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PREFACE XV

PREFACE

The importance of discrete and combinatorial mathematics has increased dramatically
within the last few decades. This second edition has been written to update all content
and to broaden the coverage. We have been gratified by the success of the first edition
of the Handbook. We hope that the many readers who have asked for a second edition
will find it worth the wait.

The purpose of the Handbook of Discrete and Combinatorial Mathematics is to provide
a comprehensive reference volume for computer scientists, engineers, mathematicians,
as well as students, physical and social scientists, and reference librarians, who need
information about discrete and combinatorial mathematics.

This first edition of this book was the first resource that presented such information in
a ready-reference form designed for all those who use aspects of this subject in their
work or studies. This second edition is a major revision of the first edition. It includes
extensive additions and updates, summarized later in this preface. The scope of this
handbook includes the many areas generally considered to be parts of discrete mathe-
matics, focusing on the information considered essential to its application in computer
science, engineering, and other disciplines. Some of the fundamental topic areas covered
in this edition include:

logic and set theory graph theory
enumeration trees

integer sequences network flows
recurrence relations combinatorial designs
generating functions computational geometry
number theory coding theory

abstract algebra cryptography

linear algebra discrete optimization

discrete probability theory automata theory
data mining data structures and algorithms
discrete bioinformatics

Format

The material in the Handbook is presented so that key information can be located and
used quickly and easily. Each chapter includes a glossary that provides succinct defini-
tions of the most important terms from that chapter. Individual topics are covered in
sections and subsections within chapters, each of which is organized into clearly identi-
fiable parts: definitions, facts, and examples. Lists of facts include:

e information about how material is used and why it is important

historical information

key theorems
the latest results

the status of open questions
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e tables of numerical values, generally not easily computed
e summary tables

e key algorithms in simple pseudocode

e information about algorithms, such as their complexity
e major applications

e pointers to additional resources, both websites and printed material.

Facts are presented concisely and are listed so that they can be easily found and un-
derstood. Cross-references linking portions of the Handbook are also provided. Readers
who wish to study a topic further can consult the resources listed.

The material in the Handbook has been chosen for inclusion primarily because it is
important and useful. Additional material has been added to ensure comprehensiveness
so that readers encountering new terminology and concepts from discrete mathematics
in their explorations will be able to get help from this book.

Examples are provided to illustrate some of the key definitions, facts, and algorithms.
Some curious and entertaining facts and puzzles that some readers may find intriguing are
also included. Readers will also find an extensive collection of biographies after the main
chapters, highlighting the lives of many important contributors to discrete mathematics.

Each chapter of the book includes a list of references divided into a list of printed resources
and a list of relevant websites.

How This Book Was Developed

The organization and structure of the first edition of this Handbook were developed by
a team that included the chief editor, three associate editors, a project editor, and the
editor from CRC Press. This team put together a proposed table of contents which
was then analyzed by members of a group of advisory editors, each an expert in one
or more aspects of discrete mathematics. These advisory editors suggested changes,
including the coverage of additional important topics. Once the table of contents was
fully developed, the individual sections of the book were prepared by a group of more
than 70 contributors from industry and academia who understand how this material is
used and why it is important. Contributors worked under the direction of the associate
editors and chief editor, with these editors ensuring consistency of style as well as clarity
and comprehensiveness in the presentation of material. Material was carefully reviewed
by authors and our team of editors to ensure accuracy and consistency of style.

For the second edition, a new team was assembled. The first goal of this team was to
put together a new table of contents. This involved identifying opportunities for new
chapters and new sections to broaden the scope and appeal of the second edition. With
the help of previous and new contributors, additional material was developed and existing
material was updated and expanded, following the style and maintaining, or improving,
the presentation in the first edition.

Changes in the Second Edition

The development of the second edition of this book was a major effort, extending over
many years. Since the first edition appeared in 1999, many new discoveries have been
made and new areas have grown in importance. Important changes include:
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e an increase from 17 to 20 chapters and over 360 additional pages
e new chapters on discrete bioinformatics and data mining

e individual chapters on coding theory and on cryptography with expanded coverage
(previously covered in a single chapter)

e new sections on many topics, including

Algebraic Number Theory Elliptic Curves

Singular Value Decomposition Hidden Markov Models

Probabilistic Method Perfect Graphs

Expander Graphs Small-World Networks

Combinatorial Auctions Very Large-Scale Neighborhood Search
Tabu Search Quantum Error-Correcting Codes
Classical Cryptography Cryptographic Hashing Functions

Cryptographic Mechanisms Modern Private Key Cryptography
Cryptographic Applications Association Methods

Classification Clustering

Outlier Analysis Sequence Alignment

Phylogenetic Trees Discrete-Time Dynamical Systems
RNA Folding Food Webs and Competition Graphs
Neural Codes Genome Assembly

e thousands of updates and additions to existing sections, with major changes or new
subsections including

Primes Numbers = Combinatorial Matrix Theory

Cyclic Codes Public Key Cryptography
Partitions Asymptotics of Sequences
Factorization Distance, Connectivity, Traversability, and Matching

Expander Graphs Graph Colorings, Labelings, and Related Parameters
Simulation Communication Networks

Location Theory  Difficult Routing and Assignment Problems
e more than 30 new biographies

e hundreds of new web resources, which have been accessed to verify their availability
in mid-2017

Acknowledgments

First and foremost, we thank Bob Ross, the CRC editor for this book, for his support
and his encouragement in completing this Handbook. We would also like to thank Bob
Stern, our previous editor, for initiating the project of updating the Handbook and for
supporting us patiently over many years. We would also like to thank Wayne Yuhasz,
our original CRC editor, who commissioned the first edition. Thanks also go to the staff
at CRC who helped with the production.

We would also like to thank the many people who were involved with this project. First,
we would like to thank the team of advisory editors who helped make this reference



xviii PREFACE

relevant, useful, unique, and up-to-date. We want to thank our many contributors for
their wonderful contributions and to several who helped edit individual chapters. With
the passing of time, some of our advisory editors and contributors are no longer with
us. We fondly remember and appreciate these colleagues and friends. (We have used the
symbol & to designate these individuals.)

Finally, as Chief Editor, I would like to express my gratitude to my two associate editors
for this edition. Without either of them this new edition would not have been possible.
Both were essential in our quest to bring this Handbook up to date and to extend its
scope. Douglas Shier confronted every problem that got in our way and found a workable
solution. He kept the progress on this project going with his commitment and his abilities.
Wayne Goddard used his masterful ITEX skills to overcome all the typesetting challenges
that confronted us as we migrated to a new typesetting environment.

MATLAB® is a registered trademark of The MathWorks, Inc. For product information please
contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098 USA. Tel: 508-647-
7000, Fax: 508-647-7001, E-mail: info@mathworks.com, Web: www.mathworks.com


http://www.mathworks.com
mailto:info@mathworks.com

ADVISORY EDITORIAL BOARD

Xix

ADVISORY EDITORIAL BOARD

Andrew Odlyzko — Chief Advisory Editor
University of Minnesota

Stephen F. Altschul
National Institutes of Health

George E. Andrews
Pennsylvania State University

®Francis T. Boesch
Stevens Institute of Technology

Ernie Brickell
Intel Corp.

Fan R. K. Chung
Univ. of California at San Diego

Charles J. Colbourn
Arizona State University

Stan Devitt
Oracle

Zvi Galil
Columbia University

Keith Geddes
University of Waterloo

Ronald L. Graham
Univ. of California at San Diego

Ralph P. Grimaldi
Rose-Hulman Inst. of Technology

®Frank Harary
New Mexico State University

Alan Hoffman
IBM

Bernard Korte
Univeristy of Bonn

Jeffrey C. Lagarias
University of Michigan

Carl Pomerance
Dartmouth University

Fred S. Roberts
Rutgers University

Pierre Rosenstiehl
Centre d’Analyse et de Math. Soc.

Francis Sullivan
Institute for Defense Analyses

J. H. van Lint

Eindhoven University of Technology

®Scott Vanstone
University of Waterloo

Peter Winkler
Dartmouth University



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

CONTRIBUTORS

XX1

CONTRIBUTORS

Ravindra K. Ahuja
University of Florida

Maria Albareda
Universitat Politécnica de Catalunya

Daniel Aloise
Universidade Federal do Rio Grande
do Norte

Douglas Altner
MITRE

Stephen F. Altschul
National Center for Biotechnology

Nancy M. Amato
Texas A&M University

George E. Andrews
Pennsylvania State University

Niranjan Balachandran
Indian Institute of Technology, Bombay

R. B. Bapat
Indian Statistical Institute

M. Gisela Bardossy
University of Baltimore

Joseph R. Barr
HomeUnion

Lowell W. Beineke
Indiana University — Purdue University
Fort Wayne

Edward A. Bender
University of California at San Diego

Karoly Bezdek
Cornell University

Vladimir Boginski
University of Florida

Joel V. Brawley
Clemson University

Graham Brightwell
London School of Economics

Stefan A. Burr
City College of New York

Lisa Carbone
Rutgers University

Jianer Chen
Texas A&M University

Sunil Chopra
Northwestern University

Maria Chudnovsky
Princeton University

Charles J. Colbourn
Arizona State University

Thomas Cormen
Dartmouth College

Margaret Cozzens
Rutgers University

Carina Curto
Pennyslvania State University

Geir Dahl
University of Oslo

Mukesh Dalal
i2 Technologies

Robert W. Day
University of Connecticut

Tamal K. Dey
Ohio State University

Elena Dimitrova
Clemson University



XXII CONTRIBUTORS

Jeffrey H. Dinitz
University of Vermont

Michael Doob
University of Manitoba

Thomas A. Dowling
Ohio State University

®S. E. Elmaghraby
North Carolina State University

Susanna S. Epp
DePaul University

Joan Feigenbaum
Yale University

W. Randolph Franklin
Rensselaer Polytechnic Institute

Joseph A. Gallian
University of Minnesota Duluth

William Gasarch
University of Maryland

Bart E. Goddard
University of Texas

Wayne Goddard
Clemson University

®Charles H. Goldberg
The College of New Jersey

Bruce L. Golden
University of Maryland

Jon F. Grantham
Institute for Defense Analyses

Ralph P. Grimaldi
Rose-Hulman Institute of Technology

Jonathan L. Gross
Columbia University

Jerrold W. Grossman
Oakland University

Andras Gyarfas
Hungarian Academy of Sciences

®S. Louis Hakimi
University of California at Davis

Richard Hammack
Virginia Commonwealth University

Pierre Hansen
HEC Montréal

Teresa W. Haynes
East Tennessee State University

Qijun He
Virginia Tech

Lane A. Hemaspaandra
University of Rochester

Michael A. Henning
University of Johannesburg

Glenn Hurlbert
Virginia Commonwealth University

Wilfried Imrich
Montanuniversitédt Leoben

Vladimir Itskov
Pennsylvania State University

Patrick Jaillet
Massachusetts Institute of Technology

Andy Jenkins
University of Georgia

Shaoquan Jiang
Mianyang Normal University

David Joyner
United States Naval Academy

Bharat K. Kaku
Georgetown University

Sampath Kannan
University of Pennsylvania

Victor J. Katz
University of the District of Columbia

Khoongming Khoo
DSO National Laboratories, Singapore



Jongeun Kim
University of Florida

Sandi Klavzar
University of Ljubljana

Dina Kravets
Retired

Michael Krebs
California State University, Los Angeles

Vidyadhar G. Kulkarni
University of North Carolina

Manuel Laguna
University of Colorado

Charles C. Y. Lam
California State University, Bakersfield

Josef Lauri
University of Malta

Lawrence M. Leemis
The College of William and Mary

Matthew Macauley
Clemson University

Bennet Manvel
Colorado State University

®Carla D. Martin
National Security Agency

Stephen B. Maurer
Swarthmore College

Alfred J. Menezes
University of Waterloo

Michael Mesterton-Gibbons
Florida State University

John G. Michaels
SUNY Brockport

Milena Mihail
Georgia Institute of Technology

Victor S. Miller
Institute for Defense Analyses

CONTRIBUTORS

xXx1ii

Esmond Ng
Lawrence Berkeley National Laboratory

Beth Novick
Clemson University

J. B. Orlin
Massachusetts Institute of Technology

James G. Oxley
Louisiana State University

Janos Pach
EPFL Lausanne and Rényi Institute

Edward W. Packel
Lake Forest College

®Uri Peled
University of Illinois at Chicago

Barry Peyton
Dalton State College

Adolfo Piperno
Sapienza University of Rome

Michael D. Plummer
Vanderbilt University

Carl Pomerance
Dartmouth University

Mihai Pop
University of Maryland

Svetlana Poznanovié
Clemson University

Viera Krnanova Proulx
Northeastern University

Robert G. Rieper
William Patterson University

David Riley
University of Wisconsin

Kenneth H. Rosen
Monmouth University

Juanjo Rué
Universitat Politécnica de Catalunya



XXIV CONTRIBUTORS

Joseph Rusinko
Hobart and William Smith Colleges

Bruce E. Sagan
Michigan State University

Aarto Salomaa
University of Turku

Edward R. Scheinerman
Johns Hopkins University

Richard Scherl
Monmouth University

Anthony Shaheen

California State University, Los Angeles

Jeff Shalit
University of Waterloo

Tony Shaska
Oakland University

Douglas R. Shier
Clemson University

Andrew V. Sills
Georgia Southern University

David Simchi-Levi
Northwestern University

Paul K. Stockmeyer
The College of William and Mary

Vladimir Stozhkov
University of Florida

Ileana Streinu
Smith College

Alan C. Tucker
SUNY Stony Brook

Peter R. Turner
United States Naval Academy

Paul C. van Oorschot
Entrust Technologies

Xingyin Wang
Singapore University of Technology
and Design

Narada Warakagoda
Telenor

Lawrence C. Washington
University of Maryland

Douglas B. West
University of Illinois at Urbana—
Champaign

Arthur T. White
Western Michigan University

Jay Yellen
Florida Institute of Technology



FOUNDATIONS

1.1 Propositional and Predicate Logic Jerrold W. Grossman
1.1.1 Propositions and Logical Operations
1.1.2 Equivalences, ldentities, and Normal Forms
1.1.3 Predicate Logic

1.2 Set Theory Jerrold W. Grossman
1.2.1 Sets
1.2.2 Set Operations
1.2.3 Infinite Sets
1.2.4 Axioms for Set Theory

1.3 Functions Jerrold W. Grossman
1.3.1 Basic Terminology for Functions
1.3.2 Computational Representation
1.3.3 Asymptotic Behavior

1.4 Relations John G. Michaels
1.4.1 Binary Relations and Their Properties
1.4.2 Equivalence Relations
1.4.3 Partially Ordered Sets
1.4.4 n-ary Relations

1.5 Proof Techniques Susanna S. Epp
1.5.1 Rules of Inference
1.5.2 Proofs
1.5.3 Disproofs
1.5.4 Mathematical Induction
1.5.5 Diagonalization Arguments

1.6 Axiomatic Program Verification David Riley
1.6.1 Assertions and Semantic Axioms
1.6.2 NOP, Assignment, and Sequencing Axioms
1.6.3 Axioms for Conditional Execution Constructs
1.6.4 Axioms for Loop Constructs
1.6.5 Axioms for Subprogram Constructs

1.7 Logic-Based Computer Programming Paradigms Mukesh Dalal
1.7.1 Logic Programming
1.7.2 Fuzzy Sets and Logic
1.7.3 Production Systems
1.7.4 Automated Reasoning



2 Chapter 1 FOUNDATIONS

INTRODUCTION

This chapter covers material usually referred to as the foundations of mathematics, in-
cluding logic, sets, and functions. In addition to covering these foundational areas, this
chapter includes material that shows how these topics are applied to discrete mathe-
matics, computer science, and electrical engineering. For example, this chapter covers
methods of proof, program verification, and fuzzy reasoning.

GLOSSARY

action: a literal or a print command in a production system.
aleph-null: the cardinality ¥y of the set A/ of natural numbers.
AND: the logical operator for conjunction, also written A.

antecedent: in a conditional proposition p — ¢ (“if p then ¢”), the proposition p (“if-
clause”) that precedes the arrow.

antichain: a subset of a poset in which no two elements are comparable.
antisymmetric: the property of a binary relation R that if aRb and bRa, then a = b.

argument form: a sequence of statement forms, each called a premise of the argument,
followed by a statement form called a conclusion of the argument.

assertion (or program assertion): a program comment specifying some conditions
on the values of the computational variables; these conditions are supposed to hold
whenever program flow reaches the location of the assertion.

asymmetric: the property of a binary relation R that if aRb, then bR a.
asymptotic: A function f is asymptotic to a function g, written f(z) ~ g(x), if f(z) #

0 for sufficiently large x and lim,_, % =1.

atom (or atomic formula): a simplest formula of predicate logic.
atomic formula: See atom.

atomic proposition: a proposition that cannot be analyzed into smaller parts and
logical operations.

automated reasoning: the process of proving theorems using a computer program
that can draw conclusions that follow logically from a set of given facts.

axiom: a statement that is assumed to be true; a postulate.

axiom of choice: the assertion that given any nonempty collection A of pairwise dis-
joint sets, there is a set that consists of exactly one element from each of the sets in

A.

axiom (or semantic axiom): arule for a programming language construct prescribing
the change of values of computational variables when an instruction of that construct-
type is executed.

basis step: a proof of the basis premise (first case) in a proof by mathematical induc-
tion.

big-oh notation: fis O(g), written f = O(g), if there are constants C' and k such that
|f(z)| < Clg(z)| for all z > k.
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bijection (or bijective function): a function that is one-to-one and onto.
bijective function: See bijection.

binary relation (from a set A to a set B): any subset of A x B.

binary relation (on a set A): a binary relation from A to A; i.e., a subset of A x A.

body (of a clause A;,..., A, < Bi,..., By in alogic program): the literals By, ..., By,
after <.

cardinal number (or cardinality) of a set: for a finite set, the number of elements;
for an infinite set, the order of infinity. The cardinal number of S is written |S].

cardinality: See cardinal number.

Cartesian product (of sets A and B): the set A x B of ordered pairs (a,b) with a € A
and b € B (more generally, the iterated Cartesian product A; X Ay x --- X A, is
the set of ordered n-tuples (a1, as,...,a,), with a; € A; for each 7).

ceiling (of z): the smallest integer that is greater than or equal to x, written [x].
chain: a subset of a poset in which every pair of elements are comparable.

characteristic function (of a set S): the function from S to {0,1} whose value at z
islifxeSand0ifx ¢ S.

clause (in a logic program): a closed formula of the form Vz; ...Vzs(A; V-V A, +
BiA---ABp).

closed formula: for a function value f(z), an algebraic expression in z.

closure (of a relation R with respect to a property P): the relation S, if it exists, that
has property P and contains R, such that S is a subset of every relation that has
property P and contains R.

codomain (of a function): the set in which the function values occur.

comparable (elements in a poset): elements that are related by the partial order rela-
tion.

complement (of a relation): given a relation R, the relation R where aRb if and only

if akd.

complement (of a set): given a set A in a “universal” domain U, the set A of objects
in U that are not in A.

complement operator: a function [0, 1] — [0, 1] used for complementing fuzzy sets.
complete: the property of a set of axioms that it is possible to prove all true statements.

complex number: a number of the form a + bi, where a and b are real numbers, and

i2 = —1; the set of all complex numbers is denoted C.

composite key: given an n-ary relation R on Ay X Ay X ---x Ay, a product of domains

Aip X A, X -+ - x A, such that for each m-tuple (a4, , @iy, ..., 6, ) € Aiy X Ajy X+ -+ X
A, , there is at most one n-tuple in R that matches (ai,, ai,, - . ., a4,,) in coordinates
11,225+« -y

composition (of relations): for R a relation from A to B and S a relation from B to
C, the relation S o R from A to C such that a(S o R)c if and only if there exists
b € B such that aRb and bSc.

composition (of functions): the function f o g whose value at z is f(g(z)).
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compound proposition: a proposition built up from atomic propositions and logical
connectives.

computer-assisted proof: a proof that relies on checking the validity of a large num-
ber of cases using a special purpose computer program.

conclusion (of an argument form): the last statement of an argument form.

conclusion (of a proof): the last proposition of a proof; the objective of the proof is
demonstrating that the conclusion follows from the premises.

condition: the disjunction A; V ---V A, of atomic formulas.

conditional statement: the compound proposition p — ¢ (“if p then ¢”) that is true
except when p is true and ¢ is false.

conjunction: the compound proposition p Aq (“p and ¢”) that is true only when p and
q are both true.

conjunctive normal form: for a proposition in the variables p1, ps, ..., pn, an equiva-
lent proposition that is the conjunction of disjunctions, with each disjunction of the
form z, Vag, V-V xg,, , where Tk, is either py; or —py;.

m )
consequent: in a conditional proposition p — ¢ (“if p then ¢”) the proposition ¢ (“then-
clause”) that follows the arrow.

comnsistent: the property of a set of axioms that no contradiction can be deduced from
the axioms.

construct (or program construct): the general form of a programming instruction
such as an assignment, a conditional, or a while-loop.

continuum hypothesis: the assertion that the cardinal number of the real numbers
is the smallest cardinal number greater than the cardinal number of the natural
numbers.

contradiction: a self-contradictory proposition, one that is always false.
contradiction (in an indirect proof): the negation of a premise.

contrapositive (of the conditional proposition p — ¢): the conditional proposition

converse (of the conditional proposition p — ¢): the conditional proposition ¢ — p.
converse relation: another name for the inverse relation.

corollary: a theorem that is derived as an easy consequence of another theorem.
correct conclusion: the conclusion of a valid proof, when all the premises are true.
countable set: a set that is finite or denumerable.

counterexample: a case that makes a statement false.

definite clause: clause with at most one atom in its head.

denumerable set: a set that can be placed in one-to-one correspondence with the
natural numbers.

diagonalization proof: any proof that involves something analogous to the diagonal
of a list of sequences.

difference: a binary relation R— S such that a(R—S)b if and only if aRb is true
and aSbh is false.
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difference (of sets): the set A— B of objects in A that are not in B.
direct proof: a proof of p — ¢ that assumes p and shows that ¢ must follow.
disjoint (pair of sets): two sets with no members in common.

disjunction: the statement p V ¢ (“p or ¢”) that is true when at least one of the two
propositions p and q is true; also called inclusive or.

disjunctive normal form: for a proposition in the variables p1,p2,...,pn, an equiva-
lent proposition that is the disjunction of conjunctions, with each conjunction of the

form xp, Axg, A--- Ay, where xy; is either py; or —py;.

disproof: a proof that a statement is false.

divisibility lattice: the lattice consisting of the positive integers under the relation of
divisibility.

domain (of a function): the set on which a function acts.

element (of a set): member of the set; the notation a € A means that a is an element
of A.

elementary projection function: the function 7;: X; x -+ x X,, — X, such that
T(X1y ey Tn) = Xy

empty set: the set with no elements, written () or { }.
epimorphism: an onto function.
equality (of sets): the property that two sets have the same elements.

equivalence class: given an equivalence relation on a set A and a € A, the subset of A
consisting of all elements related to a.

equivalence relation: a binary relation that is reflexive, symmetric, and transitive.

equivalent propositions: two compound propositions (on the same simple variables)
with the same truth table.

existential quantifier: the quantifier 3z, read “there is an z”.

existentially quantified predicate: a statement (Jz)P(x) that there exists a value
of x such that P(x) is true.

exponential function: any function of the form b*, b a positive constant, b # 1.
fact set: the set of ground atomic formulas.

factorial (function): the function n! whose value on the argument n is the product
1-2-3...n;thatis,n!=1-2-3...n.

finite: the property of a set that it is either empty or else can be put in a one-to-one
correspondence with a set {1,2,3,...,n} for some positive integer n.

first-order logic: See predicate calculus.
floor (of x): the greatest integer less than or equal to z, written |[z].

formula: a logical expression constructed from atoms with conjunctions, disjunctions,
and negations, possibly with some logical quantifiers.

full conjunctive normal form: conjunctive normal form where each disjunction is a
disjunction of all variables or their negations.

full disjunctive normal form: disjunctive normal form where each conjunction is a
conjunction of all variables or their negations.
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fully parenthesized proposition: any proposition that can be obtained using the fol-
lowing recursive definition: (1) each variable is fully parenthesized; (2) if P and Q
are fully parenthesized, so are (=P), (PAQ), (PVQ), (P — @), and (P < Q).

function f: A — B: a rule that assigns to every object a in the domain set A exactly
one object f(a) in the codomain set B.

functionally complete set: a set of logical connectives from which all other connec-
tives can be derived by composition.

fuzzy logic: a system of logic in which each statement has a truth value in the inter-
val [0, 1].

fuzzy set: a set in which each element is associated with a number in the interval [0, 1]
that measures its degree of membership.

generalized continuum hypothesis: the assertion that for every infinite set S there
is no cardinal number greater than |S| and less than |P(S)|.

goal: a clause with an empty head.
graph (of a function): given a function f: A — B, the set {(a,b) | b= f(a)} C A x B.

greatest lower bound (of a subset of a poset): an element of the poset that is a lower
bound of the subset and is greater than or equal to every other lower bound of the
subset.

ground formula: a formula without any variables.

halting function: the function that maps computer programs to the set {0,1}, with
value 1 if the program always halts, regardless of input, and 0 otherwise.

Hasse diagram: a directed graph that represents a poset.
head (of a clause Ay,..., A, < B1,...,Bp): the literals Ay,..., A, before «+.

identity function (on a set): given a set A, the function from A to itself whose value
at x is x.

image set (of a function): the set of function values as = ranges over all objects of the
domain.

implication: formally, the relation P = () that a proposition @ is true whenever
proposition P is true; informally, a synonym for the conditional statement p — q.

incomparable: two elements in a poset that are not related by the partial order rela-
tion.

independent: the property of a set of axioms that none of the axioms can be deduced
from the other axioms.

indirect proof: a proof of p — ¢ that assumes —gq is true and proves that —p is true.

induced partition (on a set under an equivalence relation): the collection of equiva-
lence classes under the relation.

induction: See mathematical induction.

induction hypothesis: in a mathematical induction proof, the statement P(xy) in the
induction step.

induction step: in a mathematical induction proof, a proof of the induction premise
“if P(xy) is true, then P(xp41) is true”.

inductive proof: See mathematical induction.
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infinite (set): a set that is not finite.
injection (or injective function): a one-to-one function.
instance (of a formula): formula obtained using a substitution.

instantiation: substitution of concrete values for the free variables of a statement or
sequence of statements; an instance of a production rule.

integer: a whole number, possibly zero or negative; i.e., one of the elements in the set
z2={..,-2,-1,0,1,2,...}.

intersection: the set AN B of objects common to both sets A and B.

intersection relation: for binary relations R and S on A, the relation R NS where
a(RN S)b if and only if aRb and aSbh.

interval (in a poset): given a < b in a poset, a subset of the poset consisting of all
elements x such that a < x <b.

inverse function: for a one-to-one, onto function f: X — Y, the function f~': ¥V — X
whose value at y € Y is the unique = € X such that f(z) =y.

inverse image (under f: X — Y of asubset T CY): the subset {x € X | f(z) € T},
written f~1(T).

inverse relation: for a binary relation R from A to B, the relation R~! from B to A
where bR~ 'a if and only if aRb.

invertible (function): a one-to-one and onto function; a function that has an inverse.
irrational number: a real number that is not rational.
irreflexive: the property of a binary relation R on A that alRa, for all a € A.

lattice: a poset in which every pair of elements has both a least upper bound and a
greatest lower bound.

least upper bound (of a subset of a poset): an element of the poset that is an upper
bound of the subset and is less than or equal to every other upper bound of the
subset.

lemma: a theorem that is an intermediate step in the proof of a more important theo-
rem.

linearly ordered: the property of a poset that every pair of elements are comparable,
also called totally ordered.

literal: an atom or its negation.

little-oh notation: f is o(g) if lim, oc| 5| = 0.

logarithmic function: a function log, x (b a positive constant, b # 1) defined by the
rule log, x =y if and only if ¥ = x.

logic program: a finite sequence of definite clauses.

logically equivalent propositions: compound propositions that involve the same vari-
ables and have the same truth table.

logically implies: A compound proposition P logically implies a compound proposi-
tion Q if @ is true whenever P is true.

loop invariant: an expression that specifies the circumstance under which the loop
body will be executed again.
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lower bound (for a subset of a poset): an element of the poset that is less than or
equal to every element of the subset.

mathematical induction: a method of proving that every item of a sequence of propo-
sitions such as P(ng), P(no + 1), P(ng +2), ... is true by showing: (1) P(ng) is true,
and (2) for all n > ng, P(n) = P(n+ 1) is true.

maximal element (in a poset): an element that has no element greater than it.
maximum element (in a poset): an element greater than or equal to every element.
membership function (in fuzzy logic): a function from elements of a set to [0,1].

membership table (for a set expression): a table used to calculate whether an object
lies in the set described by the expression, based on its membership in the sets
mentioned by the expression.

minimal element (in a poset): an element that has no element smaller than it.
minimum element (in a poset): an element less than or equal to every element.
monomorphism: a one-to-one function.

multi-valued logic: a logic system with a set of more than two truth values.

multiset: an extension of the set concept, in which each element may occur arbitrarily
many times.

mutually disjoint (family of sets): See pairwise disjoint.
n-ary predicate: a statement involving n variables.
n-ary relation: any subset of A7 X Ay X --- X A,,.

naive set theory: set theory where any collection of objects can be considered to be
a valid set, with paradoxes ignored.

NAND: the logical connective “not and”.

natural number: a nonnegative integer (or “counting” number); i.e., an element of
N ={0,1,2,3,...}. Note: Sometimes 0 is not regarded as a natural number.

negation: the statement —p (“not p”) that is true if and only if p is not true.

NOP: pronounced “no-op”, a program instruction that does nothing to alter the values
of computational variables or the order of execution.

NOR: the logical connective “not or”.
NOT: the logical connective meaning “not”, used in place of —.
null set: the set with no elements, written () or { }.

omega notation: f is Q(g) if there are constants C' and k such that |g(z)| < C|f(x)]
for all z > k.

one-to-one (function): a function f: X — Y that assigns distinct elements of the co-
domain to distinct elements of the domain; thus, if 1 # x2, then f(z1) # f(x2).

onto (function): a function f: X — Y whose image equals its codomain; i.e., for every
y €Y, there is an z € X such that f(x) =y.

OR: the logical operator for disjunction, also written V.

pairwise disjoint: the property of a family of sets that each two distinct sets in the
family have empty intersection; also called mutually disjoint.

paradox: a statement that contradicts itself.
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partial function: a function f: X — Y that assigns a well-defined object in Y to some
(but not necessarily all) the elements of its domain X.

partial order: a binary relation that is reflexive, antisymmetric, and transitive.
partially ordered set: a set with a partial order relation defined on it.

partition (of a set S): a pairwise disjoint family P = {4;} of nonempty subsets of S
whose union is S.

Peano definition: a recursive description of the natural numbers that uses the concept
of successor.

Polish prefix notation: the style of writing compound propositions in prefix notation
where sometimes the usual operand symbols are replaced as follows: N for —, K
for A, A for v, C for —, E for <.

poset: a partially ordered set.

postcondition: an assertion that appears immediately after the executable portion of
a program fragment or of a subprogram.

postfix notation: the style of writing compound logical propositions where operators
are written to the right of the operands.

power (of a relation): for a relation R on A, the relation R" on A where R* = I,
R'=R,and R" =R" 'oRfor all n > 1.

power set: given a set A, the set P(A) of all subsets of A.

precondition: an assertion that appears immediately before the executable portion of
a program fragment or of a subprogram.

predicate: a statement involving one or more variables that range over various domains.
predicate calculus: the symbolic study of quantified predicate statements.

prefix notation: the style of writing compound logical propositions where operators
are written to the left of the operands.

premise: a proposition taken as the foundation of a proof, from which the conclusion
is to be derived.

prenex normal form: the form of a well-formed formula in which every quantifier
occurs at the beginning and the scope is whatever follows the quantifiers.

preorder: a binary relation that is reflexive and transitive.

primary key: for an m-ary relation on Ai, As,..., A,, a coordinate domain A; such
that for each x € A; there is at most one n-tuple in the relation whose jth coordinate
is x.

production rule: a formula of the form Cy,...,C,, — A1,...,A,, where each C; is a

condition and each A; is an action.
production system: a set of production rules and a fact set.
program construct: See construct.

program fragment: any sequence of program code, from a single instruction to an
entire program.

program semantics (or semantics): the meaning of an instruction or of a program
fragment; i.e., the effect of its execution on the computational variables.
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projection function: a function defined on a set of n-tuples that selects the elements
in certain coordinate positions.

proof (of a conclusion from a set of premises): a sequence of statements (called steps)
terminating in the conclusion, such that each step is either a premise or follows from
previous steps by a valid argument.

proof by contradiction: a proof that assumes the negation of the statement to be
proved and shows that this leads to a contradiction.

proof done by hand: a proof done by a human without the use of a computer.

proper subset: given a set S, a subset T" of S such that S contains at least one element
not in 7.

proposition: a declarative sentence or statement that is unambiguously either true or
false.

propositional calculus: the symbolic study of propositions.

range (of a function): the image set of a function; sometimes used as synonym for
codomain.

rational number: the ratio § of two integers such that b # 0; the set of all rational
numbers is denoted Q.

real number: a number expressible as a finite (i.e., terminating) or infinite decimal;
the set of all real numbers is denoted R.

recursive definition (of a function with domain N): a set of initial values and a rule
for computing f(n) in terms of values f(k) for k < n.

recursive definition (of a set S): a form of specification of membership of S, in which
some basis elements are named individually, and in which a computable rule is given
to construct each other element in a finite number of steps.

refinement of a partition: given a partition P; = {A;} on a set S, a partition P, =
{B;} on the same set S such that every B; € P, is a subset of some A; € P;.

reflexive: the property of a binary relation R that aRa.
relation (from set A to set B): a binary relation from A to B.
relation (on a set A): a binary relation from A to A.

restriction (of a function): given f: X — Y and a subset S C X, the function f|S
with domain S and codomain Y whose rule is the same as that of f.

reverse Polish notation: postfix notation.
rule of inference: a valid argument form.

satisfiable compound proposition: a compound proposition that is true for at least
one assignment of truth variables to its variables.

scope (of a quantifier): the predicate to which the quantifier applies.
semantic axiom: See axiom.

semantics: See program semantics.

sentence: a well-formed formula with no free variables.

sequence (in a set): a list of objects from a set S, with repetitions allowed; that is, a
function f: N'— S (an infinite sequence, often written ag, a1, as, ...) or a function
f:{1,2,...,n} = S (a finite sequence, often written aj,as,...,a,).
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set: a well-defined collection of objects.
singleton: a set with one element.
specification: in program correctness, a precondition and a postcondition.

statement form: a declarative sentence containing some variables and logical symbols
which becomes a proposition if concrete values are substituted for all free variables.

string: a finite sequence in a set S, usually written so that consecutive entries are
juxtaposed (i.e., written with no punctuation or extra space between them).

strongly correct code: code whose execution terminates in a computational state sat-
isfying the postcondition, whenever the precondition holds before execution.

subset (of a set S): any set T of objects that are also elements of S, written 7' C S.
substitution: a set of pairs of variables and terms.

surjection or (surjective function): an onto function.

symmetric: the property of a binary relation R that if aRb then bRa.

symmetric difference (of relations): for relations R and S on A, the relation R & S
where a(R @ S)b if and only if exactly one of the following is true: aRb, aSb.

symmetric difference (of sets): for sets A and B, the set A® B containing each object
that is an element of A or an element of B, but not an element of both.

system of distinct representatives: given sets Aj, Ao, ..., A, (some of which may
be equal), a set {a1,as,...,a,} of n distinct elements with a; € A4; fori =1,2,...,n.

tautology: a compound proposition whose form makes it always true, regardless of the
truth values of its atomic parts.

term (in a domain): either a fixed element of a domain S or an S-valued variable.

theorem: a statement derived as the conclusion of a valid proof from axioms and defi-
nitions.

theta notation: f is O(g), written f = O(g), if there are positive constants Ci, Ca,
and k such that C1|g(z)| < |f(z)] < Cq|g(z)| for all > k.

totally ordered: the property of a poset that every pair of elements are comparable;
also called linearly ordered.

transitive: the property of a binary relation R that if aRb and bRc, then aRc.
transitive closure: for arelation R on A, the smallest transitive relation containing R.

transitive reduction (of a relation): a relation with the same transitive closure as the
original relation and with a minimum number of ordered pairs.

truth table: for a compound proposition, a table that gives the truth value of the
proposition for each possible combination of truth values of the atomic variables in
the proposition.

two-valued logic: a logic system where each statement has exactly one of the two
values: true or false.

union: the set AU B of objects in one or both of the sets A and B.

union relation: for R and S binary relations on A, the relation RUS where a(RUS)b
if and only if aRb or aSb.

universal domain: the collection of all possible objects in the context of the immediate
discussion.



1.1

12 Chapter 1 FOUNDATIONS

universal quantifier: the quantifier Vz, read “for all ” or “for every z”.

universally quantified predicate: a statement (V)P (x) that P(x) is true for every x
in its universe of discourse.

universe of discourse: the range of possible values of a variable, within the context
of the immediate discussion.

upper bound (for a subset of a poset): an element of the poset that is greater than or
equal to every element of the subset.

valid argument form: an argument form such that in any instantiation where all the
premises are true, the conclusion is also true.

Venn diagram: a figure composed of possibly overlapping circles or ellipses, used to
picture membership in various combinations of the sets.

verification (of a program): a formal argument for the correctness of a program with
respect to its specifications.

weakly correct code: code whose execution results in a computational state satisfy-
ing the postcondition, whenever the precondition holds before execution and the
execution terminates.

well-formed formula (wff): a proposition or predicate with quantifiers that bind one
or more of its variables.

well-ordered: the property of a set that every nonempty subset has a minimum ele-
ment.

well-ordering principle: the axiom that every nonempty subset of integers, each
greater than a fixed integer, contains a smallest element.

XOR: the logical connective “not or”.
Zermelo-Fraenkel axioms: a set of axioms for set theory.

zero-order logic: propositional calculus.

PROPOSITIONAL AND PREDICATE LOGIC

Logic is the basis for distinguishing what may be correctly inferred from a given collec-
tion of facts. Propositional logic, where there are no quantifiers (so quantifiers range
over nothing) is called zero-order logic. Predicate logic, where quantifiers range over
members of a universe, is called first-order logic. Higher-order logic includes second-
order logic (where quantifiers can range over relations over the universe), third-order
logic (where quantifiers can range over relations over relations), and so on. Logic has
many applications in computer science, including circuit design (85.8.3) and verification
of computer program correctness (§1.6). This section defines the meaning of the sym-
bolism and various logical properties that are usually used without explicit mention. See
[F1Pa95], [Me09], and [Mo76].

Here, only two-valued logic is studied; i.e., each statement is either true or false. Multi-
valued logic, in which statements have one of more than two values, is discussed in §1.7.2.
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1.1.1

PROPOSITIONS AND LOGICAL OPERATIONS
Definitions:
A truth value is either true or false, abbreviated T' and F', respectively.

A proposition (in a natural language such as English) is a declarative sentence that has
a well-defined truth value.

A propositional variable is a mathematical variable, often denoted by p, ¢, or r, that
represents a proposition.

Propositional logic (or propositional calculus or zero-order logic) is the study of
logical propositions and their combinations using logical connectives.

A logical connective is an operation used to build more complicated logical expressions
out of simpler propositions, whose truth values depend only on the truth values of the
simpler propositions.

A proposition is atomic or simple if it cannot be syntactically analyzed into smaller
parts; it is usually represented by a single logical variable.

A proposition is compound if it contains one or more logical connectives.

A truth table is a table that prescribes the defining rule for a logical operation. That
is, for each combination of truth values of the operands, the table gives the truth value
of the expression formed by the operation and operands.

The unary connective negation (denoted by —) is defined by the following truth table:

p|™p
T | F
F | T

Note: The negation —p is also written p’, P, or ~p.

The common binary connectives are:

pPAQq conjunction p and q
pVq disjunction p orq
p—q conditional if p then q
perq biconditional p if and only if q
pPDq exclusive or  p xor q
plag not or P nor q

plg orptq not and p nand q

The connective | is called the Sheffer stroke. The connective | is called the Peirce arrow.

The values of the compound propositions obtained by using the binary connectives are
given in the following table:
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p q|pVg pANq p—q p<q pDqg plqg plg
T T| T T T T F F F
T F| T F F F T F T
F T | T F T F T F T
F F| F F T T F T T

In the conditional p — ¢, p is the antecedent and ¢ is the consequent. The conditional
p — q is often read informally as “p implies ¢”.

Infix notation is the style of writing compound propositions where binary operators
are written between the operands and negation is written to the left of its operand.

Prefix notation is the style of writing compound propositions where operators are
written to the left of the operands.

Postfix notation (or reverse Polish notation) is the style of writing compound
propositions where operators are written to the right of the operands.

Polish notation is the style of writing compound propositions where operators are writ-
ten using prefix notation and where the usual operand symbols are replaced as follows:
N for =, K for A, A for v, C for —, E for <». (Jan Lukasiewicz, 1878-1956)

A fully parenthesized proposition is any proposition that can be obtained using the
following recursive definition: (1) each variable is fully parenthesized; (2) if P and @ are
fully parenthesized, so are (=P), (PAQ), (PVQ), (P — @), and (P < Q).

Facts:
1. The conditional connective p — ¢ represents the following English constructs:

e if p then ¢ egifp
e p only if ¢ e p implies ¢
e ¢ follows from p e ¢ whenever p

e p is a sufficient condition for ¢ e ¢ is a necessary condition for p.

2. The biconditional connective p <> g represents the following English constructs:

e p if and only if ¢ (often written p iff )

e p and ¢ imply each other

e p is a necessary and sufficient condition for ¢
e p and ¢ are equivalent.

3. In computer programming and circuit design, the following notation for logical op-
erators is used: p AND ¢ for p A q, p OR ¢ for pV q, NOT p for —p, p XOR ¢ for p @ gq,
p NOR ¢ for p | ¢, p NAND ¢ for p | g.

4. Order of operations: In an unparenthesized compound proposition using only the
five standard operators =, A, V, —, and <>, the following order of precedence is typically
used when evaluating a logical expression, at each level of precedence moving from left to
right: first -, then A and V, then —, finally <. Parenthesized expressions are evaluated
proceeding from the innermost pair of parentheses outward, analogous to the evaluation
of an arithmetic expression.

5. It is often preferable to use parentheses to show precedence, except for negation
operators, rather than to rely on precedence rules.
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6. No parentheses are needed when a compound proposition is written in either prefix or
postfix notation. However, parentheses may be necessary when a compound proposition
is written in infix notation.

7. The number of nonequivalent logical statements with two variables is 16, because
each of the four lines of the truth table has two possible entries, T" or F'. Here are
examples of compound propositions that yield each possible combination of truth values.
(T represents a tautology and F a contradiction. See §1.1.2.)
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8. The number of different possible logical connectives on n variables is 22", because
there are 2" rows in the truth table.

9. The problem of determining whether a compound proposition is satisfiable, known
as the Propositional Satisfiability Problem (abbreviated as SAT), is important in many
practical applications, such as in circuit design and in artificial intelligence, and it is also
important in the study of algorithms.

10. No efficient (polynomial-time) algorithm has been found for solving SAT. Because
it is NP-complete (see Section 16.4.1), if a polynomial-time algorithm could be found for
solving this problem, the famous P versus NP problem would be solved in the affirmative.

Examples:
1. “14+1= 3" and “Romulus and Remus founded New York City” are false propositions.

2. “1+1=2" and “The year 1996 was a leap year” are true propositions.
3. “Go directly to jail” is not a proposition, because it is imperative, not declarative.

4. “x > 5” is not a proposition, because its truth value cannot be determined unless the
value of z is known.

5. “This sentence is false” is not a proposition, because it cannot be given a truth value
without creating a contradiction.

6. In a truth table evaluation of the compound proposition pV(—pAq) from the innermost
parenthetic expression outward, the steps are to evaluate —p, next (—p A ¢), and then
pV (=P Aq):

p q|-p (=pAq pV(pAq)
T T|F F T
T F|F F T
F T|T T T
F F| T F F
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7. The statements in the left column are evaluated using the order of precedence indi-
cated in the fully parenthesized form in the right column:

pVaAT (pva)nr)
perg—r (p(g—1))
—qV-r—=sAt (((mq) V(1)) = (sAt))

8. The infix statement p A ¢ in prefix notation is A pq, in postfix notation is pg A, and
in Polish notation is K pq.

9. The infix statement p — —(¢V ) in prefix notation is — p—V ¢r, in postfix notation
is pgrV ——, and in Polish notation is CpN A gr.

1.1.2

EQUIVALENCES, IDENTITIES, AND NORMAL FORMS

Definitions:
A tautology is a compound proposition that is always true, regardless of the truth
values of its underlying atomic propositions.

A contradiction (or self-contradiction) is a compound proposition that is always
false, regardless of the truth values of its underlying atomic propositions. (The term
self-contradiction is used for such a proposition when discussing indirect mathematical
arguments, because “contradiction” has another meaning in that context. See §1.5.)

A contingency is a compound proposition that is neither a tautology nor a contradic-
tion.

A compound proposition is satisfiable if there is at least one assignment of truth values
for which it is true.

A compound proposition P logically implies a compound proposition @, written P =
Q, if Q is true whenever P is true. In this case, P is stronger than @, and () is weaker
than P.

Compound propositions P and @ are logically equivalent, written P = Q, P < @, or
P iff @Q, if they have the same truth values for all possible truth values of their variables.

A logical equivalence that is frequently used is sometimes called a logical identity.

A collection C of connectives is functionally complete if every compound proposition
is equivalent to a compound proposition constructed using only connectives in C.

A disjunctive normal expression in the propositions pi,pe, ..., p, is a disjunction of
one or more propositions, each of the form zy, A xg, A--- Az, , where Ty, is either py;

Or —pg; -

m )

A disjunctive normal form (DNF) for a proposition P is a disjunctive normal ex-
pression that is logically equivalent to P.

A conjunctive normal expression in the propositions p1,ps, ..., P, iS a conjunction
of one or more compound propositions, each of the form g, Vzg, V- -V g, , where xy;
is either py; or —py;.

A conjunctive normal form (CNF) for a proposition P is a conjunctive normal ex-
pression that is logically equivalent to P.
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A compound proposition P using only the connectives =, A, and V has a logical dual
(denoted P’ or P?), obtained by interchanging A and V, and interchanging the constant
T (true) and the constant F (false).

The converse of the conditional proposition p — ¢ is the proposition ¢ — p.

The contrapositive of the conditional proposition p — ¢ is the proposition —q¢ — —p.
The inverse of the conditional proposition p — ¢ is the proposition —=p — —gq.

Facts:

1. P& Qs trueif and only if P = @ and Q = P.

2. P < Q is true if and only if P < @ is a tautology.

3. The following table lists several logical identities.

Contrapositive law
Conditional as disjunction
Negation of conditional

name rule
Commutative laws pAgES gAp, pVqgsSqVp
Associative laws pA(gATr)= (pAgQ Ar, pVgVr)e (pVgVr
Distributive laws pA(gVr)e (pAgV(pAT)
pV(gAr) = (pVaA(pVr)
DeMorgan’s laws ~(pAg) & (mp)V(mg), —pVa) e (-p)A(-g)
Excluded middle pV-p&s T
Contradiction pA-p< F
Double negation law —(-p) & p

p—=qe —qg—p
p—=qe pVyg
-(p—q) S pAq

Biconditional as implication | (p <> q) < (p — q) A (¢ — p)
Idempotent laws pApESDp, pVpSp
Absorption laws pA(pVg &p, pV(pAg &p
Dominance laws pvVT< T, pANFsF
Exportation law p—=(g—=r)e(pAg —r
Identity laws pANT<p, pVF&p

4. There are different ways to establish logical identities (equivalences):
e truth tables (showing that both expressions have the same truth values);
e using known logical identities and equivalences to establish new ones;

e taking the dual of a known identity (Fact 7).

5. Logical identities are used in circuit design to simplify circuits. See §5.8.4.

6. Each of the following sets of connectives is functionally complete:

{/\7_'}7 {\/7_'}7 {|}’ {\L}
However, these sets of connectives are not functionally complete:
{rh Avh {a vl

7. If P & Q is a logical identity, then so is P/ < @', where P’ and Q' are the duals
of P and @, respectively.

{/\a \/a _‘}a
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8. Every proposition has a disjunctive normal form and a conjunctive normal form,
which can be obtained by Algorithms 1 and 2.

Algorithm 1: Disjunctive normal form of proposition P.
write the truth table for P
for each line of the truth table on which P is true, form a “line term”
x1 Ao A -+ A Xy, Where x; := p; if p; is true on that line of the truth table
and x; := —p; if p; is false on that line
form the disjunction of all these line terms

Algorithm 2: Conjunctive normal form of proposition P.
write the truth table for P
for each line of the truth table on which P is false, form a “line term”
x1Vaa V-V ax,, where x; := p; if p; is false on that line of the truth table
and x; := —p; if p; is true on that line
form the conjunction of all these line terms

Examples:

1. The proposition p V —p is a tautology (the law of the excluded middle).

2. The proposition p V —p is a self-contradiction.

3. The proposition (p V —=q) A (¢ V —r) A (r V —p) is satisfiable because it is true when
D, q, and r are all false. Note, however, that (p <> q) A (—p <> q) is unsatisfiable, as it is
false for each of the four possible assignments of truth values for p and gq.

4. A proof that p <> ¢ is logically equivalent to (p A q) V (—p A —¢) can be carried out
using a truth table:

p q|peq p g pAg pA-q (pAQV(-pAq)
T T| T F F T F T
T F| F F T F F F
F T| F T F F Ia Ia
F F| T T T F T T

Since the third and eighth colu