 nucleotides
in length. This is offset by the use of high-density arrays which allow the use of multiple
probes per gene. The arrayed probes can be oligonucleotides (photolithography and grid-
ding) or cDNAs (gridding).

Arrays of thousands of DNA sequences representing part of all of the genome of an
organism can be constructed. Such arrays can then be used to compare the relative abun-
dance of the transcriptional products of each of these gene sequences in two DNA or RNA
samples, for example from two different cell populations, or from one population exposed
to two different stimuli. In the spotting techniques the two samples are first labelled using
different fluorescent dyes and are then mixed and hybridized with the arrayed DNA spots.
After hybridization, fluorescence measurements are made for each DNA spot, and record-
ing the fluorescence for each dye separately. These measurements are used to determine
the ratio, and in turn the relative abundance, of the sequence of each specific gene in the
two mRNA or DNA samples. (Adapted from [16]).

The computational challenges can be broadly divided into two major categories:
(1) Normalisation and background correction of microarray data,
(2) Modelling and analysis of the networks that are represented by the sets of genes in the
samples.

We briefly overview the second challenge. Network or pathway reconstruction from
microarray data is based on observations of the expression of a set of genes under varying
conditions such as time-series, targeted mutation or exposure to different evnironmental
conditions (stress, starvation etc) [81]. These data are usually taken as steady-state. The
goal is to identify which genes control (the expression of) other genes, and the results if
these controls. The analysis often involves the clustering of genes by expression data and
the analysis of promoter elements within the same clusters. Machine learning techniques
are commonly used for reconstgruction of gene networks, for example Soinov et al [95]

A potential application of constraint programming in this area is proposed by Dooms
et al [78] is the explanation of DNA microarray experiments using a CSP able to solve

938 26. Bioinformatics and Constraints

pathway discovery problems. However, this area is ripe for the application of constraint
computation techniques, both in the processing of low-level (primary) data, as well as in
the analysis and interpretation of results, for example cross-referencing into biochemical
pathway data.

Bibliography

[1] R. Backofen. Using constraint programming for lattice protein folding. In Russ B.
Altman, A. Keith Dunker, Lawrence Hunter, and Teri E. Klein, editors, Proceedings
of the Pacific Symposium on Biocomputing (PSB’98), volume 3, pages 387–398,
1998.

[2] R. Backofen. A polynomial time upper bound for the number of contacts in the
hp-model on the face-centered-cubic lattice (fcc). Journal of Discrete Algorithms, 2
(2):161–206, 2004.

[3] R. Backofen and S. Will. Optimally compact finite sphere packings — hydrophobic
cores in the FCC. In Proc. of the 12th Annual Symposium on Combinatorial Pattern
Matching (CPM2001), volume 2089 of Lecture Notes in Computer Science, pages
257–272, Berlin, 2001. Springer–Verlag.

[4] R. Backofen and S. Will. A constraint-based approach to structure prediction for
simplified protein models that outperforms other existing methods. In Proceedings
of the 19th International Conference on Logic Programming (ICLP 2003), pages
49–71, 2003.

[5] R. Backofen and S. Will. Local sequence-structure motifs in RNA. Journal of
Bioinformatics and Computational Biology (JBCB), 2(4):681–698, 2004.

[6] R. Backofen, S. Will, and E. Bornberg-Bauer. Application of constraint program-
ming techniques for structure prediction of lattice proteins with extended alphabets.
Bioinformatics, 15(3):234–242, 1999.

[7] R. Backofen, S. Will, and P. Clote. Algorithmic approach to quantifying the hy-
drophobic force contribution in protein folding. In Russ B. Altman, A. Keith
Dunker, Lawrence Hunter, and Teri E. Klein, editors, Proceedings of the Pacific
Symposium on Biocomputing (PSB 2000), volume 5, pages 92–103, 2000.

[8] R. Backofen, N. Narayanaswamy, and F. Swidan. On the complexity of protein
similarity search under mrna structure constraints. In H. Alt and A. Ferreira, editors,
Proc. of 19th International Symposium on Theoretical Aspects of Computer Science
(STACS2002),, volume 2285 of Lecture Notes in Computer Science, pages 274–286,
Berlin, 2002. Springer Verlag.

[9] A. Bairoch, P. Bucher, and K. Hofman. The PROSITE database, its status in 1995.
Nucleic Acids Research, 24(1):189–196, 1996.

[10] G. Benson. Sequence alignment with tandem repeats. In Proc. of the First Annual
International Conferences on Compututational Molecular Biology (RECOMB97),
pages 27–36, 1997.

[11] B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic (HP)
modell is NP-complete. In Proc. of the Second Annual International Conferences
on Compututational Molecular Biology (RECOMB98), pages 30–39, New York,
1998.

[12] B. Billoud, M. Kontic, and A. Viari. Palingol: a declarative programming language

R. Backofen, D. Gilbert 939

to describe nucleic acids’ secondary structures and to scan sequence databases. Nu-
cleic Acids Research, 24(8):1395–1403, 1996.

[13] E. Bornberg-Bauer. Chain growth algorithms for HP-type lattice proteins. In Proc.
of the 1st Annual International Conference on Computational Molecular Biology
(RECOMB), pages 47 – 55. ACM Press, 1997.

[14] E. Bornberg-Bauer and H. S. Chan. Modeling evolutionary landscapes: mutational
stability, topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. USA,
96(19):10689–94, 1999.

[15] A. Brazma, I. Jonassen, I. Eidhammer, and D. R. Gilbert. Approaches to the auto-
matic discovery of patterns in biosequences. Journal of Computational Biology, 5
(2):277–303, 1998.

[16] P. O. Brown and D. Botstein. Exploring the new world of the genome with dna
microarrays. Nature Genetics, 21:33 – 37, 1999.

[17] H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology.
SIAM Journal of Applied Mathematics, 48:1073–1082, 1988.

[18] CASP3. http://predictioncenter.llnl.gov/casp3/casp3.html. Third Community Wide
Experiment on the Critical Assessment of Techniques for Protein Structure Predic-
tion,, Dec 1998.

[19] J. E. Celis, M. Kruhoffer, I. Gromova, C. Frederiksen, M. Ostergaard, T. Thykjaer,
P. Gromov, J. Yu, H. Palsdottir, N. Magnusson, and T. F. Orntoft. Gene expression
profiling: monitoring transcription and translation products using dna microarrays
and proteomics. FEBS Letters: Functional Genomics, 480(1):2–16, 2005.

[20] T. Christof, M. Jünger, J. Kececioglu, P. Mutzel, and G. Reinelt. A branch-and-
cut approach to physical mapping with end-probes. In Proc. of the First Annual
International Conferences on Compututational Molecular Biology (RECOMB97),
pages 84–92. ACM Press, 1997.

[21] P. Clote and R. Backofen. Computational Molecular Biology: An Introduction.
Mathematical and Computational Biology. Jon Wiley & Sons, Chichester, August
2000. series editor S. Levin. 290 pages.

[22] J. Cohen. Bioinformatics—an introduction for computer scientists. ACM Computing
Surveys, 36(2):122–158, June 2004.

[23] F. Corpet and B. Michot. RNAlign program: alignment of RNA sequences using
both primary and secondary structures. Comput Appl Biosci, 10(4):389–99, 1994.

[24] P. Crescenzi, D. Goldman, C. Papadimitrou, A. Piccolboni, , and M. Yannakakis. On
the complexity of protein folding. In Proceedings of STOC 1998, pages 597–603,
1998.

[25] F. H. C. Crick. On protein synthesis. Symposium of the Society of Experimental
Biology, 12:138–167, 1958.

[26] Y. Deville, D. Gilbert, J. van Helden, and S. Wodak. An overview of data models for
the analysis of biochemical pathways. Briefings in Bioinformatics, 4(3):246–259,
2003.

[27] D. Diaz and P. Codognet. A Minimal Extension of the WAM for clp(FD). In D. S.
Warren, editor, Proceedings of the Tenth International Conference on Logic Pro-
gramming, pages 774–790, Budapest, Hungary, 1993. The MIT Press.

[28] K. A. Dill, K. M. Fiebig, and H. S. Chan. Cooperativity in protein-folding kinetics.
Proc. Natl. Acad. Sci. USA, 90:1942 – 1946, 1993.

[29] G. Dooms, Y. Deville, and P. Dupont. Constrained path finding in biochemical

940 26. Bioinformatics and Constraints

networks. In Proceedings of JOBIM 2004, 2004.
[30] G. Dooms, Y. Deville, and P. Dupont. A mozart implementation of CP(bionet).

In Proceedings of the second International Mozart/Oz Conference, pages 237–250.
Springer-Verlag LNAI 3389, 2004.

[31] G. Dooms, Y. Deville, and P. Dupont. CP(graph): Introducing a graph computation
domain in constraint programming. In Proceedings of the Eleventh International
Conference on Principles and Practice of Constraint Programming, pages 211–225,
2005.

[32] M. Dsouza, N. Larsen, and R. Overbeek. Searching for patterns in genomic data.
Trends in Genetics, 13(12):497–498, 1997.

[33] R. Durbin, S. Eddy, A. Krough, and G. Mitchison. Biological Sequence and Analy-
sis. CUP, 1998.

[34] I. Eidhammer, I. Jonassen, and W. R. Taylor. Structure Comparison and Structure
Patterns. Technical Report 174, Department of Informatics, University of Bergen,
Bergen, Norway, Jul 1999.

[35] I. Eidhammer, D. Gilbert, I. Jonassen, M. Ratnayake, and S. H. Grindhaug. A
constraint based structure description language for biosequences. Constraints, 6
(2–3):141–156, 2001.

[36] W. H. Elliott and D. C. Elliott. Biochemistry and Molecular Biology. OUP, 1997.
[37] J. Feldenstein. Confidence limits on phylogenies: an approach using the bootstrap.

Evolution, 39:783–791, 1985.
[38] W. M. Fitch. Toward defining the course of evolution: minimum change for a spec-

ified tree topology. Systematic Zoology, 20:406–416, 1971.
[39] S. Foissac and T. Schiex. Integrating alternative splicing detection into gene predic-

tion. BMC Bioinformatics, 6(1):25, 2005.
[40] D. Gautheret, F. Major, and R. Cedergren. Pattern searching/alignment with RNA

primary and secondary structures: an effective descriptor for tRNA. Computer Ap-
plications in the Biosciences, 6:325–331, 1990.

[41] M. S. Gelfand, A. A. Mironov, and P. A. Pevzner. Gene recognition via spliced
sequence alignment. Proc. Natl. Acad. Sci. USA, 93(17):9061–6, 1996.

[42] I. P. Gent, P. Prosser, B. M. Smith, and W. Wei. Supertree construction with con-
straint programming. In ICCP: International Conference on Constraint Program-
ming (CP), LNCS, pages 837–841, 2003.

[43] Z. Ghahramani. Learning dynamic Bayesian networks. In C. Lee Giles and Marco
Gori, editors, Adaptive Processing of Sequences and Data Structures, number 1387
in Lecture Notes in Artificial Intelligence, LNAI, pages 168–197. Springer-Verlag,
1998.

[44] D. Gilbert, D. Westhead, J. Thornton, and J. Viksna. Tops cartoons: formalisation,
searching and comparison. RECOMB99 (poster), 1999.

[45] D. Gilbert, D. Westhead, J. Viksna, and J. Thornton. Topology-based protein struc-
ture comparison using a pattern discovery technique. Journal of Computers and
Chemistry, 26(1):23–30, 2001.

[46] D. Gilbert, D. Westhead, and J. Viksna. Techniques for comparison, pattern match-
ing and pattern discovery: From sequences to protein topology. In Artificial Intelli-
gence and Heuristic Methods in Bioinformatics, pages 128–147. IOS Press, 2003.

[47] D. R. Gilbert, D. R. Westhead, N. Nagano, and J. M. Thornton. Motif–based search-
ing in tops protein topology databases. Bioinformatics, 15(4):317–326, 1999.

R. Backofen, D. Gilbert 941

[48] D. S. Greenberg and S. Istrail. Physical mapping by sts-hybradisation: Algorith-
mic strategies and the challenge of software evaluation. Journal of Computational
Biology, 2(2):219–273, 1995.

[49] B. J. Haas, A. L. Delcher, S. M. Mount, J. R. Wortman, R. K. J. Smith, L. I. Hannick,
R. Maiti, C. M. Ronning, D. B. Rusch, C. D. Town, S. L. Salzberg, and O. White.
Improving the Arabidopsis genome annotation using maximal transcript alignment
assemblies. Nucleic Acids Research, 31(19):5654–66, 2003.

[50] R. M. Hall and C. M. Collis. Mobile gene cassettes and integrons: capture and
spread of genes by site-specific recombination. Mol Microbiol, 15(4):593–600,
1995.

[51] W. E. Hart. On the computational complexity of sequence design problems. In
Proc. of the First Annual International Conferences on Compututational Molecular
Biology (RECOMB97), pages 128–136, Santa Fe, New Mexico, 1997.

[52] F. U. Hartl and J. Martin. Molecular chaperones in cellular protein folding. Current
Opinion in Structural Biology, 5(92):92–102, 1995.

[53] C. Helgesen and P. Sibbald. PALM - a pattern language for molecular biology.
In L. Hunter, D. Searls, and J. Shavlik, editors, Proceedings First International
Conference on Intelligent Systems for Molecular Biology, pages 172–180. AAAI
Press, 1993.

[54] M. Hiller, K. Huse, M. Platzer, and R. Backofen. Creation and disruption of protein
features by alternative splicing – a novel mechanism to modulate function. Genome
Biol, 6(7):R58, 2005.

[55] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Alignment of RNA base pairing
probability matrices. Bioinformatics, 2004.

[56] A. Horwich and J. Weissman. Deadly conformations: Protein misfolding in prion
disease. Cell, 89:499–510, 1997.

[57] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371–88, 2002.

[58] I. Jonassen, I. Eidhammer, and W. R. Taylor. Discovery of local packing motifs in
protein structures. Proteins, 34(2):206–219, 1999.

[59] N. C. Jones and P. A. Pevzner. An Introduction to Bioinformatics Algorithms (Com-
putational Molecular Biology). The MIT Press, 2004.

[60] M. Kanehisa. Grand challenges in bioinformatics. Bioinformatics, 14(4):309, 1998.
[61] M. Kanehisa and S. Goto. KEGG: Kyoto Encyclopedia of Genes and Genomes.

Nucleic Acids Res., 28:27–30, 2000.
[62] J. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, and M. Vingron.

A polyhedral approach to sequence alignment problems. Discrete Applied Mathe-
matics, 104(1-3):143–186, 2000.

[63] J. D. Kececioglu. The maximum weight trace problem in multiple sequence align-
ment. In Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber,
editors, Proc. 4th Symp. Combinatorical Pattern Matching, pages 106–119, 1993.

[64] J. D. Kececioglu. Exact and Approximation Algorithms for DNA Sequence Recon-
struction. PhD thesis, University of Arizona, 1991.

[65] H. Kitano. Looking beyond the details: a rise in system-oriented approaches in
genetics and molecular biology. Current Genetics, 41(1):1–10, 2002.

[66] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding maximal common
subtopologies in a set of protein structures. Journal of Computational Biology, 3(2):

942 26. Bioinformatics and Constraints

289–306, 1996.
[67] L. Krippahl and P. Barahona. Psico: Solving protein structures with constraint pro-

gramming and optimization. Constraints, 7(4-3):317–331, 2002.
[68] M. Krummenacker, S. Paley, L. Mueller, T. Yan, and P. D. Karp. Querying and

computing with BioCyc databases. Bioinformatics, 21(16):3454–3455, 2005.
[69] R. H. Lathrop and T. F. Smith. Global optimum protein threading with gapped

alignment and empirical pair score functions. Journal of Molecular Biology, 255:
641–665, 1996.

[70] K. F. Lau and K. A. Dill. A lattice statistical mechanics model of the conformational
and sequence spaces of proteins. Macromolecules, 22:3986 – 3997, 1989.

[71] F. Lefebvre. A grammar-based unification of several alignment and folding algo-
rithms. In David J. States, Pamkaj Agarwal, Terry Gaasterland, Lawrence Hunter,
and Randall Smith, editors, Proceedings of the Fourth International Conference on
Intelligent Systems for Molecular Biology, pages 143–154, Menlo Park, June 12–15
1996. AAAI Press.

[72] C. Lemer, E. Antezana, F. Couche, F. Fays, X. Santolaria, R. Janky, Y. Deville,
J. Richelle, and S. Wodak. The aMAZE LightBench: a web interface to a relational
database of cellular processes. Nucleic Acids Res., 32:D443–D448, 2004.

[73] H. P. Lenhof, K. Reinert, and M. Vingron. A polyhedral approach to RNA sequence
structure alignment. Journal of Computational Biology, 5(3):517–30, 1998.

[74] R. J. Lipshutz, S. P. Fodor, T. R. Gingeras, and D. J. Lockhart. High density synthetic
oligonucleotide arrays. Nature Genetics, 21:20 – 24, 1999.

[75] T. Macke, D. Ecker, R. Gutell, D. Gautheret, D. Case, and R. Sampath. RNAMo-
tif, an RNA secondary structure definition and search algorithm. Nucleic Acids
Research, 29(22):4724–4735, 2001.

[76] J. J. McGregor. Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Information Sciences, 19:229–250, 1979.

[77] I. Michalopoulos, G. M. Torrance, D. R. Gilbert, and D. R. Westhead. Tops: an
enhanced database of protein structural topology. Nucleic Acids Research, Database
issue, 32:D251–D254, 2003.

[78] Y. Deville P. D. G. Dooms. Constrained metabolic network analysis: discovering
pathways using CP(Graph). In Workshop on Constraint Based Methods for Bioin-
formatics, pages 29–35, 2005.

[79] A. D. Palù, A. Dovier, and E. Pontelli. A new constraint solver for 3d lattices
and its application to the protein folding problem. In Geoff Sutcliffe and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
12th International Conference, LPAR 2005, Montego Bay, Jamaica, December 2-
6, 2005, Proceedings, volume 3835 of Lecture Notes in Computer Science, pages
48–63. Springer, 2005.

[80] A. Dal Palu, A. Dovier, and F. Fogolari. Constraint Logic Programming approach
to protein structure prediction. BMC Bioinformatics, 5(1):186, 2004.

[81] D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring subnetworks from per-
turbed expression profiles. Bioinformatics, 17(Suppl 1):S215–224, 2001.

[82] A. Policriti, N. Vitacolonna, M. Morgante, and A. Zuccolo. Structured motifs
search. Journal of Computational Biology, 12(8):1065–1082, 2005.

[83] S. D. Prestwich, D. G. Higgins, and O. O’Sullivan. A sat-based approach to mul-
tiple sequence alignment. In Francesca Rossi, editor, Principles and Practice of

R. Backofen, D. Gilbert 943

Constraint Programming - CP 2003, 9th International Conference, CP 2003, Kin-
sale, Ireland, September 29 - October 3, 2003, Proceedings, volume 2833 of Lecture
Notes in Computer Science, pages 940–944. Springer, 2003.

[84] K. Reinert, H.-P. Lenhof, P.Mutzel, K. Melhorn, and J. Kececioglu. A branch-
and-cut algorithm for multiple sequence alignment. In Proc. of the First Annual
International Conferences on Compututational Molecular Biology (RECOMB97),
pages 241–249, Santa Fe, New Mexico, 1997.

[85] I. Rigoutsos and A. Floratos. Combinatorial pattern discovery in biological se-
quences. Bioinformatics, 14(1):55–67, 1998.

[86] D. Sankoff. Simultaneous solution of the RNA folding, alignment and protose-
quence problems. SIAM J. Appl. Math., 45(5):810–825, 1985.

[87] D. Searls. The computational linguistics of biological sequences. In Lawrence
Hunter, editor, Artificial Intelligence and Molecular Biology, chapter 2, pages 47–
120. AAAI/MIT Press, 1993.

[88] D. Searls. String variable grammar: A logic grammar formalism for the bioligical
language of DNA. Journal of Logic Programming, 24(1–2):73–102, July/August
1995.

[89] D. Searls and S. Dong. A syntactic pattern recognition system for DNA sequences.
In C. R. Cantor H. A. Lim, J. Fickett and R. J. Robbins, editors, Proceedings Sec-
ond International Conference on Bioinformatics, Supercomputing, and Complex
Genome Analysis, pages 89–101. World Scientific, 1993.

[90] P. R. Sibbald and P. Argos. Scrutineer: a computer program that flexibly seeks and
describes motifs and profiles in protein sequences databases. Computer Applications
in the Biosciences, 6(3):279–288, 1990.

[91] P. R. Sibbald, H. Sommerfeldt, and P. Argos. Overseer: a nucleotide sequence
searching tool. Computer Applications in the Biosciences, 8(1):45–48, 1992.

[92] S. Siebert and R. Backofen. MARNA: multiple alignment and consensus structure
prediction of RNAs based on sequence structure comparisons. Bioinformatics, 21
(16):3352–9, 2005.

[93] T. Smith and M. Waterman. Comparison of biosequences. Adv. appl. Math., 2:
482–489, 1981.

[94] G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer
Science Today, Lecture Notes in Computer Science, vol. 1000, pages 324–343.
Springer-Verlag, Berlin, 1995.

[95] L. Soinov, M. Krestyaninova, and A. Brazma. Towards reconstruction of gene net-
works from expression data by supervised learning. Genome Biology, 4(1):R6,
2003.

[96] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic
relationships. University of Kansas Scientific Bulletin, 28:1409–1438, 1958.

[97] R. Staden. Searching for Patterns in Protein and Nucleic Acid Sequencies. In R. F.
Doolittle, editor, Methods in Enzymology, Vol. 183, pages 193–211. Academic Press,
1990.

[98] M. Steel2 and D. Penny. Parsimony, likelihood, and the role of models in molecular
phylogenetics. Molecular Biology and Evolution, 17:839–850, 2000.

[99] M. J. Sternberg, P. A. Bates, L. A. Kelley, and R. M. MacCallum. Progress in protein
structure prediction: assessment of CASP3. Curr Opin Struct Biol, 9(3):368–373,
1999.

944 26. Bioinformatics and Constraints

[100] P. Thebault, S. de Givry, T. Schiex, and C. Gaspin. Combining constraint processing
and pattern matching to describe and locate structured motifs in genomic sequences.
In Christian Bessiere, Brahim Hnich, Toby Walsh, and Zeynep Kiziltan, editors, The
Fifth Workshop on Modelling and Solving Problems with Constraints, pages 53–60,
2005.

[101] G. M. Torrance, D. R. Gilbert, I. Michalopoulos, and D. R. Westhead. Protein
structure topological comparison, discovery and matching service. Bioinformatics,
21(10):2537–2538, 2005.

[102] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23
(1):31–42, January 1976.

[103] R. Unger and J. Moult. Genetic algorithms for protein folding simulations. Journal
of Molecular Biology, 231:75–81, 1993.

[104] J. van Helden, D. Gilbert, L. Wernisch, M. Schroeder, and S. Wodak. Application
of regulatory sequence analysis and metabolic network analysis to the interpretation
of gene expression data. In Computational Biology, LNCS 2006, pages 147 – 163.
LNCS, 2000.

[105] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert, , and
S. J. Wodak. Representing and analysing molecular and cellular function in the
computer. Journal of Biological Chemistry, 381(9–10):921–935, 2000.

[106] J. Viksna and D. Gilbert. Pattern matching and pattern discovery algorithms for pro-
tein topologies. In WABI: International Workshop on Algorithms in Bioinformatics,
WABI, LNCS 2149, pages 98–111, 2001.

[107] M. Waterman. Introduction to Computational Biology. Chapman & Hall, London,
1995.

[108] S. Will. Constraint-based hydrophobic core construction for protein structure pre-
diction in the face-centered-cubic lattice. In Russ B. Altman, A. Keith Dunker,
Lawrence Hunter, and Teri E. Klein, editors, Proceedings of the Pacific Symposium
on Biocomputing 2002 (PSB 2002), pages 661–672, Singapore, 2002. World Scien-
tific Publishing Co. Pte. Ltd.

[109] S. Will, A. Busch, and R. Backofen. Efficient constraint-based sequence alignment
by cluster tree elimination. In Proceedings of the Workshop on Constraint Based
Methods in Bioinformatics (WCB05), pages 66–74, 2005.

[110] R. H. C. Yap. Parametric sequence alignment with constraints. Constraints, 6(2/3):
157–172, 2001.

[111] K. Yue and K. A. Dill. Sequence-structure relationships in proteins and copolymers.
Physical Review E, 48(3):2267–2278, September 1993.

[112] K. Yue and K. A. Dill. Forces of tertiary structural organization in globular proteins.
Proc. Natl. Acad. Sci. USA, 92:146 – 150, 1995.

[113] M. Zuker. On Finding All Foldings of an RNA Molecule. Science, 244:48–52,
1989.

Index

ABT, 703, 705, 711, 714
activity, 761, 763–765

breakable, 768
late, 770, 771, 785–786
optional, 769

ADOPT, 711
agent, 466, 475, 701, 724

agentview, 707
algebra, 255

clone, 252, 256
factor, 257
homomorphism, 257
interval, see interval, algebra
point, 670, 678, 683, 685
sub-algebra, 257
surjective, 257

ALICE, 412, 606, 628, 629
ant colony optimization, 155
applications, 475

automatic control, 594
bandwidth on demand, 885
bioinformatics, 319, 905–938
conceptual design, 593
configuration, 837–869
frequency assignment, 317
image synthesis, 594
industrial, 444
networks, 875–899
of soft constraints, 317–321
planning, 761–795
robotics, 593
scheduling, 761–795
vehicle routing, 801–829

arc consistency, see consistency, arc
assignment problem, 533, 788

generalized, 550, 555
AWC, 714

backbone, 645, 648, 658
backdoor, 115, 653
backjumping, 22, 96, 102–104, 120, 122,

123
distributed dynamic, 703
for temporal constraints, 680

backtracking search, see search, backtrack-
ing

Bayesian network, 295, 752
belief network, see Bayesian network
Benders cut, 557
Benders decomposition, 556, 888

classical, 558
bioinformatics, 319, 905–938
blocking island, 884
Boolean algebra, see propositional satisfia-

bility
branch and bound, see search, branch and

bound
branching strategy, 87–90, 122, 477, 481,

503, 513
2-way, 88
bisection, 576
constraint logic programming, 410, 438
d-way, 87
domain splitting, 88, 484

bucket elimination, 225, 302–303, 554, 715

Cardinal, 620
cardinality operator, 386
CC, 466, 467
certainty closure, 736
CHIP, 15, 74, 249, 385, 412, 473, 572, 628,

877
CHOCO, 608
choice point, 379, 504
CHR, see constraint handling rules
CLP, see constraint logic programming

945

946 Index

cluster tree elimination, 222, 304
coarse-grained algorithm, 43
column generation, 823
COMET, 157
complementary slackness, 532
completeness, 155

PAC, 142
computation space, 470, 471
conceptual model, 409
concurrency, 453, 466, 468, 475, 479

constraint checks, 712
messages, 712

concurrent constraint programming, see con-
straint programming, concurrent

configuration, 837–869
conflict set, 103, 844, 865
Conjunto, 608, 628
consistency, 17–20, 498, 614, 842, 845, 863–

865
kB consistency, 581
3B consistency, 581
adaptive consistency, 53

adaptive relational consistency, 57
arc consistency, 15, 18–20, 22, 23, 37–

49, 91, 92, 98, 100, 182, 432, 437,
484, 512, 643, 644, 679, 766, 771,
778, 780, 864

ACb, 48
AC1, 18, 19
AC2, 18
AC2001, 46–48
AC3, 18–20, 41–42, 612
AC3.2, 49
AC3.3, 49
AC4, 43–45
AC6, 45–46
AC7, 49
bidirectionality, 48
DEE, 48, 92
directional, 62
generalized, 20, 37, 38, 182, 378,

385
hierarchical, 20
hyper, 38
maintaining, 22, 49, 92–94, 119, 120,

314
soft constraints, 308

bounds consistency, 65–68, 75, 94, 193,
378, 380, 385, 458, 483, 512, 616,
811

bounds(D) consistency, 65–68
bounds(R) consistency, 66–68
bounds(Z) consistency, 65–68, 75

box consistency, 580
distributed maintenance, 713
forward checking, 22, 63, 93, 96, 98,

103, 104, 106, 119, 120, 122, 680,
703

global consistency, 34, 53, 54
temporal constraints, 668–673

hull consistency, 574, 578
hyper k-consistency, 56
(i, j)-consistency, 53
interval, 574
inverse consistency, 58
k-consistency, 15, 20, 51, 91, 95, 109,

123, 668
strong k-consistency, 52
temporal constraints, 670, 674

k-wise consistency, 55
local consistency, 34

closure, 36
fixpoint, 36
soft constraints, 305–311
stability under union, 35
temporal constraints, 670–672

lookahead, 22
full, 64
partial, 64

max-restricted path consistency, 59
neighborhood inverse consistency, 59
node consistency, 18

soft constraints, 308
pairwise consistency, 55
path consistency, 15, 19–20, 22, 50, 95,

388, 644, 766
PC-1, 19
PC-2, 19
temporal constraints, 670–674

path inverse consistency, 58
range consistency, 65–68, 75
relational consistency, 56–57
restricted path consistency, 58
singleton arc consistency, 60

947

SAC-SDS, 61
SAC1, 60
SAC2, 60
SAC3, 61
SACOpt, 61

singleton consistency, 60
constrainedness, 641
constraint, 30, 850–852, 854–863

0/1/all, 249, 259
all-different, 20, 177, 182, 346, 385,

396, 427, 428, 541, 816
arithmetic, 482
balance, 783–785
binary, 16–20, 30
Boolean, 480
channeling, 394–396
circuit, 180, 542
combinators, 454, 456
conjunction of, 383–384
connected row-convex, 249, 259, 273
continuous, 571–595
cumulative, 179, 198, 427, 543, 558
defining in constraint logic programming

systems, 435
difference, 673–677, 679
disequality, 250
disjunction of, 75, 386, 778, 780
disjunctive difference, 673, 674, 679,

680
dominance rule, 401
duration, 677
edge-finding, 778–779
element, 177, 395, 540
encrypted, 725
energy precedence, 782
entailed, 40, 73
extensional, 378, 385–386
finite domain, 483
first-order, 590
fuzzy, 283–285, 734
fuzzy lexicographic, 285
global constraint, 20, 30, 74–76, 109,

119, 169, 384–385, 389, 435, 498,
762, 778–785, 787, 794, 817, 819

all-different, 100
atmost1, 608, 625
cardinality, 178, 184, 433, 626

cardinality with costs, 178, 189
decomposition, 74
disjoint, 625
distinct, 608
in constraint logic programming, 427,

428
lexicographic order, 485
partition, 626
soft constraints, 311
stretch, 100

hard, 283
Horn-disjunctive linear, 675, 676
implicational, 249
implied, 96, 301, 387–390, 399–401,

434, 456
inequality, 250
interval, 571–595
k-weighted, 286
knapsack, 176, 189, 883
language

first-order, 682–691
lexicographic, 343, 345, 348
linear, 67, 675, 684, 685, 766, 857
linear Horn, 251, 272
max-closed, 249, 259
meta, 513
minimum, 481
multi-sorted, 266
non-binary, 30
nonlinear, 573
not-first not-last, 779
optimization, 117, 189, 296, 400, 785–

789
Ord-Horn, 251, 672
order, 476
partially known, 726
path, 810, 881
piecewise linear, 545
possibilistic, 285
precedence graph, 782, 788–789
primitive, 413
private, 725
probabilistic, 286, 737, 738
quantified, 577

continuous, 590
redundant, see constraint, implied
regular, 179, 186

Index

948

reified, 386, 433, 456, 513
resource, 765–767, 778–785, 790
semiring-based, 287–289, 738
set constraint, 615

atmost1, 625
disjoint, 625
global set constraint, 624
graduated constraint, 617
inference, 617
partition, 626

soft constraint, 15, 181, 275, 281–322,
691, 751

all-different, 181, 191
combination, 290
modeling in constraint logic program-

ming, 430
projection, 290

solved form, 482
sum, 176
symmetry breaking constraint, 342
temporal, 665–692, 751, 766, 775, 782,

788, 790
tightness, 17–19, 274
timetable, 780
valued, 289–290, 738
weighted, 285–287

constraint database, 442, 682–691
constraint graph, 16, 23, 31, 109, 640, 858

acyclic, 215, 217, 230, 303, 864
cutset, 23, 110, 210, 231–235, 654, 864,

868
degree, 107
DFS tree, 239, 711
dual graph, 212, 391–392
induced, 302
induced width, 217, 302, 554
primal graph, 212
separator, 110, 221
tree width, 221, 304
width, 23, 109, 221

constraint handling rules, 436, 466, 473, 478
confluence, 478
operational equivalence, 480
semantics, 475, 478

constraint logic programming, 15, 409, 465,
468, 594, 607, 609

answer, 416

B-Prolog, 608
BNR-Prolog, 594
CLP(L), 609
CLP(R), 15, 412, 427, 482
CLP(Σ∗), 607
CLP(BNR), 594
CLP(FD), 414, 473, 483
conceptual model, 425
constraint domain, 413
constructive negation, 423
data structures, 428
derivation, 415

fair, 422
design model, 430
disjunction, 432
dynamic scheduling, 435
ECLiPSe, 413, 594, 608
finite failure, 416
hierarchical, 294
history, 411
immediate consequence function, 420
impact, 442
minimization complete, 424
modeling CSPs, 426
negation as failure, 422
optimization, 424, 429, 442
Prolog, 15
Prolog II, 15
Prolog III, 412
Prolog IV, 594
recursion, 427
search, 437
semantics, 413–420
state, 415
syntax, 414

constraint network, see constraint satisfac-
tion problem

constraint optimization problem, 16, 17, 21,
117, 155, 189, 400–401, 577, 709

constraint logic programming, 424, 429
distributed, 699–727
open, 702, 722
phase transition, 648
soft constraints, 296

constraint programming
concurrent, 443, 468

AKL, 466, 468

Index

949

ALPS, 465
Ask, 466
CIAO, 466
deadlock, 467
stability, 471
Tell, 466
unfold, 467

continuous, 571–595
distributed, 466, 470, 699–727
interval, 571–595

BARON, 594
Boost, 594
C-XSC, 594
Constraint Explorer, 594
Gaol, 594
Intlab, 594
Numerica, 594

logic, see constraint logic programming
open, see constraint satisfaction prob-

lem, open
programming paradigms, 443

functional programming, 443
imperative programming, 443
object oriented programming, 444
term rewriting, 443

systems, see individual entries (e.g., CHIP,
ILOG)

constraint propagation, 13–15, 17–22, 29–
77, 90–96, 98, 119, 169, 379, 838,
849, 865, 866

disjunctive, 75, 778, 780
event, 71, 501, 506
generalized, 437
list, 49, 76
recomputation, 516
redundant, 397
rule, 474

constraint propagator, 68, 76, 431, 497–499
checking, 497
correct, 497
entailed, 501
idempotent, 68, 500, 509
least fixpoint, 69
monotonic, 68
priority, 507
rewriting, 501
stability, 69

constraint relaxation, 739
convex hull, 536
dynamic programming, 550
Lagrangian, 547
linear programming, 530
of all-different constraint, 541
of circuit constraint, 542
of cumulative constraint, 543
of disjunction of nonlinear systems, 546
of element constraint, 540
of global constraints, 540
of piecewise linear constraint, 546

constraint retraction, 739
constraint satisfaction problem, 15–20, 31

branching, 749
conditional, 752
distributed, 699–727
dynamic, 739
interactive, 753
MAX-CSP, 156, 286
mixed, 736
open, 700, 702, 721, 753
overconstrained, 281, 691
random, see random problems
recurrent, 747
secure, 725
soft, 281–322
spatial, 691
stochastic, 738, 749
temporal, 665–692
uncertain, 736

constraint solver, 15, 70, 76, 169, 455, 480,
854, 858, 865

(in)complete, 418, 431, 434
black-box, 473
CLP scheme, 414
glass-box, 455, 473
incremental, 417, 430
programming, 473

constraint store, 475
continuation, 464
convex hull, 536
COP, see constraint optimization problem
copying, 515
CP(Graph), 609, 629
CP-net, 295
CSP, see constraint satisfaction problem

Index

950

cutting planes, 536
Chvátal-Gomory cuts, 538
comb inequalities, 543
Gomory cuts, 538
knapsack cuts, 539
lifting, 539
mixed integer rounding cuts, 538
separating cuts, 538

Datalog, 270
decision problem, 246, 262
decomposability, 668

global constraints, 74
Montanari’s decomposability, 53
temporal constraints, 670–673

demand acceptance problem, 880
depth-first search, see search, depth-first
description logic, 840, 841, 847
descriptive complexity, 270
design model, 409, 430
DisCSP, see constraint satisfaction problem,

distributed
disjunction

of linear systems, 536
of nonlinear systems, 546

distributed CSP, see constraint satisfaction
problem, distributed

domain
continuous, 571–595
enumeration, 484
finite, 483, 495–521
order-sorted, 631
set

data structures, 632
finite automata, 610
interval, 614, 615
lexicographic bounds, 621
multisets, 618
ROBDD, 623

domain consistency, see consistency, arc con-
sistency

domain filtering, 169, 458
based on dynamic programming, 551
based on Lagrangian duality, 550
based on linear programming duality,

532
constraint propagation, 29–77, 497

narrowing operators, 497
reduced-cost based, 195

dominance, 367
dual

encoding, 55, 296
Lagrangian, 547, 548
linear programming, 532

dynamic programming, 23, 85, 550
distributed, 715
nonserial, 553
state space relaxation, 552

energy reasoning, 780–782
entailment, 466, 501
equation solving, 482
equivalence-preserving inference rule, 308
evolutionary algorithm, 154, 809
expectation, 750
explanation, see nogood
expressive power, 252

FACILE, 608
fine-grained algorithm, 43
finite-size scaling, 642
first-order constraint language, 682–691
forward checking, see consistency, forward

checking
Fourier elimination, 685
frequency assignment, 317

GAC, see consistency, generalized arc con-
sistency

Gaussian elimination, 482
genetic algorithm, 809
global consistency, see consistency, global

consistency
global constraint, see constraint, global con-

straint
graph

bipartite, 171
coloring, 269
constraint, see constraint graph
dependency, 554
directed, 171
isomorphism, 364, 367
matching, 172
network flows, 172

Index

951

random, 657
residual, 173
series-parallel, 678
small-world, 651
strongly connected component, 171
undirected, 171

group theory, 331
right transversal, 335
axioms, 333
Cauchy form, 332
composition, 333
computational, 336
cosets, 335
cyclic form, 332
generators, 334
in constraint programming, 336
inverse, 333
orbit, 336
order, 334
stabilizer, 336
subgroup, 335

heavy-tailed distribution, 114–116, 651, 652
heuristic

branching, 642, 788–791
earliest, 440
meta-heuristic, 135, 808
min conflicts, 111, 140, 142, 145, 741,

747
promise, 111
smallest domain, 22, 106–109, 439, 462
symmetry breaking, 357
value, 87, 105–106, 110–112, 115, 116,

122, 460, 462
variable, 87, 106–110, 112, 115, 116,

120, 380, 388–389, 460, 462
hidden variable encoding, 75
homomorphism

of algebras, 257
of relational structures, 269

Horn clause, 248, 259
hybrid methods, 413, 527, 560, 791, 793,

794
computational performance, 528
continuous constraint solving, 587

ILOG

Dispatcher, 157
Solver, 157, 517, 594, 608

implied constraint, see constraint, implied
incompleteness, 155

essential, 140
indexical, 436, 512
indicator problem, 254
instantiation, 32

locally consistent instantiation, 32
integer linear programming, 534, 840, 857
integrated methods, 560
interval

algebra, 263–264, 615, 669, 678, 683,
685, 687

tractable subalgebras, 264
arithmetic, 577
constraint, see constraint, interval
constraint network, 668
evaluation algorithm, 578
extension, 578
inner approximation, 576
modal, 592
non-convex, 691
time, 665–692

interval analysis, 583
Gauss-Seidel method, 584
multivariate Newton method, 585
univariate Newton method, 583

k-consistency, see consistency, k-consistency
k-independence, 272
knife-edge, 639, 640

labeling, see branching strategy
Lagrangian

dual, 547, 548
of linear programming problem, 549

method, 152
relaxation, 547, 824, 882

Latin square, 649
learning, 21, 22, 838, 844, 864, 866, 868
linear equations, 248
linear polynomial equations, 482
linear programming, 175, 196, 482, 530, 786

basic solution, 530
basic variables, 531
continuous relaxation, 586

Index

952

duality, 532
incremental Simplex, 430
Lagrangian dual for, 549
mixed integer programming, 786, 792–

794
reduced cost, 531
sensitivity analysis, 532
simplex method, 176, 482, 531
variable fixing, 196

link disjoint, 887
local consistency, see consistency, local con-

sistency
local minima, 140, 142, 144, 148
local search, see search, local

markov decision problem, 749
MAX-CSP, see constraint satisfaction prob-

lem, MAX-CSP
MAX-SAT, see propositional satisfiability,

MAX-SAT
memetic algorithm, 809
MILP, see mixed integer linear programming
mini-bucket bounds, 313
mini-bucket elimination, 305
mini-cluster tree elimination, 305
minimal network, 54, 668, 681

temporal constraints, 670–673
mixed integer linear programming, 534
modeling, 13, 96, 138, 157, 340, 453, 840,

842–843, 853–863
CLP impact, 444
conceptual model, 409
design model, 409, 430
disjunctive, 536
dual model, 396
fixed charges, 535
language, 521
matrix, 348
mixed integer linear programming, 534
pattern, 402
problem representation, 379
viewpoint, 381–382, 393–398
with constraint logic programming, 425

morphing, 651
Mozart, 443, 466
multicommodity flow problem, 882

n-queens problem, 14, 21, 23, 177, 382, 383,
484

neighborhood, 138, 139
connected, 142
large, 155, 156

node disjoint, 888
nogood, 22, 33, 96, 390, 557, 706, 708, 714,

744
recording, 96–101

non-determinism
don’t care, 467
don’t-know, 466

NP-complete, 247

OCOP, see constraint optimization problem,
open

OCSP, see constraint satisfaction problem,
open

ontologies, 631
operations research, 14, 16, 527, 761, 762,

794
OPL, 157, 444, 517, 561
OptAPO, 715
optimization, see constraint optimization prob-

lem
Oz, 468, 515, 517, 608

parallelism, 477
partial constraint satisfaction, 293
path consistency, see consistency, path con-

sistency
path placement

link based, 881
node based, 885
path based, 884

permutation problem, 392–393, 396
phase transition, 639, 640, 649
planning, 558, 761–795

action, 772
constraint based, 761–763, 771, 775,

777, 778, 794, 795
graph, 772
operator, 772, 775

effect, 772
precondition, 772

polymorphism, 253
multi-sorted, 268

Index

953

polynomial class, see tractability
preference, 691, 843, 844, 863, 865, 867–

868
privacy, 725

loss, 726
Prolog, see constraint logic programming
propagation, see constraint propagation
propagator, see constraint propagator
propositional satisfiability, 16, 17, 86, 94,

95, 99–101, 109, 110, 120, 122,
137, 248, 480, 644, 680, 840, 842,
855

1 in k-SAT, 646
2+p-SAT, 646
2-satisfiability, 271
3-satisfiability, 271
Horn clause, 259
MAX-SAT, 156, 294, 296, 309, 648
not-all-equal satisfiability, 248, 647
one-in-three satisfiability, 249
random k-SAT, 644
solver, 680
XOR SAT, 647

quality of service, 881
quantified Boolean formula, 644, 647
quantifier elimination, 682–691
quasigroup, 648

random problems, 23, 118, 639, 640
randomization and restarts, 111–116, 639,

641, 651, 652, 656
reduced-cost, 176, 819

based filtering, 195
regret, 751, 818
relation, see constraint
relational clone, 251–253
relational structure, 263, 269

ω-categorical, 263
relaxation, see constraint relaxation
resilience analysis, 895
resource, 761, 775

alternative, 767
calendar, 768, 794
cumulative, 765, 780–782, 790
reservoir, 769, 783–785
state, 769

unary, 765, 778–779, 785, 790
resource allocation, 317
rules, 473

iteration, 34, 68
propagation, 474
reduction, 34, 68
simplification, 474

runtime distribution, 112–116

SALSA, 157, 456, 517
SAT, see propositional satisfiability
satisfiability, see propositional satisfiability
scenarios, 749
scene labeling, 15
Schaefer’s Dichotomy Theorem, 248
scheduling, 13, 14, 16, 17, 179, 198, 558,

731, 747, 761–795, 843
constraint based, 761–763, 780, 794,

795
elastic, 763, 766
job shop, 804
non-preemptive, 763, 764, 766, 777–

790
open shop, 804
preemptive, 763, 764, 766, 785, 792
uncertainty and, 751

Schreier Sims algorithm, 336
search, 13, 15, 17, 21, 169, 459, 471, 477,

481, 484, 838, 842, 843, 862, 863,
866–869

AND/OR, 315
asynchronous aggregation, 702, 713
asynchronous weak-commitment, 714
backtracking search, 20–23, 85–124

asynchronous, 703, 705
constraint logic programming, 430
copying, 431
distributed, 702
for temporal constraints, 678–680
trailing, 431

best-first, 116
bounded backtracking, 315
branch and bound, 21, 118, 297, 400,

534, 822
branch and cut, 534
branch and price, 554
branch and reduce, 575

Index

954

control flow, 462
controllers, 464
depth-first, 20–22, 86, 116, 455, 463
encapsulated, 470
iterative improvement, 139
label earliest, 440
large neighborhood, 821, 822
limited discrepancy, 116, 821
local search, 85, 135, 300, 441, 741,

742, 791–792
breakout method, 149
constrained, 155
distributed, 718
dynamic, 148, 156
EasyLocal++, 157
for temporal constraints, 678, 681
GENET, 149
GSAT, 141
guided, 150, 158
hill-climbing, 139
HotFrame, 157
iOpt, 157
iterated, 155
iterative improvement, 142
penalty-based methods, 148, 156
stochastic, 135, 138
systematic, 155
WalkSAT, 143

non-determinism, 460
probe backtracking, 883
programming in constraint logic pro-

gramming, 437
pseudotree, 315
russian doll, 299
strategies, 462, 516
systematic, 85, 297, 438
tabu, 144, 809
tree, 86, 87, 90, 102, 107, 116, 122,

459
variable neighborhood, 809

semidefinite programming, 530
semigroup, 259
sequence alignment, 910
set based languages
{log}, 611
CLP(Σ∗), 609
CLPS, 612

set constraint, see constraint, set constraint
set domain, see domain, set
set variable, see variable, set
setup

cost, 768, 770, 786–789, 791, 794
time, 768, 770, 786–789, 791, 794

simplex method, see linear programming
simulated annealing, 155
soft constraint, see constraint, soft constraint
solver, see constraint solver
state restoration, 514
subgradient optimization, 548
supersolutions, 747

weighted, 749
symmetry, 21, 23, 99, 379, 398–400

almost, 367
and implied constraints, 366
and inference, 366
and local search, 366
applications, 363
breaking, 399–400, 485, 868
definitions of, 337
detection, 364
in planning, 367
in SAT, 367
in theorem proving, 367

symmetry breaking methods, 633
all-different constraint, 346
combination, 362
constraints, 342
dynamic, 350
GAP-SBDD, 359
GAP-SBDS, 358
GE-Trees, 360
heuristics, 357
Lex-Leader constraints, 343, 345
matrix models, 348
reformulation, 340
SBDD, 354
SBDS, 351
STAB, 361
Subsets Lex Leader, 348

temporal
constraint, see constraint, temporal
information, 667, 691
point, 665–692

Index

955

reasoning, 665–692
thrashing, 17, 19
tightness, 274
time, see temporal
time windows, 813
tractability, 17, 23, 40

soft constraints, 311–313
temporal constraints, 672, 675, 677
tractable algebras, 256
tractable classes, 23, 672, 675, 677
tractable languages, 247
tractable operations, 255
tractable structure, 209–242

tractable algebras conjecture, 261
traffic flow analysis, 895
traffic placement problem, 880
trailing, 514
traveling salesperson problem, 180, 541, 542,

552, 803
comb inequalities, 543
connectivity, 815
with time windows, 533

tree, see search, tree and constraint graph,
tree

tree decomposition, 220, 303

unification, 505
unit propagation, 91, 94

valuation structure, 289
value ordering heuristic, see heuristic, value
valued constraint, see constraint, valued
variable, 13, 15, 16, 843, 849, 854–864, 867–

868
attributed, 436
auxiliary, 386–387
Boolean, 393, 402
domain, 496, 507–508
dual, 391–392
elimination, 302–303, 313, 384, 482,

682–691
graph, 201, 629
hidden, 391
input, 498
optimization, 296, 785
output, 498
relation, 628

search, 397
set, 200, 398, 608, 615, 855, 860, 862,

863
variable ordering heuristic, see heuristic, vari-

able
VCG mechanism, 724
vehicle routing problem, 801

with time windows, 802
Vickrey-Clarke-Groves tax, 724
visualization, 390, 402

ZDC, 157

Index

This page intentionally left blank

	Title Page
	Copyright Page
	Foreword
	Editors
	Contributors
	Contents
	Part I: Foundations
	Chapter 1 Introduction
	1.1 Purpose of the Handbook
	1.2 Structure and Content
	1.3 Future Research

	Chapter 2 Constraint Satisfaction: An Emerging Paradigm
	2.1 The Early Days
	2.2 The Constraint Satisfaction Problem: Representation and Reasoning
	2.3 Conclusions

	Chapter 3 Constraint Propagation
	3.1 Background
	3.2 Formal Viewpoint
	3.3 Arc Consistency
	3.4 Higher Order Consistencies
	3.5 Domain-Based Consistencies Stronger than AC
	3.6 Domain-Based Consistencies Weaker than AC
	3.7 Constraint Propagation as Iteration of Reduction Rules
	3.8 Specific Constraints

	Chapter 4 Backtracking Search Algorithms
	4.1 Preliminaries
	4.2 Branching Strategies
	4.3 Constraint Propagation
	4.4 Nogood Recording
	4.5 Non-Chronological Backtracking
	4.6 Heuristics for Backtracking Algorithms
	4.7 Randomization and Restart Strategies
	4.8 Best-First Search
	4.9 Optimization
	4.10 Comparing Backtracking Algorithms

	Chapter 5 Local Search Methods
	5.1 Introduction
	5.2 Randomised Iterative Improvement Algorithms
	5.3 Tabu Search and Related Algorithms
	5.4 Penalty-Based Local Search Algorithms
	5.5 Other Approaches
	5.6 Local Search for Constraint Optimisation Problems
	5.7 Frameworks and Toolkits for Local Search
	5.8 Conclusions and Outlook

	Chapter 6 Global Constraints
	6.1 Notation and Preliminaries
	6.2 Examples of Global Constraints
	6.3 Complete Filtering Algorithms
	6.4 Optimization Constraints
	6.5 Partial Filtering Algorithms
	6.6 Global Variables
	6.7 Conclusion

	Chapter 7 Tractable Structures for Constraint Satisfaction Problems
	7.1 Background
	7.2 Structure-Based Tractability in Inference
	7.3 Trading Time and Space by Hybrids of Search and Inference
	7.4 Structure-Based Tractability in Search
	7.5 Summary and Bibliographical Notes

	Chapter 8 The Complexity of Constraint Languages
	8.1 Basic Definitions
	8.2 Examples of Constraint Languages
	8.3 Developing an Algebraic Theory
	8.4 Applications of the Algebraic Theory
	8.5 Constraint Languages Over an Infinite Set
	8.6 Multi-Sorted Constraint Languages
	8.7 Alternative Approaches
	8.8 Future Directions

	Chapter 9 Soft Constraints
	9.1 Background: Classical Constraints
	9.2 Specific Frameworks
	9.3 Generic Frameworks
	9.4 Relations among Soft Constraint Frameworks
	9.5 Search
	9.6 Inference
	9.7 Combining Search and Inference
	9.8 Using Soft Constraints
	9.9 Promising Directions for Further Research

	Chapter 10 Symmetry in Constraint Programming
	10.1 Symmetries and Group Theory
	10.2 Definitions
	10.3 Reformulation
	10.4 Adding Constraints Before Search
	10.5 Dynamic Symmetry Breaking Methods
	10.6 Combinations of Symmetry Breaking Methods
	10.7 Successful Applications
	10.8 Symmetry Expression and Detection
	10.9 Further Research Themes
	10.10 Conclusions

	Chapter 11 Modelling
	11.1 Preliminaries
	11.2 Representing a Problem
	11.3 Propagation and Search
	11.4 Viewpoints
	11.5 Expressing the Constraints
	11.6 Auxiliary Variables
	11.7 Implied Constraints
	11.8 Reformulations of CSPs
	11.9 Combining Viewpoints
	11.10 Symmetry and Modelling
	11.11 Optimization Problems
	11.12 Supporting Modelling and Reformulation

	Part II: Extensions, Languages, and Applications
	Chapter 12 Constraint Logic Programming
	12.1 History of CLP
	12.2 Semantics of Constraint Logic Programs
	12.3 CLP for Conceptual Modeling
	12.4 CLP for Design Modeling
	12.5 Search in CLP
	12.6 Impact of CLP
	12.7 Future of CLP and Interesting Research Questions

	Chapter 13 Constraints in Procedural and Concurrent Languages
	13.1 Procedural and Object-Oriented Languages
	13.2 Concurrent Constraint Programming
	13.3 Rule-Based Languages
	13.4 Challenges and Opportunities
	13.5 Conclusion

	Chapter 14 Finite Domain Constraint Programming Systems
	14.1 Architecture for Constraint Programming Systems
	14.2 Implementing Constraint Propagation
	14.3 Implementing Search
	14.4 Systems Overview
	14.5 Outlook

	Chapter 15 Operations Research Methods in Constraint Programming
	15.1 Schemes for Incorporating OR into CP
	15.2 Plan of the Chapter
	15.3 Linear Programming
	15.4 Mixed Integer/Linear Modeling
	15.5 Cutting Planes
	15.6 Relaxation of Global Constraints
	15.7 Relaxation of Piecewise Linear and Disjunctive Constraints
	15.8 Lagrangean Relaxation
	15.9 Dynamic Programming
	15.10 Branch-and-Price Methods
	15.11 Benders Decomposition
	15.12 Toward Integration of CP and OR

	Chapter 16 Continuous and Interval Constraints
	16.1 From Discrete to Continuous Constraints
	16.2 The Branch-and-Reduce Framework
	16.3 Consistency Techniques
	16.4 Numerical Operators
	16.5 Hybrid Techniques
	16.6 First Order Constraints
	16.7 Applications and Software packages
	16.8 Conclusion

	Chapter 17 Constraints over Structured Domains
	17.1 History and Applications
	17.2 Constraints over Regular and Constructed Sets
	17.3 Constraints over Finite Set Intervals
	17.4 Influential Extensions to Subset Bound Solvers
	17.5 Constraints over Maps, Relations and Graphs
	17.6 Constraints over Lattices and Hierarchical Trees
	17.7 Implementation Aspects
	17.8 Applications
	17.9 Further Topics

	Chapter 18 Randomness and Structure
	18.1 Random Constraint Satisfaction
	18.2 Random Satisfiability
	18.3 Random Problems with Structure
	18.4 Runtime Variability
	18.5 History
	18.6 Conclusions

	Chapter 19 Temporal CSPs
	19.1 Preliminaries
	19.2 Constraint-Based Formalisms for Reasoning About Time
	19.3 Efficient Algorithms for Temporal CSPs
	19.4 More Expressive Queries for Temporal CSPs
	19.5 First-Order Temporal Constraint Languages
	19.6 The Scheme of Indefinite Constraint Databases
	19.7 Conclusions

	Chapter 20 Distributed Constraint Programming
	20.1 Definitions
	20.2 Distributed Search
	20.3 Improvements and Variants
	20.4 Distributed Local Search
	20.5 Open Constraint Programming
	20.6 Further Issues
	20.7 Conclusion

	Chapter 21 Uncertainty and Change
	21.1 Background and Definitions
	21.2 Example: Course Scheduling
	21.3 Uncertain Problems
	21.4 Problems that Change
	21.5 Pseudo-dynamic Formalisms
	21.6 Challenges and Future Trends
	21.7 Summary

	Chapter 22 Constraint-Based Scheduling and Planning
	22.1 Constraint Programming Models for Scheduling
	22.2 Constraint Programming Models for Planning
	22.3 Constraint Propagation for Resource Constraints
	22.4 Constraint Propagation on Optimization Criteria
	22.5 Heuristic Search
	22.6 Conclusions

	Chapter 23 Vehicle Routing
	23.1 The Vehicle Routing Problem
	23.2 Operations Research Approaches
	23.3 Constraint Programming Approaches
	23.4 Constraint Programming in Search
	23.5 Using Constraint Programming as a Subproblem Solver
	23.6 CP-VRP in the Real World
	23.7 Conclusions

	Chapter 24 Configuration
	24.1 What Is Configuration?
	24.2 Configuration Knowledge
	24.3 Constraint Models for Configuration
	24.4 Problem Solving for Configuration
	24.5 Conclusion

	Chapter 25 Constraint Applications in Networks
	25.1 Electricity Networks
	25.2 Water (Oil) Networks
	25.3 Data Networks
	25.4 Conclusion

	Chapter 26 Bioinformatics and Constraints
	26.1 What Biologists Want from Bioinformatics
	26.2 The Central Dogma
	26.3 A Classification of Problem Areas
	26.4 Sequence Related Problems
	26.5 Structure Related Problems
	26.6 Function Related Problems
	26.7 Microarrays

	Index

