

OBJECT-ORIENTED PROGRAMMINGOBJECT-ORIENTED PROGRAMMINGOBJECT-ORIENTED PROGRAMMINGOBJECT-ORIENTED PROGRAMMINGOBJECT-ORIENTED PROGRAMMING
C++ SIMPLIFIEDC++ SIMPLIFIEDC++ SIMPLIFIEDC++ SIMPLIFIEDC++ SIMPLIFIED

OBJECT-ORIENTEDOBJECT-ORIENTEDOBJECT-ORIENTEDOBJECT-ORIENTEDOBJECT-ORIENTED
PROGRAMMINGPROGRAMMINGPROGRAMMINGPROGRAMMINGPROGRAMMING
C++ SIMPLIFIEDC++ SIMPLIFIEDC++ SIMPLIFIEDC++ SIMPLIFIEDC++ SIMPLIFIED

By

HARI MOHAN PANDEY
Assistant Professor

Computer Engineering Department
NMIMS University

Mumbai
(Maharashtra)

��������	
�������������

E U U ∑ ∑ ∑ ∑
∑ ∑ ∑∑ ∑ NEW DELHI

 ∑

laxmi18
Typewritten Text

laxmi18
Typewritten Text
An ISO 9001:2008 Certified Company

OBJECT-ORIENTED PROGRAMMING C++ SIMPLIFIED

© by Laxmi Publications (P) Ltd.
All rights reserved including those of translation into other languages. In accordance with the Copyright (Amendment) Act, 2012,
no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise. Any such act or scanning, uploading, and or electronic sharing of any part of this
book without the permission of the publisher constitutes unlawful piracy and theft of the copyright holder’s intellectual property. If
you would like to use material from the book (other than for review purposes), prior written permission must be obtained from the
publishers.

Typeset at ABRO Enterprises, Delhi
First Edition: 2015

ISBN 978-93-81159-50-7

Limits of Liability/Disclaimer of Warranty: The publisher and the author make no representation or warranties with respect to the
accuracy or completeness of the contents of this work and specifically disclaim all warranties. The advice, strategies, and activities
contained herein may not be suitable for every situation. In performing activities adult supervision must be sought. Likewise, common
sense and care are essential to the conduct of any and all activities, whether described in this book or otherwise. Neither the publisher
nor the author shall be liable or assumes any responsibility for any injuries or damages arising herefrom. The fact that an organization
or Website if referred to in this work as a citation and/or a potential source of further information does not mean that the author or
the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers
must be aware that the Internet Websites listed in this work may have changed or disappeared between when this work was written
and when it is read.

All trademarks, logos or any other mark such as Vibgyor, USP, Amanda, Golden Bells, Firewall Media, Mercury, Trinity, Laxmi appear-
ing in this work are trademarks and intellectual property owned by or licensed to Laxmi Publications, its subsidiaries or affiliates.
Notwithstanding this disclaimer, all other names and marks mentioned in this work are the trade names, trademarks or service
marks of their respective owners.

Published in india by

UNIVERSITY SCIENCE PRESS
(An Imprint of Laxmi Publications Pvt.Ltd.)

An ISO 9001:2008 Certified Company
113, GOLDEN HOUSE, DARYAGANJ,
NEW DELHI - 110002, INDIA
Telephone : 91-11-4353 2500, 4353 2501
Fax : 91-11-2325 2572, 4353 2528 C—
www.laxmipublications.com info@laxmipublications.com

& Bengaluru 080-26 75 69 30

& Chennai 044-24 34 47 26, 24 35 95 07

& Cochin 0484-237 70 04, 405 13 03

& Guwahati 0361-254 36 69, 251 38 81

& Hyderabad 040-27 55 53 83, 27 55 53 93

& Jalandhar 0181-222 12 72

& Kolkata 033-22 27 43 84

& Lucknow 0522-220 99 16

& Mumbai 022-24 91 54 15, 24 92 78 69

& Ranchi 0651-220 44 64

Br
an

ch
es

Contents

CHAPTER 0 : INTRODUCTION TO OOPs 1–9
Structured Programming 1

Procedural Programming 3

Programming Methodology 3

Object-Oriented Programming 5

Basic Concepts of OOPs 5

Characteristics of OOPs 8

Advantages of OOPs 9

Object-Oriented Languages 9

Object-based Languages 9

CHAPTER 1 : INTRODUCTION OF OBJECT-ORIENTED DESIGN 10–19
1.1 Introduction 10

1.2 Objects 11

1.3 Class and Instance 11

1.4 Polymorphism 12

1.5 Inheritance 12

1.6 Object-Oriented Analysis 12

1.7 Finding the Objects 13

1.8 Conceptual Modeling 13

1.9 Requirements Model 13

1.10 Analysis Model 13

1.11 The Design Model 13

1.12 The Implementation Model 14

1.13 Test Model 14

1.14 Object-Oriented Analysis and Design 14

1.15 The Evolution of Object Model 15

1.16 Object-Oriented Programming 15

1.17 Object-Oriented Design 15

1.18 Object-Oriented Analysis 16

(v)

(vi)

1.19 Elements of Object Model 16

1.20 The Role of OOAD in the Software Life Cycle 17

1.21 OOAD Methodologies 18

1.22 Grady Booch Approach 18

CHAPTER 2 : STARTING WITH C++ 20–46

2.1 C++ Overview 20

2.2 C++ Character Set 20

2.3 C++ Tokens 21

2.4 Variables 25

2.5 Counting Tokens 26

2.6 Data Types 26

2.7 Qualifiers 27

2.8 Range of Data Types 28

2.9 Your First C++ Program 29

2.10 Structure of a C++ Program 33

2.11 Styles of Writing C++ Programs 35

2.12 Programming Examples 35

2.13 Ponderable Points 45

Exercise 45

CHAPTER 3 : C FEATURES OF C++ 47–115
3.1 Introduction 47

3.2 Operators and Expressions 47

3.3 Declaring Constants 72

3.4 Type Conversion 76

3.5 Decision Making: An Introduction 77

3.6 Unconditional Branching Using Goto 92

3.7 Introduction to Looping 94

3.8 Points to Ponder 110

Exercise 112

CHAPTER 4 : OPERATORS AND REFERENCES IN C++ 116–148
4.1 Introduction 116

4.2 Scope Resolution Operator 116

4.3 Reference Variables 122

4.4 The Bool Data Type 127

4.5 The Operator New and Delete 129

(vii)

4.6 Malloc Vs New 140

4.7 Pointer Member Operators 140

4.8 Ponderable Points 147

Exercise 148

CHAPTER 5 : FUNCTION IN C++ 149–192
5.1 Introduction 149

5.2 Function Declaration/Prototyping 150

5.3 The Main Function in C++ 154

5.4 Recursion 154

5.5 Call by Reference 157

5.6 Call by Reference Vs Call by Address 165

5.7 Return by Reference 165

5.8 Inline Function 169

5.9 Function Overloading 175

5.10 Function with Default Arguments 183

5.11 Ponderable Points 189

Exercise 190

CHAPTER 6 : CLASS AND OBJECTS IN C++ 193–278

6.1 Working with Class 193

6.2 Programming Examples (Part-1) 197

6.3 Structure in C++ 215

6.4 Accessing Private Data 216

6.5 Programming Example (Part-2) 220

6.6 Passing and Returning Object 240

6.7 Array of Object 248

6.8 Friend Function 254

6.9 Static Class Members 266

6.10 Constant Member Function 274

Exercise 277

CHAPTER 7 : WORKING WITH CONSTRUCTOR AND DESTRUCTOR 279–333
7.1 Introduction 279

7.2 Constructor with Parameters 281

7.3 Implicit and Explicit Call to Constructor 283

7.4 Copy Constructor 306

7.5 Dynamic Initialization of Objects 311

(viii)

7.6 Dynamic Constructor 316

7.7 Destructor 328

7.8 Ponderable Points 332

Exercise 332

CHAPTER 8 : WORKING WITH OPERATOR OVERLOADING 334–392

8.1 Introduction 334

8.2 Operator Overloading with Binary Operator 336

8.3 Overloading Assignment (=) Operator 346

8.4 Overloading Unary Operators 348

8.5 Overloading Using Friend Function 358

8.6 Rules of Operator Overloading 370

8.7 Type Conversion 371

8.8 Ponderable Points 390

Exercise 391

CHAPTER 9 : WORKING WITH INHERITANCE IN C++ 393–457
9.1 Introduction 393

9.2 Types of Inheritance 393

9.3 Public, Private and Protected Inheritance 398

9.4 Multiple Inheritance 424

9.5 Hierarchical Inheritance 431

9.6 Virtual Base Class 435

9.7 Constructor and Destructor in Inheritance 442

9.8 Containership 453

9.9 Ponderable Points 456

Exercise 456

CHAPTER 10 : POINTERS TO OBJECTS AND VIRTUAL FUNCTIONS 458–510

10.1 Pointer to Objects 458

10.2 The This Pointer 465

10.3 What is Binding in C++ ? 469

10.4 Virtual Functions 470

10.5 Working of a Virtual Function 476

10.6 Rules for Virtual Function 485

10.7 Pure Virtual Function and Abstract Class 485

10.8 Object Slicing 498

(ix)

10.9 Some Facts about Virtual Function 501

10.10 Virtual Destructor 504

10.11 Ponderable Points 508

Exercise 509

CHAPTER 11 : INPUT-OUTPUT AND MANIPULATORS IN C++ 511–562
11.1 Introduction 511

11.2 C++ Stream Classes 511

11.3 Unformatted Input/Output 513

11.4 Formatted Input/Output Operations 524

11.5 Manipulators 545

11.6 Ponderable Points 561

Exercise 561

CHAPTER 12 : FILE HANDLING IN C++ 563–608
12.1 Introduction 563

12.2 File Streams 564

12.3 Opening and Closing a File 564

12.4 File Opening Modes 569

12.5 Checking End of File 574

12.6 Random Access in File 580

12.7 Command Line Arguments 587

12.8 Working with Binary Mode 592

12.9 Error Handling 603

12.10 Ponderable Points 607

Exercise 607

CHAPTER 13 : TEMPLATE PROGRAMMING 609–642
13.1 Introduction 609

13.2 Function Template 609

13.3 Class Template 625

13.4 Ponderable Points 641

Exercise 642

CHAPTER 14 : EXCEPTION HANDLING IN C++ 643–667
14.1 Introduction 643

14.2 Basics of Exception Handling 643

14.3 Exception Handling Mechanism 645

(x)

14.4 Programming Examples 646

14.5 Exception Handling with Class 652

14.6 Catching all Exceptions 662

14.7 Specifying Exception for a Function 664

14.8 Ponderable Points 666

Exercise 666

CHAPTER 15 : OBJECT-ORIENTED PROGRAMMING HAND ON LAB 668–741
Experiment 1 : Program illustrating function overloading feature. 668

Experiment 2 : Programs illustrating the overloading of various operators. Ex :
Binary operators, Unary operators, New and delete operators,
etc. 671

Experiment 3 : Programs illustrating the use of following functions :

(a) Friend functions (b) Inline functions (c) Static member
functions (d) Functions with default arguments. 682

Experiment 4 : Programs to create singly and doubly linked lists and perform
insertion and deletion Operations. Using self referential classes,
new and delete operators. 690

Experiment 5 : Programs illustrating the use of destructor and the various types
of constructors :

1. Constructor with no arguments 2. Constructors with
arguments 3. Copy constructor etc. 713

Experiment 6 : Programs illustrating the various forms of inheritance :

1. Single Inheritance 2. Multiple Inheritances 3. Multilevel
Inheritance. 4. Hierarchical inheritance, etc. 717

Experiment 7 : Write a program illustrating the use of virtual functions. 726

Experiment 8 : Write a program which illustrates the use of virtual base class. 728

Experiment 9 : Write a program which uses the following sorting methods for
sorting elements in ascending order. Use function templates

(a) Bubble sort (b) Selection sort (c) Quick sort. 732

Experiment 10 : Write programs illustrating file handling operations :

(a) Copying a text file

(b) Displaying the contents of the file, etc. 738

Appendix 1 : Key Elements Used in Trouble Free C++ 743–767

Appendix 2 : Questions Asked in Technical Interviews 768–770

References 771–773

Index 775–779

Preface

This book “OBJECT-ORIENTED PROGRAMMING C++ SIMPLIFIED” is a comprehensive,
hands-on guide to C++ programming but one that doesn’t assume you’ve programmed before.
(People familiar with earlier programming or another structured programming language will, of
course, have an easier time and can move through the early chapters quickly.)

Soon, you will write sophisticated programs that take full advantages of C++’s exciting
and powerful object-oriented nature. You will start as a beginner and when you have finished
this book, you will have moved far along the road to C++ mastery. I have tried hard to cover
at the least the fundamentals of every technique that a C++ professional will need to master.

I have also made sure to stress the new ways of thinking needed to master C++
programming, so even experts in more traditional programming languages can benefit from this
book. I have taken this approach because trying to force C++ into the framework of older
programming languages is ultimately self-defeating, you can’t take advantage of its power if you
continue to think within an older paradigm.

To make this book even more useful, there are extensive discussions of important topics
left out of most other introductory books. There are whole chapters on objects, including non-
trivial examples of building your own objects with C++. When I teach you process of inheritance
at that time I have introduced you to develop C++ code on behalf of inherited diagrams. There
is a chapter for input-output manipulators which shows you number of functions used in C++
for input/output control. In the same chapter I teach you about manipulator and ways to
develop your own manipulator. There is a whole chapter for miscellaneous new features of
C++. There is also a chapter on exception handling. The book has also dealt about keeping file
information through the chapter File Handling. It also has chapters for Standard Template
Library and for the String Class and a whole chapter for showing the hidden secrets of C++.
The book also includes lots of examples with step-by-step explanation and an extensive discussion
of sorting and searching techniques and lots of tips and tricks. In sum, unlike many of the
introductory books out there, I not only want to introduce you to a topic, but I go into it in
enough depth that you can actually use the techniques for writing practical programs.

Now a confession: My original goal was to make this book a “one-stop resource”, but,
realistically, C++ has gotten far too big and far too powerful for any one book to do this.
Nonetheless, if you finish this book, I truly believe that you will be in a position to begin
writing commercial-quality C++ programs! True mastery will take longer. I have tried to give
suggestions that can take you to next level.

(xi)

(xii)

• HOW THIS BOOK IS ORGANIZED

The subject matter of this book is divided into 15 chapters (including chapter 0).
Each chapter has been written and developed with immensely simplified programs (except
chapter 1, which is foundation chapter for various programming methodology) which will
clear the core concepts of the C++ language. The book “OBJECT ORIENTED PROGRAMMING
C++ SIMPLIFIED” has been written specially for those students who are tyro in the field of
programming. Inside the book you will find numerous programs instead of just code snippet
to illustrate even the basic concept. The book assumes no previous exposure to the C++
programming language. It also contains some good programming examples which might be
useful for experienced programmers. All the programming examples given in the book have
been tested on VC++ compiler, Turbo C++ 3.0 and Turbo C++ 4.5 compilers under windows
and DOS.

Each chapter contains a number of examples to explain the theoretical as well as practical
concepts. Every chapter is followed by questions to test the student performance and retentivity.

Here are short descriptions of the chapters:

Chapter 0: Covers the topics of basic introduction of programming methodology and
introduction of OOP like structured programming by which one can understand the elementary
elements (sequence structure, Loop or iteration and Decision structure) of any programming
language. The chapter also explains the basic approaches (Bottom-up and Top-down) and the
basic concepts of object-oriented programming too. It gives an idea to programmer to categorise
any programming language into object-oriented or object based language.

Chapter 1: This chapter gives the details of fundamental aspects of “object oriented design
and analysis” and covers the details of “Grady Booch Approach”, principles used for OOAD.
It flashes the concepts where OOAD fits in software development life cycle.

Chapter 2: In this chapter I have explained the historical development of C++ language.
The chapter also gives introductory idea of tokens, variables, data types and basic structure of
C++ program. In the same chapter I have explained the method of compiling and executing
the C++ program on Turbo C++3.0, Turbo C++ 4.5 and VC++.

Chapter 3: This chapter introduces programmers about the behaviour of operators used
in C++. Here I have explained the most of the common features applied in C and C++ both,
because as we say C++ is super set of C then operators and expressions used in C must be
implemented with C++ too.

Chapter 4: Covers the operators used only with C++ and not with C. Here I have covered
the operators like scope resolution operator, reference variables, bool data type. This chapter
gives idea of dynamic memory allocation and operators new and delete for dynamic memory
allocation in C++.

Chapter 5: Gives the idea of declaring function (prototyping), function of main () function,
introduction of recursion. It also gives the meaning of call by reference and call by address
and difference between call by reference and call by address. Here I have explained the
functionality of inline function and function overloading too.

Chapter 6: Gives the introduction of class and objects used in C++. Here I have put the
comparison of structure and class, way of accessing private data and given an idea about

(xiii)

passing and returning objects. In this chapter I have given some very crucial elements of C++
like array of objects, friend function, Static class members and constant member function. All
these concepts play a very important role in software development.

Chapter 7: This chapter covers the behaviours of a constructor. Here I show the role of
different types of constructor like default constructor, constructor with parameters, copy
constructor. This chapter also gives the ideas of dynamic constructor and destructor.

Chapter 8: Gives ideas to programmer to overload different types of operators used in
C++ like, binary operators, assignment operator, unary operators. Overloading with the help
of friend function and rules of overloading any operator and way for type conversion too.

Chapter 9: In this chapter we will deal the concept of inheritance, different types of
inheritance i.e., single level, multilevel, multiple, hierarchical and hybrid. Here I have also
defined the different visibility modifier with respect to inheritance. Application of constructor
and destructor in inheritance and concept of containership is also defined in the same chapter.

Chapter 10: This chapter gives the way of implementing the concepts like pointer to
objects, this pointer, and way of binding, what is virtual function and how to work with
virtual function, rules for virtual function. This chapter also gives the comparison of virtual
function and pure virtual function. Also included are the fundamental concepts of object
slicing and virtual destructor.

Chapter 11: Here I have explained the concepts of C++ stream classes and formatted and
unformatted input and output operation applied in C++ as well as the concept of manipulator.

Chapter 12: This chapter gives the idea of how to handle file in C++ programming
language and introduces the programmer about the fundamental concepts of file streams, way
of opening and closing file, different modes of opening a text file in C++. This chapter also
gives the approaches to check end of any file, Random access in file. In the same chapter I
have put the introductory ideas of command line argument and ways of working with binary
mode and error handling mechanism with file handling.

Chapter 13: Covers the introductory idea of template programming i.e., function template
and class template.

Chapter 14: This chapter deals with basic concepts of exception handling mechanism
and how to handle exception with the help of class, how to re-throw an exception, how to
catch all exceptions.

Chapter 15: Covers all the experiments given in the syllabus.

Appendix–1 Presents some language-technical elements.

Appendix–2 Discusses the technical questions which are generally asked in technical
interviews.

• IMPLEMENTATION NOTE

The language used in this book is ‘‘Pure C++’’ as defined in the C++ standard. Therefore,
the examples ought to run on every C++ implementation. The major program fragments in this
book were tried using several C++ implementations. Examples using features only recently
adopted into C++ didn’t compile on every implementation. However, I see no point in mentioning
which implementations failed to compile which examples. Such information would soon be out

(xiv)

of date because implementers are working hard to ensure that their implementations correctly
accept every C++ feature.

• SUGGESTIONS FOR C PROGRAMMERS

The better one knows C, the harder it seems to be to avoid writing C++ in C style,
thereby losing some of the potential benefits of C++. Please take a look at Appendix B, which
describes the differences between C and C++. Here are a few pointers to the areas in which
C++ has better ways of doing something than C has:

1. Macros are almost never necessary in C++. Use const or enum to define manifest
constants, inline to avoid function-calling overhead, templates to specify families
of functions and types, and namespaces to avoid name clashes.

2. Don’t declare a variable before you need it so that you can initialize it immediately. A
declaration can occur anywhere a statement can, in for-statement initializers, and in
conditions.

3. Don’t use malloc(). The new operator does the same job better, and instead of
realloc(), try a vector.

4. Try to avoid v o i d *, pointer arithmetic, unions, and casts, except deep within the
implementation of some function or class. In most cases, a cast is an indication of a
design error. If you must use an explicit type conversion, try using one of the ‘‘new
casts’’ for a more precise statement of what you are trying to do.

5. Minimize the use of arrays and C-style strings. The C++ standard library s t r i n g
and vector classes can often be used to simplify programming compared to traditional
C style. In general, try not to build yourself what has already been provided by the
standard library.

To obey C linkage conventions, a C++ function must be declared to have C linkage. Most
important, try thinking of a program as a set of interacting concepts represented as classes and
objects, instead of as a bunch of data structures with functions twiddling their bits.

• SUGGESTIONS FOR C++ PROGRAMMERS

By now, many people have been using C++ for a decade. Many more are using C++ in
a single environment and have learned to live with the restrictions imposed by early compilers
and first generation libraries. Often, what an experienced C++ programmer has failed to notice
over the years is not the introduction of new features as such, but rather the changes in
relationships between features that make fundamentally new programming techniques feasible.
In other words, what you didn’t think of when first learning C++ or found impractical just
might be a superior approach today. You find out only by re-examining the basics.

Read through the chapters in order. If you already know the contents of a chapter, you
can be through in minutes. If you don’t already know the contents, you’ll have learned something
unexpected. I learned a fair bit writing this book and I suspect that hardly any C++ programmer
knows every feature and technique presented. Furthermore, to use the language well, you need
a perspective that brings order to the set of features and techniques. Through its organization
and examples, this book offers such a perspective.

(xv)

• EXERCISES

Exercises are found at the ends of chapters. The exercises are mainly of the write a
program variety. Always write enough code for a solution to be compiled and run with at least
a few test cases. The exercises vary considerably in difficulty, so they are marked with an
estimate of their difficulty. The scale is exponential so that if an exercise takes you ten minutes,
it might take an hour and it might take a day. The time needed to write and test a program
depends more on your experience than on the exercise itself. An exercise might take a day if
you first have to get acquainted with a new computer system in order to run it. On the other
hand, an exercise might be done in an hour by someone who happens to have the right
collection of programs handy.

Any book on programming in C can be used as a source of extra exercises for some
introductory chapters. Any book on data structures and algorithms can be used as a source of
exercises for some middle chapters for the formation of algorithms.

Acknowledgement

First of all, I would like to say thanks to “BABA VISVNATH” for their constant bless in writing
this book. As understanding of the study like this is never the outcome of the efforts of a single
person, rather it bears the imprint of a number of people who directly or indirectly helped me
in completing this book. I would be failing in my duty if I don’t say a word of thanks to all
those who have offered sincere advice to make this book educative, effective, and pleasurable.
I would like to acknowledge My Father Dr. V. N. Pandey My Mother Smt. Madhuri Pandey, My
sisters Ms. Anjana Pandey, Ms. Ranjana Pandey and My brother Mr. Man Mohan Pandey.

I have immense pleasure in expressing my whole hearted gratitude to Prof. RR Sedamkar
(Associate Dean, MPSTME), for providing help and guidance during the writing of this book.

I also wish to thank my lots of student whose conceptual queries have always helped me
in digging the subject matter deep.

I am thankful to all the employees of MPSTME, NMIMS University especially Mr. Bharat
Thodji and Mr. Mahendra Joshi who have been supporting me in all types of Lab activities
during the writing of this book.

How can I forget my close buddy Lecturer Shreedhar Desmukh who has supported me
most of the time during writing of the book? I am also thankful to the librarian of MPSTME
at Shirpur Mr. Anand Gawdekar who provided each and every good book timely.

—Author

(xvi)

Salient Features of the Book

(a) Lucid explanation of OOP concept.

(b) Covers C features in nutshell.

(c) Emphasis is on new features of C++.

(d) Overloaded almost all types of operators.

(e) 12 fully explained programs on type conversion.

(f) Virtual Functions explored in depth.

(g) Covers advance features.

(h) Detailed coverage of exception handling and templates.

(i) Over 600 thoroughly explained programs.

(j) Plenty of exercises to try.

(k) Detailed description of file handling with more than 40 thoroughly explained programs.

(xvii)

List of Experiments

OBJECT-ORIENTED PROGRAMMING LAB
1. Program illustrating function overloading feature.

2. Programs illustrating the overloading of various operators:

Ex: Binary operators, Unary operators, New and delete operators etc.

3. Programs illustrating the use of following functions:

(a) Friend functions (b) Inline functions

(c) Static member functions (d) Functions with default arguments.

4. Programs to create singly and doubly linked lists and perform insertion and deletion
operations.

Using self referential classes, new and delete operators.

5. Programs illustrating the use of destructor and the various types of constructors
(no arguments, constructor, constructor with arguments, copy constructor etc).

6. Programs illustrating the various forms of inheritance:

Ex. Single, multiple, multilevel, hierarchical inheritance etc.

7. Write a program having student as on abstract class and create many derived classes
such as Engg, Science, Medical, etc., from student class. Create their objects and process
them.

8. Write a program illustrating the use of virtual functions.

9. Write a program which illustrates the use of virtual base class.

10. Write a program which uses the following sorting methods for sorting elements in
ascending order.

 Note: Use function templates

 (a) Bubble sort (b) Selection sort (c) Quick sort.

11. Write a program which illustrates the use of class templates:

Ex. (a) Stack class (b) Queue class.

12. Write programs illustrating file handling operations:

Ex. (a) Copying a text file (b) Displaying the contents of the file etc.

13. Write programs illustrating the console I/O operations.

14. Write programs illustrating how exceptions are handled (ex: division-by-zero, overflow
and underflow in stacks etc.).

(xviii)

INTRODUCTION TO OOPs

STRUCTURED PROGRAMMING

Structured programming (sometimes known as modular programming) is a subset of procedural
programming that enforces a logical structure in the programming being written to make it
more efficient and easier to understand and modify. Structured programming frequently employes
a top-down design model, in which developers map out the overall program structure into
separate subsections. A definedl function or set of similar functions is coded in a separate
modules can be reused in other programs. After a module has been tested individually, it is
then integrated with other modules into the overall program structure. Program flow follows a
simple hierarchical model that employs looping constructs such as "for", "repeat" and "while".
Use of the "Go To" statement is discouraged.

Structured programming was first suggested by Corrado Bohm and Guiseppe Jacopini. The
two mathematicians demonstrated that any computer program can be written with just three
structures : decision, sequences, and loops.

Coders should break larger pieces of code into shorter subroutines (functions, procedures,
methods, blocks, or otherwise) that are small enough to be understood easily. In general,
programs should use local variables and take arguments by either value or reference. These
techniques help to make isolated small pieces of code easier to understand the whole program
at once. PASCAL, Ada, C, are some of the examples of structured programming languages.

Sequence Structure

A sequence structure consists of a single entry and single exit statements i.e., it makes a
sequential flow.

1

2 Object-Oriented Programming C++ Simplified

Single entry

Single exit

Figure 1. Implementation of sequence structure.

Loop or Iteration Structure

The loop consists of number of sequence statements which are executed based on the condition.

Figure 2. Implementation of loop or iteration structure.

Decision Structure

It consists of a condition which may be true or false. Depending upon condition is true or false

a different branch is taken and is executed.

Figure 3. Implementation of decision structure.

Introduction to OOPs 3

PROCEDURAL PROGRAMMING

Procedural programming is a programming paradigms based upon the concept of the procedural

call. Procedures are also known as routines, subroutines, methods or functions simply contain

a series of computational steps to be carried out. Any given procedure can be called at any

point during a program’s execution including by other procedures or itself. Especially in large,

complicated programs, modularity is generally desirable. It can be achieved using procedures

that have strictly defined channels for input and output, and usually also clear rules about what

types of input and output are allowed or expected. Inputs are usually specified syntactically in

the form of arguments and the outputs delivered as return values.

To be considered a procedural, a programming language should support procedural

programming by having an explicit concept of a procedure, and syntax to define it. It should

ideally support specification of argument types, local variables, recursive procedure calls and

use of procedures in separately built program constructs. It may also support distinction of

input and output arguments.

C, ALGOL are the classic example of procedural programming languages.

Characteristics of Procedure Oriented Programming

(a) Follow top-down approach.

(b) Data is given less importance than function.

(c) Vulnerability of data is there as functions share global data.

(d) Functions manipulate global data, without letting other function to know.

(e) Big program is divided into small modules.

(f) Algorithms are designed first without bothering about minute details.

PROGRAMMING METHODOLOGY

Bottom-up
Approach

Top-down
Approach

Programming
Approach

Figure 4. Different approaches of programming.

4 Object-Oriented Programming C++ Simplified

1. Bottom-Up and Top-Down Approaches

Any problem can be dealt with no ways viz top-down or bottom-up. A simple example is given

here to illustrate the concept. Sorting an array of numbers involves the following :

(a) Comparison

(b) Exchange.

At the top level, an algorithm has to be formulated to carry out sorting using the above

operations. Once the algorithm is confirmed, then the algorithms for comparison and exchange

are formulated, before implementation of the entire algorithm. Therefore in this approach one

begins from the top level without bothering about the minute details for implementation to

start with.

The bottom-up approach is just the reverse. The lower level tasks are first carried out and

are then integrated to provide the solution. In this method lower level structures are carried

out. Here the algorithms for exchange and comparison will be formulated before formulating

the algorithms for the whole problem.

In any case, dividing the problem into small tasks and then solving each task provides the

solution. Therefore, either the top-down or bottom-up methodology has to be adopted for

dividing the problem into smaller modules and then solving it. In the top-down methodology,

the overall structure is defined before getting into details, but in the bottom-up approach, the

details are worked out first before defining the overall structure.

Points about Bottom-Up Approach

1. In bottom-up design individual parts of the system are specified in detail. The parts

are then linked together to form larger components, which are in turn linked until a

complete system is formed.

2. Bottom-up design yield programs which are smaller and more agile. A shorter program

doesn’t have to be divided into many components, and fewer components means

program which are easier to read or modify.

3. Bottom-up design promotes code reusability. When you write two or more programs,

many of the utilities you wrote for the first program will also be useful in the succeeding

ones. That’s why reusability of code is one of the main benefits of the bottom-up

approach.

4. Bottom-up design makes programs easier to read.

5. Working bottom-up helps to clarify your ideas about the design of your program.

6. Bottom-up programming may allow you for unit testing, but until most of the system

comes together none of the system can tested as a whole, often causing compilations

near the end of the project.

7. An example of programming which uses this approaches is C++ and java.

Points about Top-Down Approach

1. In the top-down model an overview of the system is formulated, without going into

detail for any part of it. Each part of the system is then refined by designing it more

detail.

2. Each new part may then be refined again, defining it in yet more detail until the entire

specification is detailed enough to validate the model.

Introduction to OOPs 5

3. Top-down approaches emphasize planning and a complement understanding of the

system. It is inherent that no coding can begin until a sufficient level of detail has been

reached in the design of at least some part of the system.

4. Top-down programming is a programming style, the mainstay of traditional procedural

languages, in which design begins by specification complex pieces and then dividing

them into successively smaller pieces.

5. The technique for writing a program using top-down methods is to write a main

procedure that have been coded the program is done.

6. Top-down programming may complicate testing, since nothing executable will even

exit until near the end of the project.

7. An example of programming which uses this approach is C and Pascal.

OBJECT-ORIENTED PROGRAMMING

In computer science, Object-oriented Programming OOP for short is a computer programming

paradigm.

The idea behind object-oriented programming is that a computer program may be seen as

comprising a collection of individual units, or objects, that act on each other, as opposed to a

traditional view in which a program may be seen as a collection of functions or simply as a

list of instruction to the computer. Each object is capable of receiving messages, processing

data, and sending messages to other objects. Each object can be viewed as an independent little

machine or actor with a distinct role or responsibility. In order for a language to act as an

Object-oriented Programming language it must support three object-oriented features :

1. Polymorphism.

2. Inheritance.

3. Encapsulation.

Together they are called as PIE principle.

Polymorphism Inheritance Encapsulation

PIE

Figure 5. Shows the PIE principle.

BASIC CONCEPTS OF OOPs

There are following basic concepts applied in Object-oriented Programming language.

1. Class and Object

2. Encapsulation

3. Abstraction

6 Object-Oriented Programming C++ Simplified

4. Data Hiding

5. Polymorphism

6. Inheritance

7. Dynamic Binding

8. Message Passing.

1. Class and Object

A class is termed as a basic unit of encapsulation. It’s a collection of function code and data
which forms the basic of object-oriented programming. A class is an Abstract Data Type (ADT)
i.e., the class definition only provides the logical abstraction. The data and function defined
within the class spring to life only when a variable of type class is created. The variable of type
class is created. The variable of type class is called an object which has a physical existence
and also known as an instance of class. From one class several objects can be created. Each
object has similar set of data defined in the class and it can use functions defined in the class
for the manipulation of data.

For example : we can created a class car which have properties like company, model, year
of manufacture, fuel type etc., and which may have actions like acceleration (), brake () etc.

Objects are the basic run time entity in a C++ program. All objects are instances of a
class. Depending upon type of class an object may represent anything like a person, or mobile,
chair, student, employee, book, lecturer, speaker, car, vehicle or anything which we see in our
daily life. The state of an object is determined by the data values they are having at a particular
instances. Objects occupy space in memory and all objects share same set of data items which
are defined when class is created. Two objects may communicate with each other through
functions by passing messages.

In layman’s terms :

1. Animal can be stated as a class and Lion, Tiger, Elephant, Wolf, Cow, etc., are its
object.

2. Bird can be stated as class and sparrow, Eagle, Hawk, Pigeon etc., are its objects.

3. Musician can be stated as a class and Himesh Reshmia, Anu Malik, Jatin-Lalit are its
object.

2. Encapsulation

Encapsulation is the mechanism that binds together function and data in one compact form
known as class. The data and function may be private or public. Private data/function can only
be accessed only within the class. Public data/code can be accessed outside the class. The use
of encapsulation hides complexity from the implementation. Linking of function code and data
together gives rise to objects which are variables of type class.

3. Abstraction

Abstraction is a mechanism to represent only essential features which are of significance and
hides the unimportant details. To make a good abstraction we require a sound knowledge of the
problem domain which we are going to implement using OOP principle. As an example of the
abstraction consider a class Vehicle. When we create the Vehicle class, we can decide what
function code and data to put in the class like vehicle name, number of wheels, fuel type,
vehicle type etc., and functions like changing the gear, accelerating/decelerating the vehicle. At
this time we are not interested vehicle works like how acceleration, changing gear takes place.

Introduction to OOPs 7

We are also not interested in making more parts of vehicle to be part of the class like model
number, vehicle color etc.

4. Data Hiding

Data hiding hides the data from external access by the user. In OOP language we have special

keywords like private, protected etc., which hides the data.

5. Polymorphism

If we bifurcated the word Polymorphism, we get “Poly” means many and “Morphism” means

form.

Poly

Morphism

Many

Form

Figure 6

Thus, polymorphism means more than one form. Thus polymorphism provides a way for

an entity to behave in several forms. In layman’s terms an excellent example of polymorphism

is Lord Krishna in Hindu methodology. From programmers point of view polymorphism means

“one interface many methods”.

It is an attribute that allows one interface to control access to a general class of actions.

For example, we want to find out maximum of three numbers; no matter what type of input

we pass i.e., integer, float etc. Because of polymorphism we can define three variable versions

of the same function with the name max3. Each version of this function takes 3 parameters of

the same time i.e., one version of max3 takes 3 arguments of type integer, another takes 3

arguments of type double and so on. The compiler automatically selects the right version of the

function depending upon the type of data passed to the function max3. This also termed as

function polymorphism or function overloading.

Types of Polymorphism : Polymorphism is of two types which are given below :

1. Compile time polymorphism.

2. Run time polymorphism.

6. Inheritance

Inheritance is the mechanism of deriving a new class from the earlier existing class. The

inheritance provides the basic idea of reusability in Object-oriented Programming. The new

class inherits the features of the old class. The old class and new class is called (given as pair)

base-derived, parent-child, super-sub.

Class Demo1 Base class/old class

Class Demo2 Derived class/new class

Figure 7. Demonstration of Inheritance.

8 Object-Oriented Programming C++ Simplified

The inheritance supports the idea of classification. In classification we can form hierarchies

of different classes each of which having some special characteristics besides some common

properties. Through classification a class need only definition those qualities that make it

unique within its class.

Examples :

1. As an example at the Top most in the hierarchy we can have a vehicle class. All the

common features of a vehicle can be put in this class. From this we can drive a new

class say two_wheeler which contains features specific to two wheeler vehicles only.

Class vehicle Base class

Two_wheeler Derived class

Figure 8

2. As another example we can example of an engineering college as the top class with its

sub class its various departments like computer, electronics, electrical etc. Again the

engineering college may have its parent class as the university to which it is affiliated.

7. Dynamic Binding

Binding means linking. It is linking of function definition to a function call.

1. If linking of function call to function definition i.e., a place where control has to be

transferred is done at compile time, it is known as static binding.

2. When linking is delayed till run time or done during the execution of the program then

this type of linking is known as dynamic binding. Which function will be called in

response to a function call is find out when program executes.

8. Message Passing

In C++ objects communicate each other by passing messages to each other. A message contains

the name of the member function and arguments to pass. In message passing shown below :

object. method (parameters);

Message passing here means object calling the method and passing parameters. Message

passing is nothing but the calling the method of the class and sending parameters. The method

is turn executes in response to a message.

CHARACTERISTICS OF OOPs

1. Programs are divided into classes and functions.

2. Data is hidden and cannot be accessed by external functions.

3. Use of inheritance provides reusability of code.

Introduction to OOPs 9

4. New functions and data items can be added easily.

5. Data is given more important than functions.

6. Follows bottom-up approach.

7. Data and function are tied together in a single unit known as class.

8. Objects communicate each other by sending messages in the form of function.

ADVANTAGES OF OOPs

1. Code reusability in terms of inheritance.

2. Object-oriented system can be easily upgraded from one platform to another.

3. Complex projects can be easily divided into small code functions.

4. The principle of abstraction and encapsulation enables a programmer to build secure

programs.

5. Software complexity decreases.

6. Principle of data hiding helps programmer to design and develop safe programs.

7. Rapid development of software can be done is short span of time.

8. More than one instance of same class can exist together without any interference.

OBJECT-ORIENTED LANGUAGES

Some of the most popular Object-oriented Programming languages are :

1. C++ 5. Ruby

2. Java. 6. Delphi

3. smalltalk 7. Charm++

4. Eiffle. 8. Simula.

OBJECT-BASED LANGUAGES

The language which only concerns with classes and objects and do not have features like

inheritance, polymorphism, encapsulation (do not satisfy PIE principle) known as object-based

languages. In these types of languages we can create classes and object and can work with

them. They are usually having a large numbers of built-in objects of various types. Some of the

languages which are object-based are Java script, Visual Basic etc.

���

1.1 INTRODUCTION

INTRODUCTION OF OBJECT-
ORIENTED DESIGN

The aim is to introduce the actual idea, not to give strict and precise definition. Object-
orientation is a technique for system modeling. It offers a number of concepts, which are well
suited for this purpose. The word 'system' is used here with a wide meaning and can be either
a dedicated software system or a system in a wider context (for example, integrated software
and hardware system or an organization).

Using Object-orientation as a base, we model the system as a number of objects that
interacts. Hence, irrespective of the type of system being modeled, we regard its contents as
a number of objects which in one way or another are related our surroundings, for instance,
consists of objects, such as people, trees, cars, towns and houses whiclh are in some way related
to each other. Thus what the objects model depends on what we wish to represent with our
object model. Another model of our surroundings would, perhaps, consists taxation, government
and politics as objects. The objects which we include within our model are, therefore, dependent
on what the object model is to represent.

People regard their environment in terms of objects. Therefore, it is simple to think in the
same way when it comes to designing a model. A model which is d esigned using an object-
oriented technology is often easy to understand, as it can be directly related reality. Thus, with
such a design method, only a small semantic gap will exist between reality and the model.

The most prominent qualities of a system designed with an objecil:-oriented method are the
following :

1. Understanding of the system is easier as the semantic gap between the system and
reality is small.

2 . Modifications to the model tend to be local as they often result from an individual
item, which is represented by a single object.

This introduction is only an overview and is independent of both the programming language
and the development methods used. We shall not give any precise and formal concept definitions,
but hope to provide you with a good understanding of these concepts. We shall use the concept
and meaning most commonly used within the object-oriented environment.

10

Introduction of Object-oriented Design 11

1.2 OBJECTS

The reality we will describe involves a number of people who perform certain activities. Our

task is to try to model this system. We shall see that it is very natural to construct a model,

which simulates this reality. (We use ‘person’ and ‘object’ in this description to mean the same

thing; we actually mean the object that represents the person. As always, one should be careful

to separate the reality from the model.)

The word ‘object’ is misused and is used in nearly all contexts. What we mean by an

object is an entity able to save a state (information) and which offers a number of operations

(behavior) to either examine or affect this state.

An object is characterized by a number of operations and a state, which remembers the

effect of these operations.

An object-oriented model consists of a number of objects; these are clearly delimited parts

of the modeled system. Objects usually correspond to real-life entity objects, such as an invoice,

a car or a mobile telephone. Each object contains individual information (for example, a car has

its registration number).

1.3 CLASS AND INSTANCE

In the system we made, there will be a number of communicating objects. Some of these

objects will have common characteristics and we can group the objects according to these

characteristics. When we look at the objects in the example, we notice that all three people

have similar behavior and information structures. These objects have the same mold or template.

Such a group represents a class. In order to describe all objects that have similar behavior and

information structure, we can therefore identify and described a class to represent these objects.

A class is a definition, a template or a mold to enable the creation of new objects and is,

therefore, a description of the common characteristics of several objects. The objects comprising

a certain class have this template in common. As an example, we can view this book. The book

you are holding in your hand is an instance of the book. The book description at the publishers

represents the class from where instance can be created.

• A class represents a template for several objects and

• Describes how these objects are structured internally.

• Objects of the same class have the same definition both.

• For their operations and for their information structures.

A class is sometimes called the object’s type. However, type and a class is not the same

thing. As we mentioned above, as abstract data type is definition by set of operations. A type

is definition by the manipulations you can do with the type. A class is more than that. You can

also look inside a class, for example, to see its information structure. We would therefore rather

view the class as one (of possibly many) specific implementation of a type.

Using the class concepts, we can associate certain characteristics with a whole group of

objects we can consider the class as begin an abstraction that describes all the common

characteristics of the objects forming part of the class.

12 Object-Oriented Programming C++ Simplified

In object-oriented systems, each object belongs to a class. An object that belongs to a

certain class is called an instance of the class. We therefore often use objects and instance as

synonyms.

An instance is an object created from a class. The class describes the (behavior and

information) structure of the instance, while the current state of the instance is defined by the

operations performed on the instance.

1.4 POLYMORPHISM

Instances, created from classes, will together provide us with the dynamic behavior that we

wish to model. It is when these instances start to communicate with each other that the

system’s behavior is performed. An instance may know of other instances to which stimuli can

be sent. If an instance sends a stimulus to another instance, but does not have to be aware of

which class the receiving instance belongs to, we say that we have polymorphism. Polymorphism

means, at least in objects-oriented contexts, that the sending instance does not need to now the

receiving instance’s class and that this class can be any class. Polymorphism means that the

sender of a stimulus.

• Does not need to know the receiving instance’s class.

• The receiving instance can belong to an arbitrary class.

1.5 INHERITANCE

If class B inherits class A, then both the operations and the information structure described in

class A will becomes part of class B.

By means of inheritance, we can show similarities between classes and described these

similarities in a class, which other classes can inherit. Hence, we can reuse common descriptions.

Inheritance is therefore often promoted as a core idea for reuse in the software industry.

However, although inheritance, properly used, is a very useful mechanism in many contexts

including reuse, it is not a perquisite for reuse.

1.6 OBJECT-ORIENTED ANALYSIS

The purpose of object-oriented analysis, as with all other analysis, is to obtain an understanding

of the application : an understanding depending only on the system’s functional requirements.

Object-oriented analysis contains, in some order, the following activities :

� Finding the object.

� Organizations the objects.

� Describing how the objects interact.

� Defining the operations of the objects.

� Defining the objects internally.

Introduction of Object-oriented Design 13

1.7 FINDING THE OBJECTS

The objects can be found as naturally occurring entries in the application domain. The aim is

to find the essential objects, which are to obtain which are to remain essential throughout the

system life cycle. Stability also depends on the fact that modifications often begin from some

of these items and therefore are local. For example, in a application for controlling for water

tank, typically objects would include contained water, regulator, valve and tank.

1.8 CONCEPTUAL MODELING

It has been used in several different contexts since it appeared in the 1970s; example analysis

of information management system and organization theory. The aim is to create models of the

system or organization to be analyzed. The concepts of conceptual modeling is often used as

a synonym for data modeling and is often discussed with structuring and the use of the

databases.

1.9 REQUIREMENTS MODEL

The first transformation made is from the requirement specification to the requirement model.

The requirements model consists of :

(a) A use case model.

(b) Interface descriptions.

(c) A problem domain model.

The use case model uses actors and use cases. These concepts are simply an aid to defined

what exits outside the system (actors) and what should be performed by the system (use case).

1.10 ANALYSIS MODEL

We have seen that the requirements model aims to define the limitations of the system and to

specify its behavior. When the requirement model has been developed and approved by the

system users or orders, we can start to develop the actual system.

This starts with development of the analysis model. Its model aims to structure the system

independently of the actual implementation environment. This means that we focus on the

logical structure of the system. It is here that we define the stable, robust and maintainable

structure that is also extensible.

1.11 THE DESIGN MODEL

In the construction process, we construct the system using both the analysis model and the

requirements, model. First, we create a design model that is a refinement and formalization of

the analysis model.

14 Object-Oriented Programming C++ Simplified

Design emphasizes a conceptual solution that fulfils the requirements, rather than its

implementation. For example, a description of a database schema and software objects. Ultimately,

designs can be implemented. As with analysis, the term is best qualified, a in object design or

database design. Analysis and design have been summarized in the phase do the right thing

(analysis), and do the things right (design).

1.12 THE IMPLEMENTATION MODEL

The implementation model consists of the annotated source code. The information space is the

one that the programming language uses. Note that we do not require an Object-oriented

Programming language; the technique may be used with any programming language to obtain

an object-oriented structure of the system. However, an Object-oriented-Programming language

is desirable since all fundamental concepts can easily be mapped onto language constructs.

1.13 TEST MODEL

The test model is the last model developed in the system development. It describes, simply

stated, the result of the testing. The fundamental concepts in testing are mainly the test

specification and the test result.

1.13.1 Analysis

Analysis emphasizes an investigation of the problem and requirements, rather than a solution.

For example, if a new computerized library information system is desired, how will it be used ?

“Analysis” is a broad term, best qualified, as in requirements analysis (an investigation of

the requirements) or object analysis (an investigation of the domain objects).

1.13.2 What is Done in Analysis ?

Two different models are developed in analysis, the requirement model and the analysis model.

The real base is the requirement specification and discussions with the prospective users. For

example, the system controls a recycling machine for returnable bottles, cans and crates (used

in Europe to hold several bottles).

1.13.3 Why Do We have a Construction Process ?

We built our system in the construction phase, based on the analysis model and the requirement’s

model created during analysis. The construction process lasts until the coding is completed and

the code units have been tested. Construction consists of design and implementation.

1.14 OBJECT-ORIENTED ANALYSIS AND DESIGN

Object-oriented technology is built upon a sound engineering foundation, whose elements we

collectively call the object model. The object model encompasses the principles of abstraction,

encapsulation, modularity, hierarchy, typing, concurrency, and persistence. What is important

about the object model is that these elements are brought together in a synergistic way?

Introduction of Object-oriented Design 15

Let there be no doubt that object-oriented analysis and design is fundamentally different

than traditional structured design approaches. It requires a different way of thinking about

decomposition and it produces software architectures that are largely outside the realm of the

structured design culture. These differences arise from the fact that structures design methods

build upon structure programming whereas object-oriented design builds upon object-oriented

programming. Objects-oriented programming means different things to different people.

1.15 THE EVOLUTION OF OBJECT MODEL

The generation of programming languages as we look back upon the relatively briefly yet

colorful history of software engineering. We cannot help but notice two sweeping trends. The

shift in focus from programming in the small to programming in the large. The evolution of

high order programming languages.

1.15.1 Foundations of Object Model

Structured design methods evolved to guide developers who were trying to build complex

systems using algorithms as their fundamental building blocks. Similarly object-oriented design

methods have evolved to help developers exploit the expressive power of object based and

object-oriented programming languages using the class and object as basic building blocks.

Object-oriented analysis and design thus represents an evolutionary development, not a

revolutionary one; it does not break with advances from the past, but builds upon proven ones.

Unfortunately, most programmers today are formally and informally trained only in the principles

of structured design.

1.16 OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is a method of implementation in which programs are organized

as cooperative collections of objects, each of which represents an instance of some class, and

whose classes are all members of a hierarchy of classes united via inheritance relationships.

Object-oriented programming uses objects, not algorithms, as its fundamental logical

building blocks. Each object is an instance of some class. Classes are related to one another via

inheritance relationships. A program may appear to be object-oriented, but if any of these

elements is missing, it is not an object-oriented program.

It supports objects that are data abstractions with an interface of named operations and

a hidden local state.

(a) Objects have an associated type (class).

(b) Types (classes) may inherit attributes from super types (super classes).

1.17 OBJECT-ORIENTED DESIGN

Object-oriented design is a method of design encompassing the process of object-oriented

decomposition and a notation for depicting both logical and physical as well as static and

dynamic models of the system under design.

16 Object-Oriented Programming C++ Simplified

There are two important parts to this definition :

1. Object-oriented design leads to an object-oriented decomposition.

2. It uses different notations to express different models of the logical and physical design

of a system, in addition to the static and dynamic aspects of the system.

1.18 OBJECT-ORIENTED ANALYSIS

Object-oriented analysis is a method of analysis that examines requirements from the perspective

of the classes and objects found in the vocabulary of the problem domain.

How are OOA, OOD, and OOP related ? Basically, the products of object-oriented analysis

serve as the models from which we may start an object-oriented design; the products of object-

oriented design can then be used as blueprints for completely implementing a system using

object-oriented programming methods.

1.19 ELEMENTS OF OBJECT MODEL

• Procedure oriented Algorithms.

• Object-oriented Classes and objects.

• Logic oriented Goals, often expressed in a predicate calculus.

• Rule oriented If then rules.

• Constraint oriented Invariant relationships.

Each of these styles of programming is based upon its own conceptual framework. Each

requires a different mindset, a different way of thinking about the problem. For all things

object-oriented the conceptual framework is the object model.

There are four major elements of its model:

(a) Abstraction

(b) Encapsulation

(c) Modularity

(d) Hierarchy.

There are three minor elements of the object model :

(i) Typing

(ii) Concurrency

(iii) Persistence.

Object-oriented analysis and design may be the only method we have today that can be

employed to attack the complexity inherent in very large systems. In all fairness, however, the

use of object-oriented development may be ill-advised for some domains, not for any technical

reasons, but for non-technical ones, such as the absence of a suitably trained staff or a good

development environment.

Introduction of Object-oriented Design 17

1.20 THE ROLE OF OOAD IN THE SOFTWARE LIFE CYCLE

To understand what’s right and wrong with OOAD, you need to know where OO methodologies

fit into the software life cycle. These methodologies do not replace traditional approaches (such

as data flow, process flow, and state transition diagrams); they are important new additions to

the toolkit.

According to Donald Firesmith in his book Dictionary of Object Technology (SIGS Books,

1995), analysis is “the development activity consisting of the discovery, modeling, specification

and evaluation of requirements,” while OO analysis is “the discovery, analysis and specification

of requirements in terms of objects with identity that encapsulate properties and operations,

message passing, classes, inheritance, polymorphism and dynamic binding.” Firesmith also

states that OO design is “the design of an application in terms of objects, classes, clusters,

frameworks and their interactions.”

In comparing the definition of traditional analysis with that of OOAD, the only aspect that

is really new is thinking of the world or the problem in terms of objects and object classes. A

class is any uniquely identified abstraction (that is, model) of a set of logically related instances

that share the same or similar characteristics. An object is any abstraction that models a single

thing, and the term “object” is synonymous with instance. Classes have attributes and methods.

For an object class named Customer, attributes might be Name and Address, and methods

might be Add, Update, Delete, and Validate. The class definition defines the Customer class

attributes and methods, and a real customer such as “XYZ Corp.” is an instance of the class.

If you have different kinds of customers, such as residential customers and commercial customers,

you can create two new classes of customers that are descendants of the Customer class. These

descendants use inheritance to gain access to all of the Customer class attributes and methods,

but can override any of the ancestor attributes and methods, as well as contain any required

new attributes and methods.

There are three types of relationships between classes : inheritance, aggregation, and

association. Inheritance (also referred to as generalization/specialization) is usually identified

by the phrase “is a kind of.” For example, Student and Faculty are both a kind of Person and

are therefore inherited from the Person class. Aggregation is identified by the phrase “is a part

of,” as with a product that contains parts. If neither of the first two relationships applies, but

the objects are clearly related (for example, an employee is associated with a company), then

the relationship is association.

An abstract class is a class that has no instances, and is used only for inheritance. A

concrete class is a class that can be instantiated, that is, that can have direct instances.

All of the major OOAD methodologies have a similar basic view of objects, classes,

inheritance, and relationships. The drawing notation is slightly different in each; the real

differences in the methodologies are more subtle.

When you’re choosing a methodology, it is important to consider not only the methodology’s

features, but also the cost of using it, the types of problems to which it is best suited, its

limitations, and the training available. When used in typical initial attempts to develop client/

server applications using OOAD methodologies, all of the methodologies suffer from the same

basic flaws :

1. An overemphasis on the OO approaches in general, even though another approach

might be better for some parts of the problem.

18 Object-Oriented Programming C++ Simplified

2. An overemphasis on the problem domain object model during the analysis phase.

3. Analysis diagrams and output formats that end users may find difficult to understand.

4. Difficulty in the methodology’s ability to describe complex analysis problems.

5. A lack of emphasis on the underlying system architecture.

6. An inability to understand the limitations of either 4GL OO languages or of beginning

OO developers.

Every object methodology tells you to start with the object model, not the data model;

there are at least four problems with this approach :

1. The data model often exists before the object model.

2. The analyst may rightly be more comfortable building the data model before the object

model.

3. A good object model should be able to map to any data model. For me, it is usually

a requirement in complex systems that an object’s attributes can map to one or more

tables in one or more databases.

4. A good abstract object model of the problem domain may not be easy to implement

in the chosen language or development tool.

1.21 OOAD METHODOLOGIES

OOAD methodologies fall into two basic types. The ternary (or three-pronged) type is the

natural evolution of existing structured methods and has three separate notations for data,

dynamics, and process. The unary type asserts that because objects combine processes (methods)

and data, only one notation is needed. The unary type is considered to be more object-like and

easier to learn from scratch, but has the disadvantage of producing output from analysis that

may be impossible to review with users.

Dynamic modeling is concerned with events and states, and generally uses state transition

diagrams. Process modeling or functional modeling is concerned with processes that transform

data values, and traditionally uses techniques such as data flow diagrams.

1.22 GRADY BOOCH APPROACH

Grady Booch’s approach to OOAD is one of the most popular, and is supported by a variety

of reasonably priced tools ranging from Visio to Rational Rose. Booch is the chief scientist at

Rational Software, which produces Rational Rose. (Now that James Rumbaugh and Ivar Jacobson

have joined the company, Rational Software is one of the major forces in the OOAD world).

Booch’s design method and notation consist of four major activities and six notations.

While the Booch methodology covers requirements analysis and domain analysis; its major

strength has been in design. However, with Rumbaugh and Jacobson entering the fold, the

(relative) weaknesses in analysis are disappearing rapidly. I believe that Booch represents one

of the better developed OOAD methodologies, and now that Rational Rose is moving away from

its previous tight link with C++ to a more open approach that supports 4GLs such as

PowerBuilder, the methodology’s popularity should increase rapidly.

Introduction of Object-oriented Design 19

For systems with complex rules, state diagrams are fine for those with a small number of

states, but are not usable for systems with a large number of states. Once a single-state transition

diagram has more than 8 to 10 states, it becomes difficult to manage. For more than

20 states, state transition diagrams become excessively unwieldy.

Principles of Modeling

The use of modeling has a rich history in all the engineering disciplines. That experience

suggests four basic principles of modeling.

1. The choice of what models to create has profound influence on how a problem is

attacked and how a solution is shaped.

2. Every model may be expressed at different levels of precision.

3. The best models are connected to reality.

4. No single model is sufficient. Every nontrivial system is best approached through a

small set of nearly independent models.

���

STARTING WITH C++

2.1 C + + OVERVIEW

C++ is an object-oriented programming language. It was developed by Bjarne Stroustrup at
AT & T's bell laboratories in the Murray Hill. New jersey, USA in the early 80's. It's an extension
to C with number of new featu res added. The named C++ came from the increment
operator + + of C as it is considered a super set of C, one version ahead of C, so it was named
C++.

The first use of class construct in a programming language occurred in 1967 in the
language Simula which was derived from Algol. Bjarne Stroustrup the inventor of C++, used the
language Simula in his doctoral research for coding simulation programs he wrote to model
computer systems. He found that the Simula language was very expressive and permit him to
work at a high level of abstraction but when it came time to run the program to get the
numerical results he needed for his thesis he found that performance was far too slow and he
would never be able to complete his work in time. So, he recoded his programs in C. But he
did something very intelligent. In place of hand coding, he wrote a translator program that
would take a C- like program with extension for classes and translate t o pure C. The result was
a language initially called "C with classes", later to become C++. The translator program
became the AT & T's "cfront" compiler, which would t['anslate C++ to C."cfront" was the first
application written in C+ +.

2.2 C + + CHARACTER SET

A C++ program is a collection of number of instructions written in a meaningful order. Further
instructions are made up of keywords, variables, functions, objects etc., which uses the C+ +
character set defined by C++. It's a collection of various characters, digits and symbols which
can be used in a C+ + program. It comprises followings :

20

Starting with C++ 21

Table 2.1

S.No. Elements of C++ character set

1. Upper Case letters : A to Z

2. Lower Case letters : a to z

3. Digits : 0 to 9

4. Symbols (See below table)

Table 2.2 : C++ Character Set

Symbols Name Symbols Name

~ Tilde > Greater than

< Less than & Ampersand

| Or/pipe # Hash

>= Greater than equal <= Less than equal

= = Equal = Assignment

!= Not equal ^ Caret

{ Left brace } Right brace

(Left parenthesis) Right parenthesis

[Left square bracket] Right square bracket

/ Forward slash \ Backward slash

 : Colon ; Semicolon

+ Plus − Minus

* Multiply / Division

% Mod , Comma

‘ Single quote “ Double quote

>> Right shift << Left shift

. Period _ Underscore

2.3 C++ TOKENS

Smallest individual unit in a C++ program is called C++ token. C++ defined six types of

tokens.

22 Object-Oriented Programming C++ Simplified

Keywords

Identifiers

Constants

Strings

Operators

Special Symbols

C++ Tokens

Figure 2.1. Six types of tokens defined in C++.

1. Keywords

Keywords are those words whose meaning has already been known to the compiler. That is

meaning of each keyword is fixed. You can simply use the keyword for its intended meaning.

You cannot change the meaning of keywords. Also you cannot use keywords as names for

variables, function, array etc. All keywords are written in small case letters.

There are 63 keywords in C++. Following figure lists all keywords available in C++.

Table 2.3 : C++ keywords

asm auto bool break cae catch

char class const const_cast continue default

delete do double dynamic_cast else enum

explicit export extern false float for

friend goto if inline int long

mutable namespace new operator private protected

public register reinterpret_cast return short signed

sizeof static static_cast struct switch template

this throw true try typedef typeid

typename union unsigned using virtual void

volatile wchar_t while

2. Identifier

Identifiers are names given to various program elements like variables, array, functions, structures

etc.

• Rules for Writing Identifiers :

Rule 1 : First letter must be an alphabet or underscore.

Starting with C++ 23

Rule 2 : From second character onwards any combination of digits, alphabets or underscore

is allowed.

Rule 3 : Only digits, alphabets, underscore are allowed. No other symbol is allowed.

Rule 4 : Keywords cannot be used as identifiers.

Rule 5 : For ANSI (American National Standard Institute) C++ maximum length of

identifier is 32, but many compiler support more than 32.

 Example of valid and invalid identifiers (on the basis of above given rules)

Valid Identifiers :

order_no name _err _123

xyz radius a23 int_rate

Invalid Identifiers :

order-no 12name err int

x$ s name hari+45 123

3. Constants

Constants in C++ refer to fixed values that do not change during the execution of a program.

There are various types of constants in C++. They are classified into the following categories

as given below :

Integer Constants

Real Constants

Character Constants

String Constants

Numeric Constants

Non-Numeric Constants

C++ Constants

Figure 2.2. C++ constants.

(i) Integer Constants

They are of three types :

(a) Decimal Constants : They are sequence of digits from 0 to 9 without fractional part.

It may be negative, positive or zero.

Example : 12, 455, -546, 0 etc.

(b) Octal Constant : They have sequence of numbers from 0 to 7 and first digit must be 0

Example : 034, 0, 0564, 0123 etc.

(c) Hex Constant : They have sequence of digits from 0 to 9 and A to F (represents 10

to 15). They start with 0x or 0X.

Example : 0x34, 0xab3, oX3E etc.

24 Object-Oriented Programming C++ Simplified

(ii) Real Constant

They are the number with fractional part. They also known as floating point constants.

Example : 34.56, 0.67, 1.23 etc.

Real constants can also be represented in exponential or scientific notation which consists

of two parts. For example, the number 212.345 can be represented as 2.12345e + 2 where e

+ 2 means 10 to the power 2. Here the portion before the e that is 2.12345 is known as

mantissa and +2 is the exponent. Exponent is always an integer number which can be written

either in lower case or upper case.

There may be many more representation of the above given number. I have given just an

example of number in scientific notation.

(iii) Single Character Constants

They are enclosed in single quote. They consist of single character or digit.

Example : ‘4’, ‘A’, ‘\n’ etc.

Character constants have integer value known as ASCII (American Standard Code for

Information Interchange) values. For example, ASCII value for A is 65.

(iv) String Constants

They are sequence of characters, digits or any symbol enclosed in double quote.

Example : “hello”, “23twenty three”,”&^ABC”. “2.456” etc.

(v) Backslash Constants

C defines several backslash constants which are used for special purpose. They are called so

because each backslash constant starts with backslash (\). They are represented with 2 characters

whose general form is \char but treated as single character. They are also called escape sequence.

Given below the list of backslash character (escape sequence) character constants :

Table 2.4: Table shows the Backslash Character Constant

S.No. BCC Meaning ASCII

1 \b Backspace 08

2 \f Form feed 12

3 \n New line 10

4 \r Carriage return 13

5 \” Double quote 34

6 \’ Single quote 39

7 \ ? Question mark 63

8 \a Alert 07

9 \t Horizontal tab 09

10 \v Vertical tab 11

11 \0 Null 00

Starting with C++ 25

4. Strings

See string constants.

5. Operators

They are discussed in chapters 3 and 4.

6. Special Symbols

They are also known as separator and they are square brackets [], braces { }, parenthesis () etc.

They [] used in array and known as subscript operator, the symbol () is known as function

symbols.

2.4 VARIABLES

A variable is a named location in memory that is used to hold a value that can be modified

in the program by the instruction. All variables must be declared before they can be used. They

must be declared in the beginning of the function or block (except the global variables). The

general form of variable declaration is :

data type variable [list];

Here list denotes more than one variable separated by commas;

Example :

int a;

float b,c;

char p,q;

Here a is a variable of type int, b and c are variable of type float, and p, q are variables

of type char, int, float and char are data types used in C. The rule for writing variables are same

as for writing identifiers as a variables is nothing but an identifier.

C++ allows you to declare variables anywhere in the program. That is unlike C it is not

necessary to declare all the variables in the beginning of the program. You can declare wherever

you want it to be declares i.e., right on the place where you want to use it. An advantage of

this is that sometimes lots of variables are declared in the advance in the beginning of the

program and many of them are unreferenced. Declaring variables at the place where they are

actually required is handy. You do not need to declare all the variables earlier prior to their use.

On the other hand, it is burdensome to look for all the variable declared in the program as

variable declaration will be scattered everywhere in the whole program.

C++ also allows you to initialize variable dynamically at the place of use. That is you can

write anywhere in the program like this.

int x = 23;

float sal = 2345;

char name[] = “Hari”;

This is known as “Dynamic Initialization” of the variables.

26 Object-Oriented Programming C++ Simplified

An example of declaration and dynamic initialization is given in the dummy program

given as :

void main()

{

int x;

..............;

..............;

..............;

float y,z;

char str []=”hello”;

..............;

..............;

double d1, d2;

char s=’M’;

.............;

}

2.5 COUNTING TOKENS

1. int a,b,c;

(i) int is a keyword (1)

(ii) a, b and c variables (3)

(iii) comma (,) is operator (2)

(iv) ; is delimiter (1)

So, total number of tokens (1 + 3 + 2 + 1= 7)

2. c = a + b – 10;

(i) a, b and c variables (3)

(ii) +, =, – are operators (3)

(iii) ; is delimiter (1)

(iv) 10 is integer constant (1)

So, total number of tokens (3 + 3 + 1 + 1 = 8)

2.6 DATA TYPES

C++ defines several data types which can be used under different programming situations like

an int data type can be used to represent whole numbers as age of a person, roll number etc.

or float data type can be used to represent salary of person, interest rate etc. The basic data

types are as shown as follows :

Starting with C++ 27

1. Built-in Type

(a) Integral Type

(i) int

(ii) char

(b) Floating Types

(i) float

(ii) double

(c) void

(d) bool

(e) wchar_t

2. User Defined Data Type

(a) class

(b) struct

(c) union

(d) enumeration

3. Derived Data Types

(a) array

(b) function

(c) pointer

(d) reference

wchar_t is a new data type which supports long characters. The wchar_t keyword designates

a wide-character type. The wchar_t type is defined as an unsigned short (16-bit) data object.

A wchar_t constant can be declared by preceding L before it as L”abc”, L’a’. To use this

data type you must include header file wchar.h.

2.7 QUALIFIERS

Qualifiers qualify the meaning of data types. Unsigned, signed, short and long are the 4 qualifiers

available in C++. The manner in which they are used as follows :

signed int x, y, b;

unsigned int p,q;

long int num;

short int n;

long int is a data type as mentioned earlier and short int is same as signed int or simply

int on most of the C++ compilers. Signed qualifier is used where we want to work with both

positive and negative values. Unsigned qualifier can be used where we want with only positive

values. They can be used only with char and interger data types. The available range increases

in positive when we use unsigned say for example, range of signed char or simply char –128

28 Object-Oriented Programming C++ Simplified

to 127 where as for unsigned char it is 0 to 255. Same holds for int/ or long int. Apart from

these two important keywords are also used as qualifiers const and volatile. The const qualifier

is used to declare a variable as a constant for example, const int x=10; declare a constant x

of type int with constant value. For more about constant see in the next chapter.

2.8 RANGE OF DATA TYPES

Table 2.5 : Data Type and Their Range

 S.No. Data Type Size(in byte) Range

1 int or short 2 –32768 to 32767

2 Unsigned int 2 0 to 65535

3 Long int 4 –2147483648 to 2147483647

4 Float 4 3.4e-38 to 3.4e+38

5 Char 1 –128 to 127

6 Unsigned char 1 0 to 255

7 Unsigned long 4 0 to 4294967295

8 Double 8 1.7e-308 to 1.7e+308

9 Long double 10 3.4e-4932 to 3.4e+4932

For the calculation of range of data types we have a fixed formula :

1. For a signed data types if it takes n bits in memory then the range of values a particular

variable of this data type can take is

–2(n-1) to 2(n-1) – 1

Example : for n=16(int) the range is

 –215 to215 –1

And for char data type n=8 the range is

–27 to 27–1

2. For an unsigned data types if it takes n bits in memory then the range of values a

particular variables of this data type can take is

0 to 2n–1

For example, for n=16 (unsigned short int) the range is 0 to 216–1 and for unsigned

char data type n=8 the range is 0 to 28–1.

Starting with C++ 29

2.9 YOUR FIRST C++ PROGRAM

/*PROG 2.1 PRINTS HELLO C++ ON THE SCREEN */

#include<iostream.h>

int main()

{

cout<<“ Hello C++”;

return 0;

}

OUTPUT :

Hello C++

Figure 2.3. Output screen of program 2.1.

EXPLANATION: In the first line #include is a preprocessor directive, iostream.h is a

header file which is written enclosed in < and > or in ““. “io” in iostream stands for input

output, .h stands for header file. The file iostream.h has to be included in every C++ program.

There may be space between #include and <iostream.h>. Next line is the function main () due

to symbol () which is known as function symbol. This function must be present in every C++

file you make because execution of your C++ program starts from this main (). {is the opening

braces for main function and } is the closing brace. All the statements, instructions are written

inside the main function. The int before main is treated as its return type. cout is the predefined

object of class iostream_withassign which is defined in iostream.h. The symbol << is an

operator known as put to or insertion operator. The combined effect of cout<< is that whatever

is written after it is in double quotes is printed onto the screen, so the output. Every statement

in a C++ program has to end with; (semicolon). C++ is case sensitive programming language,

so whatever you use that is in-built in C++ has to be in lower case. The line return 0; is simply

for the omission of warning. If you do not write return 0; you will not get any error but a

warning. The above program can be modified as (with a little change in return type of function

main).

void main()

{

cout<<“Hello C++”;

}

30 Object-Oriented Programming C++ Simplified

2.9.1 Compilation and Execution Process

To run your first program in Windows environment follow the following steps.

1. In the Visual Studio 6.0 open Microsoft Visual C++ 6.0.

2. In the IDE select new from file.

3. Under Project tab select option win 32 Console Application and give project name say

“CPP”. Choose location where you want to put your project say D :\. In the project all

your files will be saved.

Figure 2.4

4. Click Finish. A new dialog box will appear, simply press OK. At this step you have

successfully made a new project CPP under D :\.

Figure 2.5

Projects
Project
name

Location

Platform

Win 32 console Application

Starting with C++ 31

5. Now select new from file. Select Files tab and option C++ source file. Give a suitable

file name say first. Press OK.

Figure 2.6

6. A new window will appear. Type the above program in the window as it.

7. From the build menu select build CPP.exe option. Assuming no error in the program

a new window will appear at the bottom showing 0 error 0 warnings.

Figure 2.7

32 Object-Oriented Programming C++ Simplified

8. Now from build menu again select option executes CPP.exe option.

Figure 2.8

9. Next a new console window will appear displaying you the output.

Figure 2.9

10. Voila! You have successfully built your first program in VC++ environment.

In the 7th step before building your program, you can select compile option from build

menu too which will compile your program. The build option first compiles the program then

make executable, thus combining two steps into one.

Note your file will be visible in the workspace/project window on the left of the main code

window. To make a new file simply follow the same steps as shown above. You can have

multiple .cpp files in the workspace/project window. But make sure when you execute or build

using menu option your workspace contains just one file which contains the main function.

Otherwise if main function is present in more than one file, linking error will be generated by

the Visual C++ compiler as to which file containing main should be executed.

You can simply remove the files from the workspace window by selecting them and

pressing delete. The files won’t be deleted but they will be removed from the workspace

temporarily. When you want them back in the project you can select Add to project option from

Project menu.

Starting with C++ 33

After a day’s work when you want to open your same project simply looks for file with

.dsp extension whish stands for data source project. After wards you can continue making C++

programs.

2.10 STRUCTURE OF A C++ PROGRAM

The general structure of any C++ program is given below. It simply states that a standard C++

program may look like according to various sections presents in the structure.

Documentation

Header file

Symbolic Constants

Global variables, functions

Class declaration

Member function definition

main()
{
 ;
 ;
}

Global function definition

Figure 2.10. General structure of a C++ program.

• The first section Documentation is optional and is used to put comments for the

program usually the program heading as we have given.

• In second section we include various header files required by our C++ program.

• Symbolic constants and global variable, functions are defined after that if required.

• The class, main building block of C++ programming is declared which consists of

declaration of data members and functions. The member function may be declared and

defined in the class or they are declared in the class but defined outside the class

which is done outside the class declaration.

• The main() function must be present in every C++ program. It contains all the statements

which are to be executed. Inside this main function we create objects of class created

earlier. All statements are put inside the braces and terminate with semicolon.

A full fledge C++ program is given below. Don’t worry if you do not understand extra

stuff at this point. This is just to give you idea of structure of a C++ program.

/*Documentation*/
/* DEMO PROGRAM FOR C++ STRUCTURE, DOES NOT SERVE ANY PURPOSE EXCEPT
DEMONSTRATION */

#include <iostream.h> /*header file inclusion */

#include <iomanip.h>

34 Object-Oriented Programming C++ Simplified

int x;float y; char z; /* global variables */

void disp(); /* global function */

/*class declaration starts here */

class demo

{

private :

int x, y;

public :

void input(int a, int b);

void show();

};

/*class declaration ends here */

/*class function definition */

void demo : :input(int a, int b)

{

x=a;

y=b;

}

/*class function definition */

void demo : :show()

{

cout<<“x=”<<x<<endl;

cout<<“y=”<<y<<endl;

}

void main() /*main function definiton */

{

demo d1,d2; //creating objects

d1.input(10,20);

................;

................;

d1.show();

int num;

show(); //local function call

}

/*global function definitions */

void show()

{

cout<<“in show”<<endl;

}

Starting with C++ 35

2.11 STYLES OF WRITING C++ PROGRAMS

Your first program can be written in two more ways which is rather new style of writing C++

programs. The program you have seen is considered the old style of writing C++ programs.

The new style is

#include <iostream>

using namespace std;

void main()

{

cout<<“hello C++”<<endl;

}

or

#include <iostream>

 int main()

 {

 std : :cout<<“hello C++”<<endl;

 return 0;

 }

iostream.h is header file and iostream is a header file too. The difference is simply that

iostream provides global namespace (refer chapter 13) std under which cout and cin (discussed

shortly) are declared. To access cout and cin you will have to write std : :cout and std : :cin if

using namespace std is not written. The return type of function may be void or int. That does

not make your program to contain error. In case of int type of main, the main must return a

value. We will be following the old style of writing programs. You may choose any of the style

you want, Note the main function is nothing to do the old style and new style. It is your choice

to use in what manner you want to choose main function whether be it old style or new style.

2.12 PROGRAMMING EXAMPLES

/*PROG 2.2 WRITING MULTIPLE STATEMENTS WITH SINGLE COUT */

#include <iostream.h>

int main()

{

cout<<“Hello NMIMS University”<<endl

 <<“Hello MPSTME Mumbai Campus”<<endl

 <<“Hello MPSTME Shirpur Campus”<<endl;

return 0;

}

36 Object-Oriented Programming C++ Simplified

OUTPUT :

Hello NMIMS University

Hello MPSTME Mumbai Campus

Hello MPSTME Shirpur Campus

Figure 2.11. Output screen of program 2.2.

EXPLANATION : The above program illustrates the fact that multiple statements can be

written with a single cout and multiple <<operators. The endl leaves a line. The semicolon

must be put at the end. However, if you do not want to write in the above manner you may

write as shown in the next program with multiple cout statements.

/* PROG 2.3 THREE COUT STATEMENT IN A C++ PROGRAM */

#include <iostream.h>

int main()

{

cout<<“Hello NMIMS University”<<endl;

cout<<“Hello MPSTME Mumbai Campus”<<endl;

cout<<“Hello MPSTME Shirpur Campus”<<endl;

return 0;

}

OUTPUT :

Hello NMIMS University

Hello MPSTME Mumbai Campus

Hello MPSTME Shirpur Campus

Figure 2.12. Output screen of program 2.3.

Starting with C++ 37

EXPLANATION : The program is self-explanatory.

/* PROG 2.4 DISPLAYING DIFFERENT TYPES OF CONTENTS */

#include <iostream.h>

void main()

{

cout<<123<<endl;

cout<<23.567<<endl;

cout<<12345678<<endl;

cout<<‘P’<<endl;

cout<<“Hari”<<endl;

}

OUTPUT :

123

23.567

12345678

P

Hari

Figure 2.13. Output screen of program 2.4.

EXPLANATION : The program simply displays various constants of type int, char, double,
char* and char type. endl is built-in manipulator which works similar to ‘\n’. For more about

manipulator see chapter 11.

/* PROG 2.5 WORKING WITH VARIABLES VER 1 */

#include <iostream.h>

void main()

{

int x=10;

float y=2.34f;

char *s=”NMIMS UNIVERSITY”;

cout<<“Value of x :=”<< x<<endl;

38 Object-Oriented Programming C++ Simplified

cout<<“Value of y :=”<< y<<endl;

cout<<“Value of s :=”<< s<<endl;

}

OUTPUT :

Value of x :=10

Value of y :=2.34

Value of s :=NMIMS UNIVERSITY

Figure 2.14. Output screen of program 2.5.

EXPLANATION : In the program we have declared and initialized 3 variables x, y, and s
of type int, float and char* type. Note y has the value 2.34f and not 2.34. Suffix f or F after the

floating point number makes it a float number. If not written number is considered as double.

Displaying variables value is very simple as can be seen in the code. Simply write it as

cout<<variable_name. Again for concatenation simply use <<before and after any variable

as cout<<”x=”<<x<<endl; Variables declared but not initialized contains garbage value.

/*PROG 2.6 WORKING WITH VARIABLES VER 2*/

#include <iostream.h>

void main()

{

int x(10);

float f(23.34);

char ch(‘P’);

cout<<“x=”<<x<<endl;

cout<<“f=”<<f<<endl;

cout<<“ch=”<<ch<<endl;

}

OUTPUT :

x=10

f=23.34

ch=P

Starting with C++ 39

Figure 2.15. Output screen of program 2.6

EXPLANATION : In C++ all built-in data types are treated as classes, like in C they are

treated as structures. Here you can assume that int is a class and x is an object of it we are

initializing x by calling the constructor. This is same as writing int x=10 but the given notation

is called as class constructor notation. Same analogy for float and char type.

/*PROG 2.7 DYNAMIC INITIALIZATION OF VARIABLES */

#include <iostream.h>

void main()

{

int num=20;

cout<<“int num=”<<num<<endl;

double d=23.45;

cout<<“double d=”<<d<<endl;

char ch=’P’;

cout<<“char ch=”<<ch<<endl;

char*s=”CPP”;

cout<<“char*s=”<<s<<endl;

}

OUTPUT :

int num=20

double d=23.45

char ch=P

char*s=CPP

Figure 2.16. Output screen of program 2.7.

40 Object-Oriented Programming C++ Simplified

EXPLANATION : The program demonstrates the fact that variables can be declared and

initialized anywhere in the program. Initializing variables dynamically anywhere in the program

is known as dynamic initialization.

/* PROG 2.8 WORKING WITH VARIABLES INPUT FROM THE USER */

#include <iostream.h>

void main()

{

int x;

cout<<“Enter a number”<<endl;

cin>>x;

cout<<“You have entered”<<endl;

cout<<“x :=”<<x<<endl;

}

OUTPUT :

Enter a number

40

You have entered

x :=40

Figure 2.17. Output screen of program 2.8.

EXPLANATION : To read a data from keyboard from user we have object cin. It represents

standard input stream. Its syntax is

cin>>var1>>var2>>var2……>>var n

The entered values are assigned from left to right i.e., first value is assigned to var1 and

so on. Here we have just one variable x of int type. We take the input from user in variable x

by writing cin>>x. The same variable is displayed back using cout. cin is an object of

iostream_with assign class >> is known as get from or extraction operator.

Starting with C++ 41

/*PROG 2.9 INPUT MIX DATA FROM USER */

#include <iostream.h>

void main()

{

int x;

float y;

char ch;

cout<<“Enter an int, char and”

 <<“ a float value “<<endl;

cin>>x>>ch;

cin>>y;

cout<<“You entered”<<endl;

cout<<“Int value x :=”<< x<<endl;

cout<<“float value y :=”<< y<<endl;

cout<<“char value ch :=”<< ch<<endl;

}

OUTPUT :

Enter an int, char and a flaot value

15 h 12.45

You entered

Int value x :=15

float value y :=12.45

char value ch :=h

Figure 2.18. Output screen of program 2.9

EXPLANATION : In the program we have 3 variables x of int type, y of float type and ch
of char type. The 3 variables are not taken by a single cin statement as cin>>x>>ch>>y.

Instead we have taken int and char type data by writing cin>>x>>ch and next data i.e., float
variable in y by writing cin>>y.

42 Object-Oriented Programming C++ Simplified

/*PROG 2.10 TAKING STRING DATA FROM USER */

#include <iostream.h>

void main()

{

char s[15];

cout<<“Enter your name”<<endl;

cin>>s;

cout<<“Hello “<<s<<endl;

}

OUTPUT :

Enter your name

Hari

Hello Hari

Figure 2.19. Output screen of program 2.10.

EXPLANATION : To read a string from user we create a char array s of size 15. Using

cin>>s we have accepted string s. Note cin will break at the first white space character in the

input string i.e., either space or tab is encountered. So if you write Hari Pandey, only Hari will

be accepted in s.

/* PROG 2.11 FINDING LIMITS OF INTEGRAL DATA TYPES */

#include <iostream.h>

#include <limits.h>

void main()

{

cout<<“CHAR_MIN := “<<CHAR_MIN<<endl;

cout<<“CHAR_MAX := “<<CHAR_MAX<<endl;

cout<<“INT_MIN := “<<INT_MIN<<endl;

cout<<“INT_MAX := “<<INT_MAX<<endl;

cout<<“SHRT_MIN := “<<SHRT_MIN<<endl;

cout<<“SHRT_MAX := “<<SHRT_MAX<<endl;

cout<<“LONG_MIN := “<<LONG_MIN<<endl;

cout<<“LONG_MAX := “<<LONG_MAX<<endl;

Starting with C++ 43

cout<<“SCHAR_MIN := “<<SCHAR_MIN<<endl;

cout<<“SCHAR_MAX := “<<SCHAR_MIN<<endl;

cout<<“UCHAR_MAX := “<<UCHAR_MAX<<endl;

cout<<“UINT_MAX := “<<UINT_MAX<<endl;

cout<<“USHRT_MAX := “<<USHRT_MAX<<endl;

cout<<“ULONG_MAX := “<<ULONG_MAX<<endl;

}

OUTPUT :

CHAR_MIN := –128

CHAR_MAX := 127

INT_MIN := –2147483648

INT_MAX := 2147483647

SHRT_MIN := –32768

SHRT_MAX := 32767

LONG_MIN := –2147483648

LONG_MAX := 2147483647

SCHAR_MIN := –128

SCHAR_MAX := –128

UCHAR_MAX := 255

UINT_MAX := 4294967295

USHRT_MAX := 65535

ULONG_MAX := 4294967295

Figure 2.20. Output screen of program 2.11.

44 Object-Oriented Programming C++ Simplified

EXPLANATION : For findings limits of integral data types we have predefined constants

stored in the header file limits.h. In the program we have used these constants and displayed

the range of integral data types. SHRT stand for short, UCHAR for unsigned char, SCHAR for

signed char and soon.

/* PROG 2.12 FINDING RANGES OF FLOATING POINT DATA */

#include <iostream.h>

#include <float.h>

void main()

{

cout<<“FLT_MIN := “<<FLT_MIN<<endl;

cout<<“FLT_MAX := “<<FLT_MAX<<endl;

cout<<“DBL_MIN := “<<DBL_MIN<<endl;

cout<<“DBL_MAX := “<<DBL_MAX<<endl;

cout<<“LDBL_MIN := “<<LDBL_MIN<<endl;

cout<<“LDBL_MAX := “<<LDBL_MAX<<endl;

}

OUTPUT :

FLT_MIN := 1.17549e-038

FLT_MAX := 3.40282e+038

DBL_MIN := 2.22507e-308

DBL_MAX := 1.79769e+308

LDBL_MIN := 2.22507e-308

LDBL_MAX := 1.79769e+308

Figure 2.21. Output screen of program 2.12.

EXPLANATION : For finding range of floating point data types we have pre defined constant

stored in header file float.h. In windows double and long double are treated same.

Starting with C++ 45

2.13 PONDERABLE POINTS

1. C++ was developed by Bjarne Stroustrup at AT & T’s bell laboratories in the Murray

Hill New Jersey, USA in the early 80’s.

2. cout is considered standard output stream and used for displaying data onto the

screen.

3. cin is considered standard output stream and used for taking data from keyboard.

4. The named C++ came from the increment operator ++ of C as it is considered a

super set of C, one version ahead of C, so it was named C++.

5. There are mainly 63 keywords in C++.

6. Smallest individual unit in a C++ program is known as token.

7. cout is an object of ostream_withassign class and cin is an object of istream_withassign

class.

8. >> is known as get from or extraction operator and is used with cin.

9. << is known as put to or insertion operator and is used with cout.

10. All C++ program must include basic header file iostream.h.

11. The first application developed in C++ was “cfront”.

12. For finding range of integral data types we can us header file limits.h and for finding

range of floating point data types we can use header file float.h

In C++ variables can be declared anywhere in the program. Variables can also be

initialized at the place of declaration. This is known as dynamic initialization of

variables.

EXERCISE

A. True and False:

1. The extraction operator >> can write characters.

2. cout is an object of ostream class.

3. cin is an object of iostream class.

4. Procedural language is based on objects.

5. // can be used for multiline comment also.

6. volatile keyword cannot be used to declare variables.

B. Fill in the Blanks:

1. The declaration specifies that the object can be used between separate translation

units.

2. is known as exraction operator.

3. is known as insertion operator.

4. is an object of ostream_withassign class.

5. header file must be used in all C++ programs.

46 Object-Oriented Programming C++ Simplified

C. Answer the Following Questions:

1. What is C++ ? How it evolved ?

2. What is token ? What different types of token are available in C++ ?

3. What is the structure of a C++ program ?

4. What are the various styles of writing a C++ program explain with example ?

5. What are qualifiers ? How they are special ?

6. Discuss all the different types of data types in C++.

7. What is dynamic declaration and dynamic initialization ? What are its advantages and dis-

advantages ?

8. How does >> and << works ?

9. Explain all the components of the first C++ program.

10. How doe we find out range of data types explain with program ?

D. Brain Drill:

1. Assuming there are 7.481 gallons in a cubic foot, write a program that asks the user to enter a

number of gallons, and displays the equivalent in cubic feet.

2. Write a program to generates the following output :

10

20

19

Use an integer constant for the 10, an arithmetic assignment operator to generate the 20, and a

decrement operator to generate the 19.

3. Write a program that displays your favorite poem. Use an appropriate escape sequence for the line

breaks.

4. You can convert temperature from degrees Celsius to degree Fahrenheit by multiplying by 9/5 and

adding 32. Write a program that allows the user to enter a floating point number representing

degree Celsius, and then displays the corresponding degrees Fahrenheit.

5. A library function islower takes a single character (a letter) as an argument and returns a non-zero

integer if the letter is lowercase, or zero if it is uppercase. This function requires the header file

CTYPE.H. Write a program that allows the user to enter a letter, and then displays either zero or

non-zero, depending on whether a lowercase or uppercase letter was entered.

6. On a certain day the British pound was equivalent to $1.487US, the French franc was $0.172, the

German deutschemark was $0.584, and the Japanese yen was $0.0095. Write a program that allows

the user to enter an amount in dollars, and then displays this value converted to these four other

monetary units.

���

C FEATURES OF C++

3.1 INTRODUCTION

There are lots of new features in C++ but there are features whi.ch are in common in both C
and C++ . So, even if you do not have any knowledge of C, you can refer this chapter. Most
of the features like operators, if-else, loops, goto, arrays etc are discussed in this chapter.
Instead of giving separate chapter and increasing the length of the book, I thought better to
concentrate on the new features of C++, rather than repeating the same old features of C. The
result is this chapter. The chapter gives you a brief overview of all the features which are in
C+ + but also present in C.

3.2 OPERATORS AND EXPRESSIONS

For performing different kind of operations, various types of operators are required. An operator
denotes an operation to be performed on some data that generates some value. For example,
plus operator (+) on 2 and 3 generates 5 (2+3 = 5). Here 2 and 3 are called operands.

Table 3.1 : Operators in C + +
S.No. Operators Symbols Representation

1. Arithmetical +,-, /, * ,%

2. Logical &&, I I.!
3. Relational > , <, >=, <=, = = , !=

4. Assignment =

5. Increment + +
6. Decrement -

7. Comma '
8. Conditional ? :

9. Bitwise &, I. A
J !, >>, <<

10. Special Operator sizeof

47

48 Object-Oriented Programming C++ Simplified

Binary Operators

All the operators which require two operands to operate on are known as binary operators. For
example, as shown in the above table all the arithmetic, relational, logical (except! (NOT)
operator), comma, assignment, bitwise (except ~ operator) operators etc., are binary operators.

Example : −2 + 4, 35 > 45, x = 30, 2 & 5.

Unary Operators

Unary operators are those operators which require only one operand to operate on. For example,

as shown in the above table increment/decrement,! (NOT), ~ (1’s complement operator), sizeof
etc., are unary operators. C also provides unary plus and unary minus i.e., +20 and −35. Here
+ and – are known as unary plus and unary minus operators.

Example : +4, −3, ++x, sizeof (int), sizeof(2.0).

Note : ? : operator is known as ternary operator as it requires three operands to operate on. One

before ?, Second after ? and third after :

Expression

Operator together with operands constitutes an expression or a valid combination of constants,
variables, and operators forms an expression is usually recognized by the type of operator used
with in the expression. Depending upon that you may have integer expression, floating point
expression, relational expression etc. You may have different types of operators in an expression
which is a mixed mode expression. See the table given below for few examples.

Table 3.2 : Types of Expressions

S.No Expression Type of Expression

1. 2+3*4/6–7 Integer Arithmetic

2. 2.3*4.7/6.0 Real Arithmetic

3. a>b!=c Relational

4. X && 10 || y Logical

5. 2>3+x && y Mixed

1. Arithmetic Operators

The various arithmetic operators are shown in the Table

Table 3.3 : Arithmetic Operators

S.No. Operator Meaning/ used for

1. + Addition

2. − Subtraction

3. / Division

4. * Multiplication

5. % Remainder

C Features of C++ 49

First four operators are self-explanatory. The reminder operator can be used only with
integers. For all other operators if one of the operands is float and second one is int then
result will be in float.

The percentage symbol “%” is used for modulus of a number. a/b produces quotient and
a%b where % is called remainder operator produces remainder when a is divided by b. The
mathematical formula behind remainder operator is :

a % b = a – (a / b) * b (where a / b is integer division)

% operator works only with integer operands. Never use float operands. C++ does not
allow float operand with % operator.

/*PROG 3.1 DEMO OF ARITHMETIC OPERATORS */

#include<iostream.h>

 void main()

 {

 int a,b,sum,sub,div,mul,rem;

 cout<<“Enter two numbers\n”;

 cin>>a>>b;

 sum=a+b;

 sub=a−b;

 div=a/b;

 mul=a*b;

 rem=a%b;

 cout<<“Sum of “<<a<<“ and “<<b<<“ is “<<sum<<endl;

 cout<<“Sub of “<<a<<“ and “<<b<<“ is “<<sub<<endl;

 cout<<“Div of “<<a<<“ and “<<b<<“ is “<<div<<endl;

 cout<<“Mul of “<<a<<“ and “<<b<<“ is “<<mul<<endl;

 cout<<“Rem of “<<a<<“ and “<<b<<“ is “<<rem<<endl;

}

OUTPUT :

Enter two numbers

35 20

Sum of 35 and 20 is 55

Sub of 35 and 20 is 15

Div of 35 and 20 is 1

Mul of 35 and 20 is 700

Rem of 35 and 20 is 15

50 Object-Oriented Programming C++ Simplified

Figure 3.1. Output screen of program.

EXPLANATION : The program is self explanatory.

/*PROG 3.2 DEMO OF MODULUS(%)OPERATOR*/

#include<iostream.h>

 void main()

 {

 cout<<17<<“/”<<5<<“=”<<17/5<<“\t”<<17<<“%”

 <<5<<“=”<<17%5<<endl;

 cout<<−17<<“/”<<5<<“=”<<−17/5<<“\t”<<−17

 <<“%”<<5<<“=”<<−17%5<<endl;

 cout<<17<<“/”<<−5<<“=”<<17/−5<<“\t”<<17

 <<“%”<<−5<<“=”<<17%−5<<endl;

 cout<<−17<<“/”<<−5<<“=”<<−17/−5<<“\t”

 <<−17<<“%”<<−5<<“=”<<−17%−5<<endl;

 }

OUTPUT :

17/5=3 17%5=2

−17/5=−3 −17%5=−2

17/−5=−3 17%−5=2

−17/−5=3 −17%−5=−2

Figure 3.2. Output screen of program.

C Features of C++ 51

EXPLANATION : In the division operation, sign of quotient depends upon both the
operands i.e., follows the rule of mathematics. In remainder operator %. Sign of remainder is
determined by sign of numerator or first operator left to %. If is +ve answer will be –ve.

2. Conditional and Relational Operator

Table 3.4 : Relational operators

S.No. Operator Meaning/ Used for

1. > Greater than

2. < Less than

3. >= Greater than equal to

4. <= Less than equal to

5. = = Equal to

6. != Not equal to

The two symbols ? : together are called ternary or conditional operator. Before? condition
is specified with the help of relational operators which may be any one operator as given
in Table 3.4. If the condition specified before? is true any expression or statement after? is
executed. If condition is false then statement or expression after : (colon) is evaluated. The
general syntax is :

(Condition)? True part: false part;

All relational operators yield Boolean values i.e., true or false. A true value is represented
by 1 and false value by 0. In expression any non-zero value is terminated as true value.

/*PROG 3.3 DEMO OF EQUAL(==) AND TERNARY(? :) OPERATOR*/

#include<iostream.h>
 void main()
 {
 int a=0;
 a==0 ?cout<<“a is zero\n” :
 cout<<“a is not zero\n”;
 }

OUTPUT :
a is zero

Figure 3.3. Output screen of program.

52 Object-Oriented Programming C++ Simplified

EXPLANATION : ? operator is known as conditional operator (also called ternary operator)
works as follows : The condition which is to be checked (here a = =0) written before ? On
success of condition the action which is to be performed written after ?. In this case the
statement cout<<”a is zero\n”;. On failure of condition the action which is to be taken
written after : In this case the statement cout<<”a is not zero\n”;. In the condition it
is being checked whether value of a is equal to 0 or not. The operator = = is called equality

operator. It checks both the operands on either side of it are equal or not. If equal then
condition is true else it is false. Try changing value of a and you will get different output.

Note : Conditional operator always works with relational operators.

/*PROG 3.4 DEMO OF RELATIONAL OPERATORS*/

#include<iostream.h>

 void main()

 {

 int a=5,b=6,c,d,e,f,g,h;

 c=a>b;

 d=a<b;

 e=(4!=3);

 f=(8>=17);

 g=(123<=123);

 h=(a==b);

 cout<<“value of c= “<<c<<endl;

 cout<<“value of d= “<<d<<endl;

 cout<<“value of e= “<<e<<endl;

 cout<<“value of f= “<<f<<endl;

 cout<<“value of g= “<<g<<endl;

 cout<<“value of h= “<<h<<endl;

 }

OUTPUT :

value of c= 0

value of d= 1

value of e= 1

value of f= 0

value of g= 1

value of h= 0

C Features of C++ 53

Figure 3.4. Output screen of program.

EXPLANATION : If the condition is true value returned is 1 else 0, so the output. For truth
a value of 1 is assumed, for falsity a value of 0 is assumed by C++.

/*PROG 3.5 MAXIMUM OF TWO NUMBER VER 1*/

#include<iostream.h>

void main()

{

 int a,b,c;

 cout<<“Enter the two integer numbers \n”;

 cin>>a>>b;

 c=a>b ?a :b;

 cout<<“ max of “<<a<<“ and “<<b<<“ is “<<c<<endl;

}

OUTPUT :

Enter the two integer numbers

15 20

 max of 15 and 20 is 20

Figure 3.5. Output screen of program.

EXPLANATION : If a is greater than b then a is assigned to c else b is assigned to
b. In any case maximum of two is stored in c which is printed by the cout. Condition of
equality of two numbers is not checked in the program which is shown in the modified

program below.

54 Object-Oriented Programming C++ Simplified

/*PROG 3.6 MAXIMUM OF TWO NUMBERS VER 2*/

#include<iostream.h>

 void main()

 {

 int a,b;

 cout<<“Enter two integer numbers \n”;

 cin>>a>>b;

 (a==b) ?cout<<a<<“ is equal to “<<b :(a>b) ?cout<<a

 <<“ is max \n “ :cout<<b<<“ is max\n”;

 }

OUTPUT :

(First run)

Enter two integer numbers

50 50

50 is equal to 50

(Second run)

Enter two integer numbers

50 67

67 is max

Figure 3.6. Output screen of first and second run of program.

EXPLANATION : Observe carefully the above program. Nesting of ternary operator (one
inside another) is done to achieve the goal. If the first condition fails, then in the colon (:) part
we check whether a>b. If this is true then statement after ? (after a>b) executes i.e., in the
failure part of the ternary operator we have one more ternary operator. This is known as nesting
of ternary operators.

3. Logical Operators

Logical operators are used to check logical relation between two expressions. Depending upon
the truth or falsehood of the expression they are assigned value1 (true) and 0(false). The
expressions may be variables, constants, functions etc. See the table given below :

C Features of C++ 55

Table 3.5 : Logical Operators

S.No. Symbol Meaning

1. && AND

2. || OR

3. ! NOT

The && and || are binary operators. For && to return true value both of its operand must
yield true value. For || to yield true value at least one of the operand yield true value .The NOT

(!) operator is unary operator. It negates its operand i.e., if operand is true it convert it into false

and vice-versa.

/*PROG 3.7 DEMO OF LOGICAL OPERATOR && (LOGICAL AND) VER 1*/

#include<iostream.h>

 void main()

 {

 int res,a=10,b=20;

 res=(a>=10 && b==20);

 cout<<“Returned value in res= “<<res<<endl;

 }

OUTPUT :

Returned value in res= 1

Figure 3.7. Output screen of program.

EXPLANATION : The && is called AND operator. On both of this operator condition is

specified. If both conditions are true the returned value is true that is 1 else false value is
returned that is 0. In the above program both the conditions in the expression are true so res
contain 1 as result.

/*PROG 3.8 DEMO OF LOGICAL OPERATOR && (AND)VER 2*/

#include<iostream.h>

 void main()

 {

 int res, a=0,b=2;

 res=(a!=0 && b<=2);

56 Object-Oriented Programming C++ Simplified

 cout<<“Returned value in res= “<<res<<endl;

 }

OUTPUT :

Returned value in res= 0

Figure 3.8. Output screen of program.

EXPLANATION : In the expression the condition before && is false and after && it is true
so overall value of the expression is false so a 0 is assigned to res.

Logical OR (||)

The operator works with two operands which may be any expression, variable, constant or

function. It checks any of its operand returns true value or not. If they it returns true value i.e.,

a decimal 1. If both of its operands are false, a false value is returned i.e., a decimal 0.

/*PROG 3.9 DEMO OF LOGICAL OR OPERATOR (||)*/

#include<iostream.h>

 void main()

 {

 int res, a= 100, b=120;

 res=(a>=100 || b<0);

 cout<<“Returned value in res= “<<res<<endl;

 }

OUTPUT :

Returned value in res= 1

Figure 3.9. Output screen of program.

EXPLANATION : The || is called OR operator. On both side of this operator condition is
specified. If any of the condition is true the returned value is true that is 1 else 0. In the above
program first condition in the expression is true but second is false so res contains 1 as result.

C Features of C++ 57

Logical NOT (!)

The operator converts a true value into false and vice-versa. Again the operand may be any
expression, constant, variable or function.

/*PROG 3.10 DEMO OF LOGICAL OPERATOR !(NOT) VER 1 */

#include<iostream.h>

 void main()

 {

 int res, a=1;

res=!a;

 cout<<“Returned value in res= “<<res<<endl;

 }

OUTPUT :

Returned value in res= 0

Figure 3.10. Output screen of program.

EXPLANATION : The! is called NOT or negation operator. It is an unary operator meaning
only one operand is required on it. If operand’s value is non-zero it is converted into false value
that is 0 and vice-versa. Similarly if a true condition is specified it will be turned into false and
vice-versa. Try changing value of a to zero, returned value in res will be 1.

 /*PROG 3.11 DEMO OF LOGICAL OPERATOR (NOT ! OPERATOR) VER 2 */

#include <iostream.h>

 void main()

 {

 int res;

 res=!(10>5 && −4<=1);

 cout<<“returned value in res := “<< res<<endl;

}

OUTPUT :

returned value in res := 0

58 Object-Oriented Programming C++ Simplified

Figure 3.11. Output screen of program.

EXPLANATION : Both conditions in && operator are true so whole inner expression is
true, after negation the returned value will be 0.

4. Assignment Operator

The = operator is called assignment operator. We have seen several instances of this operator
in many of the earlier program. One more use of this operator is the shortening of following

types of expressions :

 x = x + 1, y = y * (x-5), a = a/10, t = t%10;

In all the above expressions the variable on both side of = operator is same so we can
change the above expression in shorter form as follows

x = x + 1 = > x + = 1

y = y* (x-5) = > y* = (x-5)

a = a/10 = > a/ = 10

t = t%10 = > t% = 10

This form op= where operator may be any operator is called compound operator or
shorthand assignment operator.

5. Increment Operator (++) and Decrement Operator (−−−−− −−−−−)

The operators ++ is known as increment operator and the operator – –is known as decrement
operator. Both are unary operators. The ++ increment the value of its operand by 1 and –
decrement the value of its operands by 1. For example, ++ x becomes 11 (assume x=10 prior

to the operation ++x and – –x) and –x becomes 9.

See the program given below for more explanation :

/*PROG 3.12 DEMO OF ++ OPERATOR VER 1*/

#include<iostream.h>

 void main()

 {

 int x;

 x=20;

 cout<<“Before increment x= “<<x<<endl;

 x++;

C Features of C++ 59

 cout<<“After increment x= “<<x<<endl;

 }

OUTPUT :

Before increment x= 20

After increment x= 21

Figure 3.12. Output screen of program.

EXPLANATION : The ++ operator is called increment operator. It is an unary operator
that is it requires only one operand to operate which increment the value of operand by 1 i.e.,
x++ is equivalent to x = x+1. If ++ is written before operand i.e., ++x it is known as pre

increment and if ++ is written after operand i.e., ++x it is known as post increment. In the
above program we have used post increment operator. Had we have used pre increment the
output would be same. For distinction between two check out next two program.

/*PROG 3.13 DEMO OF ++ OPERATOR VER 2*/

#include<iostream.h>

 void main()

 {

 int x,y;

 x=20;

 y=x++;

 cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

 }

OUTPUT :

x = 21 y = 20

Figure 3.13. Output screen of program.

EXPLANATION : In the above program we have used post-increment operator with x and
we are assigning the value to y. Due to post increment first x will be assigned to y and x will

60 Object-Oriented Programming C++ Simplified

be incremented by 1 that is y=x++ is equivalent to the following statement :

 y = x;

 x = x++;

 If we write

 x = 20;

 y = ++x;

Then due to pre-increment first x will be incremented by 1 and the same incremented
value will be assigned to y. y=++x is equivalent to the following two statement :

y = ++x
Equivalent to y = x + 1

y = x

Note : There is only ++ operator which is used to increment the value of the operand by one.

There is no such operator as +++ or ++++ which increment the value by 2 or 3.

Similar to increment operator we have decrement operator (– –) which is again may be
of two types : pre-decrement operator and post-decrement operator.

/*PROG 3.14 DEMO OF ++ OPERATOR VER 3*/

#include<iostream.h>

 void main()

 {

 int x,y;

 x=10;

 y=++x;

 cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

 – –x;

 cout<<“x=”<<x<<endl;

 y– –;

 cout<<“y=”<<y<<endl;

 x=y++;

 cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

 y=– –x;

 cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

 x=y++;

 cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

 }

OUTPUT :

x=11 y=11

x=10

y=10

C Features of C++ 61

x=10 y=11

x=9 y=9

x=9 y=10

Figure 3.14. Output screen of program.

EXPLANATION : For explanation observe the following table :

Statement Value of x Value of y

Y=++x 11 11

– –x 10 11

y– – 10 10

X=y++ 10 11

Y=– –x 09 09

X=y++ 09 10

/*PROG 3.15 DEMO OF ++ OPERATOR VER 4*/

#include<iostream.h>

 void main()

 {

 int x;

 x=10;

 cout<<– –x<<endl<<++x<<endl<<x<<endl<<x++<<endl

 <<x– –<<endl;

 }

OUTPUT :

10

11

10

9

10

62 Object-Oriented Programming C++ Simplified

Figure 3.15. Output screen of program.

EXPLANATION : The output will be determined from right of cout statement :

Statement Value of x Explanation

x– – 10 Value of x will be printed then decremented

x++ 09 Value of x will be printed then incremented

X 10 Value of x will be printed

++x 11 Value of x will be incremented then printed

– –x 10 Value of x will be decremented then printed

So the output is 10 11 10 9 10

6. Bitwise Operators

They are called so because they operate on bits. They can be used for the manipulation of bits.
All these operators are extensively used when interfacing with the hardware and for setting of
bits in registers of the device. C provides total 6 types of bitwise operators. They are as follows :

Table 3.6 : Bitwise Operators

S.No. Operator Meaning/Used for

1. & Bitwise AND

2. | Bitwise OR

3. ^ Bitwise XOR

4. ~ One’s complement

5. >> Right shift

6. << Left shift

For all the following programs we consider only first 4 bits of the number for explanation
purpose. So range of possible numbers is −7 to 8 in case of signed numbers (−214 to −241−1)

and (0 to −24−1) in case of unsigned numbers. In case you assume 8 bits for the numbers then
use full 8 bits for the number even if it can be using 4 bits for example 10 can be written using
4 bits as 1010 and using 8 bits as 00001010.

C Features of C++ 63

Bitwise And (&)

It takes two bits as operand and returns the value 1 if both are 1. If either of them is 0, the
result is 0.

Table 3.7 : Truth Table of Bitwise AND

First bit Second bit Result

0 0 0

0 1 0

1 0 0

1 1 1

/*PROG 3.16 DEMO OF BITWISE OPERATOR &(BITWISE AND)*/

#include<iostream.h>

 void main()

 {

 int a,b;

 a=2;

 b=3;

 int c=a&b;

 cout<<“The value of c :=”<<c<<endl;

 }

OUTPUT :

The value of c : =2

Figure 3.16. Output screen of program.

EXPLANATION : Binary values of a=2 is 0010 and b=3 is 0011

Bitwise AND of those values is performed as follows :

0 0 1 0

0 0 1 1

0 0 1 0 (output in c will be 2 in decimal)

If both bit are 1 output bit will be 1 using & operator else 0.

64 Object-Oriented Programming C++ Simplified

Bitwise OR (|)

It takes two bits as operand and returns the value 1 if at least one is 1. If both are 0 only then
result is 0 else it is 1.

Table 3.8 : Truth Table of Bitwise OR

First bit Second bit Result

0 0 0

0 1 1

1 0 1

1 1 1

/*PROG 3.17 DEMO OF BITWISE OPERATOR |(BITWISE OR)*/

#include<iostream.h>

 void main()

 {

 int a,b;

 a=12;

 b=7;

 int c= a|b;

 cout<<“The value of c :=”<<c<<endl;

 }

OUTPUT :

The value of c : =15

Figure 3.17. Output screen of program.

EXPLANATION : Binary value of a=12 is 1100 and b =7 is 0111

OR of these two values is performed as follows :

1 1 0 0

0 1 1 1

1 1 1 1 (output in c will be 15 in decimal)?

If any of the bit 1 output will be 1 using OR operator.

C Features of C++ 65

Bitwise XOR (^)

This operator takes at least two bits (may be more than two). If number of 1’s are odd then
result is 1 else result is 0.

Table 3.9 : Truth Table of Bitwise XOR

First bit Second bit Result

0 0 0

0 1 1

1 0 1

1 1 0

/*PROG 3.18 DEMO OF BITWISE OPERATOR ^(XOR)*/

#include<iostream.h>

 void main()

 {

 int a,b;

 a=5;b=6;

 int c= a^b;

 cout<<“The value of c :=”<<c<<endl;

 }

OUTPUT :

The value of c : =3

Figure 3.18. Output screen of program.

EXPLANATION : Binary values of a =5 is 0101 and b = 6 is 0110

XOR of these two values is performed as follows :

0 1 0 1

0 1 1 0

0 0 1 1 (output in c will be 3 in decimal)

If odd number of 1’s are there output will be one otherwise output will be 0 using XOR
operator.

66 Object-Oriented Programming C++ Simplified

1’S Complement (~)

The symbol (~) denotes one’s complement. It is a unary operator and complements the bits in
its operand i.e., 1 is converted to 0 and 0 is converted to 1.

/*PROG 3.19 DEMO OF BITWISE OPERATOR ~(1’S COMPLEMENT)*/

#include<iostream.h>

 void main()

 {

 int a,b;

 a=5;

 b=~a;

 cout<<“The value of b :=”<<b<<endl;

}

OUTPUT :

The value of b : = −6

But the actual answer will be

The value of b := 10

Figure 3.19. Output screen of program.

EXPLANATION : Binary value of a = 5 is 0101

In one’s complement we invert the bit values i.e., 0 is inverted into 1 and vice-versa. So
the output will be :

b= 10 (in binary 1010)

If you get the output –6 don’t get puzzled. What I’ve said is correct also but the computer
has given the answer in 2’s complement form?

To reverse check that your answer 10(in decimal) or 1010(in binary) is correct read the
following matter carefully:

 Binary value of 6 → 0110

 1’s complement of 6 → 1001

 2’s complement of 6 → 1’s complement of 6 +1

 1001

 0001(1+1= 0 1 and carry 1) 1010 (which is our answer)

C Features of C++ 67

Left Shift Operator (<<)

We have seen this operator earlier in almost all programs which is known as insertion or put
to operator. The operator is used to shift the bits of its operand. It is written as x<<num; which
means shifting the bits of x towards left by num number of times. A new zero is entered in

the least significant Bit (LSB) position. (See the programs given below)

/*PROG 3.20 DEMO OF BITWISE OPERATOR <<(LEFT SHIFT) VER 1*/

#include<iostream.h>

 void main()

 {

 int a,b;

 a=2;

 b=a<<1;

 cout<<“The value of b :=”<<b<<endl;

 }

OUTPUT :

The value of b : = 4

Figure 3.20. Output screen of program.

EXPLANATION : a<<1 means shifting the contents of ‘a’ towards left by 1 position. If
we represent the number 2 in binary as :

0 0 1 0

b3 b2 b1 b0

Which is 2 in decimal

Where b0 is the first bit from left which is called Least Significant Bit (LSB) and b3 is
called Most Significant Bit (MSB). Shifting left by 1Bit position results in b3 losing its value
and taking from b2, b2 getting from b1 and b1 form b0, a new zero is inserted at b0. So the

resultant bit pattern will be:

0 1 0 0

b3 b2 b1 b0

Which is 4 in decimal

In case you write : a<<2 means shifting the contents of a twice towards left.

68 Object-Oriented Programming C++ Simplified

Original value in a = 0010

0 0 1 0

b3 b2 b1 b0

Which is 2 in decimal

Shifting one

0 1 0 0

b3 b2 b1 b0

Which is 4 in decimal

Shifting the value obtained in first step

1 0 0 0

b3 b2 b1 b0

Which is 8 in decimal

Note : Shifting the bits left once multiplies the number by 2.

Right Shift Operator (>>)

The operator is used to shift the bits of its operand. It is written as x>> num; which means
shifting the bits of x towards right by num number of times. A new zero is entered in the Most

significant Bit (MSB) position.

See the program given below :

/*PROG 3.21 DEMO OF BITWISE OPERATOR >>(RIGHT SHIFT)VER 1*/

#include<iostream.h>

 void main()

 {

 int a=8,b;

 b=a>>1;

 cout<<“The value of b :=”<<b<<endl;

 }

OUTPUT :

The value of b : = 4

Figure 3.21. Output screen of program.

EXPLANATION : a>>1 means shifting the contents of ‘a’ towards right by 1 bit position.
If we represent the number 8 in binary as :

C Features of C++ 69

1 0 0 0

b3 b2 b1 b0

Shifting right by 1 bit position results in b0 losing its value and taking from b1, b1 getting
from b2 and b2 from b1, new zero is inserted in b3. So the resultant bit pattern will be :

0 1 0 0

b3 b2 b1 b0

In case you write a>>2, it means shifting the contents of ‘a’ twice toward right

Original value in a=1000

1 0 0 0

b3 b2 b1 b0

After shifting once

0 1 0 0

b3 b2 b1 b0

(4 in decimal)

Shifting the value obtained in first step.

0 0 1 0

b3 b2 b1 b0

Which is 2 in decimal and is the final output.

Note : Shifting the bits right once divides the number by 2.

size of Operator

This operator is used to find size in bytes a particular variable of a particular type or a constant
takes up in memory. This is the only operator which also works as a function.

/*PROG 3.22 DEMO OF SIZEOF OPERATOR VER 1*/

#include<iostream.h>

 void main()

 {

 short int a;

 int b;

 float c;

 double e;

 cout<<“Size of short int variable a :=”<<sizeof(a)<<endl;

 cout<<“size of int variable b :=”<<sizeof(b)<<endl;

 cout<<“Size of float variable c :=”<<sizeof(c)<<endl;

70 Object-Oriented Programming C++ Simplified

 cout<<“Size of double variable e :=”<<sizeof(e)<<endl;

 cout<<endl;

 }

OUTPUT :

Size of short int variable a : =2

size of int variable b : =4

Size of float variable c : =4

Size of double variable e : =8

Figure 3.22. Output screen of program.

EXPLANATION : The program gives the amount of memory in bytes taken by variables

of different types. Size of int variable in Turbo C/C++ is 2 bytes where as in Windows it is of
4 bytes.

/*PROG 3.23 DEMO OF SIZEOF OPERATOR VER 2*/

#include<iostream.h>

 void main()

 {

 cout<<“Size of char constants : = “<<sizeof(‘A’)<<endl;

 cout<<“Size of int variable : = “<<sizeof(14)<<endl;

 cout<<“Size of float variable : = “<<sizeof(5.6F)<<endl;

 cout<<“Size of double variable : = “<<sizeof(56.78)<<endl;

 cout<<endl;

 }

OUTPUT :

Size of char constants : = 1

Size of int variable : = 4

Size of float variable : = 4

Size of double variable : = 8

C Features of C++ 71

Figure 3.23. Output screen of program.

EXPLANATION : Instead of writing variables we have used constants here. The result
differs in case of float constant. A character constant is treated as integer and a float constant

is treated as double so the output. If you want a float constant to be treated as float constant
not double suffix f or F after float constant sizeof is called operator because we can write
sizeof x where x is any variable of any type, whereas we cannot write sizeof int or
sizeof float etc. this results in compilation error. Try your self and see the error.

The Comma (,) Operator

This is most important operator in C yet overlooked by most of the programmers. But

understanding how this operator works is must in C. The operator works from left to right and
in expressions separated by commas rightmost expression becomes the operand for this operator.

See the example given below :

/*PROG 3.24 DEMO OF COMMA OPERATOR VER 1*/

#include<iostream.h>

 void main()

 {

 int a,b,c,x;

 a=5;

 b=3;

 c=4;

 x=2;

 x=(a,b,c);

 cout<<“The value of x :=”<<x<<endl;

 }

OUTPUT :

The value of x : = 4

72 Object-Oriented Programming C++ Simplified

Figure 3.24. Output screen of program.

EXPLANATION : The associativity (see next section) of comma operator is from left to
right and the rightmost value is given to x i.e., value of c in the above program.

/*PROG 3.25 DEMO OF COMMA OPERATOR VER 2*/

#include<iostream.h>

 void main()

 {

 int a=2,b=3,c=4,x=2;

 x=(c– –,c++,++a);

 cout<<“The value of x :=”<<x<<“\nThe value of c :=”

 <<c<<endl;

 cout<<endl;

 }

OUTPUT :

The value of x : = 3

The value of c : = 4

Figure 3.25. Output screen of program.

EXPLANATION : As stated earlier comma operators works from left to right. So value of
c becomes 3 after c– –, after c++ it becomes 4 again. Value of ‘a’ becomes 3 due to ++a and
this value is assigned to x, so the output.

3.3 DECLARING CONSTANTS

A constant is a value which cannot be changed. For example, value of πππππ (pi) is 22/7 or 3.14

which is a constant. To use constants in our programs C defines mainly three ways of declaring
constants. We discuss each of them one by one.

C Features of C++ 73

1. Use of #define Directive

#define preprocessor directive can be used to declare a constant. It’s general syntax is given
as :

#define constant_name value

There must be at least a single space between #define and constant_name. For example :
#define PI 3.14 which declares a constant (actually it is a macro constant) named PI with
value 3.14. There should be no assignment operator (=) between PI and 3.14. Each macro
constant must be declared on separate line. Macro constants are also known as symbolic
constant as we use string symbols to define constants.

/*PROG 3.26 DEMO OF CONSTANT #DEFINE*/

#define PI 3.14

#define H “hello”

#define DMC “Demo of macro constant”

#include<iostream.h>

 void main()

 {

 cout<<H<<endl;

 cout<<DMC<<endl;

 cout<<“The value of PI”<<PI<<endl;

 }

OUTPUT :
hello

Demo of macro constant

The value of PI3.14

Figure 3.26. Output screen of program.

EXPLANATION : We have used three symbolic constants in the program named PI, H and
DMC. First one (PI) is a float constant and other two are string constants. Before compilation
they are processed by a special program called preprocessor which replaces all the occurrences
of macro constant by their value. Each macro constant is return in upper case, it is not
necessary but to distinguish macro name from variables we declare macro in upper-case and
variables in lower-case.

74 Object-Oriented Programming C++ Simplified

In the above program if we write PI = PI +1 or PI = 343 i.e., try to change the value of
PI an error is flashed which states that we cannot change the constant value.

2. Use of Const Keyword to Define Constant

The second way of declaring constant is to use const keyword. Its syntax is given as follows :

const data_type var_name#value;

Example : const int x = 100;

 1 2 3 4

1. const ? KEYWORD

2. int ? data type

3. x ? variable

4. 100 ? value

That is x as a constant and assign a value 100 to it. Later in the program we cannot change

the value of x.

/*PROG 3.27 DEMO OF CONST KEYWORD*/

#include<iostream.h>

 void main()

 {

 const int x=100;

 const float PI=3.14;

 const char*s=”constant”;

 const char c=’c’;

 cout<<“Int constant X := “<<x<<endl;

 cout<<“Float constant PI := “<<PI<<endl;

 cout<<“String constant s := “<<s<<endl;

 cout<<“char constant C := “<<c<<endl;

 }

OUTPUT :

Int constant X : = 100

Float constant PI : = 3.14

String constant s : = constant

char constant C : = c

Figure 3.27. Output screen of program.

C Features of C++ 75

EXPLANATION : For string constant we have use char pointer variable. Rest is self
explanatory.

3. Use of enum to Declare Constant

We understand the use of enum with the help of an example :

 enum my_cons

 {

MIN;

MID;

MAX;

 };

 The above declaration creates new data type my_cons with the help of enum keyword.
The declaration statements within { } creates three int type constants, MIN, MID and MAX

which are known as enumeration constants. By default the value of MIN is 0, MID is 1 and

MAX is 2. As they are constant they cannot be changed inside the program. They can only be
of type int and char. No other type is allowed. Take one more example.

 enum colors

 {

RED;

GREEN=25;

BLUE;

 };

 In this example value of RED will be 0, GREEN will have 25 and BLUE will have value
26. The keyword enum is used to create enumeration constants, also known as symbolic
constants. After the creation of enumeration constants enumeration type variable can be created
for example :

enum colors coll, col2;

These enumeration variable col1 and col2 can be assigned enumeration constants created
earlier like :

coll = RED; col 2 = BLUE;

Although the variables col 1 and col 2 can be assigned any integer value but usually they
are assigned enumeration constants. That is the following is also valid col 1=34; col2= 45;

We give some programming examples.

76 Object-Oriented Programming C++ Simplified

/*PROG 3.28 DEMO OF ENUMERATION CONSTANTS VER 1*/

#include<iostream.h>

 void main()

 {

 enum colors

 {

 red, green,blue

 };

 enum OS

 {

 dos=1,linux,windows,unix

 };

 cout<<“red=”<<red<<“\tgreen=”<<green<<“\tblue=”

 <<blue<<endl;

 cout<<“dos=”<<dos<<“\tlinux=”<<linux<<“\twindos=”

 <<windows<<“\tunix=”<<unix<<endl;

 }

OUTPUT :

red=0 green=1 blue=2

dos=1 linux=2 windos=3 unix=4

Figure 3.28. Output screen of program.

EXPLANATION : The program is self-explanatory. The enumeration constants are basically
used in switch-case construct.

Note : The following points about enumerators :

� The values of enumerators need not be distinct in the same enumeration type.

� The names of enumerators in different enumeration types must be distinct.

� The names of the enumerators must be different from other normal variables.

� Enumerators are treated only as integer constants by the compiler.

3.4 TYPE CONVERSION

Sometimes in expression we require to convert the data type of a variable or a constant say
from float to int or int to float etc. Two types of conversions C supports :

C Features of C++ 77

1. Implicit type conversion.

2. Explicit type conversion.

1. Implicit Type Conversion

In this type of conversion the compiler internally converts the type depending upon expression
without letting user to know. For example, if you write

int num = 34.56;

Then num will be assigned the value 34 not 34.56 is treated as double and internal

conversion occurs from double to float and from float to int and 34 is assigned to the variable
num.

As another example consider the following code snippet.

int a = 10;

float b = 2.5, c;

c = a + b;

In the expression c = a + b, type of ‘a’ and ‘b’ is not same. According to size float is
greater than int so variable ‘a’ in internally converted into float and then addition is performed
so the result obtained will also be in float.

The conversion is always done from lower data type to higher data type. For example, a
char can be converted to int, long int, float, double and long double. Similarly,
an int can be converted into float, long int and long double and so on.

2. Explicit Type Conversions

In this type of conversion (also known as type casting) we explicitly convert the variable’s or
constant’s data type from one to another. For example,

int a = 10;

float x = a/3;

In the above expression x = a/3 both x and 3 are type int so output will be 3.000000
and not 3.333333 even though type of x is float. To get the required result we type cast a as
float by writing

x = (float) a/3;

Also we could have written a/3.0 to get the same result.

3.5 DECISION MAKING : AN INTRODUCTION

Decision making statements are needed to alter the sequence of the statements in the program
depending upon certain circumstances. In the absence of decision making statements a program
executes in the serial fashion statement basis. We have seen examples in the programs given
in earlier chapters. In this chapter, we are going to write statements which control the flow of
execution on the basis of some decision. Decision can be made on the basis of success or failure

of some logical condition. They allow us to control the flow of our program. These conditions
can be placed in the program using decision making statements. C language supports the
following decision making control statements :

78 Object-Oriented Programming C++ Simplified

(a) The if statement

(b) The if-else statement

(c) The if-else-if ladder statement

(d) The switch –case statement.

All these decision making statements checks the given condition and then executes its sub

block if the condition happens to be true. On falsity of condition the block is skipped. (A block

is a set of statements enclosed within the opening and closing brace {and}). All control
statement uses a combination of relational and logical operators to form conditions as per the
requirement of the programmer.

1. The if Statement

The general syntax of if statement is as :

 if (condition)

 {

Statements;

Statements;

Statements;

…………..;

 }

The if statement is used to execute/skip a block of statements on the basis of truth or
falsity of a condition. The condition to be checked is put inside the parenthesis which is
preceded by keyword if.

/*PROG 3.29 DEMO OF IF STATEMENT */

#include<iostream.h>

 void main()

 {

 int x;

 cout<<“Enter the value of x\n”;

 cin>>x;

 if(x>=1000)

 {

 cout<<“x is greater than or equal to 1000”<<endl;

 cout<<“You think high”<<endl;

 }

 cout<<“X is less than 1000”;

 }

C Features of C++ 79

OUTPUT :
(First run)

Enter the value of x

275

x is greater than or equal to 100

You think high

X is less than 100

(Second Run)

Enter the value of x

90

X is less than 100

Figure 3.29. Output screen of first run of program.

Figure 3.30. Output screen of second run of program.

EXPLANATION : You can put any number of statements inside curly braces after if and
all will be dependent on if condition.

Note : 1. if (x) is equivalent to if(x!=0)

2. if (!x) is equivalent to if(x==0)

2. The if-else Statement

In all the above program we didn’t write the other side of if condition i.e., we didn’t take the
action when the condition fails. The if-else construct allows us to do this.

80 Object-Oriented Programming C++ Simplified

Its general syntax is :

 if(condition)

 {

Statements;

Statements;

………….;

 }

 else

 {

Statements;

Statements;

………….;

 }

If the condition within if true all the statements within the block following if are

executed else they are skipped and else part get executed.

/*PROG 3.30 CHECKING THE NUMBER IS EVEN OR ODD USING IF−ELSE STATEMENT*/

#include<iostream.h>

 void main()

 {

int a;

cout<<“Enter any integer number \n “;

cin>>a;

if(a%2==0)

cout<<“number is even\n”;

else

cout<<“number is odd\n”;

 }

OUTPUT :

(First run)

Enter any integer number

 40

number is even

(Second Run)

Enter any integer number

 17

number is odd

C Features of C++ 81

Figure 3.31. Output screen of first and second run of program.

EXPLANATION : The priority of % is higher than ==, so a%2 is compared to 0. If this
is true then the number is even else number is not even. The else part executes only when
if part is false and vice-versa. In the program both if and else part contains just one
statement to be dependent upon them so braces are not needed, however if you put there won’t
be any harm. The condition could be written in the following manner also :

if(num%2!=0)

printf(“number is odd\n”);

else

printf(“number is evev\n”);

/*PROG 3.31 TO CALCULATE GROSS SALARY OF THE PERSON.GIVEN BASIC SALARY(BS) AS
INPUT.IF BS IS >5000 DA=555N OF BS AND HRA=15% BS ELSE DA=45% OF BS AND
HRA=10% OF BS*/

#include<iostream.h>

 void main()

 {

float bs,gs,hra,da;

cout<<“Enter your basic salary”<<endl;

cin>>bs;

if(bs<=5000)

{

da=(bs*45)/100;

hra=(bs*10)/100;

}

else

{

da=(bs*55)/100;

hra=(bs*15)/100;

}

gs=bs+da+hra;

cout<<“Basic salary is=”<<bs<<endl;

cout<<“HRA is=”<<hra<<endl;

82 Object-Oriented Programming C++ Simplified

cout<<“DA is=”<<da<<endl;

cout<<“Gross salary is=”<<gs<<endl;

 }

OUTPUT :

Enter your basic salary

8825

Basic salary is=8825

HRA is=1323.75

DA is=4853.75

Gross salary is=15002.5

Figure 3.32. Output screen of program.

EXPLANATION : We input the basic salary in bs. Through if condition we check basic
salary bs against 5000. Depending upon whether if condition is true or false hra and da are
calculated as per the condition specified in the problem.

3. Nesting of if−else’s

Nesting of if-else means one if-else or simple if as the part of another if-else or simple

if statement. There may be various syntaxes of nesting of if-else we present few of them :

Syntax-1

if(condition)

{

If(condition)

{

Statements;

Statements;

Statements;

……………. .

}

C Features of C++ 83

else

{

Statements;

Statements;

Statements;

}

}

In the above case there is no else part of the first if.

Syntax-2

if(condition)

{

if(condition)

{

Statements;

Statements;

Statements;

}

else

{

Statements;

Statements;

Statements;

}

}

else

 {

Statements;

Statements;

Statements;

}

Syntax-3

if(condition)

{

if(condition)

84 Object-Oriented Programming C++ Simplified

 {

 Statements;

 Statements;

 Statements;

 }

 else

 {

 Statements;

 Statements;

 Statements;

 }

}

else

{

if(condition)

 {

 Statements;

 Statements;

 Statements;

 }

else

 {

Statements;

Statements;

Statements;

 }

 }

/* PROG 3.32 TO CHECK WHETHER A YEAR IS LEAP YEAR OR NOT VER 1*/

#include<iostream.h>

void main()

{

int year;

cout<<“Enter any year\n”;

cin>>year;

if(year % 100==0)

C Features of C++ 85

{

if(year%400==0)

cout<<“The given year is leap year\n”;

else

cout<<“The given year is not a leap year\n”;

}

else

{

if(year %4==0)

cout<<“The given year is leap year\n”;

else

cout<<“The given year is not a leap year\n”;

}

}

OUTPUT :

(First Run)

Enter any year

2000

The given year is leap year

(Second run)

Enter any year

2007

The given year is not a leap year

Figure 3.33. Output screen of first and second run of program.

EXPLANATION : A year is leap year if it is completely divisible by 100 and 400 or not

divisible by 100 but divisible by 4. Initially if the year %100 is zero, the inner if checks if
the year %400 is zero. If this is so the year is leap else the year is not leap. If the outer if
fails its corresponding else part executes in which we check year % 4 ==0, If this is true the
year is leap else year is not leap.

/*PROG 3.33 MAXIMUM OF THREE NUMBERS*/

#include<iostream.h>

void main()

{

86 Object-Oriented Programming C++ Simplified

int x,y,z;

cout<<“Enter the three numbers\n”;

cin>>x>>y>>z;

if((x==y) &&(y==z))

cout<<“All three are equal\n”;

if(x>y)

{

if(x>z)

cout<<“Minimum is=”<<x<<endl;

else

cout<<“Maximum is=”<<z<<endl;

}

else

{

if(y>z)

cout<<“Maximum is=”<<y<<endl;

else

cout<<“Maximum is=”<<z<<endl;

}

 }

OUTPUT :

Enter the three numbers

34 765 234

Maximum is=765

Figure 3.34. Output screen of program.

EXPLANATION : If all the numbers are not equal we check ifa>b, if this is true it means
a is greater than b, we then check a>c if this so then a is the greatest else c is greatest. If a>b

is false initially it means b is greater than a b, we then check whether b>c, if this is so then
b is greatest else c is greatest.

4. else-if Ladder

The general syntax of else-if ladder is given below :

if (condition)

Statements;

C Features of C++ 87

else if(conditon)

Statements;

else if(condition)

Statements;

………………;

……………….;

If the first if condition is satisfied, then all its related statements are executed and all
other else-if’s are skipped. The control reaches to first else-if only if the first if fails.
Same for second, third and other else-if’s depending upon what your program required.

That is out of this else-if ladder only one if condition will be satisfied.

/*PROG 3.34 TO ARRANGE THREE NUMBERS IN ASCENDING ORDER*/

#include<iostream.h>

void main()

{

int a,b,c,min,max,mid;

cout<<“Enter the three number”<<endl;

cin>>a>>b>>c;

if(a>b && a>c)

max=a;

else if(b>a && b>c)

max=b;

else if(c>a && c>b)

max=c;

if(a<b && a<c)

min=a;

else if(b<a && b<c)

min=b;

else if(c<a && c<b)

min=c;

mid=(a+b+c)−(min+max);

cout<<“Number in ascending order”<<min

<<“\t”<<mid<<“\t”<<max<<endl;

}

OUTPUT :

Enter the three number

34 57 90

Number in ascending order 34 57 90

88 Object-Oriented Programming C++ Simplified

Figure 3.35. Output screen of program.

EXPLANATION : In the variable max we have stored the maximum among three and in
the variable min we have stored the minimum among three. The mid is calculated by subtracting
(min + max) from the sum of a, b, c i.e., (a + b + c).

5. switch-case Statement

Switch-case statement can be used to replace else-if ladder construct. Its general syntax is as

follows :

switch(expression)

{

case choice1 :

statements;

break;

case choice2 :

statements;

break;

case choice3 :

statements;

break;

……………………………;

……………………………;

default :

}

The expression may be any integer or char type which yield only char or integer
as result. Choice 1, choice 2, and choice n are the possible values which we are going to test
with the expression. In case none of the values from choice 1 to choice n matches with the
values of expression the default case is executed.

Some Points For switch-case Statements

� The switch statement is a multi-way branch statement.

� If there is a possibility to make a choice from a number of options, this structured
selection is useful.

C Features of C++ 89

� The switch statement evaluates expression and then looks for its value among the case
constant.

� If the value matches with case constant, this particular case statement is executed. If

not default is executed.

� Switch, case and default are reversed keywords.

� The break statement used in switch() passed control outside the switch() block.
By mistake if no break statements are given all the cases following it are executed.

/*PROG 3.35 DEMO OF SWITCH-CASE VER 1*/

#include<iostream.h>

 void main()

 {

 int num;

 cout<<“Enter 0,1,or 2\n”;

 cin>>num;

 switch(num)

 {

 case 0 :

 cout<<“U entered zero\n”;

 break;

 case 1 :

 cout<<“U enetered one\n”;

 break;

 case 2 :

 cout<<“ U entered two\n”;

 break;

 default :

 cout<<“other than 0,1,or 2\n”;

 }

 }

OUTPUT :

Enter 0,1,or 2

1

U entered one

Figure 3.36. Output screen of program.

90 Object-Oriented Programming C++ Simplified

EXPLANATION : The condition to be checked is placed inside switch enclosed in
parenthesis. The different values against which condition is checked is put using case statement.
In the first case value is checked against 0. This is similar to writing if(num = = 0). The
colon : after case gets executed. Similarly, if the value of num is zero then first case matches
and all the statement under that case gets executed. Similarly, if the value of num is 1 second
case gets executed and same for the rest of the case statements. A break statement is

needed to ignore the rest of the case statements and come out from switch block in case a
match is found. If none of the case matches then default gets executed. Writing default
is optional.

/*PROG 3.36 DEMO OF SWITCH-CASE VER 2*/

#include<iostream.h>

void main()

{

int num;

cout<<“Enter 0,1 or 2\n”;

cin>>num;

switch(num)

{

case 0 : cout<<“U entered zero\n”;

break;

case 1 : cout<<“U entered one \n”;

case 2 : cout<<“U eneter two\n”;

break;

default :cout<<“Other than 0,1,or2\n”;

}

}

OUTPUT :

Enter 0,1 or 2

2

U eneter two

Figure 3.37. Output screen of program.

EXPLANATION : There is no break statement in case 1 and case 2 are assumed to be true
so the output. In fact due to the absence of break statement in the second case rest of the

statements are considered part of the second case till a break is not found. break in case 2

C Features of C++ 91

causes control to come out from switch. If break were not in case 2, also then default would
got executed too.

/*PROG 3.37 TO CHECK GIVEN CHARACTER IS VOWEL OR NOT USING SWITCH CASE
VER 3*/

#include <iostream.h>

#include <ctype.h>

void main()

{

char ch;

cout<<“Enter any character \n”;

cin>>ch;

ch=tolower(ch);

switch(ch)

{

default :

cout<<“Not a vowel\n”;

break;

case ‘a’ :

case ‘e’ :

case ‘i’ :

case ‘o’ :

case ‘u’ :

cout<<“It’s a vowel\n”;

}

}

OUTPUT :

Enter any character

e

It’s a vowel

Figure 3.38. Output screen of program.

EXPLANATION : We have used inbuilt function tolower to convert a character from
uppercase to lowercase. This is than stored back in ch. Header file ctype.h need to be

92 Object-Oriented Programming C++ Simplified

included. Now whether you input vowel in upper case or lower case it is passed to switch block
in lower case which is checked ch for any of the five vowels.

3.6 UNCONDITIONAL BRANCHING USING GOTO

The goto statement is used to transfer control of program from one point to other. In fact it
make program control to jump to the statement specified by a lable. This type of unconditional

transfer of control using goto is called branching. The label must be in the same function in
which goto is used. The general syntax for goto statement is as follows :

goto label;

We understand the use of goto using a program.

/*PROG 3.38 DEMO OF GOTO VER 1*/

#include<iostream.h>

#include<math.h>

void main()

{

int x;

start :

cout<<“Entera +ve number\n”;

cin>>x;

if(x<0)

goto start;

cout<<“sqrt of number is”<<sqrt(x)<<endl;

}

OUTPUT :

Entera +ve number

−30

Entera +ve number

40

sqrt of number is 6.32456

Figure 3.39. Output screen of program.

C Features of C++ 93

EXPLANATION : The start : is terminated as a label. The start is a label name which must
be followed by a colon : Any valid identifier name can be taken as label name. When a –ve
number is entered if condition returns true and control is transferred back to start using
goto start; statement. In the program the jump is backward here the control is being
transferred previous to the goto start; statement hence it is backward jump. If it were
ahead of goto start; then it would be a forward jump.

/*PROG 3.39 LOOP CREATION USING GOTO STATEMENT*/

#include<iostream.h>

void main()

{

int n=0;

cout<<“Loop starts\n”;

loop :

n++;

cout<<“n=”<<n<<endl;

if(n<5)

goto loop;

cout<<“Loop Ends\n”;

 }

OUTPUT :

Loop starts

n=1

n=2

n=3

n=4

n=5

Loop Ends

Figure 3.40. Output screen of program.

94 Object-Oriented Programming C++ Simplified

EXPLANATION : Initial value of n is 0. It is incremented at label loop and then printed.
The value of n is checked against 5 using if. If n<5 then control is transferred back to loop
label i.e., same set of codes are repeated for a finite number of time (here number is 5). This
is looping which we have achieved using goto and if.

3.7 INTRODUCTION TO LOOPING

Looping is a process in which set of statements are executed repeatedly for a finite or infinite
number of times. C provides three ways to performs looping by providing three different types

of loop. Looping can be called synonymously iteration of repetition. Loops are the most important
part of almost all the programming language such as C, C++, java, VB, C#, Delphi etc.

In our practical life we see lots of examples where some repetitive tasks has to be performed

like finding average marks of students of a class, finding maximum salary of group of employees,
counting numbers etc.

A loop is a block of statements with which are executed again and again till a specific
condition is satisfied. C provides three loops to perform repetitive action.

1. while

2. for

3. do-while

To work with any types of loop three things have to be performed :

� Loop control variable and its initialization.

� Condition for controlling the loop.

� Increment / decrement of control variable.

3.7.1 The While Loop

The syntax of the while loop is simple :

while (condition)

{

Statements;

Statements;

………………………;

}

The statements inside { } is called body of the while loop. If no braces are there then
only the first statement after while is constructed as the body of the while loop. All the
statements within the body are repeated till the condition specified in the parenthesis in while
is satisfied. As soon as condition becomes false the body is skipped and control is transferred
to the next statement outside the loop. There should be no semicolon after the while. We will
see what happens when you do so.

C Features of C++ 95

/*PROG 3.40 DEMO OF WHILE LOOP (PRINTING NUMBER 1 TO 10) VER 1*/

#include<iostream.h>

void main()

{

int t=1;

while(t<=10)

{

cout<<“t=”<<t<<endl;

t++;

}

}

OUTPUT :

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

Figure 3.41. Output screen of program.

EXPLANATION : In the while loop we have stated the condition t<=10.t is called loop

control variable. Initially value of t is 1. This value of t is compared with 10 which is true so
control reaches into the while loop and printf statesmen within loop executes which prints the

96 Object-Oriented Programming C++ Simplified

value of t. Then t is incremented by 1 i.e., becomes 2. Control reaches back to the condition
of the while loop which is true. This process continues. When value of t becomes 11, which
causes condition in the while loop to becomes false and control comes out of loop. As there
is no statement outside the loop so program terminates.

/*PROG 3.41 MAXIMUM OF N ELEMENTS */

#include<iostream.h>

void main()

{

int n,max,t=1,m;

cout<<“Enter how many numbers\n”;

cin>>n;

cout<<“Enter the number\n”;

cin>>m;

max=m;

while(t<=n−1)

{

cout<<“Enter the number\n”;

cin>>m;

if(max<m)

max=m;

t++;

}

cout<<“Maximum element is”<<max<<endl;

 }

OUTPUT :
Enter how many numbers

3

Enter the number

10

Enter the number

20

Enter the number

30

Maximum element is 30

C Features of C++ 97

Figure 3.42. Output screen of program.

EXPLANATION : Initially numbers of elements are taken is n. The first number is taken

outside the loop and assumed to be maximum; this number is stored in max. Then remaining
numbers are taken inside the loop. On each iteration the number is compared with the max,
if the max is less than number taken then number will be the maximum one. This is checked
through if statement. In the end when control comes out from while loop max is displayed.

Break Statement

Break statement is used to come out early from loop without waiting for the condition to
become false. We have seen one such usage of break in the switch-case statements. When
the break statement is encountered in the while loop or any of the loops which will see later,
the control immediately transfers to first statement out of the loop i.e., loop is exited

prematurely. If there is nesting of loops the break will exit only from the current loop

containing it.

Let’s write some programs which make use of break statement.

/*PROG 3.42 DEMO OF BREAK STATEMENT*/

#include<iostream.h>

void main()

{

int x=1;

while(x<=5)

{

if(x==3)

break;

cout<<“Inside the loop x=”<<x<<endl;

x++;

}

cout<<“Outside the loopx=”<<x<<endl;

 }

98 Object-Oriented Programming C++ Simplified

OUTPUT :

Inside the loop x = 1

Inside the loop x = 2

Inside the loop x = 3

Figure 3.43. Output screen of program.

EXPLANATION : When x is 3 if condition becomes true, the body of the if statement is
single break statement so all the statement in the loop following the break are skipped and
control is transferred to the first statement after the loop which is printf which prints outside
the loop x = 3.

/*PROG 3.43 TO CHECK WHETHER THE NUMBER IS PRIME OR NOT*/

#include<iostream.h>

void main()

{

int num,flag=0,c=2;

cout<<“Enter the number\n”;

cin>>num;

while(c<num/2)

{

if(num%c==0)

{

flag=1;

break;

}

c++;

}

if(!flag)

cout<<“Number is prime\n”;

else

cout<<“Number is not prime\n”;

 }

OUTPUT :

Enter the number

17

Number is prime

C Features of C++ 99

Figure 3.44. Output screen of program.

EXPLANATION : A number is prime if it completely divisible by 1 and itself e.g., 1, 3,

5, 7, 11, 13, 17, 19, 23 etc. To check whether a number is prime or not we start from a counter
c=2(every number divides by 1) continues till c<=num/2 since no number is completely

divisible by a number which is more than half of that number. For example, 12 is not divisible
by 7, 8, 9, 10, 11 which are more than 6. So we check if the number is divisible by any
number<=num/2 then it cannot not be prime we set flag =1 and come out from the loop. The
flag was initialized to 0 in the beginning so if c%2==0 is true control sets flag =1 which
means number is not prime else flag remains zero which means control never transferred to
if block i.e., number is prime. So outside the loop we check this value of flag and prints

accordingly.

The Continue Statement

The continue statement causes the remainder of the statements following the continue to be

skipped and continue with the next iteration of the loop. So, we can use continue statement
to bypass curtain number of statements in the loop on the basis of some condition given by
if generally.

The syntax of continue statement is simply

continue;

Lets write a program to illustrate continue statement.

/*PROG 3.44 DEMO OF CONTINUE STATEMENT*/

#include<iostream.h>

void main()

{

int t=0;

while(t<=10)

{

t++;

if(t%2)

continue;

cout<<“t=”<<t<<endl;

}

 }

100 Object-Oriented Programming C++ Simplified

OUTPUT :

t = 2

t = 4

t = 6

t = 8

t = 10

Figure 3.45. Output screen of program.

EXPLANATION : When t is an odd number continue in the body of if condition

causes loop to continue with next iteration of loop skipping printf statement. If number is
even the number is simply printed as continue itself is skipped.

3.7.2 The For Loop

This is the second loops which are going to examine in this section. The for loop is most
frequently used by programmers just because of its simplicity. The syntax of for loop is given
here :

for (initialization; condition; increment/decrement)

{

Statements;

Statements;

…………..;

 }

There are various other syntaxes of for loop which we will see in a short while.

/*PROG 3.45 DEMO OF FOR LOOP VER 1*/

#include<iostream.h>

void main()

{

int t;

for(t=1;t<=5;t++)

cout<<“t=”<<t<<endl;

}

C Features of C++ 101

OUTPUT :

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

Figure 3.46. Output screen of program.

EXPLANATION : The first part of for loop t =1 is the initialization i.e., we are providing
an initial value of 1 loop counter t. Next statement t<=10 is the testing condition for which
this loop runs if condition is true. The last part is increment of loop works by first making
t = 1 and then checking the condition whether t<=10 if so it executes the next statement

following for i.e., printf. Recall as there is no braces after for loop only first statement is
considered the body of the for loop. It hen goes to the increment the value of t, checks the
test condition and executes the printf. This continues till the condition t<=10 is true. As
soon as the condition becomes false in this case t =11 control comes out from loop and
program terminates.

There are various syntaxes of writing for loop see the next few programs.

/*PROG 3.46 FOR LOOP SYNTAX−1 VER 1*/

#include<iostream.h>

void main()

{

int t;

102 Object-Oriented Programming C++ Simplified

t = 10;

for(;t<=100;t+=10)

cout<<“ “<<t;

}

OUTPUT :

10 20 30 40 50 60 70 80 90 100

Figure 3.47. Output screen of program.

EXPLANATION : In this program we have left the initialization part and have put this

before the for loop, still semicolon (;) is must in the for loop.

The general syntax for such type of for loop as given in the above program is given
below :

 for (; condition; increment/decrement)

 {

Statements;

 }

/* PROG 3.47 FOR LOOP SYNTAX2 VER 2*/

#include<iostream.h>

 void main()

 {

 int t;

 for(t=1;t<=10;)

 {

 cout<<“ “<<t;

 t++;

 }

 }

OUTPUT :

1 2 3 4 5 6 7 8 9 10

C Features of C++ 103

Figure 3.48. Output screen of program 3.47.

EXPLANATION : In this program we have written within braces. Note braces are must
because you are having two statements which we want to make as body of the for loop.

The general syntax is given as :

 for (initialization; condition;)

 {

Statements;

Increment/decrement;

 }

/*PROG 3.48 FOR LOOP SYNTAX3 VER 2*/

#include<iostream.h>

void main()

{

int t;

for(t=1;t<=10;)

cout<<“ “<<t;

t++;

}

OUTPUT :

1 1 1 1 1 1 1 1 1 1 1 1 1………………………(INFINITE TIMES)

Figure 3.49. Output screen of program.

EXPLANATION : As there is no braces after the for loop only first statement is assumed
as body of the for loop and t++ is not considered as part of the for loop so t<=10 remains
true forever, result is infinite loop.

104 Object-Oriented Programming C++ Simplified

/*PROG 3.49 FOR LOOP SYNTAX—4 VER*/

#include<iostream.h>

void main()

{

int t;

for(t=1;t<=10;)

cout<<“ “<<t++;

}

OUTPUT :

1 2 3 4 5 6 7 8 9 10

Figure 3.50. Output screen of program.

EXPLANATION : Here the mistake done in the above program has been removed. After
printing the value of t it will be incremented (due to post increment). for loop works fine and

prints 1 to 10.

/*PROG 3.50 FOR LOOP SYNTAX−3 VER 1*/

#include<iostream.h>

void main()

{

int t;

t = 1;

for(;t<=10;)

cout<<“t= “<<t++<<endl;

}

OUTPUT :

t := 1 t := 2 t := 3 t := 4 t := 5 t := 6 t := 7 t := 8 t := 9 t := 10

Figure 3.51. Output screen of program.

EXPLANATION : In this program we have left both unitization and increment/decrement
part, still semicolon is necessary on both sides. The general syntax is :

C Features of C++ 105

initialization;

for (;condition;)

{

Statements;

Increment/decrement;

}

Nesting of for Loop

Nesting of for loop is used most frequently in many programming situations and one of the
most important usage in displaying various patterns which we will see in the coming programs.

The syntax for nesting of for loop is given here :

 for(initialization; condition; increment/decrement)

 {

for(initialization; condition; increment/decrement)

{

Statements;

}

Statements;

 }

For each iteration of first for loop (outer for loop) inner for loop runs as it is part of the
body of outer for loop. The inner for loop has its own set if statements which executes till

the condition for inner for loop is true. See numbers of programs given below :

/*PROG 3.51 TO PRINT THE FOLLOWING PATTERN, INPUT IS NUMBER OF LINES

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

*/

#include<iostream.h>

void main()

{

int line,row,col;

cout<<“Enter the number of lines”<<endl;

cin>>line;

cout<<“The pattern is”<<endl;

for(row=1;row<=line;row++)

106 Object-Oriented Programming C++ Simplified

{

for(col=1;col<=row;col++)

cout<<“ “<<row;

cout<<“\n”;

}

}

OUTPUT :

Enter the number of lines

4

The pattern is

 1

 2 2

 3 3 3

 4 4 4 4

Figure 3.52. Output screen of program.

EXPLANATION : We have used two for loops in the program. One is to control the
number of rows and second is to control number of cols. Initially assume line =4 so outer for
loop runs four times. In the first run row=1 and inner loop runs only once. The printf(“\n”)

statement is within the second for loop so this leaves new after printing 1. When control
reaches second time inside outer for loop value of row is 2, inner loop starts again by setting

the value of col = 1, this time inner loop runs twice printing the value of row which is 2 twice.
This continues till row<=4.

/*PROG 3.52 TO PRINT THE FOLLOWING PATTERN, INPUT IS NUMBER OF LINES

1

0 1

1 0 1

0 1 0 1

1 0 1 0 1

 */

C Features of C++ 107

#include<iostream.h>

void main()

{

int line,row,col;

cout<<“Enter the number of lines”<<endl;

cin>>line;

cout<<“The pattern is”<<endl;

for(row=1;row<=line;row++)

{

for(col=1;col<=row;col++)

if(row%2==0)

cout<<!(col%2);

else

cout<<(col%2);

cout<<“\n”;

}

}

OUTPUT :

Enter the number of lines

4

The pattern is

1

01

101

0101

Figure 3.53. Output screen of program.

EXPLANATION : Observe the pattern carefully. On even number of lines we have a
different pattern and on odd number of line we have a different pattern. On even number of

liens i.e., for row=2, 4, 6,….. if we print the complement of col %2 we get the desired pattern.
On row=1, 3, 5,…… we simply print the col%2.

108 Object-Oriented Programming C++ Simplified

3.7.3 do-while Loop

The last loop is the do-while loop. Its syntax is as follows :

 do

 {

Statements;

Statements;

Statements;

………….;

…………..;

 } while (condition);

It is similar to while loop with the difference that condition is checked at the end,
instead of checking it at the beginning.

/*PROG 3.53 DEMO OF DO−WHILE LOOP*/

#include<iostream.h>

void main()

{

int t=1;

do

{

cout<<t<<endl;

t++;

}while(t<=15);

}

OUTPUT :

1

2

3

4

5

6

7

8

9

10

C Features of C++ 109

Figure 3.54. Output screen of program.

EXPLANATION : The do-while loop is similar to the while loop with the difference
that the condition is checked at the end. The loop starts with a do following the block and
at the end of block the condition is writing using while. The while is part of the do-while
loop and it must be terminated by semicolon;. Initially the value of t is 1 which is printed
through printf then t becomes 2. At the end of the block the condition is true, control transfer
back to do block and process continues.

Some Important Points Regarding do-while Loop

� It is also called bottom testing loop or exit controlled loop as condition at the bottom
of the loop.

� Regardless of the condition given at the end of block the loop runs at least once.

� The do-while loop is mostly used for writing menu driven programs.

/*PROG 3.54 TO FIND NUMBER OF DIGITS IN A GIVEN NUMBER TILL SINGLE DIGIT*/

#include<iostream.h>

void main()

{

int num,r;

int sum=0,save;

num=0;

cout<<“Enter the number\n”;

cin>>num;

do

{

sum=0;

while(num!=0)

110 Object-Oriented Programming C++ Simplified

{

r=num%10;

sum=sum+r;

num=num/10;

}

if(sum>9)

num=sum;

 } while(num>9);

cout<<“Sum of digits up to single digit”

<<“is :=”<<sum<<endl;

}

OUTPUT :

Enter the number

4275

Sum of digits up to single digitis := 9

Figure 3.55. Output screen of program.

EXPLANATION : For example, number is 4275 then sum of digits is 4+2+7+5=18. As
18 is more than 9 we repeat the process and get the result 1+ 8 = 9. This time answer is in
single digit so we stop the process. In the program for finding sum of digits we have used while
loop but for sum of digits up to single digit we have used do-while loop. When sum>9, sum

is assigned to num and for this num, sum of digits are determined using do-while.

3.8 POINTS TO PONDER

� The assignment operator (=), which has two operands on each side. The value of the
right-side operand is assigned to the operand on the left side.

� The arithmetic assignment operators, +=, -=, *=, /=, and %=, which are the
combinations of the arithmetic operators with the assignment operator.

� The unary minus operator (−), which returns the negation of a numeric value.

� The two versions of the increment operator, ++. You know that in ++x, the ++
operator is called the pre-increment operator; and in x++, ++ is the post-increment

operator.

C Features of C++ 111

� The two versions of decrement operator, – –. You have learned that, for example, in
– –x, the – –operator is the pre-decrement operator, while in x– –, – – is called the post-
decrement operator.

� The six relational operators in C : == (equal to), != (not equal to), > (greater than),
< (less than), >= (greater than or equal to), and <= (less than or equal to).

� How to change the type of data by prefixing a cast operator to the data.

� The sizeof operator returns the number of bytes that a specified data type can have.
You can use the operator to measure the size of a data type on your machine.

� The logical AND operator (&&) returns 1 only if both its two operands (that is,
expressions) are TRUE. Otherwise, the operator returns 0.

� The logical OR operator (||) returns 0 only if both its two operands are FALSE.

Otherwise, the operator returns 1.

� The logical negation operator (!) reverses the logical value of its operand.

� There are six bit-manipulation operators : the bitwise AND operator (&), the bitwise
OR operator (|), the bitwise XOR operator (^), the bitwise complement operator (~),
the right-shift operator (>>), and the left-shift operator (<<).

� The conditional operator (? :) is the only operator in C++ that can take three operands.

� An important task of a program is to instruct the computer to jump to a different
portion of the code according to the specified branch conditions.

� The if statement is a very important statement for conditional branching in C++.

� The if statement can be nested for making a series of decisions in your program.

� The if-else statement is an expansion of the if statement.

� The switch statement helps you to keep your program more readable when there are
more than just a couple decisions to be made in your code.

� The case and default keywords, followed by a colon (:) and an integral value, are used

in the switch statement as labels.

� The break statement can be used to exit the switch construct or a loop (usually, an
infinite loop).

� The continue statement is used to let you stay within a loop while skipping over some
statements.

� The goto statement enables the computer to jump to some other spot in your computer.
Using this statement is not recommended because it may cause your program to be
unreliable and hard to debug.

� Looping can be used to perform the same set of statements over and over until specified
conditions are met.

� Looping makes your program concise.

� There are three statements, for, while, and do-while, that are used for looping
in C++.

� There are three expression fields in the for statement. The second field contains the
expression used as the specified condition(s).

� The for statement does not end with a semicolon.

� The empty for(;;) statement can be used to form an infinite loop.

112 Object-Oriented Programming C++ Simplified

� Multiple expressions, separated by commas, can be used in the for statement.

� There is only one expression field in the while statement, and the expression is used
as the specified condition.

� The while statement does not end with a semicolon.

� The while (1) statement can create an infinite loop.

� The do-while statement places its expression at the bottom of the loop.

� The do-while statement does end with a semicolon.

� The inner loop must finish first before the outer loop resumes its iteration in nested

loops.

EXERCISE

A. True and False :

1. The expression ++ (4+6) is a valid.

2. +++p increment s value of p by 2.

3. A char data type always occupies two bytes in memory.

4. Assignment operation is performed during execution of the program

5. The expression ++(x + y) is a valid one.

6. The one’s complement ~ is a binary operator.

7. The assignment a*1=b; is a valid one.

8. The sizeof is a keyword but not a function.

9. The construct if a>b; is correct syntax for if.

10. C++ supports if-else-then construct.

11. if(x) means if(x=0)

12. switch-case is selective control struct.

13. For decision making in C++ if-else-endif is used.

14. continue can be used inside switch-case.

15. goto is used inside switch-case.

16. In do-while semicolon is put after the while which is must.

17. In while semicolon is put after while is must.

18. One type of loop can be nested in other type of loop.

19. A continue and break cannot be used together in a loop.

20. Maximum number of initialization that can be put in a for loop is 2 only.

21. A continue statement causes an early exit for the loop.

22. C++ support repeat-until loop.

23. Loops are used for controlling the execution of the program.

B. Fill in the Blanks :

1. The expression (double (22/7)) yields

2. The modulus-operator can be applied only to types.

C Features of C++ 113

3. Left shifting a number is equivalent to

4. The second operator of the operator % and / must be

5. Assignment operator uses the Associativity of

6. The expression (float (22/7)) yields

7. The symbol for bitwise AND is and symbol for logical AND is

8. In C++ there are ways to declare constants.

9. if(!x) is equal to

10. The can be placed anywhere in the switch-case statement

11. In switch only expression can be used

12. if is used for in C++.

13. The use of should be avoided in programming

14. In else-if ladder only condition can be used at a time.

15. For character manipulation functions header file used is

C. Answer the Following Questions :

1. Explain different types of operator available in C++.

2. Explain various unary operators in C++.

3. Describe logical operators with their return values.

4. What are the relational operators?

5. Explain ternary operator in C++.

6. What is the difference between ‘=’ and ‘= =’?

7. Explain the precedence of operators in arithmetic operations.

8. Why bitwise operators are useful? Explain where they are applicable?

9. Why is the need of type conversion?

10. What do you understand by type casting? Give examples of implicit and explicit type casting.

11. What are the uses of comma (,) and conditional (?) operators?

12. What is the difference between division and modular division operations?

13. What are the ASCII codes? List the codes for digits 1 to 9, A to Z and a to z?

14. What are the limitations of switch-case statement?

15. Is it possible to use multiple else with if statement?

16. Can we use multiple default statement in switch-case in C++?

17. Can we put default statement anywhere in the switch-case structure?

18. Give the reason for avoidance of goto statement.

19. Why break statement is essential in switch-case structure? Which other functions or keywords can

be used in place of the break statement?

20. Write the use of else and default statements in if …else and switch case statements respectively.

21. Explain the break and goto with the help of examples.

22. Why use of goto statement is discouraged in programming?

23. What is loop? Why it is necessary in the program?

24. What happens if you create a loop that never ends?

25. What is the difference between (!0) and (!1). How while loop works with these values?

114 Object-Oriented Programming C++ Simplified

26. Is it possible to nest while loop within for loops?

27. How do you choose between while and for loop?

28. Is it possible to create a for loop that is never executed?

29. Is it possible to use multiple while statement with do statement?

30. Give the syntax of for loop and explain the functionality of for loop?

31. Explain the difference between break and continue. Explain the difference between looping and

branching.

D. Brain Drill :

1. Write a program to enter a number (<100 and >15). Display the number in reverse order using

% and / operator?

2. Write a program to convert entered temperature from Celsius to Fahrenheit?

3. Write a program to enter a four digit number and find out sum of its digit using % and / operator.

4. Write a program to display number all alphabets (upper and lower) along with their ASCII values.

5. Write a program to enter two numbers and do comparison of them. If first one is greater than find

out division of two numbers else find out multiplication of two numbers.

6. Write a program to print whether entered number is even or odd using ternary operator.

7. Write a program to evaluate the expression 2X + 3Y−10. Value for X and Y should be taken from

the user side.

8. Write a program to multiply two floating point numbers and print the product as a double in

exponential notation.

9. Write a program to complement the bits starting from R and ending at S, of a given number and

print the value of the manipulated number in binary, octal and hexadecimal form.

10. Write a program for binary addition with carry of 8 bit numbers.

11. Write a program to shift a number by 4 bits by storing bits to another number. The program should

print out the values of the number formed by shifted bits, in decimal and binary forms.

12. Write a program to entered two numbers and find the smallest out of them. Use conditional

operator.

13. Write a program to shift the entered numbers by three bits right and display the result.

14. Write a program to shift the entered number by three bits left and display the result.

15. Write a program to check whether a voter is eligible for voting or not? If his/her age is equal to

or greater 18 display “Eligible” else display “Not eligible”.

16. Write a program to check whether a triangle can be formed with three positive integers supplied.

17. Write a program to check whether a triangle is right-angled or not.

18. Write a program which will find whether a number is divisible by 2,3,4,5 and 6.

19. Write a program in C++ to find out largest of 10 numbers using if and goto only.

20. Write a program in C++ that will read the values of x and evaluate the following function.

1 for x>0

Y = 0 for x = 0

– 1 for x < 0

21. Write a program to calculate the amount of the bill for the following jobs.

(a) Scanning and hardcopy of a passport photo ` 5.

(b) Scanning and hardcopies (more than 10) ` 3.

C Features of C++ 115

22. Write a program to calculate bill of Internet browsing. The conditions are given below:

(a) 1 Hour − ` 20

(b) ½ Hour − ` 15

(c) 5 Hours − ` 90

23. The owner should enter number of hours spent by customer.

24. Write a program to calculate the sum of remainders obtained by dividing with modular division

operations by 2 on 1 to 9 numbers.

25. Suppose you give a dinner party for six guests, but your table seats only four. In how many ways

can four of the six guests arrange themselves at the table? Any of the six guests can sit in the first

chair. Any of the remaining five can sit in the second chair. Any of the remaining four can sit in

the third chair, and any of the remaining three can sit in the fourth chair. (The last two will have

to stand) So the number of possible arrangements of six guests in four chairs is 6*5*4*3, which

is 360. Write a program that calculates the number of possible arrangements for any number of

guests and any number of chairs. (Assume there will never be fewer guests than chair) Don’t let

this too complicated. A simple for loop should do it.

���

OPERATORS AND REFERENCES
IN C++

4.1 INTRODUCTION

This chapter discuss all the new operators introduced by C++. It also discusses some new
features of C++ not supported by C. The operators which are in C and C++ both were
discussed in chapter 3. A new feature of C++ "reference" will be discu ssed. The new operators
of C+ + are given in the following Table below :

Table 4.1 : New Operators in C++

S.No. Operator Meaning

1. .. Scope resolution operator ..
2. >> Extraction operator

3. << Insertion operator

4. .. * Pointer to member declaration

5. -> * Pointer to member operator(for dereferencing)

6 . * Pointer to member operator(for dereferencing)

7. new Dynamic memory allocator

8 . delete Dynamic memory de-allocator.

We have seen usage of > > and < < in almost all the program presented in earlier chapter.
So we start our discussion with scope resolution operator.

4.2 SCOPE RESOLUTION OPERATOR

The operator :: is known as scope resolution operator in C++. The operator is used for two
purposes :

116

Operators and References in C++ 117

PURPOSE-1 : For accessing global variables.

PURPOSE-2 : Identifying class members to which class they belong.

We will understand the first one. Second will be discussed when classes are introduced.

In C++ block can be created by using {and}. Any variable declared within that block is

confine within that block only. Now if a variable declared within any block and a global

variable having same name, the priority is given to the local variable. What if we want to use

the global variable having the same name in the block too ? Scope resolution operator helps

in these situations. To access any global variable say gb we can write :: gb. Now if we are having

a local variable gb that variable can be accessed simply by referencing gb. That is scope

resolution operator :: allow us to use the global version of the variable in case local and global

variable having same name.

In case one block is contained within another block and both have the same variable

name, priority will be given to inner block. Variables of outer block can be used inside the inner

block but reverse is not true.

We present numerous example of use of scope resolution operators given below.

/*PROG 4.1 DEMO OF SCOPE RESOLUTION OPERATOR :: VER 1*/

#include<iostream.h>

#include<conio.h>

int num=100;

void main()

{

int num=30;

clrscr();

cout<<“In main\n”;

cout<<“Local num=”<<num<<“\t”;

cout<<“Global num=”<< :: num<<endl;

{

int num=40;

cout<<“In block1\n”;

cout<<“Local num=”<<num<<“\t”;

cout<<“Global num=”<< :: num<<endl;

}

{

int num=50;

cout<<“In block2\n”;

cout<<“Local num=”<<num<<“\t”;

cout<<“Global num=”<< :: num<<endl;

}

getch ();

}

118 Object-Oriented Programming C++ Simplified

OUTPUT :

In main

Local num=30 Global num=100

In block1

Local num=40 Global num=100

In block2

Local num=50 Global num=100

EXPLANATION : The :: as discussed earlier known as scope resolution operator. Any

global variable say gb can be accessed anywhere in the program by writing :: gb. In the program

we have declared num at four places in the program, one is global, second is in main function,

third in one block and fourth is in the second block. A block can be created by {and}. The

variable num of one block can be used only inside that block only but num of main can be used

anywhere in the main function. Global num can be accessed by writing :: num. On the basis

of this I think it will be easy to figure out the output of the program.

/*PROG 4.2 DEMO OF SCOPE RESOLUTION OPERATOR :: VER 2*/

#include<iostream.h>

#include<conio.h>

int num=100;

void main()

{

int num=30;

cout<<“In main\n”;

cout<<“Local num =”<<num<<“\t”;

cout<<“Global num=”<< :: num<<endl;

int copynum=num;

{

int num=40;

cout<<“In block 1\n “;

cout<<“Local num =”<<num<<“\t”;

cout<<“Global num =”<< :: num<<“\t”;

cout<<“num of main =”<<copynum<<endl;

}

{

int num=50;

cout<<“In block 2\n”;

cout<<“Local num=”<<num<<“\t”;

cout<<“Global num=”<< :: num<<“\t”;

cout<<“Num of main=”<<copynum<<endl;

}

Operators and References in C++ 119

getch();

}

OUTPUT :

In main

Local num=30 Global num=100

In block1

Local num=40 Global num=100

In block2

Local num=50 Global num=100

In main

Local num=30 Global num=100

In block 1

Local num=40 Global num=100 num of main=30

In block 2

Local num=50 Global num=100 Num of main=30

EXPLANATION : In the earlier program we could not use num declared in main in any

of the block and local variable num got the priority over num of main. But here we have saved

the num of main in a new variable copynum. Now, we can print value of num of main using

this copynum variable in any block.

/*PROG 4.3 DEMO OF SCOPE RESOLUTION OPERATOR :: VER 3*/

#include<iostream.h>

#include<conio.h>

int num=100;

char *str=”I am Global”;

void main()

{

int num=30;

clrscr();

char *str=”I am in main\n”;

cout<<str;

cout<<“Local num=”<<num<<“\t”;

:: num= :: num+10;

cout<<“Global num=”<< :: num<<endl;

cout<<“Global str=”<< :: str<<endl;

{

int num=40;

char *str=”I am in block1\n”;

120 Object-Oriented Programming C++ Simplified

cout<<str;

cout<<“Local num=”<<num<<“\t”;

:: num= :: num*2;

cout<<“Global num=”<< :: num<<“\n”;

cout<<“Global str=”<< :: str<<endl;

}

{

int num=50;

char *str=”I am in block 2\n”;

cout<<str;

cout<<“Local num=”<<num<<“\t”;

:: num= :: num/2;

cout<<“Global num=”<< :: num<<“\n”;

cout<<“Global str=”<< :: str<<endl;

}

getch();

}

OUTPUT :

I am in main

Local num =30 Global num=110

Global str =I am Global

I am in block1

Local num =40 Global num=220

Global str =I am Global

I am in block 2

Local num =50 Global num=110

Global str =I am Global

EXPLANATION : In the program we have taken a global variable str of char* type along

with int num. We have also done arithmetic on global num shown in bold. The rest is simple

to understand

/*PROG 4.4 DEMO OF SCOPE RESOLUTION OPERATOR :: VER 4*/

#include<iostream.h>

#include<conio.h>

int g1;

float g2;

char g3[10];

void main()

{

Operators and References in C++ 121

int g1;

float g2;

char g3[10];

clrscr();

cout<<“Enter an int, float and a string for global

data\n”;

cin>> :: g1>> :: g2>>g3;

cout<<“Enter an int,float and a string for local

data\n”;

cin>>g1>>g2>>g3;

cout<<“Local Data\n”;

cout<<g1<<“\t”<<g2<<“\t”<<“\t”<<g3<<endl;

cout<< :: g1<<“\t”<< :: g2<<“\t”<< :: g3<<endl;

getch();

}

OUTPUT :

Enter an int, float and a string for global data

234 56.78 Hari

Enter an int, float and a string for local data

456 34.56 Pandey

Local Data

456 34.560001 Pandey

Global Data

234 56.779999 Hari

EXPLANATION : Just like we take value in the local variable we can also take values for

global variables. In the program we have three global variables :: g1 and g2 of type int and float

and g3 of an array of size 10 of char type. In the main we are having same type and same name

for local variable. To differentiate them again we make use of :: .

/*PROG 4.5 DEMO OF SCOPE RESOLUTION OPERATOR :: VER 5*/

#include<iostream.h>

#include<conio.h>

int g1;

g1=123;

float g2;

g2=123.45;

char *g3;

g3=”Global”;

void main()

{

122 Object-Oriented Programming C++ Simplified

clrscr();

cout<<“Global data\n”;

cout<< :: g1<<“\t”<< :: g2<<“\t”<< :: g3<<endl;

getch();

}

OUTPUT :

Multiple Errors

EXPLANATION : global variable must be initialized while declaring. You cannot separate

the declaration and initialization of global variable. You will get the compilation error missing

storage class or type specifies.

/*PROG 4.6 DEMO OF SCOPE RESOLUTION OPERATOR :: VER 6*/

#include<iostream.h>

#include<conio.h>

int num=20;

void main()

{

int num=30;

clrscr();

cout<<“Local num\n”;

cout<<“Value=”<<num<<“\t”<<“address=”<<&num<<endl;

cout<<“Global num\n”;

cout<<“Value =”<< :: num<<“\t”<<“Address=”<<& :: num<<endl;

getch();

}

OUTPUT :

Local num

Value =30 address=0x8fdcfff4

Global num

Value =20 Address=0x8fdc00aa

EXPLANATION : The program simply demonstrate how we can take address of a global

data.

4.3 REFERENCE VARIABLES

Reference variable is a new concept in C++. A reference variable is a variable which can take

reference of a previous defined variable or any constant. As an example :

int x = 10;

int &refx = x;

Operators and References in C++ 123

The line int & refx = x; creates a reference variable refx which contains reference

of variable x. Creating a reference for a variable means creating a new name for that variable

i.e., in the above case both refx and x refer to the same memory location. Any changes done

on either of these variable refx or x reflect back to other variable. Assume initial value of

x is 10; when we write x++ and display refx we will get 11. If we now write refx++ and

display the value of x we will get 12. The figure given below that shows that address of

memory location is 1020 but it has two name x and refx. If we now try to print &x or

&refx we will get 1020.

10

x, refx(1020)

The general syntax for defining a reference variable is :

data_type &reference_name = referent;

Here & is not understood as address operator. For instance int & means reference to int.

A reference variable must be initialized when it is declared i.e., if you write int & x; and

later write x = y will be invalid.

/*PROG 4.7 DEMO OF REFERENCE VARIABLE VER 1*/

#include<iostream.h>

#include<conio.h>

void main()

{

int x=10;

int &refx=x;

clrscr();

refx++;

cout<<“x=”<<x<<endl;

cout<<“refx=”<<refx<<endl;

getch();

}

OUTPUT :

X=11

Refx=11

EXPLANATION : The statement int &refx =x; creates a reference variable refx which

contains reference of variable x. As mentioned earlier a reference variable has to be initialized.

You cannot write int &refx. Creating a reference like creating a new name for the same variable

so any changes made in refs occurs in x and vice versa. So the output.

/*PROG 4.8 DEMO OF REFERENCE VARIABLE VER 2*/

#include<iostream.h>

#include<conio.h>

124 Object-Oriented Programming C++ Simplified

void main()

{

float f=23.34;

float &reff=f;

char *s=”hello”;

char * &refs=s;

clrscr();

reff++;

cout<<“f=”<<f<<“\t”<<“reff=”<<reff<<endl;

f++;

cout<<“f=”<<f<<“\t”<<“reff=”<<reff<<endl;

*s=’M’;

cout<<“s=”<<s<<“\t”<<“refs=”<<refs<<endl;

*refs=’P’;

cout<<“s=”<<s<<“\t”<<“refs=”<<refs<<endl;

getch();

}

OUTPUT :

f=24.34 reff =24.34

f=25.34 reff =25.34

s=Mello refs =Mello

s=Pello refs =Pello

EXPLANATION : In the program we have two reference variables : one reff for float

variable f and other refs for char* variable s. Note how to create reference variable for a string.

In the program we change the value of variable f twice. One is through f itself and second is

through reference variable reff. As both the name refers to the same location, change s made

by one appears to another. The overall effect is increment value of f twice. So the output. As

refs contains reference of s, writing *s=’M’ changes the first character of the string “hello”,

string becomes “Mello”. Again as refs and s refer to same memory location so output “Mello”

is printed for both s and res. Next change is made through refs in the string. Next time string

s becomes “Pello”.

/*PROG 4.9 TAKING REFERENCE OF A REFERENCE VARIABLE VER 1*/

#include<iostream.h>

#include<conio.h>

void main()

{

char ch =’p’;

char & rch =ch;

char & rch1=rch;

Operators and References in C++ 125

clrscr();

rch++;

cout<<“ch=”<<ch<<“\t”<<“rch=”<<rch<<“\t”

<<“rch1=”<<rch1<<endl;

rch1++;

cout<<“ch=”<<ch<<“\t”<<“rch=”<<rch<<“\t”

<<“rch1=”<<rch1<<endl;

getch();

}

OUTPUT :

ch=q rch=q rch1=q

ch=r rch=r rch1=r

EXPLANATION : The statement char &rch=ch; creates a reference rch to ch.

diagrammatically this is shown as follows :

Ch, rch

This diagram shows memory cell having the two name ch and rch. In the next statement

char & rch1=rch;

We are creating a reference to rch1 which already was a reference variable. So diagram

now becomes :

P

Ch, rch, rch1

That is three different name s refer to the same memory location. The first line of output

justifies what I have explained just now. As all three name refer to the same location changes

done in rch1 by writing rch1++ will affect the value of ch and rch too. So the second line of

output.

/*PROG 4.10 DEMO OF CONSTANT REFERENCE */

#include<iostream.h>

#include<conio.h>

void main ()

{

int x=10;

const int & cref=x;

clrscr();

x=20;

cout<<“cref=”<<cref<<endl;

cref++;// line causes error

126 Object-Oriented Programming C++ Simplified

cout<<“cref=”<<cref<<endl;

getch();

}

OUTPUT :

Error message

Cannot modify a constant object

EXPLANATION : The statement const int & cref= x; creates a constant reference to x. The

constant reference cannot be changed by any means. As we write x=20; x changes; no error

is generated and value in cref will be 20. But when you try to change value of cref you will

get compilation error as you cannot modify constant reference.

/*PROG 4.11 TAKING REFERENCE OF A CONSTANT */

#include<iostream.h>

#include<conio.h>

void main()

{

const int x=10;

int & ref=x;

clrscr();

ref=20;

cout<<“ref=”<<ref<<“\t”<<“x=”<<x<<endl;

getch();

}

Output :

ref=20 x=10

EXPLANATION : In the program we are taking reference of an int constant into ref.

Through ref we are trying to change value of x. This won’t be allowed in visual studio c++
compiler but will work in Turbo C++.

/* PROG 4.12 TAKING REFERENCE OF AN ARRAY*/

#include<iostream.h>

#include<conio.h>

void main()

{

int arr[]={10,20,30,40,50};

int (&ptr)[5]=arr;

int i;

clrscr();

for(i=0;i<5;i++)

Operators and References in C++ 127

ptr[i]=i+1;

cout<<“Array elements \n”;

for(i=0; i<5; i++)

cout<<arr[i]<<“ “;

cout<<endl;

getch();

}

OUTPUT :

Array elements

1 2 3 4 5

EXPLANATION : We can create an array of reference as shown in the program. Now ptr

can be treated as a new name for array arr. Through this new name for array we modify the

array and later display the array using arr. We get the modified array elements.

4.4 THE BOOL DATA TYPE

The bool data type is a new data type in C++ which is used with Boolean values. We can

create variables of type bool type which can store any true or false value. Even we can assign

integer values to bool type variables. Any non zero value is termed as true and any 0 value

is considered as false. Integer value 1 is used to represent true and 0 for representing

false. We can also use keywords true and false for representing true and false value.

/*PROG 4.13 DEMO OF BOOL DATA TYPE VER 1*/

#include<iostream.h>

#include<conio.h>

void main()

{

int x=20,y=40;

bool b1,b2,b3,b4,b5;

clrscr();

b1=x;

b2=y;

b3=x>y;

b4=true;

b5=false;

cout<<“b1=”<<b1<<endl;

cout<<“b2=”<<b2<<endl;

cout<<“b3=”<<b3<<endl;

cout<<“b4=”<<b4<<endl;

cout<<“b5=”<<b5<<endl;

128 Object-Oriented Programming C++ Simplified

getch();

}

OUTPUT :

b1=1

b2=1

b3=0

b4=1

b5=0

EXPLANATION : Any non zero value is taken as true and 0 value as false for bool data

type. In the program we have created 5 variables of bool data types. The output is self-explanatory.

/*PROG 4.14 DEMO OF BOOL DATA TYPE VER 2 */

#include<iostream.h>

#include<conio.h>

void main()

{

int x=20,y=40,z;

bool b1,b2,b3;

clrscr();

b1=x+y;

b2=true + true;

z=true + true;

b3=b1+b2+false;

int bx=b3+b2;

cout<<“b1 =”<<b1<<endl;

cout<<“b2 =”<<b2<<endl;

cout<<“b3 =”<<b3<<endl;

cout<<“bx =”<<bx<<endl;

cout<<“z =”<<z<<endl;

getch();

}

OUTPUT :

b1 =1

b2 =1

b3 =1

bx =2

z =2

EXPLANATION : In the program note that true + true assigned to a bool type variable

store 1 in that variable but assigned to an int type variable stores 2. Any arithmetic operation

performed on bool type variables result a Boolean value i.e., either true or false.

Operators and References in C++ 129

4.5 THE OPERATOR NEW AND DELETE

When we declare variables, arrays, structure (in definition) etc., the memory for them is allocated

at the compile time. This allocation is static allocation. When you declare the array say int a[5]

we give the size of array i.e., number of elements. We just cannot take input for x from user

during program execution and declare the array by writing int a[x]. Memory for array in the

above declaration is allocated at compile time so compiler requires the size of the array. The

size once fixed cannot be changed during the program execution. This may sometimes results

in wastage of memory when size specified in the beginning is more than actually used in the

program.

When you write your C++ program, the program’s data and code is stored in the RAM.

All the local and global variables used in the program are stored in a fixed area of memory

allocated to that program. This are allocated is fixed and remain constant during the execution

of the program. The local variable are always stored on the stack and are destroyed automatically

as soon as control goes out of scope. Global and static variables are known as load time

variables they come into existence at the time of loading of the program. Thus, we can say that

global and local variables are efficiently handled by C++ compiler. But the programmer must

know the amount of space required for every program.

The technique through which a program can obtain space in the RAM during the execution

of the program and not during compilation is called dynamic memory allocation. In this method

space for the variables (array, strings, structure etc) is allocated from a free memory region

which is known as heap. This area is not fixed in nature and keep changing as the memory

is allocated and de-allocated from this region. The entire run time view of memory for a

program is given below.

Dynamic memory allocation is the allocation of memory at run time i.e., when program

executes then required memory is asked from the user and memory is allocated with the help

of operator new.

Code Area

Initialized data

Uninitialized data

Heap

Stack

Figure 4.1. Run time memory area of a C++ program

130 Object-Oriented Programming C++ Simplified

Allocation of memory for the variables at run time is known as dynamic memory allocation.

The allocated memory can be freed also. For allocation of memory dynamically at run time

C++ provides new operator. For de-allocation C++ provides delete operator. In C we were

having malloc and free for allocation and de-allocation of memory. Memory allocated using

new persist till we explicitly destroy it using delete. The syntax of using new is simple which

is given below :

data_type *ptr = new data_type;

Here ptr is a variable of data_type. Memory is allocated by finding the size of data_type
automatically by the compiler and address of the allocated memory is returned which is stored

in ptr. Few examples are given as follows :

int *ptr = new int;

char *ch = new char;

float *fp = new float;

Later we can assign values to the variable created as:

*ptr = 34;

*ch = ‘p’;

*fp = 45.67;

We can also initialize the pointer variable while allocating memory using new. See the

example given below:

int *ptr = new int (10);

cout<<*ptr; // prints 10

float *fp = new float (34.56);

cout<<*fp; // prints 34.56

We can also create memory dynamically for arrays, strings and even for user defined data

types. For creating array of size 10 dynamically of integer type we write as :

int *ptr = new int [10];

The above statement creates a memory block of size 40 (int in windows takes 4 bytes) and

returns a pointer to the first byte. Now we can treat ptr as an array of 10 elements and can refer

any array element as ptr[i] or *(ptr + i). We can even create 2D or 3D array dynamically.

In case sufficient memory is not available the new operator returns null pointer. Thus

prior to work with dynamically allocated variables we can check whether pointer returned by

new is not equal to null. This is given as:

buff = new char[57000];

if (buff = = null)

{

 code for handling;

}

The delete operator can be used to delete memory previously allocated by new operator.

For instance if ptr points to memory allocated by new and when this memory is no longer

required we can delete it by writing

Operators and References in C++ 131

delete ptr;

For deleting a dynamically created array pointed by ptr we can write.

delete [] ptr;

/*PROG 4.15 DEMO OF NEW AND DELETE VER 1 */

#include<iostream.h>

#include<conio.h>

void main()

{

int *p=new int;

*p=20;

char *ch=new char(‘p’);

float *fp=new float(2.34);

cout<<“int value=”<<*p<<“\t”<<“Address=”<<p<<endl;

cout<<“charvalue=”<<*ch<<“\t”<<“Address value=”

<<(void *)ch<<endl;

cout<<“Float value=”<<*fp<<“\t”<<“Address=”<<fp<<endl;

delete p;

delete ch;

delete fp;

getch();

}

OUTPUT :

Array elements

1 2 3 4 5

int value =20 Address=0x8f98128e

char value =p Address value=0x8f981296

Float value =2.34 Address=0x8f98129e

EXPLANATION : In the program 3.15, we have created three dynamic variables of type

int, char and float using dynamic memory allocator new. Both the syntaxes have been used in

the program. Note while displaying address of char type dynamic type casting by void* is done.

If this is not done than compiler assumes ch is the address of a string and it will start

displaying character stored at the memory locations beyond ch till null character is not found.

So you may have in output character P followed by garbage data. In the end memory allocated

dynamically is freed using delete operator.

132 Object-Oriented Programming C++ Simplified

/*PROG 4.16 ALLOCATING MEMORY FOR STRING*/

#include<iostream.h>

#include<conio.h>

void main()

{

int n;

clrscr();

cout<<“Enter the length of your name\n”;

cin>>n;

char *str=new char[n+1];

cout<<“Enter you name\n”;

cin>>str;

cout<<“Hello “<<str<<endl;

delete str;

getch();

}

OUTPUT :

Enter the length of your name

8

Enter you name

MADHURI

Hello MADHURI

EXPLANATION : In the program 3.16, we are first taking the length of the name from user

in variable unknowing this will allow us to determine how much memory to allocate dynamically.

The statement char *str= new char[n+1]; allocates memory dynamically from heap of

size n + 1 bytes (1 for null character) and returns address of the first byte of allocated

memory which is assigned to char type pointer str. Next string is taken from the user and

displaying. In the end memory is freed using delete.

/*PROG 4.17 ALLOCATING & DE-ALLOCATING MEMORY DYNAMICALLY FOR ARRAY USING

NEW AND DELETE OPERATOR*/

#include<iostream.h>

#include<conio.h>

#include<stdlib.h> //for exit ()

void main()

{

int i,n;

clrscr();

Operators and References in C++ 133

cout<<“How many elements you want in array\n”;

cin>>n;

int* arr=new int[n];

for(i=0;i<n;i++)

{

cout<<“\n Enter arr[“<<i<<“] element :”;

cin>>arr[i];

}

int ele;

cout<<“Enter the element you want to search\n”;

cin>>ele;

for(i=0;i<n;i++)

{

if(arr[i]==ele)

{

cout<<“Element foun at”<<“index “<<i<<endl;

exit(0);

}

}

delete arr;

cout<<“Element does not exist in array\n”;

getch();

}

OUTPUT :

(First run)

How many elements you want in array

10

 Enter arr[0] element :10

 Enter arr[1] element :20

 Enter arr[2] element :30

 Enter arr[3] element :40

 Enter arr[4] element :40

 Enter arr[5] element :50

134 Object-Oriented Programming C++ Simplified

 Enter arr[6] element :60

 Enter arr[7] element :70

 Enter arr[8] element :80

 Enter arr[9] element :90

Enter the element you want to search

30

Element foun at index 2

(Second run)

How many elements you want in array

10

 Enter arr[0] element :12

 Enter arr[1] element :13

 Enter arr[2] element :14

 Enter arr[3] element :15

 Enter arr[4] element :16

 Enter arr[5] element :17

 Enter arr[6] element :18

 Enter arr[7] element :19

 Enter arr[8] element :20

 Enter arr[9] element :21

Enter the element you want to search

10

Element does not exist in array

EXPLANATION : In the beginning size for the array is taken and stored in n. Memory is

allocated for this size using statement int *arr = new int[n];. From now onwards arr

is treated as an array of size n. The element to search is taken in the variable ele. Using for

Operators and References in C++ 135

loop it is checked whether any of the element of the array matches with ele. If so we display

the position of the element. If element is not in the array, for loop exhausts and in the end we

display Element does not exist in array.

/* PROG 4.18 DEMO OF ARRAY OF POINTERS AND NEW OPERATOR*/

#include <iostream.h>

#include <stdlib.h>

void main()

{

int n,i;

cout<<“How many elements you want in array\n”;

cin>>n;

int*arr=new int [n];

int **ptr=new int*[n];

for(i=0;i<n;i++)

{

cout<<“\n Enter arr[“<<i<<“]element : “;

cin>>arr[i];

ptr[i]=&arr[i];

}

cout<<“Element\t\t Address\n”;

for(i=0;i<n;i++)

{

cout<<*ptr[i]<<“\t\t”<<ptr[i]<<endl;

}

delete arr;

delete [] ptr;

}

OUTPUT :

How many elements you want in array

5

 Enter arr[0]element : 12

 Enter arr[1]element : 13

 Enter arr[2]element : 14

 Enter arr[3]element : 15

136 Object-Oriented Programming C++ Simplified

 Enter arr[4]element : 16

Element Address

12 0x8fd20f00

13 0x8fd20f02

14 0x8fd20f04

15 0x8fd20f06

16 0x8fd20f08

EXPLANATION : The statement int*arr [] = new int [n]; creates an array of

size n dynamically. To store addresses of array elements an array of pointers by writing int
**ptr = new int *[n]. In the for loop we assign addresses of array element arr of

element array ptr. Now, ptr [0] and &ptr [0] is same. For value arr [0] and *ptr [0]
is same. Using ptr array we display address and element of the array arr.

/*PROG 4.19 DYNAMIC MEMORY ALLOCATION FOR 2-D ARRAY */

#include <iostream.h>

#include <conio.h>

void main()

{

int **ptr;

int i,j;

int row,col;

clrscr();

cout<<“Enter the number of rows\n”;

cin>>row;

cout<<“Enter the number of columns\n”;

cin>>col;

ptr=new int *[row];

for(i=0;i<row;i++)

ptr[i]=new int [col];

int *max= new int [row];

for(i=0;i<row;i++)

for(j=0;j<col;j++)

{

cout<<“\nEnter ptr[“<<i<<“] element : “;

cin>>*(*(ptr+i)+j);

}

cout<<“\n\n Matrix is \n”;

for(i=0;i<row;i++)

Operators and References in C++ 137

{

for(j=0;j<col;j++)

cout<<ptr[i][j]<<“ “;

cout<<endl;

}

for(i=0;i<row;i++)

{

max[i]=ptr[i][0];

for(j=1;j<col;j++)

{

if(max[i]<ptr[i][j])

max[i]=ptr[i][j];

}

}

cout<<“Max of each row is as follows\n “;

for(i=0;i<row;i++)

cout<<“Row”<<i+1<<“->”<<max[i]<<endl;

delete [] ptr;

delete max;

getch();

}

OUTPUT :

Enter the number of rows

3

Enter the number of columns

3

Enter ptr[0] element : 1

Enter ptr[0] element : 2

Enter ptr[0] element : 3

Enter ptr[1] element : 4

Enter ptr[1] element : 5

Enter ptr[1] element : 6

Enter ptr[2] element : 7

138 Object-Oriented Programming C++ Simplified

Enter ptr[2] element : 8

Enter ptr[2] element : 92

 Matrix is

1 2 3

4 5 6

7 8 92

Max of each row is as follows

Row1->3

Row2->6

Row3->92

EXPLANATION : To create a 2-D array dynamically we will have to take a double

pointer. Initially the pointer ptr points to memory allocated for 3 rows. The statement ptr=
new int *[row]; creates an array of pointer of size row. As each of the row will consists

of a 1-D array of 3 elements so using for loop for the number of row (here 3 in output)

we allocated memory for columns (Here 3 in output) using

 for(i=0; i< row; i++)

 ptr[i] = new int [col];

We are having three rows here so ptr[0] points to first 1-D array. ptr[1] points to the

second 1-D array and ptr[2] points the third 1-D array. Now, the pointer ptr can be treated as

a 2-D array (combination of three 1-D array). To access any of the element we can write say

ptr[i][j] or *(*(ptr+i) +j).

For finding maximum of each row we have created a dynamic array max of size row.

Initially first element of each row is considered as maximum. Then running a for loop for each

row we find maximum of element of the row.

To delete the 2-D array we write delete [] ptr. This statement first de-allocates

memory each row and later deletes pointer itself.

/*PROG 4.20 DYNAMIC ARRAY OF STRINGS */

#include <iostream.h>

#include <conio.h>

void main()

{

int n,i;

clrscr();

cout<<“Enter how many strings \n “;

cin>>n;

char **ptr = new char*[n];

int *len=new int [n];

Operators and References in C++ 139

for(i=0;i<n;i++)

{

cout<<“\n Enter the length of string no.”<<i+1<<endl;

cin>>len[i];

cout<<“\nEnter string no.”<<i+1<<endl;

ptr[i]= new char [len[i]+1];

cin>>ptr[i];

}

cout<<“STRING \t\t LENGTH\n”;

for(i=0;i<n;i++)

cout<<ptr[i]<<“\t\t”<<len[i]<<endl;

delete len;

delete [] ptr;

getch();

}

OUTPUT :

Enter how many strings

3

Enter the length of string no.1

6

Enter string no.1

Hari

Enter the length of string no.2

6

Enter string no.2

Ranjana

Enter the length of string no.3

7

Enter string no.3

Manmohan

STRING LENGTH

Hari 6

Ranjana 6

Manmohan 7

EXPLANATION : The statement creates an array of char type pointers ptr of size n.

ptr[0] will points to first string, ptr[1] to second and so on. Using for loop we first ask

the length of the each string in turn. We then allocate memory for each string dynamically

using statement ptr[i] = new char [len[i]+1];. After allocation of memory string from

user is taken as input and assigned to ptr[i]. In the end we display the string and their

length.

140 Object-Oriented Programming C++ Simplified

4.6 MALLOC VS NEW

There are numbers of differences between the two:

1. malloc cannot be overloaded whereas new can be.

2. The new operator can be used to create objects.

3. The default return type for malloc is void * whereas new returns the appropriate

pointer type i.e., int in case of int, float in case of float and pointer to user defined

data types when memory is allocated for objects or structures.

4. new operator automatically calculates size of object depending upon data type. No

need to use sizeof operator.

4.7 POINTER MEMBER OPERATORS

There are three operators which are used with pointers to members or pointer to objects. It is

advised that you first clear your concepts of class then refer this section. The three operations

are :

1. :: * known as pointer to member decelerator.

2. ->* known as pointer to member deference operator (through pointer).

3. .* known as pointer to member dereference operator (through value).

To create a pointer to a member of class :: * operator is used. The general syntax is:

data_type class_name :: *ptr_name =&class_name :: member _name;

For example, for a class demo having an int data member named data, pointer can be

declared as :

int demo :: * ptr = &demo :: data;

To understand it more clearly recall how to create a pointer to an integer and store address

of data. We will be written as:

int * ptr = &data;

Now on the left side of = operator between int and *ptr simply insert demo :: and on the

right side of = operator between & and data insert demo :: . What you get ?

int demo :: * ptr = &demo :: data;

See how it is easy to define pointer to a class member.

After defining pointer ptr it can be used as:

demo d;

d.*ptr = 20; // assign value 20 to num of object d.

cout<<d.num<<endl; //display value 20.

Once a pointer has been created as shown in the above manner it will be available for all

the objects created for the class. Similar to creating pointer for the data member of the class

we can also create pointers for the objects also. For a class demo :

demo d;

demo *ptr = &d;

Operators and References in C++ 141

Now data members or functions can be accessed as ptr -> num or (*ptr). Num

ptr -> input (x), ptr->show()etc.

The -> operator is known as pointer to member operator. On the left of this there will

always be a pointer.

Just like we create pointer to data member we can also create pointer to member functions

of the class. But before telling you how to do it. We see how to create pointer to normal

functions which are not member functions of the class. We take two examples:

void show ();

int disp(int, float);

For creating a pointer to a function we have to note the prototype of the function. In the

program the return type of the function is void and function takes no argument. To create the

pointer to this type of function we write in this manner.

void (*pf) ();

Here pf is pointer to function takes no argument. Parenthesis around *pf is must otherwise

it will become void *pf(void); which means pf is function which takes no argument and which

return an address of type void.

For second function return type is int and function takes two arguments of type int and

float. To create a pointer to function of this type we write.

int (*pdisp)(int, float);

The above declaration tells the compiler that pointer pdisp is a pointer to function which

can store address of a function whose return type is int and takes two arguments of type int

and float.

Both the pointer to function pointers can be used as :

pf = &show (); // assigning address of function show

(*pf) (); // calls function show using pointer

pdisp =&disp; // assigning address of function disp

int ans=(*pdisp)(20,34.5f);//callfunction disp using pointer.

The ampersand (&) is not necessary as name of the function alone represent its address.

Now, assume both the above mentioned functions show and disp are public members of

class demo. We now see how to create pointer to these functions of demo class.

We first write for function show. The return type is void and function does not take any

argument. Follow the same ways as we did earlier but simply insert the demo :: as.

void (demo :: *pf) () = &demo :: show;

Similarly for the disp function we write as :

int (demo :: &pdisp)(int, float) = &demo :: disp;

Now, for an object d of demo class, function can be called as :

(d.*pf) (); and int ans = (d.*pdisp)(20, 34.56f);

142 Object-Oriented Programming C++ Simplified

/*PROG 4.21 DEMO OF POINTER TO CLASS MEMBERS VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

int num;

};

void main()

{

int demo :: *ptr=&demo :: num;

demo d;

clrscr();

d.*ptr = 30;

cout<<“Number is := “<<d.num<<endl;

getch();

}

OUTPUT :

Number is : = 30

EXPLANATION : The class demo has simply one public member num. In the main we

declare pointer ptr of demo class to hold the address of the data member num. Note num being

public can be accessed outside the class. If it were private then we would not have used it

outside the class.

/*PROG 4.22 DEMO OF POINTER TO CLASS MEMBERS VER 2*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

int num;

float f;

char *str;

};

void main()

{

int demo :: *iptr=&demo :: num;

float demo :: *fptr=&demo :: f;

Operators and References in C++ 143

char *demo :: *cptr=&demo :: str;

demo d;

clrscr();

d.*iptr=30;

d.*fptr=24.56;

d.*cptr=”Object orinted Programming C++”;

cout<<“num := “<<d.num<<endl;

cout<<“f := “<<d.f<<endl;

cout<<“str := “<<d.str<<endl;

getch();

}

OUTPUT :

num := 30

f := 24.559999

str := Object orinted Programming C++

EXPLANATION : In the program we have declared pointers to all the data members of the

class. Here it is noticeable that the assignment to data members of class has been done using

pointers to members as :

d.*iptr =30

d.*fptr = 24.56

d.*cptr=”Object Oriented Programming C++”

Later we will display these values using data member’s num, f and str.

/*PROG 4.23 DEMO OF POINTER TO CLASS MEMBERS VER 3*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

int num;

};

void main()

{

int demo :: *iptr=&demo :: num;

demo d;

clrscr();

d.*iptr=30;

cout<<“num := “<<d.num<<endl;

144 Object-Oriented Programming C++ Simplified

demo d1;

d1.*iptr=50;

cout<<“num := “<<d.*iptr<<endl;

cout<<“nun :=”<<d1.*iptr<<endl;

getch();

}

OUTPUT :

num := 30

num := 30

nun := 50

EXPLANATION : The aim of this program is to simply show that once you have declared

a pointer to any member if the demo class that pointer to member will become part of every

object created as a separate copy. Here for two different object d and d1 separate copies of iptr

is available.

/*PROG 4.24 POINTER TO MEMBER AND POINTER TO OBJECT */

#include <iostream.h>

#include <conio.h>

class demo

{

public :

int num;

};

void main()

{

int demo :: *iptr=&demo :: num;

demo d,*ptr;

clrscr();

ptr=&d;

d.*iptr=30;

cout<<“num= “<<d.num<<endl;

cout<<“num= “<<d.*iptr<<endl;

cout<<“num= “<<(&d)->num<<endl;

cout<<“num= “<<(&d)->*iptr<<endl;

cout<<“num= “<<ptr->num<<endl;

cout<<“num= “<<(*ptr).num<<endl;

cout<<“num= “<<(*ptr).*iptr<<endl;

Operators and References in C++ 145

cout<<“num= “<<ptr->*iptr<<endl;

getch();

}

OUTPUT :

num= 30

num= 30

num= 30

num= 30

num= 30

num= 30

num= 30

num= 30

EXPLANATION : In the program we have an object d and a pointer of demo class ptr

which hold the address of object d. We also have a pointer to member iptr which hold address

of data member’s num. Now note the following :

(a) As address of num is held by iptr, writing num or *iptr is same.

(b) Address of object d is held by ptr writing d and *ptr is same.

(c) num or *iptr can be access either by object or pointer ptr as

(d) num or d.*iptr; // using object d.

ptr-> num or ptr ->*iptr; // using pointer ptr,

As &d is an address we can also write (&d) -> num and (&d) -> *iptr. Again as

*ptr and d is same we can (*ptr).num and (*ptr). *ptr.

/*PROG 4.25 POINTER TO FUNCTION*/

#include <iostream.h>

#include <conio.h>

void show();

int sum(int,int);

void main()

{

void (*pshow)();

int(*psum)(int,int);

clrscr();

pshow=show;

psum=sum;

(*pshow)();

int x=(*psum)(30,30);

cout<<“x= “<<x<<endl;

146 Object-Oriented Programming C++ Simplified

getch();

}

int sum(int x,int y)

{

return x+y;

}

void show()

{

cout<<“HELLO\n”;

}

OUTPUT :

HELLO

x= 60

EXPLANATION : In the program we have two function show and sum. Inside the main

two pointers to functions for show and sum are created. The process is explained earlier. Next

we call the function using these pointers.

/*PROG 4.26 POINTER TO MEMBER FUNCTION OF CLASS VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

int num;

void show();

int max(int);

};

void demo :: show()

{

cout<<“num= “<<num<<endl;

}

int demo :: max(int x)

{

if(x>num)

return x;

else

return num;

}

Operators and References in C++ 147

void main()

{

void (demo :: *pshow)()=&demo :: show;

int (demo :: *pmax)(int)=&demo :: max;

demo d;

clrscr();

d.num=30;

int x= 60;

cout<<“x= “<<x<<endl;

(d.*pshow)();

int m=(d.*pmax)(x);

cout<<“max= “<<m<<endl;

getch();

}

OUTPUT :

x= 60

num= 30

max= 60

EXPLANATION : Read the explanation of the beginning program.

4.8 PONDERABLE POINTS

1. A reference variable is new name for a variable.

2. A block can be created in a program by using {and}.

3. A reference must be initialized when it is declared.

4. All variables declared in the block are considered local to that block and cannot outside
the class.

5. A bool data type can store logical values true and false. Any nonzero value is considered
true and 0 value is considered false.

6. The operator :: is known as scope resolution operator and is used for two purpose :

Purpose1 :- Accessing global variables and functions

Purpose2 :- Resolving functions to which class they belong.

7. In c++ memory can be allocated dynamically using operator new and can be de-allocated
using delete operator.

8. An array of reference cannot be created but a reference to an array can be created.

9. To delete a pointer ptr pointing to memory block allocated by new we can write delete p.

10. The operator .* and ->* are known as pointer to member access operator.

11. To delete a 2-D array we have to write [] ptr.

12. The operator :: * is known as pointer to member declarator.

13. delete can only be used to de-allocate memory previously allocated by new operator.

148 Object-Oriented Programming C++ Simplified

EXERCISE

A. True and False :

1. Array of reference can be created.

2. Size of an array can be altered dynamically.

3. A pointer to a constant can be deleted using delete operator.

4. We can create pointers to a reference variables.

5. The new operator always returns a void pointer.

B. Fill in the Blanks :

1. The operator should only be applied to pointers that have been allocated explicitly by
the new operator.

2. A variable can be accessed using :: operator.

3. A reference type variable must be

4. Memory allocation at run time is known as

5. is known as scope resolution operator.

6. Memory allocation at compile time is known as

7. We cannot create of reference.

C. Answer the Following Questions :

1. What is the use of scope resolution operator ? Explain with suitable example.

2. What is reference ?

3. What is constant reference ?

4. How the memory is allocated and managed in C++ ?

5. Can we create array of bool data type ?

6. How to create pointer to functions ?

7. How to use bool data type in your C++ program ?

8. Explain how to declare pointer to member of a class ?

9. How the operator new and delete works ?

10. Why new is better than malloc ?

11. Write code for allocating 3-D dynamically using new.

D. Brain Drill :

1. Write a program to allocate memory for 10 string using new and display them.

2. Allocate memory for an array of 10 integers using malloc. After displaying the string de-allocate
the memory using delete. Observe what you get ?

3. Write a program to find range of given data type.

4. Allocate memory for a string using new. After displaying the string de-allocate the memory using
free. Observe what you get ?

5. Write a class which has two data members. Find maximum of these data members using pointers
to member, pointer to object and pointer to functions.

6. Write a program to allocate memory dynamically for a 3-D array. After displaying the array

de-allocate the memory using delete.

���

FUNCTION IN C++

5.1 INTRODUCTION

A function is a self contained block of code written once for a particular purpose but can be
used again and again. A functiion is a basic entity for C programming language. Even the
execution of our program starts from main function. They are the basic building blocks for
modular programming.

Depending upon parameters and return type (discussed later) functions are classified into
four categories :

(1) No return type and no arguments/parameters.
(2) No returns type but arguments/parameters.
(3) Return type but no arguments/parameters.
(4) Return type with arguments/parameters.
There are numbers of functions which we have used so far like s trlen () , strcpy () ,

exit () etc. All these functions are library functions or built-in functions i.e., they are already
there in the C++ programming language and we can use them in our programs. Again each
of these function belong to one of the categories given below. The limitations of these functions
are that their code cannot be known, we can simply use them, and no modification can be
done.

All the built-in functions have their prototype or declaration stored in their respective
header files. For example, function declaration of strlen and strcpy is stored in header file
string.h. The definitions of all the functions i.e., the actual function code (what they do) is
stored in compiled form in .obj files and are linked to the program during compilation and
linking. The compiled code is stored in .obj file. Thus, we can simply use the built-in functions
in our program but we cannot modify them as their code is not available to the programmer.

We can write our own functions depending upon requirements and all those functions
will be called user-defined functions as they are defined by the user and be put in any of the
categories given above.

One important point to note here is that main () is not a library function. It is simply a
restriction from C++ compiler that we have to use this function for our programming as

149

150 Object-Oriented Programming C++ Simplified

execution starts from this function. So, this can be put into the user defined function. Our

whole discussion will be totally based on user defined functions.

5.2 FUNCTION DECLARATION/PROTOTYPING

In C++ each function used must be declared first. The declaration of the function is also

termed as prototyping. A function prototype tells the compiler three things about a function :

1. It’s name.

2. Return type.

3. Number of arguments.

For example : To write a function for sum which takes two argument of type int and

return an int can be written as :

int sum (int, int);
Arguments
Function name Function

Prototype

Return type of function

The above statement tells the compiler that sum is a function which accepts two parameters

of type int and return type of function is int. We give few example of function.

/*PROG 5.1 DEMO OF FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

void main()

{

void show();

clrscr();

show();

}

void show()

{

cout<<“Hello from show function\n”;

}

OUTPUT :

Hello from show function

EXPLANATION : The line void show () is called declaration or prototype of the function.

The general syntax is given above :

void function_name ();

Function in C++ 151

In the above context void is the return type, show is the function name and () after

function show indicates that this show function does not take any argument. Whenever you

have () after any name then that is a function. Obviously you may have arguments within

(). Here void means function does not take any arguments and does not return any value. The

function declaration must end with semicolon.

Actual working of the function is done by the definition of the function which is :

void show()

{

 cout<<”Hello from show function”;

 }

The function definition starts with the same syntax as given for declaration but it does

not end with semicolon and actual work which the function performs written in the form of

C++ statements within {}. All the statements within {} of the function is called body of the

function.

When we write show () it means we are calling show (). Whenever show () statement

is encountered then control is transferred to the body of the function and all statements written

the body of the function gets executed. When closing brace of the function is encountered then

function return to the next statement after from where the function was called. In C++ every

function will be called from some other function. Here we have called show () from within

main (). So main () is called calling function and show () is called called/callee function.

/*PROG 5.2 WORKING WITH TWO FUNCTIONS*/

#include <iostream.h>

#include <conio.h>

void main()

{

void show();

void disp();

clrscr();

cout<<“In main\n”;

show();

disp();

cout<<“Back in main\n”;

}

void show()

{

cout<<“In show function\n”;

}

void disp()

{

cout<<“In disp function\n”;

}

152 Object-Oriented Programming C++ Simplified

OUTPUT :

In main

In show function

In disp function

Back in main

EXPLANATION : Here we are working with two functions. Again prototype is given in the

beginning. As clear from the output initially first cout in main() is executed then show () is

called and cout within show () is executed. When show () returns disp () is called and cout

within disp) is executed. When disp() is returned second cout in main () is executed, in

the end program terminates.

/*PROG 5.3 DISPLAY OF INTEGER THROUGH FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

void main()

{

void show(int);

int a;

clrscr();

cout<<“Enter a number \n”;

cin>>a;

show(a);

cout<<“after function a=”<<a<<endl;

}

void show(int x)

{

cout<<“U entered =”<<x++<<endl;

}

OUTPUT :

Enter a number

12

U entered =12

after function a=12

EXPLANATION : The declaration void show (int) states that function show does not

return any value but accepts an argument/ parameter of int type i.e., an int variable or an

Function in C++ 153

int constant will be passed to this function. When we call the function we pass an int value

as shown by the statement show (a). Here we are calling the function show and passing a
as argument. This is known as call by value as we are calling the function and passing value

of the variable a. The a value sent must be collected in some variable in the function definition.

We collect this value in variable x. Note the type and number of arguments must match when

defining the function. Variable a in the function main is called function show a copy of a is

sent which I collected in x. In the function we simply print the value of x. The change in x

in function show does not affect the original value of a.

/*PROG 5.4 COMPUTE SQUARE OF FUNCTION AND RETURN USING FUNCTION*/

#include <iostream.h>

#include <conio.h>

void main()

{

int sqr(int);

int num, s;

clrscr();

cout<<“Enter the number \n”;

cin>>num;

s=sqr(num);

cout<<“num=”<<num<<endl;

cout<<“square of number=”<<s<<endl;

}

int sqr(int x)

{

int t;

t=x*x;

return t;

}

OUTPUT :

Enter the number

2

num=2

square of number=4

EXPLANATION : The declaration int sqr(int) tells the compiler that sqr is a function

which accepts an argument of type int and the int before function name sqr represent return

154 Object-Oriented Programming C++ Simplified

type of function sqr i.e., an int value will be returned from function sqr through return
statement. In the definition/ body of the function we calculate x*x into t and return the
value of t through statement return t. When this happens the t returns at the place from
where the function sqr was called so the statement s= sqr(num) becomes s=t. If the value
of x happens to be 5, t will have 25 when it returns and the same will be assigned to t.

Alternative function definition may be written as :

int sqr(int x);

{

 return x*x;

}

5.3 THE MAIN FUNCTION IN C++

The main function in C++ must return a value. In C++ we can define function one in two
manner as :

int main()

{

 function body;

}

OR

int main(int argc, char **argv);

Even you do not define return type of main it does not give any error but compiler simply
flashes a warning. To suppress a warning define return type of main and return value from it.
You can also write void before main but experts community says that it is a good programming
practice to return value from main.

5.4 RECURSION

Recursion is a programming technique in which a function calls itself for a number of times until
a particular condition is satisfied. It’s a very important technique to understand and once
understood many long listing of code can be reduced to a few number of lines. Recursion
basically a word mostly used in mathematics to state a new terms in previous term such as :

Xn+1 = Xn + 1 for n>=1and X1 = 1

Then we can calculate X2 in terms of X1, X3 in terms of X2 and so on.

When solving a problem through recursion two conditions must be satisfied.

1. The problem must be expressed in recursive manner.

2. There must be a condition which stops the recursion otherwise there would be a stack
overflow.

Function in C++ 155

/*PROG 5.5 DEMO OF RECURSION */

#include <iostream.h>

#include <stdlib.h>

#include <conio.h>

void main()

{

static int t;

clrscr();

if(t==7)

{

cout<<“Quit\n “;

exit(0);

}

cout<<endl<<“Hello from main”<<++t;

main();

}

OUTPUT :

Hello from main1

Hello from main2

Hello from main3

Hello from main4

Hello from main5

Hello from main6

Hello from main7

EXPLANATION : A static variable persists even when function execution comes to an end

and its default initial value is 0. When main () executes for the first time value of t is 0. if

condition falls and count after if executes. When control reaches at main () the recursion starts

as we are calling main from main. The main starts again for this call with value of t =1. Note

static int t; statement is executed only once. cout after if gets executed and main () is called

again, this time with value of t=2. This continues until t does not become 5. When t becomes

5, if condition satisfies and recursion stops.

If we do not take t as static in the above program our program will be put into an infinite

loop as there will be no condition which stops recursion. As each time main is called a new

t will be initialized with a new value, so there will be no effect of incrementing t in the cout

statement.

156 Object-Oriented Programming C++ Simplified

/*PROG 5.6 FACTORIAL OF A NUMBER USING RECURSION*/

#include <iostream.h>

void main()

{

int fact(int);

int ans;

int num;

cout<<“Enter an integer number \n”;

cin>>num;

ans=fact(num);

cout<<“Factorial is”<<ans;

}

int fact(int n)

{

return (n<1 ?1 :n*fact(n-1));

}

OUTPUT :

Enter an integer number

5

Factorial is 120

EXPLANATION : Assume n is 4, now recursion works as :

N function returns

4 4 * fact (3)

3 4 * (3 * fact (2))

2 4 * (3 * (2 * fact (1)))

1 4 * (3 * (2 * 1))

When recursion starts each call to function fact creates new set of variables here only one.

Whenever recursion starts the recursive function calls does not executes immediately (in reality

function addresses are put). They are saved inside the stack along with the value of variables.

(A stack is a data structure which grows upward from max_limit to 1. Each new item is “pushed”

in the stack takes its place above the previously entered item. The items are “popped” out in the

reverse order in which they were entered item. That’s why they are called LIFO (last in first out).

Function in C++ 157

This process is called winding in the recursion context. When recursion is stopped in the above

program when n becomes 1 and function return the value 1, all the function call saved inside

the stack are popped out from the stack in the reverse order and get executed i.e., fact (1) returns

to fact (2) fact (2) returns to fact (3) and in the end fact (3) returns to fact (4) which ultimately

return to the main. This process is called unwinding.

5.5 CALL BY REFERENCE

In the earlier chapter, we have studied how to pass value to the function (known as call by

value mechanism) and how to pass the variable to the function (known as call by address

mechanism). C++ also supports call by reference mechanism in which reference of variable

is passing as argument. As variable is passed by reference a new name is generated for the

variable passed and whatever changes we perform inside the function, they are actually done

on the actual parameter.

For example:

void show (int &); //declaration of function show takes one

//argument of int by reference

int x=10;

show(x); // function call

void show(int & y) // equalivalent to int & y=x when

// function call is made

{

y=y+10;

}

Given below we illustrates few programs which this new features of C++

/*PROG 5.7 REFERENCE VARIABLE AS FUNCTION ARGUMENT VER 1*/

#include <iostream.h>

#include <conio.h>

void main()

{

void change (int &);

int x=20;

cout<<“Before calling change \n”;

cout<<“x=”<<x<<endl;

change(x);

158 Object-Oriented Programming C++ Simplified

cout<<“After calling change \n”;

cout<<“x=”<<x<<endl;

}

void change(int & y)

{

y++;

}

OUTPUT :

Before calling change

x=20

After calling change

x=21

EXPLANATION : The declaration void change (int &); tells the compiler that

change is a function which accepts a parameter of type int by reference and returns nothing.

In the main we call the function as change (x) and pass x by reference. Note in the function

call we does not come to know that we are passing value x or reference of x. This is resolved

only when function definition is encountered. In the function definition the statement appears

as int & y= x i.e., reference of x is assigned to y. Now x and y become one name for the

common location. So any changes made in either x or in y become one name for the common

location. So any changes made in either x or y actually occurs to the data at location. In the

function change we increment the value of y by 1. This change also occurs in x. So, in the main

when we display the value of x, 21 will be displayed.

/*PROG 5.8 REFERENCE VARIABLE AS FUNCTION ARGUMENT SWAPPING TWO VALUES

VER 1*/

#include <iostream.h>

#include <conio.h>

void main()

{

void swap(int &, int &);

int x,y;

cout<<“Enter the two numbers\n”;

cin>>x>>y;

cout<<“Before calling swap\n”;

cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

swap(x,y);

cout<<“After calling swap\n”;

Function in C++ 159

cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

}

void swap(int &rx, int & ry)

{

int t;

t=rx;

rx=ry;

ry=t;

}

OUTPUT :

Enter the two numbers

23

45

Before calling swap

x=23 y=45

After calling swap

x=45 y=23

EXPLANATION : When function show is called as show (a, b) to the compiler it appears

as : int & rx = x and int & ry = y. Now any changes done is rx and ry will reflect back to x

and y. In the function we are swapping the value of x and y with the help of third variable t.

In the main after the function call swapped values of x and y will be displayed.

/*PROG 5.9 REFERENCE VARIABLE AS FUNCTION ARGUMENT SWAPPING TWO VALUES

VER 2*/

#include <iostream.h>

#include <conio.h>

void main()

{

void swap(int &, int &);

int x,y;

clrscr();

cout<<“Enter the two numbers \n”;

cin>>x>>y;

cout<<“Before calling swap\n”;

cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

160 Object-Oriented Programming C++ Simplified

swap(x,y);

cout<<“After calling swap\n”;

cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

}

void swap(int & rx,int & ry)

{

rx=rx+ry;

ry=rx − ry;

rx=rx − ry;

}

OUTPUT :

Enter the two numbers

23 45

Before calling swap

x=23 y=45

After calling swap

x=45 y=23

EXPLANATION : The program remains same but the logic to swap two values changes.

Without using third variable we change the values. Check the logic against any value of x and

y. Take an example for x=10 and y=5

x= x + y => x = 10 + 5 => x =15

y = x – y => y = 15 – 5 => y = 10

x = x – y => y = 15 – 10 => x= 5

/*PROG 5.10 REFERENCE VARIABLE AS FUNCTION ARGUMENT SWAPPING TWO VALUES

VER 3*/

#include <iostream.h>

#include <conio.h>

void main()

{

Function in C++ 161

void swap(int &, int &);

int x,y;

clrscr();

cout<<“Enter the two numbers \n”;

cin>>x>>y;

cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

getch();

}

void swap(int & rx, int &ry)

{

rx= rx^ry;

ry=rx^ry;

rx=rx^ry;

}

OUTPUT :

Enter the two numbers

23

45

x=23 y=45

EXPLANATION : The program uses third method of swapping two variables with the help

of bitwise XOR operator ^. Take an example for better understanding point of view.

Let a = 5 (0101 in binary)

b = 7 (0111 in binary)

1. a = a ^ b (a = 0101 ^ 0111 => a = 0010)

2. b = a ^ b (b = 0010 ^ 0111 => b = 0101)

3. a = a ^ b (a = 0010 ^ 0101 => a = 0111)

/*PROG 5.11 REFERENCE VARIABLE AS FUNCTION ARGUMENT SWAPPING TWO STRING*/

#include <iostream.h>

#include <conio.h>

#include <string.h>

162 Object-Oriented Programming C++ Simplified

void main()

{

void swap(char* &, char* &);

char s1[10],s2[10];

clrscr();

cout<<“Enter first name \n”;

cin>>s1;

cout<<“Enter second name \n”;

cin>>s2;

cout<<“Before calling swap\n”;

cout<<“s1=”<<s1<<“s2=”<<s2<<endl;

swap(s1,s2);

cout<<“After calling swap\n”;

cout<<“s1=”<<s1<<“\t”<<“s2=”<<s2<<endl;

getch();

}

void swap(char* & rx, char* & ry)

{

char temp[10];

strcpy(temp,rx);

strcpy(rx,ry);

strcpy(ry,temp);

}

OUTPUT :

Enter first name

HARI

Enter second name

MOHAN

Before calling swap

Function in C++ 163

s1=HARI s2=MOHAN

After calling swap

s1=MOHAN s2=HARI

EXPLANATION : Similar to swapping two numbers we can swap two strings also. But the

string has to copy via built-in string copy function strcpy. Reference to string has been explained

earlier.

/*PROG 5.12 TAKING REFERENCE OF A VARIABLE VER 2*/

#include <iostream.h>

#include <conio.h>

void main()

{

void show1(int &);

void show2(int &);

int x=10;

clrscr();

show1(x);

cout<<“x=”<<x<<endl;

getch();

}

void show2(int & z)

{

z++;

}

void show1(int & y)

{

y++;

show2(y);

}

OUTPUT :

x=12

164 Object-Oriented Programming C++ Simplified

EXPLANATION : x in main, y in show1 and z is show2 all refer to the same memory

location and x is incremented twice one in show1 and one is show2. So the output.

/*PROG 5.13 TAKING REFERENCE OF A REFERENCE VARIABLE VER 3 */

#include <iostream.h>

#include <conio.h>

void main()

{

void show1(int);

void show2(int &);

int x=10;

clrscr();

show1(x);

cout<<“x=”<<x<<endl;

getch();

}

void show2(int & x)

{

x++;

}

void show1(int x)

{

x++;

show2(x);

}

OUTPUT :

x=10

EXPLANATION : In show1() function x was passed as value so x in show1 is formal

parameter and ++x in show1 does not affect original x in main. In show2() argument is passed

by reference but show2 was called from show1 and local x of show1 was passed to show2.

In show2 incrementing x by 1 affect x of show1.

Function in C++ 165

5.6 CALL BY REFERENCE Vs CALL BY ADDRESS

To compare call by reference and call by address we consider a function change as :

Table : Shows the Difference between Call by Address and Call by Reference

Call By Address Call By References

void change(int *, int *); void change (int &, int &);

void change(int * x, int *y) void change(int & x, int & y)

{ {

*x = *x + 10; x = x + 10;

*y = *y + 20; y = y + 20;

} }

 int a = 10, b = 20; int a =10, b=20;

change (&a, &b); change(a,b);

Let CBA ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ CALL BY ADDRESS

CBR ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ CALL BY REFERENCE

Now, we can see that in call by address (CBA) declaration we have to write int* and while

calling function we write we pass address of variable a and b as change (&a, &b). In case of

call by reference (CBR), in the declaration we write int & and in calling we write change (a, b).

When the function is called in CBA, address of a and b are passed and new location are

created for formal parameters x and y. In case of CBR only reference of a and b is created i.e.,

new name for the location a and b is created, but no new location is created for x and y.

As we can seen from the columns CBR approach looks neat and clean as compare to CBA

approach.

POINTER Vs REFERENCE

(a) A reference is a constant pointer. This is not the case with pointer.

(b) During function call with reference we write show (a) but with pointer we write show

(&a).

(c) We cannot create an array of reference, but array of pointers can be created.

(d) A reference has to be initialized when declared. This not the case with pointer.

5.7 RETURN BY REFERENCE

In the normal function call, if function return some value of any type the function call is put

on to the right side of assignment operator and variable which stores the value is written on

the left hand side. But in C++ a function can return by reference which means that function

call can be put on to the left hand side of = operator(assignment operator). As the function by

reference we will have to provide some value to it on the right hand side. The general syntax

of a function returning by reference is as shown below :

166 Object-Oriented Programming C++ Simplified

return_type & function_name (arguments)

{

function body;

}

Inside the function, the function must not return the reference of any local variable as

local variable dies as soon as control goes out of scope. So either you return the reference of

any local variable or pass argument to the function by reference. I present few examples for

better understanding point of view.

/*PROG 5.14 DEMO OF RETURN BY REFERENCE VER 1*/

#include <iostream.h>

#include <conio.h>

int x;

int & retref(int p)

{

x=x+p;

return x;

}

void main()

{

clrscr();

retref(5)=45;

cout<<“x=”<<x<<endl;

getch();

}

OUTPUT :

x=45

EXPLANATION : In return by reference as stated above function call can appear in the

left hand side of assignment operator. The program simply demonstrate how to do this. The

function retref returns the reference of x which is a global variable. In the function we pass 5.

This value 5 is collected in p and function returns reference of x. As function return by

reference and a reference has to be initialized so x contains a value 45.

Note: Never return reference of a local variable as local variable dies as soon as control returns from

the function and what is the use of value of a variable which no longer exists.

Function in C++ 167

/*PROG 5.15 DEMO OF RETURN BY REFERENCE VER 2*/

#include <iostream.h>

#include <conio.h>

int & greater(int & a, int & b)

{

return a>b ?a : b;

}

void main()

{

int x,y;

clrscr();

cout<<“Enter the value of x and y\n”;

cin>>x>>y;

greater(x,y)=501;

cout<<“Greater will have reward of 501\n”;

cout<<“x=”<<x<<“\t”<<“y=”<<y<<endl;

getch();

}

OUTPUT :

Enter the value of x and y

23 45

Greater will have reward of 501

x=23 y=501

EXPLANATION : In the program the function greater takes two parameter of type int by

reference and return an int by reference. As the function greater by reference we can put this

function on the left hand side of assignment (=) operator. When the statement greater(x,y)=501;

executes, the reference parameter x and y in function greater appear as int & a= x and int &

b =y. The function finds maximum of a and b and returns reference of maximum value. Here

in the program maximum was y (45) so function greater returns reference of y. In the main the

statement replaces as :

y=501; and y gets value 501.

168 Object-Oriented Programming C++ Simplified

/*PROG 5.16 DEMO OF RETURN BY REFERENCE VER 3*/

#include <iostream.h>

#include <conio.h>

#define S 5

int a[S], *p;

void main()

{

int i;

int* & fun();

int b[S]={1,2,3,4,5};

clrscr();

cout<<“Before calling function\n”;

for(i=0;i<S;i++)

cout<<a[i]<<“ “;

cout<<endl;

fun()=b;

cout<<“After calling function”;

cout<<endl;

for(i=0;i<S;i++)

cout<<p[i]<<“”;

cout<<endl;

getch();

 }

 int* & fun()

 {

p=a;

return p;

 }

OUTPUT :

Before calling function

0 0 0 0 0

After calling function

12345

Function in C++ 169

EXPLANATION : The function declaration int* & fun (); tells the compiler that function

fun returns a reference to an int type pointer. In the main we are creating an array b with

5 values. The array a is global and have all its elements initialized to zero. The statement

fun () = b; calls the function fun () first. In the function we initially assign the case address

of the array a to p and return the p. In the main fun () = b; becomes p=b i.e., p points to

array b. Now p can be treated as an integer array which prints elements of b.

5.8 INLINE FUNCTION

Inline functions are functions which are expanded inline. To make a function inline we simple

put keyword inline before the functions definitions. These functions are different from normal

functions that in normal function call control is transferred to the place where the actual

function definition is written. For example, consider the following dummy code of the program:

void main()

{

void show();

statements;

statements;

show(); //function called here

statements; // next statement where function returns

statements;

}

void show()

{

statements;

statements;

statements;

}

During the execution of the program when function call show is encountered, compiler

saves the state of various registers, variables occurred in the program prior to function call

show. It also saves the address of the next instruction after the function call show as it has to

return to this statement when function show returns. All these are saved onto the stack as

stack-frame or activation record. The body of the function show is executed. When the function

is about to return, before returning it pops up the various values from the stack-frame and in

the end pops the address from where it has to resume. This address is put into the program

counter and execution resumes from the statement following function call show.

All these calling the function, saving registers, variables, and return address in stack-

frame, popping them back when function returns causes overhead. As these will be done for

every function call.

Inline function is not work in the way as explained above manner. They are expanded

where they are called. That is the whole body of the inline function is put at the place where

170 Object-Oriented Programming C++ Simplified

function was called. This saves time as there is no control transfer, no saving and popping back

from stack-frame. So inline function executes faster than normal function. But at the place of

inline function call, the code is expanded. If you have called inline function from 100 places

in your program, the code will be expanded 100 places in your program thus increasing

program size. So a trade-off between program size and execution efficiency is there. The general

syntax of defining the inline functions as:

inline return type function_name (parameters)

{

function definition;

}

Some Important Points About Inline Function

1. Inline function is a request to the compiler thus inline function may not work as inline

some times. In this regard they differ from macro, which work as macro always.

2. Inline function executes faster than normal function.

3. Strict type checking is performed for variables that are passed as arguments, which is

not done in case of macro.

4. Inline function does not produce side effects whereas macro does.

5. All inline functions must be defined prior to their use.

6. Inline function does not work as inline when code contains loops, recursions, goto,

switch, static variable etc.

7. They are used where function definition are small so calling cost and overhead for

normal functions can be minimized.

/*PROG 5.17 DEMO OF INLINE FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

inline void show()

{

cout<<“Hello from inline show\n”;

}

void main()

{

clrscr();

show();

getch();

}

Function in C++ 171

OUTPUT :

Hello from inline show

EXPLANATION : The function show is inline so when it is called in the main it is simply

expanded in the main. That is, all the statements written in the function show appear at the

place of function call. Here we are having just one cout statement so it appear through we have

written cout statement within main itself similar to macro.

/*PROG 5.18 DEMO OF INLINE FUNCTION VER 2*/

#include <iostream.h>

#include <conio.h>

inline void show();

void main()

{

show();

}

 inline void show()

 {

cout<<“Hello from inline show\n”;

 }

OUTPUT :

Hello from inline show

EXPLANATION : An inline function has to be defined before it can be used. But the above

program works fine in Visual Studio C++ compiler. However, in Turbo C 3.0 on executing the

program makes system halts. There is no compilation error in Turbo C3.0.

/*PROG 5.19 SQUARE OF A NUMBER USING INLINE FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

inline int square(int x)

{

return x*x;

}

void main()

172 Object-Oriented Programming C++ Simplified

{

int num,snum;

clrscr();

cout<<“Enter a number \n”;

cin>>num;

cout<<“Square of “<<num<<“is “<<square(num)<<endl;

getch();

}

OUTPUT :

Enter a number

8

Square of 8 is 64

EXPLANATION : When the function is called as square (num), the function call is expanded

in line as num*num. Rest is easy to understand.

/*PROG 5.20 SQUARE OF A NUMBER USING INLINE FUNCTION VER 2*/

#include <iostream.h>

#include <conio.h>

inline int square (int x)

{

return x*x;

}

 void main()

 {

int s1=square (2+3);

int s2=square (3*4-5+6/2);

int s3=square (++s1);

clrscr();

cout<<“s1=”<<s1<<endl;

cout<<“s2=”<<s2<<endl;

cout<<“s3=”<<s3<<endl;

Function in C++ 173

getch();

 }

OUTPUT :

s1=26

s2=100

s3=676

EXPLANATION : Before expanding the function as function call is encountered compiler

first computes the expression written as argument and make a single argument. So square (2+3)

first turned into square (5) then expanded, similarly square (3*4-5+6/2) turned into square (10)

and finally square (++s1) turned into square (26).

/*PROG 5.21 SQR OF A NUMBER USING MACRO*/

#include<iostream.h>

#define SQR(x) (x*x)

#include <conio.h>

void main()

{

int s1=SQR(2+3);

int s2=SQR(3*4−5+6/2);

int s3=SQR(++s1);

clrscr();

cout<<“s1=”<<s1<<endl;

cout<<“s2=”<<s2<<endl;

cout<<“s3=”<<s3<<endl;

getch();

}

OUTPUT :

s1=13

s2=41

s3=156

EXPLANATION : The side effect of macro can be seen in the above program. When macro

SQR is expanded all three statements appear as :

int s1=2+3*2+3;

174 Object-Oriented Programming C++ Simplified

int s2= 3*4-5*6/2*3*4-5+6/2;

int s3=++s1 * ++s1;

Now,

s1= 2+6+3=11;

s2= 12-5+3*3*4-5+3;

s2= 12+36+3-10;

s2=41

Due to pre increment twice and same value is used in the expression so s3= 13 * 13 =

169.

/*PROG 5.22 FINDING CUBE OF A NUMBER USING INLINE FUNCTION*/

#include <iostream.h>

#include <conio.h>

 inline int cube(int x)

 {

return x*x*x;

 }

 void main()

 {

int num;

clrscr();

cout<<“Enter a number \n”;

cin>>num;

cout<<“Cube of”<<num<<“is”<<cube (num)<<endl;

getch();

 }

OUTPUT :

Enter a number

12

Cube of 12 is 1728

EXPLANATION : The program is self-explanatory.

Function in C++ 175

/*PROG 5.23 MAXIMUM OF TWO NUMBERS USING INLINE FUNCTION */

#include <iostream.h>

#include <conio.h>

inline int max(int x,int y)

{

return x>y ? x :y;

}

void main()

{

int n1,n2;

clrscr();

cout<<“Enter two numbers \n”;

cin>>n1>>n2;

int m=max(n1,n2);

cout<<“Max=”<<m<<endl;

getch();

}

OUTPUT :

Enter two numbers

12

45

Max=45

EXPLANATION : At the place of function call max (n1, n2), function is explained as

return x>y ? X : y, value of n1 and n2 is assigned to x and y.

5.9 FUNCTION OVERLOADING

Overloading refers to use of same thing for different purpose. Function overloading refers to

creating numbers of functions with the same name which performs different tasks. Function

overloading is also known as function polymorphism. Function overloading relieves us from

remembering so many functions names with type of arguments they take. In function overloading

we can create number of functions with the same name but either number of arguments or type

of arguments must be different. We provide few examples:

176 Object-Oriented Programming C++ Simplified

1. int sum (int);

float sum(float);

double sum(double);

Here, we have declared three functions with the same name sum. Each function takes just

one parameter but all are of different types. That is number of parameters in all overloaded

function sum is same but type of parameter is different.

2. void show(int,int);

Void show(int);

Void show(int,int,int);

Here number of parameters a re not same in show functions but type is same.

3. void show(int,char);

void show (char,int,float);

void show(int);

int show(int,int);

float show(char,char,char);

Here we have a mix of overloaded show functions. Some have same number of arguments

but type is different and some have same type of argument but numbers of argument are

different.

When we have number of overloaded functions in a program, which function to call is

determined by either checking type of argument or number of argument. Note return type does

not play any role in function overloading as which function to call is determined by checking

type and number of argument a function accepts. When control is transferred to function and

function is about to return after execution then return type comes to play.

In function overloading compiler first tries to find an exact match. If exact match is not

find then integral promotion/ demotion is used. User defined conversion methods may be used

also in case a class object is to be converted to any built-in type or vice-versa.

/*PROG 5.24 DEMO OF FUNCTION OVERLOADING VER 1*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void show(int);

void show(float);

void show(char);

void show(char*);

int x=10;

float y=23.45;

char ch= ‘p’;

Function in C++ 177

char * s=”overload”;

clrscr();

show(x);

show(y);

show(ch);

show(s);

getch();

 }

 void show(int x)

 {

cout<<“int show x=”<<x<<endl;

 }

 void show(float y)

 {

cout<<“float show y=”<<y<<endl;

 }

 void show(char ch)

 {

cout<<“char show ch=”<<ch<<endl;

 }

 void show(char*s)

 {

cout<<“char *s show s=”<<s<<endl;

 }

OUTPUT :

int show x =10

float show y = 23.45

char show ch = p

char *s show s = overload

EXPLANATION : In the program we have functions show overloaded 4 times. The function

takes a single parameter but each parameter is different in each function as can be seen from

the program. In the main 4 variable of type int, char, float and char * type are generated and

show is called with these parameters. Each parameter is passed to show and show is called 4

times. The compiler depending upon type of argument to function show calls the respective

178 Object-Oriented Programming C++ Simplified

version of the show function i.e., in case of show(x), show function of int version will be called

and so on.

/*PROG 5.25 DEMO OF FUNCTION OVERLOADING VER 2*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void show(int);

void show(double);

clrscr();

show(23);

show(‘p’);

show(2.5f);

show(3.45);

getch();

 }

 void show(int x)

 {

cout<<“int show x=”<<x<<endl;

 }

 void show(double s)

 {

cout<<“double show s=”<<s<<endl;

 }

OUTPUT :

int show x=23

int show x=112

int show x=2.5

int show x=3.45

EXPLANATION : In the program we have just overloaded function show which takes a

single parameter of int and double respectively. In function call show (23), int version

of show is called as 23 is an integer. In function call show (‘p’), int version of show is

called why ? The compiler searches for an overloaded show function which takes a parameter

of type char, but it fails as there is no such overloaded function we have written. So it does

Function in C++ 179

integral promotion from char to integer and calls the int version of show function displaying

ASCII value of ‘p’. Similarly in function call show (2.5f), compiler look for an overloaded

function show which takes float type argument. If fails and overloaded function show with

double type value is called.

/*PROG 5.26 DEMO OF FUNCTION OVERLOADING VER 3*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void show(float);

void show(double);

clrscr();

show(23);

show(2.5f);

show(3.45);

getch();

 }

void show(float x)

 {

cout<<“float show x=”<<x<<endl;

 }

void show(double s)

 {

cout<<“double show s=”<<s<<endl;

 }

OUTPUT :

ERROR

‘show’ : ambiguous call to overloaded function

EXPLANATION : The function call show (23) is ambiguous as there is no overloaded

function show which takes an int type of value. Now compiler is in dilemma whether to call

overloaded float version of show or overloaded double version of show as can be converted

to float as well as to double.

180 Object-Oriented Programming C++ Simplified

/*PROG 5.27 DEMO OF FUNCTION OVERLOADING VER 4*/

#include <iostream.h>

#include <conio.h>

void main()

{

void show(int);

void show(float);

clrscr();

show(‘p’);

show(3.45);

getch();

}

 void show(float x)

 {

cout<<“float show x=”<<x<<endl;

 }

 void show(int s)

 {

cout<<“int show s=”<<s<<endl;

 }

OUTPUT :

Error

‘show’ : ambiguous call to overloaded function

EXPLANATION : The error is clear as we have not defined an overloaded function show
for the double data type. When function call show (3.45) is encountered compiler look

for an overloaded function show which takes a single parameter of double type. But the error

is not what we are thinking. The function call show (‘p’) calls the int version of show.

In the function call show (3.45) as overloaded show for double data type was not written,

int or float version of show can be called. Deciding this confuses the compiler and it

generates the error. One more example of demotion is given.

/*PROG 5.28 DEMO OF FUNCTION OVERLOADING VER 5*/

#include <iostream.h>

#include <conio.h>

Function in C++ 181

 void main()

 {

void show(int);

clrscr();

show(5.47f);

show(3.45);

getch();

 }

 void show(int s)

 {

cout<<“int show s=”<<s<<endl;

 }

OUTPUT :

int show s=5

int show s=3

EXPLANATION : Demotion takes place from float to int in function call show
(5.47f) and from double to int in function call show (3.45).

/*PROG 5.29 DEMO OF FUNCTION OVERLOADING VER 6*/

#include <iostream.h>

#include <conio.h>

void main()

 {

void show(float);

void show(char);

clrscr();

show(4.76f);

show(345);

getch();

 }

 void show(char x)

 {

cout<<“Char show x=”<<x<<endl;

 }

182 Object-Oriented Programming C++ Simplified

 void show(float s)

 {

cout<<“int show s=”<<s<<endl;

 }

OUTPUT :

Error

‘show’ : ambiguous call to overloaded function.

EXPLANATION : As there is no overloaded int version of show, the compiler is in

confusion whether to demote int or char and call version of show or promote int to
float and call float.

/*PROG 5.30 FUNCTION OVERLOADING MAX OF TWO NUMBERS */

#include <iostream.h>

#include <conio.h>

 void main()

 {

int x,y, intmax;

float f1,f2,fmax;

char ch1,ch2,chmax;

int max2(int,int);

float max2(float,float);

char max2(char,char);

clrscr();

cout<<“Enter two integers \n”;

cin>>x>>y;

cout<<“Enter two floats\n”;

cin>>f1>>f2;

cout<<“Enter two chars \n”;

cin>>ch1>>ch1;

intmax=max2(x,y);

fmax=max2(f1,f2);

chmax=max2(ch1,ch2);

Function in C++ 183

cout<<“Max of two int is “<<intmax<<endl;

cout<<“Max of two float is “<<fmax<<endl;

cout<<“Max of two char is”<<chmax<<endl;

getch();

 }

 int max2(int x,int y)

 {

return(x>y ?x :y);

 }

 float max2(float x,float y)

 {

return(x>y ?x :y);

 }

 char max2(char x,char y)

 {

return(x>y ?x :y);

 }

OUTPUT :

Enter two integers

123 567

Enter two floats

12.34

56.78

Enter two chars

a g

Max of two int is 567

Max of two float is 56.78

Max of two char is g

EXPLANATION : We have in the program three over of function max2 which takes two

parameters of type int, char, and float and returns the maximum of two numbers.

Depending upon type of parameter appropriate version of max2 function is called.

5.10 FUNCTION WITH DEFAULT ARGUMENTS

In C ++ it is possible for a function not to specify all its arguments. Some of the arguments

may be specified their default values at the time of declaring the function. When a function

184 Object-Oriented Programming C++ Simplified

having default argument is called, compiler checks for the number and type of argument as well

as was not specified during the function call, default value of that argument is assumed. In case

we provide a new value, default argument is overridden.

For example :

void show (int x, int y = 20);

The function show takes two argument of int type out of which second argument from left

is default. In case function is called as show (10), default value of y i.e., 20 is assumed. If

function is called as show (10,100) than default value of y i.e., 20 is overridden. It is possible

not to provide even the formal parameter names during function declaration i.e., we may

declare the above function show as

void show (int, int = 20);

In a function with default argument, if one argument is default, all successive arguments

must be default. We cannot provide default values in the middle of the arguments or towards

left side. We provide few examples:

1. void fun(int x, int y = 20, int z=35);

2. void fun(int x, int y = 30, int z);

3. void fun(int x = 45, int y);

Out of three examples given only 1 is valid and 2 and 3 are invalid. In the 2 middle

argument is default and the next argument z is not default. In the 3 first argument is default

and next argument is not default.

/*PROG 5.31 DEMO OF FUNCTION WITH DEFAULT ARGUMENT VER 1*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void show(int x=10);

clrscr();

cout<<“Called show with argument 20\n”;

show(20);

cout<<“Called show without argument \n”;

show();

getch();

 }

 void show(int y)

Function in C++ 185

 {

cout<<“Argument to show was”<<y<<endl;

 }

OUTPUT :

Called show with argument 20

Argument to show was20

Called show without argument

Argument to show was10

EXPLANATION : The function show takes just one argument of type int which is a default

argument. Note default argument has to be specified in the function declaration. Writing it in

function definition is optional. In the function call show (20), the default argument is

overridden and y takes the value 20. In the function call show () as no argument was specified,

the compiler assumes default value 10 for y. Note argument name is declaration and definition

are different, they may be same. Note function declaration can be written in the following

manner too:

void show (int=10);

/*PROG 5.32 DEMO OF FUNCTION WITH DEFAULT ARGUMENTS VER 2*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void show(char* s=”Good Morning”);

clrscr();

show();

show(“Good Evening”);

getch();

 }

 void show(char *s)

 {

cout<<“Argument to show was”<<s<<endl;

 }

OUTPUT :

Argument to show was Good Morning

Argument to show was Good Evening

186 Object-Oriented Programming C++ Simplified

EXPLANATION : The program is similar to previous one with the difference that we have

taken default parameter of char * type.

/*PROG 5.33 DEMO OF FUNCTION WITH DEFAULT ARGUMENT VER 3*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void show(int, int =30);

clrscr();

show(20);

show(23,34);

getch();

 }

 void show(int q,int r)

 {

cout<<“Argument to show was\n”;

cout<<“q=”<<q<<“\t r=”<<r<<endl;

 }

OUTPUT :

Argument to show was

q=20 r=30

Argument to show was

q=23 r=34

EXPLANATION : In the function call show (20), 20 is passed to q and r takes default value

20. In the function call show (23, 34) q takes value 23 and default parameter is overridden so

r takes value 34.

/*PROG 5.34 DEMO OF FUNCTION WITH DEFAULT ARGUMENT VER 4*/

#include <iostream.h>

#include <conio.h>

 void main()

Function in C++ 187

 {

void show(int =20,int =30, int =40);

clrscr();

show(1,2,3);

show(1,2);

show(1);

show();

getch();

 }

 void show(int p,int q,int r)

 {

cout<<“Argument to show was\n”;

cout<<“p=”<<p<<“\tp=”<<q<<“\tr=”<<r<<endl;

 }

OUTPUT :

Argument to show was

p=1 p=2 r=3

Argument to show was

p=1 p=2 r=40

Argument to show was

p=1 p=30 r=40

Argument to show was

p=20 p=30 r=40

EXPLANATION : In the function show all three parameters are default. In the function

call show (1, 2, 3) all three default parameters are overridden and 1, 2, 3 assigned to p, q, r

respectively. In the function call show (1, 2) the two parameters (from left) are overridden and

r takes default value. Similar analogy applies to rest of the show statements.

188 Object-Oriented Programming C++ Simplified

/*PROG 5.35 DEMO OF FUNCTION WITH DEFAULT ARGUMENTS VER 5*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void show(int p=20,int q,int r=40);

clrscr();

show(1,2,3);

show(1,2);

show(1);

show();

getch();

 }

 void show(int p, int q, int r)

 {

cout<<“Argument to show was \n”;

cout<<“p=”<<p<<“\tq=”<<q<<“\tr=”<<r<<endl;

 }

OUTPUT :

Error

Missing default parameter for parameter 2

EXPLANATION : In the function when one argument is default, all argument following

the default argument must be argument. In the function call show (1), 1 is assigned to p and

default value 20 is overridden, but parameter 2 was not default so a value has to be given. So

the compiler generates error.

/*PROG 5.36 DEMO OF FUNCTION WITH DEFAULT ARGUMENTS, FINDING BONUS FOR

AN EMPLOYEE*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

void incr(float & sal, float bonus_pr=10);

float s;

Function in C++ 189

clrscr();

cout<<“Enter the salary \n”;

cin>>s;

if(s>=5000)

incr(s,15);

else

incr(s);

cout<<“Salary with bonus=”<<s<<endl;

getch();

 }

 void incr(float & sal, float bonus_pr)

 {

sal = sal*(1+bonus_pr/100);

 }

OUTPUT :

Enter the salary

7000

Salary with bonus=8050

EXPLANATION : The function incr finds new salary after adding bonus to the original

salary. If salary is <5000 we provide a bonus of 10% of sal else we provide bonus of 15% of

salary.

5.11 PONDERABLE POINTS

1. Based on the nature of creation there are two categories of function : built-in and user-

defined.

2. For all the built-in functions (also called library functions) prototype is stored in the

header files and compiled code (which we cannot see) is stored in .0bj file form in

special files called library. One library may contain number of compiled functions.

3. The functions which are predefined and supplied along with the compiler are known

as built-in function.

4. The function main() can appear only once in a C program, because execution commences

from the first statement in the main () function. If there is more than one main()

function, there will be a confusion while commencing the execution.

190 Object-Oriented Programming C++ Simplified

5. A function that performs no action is known as dummy function. It is a valid function.

Dummy function may be used as a place- holder, which facilitates adding new functions

later on. For example:

void dummy () { }

6. Advantages of recursion :

(a) Easier understand the program logic.

(b) Helpful in implementing recursively defined data structure.

(c) Compact code can be written.

7. Use of return statement helps in early exiting from a function apart from returning a

value from a function.

8. C++ permits three ways to pass argument to function : call by value, call by address

and call by reference.

9. Passing an argument by reference does not create new memory location, where passing

an argument by address or by value creates memory location.

10. For every function used in C++, prior declaration is must.

11. Function prototyping, declaration or signature all is same thing.

12. Function declaration tells the compiler three things : function name, types and number

of argument it takes, return type of the function.

13. A function expanded in line is known as inline function.

14. Use of inline function makes execution of program faster but increases program size.

15. Inline function is better than macro as they produce no side effects and type checking

is performed for the arguments.

16. When function return by reference, function call can be placed on the left hand side

of = (assignment) operator.

17. Function overloading is the creation of number of function with the same name but

they differ either in type of argument or number of arguments.

18. There is no limit on how many functions can be overloaded in a program.

19. Return type does not serve any purpose in function overloading.

20. In C++ a function can have default arguments which are used when not all the

parameters are supplied to the function.

21. In a function with default argument, when one argument is default, then all successive

arguments (towards right) must be default.

EXERCISE

A. True and False :

1. Inline keywords makes function inline which is request to the compiler.

2. Inline function may or may not work as inline.

3. Inline function speed up the execution but increases program size.

4. C++ allows a function to have multiple numbers of arguments.

5. Calls to inline functions are always expanded by the compiler.

Function in C++ 191

6. Call by reference is better than call by address.

7. bool data type can have float type of arguments.

B. Answer the Following Questions :

1. What is function prototyping ? What does it tell about a function ?

2. How main is declared in C++ ?

3. What is recursion ? Why do we need it ?

4. Explain the concept of inline functions.

5. How inline function is different from macro ?

6. What are the advantages of inline functions ?

7. What is function overloading ?

8. What is the difference between function overloading and function overriding ?

9. What is the difference between call be value/address/ reference ?

10. Write difference between pointers and reference.

11. What is the advantage of passing default argument to functions ?

12. How many values can be returned from a function ?

13. Where is function returned type specified ?

14. Here is a function :

int times2(int a)

{

return (a*2);

}

Write a main() program that includes everything necessary to call this function.

15. In what unusual place can you use a function call when a function returns a value by reference ?

16. What is the significance of empty parenthesis in a function declaration ?

17. What is the purpose of using argument names in a function declaration ?

C. Brain Drill :

1. Write a program to return more than one value from function using reference variable.

2. Write an inline function to display lines of different patterns.

3. Write a C++ program to arrange a list of names in ascending order using an array of pointers to

strings.

4. Write a program in C++ to find the area and perimeter of a circle using pointers.

5. Write a program to accept a float number through the keyboard. Calculate the square of the

number. Separate the float number into integer and fractional part. Individually calculate the

square of an integer and fractional part and add them in another variable. Compare the two

squares obtained.

6. Write a program to list all the strings whose initials starts with a given input character using

function and pointer.

7. Write a program to find kth element in an array of strings i.e., string whose length is maximum.

8. Write a function to find power of a given number like pow () function.

9. Write a program to display only integer portion of the given floating point number without

typecasting ?

192 Object-Oriented Programming C++ Simplified

10. Write a program using function to round up and round down the floating point number.

11. Write a function called swap () that interchanges two int values passed to it by the calling

program. (Note that this function swaps the values of the variables in the calling program, not

those in the function) You will need to decide how to pass the arguments. Create a main()

program to exercise the function.

12. Write a function that, when you call it, displays a message telling how many times it has been

called : “I have been called 3 times”, or whatever. Write a main() program that calls this function

at least 10 times. Try implementing this function in two different ways. First, use external variables

to store the count. Second, use a local static variable. Which is more appropriate ? Why can’t you

use an automatic variable ?

13. Raising a number n to a power p is the same as multiplying n by itself p times. Write a program

called power() that takes a double value for n and an int value for p, and returns the result as

a double value. Use a default argument of 2 for p, so that if this argument is omitted, the number

n will be squared. Write a main() function that gets values from the user to test this function.

14. Write a function called zeroSmaller() that is passed two int arguments by reference and then sets

the smaller of the two numbers to 0. Write a main() program to exercise this function.

15. Write a function that takes two Distance values as arguments and returns the larger one. Include

a main() program that accepts two Distance values from the user, compares them, and displays

the larger.

���

CLASS AND OBJECTS IN C++

6.1 WORKING WITH ClASS

The most remarkable feature of C + + is a class. The class binds together data and methods
which work on data. The class is an abstract data type (ADI) so creation of class simply creates
a template. The general syntax of creating a class in C++ is given below:

class class name

};

public :

data & function;

private :

data & function;

protected :

data & function;

The class is a keyword. Following this keyword class, class_name represents name of the
class. The class name must obey rules of writing identifier as class_name is nothing but an
identifier. The class is opened by opening brace} and closed by closing brace}. The class
definition/declaration must end with semicolon. Inside the class we define the data members
and member functions. They may be defined either public, private or jn protected mode. There
are three different types of mode :

1. public
2. private
3. protected.
The mode is also known as visibility modifier or access specifier. Data members and

functions declared under the public mode can be used inside and outside the class. Private data

193

194 Object-Oriented Programming C++ Simplified

members and functions can be used only inside the class. Protected data member and function

also can only be used inside the class. Protected data member and function also can only used

inside the class only but serve a different purpose which you will study in inheritance.

The data member of class are used inside the member functions of the class. Data members

are declared inside the class but used in the member functions of the class. Usually the data

members are private and member functions are public. So data members can only be used

inside the functions of the class. This is to safeguard private data from external access.

If no visibility mode is written the default visibility mode private is assumed for the class.

The declaration of a class alone does not serve any purpose. To make use of the class we

need to create variable of type class. A variable of class type is known as an object. The class

is loaded into memory when first object of the class is created. Creation of object creates

memory space for the object which depends upon size of the data members of the class. For

each object separate copy of the data members is created. But only one copy of the member

function is created which is shared by the entire object.

The objects call member functions of the class using operator dot (.) operator. Which is

known as period or membership operator?

Before a member function can work on to the data member of the class, they must be

initialized by calling a function which provides initial values to the data member of the class.

Let’s take a practical example of class now.

/*PROG 6.1 DEMO OF CLASS AND OBJECT VER 1*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

private :

int cx,cy;

public :

void input_data(int x,int y)

{

cx=x;

cy=y;

 }

 void show_data()

 {

cout<<“cx=”<<cx<<“\t”<<“cy=”<<cy<<endl;

 }

 };

 void main()

 {

Class and Objects in C++ 195

demo d1;

clrscr();

d1.input_data(10,20);

d1.show_data();

getch();

 }

OUTPUT :

cx=10 cy=20

EXPLANATION : A class is created using keyword class followed by class name. The

class name follows the rules of writing identifiers. Inside the class demo we have two variables

cx and cy of type integer. The private and public are known as visibility modifier or access

specifier. Each visibility modifier must end with : (colon). All the variables, function etc.

declared under private a visibility modifier bear that prototype of visibility modifier. Here cx

and cy written under private so they become private. If we do not write private, they are also

considered as private is the default access level in a class. The function input_data takes two

parameters of type int and returns nothing as void is the return type. The function show_void

display the two data members’ cx and cy. Note the two functions are defined within the class.

We can also declare them inside the class and defined outside the class. The class declaration

has to end with semicolon.

In the main the statement demo.d1; creates a variable of class demo type. Not we do not

have to write class demo.d1;. The variable d1 of class demo type is known as an instance of

class demo or an object. The creation of an object allocates memory depending upon the size

of the class which is the sum of size of data members. Functions do not add to the size of the

class or object. Here a memory of 8 bytes will be allocated for the object d1. Functions are given

memory when a class is loaded into the memory.

All public members (data + functions) can be accessed in the main with the help of

object using dot (.) operator which is also known as membership operator or period. Through

statement d1.input_data (10, 20) we are calling the function input_data and passing two int

constant 10 and 20. They are collected in the formal parameters x and y and then assigned to

cx and cy. Now cx and cy can be used in all the functions of demo. Whenever you are working

with the class & object, the first thing you need to perform is to assign values to data members

of class through function. You cannot initialize them directly in the class. As cx and cy through

cout. Note as cx and cy are private they can only be accessed inside the member function of

the class and not anywhere. Usually we make data members as private function as public while

designing a class. All the functions defined inside the class are treated as inline.

/*PROG 6.2 DEMO OF CLASS AND OBJECT VER 2*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

private :

196 Object-Oriented Programming C++ Simplified

int cx, cy;

public :

void input_data(int,int);

void show_data();

 };

 void demo : :input_data(int x,int y)

 {

cx = x;

cy = y;

 }

 void demo : :show_data()

 {

cout<<“cx=”<<cx<<“\t”<<“cy=”<<cy<<endl;

 }

 void main()

 {

demo d1;

clrscr();

d1.input_data(10,40);

d1.show_data();

getch();

 }

OUTPUT :

cx=10 cy=40

EXPLANATION : In the program we have declared the function inside the class and

defined outside the class. When we define a function outside a class, scope resolution
operator(::) has to be used with the function to tell the compiler to which class the

function belongs. The declaration of function was void show_data(); to define this function

outside the class we first present the general syntax:

return_type class_name : : function_name(arguments/parameters)

{

function code;

}

Here return_type is void, class name is demo and function name is show_data and

it takes no arguments so we define:

Class and Objects in C++ 197

return_type

class_name

function_name

void demo : : show_data ()

{

cout<<”cx=”<<cx<<”\t”<<”cy=”<<cy<<endl;

}

This notation of associating a class name with function using : : is a must. It allows us

to have two functions with the same name in two different classes. Then to resolve them we

have to use : : operator.

6.2 PROGRAMMING EXAMPLES (PART-1)

/*PROG 6.3 DEMO OF CLASS AND OBJECT VER 3 */

#include <iostream.h>

#include <conio.h>

class demo

{

private :

int cx,cy;

public :

void input_data();

void show_data();

};

void demo : :input_data()

{

cout<<“Enter the value of cx and cy \n”;

cin>>cx>>cy;

}

void demo : :show_data()

{

cout<<“cx=”<<cx<<“\t”<<“cy=”<<cy<<endl;

}

198 Object-Oriented Programming C++ Simplified

void main()

{

demo d1;

d1.input_data();

d1.show_data();

getch();

}

OUTPUT :

Enter the value of cx and cy

12

56

cx=12 cy=56

FIGURE 6.1. Output Screen of Program.

EXPLANATION : In the earlier two programs, we assigned the values to cx and cy through

formal parameters x and y. Here, we have changed the function input_data completely.

Inside the function we take two values from keyboard and store them directly into cx and cy.

Thus the function does not take any argument.

/* PROG 6.4 STUDENT CLASS & OBJECT DEMO */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class student

{

char sname[10];

int sage;

char sclass[10];

public :

void getdata (char[], int, char[]);

void showdata();

};

Class and Objects in C++ 199

void student : :getdata(char sn[10], int a, char sc[10])

{

strcpy(sname, sn);

sage =a;

strcpy(sclass, sc);

}

void student : :showdata()

{

cout<<“Name=\t”<<sname<<endl;

cout<<“Age=\t”<<sage<<endl;

cout<<“Class=\t”<<sclass<<endl;

}

void main()

{

student s1, s2;

char st[10];

int sa;

char scls[10];

clrscr();

cout<<“Enter data for student 1\n”;

cin>>st>>sa>>scls;

s1.getdata(st,sa,scls);

cout<<“Enter for student 2\n”;

cin>>st>>sa>>scls;

s2.getdata(st,sa,scls);

cout<<“\n\t Student 1\n\n”;

s1.showdata();

cout<<“\n\t Student2\n\n”;

s2.showdata();

getch();

}

OUTPUT :

Enter data for student 1

Hari 21 Third

Enter for student 2

Ravi 24 forth

 Student 1

Name= Hari

200 Object-Oriented Programming C++ Simplified

Age= 21

Class= Third

 Student2

Name= Ravi

Age= 24

Class= forth

EXPLANATION : In the student class we have three data members : sname, sage, sclass

and two member function. One for inputting the data and second for displaying the data. In

the main we have created two objects s1 and s2. As size of class is 24 bytes so two memory

blocks of 24 bytes each are allocated for s1 and s2 and both having their different copy of each

data members. We input values for these data members in local variables and call functions

getdata and showdata for both the object. Note string data has to be assigned through strcpy

function. You cannot write sname = sn in function get

/* PROG 6.5 FINDING FACTORIAL OF A NUMBER */

#include <iostream.h>

#include <conio.h>

class Fact

{

int num;

public :

void input(int x)

{

num = x;

}

void getfact();

};

void Fact : :getfact()

{

long int f = 1;

short i;

for(i=1;i<=num;i++)

f=f*i;

cout<<“Factorial of”<<num<<“ is “<<f<<endl;

}

Class and Objects in C++ 201

void main()

{

int n;

clrscr();

Fact obj;

cout<<“ENTER THE NUMBER :=”;

cin>>n;

obj.input(n);

obj.getfact();

getch();

}

OUTPUT :

(FIRST RUN)

ENTER THE NUMBER :=8

Factorial of8 is 40320

(SECOND RUN)

ENTER THE NUMBER :=6

Factorial of6 is 720

EXPLANATION : The factorial of number say 5 is calculated by multiplying 5*4*3*2*1

or by multiplying 1*2*3*4*5 which will be 120. The class Fact uses function getfact to find

factorial of a number which is assigned to data member num through input function. The

function getfact works as follows:

Initially f is 1. We run the loop from 1 to num, it may be from num to 1 also. In each iteration value
of f is multiplied by i and stored back in f which is used in the next iteration. For better understanding
lets take num = 4.

S1 i = 1 f = 1 * 1 => 1

S2 i = 2 f = 1 * 2 => 2

S3 i = 3 f = 2 * 3 => 6

S4 i = 4 f = 6 * 4 => 24

/* PROG 6.6 FINDING THE REVERSE OF A NUMBER */

#include <iostream.h>

#include <conio.h>

class Revnum

{

202 Object-Oriented Programming C++ Simplified

int num;

public :

void input(int x)

{

num =x;

}

int getnum()

{

return num;

}

long int getrev();

};

long int Revnum : :getrev()

{

int save = num, r, rev = 0;

while (save!=0)

{

r = save % 10;

rev = rev*10 + r;

save = save/10;

}

return rev;

}

void main()

{

Revnum obj;

int x;

clrscr();

cout<<“ENTER THE NUMBER”;

endl(cout);

cin>>x;

obj.input(x);

cout<<“reverse of “<<obj.getnum()

 <<“ is “<<obj.getrev()<<endl;

getch();

}

Class and Objects in C++ 203

OUTPUT :

ENTER THE NUMBER

5678

reverse of 5678 is 8765

EXPLANATION : The class Reverse computes reverse of the number. Input is passed

through input function. The function getrev calculates the reverse of the number and returns

it. The save variable is used as at the end of while loop save becomes zero and num remains

safe. The logic is explained below in the step by step manner.

S1 save = 3456 r = 3456 % 10 = 6 rev = 0*10 + 6 = 6 save = 3456/10 =345

S2 save = 345 r = 345 % 10 = 5 rev = 6*10 + 5 = 65 save = 345/10 = 34

S3 save = 34 r = 34 % 10 = 4 rev = 65*10 + 4 = 654 save = 34 /10 = 3

S4 save = 3 r = 3 % 10 = 3 rev = 654*10 +3 = 6543 save = 3/10 = 0

 As save is 0 so conditions inside the while loop is false and control comes out of

the loop. The reverse number in variable rev which is returned to the main and is printed.

/* PROG 6.7 CHECKING NUMBER IS PALINDROME */

#include <iostream.h>

#include <conio.h>

class Palin

{

int num;

public :

void input(int x)

{

num = x;

}

int getnum()

{

return num;

}

int checkpalin();

};

int Palin : :checkpalin()

{

int save = num, r, rev = 0;

while(save!=0)

204 Object-Oriented Programming C++ Simplified

{

r=save%10;

rev = rev*10 + r;

save = save/10;

}

if(rev == num)

return 1;

else

return 0;

}

void main()

{

Palin obj;

int x;

clrscr();

cout<<“Enter the number to be checked for palindrome\n”;

cin>>x;

obj.input(x);

if(obj.checkpalin()==1)

cout<<obj.getnum()<<“is palindrome\n”;

else

cout<<obj.getnum()<<“is not palindrome\n”;

getch();

}

OUTPUT :

(FIRST RUN)

Enter the number to be checked for palindrome

4554

4554is palindrome

(SECOND RUN)

Enter the number to be checked for palindrome

4567

4567is not palindrome

EXPLANATION : A number is called palindrome if on reversing it is equal to the original

number for e.g., 121,3223, 656 etc. To check whether an enetered number is palindrome or not

simply reverse the number and compare with the original number but as we have seen in the

Class and Objects in C++ 205

program to reverse a number, the original number becomes zero when control comes out from

the loop. So we save the original number in a variable before starting processing, in the above

program it is in the save variable. If the number is palindrome function checkpalin return

‘1’ (true) which is checked inside the main result is displayed.

/* PROG 6.8 CHECKING PERFECTNESS OF A NUMBER */

#include <iostream.h>

#include <conio.h>

class perfect

{

int num;

public :

void input(int x)

{

num=x;

}

void check_perfect()

{

int sum = 0, t;

for(t=1;t<=num/2;t++)

{

if(num%10==0)

sum=sum+t;

}

if(sum==num)

cout<<“NUMBER :=”<<num<<“IS PERFECT”<<endl;

else

cout<<“NUMBER :=”<<num<<“IS NOT

 PERFECT”<<endl;

}

};

void main()

{

perfect obj;

int x;

cout<<“ENTER THE NUMBER TO BE CHECKED FOR

 PERFECTNESS”<<endl;

cin>>x;

obj.input(x);

obj.check_perfect();

206 Object-Oriented Programming C++ Simplified

getch();

}

OUTPUT :

(FIRST RUN)

ENTER THE NUMBER TO BE CHECKED FOR PERFECTNESS

28

NUMBER :=28 IS PERFECT

(SECOND RUN)

ENTER THE NUMBER TO BE CHECKED FOR PERFECTNESS

5

NUMBER :=5IS NOT PERFECT

EXPLANATION : A number is called perfect if sum of its factor is equal to the number it

self for e.g., 6, its factor are 1,2,3 and sum of its factor is 6 which is equal to the number 6 so

it is a perfect number. Similarly 28 is a perfect number. In the function check_perfect, in

the while loop we initialize sum to 1 and run loop for num/2 as for any number say t which

is more than num/2, num%t won’t be zero(excluding num it self).

/*PROG 6.9 TO CHECK WHETHER A NUMBER IS ARMSTRONG OR NOT */

#include <iostream.h>

#include <math.h>

#include <conio.h>

class Armstrong

{

int num;

public :

void input(int x)

{

num=x;

}

void checkAS();

};

void Armstrong : :checkAS()

{

int save = num, count = 0, newnum = 0, r;

while(num!=0)

Class and Objects in C++ 207

{

num = num /10;

count++;

}

num = save;

while(save!= 0)

{

r = save%10;

newnum = newnum +pow(r, count);

save = save/10;

}

if(newnum==num)

cout<<“Number := “<<num<<“is Armstrong\n”;

else

cout<<“Number”<<num<<“is not Armstrong\n”;

}

void main()

{

Armstrong obj;

int x;

clrscr();

 cout<<“Enter the number to be checked for

 Armstrong \n”;

cin>>x;

obj.input(x);

obj.checkAS();

getch();

}

OUTPUT :

(FIRST RUN)

Enter the number to be checked for Armstrong

153

Number := 153is Armstrong

(SECOND RUN)

Enter the number to be checked for Armstrong

150

Number 150 is not Armstrong

208 Object-Oriented Programming C++ Simplified

EXPLANATION : A number is called Armstrong if sum of count number of power of each

digit is equal to the original number.

For example, to check 153 is Armstrong number or not we see that number of digits are

3 then 13 + 53 + 33 => 1 + 125 + 27 = 153 which is equal to the original number so number

153 is Armstrong.

Let’s see a four digit number 1634. Number of digits is 4

So 14 + 64 + 34 + 44 => 1+ 129 + 81 + 25 = 1634

So, function checkAS proceeds as follows. First find out number of digits, before doing

this save the number in the ‘save’ variable. Now number of digits are stored in the count
variable. Now number of digits are stored in the count variable. Num is 0 now so copy the

value from ‘save’ to ‘num’. ‘pow’ is a library function whose prototype is given in a header

file math.h. It returns number to the power where first argument is number and second is the

power for example pow(2,3) give 23=8,pow(3,2) gives 32=9. As return type of pow function

is double I have type casted it to act as integer.

Now here I have put the steps of second loop are as follows :

Initially num = 153 newnum = 0 count = 3

S1 num = 153%10 = 3 newnum = 0 + pow(3,3) = 0+27 = 27 num = 153/10 =15

S2 num = 15%10 = 5 newnum = 27 + pow(5, 3) = 27+125 =152 num =15/10 =1

S3 num =10%10 = 1 newnum = 152+pow(1,3) = 152+1 = 153 num =1/10=0

As ‘newnum’ contains 153 which is compared with the original number stored in ‘save’. We get

output 153 is Armstrong number.

/* PROG 6.10 GENERATION OF FIBONACCIN SERIES */

#include <iostream.h>

#include <conio.h>

class Fibbo

{

int term;

public :

void input(int x)

{

term = x;

}

void gen_ser()

{

int c, a=0,b=1, t;

cout<<“fibbonaci series is \n”;

cout<<a<<“ “ <<b;

for(t=1;t<=term-2;t++)

Class and Objects in C++ 209

{

c= a+b;

a=b;

b=c;

cout<<“ “<<c;

}

cout<<endl;

}

};

void main()

{

Fibbo obj;

int x;

clrscr();

cout<<“Enter the number of terms \n”;

cin>>x;

obj.input(x);

obj.gen_ser();

getch();

}

OUTPUT :

(FIRST RUN)

Enter the number of terms

7

fibbonaci series is

0 1 1 2 3 5 8

(SECOND RUN)

Enter the number of terms

8

fibbonaci series is

0 1 1 2 3 5 8 13

EXPLANATION : Fibonacci series is a series in which each new term is the sum of

previous two terms. Initially we assume two terms are 0 and 1 so next term will be 0 + 1 = 1,

next term will be 1 + 1 = 2 and so on. So, Fibonacci series is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,……..

210 Object-Oriented Programming C++ Simplified

The number of terms for the series is taken as input. In the function gen_ser we first

display the two terms using ‘a’ and ‘b’. In the ‘for’ loop we calculate c = a + b and put value

of ‘b’ into ‘a’ and transfer new value computed in ‘c’ to ‘b’ for next iteration. We then display

‘c’. This continues till t<= term – 2.

/*PROG 6.11 USE OF ENUM AS CLASS MEMBER */

#include <iostream.h>

#include <conio.h>

class demo

{

public :

enum

{

RED,

GREEN,

BLUE,

YELLOW,

WHITE

};

};

void main()

{

clrscr();

cout<<demo : :RED<<endl;

cout<<demo : :GREEN<<endl;

cout<<demo : :BLUE<<endl;

cout<<demo : :YELLOW<<endl;

cout<<demo : :WHITE<<endl;

getch();

}

OUTPUT :

0

1

2

3

4

EXPLANATION : Similar to other data members of basic data type int, float, char
etc, we can have enumerators as our class members. The enumeration constant can directly be

accessed (if public) in the main using class name with scope resolution operator.

Class and Objects in C++ 211

It can also be accessed using an object say ‘d’ as follows :

demo d;

cout<<d.RED<<endl;

cout<<d.GREEN<<endl;

cout<<d.BLUE<<endl;

cout<<d.YELLOW<<endl;

cout<<d.WHITE<<endl;

/*PROG 6.12 DEMO OF STRUCTURE AS A MEMBER OF CLASS VER 1 */

#include <iostream.h>

#include <conio.h>

class person

{

char name[15];

int age;

float sal;

struct address

{

char hno[15];

char street[15];

char city[15];

char state[15];

}addr;

public :

void input()

{

cout<<“ENTER THE PERSON NAME\n”;

cin>>name;

cout<<“ENTER THE AGE\n”;

cin>>age;

cout<<“ENTER SALARY\n”;

cin>>sal;

cout<<“ENTER THE HOUSE NUMBER \n”;

cin>>addr.hno;

cout<<“ENTER THE STREE NUMBER \n”;

cin>>addr.street;

212 Object-Oriented Programming C++ Simplified

cout<<“ENTER THE CITY\n”;

cin>>addr.city;

cout<<“ENTER THE STATE\n”;

cin>>addr.state;

}

void show()

{

cout<<“NAME :=”<<name<<endl;

cout<<“AGE :=”<<age<<endl;

cout<<“SALARY :=”<<sal<<endl;

cout<<“ADDRESS :=”<<addr.hno<<“,”<<addr.street<<endl;

cout<<“\t”<<addr.city<<“,”<<addr.state<<endl;

}

};

void main()

{

person p;

clrscr();

p.input();

cout<<“\n\t PERSON DETAILS\n\n”;

p.show();

getch();

}

OUTPUT :

ENTER THE PERSON NAME

Hari

ENTER THE AGE

24

ENTER SALARY

26000

ENTER THE HOUSE NUMBER

s17/127

ENTER THE STREE NUMBER

23

Class and Objects in C++ 213

ENTER THE CITY

Varanasi

ENTER THE STATE

UP

PERSON DETAILS

NAME :=Hari

AGE :=24

SALARY :=26000

ADDRESS :=s17/127,23

varanasi,UP

EXPLANATION : The program demonstrates how we can have structure as a member of

a class. The class person has one structure named address whose members are hno (house

number), street, city, and state. After the structure declaration we have created a variable of

type structure ‘addr’ which becomes now member of class person. Note in the main we have

accessed all the members of structure address with this ‘addr’ data member of the class.

/* PROG 6.13 DEMO OF STRUCTURE AS A MEMBER OF CLASS VER 2*/

#include <iostream.h>

#include <string.h>

#include <conio.h>

class person

{

char name[15];

int age;

float sal;

public :

struct

{

char hno[15];

char street[15];

char city[15];

char state[15];

}addr;

214 Object-Oriented Programming C++ Simplified

void input(char s[], int a, float f)

{

strcpy(name, s);

age=a;

sal=f;

}

void show()

{

cout<<“Name=”<<name<<endl;

cout<<“Age=”<<age<<endl;

cout<<“Salary=”<<sal<<endl;

cout<<“Address :=”<<addr.hno<<“,”<<addr.street<<endl;

cout<<“\t”<<addr.city<<“,”<<addr.state<<endl;

}

};

void main()

{

person p;

clrscr();

p.input(“HARI”,24,15000);

strcpy(p.addr.hno,”s17/127”);

strcpy(p.addr.street,”23”);

strcpy(p.addr.city,”Varanasi”);

strcpy(p.addr.state,”UP”);

cout<<“\n\t PERSON DETAILS\n\n”;

p.show();

getch();

}

OUTPUT :

PERSON DETAILS

Name=HARI

Age=24

Salary=15000

Class and Objects in C++ 215

Address : =s17/127,23

Varanasi,UP

EXPLANATION : In the earlier program the structure were given name address, it was not

necessary so here we have removed the name. Also we have made structure as public so we

can show you how to use it outside the class using an object of class person. The three data

members name, age and sal are private so we initialize them using function input. The

members of structure are initialized in the main using an object of person class as :

strcpy(p.addr.hno,”s17/127");

strcpy(p.addr.street,”23");

strcpy(p.addr.city,”Varanasi”);

strcpy(p.addr.state,”UP”);

Note : First addr is accessed using object p then member of structures are accessed using dot operator.

6.3 STRUCTURE IN C++

We have learned that for a class default access specifier is private i.e., if no access mode is

given all data members and functions are considered as private. A structure in C++ is similar

to class with the difference that default access specifier for a structure is public. Other than

this there is no difference in structure and classes in C++. Given below in the left column a

class is written and on the right column corresponding structure is written. Note for a class we

didn’t specify private specifier for the data members as default mode is private. Similarly, for

the structure class we didn’t specify public specifier for the member function as default mode

is public.

Table : Shows the Difference between Class and Structure

Simple Demo Class Corresponding Structure

Class demo

{

int x;

int y;

public :

void input(int a,int b)

{

x = a;

y = b;

}

void show()

{

cout<<”x =”<<x<<endl;

struct demo

{

void input(int a,int b)

{

x=a;

y=b;

}

void show()

{

cout<<”x=”<<x<<endl;

cout<<”y=”<<y<<endl;

}

216 Object-Oriented Programming C++ Simplified

cout<<”x =”<<x<<endl;

cout<<”y =”<<y<<endl;

}

 };

6.4 ACCESSING PRIVATE DATA

We declared data as private so that it is only accessible inside the function of the class and

other external functions cannot use the private data. But sometimes we require that private

data is accessible outside the class. One way is to make them public, but this will defy the

principle of data hiding. The other solution is to create public member functions which return

the private data members. This is the way which is usually employed for accessing private

data. Similarly to private data you can have private member functions of the class. They cannot

be called from outside the class.

Let’s have an example to understand how to access private data.

/*PROG 6.14 ACCESSING PRIVATE DATA OUTSIDE THE CLASS VER 1*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

 int num;

 public :

 void fun()

 {

num=20;

 }

 int getnum()

 {

return num;

 }

 };

 void main()

 {

demo d;

clrscr();

d.fun();

cout<<“num is “<<d.getnum()<<endl;

getch();

 }

private :

int x;

int y;

};

Class and Objects in C++ 217

OUTPUT :

num is 20

EXPLANATION : In the program we have a class demo which has a private data

member num. In the main when we call the function fun by an object d of class demo, the

num is initialized to 20. In order to access this value of num outside the class we have written

a public member function getnum() which returns the value of num. As the type of num is

int we have kept the written type of function getnum as int. In the main when this

function is called as d.getnum(), num is returned from the function getnum. Thus, we have

accessed private data member outside the class.

/* PROG 6.15 ACCESSING PRIVATE DATA OUTSIDE THE CLASS VER 2*/

#include <iostream.h>

#include <conio.h>

#include <string.h>

class Person

{

char name[15];

char sex;

float sal;

public :

void input(char n[], char s, float f)

{

strcpy(name, n);

sex = s;

sal = f;

}

char * getname()

{

return name;

}

char getsex()

{

return sex;

}

218 Object-Oriented Programming C++ Simplified

float getsal()

{

return sal;

}

};

void main()

{

Person p;

clrscr();

p.input(“MANMOHAN”,’M’,15000);

cout<<“NAME :=”<<p.getname()<<endl;

cout<<“Sex :=”<<p.getsex()<<endl;

cout<<“Salary :=”<<p.getsal()<<endl;

getch();

}

OUTPUT :

NAME : =MANMOHAN

Sex : =M

Salary : =15000

EXPLANATION : This time for accessing private data members name, ‘sex’ and ‘sal’
we have written three public member functions getname, getsal and getsex which return

value of ‘name’, ‘sal’ and ‘sex’ respectively. Note depending upon type of data member

we return from public member functions we have set the return type.

/*PROG 6.16 COMPARING SALARY OF TWO EMPLOYEE’S */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class Emp

{

char ename[15];

float sal;

public :

Class and Objects in C++ 219

void input(char n[15], float s)

{

strcpy(ename, n);

sal = s;

}

float getsal()

{

return sal;

}

char * getname()

{

return ename;

}

};

void main()

{

Emp e1;

clrscr();

e1.input(“HARI”, 26000);

Emp e2;

e2.input(“VIJAY”,30000);

if(e1.getsal()>e2.getsal())

cout<<e1.getname()<<“ ‘s salary is higher \n”;

else

cout<<e2.getname()<<“ ‘s salary is higher \n”;

getch();

}

OUTPUT :

VIJAY ‘s salary is higher

EXPLANATION : The class Emp has two data members’ ename and sal. We wish to

compare salary of two employees. We initially assign the name and salary to both the employee’s

which are represented by two object e1 and e2. The two data members are private we cannot

use them inside the main. Writing them public will defy the purpose of data hiding so we

have made public member function getsal and getname which returns the values of these

data member. In the if condition e1.getsal() returns the salary of object e1 and e2.getsal()
returns the salary of e2. The salary is compared and appropriate result is displayed.

220 Object-Oriented Programming C++ Simplified

6.5 PROGRAMMING EXAMPLE (PART-2)

/*PROG 6.17 DEMO OF ARRAY WITHIN CLASS, INPUT AND DISPLAY */

#include <iostream.h>

#include <conio.h>

#define S 5 // condition compilation (MACRO)

class demo_Arr

{

int arr[S];

public :

void input()

{

for(int i = 0; i<S; i++)

{

cout<<“\n Enter arr[“<<i<<“]element :=”;

cin>>arr[i];

}

}

void show()

{

cout<<“ARRAY ELEMENTS ARE \n”;

for(int i =0; i<S;i++)

cout<<“arr[“<<i<<“] :=”<<arr[i]<<endl;

}

};

void main()

{

demo_Arr obj;

clrscr();

obj.input();

obj.show();

getch();

}

Class and Objects in C++ 221

OUTPUT :

 Enter arr[0]element :=10

 Enter arr[1]element :=11

 Enter arr[2]element :=12

 Enter arr[3]element :=13

 Enter arr[4]element :=14

ARRAY ELEMENTS ARE

arr[0] :=10

arr[1] :=11

arr[2] :=12

arr[3] :=13

arr[4] :=14

EXPLANATION : Working with arrays in class is simple as can be seen from the above

program. We declare array of size S as private data member of class demo_Arr. Through

‘input’ we take elements from the user and store into array ‘arr’. With the help of ‘show’
function we display the array values. Initialization and construction of dynamic array is shown

in the next chapter through constructor.

/*PROG 6.18 SORTING OF ARRAY ELEMENTS */

#include <iostream.h>

#include <conio.h>

#define S 5

class demoArr

{

int arr[S];

public :

void input()

{

for(int i=0;i<S;i++)

{

cout<<“\nEnter arr[“<<i<<“]element :=”;

cin>>arr[i];

}

}

void show()

{

cout<<“\nARRAY ELEMENTS ARE GIVEN HERE \n”;

for(int i=0;i<S;i++)

222 Object-Oriented Programming C++ Simplified

cout<<“arr[“<<i<<“] :=”<<arr[i]<<endl;

}

void sort()

{

int i,j,t;

for(i=0;i<S;i++)

for(j=i+1;j<S;j++)

if(arr[i]>arr[j])

{

t=arr[i];

arr[i]=arr[j];

arr[j]=t;

}

show();

}

};

void main()

{

clrscr();

demoArr obj;

obj.input();

obj.show();

cout<<“SORTED ARRAY IS SHOWN HERE\n”;

obj.sort();

getch();

}

OUTPUT :

Enter arr[0]element :=45

Enter arr[1]element :=23

Enter arr[2]element :=90

Enter arr[3]element :=15

Enter arr[4]element :=67

ARRAY ELEMENTS ARE GIVEN HERE

arr[0] :=45

arr[1] :=23

arr[2] :=90

arr[3] :=15

arr[4] :=67

Class and Objects in C++ 223

SORTED ARRAY IS SHOWN HERE

ARRAY ELEMENTS ARE GIVEN HERE

arr[0] :=15

arr[1] :=23

arr[2] :=45

arr[3] :=67

arr[4] :=90

EXPLANATION : Sorting means arrangement of array elements in either ascending order

or descending order. In the program we sort the array in ascending order.

In order to understand the logic behind the program we take 5 elements of array and trace

the logic as :

Initial

arr [0]

4 0 3 1 2

arr [1] arr [2] arr [3] arr [4]

For i = 0, inner for loop runs for j = 1to j = 4 and it compares a[0] with all other elements

of the array i.e., a[1], a[2], a[3] and a[4]. If any of the element is greater than a[0] then both

the elements are swapped . For example, a[0] is 4 and a[1] is 0 if condition turns out to be true

then a[0] and a[1] are swapped. Now array becomes :

0

arr [0]

arr [0]

arr [0]

4

0

0

4

3

3

1

1

2

2

arr [1]

arr [1]

arr [1]

arr [2]

arr [2]

arr [2]

arr [3]

arr [3]

arr [3]

arr [4]

arr [4]

arr [4]

if (arr [0] > arr [1])
 t = arr [0] = 4
 arr [0] = arr [1] = 0
 arr [1] = t = 4

if (arr [1] > arr [2])
 t = arr [1] = 4
 arr [1] = arr [2] = 3
 arr [2] = t = 4

1 2 3 4

Figure 6.2. Implementation Logic of Sorting.

224 Object-Oriented Programming C++ Simplified

So, after the end of the inner for loop array will be look like as shown in above figure,

that is second smallest number is at the second place in the array. So, when the outer loop

finishes the array will be sorted in ascending order.

/* PROG 6.19 REVERSING ARRAY ELEMENTS */

#include <iostream.h>

#include <conio.h>

#define S 5

class demoArr

{

int arr[S];

public :

void input()

{

for(int i=0;i<S; i++)

{

cout<<“\n ENTER ARRAY[“<<i<<“] element :=”;

cin>>arr[i];

}

}

void show()

{

cout<<“ARRAY ELEMENTS ARE \n”;

for(int i = 0; i<S; i++)

cout<<“arr[“<<i<<“] :=”<<arr[i]<<endl;

}

void reverse()

{

int i,j;

for(i=0;i<S;i++)

for(j=i+1;j<S;j++)

{

arr[i]=arr[i]+arr[j];

arr[j]=arr[i]−arr[j];

arr[i]=arr[i]−arr[j];

}

Class and Objects in C++ 225

show();

}

};

void main()

{

 clrscr();

demoArr obj;

obj.input();

obj.show();

cout<<“REVERSE”;

obj.reverse();

getch();

}

OUTPUT :

 ENTER ARRAY[0] element :=12

 ENTER ARRAY[1] element :=13

 ENTER ARRAY[2] element :=14

 ENTER ARRAY[3] element :=15

 ENTER ARRAY[4] element :=16

ARRAY ELEMENTS ARE

arr[0] :=12

arr[1] :=13

arr[2] :=14

arr[3] :=15

arr[4] :=16

REVERSE ARRAY ELEMENTS ARE

arr[0] :=16

arr[1] :=15

arr[2] :=14

arr[3] :=13

arr[4] :=12

EXPLANATION : In the earlier program of sorting swapping of two array elements was

done on the basis of comparison. If we remove this if condition the two elements will be

226 Object-Oriented Programming C++ Simplified

swapped on conditional basis and when one inner loop finishes top elements will be stored at

the bottom of the array.

/*PROG 6.20 DEMO OF 2-D WITHIN CLASS */

#include <iostream.h>

#include <conio.h>

#define R 2

#define C 3

class demo_arr

{

int arr[R][C];

public :

void input()

{

int i,j;

for(i=0;i<R;i++)

for(j=0;j<C;j++)

{

cout<<“\n Enter

arr[“<<i<<“][“<<j<<“]element :=”;

cin>>arr[i][j];

}

}

void show()

{

int i,j;

cout<<“Array elements are \n”;

for(i=0;i<R;i++)

{

cout<<“Row “<<i+1<<“−>\t”;

for(j=0;j<C;j++)

cout<<arr[i][j]<<“\t”;

cout<<endl;

}

}

};

void main()

{

 clrscr();

demo_arr obj;

obj.input();

Class and Objects in C++ 227

obj.show();

getch();

}

EXPLANATION : We have simply defined a 2-D array arr of size R by C. Through input

function we take elements in the array and through show we display the element.

/*DEMO 6.21 SORTING OF EACH ROW OF 2-D ARRAY WITHIN CLASS */

#include <iostream.h>

#include <conio.h>

#define R 2

#define C 4

class demo_arr

{

int arr[R][C];

public :

void input()

{

int i,j;

for(i=0;i<R;i++)

for(j=0;j<C;j++)

{

cout<<“\nENTER arr[“<<i<<“][“<<j<<“]

 ELEMENT :=”;

cin>>arr[i][j];

}

}

void sort()

{

int i, j, k, t;

for(i=0;i<R;i++)

{

for(j=0;j<C;j++)

for(k=j+1;k<C;k++)

if(arr[i][j]>arr[i][k])

{

t=arr[i][j];

228 Object-Oriented Programming C++ Simplified

arr[i][j]=arr[i][k];

arr[i][k]=t;

}

}

show();

}

void show()

{

int i,j;

cout<<“ARRAY ELEMENTS ARE \n”;

for(i=0;i<R;i++)

{

cout<<“ROW “<<i+1<<“−>\t”;

for(j=0;j<C;j++)

cout<<arr[i][j]<<“\t”;

cout<<endl;

}

}

};

void main()

{

clrscr();

demo_arr obj;

obj.input();

obj.show();

cout<<“SORTED ARRAY ELEMENTS ARE \n”;

obj.sort();

getch();

}

OUTPUT :

ENTER arr[0][0]ELEMENT :=12

ENTER arr[0][1]ELEMENT :=45

ENTER arr[0][2]ELEMENT :=89

ENTER arr[0][3]ELEMENT :=11

Class and Objects in C++ 229

ENTER arr[1][0]ELEMENT :=17

ENTER arr[1][1]ELEMENT :=19

ENTER arr[1][2]ELEMENT :=10

ENTER arr[1][3]ELEMENT :=26

ARRAY ELEMENTS ARE

ROW 1-> 12 45 89 11

ROW 2-> 17 19 10 26

SORTED ARRAY ELEMENTS ARE

ARRAY ELEMENTS ARE

ROW 1-> 11 12 45 89

ROW 2-> 10 17 19 26

EXPLANATION : The logic of sorting a 1-D array was presented earlier. Now assuming

each row of a 2-D array as a 1-D array sorting has been done. The second and third loop

together performs the sorting and the outer loop does this for all the rows.

/* PROG 6.22 SUM OF DIAGONAL ELEMENTS OF A SQUARE MATRIX */

#include <iostream.h>

#include <conio.h>

#define R 3

#define C 3

class sqr_mat

{

int arr[R][C];

public :

void input();

int diag_sum();

void display();

};

void sqr_mat : :input()

230 Object-Oriented Programming C++ Simplified

{

int i,j;

for(i=0;i<R;i++)

 for(j=0;j<C;j++)

 {

cout<<“\nEnter arr[“<<i<<“][“<<j<<“]elements :=”;

cin>>arr[i][j];

}

}

int sqr_mat : : diag_sum()

{

int i,j,sum = 0;

for(i=0;i<R;i++)

{

for(j=0;j<C;j++)

if(i==j)

sum+=arr[i][j];

}

return sum;

}

void sqr_mat : :display()

{

int i, j;

cout<<“Matrix is \n”;

for(i=0;i<R;i++)

{

for(j=0;j<C;j++)

cout<<arr[i][j]<<“\t”;

cout<<endl;

}

}

void main()

{

clrscr();

sqr_mat obj;

obj.input();

obj.display();

cout<<“Sum of diagonal elements is”

 <<obj.diag_sum()<<endl;

Class and Objects in C++ 231

getch();

}

OUTPUT :

Enter arr[0][0]elements :=1

Enter arr[0][1]elements :=2

Enter arr[0][2]elements :=3

Enter arr[1][0]elements :=4

Enter arr[1][1]elements :=5

Enter arr[1][2]elements :=6

Enter arr[2][0]elements :=7

Enter arr[2][1]elements :=8

Enter arr[2][2]elements :=9

Matrix is

1 2 3

4 5 6

7 8 9

Sum of diagonal elements is 15

EXPLANATION : A 2-D array where number of row and number of column is same is

termed as square matrix. The diagonal elements as those elements of array where row number

and column number is equal. Say [0,0], [1,1] and [2,2] and so on. To find out the sum of

diagonal elements we compare ‘i’ and ‘j’ and where they are same we add arr[i][j] to sum. This

is done in the function diag_sum().

/*PROG 6.23 DEMO OF STRING, FINDING LENGTH VER 1 */

#include <iostream.h>

#include <conio.h>

class demo_str

{

char str[12];

int len;

232 Object-Oriented Programming C++ Simplified

public :

void input()

{

cout<<“ENTER A STRING :=”;

cin>>str;

}

void find_len()

{

int i=0;

while(str[i++]!=0);

len=i;

}

void show()

{

cout<<“String :=”<<str<<endl;

cout<<“Length :=”<<len<<endl;

}

};

void main()

{

demo_str str;

clrscr();

str.input();

str.find_len();

str.show();

getch();

}

OUTPUT :

ENTER A STRING :=Hari Mohan

String :=Hari

Length :=5

EXPLANATION : A string is nothing but an array of character terminated by null
character ‘\0’. We have three function input, find_len and show. The function input

takes input from the user and store the string in the variable str. The function find_len
finds the length of the string control variable i, till str[i]!=0. The body of the while loop

is simple the null statement. In the end when loop terminates ‘i’ is assigned to len. Through

show we display str and len. From the output you can conclude that cin stops at the very

first white space character and “hari” including space where it stopped is assigned to str.

Class and Objects in C++ 233

H A R I M O H A N \0

0 1 2 3 4 5 6 7 8 9 10 11

 cin stops after getting space

Figure 6.3. Logical Implementation of cin statement.

For getting the whole string scanned see the next program.

/* PROG 6.24 DEMO OF STRING, FINDING LENGTH OF STRING VER 2*/

#include <iostream.h>

#include <conio.h>

class demostr

{

char str[12];

int len;

public :

void input()

{

cout<<“Enter a string \n”;

cin.getline(str,12);

}

void find_len()

{

int i=0;

while(str[i++]!=0);

len = i;

}

void show()

{

cout<<“String :=”<<str<<endl;

cout<<“Length :=”<<len<<endl;

}

};

void main()

{

demostr str;

234 Object-Oriented Programming C++ Simplified

clrscr();

str.input();

str.find_len();

str.show();

getch();

}

OUTPUT :

Enter a string

Hari Mohan

String :=Hari Mohan

Length :=11

EXPLANATION : The function getline scans the whole line till the enter key is pressed
or max 19 characters are scanned first. The function scans even the white space character
like space, tab, etc. This time the whole string is scanned and output is what we expected.

/* PROG 6.25 CHANGING CASE OF STRING CHARACTERS */

#include <iostream.h>

#include <conio.h>

#include <ctype.h>

class demo_str_case

{

char str[12];

public :

void input();

void change_case();

};

void demo_str_case : :input()

{

int i=0;

cout<<“ENTER A STRING \n”;

char ch;

ch=cin.get();

while(i<12)

{

str[i]=ch;

if(ch==’\n’|| i==11)

Class and Objects in C++ 235

{

str[i]=’\0';

break;

}

ch =cin.get();

i++;

}

}

void demo_str_case : :change_case()

{

 int i=0;

char ch;

while(str[i]!=0)

{

if(islower(str[i]))

{

ch =str[i]-32;

cout.put(ch);

}

else if(isupper(str[i]))

{

ch = str[i]+32;

cout.put(ch);

}

else

cout.put(str[i]);

i++;

}

}

void main()

{

demo_str_case str;

clrscr();

str.input();

cout<<“STRING IN CHAGE CASE”<<endl;

str.change_case();

getch();

}

236 Object-Oriented Programming C++ Simplified

OUTPUT :

ENTER A STRING

Hari Mohan

STRING IN CHAGE CASE

hARI mOHAN

EXPLANATION : In the function input we are taking the input character by character with

the help of cin.get() function accepts one character at a time from keyboard. The maximum

size of out char array str is 12 so we run a while loop using one control variable ‘i’ becomes

19 then we come out from the loop. But before that we assign null character to str[i] to denote

end of string. In the function change_case we check each character of the string str for lower

case by macro islower, and for upper case by using macro isupper, courtesy ctype.h. If the

character is in lower case we subtract 32 from the character and if the character is in upper

case we add 32 to it. If the character is other than alphabet we display it as it is.

/*PROG 6.26 REVERSE A STRING */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class string

{

char str [20];

int len;

public :

void input()

{

cout<<“Enter a string \n”;

cin.getline(str,20);

len=strlen(str);

}

char* reverse()

{

int i,j;

char* rev = new char[len+1] // Dynamic memory

 // allocation

for(i=len-1,j=0,i>=0,j<len;i––,j++)

rev[j]=str[i];

rev[j]=’\0';

return rev;

}

};

Class and Objects in C++ 237

void main()

{

string obj;

clrscr();

obj.input();

cout<<“Reverse string is\n”;

cout<<obj.reverse()<<endl;

getch();

}

OUTPUT :

Enter a string

NMIMS

Reverse string is

SMIMN

EXPLANATION : Logic to reverse the string is quite simple. We take the last character

from the end and put it at the starting position of the new reverse string. Then we decrement

the counter for original and increment for reverse string (i.e., j++ and i– –in this case). As we

are reversing the string character by character basis we will have to add null character when

copying finishes. Note the function space for reverse string has been allocated dynamically

from the length of the original string.

/* PROG 6.27 CHECK STRING FOR PALINDROME */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class string

{

char str[20];

int len;

public :

void input()

{

cout<<“Enter a string \n”;

cin.getline(str,20);

len=strlen(str);

}

238 Object-Oriented Programming C++ Simplified

char* reverse()

{

int i,j;

char* rev= new char[len+1];

for(i=len–1,j=0;i>=0,j<len;i– –,j++)

rev[j]=str[i];

rev[j]=’\0';

return rev;

}

void checkpalin()

{

if(strcmp(reverse(),str)==0)

cout<<“String is palindrome\n”;

else

cout<<“String is not palindrome\n”;

}

};

void main()

{

string obj;

clrscr();

obj.input();

cout<<“Reverse string is \n”;

cout<<obj.reverse()<<endl;

obj.checkpalin();

getch();

}

OUTPUT :

(FIRST RUN)

Enter a string

HARI

Reverse string is

IRAH

String is not palindrome

(SECOND RUN)

Class and Objects in C++ 239

Enter a string

MADAM

Reverse string is

MADAM

String is palindrome

EXPLANATION : A string is called palindrome if it is same on reversal i.e., peep, sos etc.

We have simply reversed the string and checked whether the original and reverse are the same

using strcmp function. Note function reverse has been called in the checkpalin function. The

function strcmp compares two strings and if both are equal it returns 0.

/* PROG 6.28 DEMO OF ARRAY OF STRING */

#include <iostream.h>

#include <string.h>

#include <conio.h>

#define S 5

class string

{

char str[S][15];

public :

void input()

{

for(int i=0;i<S;i++)

{

cout<<“Enter a string \n”;

cin.getline(str[i],15);

}

}

void show()

{

for(int i=0;i<S;i++)

cout<<str[i]<<endl;

}

};

void main()

{

240 Object-Oriented Programming C++ Simplified

string obj;

getch();

obj.input();

cout<<“String are \n”;

obj.show();

getch();

}

OUTPUT :

Enter a string

hari

Enter a string

vijay

Enter a string

mohan

Enter a string

ranjana

Enter a string

anjana

String are

hari

vijay

mohan

ranjana

anjana

EXPLANATION : char str[S][15] denotes an array of 5 string each can have maximum

14 characters. We take input using for loop in each string (str[0], str[1],str[4])
and display the same using function show().

6.6 PASSING AND RETURNING OBJECT

Similar to returning and passing arguments to function of basic type like int, char, double, float,

char* etc. we can pass objects of class to functions and even return objects from functions. To

pass object we have simply write in the declaration of function, the base name whose objects

we will be passing. Similarly for returning an object we will have to write class name as return

type. For example for a function show which takes an object of demo class type and return an

object of demo class we write the declaration as :

demo show(demo);

Class and Objects in C++ 241

/*PROG 6.29 DEMO OF PASSING OBJECTS TO FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

 int num;

 public :

 void input(int x)

 {

 num=x;

 }

 void copy(demo);

 void show()

 {

 cout<<“num=”<<num<<endl;

 }

 };

 void demo : :copy (demo d)

 {

 num=d.num;

 }

 void main()

 {

 demo d1,d2;

 clrscr();

 d1.input(20);

 d2.copy(d1);

 cout<<“Object d1\n”<<endl;

 d1.show();

 cout<<“Object d2\n”;

 d2.show();

 getch();

 }

OUTPUT :

Object d1

num=20

Object d2

num=20

242 Object-Oriented Programming C++ Simplified

EXPLANATION : The declaration void copy(demo); tells the compiler that copy is a

function which takes an object of class demo type and returns nothing. The function is defined

outside the class but you can define inside the class too. In the main d1 calls the function

copy and pass the object d2 as argument. This object d2 is passed through call by

mechanism and is copied to formal argument d inside the function copy. Copying an object to

another object involves copying all data members. Here d.num inside function copy represents

num of object d1 in the main and num alone is num for object who called the function here

it is d2. So num of d1 is assigned to num of d2. In the end both num are displayed by a call

to show.

/* PROG 6.30 DEMO PASSING OBJECT AS ARGUMENT VER 2 */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class employee

{

float sal;

char name[10];

public :

void input(float s, char n[])

{

sal=s;

strcpy(name,n);

}

void comp_sal(employee temp);

};

void employee : : comp_sal(employee temp) // object as argument

{

if(temp.sal>sal)

cout<<temp.name<<“ ‘s salary is higher “

 <<“ than “ <<name<<“ ‘s salary”<<endl;

else

cout<<name<<“‘s salary is higher “

 <<“ than “<<temp.name<<“ ‘s salary\n”;

}

void main()

{

Class and Objects in C++ 243

employee e1, e2;

e1.input(10000.275,”Hari”);

e2.input(11000.0,”Ravi”);

e1.comp_sal(e2);

getch();

}

OUTPUT :

Ravi ‘s salary is higher than Hari ‘s salary

EXPLANATION : The declaration void comp_sal (employee temp); tells the compiler

that comp_sal is a function which takes an object of class employee type and returns nothing.

The function compares the salary of two employee’s. In the main object e1 calls the function

comp_sal and passes object e2 as argument. The object e2 is passed call by value and all data

members of e2 is copied to object temp. In the function salary is compared and result is

displayed.

/* PROG 6.31 DEMO OF PASSING OBJECT AS ARGUMENT VER 3 */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class time

{

int hours;

int minutes;

int secs;

public :

void input_time(int hh, int mm, int ss)

{

hours=hh;

minutes = mm;

secs = ss;

}

void comp_time(time);

};

244 Object-Oriented Programming C++ Simplified

void time : :comp_time(time temp)

{

long int t1, t2;

t1=hours*60*60+minutes*60+secs;

/* calling by object of the class */

t2=temp.hours*60*60+temp.minutes*60+temp.secs;

if(t1>t2)

cout<<“FIRST TIME DURATION (IN SECOND)”<<t1<<“\n

 IS GREATER THAN SECOND (IN SECONDS)”

 <<t2<<endl;

else

cout<<“SECOND TIME DURATION (IN SECOND)”<<t2<<“\n

 IS GREATER THAN FIRST (IN SECONDS)”

 <<t1<<endl;

}

void main()

{

 clrscr();

time time1, time2;

time1.input_time(5,34,45);

time2.input_time(4,78,50);

time1.comp_time(time2); //object of class as

// argument here

getch();

}

OUTPUT :

FIRST TIME DURATION (IN SECOND)20085

 IS GREATER THAN SECOND (IN SECONDS)19130

EXPLANATION : The class time has 3 data members : hours, minutes and secs which

stores hour, minutes and second respectively. In the main we create two objects time1 and

time2 for the class time and assign input values to hours, minutes and secs by calling the

function input_time function for both the objects. The function comp_time compares two time

durations by converting the time into seconds and stores in temporary variables t1 and t2. It

than compares t1 and t2 and display result accordingly.

/*PROG 6.32 RETURING OBJECT AS ARGUMENT VER 1 */

#include <iostream.h>

#include <conio.h>

Class and Objects in C++ 245

class demo

{

int num;

public :

void input(int x)

{

num = x;

}

demo copy();

void show()

{

cout<<“num=”<<num<<endl;

}

};

demo demo : :copy()

{

demo temp;

temp.num = num;

return temp;

}

void main()

{

clrscr();

demo d1, d2;

d1.input(20);

d2=d1.copy();

cout<<“Object d1\n”;

d1.show();

cout<<“Object d2\n”;

d2.show();

246 Object-Oriented Programming C++ Simplified

getch();

}

OUTPUT :

Object d1

num=20

Object d2

num=20

EXPLANATION : The declaration democopy() tells the compiler that the function copy

doesn’t take any argument and returns an object of type demo. Note how the function is defined

outside the class :

demo demo : :copy()

{

demo temp;

temp.num = num;

return temp;

}

In the line demo demo : :copy()

In the demo is the return type and demo: :copy specifies that copy is a function of demo
class Inside the function we create a temporary object temp. Inside this object temp’s num

data member we assign num of object d1 actually who called the function copy in the main
as d2=d1.copy(). When function copy returns object temp it is assigned to d2 as d2=temp
which copies num of temp to num of d2.

/*PROG 6.33 DEMO OF PASSING OBJECT AS ARGUMENT AND RETURNING OBJECT AS

ARGUMENT */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class time

{

int hours;

int minutes;

int secs;

Class and Objects in C++ 247

public :

void input_time(int hh,int mm, int ss)

{

hours=hh;

minutes=mm;

secs=ss;

}

time sum_time(time,time);

void show_time(char*s)

{

cout<<s<<endl;

cout<<“Hours :=”<<hours<<“\t”<<“Minutes :=”<<minutes

 <<“\t”<<“Seconds :=”<<secs<<endl;

}

};

time time : :sum_time(time A, time B)

{

int h,m,s;

time temp;

s=A.secs+B.secs;

m=A.minutes+B.minutes+s/60;

h=A.hours+B.hours+m/60;

temp.secs = s%60;

temp.minutes = m%60;

temp.hours = h;

return temp;

}

void main()

{

 clrscr();

time time1, time2, time3;

time1.input_time(3,35,45);

time2.input_time(4,56,45);

248 Object-Oriented Programming C++ Simplified

time3=time3.sum_time(time1,time2);

time1.show_time(“\nTime 1\n”);

time2.show_time(“\nTime 2\n”);

time3.show_time(“\nSUM OF TWO DURATION IS\n”);

getch();

}

OUTPUT :

Time 1

Hours :=3 Minutes :=35 Seconds :=45

Time 2

Hours :=4 Minutes :=56 Seconds :=45

SUM OF TWO DURATION IS

Hours :=8 Minutes :=32 Seconds :=30

EXPLANATION : In the program we are finding sum of two durations. The function

declaration time sum_time (time, time); tells the compiler that sum_time is a function

which takes two arguments(objects) of class time type. In this main we initialize data

member’s hours, minutes and secs of two objects time1 and time2 by calling function

input_time. In the statement

time3=time3.sum_time (time1, time2);

time3 calls the function sum_time and passes time1 and time2 as argument. Inside

the function sum_time first we calculate number of seconds, minutes and hour’s
variables s, m and h and from them we actually assign values to data members of temp
objects. In the end of this temp object is returned and assigned to time3 in the main.

6.7 ARRAY OF OBJECT

Similar to array of any basic data types we can create array of object of any class. This comes

handy when we want to process say salary of number of employees, Processing accounts of

persons, records of students etc. In all these situation array of objects makes our work easier

and makes processing faster. For a class say demo which contains two data members dx and

dy of int type array of objects is created as :

Class and Objects in C++ 249

demo arr[5];

This creates an array of objects of size 5. The first object is referred by arr[0], second

by arr[1] and so on. The data members of object arr[0] can be accessed as arr[0].dx and

arr[0].dy. As we have just two data members dx and dy of int type inside the class, the size

of any object of this demo class will be of 8 bytes. So, size of array will be 8*5=40. Each

object will be places at a distance of 8 bytes in the memory as show :

arr [0] arr [1] arr [2] arr [3] arr [4]

dx dy dx dy dx dy dx dy dx dy

Figure 6.4. Implementation of Array of Object.

/*PROG 6.34 DEMO OF ARRAY OF OBJECTS */

#include <iostream.h>

#include <conio.h>

#define S 5

class Point

{

int px;

int py;

public :

void input(int x,int y)

 {

px=x;

py=y;

 }

 void show()

 {

cout<<“(“<<px<<“,”<<py<<“)”<<endl;

 }

};

 void main()

 {

Point ptarr[S];

int i;

clrscr();

for(i=0;i<S;i++)

ptarr[i].input(234+i*2,254+i*3);

cout<<“Points are \n”;

for(i=0;i<S;i++)

ptarr[i].show();

250 Object-Oriented Programming C++ Simplified

getch();

 }

OUTPUT :

Points are

(234,254)

(236,257)

(238,260)

(240,263)

(242,266)

EXPLANATION : The class Point store x and y coordinates of a point. Inside the main we

have created an array ptarr of size 5 of class type Point. This is similar to creating 5 objects

with different name. The array ptarr is an object array of class Point type. ptarr [0] denotes first

object, ptarr[1] denotes second object and so on. In the main we call input function for all the

objects using for loop a pass arbitrary points to function. Each object will be having different

points as data members for each object are unique. Later we display the points of each using

show and for loop.

/* PROG 6.35 DISPLAYING EMP NAME AND SALARY USING ARRAY OF OBJECT */

#include <iostream.h>

#include <conio.h>

#define S 4

class Emp

{

char ename[15];

float sal;

public :

void input();

void show();

};

void Emp : :input()

{

cout<<“Enter the employee name \n”;

cin.getline(ename,15);

cout<<“Enter salary\n”;

cin>>sal;

cin.ignore();

}

Class and Objects in C++ 251

void Emp : :show()

{

cout<<ename<<“\t”<<sal<<endl;

}

void main()

{

Emp earr[S];

int i;

clrscr();

for(i=0;i<S;i++)

earr[i].input();

cout<<“Employee Details\n”;

cout<<“\n NAME \t SALARY\n”;

for(i=0;i<S;i++)

earr[i].show();

getch();

}

OUTPUT :

Enter the employee name

hari

Enter salary

26000

Enter the employee name

Deshmukh

Enter salary

20000

Enter the employee name

Vivek

Enter salary

21000

Enter the employee name

Malvika

Enter salary

25000

Employee Details

 NAME SALARY

Hari 26000

Deshmukh 20000

Vivek 21000

Malvika 25000

252 Object-Oriented Programming C++ Simplified

EXPLANATION : The class Emp stores information about employee. It has just two data

members ename and sal. Through function input we take employee name and salary directly

in data member’s ename and sal. The use of cin.ignore() flushes the input buffer. This

is equivalent to fflush(stdin) in C. In the main we create an array of Emp object by the

name earr of size S. Through for loop and input function we take data for all the 4 object
elements of array earr and later display them using for and show.

/* PROG 6.36 STUDENTS MERIT LIST */

#include <iostream.h>

#include <conio.h>

#define S 4

class student

{

char sname[15];

int m1, m2, m3;

float per;

public :

void input();

void show();

float getper();

};

void student : :input()

{

cout<<“ENTER THE NAME OF STUDENT”<<endl;

cin.getline(sname,15);

cout<<“ENTER THE MARKS IN THREE SUBJECTS”<<endl;

cin>>m1>>m2>>m3;

per=(m1+m2+m3)/3.0;

cin.ignore();

}

void student : :show()

{

cout<<sname<<“\t”<<per<<endl;

}

float student : :getper()

{

Class and Objects in C++ 253

return per;

}

void main()

{

student sarr[S],temp;

int i,j;

clrscr();

for(i=0;i<S;i++)

sarr[i].input();

for(i=0;i<S;i++)

for(j=i+1;j<S;j++)

if(sarr[i].getper()<sarr[j].getper())

{

temp=sarr[i];

sarr[i]=sarr[j];

sarr[j]=temp;

}

cout<<“STUDENT MERIT LIST\n”;

cout<<“\nNAME \t Per(%)\n”;

for(i=0;i<S;i++)

sarr[i].show();

getch();

}

OUTPUT :

ENTER THE NAME OF STUDENT

Kashap

ENTER THE MARKS IN THREE SUBJECTS

70

78

90

ENTER THE NAME OF STUDENT

Maskara

ENTER THE MARKS IN THREE SUBJECTS

80

67

78

ENTER THE NAME OF STUDENT

Vishnukant

ENTER THE MARKS IN THREE SUBJECTS

254 Object-Oriented Programming C++ Simplified

70

80

76

ENTER THE NAME OF STUDENT

Manish

ENTER THE MARKS IN THREE SUBJECTS

64

79

90

STUDENT MERIT LIST

Kashap 79.333336

Maskara 77.666664

Vishnukant 75.333336

Manish 75

EXPLANATION : The class student has 5 data members : sname, m1, m2, m3 and
per. For storing marks in three subjects we have m1, m2, m3. For storing percentage we have

per and for name we have sname. We assume all marks are from 100. (Though no checking

has been done through if). In the function input after taking marks we find the percentage and

store them in per. In the main we are performing sorting on the basis of percentage as we

generating the merit list of the students. As per is private we have made a public member

function getper which returns per. In the main sorting is done on this function getper basis.

Note whole object has been swapped while sorting is being done. For that we have taken a

temporary object temp. Later we have displayed the merit list using show and for loop.

6.8 FRIEND FUNCTION

A friend function is totally a new concept in C++. As the name implies it will be a friend

someone. We can make a function as a friend of a class and can allow that friend function to

access private and public data members of that class. Friend functions are mostly used where

two or more classes want to share a common function. We present a number of points about

friend functions.

1. First of all friend is keyword. A friend function is created by placing the keyword

friend in the function declaration but not in function definition. Exception is if you

declare and define at the same place.

2. A friend function is a friend of the class in which it is declared.

3. A friend function is not a member function of the class and cannot be called from any

object of the class using dot operator.

4. A friend function can have full access to the public, private and protected data

member of the class to which it is a friend.

Class and Objects in C++ 255

5. The arguments of friend functions are usually objects of the class to which it is a

friend.

6. A friend function not being a member function of class is called as a normal function.

7. A friend function can be friend of more than one class.

8. A function of one class can be a friend of another class.

9. We can have whole class as a friend of another class

10. We use friend function usually with multiple classes but can used with single class

also.

11. A friend function can be declared in the public or private visibility mode without

affecting its meaning.

12. There can be any number of friend functions of a class.

The general syntax of creating a friend function as a friend class is :

class demo

{

 data members :

 public :

 members functions;

// friend function declaration

friend data_type function_name (parameters);

};

data_type function_name (parameters)

//definition

{

 function definition;

}

Now, let’s have some programs which make use of friend keyword.

/*PROG 6.37 DEMO OF FRIEND FUNCTION WITH SINGLE CLASS VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

int fx;

public :

void inputf(int x)

 {

 fx=x;

 }

256 Object-Oriented Programming C++ Simplified

 friend int findsqr(demo);

};

int findsqr(demo d)

{

return d.fx * d.fx;

}

void main()

{

demo F;

clrscr();

F.inputf(30);

cout<<“Square is=”<<findsqr(F);

getch();

}

OUTPUT :

Square is=900

EXPLANATION : The declaration friend int findsqr (demo); inside the class tells

the compiler that function findsqr is a friend of class demo. This is done with the help

of friend keyword. As function findsqr is a friend of the class demo, it can accept object

of class demo and using dot membership can access public and private members of

class demo. Note the function is defined outside the class without using scope resolution
operator (: :) as function does not belong to the base class rather it is a friend of demo
class. In the function definition the friend keyword is not present. Note in the main value

of 30 is assigned to the data member fx for object F. Later the function findsqr is called

without using dot operator with object F, instead object F is passed to the function findsqr
through call by value mechanism. The object F is copied to d and function findsqr finds

square of fx and returns to the main.

/*PROG 6.38 DEMO OF FRIEND FUNCTION WITH SINGLE CLASS VER 2*/

#include <iostream.h>

#include <conio.h>

#include <string.h>

 class demo

 {

char str[15];

public :

void inputf(char s[])

 {

strcpy(str,s);

 }

Class and Objects in C++ 257

 friend char* toupper(demo d)

 {

static char temp[15];

strcpy(temp,strupr(d.str));

return temp;

 }

};

 void main()

 {

demo F;

clrscr();

F.inputf(“hari mohan”);

cout<<“String in upper case \n”;

cout<<toupper(F);

getch();

 };

OUTPUT :

String in upper case

HARI MOHAN

EXPLANATION : This is another example of friend function with single class. Note the

function is declared and defined in the class itself. This can be done as function toupper is

friend of demo class only. In the friend we use a static char array temp of size

15. We convert the original string (data member) str to uppercase using built-in string function

strupr and copy it to temp. As we cannot return address of the local variable (local
variable die when control goes out of block) we have declared array temp as
static.

The above two programs could have been written with the use of friend function by

simply writing the function within the class as their part. The real use of friend is visible where

we have more than one class and we want friend function to be friend of both the class(in case

of two class) so data members of both the classes can be accessed and processing can be done

in the friend function.

/*PROG 6.39 FINDING MAXIMUM OF TWO DATA OF TWO DIFFERENT CLASS WITH FRIEND

FUNCTION*/

#include <iostream.h>

#include <conio.h>

class second;

class first

{

int fx;

258 Object-Oriented Programming C++ Simplified

public :

void inputf(int x)

 {

fx=x;

 }

 friend void findmax(first,second);

};

class second

{

int sx;

public :

void inputs(int x)

 {

 sx = x;

 }

 friend void findmax(first,second);

};

void findmax(first A, second B)

{

if(A.fx>B.sx)

cout<<A.fx<<“of class first is greater than “<<B.sx<<“of

class second\n”;

else

cout<<B.sx<<“of class second is greater than”<<A.fx<<“of

class first\n”;

}

 void main()

 {

first F;

second S;

clrscr();

F.inputf(40);

S.inputs(70);

findmax(F,S);

getch();

 }

OUTPUT :

70of class second is greater than40of class first

Class and Objects in C++ 259

EXPLANATION : This is the real example where friend serves its purpose. The statement

in the beginning of the program class second is forward declaration as we are performing class

second in the friend function declaration and at that point class second was not created.

Note the friend function is declared in both the class which tells the compiler that it is a

friend of both the class first and second. It accepts an object of class first argument

and second argument is an object of class second type. The function definition is given

outside the classes. In the main we call the function findmax and pass two objects A and
B of class first and second.

/* PROG 6.40 SWAPPING OF TWO CLASS DATA USING FRIEND FUNCTION */

#include <iostream.h>

#include <conio.h>

class second; // global declaration of class

class first

{

int fx;

public :

void inputf(int x)

{

fx=x;

}

void showf()

{

cout<<“fx :=”<<fx<<endl;

}

friend void swap(first &, second &); //declaration of

//friend function

};

class second

{

int sx;

public :

void inputs(int x)

{

sx=x;

}

260 Object-Oriented Programming C++ Simplified

void shows()

{

cout<<“sx=”<<sx<<endl;

}

friend void swap(first &, second &); //declaration of

//friend function

};

void swap(first &A, second &B) //definition of friend of

//friend function

{

int t;

t=A.fx;

A.fx=B.sx;

B.sx=t;

}

void main()

{

first F;

second S;

clrscr();

F.inputf(20);

S.inputs(40);

cout<<“Before swapping \n”;

F.showf();

S.shows();

swap(F,S);

cout<<“AFTER SWAPPING \n”;

F.showf();

S.shows();

getch();

}

OUTPUT :

Before swapping

fx :=20

sx=40

AFTER SWAPPING

fx :=40

sx=20

Class and Objects in C++ 261

EXPLANATION : In the program we are swapping the data members of two classes first

and second using friend function. The function is a Friend of both the classes and accepts first

argument of class type first and second argument of class type second, both by reference. If we

do not pass argument by reference then swapping will be done on local variables of type class

first and class second. So changes won’t be reflected back to object F and S in main.

/* PROG 6.41 FUNCTION OF ONE CLASS FRIEND OF ANOTHER CLASS */

#include <iostream.h>

#include <conio.h>

class second;

class first

{

int num;

public :

void input_first()

{

num=20;

}

void show(second);

};

class second

{

int num;

public :

void input_second(int x)

{

num==x;

}

friend void first : :show(second);

};

void first : :show(second s)

{

cout<<“NUM OF CLASS FIRST :=”<<num<<endl;

s.input_second(num*num);

262 Object-Oriented Programming C++ Simplified

cout<<“NUM OF CLASS SECOND :=”<<s.num<<endl;

}

void main()

{

first f;

clrscr();

f.input_first();

second s;

f.show(s);

getch();

}

OUTPUT :

NUM OF CLASS FIRST :=20

NUM OF CLASS SECOND :=400

EXPLANATION : In the program we want to create a function in class first which will

be friend of class second. As function will be friend of class we can have object of class

second in the function of the first class. In the class first we want function show to be

friend of class second. As function show takes a parameter of class second, we have to make

forward declaration of class second prior to defining class first.

The line

class second; does the same

Note the declaration of this function show in class second.

friend void first : : show (second);

The line tells the compiler that a function show of class first (due to first : :show)

which returns nothing (void) and which takes an argument of class type second by value is

a friend second class.

As function show is friend of class second, private members functions of second
class can be used in show function only through objects using dot operator. But as the function

show is of class first, private data members of class first can be used directly. In the

main the function is called using an object of class first and passes an object of class second.

In the function num* num (num is of class first) is assigned to num of class second object using

a call to function input_second.

/*PROG 6.42 WHOLE CLASS AS A FRIEND OF ANOTHER CLASS VER 1*/

#include <iostream.h>

#include <conio.h>

Class and Objects in C++ 263

class second;

class first

{

public :

void silly()

{

cout<<“IN SILLY OF FIRST CLASS “<<endl;

}

friend class second;

};

class second

{

public :

void show(first s)

{

s.silly();

}

};

void main()

{

clrscr();

second s;

first f;

s.show(f);

getch();

}

OUTPUT :

IN SILLY OF FIRST CLASS

EXPLANATION : The line friend class second; is written in the class first which

tells the compiler that class second is a friend of class first which has a meaning of that

all the functions of class second we can pass object of class first type and use data

members and function of class first using dot operator. In the show function of class

second we pass an object of class first and call function silly of first class.

/* PROG 6.43 WHOLE CLASS AS A FRIEND OF ANOTHER CLASS VER 2 */

#include <iostream.h>

#include <conio.h>

class second;

264 Object-Oriented Programming C++ Simplified

class first

{

public :

void fun()

{

cout<<“IN FUN OF FIRST”<<endl;

}

friend class second;

};

class second

{

first fri; // OBJECT OF CLASS FIRST

public :

void show_of_second()

{

fri.fun();

}

};

void main()

{

clrscr();

second s;

s.show_of_second();

getch();

}

OUTPUT :

IN FUN OF FIRST

EXPLANATION : Here we have created an object of class first as member of class

second. Note in the main no need to create an object of class first. When s.show_of_second
executes it calls the fun() function from with in show_of_second by using its data members

fri which is an object of class first.

Note : The above program will work without making class first as friend of class second. But

without making friend you cannot access any private data of class of the class first in class second.

Class and Objects in C++ 265

/* PROG 6.44 WHOLE CLASS AS A FRIEND OF ANOTHER CLASS VER 3 */

#include <iostream.h>

#include <conio.h>

class second;

class first

{

int num;

public :

void first_fun()

{

cout<<“IN FIRST_FUN OF FIRST \n”;

num =30;

}

friend class second;

};

class second

{

public :

void show1(first & s)

{

s.first_fun();

}

void show2(first s)

{

cout<<“num :=”<<s.num<<endl;

}

};

void main()

{

second s;

first f;

clrscr();

s.show1(f);

s.show2(f);

getch();

}

266 Object-Oriented Programming C++ Simplified

OUTPUT :

IN FIRST_FUN OF FIRST

num :=30

EXPLANATION : In the function show1 we pass object f by reference. So s in function

show1 and f in main are same. In the function we call first_fun function which sets the

value of num to 30. Later when we call function show2 and pass object f by value the same

value of num is displayed.

6.8.1 Demerits of Friend Function

1. Friend function cannot access the class members and functions directly, they need to

have a class object which using dot can call the members of the class.

2. Creating friend classes and functions defy the idea of encapsulation and create exception

in the ways of data hiding.

3. Usages of many friend functions some times make you think to redesign your program.

4. Friend functions are conceptually messy and potentially lead to spaghetti-code situations

as numerous friend functions muddy the clear boundaries between classes.

6.9 STATIC CLASS MEMBERS

Static variables are those variables which persist even after control returns from the functions.

In terms of static members as class members they are the members which are one for a class

and not one for an object. We know that functions of which belong to class only. Static

members can be either functions or static data. They are also known as class variables as they

belong to whole of the class.

6.9.1 Static Member Functions

Let’s discuss static function first. Note several points about static member’s functions :

1. Static functions are functions which are made static by placing keyword static before

function definition in side the class.

2. All static function of class must be defined inside the class. You cannot separate the

declaration and definition of a static member function.

3. Static functions are one for class and you can call them as.

4. In a static function only static data members, other static variables or other static

function can be used.

5. Though static member function is called using class name with : : operator. It can be

called explicitly using objects of the class.

/*PROG 6.45 DEMO OF STATIC FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

Class and Objects in C++ 267

class demo

{

public :

static void show()

 {

cout<<“Demo of static function\n”;

 }

};

 void main()

 {

clrscr();

demo : :show();

getch();

 }

OUTPUT :

Demo of static function

EXPLANATION : As mentioned earlier a static function which is one for all objects and

which is called by using : : with class name. In the program we have defined a static function

show which is called in the main using class name as demo::show().

/*PROG 6.46 DEMO OF STATIC FUNCTION VER 2*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

static void show ()

 {

cout<<“Demo of static function \n”;

 }

};

 void main()

 {

clrscr();

demo d1;

demo : :show();

d1.show();

getch();

 }

268 Object-Oriented Programming C++ Simplified

OUTPUT :

Demo of static function

Demo of static function

EXPLANATION : It was mentioned that static function are part of the class and not part

of the every object. But a static function can be called using an object too. The program

demonstrates this fact.

/*PROG 6.47 DEMO OF STATIC FUNCTION VER 3*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

public :

static void show()

 {

cout<<“Demo of static function \n”;

 }

 void disp()

 {

show();

 }

};

void main()

{

clrscr();

demo d1;

d1.show();

getch();

}

OUTPUT :

Demo of static function

EXPLANATION : Program simple. We have a non static function which call a static

function.

Class and Objects in C++ 269

/* PROG 6.48 DEMO OF STATIC FUNCTION VER 4 */

#include <iostream.h>

#include <conio.h>

class demo

{

public :

static void show()

{

cout<<“DEMO OF STATIC FUNCTION”<<endl;

show1();

}

void show1()

{

cout<<“HELLO FROM SHOW FUNCTION”<<endl;

}

};

void main()

{

demo : :show();

getch();

}

OUTPUT :

‘demo : :show’ : illegal call of no-static member function

Figure 6.5. Error message after compiling the program.

270 Object-Oriented Programming C++ Simplified

EXPLANATION : In static function only static function can be used. show1 function

begins no-static cannot be called from show function so the error.

/*PROG 6.49 DEMO OF STATIC FUNCTION VER 5*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

static void show();

};

static void demo : :show()

{

cout<<“HELLO FROM STATCI SHOW \n”;

}

void main()

{

demo : :show();

getch();

}

OUTPUT :

ERROR : ‘show’ :’static’ should not be used on member function defined at file scope.

Figure 6.6 Error message on turbo C++ IDE.

Class and Objects in C++ 271

EXPLANATION : Static member function must be declared and defined inside the class.

They cannot be defined outside the class so the error.

6.9.2 Static Data Members

We know that whenever an object is created separate copies of data members are created for

each object. But in case of static data members only one copy of static data members is

available which is shared among all the objects created. Note several points the about static

data members :

1. They are created by placing static keyword before variable declaration.

2. All static variables are declared inside the class but are initialized outside the class as :

data_type class_name : : static_variable =value;

3. If value is not given they are initialized to zero.

4. There is one single copy of the static data member is created which is shared among

all objects. Changes made by one object on a static data members is created which is

shared among all objects.

5. The lifetime of a static variable is the entire program.

6. They are used when you have to keep one value common to whole class.

For an example consider the class declaration.

class demo

{

static int s;

int ns;

};

 demo d1, d2,d3;

Assume value of s is 1 and value of ns for d1, d2 and d3 is 20, 30, 40 respectively

ns = 20 ns = 30

S = 1

ns = 40

One for class, common to all objects

As clear from the figure that ns is separate for each data object and s is common for all

objects.

/*PROG 6.50 DEMO OF STATIC VARIABLE*/

#include <iostream.h>

#include <conio.h>

272 Object-Oriented Programming C++ Simplified

class stat_demo

{

static int s;

static float f;

static char *str;

static char ch;

 public :

static void show()

 {

cout<<“s=”<<s<<endl;

cout<<“f=”<<f<<endl;

cout<<“str=”<<str<<endl;

cout<<“ch=”<<ch<<endl;

 }

};

 int stat_demo : :s=20;

 float stat_demo : :f=234.567;

 char* stat_demo : :str=”static”;

 char stat_demo : :ch=’S’;

 void main()

 {

clrscr();

stat_demo : :show();

getch();

 }

OUTPUT :

s=20

f=234.567001

str=static

ch=S

EXPLANATION : In the program there are 4 static variables : s of type int, f of
type float, str of type char* and ch of type char. A static variable is declared

inside the class but defined outside the class as explained earlier. In the program for example we

initialized static int s as :

int stat_demo : : s = 20

Where int is the type of static variable, stat_demo is class and s is name of static

variable, 20 is the initial value of the static variable s. These are displayed int eh static function

show.

Class and Objects in C++ 273

/*PROG 6.51 STATIC AND NON STATIC VARIABLE VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

static int s;

int ns;

public :

void input(int x)

 {

ns= x;

 }

 void show()

 {

cout<<“ns=”<<ns<<endl;

cout<<“s=”<<s<<endl;

 }

};

int demo : :s=20;

 void main()

 {

demo d1;

clrscr();

d1.input(10);

d1.show();

getch();

 }

OUTPUT :

ns=10

s=20

EXPLANATION : In the program there is one static variable s and one non static variable

ns. Non static variable ns is initialized through input function with value 10 and static variable

is initialized to value 20. In the non static function show we display these two values.

/*PROG 6.52 STATIC AND NON STATIC VARIABLE VER 2*/

#include <iostream.h>

#include <conio.h>

274 Object-Oriented Programming C++ Simplified

class demo

{

static int s;

int ns;

public :

void input(int x)

 {

ns = x;

 }

 static void show()

 {

cout<<“ns=”<<ns<<endl;

cout<<“s=”<<s<<endl;

 }

 };

 int demo : :s=20;

 void main()

 {

clrscr();

demo d1;

d1.input(10);

d1.show();

getch();

 }

OUTPUT :

Error : illegal reference to data member ‘demo’ : : ns’ in a static member function.

EXPLANATION : static data members can be used in static as well as non static

functions. But in static functions only static members or other static variables can be

used. In the show function which is static we are using non static data members ns so compiler

flashes the error.

6.10 CONSTANT MEMBER FUNCTION

A constant member function is a member function of class which is made constant by placing

keyword const at the end of function declaration and definition both. The main property of

const member function is that you cannot modify the values of data members as we may get

the compilation error.

The general syntax of a constant member function is, assume this is inside the class.

Class and Objects in C++ 275

return_type func_name () const

{

 Body of the function;

}

If declared in class defined outside the class, it will look like as :

return_type func_name () const; //declaration

return_type class_name () : : func_name () const

{

 function definition;

}

We present below few examples to make your concepts better.

/*PROG 6.53 DEMO OF CONSTANT MEMBER FUNCTION VER 1*/

#include <iostream.h>

 class demo

 {

int num;

public :

void input (int x)

 {

 num=x;

 }

 void change ()const

 {

 num=num*10;

 }

 };

 void main()

 {

demo d;

d.input(20);

d.change();

 }

OUTPUT :

Error : cannot modify a const object

276 Object-Oriented Programming C++ Simplified

EXPLANATION : The change is a constant member function. The value of num after the

input function call for object d is 20. This value 20 of num cannot be changed inside the

constant member function change. Inside the function we have written num=num*10 which

will store 100 into num, but due to this expression in constant member function change

compiler flashes error.

/*PROG 6.54 DEMO OF CONSTANT MEMBER FUNCTION VER 2*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

int num;

public :

void input(int x)

 {

num=x;

 }

 void change(int x)const;

 void show()

 {

cout<<“num=”<<num<<endl;

 }

 };

 void demo : : change (int x) const

 {

((demo*)this)-> num=x;

 }

 void main()

 {

clrscr();

demo d;

d.input (10);

d.show();

d.change(20);

d.show();

getch();

}

OUTPUT :

num=10

num=20

Class and Objects in C++ 277

EXPLANATION : The expression ((demo*)this) ->num=x; is the only way to change

the value of any data member inside constant member function. The this pointer is built-in

pointer which stores the address of the current object here of object d. In the expression we

have type casted it to demo* type. Though it should not be necessary but more removing this

demo* causes compiler to generate error.

EXERCISE

A. True and False :

1. Pointer can point to structure also.

2. All the class elements are public by default.

3. A static function must be declared as public, not as private or protected.

4. A friend function can be friend to other class also.

5. The default access specifier for C++ struct and C++ class is same.

6. The size of an object is sum of its data members and functions of the class.

7. A structure just like class can have functions and data in C++.

8. A structure creates memory space in memory.

9. Static members can be accessed through objects of the class.

10. Private members of a class are accessible to its functions and friend functions only.

11. C++ provides private, protected visibility modifier.

12. When a program is executed, objects interact by sending messages to each other.

13. Array of an instance cannot be created.

14. A class whose objects can be created is known as concrete class.

15. Pointer to function does not store the addresses of the functions.

16. While calculating the size of objects, functions size is considered.

17. All structure elements are private by default.

B. Answer the Following Questions :

1. What do you understand by return by reference?

2. What is the difference between a structure and class?

3. How enums are used inside the class?

4. What is the significance of a class?

5. What are static data members and static functions?

6. What are class variables?

7. What are friend functions? How it is used?

8. Write characteristics of friend function.

9. How can we make member function of one class as a friend of another class?

10. How we can make whole class as a friend of another class?

11. How do we initialize static data member of a class?

12. What are the demerits of using friend function?

13. How can we pass and return an object to/from function?

278 Object-Oriented Programming C++ Simplified

14. What is constant member function?

15. How can we initialize array of objects?

C. Brain Drill :

1. Write a function that takes two Distance (structure) value as arguments and returns the larger one.

Include a main program that accepts two Distance values from the user, compare them and display

the larger.

2. Define a class fract whose object represent rational numbers (i.e., fractions). Inside integer data

members numr and denr for storing a numerator and a denominator respectively. Provide a

constructor and member function eval_fract() for evaluating the value of the rational number,

invert() for inverting the rational number, print() for printing the rational number in the form

numr/denr(for example, 22/7). Also provide access functions get_numr and get_denr for returning

the values of the private data members. Include a member function reduce_fract(), that reduces

the fraction numr/denr to lowest term. For example, the fraction 54/90 is stored as the object

3/5. Invoke these member functions in the main () module to test them with suitable data.

3. Assume that an object has a name being accessed by the pointer. Write a program using reference

variable for interchanging the names of two objects.

4. Write a program using to declare private data member and function. Also declare public member

function. Read and display the data using private function.

5. Write a program to declare a class with two integers. Read values using member functions. Pass

the object to another member function. Display the difference between them.

6. Create a class that imitates part of the functionality of the basic data type int. Call the class Int

(not different spelling). The only data in this class is an int variable. Include member functions

to initialize an Int to 0, to initialize it to an int value, to display it (it looks just like an int), and

to add two Int values.

Write a program that exercise this class by creating two initialized and one uninitialized Int

values, adding these two initialized values ad placing the response in the uninitalized value, and

then displaying this result.

7. Create a class that includes a data member that holds a “serial number” for each object created

from the class. That is, the first object created will be numbered 1, the second 2 and so on.

To do this, you will need another data member that records a count of how many object have been

created so far. (This member should apply to the class as a whole; not to individual objects. What

keyword specifies this?) Then, as each object is created, its constructor can examine this count

member variable to determine the appropriate serial number for the new object.

Add a member function that permits an object to report its own serial number. Then write a main

() program that creates three objects and quires each one about its serial number. They should

respond I am object number 2, and so on.

8. Create a class time that has separate int member data for hours, minutes and seconds. One

constructor should initialize this data to 0, and another should initialize it to fixed values. Another

member function should display it, in 11:59:59 format. The final member function should add two

objects of type time passed as arguments.

A main program should create two initialized time objects (should they be const?) and one that

is not initialized. Then it should add the two initialized values together, leaving the result in the

third time variable. Finally, it should display the value of this third variable. Make appropriate

member functions const.

���

WORKING Wim CONSTRUCTOR
AND DESTRUCTOR

7.1 INTRODUCTION

A constructor is a special member function whose name is same as the name of i ts class in
which it is declared and defined. The purpose of the constructor is to initialize the objects of
the class. The constructor is called so because it is used to construct the objects of the class.
We present small example of constructor and later illustrate its various features :

/*PROG 7.1 DEMO OF CONSTRUCTOR */

#include < iostream.h >
#include < conio.h >

class demo

public:
demo()

cout< <"Hello from constructor \n";
}

};

void main()

}

clrscr();

demo d;
getch();

279

280 Object-Oriented Programming C++ Simplified

OUTPUT :

Hello from constructor

EXPLANATION : The name of class is demo and the following declaration

demo()

{

 cout<<” Hello from constructor \n”;

}

demo is a constructor of the class as the name of the function is the name of the class.

Note the following features of the constructor.

1. The constructors are always declared in the public section. If declared in the private

section then objects are can only be created inside the member functions but serve no

purpose.

2. They are invoked automatically when objects of the class are created. The declaration

demo d; creates an object d which automatically calls the constructor of the class and

prints Hello from constructor.

3. They do not have any return type not even void so they cannot return any value.

4. Constructors cannot be inherited, but they can be called from the constructors of derived

class.

5. Constructors are used to construct the object of the class.

6. The constructor with no argument is known as default constructor of the class. The

default constructor for the class demo will be demo : demo()

7. Constructors which take arguments like a function takes are known as parameterized

constructor.

8. There is no limit of the number of constructors declared in a class but they all must

conform to rules of function overloading.

9. Constructor can have default arguments.

10. Addresses of constructors cannot be taken.

11. Constructors cannot be virtual.

12. Constructor make implicit calls to operators new and delete in case memory allocation

and de-allocation is to be performed.

The other way to write the above program would be :

#include <iostream.h>

Class demo

{

public :

demo(); // declaration

};

Working with Constructor and Destructor 281

demo : :demo () // definition

{

cout<<”Hello from constructor \n”;

}

 void main()

{

demo d;

}

 In all the other programs which we have seen earlier, the objects were created using

constructor but we didn’t create constructor in the program. Take my words behind every object

creation constructor is required. Then who was creating the objects in the entire program where

we have made usage of classes and objects ? The answer is simple. When you do not create

any constructor in the class, the compiler provides the default constructor for the class. That

constructor is known as default constructor or do-nothing constructor. The sole purpose of this

constructor is to construct the objects for the class.

7.2 CONSTRUCTOR WITH PARAMETERS

Constructor are similar to functions but they have the name as class name so similar to functions

which takes argument we can have constructor which can take arguments. The constructor which

takes parameters is known as parameterized constructor. Again depending upon type of arguments

and number of arguments they may be overloaded. An example of this is given below :

/*PROG 7.2 DEMO OF PARAMETERIZED CONSTRUCTOR WITH INTEGER DATA*/

#include <iostream.h>

#include <conio.h>

class demo

{

int a,b;

public :

demo()

 {

 a=b=0;

 cout<<“Zero argument constructor called\n”;

 show();

 }

 demo(int x, int y)

 {

282 Object-Oriented Programming C++ Simplified

 a=x;

 b=y;

 cout<<“Two argument constructor called\n”;

 show();

 }

 demo(int x)

 {

 a=b=x;

 cout<<“One argument constructor called\n”;

 show();

 }

 void show()

 {

 cout<<“a=”<<a<<“\tb=”<<b<<endl;

 }

 };

 void main()

 {

clrscr();

demo d1;

demo d2(10,20);

demo d3(30);

getch();

 }

OUTPUT :

Zero argument constructors called

a=0 b=0

Two argument constructor called

a=10 b=20

One argument constructor called

a=30 b=30

EXPLANATION : In the program given above we have 3 constructors in the class. The

class has two private data members of int type. When statement demo d1 executes it call the

default constructor of the class demo and assign a 0 value to both a and b. When statement

demo d2 (10, 20) executes it calls the constructor demo which takes two arguments of int type.

The first argument 10 is assigned to formal parameter x and second argument 20 is assigned

to formal parameter y. From x and y they are assigned to a and b respectively. When demo d3

(30) executes, it calls one argument constructor of int type and assign 30 to x, which is further

assigned to a and b. Note show is called from within all the constructors.

Working with Constructor and Destructor 283

7.3 IMPLICIT AND EXPLICIT CALL TO CONSTRUCTOR

Constructor can be called implicitly or explicitly. For example for the above program just

explained. All three calls to 3 different constructors were implicit.

demo d1;

demo d2 (10, 20);

demo d3 (30);

� In implicit call we simply write the class name and then object name (in case of default

constructor) or pass parameters but does not use the constructor name is any manner.

� In explicit call to constructor we explicitly call the constructor by writing its name and

passing argument if any. For the above implicit call to constructors explicit calls would

be :

demo d1 = demo();

demo d2 = demo (10,20);

demo d3 = demo (30);

Note on the left side of assignment operator object is created and on the right hand side

constructor is called explicitly.

 Even when you called a constructor for an object implicitly you can call it explicitly in

case you want to provide values to data members or want to modify the values like :

 demo d1(10);

Both a and b gets the value 10. Later you can write if you want d1 = demo (100, 200);

which makes a =100 and b =200.

/*PROG 7.3 DEMO OF PARAMETERIZED CONSTRUCTOR WITH STRING DATA */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class string

{

 char str[20];

 public :

 string();

 string (char s[]);

 void show();

};

 string : :string()

 {

284 Object-Oriented Programming C++ Simplified

strcpy (str,”Hari”);

cout<<“Default constructor called\n”;

 }

 string : : string(char s[])

 {

strcpy(str,s);

cout<<“One argument constructor called\n”;

 }

 void string : :show()

 {

cout<<“string is”<<str<<endl;

 }

 void main()

 {

clrscr();

string s1;

s1.show();

s1=string(“Vijay”);

s1.show();

string s2=string(“Manmohan”);

s2.show();

string s3(“Ranjana”);

s3.show();

getch();

 }

OUTPUT :

Default constructor called

string is Hari

One argument constructor called

string is Vijay

One argument constructor called

string is Manmohan

One argument constructor called

string is Ranjana

EXPLANATION : In the case string we have two constructors; one is default and second
is one argument constructor. In the execution of statement string s1 default constructor is called
which result in printing on the screen.

Default constructor called.

And assign value “Hari” to str of object s1. When the statement s1= string
(“Vijay”); executes one argument constructor is called which results in printing on the
screen.

Working with Constructor and Destructor 285

One argument constructor called and assigns value “vijay” to str of object s1. The old

value “Hari” is removed.

Same explanation applies to statement string s2 =string (“Manmohan”); and for string s

(“Ranjana”);

Observe that in the first part the value of str for the object s1 was “Hari” but after the

statement s1 (“Vijay”).

/*PROG 7.4 FACTORIAL OF A NUMBER, FACTORIAL OF 6 IS 6*5*4*3*2*1=720*/

#include <iostream.h>

#include <conio.h>

class fact

{

int fa;

int num;

public :

 fact()

 {

fa = 1;

cout<<“Enter the number \n”;

cin>>num;

 }

 int find_fac()

 {

int i;

for(i=1;i<=num;i++)

fa=fa*i;

return fa;

 }

 void show()

 {

cout<<“The factorial of”<<num<<“is”<<find_fac()<<endl;

 }

 };

 void main()

 {

clrscr();

286 Object-Oriented Programming C++ Simplified

fact obj;

obj.show();

getch();

 }

OUTPUT :

Enter the number

6

The factorial of6is720

EXPLANATION : The program is finding factorial of a number. When statement fact
obj executes default constructor is called. This results in setting fa =1 and promoting

user to enter the number whose factorial he/she want to find out. After taking the number into

data member num the constructor returns and calls the show function. Inside the function we

have called the find_fac function which finds the factorial of the number and return to show

function.

/*PROG 7.5 SEPARATION OF REAL AND INTEGER PART*/

#include <iostream.h>

#include <conio.h>

class convert

{

float num;

int intp;

float realp;

public :

 convert()

 { }

 convert(float n)

 {

 num=n;

 }

 void find()

 {

intp=int (num);

realp=num-intp;

show();

 }

 void show()

 {

cout<<“Number =”<<num<<endl;

Working with Constructor and Destructor 287

cout<<“Integer Part=”<<endl;

cout<<“Real Part=”<<realp<<endl;

 }

 };

 void main()

 {

clrscr();

convert A(334.89);

convert B;

B=convert(456.87);

cout<<“\tFirst object\n\n”;

A.find();

cout<<“\t\n Second Object \n\n”;

B.find();

getch();

 }

OUTPUT :

First object

Number =334.890015

Integer Part=

Real Part=0.890015

Second Object

Number =456.869995

Integer Part=

Real Part=0.869995

EXPLANATION : The program is very simple. We first convert the number num into int

by type casting and store it in intp. We then later subtract it from the original num to find out

real part.

In the program the constructor convert () {} serves as empty/default/zero argument

constructor. The default constructor serves nothing special here as it is having empty body. We

have seen that we can use this constructor to provide the initial values to the members of the

objects of the class. As we have created a one argument constructor we can call the constructor

by writing convert c1 (“334.89”), but if we want it like

convert c1;

c1= convert (“334.89”);

Then we must have the default constructor as started in the above paragraph. If we do

not need to create object by writing convert c1; then there is no need to create the default

constructor or empty constructor but once we have written the statement convert c1; then we

must have the empty constructor in the program. This is must as in case of no constructor in

288 Object-Oriented Programming C++ Simplified

the class the C++ provides its default implicit constructor to construct the objects. (Remembers

no constructor no object). Once we have made constructors in our class of any type and in any

number and we create the object by writing convert c1 without creating default constructor, the

compiler flashes the error “default constructor required”. This constructor is do-nothing

constructor and is used to just satisfy the compiler. Try running the program by commenting

the default constructor in the program.

/*PROG 7.6 ADDITION AND SUBTRACTION OF TWO COMPLEX NUMBER*/

#include <iostream.h>

#include <conio.h>

class complex

{

float real;

float imag;

public :

complex()

 {

real=imag=0;

 }

 complex(float r, float i)

 {

real=r;

imag=i;

 }

friend complex sum(complex, complex);

friend complex sub(complex, complex);

friend void show(complex);

};

 complex sum(complex A, complex B)

 {

complex temp;

temp.real= A.real+B.real;

temp.imag= B.imag+A.imag;

return temp;

 }

 complex sub(complex A, complex B)

 {

complex temp;

temp.real=A.real-B.real;

temp.imag=A.imag-B.imag;

Working with Constructor and Destructor 289

return temp;

 }

 void show(complex C)

 {

cout<<C.real<<“+j”<<C.imag<<endl;

 }

 void main()

 {

clrscr();

complex c1= complex(2.0,3.0);

complex c2= complex(3.0,2.0);

complex c3,c4;

c3=sum(c1,c2);

c4=sub(c1,c2);

cout<<“c1=”;

show(c1);

cout<<“c2=”;

show(c2);

cout<<“sum=”;

show(c3);

cout<<“sub=”;

show(c4);

getch();

 }

OUTPUT :

c1=2+j3

c2=3+j2

sum=5+j5

sub=−1+j1

EXPLANATION : In the program we have one default constructor and second constructor

with 2 parameters of type float. We want to find addition and subtraction of two complex

numbers. For that we have written two friend functions sum and sub which takes two arguments

of class complex type and return a value of class complex type. We have another function show

which takes an object of class complex type as argument. The class has two private data

members’ real and imag which represents real and imaginary part of a complex number. With

the two statements.

complex C1=complex (2.0, 3.0);

complex C2= complex (3.0, 2.0);

290 Object-Oriented Programming C++ Simplified

We call the 2 argument constructor and set the real and imaginary part for object C1 and

C2. For finding sum of C1 and C2 we call the function sum and pass C1 and C2 as argument

as C3 = sum(C1, C2); In the function sum two real part and two imaginary parts are added

separately and stored in a temporary array which is returned and assigned to C3. Similarly,

subtraction is performed by a call to sub function and subtraction of C1 and C2 is assigned to

C4. Later they are displayed by a call to show.

/*PROG 7.7 MULTIPLICATION & DIVISION OF TWO COMPLEX NUMBER*/

#include <iostream.h>

#include <conio.h>

class complex

{

float real;

float imag;

public :

complex()

 {

real=imag=0;

 }

 complex(float r, float i)

 {

real = r;

imag = i;

 }

 void mul(complex, complex);

 void div(complex,complex);

 void show(char*);

 };

 void complex : :mul(complex A, complex B)

 {

real = A.real*B.real-A.imag*B.imag;

imag = A.real*B.imag + A.imag * B.real;

 }

 void complex : :div(complex A, complex B)

 {

double d;

d= B.real * B.real+B.imag * B.imag;

real= (A.real*B.real+A.imag*B.imag)/d;

imag = (B.real*A.imag-B.imag*A.real)/d;

 }

 void complex : :show(char *s)

 {

Working with Constructor and Destructor 291

cout<<s<<endl;

cout<<real<<“+j”<<imag<<endl;

 }

 void main()

 {

clrscr();

complex c1=complex(2.0,4.0);

complex c2=complex(3.0,6.0);

complex c3,c4;

c3.mul(c1,c2);

c4.div(c1,c2);

c1.show(“First Number”);

c2.show(“Second Number”);

c3.show(“Multiplication”);

c4.show(“Division”);

getch();

 }

OUTPUT :

First Number

2+j4

Second Number

3+j6

Multiplication

−18+j24

Division

0.666667+j0

EXPLANATION : Assume two complex numbers are (x1 + j y1) and (x2 + j y2).

Here j is called iota and −j is sqrt (−1) so j*j will be −1. Now multiplication will be as :

(X1 +j y1) *(x2+j y2) = x1x2 + jx1y2 +j y1x2 –y1y2

= (x1x2 –y1y2) + j (x1y2 + x2 y1)

For division we write :

�� � �� � �� ���

�� � �� � �� ���

��� �� ��� �� � ��� �� ��� ��

� ��

�

�

�

+ −
+ −

=
+ + −

+

b g b g
b g b g

b g b g
e j

292 Object-Oriented Programming C++ Simplified

/* PROG 7.8 CALCULATING SIMPLE INTEREST DEFAULT USING BY DEFAULT */

#include <iostream.h>

#include <conio.h>

class Sim_Int

{

float rate;

float time;

float principal;

public :

Sim_Int()

{}

Sim_Int(float p, float r=8.5, float t = 2.0)

{

principal = p;

rate = r;

time = t;

}

float calc()

{

float temp;

temp = (principal * rate *time)/100;

return temp;

}

void show()

{

cout<<“Principal := “<<principal<<endl;

cout<<“Rate :=”<<rate<<endl;

cout<<“Time :=”<<time<<endl;

cout<<“Simple Interest :=”<<calc()<<endl<<endl;

}

};

void main()

{

Sim_Int obj1,obj2;

clrscr();

Working with Constructor and Destructor 293

obj1 = Sim_Int(10000, 10.0,3);

cout<<“\t Object1 \n\n”;

obj1.show();

obj2=Sim_Int(9000,12.5);

cout<<“\t Object2\n\n”;

obj2.show();

Sim_Int obj3(12000);

cout<<“\tObject 3 \n\n”;

obj3.show();

getch();

}

OUTPUT :

Object1

Principal := 10000

Rate :=10

Time :=3

Simple Interest :=3000

Object2

Principal := 9000

Rate :=12.5

Time :=2

Simple Interest :=2250

Object 3

Principal := 12000

Rate :=8.5

Time :=2

Simple Interest :=2040

EXPLANATION : The program calculates simple interest by taking 3 input parameters:

principal, rate and interest. For that we have made two constructors in the class Sim_Int:

one is default and second which takes 2 default arguments for rate and time. In the main
when obj1 = Sim_Int(10000, 10.0, 3); executes it calls the 3 arguments constructor of

the class and initializes principal, rate and time data members for object obj1. Next

obj1.show is called which calls the calc function within it and displays the simple interest.

294 Object-Oriented Programming C++ Simplified

When obj2= Sim_Int(9000,12.5); executes compiler checks that there is no 2 argument

constructor defined in the class but it sees that there is a 3 argument constructor and 2 parameters

are defined so it calls the constructor and assigns 9000 to principal, rate is overridden by

12.5 and for time default value is taken. Next simple interest is calculated and displayed as

explained for object obj1.

When Sim_Int obj3(12000); executes compiler checks that there is no 1 argument
constructor defined in the class but it sees that there is 3 argument constructor and 2 parameters
are default so it calls the constructor and assigns 12000 to principal, for both rate and time

default value is taken. Next simple interest is calculated and displayed as explained for object obj1.

/* PROG 7.9 STACK SIMULATION USING ARRAY AND CLASS */

#include <iostream.h>

#include <stdlib.h>

#include <conio.h>

#define S 10

class stack

{

int top;

int st[S];

public :

stack()

{

top=−1;

}

void push(int item)

{

if(top==9)

{

cout<<“STACK IS FULL”<<endl;

exit(0);

}

st[++top]=item;

cout<<“ITEM PUSHED”<<endl;

}

int pop()

{

Working with Constructor and Destructor 295

if(top==−1)

{

cout<<“STACK IS EMPTY”<<endl;

exit(0);

}

return st[top– –];

}

};

void main()

{

stack s;

int ch, item;

clrscr();

do

{

cout<<“STACK DEMO”<<endl<<endl;

cout<<“1 :- PUSH”<<endl;

cout<<“2 :- POP”<<endl;

cout<<“3 :- QUIT”<<endl;

cout<<“ENTER YOUR CHOICE :=”;

cin>>ch;

switch(ch)

{

case 1 : cout<<“ENTER THE ITEM :=”;

cin>>item;

s.push(item);

break;

case 2 :item =s.pop();

cout<<“ITEM POPPED :=”<<item<<endl;

break;

case 3 :cout<<“GOOD BYE”<<endl;

 exit(0);

break;

default :cout<<“ERROR”<<endl;

}

}while(ch>=1 && ch <= 3);

getch();

}

296 Object-Oriented Programming C++ Simplified

OUTPUT :

STACK DEMO

1 :- PUSH

2 :- POP

3 :- QUIT

ENTER YOUR CHOICE :=1

ENTER THE ITEM :=10

ITEM PUSHED

STACK DEMO

1 :- PUSH

2 :- POP

3 :- QUIT

ENTER YOUR CHOICE :=1

ENTER THE ITEM :=20

ITEM PUSHED

STACK DEMO

1 : PUSH

2 : POP

3 : QUIT

ENTER YOUR CHOICE :=1

ENTER THE ITEM :=30

ITEM PUSHED

STACK DEMO

1 : PUSH

2 : POP

3 : QUIT

ENTER YOUR CHOICE :=1

ENTER THE ITEM :=12

ITEM PUSHED

STACK DEMO

1 : PUSH

2 : POP

3 : QUIT

Working with Constructor and Destructor 297

ENTER YOUR CHOICE :=1

ENTER THE ITEM :=13

ITEM PUSHED

STACK DEMO

1 : PUSH

2 : POP

3 : QUIT

ENTER YOUR CHOICE :=2

ITEM POPPED :=13

STACK DEMO

1 : PUSH

2 : POP

3 : QUIT

ENTER YOUR CHOICE :=3

GOOD BYE

EXPLANATION : The program is simulating stack using array. A stack is a data structure

in which last item inserted out first. That’s why they are known as LIFO (last in first out).

Inserting an ‘item’ in stack termed as push and taking an item out from stack termed as pop.

PUSH(10)

TOP–1

10

TOP

EMPTY STACK STACK WITH ONE ELEMENT

Figure 7.1. Stack After Push Operation.

PUSH(20)

10

TOP

STACK WITH ONE ELEMENT STACK WITH TWO ELEMENTS

TOP 20

10

Figure 7.2. Stack After Push Operation.

298 Object-Oriented Programming C++ Simplified

PUSH(30)

10

TOP

STACK WITH TWO ELEMENTS STACK WITH THREE ELEMENTS

TOP 20

10

20

30

Figure 7.3. Stack After Push Operation.

POP(30)

10

TOP

STACK WITH THREE ELEMENTS STACK WITH TWO ELEMENTS

TOP

20

10

20

30

Figure 7.4. Stack After Pop Operation.

POP(20)

10 TOP

STACK WITH TWO ELEMENTS STACK WITH ONE ELEMENT

TOP

10

20

Figure 7.5. Stack After Pop Operation.

Only one item can be pushed at a time which is added on top of previous item pushed.

In the same way only one, the top most item can be popped back. For keeping track of top item

we have a data member top which is initialized to −−−−−1 when object of class stack is created. The

program is simple. We have taken an array as data member of class of size 10 by the name st

which our stack. When we want to push item into this stack st we increment the top and assign

item to st as st [top] = item. After each item is pushed top is incremented. Before pushing an

item we have to check first that we have space for new item in the stack.

Working with Constructor and Destructor 299

This is done as :

void push(int item)

{

if(top==9)

{

cout<<“STACK IS FULL”<<endl;

exit(0);

}

If top= =9, stack is full and we terminate the program.

When an item is popped we take the value at st[top] and decrement the top by 1 as return

st[top– –]. Before popping an item we check stack is empty or not. This is done as follows :

 if(top==−1)

 {

cout<<“STACK IS EMPTY”<<endl;

exit(0);

 }

If top= = −1, stack is empty and we terminate the program.

/*PROG 7.10 QUEUE SIMULATION USING ARRAY AND CLASS */

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

#define S 5

class queue

{

int front;

int rear;

int que[S];

public :

queue()

{

front = rear = −1;

}

void insert(int item)

{

300 Object-Oriented Programming C++ Simplified

if(rear == S−1)

{

cout<<“QUEUE IS FULL”<<endl;

exit(0);

}

if(front==−1)

front=0;

que[++rear]=item;

cout<<“ITEM INSERTED”<<endl;

}

int del()

{

int item;

if(front==−1)

{

cout<<“QUEUE IS EMPTY “<<endl;

exit(0);

}

item = que[front];

if(front == rear)

front=rear=−1;

else

front++;

return item;

}

};

void main()

{

queue s;

int choice, item;

clrscr();

do

{

cout<<“QUEUW DEMO”<<endl;

cout<<“1 : INSERT(REAR OPERATION)”<<endl;

cout<<“2 : DELETE(FRONT OPERATION)”<<endl;

cout<<“3 : QUIT”<<endl;

cin>>choice;

Working with Constructor and Destructor 301

switch(choice)

{

case 1 :cout<<“ENTER THE ITEM”<<endl;

cin>>item;

s.insert(item);

break;

case 2 : item=s.del();

cout<<“ITEM DELETED :=”<<item<<endl;

break;

case 3 : cout<<“HAVE A NICE DAY,GOOD BYE”<<endl;

exit(0);

break;

default : cout<<“WRONG CHOICE!ERROR.......”<<endl;

}

} while (choice>=1 && choice<=3);

getch();

}

OUTPUT :

QUEUW DEMO

1 : INSERT(REAR OPERATION)

2 : DELETE(FRONT OPERATION)

3 : QUIT

1

ENTER THE ITEM

10

ITEM INSERTED

QUEUW DEMO

1 : INSERT(REAR OPERATION)

2 : DELETE(FRONT OPERATION)

3 : QUIT

1

ENTER THE ITEM

20

ITEM INSERTED

QUEUW DEMO

302 Object-Oriented Programming C++ Simplified

1 : INSERT(REAR OPERATION)

2 : DELETE(FRONT OPERATION)

3 : QUIT

2

ITEM DELETED :=10

QUEUW DEMO

1 : INSERT(REAR OPERATION)

2 : DELETE(FRONT OPERATION)

3 : QUIT

3

HAVE A NICE DAY,GOOD BYE

EXPLANATION : The program simulates the working of queue using array and class. The

queue is a data structure with two pointer front and rear. Whenever a new item is added

to the queue, rear pointer is used. It is incremented by 1. If it is the first item inserted front

also becomes 1. The front pointer is used when an item is deleted from queue; front
pointer is decremented by 1. If it was the last item in the queue front and rear both

equal to 0. The queue is also known as FIFO (First In First Out) as items are added always at

the end of queue (rear end) and are always deleted from front of the queue.

3 39 9
5

5 7

REAR REAR = REAR + 1

Enqueue (7)

3 39 95 5 7

REAR REAR = REAR + 1

Enqueue (10)
7 1

Figure 7.6. Implementation of Enqueue Operation.

9 5 5 7

FRONT FRONT = FRONT + 1

Dequeue (9)
7 1

3
9 95 5 7

FRONT FRONT = FRONT + 1

Dequeue (3)
1 1

1

Figure 7.7. Implementation of Dequeue Operation.

Working with Constructor and Destructor 303

0 1 2 3 4

REAR INITIALLY = –1 ()

FRONT INITIALLY = –1 ()

Figure 7.8. Logical Implementation of Queue at the Beginning.

0 1 2 3 4

REAR REAR AFTER INSERTING ELEMENT = +1 = –1 + 1 = 0 ()

FRONT FRONT INCREMENT FIRST TIME = +1 = –1 + 1 = 0 ()

10

Figure 7.9. After Applying Enqueue Operation.

Initially when default constructor is called front and rear are initialized to –1. For insertion

of item into the queue (implemented as array que) rear is incremented but it is checked if we

have space for the element to be inserted. This is checked as :

if(rear == S-1)

{

cout<<“QUEUE IS FULL”<<endl;

exit(0);

}

If item was the first item inserted front was −−−−−1 earlier so it is made to 0. Item is inserted

as

que [++ rear] = item

Pointer rear was also incremented.

For the deletion of item from que, front pointer is used. The element in the que at the

front is returned as que[front]. Again before deletion it is checked whether que is empty

or not as :

if(front==−1)

{

cout<<“QUEUE IS EMPTY “<<endl;

exit(0);

}

Now, after deletion if front becomes equal to the rear (last item deleted) both are assigned

value −−−−−1 else front is incremented.

304 Object-Oriented Programming C++ Simplified

/* PROG 7.11 INITIALIZING ARRAY OF OBJECTS VER 1 */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(int n)

{

num = n;

}

void show()

{

cout<<“num=”<<num<<endl;

}

};

void main()

{

demo d[] = {

demo(15),

demo(20),

demo(45),

demo(30),

 };

 clrscr();

const int x= sizeof(d)/sizeof(demo);

for(int i=0;i<x;i++)

d[i].show();

getch();

}

Working with Constructor and Destructor 305

OUTPUT :

num=15

num=20

num=45

num=30

EXPLANATION : Note how we have initialized array of objects.

demo d[] = {

demo(15),

demo(20),

demo(45),

demo(30),

 };

Each demo(x); (x may have any int value) creates an object in array by calling default

constructor. The sizeof(d) gives total size of array and sizeof(demo) gives size of an object.

Dividing first by second gives number of objects in the array. Later we display value of num

for all objects using show() function.

/* PROG 7.12 INITIALIZING ARRAY OF OBJECTS VER 2 */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class demo

{

char name[20];

public :

demo(char s[20])

{

strcpy(name, s);

}

void show()

{

cout<<name<<endl;

}

};

306 Object-Oriented Programming C++ Simplified

void main()

{

demo d[]={

demo(“Prof.RR Sedamkar”),

demo(“Mr.Hari Mohan”),

demo(“Mr.Deshmukh”),

demo(“Mr.Bharat”),

demo(“Mr.Joshi”),

 };

clrscr();

const int x= sizeof(d)/sizeof(demo);

for(int i=0;i<x;i++)

d[i].show();

getch();

}

EXPLANATION : The program is similar to previous one with the difference that we have

used string inseated of integer data.

7.4 COPY CONSTRUCTOR

A copy constructor is used to declare and initialized an object from another object when ever

we have statement like demo d2 = d1 (assume demo is class name and d1 is an already

declared object of demo class), they make call to copy constructor defined in the class. When

we have two objects say d1 and d2 and if we write d2=d1 then this results in copying all

members of d1 to d2 but does not call copy constructor. This is simply assignment of one

object to another of same type, but when you want to do something more than merely copying

one object to another you may use copy constructor. For a class demo, copy constructor is

written as :

demo (demo &d)

{

// copy constructor

}

For better understanding point of view we present few programs here.

Working with Constructor and Destructor 307

/*PROG 7.13 DEMO OF COPY CONSTRUCTOR VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

 int data;

 public :

 demo()

 {

data =200;

cout<<“Default constructor is called\n”;

 }

 demo(int x)

 {

data = x;

 }

 demo (demo &d)

 {

data= d.data;

cout<<“copy constructor is called\n”;

 }

 void show()

 {

cout<<“data=”<<data<<endl;

 }

 };

 void main()

 {

clrscr();

demo d1(300);

demo d2=d1;

demo d3;

d3=d2;

demo d4=demo (d3);

d1.show();

d2.show();

d3.show();

d4.show();

getch();

 }

308 Object-Oriented Programming C++ Simplified

OUTPUT :

copy constructor is called

Default constructor is called

copy constructor is called

data=300

data=300

data=300

data=300

EXPLANATION : The declaration and definition

demo (demo & d)

{

data = d.data;

cout<<”copy constructor is called \n”;

}

Is a copy constructor. When we write in the main function demo d2 = d1; copy constructor

is called which is as stated above to declare the object d2 and initialize to d1. Here it copy value

of data for object d1 to value of data to object d2. The object is passed as reference and not

by value i.e., if you write the copy constructor as shown below :

demo (demo d)

{

 data = d.data;

 cout<<”copy constructor is called \n”;

}

The compiler will flash the error message “illegal copy construor”. The reason behind

why an object is always passed by reference and not by value as argument to copy constructor

is as follows (assume & is not written in copy constructor) : when we write demo d2=d1, it

will invoke copy constructor and send d1 as argument to it. When copy constructor receive d1

as argument it will look like demo d=d1, which means to declare and initialize object d from

d1 this will again invoke copy constructor. Thus there will be a recursive call and all the system

memory will be consumed in the creation of objects. The compiler won’t allow this. When we

receive pass argument by reference as we do; no copy of the object will be created and only

a reference will be passed which avoids creation of object together.

The statement demo d2 (d1) if written will also call copy constructor and initializes object

d2 to d1. The process of initializing through a copy constructor is known as copy initialization.

Observe that in the above program when we simply write d2 = d1, that does not invoke copy

constructor instead calls internally overloaded assignment (=) operator to copy members of d1

and d2 (except pointer members).

Working with Constructor and Destructor 309

Situations Where Copy Constructor will be Called

There are mainly 4 situations under which a copy constructor will be called:

1. When a new object is initialized to an object of the same class.

2. When an object is passed to a function by value.

3. When an object is returned from a function by value.

4. When the compiler generates a temporary object.

The copy constructor gets called when an object is passed to function or returned from

function by value. The compiler always provides a copy constructor when it is not explicitly

created in the class. To prove my point we modify the above program and add a friend function

which copies data of one object to other and return the object.

See the program given below :

/*PROG 7.14 DEMO OF COPY CONSTRUCTOR VER 2 */

#include <iostream.h>

#include <conio.h>

class demo

{

int data;

public :

demo()

 {

data =200;

cout<<“Default constructor is called”<<endl;

 }

 demo(int x)

 {

 data = x;

 }

 demo(demo & d)

 {

 data = d.data;

 cout<<“Copy constructor is called”<<endl;

 }

 friend demo copy(demo d)

 {

 demo temp;

 temp.data = d.data;

return temp;

 }

310 Object-Oriented Programming C++ Simplified

 void show()

 {

 cout<<“data = “<<data<<endl;

 }

 };

 void main()

 {

clrscr();

demo d1(300);

demo d2= d1;

demo d3 = copy(d1);

d1.show();

d2.show();

d3.show();

getch();

 }

OUTPUT :

Copy constructor is called

Copy constructor is called

Default constructor is called

Copy constructor is called

data = 300

data = 300

data = 300

EXPLANATION : In the program we have written a copy constructor and a friend
function copy. The function copy takes an object by value as argument, copies the data into

another object and returned that object. In the main when demo d1 (300); executes it calls

the one argument constructor and sets data for object d1 = 200. When demo d2 = d1;
executes copy constructor is called and data for d2 is equal to data for d1. Now the

important thing to understand. When demo d3 = copy (d1); executes, copy constructor
is called as we have written demo d3 =. As we are passing d1 by value in the function
copy, copy constructor will be called. Inside the function copy temporary object (temp)
is created which is called default constructor and in the end we have written the object

temp by value, copy constructor is called again.

If I do a small change as that instead of writing demo d3 = copy (d1); we write as :

demo d3;

d3 = copy(d1);

Working with Constructor and Destructor 311

Sequence of constructor will be called as :

1. For demo d3, default constructor will be called.

2. d1 we are sending by value, copy constructor will be called.

3. In the function demo temp; causes default constructor to be called.

4. return temp causes copy constructor to be called.

7.5 DYNAMIC INITIALIZATION OF OBJECTS

Dynamic initialization of objects simply means assigning the values to data members of class

dynamically by taking the values from the user when program executes. We have examples of

this in some of the programs but we were not familiar with the actual term.

Now, given below are few programs which illustrate this concept in details.

/*PROG 7.15 DYNAMIC INITIALIZATION OF OBJECT VER 1*/

#include <iostream.h>

#include <conio.h>

class Ipod

{

int price;

int capacity;

public :

Ipod()

 {

 cout<<“Enter the price of Ipod”<<endl;

 cin>>price;

 cout<<“Enter the memory capacity in MB”<<endl;

 cin>>capacity;

 }

 void display()

 {

 cout<<“Price=”<<price<<endl;

 cout<<“Capacity=”<<capacity<<“MB”<<endl;

 }

 };

 void main()

 {

clrscr();

Ipod ip1;

ip1.display ();

312 Object-Oriented Programming C++ Simplified

getch();

 }

OUTPUT :

Enter the price of Ipod

7500

Enter the memory capacity in MB

1024

Price=7500

Capacity=1024MB

EXPLANATION : When the statement Ipod ip1; executes default constructor of class

Ipod is called and user is promoted to enter the values for price and capacity for an object ip1
of Ipod type. Each time the program run new values are taken for object ip1. Thus initializing

objects dynamically.

/*PROG 7.16 DYNAMIC INITIALIZATION OF OBJECTS VER 2*/

#include <iostream.h>

#include <conio.h>

class Ipod

{

int price;

int capacity;

 public :

 Ipod(int p, int c)

 {

price= p;

capacity=c;

 }

 void display()

 {

cout<<“Price=”<<price<<endl;

cout<<“Capacity=”<<capacity<<“MB”<<endl;

 }

 };

 void main()

 {

Working with Constructor and Destructor 313

int pr, cp;

clrscr();

cout<<“Enter the price of Ipod”<<endl;

cin>>pr;

cout<<“Enter the memory capacity in MB”<<endl;

cin>>cp;

Ipod ip1= Ipod(pr,cp);

ip1.display();

getch();

 }

OUTPUT :

Enter the price of Ipod

8000

Enter the memory capacity in MB

1024

Price=8000

Capacity=1024MB

EXPLANATION : The program is similar to the previous one with the difference that

instead of taking values for data members from constructor, we take values in main in local

variables and pass these values to two argument constructor of Ipod class for initializing object

ip1.

/*PROG 7.17 DYNAMIC INITIALIZATION OF OBJECTS VER 3*/

#include <iostream.h>

#include <string.h>

#include <conio.h>

class mobile

{

char cname[20];

char setid[10];

float price;

public :

314 Object-Oriented Programming C++ Simplified

mobile()

{}

mobile(char s[], float p, char cn[]=”Nokia”)

{

strcpy(cname, cn);

strcpy(setid,s);

price = p;

}

mobile(mobile &m)

{

strcpy(cname, m.cname);

strcpy(setid, m.setid);

price=m.price;

}

void show()

{

cout<<“Company :=”<<cname<<endl;

cout<<“Set Id :=”<<setid<<endl;

cout<<“Price :=”<<price<<endl;

}

};

void main()

{

char c[20];

char s[10];

float p;

clrscr();

cout<<“ENTER THE COMPANY NAME “<<endl;

cin.getline(c,20);

cout<<“ENTER THE SET ID AND PRICE “<<endl;

cin>>s>>p;

mobile m1, m2;

Working with Constructor and Destructor 315

m1=mobile(s,p,c);

cout<<“ENTER THE SET ID AND PRICE”<<endl;

cin>>s>>p;

m2=mobile(s,p);

mobile m3=m1;

cout<<“\n \t MOBILE 1 DETAILS “<<endl<<endl;

m1.show();

cout<<“\n\tMOBILE 2 DETAILS “<<endl<<endl;

m2.show();

cout<<“\n\t MOBILE 3 DETAILS”<<endl<<endl;

m3.show();

getch();

}

OUTPUT :

ENTER THE COMPANY NAME

Sony Erricson

ENTER THE SET ID AND PRICE

z550i 9000

ENTER THE SET ID AND PRICE

3230 9999

 MOBILE 1 DETAILS

Company :=Sony Erricson

Set Id :=z550i

Price :=9000

 MOBILE 2 DETAILS

Company :=Nokia

Set Id :=3230

Price :=9999

316 Object-Oriented Programming C++ Simplified

 MOBILE 3 DETAILS

Company :=Sony Erricson

Set Id :=z550i

Price :=9000

EXPLANATION : The class mobile contains 3 data members for mobile viz cname,

setid and price. The object m1 is dynamically initialized by taking values in 3 local

variables and passing to 3 argument constructor of mobile class. The default argument value

is overridden. The object m3 gets copy of object m1 by calling copy constructor when statement

mobile m3 = m1 executes. Note for mobile object m2 only the price and setid is taken from

the user and default value of cname i.e., “Nokia” is assumed.

7.6 DYNAMIC CONSTRUCTOR

When in a constructor we create memory dynamically using dynamic memory allocator operator

new, then constructor is known as dynamic constructor.

See the given program for better understanding stand point.

/* PROG 7.18 DYNAMIC CONSTRUCTOR, CONSTRUCTING 1-D ARRAY DYNAMICALLY */

#include <iostream.h>

#include <conio.h>

class Dyn_arr

{

int *ptr;

int size;

public :

Dyn_arr(int s)

{

ptr= new int [size =s];

}

void input();

void sort();

void show();

};

void Dyn_arr : :input()

{

Working with Constructor and Destructor 317

int i;

for(i=0;i<size;i++)

{

cout<<“\nENTER PTR[“<<i<<“]ELEMENT :=”;

cin>>ptr[i];

}

}

void Dyn_arr : : sort()

{

int i,j,t;

for(i=0;i<size;i++)

for(j=i+1;j<size;j++)

if(ptr[i]>ptr[j])

{

t=ptr[i];

ptr[i]=ptr[j];

ptr[j]=t;

}

}

void Dyn_arr : :show()

{

for(int i=0;i<size;i++)

cout<<ptr[i]<<“ “;

}

void main()

{

Dyn_arr obj(5);

clrscr();

obj.input();

cout<<“ORIGINAL ARRAY”<<endl;

obj.show();

obj.sort();

318 Object-Oriented Programming C++ Simplified

cout<<“\n SORTED ARRAY”<<endl;

obj.show();

getch();

}

OUTPUT :

ENTER PTR[0]ELEMENT :=12

ENTER PTR[1]ELEMENT :=56

ENTER PTR[2]ELEMENT :=3

ENTER PTR[3]ELEMENT :=90

ENTER PTR[4]ELEMENT :=10

ORIGINAL ARRAY

12 56 3 90 10

 SORTED ARRAY

3 10 12 56 90

EXPLANATION : We have seen how to construct 1-D array dynamically in chapter 4. Here

when we construct the array dynamically within constructor of the class, the constructor is known

as dynamic constructor. The program is very simple. We have pointer data member ‘ptr’ of type

‘int’. When the statement Dyn_arr obj(5); executes, one argument constructor for class

Dyn_arr is called and for object obj the line ptr= new int[size = s]; creates which creates

a dynamic array of size 5. The array can now be referred by the name ptr and any element of the

array can now be accessed as ptr[i], where ‘i’ is the index.

/*PROG 7.19 DYNAMIC CONSTRUCTOR, CONSTRUCTING 2-D ARRAY DYNAMICALLY */

#include <iostream.h>

#include <conio.h>

class matrix

{

int **ptr;

int row,col;

public :

matrix(int r, int c);

void input();

Working with Constructor and Destructor 319

void show();

}

matrix : :matrix(int r, int c)

{

row = r; col=c;

ptr=new int *[row];

for(int i=0;i<row;i++)

ptr[i]=new int[col];

}

void matrix : :input()

{

int i,j;

for(i=0;i<row;i++)

for(j=0;j<col;j++)

 {

cout<<“\nEnter ptr[“<<i<<“][“<<j<<“] element :”;

cin>>ptr[i][j];

 }

 }

 void matrix : : show()

 {

int i,j;

cout<<“\n Matrix is \n”;

for(i=0;i<row;i++)

 {

for(j=0;j<col;j++)

cout<<ptr[i][j]<<“\t”;

cout<<endl;

 }

 }

 void main()

 {

clrscr();

matrix m(3,3);

m.input();

m.show();

320 Object-Oriented Programming C++ Simplified

getch();

 }

OUTPUT :

Enter ptr[0][0] element :10

Enter ptr[0][1] element :11

Enter ptr[0][2] element :12

Enter ptr[1][0] element :13

Enter ptr[1][1] element :14

Enter ptr[1][2] element :15

Enter ptr[2][0] element :16

Enter ptr[2][1] element :17

Enter ptr[2][2] element :18

Matrix is

10 11 12

13 14 15

16 17 18

EXPLANATION : The construction of dynamic 2-D array was explained in the chapter 4.

The same logic is used here but it is put into the class.

/*PROG 7.20 DYNAMIC CONSTRUCTION OF STRING */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class string

{

char *sname;

int len;

Working with Constructor and Destructor 321

public :

string()

{

len=0;

sname= new char [len + 1];

*sname = ‘\0’;

}

string(char s[])

{

len=strlen(s);

sname = new char[len + 1];

strcpy(sname, s);

}

void show()

{

cout<<“STRING IS :=”<<sname<<endl;

cout<<“LENGTH :=”<<len<<endl;

delete sname;

}

};

void main()

{

string s1,s2;

clrscr();

s1=string(“HARI”);

s1.show();

s2=string(“HARI LIKE C++”);

s2.show();

getch();

}

OUTPUT :

STRING IS :=HARI

322 Object-Oriented Programming C++ Simplified

LENGTH :=4

STRING IS :=HARI LIKE C++

LENGTH :=13

EXPLANATION : In the default constructor we have dynamically created a string of size

just 1 character and length is 0. When s1 = string (“HARI”); executes constructor

string : :string(char s[]) is called and s contains “HARI”; Inside the constructor

first length of s is calculated and assigned to len. Then we allocated memory dynamically of

size len + 1. This memory is allocated and returned address of first memory word is assigned

to pointer sname. In the function show after displaying len and sname, we delete the sname
by writing delete sname which de-allocates memory pointed by sname.

/* PROG 7.21 CONCATENATION OF TWO STRINGS */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class string

{

char *sname;

int len;

public :

string()

{

len=0;

sname = new char [len +1];

*sname = ‘\0’;

}

string(char s[])

{

len =strlen(s);

sname =new char[len+1];

strcpy(sname, s);

}

friend string concate(string, string);

void show()

{

cout<<“String :=”<<sname<<endl;

}

};

Working with Constructor and Destructor 323

string concate(string A, string B)

{

string temp;

temp.len= A.len + B.len +1;

temp.sname = new char[temp.len+1];

strcpy(temp.sname, A.sname);

strcat(temp.sname, “ “);

strcat(temp.sname, B.sname);

return temp;

}

void main()

{

string s1,s2,s3;

clrscr();

s1=string(“Hari”);

s1.show();

s2=string(“Pandey”);

s2.show();

s3=concate(s1,s2);

s3.show();

getch();

}

OUTPUT :

String :=Hari

String :=Pandey

String :=Hari Pandey

EXPLANATION : Here we will explain only the function concate.

string concate(string A, string B)

{

string temp;

temp.len= A.len + B.len +1;

temp.sname = new char[temp.len+1];

strcpy(temp.sname, A.sname);

strcat(temp.sname, “ “);

strcat(temp.sname, B.sname);

return temp;

}

324 Object-Oriented Programming C++ Simplified

When line s3 = concate (s1, s2); executes A.sname is equal to “Hari”, A.len = 4 and

B.sname is equal to “Pandey”, B.len = 6.

H A R I \0

0 1 2 3 4

NULL
 s1 = string (Hari)
len = strlen (Hari)
len = 4 (index 0 – 3)

¢¢¢¢

¢¢ ¢¢

Figure 7.10. Implementation of length of string by strlen () function.

P A N D E Y \0

NULL

 s2 = string (Pandey)
len = strlen (s2);
len = 6 (index 0 – 5)

¢¢ ¢¢

¢¢ ¢¢

0 1 2 3 4 5 6

Figure 7.11. Physical implementation of strlen () function.

In the function concate first line creates object temp. In the next line we sum A.len, B.len

and 1 extra for adding space between “Hari” and “Pandey”. Thus len of temp becomes

4 + 6 + 1 = 11. The next line allocates memory for temp.sname. In the next line A.sname i.e.,

“Hari” is copied to temp.sname using strcpy() function. Next a space” “is concatenated to

temp.sname which contains “Hari” at present, using strcat. Now temp.sname becomes “Hari”.

In the next line B.sname is concatenated to temp.sname using strcat which result in

temp.sname containing “Hari Pandey”. The temp object is returned and assigned to s3.

A.len = 4

B.len = 6

temp.len = 10 + 1 = 11

temp. len = 11

0 1 2 3 4 5 6 7 8 9 10

Figure 7.12. Allocation of space by applying new operator.

strcpy (temp. sname, A. sname)
strcpy (temp. sname, Hari)¢¢ ¢¢

0 1 2 3 4 5 6 7 8 9 10

\0H A R I

Figure 7.13. Copying string ‘‘Hari’’ into temp. sname.

Working with Constructor and Destructor 325

strcat (temp. sname, “)¢¢

0 1 2 3 4 5 6 7 8 9 10

\0H A R I

Figure 7.14. After applying strcat () for concatenating space.

s3 = stract (s1, s2)
strcat (temp.sname, B.sname);

0 1 2 3 4 5 6 7 8 9 10

H A R I P A N D E Y

Figure 7.15. After concatenating string1 with string2.

/*PROG 7.22 CONSTRUCTING OBJECTS DYNAMICALLY */

#include <iostream.h>

#include <conio.h>

class demo

{

public :

demo()

 {

cout<<“Constructor called”<<endl;

 }

};

 void main()

 {

clrscr();

demo *ptr=new demo();

getch();

 }

OUTPUT :

Constructor called

EXPLANATION : The new operator can be used for creating objects dynamically. Creation

of pointer does not create objects. For the statement new demo (), object is constructed by

allocating memory from heap and calling the default constructor of the class.

326 Object-Oriented Programming C++ Simplified

It can also be written as :

demo *ptr;

{

ptr= new demo ();

}

Even writing simply new demo (); in the main will work.

/* PROG 7.23 CONSTRUCTING OBJECTS DYNAMICALLY VER 2 */

#include <iostream.h>

#include <conio.h>

class demo

{

public :

demo()

{

cout<<“DEFAULT CONSTRUCTOR”<<endl;

}

demo (int x)

{

cout<<“ONE INT ARGUMENT CONSTRUCTOR”<<endl;

cout<<“X = “<<x<<endl;

}

demo (float f)

{

cout<<“ONE FLOAT ARGUMENT CONSTRUCTOR”<<endl;

cout<<“f :=”<<f<<endl;

}

demo (int x, char y)

{

cout<<“ONE INT AND ONE CHAR ARGUMENT

CONSTRUCTOR”<<endl;

cout<<“x :=”<<x<<“\t”<<“y :=”<<y<<endl;

}

demo(char *p)

{

cout<<“ONE CHAR* ARGUMENT CONSTRUCTOR”<<endl;

cout<<“p :=”<<p<<endl;

}

};

Working with Constructor and Destructor 327

void main()

{

clrscr();

new demo();

new demo(10);

new demo(10.35f);

new demo(20,’P’);

new demo(“DYNAMIC”);

getch();

}

OUTPUT :

DEFAULT CONSTRUCTOR

ONE INT ARGUMENT CONSTRUCTOR

X = 10

ONE FLOAT ARGUMENT CONSTRUCTOR

f :=10.35

ONE INT AND ONE CHAR ARGUMENT CONSTRUCTOR

x :=20 y :=P

ONE CHAR* ARGUMENT CONSTRUCTOR

p :=DYNAMIC

EXPLANATION : In the program there are 5 constructors. One is default and the rest are

parameterized. In the main we call each constructor by creating objects dynamically. Note we

have not created pointer variables which represent object like demo *ptr=new demo ();
this syntax is valid when we want to work with objects later. In the program we are just

showing you how to call constructors dynamically that’s why we have not stored returned

address from any of the new call into the pointer to demo class.

/* PROG 7.24 CONSTRUCTING OBJECT DYNAMICALLY */

#include <iostream.h>

#include <conio.h>

class demo

{

public :

demo()

{

cout<<“DEFAULT CONSTRUCTOR”<<endl;

}

};

328 Object-Oriented Programming C++ Simplified

void main()

{

demo *ptr = new demo [5];

getch();

}

OUTPUT :

DEFAULT CONSTRUCTOR

DEFAULT CONSTRUCTOR

DEFAULT CONSTRUCTOR

DEFAULT CONSTRUCTOR

DEFAULT CONSTRUCTOR

EXPLANATION : In the program we have created array objects dynamically. The first

object is ptr [0], second is ptr [1] and so on. For each object creation default constructor

is called.

7.7 DESTRUCTOR

A destructor is a member function of the class whose name is same as the name of the class

but the preceded with tilde sign (~). The purpose of destructor is to destroy the object when

it is no longer needed or goes out of scope. As a very small example of destructor see the

program given below :

/*PROG 7.25 DEMO OF DESTRUCTOR VER 1*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

 public :

 demo()

 {

cout<<“Constructor called\n”;

 }

 ~demo()

 {

cout<<“Destructor called”<<endl;

 }

 };

Working with Constructor and Destructor 329

 void main()

 {

clrscr();

demo d;

getch();

 }

OUTPUT :

Constructor called

Destructor called

EXPLANATION : When demo d; executes it calls the default constructor of the class and

results in printing Constructor called. The scope of object d is the area/place where it is

available and in the above program the scope is the whole main function. Being the only

statement demo d; in the function main, as soon as compiler finds ending brace of main i.e.,}

it calls destructor of the class to destroy the object d and prints Destructor called. The code

is given as :

~demo ()

{

cout<<”Destructor called “<<endl;

}

is a destructor of the class demo.

Features of Destructor

1. The name is same as of class but proceeded with a ~ sign.

2. Destructor is automatically called as soon as an object goes out of scope.

3. Destructor is used to destroy the objects.

4. Once a destructor is called for a object, the object will no longer be available for the

future reference.

5. Destructor can be used for housekeeping work such as closing the file, de-allocating

the dynamically allocated memory etc. Closing a file in destructor is a good idea as

user might forget to close the file associated with object. But as the object goes out of

scope destructor will be called and all code written in destructor executes which will

always result in closing the file and no data loss may be there. When new is used for

allocation of memory in the constructor we must always use delete in the destructor

to be allocate the memory.

6. Similar to constructor there is no return type for destructor and that’s why they cannot

return any value.

7. There is no explicit or implicit category for a destructor. They are always called

implicitly by the compiler.

8. Destructor can never take any arguments.

330 Object-Oriented Programming C++ Simplified

9. Destructor can be virtual.

In our all earlier program destructor can be written. For instance in all our dynamic

constructor program destructor can be written for the allocation of memory like.

~string()

{

delete sname;

}

And

~matrix ()

{

delete ptr[];

}

As one more example of destructor which makes use of block as scope, see the next

program given below :

/*PROG 7.26 DEMO OF CONSTRUCTOR VER 2 */

#include <iostream.h>

#include <conio.h>

class demo

{

static int count;

public :

demo()

 {

cout<<“Object created “<<++count<<endl;

 }

 ~demo()

 {

cout<<“Object Destroyed”<<count– –<<endl;

 }

};

int demo : :count;

Working with Constructor and Destructor 331

 void main()

 {

clrscr();

cout<<“I am in main \n”;

demo d1;

 {

cout<<“In block 1\n”;

demo d2;

 {

cout<<“In block 2 inside block 1\n”;

demo d3;

 }

 }

 {

cout<<“In block 3\n”;

demo d4;

 }

 cout<<“Exiting main\n”;

 getch();

 }

OUTPUT :

I am in main

Object created 1

In block 1

Object created 2

In block 2 inside block 1

Object created 3

Object Destroyed3

Object Destroyed2

In block 3

Object created 2

Object Destroyed2

Exiting main

332 Object-Oriented Programming C++ Simplified

EXPLANATION : For keeping track of number of objects created and destroyed we are having

static data member count. This count is incremented on object creation in constructor and is

decremented on object destruction in destructor. Initially I’m main is displayed. When demo d1
executes it calls default constructor of the class demo and object created 1 is displayed.

Next In block1 displayed. For demo d2; Object Created 2 is displayed. Next In block
2 inside block 1 is displayed. For demo d3; calls the default constructor Object
Created 3 is displayed. Block 2 ends here so destructor for object d3 will be called which

result in displaying Object Destroyed 2. Next In block 3 is printed. The statement demo
d4; again causes default constructor to be called which displays Object Destroyed 2. In the

end Exiting main is displayed and as main is about to terminate, object d1 created earlier

will be destroyed so destructor will be called for d1 which will display Object Destroyed 1.

7.8 PONDERABLE POINTS

1. A constructor is a member function of class whose name is same as the name of the

class.

2. A constructor is used to construct the objects of the class. Behind every object creation

constructor is involved.

3. A constructor declared as demo () {} is known as default, do-nothing or empty

constructor of the class.

4. By default if no constructor is created for the class, C++ provides two default

constructors for the class : one is default and second is copy constructor.

5. Constructor can be parameterized and they can take even default values.

6. A constructor never any type.

7. Const and volatile keyword cannot be used with a constructor.

8. A copy constructor is a constructor which is used to copy one object to another.

9. In a copy constructor an argument of class type is passed by reference.

10. When new is used for the allocation of memory for data members of the class in a

constructor, the constructor is known as dynamic constructor.

11. A destructor is a member function of the class whose name is same as the name of the

class but proceeded with ~ sign.

12. A destructor is used to destroy the object.

13. A destructor is called automatically when an object goes out of scope.

14. A destructor can be called explicitly by an object.

15. Copy constructor is called whenever an object is passed by value to a function or return

by value from a function.

EXERCISE

A. True and False :

1. Constructor can be inherited.

2. We can make constructor function as inline.

Working with Constructor and Destructor 333

3. A constructor that accepts no argument is known as do-nothing constructor.

4. A class constructor demo cannot take demo as an argument.

5. Constructors can be overloaded.

6. A destructor must not have argument.

7. Constructor may be private.

8. The destructor and constructor are the only member functions that can be called for a const

object.

9. Each class can have exactly one constructor.

10. Declaration of constructor and destructor within a class is mandatory.

B. Answer the Following Questions :

1. What is the difference between constructor overloading and function overloading?

2. What is copy constructor? Why we pass an object by reference to the copy constructor?

3. Under what condition a copy constructor is called?

4. Can we have default argument in the constructors?

5. What is dynamic initialization of objects?

6. What is dynamic destructor? Do you have dynamic destructor?

7. Why an object is passed by reference into the copy constructor?

8. What two different types of constructor C++ provides to a class by default?

9. What is default constructor or do-nothing constructor?

10. What do you understand by an implicit and explicit call to constructor?

11. What is destructor?

C. Brain Drill :

1. Define a class called time that has separate int data members for hours, minutes and seconds. One

constructor should initialize these data to 0 and another should initialize them to fixed values.

Write a member function to display time in the format 12:28:34. Another member function should

add two objects of type time passed as arguments.

2. Write a program to declare global and local objects with the same name. Access member function

using both the objects.

3. Define a class named Queue for holding ints and providing function for inserting items at one end

and removing items from other end of a queue data structure to be supported by this class. Include

a default constructor, a destructor and the usual queue operations: insert (), remove (), isempty

(), and isfull (). Use array implementation.

4. Define a class of square matrix N ×N of integers. Define the necessary constructor/ destructor and

other members. Write a program to find the trace (sum of diagonal elements) of a matrix.

���

WORKING Wim OPERATOR
OVERLOADING

8.1 INTRODUCTION

Operator overloading refers to overloading of one operator for many different ptupose. For
example, the binary + can be used to add two integer numbers, two float numbers, two
structures variables, two union variables or two class objects. Use of operator overloading
permits us to see no difference between built-in data types and user defined data types. It is
one of the powerful and fascinating features of the C++ which give additional meaning to
built-in standard operators like +, -, *, /,>, <, < =, > = etc. Let's see first a small example to
give you idea of operator overloading and more concepts will be build later on.

/*PROG 8.1 DEMO OF OPERATOR OVERLOADING, ADDING INTEGER TO OBJECT*/

#include< iostream.h >

class demo_op1

private :

int num;

public:

void input()

{
cout< <"Enter the number"< <endl;
cin> > num;

void operator + (i ntx)

334

Working with Operator Overloading 335

 {

 num=num+x;

 }

 void show()

 {

 cout<<“The num is “<<num<<endl;

 }

 };

 void main()

 {

demo_op1 d1;

d1.input();

d1.show();

int x;

cout<<“Enter the value you want to add\n”;

cin>>x;

d1+x;

d1.show();

 }

OUTPUT :

Enter the number

123

The num is 123

Enter the value you want to add

14

The num is 137

EXPLANATION : The syntax of the overloading an operator and writing new overloaded

operator function is as follows :

return_type operator operator (arguments)

{

Statements;

Statements;

Statements;

}

The first word operator is a keyword and must be specified. The second word operator

represents the operator which we want to overload i.e., to give a new meaning. It may be +,

−, =, = =, >, < etc. Later I will tell you about operators which cannot be overloaded. In the

program we have overloaded + operator as given below:

336 Object-Oriented Programming C++ Simplified

return_type

Keyword

Operator to be overloaded

Arguments

 void operator + (int x)

 {

num = num + x;

 }

 Which accepts an argument of type int and returns nothing as return type is void.

Inside the function we add value of x to the num of the object. Now see how this function

is called from main.

 The statement d1+x; initially interpreted as d1.operator +(x); whenever compiler sees

operator like +, −, *, /, ++, − −, etc with variable of user defined data types (here object) it

checks whether the operator has been overloaded in the class or not. If not it flashes an error

else it calls the appropriate overloaded operator function. As operator function is member

function of the class we require some object to call the function so an object is always preceded

with the operator which is overloaded and being used in the expression. The argument to be

passed is specified as the right operand of the overloaded operator. Here the overall effect of

the statement d1+x; is to call the operator function operator + and pass x as argument to it.

See how convenient to write d1+x for adding an integer x to object d1 ?

8.2 OPERATOR OVERLOADING WITH BINARY OPERATOR

When overloading binary operator using operator function as class member function, the left

side operand must be an object of the class and right side operand may be either a built-in type

or user defined type. The other method using friend function will be discussed later on. We

present numerous program of overloading binary operators.

/*PROG 8.2 OVERLOADING BINARY + WITH CLASS OBJECTS AS ARGUMENT VER 1*/

#include <iostream.h>

#include <conio.h>

class demo_sum

{

private :

int num;

static int count;

public :

void input()

 {

Working with Operator Overloading 337

 cout<<“Enter the number for”<<“Object”<<++count<<“\n”;

 cin>>num;

 }

 void operator +(demo_sum temp)

 {

int x;

x=num+temp.num;

cout<<“Sum of two is “<<x<<endl;

 }

 void show()

 {

cout<<“The num is”<<num<<endl;

 }

 };

 int demo_sum : :count;

 void main()

 {

clrscr();

demo_sum d1,d2;

d1.input();

d1.show();

d2.input();

d2.show();

d1+d2;

getch();

 }

OUTPUT :

Enter the number forObject1

23

The num is23

Enter the number forObject2

45

The num is45

Sum of two is 68

338 Object-Oriented Programming C++ Simplified

EXPLANATION : The function

void operator + (demo_sum temp)

{

int x;

x= num+ temp.num;

cout<<”sum of two is “<<x<<endl;

}

Overloads binary + and accepts an argument of class demo_sum type. In the main the

statement d1+d2; is interpreted internally as d1.operator +(d2) i.e., d1 calls the function

d1 and pass d2 as argument to this overloaded binary + operator function. Inside the

function num belongs to objects d1 (The members of the objects who calls the function, can

be inside the function without using object name with dot operator, other syntax using this

pointer will be discussed later on) and d2 is copied to temp object so temp.num is a copy of

d2.num. The function finds the sum and displays it.

/*PROG 8.3 OVERLOADING BINARY + WITH CLASS OBJECTS AS ARGUMENT VER 2*/

#include <iostream.h>

#include <conio.h>

class demo_sum

{

private :

int num;

static int count;

public :

 void input()

 {

cout<<“Enter the number for object”<<++count<<“\n”;

cin>>num;

 }

 int operator + (demo_sum temp)

 {

return(num + temp.num);

 }

 void show()

 {

cout<<“The num is “<<num<<endl;

 }

};

int demo_sum : :count;

Working with Operator Overloading 339

void main()

{

clrscr();

demo_sum d1, d2;

d1.input();

d2.input();

d1.show();

d2.show();

int sum=d1+d2;

cout<<“The sum of two object’s num is “<<sum<<endl;

getch();

}

OUTPUT :

Enter the number for object1

23

Enter the number for object2

56

The num is 23

The num is 56

The sum of two object’s num is 79

EXPLANATION : The program is similar to previous program but instead of displaying the

sum in the operator function itself we have returned the sum from function. The function

int operator + (demo_sum temp)

{

return (num + temp.num);

}

Overloads the binary + and accepts an argument of type demo_sum. In the function it

finds the sum of two objects num and returns it that’s why the return type of the function is

int.

/*PROG 8.4 OVERLOADING BINARY + WITH CLASS OBJECTS AS ARGUMENT &

RETURNING OBJECTS */

#include <iostream.h>

#include <conio.h>

class demo_sum

{

private :

int num;

340 Object-Oriented Programming C++ Simplified

static int count;

public :

void input()

 {

cout<<“ Enter the number for object”<<++count<<endl;

cin>>num;

 }

 demo_sum operator +(demo_sum temp)

 {

demo_sum t;

t.num = num+ temp.num;

return t;

 }

 void show()

 {

cout<<“The num is “<<num<<endl;

 }

};

 int demo_sum : :count;

 void main()

 {

clrscr();

demo_sum d1,d2,d3,d4;

d1.input();

d2.input();

d3.input();

d1.show();

d2.show();

d3.show();

d4=d1+d2+d3;

d4.show();

getch();

 }

OUTPUT :

Enter the number for object1

15

 Enter the number for object2

16

 Enter the number for object3

18

Working with Operator Overloading 341

The num is 15

The num is 16

The num is 18

The num is 49

EXPLANATION : The function

demo_sum operator + (demo_sum temp)

{

demo_sum t;

t.num = num+temp.num;

return t;

}

Overloads binary +, it accepts one argument of type demo_sum and returns an object of

demo_sum type. Returning an object from an overloaded operator function allows us to write

expression like d4 = d1 + d2 + d3 + d4. See how this expression is evaluated. The usual

priority and Associativity rules are follows when determining which sub expression will be

evaluated first. Here as only + operator is present; evaluation will be done from left to right.

Initially d1+d2 will be evaluated which is internally interpreted as d1.operator + (d2).

In the function a new temporary object t is created whose data member num contains the sum

of num of object d1 and d2 i.e., 31.The object t will be returned and assumes it is obj

(imaginary name assume) when returned the expression d4= d1 + d2 + d3 now becomes d4

= obj + d3 which means obj calls the operator function + and pass d3 as argument. Inside

the function again sum of num of object obj and d3 will be done which will be 31+18 will be

stored in the num of temporary object t. In the last this object will be returned and our

expression d4 = obj + d3 becomes d4 = t which copies num to the num of d4.

/*PROG 8.5 OVERLOADING + AND −−−−− IN THE SAME PROGRAM */

#include <iostream.h>

#include <conio.h>

class demo_sum_sub

{

private :

int num;

static int count1,count2;

public :

void input()

 {

cout<<“Enter the number for object”<<++count1<<endl;

cin>>num;

 }

342 Object-Oriented Programming C++ Simplified

 demo_sum_sub operator +(demo_sum_sub temp)

 {

demo_sum_sub t;

t.num=num+temp.num;

return t;

 }

 demo_sum_sub operator -(demo_sum_sub temp)

 {

demo_sum_sub t;

t.num=num-temp.num;

return t;

 }

 void show()

 {

cout<<“The num for object”<<++count2<<“is”<<num<<endl;

 }

};

int demo_sum_sub : :count1;

int demo_sum_sub : :count2;

void main()

{

clrscr();

demo_sum_sub d1,d2,d3,d4;

d1.input();

d2.input();

d3.input();

d1.show();

d2.show();

d3.show();

d4=d1+d2 − d3;

d4.show();

getch();

}

OUTPUT :

Enter the number for object1

30

Enter the number for object2

40

Enter the number for object3

35

Working with Operator Overloading 343

The num for object1is30

The num for object2is40

The num for object3is35

The num for object4is35

EXPLANATION : The program is similar to previous one but we have overloaded binary
– operator together with binary +. As the priority of + and – is same they are evaluated from

left to right. Hence first d1+d2 is evaluated where d1 calls overloaded + operator function and

pass d2 as argument. Assuming returned object is temp then temp –d3 is evaluated where temp

calls the overloaded binary – operator function and pass d3 as argument. The final object

returned; again assume obj is assigned to d4.

/*PROG 8.6 OVERLOADING +, -, *, AND / ALL IN ONE */

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

class demo_exp

{

private :

float num;

static count1, count2;

public :

void input()

 {

cout<<“Enter the number for object”<<++count1<<endl;

cin>>num;

 }

 demo_exp operator *(demo_exp temp)

 {

demo_exp t;

t.num=num*temp.num;

return t;

 }

 demo_exp operator +(demo_exp temp)

 {

demo_exp t;

t.num=num+temp.num;

return t;

 }

 demo_exp operator -(demo_exp temp)

 {

344 Object-Oriented Programming C++ Simplified

demo_exp t;

t.num=num-temp.num;

return t;

 }

 demo_exp operator /(demo_exp temp)

 {

demo_exp t;

if(temp.num)

t.num=num/temp.num;

else

 {

cout<<“Division by zero is not allowed”<<endl;

exit(0);

 }

 return t;

 }

 void show()

 {

cout<<“The sum for object”<<++count2<<“is”<<num<<endl;

 }

};

 int demo_exp : :count1;

 int demo_exp : :count2;

 void main()

 {

clrscr();

demo_exp d1,d2,d3,d4,d5;

d1.input();

d2.input();

d3.input();

d4.input();

d1.show();

d2.show();

d3.show();

d4.show();

d5=d1+d2*d3/d1 − d4;

d5.show();

getch();

 }

Working with Operator Overloading 345

OUTPUT :

Enter the number for object1

12

Enter the number for object2

13

Enter the number for object3

14

Enter the number for object4

15

The sum for object1is12

The sum for object2is13

The sum for object3is14

The sum for object4is15

The sum for object5is12.166668

EXPLANATION : We have overloaded all the 4 binary operation viz +, −−−−−, *
and /. You can check that code for all the overloaded operation function is same except for

the operator symbol. In the division operator function we have checked for denominator to be

nonzero. Note overloading of operator does not change their inherent meaning, priority and

associativity. So the expression d5 = d1 + d2 * d3 / d1 −−−−− d4; is evaluated as (assuming

num for objects as shown in the program output) :

As priority of *and/ is higher than +and – and at the same level of priority *and/ are

evaluated from left to right so d2 *d3 is evaluated first which internally interpreted as

d2.operator *(d3) as explained earlier. Assuming the returned object as temp1 with value of

num96 (as 8 *12=96) the expression becomes d5 = d1+temp1/d1-d4. Now temp/d1 will

be evaluated where temp1 calling the function operator / and sending d1 as argument.

Assuming returned object as temp2 with value of num is 19.2 (as 96/5=19.2) the

expression becomes d5=d1+temp2–d4. As priority of + and – is same expression will be

evaluated from left to right so next d1 +temp2 will be evaluated where d1 calling the operator

function + and sending temp2 as argument. Assuming the returned object as temp3 with value

of num 24.2 (as 19.2 + 5 = 24.2) the expression becomes d5=temp3-d4. Now temp3
calls the operator function – and sends d4 as argument. Assuming the returned object as

temp4 with value of num 15.2 (as 24.2-9) the expression becomes d5=temp4 and value

of num will be assigned to num to object d5.

/*PROG 8.7 OVERLOADING > OPERATOR */

#include <iostream.h>

#include <conio.h>

class emp

{

private :

int sal;

346 Object-Oriented Programming C++ Simplified

public :

emp(int s)

 {

sal=s;

 }

 void operator>(emp temp)

 {

if(sal>temp.sal)

cout<<“First employee’s salary is higher”<<endl;

else

cout<<“Second employee’s salary is higher”<<endl;

 }

 void show()

 {

cout<<“Salary is “<<sal<<endl;

 }

 };

 void main()

 {

clrscr();

emp e1=emp(12545);

emp e2=emp(13458);

e1.show();

e2.show();

e1>e2;

getch();

 }

OUTPUT :

Salary is 12545

Salary is 13458

Second employee’s salary is higher

EXPLANATION : In the program we have overloaded the greater than operator > which

compares the salary of the employees. The statement e1>e2 internally interpreted as e1.operator

> (e2) i.e., e1 calls the operator function > sends e2 as argument. In the operator function

salary of two objects e1 and e2 is compared and result is displayed accordingly.

8.3 OVERLOADING ASSIGNMENT (=) OPERATOR

We can overload assignment operator if we want to do some extra work other than the simply

copy data members from one object to other. The simple copy of two objects can be done as

Working with Operator Overloading 347

d2=d1. We can also use copy constructor for the same and in this section we are also overloading

= operator. Than what is the difference between all three ? Understanding this concept is an

important one that’s why we have devoted a separate part of this chapter. Consider the program

given below :

/*PROG 8.8 OVERLOADING = OPERATOR*/

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(int n)

 {

num=n;

 }

 demo(){}

 void operator =(demo temp)

 {

num=temp.num;

cout<<“hello from =”<<endl;

 }

 void show()

 {

cout<<“num=”<<num<<endl;

 }

 };

 void main()

 {

clrscr();

demo d1(20);

demo d2=d1;

d1.show();

d2.show();

getch();

 }

OUTPUT :

num =20

num =20

348 Object-Oriented Programming C++ Simplified

EXPLANATION : We have studied that statement demo d2=d1 calls copy constructor.

Here in the program there is no copy constructor. Compiler provides its default copy constructor

for the above operator demo d2=d1. You can also check the output of the program that

overloaded that overloaded assignment operator function is not called.

 Now add a copy constructor in the program as :

 demo (demo d1)

 {

num= d.num;

cout<<”hello”<<endl;

 }

And run the program again, this time our own constructor is called. The output will be :

hello

num=20

num=20

Now change the demo d2=d1; into demo d2; d2=d1; this time d2=d1 will call the

overloaded operator function as d1.operator = (d2). Now if you remove overloaded

operator = function, for carrying out d=d1 compiler simply copies member by member from d1
to d2 without calling copy constructor.

8.4 OVERLOADING UNARY OPERATORS

Similar to overloading binary operator we can overload unary −, pre and post ++, pre and post

– and unary +. In case of overloading binary operators using member function of class left

operand is responsible for calling the operator function and right operand was send as argument.

In case of unary operator only one operand is there and this operand itself calls the overloaded

operator function. Nothing is send as argument to the function. Its general syntax is (defined

with the class)

return_type operator op ()

 {

// function code;

 }

For example, overloading unary – we will be writing.

demo operator - ()

{

demo temp;

temp.num = -num;

return temp;

}

Working with Operator Overloading 349

It is used as follows :

d1=-d; // equivalent to d1 = d.operator – ();

See few programs given below :

/*PROG 8.9 OVERLOADING ++ VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

 int num;

 public :

 demo(){}

 demo (int x)

 {

num=x;

 }

 demo operator ++()

 {

demo temp;

temp.num=num;

num++;

return temp;

 }

 void show(char *s)

 {

cout<<“num of object”<<s<<“=”<<num<<endl;

 }

 };

 void main()

 {

clrscr();

demo d1(20),d2;

d2=d1++;

d1.show (“d1”);

d2.show (“d2”);

getch();

 }

350 Object-Oriented Programming C++ Simplified

OUTPUT :

num of objectd1=21

num of objectd2=20

EXPLANATION : The operator function

demo operator ++ ()

{

demo temp;

temp.num=num;

num++;

return temp;

}

Overloads unary post ++ operator. In the main the expression d2 = d1++ is equivalent

to d2 = d1.operator ++ (). In the binary operator the left side operand of the operator is

responsible for calling the operator function and right side operand is send as argument to the

function. But here in unary we have just one operand which calls the operator function and

sends no argument. In the overloaded function ++ a temporary object temp is created and num

of this temp object gets the value from num which represent num of object who called the

function here it is object d1. In the next statement num is incremented and temp is returned

which is assigned to d1.We have simply followed the normal working of post ++ operator i.e.,

value of d1 is assigned then it is incremented as if d1 is an integer. All this is achieved by

overloading ++.

/* PROG 8.10 OVERLOADING ++ VER 2 */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(){}

demo(int x)

{

num = x;

}

demo operator ++()

{

demo temp;

num++;

Working with Operator Overloading 351

temp.num = num;

return temp;

}

void show(char*s)

{

cout<<“NUM OF OBJECT”<<s<<“ :=”<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(30),d2;

d2 =++d1;

d1.show(“d1”);

d2.show(“d2”);

getch();

}

OUTPUT :

NUM OF OBJECT d1 :=31

NUM OF OBJECT d2 :=31

EXPLANATION : The program is almost same as the previous program with a little

difference. In the program we have overloaded pre ++ operator. So, in the operator ++
function first num is incremented than assigned to num of temporary object. As a result both

d1 and d2 gets the value 31 for the num.

Note in the previous program if you write d2 = ++d1 then again the same operator ++
function would be called. Then how does the compiler distinguishes between an overloaded

pre++ and post ++ operator.

See the next program given below :

/* PROG 8.11 OVERLOADING PRE ++ AND POST ++ IN THE SAME PROGRAM */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(){}

352 Object-Oriented Programming C++ Simplified

demo (int x)

{

num = x;

}

demo operator ++(int)

{

demo temp;

temp.num = num;

num++;

return temp;

}

demo operator++()

{

demo temp;

num++;

temp.num = num;

return temp;

}

void show(char*s)

{

cout<<“NUM OF OBJECT”<<s<<“ = “<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(30),d2,d3;

d2=d1++;

d3=++d1;

d1.show(“d1”);

d2.show(“d2”);

d3.show(“d3”);

getch();

}

OUTPUT :

NUM OF OBJECTd1 = 32

NUM OF OBJECTd2 = 30

NUM OF OBJECTd3 = 32

Working with Operator Overloading 353

EXPLANATION : To distinguishes between an overloaded pre and post ++ an int type

argument is passed to the overloaded post ++ operator function. This int argument does

not serve any purposes except helping compiler to see the difference between a pre and post
++ operator function when this operator function call implicitly. In the main when d2 =
d1++ executes post++ operator function will be called and in case of d3 = ++d1; pre++
operator function would be called.

/* PROG 8.12 OVERLOADING UNARY - OPERATOR VER 1 */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(int x)

{

num=x;

}

void operator -()

{

num = num;

}

void show()

{

cout<<“num =”<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(10);

cout<<“Before”<<endl;

d1.show();

-d1;

cout<<“After”<<endl;

d1.show();

getch();

}

354 Object-Oriented Programming C++ Simplified

OUTPUT :

Before

num =10

After

num =10

EXPLANATION : In the main the statement –d1 is equivalent to d1.operator – ().
The initial value of num for object d1 is 10. When –d1 executes it call overloaded – operator

function which reverse the sign of the num. This is the way the unary minus operator works.

Note no argument is passed to the function. The function is simply called by the object d1.

/* PROG 8.13 OVERLOADING UNARY - OPERATOR VER 2 */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(){}

demo(int x)

{

num=x;

}

demo operator -()

{

demo temp;

temp.num=-num;

return temp;

}

void show(char *s)

{

cout<<“ Num of object”<<s<<“ =”<<num<<endl;

}

};

void main()

{

demo d1(100),d2;

d2=−d1;

d1.show(“d1”);

d2.show(“d2”);

Working with Operator Overloading 355

getch();

}

OUTPUT :

Num of object d1 =100

Num of object d2 =-100

EXPLANATION : The program is similar to the previous with the change in overloaded

operator function – which returns an object of demo class type. In the main when d2 =
−−−−−d1 executes it becomes internally as d2 = d1.operator–(); in the function a temp object

is created and after reverse sign of num is assigned to num of temp. This temp is returned to

d2 which contains -100 as num of d1 was 100.

/* PROG 8.14 OVERLOADING UNARY + OPERATOR VER 1 */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(int x)

{

num=x;

}

void operator +()

{

num=num>0 ?num :-num;

}

void show()

{

cout<<“num = “<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(-100);

cout<<“Before”<<endl;

d1.show();

+d1;

356 Object-Oriented Programming C++ Simplified

cout<<“After”<<endl;

d1.show();

getch();

}

OUTPUT :

Before

num = -100

After

num = 100

EXPLANATION : Practically unary + does not serve any purpose i.e., writing +x do not

affect the value of x. But in the program we have overloaded unary operator to make a number

positive i.e., work as a function which finds absolute value of the number. In the main +d1
is equivalent to d1.operator + () which calls the operator + function and checks the value

of num. If it is positive, we do not change but if is negative we make it positive.

/* PROG 8.15 OVERLOADING UNARY + OPERATOR VER 2 */

#include <iostream.h>

#include <conio.h>

class demo

{

int dx, dy;

public :

demo(int x,int y)

{

dx=x;

dy=y;

}

void operator + ()

{

dx = dx>0 ?dx :-dx;

dy = dy>0 ?dy :-dy;

}

void show()

{

cout<<“dx=”<<dx<<endl;

cout<<“dy=”<<dy<<endl;

}

};

Working with Operator Overloading 357

void main()

{

clrscr();

demo d1(-10,20);

cout<<“Before”<<endl;

d1.show();

+d1;

cout<<“After”<<endl;

d1.show();

getch();

}

OUTPUT :

Before

dx=-10

dy=20

After

dx=10

dy=20

EXPLANATION: The program is same as the previous one but instead of one data member

we have taken two.

/* PROG 8.16 OVERLOADING INDIRECTION OPERATOR ‘*’ */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(int x)

{

num=x;

}

int operator *()

{

358 Object-Oriented Programming C++ Simplified

return num;

}

};

void main()

{

clrscr();

demo d1(100);

cout<<“Value of Object d1 = “<<*d1<<endl;

getch();

}

OUTPUT :

Value of Object d1 = 100

EXPLANATION : The ‘*’ as binary operator is known as multiplication operator

but with reference to pointers it is known as indirection operator. Overloading indirection

operator can make an object to appear as pointer. In the main d1 is an object but * d1 makes

it appear like it is a pointer. In reality it calls operator * as d.operator *() which returns

the value of num.

8.5 OVERLOADING USING FRIEND FUNCTION

In the programs seen so far we have been overloading number of operators by writing overloaded

functions. All the functions were part of the class but we can also overload all operators except

few (discussed later) using friend function too. For example, to overload a binary + we declare

a function as a class member function as :

demo operator + (demo A)

And in the main we write as d1+d2. As the operator function is a member function of

class left side operand must be an object of the class. This is must as internally d1+d2 is

treated as d.operator + (d2).

To write the same function using friend

 friend demo operator + (demo A, demo B);

Friend function is not a member function of the class so it cannot be called using an object

of the class. So in case of binary + overloaded using friend d1+d2 is interpreted as operator

+ (d1, d2). That is no object or no operand calls the function and both the operand are send

as argument.

Note : In binary operators overloaded using class not using class one argument is passed whereas

overloaded using friend two arguments are passed.

Working with Operator Overloading 359

Now consider the case of overloading unary ++ operator overloaded using class.

demo operator ++();

In main when we write d2=d1++, it is internally equivalent to d2=d1.operator ++ ();

The same operator ++ overloaded using friend can be written as :

friend demo operator ++ (demo d);

And d2 = d1++ is equivalent to d2 = operator ++ (d1).

Note : In unary operators overloaded using class no argument is passed whereas overloaded using

friend one argument is passed.

Now as we have understood that friend function can be used for overloading operators,

questions arises why we need them when we can overload operators using operator function

as member function of class. The answer is that in case of expression written as d1 +d2, d1+20

d1*3, class operator functions will work but in case of expression like 20 +d1, 10*d1 etc., class

operator functions will not work as left operand must be an object of the class. In such

situations we can use friend function.

/*PROG 8.17 OVERLOADING BINARY + OPERATOR USING FRIEND VER 1*/

#include <iostream.h>

#include <conio.h>

 class demo

 {

int num;

public :

demo(){}

demo(int x)

 {

num =x;

 }

 friend demo operator +(demo, int);

 void show(char *s)

 {

cout<<“num of object “<<s<<“=”<<num<<endl;

 }

};

 demo operator +(demo T, int x)

 {

demo temp;

temp.num=T.num+x;

return temp;

 }

360 Object-Oriented Programming C++ Simplified

 void main()

 {

clrscr();

demo d1(100), d2;

d2=d1+50;

d1.show(“d1”);

d2.show(“d2”);

getch();

 }

OUTPUT :

num of object d1=100

num of object d2=150

EXPLANATION : The declaration friend demo operator + (demo, int); tells the compiler

that operator + is a friend function of the class which takes two arguments : one of class demo

type and second as an int. In the main when d2 = d1+ 50 executes it is interpreted as d2 =

operator + (d1, 50). This calls the operator + and passes d1 and 50 by value. Inside the

function a temporary object is created which finds sum of T.num. This object is returned to

main and assigned to d2.

The overloaded + function could be written as member function of the class.

/*PROG 8.18 OVERLOADING BINARY + OPERATOR USING FRIEND VER 2*/

#include <iostream.h>

#include <conio.h>

class demo

{

 int num;

 public :

 demo (){}

 demo(int x)

 {

 num=x;

 }

 friend demo operator *(int,demo);

 void show(char *s)

 {

cout<<“num”<<s<<“=”<<num<<endl;

 }

 };

Working with Operator Overloading 361

 demo operator *(int x,demo T)

 {

demo temp;

temp.num=x*T.num;

return temp;

 }

 void main()

 {

clrscr();

demo d1(200),d2;

d2=10*d1;

d1.show(“of object d1”);

d2.show(“of object d2”);

getch();

 }

OUTPUT :

num of object d1=200

num of object d2=2000

EXPLANATION : In the main when d2=10*d1 executes, it is interpreted as

operator*(10, d1) and compiler searches an overloaded *function which takes two

arguments : as int and an object of demo class type. As we have overloaded *operator function

is called. Inside the function temporary object is created and temp.num contains the

multiplication of 10 and d1.num. This object is returned and assigned to d2.

/* PROG 8.19 OVERLOADING UNARY OPERATOR - USING FRIEND VER 1 */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(){}

demo(int x)

{

num=x;

}

friend demo operator -(demo d)

{

362 Object-Oriented Programming C++ Simplified

demo temp;

temp.num=-d.num;

return temp;

}

void show(char *s)

{

cout<<“num of object “<<s<<“ =”<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(100), d2;

d2=-d1;

d1.show(“d1”);

d2.show(“d2”);

getch();

}

OUTPUT :

num of object d1 =100

num of object d2 =-100

EXPLANATION : The program is similar to the program we have created earlier but here

we have overloaded unary operator – using fried function. Compare this and other program in

which – is overloaded as class member function.

/*PROG 8.20 OVERLOADING UNARY - USING FRIEDN AND BINARY + USING CLASS */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(){}

demo(int x)

{

num=x;

}

Working with Operator Overloading 363

friend demo operator -(demo d)

{

demo temp;

temp.num =-d.num;

return temp;

}

demo operator +(demo d)

{

demo A;

A.num = num + d.num;

return A;

}

void show(char *s)

{

cout<<“num of object “<<s<<“=”<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(100),d2(200), d3;

d3= - d1 + d2;

d1.show(“d1”);

d2.show(“d2”);

d3.show(“d3”);

getch();

}

OUTPUT :

num of object d1=100

num of object d2=200

num of object d3=100

EXPLANATION : Priority of unary – is higher than binary + so in the expression –d1 +

d2, d1 calls operator - which return a temporary object A whose num is -100. Next this A object

calls overloaded binary + operator function of class demo and send d2 as argument in the

following manner : A.operato + (d2). In the operator + function sum of num of temp and d2

is calculated and assigned to num of temporary object A which is returned.

364 Object-Oriented Programming C++ Simplified

/* PROG 8.21 OVERLOADING >> AND << OPERATOR USING FRIEND VER 1 */

#include <iostream.h>

#include <conio.h>

class demo

{

int dx, dy;

public :

friend void operator <<(ostream &, demo &);

friend void operator >>(istream &, demo &);

};

void operator <<(ostream & mycout, demo & d)

{

mycout<<“dx = “<<d.dx<<“\t”<<“dy = “<<d.dy<<endl;

}

void operator >>(istream & mycin, demo & d)

{

mycin>>d.dx>>d.dy;

}

void main()

{

demo d;

 clrscr();

cout<<“Enter the two numbers”<<endl;

cin>>d;

cout<<“You entered”<<endl;

cout<<d;

getch();

}

OUTPUT :

Enter the two numbers

40, 70

You entered

dx = 40 dy = 70

EXPLANATION : Object cout is considered an object of ostream type and cin is an

object of istream type. The operator >> and << are overloaded internally for all basic data

types so when you write cout<<40; internally it is treated as cout.operator <<(40). Similarly

when cin>>x is written it is treated as cin.operator >>(x). The problem with these

operators is that they are overloaded only for basic data types. They are not overloaded for

inputting class object using cin or displaying class objects using cout. For that in the program

we have overloaded >> and << operator using friend.

Working with Operator Overloading 365

Both the operators have been overloaded as :

friend void operator <<(ostream &, demo &);

friend void operator >>(istream &, demo &);

In the main note we have written as cin >> d where d is an object of demo class. When

compiler sees the above input statement it searches an overloaded >> operator function which

takes two arguments : one of type ostream and second of type demo class. When it finds one

it calls operator >> function and passes cout and d by reference. Inside the function >> input

values are taken in dx and dy. Similarly, when cout<<d executes overloaded operator <<
function is called which displays values of dx and dy.

You can note that with the help of overloading >> and << we are able to treat object

as built-in data types and can read and write objects using cin and cout respectively.

The problem with the above overloaded >> and << functions is that we cannot read or

write multiple objects as cin>>d1>>d2 and cout<<d1<<d2. This is so as return type of

function is void. For achieving the above see the next program given below.

/* PROG 8.22 OVERLOADING >> AND << OPERATOR USING FRIEND VER 2 */

#include <iostream.h>

#include <conio.h>

class demo

{

char name[25];

public :

friend ostream & operator <<(ostream &, demo &);

friend istream & operator >>(istream &, demo &);

};

ostream & operator <<(ostream & mycout, demo & d)

{

mycout<<“name = “<<d.name<<endl;

return mycout;

}

istream & operator >>(istream & mycin, demo & d)

{

mycin>>d.name;

return mycin;

}

void main()

{

demo d1,d2;

clrscr();

cout<<“Enter two name”<<endl;

366 Object-Oriented Programming C++ Simplified

cin>>d1>>d2;

cout<<“You have entered”<<endl;

cout<<d1<<d2<<endl;

getch();

}

OUTPUT :

Enter two name

Hari

Mohan

You have entered

name = Hari

name = Mohan

EXPLANATION : Here we have modified the overloaded operator function >> and <<

by returning a reference of ostream from << and of istream from >>. In the main when we

write cin>>d1>>d2, it is called as operator>> (cin, d1). In the function >> after taking

data values for object d1 the function returns reference to cin which is used in calling the

second object d2. Assume returned reference is cin, function is called again as operator>>
(cin, d2). Same analogy applies to cout<<d1<<d2.

/* PROG 8.23 OVERLOADING SUBSCRIPT OPERATOR */

#include <iostream.h>

#include <conio.h>

class demo

{

int *p;

public :

demo()

{

p=new int [5];

for(int i=0; i<5; i++)

p[i]=i+1;

}

int operator [](int x)

{

return p[x];

}

};

Working with Operator Overloading 367

void main()

{

demo d;

clrscr();

for(int i=0; i<5;i++)

cout<<d[i]<<“ “;

getch();

}

OUTPUT :

1 2 3 4 5

EXPLANATION : Expression d[i] is interpreted internally as d.operator [] (x).
In each iteration of for loop we call the overloaded operator function [] and pass the value of

‘i’ which returns the corresponding array elements. Though d was not array but we have made

it to be like array by overloading [] subscript operator.

/*PROG 8.24 OVERLOADING COMMA (,)OPERATOR */

#include <iostream.h>

#include <conio.h>

class demo

{

int x;

public :

demo()

{}

demo(int p)

{

x=p;

}

demo operator,(demo d)

{

demo temp;

temp.x=x;

return temp;

}

void show()

{

cout<<“x=”<<x<<endl;

}

};

368 Object-Oriented Programming C++ Simplified

void main()

{

clrscr();

demo d1(30), d2(50), d3(70), d4;

d4=(d1,d2,d3);

d1.show();

d2.show();

d3.show();

d4.show();

getch();

}

OUTPUT :

x=30

x=50

x=70

x=30

EXPLANATION : In the above code comma (,) operator has been overloaded. In the

default working of comma operator processing is done from left to right and right most

operand becomes result for the comma operator. So initially d1 will call the comma operator

and send d2 as argument like d1.operator,(d2). When temporary object return from

operator function, it will call again overloaded function, again this time sending d3 as argument.

The final object returnd will be assingned to d4 which will be d3.

/* PROG 8.25 DEMO OF OVERLOADING -> OPERATOR */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class demo

{

public :

demo* operator ->()

{

return this;

}

char str[20];

};

Working with Operator Overloading 369

void main()

{

demo d;

clrscr();

strcpy(d.str,”MPSTME”);

cout<<d.str<<endl;

strcpy(d->str,”NMIMS University”);

cout<<d->str<<endl;

getch();

}

OUTPUT :

MPSTME

NMIMS University

EXPLANATION : The operator -> allow us to treat object like a pointer. When overloading

it is considered as a unary operator. The overloaded -> operator must return address of the

current object. The next expression d->str internally treated as :

(d.operator -> ()) str

/* PROG 8.26 OVERLOADING OF FUNCTION CALL () OPERATOR */

#include <iostream.h>

#include <conio.h>

class demo

{

int x,y;

public :

demo()

{}

void operator ()(int, int);

void show(char*s)

{

cout<<s<<endl;

cout<<“x=”<<x<<endl;

cout<<“y=”<<y<<endl;

}

};

void demo : :operator ()(int a, int b)

{

370 Object-Oriented Programming C++ Simplified

x=a;

y=b;

}

void main()

{

demo d1,d2;

clrscr();

d1(20,40);

d2(35,80);

d1.show(“OBJECT-1”);

d2.show(“OBJECT-2”);

getch();

}

OUTPUT :

OBJECT-1

x=20

y=40

OBJECT-2

x=35

y=80

EXPLANATION : The operator () is known as function call operator we have overloaded

it. The overloaded operator function () takes two int argument and returns nothing. In the main

when we write d1 (20, 40) and d2 (35, 80), they are internally interpreted as :

d1.operator () (20, 40);

d2.operator () (35, 80);

8.6 RULES OF OPERATOR OVERLOADING

1. Only the operators which are part of the C++ language can be overloaded. No new

operator can be created using operator overloading.

2. You can change the meaning of the operator i.e., a + operator can be overloaded to

perform multiplication operation or > operator can be overloaded to perform addition

operation. But you cannot change the priority of the operators.

3. Any overloaded operator function must have at least one operand which is user-

defined type. All of the operands cannot be of basic types. If this is the case than

function must be friend function of some class.

4. In case of overloading binary operators left hand side operator must be an object of

class when overloaded operator function is a member function of the class.

Working with Operator Overloading 371

5. Binary operators overloaded through member function of the class take one argument

and overloaded through friend function take two arguments.

6. Unary operators overloaded through member function of the class does not take any

argument and overloaded through friend function must take one argument.

7. There are certain operators which cannot be overloaded. They are:

S.No. Operators Name of Operator

1. : : Scope resolution operator

2. . Dot membership operator

3. .* Pointer to member operator

4. ? : Conditional operator

5. sizeof The size of operator

8. There are operators which cannot be overloaded using friend function. They are given

as :

S.No. Operators Name of Operator

1. = Assignment operator

2. -> Pointer to member operator

3. [] Subscript operator

4. () Function call operator.

8.7 TYPE CONVERSION

Many times in programming situations we like to convert one data type into another. Converting

data types of a variable into other data type is known as type conversion. We have studied it

earlier when we convert int to float, char to int, double to int etc. Compiler also does implicit

type conversion. But all we studied involved all built-in types. In this section, we study type

conversion with respect to user data type viz. class. We divide the study of type conversion into

three parts.

1. Conversion from Built-in types to class type.

2. Conversion from class type to built-in types.

3. Conversion from one class type to another.

1. Conversion from Built-in Types to Class Type

When we want to convert basic built-in types into class types, the simple methods is to define

parameterized constructor which takes an argument of basic type which you want to convert

to class type. For example, when you want an int to be converted to class type say demo, define

a one argument constructor type int in demo class as :

372 Object-Oriented Programming C++ Simplified

demo (int)

{

 constructor body;

}

In the main we can write demo d=10. When compiler we this statement it come to know

that both types demo and int are not compatible so it look for a conversion routine which can

convert an int into demo class type. When it finds there is a constructor which takes int as

argument, it calls that constructor, pass the int value 10 and construct the object and assign

to d.

Now, I illustrate it more details by some example :

/*PROG 8.27 DEMO OF TYPE CONVERSION INT TO CLASS TYPE */

#include <iostream.h>

#include <conio.h>

class demo

{

 int data;

 public :

 demo(int x)

 {

data=x;

show();

 }

 void show()

 {

cout<<“data=”<<data<<endl;

 }

 };

 void main()

 {

int num;

clrscr();

cout<<“Enter the num”<<endl;

cin>>num;

demo d=num;

getch();

 }

OUTPUT :

Enter the num

Working with Operator Overloading 373

12

data =12

EXPLANATION : For the conversion of basic data type to class, a constructor is created

which accepts an argument of that data type. Here, we want to convert an int to class demo

type. So we have written one argument int type constructor in the class. When statement demo

d= num executes compiler automatically calls this one argument constructor with value num.

This value num is assigned to data and show function is called which display the data.

/* PROG 8.28 DEMO OF TYPE CONVERSION char* TO CLASS TYPE */

#include <iostream.h>

#include <ctype.h>

#include <string.h>

#include <conio.h>

class demo

{

char str[20];

public :

demo(char x[])

{

strcpy(str,x);

}

int countV()

{

int i=0,count=0;

char ch;

while(str[i]!=0)

{

ch=toupper(str[i]);

switch(ch)

{

case ‘A’ :

case ‘E’ :

case ‘I’ :

case ‘O’ :

case ‘U’ : count++;

}

i++;

}

374 Object-Oriented Programming C++ Simplified

return count;

}

};

 void main()

{

demo d=”NMIMS University”;

int c =d.countV();

clrscr();

cout<<“Number of vowels = “<<c<<endl;

getch();

}

OUTPUT :

Number of vowels = 5

EXPLANATION : For converting a string of char* type to class type we have written

a one argument constructor which take argument of type char x[] (Note char* will also do).

When demo d = “NMIMS University”; executes string “NMIMS University” is passed

to this one argument constructor. The function countV is finding the number of vowels in the

string using switch-case. It checks each character from the string str till null character is

not encountered. For any of the vowels count is incremented by 1. In the end when string ends

count is returned from function.

/*PROG 8.29 DEMO OF TYPE CONVERSION FLOAT TO CLASS TYPE */

#include <iostream.h>

#include <iomanip.h>

#include <conio.h>

class demo

{

float num;

public :

demo(float x)

{

num = x;

}

int int_part()

{

return int (num);

}

float real_part()

{

Working with Operator Overloading 375

return (num-int_part());

}

};

void main()

{

demo d= 45.56;

clrscr();

cout<<“Integer Part = “<<d.int_part()<<endl;

cout<<“RealPart=”<<setprecision(2)

<<d.real_part()<<endl;

getch();

}

OUTPUT :

Integer Part = 45

Real Part=0.56

Figure 8.1. Output screen of program 8.29

EXPLANATION : When demo d = 45.56 execute one argument constructor taking

float type value is called and num is assigned the value 45.56. The function int_part()
finds the integer portion of the num 45.56 by typecasting it to integer which returns 45. This

value is used in the function real_part() for finding the fractional part 0.56. To get the

value 0.56 we subtract the integer part returned by int_part() function from the original

num. In the main we have used the manipulator setprecision which set the number of digits

after the decimal point. Here we want only 2 digits after decimal point. For more about

manipulator see the chapter 11.

/* PROG 8.30 DEMO OF TYPE CONVERSION LONG INT TO CLASS TYPE */

#include <iostream.h>

#include <conio.h>

class CountDigit

{

376 Object-Oriented Programming C++ Simplified

unsigned long int num;

public :

CountDigit(unsigned long int x)

{

num = x;

}

void count()

{

int temp [10]= {0};

int r,i;

while(num!=0)

{

r=num%10;

temp[r]++;

num = num/10;

}

cout<<“DIGIT \tFREQ\n”;

for(i=0;i<10;i++)

cout<< i<<“\t”<<temp[i]<<endl;

}

};

void main()

{

 clrscr();

CountDigit cd=1234567890;

cd.count();

getch();

}

OUTPUT :

DIGIT FREQ

 0 1

 1 1

 2 1

 3 1

 4 1

 5 1

 6 1

 7 1

 8 1

 9 1

Working with Operator Overloading 377

EXPLANATION : In the program we are finding the frequency of each digit in the

unsigned long int number. When statement CountDigit cd = 1234567890; executes one

argument constructor which takes an argument of long int type is called and num gets the value

1234567890. The function count()counts the frequency of each digit. For this it uses an

array temp size 10. The initial value of each element of this array is 0. In the while loop

we are extracting the rightmost digit in turn and incrementing the frequency of that number

by 1 using temp array. For this we have made use of % and / operator. This continues till

number num does not become zero. For example, if r is 0 in the beginning temp [0] is

incremented by 1. Next time temp [9] is incremented by 1 and so on. The maximum limit

of unsigned long int 4294967295. Make sure you do not give a number greater that this.

2. Conversion from Class Type to Built-in Types

Here we study reverse of what we have studied in the first part. To convert class type to built-

in type the method to be adopted is that simply defined an operator function by the name of

data type you want class data type to be converted to. The general syntax is :

operator data_type ()

{

}

Here operator is the keyword we have seen earlier and data_type is the type in which your

class type will be converted to. The general syntax is :

Operator data_type ()

{

}

Here operator is the keyword we have seen earlier data_type in which your class type

will be converted. Note there is no return type or argument specified for the function. As the

above function will be a member function of the class so you can use any data member or

function inside this conversion function. You can do any processing over data member as per

your requirement but in the end as function is about to return you must return a value of type

data_type. For example, assume conversion function is defined in the class demo :

operator int ()

{

 int x;

 computing steps;

 return x;

}

And in the main it is written int num = d; where d is an object of demo class type.

When compiler sees int num = d; it comes to know that both types are not compatible so

it look for a conversion routine which can convert an object of class demo type into an int. It

378 Object-Oriented Programming C++ Simplified

finds operator int(). So it calls this conversion function for object d implicitly and assigns

the return value to num.

Check out explanatory examples given below :

/*PROG 8.31 DEMO OF TYPE CONVERSION, CLASS TO INT */

#include <iostream.h>

#include <conio.h>

 class demo

 {

 int num;

 public :

 demo(int x)

 {

num=x;

 }

 operator int()

 {

return num*num;

 }

 };

 void main()

 {

int k;

clrscr();

cout<<“Enter the number for k :=”;

cin>>k;

demo d(k);

int s=d;

cout<<“Square =”<<s<<endl;

getch();

 }

OUTPUT :

Enter the number for k : =15

Square =225

EXPLANATION : In the program we have converted an object of demo class type into

integer type. When the statement int s=d; executes compiler searches for a function which

can convert an object of demo class type to int type. As we have written the function operator
int(), this function is called and executes which returns square of num to the s. the square

is then displayed. Inside the operator int() you may do whatever you want with the data

members of the class but at the end you must return an int type value.

Working with Operator Overloading 379

/* PROG 8.32 DEMO OF TYPE CONVERSION, CLASS TO FLOAT */

#include <iostream.h>

#include <conio.h>

class circle

{

float rad;

public :

circle(float x)

{

rad = x;

}

operator double()

{

return 3.14 * rad * rad;

}

};

void main()

{

circle d(4.5);

double area=d;

clrscr();

cout<<“Area of circle = “<<area<<endl;

getch();

}

OUTPUT :

Area of circle = 63.585

EXPLANATION : This program is similar to the earlier one. Here we written operator
double function which will be called automatically when we try to assign an object of demo
class to a variable of type double. The operator double () uses the rad data member and

returns area of the circle, which is assigned to variable area of type double.

/* PROG 8.33 DEMO OF TYPE CONVERSION, CLASS TO CHAR */

#include <iostream.h>

#include <conio.h>

380 Object-Oriented Programming C++ Simplified

class Number

{

int num;

public :

Number(int x)

{

num = x;

}

operator char ()

{

if(num<0)

return ‘N’;

else if(num ==0)

return ‘Z’;

else return ‘P’;

}

};

void main()

{

int n;

clrscr();

cout<<“Enter a number”<<endl;

cin>>n;

Number d(n);

char ch =d;

switch(ch)

{

case ‘P’ :

 cout<<“POSITIVE”<<endl;

 break;

case ‘N’ :

 cout<<“NEGATIVE”<<endl;

 break;

case ‘Z’ :

 cout<<“ZERO”<<endl;

break;

Working with Operator Overloading 381

}

getch();

}

OUTPUT :

(First run)

Enter a number

23

POSITIVE

(Second run)

Enter a number

-23

NEGATIVE

(Third run)

Enter a number

0

ZERO

Figure 8.2. Output screen of first, second and third run of program 8.33

EXAPLANATION : In the program we are converting an object of demo class type to char.

The function operator char() checks num for positive, negative or zero and return ‘P’, ‘N’
and ‘Z’ respectively. This returned character is stored in ch variable in main which is put into

the switch. Depending upon the value of ch appropriate result is displayed.

/* PROG 8.34 DEMO OF TYPE CONVERSION, CLASS TO CHAR* */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class Rev

{

char str[25];

public :

Rev()

{

382 Object-Oriented Programming C++ Simplified

cout<<“ENTER A STRING “<<endl;

cin.getline(str,25);

}

operator char*();

};

Rev : :operator char*()

{

static char s[25];

strcpy(s,strrev(str));

return s;

}

void main()

{

clrscr();

Rev R;

char *t = R;

cout<<“Reverse String is “<<t<<endl;

getch();

}

OUTPUT :

ENTER A STRING

NMIMS UNIVERSITY

Reverse String is YTISREVINU SMIMN

Figure 8.3. Output screen of program 8.34

EXPLANATION : Rev R creates object R by calling default constructor of the class. The

default constructor promotes user for the string. Assume string is “NMIMS UNIVERSITY”.

When char *t=R executes, function operator char*() called automatically. Inside the function

we have reversed the string with the help of strrev function courtesy string.h. Note

inside the function we have used static array as return address of a local variable will result

in garbage value. The returned reverse string is stored in t which is displayed.

Working with Operator Overloading 383

3. Conversion from one Class Type to Another

In programming situations when we want to convert object of one class to other class type we

can follow either of the two approach we have seen in part one and part two.

Suppose we have a class first second and we want to convert an object of class first type

into second type. In the main we will be writing as :

 first f; second s;

 s=f;

Note here we want an object f of class to be converted to class second type. In the first

method we can write an operator function in the second in the source class (assume source is

first and destination is second as we convert from first to second) as :

Operator second ()

{

function body;

}

This operator function must return an object of class second type. In the second method

for the same conversion s=f we can write a one argument constructor in the destination class

second which takes an object of first class as argument as :

second (first fobj)

{

Constructor body;

}

When compiler see s = f it automatically look for any conversion routine which can

convert an object of first type into second type. As the above constructor was written in the

class second it will be called.

/*PROG 8.35 DEMO OF TYPE CONVERSION ONE CLASS TYPE TO ANOTHER CLASS TYPE */

#include <iostream.h>

#include <conio.h>

class second

{

int sx;

 public :

second(){}

second(int x)

 {

 sx=x;

 }

384 Object-Oriented Programming C++ Simplified

 int & getsx()

 {

return sx;

 }

 void shows()

 {

cout<<“sx=”<<sx<<endl;

 }

 };

 class first

 {

 int fx;

 public :

 first(){}

 first(int x)

 {

fx = x;

 }

 operator second()

 {

second temp;

temp.getsx()=fx*fx;

return temp;

 }

 void showf()

 {

cout<<“fx=”<<fx<<endl;

 }

 };

 void main()

 {

clrscr();

first f(20);

second s(30);

cout<<“Before conversion”<<endl;

f.showf();

s.shows();

s=f;

cout<<“After conversion”<<endl;

f.showf();

s.shows();

getch();

 }

Working with Operator Overloading 385

OUTPUT :

Before conversion

fx=20

sx=30

After conversion

fx=20

sx=400

EXPLANATION : We want to convert an object of class type first to class type second.

Here our source class is first and destination class is second. So in the source class first we

will have to write function operator second() which will return an object of class type second.

We have done this in class first. When statement s=f executes compiler look for this conversion

function. It finds one. In the function we have found square of fx and assigned it to the sx

of class second. Note sx is private so it cannot be accessed in the function operator
second() which is in class first. As function is in class it cannot be accessed without any

problem. To get the sx in the operator function second we have returned a reference of sx by

writing a public member function getsx which returns the reference of sx. This reference gets

the value fx*fx and temporary.

/* PROG 8.36 DEMO OF TYPE CONVERSION ONE CLASS TYPE TO ANOTHER CLASS TYPE

VER 2 */

#include <iostream.h>

#include <conio.h>

class first

{

int fx;

public :

first(){}

first (int x)

{

fx=x;

}

int getfx()

{

return fx;

}

void showf()

{

cout<<“fx=”<<fx<<endl;

}

};

386 Object-Oriented Programming C++ Simplified

class second

{

int sx;

public :

second(){}

second(int x)

{

sx=x;

}

second(first obj)

{

sx=obj.getfx()*obj.getfx();

}

void shows()

{

cout<<“sx=”<<sx<<endl;

}

};

void main()

{

clrscr();

first f(100);

second s(200);

cout<<“Before Conversion”<<endl;

f.showf();

s.shows();

s=f;

cout<<“After Conversion”<<endl;

f.showf();

s.shows();

getch();

}

OUTPUT :

Before Conversion

fx=100

sx=200

After Conversion

fx=100

sx=10000

Working with Operator Overloading 387

EXPLANATION : The program demonstrates the second method of converting an object of
one class type to another class type. Again the source class is first and destination class is second.
Here in the constructor conversion method, constructor has to be defined in the destination class.
When s = f statement executes, constructor or second(first obj) is called and f is assigned
to obj through call by value mechanism. As constructor is in class second we cannot the private
member fx. For that we have written public member function getfx in class first which return
the value of fx. The square of fx indirectly through getfx is assigned to sx.

/* PROG 8.37 DEMO OF TYPE CONVERSION ONE CLASS TYPE TO ANOTHER CLASS TYPE */

#include <iostream.h>
#include <conio.h>

class first
{

int fx;
public :

first(){}
first(int x)
{

fx=x;
}
int getfx()
{

return fx;
}
void showf()
{

cout<<“fx=”<<fx<<endl;
}

};

class second
{

int sx;
public :

second(){}
second(int x)
{

sx=x;
}
void operato r=(first obj)

388 Object-Oriented Programming C++ Simplified

{
sx=obj.getfx()*obj.getfx();

}
void shows()
{

cout<<“sx=”<<sx<<endl;
}

};

void main()
{

clrscr();
first f(100);
second s(200);
cout<<“Before Conversion”<<endl;
f.showf();
s.shows();
cout<<“After Conversion”<<endl;
f.showf();
s.shows();
getch();

}

OUTPUT :
Before Conversion

fx=100

sx=200

After Conversion

fx=100

sx=200

Figure 8.4. Output screen of the program 8.37

Working with Operator Overloading 389

EXPLANATION : The program demonstrate third way of doing converting an object of one
class to another class type. In the destination class second operator = function is written
which accepts one argument to type first. When the statement s = f executes it is internally
interpreted as s.operator = (f). Rest is self-explanatory.

/* PROG 8.38 TYPE CONVERSION CONVERTING HOUR TO MINUTES AND SECOND */

#include <iostream.h>

#include <conio.h>

class Hour

{

unsigned int hr;

public :

Hour(unsigned int x)

{

hr=x;

}

int gethr()

{

return hr;

}

void showh()

{

cout<<“Hour=”<<hr<<endl;

}

};

class secmin

{

unsigned int sec, min;

public :

secmin(){}

secmin(Hour obj)

{

min=obj.gethr()*60;

sec=min*60;

}

void showsm()

390 Object-Oriented Programming C++ Simplified

{

cout<<“Mins=”<<min<<endl;

cout<<“Secs=”<<sec<<endl;

}

};

void main()

{

clrscr();

Hour H(5);

secmin sm;

sm=H;

H.showh();

sm.showsm();

getch();

}

OUTPUT :
Hour=5

Mins=300

Secs=18000

Figure 8.5. Output screen of program 8.38

EXPLANATION : The class Hour contains one data member hr which hold number of
hours as input. The class secmin has one constructor which has an object of Hour class. When
the statement sm =H executes constructor of secmin class is called and object H is passed
which is collected in variable obj. Inside this constructor minutes and seconds are calculated
from the Hour class object. Again as hr is private, a public member function which returns hr
is written.

8.8 PONDERABLE POINTS

1. Operator overloading is mechanism of overloading operators to work with verities of
data types including user defined.

Working with Operator Overloading 391

2. For overloading operators keyword operator is used in C++.

3. We can overload only existing operator is used in C++.

4. Precedence of operators cannot be changed by operator overloading.

5. Friend keyword can be used for overloading the operators. They are indispensable
where left operand is not an object of the class. When overloading binary operator
using friend both the operands are passed as argument and when overloading unary
operator only single argument is passed to function.

6. We cannot overload following operators :- ? :, .*, ., : : and sizeof.

7. Friend cannot be used to overload =, ->, and [] operator.

8. For converting a basic type into class type one argument constructor of that type is
created in the class.

9. For converting a class type to any basic type, an operator function by the name of the
basic type is created in the class.

10. For converting an object from one class type to another class type, either constructor
or operator method can be used.

EXERCISE

A. True and False :

1. Operator in C++ can be overloaded using the function named opt_overload.

2. The operator to be overloaded in C++, must already exist in the language.

3. All operators may be overloaded using friend functions.

4. The assignment operator cannot be overloaded.

5. The compiler won’t give any error if* operator is overloaded to be perform summation.

6. A friend function cannot be used to overload the subscript operator [].

7. The precedence of an operator can be changed by overloading it.

B. Answer the Following Questions :

1. What is operator overloading ?

2. Why do need operator overloading ?

3. What is the use of friend in operator overloading ?

4. What is the difference between postfix++ and prefix ++ ?

5. Can we change the precedence of operators using operator overloading ?

6. What are the operator overloading rules ?

7. Which operator cannot e overloaded by using friend ?

8. Which operator we cannot overload ?

9. Why we need type conversion ?

10. Explain two methods of conversion between objects of two different classes.

C. Brain Drill :

1. Consider a class string where each objects contains an array of characters and the length of string.
Write member function for

392 Object-Oriented Programming C++ Simplified

(a) Initializing a string object either by a given string constant (e.g.,”dsdf”) or by an integer
indicating maximum size of string to be accommodated or by another string object.

(b) Overloading the assignment operator overloading comparison operator = = so that string
object may be compared with another string object and a constant string may be compared
with other string object.

2. Write C++ program to overload a function named power() to allow the calculation of power of
both ‘int’ and ‘float’ value.

3. Write a program to pass reference of object to operator function and change the contents of object.
Use single object as source and destination.

4. Write a program to declare two classes Rupees and Dollar. Declare objects of both the classes and
perform conversion between Rupees and Dollar using any of the conversion method.

5. Write a program using a class to convert square to square root and vice-versa. Write conversion
methods between objects of two different class.

6. Write a program that substitutes an overloaded += operator for the overloaded + operator. This
operator should allow statements like :

s1 + = s2;

Where s2 is added (concatenated) to s1 and the result is left in s1. The operator should also
permits the results of the operation to be used in other calculations, as in

s3 = s1 + = s2;

7. For math buff only : Create a class Polar that represents the points on the plain as polar coordinates
(radius and angle). Create an overloaded +operator for addition of two polar quantities. “Adding”
two points on the plain can be accomplished by adding their X coordinates and then adding their
Y coordinates. This gives the X and Y coordinates of the “answer”. Thus you will need to convert
two sets of polar coordinates to rectangular coordinates, and them, and then convert the resulting
rectangular representation back to polar.

8. Write a program that incorporates both the bMoney a class and the sterling class. Write conversion
operators to convert between bMoney and strling, assuming that one pound (£1.0.0) equals fifty
dollars ($50.00). This was the approximate exchange rate in the 19th century when British Empire
was at its height and the pound-shillings-pence format was in use. Write a main() program that
allows the user to enter an amount in either currency, and that then converts it to the other
currency and displays the result. Minimize any modification to the existing bMoney and sterling
classes.

WORKING Wim INHERITANCE
IN C++

9.1 INTRODUCTION

Inheritance is the mechanism of deriving a new class from an already existing class. Inheritance
provides the idea of reusability i.e., code once written can be used again and again in number
of new classes. The old class and new class is called by the name-pair base-derived, parent-
child, super-sub etc. The new class can use all or some of the features of the already existing
class and can define his own members too.

9.2 TYPES OF INHERITANCE

In general inheritance is of five types:
1. Single level inheritance
3. Multiple inheritances
5 . Hybrid Inheritance

2 . Multilevel inheritance
4. Hierarchical inheritance

Single level
Inheritance

Multilevel
Inheritance

Multiple
Inheritance

Hierarchical
Inheritance

Hybrid
Inheritance

Figure 9.1. Different types of inheritance

393

394 Object-Oriented Programming C++ Simplified

Again depending upon in which mode we do the above any 5 of the inheritance we can

further divide inheritance as :

1. Public Inheritance

2. Private Inheritance

3. Protected Inheritance

The syntax of deriving a new class from an already existing class is shown as :

class new_class_name : mode old_class_name

{

};

Where class is keyword used to create a class new_class_name of new derived class, mode

may be private, public, or protected or even be absent i.e., be an optional. If mode is not

present default mode private is assumed. Old_class_name is the name of an already existing

class. It may be a user defined or a built-in class.

1. Single Level Inheritance

In single level inheritance we have just one base class and one derived class. It is represented

as :

In C++ code this can be written as :

class base

{

data members and functions;

 };

 class derived : public base

 {

data members and functions;

 };

2. Multilevel Inheritance

In multiple inheritances we have one base class and one derived at one level. At the next

level the derived class becomes base class for the next class and so on. This is as shown on

page 395.

Base class

Derived class

Working with Inheritance in C++ 395

Class A

Class B

Class C

Class D

class A
{

} ;
class B: public A
{

} ;
class C: public B
{

} ;
class D: public C
{

} ;
To next class if required

The class A and B together forms one level, class B and class C together forms another

level and so on. For a class B, class A is the parent and for class C, class B is the present thus

in this inheritance level we can say that A is the grandfather of class C and class C is the

grandchild of class A.

3. Multiple Inheritance

In multiple inheritance a child can have more than parent i.e., a child can inherit properties

from more than one class. Diagrammatically this is as shown below :

Class C

Class A Class B

In C++ code for the diagram is given as follows :

class A class B

{ {

}; };

class C : public A, public B

{

};

The mode need not be the same. The class A may be inherited in public and class B in

private or whatever mode as per the user desired. Note mode has to be specified for both the

classes. If you write as :

class C : public A, B

{

};

396 Object-Oriented Programming C++ Simplified

Than it does not mean both A and B are inherited in class C in public mode. The class

A is inherited in public and class B in private which is the default mode. Again if you write.

class C : A, B

{

};

Than both classes A and B are inherited to C in private mode.

4. Hierarchical Inheritance

In this type of inheritance multiple classes share the same base class. That is number of classes

inherits the properties of one common base class. The derived classes again may become base

class for other classes. This is shown as follows :

Figure 9.2. Show the hierarchical inheritance

For example, a university has number of colleges under its affiliation. Each college may

use the university name, the chairperson name, its address, phone number etc.

There are number of properties or features which a vehicle posses. The common properties

of all the vehicle may be put under one class vehicle and different classes like two-wheeler,

four-wheeler and three-wheeler can inherit the vehicle class.

As another example in an engineering college various departments be termed as various

classes which may have one parents class common, the name of engineering college. Again for

each department there may be various classes like Lab_staff, Faculty class etc. In C++ code the

first level can be seen as follows :

class A

{

};

class B : public A class C : public A class D : public A

{ }; { }; { };

Working with Inheritance in C++ 397

5. Hybrid Inheritance

1. Let’s consider the figure as shown below :

Class A

Class CClass B

Class D

Figure 9.3. Implementation of hybrid inheritance

For the first half of the figure, we have hierarchical inheritance as shown by breaking the

figure as :

Class A

Class CClass B

In second half we have multiple inheritance as shown in the figure :

Class D

Class CClass B

2. The second figure for hybrid inheritance may be viewed as :

Class A

Class B Class C

Class D

The C++ code may be written as follows :

class B :public A

{ };

class D :public B, public C

{

};

The inheritance is hybrid as it involves multilevel and multiple inheritance.

398 Object-Oriented Programming C++ Simplified

9.3 PUBLIC, PRIVATE AND PROTECTED INHERITANCE

1. Public Inheritance

Consider the dummy code given below for inheritance.

 class B : public A

 {

 };

The line class B : public A tells the compiler that we are inheriting class A in class B in

public followings :

(a) All the public members of class A becomes public members of class B.

(b) All the protected members of class A becomes protected members of class B.

(c) Private members are never inherited.

2. Private Inheritance

Consider the dummy code given below for inheritance :

 class B : private A

 {

 };

The line class B : private A tells the compiler that we are inheriting class A in class B

in private mode. In private mode inheritance note the following points :

(a) All the public members of class A becomes private members of the class B.

(b) All the protected members of the class A becomes private members of class B.

(c) Private members are never inherited.

The above dummy code can be written as too.

 class B : A

 {

 };

As the default inheritance mode is private mode.

Working with Inheritance in C++ 399

3. Protected Inheritance

Consider the dummy code given below for inheritance :

 class B : protected A

 {

 };

The line class B : protected A tells the compiler that we are inheriting class A in class

B in protected mode. In protected mode inheritance note the following points :

(a) All the public members of class A becomes protected members of class B.

(b) All the protected members of class A becomes protected members of class B.

(c) Private members are never inherited.

Note : A class A is inherited in class B in public mode, all protected members of class A becomes

protected for class B. Now if this class B is inherited to some new class C, then these protected members

inherited from A will be available from A will be available to class C, in whatever mode you inherit class

B to class C.

Initially assumed you inherited class A into class B in private mode, then all protected members

of class A becomes private for class B. They can be used inside the class B. But if you inherit class B

into new class C then these members won’t be available in C as private members are never inherited.

/*PROG 9.1 DEMO OF SINGLE LEVEL INHERITANCE VER 1*/

#include <iostream.h>

#include <conio.h>

class super

{

 public :

 void sup_show()

 {

cout<<“Hello from show of super”<<endl;

 }

};

class sub :public super

{

};

void main()

{

clrscr();

sub o1;

o1.sup_show ();

getch();

}

OUTPUT :

Hello from show of super

400 Object-Oriented Programming C++ Simplified

EXPLANATION : We have a class super in which a single function sup_show under

public mode is defined. The line class sub : public super tells the compiler that sub is

a new class and we are inheriting class super in public mode in class sub. This makes super
as a parent of class sub. The class sub is also known as derived class super as
base class. Under public inheritance all the public members of base class becomes public

members of derived class. In the class sub we have not defined any data or function, so it

contains only inherited members from class super. In the main we create an object of class

second and call the function sup_show which was inherited from class super.

/*PROG 9.2 DEMO OF SINGLE INHERITANCE VER 2*/

#include <iostream.h>

#include <conio.h>

class super

{

 public :

 int sup_a;

 void show()

 {

cout<<“sup_a=”<<sup_a<<endl;

 }

};

class sub :public super

{

};

void main()

{

clrscr();

sub o1;

o1.sup_a=20;

o1.show();

getch();

}

OUTPUT :

sup_a=20

EXPLANATION : In the previous program class super was having just one public member

function but here we have declared one public data member sup_a of int type also. Again this

class super is inherited by class sub in public mode. So member function show and data

member sup_a becomes part of class sub through inheritance. In the main we create an object

of class sub and assign value of 20 to data member sup_a and by a call to show function we

display it.

Working with Inheritance in C++ 401

/*PROG 9.3 DEMO OF SINGLE LEVEL INHERITANCE VER 3*/

#include <iostream.h>

#include <conio.h>

class super

{

int sup_a;

public :

void sup_input(int x)

 {

sup_a=x;

 }

 void sup_show()

 {

cout<<“sup_a=”<<sup_a<<endl;

 }

};

class sub :public super

{

};

void main()

{

int i;

clrscr();

sub o1;

cout<<“Enter a data member for class super :=”;

cin>>i;

o1.sup_input(i);

o1.sup_show();

getch();

}

OUTPUT :

Enter a data member for class super : =1345

sup_a=1345

EXPLANATION : The class super contains one private data member sup_a and two

public member function sup_input and sup_show which takes input and assign to sup_a
and display the value of show respectively. When this class sub in public mode only the

public data members are copied and they become public in derived class too as explained

earlier. But remember private data members are never inherited so sup_a is not copied to class

sub. In the main we call the two function sup_input and sup_show through an object of

class sub.

402 Object-Oriented Programming C++ Simplified

/*PROG 9.4 DEMO OF SINGLE LEVEL INHERITANCE VER 4*/

#include <iostream.h>

#include <conio.h>

 class super

 {

 int sup_a;

 public :

 void sup_input(int x)

 {

sup_a = x;

 }

 void sup_show()

 {

cout<<“sup_a=”<<sup_a<<endl;

 }

 };

 class sub :public super

 {

int sub_a;

public :

void sub_input(int x)

 {

sub_a=x;

 }

 void sub_show()

 {

cout<<“sub_a=”<<sub_a<<endl;

 }

 };

 void main()

 {

int i,j;

clrscr();

sub o1;

cout<<“Enter the data member of super class i :=”;

cin>>i;

cout<<“Enter the data member of sub class j :=”;

cin>>j;

o1.sup_input(i);

o1.sub_input(j);

Working with Inheritance in C++ 403

o1.sup_show();

o1.sub_show();

getch();

 }

OUTPUT :

Enter the data member of super class i : =123

Enter the data member of sub class j : =134

sup_a=123

sub_a=134

EXPLANATION : In all the earlier programs the class sub was empty. But here we have

one private data member’s sub_a and two functions for input and show. After inheriting class

super in class sub, the class sub has total 4 public members’ functions :

⇒ Two of it’s own

⇒ And two inherited from class super.

The class sub also has one private data member sub_a. In the main all 4 functions are

called by an object of sub class.

/*PROG 9.5 DEMO OF SINGLE LEVEL INHERITANCE VER 5 */

#include <iostream.h>

#include <conio.h>

class super

{

int sup_a;

public :

void sup_input(int x)

 {

sup_a=x;

 }

 void sup_show()

 {

cout<<“sup_a=”<<sup_a<<endl;

 }

 };

 class sub :public super

 {

int sub_a;

public :

void sub_input(int x)

404 Object-Oriented Programming C++ Simplified

 {

 sup_input(x*2);

 sub_a=x;

 }

 void sub_show()

 {

sup_show();

cout<<“sub_a=”<<sub_a<<endl;

 }

 };

 void main()

 {

int i;

clrscr();

sub o1;

cout<<“Enter the data member :=”;

cin>>i;

o1.sub_input(i);

o1.sub_show();

getch();

 }

OUTPUT :

Enter the data member : =145

sup_a=290

sub_a=145

EXPLANATION : In the main we have called only the functions of sub class. The

function sup_input is called from sub_input with a value x*2 as argument. Similarly

sup_show is called from class sub. So, when sub_input is called from main with value of

‘i’ of int type, it is collected in variable x and the function of base class sup_input is called

with value 2*145 (290), where it is assigned to sup_a of super class. When control

returns sup_input function the value x is assigned to sub_a. When sup_show is called, it

calls sup_show first in its body. When the function sup_show returns after displaying the

value of sup_a, the function sup_show displays the value of sub_a.

/* PROG 9.6 DEMO OF SINGLE LEVEL INHERITANCE VER 6 */

#include <iostream.h>

#include <conio.h>

class super

{

Working with Inheritance in C++ 405

int sup_a;

public :

void sup_input()

{

cout<<“ENTER THE VALUE FOR SUP_A”<<endl;

cin>>sup_a;

}

void sup_show()

{

cout<<“Sup_a=”<<sup_a<<endl;

}

};

class sub :public super

{

int sub_a;

public :

void sub_input()

{

sup_input();

cout<<“Enter the value for sub_a”<<endl;

cin>>sub_a;

}

void sub_show()

{

sup_show();

cout<<“Sub_a=”<<sub_a<<endl;

}

};

void main()

{

clrscr();

sub obj;

obj.sub_input();

obj.sub_show();

getch();

}

OUTPUT :

ENTER THE VALUE FOR SUP_A

34

Enter the value for sub_a

45

Sup_a=34

Sub_a=45

406 Object-Oriented Programming C++ Simplified

Figure 9.4. Output screen of the program 9.6

EXPLANATION : The program is similar to previous one with the a change that in the

input functions for both the class we have taken input from the user through keyboard instead

of assigning the fixed value to data members.

/*PROG 9.7 DEMO OF SINGLE LEVEL INHERITANCE VER 7 */

#include <iostream.h>

#include <conio.h>

class super

{

int sup_a;

public :

void sup_input(int x)

{

sup_a=x;

}

void sup_show()

{

cout<<“sup_a=”<<sup_a<<endl;

}

};

class sub :public super

{

int sub_a;

public :

void sub_input(int x, int y)

{

sup_input(y);

sub_a=x;

}

Working with Inheritance in C++ 407

void sub_show()

{

sup_show();

cout<<“sub_a = “<<sub_a<<endl;

}

};

void main()

{

clrscr();

sub obj;

obj.sub_input(20,50);

obj.sub_show();

getch();

}

OUTPUT :

sup_a=50

sub_a = 20

EXPLANATION : In the previous program we manipulated the value of x and passed this

value to input function of class supper. But here in the sub_input function we have taken two

inputs : one for super class and one for itself. Either value can be used in either manner. Here

when sub_input function is called with the 20 and 50, they are collected in x and y. In the

function sub_input the value of y is passed to function sup_input and value of x is

assigned to sub_a. Later we display the values using sub_show function.

/* PROG 9.8 DEMO OF SINGLE LEVEL INHERITANCE VER 8 */

#include <iostream.h>

#include <conio.h>

class super

{

int sup_a;

public :

void input(int x)

{

sup_a=x;

}

void show()

{

408 Object-Oriented Programming C++ Simplified

cout<<“sup_a=”<<sup_a<<endl;

}

};

class sub :public super

{

int sub_a;

public :

void input(int x)

{

sub_a=x;

}

void show()

{

cout<<“sub_a=”<<sub_a<<endl;

}

};

void main()

{

clrscr();

sub obj;

obj.input(40);

obj.show();

getch();

}

OUTPUT :

sub_a=40

EXPLANATION : Here both the classes have same function signatures so priority is given

to derive class. So input and show of derived class will be called.

/* PROG 9.9 DEMO OF SINGLE LEVEL INHERITANCE VER 9 */

#include <iostream.h>

#include <conio.h>

class super

{

protected :

void show()

{

cout<<“Hello from super”<<endl;

}

};

Working with Inheritance in C++ 409

class sub :public super

{

};

void main()

{

clrscr();

sub obj;

obj.show();

getch();

}

OUTPUT :

ERROR :’show’ cannot access protected member declared in class ‘super’

Figure 9.5. Showing error message

EXPLANATION : In public inheritance protected members of base are inherited in derived

class and remains protected. Protected members cannot be used outside the class similar to

private members. So, the error.

/* PROG 9.10 DEMO OF SINGLE LEVEL PRIVATE INHERITANCE VER 1*/

#include <iostream.h>

#include <conio.h>

class super

{

410 Object-Oriented Programming C++ Simplified

public :

void sup_show()

{

cout<<“Hello from super”<<endl;

}

};

class sub :private super

{

};

void main()

{

clrscr();

sub obj;

obj.sup_show();

getch();

}

OUTPUT :

ERROR :’sup_show’ cannot access public member declared in class ‘super’.

EXPLANATION : In private inheritance all public members (data & function) becomes

private for the derived class. As sup_show of class super becomes private in the sub class it

cannot be accessed outside the class.

/* PROG 9.11 DEMO OF SINGLE LEVEL PRIVATE INHERITANCE VER 2 */

#include <iostream.h>

#include <conio.h>

class super

{

public :

void sup_show()

{

cout<<“Hello from super”<<endl;

}

};

class sub :private super

{

public :

void sub_show()

{

Working with Inheritance in C++ 411

sup_show();

cout<<“Hello from sub”<<endl;

}

};

void main()

{

clrscr();

sub obj;

obj.sub_show();

getch();

}

OUTPUT :

Hello from super

Hello from sub

EXPLANATION : The inherited function sup_show becomes private in the class sub.

The class sub defines its own function sub_show. As sup_show is private in the class sub
it can be called inside any member function of class sub. In the main when we call sub_show
through an object of class sub. The function definition first call the sup_show function of

super class and executes its own body.

/*PROG 9.12 DEMO OF SINGLE LEVEL PRIVATE INHERITANCE VER 3 */

#include <iostream.h>

#include <conio.h>

class super

{

int num;

};

class sub :super

{

public :

void sub_show()

{

cout<<“num=”<<num<<endl;

}

};

412 Object-Oriented Programming C++ Simplified

void main()

{

clrscr();

sub obj;

obj.sub_show();

getch();

}

OUTPUT :

ERROR :’super : :num’ cannot access private member declared in class ‘super’

Figure 9.6. Showing the compilation error during the execution of the program

EXPLANATION : If no access specifier is specified than by default all members of a class

are private, so num is private. Again mode of inheritance is given while inheriting class super

in sub, so default mode private is assumed i.e., the following statement :

class sub : super

Is equivalent to

class sub :private super

As private members are never inherited, accessing num in the following sub_show
procedure error.

Working with Inheritance in C++ 413

/*PROG 9.13 DEMO OF SINGLE LEVEL PRIVATE INHERITANCE VER 4 */

#include <iostream.h>

#include <conio.h>

class super

{

protected :

int num;

void input(int x)

{

num = x;

}

};

class sub :super

{

public :

void sub_show()

{

input(100);

cout<<“num=”<<num<<endl;

}

};

void main()

{

clrscr();

sub obj;

obj.sub_show();

getch();

}

OUTPUT :

num=100

EXPLANATION : In the super class num and function input is protected. In the class

sub we are inheriting class super in private mode. In private mode all protected members of

base class become private for the derived class and they can only be used inside the member

functions of the derived class and not outside i.e., in the main. In the main when

obj.sub_show(); executes it call the function sub_show, in side input with value 100 is

called which assigns value of 100 to num. Later we display this value of num.

414 Object-Oriented Programming C++ Simplified

/* PROG 9.14 DEMO OF SINGLE LEVEL PROTECTED INHERITANCE VER 1 */

#include <iostream.h>

#include <conio.h>

class super

{

public :

void show()

{

cout<<“hello from super”<<endl;

}

};

class sub :protected super

{

};

void main()

{

clrscr();

sub obj;

obj.show();

getch();

}

OUTPUT :

ERROR :’show’ cannot access public member declared in class ‘super’

Figure 9.7. Compile time error during the execution of program 9.14

Working with Inheritance in C++ 415

EXPLANATION : In class sub we are inheriting class super in protected mode. So, all

public members of class super become protected for the class sub and protected members can

only be accessed inside the member functions of the class. So, the error.

/* PROG 9.15 DEMO OF SINGLE LEVEL PROTECTED INHERITANCE VER 2 */

#include <iostream.h>

#include <conio.h>

class super

{

void show()

{

cout<<“hello from super”<<endl;

}

};

class sub :protected super

{

};

void main()

{

clrscr();

sub obj;

obj.show();

getch();

}

OUTPUT :

ERROR : ‘show’ cannot access private member delared in class ‘super’

EXPLANATION : Private members are never inherited. So we cannot access show in main

and any of the member function of the derived class. That’s why the above error.

/*PROG 9.16 DEMO ACCESSING PRIVATE MEMBERS IN PRIVATE INHERITANCE */

#include <iostream.h>

#include <conio.h>

class super

{

int num;

416 Object-Oriented Programming C++ Simplified

public :

void input(int x)

{

num = x;

}

int getnum()

{

return num;

}

};

class sub :super

{

public :

void show()

{

input(50);

cout<<“The square of num is”

<<getnum()*getnum()<<endl;

}

};

void main()

{

clrscr();

sub obj;

obj.show();

getch();

}

OUTPUT :

The square of num is 2500

EXPLANATION : The variable num is private in class super. The class sub inherits

class super in private mode so num won’t be accessible in class sub. Then how can we use

num in class sub ? The solution is simple which we have seen earlier. We make a function in

public mode which returns in the value of num. We have made function getnum which

returns the value of num. Through this getnum we can easily compute the square of the num.

/* PROG 9.17 ACCESSING PRIVATE MEMBERS IN PRIVATE INHERITANCE AND MODIFYING

THEM */

#include <iostream.h>

#include <conio.h>

Working with Inheritance in C++ 417

class super

{

int num;

public :

void input(int x)

{

num=x;

}

int &getnum()

{

return num;

}

void super_show()

{

cout<<“Num in class super is”<<num<<endl;

}

};

class sub :super

{

public :

void show()

{

input(50);

cout<<“Num in class sub is”<<getnum()<<endl;

getnum()=getnum()*getnum();

super_show();

}

};

void main()

{

clrscr();

sub obj;

obj.show();

getch();

}

OUTPUT :

Num in class sub is 50

Num in class super is 2500

418 Object-Oriented Programming C++ Simplified

EXPLANATION : Whenever we want to modify the private members of the base class

we must have a public member function in base class which returns reference of private
data members. As getnum return the reference of num it can be put on the left side of assignment

operator (=). Inside the function show we modify the value of num using getnum on the left

side of =, and assigning getnum()* getnum() which stores 2500 into num. As we got

reference of num through getnum this change of value occurs in the num. So, when supper_show
is called it displays this value of num as 2500.

/*PROG 9.18 FINDING AREA AND VOLUME USING INHERITANCE VER 1 */

#include <iostream.h>

#include <conio.h>

class Area

{

 protected :

 int length, width;

 public :

 void inputa()

 {

cout <<“Enter the lenght :=”;

cin >>length;

cout <<endl<<“Enter the width :=”;

cin >>width;

 }

 };

 class volume :public Area

 {

int height;

public :

void inputv()

 {

inputa();

cout<<“Enter the height :=”;

cin>>height;

 }

 void show()

 {

cout<<“Length=”<<length<<endl;

cout<<“Width =”<<width<<endl;

cout<<“Area =”<<length*width<<endl;

cout<<“Height=”<<height<<endl;

Working with Inheritance in C++ 419

cout<<“Volume=”<<length*width*height<<endl;

 }

 };

 void main()

 {

clrscr();

volume v;

v.inputv();

v.show();

getch();

 }

OUTPUT :

Enter the lenght : =12

Enter the width : =13

Enter the height : =14

Length =12

Width =13

Area =156

Height =14

Volume =2184

EXPLANATION : In the class Area we have two protected data members length and

width. Function inputa() takes input from keyboard into these data items directly. The class

Volume inherits class Area in the public mode. This class Volume contains one data member

height. The class calculates area by using the inherited data members length and width
and with the aid of height with length and width finds volume. Note we have called

only the derived class function inputv() inside the main. This function in turns calls inputa()
of the area class and takes input from keyboard. The function show calculates area and
volume and displays.

/* PROG 9.19 FINDING AREA AND VOLUME USING INHERITANCE VER 2 */

#include <iostream.h>

#include <conio.h>

class Area

{

int l, w;

public :

void input_A(int x,int y)

{

l=x;

420 Object-Oriented Programming C++ Simplified

w=y;

}

int get_l()

{

return l;

}

int get_w()

{

return w;

}

};

class Volume :public Area

{

int h;

public :

void input_V(int x, int y, int z)

{

input_A(x,y);

h=z;

}

void show()

{

cout<<“Length : = “<<get_l()<<endl;

cout<<“Width : = “<<get_w()<<endl;

cout<<“Area : = “<<get_l()*get_w()<<endl;

cout<<“Height : = “<<h<<endl;

cout<<“Volumen := “<<get_l()*get_w()*h<<endl;

}

};

void main()

{

clrscr();

Volume v;

v.input_V(5,10,15);

v.show();

getch();

}

OUTPUT :

Length : = 5

Width : = 10

Area : = 50

Height : = 15

Volumen : = 750

Working with Inheritance in C++ 421

Figure 9.8. Output screen of program 9.19

EXPLANATION : In the earlier program length and width in the class. Area was protected
and through public inheritance we could use them in class Volume. But here both the data

members are private so we cannot make use of these data members in the derived class

Volume as private members are never inherited. For that we have created two public
member function get_l and get_w which returns length and width respectively. In the

main we create an object v of class Volume and call the function input_V with three arguments

5, 10 and 15. These three values are collected in the formal parameters x, y and z respectively.

The first two values x and y are passed to the input_A function of class Area where they

are assigned to length and width. Later we find out the area and volume by making use of

get_l and get_w function.

/* PROG 9.20 DEMO OF TWO LEVEL INHERITANCE VER 1 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

void show_f()

{

cout<<“Hello from first”<<endl;

}

};

class second :public first

{

public :

void show_s()

{

cout<<“Hello from second”<<endl;

}

};

class third : public second

{

public :

422 Object-Oriented Programming C++ Simplified

void show_t()

{

show_f();

show_s();

cout<<“Hello from third”<<endl;

}

};

void main()

{

clrscr();

third t;

t.show_t();

getch();

}

OUTPUT :

Hello from first

Hello from second

Hello from third

Figure 9.9. Output screen of program 9.20

EXPLANATION : The above program demonstrate 2 level of inheritance. The

class first is the base class (parent class) for class second (child class) and

class second is the base class (parent class) for class third (child class).
In turn class first is the grandfather of class third (grand child). In show_t function

of class third show_s is inherited directly from class second but show_f is inherited indirectly

from class first through class second.

/*PROG 9.21 FINDING MAXIMUM OF THREE CLASS’S DATA */

#include <iostream.h>

#include <conio.h>

class first

Working with Inheritance in C++ 423

{

protected :

int fa;

public :

 void input_f()

 {

cout<<“Enter the value for fa :=”;

cin>>fa;

 }

};

 class second :public first

 {

protected :

int sa;

public :

void input_s()

 {

input_f();

cout<<“Enter the value for sa :=”;

cin>>sa;

 }

};

class third :public second

{

protected :

int ta;

public :

void input_t()

 {

input_s();

cout<<“Enter the value for ta :=”;

cin>>ta;

 }

 void show()

 {

cout<<“Data of class first fa : =”<<fa<<endl;

cout<<“Data of class second sa :=”<<sa<<endl;

cout<<“Data of class third ta : =”<<ta<<endl;

 }

424 Object-Oriented Programming C++ Simplified

 int max()

 {

int t1,t2;

t1=fa>sa ?fa :sa;

t2=ta>t1 ?ta :t1;

return t2;

 }

 };

 void main()

 {

clrscr();

third t;

t.input_t();

t.show();

cout<<“Max is “<<t.max()<<endl;

getch();

 }

OUTPUT :

Enter the value for fa : =123

Enter the value for sa : =567

Enter the value for ta : =234

Data of class first fa : =123

Data of class second sa : =567

Data of class third ta : =234

Max is 567

EXPLANATION : In all the three classes data members are protected. In main when

input_t of class third is called by an object t, it first calls function input_s of class second.

The function input_s in turn call the function input_f of class first. As second is the base

class of class third and first is the base class of second, data memebers fa and sa can be

used inside the member functions of class third. Though how of class third we display

these data members. The function max of class third finds maximum of these three data

members using ternary operator and return the max value which is displayed in the main.

9.4 MULTIPLE INHERITANCE

Multiple inheritance has been explained in the beginning of the chapter. Recall in a multiple

inheritance graph, the derived classes may have a number of direct base classes.

Working with Inheritance in C++ 425

Collectible

StringCollectibl

The diagram in the figure shows a class, collectible String. It is like a Collectible (something

that can be contained in a collection). It is like a String. Multiple inheritance is a good solution

to this kind of problem (Where a derived class has attributes of more than one class) because

it is easy to form a Collectible Customer, Collectible Windows, and so on. If the properties of

either class are not required for a particular application, either class can be used alone or in

combination with other classes. Therefore, given the hierarchy depicted in figure as a basic,

you can form noncollection strings and collectibles that are not strings. This flexibility is not

possible using single inheritance. We present few examples for better understanding point of

view.

/*PROG 9.22 FINDING POWER FROM BASE AND EXPONENT*/

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

class base

{

protected :

int ba;

public :

void input_base()

 {

cout<<“Enter the base :=”;

cin>>ba;

 }

 void show_base()

 {

cout<<“base :=”<<ba<<endl;

 }

};

class exponent

{

protected :

int exp;

public :

void input_exp()

 {

cout<<“Enter the exponent :=”;

cin>>exp;

426 Object-Oriented Programming C++ Simplified

 }

 void show_exp()

 {

cout<<“exponent=”<<exp<<endl;

 }

};

class power :public base, public exponent

{

int po;

public :

 void input()

 {

input_base ();

 input_exp();

 };

 void show()

 {

 show_base();

 show_exp();

 int i;

 po=1;

 for(i=1;i<=exp;i++)

 po=po*ba;

 cout<<“power :=”<<po<<endl;

}

};

void main()

{

clrscr();

power o1;

o1.input();

o1.show();

getch();

}

OUTPUT :

Enter the base : =5

Enter the exponent : =3

base : =5

exponent =3

power : =125

Working with Inheritance in C++ 427

EXPLANATION : The program is simple. In the base class we have a data member ba
which represent base and in the class exponent we have a data member exp which represent

exponent. These two classes are inherited by class power which has two function input and

show. In the input of this class the base and exponent is called. In the show function we find

the power using for loop and display the result.

/*PROG 9.23 FINDING TOTAL MARKS FROM INTERNAL AND EXTERNAL MARKS */

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

class Internal

{

protected :

int i_marks;

public :

 void input_im()

 {

 cout<<“Enter internal marks :=”;

 cin>>i_marks;

 if(!(i_marks>=0 && i_marks<=60))

 {

 cout<<“Invalid Marks”;

 exit(0);

 }

 }

 void show_im()

 {

 cout<<“Internal marks :=”<<i_marks<<endl;

 }

};

class External

{

protected :

int e_marks;

public :

void input_em()

{

cout<<“Enter external marks :=”;

cin>>e_marks;

if(!(e_marks>=0 && e_marks<=60))

{

428 Object-Oriented Programming C++ Simplified

cout<<“Invalid Marks”;

exit(0);

}

}

void show_em()

{

cout<<“External marks :=”<<e_marks<<endl;

}

};

class Total :public Internal, public External

{

int total_marks;

public :

void input()

{

input_im();

input_em();

}

void show()

{

show_im();

show_em();

total_marks = i_marks;

cout<<“Total Mrks :=”<<total_marks<<endl;

}

};

void main()

{

clrscr();

Total tm;

tm.input();

tm.show();

getch();

}

OUTPUT :

Enter internal marks : =56

Enter external marks : =35

Internal marks : =56

External marks : =35

Total Marks : =91

Working with Inheritance in C++ 429

EXPLANATION : For student’s internal marks we have a class Internal and for student’s

external marks we have a class External. The internal marks must be between 0 to 60 and

external marks must be between 0 to 40. These two classes are inherited by class total which

finds the total marks and display all three marks :

(a) Internal

(b) External and

(c) Total

Note here that i_marks and e_marks are protected so that can be used inside the total

class. They can be modified by the class total. So ideally i_marks and e_marks. Try to make

use of this and create a new program yourself.

→→→→→ Resolving Ambiguity

In multiple inheritance when two base classes having same name for their functions and data,

ambiguity arises when they are used in the derived class. For example, consider the two classes

A and B having same function signature for function named show like void show (). Both the

classes are inherited in the third class C. Now how class C can use show of A class and show

of B class individually. Simply accessing show function in class C creates confusion as to which

show we want to refer; show of class A or show of class B. In these situations we can use the

scope resolution operator with class names to functions for accessing the function of individual

class. Thus inside the member functions of class C we can access show of class A as A : :

show() and show of class B as B : : show. If function show is also defined in the class C and

all show are public then they can access in the main using an object of C class as :

C o1;

O1.A : :show(); //calls show of A class

O1.B : :show(); //calls show of B class

O1.show(); // calls show of C class

See the example given below :

/*PROG 9.24 RESOLVING AMBIGUITY IN MULTIPLE INHERITANCE */

#include <iostream.h>

#include <conio.h>

class A

{

protected :

int num;

public :

void show()

{

cout<<“show of A\n”;

cout<<“num of A=”<<num<<endl;

}

};

430 Object-Oriented Programming C++ Simplified

class B

{

protected :

int num;

public :

void show()

{

cout<<“show of B\n”;

cout<<“num of B=”<<num<<endl;

}

};

class C : public A, public B

{

int num;

public :

C()

{

A : :num=20;

B : :num=30;

num=40;

}

void show()

{

cout<<“Show of C”<<endl;

cout<<“num of C=”<<num<<endl;

}

};

void main()

{

clrscr();

C o1;

o1.A : :show();

o1.B : :show();

o1.show();

getch();

}

OUTPUT :

show of A

num of A=20

show of B

Working with Inheritance in C++ 431

num of B=30

Show of C

num of C=40

EXPLANATION : In the program we have three classes : A, B and C. In all the classes we

have a data member num of int type and function show with same signature. The num of A

and B are accessed in the class C as A : : num and B : :num even though they are not static

members. In the main the show of A and B classes are accessed with an object o1 of class C

as :

O1.A : : show();

O1.B : : show ();

9.5 HIERARCHICAL INHERITANCE

This type of inheritance was explained in the earlier sections of this chapter. When number of

classes have a direct access to one common class, then this type of inheritance is visible. The

main base class can be modified alone if required and all derived classes will see that effect.

Here, we present two example of this type of inheritance.

/*PROG 9.25 DEMO OF HIERARCHICAL INHERITANCE VER 1*/

#include <iostream.h>

#include <conio.h>

#include <string.h>

class University

{

protected :

char uname[40];

public :

University()

{

strcpy(uname,”NMIMS University Mumbai”);

}

};

class college1 :public University

 {

char cname[50];

public :

college1()

{

strcpy(cname, “MPSTME Shirpur Campus”);

}

432 Object-Oriented Programming C++ Simplified

void show_college1()

{

cout<<“College Name : =”<<cname<<endl;

cout<<“Affiliated to : =”<<uname<<endl;

}

};

class college2 :public University

{

char cname [50];

public :

college2()

{

strcpy(cname,”R C Patel”);

}

void show_college2()

{

cout<<“College Name =”<<cname<<endl;

cout<<“Affiliated to : =”<<uname <<endl;

}

};

void main()

{

clrscr();

college1 c1;

c1.show_college1();

college2 c2;

c2.show_college2 ();

getch();

}

OUTPUT :

College Name : =MPSTME Shirpur Campus

Affiliated to : =NMIMS University Mumbai

College Name =R C Patel

Affiliated to : =NMIMS University Mumbai

EXPLANATION : The program is so simple. We have university class which has just data

member, a char array of 40 characters named uname. This class is inherited by two classes’

college1 and college2. The two classes display their name and the university to which

they are affiliated.

Working with Inheritance in C++ 433

/*PROG 9.26 DEMO OF HIERARCHICAL INHERITANCE VER 2*/

#include <iostream.h>

#include <conio.h>

class Father

{

float amount;

public :

Father()

{

amount=50000;

}

float getamount()

{

return amount;

}

};

class Son1 :public Father

{

float amount_son1;

float total;

public :

Son1()

{

amount_son1=30000;

}

void show()

{

cout<<“\tGot from father := “

<<getamount()<<endl;

cout<<“\tOwn Investment := “

<<amount_son1<<endl;

total = getamount() + amount_son1;

cout<<“\tTotal Investment := “<<total<<endl;

}

};

class Son2 : public Father

{

float amount_son2;

434 Object-Oriented Programming C++ Simplified

float total;

public :

Son2()

{

amount_son2=40000;

}

void show()

{

cout<<“\tGot from father := “

<<getamount()<<endl;

cout<<“\tOwn Investment := “

<<amount_son2<<endl;

total = getamount()+ amount_son2;

cout<<“\tTotal Investment := “<<total<<endl;

}

};

void main()

{

clrscr();

Son1 S1;

cout<<“\t++++++Son 1+++++++”<<endl;

S1.show();

Son2 S2;

cout<<“\t******Son 2*******”<<endl;

S2.show();

getch();

}

OUTPUT :

 ++++++Son 1+++++++

 Got from father : = 50000

 Own Investment : = 30000

 Total Investment : = 80000

 ******Son 2*******

 Got from father : = 50000

 Own Investment : = 40000

 Total Investment : = 90000

Working with Inheritance in C++ 435

Figure 9.10. Output screen of the program

EXPLANATION : The father helps Son1 and Son2 in starting their business. So, both

the classes Son1 and Son2 inherit Father Class and rest is self-explanatory.

9.6 VIRTUAL BASE CLASS

Consider the situation where we have one class A. This class A is inherited by two other

classes B and C. Both these classes are inherited in a new class D. This is as shown in figure

given below. In dummy code form this is shown below :

class A

{

};

class B :public A class C : public A

{ {

}; };

class D :public C, public B

{

};

Class A

Class CClass B

Class D

As can be seen from the figure that data members/ functions of class A are inherited twice

to class D. One through class B and second through class C. When any data/ function members

of class A is accessed by an object of class D, ambiguity arises as to which data/function

members would be called ? One inherited through B or the other inherited through C. This

436 Object-Oriented Programming C++ Simplified

confuses compiler and it flashes error message. To resolve this ambiguity when class A is

inherited in both class B and class C, it is declared as virtual base class by placing the keyword

virtual as :

Class B : virtual public A class C : public virtual A

{ {

}; };

Note : virtual can be written before or after the public. Now only one copy of data/function member

will be copied to class C and class B and class A becomes virtual base class.

 Virtual base classes offer a way to save space and avoid ambiguities in class hierarchies

that uses multiple inheritances. When a base class is specified as a virtual base, it can act as

an indirect base more than once without duplication of its data members. A single copy of its

members is shared by all the base classes that use it as a virtual base.

See the following example given below :

/*PROG 9.27 DEMO OF VIRTUAL BASE CLASS VER 1*/

#include <iostream.h>

#include <conio.h>

class A

{

public :

int a;

A()

{

a=100;

}

};

class B :public virtual A

{

};

class C :virtual public A

{

};

class D : public B, public C

{

};

void main()

{

clrscr();

Working with Inheritance in C++ 437

cout<<“ a=”<<(new D)->a<<endl;

getch();

}

OUTPUT :

a=100

EXPLANATION : The class A has just one data member a which is public. This class

is virtually inherited in class B and class C. Now class B and class C becomes virtual

base and no duplication of data member a is done. In the main we display the value of a using

a pointer.

/* PROG 9.28 DEMO OF VIRTUAL BASE CLASS VER 2 */

#include <iostream.h>

#include <conio.h>

class A

{

public :

void show()

{

cout<<“hello from show of A”<<endl;

}

};

class B :public virtual A

{

};

class C :virtual public A

{

};

class D : public B, public C

{

};

void main()

{

clrscr();

D obj;

obj.show();

getch();

}

OUTPUT :

hello from show of A

438 Object-Oriented Programming C++ Simplified

Figure 9.11. Output screen of program 9.27

EXPLANATION : In the previous program we were having just one public data member

a and here we are having a single public member function show. Rest is simple to understand.

/* PROG 9.29 GENERATING STUDENT REPORT, ELEMENTARY PROGRAM DEVELOPED BY

STUDENTS */

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

class student

{

char sname [20];

int rollno;

public :

void input_st()

{

cout<<“Enter student name”<<endl;

cin.getline(sname,20);

cout<<“Enter the roll number”<<endl;

cin>>rollno;

}

void show_st()

{

cout<<“\tName :=”<<sname<<endl;

cout<<“\tRoll number :=”<<rollno<<endl;

}

};

class Subject :public student

{

char subject[25];

public :

void input_sub()

{

input_st();

Working with Inheritance in C++ 439

cin.ignore();

cout<<“Enter the subject name”<<endl;

cin.getline(subject,25);

}

void show_sub()

{

show_st();

cout<<“\tSubject=”<<subject<<endl;

}

};

class Internal :virtual public Subject

{

char subject[25];

protected :

int i_marks;

public :

void input_im()

{

cout<<“Enter internal marks (0 to 20)”<<endl;

cin>>i_marks;

if(!(i_marks>=0 && i_marks<=20))

{

cout<<“Invalid Marks”<<endl;

exit(0);

}

}

void show_im()

{

cout<<“\tInternal marks=”<<i_marks<<endl;

}

};

class External :virtual public Subject

{

protected :

int e_marks;

public :

void input_em()

{

cout<<“Enter External marks (0 to 80)”<<endl;

cin>>e_marks;

if(!(e_marks>=0 && e_marks<=80))

440 Object-Oriented Programming C++ Simplified

{

cout<<“Invalid Marks”<<endl;

exit(0);

}

}

void show_em()

{

cout<<“\tExternal Marks=”<<e_marks<<endl;

}

};

class Total :public Internal, public External

{

int total_marks;

public :

void input()

{

input_sub();

input_im();

input_em();

}

void show()

{

show_sub();

show_im();

show_em();

total_marks = i_marks + e_marks;

cout<<“\tTotal Marks=”<<total_marks<<endl;

}

};

void main()

{

clrscr();

Total tm;

tm.input();

cout<<“\n\t ++++++++++Student Report++++++++\n”<<endl;

tm.show();

getch();

}

OUTPUT :

Enter student name

Hari Pandey

Enter the roll number

1001

Working with Inheritance in C++ 441

Enter the subject name

OOP In C++

Enter internal marks (0 to 20)

18

Enter External marks (0 to 80)

75

++++++++++Student Report++++++++

Name :=Hari Pandey

Roll number :=1001

Subject=OOP In C++

Internal marks =18

External Marks =75

Total Marks =93

Figure 9.12. Output screen of the program 9.28

EXPLANATION : First we show you how the classes in the program are related.

Subject Class

Student Class

External ClassInternal Class

Total Class

442 Object-Oriented Programming C++ Simplified

The student class has two private data members sname and rollno two public member

function : input_st and show_st. This student class is inherited by class subject which has just

one data member subject and two function input_sub and show_sub. The function for input

and display the student name and roll number are called in the function of this class. The class

subject is inherited by class Internal and External which we have seen earlier. Note both the

classes inherit the class Subject in virtual public mode so only one copy of data members of

class Subject will be available in class Total and no ambiguity will arise. Trace the program step

wise. It is very simple to understand.

9.7 CONSTRUCTOR AND DESTRUCTOR IN INHERITANCE

When constructors are present both in base and derived classes then how they are called, how

values are passed from derived class to base class? That we will see in this section. Assume

a small example of single level inheritance in which class A is inherited by class B. Both the

classes have their default constructors. When an object of class B is created, it calls the

constructor of class B, but as this class B has got A as its parent class, constructor of class A

will be called first, then constructor of class then obviously it will be using the data members

from base class. Now without calling the constructor of base class, data members of base class,

unexpected results may follow. Calling a constructor of base class first allows base class to

properly set up its data members of that they can be used by derived classes.

In case of destructor in inheritance, destructor of derived class is called first and then

destructor of base class is called. This is so as it is possible that if we call destructor of base

class first, destructor might be working with data memebers of base class. So, destroying them

in base class has an effect of working with the data members that no longer exist. Compiler

won’t allow this. That’s why destructor class call as first so that it can do its works finishing

with any of the data members of class base and do its own cleaning.

/*PROG 9.30 CONSTRUCTOR IN SINGLE LEVEL INHERITANCE VER 1 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

first()

{

cout<<“Hello from con of first”<<endl;

}

};

class second : first

{

public :

second()

{

Working with Inheritance in C++ 443

cout<<“Hello from con of second”<<endl;

}

};

void main()

{

clrscr();

second s;

getch();

}

OUTPUT :

Hello from con of first

Hello from con of second

EXPLANATION : When statement second s executes it calls the default constructor of

second class. But as class first is base class for second constructor of base class is called first,

then constructor of derived class is called. So the output is as shown. Note constructors are

called implicitly of both the classes by the compiler.

/*PROG 9.31 CONSTRUCTOR IN SINGLE LEVEL INHERITANCE VER 2 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

first()

{

cout<<“Hello from con of first”<<endl;

}

};

class second :public first

{

public :

second() :first()

{

cout<<“Hello from con of second”<<endl;

}

};

444 Object-Oriented Programming C++ Simplified

void main()

{

clrscr();

second s;

getch();

}

OUTPUT :
Hello from con of first

Hello from con of second

EXPLANATION : Here when default constructor of class second is called. The class second
default constructor explicitly calls the constructor of class first. Though this is not necessary as
we have seen in the program, but this is another way of calling the constructor of base class.

/* PROG 9.32 CONSTRUCTOR & DESTRUCTOR IN SINGLE LEVEL INHERITANCE VER 1 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

first()

{

cout<<“Hello from con”<<endl;

}

~first()

{

cout<<“Bye Bye from des of first “<<endl;

}

};

class second : public first

{

public :

second() :first()

{

cout<<“Hello from con of second”<<endl;

}

Working with Inheritance in C++ 445

 ~second()

{

cout<<“Bye Bye from des of second”<<endl;

}

};

void main()

{

clrscr();

second s;

getch();

}

OUTPUT :
Hello from con

Hello from con of second

Bye Bye from des of second

Bye Bye from des of first

Figure 9.13. Output screen of program after pressing (Ctrl + F9) and after pressing (Alt + F9)

EXPLANATION : Destructors are called in the reverse order of constructor. So, destructor
of second class will be called first then destructor of first class will be called.

/*PROG 9.33 CONSTRUCTOR IN TWO LEVEL INHERITANCE VER 1*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

first()

 {

 cout<<“Hello from con of first”<<endl;

 }

};

446 Object-Oriented Programming C++ Simplified

class second :public first

{

public :

second () : first()

{

cout<<“Hello from con of second “<<endl;

}

};

class third : second

{

 public :

third() :second ()

{

cout<<“Hello from con of third”<<endl;

}

};

void main()

{

clrscr();

third t;

getch();

}

OUTPUT :
Hello from con of first

Hello from con of second

Hello from con of third

EXPLANATION : When statement third t; executes it calls default constructor of its
own class. But before falling into the code default constructor it must call constructor of class
second which is the base class for class third. In the class second default constructor,
default constructor of class first is called as class first is the base class for class second. So the
output as shown above :

/* PROG 9.34 CONSTRUCTOR IN MULTIPLE INHERITANCE VER 1 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

Working with Inheritance in C++ 447

first ()

{

cout<<“Hello from con first”<<endl;

}

};

class second

{

public :

second()

{

cout<<“Hello from con of second”<<endl;

}

};

class third :second, first

{

public :

third()

{

cout<<“Hello from con of third”<<endl;

}

};

void main()

{

clrscr();

third t;

getch();

}

OUTPUT :
Hello from con of second

Hello from con first

Hello from con of third

EXPLANATION : In multiple inheritance constructors of which base class is called
determine from the fact that which class was inherited first. Here in the class third, class first
and second is inherited as :

class third : second, first

So, constructor of class second will be called first and constructor of first will be called
after that. Note if constructor of third class is written as :

448 Object-Oriented Programming C++ Simplified

third () : first(), second ()

{

cout<<”Hello from con of third”<<endl;

}

Then also constructor of second class will be called, followed by constructor of first class.

/* PROG 9.35 DEMO OF PARAMETERIZED CONSTRUCTOR IN INHERITANCE VER 1 */

#include <iostream.h>

#include <conio.h>

class first

{

int fa;

public :

first (int x)

{

fa = x;

cout<<“Con of first called”;

}

void fshow()

{

cout<<“fa =”<<fa<<endl;

}

};

class second : public first

{

int sa;

public :

second(int a, int b) :first(a)

{

sa=b;

cout<<endl<<“Con of second called”<<endl;

}

void sshow()

{

fshow();

cout<<“sa=”<<sa<<endl;

}

};

Working with Inheritance in C++ 449

void main()

{

clrscr();

second s(10,20);

s.sshow();

getch();

}

OUTPUT :

Con of first called

Con of second called

fa =10

sa =20

EXPLANATION : When statement second s (10, 20); object s calls the parameterized

constructor of class second and passes parameters 10 and 20. Inside the constructor they are

assigned to a and b. Before entering into the body of constructor, first (a) calls the

constructor of class first and passes a as argument. Inside the class first it is assigned to

fa and con of first called is displayed. When control enters into the constructor and assigns

b to sa. When sshow of class second is called, it first calls the fshow of class first.

/*PROG 9.36 DEMO OF PARAMETERIZED CONSTRUCTOR IN INHERITANCE VER 2*/

#include <iostream.h>

#include <conio.h>

class first

{

int fa;

public :

first (int x)

{

fa=x;

cout<<“ Con of first called”<<endl;

}

void fshow()

{

cout<<“fa=”<<fa<<endl;

}

};

class second :public first

{

int sa;

450 Object-Oriented Programming C++ Simplified

public :

second (int a) : first (a%10), sa(a/10)

{

cout<<“Con of second called”<<endl;

}

void sshow()

{

fshow();

cout<<“sa=”<<sa<<endl;

}

};

void main()

{

clrscr();

second s(234);

s.sshow();

getch();

}

OUTPUT :

Con of first called

Con of second called

fa=4

sa=23

EXPLANATION : The program is same in the previous but here we have not taken two

arguments for the constructor of class second. In the earlier version of this program, by

counting the number of arguments in both the classes we chose to keep number of arguments

in the constructor of derived class second. But here we just take one argument in the constructor

of class second 234 which s collected in formal parameter a. From this constructor of

second class, constructor of first class is called passing a%10 as argument and a/10 is

assigned to sa of class second.

/*PROG 9.37 DEMO OF PARAMETERIZED CONSTRUCTOR IN INHERITANCE VER 3 */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class first

{

int fa;

Working with Inheritance in C++ 451

public :

first(int x)

{

fa=x;

cout<<“Con of first called”<<endl;

}

void fshow()

{

cout<<“fa=”<<fa<<endl;

}

};

class second

{

int sa;

float sb;

public :

second(int a, float b) :sa(a),sb(b)

{

cout<<“Con of second called”<<endl;

}

void sshow()

{

cout<<“sa=”<<sa<<endl;

cout<<“sb=”<<sb<<endl;

}

};

class third :public first, public second

{

char str[10];

public :

third(char*s, int x, int y, float z) :first(x),

second(y,z)

{

strcpy(str,s);

cout<<“Con of third called”<<endl;

}

void tshow()

{

fshow();

sshow();

452 Object-Oriented Programming C++ Simplified

cout<<“str=”<<str<<endl;

}

};

void main()

{

clrscr();

third t(“Welcome”,10,20,34.5f);

t.tshow();

getch();

}

OUTPUT :

Con of first called

Con of second called

Con of third called

fa=10

sa=20

sb=34.5

str=Welcome

Figure 9.14. Output screen of program 9.36

EXPLANATION : When statement third t (“Welcome”, 10, 20, 34.5f); executes,

parameterized constructor of class third is called and (“Welcome”, 10, 20, 34.5f) are

passed. Inside the constructor of t they are collected in formal parameter s, x, y and z
respectively. From the constructor of class third constructor of class first is called with x
an assignment. In the class first this x is assigned to fa and cout displays Con of first
called. Control comes back to constructor of class third which now calls constructor of class

second passing parameters y and x. Inside the constructor of class second they are assigned

to sa and sb and Con of second called is displayed. When control returns to constructor

of class third, it enters into its body and assigns s to str and displays Con of third
called.

Working with Inheritance in C++ 453

9.8 CONTAINERSHIP

We can create object of one class into another and that object will be a member of the class.

This type of relationship between classes is known as has_a relationship as one class contains

object of another class. The inheritance which we have seen till now is considered kind_of or

is_a relationship.

/*PROG 9.38 DEMO OF CONTAINERSHIP VER 1*/

#include <iostream.h>

#include <conio.h>

 class first

 {

public :

void showf()

 {

cout<<“Hello from first”<<endl;

 }

 };

 class second

 {

first f;

public :

second()

 {

f.showf();

 }

 };

 void main()

 {

clrscr();

second s;

getch();

 }

OUTPUT :

Hello from first

EXPLANATION : In the class second we have an object of class first. This is

another type of inheritance we are witnessing. This type of inheritance is known as has_a
relationship as we say that class second has an object of class first as it s member. Form this

object f we call the function of class first.

454 Object-Oriented Programming C++ Simplified

/*PROG 9.39 DEMO OF CONTAINERSHIP VER 2*/

#include <iostream.h>

#include <conio.h>

class first

{

private :

int num;

public :

void showf()

 {

cout<<“Hello from first”<<endl;

cout<<“num=”<<num<<endl;

 }

 int &getnum()

 {

return num;

 }

 };

 class second

 {

first f;

public :

second()

 {

 f.getnum()=20;

 f.showf();

 }

 };

 void main()

 {

clrscr();

second s;

getch();

 }

OUTPUT :

Hello from first

num=20

Working with Inheritance in C++ 455

EXPLANATION : With the help of containership we can only use public data members/

function of the class but not protected or private. In the first class we have

returned the reference with the help of getnum function. In the default constructor of class
second we assign value of 20 to num of first class by calling the function getnum. Then we

show if we call to showf.

/* PROG 9.40 DEMO OF CONTAINERSHIP VER 3 */

#include <iostream.h>

#include <conio.h>

class first

{

private :

int num;

public :

void showf()

{

cout<<“Hello from first”<<endl;

cout<<“num=”<<num<<endl;

}

int &getnum()

{

return num;

}

};

class second

{

first f;

public :

second()

{

f.getnum()=200;

f.showf();

}

};

void main()

{

clrscr();

second s;

getch();

}

OUTPUT :

Hello from first

num=20

456 Object-Oriented Programming C++ Simplified

EXPLANATION : With the help of containership we can only use public data member/

function of the class but not protected or private. In the first class we have returned the

reference with the help of getnum function. In the default constructor of class second we assign

value of 200 to num of first class by calling the function getnum. Then we show if by c call

to showf.

9.9 PONDERABLE POINTS

1. Inheritance is the mechanism of deriving new class from an existing class. The old

class and new class is known as in pair : super-sub, base-derived, parent-child.

2. In heritance provides the idea of reusability. Code once written can be used again and

again in several different classes.

3. C++ provides support for : single level and multilevel inheritance, multiple inheritance,

hierarchical inheritance, hybrid inheritance.

4. Private member are never inherited.

5. Virtual base class is used to avoid duplicity of data members into the target derived

class.

6. In an inheritance hierarchy constructor of base class is called first, then constructor

of derived class is called.

7. In an inheritance hierarchy destructor class is called first, then destructor of base class

is called.

8. Containership allows us to use object of one class as a member of other class. This type

of containership provides the idea of has_a relationship or nesting of classes.

EXERCISE

A. True and False :

1. Public variables can be accessed from anywhere in the program.

2. Inheritance helps in maintenance of code.

3. A derived class is often called sub-class because it represents a subset of its base class.

4. A pointer to base class can point to an object of a derived class of that base class.

5. If no constructor is specified for a derived class, then object of derived class will use constructor

in the base class.

6. An object of derived class cannot access public members of the base class using dot operator.

7. In multiple inheritances, all the constructors are invoked in the reverse of derivation and destructor
are invoked in the same order.

8. It is not possible to assign a base class pointer to a derived class object.

9. Sub classes can access protected members of a base class but not private members.

10. When name clash occurs in multiple inheritances, the ambiguity is resolved by using scope
resolution operator.

11. A function that is declared as a friend of a base class can be inherited by the derived class.

12. Sub-classes can access private members of a parent class, but not protected members.

Working with Inheritance in C++ 457

13. A protected variable behaves like a private variable within the class but can be inherited as

protected in public inheritance.

B. Answer the Following Questions :

1. What is inheritance ? How do we do inheritance in C++ ?

2. Discuss all different types of inheritance C++ supports.

3. What are the main advantages of inheritance ?

4. What is virtual base class ? Why we need it ?

5. Why constructor of derived class calls first than constructor of derived class ?

6. Why destructor of derived class calls first than destructor of base class ?

7. What is the use of protected keyword in inheritance ? Explain.

8. Give an example of hybrid inheritance.

9. Explain the method of resolving ambiguity.

C. Brain Drill :

1. Create a class Country, State, City and Village and arrange them in hierarchical manner.

2. Declare a class Vehicle. From this class derived two_wheeler, three_wheeler and four_wheeler

class. Display properties of each type of vehicle using member function of the class.

3. Write a program to declare classes A, B and C. Each class contains one char array as a data

member. Apply multiple inheritances. Concatenate strings of class A and B and store it in class C.

4. Imagine a publishing company that markets both book and audiocassette versions of its works.

Create a class publication that stores the title (a string) and price (type float) of publication. From

this class derive two classes : book, which adds a page count (type int); and tape, which adds a

playing time in minutes (type float). Each of these three classes should have a getdata () function

to get its data from the user at the keyboard and a putdata () function to display its data.

Write a main() program to test the book and tape classes by creating instance of them, asking the

user to fill in data with getdata() and then displaying data with putdata().

5. Start with the publication, book and tape classes of Exercise-4. Add a base class sales that holds

an array of three floats so that it can record the dollar sales of a particular publication for the last

three months. Include a getdata () function to get three sales amounts from the user and a putdata

() function to display the sales figures. After the book and tape classes so they are derived from

both publication and sales. An object of class book or tape should input and output sales data

along with its other data. Write a main () function to create a book object and a tape object and

exercise their input/output capabilities.

6. Derive a class called employee2 from the employee class. This new class should add a type

double data item called compensation and, also an enum type called period to indicate whether

the employee is paid hourly, weekly, or monthly. For simplicity you can change the manager,

scientist and laborer classes so they are derived from employee2 instead of employee. However,

note that in many circumstances it might be more in the spirit of OOP to create a separate base

class called compensation and three new class manager2, scientist2 and labour2 and use multiple

inheritances to derive these classes from the original manager, scientist and laborer classes and

from compensation. This way none of the original classes needs to be modified.

���

POINTERS TO OBJECTS AND
VIRTUAL FUNCTIONS

10.1 POINTER TO OBJECTS

We have worked with the pointers in the earlier chapters of the book where we worked with
pointer to int, char, float and double etc. Similar to pointers to built-in data types we can create
pointers to object of class. To create a pointer to an object of class demo we write

demo *ptr;

Which creat,es a pointer of type demo class type. Now for an object say d of demo class
declared as demo d; we can store address of this object into pointer ptr as :

ptr = &d;

Now any data member or function of demo class can be accessed using pointer as
ptr->func_name(); and ptr->data_member;

As the pointer pr contains the address of object d, *ptr denotes object d so we can also
write (*ptr).func_name and (*ptr).deat_member;

We can also create objects dynamically and can store the address into pointer as
demo*ptr = new demo;

OR
demo *ptr;

ptr = new demo;

Here, we don't have any object d as in the earlier case. Object will be referred only by
pointer pt.

Similarly to pointer to objects we can have a pointer to an array of objects or we can have
an array of pointers to objects. To create pointer to an array of objects we can write as :

demo d[S];

demo * ptr - d;

And dynamically creating an array of object we can write demo *ptr = new demo [5];
which creates an array of objects of size 5 and returns the base address of this array. The first
object will be referred as ptr [O], second as ptr [1] and so on. Given below are few examples
of what we have studied so far.

458

Pointers to Objects and Virtual Functions 459

/*PROG 10.1 DEMO OF POINTER TO OBJECT VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

 void show()

 {

cout<<“Hello from show”<<endl;

 }

 void bye_bye()

 {

cout<<“BYE BYE”<<endl;

 }

 };

 void main()

 {

clrscr();

demo d;

demo*ptr;

ptr=&d;

ptr->show();

ptr->bye_bye();

getch();

 }

OUTPUT :

Hello from show

BYE BYE

EXPLANATION : The statement demo *ptr; creates a pointer ptr of class demo type

which can store address of an object of class demo. We have created an object d of demo
class and address of this object d we have assigned to pointer ptr as ptr = &d. Whenever

we have pointer to an object we can access data members and function using pointer to

member operator ->. Now we have 4 different ways to call functions of demo class using

object d and pointer ptr.

(a) d.show();

(b) (&d)->show();

460 Object-Oriented Programming C++ Simplified

(c) Ptr->show();

(d) (*ptr).show();

From the above it is clear that &d and ptr is same and d and *ptr is same. The line

demo *ptr;

ptr = &d;

Can be combined as demo *pt = &d;

/*PROG 10.2 DEMO OF POINTER TO OBJECTS VER 2*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

 void show()

 {

cout<<“Hello from show”<<endl;

 }

 void bye_bye()

 {

cout<<“BYE BYE”<<endl;

 }

};

void main()

{

clrscr();

demo *ptr= new demo;

ptr->show();

ptr->bye_bye();

getch();

}

OUTPUT :

Hello from show

BYE BYE

EXPLANATION : The program is similar to previous one with a little difference of just two

statements. We have replaced the previous three statements which are given as :

demo d;

demo *ptr;

ptr = &d;

Pointers to Objects and Virtual Functions 461

by a single statement demo *ptr = new demo;. Here an object of demo class is created

dynamically and returns address is stored in the pointer ptr. Rest is same as explained earlier

but note here we have just pointer ptr to refer to an object as object was created dynamically

we can refer to dynamically created object by storing its address in a pointer of compatible

type. We cannot refer it by name as we had in previous program by d.

/*PROG 10.3 DEMO OF POINTER TO OBJECT VER 3*/

#include <iostream.h>

#include <conio.h>

class demo

{

int dx,dy;

public :

 demo(int x,int y)

 {

 dx=x;

 dy=y;

 }

 void show()

 {

 cout<<“dx :=”<<dx<<endl;

 cout<<“dy :=”<<dy<<endl;

 }

};

void main()

{

clrscr();

demo *ptr=new demo(10,20);

(*ptr). show();

getch();

}

OUTPUT :

dx :=10

dy :=20

EXPLANATION : The line new demo(10,20); creates a dynamic object by calling the

constructor of demo class which takes two int parameters and returns the address of the

dynamically created object which is stored in the pointer. Next we call the function show using

*ptr.

462 Object-Oriented Programming C++ Simplified

/*PROG 10.4 DEMO OF POINTER TO OBJECTS VER 4*/

#include <iostream.h>

#include <conio.h>

#include <string.h>

#define S 6

class demo

{

 char name [30];

public :

demo(){}

demo(char *s)

{

strcpy(name,s);

}

void show()

{

cout<<“Name :=”<<name<<endl;

}

};

void main()

{

clrscr();

demo *ptr=new demo [S];

demo *temp = ptr;

int i;

char s[30];

for(i=0;i<S;i++)

{

cout<<“Enter a number”<<endl;

cin.getline(s,30);

ptr[i]=demo(s);

}

cout<<“The names are”<<endl;

for(i=0;i<S;i++)

temp++->show();

delete []ptr;

getch();

}

Pointers to Objects and Virtual Functions 463

OUTPUT :

Enter a number

Vijay Nath Pandey

Enter a number

Madhuri Pandey

Enter a number

Anjana Pandey

Enter a number

Man Mohan Pandey

Enter a number

Hari Mohan Pandey

Enter a number

Ranjana Pandey

The names are

Name : =Vijay Nath Pandey

Name : =Madhuri Pandey

Name : =Anjana Pandey

Name : =Man Mohan Pandey

Name : =Hari Mohan Pandey

Name : =Ranjana Pandey

EXPLANATION : In the program we have created a pointer to an array of object which

is created dynamically in the statement demo * ptr = new demo [S]; The address of

array is saved in temporary variable temp as demo *temp = ptr; In the for loop we take

names from the user in string s and initialize each dynamically created object using statement

ptr[i] = demo (s);

The entered names are displayed back using for loop as :

for(i=0;i<S;i++)

 temp++ -> show()

Initially we assigned ptr to temp and now we make use of it. As temp contains address

of the first object, initially show is called for the first object then temp is incremented as

temp++, now temp points to the second object and show for second object is displayed and

so on.

We could simply make use of ptr for calling the show functions. Why did we take

another pointer temp ? The answer is simple. If we had used pointer ptr for displaying names

by a call to show in the end would be pointing somewhere else in the memory and not to the

base address of the array. Through it would be ok for this program but if you have to make use

of ptr later some where in the program then you would not be getting object using ptr.

/*PROG 10.5 INITIALIZING ARRAY OF OBJECTS DYNAMICALLY */

#include <iostream.h>

#include <conio.h>

464 Object-Oriented Programming C++ Simplified

#include <string.h>

class demo

{

char *name;

public :

demo(){}

demo(char*s)

{

name =new char[strlen(s)+1];

strcpy(name,s);

}

void show()

{

 cout<<“Name=”<<name<<endl;

}

};

void main()

{

demo*ptr[]={

new demo(“Hari Mohan Pandey”),

new demo(“Man Mohan Pandey”),

new demo(“Vijay”),

new demo(“Ranjana”),

 };

cout<<“The names are”<<endl;

const int S =sizeof(ptr)/sizeof(demo);

for(int i=0;i<S;i++)

{

ptr[i]->show();

delete ptr[i];

}

getch();

}

OUTPUT :

The names are

Name=Hari Mohan Pandey

Name=Man Mohan Pandey

Name=Vijay

Name=Ranjana

The names are

Pointers to Objects and Virtual Functions 465

Name=Hari Mohan Pandey

Name=Man Mohan Pandey

Name=Vijay

Name=Ranjana

EXPLANATION : The following code

demo*ptr []={

new demo(“Hari Mohan Pandey”),

new demo(“Man Mohan Pandey”),

new demo(“Vijay”),

new demo(“Ranjana”),

 };

Creates four objects dynamically by using new operator and calling one argument constructor

of char * type dynamically. The addresses of each object thus created are stored in the ptr
array. The ptr is an array of objects; ptr [0] gives first objects whose data member name

has value “Hari Mohan Pandey”, ptr [1] gives second objects whose data member name

has value “Man Mohan Pandey” and so on. In the main size of ptr gives 16 as each pointer

is of 4 bytes long and we have 4 such pointers. The sizeof (demo) gives 4 bytes as we

have just one pointer variable name data member by a call to show we delete the objects

created dynamically explicitly by writing delete ptr[i]. Note delete ptr or delete []
ptr won’t work.

10.2 THE THIS POINTER

The this pointer is a special pointer which is a built-in pointer. It is a keyword. It stores the

address of current object in context. That is the current object which can be referred using this

pointer anywhere in the class. The this pointer can be used only inside the class i.e., only

inside the member function of the class and cannot be used outside the class. The this pointer

is a constant pointer. For an object of say class demo, type of this pointer will be demo* const

this. For an object of say class temp, type of this pointer will be temp *const this. When a non

static member’s function is called for an object, the address of the object is passed as a hidden

argument to the function. For example, the following function call

myDate.setMonth (3);

Can be interpreted this ways :

SetMonth (&myDate, 3);

The object’s address is available from within the member function as the this pointer. It

is legal, through unnecessary, to use this pointer when referring to members of the class. The

expression (*this) is commonly used to return the current object from a member function.

→→→→→ Important Points About this Pointer

(a) It is an implicit pointer used by the system.

(b) It stores the address of the current object in reference.

466 Object-Oriented Programming C++ Simplified

(c) It is a constant pointer to an object.

(d) The object pointed to by the ‘this’ pointer can be de-referenced and modified.

(e) It can only be used within non static functions of the class.

(f) The this pointer is non modifiable, assignment to this are not allowed.

/*PROG 10.6 DEMO OF this POINTER VER 1*/

#include <iostream.h>

#include <conio.h>

#include <string.h>

class Item

{

char iname[10];

int icode;

float iprice;

public :

Item(char iname[10], int icode, float iprice)

{

strcpy(this->iname,iname);

this->icode = icode;

(*this).iprice = iprice;

}

void show()

{

cout<<“Item Details”<<endl;

cout<<“Name =”<<this ->iname <<endl;

cout<<“Code =”<<(*this).icode <<endl;

cout<<“Price =”<<this->iprice<<endl;

}

};

void main()

{

 clrscr();

Item I1(“Mouse”,301,280);

I1.show();

getch();

}

OUTPUT :

Item Details

Name=Mouse

Code =301

Price =280

Pointers to Objects and Virtual Functions 467

EXPLANATION : As explained earlier this pointer stores the address of current object

in context. In the main when object I1 is created by a call to constructor, this pointer is

storing the address of object I1. Inside the constructor you can note that names of formal

parameters and data members are same, then how could we assign say value of formal parameter

icode to data member’s icode ? We can’t write icode =icode. Here the use of this pointer

come into picture. We know that this pointer is in the function representing object I1 so

writing this -> icode represent data members of class for object I1 and icode refers to

formal parameter. As this is a pointer we will have to use pointer to member operator -> with

data members or we can use dot operator with (*this). Note writing this is totally optional

in the above program but just to give you feel how this pointer can be used we have written

this program.

/*PROG 10.7 DEMO OF this POINTER VER 2*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

demo()

{

cout<<“Default constructor is called”<<endl;

cout<<“Address of current object=”<<this<<endl;

}

};

void main()

{

clrscr();

demo d1;

cout<<“Address of object d1 in main=”<<&d1<<endl;

demo d2;

cout<<“Address of object d2 in main=”<<&d2<<endl;

getch();

}

OUTPUT :

Default constructor is called

Address of current object =0x8fd5fff4

Address of object d1 in main=0x8fd5fff4

Default constructor is called

Address of current object =0x8fd5fff2

Address of object d2 in main=0x8fd5fff2

468 Object-Oriented Programming C++ Simplified

EXPLANATION : Initially this pointer contains the address of object d1. So writing this

in constructor and writing &d1 displays the same address. When object d2 is the current object

this pointer stores the address of current object d2 so writing this in construct and writing &d2

displays the same address.

/*PROG 10.8 DEMO OF this POINTER VER 3*/

#include <iostream.h>

#include <conio.h>

class Emp

{

float sal;

public :

Emp()

{}

Emp(float s)

{

sal=s;

}

Emp compare(Emp);

void show(char *s)

{

cout<<s<<“ “<<sal<<endl;

}

};

Emp Emp : :compare(Emp E)

{

if (this -> sal>E.sal)

return *this;

else

return E;

}

void main()

{

 clrscr();

Emp E1(9500), E2(14000), E3;

E3=E1.compare(E2);

E1.show(“Sal is=”);

E2.show(“Sal is=”);

E3.show(“Max sal=”);

getch();

}

Pointers to Objects and Virtual Functions 469

OUTPUT :

Sal is= 9500

Sal is= 14000

Max sal= 14000

EXPLANATION : In the program salary of object E1 is 9500 and E2 is 14000. This is

initialized by calling the one argument constructor. When the statement E3=E1.compare (E2);
executes E1 calls the function compare and pass E2 as argument by value. As E1 has called

the function E1 is the current object and this pointer is storing the address of object E1. Thus

object E1 and *this is same. In the function compare as this point to E1, the expression this

-> sal represent sal of E1. It could simply be written as sal only. Now if this ->sal
is greater than E.sal (actually sal of E2) current object *this is returned else
object E is returned.

The alternative code for compare function can be written as :

1. Emp Emp : :compare(Emp E)

{

Emp temp;

if (sal>E.sal)

temp.sal=sal;

else

temp.sal=E.sal;

return temp;

}

2. Emp Emp : :compare(Emp E)

{

if(this-> sal> E.sal)

return Emp(this->sal);

else

return Emp(E.sal);

}

10.3 WHAT IS BINDING IN C++ ?

Binding is the process of linking the function call with the place where the function definition

is actually written. So that when a function call is made, it can be ascertained where the control

has to be transferred. Binding is also termed as linking. Binding is of two types :

470 Object-Oriented Programming C++ Simplified

Types of Binding

Static Binding

Dynamic Binding

Figure 10.1. Types of binding in C++

When it is known at compile time which function will be called in response to a function

call, binding is known as static binding, compile time or early binding. Static binding is called

so before program executes it is fixed that a particular function be called in response to a

function call. Each time program executes same function will be called. As the linking is done

early to the execution of the program executes same function will be called. As the linking is

done at compile time it is known as compile time binding.

When it is not certain that which function is called in response to a function call, binding

is delayed till program executes. At run time the decision is taken as to which function is called

in response to a function call. This type of binding is known as late binding, runtime binding

or dynamic binding. Dynamic binding is based purely on finding the address of pointers and

as addresses are generated during run time or when time run or when program executes, this

type of binding is known as run-time or execution time binding.

One form of polymorphism we have seen earlier : compile time polymorphism, which is

of two types :

(a) Function polymorphism/overloading.

(b) Operator Overloading.

Another type of polymorphism we are going to study here is run-time polymorphism in

which at run-time it is decided that which function is to be called by checking the pointer and

checking the contents of pointers. It is necessary in situations where we have two functions

with the same name in both derived class and base class. At run time it will be decided using

pointer and objects as to which function of which class is to be called. In C++ run-time

polymorphism is implemented using virtual function which is our next topic of discussion.

10.4 VIRTUAL FUNCTIONS

A virtual function is a member function that you except to be redefined in derived classes.

When you refer to a derived class object using a pointer or a reference to the base class, you

can call a virtual function for that object and execute the derived class’s version of the function.

 Virtual function is a function which is declared virtual by placing keyword virtual before

the function definition/declaration. The virtual function is usually defined in the base classes

and is overridden in the derived class. The derived classes as per its requirements override the

virtual function and provide the virtual the coding specific to that class only. The derived class

is free to decide whether it wants to override the virtual function defined in the base class or

to override it. Virtual function behaves like any other member function but they show their

importance when accessed via pointers of base class. They are the basis for implementing run-

time polymorphism in C++.

Pointers to Objects and Virtual Functions 471

The virtual keyword is needed only in the base class’s declaration of the function, any

subsequent declaration in derived classes are virtual by default.

The derived class’s version of a virtual function must have the same parameter list and

return type as those of the base class. If these are different, the function is not considered a

redefinition of the virtual function. A derived virtual function cannot differ from the original

only by return type.

Before delving into the virtual function practically lets first see few examples of pointer

to derived class objects.

/*PROG 10.9 DEMO OF POINTER TO DERIVED CLASS OBJECTS VER 1*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

void show()

{

cout<<“Hello from show of first class”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“hello from show of second class “<<endl;

}

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

ptr=&f;

ptr->show();

ptr=&s;

ptr->show();

getch();

}

472 Object-Oriented Programming C++ Simplified

OUTPUT :

Hello from show of first class

Hello from show of first class

EXPLANATION : In the program there are two classes first and second. The first
class is the base class and second class is the derived class whose parent is the

first class. The signature of function show is same in both the class. In the main we create

a pointer ptr of type first. Initially we assign address of object f of class first and call

show function. As pointer is of first class and address of object first class is stored in the

ptr, function of class first is called. Later in the same pointer ptr we assign the address

of object of class second and call function. As class second is the derived class for class first

and class first is the base class for class second; in a pointer of base class first
type we can assign the address of an object of derived class second. Again the base
class show i.e., show of class first is called.

The concept to build here is that in the absence of virtual keyword (discusses later) if we

have pointer of base class then regardless of address of object of what type is stored in the

pointer, base class version of function is called.

/*PROG 10.10 DEMO OF POINTER TO DERIVED CLASS OBJECTS VER 2*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

void show()

{

cout<<“Hello from show of first class”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“Hello from show of second class “<<endl;

}

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

Pointers to Objects and Virtual Functions 473

ptr=&f;

ptr->show();

ptr=&s;

((second*)ptr)->show();

getch();

}

OUTPUT :

Hello from show of first class

Hello from show of second class

EXPLANATION : In the statement ((second*) ptr) ->show (); we have typecast

pointer ptr to behave like pointer of class second type temporarily. So it calls the derived
class version of show i.e., function show of second class is called.

Now you have understood how in the pointer of base class we can store the address

of derived class object. But functions of only base class can be called in case function

of base class is overridden in the derived class. Note you cannot store address of base

class object in a pointer of derived class.

Let’s now see the pratical examples of virtual functions.

/*PROG 10.11 DEMO OF VIRTUAL FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“Hello from show of first class”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“Hello from show of second class”<<endl;

}

};

void main()

{

474 Object-Oriented Programming C++ Simplified

clrscr();

first *ptr;

first f;

second s;

ptr =&f;

ptr- >show();

ptr =&s;

ptr- >show();

getch();

}

OUTPUT :

Hello from show of first class

Hello from show of second class

EXPLANATION : In the class first function show is virtual. When virtual keyword

precedes the function definition and the same function is overridden in the derived class
lets see what happens when we call them as we did in the earlier program. Initially ptr
contains the address of object f which is of type class first. When ptr-> show()
executes run time system does not check the type of pointer instead it checks what type of

object’s address the pointer contains. Here pointer ptr is storing the address of object f
which is of first class so function call ptr->show() calls the show function of first
class. In the second case we have ptr storing the address of object of class second. Again

the C++ run time system checks the contents of ptr and at this time ptr contains the address

of object of class second the function call ptr->show() calls the show function of class
second.

The concept to build here is that when virtual keyword is present, function is called by

checking the contents of pointer of the base class and not by checking the type of pointer.

/*PROG 10.12 DEMO OF VIRTUAL FUNCTION VER 2*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“Hello from show of first class”<<endl;

}

void display()

{

cout<<“Hello from display of first class”<<endl;

Pointers to Objects and Virtual Functions 475

}

};

class second :public first

{

public :

void show()

{

cout<<“Hello from show of second class”<<endl;

}

void display()

{

cout<<“Hello from display of second class”<<endl;

}

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

ptr=&f;

ptr->show();

ptr->display();

ptr=&s;

ptr->show();

ptr->display();

getch();

}

OUTPUT :

Hello from show of first class

Hello from display of first class

Hello from show of second class

Hello from display of first class

EXPLANATION : The function show is virtual and is overridden in the derived class

second. The function display is not virtual in the base class first. So in the main
after the statements

ptr=&f;

ptr->show();

ptr-> display();

476 Object-Oriented Programming C++ Simplified

show() of class first is called and display of class first is also called. When the

following statement executes as :

ptr = &s;

ptr ->show();

ptr -> display ();

show of class second is called as show is virtual in the class second and by checking

the contents of pointer ptr function will be called. As display is not virtual in the base

first, function will be called by checking the type of pointer so display of class first
will be called.

10.5 WORKING OF A VIRTUAL FUNCTION

We have seen how the function called at run time depending upon type of object stored in the

base class pointer in case of virtual functions. What ever we have learnt seems quite easy to

understand but how things happen internally is yet to understand. Here, we will discuss how

actual function is called at run time.

Whenever a virtual function is created in a class, a VTABLE (virtual table) is created for

that class and for all classes that inherit this class. Inside the VTABLE addresses of all virtual

functions are stored. If any derived class overrides the virtual functions defined in the base

class, address of derived class function is written to the VTABLE of the derived class. If derived

class does not override the virtual function then address of virtual function of base class is put

inside the VTABLE.

A special pointer called vptr (called virtual pointer) points to the first entry of the

VTABLE. When function is called from a base class pointer compiler checks the contents of the

pointer. The contents will be the address of the object base or derived. From this object address,

address of VPTR is obtained. Once address of VPTR is known appropriate function can be

called from VTABLE for that class.

But whenever I have given in the above is totally maintained by the compiler internally.

You need not worry about how this is done internally. But you must know VPTR and VTABLE

and how virtual function is called.

/*PROG 10.13 DEMO OF VIRTUAL FUNCTION VER 3*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“Hello from show of first class”<<endl;

}

virtual void display()

{

Pointers to Objects and Virtual Functions 477

cout<<“Hello from display of first class”<<endl;

}

void fun()

{

cout<<“Hello from fun of first”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“Hello from show of second class”<<endl;

}

void fun()

{

 cout<<“Hello from fun of second class”<<endl;

}

};

class third :public first

{

public :

void display()

{

cout<<“Hello from display of third class”<<endl;

}

void fun()

{

cout<<“Hello from fun of third class”<<endl;

}

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

third t;

ptr= &f;

ptr->show();

478 Object-Oriented Programming C++ Simplified

ptr->display();

ptr->fun();

ptr=&s;

ptr->show();

ptr->display();

ptr->fun();

ptr=&t;

ptr->show();

ptr->display();

ptr->fun();

getch();

}

OUTPUT :

Hello from show of first class

Hello from display of first class

Hello from fun of first

Hello from show of second class

Hello from display of first class

Hello from fun of first

Hello from show of first class

Hello from display of third class

Hello from fun of first

EXPLANATION : The explanation is based on the basis of VPTR and VTABLE. The

function show and display is virtual in class first and fun is not virtual. The class second only

overrides fun and show. The class third overrides display and fun. The VTABLE for all three

classes is as shown below. Note the addresses of different functions in the VTABLE. The

VTABLE for the class first need no explanation. The class second overrides virtual function

show but does not override display so in the VTABLE for second class address of show of

second class and address of display of first class is put. Similarly for the VTABLE of class third

address of show of first class and address of display of third class is put. For all three VTABLE

a separate VPTR is present.

In the code shown above when ptr contains the address of object f, compiler from the

contents of ptr, find out the addresses of VPTR of class first and functions of class first are

called.

&first : : show

&first : : display
VPTRptr

When ptr contains the address of object s, compiler from the contents of ptr, find out the

address of VPTR of class second and function from VTABLE of second gets called.

Pointers to Objects and Virtual Functions 479

&second : : show

&first : : display
VPTRptr

When ptr contains the address of object t, compiler from the contents of ptr, find out the

address of VPTR of class third and functions from VTABLE of third gets called.

&first : : show

&third : : display
VPTR

Note fun was not virtual in the first class so regardless of what the pointer ptr contains

fun of first will be called.

/*PROG 10.14 DEMO OF VIRTUAL FUNCTION VER 3 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“Hello from show first class”<<endl;

}

void display()

{

cout<<“Hello from display of first class”<<endl;

}

};

class second :public first

{

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

ptr=&f;

ptr->show();

ptr->display();

ptr=&s;

ptr->show();

480 Object-Oriented Programming C++ Simplified

ptr->display();

getch();

}

OUTPUT :

Hello from show first class

Hello from display of first class

Hello from show first class

Hello from display of first class

EXPLANATION : When the functions are not present in the derived class regardless of

virtual keyword or not, base class version of functions are called. So the output.

/*PROG 10.15 DEMO OF VIRTUAL FUNCTION VER 4*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“Hello from show of first class”<<endl;

}

virtual void display()

{

cout<<“Hello from display of first class”<<endl;

}

void fun()

{

cout<<“Hello from fun of first”<<endl;

}

};

class second :public first

{

public :

virtual void show()

{

cout<<“Hello from show of second class”<<endl;

}

virtual void fun()

{

Pointers to Objects and Virtual Functions 481

cout<<“Hello from fun of second class”<<endl;

}

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

ptr=&f;

ptr->show();

ptr->display();

ptr->fun();

ptr=&s;

ptr->show();

ptr->display();

ptr->fun();

getch();

}

OUTPUT :

Hello from show of first class

Hello from display of first class

Hello from fun of first

Hello from show of second class

Hello from display of first class

Hello from fun of first

EXPLANATION : In the following statements it is clear that all the functions of class
first will be called :

ptr=&f;

ptr->show();

ptr->display();

ptr->fu();

Writing the function virtual again when overriding in the derived class second makes

function virtual for the next class if this class is inherited. show was virtual in the first class

and is overridden in the second class so show of second class will be called. fun was not

virtual in the first class so fun of class first will be called. The function display is

present only in the class first so obviously it will be called. So the output.

482 Object-Oriented Programming C++ Simplified

/*PROG 10.16 DEMO OF VIRTUAL FUNCTION VER 5 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“Hello from show of first class”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“Hello from show of second class”<<endl;

}

};

class third :public first

{

public :

void show()

{

cout<<“Hello from show of second class”<<endl;

}

void fun()

{

cout<<“Hello from fun of third class”<<endl;

}

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

third t;

ptr=&f;

ptr-> show();

Pointers to Objects and Virtual Functions 483

ptr->fun(); //line 1

ptr=&s;

ptr->show();

ptr->fun(); //line 2

ptr=&t;

ptr->show();

ptr->fun(); //line 3

getch();

}

OUTPUT :

ERROR IN THE PROGRAM

EXPLANATION : The function fun is not present in the first class. So the line 1, 2 and

3 causes error in the program.

/*PROG 10.17 DEMO OF VIRTUAL FUNCTION VER 6*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

void show()

{

cout<<“Hello from show of first class”<<endl;

}

};

class second : public first

{

public :

virtual void show()

{

cout<<“Hello from show of second class”<<endl;

}

};

class third :public second

{

public :

void show()

484 Object-Oriented Programming C++ Simplified

 {

cout<<“Hello from show of third class”<<endl;

}

};

void main()

{

clrscr();

first *fptr;

first f;

second s, *sptr;

third t;

fptr=&f;

fptr->show();

fptr=&s;

fptr->show();

sptr=&s;

sptr->show();

sptr=&t;

sptr->show();

getch();

}

OUTPUT :

Hello from show of first class

Hello from show of first class

Hello from show of second class

Hello from show of third class

EXPLANATION : The function show is not virtual in the class first and first is the

base class for class second. So the statement

fptr=&s;

fptr->show();

Executes show of class first will be called. The class second is the base class for

class third. In class second show is virtual and this show in class third is overridden.

In the statement

sptr=&s;

sptr->show();

sptr contains the address of second class object so function show of class second is

called. In the following statements as :

sptr=&t;

sptr->show();

sptr contains the address of object of class third. As show is virtual in the class

second so function of class third will be called.

Pointers to Objects and Virtual Functions 485

10.6 RULES FOR VIRTUAL FUNCTION

There are some rules for using virtual functions. You must keep these rules in your mind when

you are dealing with virtual functions failing which compiler may flash errors. The rules are :

1. They cannot be declared outside the class i.e., must be member of some class.

2. They can be called using object pointers and even using objects but actual works can

be seen only with pointers.

3. They cannot be declared as static.

4. Virtual constructor is not possible but we can have virtual destructor.

5. A virtual function can be friend to another class.

6. Making a virtual function in base class is simply a choice for the derived class. The

derived class may or may not override virtual function of the base class.

7. In the absence of virtual keyword, the function to be invoked is determined by the type

of pointer. The compiler does not check what type of object is stored in the pointer.

8. When virtual keyword is present, functions are called on the basis of which type of

object pointer hold in it.

9. Never use ++ or − − operator on pointer of base class pointer to get the next object of

derived class. It will only forward/backward the pointer relative to its own class type.

10. Pointers follow the hierarchy of inheritance and pay regards to the older. That is, we

can store in a pointer of base class address of any derived class object, but in a pointer

of derived class we cannot store object of first class.

10.7 PURE VIRTUAL FUNCTION AND ABSTRACT CLASS

A pure virtual function is a function which has its body set to 0 i.e., the pure virtual function

does not have any body. A function declared in a way as shown :

virtual void set () =0;

is known as pure virtual function. Here = 0 does not mean that function show is equal

to 0. It simply means that the virtual function show has no body. The pure virtual function act

as an interface and any class which inherits the class in which pure virtual function is present,

has to provide the implementation for the function show.

Any class which contains at least a pure virtual function is termed as an abstract class.

An abstract class is a class whose objects cannot be created. As its objects cannot be created,

this class has to be inherited by some other class. The derived class must define the

implementation of all the pure virtual function presents in the class. If the derived class does

not define all the pure virtual function than derived class also becomes abstract class. It is not

necessary that all functions in an abstract class must be pure virtual. An abstract class may

have other virtual or non-virtual functions, data members which may be used by the objects

of derived classes. As said earlier objects of an abstract class cannot be created but pointers and

references of an abstract class can be created.

The concept behind abstract class is to force derived classes to redefine pure virtual

functions as per their requirements and features they posses.

486 Object-Oriented Programming C++ Simplified

/*PROG 10.18 DEMO OF PURE VIRTUAL FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

void virtual show()=0;

};

class second :public first

{

public :

void show()

{

cout<<“show of second class”<<endl;

}

};

void main()

{

first *ptr=new second;

ptr->show();

getch();

}

OUTPUT :

show of second class

EXPLANATION : The declaration void virtual show()=0; tells the compiler that

show is a pure virtual function as function show has no body. In other way body is equal to

0. This makes class first as abstract class whose objects cannot be created but pointer &

references can be. Any class which inherits an abstract class has to provide the definition of

function show. The class second inherits class first and provide the definition for show. In the

main we create a pointer of first and in it assign the address of dynamically created object of

second class. Later we call function show. Show of class second will be called.

/*PROG 10.19 DEMO OF PURE VIRTUAL FUNCTION VER 2*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

Pointers to Objects and Virtual Functions 487

void virtual show()=0;

};

class second :public first

{

public :

void show()

{

cout<<“Show of second”<<endl;

}

};

class third :public first

{

};

void main()

{

first *ptr=new second;

ptr->show();

ptr=new third; // line causes error

ptr->show();

}

OUTPUT :

ERROR MESSAGE

Cannot create instance of abstract class ‘third’

EXPLANATION : The class first has one pure virtual function show, so class first becomes

abstract class. The class second inherits class first and provides implementation of function

show. The class third also inherits function first but does not provide implementation of show,

so class third becomes abstracts class. In the main we are trying to create object of third class

which is an abstract class. This causes error as we cannot create object of an abstract class.

/*PROG 10.20 DEMO OF PURE VIRTUAL FUNCTION VER 3*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

void virtual show()=0;

};

class second :public first

{

488 Object-Oriented Programming C++ Simplified

public :

void show()

{

cout<<“Show of second”<<endl;

}

};

class third :public first

{

public :

void show()

{

cout<<“Show of third”<<endl;

}

};

void main()

{

clrscr();

second s;

third t;

int i;

first *ptr[]={&s,&t};

for(i=0;i<2;i++)

ptr[i]->show();

getch();

}

OUTPUT :

Show of second

Show of third

EXPLANATION : Both class second and class third provides the implementation for

pure virtual function show. In the main we create an object of class second s and an

object of class third t. We create an array of pointers of class first type and in it store the

addresses of object s and object t. As class first is the base class for both classes second
and class third, we can do the following operation :

first *ptr [] = {&s, &t};

In the for loop when i=0 we have the expression ptr[0]->show as ptr[0] contains the

address of second class object so show of second class is called. When i=1 we have the

expression ptr[1] ->show as ptr[1] contains the address of third class object so show
of third class is called.

Pointers to Objects and Virtual Functions 489

/*PROG 10.21 DEMO OF PURE VIRTUAL FUNCTION VER 4*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

void virtual show()=0;

};

class second :public first

{

public :

void show()

{

cout<<“Show of second”<<endl;

}

};

class third :public first

{

public :

void show()

{

cout<<“Show of third”<<endl;

}

};

void main()

{

clrscr();

second s;

third t;

int i;

first & fref1=s;

first & fref2=t;

fref1.show();

fref2.show();

getch();

}

OUTPUT :

Show of second

Show of third

490 Object-Oriented Programming C++ Simplified

EXPLANATION : The program is similar to previous one with the difference that instead

of pointer we have created two reference variables of class first type and in them assigned

the reference object of class second and class third as shown below :

first & fref1 =s;

first & fref2 = t;

So when fref1.show (); executes show of class second is called and when fref2.show
(); executes show of class third is called.

/*PROG 10.22 DEMO OF PURE VIRTUAL FUNCTION VER 5 */

#include <iostream.h>

#include <conio.h>

class first

{

public :

void virtual show()=0;

void disp()

{

cout<<“Display of first”<<endl;

}

virtual void silly()

{

 cout<<“Silly of first”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“Show of second”<<endl;

}

void disp()

{

cout<<“Display of second”<<endl;

}

};

class third : public first

{

Pointers to Objects and Virtual Functions 491

public :

void show()

{

cout<<“Show of third”<<endl;

}

void silly()

{

cout<<“silly of third”<<endl;

}

};

void main()

{

clrscr();

second s;

third t;

int i;

first *ptr[]={&s,&t};

for(i=0;i<2;i++)

{

ptr[i]->show();

ptr[i]->silly();

ptr[i]->disp();

}

getch();

}

OUTPUT :

Show of second

Silly of first

Display of first

Show of third

silly of third

Display of first

EXPLANATION : The program demonstrates the fact that apart from creating a pure

virtual function to make a class as an abstract, we may write simply ordinary function also

in an abstract class. In the class first there are three functions :

(a) show() which is pure virtual function,

(b) disp () which is an ordinary function

(c) silly () which is a virtual function.

492 Object-Oriented Programming C++ Simplified

The class second provides implementation of function show and overriding function disp.

The class third also provide implementation of function show and overrides silly function

which was in class first.

In the main we assign addresses of object of class second and class third to an array of

pointer of first class as :

first *ptr [] = (&s, &t};

In the for loop for i=0; ptr[0] refers to an object of second class type now for the following

function calls.

ptr[0]->show();

ptr[0]->silly();

ptr[0]->disp ();

show of class second will be called as it is quite obvious from the code. Silly was virtual

in class first and was not overridden in class second so silly of class first will be called. disp

was not overridden in class second and disp was not virtual in class first, so disp of class first

will be called.

Now for i = 1, ptr[1] refers to an object of third class type. For the following function calls

ptr[1] ->show();

ptr[1]->silly();

ptr[1]->disp();

show of class third will be called as it is quite obvious from the code. silly was virtual

in classs first and was overridden in class third, so silly of class third will be called. disp was

not overridden in class third and disp was not virtual in class first, so disp of class first will

be called.

/*PROG 10.23 FINDING FLYING STATUS OF VARIOUS INSECTS */

#include <iostream.h>

#include <conio.h>

class Insect

{

public :

virtual void flystatus()=0;

};

class Cockroach :public Insect

{

public :

void flystatus()

{

cout<<“Cockroach can fly”<<endl;

}

};

Pointers to Objects and Virtual Functions 493

class Termite :public Insect

{

public :

void flystatus()

{

cout<<“Termite cannot fly”<<endl;

}

};

class Grasshopper :public Insect

{

public :

void flystatus()

{

cout<<“Grasshopper can fly”<<endl;

}

};

class Ant : public Insect

{

public :

void flystatus()

{

cout<<“Ant cannot fly”<<endl;

}

};

void main()

{

clrscr();

Insect *ptr[4];

ptr[0]=new Cockroach;

ptr[1]=new Termite;

ptr[2]=new Grasshopper;

ptr[3]=new Ant;

for(int i=0;i<4;i++)

ptr[i]->flystatus();

getch();

}

OUTPUT :

Cockroach can fly

Termite cannot fly

Grasshopper can fly

Ant cannot fly

494 Object-Oriented Programming C++ Simplified

EXPLANATION : The class Insect declares one pure virtual function flystatus. Any class

which inherits this class has to redefine this function and tell his/her flying status i.e., whether

he/she can fly or not. This class Insect is inherited by 4 different classes viz Cockroach,

Termite, Grasshopper and Ant. Each class does provide implementation of function flystatus.

In the main function we create an array of pointer ptr of class Insect type. In each location of

this array we assign dynamically created objects of various derived classes as shown :

ptr[0]=new Cockroach;

ptr[1]=new Termite;

ptr[2]=new Grasshopper;

ptr[3]=new Ant;

In the for loop when we call flystatus function using this pointer array ptr, respective

flystatus fuctions of each class is called.

/*PROG 10.24 TO FIND THE COLOR OF VEGETABLE AND WHERE THEY GROW */

#include <iostream.h>

#include <conio.h>

class Vegetable

{

public :

virtual void color()=0;

virtual void wh_grow()=0;

};

class Spanich :public Vegetable

{

public :

void color()

{

cout<<“Color of spinach is green”<<endl;

}

void wh_grow()

{

cout<<“Spinach grows above ground”<<endl;

}

};

class Potato :public Vegetable

{

public :

void color()

{

cout<<“ Color of Potato is white”<<endl;

}

Pointers to Objects and Virtual Functions 495

void wh_grow()

{

cout<<“Potato grows underground”<<endl;

}

};

class Onion :public Vegetable

{

public :

void color()

{

cout<<“Color of Onion is red “<<endl;

}

void wh_grow()

{

cout<<“Onion grows underground”<<endl;

}

};

class Tomato :public Vegetable

{

public :

void color()

{

cout<<“Color of Tomato is red”<<endl;

}

void wh_grow()

{

cout<<“Tomato grows above ground”<<endl;

}

};

void main()

{

clrscr();

Vegetable *ptr[4];

ptr[0]=new Spanich;

ptr[1]=new Potato;

ptr[2]=new Onion;

ptr[3]=new Tomato;

for(int i=0;i<4;i++)

{

ptr[i]->color();

ptr[i]->wh_grow();

496 Object-Oriented Programming C++ Simplified

}

getch();

}

OUTPUT :

Color of spinach is green

Spinach grows above ground

Color of Potato is white

Potato grows under ground

Color of Onion is red

Onion grows under ground

Color of Tomato is red

Tomato grows above ground

EXPLANATION : The class vegetable declares two pure virtual functions. The function

color is for finding the color of the vegetable and wh_grow for finding where the vegetable

grows underground or above ground. Any class which inherits the Vegetable class has to

redefined these functions and tell what the color of vegetable is and where it grows. This class

Vegetable is inherited by 4 different classes viz Spinach, Potato, Onion and Tomato. Each class

does provide implementation of both the functions. In the main we create an array of pointer

of ptr of class Vegetable type. In each location of this array we assign dynamically created

objects of various derived classes as shown :

ptr[0]=new Spanich;

ptr[1]=new Potato;

ptr[2]=new Onion;

ptr[3]=new Tomato;

/*PROG 10.25 CHECKING WHETHER SWEET CONTAINS MAWA AS ITS MAIN INGREDIENT */

#include <iostream.h>

#include <conio.h>

class Sweet

{

public :

virtual void mawastatus()=0;

};

class Burfi :public Sweet

{

public :

void mawastatus()

{

Pointers to Objects and Virtual Functions 497

cout<<“Burfi has mawa as one of its main ingredient”<<endl;

}

};

class Kajukatli :public Sweet

{

public :

void mawastatus()

{

cout<<“Kajukatli does not have mawa as one of its main ingredient”<<endl;

}

};

class Jalebee :public Sweet

{

public :

void mawastatus()

{

cout<<“Jalebee does not have mawa as one of its main ingredient”<<endl;

}

};

class Rasgulla :public Sweet

{

public :

void mawastatus ()

{

cout<<“Rasgulla does not have mawa as one of its main ingredient “<<endl;

}

};

void main()

{

clrscr();

Burfi B;

Kajukatli k;

Jalebee J;

Rasgulla R;

Sweet *ptr[4]={&B,&k,&J,&R};

for(int i=0;i<4;i++)

{

ptr[i]->mawastatus();

}

getch();

}

498 Object-Oriented Programming C++ Simplified

OUTPUT :

Burfi has mawa as one of its main ingredient

Kajukatli does not have mawa as one of its main ingredient

Jalebee does not have mawa as one of its main ingredient

Rasgulla does not have mawa as one of its main ingredient

EXPLANATION : The class Sweet declares one pure virtual function mawastatus. Any

classs which inherits this class has to redefine this function and tell whether they contain

mawa as one of its main ingredients. This class Sweet is inherited by 4 different class viz Burfi,

Kajukatli, Jalebee and Rasgulla. Each class does provide implementation of function mawastatus.

In the main we create an array of pointer ptr of class Sweet type. We also create an object of

the 4 derived classes. In the pointer array ptr, we assign the addresses of theses objects.

Burfi B;

Kajukatli k;

Jalebee J;

Rasgulla R;

Sweet *ptr[4]={&B,&k,&J,&R};

In the for loop when we call the function mawastatus using the pointer array ptr,

respective mawastatus function of each class is called.

10.8 OBJECT SLICING

Object slicing is a process of removing off the derived portion of the object when an object of

derived class is assigned to a base class object. Only the base class data are copied to derived

class object. Consider the following two classes :

class A

{

public :

int Ax, Ay;

};

class B :public A

{

public :

int Bx;

};

Through inheritance public data members Ax and Ay of class A are copied to class B.

When in the main we write as :

B b1; A a1;

a1=b1;

Pointers to Objects and Virtual Functions 499

Only the data members of object b1 which were inherited from class A are assigned to

object a1. The data member Bx of object b1 is not copied. That is we say that object b1 was

sliced off.

/*PROG 10.26 DEMO OF OBJECT SLICING VER 1*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

void show_demo()

{

cout<<“Hello from show of demo”<<endl;

}

};

class der_demo :public demo

{

public :

void show_der()

{

cout<<“Hello from show of der_demo”<<endl;

}

};

void main()

{

clrscr();

demo d1;

der_demo d2;

d1=d2;

d1.show_der();

getch();

}

OUTPUT :

ERROR MESSAGE

‘show_der’ is not a member of ‘demo’

EXPLANATION : In the main function when an object d2 of derived class der_demo is

assigned to an object d1 of base class demo. Only the inherited portion of base class is

assigned to d1. Through function are usually not part of the object but a function of one class

can be called from object of that class or from objects of derived class. Here from d1, we cannot

call the function show_der of derived class.

500 Object-Oriented Programming C++ Simplified

/*PROG 10.27 DEMO OF OBJECT SLICING VER 2*/

#include <iostream.h>

#include <conio.h>

class demo

{

public :

int bx,by;

demo(int x,int y)

{

bx=y;

by=y;

}

demo(){}

};

class der_demo :public demo

{

public :

int dx;

der_demo(int x,int y,int z) :demo(x,y),dx(z)

{

}

};

void main()

{

clrscr();

der_demo d2(10,20,30);

demo d1;

d1=d2;

cout<<d1.bx<<“\t”<<d1.by<<“\t”<<d1.dx;

getch();

}

OUTPUT :

ERROR MESSAGE

‘dx’;is not a member of demo

EXPLANATION : The class demo consists of two data members bx and by and der_demo
has just one data member dx. When in the main we write d1=d2, only the inherited data

members bx and by are assigned to object d1. The data member dx from d2 is not assigned to

d1. In the effect object d2 gets sliced. So you cannot call dx from an object of demo class.

Pointers to Objects and Virtual Functions 501

10.9 SOME FACTS ABOUT VIRTUAL FUNCTION

/*PROG 10.28 CALLING VIRTUAL FUNCTION EXPLICITLY */

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“In show of first”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“In show of second”<<endl;

}

};

void main()

{

clrscr();

first f;

f.show();

second s;

s.show();

getch();

}

OUTPUT :

In show of first

In show of second

EXPLANATION : The basic aim of the program is to simply show that virtual functions

can be called explicitly using objects of class. virtual mechanism works only in case of

pointers to object.

502 Object-Oriented Programming C++ Simplified

/*PROG 10.29 PURE VIRTUAL FUNCTION CAN HAVE BODY */

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()=0

{

cout<<“In show of first”<<endl;

}

};

class second :public first

{

public :

void show()

{

cout<<“In show of second”<<endl;

}

};

void main()

{

clrscr();

first *ptr=new second;

ptr->show();

getch();

}

OUTPUT :

In show of second

EXPLANATION : The sole aim of this program is to show that a pure virtual function can

have body but in no way we can use this body.

/*PROG 10.30 CALLING VIRTUAL FUNCTION FROM CONSTRUCTION VER 1*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

Pointers to Objects and Virtual Functions 503

virtual void silly()

{

cout<<“Hello from silly of first”<<endl;

}

first ()

{

silly ();

}

};

class second :public first

{

public :

void silly()

{

cout<<“Hello from silly of second”<<endl;

}

};

void main()

{

clrscr();

(new second);

getch();

}

OUTPUT :

Hello from silly of first

EXPLANATION : In the above program when object of second class is created. First

constructor of first class gets called then constructor of second class. In the first class

we are calling the function silly which has been overridden in derived class second. As

derived class second will be constructed when its constructor would be called. Compiler has

at this time no idea of silly function present in second class. So the base class first version

of silly is called.

/*PROG 10.31 CALLING VIRTUAL FUNCTION FROM CONSTRUCTOR VER 2*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

504 Object-Oriented Programming C++ Simplified

virtual void silly()

{

cout<<“Hello from of first”<<endl;

}

first()

{

silly();

}

};

class second :public first

{

public :

second()

{

silly();

}

void silly()

{

cout<<“Hello from silly of second”<<endl;

}

};

void main()

{

clrscr();

second s;

getch();

}

OUTPUT :

Hello from of first

Hello from silly of second

EXPLANATION : Here it is clear from the program that we are calling silly function

from construtor of both the classes. The silly of first class is called from constructor of

class first. As silly was defined in the class second and is called from its constructor,

silly of second class will be called too. We have simply followed the normal calling of

constructor in inheritance.

10.10 VIRTUAL DESTRUCTOR

There is no concept of virtual constructor in C++ but a virtual destructor can be in C++. In

the normal call sequence of constructor and destructor, they follows the basic rules which have

Pointers to Objects and Virtual Functions 505

been discussed earlier i.e., constructor of base class is called first and destructor of derived

class calls first even the destructor in the base class is virtual. See the program given below

for better understanding point of view.

/*PROG 10.32 DEMO OF VIRTUAL DESTRUCTOR VER 1*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

first()

{

cout<<“First con called”<<endl;

}

virtual ~first()

{

cout<<“First des called”<<endl;

}

};

class second :public first

{

char *ptr;

public :

second()

{

ptr=new char[10];

cout<<“Second con called”<<endl;

}

~second()

{

cout<<“Second des called”<<endl;

delete ptr;

}

};

void main()

{

clrscr();

second s;

getch();

}

506 Object-Oriented Programming C++ Simplified

OUTPUT :

(First run)

First con called

Second con called

Press (Alt+F5) to see the function of virtual destructor which are given below :

First con called

Second con called

Second des called

First des called

EXPLANATION : The output is simple to understand. Note the destructor is virtual but

the output is as we expect. Constructor of base class is called first and destructor of derived

class is called first.

We have seen earlier that virtual mechanism works only in case of pointers. Same is true

with virtual destructor. But before telling you the actual use of virtual destructor we modify the

above program as shown below (here constructor are omitted).

/*PROG 10.33 DEMO OF VIRTUAL DESTRUCTOR VER 2*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

~first()

{

cout<<“first des called”<<endl;

}

};

class second :public first

{

char *ptr;

public :

~second()

{

cout<<“Second des called”<<endl;

}

};

void main()

{

Pointers to Objects and Virtual Functions 507

clrscr();

first *f=new second;

delete f;

getch();

}

OUTPUT :

first des called

EXPLANATION : As pointer f is of class first type, only the destructor of first class

is called. But ideally destructor of second class should get called first, after that destructor

would be called, so that memory for string pointer ptr would be de-allocated. The solution is

to make destructor of class first as virtual. See the next program.

/*PROG 10.34 DEMO OF VIRTUAL DESTRUCTOR VER 3*/

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual ~first()

{

cout<<“First des called”<<endl;

}

};

class second :public first

{

char *ptr;

public :

second()

{

ptr=new char [10];

}

~second ()

{

cout<<“Second des called”<<endl;

delete ptr;

}

};

void main()

508 Object-Oriented Programming C++ Simplified

{

clrscr();

first *f=new second;

delete f;

getch();

}

OUTPUT :

Second des called

First des called

EXPLANATION : In the main we have declared a pointer of type first and in the pointer

we have stored address of an object of class second. When delete ptr executes, destructor of

second class is called first then destructor of first class is called. This is just because of virtual.

If it were not in the first class only the destructor of first class would have been called and ptr

wouldn’t be deleted. So this is the main use of virtual destructor where you have pointer of

base class and object stored is of derived class.

10.11 PONDERABLE POINTS

1. A pointer of base class can store address of an object of derived class but reverse is not

true.

2. This pointer is a constant pointer which stores the address of the current object.

3. This pointer can only be used inside the non-static member functions of the class.

4. In the absence of virtual keyword, pointer of base class will call only its function no

matter address of what type of object is stored inside the pointer.

5. When virtual function is present then function call is made by checking the contents

of pointer rather then checking type of pointer.

6. For every class in which virtual function is present and all other classes derived from

this class, VTABLE is created.

7. The VTABLE contains addresses of all the virtual function present/inherited in the

class. A special pointer vptr points to the VTABLE.

8. A pure virtual function is a function which has no body.

9. For a class to be abstract class, it must have at least one pure virtual function.

10. Pointers and references of an abstract class can be created.

11. Virtual function is the only mechanism to provide-run-time polymorphism in C++.

12. Binding is the linking of function call with the place where function definition is

written.

13. When binding is done at compile time it is known as early-binding, compile time

binding or static binding.

14. When binding is done at run time it is known as late-binding, runtime binding or

dynamic binding.

Pointers to Objects and Virtual Functions 509

15. Static binding provides efficiency but less flexible.

16. Dynamic binding provides flexibility but less efficient.

EXERCISE

A. True and False :

1. An abstract class can be instantiated.

2. This pointer points to current object only.

3. A class containing at least one pure virtual function is known as abstract class.

4. A class whose objects cannot be created is known as abstract class.

5. All functions in an abstract base class must be declared as abstract class.

6. Virtual function cannot be overloaded.

7. Polymorphism can be implemented only using virtual functions.

B. Answer the Following Questions :

1. How do create pointer to objects of a class?

2. How can be call member function of derived class when pointer is of base class and virtual

keyword is not present ?

3. What is virtual function ?

4. What is VTABLE ?

5. How does virtual function works ?

6. What is this pointer ? What are its main characteristics ?

7. How do we implement run-time polymorphism in C++ ?

8. What is binding ? What is the significance of binding ?

9. What is an abstract class ?

10. What is pure virtual function ? How it is different from all other functions ?

11. Why cannot we create an object of an abstract class ?

12. What is object slicing ?

13. What is the significance of virtual destructor ?

14. Why cannot we have virtual destructor ?

15. Can we call virtual function explicitly without using pointers ?

C. Brain Drill :

1. Suppose that there is an abstract class ‘Shape’, which is the base class of classes ‘Polygon’ and

‘Circle’. “Polygon” class is the base class from which a class Rectangular is derived. Pure virtual

functions compute Area and compute Perimeter are declared in the class Shape. These functions

are actually defined in the derived classes “Rectangle” and “Circle”. Define the classes “Shape”,

“Polygon”, “Rectangle” and “Circle”. Write a global function “ComputeAllArea” as double

computeAllArea(Shape*s[100], int numberofShapes).

The above function computes the total area of all shapes object pointed to by s[0], s[1],

….s[numberOfShapes].

510 Object-Oriented Programming C++ Simplified

2. Suppose that you need to define classes for employee and manager objects. An employee has a

name, an employee code, salary and age. A manager is also an employee. But a manager object

contains an additional list of references to employee objects that the manager supervises. An

employee object should also contain a reference to his/her manager. A manager can supervises at

most 10 employee. It is required to print details of employee or a manager. When information of

an employee object is printed, his/her name, salary and age is printed. When information of a

manager object is printed, his/her name, salary and age is printed and names of all the employees

that he/she supervises are displayed. Define the classes keeping the following in mind :

(a) References to employee objects can be added/deleted from the list of supervised employees

in a manager object.

(b) Reference to the manager object can be modified for an employee object.

����

11.1 INTRODUCTION

INPUT-OUTPUT AND
MANIPULATORS IN C++

In all the earlier chapters, we have worked with cin and cout for taking all different types of
data as input and displaying them. But, we have not worked with the formatted output i.e., the
way we want to print the data onto screen. For managing the input and output operations C++
provides the concept of stream classes. We know that cin is treated as standard input stream
and cout as standard output stream classes. We known that cin is treated as standard input
streams and cout as standard output streams. A stream is termed as input stream and when
uala i~ senl uy Ule program lu Lhe uulvuL device ~ay ~c:reen, Lhe :;Lream lermeu i:l~ UUliJUl
stream. It is quite obvious as we have seen in almost all the C++ programs so far that to take
data from keyboard we have cin, which receives data and display s onto the screen. Thus, cin
is standard input stream and cout is standard output stream.

We have also said that > > is an extraction operator <<is insertion operator. This is so
as cin > > extraction data from input stream from input stream and cout < < displays inserts
data into output stream. C++ provides numbers of stream classes for the efficient handling
input and output and which is our next topic of discussion.

11.2 C + + STREAM CLASSES

In C++ there are number of streams classes for defining various streams related with files and
for doing input output operations. All these classes are defined in the file iostream.h. Figure
given below shows the hierarchy of these classes :

511

512 Object-Oriented Programming C++ Simplified

iostream_withassignistream_withassign ostream_withassign

iostream

istream ostreamstreambuf

ios

Figure 11.1. Hierarchy of ios file

As can be seen from the figure that :

1. ios class is the topmost class in the stream classes hierarchy. It is the base class for
istream, ostream and streambuf class.

2. istream, ostream serves the base classes for iostream class. The class istream is used
for input and ostream for output.

3. Class ios is indirectly to iostream class using istream and ostream. To avoid the
duplicity of data and member functions of ios class, it is declared as virtual base class

when inheriting in istream and ostream as :

class istream : virtual public ios

{

};

class ostream :virtual public ios

{

};

4. The _withassign classes are provided with extra functionality for the assignment
operations that’s why _withassign classes.

After discussing about various stream classes we now understand their purpose and what
type of facilities are provided by these stream classes.

1. The ios Class

The ios class is responsible for providing all input and output facilities to all other stream
classes as it is the topmost class in the hierarchy of stream classes. As we will be seeing later
in the chapter, this class provides number of functions for efficient handling of formatted

output for strings and numbers.

2. The istream Class

This class is responsible for handling input stream. It provides number of functions for handling
chars, strings and objects, record etc, besides inheriting the properties from ios class. The
istream class provides the basic capability for sequential and random—access input. An istream

Input-Output and Manipulators in C++ 513

object has a streambuf-derived object attached, and the two classes work together; the istream
class does the formatting, and the streambuf class does the low-level buffered input. The class
provides number of methods for input handling such as get, getline, read, peek, gcount, ignore,

eatwhite, putback etc. This class also contains overloaded extraction operator >> for handling
all data types such as int, signed int, char, long, double, float, long double. The extraction
operator is also overloaded for handling streambuf and istream types of objects.

3. istream_withassign Class

The istream_withassign class is a variant istream that allows object assignment. The predefined
object cin is an object of this class and thus may be reassigned at run time to a different istream

class.

4. ostream_withassign Class

The ostream_withassign class is variant of ostream that allows object assignment. The predefined

object cout, cerr and clog are objects of this class and thus may be reassigned at run time to
a different ostream object.

11.3 UNFORMATTED INPUT/OUTPUT

Until now is all the program with the help of cin and cout we have taking input without making
use of any formatting function. Thus, general syntax of using data as input and output is as
follows :

cin>>data1>>data2>>data3>>………………………………>>data n;

cout<<data1<<data2<<data3<<……………………………<<data n;

Where data1, data2…. Are variables of int, char, float etc.

Here data is scanned as it is input and similarly it is displayed as it. This is because the

operator >> and << overloaded for all the basic types like int, char, unsigned, float etc.

In case of string data the input breaks at occurrence of very first white space character
like tab or space. Similarly for reading int, float etc., input must match the type of variable in
which you are accepting it.

Before discussing how to format data for input and output we first see few functions for
input and output character, scanning and printing strings.

1. The get Function

This function is used to scan a single character from the keyboard. There are two different
syntaxes of using get function.

(a) void cin.get(char);

(b) char cin.get();

In the first syntax get function takes an argument of type char. This is used as :

char x;

cin.get(x);

514 Object-Oriented Programming C++ Simplified

The input character entered from keyboard is taken into the x.

In the second syntax the entered character is returned by the get function. This is used
as :

char x = cin.get ();

2. The put Function

The function is used to put a single character onto the screen. Its general syntax is given
as :

void put (char);

The character to be displayed is passed as argument to function put. This is used as :

char x = ‘P’;

cout.put(x)

We can even pass ASCII values to put function which is converted internally to their
character counterpart i.e.,

count. put (97)

Will display a.

3. The getline Function

The syntax of the function is given as :

istream& getline (char *pch, int ncount, char delim=’\n’);

We have seen usage of this function in number of program earlier. The function getline

scans character into the array pch till nCount-1 has been scanned or delim is encountered, the
default is ‘\n’. An example.

char str [20];

cin.getline (str, 20,’$’);

This function scans first 19 character or break at the very first occurrence of ‘$’ character.
The function getline scans all white characters like tab, spaces etc. As function returns reference
of istream type we can write function getline as :

char s1[10], s2 [10];

cin. getline (s1, 10).getline (s2, 10);

4. The write Function

ostream & write (const char * pch, int nCount);

The function display nCount character from the array pch. For instance.

cout.write (“hello”, 3);

display : hel

Input-Output and Manipulators in C++ 515

As return type of function write is ostream type we can write multiple write statement s
to form one as :

cout.write (“hello”, 5).write (“world”, 6);

is equal to

cout.write (“hello”, 5);

cout.write (“world”, 6);

5. The gcount Function

The prototype is

int gcount () const;

Returns the number of characters extracted by the last unformatted input function.
Formatted extraction operators may call unformatted input functions and thus reset this number.

6. The putback Function

The prototype of the function is given as :

istream & putback(char ch);

Puts a character back into the input stream. The putback function may fail and set the
error state. If ch does not match the character that was previously extracted, the result is
undefined.

7. The peek Function

The prototype is given as :

int peek ();

Returns the next character without extracting it from the stream. Returns EOF if the
stream is end of file.

8. The eatwhite Function

The prototype is given as follows :

void eatwhite ();

Extract white spaces from the stream by advancing the get pointer past spaces and tabs.

9. The ignore Function

istream & ignore (int nCount =1,int delim=EOF);

Extracts and discards up to nCount characters. Extraction stops if the delimiter delim is
extracted or the end of file is reached. If delim = EOF (the default), then only the end of file
condition causes termination. The delimiter character is extracted.

516 Object-Oriented Programming C++ Simplified

For all the function from 5 to 9 usages is given in the programs given later.

/*PROG 11.1 DEMO OF INPUTTING A CHARACTER USING get()*/

#include <iostream.h>

#include <conio.h>

void main()

{

clrscr();

char ch;

cout<<“Enter a character :=”;

cin.get(ch);

cout<<“You have entered :=”<<ch<<endl;

getch();

 }

OUTPUT :

Enter a character : =S

You have entered : =S

EXPLANATION : We simply input a character from the user and accept it using cin.get

() function. Later we display the character using cout.

/*PROG 11.2 DEMO OF INPUTTING A CHARACTER USING get() AND OUTPUT USING

put()*/

#include <iostream.h>

#include <conio.h>

void main()

{

char ch;

clrscr();

cout<<“Enter a character :=”;

ch=cin.get();

cout<<“You entered :=”;

cout.put(ch);

Input-Output and Manipulators in C++ 517

getch();

}

OUTPUT :

Enter a character : =a

You entered : =a

EXPLANATION : Here, we have used the second version of cin.get() which returns the
character entered by the user. This is stored in ch. This character is then displayed back using
cout.put(ch)

/*PROG 11.3 DEMO OF put()*/

#include <iostream.h>

#include <conio.h>

void main()

{

char ch=97;

clrscr();

cout<<“Character is :=”;

cout.put(ch);

getch();

 }

OUTPUT :

Character is : = a

EXPLANATION : A character can store integers in terms of ASCII values of characters.
Hence 97 is stored in the character ch. When we display it we get character ‘a’.

/*PROG 11.4 DISPLAYING ASCII AND CHARACTER VALUES */

#include <iostream.h>

#include <conio.h>

void main()

{

char ch;

clrscr();

518 Object-Oriented Programming C++ Simplified

for(ch=65;ch<91;ch++)

{

cout<<int (ch)<<“––>”;

cout.put(ch)<<“\t”;

ch++;

cout<<int(ch)<<“––>”;

cout.put(ch)<<endl;

}

getch();

}

OUTPUT :

65––>A 66––>B

67––>C 68––>D

69––>E 70––>F

71––>G 72––>H

73––>I 74––>J

75––>K 76––>L

77––>M 78––>N

79––>O 80––>P

81––>Q 82––>R

83––>S 84––>T

85––>U 86––>V

87––>W 88––>X

89––>Y 90––>Z

EXPLANATION : In the program we are displaying alphabets in upper-case and their
ASCII values too. Note we have type casted character to int thus statement int(ch) displays
ASCII value of ch. But put method displays the character value only.

/*PROG 11.5 ENTER A LINE OF TEXT AND DISPLAY IT BACK USING get() AND put()

FUNCTION */

#include <iostream.h>

#include <conio.h>

void main()

{

char ch;

clrscr();

Input-Output and Manipulators in C++ 519

cout<<“Enter a line of text”<<endl;

cin.get(ch);

while(ch!=’\n’)

{

cout.put(ch);

cin.get(ch);

}

getch();

}

OUTPUT :

Enter a line of text

this is NMIMS university

this is NMIMS university

EXPLANATION : The first character of line entered is scanned in ch using get method.

It is checked whether entered character is \n or not. If it is not we display it on to the screen
using put and scan the next character again. As soon as next character scanned in equal to ‘\n’
the while loop terminates. Note the whole line is displayed when you press Enter. The entered
data is stored in the input before displaying back to screen.

/*PROG 11.6 ENTER A LINE OF TEXT AND DISPLAY IT BACK USING getline AND cout */

#include <iostream.h>

#include <conio.h>

void main()

{

char str[50];

clrscr();

cout<<“Enter line of text”<<endl;

cin.getline(str,50);

cout<<“You entered “<<endl;

cout<<str<<endl;

getch();

}

OUTPUT :

Enter line of text

520 Object-Oriented Programming C++ Simplified

THE WELL OF PROVIDENCE IS DEEP. IT’S THE BUCKETS WE BRING TO IT THAT ARE SMALL

You entered

THE WELL OF PROVIDENCE IS DEEP. IT’S THE BUCKETS WE BRING TO IT THAT ARE SMALL

EXPLANATION : In the earlier program, we were taking input character by character but
here whole line is scanned at once using getline() function/method. The getline scan the

line till \n (new line) is not pressed or till the first 49 characters have been scanned (second
parameter). It scans white space character also like tab, spaces etc.

/*PROG 11.7 ENTER A LINE OF TEXT AND DISPLAY IT BACK USING getline AND write

FUNCTION */

#include <iostream.h>

#include <conio.h>

#include <string.h>

 void main()

 {

 char str[100];

 clrscr();

 cout<<“====================================”<<endl;

 cout<<“Enter a line of text”<<endl;

 cout<<“====================================”<<endl;

 cin.getline(str,100);

 cout<<“====================================”<<endl;

 cout<<“You have entered”<<endl;

 cout<<“====================================”<<endl;

 cout.write(str,strlen(str));

 cout<<”================================”<<endl;

 getch();

 }

OUTPUT :

===

Enter a line of text

===

Life is like an ice-cream. Eat it before it melts

===

You have entered

Input-Output and Manipulators in C++ 521

===

Life is like an ice-cream. Eat it before it melts

===

EXPLANATION : The write method displays the str onto the screen. It takes two parameters :

(a) First one is the string.

(b) Second one is its length.

Depending upon the length, that number of characters is displayed.

/*PROG 11.8 DISPLAY PATTERN USING write METHOD */

#include <iostream.h>

#include <conio.h>

#include <string.h>

void main()

{

char str [20];

int i,len;

clrscr();

cout<<“======================================”<<endl;

cout<<“Enter a string”<<endl;

cout<<“======================================”<<endl;

cin.getline(str,20);

len=strlen(str);

cout<<“======================================”<<endl;

cout<<“Pattern is”<<endl;

for(i=1;i<=len;i++)

{

cout.write(str,i);

cout<<endl;

}

for(i=len;i>=1;i––)

{

cout.write(str,i);

cout<<endl;

}

cout<<endl;

cout<<“======================================”<<endl;

getch();

}

522 Object-Oriented Programming C++ Simplified

OUTPUT :

===

Enter a string

===

UNIVERSITY

===

Pattern is

U

UN

UNI

UNIV

UNIVE

UNIVER

UNIVERS

UNIVERSI

UNIVERSIT

UNIVERSITY

UNIVERSITY

UNIVERSIT

UNIVERSI

UNIVERS

UNIVER

UNIVE

UNIV

UNI

UN

U

===

EXPLANATION : The first for loop

for(i=1;i<=len;i++)

{

cout.write(str,i);

cout<<endl;

}

Display the pattern as :

U

UN

UNI

Input-Output and Manipulators in C++ 523

UNIV

UNIVE

UNIVER

UNIVERS

UNIVERSI

UNIVERSIT

UNIVERSITY

As i varies from 1 to length of the string and this i is used as second argument of method
write. Second for loop

for(i=len;i>=1;i––)

{

cout.write(str,i);

cout<<endl;

}

Display the following pattern as :

UNIVERSITY

UNIVERSIT

UNIVERSI

UNIVERS

UNIVER

UNIVE

UNIV

UNI

UN

U

As i varies from len-1 to i decrementing in each iteration.

/*PROG 11.9 DISPLAYING FULL NAME USING write METHOD */

#include <iostream.h>

#include <string.h>

#include <conio.h>

void main()

{

char fname [20],lname[20];

cout<<“Enter first name :=”;

cin>>fname;

524 Object-Oriented Programming C++ Simplified

cout<<“Enter the last name :=”;

cin>>lname;

cout<<“Your full name :=”;

ostream & refcout=cout.write(fname, strlen(fname));

refcout.write(“ “,1);

refcout.write(lname,strlen(lname));

cout<<endl;

getch();

}

OUTPUT :

Enter first name : =HARI

Enter the last name : =PANDEY

Your full name : =HARI PANDEY

EXPLANATION : The statement given below as :

ostream & refcout=cout.write(fname, strlen(fname));

First display fname onto the screen and then returns reference of ostream type which is

stored in refcout. In the next statement we use this refcout to display lname using write
method. The whole of the write statements can be written in the shorter form as :

cout.write(fname, strlen (fname))

Write(““,1).write (lname,strlen(lname));

11.4 FORMATTED INPUT/OUTPUT OPERATIONS

In C++ for formatting input and output we have three methods :

1. Use of functions and flags defined by ios class.

2. Use of manipulators (built-in)

3. User defined manipulators.

1. Use of Functions and Flags Defined by ios Class

A. ios Function and Flags

The class ios provides number of formatting functions for input and output. The most frequently
used are listed below :

(a) The width () Function

The function is used to set the width i.e., field size for displaying a data value of type
numeric or string. The syntax of this is as follows :

Input-Output and Manipulators in C++ 525

int width (int);

It can be used with cout object as follows :

cout.width (5);

cout<<123;

1 2 3

cout . width (5);

Figure 11.2. Implementation of width function

For each data value to be printed separate width function has to be used. That is for the
following.

cout.width(5);

cout<<123;

cout<<45;

Only for the first cout statement width is set and not for the second. For printing second
cout statement in a width of 5 we will have to write.

cout.width(5);

cout<<123;

cout.width(5);

cout<<45;

(b) The precision Function

The function is used for setting the number of digits to be displayed after a floating point
number. Its syntax is :

int precision (int);

It can be used as :

cout.precision (3);

cout<<123.456789;

Output displayed is given as :

1 32 4 5 6 7 8 9

OUTPUT cout . precision (3)

Figure 11.3. Implementation of precision function

526 Object-Oriented Programming C++ Simplified

i.e., output becomes 123.456

Unlike width function the precision takes the setting in the effect for all cout statements
that follows after cout.precision. To change the new precision one has to provide new value

inside precision function.

(c) The fill Function

The fill function is used to fill the empty spaces in the given field size set by width
function. Its syntax is given as :

char fill (char);

It can be used as :

cout.width (10);

cout.fill (‘#’);

cout<<23456;

The output for the above given code snippet is given as :

cout . fill (‘#’); cout<<23456;

2 3 4 5 6

cout . width (10);

Figure 11.4. Implementation of fill function

(d) The setf Function

This function is used for setting the various flags for controlling the output such as
displaying such as displaying output left justified or right justified, displaying numbers in
decimal, hex, octal, scientific notation etc. This function is discussed in detail later.

(e) The unsetf Function

The function is used for clearing the flags previously set by setf function.

/*PROG 11.10 DEMO OF WIDTH FUNCTION VER 1*/

#include <iostream.h>

#include <conio.h>

void main()

{

int a = 1234, b = 645, c = 28, d = 8;

clrscr();

Input-Output and Manipulators in C++ 527

cout<<“================================”<<endl;

cout<<“THE DEMO OF width IS GIVEN BELOW”<<endl;

cout<<“================================”<<endl;

cout.width(8);

cout<<a<<endl;

cout<<b<<endl;

cout<<c<<endl;

cout<<d<<endl;

cout<<“================================”<<endl;

getch();

}

OUTPUT :

================================

THE DEMO OF width IS GIVEN BELOW

================================

 1234

645

28

8

================================

EXPLANATION : The aim of above program is to demonstrate the basic functionality of
width function. When compiler control read the statement cout.width (8); it will create a block

of 8 cells and set the value 1234 as right alignment. Other value will be set as usual.

/*PROG 11.11 DEMO OF WIDTH FUNCTION VER 2 */

#include <iostream.h>

#include <conio.h>

void main()

{

int a= 12345, b = 1234, c =123, d = 12, e=1;

clrscr();

cout<<“=======================================”<<endl;

cout<<“\tTHE PATTERN IS GIVEN AS”<<endl;

cout<<“=======================================”<<end;

cout.width(8);

528 Object-Oriented Programming C++ Simplified

cout<<a<<endl;

cout.width(8);

cout<<b<<endl;

cout.width(8);

cout<<c<<endl;

cout.width(8);

cout<<d<<endl;

cout.width(8);

cout<<e<<endl;

cout<<“=======================================”<<endl;

getch();

}

OUTPUT :

===

 THE PATTERN IS GIVEN AS

===

 12345

 1234

 123

 12

 1

===

EXPLANATION : The width function first set the width of 8 characters and then displays

the data followed in the width of 8 starting from right justified and left padded. For each data
to be printed, separated width has to be set first.

1 2 3 4 5

1

2

3

4

1

3

21

21

Right justified

Left Padded

cout . width (8); (creates size for 8 characters)

Figure 11.5. Demo of width function

Input-Output and Manipulators in C++ 529

/*PROG 11.12 DEMO OF WIDTH FUNCTION VER 2*/

#include <iostream.h>

#define S 5

#include <conio.h>

void main()

{

int arr[S], i;

clrscr();

cout<<“ Enter the “<<S<<“numbers”<<endl;

for(i=0;i<S;i++)

{

cin>>arr[i];

}

cout.width(10);

cout<<“===================================”<<endl;

cout<<“ Number”;

cout<<“ Square”;

cout<<endl;

for(i=0;i<S;i++)

{

 cout.width(10);

 cout<<arr[i];

 cout.width(10);

 cout<<arr[i]*arr[i];

 cout<<endl;

}

cout<<“===================================”<<endl;

getch();

}

OUTPUT :

Enter the 5numbers

47

78

98

99

156

530 Object-Oriented Programming C++ Simplified

===================================

Number Square

47 2209

78 6084

98 9604

99 9801

156 24336

===================================

EXPLANATION : For displaying Number and Square as heading we set the width 10. In
the for loop for displaying the number and their square same width is set again.

/*PROG 11.13 DEMO OF WIDTH AND FILL FUNCTION TOGETHER */

#include <iostream.h>

#include <conio.h>

void main()

{

int a = 12345, b = 1234, c= 123, d = 12, e=1;

clrscr();

cout<<“+*+*+*+**+*+*+*+*+*+*+**+*+*+*+*+*+*+*”<<endl;

cout<<“DEMO OF fill AND width FUNCTION”<<endl;

cout<<“+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*”<<endl<<endl;

cout.fill(‘$’);

cout.width(8);

cout<<a<<endl;

cout.width(8);

cout<<b<<endl;

cout.width(8);

cout<<c<<endl;

cout.width(8);

cout<<d<<endl;

cout.width(8);

cout<<e<<endl;

cout<<endl<<“+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*+*”<<endl;

getch();

}

OUTPUT :

+*+*+*+*+*+*+*+*+*+*+*+**+*+*+*+*+*+*+**+*+*+*+*+*+*+*

DEMO OF fill AND width FUNCTION

+*

Input-Output and Manipulators in C++ 531

$$$12345

$$$$1234

$$$$$123

$$$$$$12

$$$$$$$1

+

EXPLANATION : If whole of the width allocated is not utilized by the data to be printed,

remaining empty spaces can be filled using cout.fill(); method. The fill function takes a
character as argument which acts as a filling character. Once this is set extra spaces will be
filled by character specified as argument to fill method.

The output of the above program can be shown diagrammatically as follows :

1 2 3 4 5

1

2

3

4

1

3

21

21

Right justified

cout . fill (‘$’); (Fill a character at the extra spaces)

cout . width (8); (creates size for 8 characters)

$

$

$ $ $

$ $

$ $

$ $ $

$ $ $

$

$ $ $ $

$

$

$

$ $

Figure 11.6. Demo of fill and width function together.

/*PROG 11.14 DEMO OF PRECISION FUNCTION */

#include <iostream.h>

#include <conio.h>

void main()

{

clrscr();

cout<<“##################################”<<endl;

cout<<“ DEMO OF PRECISION FUNCTION”<<endl;

cout<<“##################################”<<endl;

cout.precision (3);

cout<<“\t”<<123.12345<<endl;

cout.precision(4);

cout<<“\t”<<345.656767<<endl;

532 Object-Oriented Programming C++ Simplified

cout.precision(10);

cout<<“\t”<<22/7.0<<endl;

cout<<endl;

cout<<“###################################”<<endl;

getch();

}

OUTPUT :

##################################

 DEMO OF PRECISION FUNCTION

##################################

 123.123

 345.6568

 3.1428571429

###################################

EXPLANATION : In the program we have set the precision at 3 different places and all

are different. Program can be best understood by viewing the output of the program.

/*PROG 11.15 DEMO OF width AND precision FUNCTION TOGETHER IN A SINGLE PROGRAM

*/

#include <iostream.h>

#include <conio.h>

#include <math.h>

#define S 5

void main()

{

float arr[S]={34.0, 79.0, 67.0, 33.0, 24.0};

int i;

clrscr();

cout<<“#$#$#$#$#$#$#$#$$#$#$#$#$#$#$#$#$#$#$#$#$#$#$”<<endl;

cout<<“DEMO OF WIDTH AND PRECISION FUNCTION TOGETHER”<<endl;

cout<<“$#$”<<endl;

cout.precision(4);

cout<<endl<<“+++++++++++++++++++++++++++++++++++++”<<endl;

cout.width(8);

cout<<“Number”;

cout.width(15);

Input-Output and Manipulators in C++ 533

cout<<“Square Root”<<endl;

cout<<“++”<<endl;

for(i=0;i<S;i++)

{

cout.width(5);

cout<<arr[i];

cout.width(12);

cout<<sqrt(arr[i]);

cout<<endl;

}

cout<<“+++”<<endl;

getch();

}

OUTPUT :

#$#$#$#$#$#$#$#$$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#$#

 DEMO OF WIDTH AND PRECISION FUNCTION TOGETHER

$#

++

 Number Square Root

++

 34 5.831

 79 8.8882

 67 8.1854

 33 5.7446

 24 4.899

+++

EXPLANATION : The program is self explanatory.

(f) Formatting Using setf Function

The setf function is very important function for printing output in a verity of fashion.

Whether it is numeric data or string data. The function stands for setting the flag. There are
two different variant of setf.

(i) The first syntax of setf is given below as :

long setf (long Flags, long Mask);

The first statement Flags is number of flags defined in the class ios. Each flag is equivalent

of 1 if set. For combining many flag, OR (|) can be used. The second parameter Mask specifies
the group to which first parameter belongs. The Mask parameter is also known as bit-field. The
table given below shows all types of formatting flags and their corresponding Mask.

534 Object-Oriented Programming C++ Simplified

Table 11.1 : Formatted Flags Used in C++

S.No. Flags Mask Output

1. ios : :left ios : :adjustfield Left justified

2. ios : :right ios : :adjustfield Right justified

3. ios : :internal ios : :adjustfield Add fill characters after any

leading sign or base indication

4. ios : :scientific ios : :floatfield Scientific notation

5. ios : :fixed ios : :floatified Fixed point notation

6. ios : :doc ios : :basefield Output in decimal

7. ios : :hex ios : :basefield Output in hex

8. ios : :oct ios : :basefield Output in octal

(g) The Second Syntax of setf is :

long stef (long flags);

Function turns on only those format bits that are specified b 1s in flags. It returns a long
that contains the previous values of all the flags. These are the flags which are used independently
without the use of Mask parameter. The table given below lists all the flags :

Table 11.2 : Formatted Flags Used in C++

S.No. Flags Purpose

1. ios : :showpoint Show decimal point and trailing zero for floating-point values.

2. ios : :showbase Display numeric constants in a format that can be read by the
C++ compiler.

3. ios : :showpos Show plus sign (+) for positive values.

4. ios : :uppercase Display uppercase A through F for hexadecimal values and E for
scientific values.

5. ios : :skipws Skip white space on input

6. ios : :unitbuf Flush the stream after each insertion.

7. ios : :stdio Flush stdout and stderr after each insertion

/*PROG 11.16 DEMO OF FORMATTING FLAGS VER 1*/

#include <iostream.h>

#include <conio.h>

void main()

{

char s[]=”Hello”;

Input-Output and Manipulators in C++ 535

clrscr();

cout<<“——————————————————”<<endl;

cout<<“STRING WITHOUT SETTING WIDTH\n”;

cout<<“——————————————————”<<endl;

cout<<s<<endl;

cout<<endl<<“———————————————”<<endl;

cout<<“STRING AFTER SETTING WIDTH AND PADDING”<<endl;

cout<<“——————————————————”<<endl;

cout<<“RIGHT JUSTIFIED”<<endl;

cout<<“——————————————————”<<endl;

cout.fill(‘&’);

cout.setf(ios : :right, ios : :adjustfield);

cout.width(15);

cout<<s<<endl;

cout<<“———————————————————”<<endl;

cout<<“LEFT JUSTIFIED”<<endl;

cout<<“———-———————————————”<<endl;

cout.fill(‘&’);

cout.setf(ios : : left,ios : : adjustfield);

cout.width(15);

cout<<s<<endl;

cout<<“———--———————————————”<<endl;

getch();

}

OUTPUT :

————————————————————-

STRING WITHOUT SETTING WIDTH

————————————————————-

Hello

————————————————————-

STRING AFTER SETTING WIDTH AND PADDING

————————————————————-

RIGHT JUSTIFIED

————————————————————-

&&&&&&&&&&Hello

————————————————————-

LEFT JUSTIFIED

————————————————————-

Hello&&&&&&&&&&

————————————————————-

536 Object-Oriented Programming C++ Simplified

EXPLANATION : For the following settings :

cout.fill(‘&’);

cout.setf(ios : :right, ios : :adjustfield);

cout.width(15);

cout . width (15)

cout . setf (ios : : right, ios : : adjustfield);

O

O

L

L

L

L

E

E

H

H

cout . fill (‘&’) ;

& & & & & & & & & &

Figure 11.7. Implementation of ios flags

Now, by changing ios :: right to ios :: left we get the output as :

cout . width (15)

cout . setf (ios : : left, ios : : adjustfield);

O

O

L

L

L

L

E

E

H

H

cout . fill (‘&’) ;

& & & & & & & & & &

Figure 11.8. Implementation of ios flags

Input-Output and Manipulators in C++ 537

/*PROG 11.17 DEMO OF FORMATTING FLAGS VER 2*/

#include <iostream.h>

#include <conio.h>

void main()

 {

 clrscr();

 cout<<“================================”<<endl;

 cout<<“THE FIRST FORMATTED FLAG”<<endl;

 cout<<“================================”<<endl;

 cout.fill(‘+’);

 cout.width(10);

 cout.setf(ios : :internal, ios : :adjustfield);

 cout<<−7.89<<endl;

 cout<<“================================”<<endl;

 cout<<“SECOND FORMATTED FLAG”<<endl;

 cout<<“================================”<<endl;

 cout.fill(‘X’);

 cout.precision(3);

 cout.width(15);

 cout.setf(ios : :internal,ios : :adjustfield);

 cout.setf(ios : :scientific,ios : :floatfield);

 cout<<−32.43567<<endl;

 cout<<endl<<“================================”<<endl;

 getch();

 }

OUTPUT :

================================

THE FIRST FORMATTED FLAG

================================

-+++++7.89

================================

SECOND FORMATTED FLAG

================================

-XXXXX3.244e+01

================================

EXPLANATION : The program is simple to understand. For the argument ios : :scientific
the output is usually compiler dependent. For the following statement :

538 Object-Oriented Programming C++ Simplified

cout.fill(‘+’);

cout.width(10);

cout.setf(ios : :internal, ios : :adjustfield);

cout<<−7.89<<endl;

Output displayed is as shown below :

987+++++–

Cout . width (10)

Cout . fill (‘+’) ;

cout<<−7.89<<endl;
Figure 11.9. Implementation of flags used in C++

The following statement used to flash the second formatted flag.

cout.fill(‘X’);

cout.precision(3);

cout.width(15);

cout.setf(ios : :internal,ios : :adjustfield);

cout.setf(ios : :scientific,ios : :floatfield);

cout<<-32.43567<<endl;

3– X X X X 2 4 4 C + 0 0 1

/* PROG 11.18 CONVERTING DECIMAL VALUE INTO OCTAL AND HEX USING FORMATTING

FLAGS */

#include <iostream.h>

#include <conio.h>

 void main()

 {

 int x;

 clrscr();

 cout<<“—————————————————”<<endl;

 cout<<“ENTER ANY NUMBER IN DECIMAL \n”;

 cout<<“—————————————————”<<endl;

 cin>>x;

 cout<<“—————————————————”<<endl;

 cout<<“DECIMAL VALUE IS :”;

 cout<<“\n—————————————————”<<endl;

 cout.setf(ios : :dec,ios : : basefield);

 cout<<x<<endl;

Input-Output and Manipulators in C++ 539

 cout<<“\n—————————————————”<<endl;

 cout<<“OCTAL VALUE IS :=”;

 cout<<“\n—————————————————”<<endl;

 cout.setf(ios : :oct,ios : :basefield);

 cout<<x<<endl;

 cout<<“\n—————————————————”<<endl;

 cout<<“HEX VALUE IS :=”;

 cout<<“\n—————————————————”<<endl;

 cout.setf(ios : :hex,ios : :basefield);

 cout<<x<<endl;

 cout<<“\n—————————————————”<<endl;

 getch();

 }

OUTPUT :

—————————————————-

ENTER ANY NUMBER IN DECIMAL

—————————————————-

23

—————————————————-

DECIMAL VALUE IS :

—————————————————-

23

—————————————————-

OCTAL VALUE IS : =

—————————————————-

27

—————————————————-

HEX VALUE IS : =

—————————————————-

17

—————————————————-

EXPLANATION : Formatting flag

cout.setf (ios : : dec,ios : :basefield);

Used to display integer data into decimal

cout.setf (ios : : oct, ios : : basefield);

Displays integer data into octal

cout.setf (ios : :hex, ios : : basefield);

Displays integer data into hexadecimal

540 Object-Oriented Programming C++ Simplified

/* PROG 11.19 DEMO OF SHOW POS AND SHOWPOINT FLAGS */

#include <iostream.h>

#include <conio.h>

 void main()

 {

 clrscr();

 cout.setf(ios : :showpos);

 cout.setf(ios : :showpoint);

 cout.width(8);

 cout.precision(4);

 cout<<125<<endl;

 cout.width(8);

 cout<<23.0<<endl;

 cout.width(8);

 cout<<34.5<<endl;

 cout.setf(ios : :hex,ios : :basefield);

 cout.setf(ios : :uppercase);

 cout<<0x34f<<endl;

 getch();

 }

OUTPUT :

 +125

+23.0000

+34.5000

34F

EXPLANATION : For the first three cout width of 8 is set. So output appears as :

+

+ 2

2

3

3

4

0

000

0 0 0

5

51+

In last cout output appear in hex in uppercase due to flag ios : :uppercase.

/* PROG 11.20 RETURN TYPE OF WIDTH AND PRECISION FUNCTION */

#include <iostream.h>

#include <conio.h>

Input-Output and Manipulators in C++ 541

 void main()

 {

 clrscr();

 cout.width(10);

 int pw= cout.width(5);

 cout<<“previous width=”<<pw<<endl;

 cout.precision(3);

 int pp=cout.precision(4);

 cout<<“previous precision=”<<pp<<endl;

 getch();

 }

OUTPUT :

previous width=10

previous precision=3

EXPLANATION : The width and precision function returns the previous width and
previous precision respectively set earlier and sets the new width and new precision. In the

program pw contains the previous width set i.e., 10 and pp contains the previous precision
set i.e.,3.

/*PROG 11.21 DEMO OF PEEK AND IGNORE FUNCTION */

#include <iostream.h>

#include <conio.h>

 void main()

 {

 clrscr();

 cout<<“ENTER A STRING”<<endl;

 char ch,x;

 ch=cin.get();

 while(ch!=’\n’)

 {

 cout.put(ch);

 x=cin.peek();

 while(x==’$’)

 {

 cin.ignore(1,’$’);

 x= cin.peek();

 }

 ch=cin.get();

 }

542 Object-Oriented Programming C++ Simplified

 cout<<endl;

 getch();

 }

OUTPUT :

Enter a string with $ character embedded

This $ is $$ demo.

This is demo.

EXPLANATION : The function peek() returns the next character without extracting it
from the stream. In the program it is enclosed it is checked whether next input character is
‘$’. The function ignore extracts the number of characters n given as first argument (here 1)
matching second argument character (here ‘$’). So whenever next input character in the stream

is ‘$’ it is ignored. The ignore function extracts the character and discard it. Here one ‘$’
character and discard. Here one ‘$’ character at a time is discarded.

/* PROG 11.22 DEMO OF putback FUNCTION */

#include <iostream.h>

#include <conio.h>

 void main()

 {

 clrscr();

 cout<<“ENTER A STRING”<<endl;

 char ch;

 ch=cin.get();

 while(ch!=‘\0')

 {

 if(ch==‘$’)

 cin.putback(‘&’);

 cout.put(ch);

 ch=cin.get();

 }

 cout<<endl;

 getch();

 }

OUTPUT :

ENTER A STRING

This$ is $ de$mo

This$& is $& de$&mo

Input-Output and Manipulators in C++ 543

EXPLANATION : The putback function puts a character back into the input stream. The
character to put back must be character previously extracted. Here character is extracted from
the input streams and if extracted character is equal to ‘$’ character ‘&’ is put back into the
input stream.

T H I S $ I S $ D E $ M O

Figure 11.10. Before applying putback function

When compiler control finds the statements given below then after ‘$’ symbol put ‘&’.

if(ch==’$’)

cin.putback(‘&’);

T H I S $ & I S $ & D E $ & M O

Figure 11.11. After applying putback function

/*PROG 11.23 DEMO OF gcount() FUNCTION */

#include <iostream.h>

#include <conio.h>

#include <ctype.h>

 void main()

 {

 char str[15];

 clrscr();

 cout<<“————————————————”<<endl;

 cout<<“ENTER A STRING HERE”;

 cout<<endl<<“———————————————”<<endl;

 cin.getline(str,15);

 int len;

 len=cin.gcount();

 cout<<endl<<“———————————————”<<endl;

 cout<<“LENGTH OF STRING IS :=”<<len-1<<endl;

 cout<<“————————————————”<<endl;

 getch();

 }

OUTPUT :
————————————————

ENTER A STRING HERE

————————————————

MPSTME NMIMS

————————————————

LENGTH OF STRING IS : =12

————————————————

544 Object-Oriented Programming C++ Simplified

EXPLANATION : The function gcount returns the number of characters extracted by the
last unformatted function is getline, cin.gcount() returns the number of characters extracted
from keyboard by getline function and assigned to str. It also count null character so length-

1 is used here.

N M � M S \0

9876543210

len=cin . gcount () ;

Figure 11.12. Logical implementation of gcount()

The prototype of this function lies in istream.h (istream : : gcount (member function)).

/*PROG 11.24 DEMO OF eatwhite FUNCTION */

#include <iostream.h>

#include <conio.h>

 void main()

 {

 ifstream file(“num.txt”);

 char ch;

 file.get(ch);

 while(file.eof()==0)

 {

 cout.put(ch);

 file.eatwhite();

 file.get();

 }

 file.close();

 getch();

 }

OUTPUT :

Thisisdemoofeatwhite

EXPLANATION : As explained earlier the function eatwhite eats whites spaces like spaces,
tabs etc and advances the get pointer. Here we assumes that file num.txt contains contains
“This is demo of eat white”. We read the file sequentially character by character using
get. Whenever any while space character is found function eatwhite eats it and advances get
pointer. The output is all characters except space and tab.

/*PROG 11.25 GIVING new NAME TO cout AND cin */

#include <iostream.h>

#include <conio.h>

Input-Output and Manipulators in C++ 545

 void main()

{

clrscr();

ostream print(1);

istream_withassign scan;

scan = cin;

print<<“—————————————”<<endl;

print<<“ENTER YOUR NAME”<<endl;

print<<“—————————————”<<endl;

char str[15];

scan.getline(str,15);

print<<endl<<“—————————————”<<endl;

print<<“HELLO “<<str<<endl;

print<<endl<<“—————————————”<<endl;

getch();

}

OUTPUT :

—————————————

ENTER YOUR NAME

—————————————

Hari Pandey

—————————————

HELLO Hari Pandey

—————————————

EXPLANATION : Here 1 represents standard output stream. We have created an object of
ostream class and in it passed 1 as argument. Now print can be treated as cout. cin is an
object of istream_withassign so we create an object scan of this type assign cin to it. Now
scan can be treated as cin.

11.5 MANIPULATORS

Manipulators are functions which are used to manipulate the input/output formats. Manipulators
are of two types :

(a) One which take arguments.

(b) Second which does not take any argument.

One type of manipulator which we have seen is endl which is used to insert new line into
stream. All the manipulators which are built-in and which is used to insert new line are

defined in the header file iomanip.h. The file iostream.h provides some manipulators which
does not take any argument.

546 Object-Oriented Programming C++ Simplified

 Most of the built-in manipulators are similar to their setf counterpart like width, precision,

fill etc. The advantage here is that manipulators can directly be put into the stream as :

cout<<setw(5)<<123;

cout<<x<<endl;

cout<<hex<<x;

All manipulators which do not take any argument are having the following syntax :

ostream & mani_name(ostream &)

{

}

For example the most commonly used manipulator endl is defined as :

ostream endl(ostream &);

When we write cout<<endl;

It is interpreted internally as cout.operator<<(endl);

Again as endl takes a reference of ostream as argument writing endl(cout); is equivalent
to writing cout<<endl;

Table 11.3 : List of Most Commonly Used Built-in Manipulator

S.No. Manipulator Meaning

1 setw(int n) Sets the output width of n characters

2. setfill(char x) The manipulator sets the stream’s fill character

3. setprecision(int n) Sets the precision for floating points number

4. hex Converts to hexadecimal

5. oct Convert to octal

6. dec Convert to decimal

7. left Left justify, right padding

8. right Right justify, left padding

9. endl Insert a new line and flush output stream

10. uppercase Displays A-F for hex and E for scientific

11. showpos To insert a plus sign in a non-negative generated numeric field

12. scientific To insert floating-point values in scientific format

13. fixed To insert floating-point values in fixed-point format

14. setiosflags(flags f) Sets the formatting flags specified by f. setting remains in effect until

changed.

15. resetiosflags(flags f) Clear the formatting flags specified by f. setting remains in effect

until changed.

Input-Output and Manipulators in C++ 547

/*PROG 11.26 DEMO OF BUILT-IN MANIPULATORS VER 1*/

#include <iostream.h>

#include <iomanip.h>

#include <conio.h>

 void main()

 {

 clrscr();

 cout<<setw(5)<<345<<endl;

 cout<<setw(5)<<45<<endl;

 cout<<5<<endl;

 cout<<setfill(‘$’)<<setw(10)

 <<“hello”<<setw(10)<<345.678<<endl;

 getch();

 }

OUTPUT :

 345

 45

5

$$$$$hello$$$345.678

EXPLANATION : The following two cout statement sets the width 5 and displays the data
that follows :

cout<<setw(5)<<345<<endl;

 cout<<setw(5)<<45<<endl;

4 5

3 54

Figure 11.13. Implementation of setw function

The next cout display 5 as it as no width is set. The next cout statement

cout<<setfill(‘$’)<<setw(10)

<<“hello”<<setw(10)<<345.678<<endl;

First sets width 10 and fill character ‘$’ for displaying string “hello”. Next width of 10 for
displaying 345.678

548 Object-Oriented Programming C++ Simplified

$ $ $ $ $ H E L L O $ $ $ 3 4 5 6 7
8

setfill (‘$’)

setw (10) setw (10)

Figure 11.14. Diagrammatic implementation of built-in manipulators

/* PROG 11.27 DEMO OF BUILT-IN MANIPULATORS VER 2*/

#include <iostream.h>

#include <iomanip.h>

#include <conio.h>

 void main()

 {

 int x=456;

 float y = 23.45456;

 char *s=”Manipulator”;

 clrscr();

 cout<<“==========================”<<endl;

 cout<<“THE DEMO SHOWN BELOW”<<endl;

 cout<<“==========================”<<endl;

 cout<<setfill(‘$’)<<setw(15)<<setiosflags(ios : :left)

<<x<<endl;

 cout<<setfill(‘*’)<<setw(15)<<setiosflags(ios : :left)

<<setprecision(3)<<y<<endl;

 cout<<setfill(‘&’)<<setw(15)<<setiosflags(ios : :left)

<<s<<endl;

 cout<<endl<<“==========================”<<endl;

 cout<<“DEMO FINISH”<<endl;

 cout<<“==========================”<<endl;

 getch();

 }

OUTPUT :

==========================

THE DEMO SHOWN BELOW

==========================

Input-Output and Manipulators in C++ 549

456$$$$$$$$$$$$

23.455*********

Manipulator&&&&

==========================

DEMO FINISH

==========================

EXPLANATION : The following cout statement

cout<<setfill(‘$’)<<setw(15)<<setiosflags(ios : :left)

<<x<<endl;

Sets the width 15, setfill character to ‘$’ and sets the output left justified which causes
value of x to be printed.

4 5 6 $ $ $ $ $ $ $ $ $ $ $
$

x = 456

setfill (‘$’)

setw (15)

setiosflags (ios : : left)

Figure 11.15. Implementation of built in manipulator

The next cout statement is given as :

cout<<setfill(‘*’)<<setw(15)<<setiosflags(ios : :left)

<<setprecision(3)<<y<<endl;

2 3 4

x = 23 . 45456

setfill (‘$’)

setw (15)

setiosflags (ios : : left)

5 4 * * * * * * * *
*

setprecision (3)

Figure 11.16. Demo of setprecision and setiosflags (ios : :left)

The next cout statement

550 Object-Oriented Programming C++ Simplified

cout<<setfill(‘&’)<<setw(15)<<setiosflags(ios : :left)

<<s<<endl;

char *s = “ ”MANIPULATOR

setw (15)

setiosflags (ios : : left)

M A N I P U L A T O R & & &
&

setfill (‘&’)

Figure 11.17. Implementation of manipulator for string.

/*PROG 11.28 DEMO OF BUILT-IN MANIPULATORS VER 3*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

 int dec_enter;

 clrscr();

 cout<<“————————————————”<<endl;

 cout<<“ENTER ANY NUMBER IN DECIMAL :=”<<endl;

 cout<<“————————————————”<<endl;

 cin>>dec_enter;

 cout<<“————————————————”<<endl;

 cout<<“DECIMAL VALUE :=”;

 cout<<dec<<dec_enter<<endl;

 cout<<“————————————————”<<endl;

 cout<<“OCTAL VALUE :=”;

 cout<<oct<<dec_enter<<endl;

 cout<<“————————————————”<<endl;

 cout<<“HEXADECIMAL :=”;

 cout<<hex<<dec_enter<<endl;

 cout<<“————————————————”<<endl;

 getch();

 }

OUTPUT :

————————————————-

ENTER ANY NUMBER IN DECIMAL : =

Input-Output and Manipulators in C++ 551

————————————————-

35

————————————————-

DECIMAL VALUE : =35

————————————————-

OCTAL VALUE : =43

————————————————-

HEXADECIMAL : =23

————————————————-

EXPLANATION : In the above given program the statement cout<<hex<<
dec_enter<<endl; displays the value of dec_enter in hex format. In the same track

cout<<oct<<dec_enter<<endl; used to display the value of dec_enter in octal format.

/*PROG 11.29 DEMO OF BUILT-IN MANIPULATORS VER 4*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

 int x,y;

 clrscr();

 cout<<“========================”<<endl;

 cout<<“ENTER A HEX VALUE”<<endl;

 cout<<“========================”<<endl;

 cin>>hex>>x;

 cout<<“========================”<<endl;

 cout<<“HEX VALUE :=”<<hex<<x<<endl;

 cout<<“========================”<<endl;

 cout<<“DEC VALUE :=”<<dec<<x<<endl;

 cout<<“========================”<<endl;

 cout<<“OCTAL VALUE :=”<<oct<<x<<endl;

 cout<<“========================”<<endl;

 getch();

 }

OUTPUT :

========================

ENTER A HEX VALUE

========================

F

552 Object-Oriented Programming C++ Simplified

========================

HEX VALUE : =f

========================

DEC VALUE : =15

========================

OCTAL VALUE : =17

========================

EXPLANATION : The program is self explanatory. For better understand point see the
explanation of the previous program.

/*PROG 11.30 DEMO OF BUILT-IN MANIPULATORS VER 5*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

 int oct_enter;

 clrscr();

 cout<<“===============================”<<endl;

 cout<<“ENTER AN OCTAL VALUE \n”;

 cout<<“===============================”<<endl;

 cin>>oct>>oct_enter;

 cout<<“===============================”<<endl;

 cout<<“HEX VALUE :=”<<hex<<oct_enter<<endl;

 cout<<“===============================”<<endl;

 cout<<“DEC VALUE :=”<<dec<<oct_enter<<endl;

 cout<<“===============================”<<endl;

 cout<<“OCT VALUE :=”<<oct<<oct_enter<<endl;

 cout<<“===============================”<<endl;

 getch();

 }

OUTPUT :

===============================

ENTER AN OCTAL VALUE

===============================

17

===============================

HEX VALUE : =f

===============================

Input-Output and Manipulators in C++ 553

DEC VALUE : =15

===============================

OCT VALUE : =17

===============================

EXPLANATION : See the explanation of the program 11.28.

/*PROG 11.31 DEMO OF BUILT-IN MANIPULATORS VER 5*/

#include <iostream.h>

#include <conio.h>

 void main()

 {

 clrscr();

 cout<<“***********************”;

 endl(cout);

 cout<<“FIRST LINE”;

 endl(cout);

 cout<<“***********************”;

 endl(cout);

 cout<<“SECOND LINE”;

 endl(cout);

 cout<<“***********************”;

 endl(cout);

 cout<<“THIRD LINE”;

 endl(cout);

 cout<<“***********************”;

 endl(cout);

 cout<<“FOURTH LINE”;

 endl(cout);

 cout<<“***********************”;

 getch();

 }

OUTPUT :

FIRST LINE

SECOND LINE

THIRD LINE

554 Object-Oriented Programming C++ Simplified

FOURTH LINE

EXPLANATION : All the manipulators take an argument of ostream by reference so we

can pass cout as an argument of endl. So writing endl(cout); works as writing cout<<endl;

11.5.1 Creating Your Own Manipulators

Apart from using the built-in manipulators of C++, you can create your own manipulator for
whatever purpose you want. For creating your own manipulator which does not take any
argument the syntax is as shown earlier :

ostream & manip_name (ostream & mycout)

{

 —————————;

 —————————;

 —————————;

return mycout;

}

All user defined manipulator must take an argument by reference of ostream type and
return ostream type by reference. As we pass reference of cout when use this manipulator,

actual changes done by manipulator occur as if we are working with cout. For example consider
a manipulator which emulates double space i.e., when we use it leaves two spaces in the
stream and continues.

ostream & DS(ostream & mycout)

{

mycout<<” “;

return mycout;

}

To use this we can write as cout<<DS<<”hello”<<DS;

This first leaves two spaces, prints “hello” and then again leaves two spaces. As mentioned
earlier the main advantage of manipulators whether user defined or built-in that they can be
put into the cin and cout stream easily using >> and <<. This advantage of manipulator
makes them popular.

We present few program for better understanding point of view.

/*PROG 11.32 CREATING YOUR OWN MANIPULATOR VER 1*/

#include <iostream.h>

#include <conio.h>

Input-Output and Manipulators in C++ 555

ostream & DS(ostream & mycout)

{

mycout<<“ “;

return mycout;

}

void main()

{

clrscr();

cout<<“Before Applying manipulator”;

endl(cout);

cout<<“HELLO”;

endl(cout);

cout<<“After applying own manipulator”;

endl(cout);

cout<<DS<<“HELLO”<<DS;

getch();

}

OUTPUT :

Before Applying manipulator

Hello

After applying own manipulator

 HELLO

EXPLANATION : In the program the following given statements just used to print “hello”

cout<<“Before Applying manipulator”;

endl(cout);

cout<<“HELLO”;

Before applying manipulator

H E L L O

cout<<DS<<“HELLO”<<DS ;

H E L L O

Manipulator DS leaves two spaces.

Figure 11.18 : Logical implementation of user defined manipulator

556 Object-Oriented Programming C++ Simplified

/*PROG 11.33 CREATING YOUR OWN MANIPULATOR VER 2*/

#include <iostream.h>

#include <conio.h>

/* Manipulator for two spaces */

ostream & DSD(ostream & mycout)

{

mycout<<“ “;

return mycout;

}

/*Manipulator for three spaces */

ostream & DST(ostream & mycout)

{

mycout<<“ “;

return mycout;

}

void main()

{

clrscr();

cout<<“Before Applying manipulator”;

endl(cout);

cout<<“HELLO”;

endl(cout);

cout<<“After applying own manipulator DSD”;

endl(cout);

cout<<DSD<<“HELLO”<<DSD;

endl(cout);

cout<<“After applying own manipulator DST”;

endl(cout);

cout<<DST<<“HELLO”<<DST;

getch();

}

OUTPUT :

Before Applying manipulator

HELLO

After applying own manipulator DSD

 HELLO

After applying own manipulator DST

 HELLO

Input-Output and Manipulators in C++ 557

EXPLANATION : This program is very much similar to previous one, only the difference
is that in this we have declared one more user defined manipulator for putting three spaces in
the beginning the desired string “HELLO”. The below shown figure shows the actual
implementation of manipulators.

Before applying manipulator

H E L L O

cout<<DSD<<“HELLO”<<DSD ;

H E L L O

Manipulator DS leaves two spaces.

cout<<DST<<“HELLO”<<DST ;

H E L L O

Manipulator DST leaves three spaces

Figure 11.19. Implementation of more than one user-defined manipulator

/* PROG 11.34 CREATING YOUR OWN MANIPULATOR VER 3 */

#include <iostream.h>

#include <conio.h>

/* CREATION OF MANIPULATOR */

ostream & Rup(ostream & mycout)

{

mycout<<“Rs “;

return mycout;

}

void main()

{

int money = 8000;

clrscr();

cout<<“============================”;

endl(cout);

cout<<“AMOUNT IS SHOWN HERE”;

endl(cout);

558 Object-Oriented Programming C++ Simplified

cout<<“============================”;

endl(cout);

cout<<Rup<<money<<“/-”<<endl;

cout<<“============================”;

endl(cout);

getch();

}

OUTPUT :

============================

AMOUNT IS SHOWN HERE

============================

Rs 8000/-

============================

EXPLANATION : The user defined manipulator Rup simply displays “Rs” where it is used
in the cout statement. It can be used in this manner also.

Rup (cout);

cout<<money<<endl;

As Rup takes a reference of ostream type and we are sending cout in it.

/* PROG 11.35 CREATING YOUR OWN MANIPULATOR VER 4 */

#include <iostream.h>

#include <conio.h>

#include <iomanip.h>

ostream & format(ostream & mycout)

{

mycout<<setw(8)<<setfill(‘$’);

return mycout;

}

void main()

{

int num1 = 1234;

float num2=35.56;

char *str =”HELLO”;

clrscr();

cout<<format<<num1<<endl;

cout<<format<<num2<<endl;

cout<<format<<str<<endl;

getch();

}

Input-Output and Manipulators in C++ 559

OUTPUT :

$$$$1234

$$$35.56

$$$HELLO

EXPLANATION : The manipulator format does two things when called with cout, its sets
width of 8 and fill character as ‘$’. For all three data num1, num2, and str a single call to format
sets the width and sets fill character ‘$’. You can use any formatting manipulator as per your

requirement and make one as your own manipulator.

/*PROG 11.36 CREATING YOUR OWN MANIPULATOR VER 5*/

#include <iostream.h>

#include <conio.h>

/*CREATION OF MANIPULATOR STARTS */

ostream & tab (ostream & mycout)

{

mycout<<“\t”;

return mycout;

}

ostream & new_line(ostream & mycout)

{

mycout<<“\n”;

return mycout;

}

ostream & bell_alert(ostream & mycout)

{

mycout<<“\a”;

return mycout;

}

ostream & ver_tab(ostream & mycout)

{

mycout<<“\v”;

return mycout;

}

ostream & wel_mssg(ostream & mycout)

560 Object-Oriented Programming C++ Simplified

{

mycout<<“WELCOME”;

return mycout;

}

/* CREATION OF MANIPULATOR FINISH HERE */

void main()

{

int a=5,b=6;

char *name = “hari”;

clrscr();

cout<<“—————————————”<<endl;

cout<<“DEMO OF TAB AND NEW LINE”<<endl;

cout<<“—————————————”<<endl;

cout<<a<<tab<<b<<new_line;

cout<<endl;

cout<<“—————————————”<<endl;

cout<<“DEMO OF VERTICAL TAB AND NEW LINE”<<endl;

cout<<“—————————————”<<endl;

cout<<a<<ver_tab<<b<<new_line;

cout<<endl;

cout<<“—————————————”<<endl;

cout<<wel_mssg<<name<<new_line;

cout<<endl;

cout<<“—————————————”<<endl;

cout<<“DEMO OF BELL ALERT”<<endl;

cout<<“—————————————”<<endl;

cout<<bell_alert<<a<<tab<<bell_alert<<b<<new_line;

getch();

}

OUTPUT :

—————————————-———-

DEMO OF TAB AND NEW LINE

—————————————-———-

5 6

—————————————-———-

DEMO OF VERTICAL TAB AND NEW LINE

—————————————-———-

5

Input-Output and Manipulators in C++ 561

6

—————————————-———-

WELCOME hari

—————————————-———-

DEMO OF BELL ALERT

—————————————-———-

5 6

EXPLANATION : In the program we have created a numbers of manipulator for tab for
horizontal tab (‘\t’), new_line for new line (‘\n’), ver_tab for vertical tab (‘\v’),
wel_mssg for printing welcome, and bell_alert for bell alert (‘\a’). Rest statements are
self explanatory.

11.6 PONDERABLE POINTS

1. A stream is sequence of bytes.

2. ios is the topmost class in the hierarchy of stream class.

3. The most common stream classes for input and output is istream and ostream.

4. cin is considered as standard input stream as it read data from standard input stream
device i.e., keyboard and put into program.

5. cout is considered as standard output stream as its read data from program and put
onto the standard output device which is screen.

6. Simple use of input and output with cout and cin with << and >> is termed as
unformatted input/output operations.

7. To read a single character from keyboard we have function get and for writing a character
onto the screen we have put function.

8. For reading a whole line of text including white space, getline can be used.

9. For setting the various flags for input and output cout.setf can be used.

10. Manipulator are special function which takes a reference of ostream class and return
a reference of ostream class.

11. They are better than their counterpart ios formatting functions as they can be put
directly into the input and output stream.

EXERCISE

A. Answer the Following Questions :

1. What do you understand by streams ?

2. What is the different type of stream classes C++ provides ?

3. What is formatted and unformatted input/output ?

4. How does cin and cout works with >> and << operator ?

5. What is the importance of self-function ?

562 Object-Oriented Programming C++ Simplified

6. What are various flags the function self can take ?

7. What is manipulator ?

8. How manipulator is different from ios functions ?

9. How can we create our own manipulator ?

B. Brain Drill :

1. Create an input manipulator say skiptoletter that reads and discards all characters which are not

letters. When the first letter is found, the manipulator puts it back into the input stream and

returns. Write a suitable main function which illustrates the use of this manipulator.

���

FILE HANDLING IN C++

12.1 INTRODUCTION

We all know that RAM is a volatile memory and any data stored in RAM is lost when PC is
turned off. All the program we have seen so far have made use of RAM. Any data variable that
we define in our program is destroyed when the program execution is over. Also Lhe outputs
generated by the program are lost.

One solution may be to take printouts of the program and outputs. They may help up to
a certain extent but that is not appropriate for the practical purpose. Therefore in most real
word applications data is stored in text files which is stored permanently on to the hard disk,
floppy, compact disk or in any other persistent storage media. These files can be read back
again, and can be modified also.

A data file is a collection of data items stored permanently in persistent storage area.
The C++ language provides the facility to create these data files, write data into them, read
back data, modify them and many more operations. The program data or output can be stored
in these files and that persists even after program execution is over. The data can be read
whenever necessary and can be placed back into the file after modification. The data remains
safe provided storage media does not crash or corrupt.

From permanent storage point of view, a file is a region of memory space in the persistent
storage media and it can be accessed using built-in library functions and classes available in
header file iostream.h or by the stream calls of the operating systems. High level files are those
files which are accessed and manipulated using library functions. For transfer of data they make
use of stream. A stream is a poiinter to a buffer of memory which is used for transferring the
data. In general stream can be assumed as a sequence of bytes which flow from source to
destination . An 1/0 stream may be text stream or binary stream depending upon in wlhich mode
you have opened the file. A text stream contains lines of text and the characters in a text stream
may be manipulated as per the suitability. But a binary stream is a sequence of unprocessed
data without any modification. The standard 1/0 stream or stream pointers are cin (for reading),
cout (for writing), and cerr (for error). By default cin represent key board, stdout and stderr
represents monitor VDU.

563

564 Object-Oriented Programming C++ Simplified

Low-level files makes use of the system-calls of the opening system under which the
program is run.

12.2 FILE STREAMS

In C++ there are three main classes for handling disk files input and output. They are :

(a) ifstream

(b) ofstream

(c) fstream

(a) The ifstream class is an istream derived specialized for disk file input. Its constructors
automatically create and attach a filebuf buffer object. A file can be created by the

constructor method or using the open method of ifstream class. For closing the file
close method can be used. ifstream can only be used for reading a file.

(b) The ofstream class is an ostream derivative specialized for disk file output. All of its

constructors automatically create and associate a filebuf buffer object. A file can be
created by the constructor method or using the open method of ofstream class. For
closing the file close method can be used. ofstream can only be used for writing to
a file only.

(c) The fstream class is an iostream derivative specialized for combined disk file input
and output. Its constructor automatically create and attach a filebuf buffer object. A
file can be created by the constructor or method or using the open method of fstream

class. For closing the file close method can be used. The fstream class can be used
for reading writing, appending or doing any other operation as well as we will see
shortly.

12.3 OPENING AND CLOSING A FILE

For opening a file any of the above discussed file stream can be used. For opening a file for
reading only we can use ifstream class as :

(a) ifstream rdfile(“demo.txt”)

The above method creates an object of class ifstream type and attaches it to the file “demo.txt”.

The file is opened for read only. The object is created by calling the constructor of the class
ifstream and passing an argument of char* type which is file name to open. As soon as file is

opened for read mode, file pointer is placed at the beginning of the file. We assume that there
is no error in opening the file. Error handling will be discussed later on. Assuming the file is
opened successfully. We can read from the file as :

char str[10];

file>>str;

The string read from file (assuming file contains a string “hello”) will be stored in the
variable str. The file can be closed later by calling the close method of the class as :

File Handling in C++ 565

file.close();

Calling close method ensures all data stored in the buffer related to the file will be written
to the disk and all links will be broken. Always make a practice of closing a file when you are

done with the file.

(b) ifstream rdfile;

rdfile.open (“demo.txt”);

This is the second method of opening the file. Here first an object of ifstream class type
is created. We then open the file using the open function of the ifstream class.

On the similar ground we can open a file for writing only the ofstream class as :

(a) ofstream wrfile(“demo.txt”);

(b) ofstream wrfile;

wrfile.open(“demo.txt”);

Explanation for the above methods is similar to the explanation as given for the ifstream
class. The data can be written to the file as :

wrfile<<”hello”;

The file can be closed as :

wrfile.close ();

The ifstream class and ofstream class are suitable only when we want to read only from
file or write only to the file. In situations when we want to perform reading and writing to the
same file. There are two ways :

� First is to create two separate objects of ifstream and ofstream class. When writing is
done, close the file and open the file for reading using an object of ifstream class.

� The second method is to create just one object of class fstream class and use as :

fstream file;

file.open(“demo.txt”,ios : :out);

//perform writing operation;

file.close();

file.open(“demo.txt”,ios : :in);

//perform reading operation;

In the open function of fstream class, second argument is the file opening mode. The
mode ios : :in is for reading and ios : :out for writing only. The modes are defined as enumeration
constants in the class ios so scope resolution operator is used with it. We discuss more modes
later in this chapter.

Note that there is no ios : :in or ios : :out default mode for fstream objects. You must
specify both modes if your fstream object read and write files. We can also have constructor
method of fstream for creating and opening a file as :

fstream file(“num.txt”ios : :in);

char str[10];

file>>str;

cout<<str<<endl;

Let’s have some programming examples first then we will see what other modes we can
have for handling the files.

566 Object-Oriented Programming C++ Simplified

/*PROG 12.1 DEMO OF FILE HANDLING, WRITING TO FILE VER 1*/

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

clrscr();

ofstream fobj(“demo.txt”);

fobj<<“FILE HANDLING DEMONSTATION “<<endl;

fobj.close();

getch();

}

OUTPUT :

(BLANK SCREEN)

EXPLANATION : The statement ofstream fobj(“demo.txt”); creates an object of ostream

class type named fobj and passes file name as “demo.txt”. This way of creating file is
called constructor notation as we are creating and object of ostream type by calling
the constructor which takes an argument of type char* type. After the execution of the above
statement a file stream fobj is created and linked to the file “demo.txt”. Now when you
want to write something to the file you can write it as shown with the use of <<operator.

fobj<<”FILE HANDLING DEMONSTRATION”<<endl;

This writes string “FILE HANDLING DEMONSTRATION” to the file “demo.txt”.

Note ofstream class is meant only for writing to the disk files. You cannot read from the

file using an object of ofstream. As soon as you open the file using an object of ofstream class
type, the file is automatically opened in the write mode. That’s why no mode was specified
while opening the file. If file “demo.txt” were already existing its contents will be destroyed
and file pointer will be placed at the beginning of the file. If file were not already present it
will be created.

/*PROG 12.2 DEMO OF FILE HANDLING, WRITING TO FILE VER 2 */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

clrscr();

ofstream fobj;

fobj.open(“demo.txt”);

File Handling in C++ 567

fobj<<“ FILE HANDLING DEMO”<<endl;

fobj.close();

getch();

}

OUTPUT :

(BLANK SCREEN)

EXPLANATION : The program shows the outer method of opening a file for writing only.
It simply creates an object of ofstream class type and by using open method opens the file. Rest
is same as explained in the previous program. There is one more parameter to the open method
which specifies the mode in which we want to open the file. Here mode for writing is ios : :out,
but this is optional for ofstream class as by default file is opened for writing only.

/* PROG 12.3 DEMO OF FILE HANDLING, READING FROM FILE VER 1*/

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

clrscr();

ifstream fobj;

fobj.open(“demo.txt”);

char str[30];

fobj.getline(str,30);

cout<<“STRING READ FROM FILE”<<endl;

cout<<str<<endl;

fobj.close();

getch();

}

OUTPUT :

STRING READ FROM FILE

 FILE HANDLING DEMO

EXPLANATION : The statement ifstream fobj; creates an object of ifstream type name fobj.

The class ifstream is meant only for reading only. We open the file using the open method. The
file name which we want to open is passed as argument to open method. The open method
opens the file demo.txt and links objects fobj to this file. Now this object fobj work as a stream
for reading from this file “demo.txt”. We read from the file as :

fobj. getline(str,30);

568 Object-Oriented Programming C++ Simplified

The above lines read from the file “demo.txt” first 29 characters or number of characters
till ‘\n’ is not encountered. The scanned string is stored in str which we display on to the screen
using standard output stream cout.

Note the following two lines :

ifstream fobj;

fobj.open(“demo.txt”);

Can be written as :

ifstream fobj(“demo.txt”);

As we did for ofstream class.

There is one more parameter to the open method which specifies the mode in which we
want to open the file. Here mode for reading is ios : :in, but this is optional for ifstream class
as by default file is opened for reading only.

/* PROG 12.4 WRITING PERSON DATA TO FILE */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

clrscr();

ofstream fobj;

fobj.open(“demo.txt”);

char name[25];

int age;

char sex;

cout<<“ENTER NAME HERE :=”;

cin.getline(name,25);

cout<<endl<<“ENTER THE AGE AND SEX :=”;

cin>>age>>sex;

fobj<<name<<endl<<age<<endl<<sex<<endl;

fobj.close();

getch();

}

OUTPUT :

ENTER NAME HERE : =HARI MOHAN PANDEY

ENTER THE AGE AND SEX : =24 M

EXPLANATION : In the program we have opened a file demo.txt. In the file we are
putting the details of person viz : name, age and sex. We take input from the standard input
stream (i.e., from keyboard) and put the scanned data to the file demo.txt which is linked to

File Handling in C++ 569

the fobj an object of ofstream class type. Note after each data item put into the class, a new
lie is inserted. This comes handy when we read data from the file.

/* PROG 12.5 READING PERSON DATA FROM FILE */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

ifstream fobj;

fobj.open(“demo.txt”);

char name[20];

int age;

char sex;

fobj.getline(name,20);

fobj>>age>>sex;

cout<<“Name :=”<<name<<“\nAge :=”<<age<<“\nSex :=”<<sex

<<endl;

fobj.close();

}

OUTPUT :

Name :=Hari

Age := 25

Sex := M

EXPLANATION : Here we opened the file which we created in the previous program. We
create three variables : name, age and sex. The file is opened in read mode using an object of
ifstream type named fobj. When we write fobj.getline (name, 20); it reads name from the file
dem0.txt. After that age and sex from the file in the next statement as :

fobj>> age>>sex;

This is similar to reading from keyboard using cin but here instead from keyboard we are
reading from file.

12.4 FILE OPENING MODES

Table 12.1: File opening modes

S.No. Mode Meaning

1. ios : :in Opening file in read mode only

2. ios : :out Opening file in write mode only

570 Object-Oriented Programming C++ Simplified

3. ios : :app Opening file in append mode

4. ios : :trunc File contents deleted if file already exists

5. ios : :nocreate In case file does not exist, open function will fail

6. ios : :noreplace Opens the file if file already exits

7. ios : :binary Open binary file

8. ios : :ate File pointer move to end of file on opening the file.

A brief description of all the modes is as follows :

1. ios : :trunc

If the file already exists, its contents are discarded. This mode is implied if ios : :out is
specified, and ios : :ate, ios : :app, and ios : :in are not specified.

2. ios : :noreplace

If the file already exists, the function fails. This mode automatically opens the files for
writing if file does not exist.

3. ios : :binary

Opens the file in binary mode (the default in text mode).

4. ios : :in

The files is opened for input. The original file (if it exists) will not be truncated.

5. ios : :ate

The function performs a seek to the end of file. When the first new byte is written to the
file, it is appended to the end, but when subsequent bytes are written, they are written to the
current position i.e., any where in the file.

6. ios : :app

The function performs a seek to the end of file. When new bytes are written to the file,
they are always appended to the end, even if the position is moved with the ostream : :seekp
function.

7. ios : :nocreate

If the file does not already exist, the function fails.

8. A file can be opened in more than one mode. Number of modes can be combined using
binary OR symbol (|)as :

file. open(“demo.txt”,ios : :in|ios : :out|ios : :binary);

/*PROG 12.6 READING AND WRITING THE SAME FILE IN ONE PROGRAM VER 1*/

#include <iostream.h>

#include <fstream.h>

void main()

{

fstream rw;

File Handling in C++ 571

rw.open(“demo1.txt”,ios : :out);

char str[50];

cout<<“ENTER A STRING”<<endl;

cin.getline(str,50);

rw<<str<<endl;

rw.close();

rw.open(“demo1.txt”,ios : :in);

rw.getline(str,50);

cout<<“STRING READ FROM FILE”<<endl;

cout<<str<<endl;

rw.close();

}

OUTPUT :

ENTER A STRING

Hello pandey

STRING READ FROM FILE

Hello pandey

EXPLANATION : Using an object of fstream class we can open the file in both the mode

read and write using function open. Initially the file is opened in write mode as :

rw.open(“demo1.txt”, ios : :out);

The second parameter is file opening flag. The ios is a class and out is the property of

the class. Together they are written as ios : :out which indicates that we have opened the file
demo1.txt in write mode. Again if file did not exist already it will be created. If already created
them all the contents will be wiped off. A string is taken from the standard input stream and
written to the file as rw<<str<<endl; file is then closed by calling close method as :

rw.close();

The file closing clears all buffers related to the file demo1.txt and unlike fie demo 1.txt

from fstream object rw. The file closing is must as pointer advances into the file as characters
are written to it so after entering string str to the file pointer will be advanced by sizeof(str)

bytes. To get the pointer beginning to the file and opening it back in reading mode file closing
is must.

To read from the file what we have entered just now we open the file again. But this time
in read with the help of flag ios : :in. This flag open the file demo1.txt in read mode. We read
the string from the file by writing.

rw.getline(str,50);

572 Object-Oriented Programming C++ Simplified

Which reads string from file pointer by rw and stores the string in str. The read string is
displayed back to the screen using standard output stream cout.

/*PROG 12.7 READING AND WRITING THE SAME FILE IN ONE PROGRAM VER 2 */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream rw;

rw.open(“demo1.txt”,ios : :out|ios : :in);

char str[50];

clrscr();

cout<<“Enter a string”<<endl;

cin.getline(str,50);

rw<<str<<endl;

rw.seekg(0,ios : :beg);

rw.getline(str,50);

cout<<“String read from file”<<endl;

cout<<str<<endl;

rw.close();

}

OUTPUT :

Enter a string

MPSTME, NMIMS UNIVERSITY MUMBAI

String read from file

MPSTME, NMIMS UNIVERSITY MUMBAI

Figure 12.1. Output screen of program 12.7

EXPLANATION : We can open the file in more than one mode by oring the flags using
binary OR symbols (|). The statement given as :

rw.open(“demo1.txt”,ios : :out|ios : :in);

File Handling in C++ 573

Open the file “demo1.txt” for reading and writing. Initially the file pointer is in the
beginning of the file. After reading string from keyboard and writing to the file, the pointer
advances to len locations where len is the length of the string written to the file demo1.txt. To
read the string back from the file, the pointer must be in the beginning of the file. For that we
have used the function seekg (discussed in detail later) takes file pointer to the 0th bytes (first
argument) from beginning (second argument). Now we can read from the file. The string is read

and displayed.

/*PROG 12.8 READING AND WRITING MOBILE DETAIL */

#include <iostream.h>

#include <fstream.h>

void main()

{

fstream rw;

rw.open(“demo2.txt”,ios : :out);

char mcomp[20],model[10];

float price;

cout<<“Enter the mobile model”<<endl;

cin.getline(model, 10);

cout<<“Enter the mobile company”<<endl;

cin.getline(mcomp, 20);

cout<<“Enter the mobile price”<<endl;

cin>>price;

rw<<model<<endl<<mcomp<<endl<<price<<endl;

rw.close();

rw.open(“demo2.txt”,ios : :in);

rw.getline(model,10);

rw.getline(mcomp,20);

rw>>price;

cout<<“Mobile details read from file”<<endl;

cout<<“Model :=”<<model<<endl;

cout<<“Company :=”<<mcomp<<endl;

cout<<“Price :=”<<price<<endl;

rw.close();

}

OUTPUT :

Enter the mobile model

z550i

Enter the mobile company

Sony

Enter the mobile price

8000

Mobile details read from file

Model :=z550i

Company :=Sony

Price :=8000

574 Object-Oriented Programming C++ Simplified

Figure 12.2. Output screen of program 12.8.

EXPLANATION : The program is simple. We input detail of mobile from keyboard, write
into the file and close the file. We open the file in read mode and read mobile details from the
file which is displayed on to the screen.

12.5 CHECKING END OF FILE

When file is opened for reading, data from file can be read as long as file is open and till end
of file is not encountered. The end of file can be checked in two ways :

(A) In the first method the file stream objects can be written in the while loop as :

while (filestr)

{

read from file pointer by file str;

process data;

}

As long as we are reading filestr returns nonzero value. As soon as end of the file is
encountered, filestr returns zero and while loop terminates.

(B) The second method which is most frequently used is of finding file using eof ()

function. The function eof returns zero as soon as there is some data in the file i.e., as long
as end of file is not reached. As soon as end of the file reached, eof() function returns nonzero
value. It can be used with while loop as :

While(filestr.eof() ==0) or while(!file.eof())

{

read from file pointer by filestr;

process data;

}

File Handling in C++ 575

/*PROG 12.9 DEMO OF EOF FUNCTION AND APPEND MODE */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream rw;

char str[100];

clrscr();

rw.open(“demo.txt”,ios : :in);

cout<<“data read from file”;

endl(cout);

while(rw.eof()==0)

{

rw.getline(str,100);

cout<<str<<endl;

}

rw.close();

rw.open(“demo.txt”,ios : :app);

cin.getline(str,100);

rw<<str<<endl;

rw.close();

rw.open(“demo.txt”,ios : :in);

cout<<“File with append data \n”;

while(rw.eof()==0)

{

rw.getline(str,100);

cout<<str<<endl;

}

rw.close();

getch();

}

OUTPUT :

data read from file

This program for checking end of file

Hello C++

File with append data

This program for checking end of file

Hello C++

576 Object-Oriented Programming C++ Simplified

EXPLANATION : The file demo.txt is initially opened in read mode. The function eof

returns 0 as long as we are reading from the file. As soon as end of file in reached, function
eof returns a non zero value. We read from the file till function eof returns 0. In each iteration
of the while loop we read a string str of maximum 99 characters. As soon as end of file is
encountered while loop terminates. We close the file and open the append mode by using ios

: :app flag. When file is opened in append mode, file pointer is at end of the file. The string

is to be appended to the file is taken from user and appended to the file. File is closed again.
Next file is opened in read mode and is displayed which shows appended string together with
the original contents before appending.

/* PROG 12.10 TO READING AND WRITING USING GET AND PUT */

#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

void main()

{

fstream rw;

char ch;

rw.open(“temp.txt”,ios : :in|ios : :out);

cout<<“Enter some data”<<endl;

cin.get(ch);

while(ch!=EOF)

{

rw.put(ch);

cin.get(ch);

}

rw.seekg(0,ios : :beg);

while(rw.eof()==0)

{

cout.put(ch);

rw.get(ch);

}

rw.close();

}

OUTPUT :

Enter some data

Hari Mohan Pandey faculty in CSE Dept.(Enter F6 or Ctrl+Z).Z

Hari Mohan Pandey faculty in CSE Dept.(Enter F6 or Ctrl+Z)

EXPLANATION : The two functions put and get allows us to write and read file
sequentially. We open the file temp.txt for both reading and writing. We prompt user to enter

some data. The data is scanned character by character using get and put into the file one

File Handling in C++ 577

character at a time. When user enter F6 or Ctrl+Z, first while loop terminates. The pointer
is then moved to beginning of the file by writing rw.seekg(0,ios::beg). We now read from
file character by character till end of the file does not reach. EOF is a macro defined in the file
stdio.h whose ASCII value is 26.

/*PROG 12.11 FILE COPYING USING GET AND PUT */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream source, dest;

char sfile[15], dfile[15];

char ch;

clrscr();

cout<<“Enter the source file name”<<endl;

cin>>sfile;

source.open(sfile,ios : :in);

cout<<“Enter the destination file name”<<endl;

cin>>dfile;

dest.open(dfile,ios : :out);

while(source.eof()==0)

{

source.get(ch);

dest.put(ch);

}

source.close();

dest.close();

}

OUTPUT :

Enter the source file name

Hari.txt

Enter the destination file name

Pandey.txt

578 Object-Oriented Programming C++ Simplified

Figure 12.3. Output screen of program 12.11.

EXPLANATION : We input source and destination file name from the user. It is assumed
that source file exist so we have not put any error checking code in the program. The source
file is than opened in read mode and destination file is in write mode. We read one character
at a time from source file and put this into destination file. This continues till source file does
not come to end. In the end both files are closed.

/* PROG 12.12 WORKING WITH TWO FILES AT A TIME */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream f1, f2;

clrscr();

f1.open(“names.txt”,ios : :out);

f1<<“Hari”<<endl;

f1<<“Vijay”<<endl;

f1<<“Ranjana”<<endl;

f1.close();

f2.open(“sname.txt”,ios : :out);

f2<<“Pandey”<<endl;

f2<<“Nath”<<endl;

f2<<“Pandey”<<endl;

f2.close();

f1.open(“names.txt”,ios : :in);

f2.open(“sname.txt”,ios : :in);

char str[15];

while(f1.eof()==0)

{

f1.getline(str,15);

File Handling in C++ 579

cout<<str<<“ “;

f2.getline(str,15);

cout<<str<<endl;

}

f1.close();

f2.close();

}

OUTPUT :

Hari Pandey

Vijay Nath

Ranjana Pandey

Figure 12.4. Output Screen of program 12.12.

EXPLANATION : In the program we have used two files names.txt in which we have
stored few names and snames.txt in which we have stored surnames. We open the two files
simultaneously and display the full name. If end of first is encountered we terminate the
program.

/* PROG 12.13 COUNTING NUMBER OF CHARACTERS IN FILE */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream rw;

char str[50];

int count = 0;

char ch;

clrscr();

rw.open(“demo1.txt”,ios : :in);

cout<<“Data read from file”<<endl;

580 Object-Oriented Programming C++ Simplified

rw.get(ch);

while(rw.eof()==0)

{

cout.put(ch);

rw.get(ch);

count++;

}

cout<<“Number of character in file := “<<count<<endl;

rw.close();

}

OUTPUT :

Data read from file

MPSTME, NMIMS UNIVERSITY MUMBAI

HANDLING IN C

Number of character in file := 46

Figure 12.5. Output screen of program 12.13.

EXPLANATION : The program opens the file demo1.txt in read mode. It reads file character

by character and increments count in each iteration. Out of while loop, count displays number
of character in the file. Note you have to add 4 extra for new line characters if you counter
check the output by finding number of characters manually.

12.6 RANDOM ACCESS IN FILE

Random access means reading data randomly from any where in the file. For this purpose we
need to set the position of the file pointer first in the file and then read the data. C++ file
stream classes provides the following functions for the manipulation of file pointer any where

in the file. With the help of these functions we can access data in random fashion.

(a) Seekg()

(b) seekp()

(c) tellg()

(d) tellp()

File Handling in C++ 581

The function seekg and tellg are used when we are reading from file i.e., when used with
the get pointer that’s why the suffix g. The function tellp and seekp are used when writing to
the file i.e., when put pointer is used that’s why the suffix p. The seek (p/g) function moves
pointer to the specified position and tell (p/g) gives the position of the current pointer. The
most frequently used function is seekg whose syntax is as :

istream & seekg (streamoff off, ios : :seek_dir dir);

The off is the new offset value and streamoff is a typedef equivalent to long. offset positive
means move forwards, −ve means move backwards and 0 means stay at the current position.
First byte in the file is at position 0. The dir is the seek diretion. Must be done of the following

enumerators :

→ ios : :beg Seek from the beginning of the stream.

→ ios : :cur Seek from the current position in the stream.

→ ios : : end Seek from the end of the stream.

ifstream file;

file.seekg(2,ios : :beg)-> Third byte from the beginning.

file.seekg(6,ios : :cur)-> Forward by 6 bytes from current pos.

file.seekg(-5,ios : :cur)->Backwardby 5 bytes from current pos.

file.seekg(-4,ios : :end)-> Backward by 4 bytes from end.

file.seekg(0,ios : :cur)-> stay at the current position.

Similar, to seekg you can use seekp for moving pointer within a file which is opened for
writing. The function tellg and tellp can be used for finding number of bytes into the file by
opening the file and moving pointer to the end of the file. They can be used as :

ofstream file(“num.txt”, ios : :ate);

cout<<file.tellp()<<endl;

When file is opened the pointer will be at the end of the file and tellp will give number
of bytes in the file. Similarly, we can use tellg as :

ifstream file(“num.txt”, ios : :in);

file.seekg(0, ios : :end);

cout<<file.tellg()<<endl;

When file is opened for reading, the file pointer will be in the beginning of the file so we
have moved pointer to the end of the file using seekg.

Let’s have few programs now which uses these function.

/* PROG 12.14 REVERSING FILE CONTENTS */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream file;

int count, x=1;

582 Object-Oriented Programming C++ Simplified

char ch;

clrscr();

file.open(“num.txt”,ios : :in);

cout<<“file contents”;

endl(cout);

while(file.eof()==0)

{

file.get(ch);

cout.put(ch);

}

endl(cout);

cout<<“Reversing contents”;

endl(cout);

file.clear();

file.seekg(0,ios : :end);

count=file.tellg();

while(x<=count)

{

file.seekg(−x,ios : :end);

file.get(ch);

cout.put(ch);

x++;

}

cout<<endl;

file.close();

getch();

}

OUTPUT :

file contents

Love is blind

I Love programming

Reversing contents

gnimmargorp evoL I

dnilb si evoL

EXPLANATION : Initially file is opened in the read mode and displayed. The file then

reaches at the end of file and error bit is set. It is must to clear this end of first bit other wise
after setting the pointer to last character of the file we won’t be able to read from the file.
Number of characters in the file is then find out as :

File Handling in C++ 583

file.seekg(0,ios : :end);

count = file.tellg();

Now to display reverse contents of the file we start from 1 and continue till x<= count.

We read first character from end when x = 1 as :

file.seekg(-x, ios : :end);

file.get(ch);

Which is displayed using cout.put(ch). As x increments we have the second character and

so on.

/* PROG 12.15 RANDOM ACCESS DEMO, PRINTING NAME “PARI” */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream file;

char ch;

clrscr();

file.open(“alpha.txt”,ios : :out);

file<<“ABCDEFGHIJKLMNOPQRST\n”;

file.close();

file.open(“alpha.txt”,ios : :in);

//file character is at 0 pos

//16th byte from begining

file.seekg(15,ios : :beg);

file.get(ch);

cout<<ch; //prints P

//first character from the beginning

file.seekg(0,ios : :beg);

file.get(ch);

cout<<ch; //prints A

//11th character from end Z at −3, ‘R’

file.seekg(−5,ios : :end);

file.get(ch);

cout<<ch; //prints R

//10th character from current position

//including current pos ‘I’

file.seekg(-10,ios : :cur);

file.get(ch);

cout<<ch; //prints I

584 Object-Oriented Programming C++ Simplified

cout<<endl;

file.close();

}

OUTPUT :

PARI

Figure 12.6. Output screen of the program 12.15.

EXPLANATION : The program is quite self-explanatory as comments are inserted at
appropriate places. When you place \n inside the file as this is done in the program then start
counting z from-3 position else count z from position -1 (remove \n).

/*PROG 12.16 COUNTING LINES AND CHARACTERS */

#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

void main()

{

fstream file;

int lines=0, count=0;

char ch;

file.open(“temp.txt”,ios : :out);

cout<<“Enter some text\n”;

cin.get(ch);

while(ch!=EOF)

{

file.put(ch);

cin.get(ch);

}

file.close();

file.open(“temp.txt”,ios : :in);

while(file.eof()==0)

{

file.get(ch);

File Handling in C++ 585

if(ch==’\n’);

lines++;

count++;

}

cout<<“Number of characters :=”<<count-lines-1<<endl;

cout<<“Number of line := “<<lines<<endl;

file.close();

}

OUTPUT :

Enter some text

One

Two

Three

Four

Number of characters =15

Number of lines = 4

EXPLANATION : For counting the number of lines we check for ‘\n’ and for counting
number of characters we count all characters in while by incrementing count in each iteration.
In the end when while loop terminates count will be one more than total number of characters.
It also includes number of ‘\n’ characters. So in the end of number of characters is displayed

as count-line-1.

/* PROG 12.17 DEMO OF IOS : :NOCREATE FLAG */

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include <conio.h>

void main()

{

fstream file;

clrscr();

file.open(“silly”,ios : :nocreate);

if(file.fail())

{

cout<<“File opening error”<<endl;

exit(0);

}

}

OUTPUT :

File opening error

586 Object-Oriented Programming C++ Simplified

Figure 12.7. Output screen of the program 12.17.

EXPLANATION : We have assumed that file silly does not exist. The ios : :nocreate
does not open the file if it already not existing and instead gives error. The error in opening

is checked using file.fail() which returns true if there is some error in opening the file.
As file does not exist if condition is true so cout displays “File opening error” and
program terminates.

/* PROG 12.18 READING AND WRITING NUMERIC DATA */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

 int i;

 clrscr();

 ofstream file(“num.txt”);

 for(i=1;i<=10;i++)

 cout<<i<<endl;

 file.close();

 ifstream file1(“num.txt”);

 while(1)

 {

 file1>>i;

 if(file1.eof()!=0)

 break;

 cout<<i<<endl;

 }

 file1.close();

}

OUTPUT :

1

2

File Handling in C++ 587

3

4

5

6

7

8

9

10

Figure 12.8. Output screen of program 12.18.

EXPLANATION : The program is simple. We input 10 numbers into the file and later
display it back. Note there is no special function available in C++ for handling numbers using

files.

12.7 COMMAND LINE ARGUMENTS

In all the programs we have used so far we have written main() without arguments but in
reality main () does take arguments and also have a return type. The prototype of main() in
C++ is given as :

int main(int argc, char * argv[])

or

int main(int argc, char ** argv)

Number of parameters are passed are collected into the parameter argc which stands for
argument count. Value of each argument is stored in string array argv which stands for argument
value. All arguments are of string type whether they are int, float or even a character. By default

return type of any function if not specified int is assumed that’s why int before main() is
optional. For better understanding point of view see the following examples.

588 Object-Oriented Programming C++ Simplified

 /*PROG 12.19 DEMO OF COMMAND LINE ARGUMENT */

#include <iostream.h>

#include <conio.h>

void main(int argc, char*argv[])

{

int i;

clrscr();

for(i=1;i<argc;i++)

cout<<“ARGUMENT=”<<i<<“\t”<<argv[i]<<endl;

getch();

}

OUTPUT :

ARGUMENT=1 HELLO

ARGUMENT=2 NMIMS

ARGUMENT=3 UNIVERSITY

ARGUMENT=4 MUMBAI

EXPLANATION : Type the above program in Visual C++ environment build the program
which will make exe file by the project name assuming project name is F19. Now come at the
DOS prompt by moving to your project directory. On my laptop the project name was F19

under C :\ so.

C :\TC>

C :\TC>F19

C :\TC>F19 HELLO NMIMS UNIVERSITY MUMBAI

As shown in below figure :

Figure 12.9. Showing the execution process of the program 12.19.

When you press Enter. You will get the output as shown below :

Figure 12.10. Showing the output screen of the program 12.19.

File Handling in C++ 589

Here total number of arguments is 4 stored in argc with a space between each command
line argument. First argument is the file name itself which we have not printed F19.exe is
stored in argv[0], second argument HELLO is stored in argv [1] and so on. The parameter name
argc and argv are not fixed. They may be something else.

/* PROG 12.20 SUM OF COMMAND LINE ARGUMENT */

#include <iostream.h>

#include <stdlib.h>

void main(int argc, char **argv)

{

int i, sum = 0;

for(i=0;i<argc;i++)

sum=sum+atoi(argv[i]);

cout<<“Sum is “<<sum<<endl;

}

OUTPUT :

C :\TC>F20 1 2 3 4 5 6 7 8 9

Sum is 45

C :\TC>

Figure 12.11. Output screen of program 12.20.

EXPLANATION : As mentioned in the previous program the argument supplied at command
line are by default treated as strings. We run the program as :

F20 1 2 3 4 5 6 7 8 9

Now starting from second argument that 1 each argument is converted into integer with
the help of built-in function atoi whose prototype is given in file stdlib.h and summed up in
variable sum.

/* PROG 12.21 MAX OF COMMAND LINE ARGUMENTS, FLOAT DATA */

#include <iostream.h>

#include <stdlib.h>

590 Object-Oriented Programming C++ Simplified

void main(int argc, char **argv)

{

int i;

float max, t;

max= atof(argv[1]);

for(i=1; i<argc; i++)

{

t = atof(argv[i]);

if(max<t)

max = t;

}

cout<<“max is”<<max<<endl;

}

OUTPUT :

C :\TC>f21 4.5 6.7 2.34 56.8 78.90

max is78.900002

C :\TC>

Figure 12.12. Output screen of program 12.21.

EXPLANATION : Program is self-explanatory. See previous program’s explanation.

/* PROG 12.22 SORTING COMMAND LINE ARGUMENTS */

#include <iostream.h>

#include <string.h>

void main(int argc, char **argv)

{

char *temp;

int i,j;

for(i=1;i<argc;i++)

File Handling in C++ 591

{

for(j=i+1;j<argc;j++)

if(strcmp(argv[i],argv[j])>0)

{

temp=argv[i];

argv[i]=argv[j];

argv[j]=temp;

}

}

for(i=1;i<argc;i++)

cout<<argv[i]<<endl;

}

OUTPUT :

C :\TC>F22 ONE TWO THREE FOUR

FOUR

ONE

THREE

TWO

Figure 12.13. Output screen of program 12.22.

EXPLANATION : The program is run as

C :\TC>F22 ONE TWO THREE FOUR

As shown in above figure. The logic for sorting the string has been covered in earlier
chapter.

592 Object-Oriented Programming C++ Simplified

/* PROG 12.23 COPYING OF ONE FILE INTO ANOTHER WITH FILE NAMES SUPPLIED AS

COMMAND LINE ARGUMENTS */

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

void main(int argc, char **argv)

{

fstream f1,f2;

char ch;

cout<<argc<<endl;

if(argc!=3)

{

cout<<“Usage :<<filename><source file<dest file>”;

exit(0);

}

f1.open(argv[1],ios : :in);

f2.open(argv[2], ios : :out);

if(f1.fail())

{

cout<<“File opening error”;

exit(0);

}

while(f1.eof()==0)

{

f1.get(ch);

f2.put(ch);

}

f1.close();

f2.close();

}

EXPLANATION : In the program we take the source file and destination file as command

line arguments. If number of arguments are not there we flash an error message. Similarly, if
there is error in opening the source file flash error. If all goes well we copy file into destination
character by character basis.

12.8 WORKING WITH BINARY MODE

Numeric data including integer and floating point as well as character data, all are treated in
terms of character data i.e., string “file” will take 4 bytes in memory, integer number 1245 will
take 4 bytes in memory and even 1.23 will take 4 bytes in memory. But as these data stored

File Handling in C++ 593

in disk file they are stored in binary form and in this they are stored as per their type i.e.,
integer takes 2 bytes, float takes 4 bytes and character takes 1 bytes. So, if reading and writing
is done when treating file as text file and it contains lots of numerical data it will require large
amount of disk space. For that we can have two functions provided by C++ stream classes read
and write which reads and write data in terms of binary. For opening file in binary mode we
have the mode ios : :binary. The prototype of both the function is given as :

Ostream & write(const char * pch, int nCount);

Istream & read(char * pch, int nCount);

The first argument in the write is the address of the character array and second is the

number of characters to be written. Similar arguments apply to fread with the difference that
it reads instead of writing.

/*PROG 12.24 READING AND WRITING OBJECT VER 1 */

#include <iostream.h>

#include <fstream.h>

#include <string.h>

#include <conio.h>

class person

{

char name[10];

int age;

public :

void input(char n[], int a)

{

strcpy(name, n);

age=a;

}

void show()

{

cout<<“Name =” <<name<<endl;

cout<<“AGE =” <<age<<endl;

}

};

void main()

{

fstream file;

clrscr();

file.open(“obj.txt”,ios : :in|ios : :out);

person d;

d.input(“HARI”,24);

file.write((char*)&d,sizeof(d));

594 Object-Oriented Programming C++ Simplified

file.read((char*)&d,sizeof(d));

d.show();

file.close();

getch();

}

OUTPUT :

Name = HARI

AGE = 24

EXPLANATION : The two function write and read work with binary files. Initially we
assign values to data members of object d using function input. We then call function write
which takes first argument as address of object d i.e., where the write has to perform and

second takes size of object. After writing object to the file, reading takes place by read function
whose syntax is similar to the write. The object is read and displayed using a call to function
show.

/* PROG 12.25 READING AND WRITING OBJECT VER 2 */

#include <iostream.h>

#include <fstream.h>

#include <string.h>

#include <conio.h>

class person

{

char name[10];

int age;

char sex;

public :

void input()

{

cout<<“Enter person name”<<endl;

cin>>name;

cout<<“Enter age and sex”<<endl;

cin>>age>>sex;

}

void show()

{

cout<<“Name :=”<<name<<endl;

cout<<“Age :=”<<age<<endl;

File Handling in C++ 595

cout<<“Sex :=”<<sex<<endl;

}

};

void main()

{

fstream file;

file.open(“obj.txt”,ios : :in|ios : :out);

person d[3];

int i;

clrscr();

for(i=0;i<3;i++)

{

d[i].input();

file.write((char*)&d[i],sizeof(d[i]));

}

cout<<“Data read from file”<<endl;

for(i=0;i<3;i++)

{

cout<<“\n Person”<<i+1<<“\n”;

file.read((char*)&d[i],sizeof(d[i]));

d[i].show();

}

file.close();

}

OUTPUT :

Enter person name

HARI

Enter age and sex

24 m

Enter person name

MAN

Enter age and sex

26 M

Enter person name

RANJANA

Enter age and sex

23 F

596 Object-Oriented Programming C++ Simplified

Data read from file

 Person1

Name :=HARI

Age :=24

Sex :=m

 Person2

Name :=MAN

Age :=26

Sex :=M

 Person3

Name := RANJANA

Age := 23

Sex := F

EXPLANATION : In the program we have an array of objects d of size 3 of class person

type. We run the for loop and take values for data members for all three objects using function
input. The objects are then stored in the file using function read. In the next for loop we read
objects from file and display using write.

/* PROG 12.26 READING AND WRITING ARRAY */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream file;

int a[10], i;

clrscr();

file.open(“arr.txt”,ios : :in|ios : :out);

for(i=0;i<=9;i++)

a[i]=i+1;

file.write((char*)a,sizeof(a));

cout<<“Array is”<<endl;

for(i=0;i<=9;i++)

cout<<endl<<“ “<<a[i];

cout<<endl;

File Handling in C++ 597

file.close();

getch();

}

OUTPUT:

Array is

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Figure 12.14. Showing the output screen of program 12.26.

EXPLANATION : Not only object we can also store array into the file. In the program we
have first assigned numbers 1 to 10 into the array a and stored the whole array into the file
arr.txt by using just one statement file.write ((char*)a, sizeof(a)); a is the base
address of the array, sizeof a gives 40. We then make all elements to array a to zero so that

when we read back from file we get the original array. The array is read through fread and
displayed.

598 Object-Oriented Programming C++ Simplified

/* PROG 12.27 STUDENT DATA BASE MANAGEMENT */

#include <iostream.h>

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

class student

{

char sname[15];

int c_rno;

char cls[10];

public :

void input_data();

void show_data();

int getcrn()

{

return c_rno;

}

};

void student : :input_data()

{

cout<<“Enter the student name”<<endl;

cin>>sname;

cout<<“Enter college roll no and class”<<endl;

cin>>c_rno>>cls;

}

void student : :show_data()

{

cout<<“Name :=”<<sname<<“\t”;

cout<<“CRN :=”<<c_rno<<“\t”;

cout<<“Class :=”<<cls<<endl;

}

void main()

{

int ch, crn;

student st;

fstream file;

int found = 0;

int noc, nor;

File Handling in C++ 599

long int move;

clrscr();

file.open(“student.txt”,ios : :in|ios : :out|ios : :binary

|ios : :ate);

do

{

cout<<“\n Welcome to student Database\n”;

cout<<“1. Add a record\n”;

cout<<“2. View Record \n”;

cout<<“3. Search Record \n”;

cout<<“4. Delete a Record \n”;

cout<<“5. Modify a record \n”;

cout<<“6. Count Records \n”;

cout<<“7. Exit\n”;

cout<<“Enter your choice (1 to 6)\n”;

cin>>ch;

switch(ch)

{

case 1 :st.input_data();

file.write((char*)&st, sizeof(st));

cout<<“Record is added \n”;

file.clear();

break;

case 2 : file.seekg(0,ios : :beg);

while(file.read((char*)&st, sizeof(st)))

st.show_data();

file.clear();

break;

case 3 :cout<<“Enter the college roll number \n”;

cin>>crn;

file.seekg(0,ios : :beg);

while(file.read((char*)&st,sizeof(st)))

{

if(st.getcrn()==crn)

{

cout<<“Record found\n”;

st.show_data();

found=1;

}

}

if(found ==0)

600 Object-Oriented Programming C++ Simplified

cout<<“Record does not found \n”;

file.clear();

break;

case 4 :cout<<“Enter the college roll number \n”;

cin>>crn;

file.seekg(0,ios : :beg);

while(file.read((char*)&st,sizeof(st)))

{

if(st.getcrn()==crn)

{

cout<<“Record found \n”;

found=1;

st.show_data();

int ans;

cout<<“Are you sure to delete this

record (1/0) ?\n”;

cin>>ans;

if(ans==1)

{

file.seekg(0,ios : :beg);

fstream newf;

newf.open(“newstu.txt”,ios : :out);

while(file.read((char*)&st,sizeof(st)))

{

if(st.getcrn()!=crn)

newf.write((char*)&st,sizeof(st));

}

file.close();

remove(“student.txt”);

newf.close();

rename(“newstu.txt”,”student.txt”);

file.open(“student”,ios : :in|ios : :out|ios : :binary

|ios : :ate);

cout<<“Record deleted\n”;

}

}

}

if(found==0)

cout<<“Record does not found\n”;

file.clear();

break;

File Handling in C++ 601

case 5 :cout<<“Enter the second record number to

modify \n”;

int recno;

cin>>recno;

move=(recno-1)*sizeof(st);

file.seekg(move,ios : :beg);

cout<<“Please enter new data \n”;

st.input_data();

file.write((char*)&st,sizeof(st));

file.clear();

break;

case 6 : file.seekg(0,ios : :end);

noc=file.tellg();

nor=noc/sizeof(st);

cout<<“Number of record :=”<<nor<<endl;

break;

case 7 : cout<<“Bye Bye\a.\a.\a.\a.\a.\a.

\a..!\a!\a!”<<endl;

exit(0);

}

}while(ch>=1 && ch<=7);

getch();

}

OUTPUT :

 Welcome to student Database

1. Add a record

2. View Record

3. Search Record

4. Delete a Record

5. Modify a record

6. Count Records

7. Exit

Enter your choice (1 to 6)

1

Enter the student name

Hari

Enter college roll no and class

12 BTech

Record is added

602 Object-Oriented Programming C++ Simplified

 Welcome to student Database

1. Add a record

2. View Record

3. Search Record

4. Delete a Record

5. Modify a record

6. Count Records

7. Exit

Enter your choice (1 to 6)

1

Enter the student name

Ravi

Enter college roll no and class

13 MBA

Record is added

Welcome to student Database

1. Add a record

2. View Record

3. Search Record

4. Delete a Record

5. Modify a record

6. Count Records

7. Exit

Enter your choice (1 to 6)

2

Name :=Hari CRN :=12 Class :=B Tech

Name :=Ravi CRN :=13 Class :=MBA

Welcome to student Database

1. Add a record

2. View Record

3. Search Record

4. Delete a Record

5. Modify a record

6. Count Records

7. Exit

Enter your choice (1 to 6)

Welcome to student Database

1. Add a record

2. View Record

3. Search Record

4. Delete a Record

File Handling in C++ 603

5. Modify a record

6. Count Records

7. Exit

Enter your choice (1 to 6)

7

Bye Bye

EXPLANATION : To modify a record we initially reach to the location of that record. The

location can be found out as :

Loc=(n-1) *sizeof(st);

Where st is an object of class student and n is the record number.

Then through seekg we reach to the loc in the file i.e., beginning of the record which
is to e modified. We then accept the new data for the resord and overwrite the exiting record.

The file is opened in ios : :ate mode which takes pointer to the end of the file. For
moving any where in the file we have to use seekg. For accessing file again once end of the
file has been set we have cleared it by using clear function which turn off the end of file flag.

To search for a record we ask from the user the college roll no and scan the whole file
for the record where c_rno matches with the user supplied crn. As c_rno is private so we
have a public member function getcrn which gives college roll number.

For deletion of a record we move all the other records to a temporary file temp.txt. We

then remove the original file using the built function remove which takes a single argument of
const char* type, the file name to be removed. We then rename the temporary file temp.txt
to the old student.txt.

12.9 ERROR HANDLING

When dealing with the file errors might occurs such as :

� File does not exist

� Reading from file which is opened for writing only.

� Path is not valid.

� File already exist etc.

To cope up with all these error we check whether file is opened successfully or what type
of error has beem generated.

Some of the error handling functions with their descripton is given below :

1. The good Function

SYNTAX : int good() const;

Returns nonzero values if all error bits are clear. Note that the good member function is
not simply the inverse of bad function.

2. The bad Function

SYNTAX : int bad() const;

604 Object-Oriented Programming C++ Simplified

Returns a nonzerovalue to indicates a serious I/O error. This is the same as setting the
badbit error state. Do not continue I/O operations on the stream is this situtation.

3. The fail Function

SYNTAX : int fail () const;

Returns a nonzero value if any I/O error (not end of file) has occurred. This consdition
corresponds to either the badbit or failbit error flag being set. If a call to bad returns 0, you can
assume that the error condition is nonfatal and that you can probably continue processing after
you clear the flags.

4. The clear Function

SYNTAX : void clear (int nState = 0);

The parameter nState, if 0, then all error bits are cleared, otherwise bits are set according
to the following masks(ios enemerators) that can be combined using the bitwise OR (|) operator.
The nState parameter must have one of the following values :

-> ios : :goobit No error condition (no bits set).

-> ios : :eofbit End of file reached.

-> ios : :failbit A possibly recoverable formatting or coversion error.

-> ios : :badbit A server I/O error.

The function sets or clear the error-state flags. The rdstate function can be used to read
the current error state.

5. The eof() Function

SYNTAX : int eof() const;

Returns a nonzero value if end of file has been reached. This is the same as setting the
eofbit error flag.

6. The rdstate Function

SYNTAX :int rdstate () const;

Returns the current error state as specified by the following masks(ios enumerators).

-> ios : :goobit No error condition (no bits set).

-> ios : :eofbit End of file reached.

-> ios : :failbit A possibly recoverable formatting or coversion error.

-> ios : :badbit A server I/O error or unknown state.

This is shown in the figure given below. The last 4 bits are unused.

The returned value can be tested against a mask with the AND (&) operator, but we do

not have to as we can have functions which tells us which bit is set or reset.

������� ������ ���	���
�����

7 6 5 4 3 2 1 0

Figure 12.15. Error state specified by the masks given above

File Handling in C++ 605

/* PROG 12.28 ERROR HANDLING WITH FILES */

#include <iostream.h>

#include <conio.h>

#include <fstream.h>

 void main()

 {

 clrscr();

 ofstream file(“silly.text”, ios : :noreplace);

 if(!file)

 {

 cout<<“FILE OPEING ERROR”;

 endl(cout);

 }

 cout<<“THE VARIOUS FLAGS SET/ RESET ARE”;

 endl(cout);

 cout<<“rdstate=”<<file.rdstate();

 endl(cout);

 cout<<“bad=”<<file.bad();

 endl(cout);

 cout<<“fail=”<<file.fail();

 endl(cout);

 cout<<“good=”<<file.good();

 endl(cout);

 cout<<“eof=”<<file.eof();

 endl(cout);

 getch();

 }

OUTPUT :

FILE OPEING ERROR

THE VARIOUS FLAGS SET/ RESET ARE

rdstate=2

bad=0

fail=2

good=0

eof=0

EXPLANATION : The file silly.txt was existing earlier. The noreplace flashes error if file
was existing and we tried to open it for writing. That is using this flag we come to know that
file already exist and we do not have to modify the file. The file opeing error occurred so fail
will returned a non zero value, good returns 1 only when no error of any type occurs i.e., all

606 Object-Oriented Programming C++ Simplified

the bits are cleared. The bad returns 0 as there is no I/O error. Eof was not reached so eof
returns 0. Now checking from the figure, the rdstate will be as :

8 7 6 5 4 3 2 1

0100

Figure 12.16. Logical Implementation of rdstate()

0010 is decimal 2, so rdstate return 2.

In the program if file was not opened and we try to write to the file then function bad
returns true and badbit which indicates file input/output error. This can be cheked again as :

file<<“WRITING TO THE FILE”<<endl;

if(!file)

{

cout<<“WRITING ERROR”;

endl(cout);

}

//check all flags here;

/*PROG 12.29 DEMO OF FAIL AND GOOD */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

clrscr();

ifstream file(“num.txt”,ios : :nocreate);

if(file.good())

{

cout<<“File is opened successfully”<<endl;

cout<<“good flag :=”<<file.good()<<endl;

}

else if(file.fail())

{

cout<<“Error in opening file \n”;

cout<<“Fail flag :=”<<file.bad()<<endl;

}

}

OUTPUT :

File is opened successfully

good flag :=1

File Handling in C++ 607

Figure 12.17. Showing the output screen of the program 12.29.

EXPLANATION : The program is self-explanatory.

12.10 PONDERABLE POINTS

1. Opening a file links the program with the files. The link is made through an object of
any of the file stream classes like fstream, ifstream, ofstream etc., which are defined
in header file fstream.h.

2. The files which are accessed using library functions are known as high level files and
those by system-calls are known as low level files. System calls are special command
to the operating system (OS) and are specified to a particular OS.

3. High level files are also known as stream oriented files and low level files are also
known as system oriented files.

4. There are two types of stream in general

(a) Text streams which is a sequence of bytes (lines of tex).

(b) Binary stream which is a sequence of unprocessed bytes.

5. Normally all files are opened and accessed in text mode. For opening a file a binary
mode ios : :binary mode has to be specified.

6. For opening file either the constructor method or open function can be used.

7. The various modes like ios : :in, ios : :out, ios : :ate etc., are enumeration constants of

ios class.

8. The various functions for handling error are good, bad, clear etc.

EXERCISE

A. True and False :

1. read() and write() method are used for character input and output.

2. The fstream can only be used for reading the data.

3. The read and write functions are used to read and write objects from/to file.

4. A stream may be connected to more than one file at a time.

B. Answer the Following Questions :

1. What different types of file streams C++ provides ?

2. Why we need fstream. Header file ?

608 Object-Oriented Programming C++ Simplified

3. What is the advantage of files ?

4. How text file different from binary file ?

5. Discuss function for random access of a file.

6. What are the opening modes ? Explain the purpose of each mode.

7. What are command line arguments ? How do we use them in our program ?

8. How can we read write object from/to file ?

9. What are various error handling functions C++ provides ?

10. What is eof ? How it can detect end of file ?

C. Brain Drill :

1. Write a program that displays on the screen the contents of text file line by line backwards. It
should be possible to run your program by providing the file name as a command line argument.

2. Write a C++ class to read an existing file and create another file with all words of the source file
stored in reverse order. It is assumed that successive words are separated by one or more white
space characters.

3. Write a C++ program to compare contents of two files whose names are supplied through the
command line. Display the first line having mismatch along with its number.

4. Write a C++ program to copy the alternate lines in reverse order from a source file to target file
with the file names are entered at the command prompt.

5. Write a program that emulates the DOS COPY command. That is, it should copy the contents of
a text file (such as any .CPP file) to another file. Invoke the program with two command-line
arguments—the source file and the destination file-like this :

C>copy srcfile.cpp destfile.cpp

In the program, check that the user has typed the correct number of command-line arguments, and
that the files specified can be opened.

6. Write a program that returns the size in bytes of a program entered on the command line :

C>filesize program.exe

7. In a loop, prompt the user to enter name data consisting of a first name, middle initial, last name,
and employee number (type unsigned long). Then, using formatted I/O with the insertion (<<)
operator, write these four data items to an ofstream object. Don’t forget that strings must be
terminated with a space or other white space character. When the user indicates that no more
name data will be entered, close the ofstream object, open an ifstream object, read and display
all the data in the file, and terminate the program.

8. Create a time class that includes integer member values for hours, minutes, and seconds. Make
a member function get_time () that gets a time value from the user, and a function put_time ()
that displays a time in 12 :59 :59 format. Add error checking to the get_time () function to
minimize user mistake. This function should request hours, minutes, and second separately, and
check each one for ios error status flags and the correct range. Hours should be between 0 and
23, and minutes and seconds between 0 to 59. Don’t input these values as strings and then convert
them; read them directly as integers. This implies that you won’t be able to screen out entries with
superfluous decimal points.

In main (), use a loop to repeatedly get a time vale from the user with get_time () and then

display it with put_time (), like this :

Enter hours : 11

Enter minutes : 59

Enter seconds : 59

Time = 11 :59 :59

Do another (y/n) ? y

���

TEMPLATE PROGRAMMING

13.1 INTRODUCTION

Template is one of the most important and useful feature of C++ which was added only a few
years back. Template provides the idea of generic classes. Use of one function or class that
works for all data types is generalization. With the help of templates and functions we can
create generic data types and idea leads to generic programming. In the generic programming
generic data types are passed as argument to function and classes.

Some facts about templates are given below:
• Template provides the idea of generic classes.
• Use of one function or class that works for all data types is generalization.
• With the help of templates and functions we can create generic data types and this

idea leads to generic programming.
• In the generic programming generic data types are passed as argument to function and

classes.
• A template is similar to a macro which can work for different types of data.
• A template created for a function so a function works for variety of data types is

termed as function template.
• For example a function template max is written which finds maximum of two integer,

two floats, two chars etc.
• Similarly, when a template is written for a class so one single class works for variety

of data types is turnecll as class template.

13.2 FUNCTION TEMPLATE

• A function template is created when we write one definition of function which works
with different type of data types.

• A function template does not occupy space in memory.

609

610 Object-Oriented Programming C++ Simplified

� The actual definition of function template is generated when function is called with

specific data type.

� The function template does not result in saving memory.

� Function template simply relieves us from writing same amount of code for different

data types.

� The syntax for creating a function template :

template <class name>

function definition;

Before function definition we write template which is a keyword. In the brackets < and >

we write class and any name which serves as the generic type. The name may be a single

character or a word (similar to identifier). The name usually written in capital but may be in

small case too.

We present below a small example of function template.

/*PROG 13.1 DISPLAYING DIFFERENT TYPES OF VARIABLES WITH THEIR TYPE USING

FUNCTION TEMPLATE */

#include <iostream.h>

#include <typeinfo.h>

template <class FUNC>

void show(FUNC par)

{

 cout<<“Displaying”<<typeid(par).name()<<“Parameter\t”<<par <<endl;

}

void main()

{

 int x=234;

 float y=34.56f;

 double d=3.444456;

 char ch=’P’;

 char *s= “Template”;

 show(x);

 show(y);

 show(d);

 show(ch);

 show(s);

}

Template Programming 611

OUTPUT :

Displaying int Parameter 234

Displaying float Parameter 34.56

Displaying double Parameter 3.44446

Displaying char Parameter P

Displaying char * Parameter Template

EXPLANATION : The function template is written as :

void show(FUNC par)

{

cout<<“Displaying”<<typeid(par).name()<<“Parameter\t”<<par

<<endl;

}

The line template<class FUNC> has to be written whenever you want to create either a

function template or class template. The name FUNC is generic data type name. It is replaced

by the actual data type when a specific data type is used with the function call. The statement

typeid(par).name gives the actual data type of the variable as discussed earlier. In the main

when the following functions are called, depending upon type of parameter is passed, a separate

function definition is generated in the memory.

show(x);

show(y);

show(d);

show(ch);

show(s);

For example, for show(x) as type of x is int, function definition is generated as (because

of function template void show()FUNC par) :

void show(FUNC par)

{

cout<<“Displaying”<<typeid(par).name()<<“Parameter\t”<<par

<<endl;

}

Similarly for other data types function definition will be generated. That is for 5 different

data types with function template show five different versions of show are generated in the

memory. So function template does not save memory. It saves us only from writing repetitive

code which works for different type of data.

612 Object-Oriented Programming C++ Simplified

/* PROG 13.2 TO FIND MAXIMUM OF TWO NUMBER USING FUNCTION TEMPLATE */

#include <iostream.h>

#include <conio.h>

template <class FUNC>

FUNC max2(FUNC a, FUNC b)

{

return (a>b?a :b);

}

void main()

{

int x=10,y=20;

float f1=2.4, f2=4.5;

char ch1=’A’, ch2=’B’;

clrscr();

cout<<“\n Max of two integers “<< x <<“ & “<< y

<<“ is\t”;

cout<<max2(x,y);

cout<<“\n Max of two floats “<< f1 <<“ & “<< f2

<<“ is\t”;

cout<<max2(f1,f2);

cout<<“\n Max of two chars “<< ch1 <<“ & “<< ch2

<<“ is\t”;

cout<<max2(ch1,ch2);

getch();

}

OUTPUT :

 Max of two integers 10 & 20 is 20

 Max of two floats 2.4 & 4.5 is 4.5

 Max of two chars A & B is B

EXPLANATION : In the program we have written a function template which finds maximum

of different data types passed as argument by returning it from the function template. The function

template is written as :

template <class FUNC>

FUNC max2(FUNC a, FUNC b)

{

return (a>b ? a :b);

}

Template Programming 613

Here only one generic data type is used but thrice, two times as argument to the function

template max2, and third time as return type for the function template max2.

In the main again as function calls are encountered in the main as max2(x,y), max2(f1,f2),

and max2(ch1,ch2). Three different functions from the function template definition are generated

and all instances of generic types are replaced by int, float and char respectively in separate

function definition.

This is as shown below :

int max2(int a, int b)

{

return (a>b ? a :b);

}

float max2(float a, float b)

{

return (a>b ? a :b);

}

char max2(char a, char b)

{

return (a>b ? a :b);

}

/* PROG 13.3 SORTING ARRAY ELEMENTS USING FUNCTION TEMPLATE VER 1*/

#include <iostream.h>

#define S 5

template<class TYPE>

void sort(TYPE arr[])

{

int i,j;

for(i=0;i<S;i++)

for(j=i+1;j<S;j++)

if(arr[i]>arr[j])

{

TYPE t = arr[i];

arr[i] = arr[j];

arr[j] = t;

}

for(i=0;i<S;i++)

cout<<arr[i]<<“ “;

cout<<endl;

}

614 Object-Oriented Programming C++ Simplified

void main()

{

int iarr[S]={1, 34, 56,22, 15};

float farr[S]={2.3, 1.5, 4.8, 1.3, 5.8};

char carr[S]={‘a’,’c’,’e’,’b’,’d’};

cout<<“SORTED INTEGERE ARRAY”<<endl;

sort(iarr);

cout<<“SORTED FLOAT ARRAY”<<endl;

sort(farr);

cout<<“SORTED CHAR ARRRAY”<<endl;

sort(carr);

}

OUTPUT :

SORTED INTEGERE ARRAY

1 15 22 34 56

SORTED FLOAT ARRAY

1.3 1.5 2.3 4.8 5.8

SORTED CHAR ARRRAY

a b c d e

Figure 13.1. Showing the output screen of program 13.3

EXPLANATION : This time we have written a function template sort for sorting array of

different data types. Logic of sorting has been used earlier with arrays so no need to discusss

it again. In the main we have initialized three arrays of type int, float and char. When function

sort(iarr), sort(farr) and sort(carr), three different versions of function template are generated

and generic type TYPE is replaced by int, float and char respectively. Rest is easy to understand.

/* PROG 13.4 SORTING ARRAY ELEMENTS USING FUNCTION TEMPLATE VER 2*/

#include <iostream.h>

#include <typeinfo.h>

#define S 5

Template Programming 615

template<class TYPE>

void sort(TYPE arr[])

{

int i,j;

for(i=0;i<S;i++)

for(j=i+1;j<S;j++)

if(arr[i]>arr[j])

{

TYPE t=arr[i];

arr[i]=arr[j];

arr[j]=t;

}

}

template<class TYPE>

void input(TYPE arr[])

{

int i;

cout<<“Enter”<<S<<“

“<<typeid(arr[0]).name()<<“number”<<endl;

for(i=0;i<S;i++)

cin>>arr[i];

}

template<class TYPE>

void show(TYPE arr[])

{

int i;

for(i=0;i<S;i++)

cout<<arr[i]<<“ “;

cout<<endl;

}

void main()

{

int a1[S];

input(a1);

sort(a1);

cout<<“SORTED ARRAY IS”<<endl;

show(a1);

float f[S];

616 Object-Oriented Programming C++ Simplified

input(f);

sort(f);

cout<<“SORTED ARRAY IS”<<endl;

show(f);

}

OUTPUT :

Enter5 intnumber

10 5 26 17 80

SORTED ARRAY IS

5 10 17 26 80

Enter5 floatnumber

56.8 4.5 2.3 90.634.56

SORTED ARRAY IS

0.56 2.3 4.5 56.8 90.634

Figure 13.2. Showing the output screen of program 13.4

EXPLANATION : In the program we have three function templates :

1. One for inputting array elements.

2. Second for showing the array elements.

3. Third for sorting array element.

As we have array of two different data types, total 2 × 3 = 6 function definition are

generated when specific call is made to each function i.e., 3 for integer data type int : input,

show and sort and 3 for float data type. Rest is simple to understand.

/* PROG 13.5 WORKING WITH TWO GENERIC DATA TYPE AT A TIME */

#include <iostream.h>

#include <typeinfo.h>

template<class T1, class T2>

Template Programming 617

void show(T1 par1, T2 par2)

{

cout<<typeid(par1).name()<<“ parameter=”<<par1<<“\t”;

cout<<typeid(par2).name()<<“ parameter=”<<par2<<endl;

}

void main()

{

show(14,’B’);

show(“NMIMS”,35.67);

}

OUTPUT :

int parameter=14 char parameter=B

char * parameter=NMIMS double parameter=35.67

Figure 13.3. Output screen of program 13.5

EXPLANATION : In the program we have a function template show which takes two

generic types as arguments. Note in the following the template keyword both the generic type

has been declared as <class T1, class T2>. Many more generic types can be declared

separating by comma but each must be declared using class keyword. In the function template

show we simply display the type and value of the arguments. As we call show twice with the

different arguments, two different definition of the function template is created in the memory.

/* PROG 13.6 CHECKING EQUALITY OF DATA TYPE OF TWO VARIABLES USING FUNCTION

TEMPLATE VER 1*/

#include <iostream.h>

#include <typeinfo.h>

#include <string.h>

template<class T1, class T2>

void equal(T1 x, T2 y)

{

const char *p1=typeid(x).name();

const char *p2=typeid(y).name();

if(strcmp(p1,p2)==0)

618 Object-Oriented Programming C++ Simplified

cout<<“Data type”<<p1<<“ and “<<p2

<<“ is same “<<endl;

else

cout<<“Data type “<<p1<<“ and “<<p2

<<“ is not same “<<endl;

}

void main()

{

int a =10, b=20;

float c=23.45;

char ch = ‘A’;

char*s1 = “string”, *s2=”string”;

equal(a,c);

equal(ch,b);

equal(a,b);

equal(s1,s2);

}

OUTPUT :

Data type int and float is not same

Data type char and int is not same

Data typeint and int is same

Data typechar * and char * is same

Figure 13.4. Showing the output of the program 13.6

EXPLANATION : In the function template we are trying to check whether two generic data

types are same or not. This will be checked when an instance of function template is created

passing actual type as arguments. For the first call equal(a,c) function template is instantiated

and a function definition as shown below is created.

Template Programming 619

void equal(T1 x, T2 y)

{

const char *p1=typeid(x).name();

const char *p2=typeid(y).name();

if(strcmp(p1,p2)==0)

cout<<“Data type”<<p1<<“ and “<<p2

<<“ is same “<<endl;

else

cout<<“Data type “<<p1<<“ and “<<p2

<<“ is not same “<<endl;

}

typeid(x).name() returns the data type as constant string so p1 stores “int” and p2 stores

“float”, both as string. Later we compare whether two strings are same or not by comparing

them using strcmp(). If strcmp return two data type are same otherwise not same. Same for

other call to equal hold.

/* PROG 13.7 CHECKING EQUALITY OF DATA TYPE OF TWO VARIABLES USING FUNCTION

TEMPLATE VER 2 */

#include <iostream.h>

#include <typeinfo.h>

#include <string.h>

template <class T1, class T2>

void equal(T1 x, T2 y)

{

const char*p1=typeid(x).name();

const char*p2=typeid(y).name();

if(strcmp(p1,p2)==0)

cout<<“Data type “<<p1<<“ and “<<p2

<<“ is same”<<endl;

else

cout<<“Data type “<<p1<<“ and “

<<p2<<“ is not same”<<endl;

}

void main()

{

equal(23.45, 23.45);

equal(‘A’,65);

equal(2.0, 2.0f);

equal(“str”,(int*)”str”);

}

620 Object-Oriented Programming C++ Simplified

OUTPUT :

Data type double and double is same

Data type char and int is not same

Data type double and float is not same

Data type char * and int * is not same

Figure 13.5. Showing the output of program 13.7

EXPLANATION : The program is similar to previous program with change in main. In the

previous program we declared the variable of different data type and then passed to function

equal. But here we are passing them as constants as shown :

equal(23.45, 23.45);

equal(‘A’,65);

equal(2.0, 2.0f);

equal(“str”,(int*)”str”);

In the first statement shown above both arguments are treated as double. In the second

one is of character and second is of integer. In the third first one is of double and second is

of float (due to f). In the fourth call to equal first argument is of type char* and second is of

type int* (explicit type casting). Four different function definitions will be generated.

/* PROG 13.8 TO CHECK EQUALITY OF THREE DATA TYPES USING FUNCTION

TEMPLATE */

#include <iostream.h>

#include <typeinfo.h>

#include <string.h>

template<class T1, class T2, class T3>

void equal(T1 x, T2 y, T3 z)

{

const char*p1=typeid(x).name();

const char*p2=typeid(y).name();

const char*p3=typeid(z).name();

Template Programming 621

bool b1,b2;

b1=strcmp(p1,p2);

b2=strcmp(p2,p3);

if(!b1&&!b2)

cout<<“Data type “<<p1<<“, “<<p2<<“ and “

<<p3<<“ is same”<<endl;

else

cout<<“Data type “<<p1<<“,”<<p2<<“ and “

<<p3<<“ is not same”<<endl;

}

void main()

{

equal(2,5,6);

equal(2, 3.5, ‘B’);

}

OUTPUT :

Data type int, int and int is same

Data type int,double and char is not same

Figure 13.6. Showing the output screen of the program 13.8

EXPLANATION : The function template equal checks equality of three data types. In the

function template p1, p2 and p3 contains the data type of arguments in string form. For

example, when the function template is instantiated for function call equal(2, 5, 6), p1, p2 and

p3 all contains “int”. As p1 and p2 is same b1 contains a value 0 or false. Similarly b2 contains

value 0 or false. In the if we check if both are not zero (not ! before b1 and b2) using && (logical

and). If the if condition is true all three data are same else not.

/* PROG 13.9 MIXING BUILT-IN TYPE WITH GENERIC TYPE VER 1*/

#include <iostream.h>

#include <typeinfo.h>

template <class T>

void show(T par, char*s)

622 Object-Oriented Programming C++ Simplified

{

cout<<“*+*+*+*+”<<s<<“*+*+*+*+*+”<<endl;

cout<<typeid(par).name()<<“ parameter=”<<par<<endl;

}

void main()

{

show(12,”good Morning”);

show(34.45,”Good Morning”);

}

OUTPUT :

++*+*+good Morning*+*+*+*+*+

int parameter=12

++*+*+Good Morning*+*+*+*+*+

double parameter=34.45

Figure 13.7. Showing the output of program 13.9

EXPLANATION : You can fix some of the arguments to the function template as shown

above. Here in the fucntion show the first argument may be of any type but second argument

is fix which must be of char* type. In the similar way you can fix any number of arguments

in the function template. But note the fix argument must not be written in the template declaration.

Like writing template <class T, char*s> will be wrong in the above case. It must be

written as function argument.

/* PROG 13.10 MIXING BUILT-IN TYPE WITH GENERIC TYPES VER 2 */

#include <iostream.h>

#include <typeinfo.h>

template <class T>

void show(T par, char*s= “Good Morning”)

{

Template Programming 623

cout<<“**********”<<s<<“************”<<endl;

cout<<typeid(par).name()<<“ parameter= “<<par<<endl;

}

void main()

{

show(12);

show(35.46);

}

OUTPUT :

**********Good Morning************

int parameter= 12

**********Good Morning************

double parameter= 35.46

Figure 13.8. Output screen of program 13.10

EXPLANATION : The program is similar to previous one but here we have taken second

argument to function template show as default argument of char* type. Thus, you may have

default argument to function template.

/* PROG 13.11 OVERLOADING OF FUNCTION TEMPLATE */

#include <iostream.h>

#include <typeinfo.h>

template <class T>

void show(T par)

{

cout<<“Function template show \n”;

cout<<“par :=”<<par<<endl;

}

624 Object-Oriented Programming C++ Simplified

void show(char*s)

{

cout<<“Explicit function show\n”;

cout<<“s=”<<s<<endl;

}

void main()

{

show(12);

show(34.78);

show(“Explicit”);

}

OUTPUT :

Function template show

par :=12

Function template show

par :=34.78

Explicit function show

s=Explicit

Figure 13.9. Output screen of program 13.11

EXPLANATION : When an explicit function is return with the same name as function

template for specific data type, explicit function is called first instead of instantiating function

template for that specific data type. Here we have function template show which has just one

argument of generic data type. And we have a function show which takes a single argument

of char* type. When show(“Explicit”) executes, function template is not instantiated but

show(char*) function is called. For all other types of argument function template will be

instantiated.

Template Programming 625

13.3 CLASS TEMPLATE

Similar to function template we can create class template. The difference is simply that earlier we

created template for a function now we will be creating it for class. The class templates are

basically used for creating container classes. That is which can contains varieties of objects of

any type. For the class templates definition method remains same but instantiation changes.

Take an example :

template<class T>

class demo

{

 T x, y;

 public :

 ……………;

 ……………;

};

The template class can be instantiated when an object of the class will be created. That

is :

demo<int>d1;

creates an instance of class template demo for integer data type. Similarly

demo<float> d2;

will create an instance of class template demo for float data type. At this instance there

will be two different demo classes residing in memory. One will be using integer data members

and other float data members.

/* PROG 13.12 SUM OF TWO NUMBER USING CLASS TEMPLATE */

#include <iostream.h>

#include <conio.h>

template <class PAR>

class demo

{

 PAR n1,n2;

public :

demo(PAR x, PAR y)

{

n1=x;

626 Object-Oriented Programming C++ Simplified

n2=y;

}

PAR sum()

{

return(n1+n2);

}

};

void main()

{

clrscr();

demo<int>d1(10,20);

cout<<“Sum=”<<d1.sum()<<endl;

demo<float>d2(2.4f,4.5f);

cout<<“Sum=”<<d2.sum()<<endl;

getch();

}

OUTPUT :

Sum=30

Sum=6.9

EXPLANATION : A class template is similar to function template with the difference it is

used with the class. Here a template class demo is written which makes use of generic data type

PAR. Note template declaration is same as written for the function template. The class templates

has two data members n1 and n2, one constructor and function sum which finds sum of two

data members and returns.

In the main note how to do we instantiates a class template. The statement

demo<int>d1(10,20); instantiates a new class demo for int data types. All occurrences of

PAR are replaced by word in the class template. First the class name, then in the brackets

< and >, data type is written, d1(10,20) creates objects d1 by calling the two argument

constructor of demo class. We then find the sum of two data members by calling the function

sum.

The class in the memory will look like this :

class demo

{

int n1, n2;

public :

demo (int x, int y)

{

n1 = x;

n2 = y;

}

Template Programming 627

int sum()

{

return (n1+n2);

}

};

Similarly, the statement demo<float>d2(2.4f,4.5f); instantites class template for data

type float and a new demo class for float data type will be created.

/* PROG 13.13 DISPLAY OF DIFFERENT TYPES OF DATA USING CLASS TEMPLATE VER 1 */

#include <iostream.h>

#include <typeinfo.h>

template <class PAR>

class demo

{

PAR n1,n2;

public :

demo(PAR x, PAR y)

{

n1=x;

n2=y;

show();

}

void show()

{

cout<<typeid(PAR).name()<<“Data\n”;

cout<<n1<<“\t”<<n2<<endl;

}

};

void main()

{

demo<int>d1(10,20);

demo<float>d2(2.4f,4.5f);

demo<char>d3(‘P’,’T’);

demo<char*>d4(“One”,”Two”);

}

OUTPUT :

intData

10 20

628 Object-Oriented Programming C++ Simplified

floatData

2.4 4.5

charData

P T

char *Data

One Two

Figure 13.10. Output screen of program 13.13

EXPLANATION : Here, we have a class template which is similar to class template demo

created in the earlier program with the difference that this class simply accepts and display the

data members. In the main when demo<int>d1(10,20); executes a new demo class for int data

type will be created and all occurrences of PAR will be replaced by int. Constructor of demo

class be called and n1 will have value 10 and n2 will have 20. From the constructor we have

called function show which displays data type of n1 and n2 and their values. Similar argument

holds for other statements :

demo<float>d2(2.4f,4.5f);

demo<char>d3(‘P’,’T’);

demo<char*>d4(“One”,”Two”);

/*PROG 13.14 DISPLAY OF DIFFERENT TYPES OF DATA USING CLASS TEMPLATE VER 2*/

#include <iostream.h>

#include <typeinfo.h>

template <class T1,class T2>

class demo

{

T1 n1;

T2 n2;

public :

demo(T1 x, T2 y)

Template Programming 629

{

n1=x;

n2=y;

show();

}

void show()

{

cout<<n1<<“ is of type”<<typeid(T1).name()<<endl;

cout<<n2<<“ is of type”<<typeid(T2).name()<<endl;

}

void main()

{

demo<int,float>d1(10,20.54f);

demo<float,char>d2(2.4f,’H’);

demo<char,char*>d3(‘M’,”NMIMS”);

demo<char*,int>d4(“MPSTME”,24);

}

OUTPUT :

10 is of type int

20.54 is of type float

2.4 is of type float

H is of type char

M is of type char

NMIMS is of type char*

MPSTME is of type char*

24 is of type int

EXPLANATION : We can have two different generic data types in the class template similar

to function template written as template<class T1, class T2>. In the main when all 4 statement

executes 4 different classes will be created for 4 different argument pairs. For example, when

demo<int, float>d1(10,20.54f); executes a new demo class will be created following the definition

of class template demo and all occurrence of T1 will be replaced by int and all occurrences of

T2 will be replaced by float. The class will look like :

class demo

{

int n1;

float n2;

public :

demo(int x,float y)

{

630 Object-Oriented Programming C++ Simplified

n1=x;

n2=y;

show();

}

void show()

{

cout<<n1<<“ is of type “

<<typeid(int).name()<<endl;

cout<<n2<<“ is of type “

<<typeid(float).name()<<endl;

}

};

/* PROG 13.15 CLASS TEMPLATE FOR FINDING SUM OF ARRAY ELEMENTS */

#include <iostream.h>

#include <typeinfo.h>

#define S 5

template <class TARR>

class demo

{

TARR arr[S];

public :

demo()

{

int i;

cout<<“ Enter “<<S<<“ “<<typeid(TARR).name()

<<“numbers\n”;

for(i=0;i<S;i++)

cin>>arr[i];

}

TARR sum()

{

int i;

TARR s=0;

for(i=0;i<S;i++)

s+=arr[i];

return s;

}

};

Template Programming 631

void main()

{

demo<int>d1;

cout<<“Sum=”<<d1.sum()<<endl;

demo<float>d2;

cout<<“Sum=”<<d2.sum()<<endl;

demo<<long>d3;

cout<<“Sum=”<<d3.sum()<<endl;

}

OUTPUT :

Enter 5 int numbers

2 45 67 34 23

Sum = 169

Enter 5 float numbers

1.2 3.4 3.3 4.5 5.6

Sum = 18

Enter 5 long numbers

12345

234567

76543

34567

127865

Sum = 485815

EXPLANATION : The class template is created for declaring and defining arrays of different

types and finding sum of its elements. When demo<float>d2; executes a new version of demo

class template is instantiated and all prompt user for 5 elements. Numbers are stored in the

array and sum is displayed by a call to sum function using object d2. The class will look like

as :

class demo

{

float arr[S];

public :

demo()

{

int i;

cout<<“Enter “<<S<<“ “<<typeid(float).name()

<<“numbers\n”;

for(i=0;i<S;i++)

632 Object-Oriented Programming C++ Simplified

cin>>arr[i];

}

float sum()

{

int i;

float s=0;

for(i=0;i<S;i++)

s+=arr[i];

return s;

}

};

/* PROG 13.16 DEMO OF CLASS TEMPLATE, MEMBER FUNCTIONS ARE DEFINED OUTSIDE THE

CLASS */

#include <iostream.h>

#include <conio.h>

template <class T>

class demo

{

T num1,num2;

public :

void input(T x, T y);

void show()

{

cout<<“num1=”<<num1<<“\t”;

cout<<“num2=”<<num2<<“\t”;

}

};

template <class T>

void demo <T> : : input(T x, T y)

{

num1=x;

num2=y;

}

void main()

{

demo<int>d;

Template Programming 633

clrscr();

d.input(10,20);

d.show();

getch();

}

OUTPUT :

num1=10 num2=20

EXPLANATION : The aim of the program is to show that how can we define a function of

a class template outside the class. For each function declared in the class template, the definition

must contain the first line as :

template<class T>

followed by actual definition of the function with generic type we have done in the

program

template<class T>

void demo<T> : : input<T x, T y>

{

num1 = x;

num2 = y;

}

/* PROG 13.17 A SIMPLE LINKED LIST WITHOUT TEMPLATE */

#include <iostream.h>

#include <typeinfo.h>

class Linklist

{

struct node

{

int data;

struct node*next;

}*start,*save,*temp;

public :

Linklist()

{

start=NULL;

}

void add(int d)

{

if(start==NULL)

634 Object-Oriented Programming C++ Simplified

{

start=new node;

start->data=d;

start->next=NULL;

}

else

{

temp=new node;

temp->data=d;

temp->next=NULL;

save=start;

while(save->next!=NULL)

save=save->next;

save->next=temp;

}

}

void show()

{

while(start!=NULL)

{

cout<<start->data<<<“->”;

start=start->next;

}

}

};

void main()

{

Linklist L;

L.add(10);

L.add(20);

L.add(30);

L.add(40);

}

OUTPUT :

10->20->30->40

EXPLANATION : We create a node for the linked list using structure node which has a data

member of type int and a pointer to next node of type struct node named next. Just after the

declaration of structure node we create three pointer start, temp and save. The start pointer is for

keeping track of starting node of the linked list. temp and save is for temporary purposes. The

function add adds a new node to the link list. It checks whether start is NULL; if it is so it makes

Template Programming 635

the first node for the linked list and start points to it. If start is not NULL, then we move to the

last node using while loop and save pointer and adds a new node there. Note the node was

created earlier pointed by temp pointer. To show the linklist we have show function which

displays data of each node.

/*PROG 13.18 A TEMPLATE BASED LINKED LIST */

#include <iostream.h>

#include <typeinfo.h>

template <class T>

class Linklist

{

struct node

{

T data;

struct node*next;

}*start,*save,*temp;

public :

Linklist()

{

start=NULL;

}

void add(T d)

{

if(start==NULL)

{

start=new node;

start->data=d;

start->next=NULL;

}

else

{

temp=new node;

temp->data=d;

temp->next=NULL :

save=start;

while(save->next!=NULL)

save=save->next;

save->next=temp;

}

}

636 Object-Oriented Programming C++ Simplified

void show()

{

while(start!=NULL)

{

cout<<start->data<<“->”;

start=start->next;

}

}

};

void main()

{

Linklist<int>L;

L.add(10);

L.add(20);

L.add(30);

cout<<“\nLinked List of integer\n”;

L.show();

Linklist<char>L1;

L1.add(‘A’);

L1.add(‘B’);

L1.add(‘C’);

L1.add(‘E’);

cout<<“\n Linked List of charaters \n”;

L1.show();

Linklist<char*>L2;

L2.add(“Hari”);

L2.add(“Mohan”);

L2.add(“Pandey”);

L2.add(“Lecturer”);

cout<<“\n Linked list of string \n”;

L2.show();

Linklist<float>L3;

L3.add(123.456f);

L3.add(34.56f);

L3.add(456.67f);

L3.add(4532.895f);

cout<<“\nLinked list of float \n”;

L3.show();

}

Template Programming 637

OUTPUT :

Linked list of integer

10->20->30->

Linked list of character

A->B->C->E->

Linked list of string

Hari->Mohan->Pandey->Lecturer

Linked list of float

123.456->34.56->456.67->4532.895->

EXPLANATION : The program is similar to the previous one with the difference that we

have here made a class template which will be instantiated 4 times for different types. That

is L represent a link list of integer, L1 a linked list of characters, L2 a linked list of strings

and L3 a linked list of floats.

/*PROG 13.19 TEMPLATE BASED LINKED LIST WITHOUT USING STRUCTURE AS A NODE */

#include <iostream.h>

template <class LIST>

class Linkelist

{

LIST data;

linklist*next;

public :

linklist(LIST num)

{

data=num;

next=NULL;

}

void add_node(linklist*node)

{

node->next=this;

this->next=NULL;

}

linklist *getnext()

{

return next;

}

LIST getdata()

{

return data;

}

};

638 Object-Oriented Programming C++ Simplified

void main()

{

linklist<int>LL(1);

linklist<int>*temp,*link;

link=&LL;

int j;

for(j=2;j<=5;j++)

{

temp=new linklist<int>(j);

temp->add_node(link);

link=temp;

}

temp=&LL;

cout<<“Linked list is \n”;

for(j=1;j<=5;j++)

{

cout<<temp->getdata()<<“->”;

temp=temp->getnext();

}

}

OUTPUT :

Linked List is

1->2->3->4->5->

EXPLANATION : The class linklist contains a pointer data member next of linklist type.

These types of classes are known as self-referential classes. The class has one data member data

of generic type. The constructor of class template linklist creates first node for the class and

assign value of 1 to data and NULL to next. The temporary class type pointer link saves address

of the first node represented by LL in the main. Note here each node of the linked list is an

object of class linklist. In the for loop for j=2 statements :

temp = new linklist<int>(j);

Creates a new node with data value 2 and next=NULL. Now this node has to be added

at the end of the linked list. For that we call the function add_node and pass link as argument

as

temp->add_node (link);

The new node is temp and this pointer represents the temp inside the function add_node.

The link represents the first node. So, in the function add_node next of link node will be

sorting address of this new node represented by this pointer and next of this new node will

be NULL. The same is done in the function add_node as :

node->next=this;

this->next =NULL;

Template Programming 639

In the next statement inside the for loop we have assigned address of the new node to the

link, so that when new node is created for j=3, it will be added after the last node. This will

continue for j=4 and 5.

To display the node we take the address of first object i.e., &LL into the temp pointer. In

the class template we have created two functions which return the next pointer and the data.

Initially the data for the first node is displayed then pointer is made to point to next object in

the linklist by getting the next pointer. For that we call the function getnext as :

temp = temp->getnext();

/*PROG 13.20 DEMO OF USER DEFINED TYPES AS TEMPLATE PARAMETERS */

#include <iostream.h>

class A

{

public :

void show()

{

cout<<“Hello from A\n”;

}

};

class B

{

public :

void show()

{

cout<<“Hello from B \n”;

}

};

template <class T>

class demo

{

T aa;

public :

void showd()

{

aa.show();

}

};

640 Object-Oriented Programming C++ Simplified

void main()

{

demo<A>d1;

demod2;

d1.showd();

d2.showd();

}

OUTPUT :

Hello from A

Hello from B

EXPLANATION : In the program instead of basic types for generic types, user defined types

will be substituted for generic types. We have two different classes A and B. Both the class has

a function show. The class template demo simply has one showd function. In the main when

we write demo<A>d1; then generic type T is replaced by A and when we call d1.showd then

inside the showd function show of class A is called as function definition of showd is

A.show. When we write demod2; then generic type T is replaced by B and when we call

d2.show then inside the showd function show of class B is called as function of show is

B.show.

/* PROG 13.21 CLASS TEMPLATE WITH FIX ARGUMENTS */

#include <iostream.h>

#include <typeinfo.h>

template <class TARR, int size>

class demo

{

TARR arr[size];

public :

demo()

{

int i;

cout<<“Enter “<<size<<“ “<<typeid(TARR).name()

 <<“numbers \n”;

for(i=0;i<size;i++)

cin>>arr[i];

}

TARR sum()

{

int i;

TARR s=0;

for(i=0;i<size;i++)

Template Programming 641

s+=arr[i];

return s;

}

};

void main()

{

demo<int, 3>d1;

cout<<“Sum=”<<d1.sum()<<endl;

demo<float,4>d2;

cout<<“Sum=”<<d2.sum()<<endl;

demo<<long,5>d3;

cout<<“Sum=”<<d3.sum()<<endl;

}

OUTPUT :

Enter 3 int numbers

2 45 67

Sum = 114

Enter 4 float numbers

1.2 3.4 3.3 4.5

Sum = 12.4

Enter 5 long numbers

12345

234567

76543

34567

127865

Sum = 485815

EXPLANATION : In the program, the class template contains a fixed argument size of type

int. In the main when template class is instantiated for different data types, second argument

remain fixed which denotes size of the array.

13.4 PONDERABLE POINTS

1. Template is the mechanism which allows us to declare generic classes and functions.

2. Use of one function or class that works for all data types is generalization. With the

help of templates and functions we can create generic data types and this idea leads

to generic programming. In the generic programming generic data types are passed as

argument to function and classes.

3. A template is created using the keyword template followed by generic data type name

using keyword class as : - template<class T>.

642 Object-Oriented Programming C++ Simplified

4. Use of template saves us from writing repetitive code for different data types. It does not

save any memory space.

5. A function template is instantiated when a particular template function is called with

variables or constants of any data type.

6. Both function template and class template can have default arguments.

EXERCISE

A. True and False :

1. Template is used to declare generic classes and functions.

2. Template is frequently used to define container classes.

3. Template and function overloading is related.

4. Template saves memory.

B. Answer the Following Questions :

1. What do you understand by template ?

2. How does a function template works ?

3. How does a class template works ?

4. What is the difference between template and function overloading ?

5. What is the difference between template and macro ?

6. Why do we need template ?

7. What are the disadvantages of using templates ?

C. Brain Drill :

1. Write a program to pass an object to template function and display its members.

2. Write a program to show values of different data types using template and constructor.

3. Write a program using function template to find maximum value stored in the array.

4. Write a program to define template and display the absolute value of int, float and long data type

of variable.

5. Give the definition of template class POLY which is to be implemented as a linked list using

pointers where each node contains a coefficient, and exponent and a pointer to the next element.

Initialize an empty POLY object with no node. Also write code for inserting a node in the list in

proper ordered position according to the exponent in the node to be inserted.

6. Write a template function that returns the average of all elements of an array. The arguments to

the function should be the array name and the size of the array (type int). In main (), exercise

the function with arrays of type int, long, double, and char.

7. Create a function called swap () that interchanges the values of the two arguments sent to it. (You

will probably want to pass these arguments by reference) Make the function into a template, so

it can be used with all numerical data types (char, int, float and so on). Write a main () program

to exercise the function with several types.

8. Create a function called amax () that returns the value of the largest element I an array. The

arguments to the function should be the address of the array and its size. Make this function into

a template so it will work with an array of any numerical type. Write a main () program that

applies this function to arrays of various types.

���

EXCEPTION HANDLING IN C++

14.1 INTRODUCTION

In C++ errors can be divided into two categories
1. Compile time errors and
2. Run time errors.
Compile time errors are syntactic errors which occurs during the '1\Tfiting of the program.

Most common examples of compile time errors are missing semicolon, missing comma, missing
double quotes, etc. They occurs mainly due to poor understanding of language or writing
program without proper concentration to the program.

There are logical errors which are mainly due to improper understanding of the program
logic by the programmer. Logical errors cause the unexpected or unwanted output..

Exceptions are runtime errors which a programmer usually does not except. They occurs
accidentally which may result in abnormal termination of the program. C++ provides exception
handling mechanism which can be used to trap this exception and running programs smoothly
after catching the exception.

Common examples of excejptions are division by zero, opening file which does not exist,
insufficient memory, violating array bounds, etc.

14.2 BASICS OF EXCEPTION HANDLING

Exception handling is the process to handle the exception if generated by the program at run
time. The aim of exception handling is to write code which passes exception generated to a
routine which can handle the exception and can take suitable action. Any exception handling
mechanism must have the following steps:

Step 1 : Writing exception class (optional).
Step 2 : Writing try block.
Step 3 : Throwing an exception.
Step 4 : Catching and handling the exception thrown.

643

644 Object-Oriented Programming C++ Simplified

1. The try Block

The exception is to be thrown to be written in the try block. Whenever an exception is

generated in the try block, it is thrown. An exception is an object so we can say that an

exception object is thrown. The throw keyword is used for throwing an exception. The usual

practice of using the throw statement is as :

throw exception;

For throwing an exception and simply

throw;

For re-throwing an exception.

The syntax of try block is as shown :

try

{

statements;

statements;

statements;

throw exception;

}

2. The catch Block

An exception thrown by try block is caught by the catch block. A try block must have at

least one catch, though there can be many catch block for catching different types of exceptions.

A catch block must have a try block prior written which will throw an exception. The catch

block is used as :

try

{

statements;

statements;

statements;

throw exception;

}

catch (object or argument)

{

statements for handling the exception;

}

The catch block catches any exception thrown by the try block. If exception thrown

matches with the argument or object in the block, the statements written within the catch block

and we say that exception thrown by try block was caught successfully by the catch block.

After the successful execution of the catch block statements any statements following the catch

Exception Handling in C++ 645

block will be executed. If argument does not match with the exception thrown, catch couldn’t

handle it and this may results in abnormal program termination.

14.3 EXCEPTION HANDLING MECHANISM

The try, throw and catch all together provide exception handling mechanism in C++. The

exception is generated by the throw keyword which is written in the try block. Any exception

generated within this try block is thrown using this throw keyword. Immediately following the

try block, catch block is written. As soon as some run time errors occurs an exception is thrown

by the try block using throw which informs the catch block that an error has occurred in the

try block. This try block is also known as exception generated block. The catch block is

responsible for catching the execution thrown by the try block. When try throw an exception,

the control of the program passes to the catch block and if argument matches as explained

earlier, exception is caught. In case no exception is thrown the catch block is ignored and

control passes to the next statement after the catch block.

/*PROG 14.1 DEMO OF EXCEPTION HANDLING */

#include <iostream.h>

void main()

{

try

{

throw”DEMO OF EXCEPTION”;

}

catch(char*E)

{

cout<<“Exception caught=”<<E<<endl;

}

cout<<“Continue after catch block”<<endl;

}

OUTPUT :

Exception caught=DEMO OF EXCEPTION

Continue after catch block

Figure 14.1. Output screen of program 14.1

646 Object-Oriented Programming C++ Simplified

EXPLANATION : This is very basic program which has the sole purpose to demonstrate

you, how exception are thrown and caught. All exceptions which are to be thrown must be put

inside the try block. Any exception thrown must precede throw keyword. The throw statement

is responsible for throwing an exception. Following throw any variable of any built in data type,

constants or an object of any class (built-in or user defined) or structure may be present. Any

try block must have a corresponding catch block. The exception thrown by the try block is

caught by the catch block. Here, we are throwing an exception “DEMO OF EXCEPTION” of

char* type. So inside the catch () we must have an argument of type char* which can catch

the exception object thrown. Here exception thrown is caught by catch block in variable E of

char* type. The catch block then executes and display the output “Exception caught = DEMO

OF EXCEPTION”. After the execution of statements within catch block program continues with

the statements following the catch block. If exception thrown is not handled than your program

may terminate abnormally leaving all statements after try unexecuted.

14.4 PROGRAMMING EXAMPLES

/* PROG 14.2 DEMO OF EXCEPTION HANDLING, CATCHING DIVISION BY ZERO

EXCEPTION */

#include <iostream.h>

void main()

{

float x,y;

cout<<“Enter two numbers\n”;

cin>>x>>y;

try

{

if(y!=0)

cout<<“Div=”<<x/y<<endl;

else

throw(y);

}

catch(float E)

{

cout<<“Caught an Exception \n”;

cout<<“y=”<<y<<endl;

}

cout<<“Out of try catch block \n”;

}

OUTPUT :

Enter two numbers

35 78

Div=0.448718

Out of try catch block

Exception Handling in C++ 647

Figure 14.2. output screen of program 14.2

EXPLANATION : Here we are performing the division of two numbers within try block.

If denominator i.e., y is not 0 we carry out division is a normal fashion. But if y is 0 we throw

an exception, the value of y. This expression is caught by the catch block in argument E, which

handles the exception and display.

/*PROG 14.3 DEMO OF EXCEPTION HANDLING THROWING EXCEPTION int 1-b WHERE

a>b */

#include <iostream.h>

void main()

{

int x,y;

bool m;

cout<<“Enter two numbers \n”;

cin>>x>>y;

m=x>y ?true :false;

try

{

if(m==true)

cout<<“Subtraction=”<<x-y<<endl;

else

throw(“subtraction not possible”);

}

catch(char*E)

{

cout<<“Caught an Exception\n”;

cout<<E<<endl;

}

cout<<“Out of try catch block\n”;

}

OUTPUT :

Enter two numbers

70 90

Caught an Exception

subtraction not possible

Out of try catch block

648 Object-Oriented Programming C++ Simplified

Figure 14.3. output screen of program 14.3

EXPLANATION : In the program we are checking if x>y if this is so we do the subtraction

x-y. If y>x we do not perform subtraction instead we throw an exception “Subtraction not

possible”. This exception is caught by the catch block in variable E.

/*PROG 14.4 MULTIPLE CATCH STATEMENT WITH SINGLE TRY */

#include <iostream.h>

void main()

{

int num=10;

for(num=10;num<=30;num+=10)

{

try

{

if(num==20)

throw(“GOOD”);

else if(num<20)

throw num;

else if (num>20)

throw 2.25f;

}

catch(int E)

{

cout<<“Caught int Exception E=”<<E<<endl;

}

catch(char* E)

{

cout<<“Caught string Exception E=”<<E<<endl;

}

catch(float E)

{

cout<<“Caught float Exception E=”<<E<<endl;

}

}

Exception Handling in C++ 649

cout<<“Outside try catch block”<<endl;

}

OUTPUT :

Caught int Exception E=10

Caught string Exception E=GOOD

Caught float Exception E=2.25

Outside try catch block

Figure 14.4. Output screen of program 14.4

EXPLANATION : We can put multiple catch blocks for a single try in case try block

throws different types of exceptions. To demonstrate how we can have multiple catch statements

with a single try we have run a for loop from 10 to 30 with increment of 10. Initially value of

‘num’ is 10 first else if condition is true and num is thrown by the try block. As the type of

num is int so the exception thrown is caught by the first catch block which has one argument

of type int. This block handles the exception and displays

Caught int Exception E = 10

In the second iteration of for loop value of num is 20, initial if condition is true so

throw(“GOOD”) executes which throws an exception of char* type. This exception is handled

by the second catch block which displays

Caught string Exception E = GOOD

In the third iteration of for loop value of num is 30, second else if condition is true so

throw 2.25f executes which throws an exception of char* type. This exception is handled by

the third catch block which displays

Caught float Exception E = 2.25

/*PROG 14.5 GENERATING EXCEPTION IN FUNCTION, FUNCTION IS IN TRY BLOCK */

#include <iostream.h>

void main()

{

int x,y;

void genExp(int, int);

cout<<“Enter two numbers \n”;

cin>>x>>y;

try

650 Object-Oriented Programming C++ Simplified

{

genExp(x,y);

}

catch(char*E)

{

cout<<“Caught an Exception”<<endl;

cout<<E<<endl;

}

cout<<“Out of try catch block”<<endl;

}

void genExp(int x, int y)

{

bool m;

m=x>y ?true :false;

if(m==true)

cout<<“Subtraction=”<<x-y<<endl;

else

throw(“Subtraction not possible”);

}

OUTPUT :

(FIRST RUN)

Enter two numbers

50 30

Subtraction=20

Out of try catch block

(SECOND RUN)

Enter two numbers

30 50

Caught an Exception

Subtraction not possible

Out of try catch block

Press any key to continue

Figure 14.5. Output screen of program 14.5

Exception Handling in C++ 651

EXPLANATION : The program is similar to the program we have seen earlier with difference

that whole of the logic has been put in the function genExp. As function genExp may generate

exception it is placed inside the try block. Note the exception is thrown by the function placed

in the try block which is caught by the catch block following try.

/*PROG 14.6 CATCHING ARRAY INDEX OUT OF BOUND EXCEPTION */

#include <iostream.h>

#define S 5

void main()

{

int arr[S]={1,2,3,4,5};

int idx;

void show_ele(int[],int);

cout<<“Enter the array index\n”;

cin>>idx;

try

{

show_ele(arr,idx);

}

catch(char* E)

{

cout<<“Caught an Exception\n”;

cout<<E<<endl;

}

cout<<“Out of try catch block \n”;

}

void show_ele(int arr[],int idx)

{

if(idx>=0 && idx<S)

cout<<“Element at”<<idx<<“is”<<arr[idx]<<endl;

else

throw(“Array index out of bound”);

}

OUTPUT :

(First Run)

Enter the array index

3

Element at3is4

Out of try catch block

(Second Run)

652 Object-Oriented Programming C++ Simplified

Enter the array index

8

Caught an Exception

Array index out of bound

Out of try catch block

(First Run) (Second Run)

Figure 14.6. Showing the output screen of program 14.6

EXPLANATION : The function show_ele displays array element at given index. It takes

both array arr and idx as its argument. If idx is within the limit 0 and S we display the array

element as arr[idx] else we throw an exception “Array index out of bound”. As function show_ele

may throw an exception it is put inside the try block. The exception thrown is caught by the

catch block and handled.

14.5 EXCEPTION HANDLING WITH CLASS

Until now we have been doing exception handling without using class. We can use exception

handling with class too. Even we can throw objects as exception of user defined class types.

For throwing an exception of say demo class type within the try block we may write

throw demo();

See few programs given below :

/* PROG 14.7 EXCEPTION HANDLING WITH SINGLE CLASS */

#include <iostream.h>

class demo

{

};

void main()

{

try

{

throw demo();

}

catch(demo d)

Exception Handling in C++ 653

{

cout<<“Caught exception of demo class \n”;

}

}

OUTPUT :

Caught exception of demo class

EXPLANATION : The program is very simple example to show how class object can be

thrown and caught. In the program we have declared an empty class. In the try block we are

throwing an object of demo class type. The try block catches the object and displays the result.

/* PROG 14.8 EXCEPTION HANDLING WITH TWO CLASSES */

#include <iostream.h>

class demo1

{

};

class demo2

{

};

void main()

{

for(int i=1;i<=2;i++)

{

try

{

if(i==1)

throw demo1();

else if(i==2)

throw demo2();

}

catch(demo1 d1)

{

cout<<“Caught exception of demo1 class \n”;

}

catch(demo2 d2)

{

cout<<“Caught exception of demo2 class \n”;

}

}

}

654 Object-Oriented Programming C++ Simplified

OUTPUT :

Caught exception of demo1 class

Caught exception of demo2 class

Figure 14.7. Output screen of program 14.8

EXPLANATION : In the program we have declared two empty classes’ demo1 and demo2.

For i=1 object demo1 is thrown and for i=2 an object of demo2 is thrown. For catching object

of different classes two catch blocks have been written. Note both catch block must be written

inside the for loop.

/* PROG 14.9 EXCEPTION HANDLING WITH NHERITANCE */

#include <iostream.h>

class demo1

{

};

class demo2 :public demo1

{

};

void main()

{

for(int i=1;i<=2;i++)

{

try

{

if(i==1)

throw demo1();

else if(i==2)

throw demo2();

}

catch(demo1 d1)

{

cout<<“Caught exception of demo1 class \n”;

}

catch(demo2 d2)

Exception Handling in C++ 655

{

cout<<“Caught exception of demo2 class \n”;

}

}

}

OUTPUT :

Caught exception of demo1 class

Caught exception of demo1 class

Figure 14.8. Output screen of program 14.9

EXPLANATION : The program is similar to previous one but here we have made demo2

as derived class for demo1. Note the catch block for demo1 is written first. As demo1 is base

class for demo2 as object thrown of demo2 class will be handled by the first catch block. That’s

why the output.

/* PROG 14.10 EXCEPTION HANDLING IN CONSTRUCTOR VER 1 */

#include <iostream.h>

class demo

{

int num;

public :

demo()

{

try

{

throw 25;

}

catch(int E)

{

cout<<“Exception caught \n”;

num=E;

}

}

656 Object-Oriented Programming C++ Simplified

void show()

{

cout<<“num=”<<num<<endl;

}

};

void main()

{

demo d;

d.show();

}

OUTPUT :

Exception caught

num=25

Figure 14.9. Output screen of the program 14.10

EXPLANATION : Though we cannot return any value from the constructor but with the

help of try catch block we can. The program simply demonstrates how you can do this. In the

constructor we throw an int constant 25 which is caught by the catch block. The value thrown

25 is assigned to data member num. This value is displayed by the show function.

/*PROG 14.11 EXCEPTION HANDLING IN CONSTRUCTOR VER 2 */

#include <iostream.h>

class demo

{

public :

demo()

{

try

{

throw”hello from constructor”;

}

catch(char*E)

{

cout<<“Exception caught”<<endl;

Exception Handling in C++ 657

cout<<E<<endl;

}

}

};

void main()

{

demo d;

}

OUTPUT :

Exception caught

hello from constructor

Figure 14.10. Output screen of program 14.11

EXPLANATION : Here, we have thrown string object from the constructor. The same

object is caught by the catch block.

/*PROG 14.12 EXCEPTION HANDLING IN CONSTRUCTOR VER 3 */

#include <iostream.h>

class demo

{

int num;

public :

demo(int x)

{

try

{

if(x==0)

throw(“Zero not allowed”);

num=x;

show();

}

658 Object-Oriented Programming C++ Simplified

catch(char*exp)

{

cout<<“Exception caught”<<endl;

cout<<exp<<endl;

}

}

void show()

{

cout<<“Num=”<<num<<endl;

}

};

void main()

{

int n;

cout<<“Enter a number”<<endl;

cin>>n;

demo d(n);

}

OUTPUT :

(First Run)

Enter a number

35

Num=35

(Second Run)

Enter a number

0

Exception caught

Zero not allowed

Figure 14.11. Output screen of program 14.12

EXPLANATION : Before assigning a value to the data member num it is checked whether

value is equal to 0 or not. If not it is assigned to num and displayed by a call to show function.

If value is 0 an exception Zero not allowed is thrown.

Exception Handling in C++ 659

/*PROG 14.13 RE-THROWING AN EXCEPTION VER 1 */

#include <iostream.h>

void main()

{

try

{

try

{

throw 20;

}

catch(int)

{

cout<<“Caught an exception inner catch\n”;

throw;

}

}

catch(int x)

{

cout<<“caught an int exception x=”<<x<<endl;

}

}

OUTPUT :

Caught an exception inner catch

caught an int exception x=20

Figure 14.12. Output screen of program 14.13

EXPLANATION : When exception is thrown it is caught by the inner catch block. The

statement thrown in the next lines causes’ exception to be re-thrown exception is passed to the

outer catch block which is then executed.

660 Object-Oriented Programming C++ Simplified

/*PROG 14.14 RE-THROWING AN EXCEPTION VER 2 */

#include <iostream.h>

#include <math.h>

void main()

{

void check(int x);

int x;

cout<<“Enter a +ve number \n”;

cin>>x;

try

{

check(x);

}

catch(char*s)

{

cout<<“Exception thrown in main \n”;

cout<<s<<endl;

}

cout<<“Terminating main \n”;

}

void check(int x)

{

char*str=”cannot take square root of -ve numbers \n”;

try

{

if(x<0)

throw str;

else

cout<<“square root is”<<sqrt(x)<<endl;

}

catch(char*)

{

cout<<“Caught exception in function\n”;

cout<<“Rethrowing \n”;

throw;

}

}

Exception Handling in C++ 661

OUTPUT :

(First Run)

Enter a +ve number

25

square root is5

Terminating main

(Second Run)

Enter a +ve number

−25

Caught exception in function

Rethrowing

Exception thrown in main

cannot take square root of -ve numbers

Terminating main

Figure 14.13. Output screen of first run

Figure 14.14. Output screen of second run

EXPLANATION : In the program within try block function check is called. Inside the

check function we have one more try catch block. When a negative number is passed to the

check function in the try block within check, exception is thrown. This exception thrown is

handled within the catch block external to check. After handling the exception it is re-thrown

by using throw keyword. This re-thrown exception is handled by the catch block within main.

662 Object-Oriented Programming C++ Simplified

14.6 CATCHING ALL EXCEPTIONS

A single catch block can be used for catching all different types of exceptions. This is necessary

in situations when we do not know in advance what particular types of exception may be

thrown by the try block. In these situations we can write a generic catch block as shown :

catch(…)

{

 Statements for handling exceptions;

}

Note the catch block has just three dots as its argument. We present an example of usage

of this generic catch block.

/*PROG 14.15 CATCHING ALL TYPES OF EXCEPTION WITH A SINGLE CATCH BLOCK

VER 1 */

#include <iostream.h>

void main()

{

int num = 10;

for(num=10;num<=30;num+=10)

{

try

{

if(num==20)

throw(“Good”);

else if(num<20)

throw num;

else if(num>20)

throw 2.25f;

}

catch(...)

{

cout<<“Caught an Exception \n”;

}

cout<<“Outside try catch block\n”;

}

}

OUTPUT :

Caught an Exception

Outside try catch block

Caught an Exception

Outside try catch block

Caught an Exception

Outside try catch block

Exception Handling in C++ 663

Figure 14.15. Output screen of program 14.15

EXPLANATION : As we are having catch (…) block, all exception thrown of any type will

be caught by this. On each iteration of for loop an exception of different types is thrown which

is caught by catch (…) block.

/*PROG 14.16 CATCHING ALL TYPES OF EXCEPTION WITH A SINGLE CATCH BLOCK

VER 2 */

#include <iostream.h>

class demo1

{

};

class demo2

{

};

class demo3

{

};

void main()

{

int num=10;

for(num=10;num<=30;num+=10)

{

try

{

if(num==20)

throw new demo1();

else if(num<20)

throw new demo2();

else if(num>20)

throw new demo3();

}

664 Object-Oriented Programming C++ Simplified

catch(...)

{

cout<<“Caught an Exception”<<endl;

}

cout<<“Outside try catch block”<<endl;

}

}

OUTPUT :

Caught an Exception

Outside try catch block

Caught an Exception

Outside try catch block

Caught an Exception

Outside try catch block

Figure 14.16. Output screen of program 14.16

EXPLANATION : The catch (…) block can caught exception thrown of user defined

classes type. On 3 iteration of loop 3 exception of demo1, demo2 and demo3 type are thrown

which is caught by catch (…) block.

14.7 SPECIFYING EXCEPTION FOR A FUNCTION

We can specify the types of exception for a function to be thrown as a list passed to throw. In

this way we can restrict a function to throw only exception specified in the list and not any

other types of exception. The general syntax of writing a function which specifies exception to

be thrown as :

return type function-name(function parameters)

throw (data-types)

{

function definition;

}

Exception Handling in C++ 665

In case a function does not want to throw an exception it may leave throw empty like

throw ().

/*PROG 14.17 SPECIFYING AN EXCEPTION */

#include <iostream.h>

void demo() throw(int,char,char*)

{

for(int i=0;i<=2;i++)

{

try

{

switch(i)

{

case 0 :throw 123;

break;

case 1 :throw ‘p’;

break;

case 2 :throw “NMIMS UNIVERSITY”;

break;

}

}

catch(int x)

{

cout<<“Caught an int exception :=”<<x<<endl;

}

catch(char x)

{

cout<<“Caught a char exception := “<<x<<endl;

}

catch(char* x)

{

cout<<“Caught a char* exception :=”<<x<<endl;

}

}

}

void main()

{

demo();

}

666 Object-Oriented Programming C++ Simplified

OUTPUT :

Caught an int exception := 123

Caught a char exception := p

Caught a char* exception := NMIMS UNIVERSITY

Figure 14.17. Output screen of program 14.17

EXPLANATION : The statement void demo () throw (int, char, char*) specifies that the

function demo may throw exceptions of type int, char and char* type. Using for loop we throw

all specified types of exceptions. All the thrown exceptions are caught by their respective catch

block.

14.8 PONDERABLE POINTS

1. Exception is run-time error which may occur in the program.

2. An exception if not handled may terminate the program abnormally.

3. To deal with exception, try-catch blocks are used.

4. An exception in programming term is considered an object which is thrown.

5. Any program code or function which may generate exception is placed in the try block.

The exception is thrown by using keyword throw.

6. For one try block there may be multiple catch block.

7. An exception can be rethrown in case of nesting of try-catch blocks. To rethrown an

exception, we simply write throw;

8. A function can specify what type of exception can be thrown by specifying in the

function declaration.

9. Objects of user defined classes as exception can also be thrown.

10. The expression catch (…) can be used to catch all types of exceptions.

EXERCISE

A. True and False :

1. The throw statement can be used for throwing an exception.

2. The “throw” expression creates a pointer to an exception object.

3. Throwing an exception always causes program termination.

4. Code that may generate run time error is placed in catch block.

Exception Handling in C++ 667

5. The exception is generated during compilation.

6. A group of catch blocks may be associated with a single try block.

B. Answer the Following Questions :

1. What is exception ?

2. How do we handle exception ?

3. Describe the meaning of try, catch and throw.

4. How do we catch multiple exceptions ?

5. How do we catch all exceptions ?

6. Explain the methodology of try-catch.

7. How can we restrict a function to show only specific types of exceptions ?

8. What if the exception thrown is not caught ?

C. Brain Drill :

1. Write a program to prompt user for entering a number. If number is not event then throw exception.

2. Write a program to accept strings. If any string does not start with capital letter then throw the

exception.

3. Write a class queue and with all the necessary function. Whenever queue is empty and delete

operation is performed an object of class queue_empty class is thrown. Similarly, whenever the

queue is full an exception of queue_full class is thrown. The queur is implemented using array.

4. Write a program in which memory is allocated by new. If enough memory is not available then

new returns NULL. Whenever new returns NULL an exception is thrown.

5. Write a program to enter five numbers into array. Whenever a number greater than 100 is taken

an exception is thrown.

6. Sometimes the easiest way to use exception is to create a new class of which an exception class

is a member. Try this with a class that uses exceptions to handle file errors. Make a class dofile

that includes an exception class and member functions to read and write files. A constructor to

this class can take the filename as an argument and open a file with that name. You may also want

a member function to reset the file pointer to the beginning of the file. Write a main () program

that provides the same functionality but does so by calling on members of the dofile class.

���

OBJECT-ORIENTED
PROGRAMMING HAND ON LAB

Experiment-1 : Program illustrating function overloading feature.

/* Program : Illustrating function overloading */

#include < iostream.h >
#include < conio.h >

void main()

void show(int);

void show(float);
void show(char);

void show(char*);

int x - 10;
float y=23.45;

char ch = 'p';

char * s="overload";

clrscr();

show(x);
show(y);

show(ch);
show(s);

getch();

668

Object-oriented Programming Hand on Lab 669

 void show(int x)

 {

cout<<“int show x=”<<x<<endl;

 }

 void show(float y)

 {

cout<<“float show y=”<<y<<endl;

 }

 void show(char ch)

 {

cout<<“char show ch=”<<ch<<endl;

 }

 void show(char*s)

 {

cout<<“char *s show s=”<<s<<endl;

 }

Output :

int show x=10

float show y= 23.45

char show ch = p

char *s show s= overload

Figure 15.1. Output screen of the program.

EXPLANATION : In the program we have functions show overloaded 4 times. The function

takes a single parameter but each parameter is different in each function as can be seen from

the program. In the main 4 variable of type int, char, float and char * type are

generated and show is called with these parameters. Each parameter is passed to show and

show is called 4 times. The compiler depending upon type of argument to function show calls

the respective version of the show function i.e., in case of show(x), show function of int
version will be called and so on.

670 Object-Oriented Programming C++ Simplified

/*Program : Function overloading max of two numbers */

#include <iostream.h>

#include <conio.h>

 void main()

 {

int x,y, intmax;

float f1,f2,fmax;

char ch1,ch2,chmax;

int max2(int,int);

float max2(float,float);

char max2(char,char);

clrscr();

cout<<“Enter two integers \n”;

cin>>x>>y;

cout<<“Enter two floats\n”;

cin>>f1>>f2;

cout<<“Enter two chars \n”;

cin>>ch1>>ch1;

intmax=max2(x,y);

fmax=max2(f1,f2);

chmax=max2(ch1,ch2);

cout<<“Max of two int is “<<intmax<<endl;

cout<<“Max of two float is “<<fmax<<endl;

cout<<“Max of two char is”<<chmax<<endl;

getch();

 }

 int max2(int x,int y)

 {

return(x>y ?x :y);

 }

Object-oriented Programming Hand on Lab 671

 float max2(float x,float y)

 {

return(x>y ?x :y);

 }

 char max2(char x,char y)

 {

return(x>y ?x :y);

 }

Output :

Enter two integers

123 567

Enter two floats

12.34

56.78

Enter two chars

a g

Max of two int is 567

Max of two float is 56.78

Max of two char is g

Figure 15.2. Output screen of program.

EXPLANATION : We have in the program three over of function max2 which takes two

parameters of type int, char, and float and returns the maximum of two numbers.

Depending upon type of parameter appropriate version of max2 function is called.

Experiment-2 Programs illustrating the overloading of various operators. Ex : Binary

operators, Unary operators, New and delete operators, etc.

672 Object-Oriented Programming C++ Simplified

/*Program : Overloading binary + with class objects as argument */

#include <iostream.h>

#include <conio.h>

class demo_sum

{

private :

int num;

static int count;

public :

void input()

 {

 cout<<“Enter the number for”<<“Object”<<++count<<“\n”;

 cin>>num;

 }

 void operator +(demo_sum temp)

 {

int x;

x=num+temp.num;

cout<<“Sum of two is “<<x<<endl;

 }

 void show()

 {

cout<<“The num is”<<num<<endl;

 }

 };

 int demo_sum : :count;

 void main()

 {

clrscr();

demo_sum d1,d2;

d1.input();

d1.show();

d2.input();

d2.show();

d1+d2;

getch();

 }

Object-oriented Programming Hand on Lab 673

Output :

Enter the number forObject1

23

The num is23

Enter the number forObject2

45

The num is45

Sum of two is 68

Figure 15.3. Output screen of program.

EXPLANATION : The function

void operator + (demo_sum temp)

{

int x;

x= num+ temp.num;

cout<<”sum of two is “<<x<<endl;

}

Overloads binary + and accepts an argument of class demo_sum type. In the main the

statement d1+d2; is interpreted internally as d1.operator +(d2) i.e. d1 calls the function d1

and pass d2 as argument to this overloaded binary + operator function. Inside the function

num belongs to objects d1 (The members of the objects who calls the function, can be inside

the function without using object name with dot operator, other syntax using this pointer will

be discussed later on) and d2 is copied to temp object so temp.num is a copy of d2.num. The

function finds the sum and displays it.

/*Program : Overloading + and – in the same program */

#include <iostream.h>

#include <conio.h>

class demo_sum_sub

674 Object-Oriented Programming C++ Simplified

{

private :

int num;

static int count1,count2;

public :

void input()

 {

cout<<“Enter the number for object”<<++count1<<endl;

cin>>num;

 }

 demo_sum_sub operator +(demo_sum_sub temp)

 {

demo_sum_sub t;

t.num=num+temp.num;

return t;

 }

 demo_sum_sub operator -(demo_sum_sub temp)

 {

demo_sum_sub t;

t.num=num-temp.num;

return t;

 }

 void show()

 {

cout<<“The num for object”<<++count2<<“is”<<num<<endl;

 }

};

int demo_sum_sub : :count1;

int demo_sum_sub : :count2;

void main()

{

clrscr();

demo_sum_sub d1,d2,d3,d4;

d1.input();

d2.input();

d3.input();

d1.show();

d2.show();

d3.show();

d4=d1+d2-d3;

Object-oriented Programming Hand on Lab 675

d4.show();

getch();

}

Output :

Enter the number for object1

30

Enter the number for object2

40

Enter the number for object3

35

The num for object1is30

The num for object2is40

The num for object3is35

The num for object4is35

Figure 15.4. Output screen of program.

EXPLANATION : The program is similar to previous one but we have overloaded binary

– operator together with binary +. As the priority of + and – is same they are evaluated from

left to right. Hence first d1+d2 is evaluated where d1 calls overloaded + operator function and

pass d2 as argument. Assuming returned object is temp then temp –d3 is evaluated where temp

calls the overloaded binary – operator function and pass d3 as argument. The final object

returned; again assume obj is assigned to d4.

/*Program : Overloading +, - , *, and / all in one */

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

class demo_exp

676 Object-Oriented Programming C++ Simplified

{

private :

float num;

static count1, count2;

public :

void input()

{

cout<<“Enter the number for object”<<++count1<<endl;

cin>>num;

}

 demo_exp operator *(demo_exp temp)

 {

demo_exp t;

t.num=num*temp.num;

return t;

 }

 demo_exp operator +(demo_exp temp)

 {

demo_exp t;

t.num=num+temp.num;

return t;

 }

 demo_exp operator -(demo_exp temp)

 {

demo_exp t;

t.num=num-temp.num;

return t;

 }

 demo_exp operator /(demo_exp temp)

 {

demo_exp t;

if(temp.num)

t.num=num/temp.num;

else

 {

cout<<“Division by zero is not allowed”<<endl;

exit(0);

 }

 return t;

 }

Object-oriented Programming Hand on Lab 677

 void show()

 {

 cout<<“The sum for object”<<++count2<<“is”<<num<<endl;

 }

};

 int demo_exp : :count1;

 int demo_exp : :count2;

 void main()

 {

clrscr();

demo_exp d1,d2,d3,d4,d5;

d1.input();

d2.input();

d3.input();

d4.input();

d1.show();

d2.show();

d3.show();

d4.show();

d5=d1+d2*d3/d1-d4;

d5.show();

getch();

 }

Output :

Enter the number for object1

12

Enter the number for object2

13

Enter the number for object3

14

Enter the number for object4

15

The sum for object1is12

The sum for object2is13

The sum for object3is14

The sum for object4is15

The sum for object5is12.166668

678 Object-Oriented Programming C++ Simplified

Figure 15.5. Output screen of program.

EXPLANATION : We have overloaded all the 4 binary operation viz +, -, * and /. You

can check that code for all the overloaded operation function is same except for the operator

symbol. In the division operator function we have checked for denominator to be nonzero. Note

overloading of operator does not change their inherent meaning, priority and associativity. So

the expression d5 = d1 + d2 * d3 / d1 - d4; is evaluated as (assuming num for objects as shown

in the program output) :

As priority of * and / is higher than +and – and at the same level of priority *and / are

evaluated from left to right so d2 *d3 is evaluated first which internally interpreted as d2.operator

* (d3) as explained earlier. Assuming the returned object as temp1 with value of num96 (as 8

*12=96) the expression becomes d5 = d1+temp1/d1-d4. Now temp / d1 will be evaluated

where temp1 calling the function operator / and sending d1 as argument. Assuming returned

object as temp2 with value of num is 19.2 (as 96/5 = 19.2) the expression becomes d5 = d1

+ temp2 – d4. As priority of + and – is same expression will be evaluated from left to right

so next d1 +temp2 will be evaluated where d1 calling the operator function + and sending

temp2 as argument. Assuming the returned object as temp3 with value of num 24.2 (as 19.2

+ 5 = 24.2) the expression becomes d5=temp3-d4. Now temp3 calls the operator function –

and sends d4 as argument. Assuming the returned object as temp4 with value of num 15.2 (as

24.2-9) the expression becomes d5=temp4 and value of num will be assigned to num to object

d5.

/* PROGRAM : OVERLOADING PRE ++ AND POST ++ IN THE SAME PROGRAM */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(){}

Object-oriented Programming Hand on Lab 679

demo (int x)

{

num = x;

}

demo operator ++(int)

{

demo temp;

temp.num = num;

num++;

return temp;

}

demo operator++()

{

demo temp;

num++;

temp.num = num;

return temp;

}

void show(char*s)

{

cout<<“NUM OF OBJECT”<<s<<“ = “<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(30),d2,d3;

d2=d1++;

d3=++d1;

d1.show(“d1”);

d2.show(“d2”);

d3.show(“d3”);

getch();

}

OUTPUT :

NUM OF OBJECTd1 = 32

NUM OF OBJECTd2 = 30

NUM OF OBJECTd3 = 32

680 Object-Oriented Programming C++ Simplified

Figure 15.6. Output screen of program.

EXPLANATION : To distinguishes between an overloaded pre and post ++ an int type

argument is passed to the overloaded post ++ operator function. This int argument does

not serve any purposes except helping compiler to see the difference between a pre and post
++ operator function when this operator function call implicitly. In the main when d2 =
d1++ executes post++ operator function will be called and in case of d3 = ++d1; pre++
operator function would be called.

/* PROGRAM : OVERLOADING UNARY - OPERATOR */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(int x)

{

num=x;

}

void operator -()

{

num = num;

}

void show()

{

cout<<“num =”<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(10);

cout<<“Before”<<endl;

d1.show();

-d1;

Object-oriented Programming Hand on Lab 681

cout<<“After”<<endl;

d1.show();

getch();

}

OUTPUT :

Before

num =10

After

num =10

Figure 15.7. Output screen of program.

EXPLANATION : In the main the statement –d1 is equivalent to d1.operator – (). The

initial value of num for object d1 is 10. When –d1 executes it call overloaded – operator

function which reverse the sign of the num. This is the way the unary minus operator works.

Note no argument is passed to the function. The function is simply called by the object d1.

/* PROGRAM : OVERLOADING UNARY + OPERATOR */

#include <iostream.h>

#include <conio.h>

class demo

{

int num;

public :

demo(int x)

{

num=x;

}

void operator +()

{

num=num>0 ?num :-num;

}

void show()

682 Object-Oriented Programming C++ Simplified

{

cout<<“num = “<<num<<endl;

}

};

void main()

{

clrscr();

demo d1(-100);

cout<<“Before”<<endl;

d1.show();

+d1;

cout<<“After”<<endl;

d1.show();

getch();

}

OUTPUT :

Before

num = -100

After

num = 100

Figure 15.8. Output screen of program.

EXPLANATION : Practically unary + does not serve any purpose i.e., writing +x do not

affect the value of x. But in the program we have overloaded unary operator to make a number

positive i.e., work as a function which finds absolute value of the number. In the main +d1

is equivalent to d1.operator + () which calls the operator + function and checks the value of

num. If it is positive, we do not change but if is negative we make it positive.

Experiment-3 : Programs illustrating the use of following functions :

(a) Friend functions

(b) Inline functions

(c) Static Member functions

(d) Functions with default arguments.

Object-oriented Programming Hand on Lab 683

/*Program : Finding maximum of two data of two different class with friend function*/

#include <iostream.h>

#include <conio.h>

class second;

class first

{

int fx;

public :

void inputf(int x)

{

fx=x;

}

friend void findmax(first,second);

};

class second

{

int sx;

public :

void inputs(int x)

{

sx = x;

}

friend void findmax(first,second);

};

void findmax(first A, second B)

{

if(A.fx>B.sx)

cout<<A.fx<<“of class first is greater than “<<B.sx<<“of

class second\n”;

else

cout<<B.sx<<“of class second is greater than”<<A.fx<<“of

class first\n”;

}

 void main()

 {

first F;

second S;

clrscr();

F.inputf(40);

S.inputs(70);

684 Object-Oriented Programming C++ Simplified

findmax(F,S);

getch();

 }

Output :

70 of class second is greater than 40 of class first

Figure 15.9. Output screen of program.

EXPLANATION : This is the real example where friend serves its purpose. The statement

in the beginning of the program class second is forward declaration as we are performing class

second in the friend function declaration and at that point class second was not created. Note

the friend function is declared in both the class which tells the compiler that it is a friend of

both the class first and second. It accepts an object of class first argument and second argument

is an object of class second type. The function definition is given outside the classes. In the

main we call the function findmax and pass two objects A and B of class first and second.

/* PROGRAM : SWAPPING OF TWO CLASS DATA USING FRIEND FUNCTION */

#include <iostream.h>

#include <conio.h>

class second; // global declaration of class

class first

{

int fx;

public :

void inputf(int x)

{

fx=x;

}

void showf()

{

cout<<“fx :=”<<fx<<endl;

}

Object-oriented Programming Hand on Lab 685

friend void swap(first &, second &); //declaration of

//friend function

};

class second

{

int sx;

public :

void inputs(int x)

{

sx=x;

}

void shows()

{

cout<<“sx=”<<sx<<endl;

}

friend void swap(first &, second &); //declaration of

//friend function

};

void swap(first &A, second &B) //definition of friend of

//friend function

{

int t;

t=A.fx;

A.fx=B.sx;

B.sx=t;

}

void main()

{

first F;

second S;

clrscr();

F.inputf(20);

S.inputs(40);

cout<<“Before swapping \n”;

F.showf();

S.shows();

swap(F,S);

cout<<“AFTER SWAPPING \n”;

F.showf();

686 Object-Oriented Programming C++ Simplified

S.shows();

getch();

}

OUTPUT :

Before swapping

fx :=20

sx=40

AFTER SWAPPING

fx :=40

sx=20

Figure 15.10. Output screen of program.

EXPLANATION : In the program we are swapping the data members of two classes first

and second using friend function. The function is a friend of both the classes and accepts first

argument of class type first and second argument of class type second, both by reference. If we

do not pass argument by reference then swapping will be done on local variables of type class

first and class second. So changes won’t be reflected back to object F and S in main.

/*Program : Square of a number using inline function */

#include <iostream.h>

#include <conio.h>

inline int square(int x)

{

return x*x;

}

 void main()

 {

int num,snum;

clrscr();

cout<<“Enter a number \n”;

cin>>num;

Object-oriented Programming Hand on Lab 687

cout<<“Square of “<<num<<“is “<<square(num)<<endl;

getch();

 }

Output :

Enter a number

8

Square of 8is 64

Figure 15.11. Output screen of the program.

EXPLANATION : When the function is called as square (num), the function call is expanded

in line as num*num. Rest is easy to understand.

/*Program : Maximum of two numbers using inline function */

#include <iostream.h>

#include <conio.h>

inline int max(int x,int y)

{

return x>y?x :y;

}

void main()

{

int n1,n2;

clrscr();

cout<<“Enter two numbers \n”;

cin>>n1>>n2;

int m=max(n1,n2);

cout<<“Max=”<<m<<endl;

getch();

}

Output :

Enter two numbers

12

45

Max=45

688 Object-Oriented Programming C++ Simplified

Figure 15.12. Output screen of program.

EXPLANATION : At the place of function call max (n1, n2), function is explained as

return x>y ? X : y, value of n1 and n2 is assigned to x and y.

/*Program : Demo of static function */

#include <iostream.h>

#include <conio.h>

class demo

{

 public :

 static void show()

 {

cout<<“Demo of static function\n”;

 }

};

 void main()

 {

 clrscr();

 demo : :show();

 getch();

 }

Output :

Demo of static function

Figure 15.13. Output screen of program.

EXPLANATION : As mentioned earlier a static function which is one for all objects and

which is called by using : : with class name. In the program we have defined a static function

show which is called in the main using class name as demo : : show ().

Object-oriented Programming Hand on Lab 689

/*PROGRAM : DEMO OF STATIC FUNCTION */

#include <iostream.h>

#include <conio.h>

class demo

{

public :

static void show();

};

static void demo : :show()

{

cout<<“HELLO FROM STATIC SHOW \n”;

}

void main()

{

demo : :show();

getch();

}

OUTPUT :

ERROR : ‘show’ :’static’ should not be used on member function defined at file scope.

Figure 15.14. Error Message on Turbo C++ IDE.

690 Object-Oriented Programming C++ Simplified

EXPLANATION : Static member function must be declared and defined inside the class.

They cannot be defined outside the class so the error.

Experiment-4 : Programs to create singly and doubly linked lists and perform insertion

and deletion Operations. Using self referential classes, new and delete operators.

/*PROGRAM : TO CREATE AND DISPLAY A LINKED LIST */

#include <iostream.h>

struct node

{

int data;

node*next;

};

class link_list

{

private :

node*start;

public :

link_list()//constructor

{

start=NULL; //initially the list has no node

}

void add_data(int i)

{

node* new_link=new node; //create a new node;

new_link->data = i;

new_link->next=start; //make new node to point to the first node

start=new_link; //make new node as the first node in the list

}

void display(); //function prototype

};

//function definition display()

void link_list : :display()

{

node*move=start;

node*temp;

while(move)

{

cout<<move->data<<“->”; //display the data

temp = move;

move=move->next; //move to next node

Object-oriented Programming Hand on Lab 691

delete temp; //delete the displayed node.

}

cout<<“NULL\n”;

}

void main()

{

link_list link;

cout<<“The elements of the linked list :”<<endl<<endl;

for(int i=5;i<=10;i++)

link.add_data(i);

link.display();

}

OUTPUT :

The elements of the linked list :

10->9->8->7->6->5->NULL

Figure 15.15. Output screen of program.

/*PROGRAM : INSERT A NODE AT THE BEGINNING OR AT THE END OF THE LINED LIST */

#include <iostream.h>

struct node

{

int data;

node*next;

};

class link_list

{

private :

node*start;

public :

link_list() //constructor

692 Object-Oriented Programming C++ Simplified

{

start=NULL; //initially the list has no node

}

void create (int i)

{

node*new_node = new node; //create a new node;

new_node->data=i;

new_node->next=start; //make new node to point to

the first node

start=new_node; //make new node as the

first node in the list

}

void display(int); //function prototype

void beginning(int data)

{

node*new_node=new node; //create a new node

new_node->data=data;

new_node->next=start; //make new node to point to

 the first node

start=new_node;

}

void end(int); //function prototype

};

//Function definition display()

void link_list : :display(int delete_node)

{

node*move=start;

node*temp;

while(move)

{

cout<<move->data<<“->”; //display the data

temp=move;

move=move->next; //move to next node

if(delete_node)

delete(temp);

}

cout<<“NULL”;

}

//function definition end()

Object-oriented Programming Hand on Lab 693

void link_list : :end(int data)

{

node*temp=start;

while(temp->next!=NULL)

temp=temp->next;

node*new_node=new node; //create a new node

new_node->data=data;

temp->next=new_node;

new_node->next=NULL;

}

void main()

{

int data, choice;

link_list link;

for(int i=5;i<=10;i++)

link.create(i);

cout<<“\n\nThe list before any operation is

performed :\n\n”;

link.display(0);

cout<<“\n\n Enter the data field value of the node to

be inserted :=”;

cin>>data;

cout<<“\n\nEnter the option(1,2) :=”;

cout<<“\n 1. At the beginning”;

cout<<“\n 2. At the end\n”;

cin>>choice;

switch(choice)

{

 case 1 :

link.beginning(data);

 break;

 case 2 :

link.end(data);

 break;

 default :

cout<<“Invalid choice entered\n”;

}

cout<<“\n\n The list after insertion is :\n\n”;

link.display(1);

}

694 Object-Oriented Programming C++ Simplified

OUTPUT :

The list before any operation is performed :

10->9->8->7->6->5->NULL

Enter the data field value of the node to be inserted : =15

Enter the option (1, 2) :=

 1. At the beginning

 2. At the end

1

The list after insertion is :

15->10->9->8->7->6->5->NULL

Figure 15.16. Output screen of program.

/*PROGRAM : TO INSERT AT THE DESIRED POSITION IN A LINKED LIST */

#include <iostream.h>

#include <process.h> //for exit() function

struct node

{

int data;

node*next;

};

class link_list

{

Object-oriented Programming Hand on Lab 695

private :

node*start;

public :

link_list() //constructor

{

start=NULL; //intitially the list has no node

}

void create (int i)

{

node*new_node=new node; //create a new node

new_node->data=i;

new_node->next=start; //make new node to point

to the first node

start=new_node; //make new node as the first

node in the list

}

void display(int); //function prototype

void insert(int,int); //function prototype

}; //end of the class

//function definition display()

void link_list : :display(int delete_node)

{

node*move=start;

node*temp;

while(move)

 {

cout<<move->data<<“->”; //display the data

temp=move;

move=move->next; //move to next node

if(delete_node)

delete(temp);

 }

 cout<<“NULL”;

}

//function definition insert()

void link_list : :insert(int position,int data)

{

node*move=start;

int steps=1;

while(steps<position-1)

696 Object-Oriented Programming C++ Simplified

{

move=move->next;

steps++;

}

node*new_node=new node; //create a new node;

new_node->data=data;

if(position==1) //if node is to be inserted at the

 first place

{

new_node->next=start;

start=new_node;

}

else

new_node->next=move->next;

move->next=new_node;

}

void main()

{

int value,data,choice,position,total=0;

link_list link;

cout<<“Enter the elements of the list terminated by

negative number :\n”;

cin>>value;

do

{

link.create(value);

total++; //increment with every node inserted;

cin>>value;

}

while(value>=0);

cout<<“\n\n The list before any operation is

 performed (LIFO) :\n\n”;

link.display(0);

cout<<“\n\nTotal node :=”<<total;

cout<<“\n\nEnter the porition where node is to be

 inserted :”;

cin>>position;

if(position<=0||position>total+1) //check for valid

 position

{

cout<<“\nWrong position inputted\n”;

Object-oriented Programming Hand on Lab 697

exit(1);

}

cout<<“\n\nEnter the value of the node to be

 inserted :=”;

cin>>data;

link.insert(position, data);

cout<<“\nThe list after insertion is :\n”;

link.display(1);

}

OUTPUT :

Enter the elements of the list terminated by negative number :

10 20 30 40 50 60 -2

 The list before any operation is performed (LIFO) :

60->50->40->30->20->10->NULL

Total node :=6

Enter the position where node is to be inserted :3

Enter the value of the node to be inserted :=90

The list after insertion is :

60->50->90->40->30->20->10->NULL

Figure 15.17. Output screen of program.

/*PROGRAM : TO DELETE A NODE FROM A LINKED LIST*/

#include <iostream.h>

#include <process.h> //for exit()function

struct node

698 Object-Oriented Programming C++ Simplified

{

int data; //data field

node*next; //pointer to the next node

};

class link_list

{

private :

node*start;

public :

link_list() //constructor

{

start=NULL; //initially the list has no node

}

void create(int i)

{

node*new_node=new node; //create a new node

new_node->data=i;

new_node->next=start; //make new node to point

to the first node

start=new_node; //make new node as the

first node in the list

}

void display(int); //function prototype

void remove(int); //function prototype

}; //end of class

//function definition display()

void link_list : :display(int delete_node)

{

node*move=start;

node*temp;

while(move)

{

cout<<move->data<<“->”; //display the data

temp=move;

move=move->next; //move to next node

if(delete_node)

delete(temp);

}

cout<<“NULL”;

}

Object-oriented Programming Hand on Lab 699

//function definition remove()

void link_list : :remove(int position)

{

node*move=start;

int steps=1;

while(steps<position-1)

{

move=move->next;

steps++;

}

if(position==1) //if to be inserted at the first

place

{

node*temp=start;

start=start->next;

delete(temp);

}

else

{

node*temp=move->next;

move->next=move->next->next;

delete(temp);

}

}

void main()

{

int value, data, choice, number, total=0;

link_list link;

cout<<“Enter the element of the list terminated by

negative number :\n”;

cin>>value;

do

{

link.create(value);

total++; /increment with every node inserted

cin>>value;

}

while(value>=0);

cout<<“\nThe list before any operation is perfomed

(LIFO) :\n”;

link.display(0);

700 Object-Oriented Programming C++ Simplified

cout<<“\nTotal node :=”<<total;

cout<<“\n\nEnter the number of the node to be

 deleted :=”;

cin>>number;

if(number<=0||number>total) //check for valid

 position

{

cout<<“\n Wrong number inptted”;

exit(1);

}

total—;

link.remove(number);

cout<<“\n\nThe list after deletion is :\n”;

link.display(1);

cout<<“\n\nTotal nodes :=”<<total;

}

OUTPUT :

Enter the element of the list terminated by negative number :

10 20 30 40 50 60 -70

The list before any operation is perfomed (LIFO) :

60->50->40->30->20->10->NULL

Total node :=6

Enter the number of the node to be deleted :=3

The list after deletion is :

60->50->30->20->10->NULL

Total nodes :=5

Figure 15.18. Output screen of program.

Object-oriented Programming Hand on Lab 701

/*PROGRAM : TO CREATE AND TRAVERSE A DOUBLY LINKED LIST */

#include <iostream.h>

struct doubly

{

int data;

doubly*back;

doubly*front;

};

class doubly_class

{

private :

doubly*start;

public :

doubly_class()

{

start=new doubly;

start->front=NULL;

start->back=NULL;

start->data=-1; //header node -can contain

other information also

}

void create(); //fucntion prototype

void display(); //function prototype

};

//function definition create()

void doubly_class : :create()

{

int value;

doubly* new_node=new doubly;

new_node=start;

cout<<“Enter the data terminated by negative

number :\n”;

cin>>value;

while(value>=0)

{

new_node->front=new doubly;

new_node->front->back=new_node;

new_node=new_node->front;

new_node->data=value;

new_node->front=NULL;

702 Object-Oriented Programming C++ Simplified

cin>>value;

}

}

//function definition display()

void doubly_class : :display()

{

cout<<“\n\nTraversing in the forward direction :\n\n”;

doubly*move=start;

do

{

move=move->front;

cout<<move->data<<“<->”;

}

while(move->front);

cout<<“NULL”;

cout<<“\n\n Traversing in the back direction :\n\n”;

do

{

cout<<move->data<<“<->”;

move=move->back;

}

while(move->back);

cout<<“NULL”;

}

void main()

{

doubly_class d_list; //creation of an object for

doubly_class

d_list.create();

d_list.display();

}

OUTPUT :

Enter the data terminated by negative number

20 30 10 40 60 50 -90

Traversing in the forward direction :

20<->30<->10<->40<->60<->50<->NULL

Traversing in the back direction :

50<->60<->40<->10<->30<->20<->NULL

Object-oriented Programming Hand on Lab 703

/*PROGRAM : TO INSERT A NODE AT FIRST PLACE IN A DOUBLY LINKED LIST */

#include <iostream.h>

struct doubly

{

int data;

doubly* back;

doubly* front;

};

class doubly_class

{

private :

doubly* start;

public :

doubly_class()

{

start=new doubly;

start->front=NULL;

start->back=NULL;

start->data=-1;

}

void create();

void insert_first(int data)

{

doubly* temp=new doubly;

temp->data=data;

temp->front=start->front;

start->front->back=temp;

temp->back=start;

start->front=temp;

}

void display();

};

void doubly_class : :create()

{

int value;

doubly* new_node=new doubly;

new_node=start;

cout<<“\nEnter the data terminated by negative

 number :\n”;

cin>>value;

704 Object-Oriented Programming C++ Simplified

while(value>=0)

{

new_node->front=new doubly;

new_node->front->back=new_node;

new_node=new_node->front;

new_node->data=value;

new_node->front=NULL;

cin>>value;

}

}

void doubly_class : :display()

{

cout<<“\n\nTraversing in the forward direction :\n\n”;

doubly* move=start;

do

{

move=move->front;

cout<<move->data<<“<->”;

}

while(move->front);

cout<<“NULL”;

cout<<“\n\nTraversing in the back direction :\n\n”;

do

{

cout<<move->data<<“<->”;

move=move->back;

}

while(move->back);

cout<<“NULL”;

}

void main()

{

int value;

doubly_class list;

list.create();

cout<<“Before any operation :”;

list.display();

cout<<“\n\nEnter the data value of the first node :”;

cin>>value;

list.insert_first(value);

Object-oriented Programming Hand on Lab 705

cout<<“\nAfter inserting operation :”;

list.display();

}

OUTPUT :

Enter the data terminated by negative number :

10 20 30 40 50 60 70 -3

Before any operation :

Traversing in the forward direction :

10<->20<->30<->40<->50<->60<->70<->NULL

Traversing in the back direction :

70<->60<->50<->40<->30<->20<->10<->NULL

Enter the data value of the first node :99

After inserting operation :

Traversing in the forward direction :

99<->10<->20<->30<->40<->50<->60<->70<->NULL

Traversing in the back direction :

70<->60<->50<->40<->30<->20<->10<->99<->NULL

Figure 15.19. Output screen of program.

706 Object-Oriented Programming C++ Simplified

/*PROGRAM :TO INSERT A NODE AT THE END OF A DOUBLY LINKED LIST */

#include <iostream.h>

struct doubly

{

int data;

doubly* back;

doubly* front;

};

class doubly_class

{

private :

doubly* start;

public :

doubly_class()

{

start=new doubly;

start->front=NULL;

start->back=NULL;

start->data=-1;

}

void create();

void insert_end(int);

void display();

};

void doubly_class : :create()

{

int value;

doubly* new_node=new doubly;

new_node=start;

cout<<“\nEnter the data terminated by negative

number :\n”;

cin>>value;

while(value>=0)

{

new_node->front=new doubly;

new_node->front->back=new_node;

new_node=new_node->front;

new_node->data=value;

new_node->front=NULL;

Object-oriented Programming Hand on Lab 707

cin>>value;

}

}

void doubly_class : :insert_end(int data)

{

doubly*temp=new doubly;

temp->data=data;

doubly*move=start;

while(move->front)

move=move->front;

temp->front=NULL;

temp->back=move;

move->front=temp;

}

void doubly_class : :display()

{

cout<<“\n\nTraversing in the forward direction :\n\n”;

doubly* move=start;

do

{

move=move->front;

cout<<move->data<<“<->”;

}

while(move->front);

cout<<“NULL”;

cout<<“\n\nTraversing in the back direction :\n\n”;

do

{

cout<<move->data<<“<->”;

move=move->back;

}

while(move->back!=NULL);

cout<<“NULL”;

}

void main()

{

int value;

doubly_class list;

list.create();

cout<<“\nBefore any operation”;

list.display();

708 Object-Oriented Programming C++ Simplified

cout<<“\nEnter the data value of the last node :=”;

cin>>value;

list.insert_end(value);

cout<<“\nAfter insertion operation”;

list.display();

}

OUTPUT :

Enter the data terminated by negative number :

10 20 30 40 50 60 70 80 -3

Before any operation

Traversing in the forward direction :

10<->20<->30<->40<->50<->60<->70<->80<->NULL

Traversing in the back direction :

80<->70<->60<->50<->40<->30<->20<->10<->NULL

Enter the data value of the last node :=145

After insertion operation

Traversing in the forward direction :

10<->20<->30<->40<->50<->60<->70<->80<->145<->NULL

Traversing in the back direction :

145<->80<->70<->60<->50<->40<->30<->20<->10<->NULL

Figure 15.20. Output screen of the program.

Object-oriented Programming Hand on Lab 709

/*PROGRAM : TO INSERT A NODE AT THE DESIRED POSITION IN A DOUBLY LINKED

LIST */

#include <iostream.h>

#include <process.h>

struct doubly

{

int data;

doubly* back;

doubly* front;

};

class doubly_class

{

private :

doubly* start;

int total;

public :

doubly_class()

{

start=new doubly;

start->front=NULL;

start->back=NULL;

start->data=-1;

}

void create();

void insert();

void display();

};

//function definition create()

void doubly_class : :create()

{

int value;

total=0;

doubly*new_node=new doubly;

new_node=start;

cout<<“\nEnter the data terminated by negative

number\n”;

cin>>value;

while(value>=0)

{

new_node->front=new doubly;

710 Object-Oriented Programming C++ Simplified

new_node->front->back=new_node;

new_node=new_node->front;

new_node->data=value;

new_node->front=NULL;

total++;

cin>>value;

}

}

//function defintion insert()

void doubly_class : :insert()

{

int data,position;

cout<<“\n\nEnter the data value of the node to be

inserted :”;

cin>>data;

 cout<<“Enter the position where node is to be

inserted :”;

cin>>position;

if(position<=0||position>total+1)

{

cout<<“\nInvalid position inputted”;

exit(1);

}

doubly* temp=new doubly;

temp->data=data;

if(position==1)

{

temp->front=start->front;

temp->back=start;

if(temp->front)

start->front->back=temp;

start->front=temp;

}

else

{

int steps=1;

doubly*move=start->front;

while(steps<position-1)

{

move=move->front;

Object-oriented Programming Hand on Lab 711

steps++;

}

temp->front=move->front;

temp->back=move;

if(temp->front)

move->front->back=temp;

move->front=temp;

}

total++;

}

//function definition display()

void doubly_class : :display()

{

cout<<“\nTotal number of nodes :”<<total;

cout<<“\nTraversing in the forward

direction :\n\n”;

doubly*move =start;

do

{

move=move->front;

cout<<move->data<<“<->”;

}

while(move->front);

cout<<“NULL”;

cout<<“\n\nTraversing in the back

direction :\n\n”;

do

{

cout<<move->data<<“<->”;

move=move->back;

}

while(move->back!=NULL);

cout<<“NULL”;

}

void main()

{

int value;

doubly_class list;

list.create();

cout<<“Before any operation :”;

list.display();

712 Object-Oriented Programming C++ Simplified

list.insert();

cout<<“\nAfter insertion operation :”;

list.display();

}

OUTPUT :

Enter the data terminated by negative number

10 20 30 40 50 60 70 80 -8

Before any operation :

Total number of nodes : 8

Traversing in the forward direction :

10<->20<->30<->40<->50<->60<->70<->80<->NULL

Traversing in the back direction :

80<->70<->60<->50<->40<->30<->20<->10<->NULL

Enter the data value of the node to be inserted :150

Enter the position where node is to be inserted :4

After insertion operation :

Total number of nodes :9

Traversing in the forward direction :

10<->20<->30<->150<->40<->50<->60<->70<->80<->NULL

Traversing in the back direction :

80<->70<->60<->50<->40<->150<->30<->20<->10<->NULL

Figure 15.21. Output screen of the program.

Object-oriented Programming Hand on Lab 713

Experiment-5 : Programs illustrating the use of destructor and the various types of

constructors :

1. Constructor with no arguments

2. Constructors with arguments

3. Copy constructor etc.

/*PROGRAM : DEMO OF CONSTRUCTOR NO ARGUMENT */

#include <iostream.h>

#include <conio.h>

 class demo

 {

public :

demo()

{

cout<<“Hello from constructor \n”;

}

 };

 void main()

 {

clrscr();

demo d;

getch();

 }

Output :

Hello from constructor

Figure 15.22. Output screen of program.

EXPLANATION : The name of class is demo and the following declaration

demo()

{

cout<<” Hello from constructor \n”;

}

714 Object-Oriented Programming C++ Simplified

Demo is a constructor of the class as the name of the function is the name of the class.

/*PROGRAM : DEMO OF PARAMETERIZED CONSTRUCTOR WITH STRING DATA */

#include <iostream.h>

#include <string.h>

#include <conio.h>

class string

{

char str[20];

public :

string();

string (char s[]);

void show();

};

 string : :string()

 {

strcpy (str,”Hari”);

cout<<“Default constructor called\n”;

 }

 string : : string(char s[])

 {

strcpy(str,s);

cout<<“One argument constructor called\n”;

 }

 void string : :show()

 {

cout<<“string is”<<str<<endl;

 }

 void main()

 {

clrscr();

string s1;

s1.show();

s1=string(“Vijay”);

s1.show();

string s2=string(“Manmohan”);

s2.show();

string s3(“Ranjana”);

s3.show();

getch();

 }

Object-oriented Programming Hand on Lab 715

Output :

Default constructor called

string is Hari

One argument constructor called

string is Vijay

One argument constructor called

string is Manmohan

One argument constructor called

string is Ranjana

Figure 15.23. Output screen of program.

EXPLANATION : In the case string we have two constructors; one is default and second

is one argument constructor. In the execution of statement string s1 default constructor is called

which result in printing on the screen.

Default constructor called.

And assign value “Hari” to str of object s1. When the statement s1= string (“Vijay”);

executes one argument constructor is called which results in printing on the screen.

One argument constructor called and assigns value “vijay” to str of object s1. The old

value “Hari” is removed.

Same explanation applies to statement string s2 =string (“Manmohan”); and for string s

(“Ranjana”); Observe that in the first part the value of str for the object s1 was “Hari” but after

the statement s1 (“.

/*PROGRAM : DEMO OF COPY CONSTRUCTOR */

#include <iostream.h>

#include <conio.h>

class demo

{

int data;

public :

demo()

716 Object-Oriented Programming C++ Simplified

{

data =200;

cout<<“Default constructor is called”<<endl;

}

demo(int x)

{

data = x;

}

demo(demo & d)

{

data = d.data;

cout<<“Copy constructor is called”<<endl;

}

friend demo copy(demo d)

{

demo temp;

temp.data = d.data;

return temp;

}

void show()

{

cout<<“data = “<<data<<endl;

}

 };

 void main()

 {

clrscr();

demo d1(300);

demo d2= d1;

demo d3 = copy(d1);

d1.show();

d2.show();

d3.show();

getch();

 }

OUTPUT :

Copy constructor is called

Copy constructor is called

Default constructor is called

Copy constructor is called

data = 300

data = 300

data = 300

Object-oriented Programming Hand on Lab 717

Figure 15.24. Output screen of the program.

EXPLANATION : In the program we have written a copy constructor and a friend function

copy. The function copy takes an object by value as argument, copies the data into another

object and returned that object. In the main when demo d1 (300); executes it calls the one

argument constructor and sets data for object d1 = 200. When demo d2 = d1; executes copy

constructor is called and data for d2 is equal to data for d1. Now the important thing to

understand. When demo d3 = copy (d1); executes, copy constructor is called as we have

written demo d3 =. As we are passing d1 by value in the function copy, copy constructor will

be called. Inside the function copy temporary object (temp) is created which is called default

constructor and in the end we have written the object temp by value, copy constructor is called

again.

If I do a small change as that instead of writing demo d3 = copy (d1); we write as :

demo d3;

d3 = copy(d1);

Sequence of constructor will be called as :

1. For demo d3, default constructor will be called.

2. d1 we are sending by value, copy constructor will be called.

3. In the function demo temp; causes default constructor to be called.

4. return temp causes copy constructor to be called.

Experiment-6 : Programs illustrating the various forms of inheritance :

1. Single Inheritance.

2. Multiple Inheritances.

3. Multilevel Inheritance.

4. Hierarchical inheritance, etc.

/*PROGRAM : DEMO OF SINGLE LEVEL INHERITANCE */

#include <iostream.h>

#include <conio.h>

class super

{

int sup_a;

718 Object-Oriented Programming C++ Simplified

public :

void sup_input(int x)

 {

sup_a=x;

 }

 void sup_show()

 {

cout<<“sup_a=”<<sup_a<<endl;

 }

 };

 class sub :public super

 {

int sub_a;

public :

void sub_input(int x)

{

sup_input(x*2);

sub_a=x;

 }

 void sub_show()

 {

sup_show();

cout<<“sub_a=”<<sub_a<<endl;

 }

 };

 void main()

 {

int i;

clrscr();

sub o1;

cout<<“Enter the data member :=”;

cin>>i;

o1.sub_input(i);

o1.sub_show();

getch();

 }

OUTPUT :

Enter the data member : =145

sup_a=290

sub_a=145

Object-oriented Programming Hand on Lab 719

Figure 15.25. Output screen of the program.

EXPLANATION : In the main we have called only the functions of sub class. The function

sup_input is called from sub_input with a value x*2 as argument. Similarly sup_show is called

from class sub. So, when sub_input is called from main with value of ‘i’ of int type, it is

collected in variable x and the function of base class sup_input is called with value 2*145

(290), where it is assigned to sup_a of super class. When control returns sup_input function

the value x is assigned to sub_a. When sup_show is called, it calls sup_show first in its body.

When the function sup_show returns after displaying the value of sup_a, the function sup_show

displays the value of sub_a.

/*PROGRAM : DEMO OF MULTILEVEL INHERITENCE FINDING MAXIMUM OF THREE

CLASS’S DATA */

#include <iostream.h>

#include <conio.h>

class first

{

protected :

int fa;

public :

void input_f()

{

cout<<“Enter the value for fa :=”;

cin>>fa;

}

};

 class second :public first

 {

protected :

int sa;

public :

void input_s()

{

input_f();

cout<<“Enter the value for sa :=”;

720 Object-Oriented Programming C++ Simplified

cin>>sa;

 }

};

class third :public second

{

protected :

int ta;

public :

void input_t()

{

input_s();

cout<<“Enter the value for ta :=”;

cin>>ta;

 }

 void show()

 {

cout<<“Data of class first fa :=”<<fa<<endl;

cout<<“Data of class second sa :=”<<sa<<endl;

cout<<“Data of class third ta :=”<<ta<<endl;

 }

 int max()

 {

int t1,t2;

t1=fa>sa ?fa :sa;

t2=ta>t1 ?ta :t1;

return t2;

 }

 };

 void main()

 {

clrscr();

third t;

t.input_t();

t.show();

cout<<“Max is “<<t.max()<<endl;

getch();

 }

Object-oriented Programming Hand on Lab 721

OUTPUT :

Enter the value for fa : =123

Enter the value for sa : =567

Enter the value for ta : =234

Data of class first fa : =123

Data of class second sa : =567

Data of class third ta : =234

Max is 567

Figure 15.26. Output screen of program.

EXPLANATION : In all the three classes data members are protected. In main when

input_t of class third is called by an object t, it first calls function input_s of class second. The

function input_s in turn call the function input_f of class first. As second is the base class of

class third and first is the base class of second, data members fa and sa can be used inside

the member functions of class third. Though how of class third we display these data members.

The function max of class third finds maximum of these three data members using ternary

operator and return the max value which is displayed in the main.

/*PROGRAM : DEMO OF MULTIPLE INHERITENCE FINDING TOTAL MARKS FROM

INTERNAL AND EXTERNAL MARKS */

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

class Internal

{

protected :

int i_marks;

public :

 void input_im()

722 Object-Oriented Programming C++ Simplified

 {

 cout<<“Enter internal marks :=”;

 cin>>i_marks;

 if(!(i_marks>=0 && i_marks<=60))

 {

 cout<<“Invalid Marks”;

 exit(0);

 }

 }

 void show_im()

 {

 cout<<“Internal marks :=”<<i_marks<<endl;

 }

};

class External

{

protected :

int e_marks;

public :

void input_em()

{

cout<<“Enter external marks :=”;

cin>>e_marks;

if(!(e_marks>=0 && e_marks<=60))

{

cout<<“Invalid Marks”;

exit(0);

}

}

void show_em()

{

cout<<“External marks :=”<<e_marks<<endl;

}

};

class Total :public Internal, public External

{

int total_marks;

public :

void input()

{

input_im();

Object-oriented Programming Hand on Lab 723

input_em();

}

void show()

{

show_im();

show_em();

total_marks = i_marks;

cout<<“Total Mrks :=”<<total_marks<<endl;

}

};

void main()

{

clrscr();

Total tm;

tm.input();

tm.show();

getch();

}

OUTPUT :

Enter internal marks : =56

Enter external marks : =35

Internal marks : =56

External marks : =35

Total Marks : =91

Figure 15.27. Output screen of the program.

EXPLANATION : For student’s internal marks we have a class Internal and for student’s

external marks we have a class External. The internal marks must be between 0 to 60 and

external marks must be between 0 to 40. These two classes are inherited by class total which

finds the total marks and display all three marks :

724 Object-Oriented Programming C++ Simplified

(a) Internal

(b) External and

(c) Total

Note here that i_marks and e_marks are protected so that can be used inside the total

class. They can be modified by the class total. So ideally i_marks and e_marks. Try to make

use of this and create a new program yourself.

/*PROGRAM : DEMO OF HIERARCHICAL INHERITANCE */

#include <iostream.h>

#include <conio.h>

#include <string.h>

class University

{

protected :

char uname[40];

public :

University()

{

strcpy(uname,”NMIMS University Mumbai”);

}

};

class college1 :public University

 {

char cname[50];

public :

college1()

{

strcpy(cname, “MPSTME Shirpur Campus”);

}

void show_college1()

{

cout<<“College Name :=”<<cname<<endl;

cout<<“Affiliated to :=”<<uname<<endl;

}

};

class college2 :public University

{

char cname [50];

public :

college2()

Object-oriented Programming Hand on Lab 725

{

strcpy(cname,”R C Patel”);

}

void show_college2()

{

cout<<“College Name =”<<cname<<endl;

cout<<“Affiliated to :=”<<uname <<endl;

}

};

void main()

{

clrscr();

college1 c1;

c1.show_college1();

college2 c2;

c2.show_college2 ();

getch();

}

OUTPUT :

College Name : =MPSTME Shirpur Campus

Affiliated to : =NMIMS University Mumbai

College Name =R C Patel

Affiliated to : =NMIMS University Mumbai

Figure 15.28. Output screen of program.

EXPLANATION : The program is so simple. We have university class which has just data

member, a char array of 40 characters named uname. This class is inherited by two classes’

college1 and college2. The two classes display their name and the university to which they are

affiliated.

726 Object-Oriented Programming C++ Simplified

Experiment-7 : Write a program illustrating the use of virtual functions.

/*PROGRAM : DEMO OF VIRTUAL FUNCTION */

#include <iostream.h>

#include <conio.h>

class first

{

public :

virtual void show()

{

cout<<“Hello from show of first class”<<endl;

}

virtual void display()

{

cout<<“Hello from display of first class”<<endl;

}

void fun()

{

cout<<“Hello from fun of first”<<endl;

}

};

class second :public first

{

public :

virtual void show()

{

cout<<“Hello from show of second class”<<endl;

}

virtual void fun()

{

cout<<“Hello from fun of second class”<<endl;

}

};

void main()

{

clrscr();

first *ptr;

first f;

second s;

ptr=&f;

ptr->show();

Object-oriented Programming Hand on Lab 727

ptr->display();

ptr->fun();

ptr=&s;

ptr->show();

ptr->display();

ptr->fun();

getch();

}

OUTPUT :

Hello from show of first class

Hello from display of first class

Hello from fun of first

Hello from show of second class

Hello from display of first class

Hello from fun of first

Figure 15.29. Output screen of program.

EXPLANATION : In the following statements it is clear that all the functions of class first

will be called :

ptr=&f;

ptr->show();

ptr->display();

ptr->fu();

Writing the function virtual again when overriding in the derived class second makes

function virtual for the next class if this class is inherited. show was virtual in the first class

and is overridden in the second class so show of second class will be called. fun was not virtual

in the first class so fun of class first will be called. The function display is presented only in

the class first so obviously it will be called. So the output.

728 Object-Oriented Programming C++ Simplified

Experiment-8 : Write a program which illustrates the use of virtual base class.

/* PROGRAM : GENERATING STUDENT REPORT, ELEMENTARY PROGRAM DEVELOPED BY

STUDENTS */

#include <iostream.h>

#include <conio.h>

#include <stdlib.h>

class student

{

char sname [20];

int rollno;

public :

void input_st()

{

cout<<“Enter student name”<<endl;

cin.getline(sname,20);

cout<<“Enter the roll number”<<endl;

cin>>rollno;

}

void show_st()

{

cout<<“\tName :=”<<sname<<endl;

cout<<“\tRoll number :=”<<rollno<<endl;

}

};

class Subject :public student

{

char subject[25];

public :

void input_sub()

{

input_st();

cin.ignore();

cout<<“Enter the subject name”<<endl;

cin.getline(subject,25);

}

void show_sub()

{

show_st();

cout<<“\tSubject=”<<subject<<endl;

}

};

Object-oriented Programming Hand on Lab 729

class Internal :virtual public Subject

{

char subject[25];

protected :

int i_marks;

public :

void input_im()

{

cout<<“Enter internal marks (0 to 20)”<<endl;

cin>>i_marks;

if(!(i_marks>=0 && i_marks<=20))

{

cout<<“Invalid Marks”<<endl;

exit(0);

}

}

void show_im()

{

cout<<“\tInternal marks=”<<i_marks<<endl;

}

};

class External :virtual public Subject

{

protected :

int e_marks;

public :

void input_em()

{

cout<<“Enter External marks (0 to 80)”<<endl;

cin>>e_marks;

if(!(e_marks>=0 && e_marks<=80))

{

cout<<“Invalid Marks”<<endl;

exit(0);

}

}

void show_em()

{

cout<<“\tExternal Marks=”<<e_marks<<endl;

}

};

730 Object-Oriented Programming C++ Simplified

class Total :public Internal, public External

{

int total_marks;

public :

void input()

{

input_sub();

input_im();

input_em();

}

void show()

{

show_sub();

show_im();

show_em();

total_marks = i_marks + e_marks;

cout<<“\tTotal Marks=”<<total_marks<<endl;

}

};

void main()

{

clrscr();

Total tm;

tm.input();

cout<<“\n\t ++++++++++Student Report++++++++\n”<<endl;

tm.show();

getch();

}

OUTPUT :

Enter student name

Hari Pandey

Enter the roll number

1001

Enter the subject name

OOP In C++

Enter internal marks (0 to 20)

18

Enter External marks (0 to 80)

75

 ++++++++++Student Report++++++++

Object-oriented Programming Hand on Lab 731

 Name :=Hari Pandey

 Roll number :=1001

 Subject=OOP In C++

 Internal marks=18

 External Marks=75

 Total Marks=93

Figure 15.30. Output screen of the program.

EXPLANATION : First we show you how the classes in the program are related.

Subject Class

Student Class

External ClassInternal Class

Total Class

The student class has two private data members sname and rollno two public member

function : input_st and show_st. This student class is inherited by class subject which has just

732 Object-Oriented Programming C++ Simplified

one data member subject and two function input_sub and show_sub. The function for input

and display the student name and roll number are called in the function of this class. The class

subject is inherited by class Internal and External which we have seen earlier. Note both the

classes inherit the class Subject in virtual public mode so only one copy of data members of

class Subject will be available in class Total and no ambiguity will arise. Trace the program

step-wise. It is very simple to understand.

Experiment-9 : Write a program which uses the following sorting methods for sorting

elements in ascending order. Use function templates :

(a) Bubble sort

(b) Selection sort

(c) Quick sort.

/*PROGRAM : (BUBBLE SORT) SORTING ARRAY ELEMENTS USING FUNCTION TEMPLATE */

#include <iostream.h>

#include <typeinfo.h>

#define S 5

template<class TYPE>

void sort(TYPE arr[])

{

int i,j;

for(i=0;i<S;i++)

for(j=i+1;j<S;j++)

if(arr[i]>arr[j])

{

TYPE t=arr[i];

arr[i]=arr[j];

arr[j]=t;

}

}

template<class TYPE>

void input(TYPE arr[])

{

int i;

cout<<“Enter”<<S<<“

“<<typeid(arr[0]).name()<<“number”<<endl;

for(i=0;i<S;i++)

cin>>arr[i];

}

Object-oriented Programming Hand on Lab 733

template<class TYPE>

void show(TYPE arr[])

{

int i;

for(i=0;i<S;i++)

cout<<arr[i]<<“ “;

cout<<endl;

}

void main()

{

int a1[S];

input(a1);

sort(a1);

cout<<“SORTED ARRAY IS”<<endl;

show(a1);

float f[S];

input(f);

sort(f);

cout<<“SORTED ARRAY IS”<<endl;

show(f);

}

OUTPUT :

Enter5 intnumber

10 5 26 17 80

SORTED ARRAY IS

5 10 17 26 80

Enter5 floatnumber

56.8 4.5 2.3 90.634.56

SORTED ARRAY IS

0.56 2.3 4.5 56.8 90.634

Figure 15.31. Showing the output screen of program.

734 Object-Oriented Programming C++ Simplified

EXPLANATION : In the program we have three function templates :

1. One for inputting array elements.

2. Second for showing the array elements.

3. Third for sorting array element.

As we have array of two different data types, total 2 × 3 = 6 function definition are

generated when specific call is made to each function i.e., 3 for integer data type int : input,

show and sort and 3 for float data type. Rest is simple to understand.

/*PROGRAM : SELECTION SORT ASCENDING ORDER */

#include <iostream.h>

#define size 20

class array

{

private :

int i;

float a[size];

public :

void enter(int);

void display(int);

void selection_sort(int);

};

//definition of the function function enter()

void array : :enter(int n)

{

for(i=0;i<n;i++)

cin>>a[i];

}

//definition of the function display()

void array : :display(int n)

{

for(i=0;i<n;i++)

cout<<a[i]<<“ “;

}

//definition of the function selection_sort()

void array : :selection_sort(int n)

{

float temp; //temp is used here for swapping

int min_index; //min_index denotes the position of the

least element during a pass

//Now Applying Sorting

Object-oriented Programming Hand on Lab 735

for(int pass=0;pass<n-1;pass++)

{

min_index=pass;

for(i=pass+1;i<n;i++)

{

if(a[i]<a[min_index])

min_index=i;

}//innermost for loop

if(pass!=min_index)

{

temp=a[pass];

a[pass]=a[min_index];

a[min_index]=temp;

}

}//outermost for loop

}

void main()

{

array obj;

int n;

cout<<“Enter no of elements<<=”<<size<<“\n”;

cin>>n;

cout<<“\nEnter “<<n<<“ elements\n”;

obj.enter(n);

//echo the data

cout<<“\nGiven array is \n\n”;

obj.display(n);

obj.selection_sort(n);

cout<<“\n\n After applying selection sort array

is :\n\n”;

obj.display(n);

}

OUTPUT :

Enter no of elements<<=20

6

Enter 6 elements

10 17 23 5 3 89

Given array is

10 17 23 5 3 89

After applying selection sort array is :

3 5 10 17 23 89

736 Object-Oriented Programming C++ Simplified

Figure 15.32. Output screen of program.

/*PROGRAM : QUICK SORT FOR ASCENDING ORDER */

#include <iostream.h>

#define size 20

class array

{

private :

float a[size];

int i,low,high,pivot_value, temp;

public :

void enter(float*,int);

void display(float*,int);

void quick_sort(float*,int beg,int end);

};

//definition of the function enter()

void array : :enter(float a[], int n)

{

for(i=0;i<n;i++)

cin>>a[i];

}

//definition of the display()

void array : :display(float a[], int n)

{

for(i=0;i<n;i++)

cout<<a[i]<<“ “;

}

Object-oriented Programming Hand on Lab 737

//definition of the function quick_sort()

void array : :quick_sort(float arr[],int beg, int end)

{

low=beg;

high=end;

pivot_value=arr[(beg+end)/2];

do

{

while(arr[low]<pivot_value)

low++;

while(arr[high]>pivot_value)

high—;

if(low<=high)

{

temp=arr[low];

arr[low++]=arr[high];

arr[high—]=temp;

}

}while(low<=high);

if(beg<high)

quick_sort(arr,beg,high); //recursive call to

the function

if(low<end)

quick_sort(arr,low,end); //recursive call to

the function

}

void main()

{

array obj;

float a[size];

int n;

cout<<“Enter no of elements<=”<<size<<“\n”;

cin>>n;

cout<<“\nEnter “<<n<<“ elements\n\n”;

obj.enter(a,n);

//echo the data

cout<<“\nGiven array is \n\n”;

obj.display(a,n);

obj.quick_sort(a,0,n-1); //function call

quick_sort

cout<<“\n\nSorted array is :\n\n”;

obj.display(a,n);

}

738 Object-Oriented Programming C++ Simplified

OUTPUT :

Enter no of elements<=20

6

Enter 6 elements

60 10 30 20 45 25

Given array is

60 10 30 20 45 25

Sorted array is :

10 20 25 30 45 60

Figure 15.33.Output screen of the program.

Experiment-10 : Write programs illustrating file handling operations :

(a) Copying a text file

(b) Displaying the contents of the file, etc.

/*PROGRAM : READING AND WRITING MOBILE DETAIL */

#include <iostream.h>

#include <fstream.h>

void main()

{

fstream rw;

rw.open(“demo2.txt”,ios : :out);

char mcomp[20],model[10];

float price;

cout<<“Enter the mobile model”<<endl;

cin.getline(model, 10);

cout<<“Enter the mobile company”<<endl;

cin.getline(mcomp, 20);

Object-oriented Programming Hand on Lab 739

cout<<“Enter the mobile price”<<endl;

cin>>price;

rw<<model<<endl<<mcomp<<endl<<price<<endl;

rw.close();

rw.open(“demo2.txt”,ios : :in);

rw.getline(model,10);

rw.getline(mcomp,20);

rw>>price;

cout<<“Mobile details read from file”<<endl;

cout<<“Model :=”<<model<<endl;

cout<<“Company :=”<<mcomp<<endl;

cout<<“Price :=”<<price<<endl;

rw.close();

}

OUTPUT :

Enter the mobile model

z550i

Enter the mobile company

Sony

Enter the mobile price

8000

Mobile details read from file

Model :=z550i

Company :=Sony

Price :=8000

Figure 15.34. Output screen of program.

740 Object-Oriented Programming C++ Simplified

EXPLANATION : The program is simple. We input detail of mobile from keyboard, write

into the file and close the file. We open the file in read mode and read mobile details from the

file which is displayed on to the screen.

/*PROGRAM : FILE COPYING USING GET AND PUT */

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

void main()

{

fstream source, dest;

char sfile[15], dfile[15];

char ch;

clrscr();

cout<<“Enter the source file name”<<endl;

cin>>sfile;

source.open(sfile,ios : :in);

cout<<“Enter the destination file name”<<endl;

cin>>dfile;

dest.open(dfile,ios : :out);

while(source.eof()==0)

{

source.get(ch);

dest.put(ch);

}

source.close();

dest.close();

}

OUTPUT :

Enter the source file name

Hari.txt

Enter the destination file name

Pandey.txt

Object-oriented Programming Hand on Lab 741

Figure 15.35. Output screen of program.

EXPLANATION : We input source and destination file name from the user. It is assumed

that source file exist so we have not put any error checking code in the program. The source

file is than opened in read mode and destination file is in write mode. We read one character

at a time from source file and put this into destination file. This continues till source file does

not come to end. In the end both files are closed.

���

KEY ELEMENTS USED IN
TROUBLE FREE C++

1 . & has a number of distinct meanings. When it precedes the name of a variable without
following the name of a type, it means "the address of the following variable". For
example. & Str means "the address of the variable Str". When & follows a type name
and precedes a variable name, it means that the variable being declared is a reference-
that is, another name for a preexisting variable. In this book, references are used only
in argument lists, where they indicate that the variable being defined is a new name
for the cr~ ller's vr~rir~ble rr~ther thr~n r1 new locr~ l vr~rir~ble .

2. % is the "modulus" operator, which returns the remainder after dividing its left-hand
argument by its right-hand argument.

3. : : is the scope resolution operator, which is used to tell the compiler the scope of a
variable. We can prefix it to the name of a global variable to prevent the compiler from
confusing it with a variable of the same name from the standard library. It is also used
to specify the namespace or class of a variable or function, when placed between the
namespace or class name and the variable or function name.

4. < is the "less than" operator, which returns the value true if the expression on its left
has a lower value than the expression on its right; otherwise, it returns the value false.
Also see operator < in the index.

5. < < is the "stream output" operator, used to Wl'ite data to an ostream. Also see operator
< < in the index.l

6. < = is the "less than or equal to" operator, which returns the value true if the expression
on its left has the same or a lower value than the expression on its right; otherwise,
it returns the value false. Also see operator < = in the index.

7. = is the assignment operator, which assigns the value on its right to the variable on
its left. Also see operator = in the index.

8. = = is the "equals" operator, which returns the value true if the expression on its left
has the same value as the expression on its right; otherwise, it returns the value false.
Also see operator == in the index.

743

���)�*	��$)
�	��	�+
��
�������,--���������	

�� �� �����	���
	��	
���������	
���
��������
	��
�����	�����	��
�	������	�	��
	������������
�	����������
	��	
�����	��������	�	��
	�������������
����%����	
���	�����
	��
�����	�����	
����	��&���� �		��
��������� ��� ��	� ��	��

��� ��� ��� ��	� ��
	��	
� ����� �
� 	(���� ���� ��	
���
�� ������
	��
��� ��	� ����	� �
�	� ��� ��	
	��
	��������������	���������	����	��
����
	��	
�����	��������	�	��
	�������������
����%
���	
���	�� ���
	��
��� ��	� ����	� ����	��&���� �		��
���������� ��� ��	� ��	��

��� ��������	����
	������������	
���
����	����
	�������
���������
	����&�����		��
������

��� ��� ��	� ��	��

��� �� ��� ��	� �	��� �(��
	� �
��"	�%� �		� ������� �������� ��
� ����	�

��� � ��� ��	�
����� �(��
	� �
��"	�%� �		� ������� �������� ��
� ����	�

��� �� ������	����	
���	�	�	�	���	
���
�����	�����	�������	
��������	������	
���
�������	�	�	

���� ����	�
	�	
�� ��� �� �
���� ��� 	�	�	����
���	
� ����� *���� ��	� ���� ��	��� ������ ��	�
	�	���������

������ ���
���.���� �����	���� ��	� �	�� ���	����	���	����	� �����"	� ����
����������� 	����������
���	
� ����� �	������ ��� ��� ����	���

��� !� ��� ��	� �	��� ��
��� �
��	%� �		� ���	� ������ ��
� ����	�

��� "� ��� ��	�
����� ��
��� �
��	%� �		� ���	� ������ ��
� ����	�

��� #�� ��� ��	������	(��������	
���
��������
	��
��� ��	�����	� �
�	� ��� ��	�	��
	��������� ���
�	��� ���� �� ����	� ���	
	��� �
��� ��	� 	��
	������ ��� ����
����%� ���	
���	�� ���
	��
��� ��	
����	� ����	��&���� �		��
������� ��� ��� ��	� ��	��

��� ��������	����������&/0����	
���
��!���
���	����	�
	������
�	������	�	��
	��������������
����
���������	����
	��
�	%����	���	
��������	�	��
	��������������	������
���	����	�
	����
����	��1��	�	
����������#����	�����	����
���.�	
	��������	�����
��	����,--����	
�������	
	�	���������� ��	������	
���
� 2� !�� ��	�	��
	��������� ��	� �	��� ��� ����	�� ��	�� ��	�����	

������	�����	������	�	��
	�����������	�
������������	�	���	���������.�	�
	�������
�����
��	����	�������������������
��	���
����$���
	��
	������ ���������� ����� �	� ����� ��� ��	� �	��$���� 	��
	������ ��� �
�	�

��� $$������	����
	�	�����	
���
�����������'������	���
����	���������������������	��$�
�����	���������
����	����	
���
�������������	�����	��������
����������	���
����	���
���� �	���

��� %�������	������
�����
�����
����	����	
���
������������
�������	�����	��������
������
��
��	���
����	� ��� ���� �	���

��� &&� ��� ��	� ����	��� ��	
���
%� �		� ������� ��
� ����	�

��� ''� ��� ��	� ���������)3����	
���
�� !�� �
���	�� ��	�
	����� �
�	� ��� ��� �	���� ��	� ��� ��	� ���
	��
	���������� ����
���������	��� ��� �
�	%� ��������	��
	��������
	� ����	�� ����
���	�� ��	

	����� ����	��1��	�	
�� ��	
	� ��� �� ��	�����
��	� ���,--����	
����� ��	� 	�	���������� ��	
''� ��	
���
� 2� ��� ��	� 	��
	��������� ��	� �	��� ��� �
�	�� ��	�� ��	�����	
�������	� �
�	���
��	� 	��
	������ ��� ��	�
����� ��� ���� 	�	���	� ��� ����� .�	�
	����� ��
� ����� �����������
�����������
��	� ��� ����� ������	����	��������������� ����
��	���
����$����	��
	�����
���������� ����� �	� ����� ��� ��	� �	��$���� 	��
	������ ��� ����	�

��� &�()*��� ����	�	��� ��� ��
��
�������� ��������� ����� 	���	�� ��
��
�������� �	�����
����	����������	�	��������	���	����	���	��������������	����
��	�	
�����	����������		�
������� ���	
�		� 	��	��� ��� ��
�� ��� ��	� ������� �������	��������

��� &��(�)�*�����	�	��������
��
�����������������������	
�����	�����	�������������������
��	�� !�� ��� ��	� ��� ����� ���"� ��� ��
�� ��� ��	� ������� �������	��������

�������� ���

��� &��(�*)*� ����	�	��� ��� ��
��
�������� ��������� ����� �	����� �� �	������ ��� ����������
��	�� !�� ���� ��	� �������	� 	��	��� �
��� ��	��������� �
	����	�

��� &��(�*�)*� ����	�	��� ��� ��
��
�������� ��������� ����� �	���� ��	� �
	�
��	���
� ��� ��	�"

��	��	
�����
������
�
��
���������	����������		��	���	��!���������	��������������
�	
��	� ��� �
	��	� ��
������� 1��	�	
�� ��� ��	� ��	����	� �
	�
��	���
� ������� ���� �		�
	���	�� ��	� ���������� ���
�	� ��	� ��� �"���	���� ��	�
	��� ��� ��	� ������	
� ��� ������
����	
	������
	�	��� ��� ��	� ���
�	� ���	��.�	�4���	�� ����	�	��� �����	� ��� ��������"���
��
�� ��� ��	� ������� �������	��������

��� &��(��
��)� ����	�	��� �����
��
����������������� ��������� ��	����	�	��	������ �������
��������������� ��	���	� �
����� ��	����	� ���	� ����������	
� ���	� ��� ��	���������	
	� ��	
4�����	�����	�	�������
���	�����
�	�����	������	�����	������	�	�����������������	
��� �� ���	� ����	� ���
	����� ��� ��	� ����	�	�������� ���	� �	�������� �	� ����� ���	
�� ��	
�����	�����	�	���4�����	�����
	����������	�������
���	
���������������������������	

���	�� �
��� ��	� ���	� ���
	����� ����� �	�������

��� &���

		�	�
�*�������
������	����	����������	��	
����������������	��	��	
����������
�����
����	��������������.�	�,--����	�����	����	
���
	����������
����	������
��	��	�

�		�
������
�������� ���
�������� ��
� 	�������&���� �		� �������

��� +

		� ��,� ������	���
	������������� ��� ��"	�� ���
	�
�	�	����� �
��������
��	�	���	�
����� ��� �� ��
���"� �
�3&5�

��� &����-����.,� ������	������
	���	���	���	���	������
���		�����

��	�����������	
� ��
���
���	���
��	������
���	����&�� ����� �����	����� �	����� ��	��� ������������	�	
�	�� ��
���� ��� ����
����� ��� ��	� ��
���	��� �	��	�

��� +���	��-� �����	��
�����	����
	�	

���������	���*	��������
	��������	�����	�%����,--�
��	�	� ���	�� �
	� ���������
�������� �
� ����������

��� .�	�����	��-����/�,���������	���
���	����������	��������
	�����	�������	
���������
	

��*	���

��� &�� �����
������ ���-��,� ��� �� �
��
��� ����� ��������� ����������	�� ���	� ��	���� �

���	
	������ ���"�� 6�����	�� �����	� ���	���
�� ����
���� ���
����� ��� ���	��

��� &�������
���������-��,,��7�
����������8�������
��
���	
�������	�������	���������
��
����	�� ����
��	� ��� �������������
��
����&���� �		� ������	����������

��� &����-�,������������	�������	������	����������7��	���������������8����������	����
��"	���	������	��	
���	����������	
����������7��	��������������8��.�	
	��
	���������
���	������
���	����2�������������������������
	�����	�������	�����	���
�����	��������
��
	���������	���������������
	�	
������
����	�
��� ��	� �������� ���������

��� &����-�,��� ��	�� ������	������
���	���	������������	����	� ����� ���������	���
������
.�	� �
���	��� ����� 	��
��	�� ��	� ���	�� ��� ���	�� ��� ���� ��	� ��
����	�� ��	� ��������

	�	��	����	�� ��� ��� ����	���� �� �������� ���������

��� &������0�������
�������	�	�	���������	����	����	�$���
�	�����	������

���������
���.�	
�

������	���

	�����������	��
	��������	���
��������	�	�	�	�	���%���	����	
�	�	�	���
������� ��	� ��
��� ��	� ���	���	��� ��� �	��
��� &�� ����� �� �	���
�� �	� ����
	�	
� ��� ��	
���������	�	�	���������	�
���	�	���.���������	����	�����

���������
������	��90����

�90���:�;�
	�	
�� ��� ��	� ���� ���
� ��� ��	� �

����&���� �		�
�������� ������

���)�*	��$)
�	��	�+
��
�������,--���������	

��� &������0���������1��������	�������������������	����	������������<	���	�	�	�	��������������	�
.�	��������������	�������������������	����
�����

�������������������	�,--��������	���
��� ���� ��������	� ��
� ��	
$	���	����� ���	�� ����� ��� ��	� �	���
�

��� .�	�+2344�
�)�����������
�<	�
	�
	�	��������������
���	
���������
���
��	��	�����
����	�����
�	�����	����	��	��	
��&�����
	�
	�	��	���������
��������	��	��	����������	
='�������	������>����
	�
	�	��	���������
��������	��	��	����������	�?>��&������	

�
������	� ���
���	
�� ��������	�
	�
	�	��������� ��� ��	�&�,!!� ��	�

��� &���		,/���������
��
���������
������	���������	��������������
�������������������
������������

��� &���		,/�0����-��-�����
������������	������$
	����	�
	�
	�	�������������������

�����������

��� +		�-�,��������	���	
����������	����������
����	����������	��.�	���	
���
������������	�
�������	��� ��� ��	� 	(���� ������@��&���� �		��
��������� ��� ��	� ��	��

��� &���		�-�,�������������������������������	������
		����������
����	����������	������	
���	� ���	��.�	
	� �
	� ��
		� ��
�	��	�� ��� �������	��� ��	
���
�� 2

5�6 ��
�����
����	�����������	����	����	�������	
�������	������������������	�����	
���
�

5�6 ��
�����
����	���������������	����	�������	
��	�	
��	�����������	
������������������	��
��	
���
� 7�� ��
��������������� �������	��� ��	
���
8� ��� ��	� ������ �
��	
� �	�� ���

�
��	� ��	�

5�6 .�	��������
��	
������
��	����	��	
����������7����������������������	�����	
���
8
��� �� ��	� �������	��%� �		��
��������� ��� ��	� ��	��

��� &���		�-�,���	���,��� ����������@�A%� �������������	�
����	(���������������	
����
������������
	�	���	���	��!�� �������������	��������	�������	
�����������������	���
����
����	�� !�� ��	� 	�����	�� ��	���
����	� ��� �� ��� ��	�����	� ��� A�

��� .�	������	����-�
��		� �����	�	������������������� ��
���
����	��	���
	��������,--
�������������	���	�	���	�����
����	������	���������
��	�������������	��
���
	�����
������	� �������������� ����� 	��
�� ��� ��	� �����������	
	� ��� ��� 	���	%� ��	��	��
�
�
	��� ��� ����� ��
� ��	��
������ ��� ����� ���������

��� +���,���
�
��7�	����������	���
	����,--����������������	��
	�����������	����	�����	
��	���	
	������	
����	����	��	��	����
�	�����	�������
����
����	��
�	��
	���������
�	� �
���	���	�� ��� ���� 	��
	������ ��� 	��	��	�� ��� ��	� ������	
������ ����	
�� ��	
���	� ��� ��	� 	��
	������ ��������������

��� &� /�	�
��		� ��������1�� ��	����	�� ������ ���	� ������ �����
����
� �	� ����� ��� ��	� ��
��������<	� ��	� ���	� ������ ��
�� ��� �� 	
��	� ������ ��*	���� !�� ��� ��	� ��� ��	� ���� ���	�� ��
	��
	������� �����	� ��� ��������� �������� ������ ������&���� �		� ������������ ����������

��� .�	�/�	�
��		�����������	
��	���������*	��������������	�������	��������	�	
��	
��������*	�������	��	��	
���
����	����������������
	����	�����	�������������	���	
	
	���	� ��� ��	�	
��	� ������� ��� ����� ��� ��	�� �
	� 	���	
�
����� �
�
��������

��� &�/��
.�*���������	������	�������
	������	�	�	����������������	
�����
��
�������	����	

��	����	
��������������������	
�	�������&�������
���������������������	�����������	
�����
����	���

��� &�/����0� ����	
� ����	����	�� ����� ����������� >� ��� '�

�������� ���

��� &�/��������	������	����������������
��	��������	
��������	
%���	���
��������	
��	
�
��� ��	���
��	������	�������� 6��������� ��� ����� ����	����� �������	���	���� ���� ����	�� 2
>� ���'�

��� &�/��
8� ������
������� ����	�	���������	
	������	� �������� ����	�	���� !�� ���	�����	
��� ��	���
����
��	���B��C��.�	� ��
������ ��	�	������������
���������"����� ��	��	���
��	�	�������&�����"������	���	������	
	������������	�	��������	���	��������
	��	
	���������� ��� ����	
	���	�����	�	������
�	�����	�� ���������"� ��� ��	�����
���	�����"���
����������	�	�������������	�����	�	���������	�����"��
	�	�	���	������	���������������	
��� ��� �
�	�� ������	� ��� 	�	���	� ��� ��	� ��������� ��� ��	� ��� ��� ����	�

��� &�/����7���
����
�D���	��8���������	������
����	�����	�
���	��������	����������	�����
�	
�
� ����	�� .���� ��� ��	������ ���
��
���	�
	��
�� ���	� ��
� �� ��������� ����� ��	�� ���� ������
������ ���
	��
����	��	
����	����������	����������������
���������� !�� �������
������

���	�� ��	�
	��
�� ����	� �
�	� ������	�� ����� ��	� ��
��� �
���	��� ��� �	��� ����� ��	� �	����

����	� ����	� ������	�� ����� ��	� ��
��� �
���	��� ��� ���� �	��� ����� ��	� �	����

��� &�/��8� 	���,��� ��� �� ����� ����
��� 	���	� ����� ���	

����� ��	� �
��	������ ��� �� ����
��	�	�	
�������	�	���	����������	�����
���	�����"���������������
�������	�	������	�

���
	�"� ����	�	��� ��� 	�	���	�� ��	� �������� ����
�������	�� ��� ��	��	��� ����	�	��� ���	

��	� 	�� ��� ��	� ����
���	� ����"�

��� &� /�**�� ��� �� �	���
�
�� ������� ����	���	
	� ����
������� ��� ���
	�����	� ��� ��� �	���
���������	�

��� 9�**���-� ��� ��	� �
��	��� ��� ������ �� ����	
� ��� ���
	� �
�
	�
�	�	� ����
�������

��� &�/0�� ��� ��	������ ���������������������	���
	�����	����	��	
����3&5��
��������"�
!���������	
�� ������	
��� �� ���	� ��������� ��� 	����� �����

��� &�3� *��
����� ��� ��	� ����� ��� ���	
��	� �
��� ��	�!� ������	��D	����	�,��	���������	� �
����	
���� �	���
	�� ��������	��		���	� ���,--�� �������� �������������������� ��

��������������������,�������������������	���	�����	�������	
	���������
�������	��	
��	���	���������� ��,--� ���������

��� .�	�3�	���)��)���/���0��������
�������	�,--������
����
�
���!��������������������	�����

��� ���������� ����� �	
	� �
��������� �
���	�� ��
� ��	
�� ��� ��	� ,� �
��
������� �������	�
D	����	� ,--� ��� �� 	��	����� ��� ,�� ��	�	� ���������� �
	� ���	�� ������ ��	���� ��� ,--
�
��
����

��� .�	�3$$�	���)��)� ��/���0� ��� �� ����	��������� ��	�	���	���� ��	� !�)� 7!��	
��������

�����
��)
����<�����8�� ����� ����� �	� �����	� ����� 	�	
�� �����
�$���������
������	
��E���
�����	����������������
���������	
	��
	���������	�	��������
�$���������
������	
��� .�	� ���	�� 	���	� ��� ��	� �����
� ���
�
�� �����	� ��	� ������ ��� ������
�����	�� ������	����	���	� 	���	
��
	����� �
� ���
	����� ��
�������� ����� ���"�� ����	��
��� ���
	�� ��� ���	
� �	
�� ��	���� ���	�� ��� ����������

��� &�3�	����-� ������	(�	��	�������
���	
��
	�	

	������������"������	
��0������������	
���������� ��	�,--� ������� �����

��� &�3�	����-� ������� ��� �� ���	
��� ����	�
	�
	�	����������
����	�����	
���� ���
���	
���&�
	�����	�����.����������	������,���
�������	
�����
	���

���	��������	�(���	��7�8��.�	
���	����������������	�������	�������
��������,�����������������	���
	�����
�������	
����� ��� ��	�,--� ��
���������	� ��	�	� ���� ���	�����	� ���	� ������
���	��� ��	�� �	���	
(���	� ���	
	����� ��� ���������� �	� ������	������ ��	� �����	
�

���)�*	��$)
�	��	�+
��
�������,--���������	

��� &�
�
.� ��� �� ������ ������� ��� ����� �	��
�� ��	
	� �
	(�	����� ��	� ���� ��� ���
	
�	���
�
����

��� 3���%� �		� �������� ���� �
� ���� �����������

��� &�
���� ��	���
����� ��� ����������	� ��������� ����
���������	� ��� ����	�	����� �������
����� !�����	����	�
�������������������	�����"������	���
����	
��	�	��������
�����	
������� �������� ��� ��	� ������ ��������

��� &�
���)� *��
����� ��� �� ��������� ����� ���
��� 	�	������� ��� ��	�
	����� ��� �� �������� ����
/�
������� ���
	��
��� ��� ��	�������� �������� ���� �� ������� ������������	�� ������	�

��� &�
�����-�*��
����������������������������	���	�	������������
	���������������������%
��	������� �������� �	����� 	�	������� ��� ��	� ������ ��� ��	� ��������� �����

��� .�	�
�����-� ������ ���
���	
� ��� ��	� ��� ������� ��	� 	�� ��� �� ���	� ��� �	���� &���� �		

��#����� ��� ��	� ��	��

��� &���������������������	�
�	%	�	���7�������	
$�������	
$���	��	��	
���
	������	
	
��� �	� ��������

��� &���������������������	�
�	%��	�	���7�������	
$�������	
$���	��	��	
���
	������	
	
	(�����	���� �		� ����$������ ��� ��	� ��	��

��� .��
��
.�����%�
������	�����������	�������	

������������	���
���� ���������
�����
���
��
�������������	� ��� ��� 	

�
� ����������&��	��	������ ��� �	�	
��	����� �� ����#
����	�	���� ��� �����	� ������� ��� �� ��������� ����������
	����� �
� ���
	����� ����	� ��	
����������������
	����	�	��	�������.�	�������"	���
������	�������*���������������	�
��������	����	��������"������	��������������	����������������	�	����
�����	�	�������
�	� ���������	��&� ������ ���� ��	����� ��	� ���	���� 	��	������� ����� ������������	�� �
� ���

��	� ������ ��� ��	����� ����� �������� ����	� ���� ��� ���� 	��	�������

��� &�
.��� ������ ����������������� ���	����������
	�
	�	���	���	
���	����
���	
�����	����
��
����������	�����	
��D����������� ������������ ���
���
	���������	� ��
���	�����
	����
���
��� �������� ���������%� �� ����	� ���
� ����
	�
	�	��� �� ����	
� �
��� $'FG� ��� -'FH�

��	
	������������	����
�����
	�
	�	���������	
� �
���>� ���FAA�� 7!�����	������	
	
���	
�������	��������������
������������������
���������������������

�	�������	
��	� ����� ������ ��"	� �"���)��	
� �
������������� �����	� ��	� �����
� 6������
�
��������������� ����
�� ��� �����	
���"�����	���� ���	�	�� ���
�� ��� ��� ����������	��8

��� &�
.��:� 7�
������	�����
����
�8� ����������	
� ��� 7������ ��	��	��
���
	�����8������

�
� ��	� ��
��� ��� �� �
���� ��� ���
��

���
��� 7�
������	� ��		� ���8� ��� �� �
		���	� �������%� ��� �	��� ���� ���
���	
�� �
��� ��	

"	����
�

��� &�
��		� ��� ��������������� ���	%� ��
� 	�����	�� ��� 2� 2��
���� ��� �� ������

��� &�
��		�)	�-���������
��
���	
�����	�����������	���&�����		��

��������
����������

��� &�
��		��,��,���������	������	�������	
������������	�	�����	���������	��	���	���

��	������ ���������� !�� ��������������������������	�	�����������	����������	�������	

�����	�� ���� ��	� 	��	������ �����

��� &�
��		� ����*�
� �	���� ��	� ��	
� ��� ��	� ������ ����� ��������	�� ��	� ������ �
���	�� ��
��	����������	������#����������	��	
������������.�	����������	
���	�������	������	�������	

���������	�	�	�����
	� �����	� �����*	������� ��	������������ ����� ������� ������������
�
��� ��	����	
���	��&������� ���	
���	����������������������������� ����� $� ����� ������	�����
��	� 	��	������ ���

�������� ���

��� .�	�
��		�,,/�	.������������ �� 2�� ������	���������������� ����������	������ ������

	�����	����	���������	������	�	�����������
����
���
���	���
���������������
����2�2��
���78�

���
��		�	
���	��
��	����	��������������������������������$��������������	�	���	�������

���������&���
����	���������������	������	����	��	�����������������������������������%
�������	����������������	
������������������
���	������	�������
������� ���	��	�����	�
������� 	���	� ��� ��	� ����� ���������

��� &�
�,,�����������	�������
�	����
������	
��
��
���	
%�����������
	������	�������	
�

.�	� ������� II���
"�� ��	� �	�������� ��� �� ����	��%� ��	� ����	��� �������	�������� ��	
	�������	����	��������������	�II����
�����	�������������D&�!,�	��	
�	��	����������*���
��"	� 365� 7��	� �
	��
"�� "	���
8� $� ��������� ���	
� ��� ��� �� ���	� ��� ����
	� ��� ��	
������	
�

��� 3�,��������� ��� ��	��
��	������ �
���������� ���
�	���	� ����������*	����
��
���������
���������	����������	�����
���������������������	������			��������	�����
��������
J�
������� ���� ������
	� ��� �
	��	� ��� ����� �
��	���

��� &�
�,����� ��� �� �
��
��� ����� �	
��
��� ������������

��� &�
�,����%-����)� *��
����� ��� ������	���� ��	� ������	
��	����	� ��	� 	����	��	���
����������������������	����������	������������������������� �	
���.�	�������	
�����

���������������	�	
��	����������	
�����������������	��������������������������	���
	����
�
���	������	��
	���
������	�������2���	�������������
����������	��
	��������������	
�������� ����������� ��� ��	�����������

��� &�
�,�����;�����-� ��� ���	����	� �
��� ��	�������	
� ����
����� ��	��
��
���	
���� �

���	��������	

��	���������
���������	�����
������	�������
	�	�����	�������	
��
��
�	�	
������ ��� �%��������
�������� �� ���	� �
��
���	
� ����� �		� ����� ��
������� ��
��	�� ���	��
	�	��� ��<�
���� �������
�����	��

��� 3�,������,��	���������	���	�������	
����������������	����
�	���	�������
��
����

��� 3��
��������������	���	
������������	���������
���������	�	����������	
���
�����&���
�		��
������&'� ��� ��	� ��	��

��� &�
��
���)���� �0�� ��� �� ������ ����	� ��*	���� �	���	� ��"	� ��
����	�� ��� �����	� ���
���	��� .���� ���� ��	� ������ ���	�� ��	� ������	
� 	������ ����
������� ����� ��*	���� ��� ����
�����������	��
	��	������	��������	�������������������	��
��	������	�	�������	�

��	���� ���	���	��� *���� ��������	� ��
����	�� �
	�

��� &�
��	���,�)����-��,� ��� ���
��
��� ����� ���"�� ��"	� ��0)���
��
���
���	
� ����� �
������� �
��
���

��� .�	�"	���
�
��	������ �������������	����������	�����	� ��� ��������"��.�	� ��
��� ��
��� �� �����	
� ��� ��� �
���	��� ��� �� ���������� !�� ����� ����	���� ��� �	���� ����� �	� �
	
�
�����������������������	�����	����������
���	��������	�����������&��	�����	��������
��	� ������ �	� ��	� ��������� 	���
������ ��
����� ��	
���
� @� 7������ ��
����� ��
8%�� .�	
�	������	���������������������"�������	���	���������	��������
��������
����	��	��	��
����� ���� ����	� ������� �	� �����	� ���	� ��� ���� �		�� ��������<	�� ��
� �����
	������ ��� ��

������
�� ��� ���������� ������������	���	���
	�������� �������&��	�����	���� �������	
��� ������ ���
�� ��@� A%�

��� &�
��	���
���� ��� ��������� �������� ����� �
	��	�� �	�� ��*	���� ��� �� 7��
������
8� �����

���	�� &��� �����
����
�� ���	� ��	� ���	� ���	� ��� ����� ��� ��	� ������ ��
� ������ ��	�� �
	
�����
����
�%� ��
�	�����	�� ��	������
����
�� ��
� ��	���
�������������	� ��	����	���
����
&� �����
����
� ����� ��"	�� ����� ��	�
	(��
	� �
���	��� ��� ����� �� ���������� ��������

���)�*	��$)
�	��	�+
��
�������,--���������	

��� &�
������������<��		���������	���
���������
�����	�	���������	��	��
	�	�	
��	�	������
�����	�����
���	�����"��.�	�����"�����
���	������	���
�������	�	�	���	������	�
	����
��� ��	� ������������ ��� �
�	� ���� ���� ��� ��� ��� ����	�� �		� ���� ���������� ��
� ��� 	�����	�

��� .�	�
�������"	���
�����	��	�	��������������
����������������	������	��	�����	
�����
�������� 	�	������� ���� ��
��	
� ����	�	���� ��� ��	� ��

	��� ��	
������

��� &�
�������)�/��
8� ��� �� ����"���	
� ��	� ����
��� ��� �� ����� ����
��� ����	�	��� �
� ��� ��
�
�	��	�����	�	����.�	�����
���	�����"���������������
�������	�	��������	�	�	���	��

��
����	�����	
� ��� ���	�����	
	��� ��	� ����
���	� ����"� ��� ��� ��� �
� 	��	� ����	�	��� ��
	�	���	� 	���	
� ���	��
����� ��� ����

��� 3�������)� 	���,��%� �		� ���������� �����

��� &�
��7�	����*��
����������������������������������	
��������*	����������������������	
���	
� ���	�� �
� ���	� �	
����&���� �		� ��
����� ����������

��� &�
��0�
��	���
������"	�����	����*	����������	����	�����	����������	����������*	��
��� ��	� ���	� ���	�

���
����7�
������	���		�����8�������
		���	����
	��%����
���	
���	����������
	�������	

��� ��	� ��
		��

��� 3=>� ��� ������
	�������� ��
�,	��
���+
��	������E�����.���� ��� ��	� ������	����
��������

������	
�� ������ 	�	���	�� ���� ��	�������� ������������ ����� ��"	� ��	� ������	
� �

��	������
"�

���� .�	�
���0�/��
	�!��C��
	���	������

������������.�	�������	
��
	������	�����	�	���
��� ��	� ����"� ��� ��	� ����	�	���

���� &�
��	��� ����������
������*	��� �����
	�
	�	������	���������������	���
		����	
	������
�
� ������������ ����
��	���

���� ?����
	�	
�������	���	�	���������
�������������
	���	
��	��������
��
�����)
���������
������������	����
������������%����	�	
����	���
��������������������������	���
����� �������
� ������
���

���� &�)�0���,/�����������	�	
�����	�
	�
	�	��������	�����	
���������	��		��������	��

���� &�)/�--�� ������
��
��� ���������
���� ��	�	�	���������������	
��
��
������ ��������
���� �		������ ��	� ����	
� �
��
��� ��� �����

���� ?/�--��-������	��
���������������	
���������	

�
��7/�-	8��
������
��
��
����)�	
�����	��	�����������	�����������
��
����������
�����	����������������	��	�	��	�����
	��
	������ !�� ������#�� �		� ���
� 	

�
�� ��	� ���	
��	
���� ������� �	
�����������K

���� &�))�
��)��-�	��������
	����	
�����������	������
�����������	�����	�����
		���	

���	
������	�	
���	������	��
��
���	
����������	����	�����������������������������
	���

���� &�)*�������-�,��� ��� ���	������� ��	��������������	� ��
�����
���	��� ����� ��������
��	����	���	
������	�����������	��#���������������	���
�������
���	����.�	�����	���
��	�	������ �
���	��� ��� ��	����	� ��� ��	�	���
������ ��� ��	� ���������

���� &�)*�����
��	���
���� ������������ �������� ����� �����	� ����
	��	������*	�����	����
�������� ����	� ��� ��	����	� ��
� ����� ��*	���� ��
� 	�����	�� ��
���� 2� 2��
���78� ��� ��	� 	�����
�����
����
� ��
� ��	� ��
���� ������

���� .�	�)*����� "	���
� ��� ��	� ����� ��	� ������� ����	�	��� ��� ��	����� ��� ������� ��� �	

�	
��
�	���	�� ���	� ��� ��	� ���	� ����	�	���������� ��	� �	�	������ 	��
	������ ��� ��	
�������

�������� ���

���� .�	�)�����	
���
������	�����
		��	��
���
	����������	���
���
����	�������	��	����
�������� ������ .���� ������� ��	��	��
�� ��� �	�
	��	� ��
� ���	
� ��
����	��

���� ?��7)�
��		� 2� �		� �����������

���� &�)	���
�������������������������������	���������	�������*	���	���
	�%���
������*	��
�����	���������
��	����������	�	��
����
��������	��������������������	�	�������	�����"
��	
	� ����� ��*	��� ��� 	���	�

���� &�)�-��������	������	����
���	
����	�����������������������	
��������	�����
	�
	�	��
���� ����	
�� ���
����� ��� >� ��� 	����� ��� ��	� �	��� ����� ��	� ���	� ��� ��	� ����	
���
����	���!����	�	����������	�����	
	��
	��	���������L>#���
�����LM#����������	��	��	�����
����	��� ��	
	� �
	� ����		��������� L>#� ��
����� M� ��� L�#� ��
����� L�#�

���� &�)��/����������	�������������
�����������������������
	�
	�	�����
���	�����������	���
�	�����	� ����	
��� ��������� �
��������� ����	��� .�	�	� ����	
�� ���� ��
�� �
��
���
������	��� =�M=>NAN	� $� ?F=� ��� ���
������	��� '�HMHNM	� -� ?>G� 7��� >8�� ����
���
������	��� 'N������� ��� �
	�������

���� ?0��,�
�,,��0�����
�����������	��
�����	���������������	��
�����������������
����	�
�
���� 	�	������� ��� ��	��
��
������ 	��������
	(�	��� ��� ��	��
��
���	
�

���� J�
����	�� ��� ��	�)0��,�
� 	����-�
��		� �
	� ������	� �	��
�� �
	��	�� ��� ��	
�
��
���	
#��	��������
	(�	����.�������
��	�������������	����	���
���
����	������	���<	
������� "�����������
��� ���	�

���� ?0��,�
� �0��
.
8��-�
	�	
�� ��� ��	�"���� ��	� ��

	�������	���� ��
����	��������	
	��
���	���
���� 	�	���������� ���
��
���
���	
� ������
���� ������������

���� ?0��,�
��0���-��	����	���������	�	�	
��������������	�	��������	��������������������

���� �����
���	
� ����� ������� ����� ���	���� ��
���� ������ ��� ��� ������ �	
����� +�	��	����	
������������ ������� ������� ��	����	�����	����� �	
��������%�,--����� ��	� ��
�	

���� ���� ��	� ����	
�

���� &���,��� ��� ��	���� ��	���
����	�� �������"	������������ �
� �������	�

���� .�	� "	���
� �	� ����	�� ���� ���������� ����� ��� �	� 	�	���	� ��� ��	� ��������� ��� ���
��������� ��� ����	�	��� ��
��� ���� ��� �	� ����	� ���
��� ���	�

���� &��,��0� 	��
8� ��� �� ����"� ����� ��

	����� ������������ ����	��

���� @�
��	���������	���������� ��	�	������ ��� �� ������ ����	� ��	� ��
������������ ��� ����

������
���	
������	����������	�������	�����������.���������	������	��
���
���
����<���
�
������	�� ��� ��(������������
�����������

���� &���)��	�������	��	
�������������������	������������������
��
�������	
��
�����	
��	���� �
� ���	
	������ ���"��&���� �		��

��������
����������� ������	� ���������

���� .�	� 6��	
� "	�� ��� ��	� "	�� ����� �	�	
��	�� �� ��#����� ���
���	
�� ������ �	���� ��� ��
��

�����	� ����� ��	���	
� ���� ������	� 	��	
��������

���� @�7���� �����%� �		��������)#������ ������

���� &����,�������������	���	�������	
�����������	���	�����	����������
	�(���	�������

����������.�	�����	����	��������	����	����	�������	������������������������
	�	��	
�
�����	�����	������	��
	���������	�7���������#����	����������	
�����	�	���������8��.�	
�	
�� 	���� ��� ���
�� ��
� �	���	
�������������� ��� �� ����� ��� ���	� ��	���

���� &��<
������ ������ ���	

������� ��� ��	���
���� ������������
��� ������
��
������	���

��������� 	������	
�� ��� 	

�
� ���������� ��� ���� ���
��� ��� 	��	������� ��� ������� ���

���)�*	��$)
�	��	�+
��
�������,--���������	

��������������������������	���������	�������
���	������������������

	��!�����	������	
����������������������	����	�	��	��������������������	�	������	��
��
���������	
�����	�

���� @<
���/�%� �		� �%��������
�������

���� &��<
���/�����-��,�������
��
����������
���������	���
�
������������������	
%���
��� ������	� ���������� ������������ ����������� ���� �			� ��� ����	� ����
��������

���� .�	�<���
���"	���
��	������	�������	
�����������������	����	������
����
����	�������
�����
����
� ���� �		�� ����	� 	����������� .���� �
	�	���� ����� �� �����
����
� �
��� �	���
����	� ��� �	
��
�� ��� ��
����� ����������

���� .�	� "	���
� *��	� ��� �� �
		���	� ����	�
	�
	�	������ ��	�
	����� ��� �� ����������
	��
	����������	������������������������	����
�	�����	�������	������������	��
	�����
��O���� ��� �� ��� ���� �	��� �������� ��	�
	����� ��� ��	� 	��
	����������� �	� ����	�

���� &�*�
��	��������������������	

�
����������	�������������	�	�	���	���	���
	��
���	
�	�	
� ���	� ����� ��	� ��

	��� ������� &� ������� ����	� ��� ����� 	

�
� ��� ���������� ��	
����	
� ��� 	�	�	���� ��� �� ������ �
� ����	� ����� ��	� ��	�� ��� ��	� ����� 	�	�	���� .�	
	
����������� ����� �	
�� ������ ������������� ��	��
���	����� ������������ ��	�����	
���
�	��	��	�����������	��	����������������		���
������	���	��	����
�	�����	������������	
�������������	��	�'>>��		����������	�����	�����������	��	��	����'>��		����������������

�	�����������	��	��������		�P�)������������	�����	
����'>��/��������������	��	�����
�������		�P�''��.�	���������������	��������������	��	��������	�������������	
����������	��	��������	��	�7������	��	
��8������	�����	�������	��	�����	

�
��.��
	��
�
������
��
�������	�����	������������	����	���
������''�	�	�	�������	���	�������	�����
	�	�	��� ���'>������''��,��������� ��	�����	
����	�	�	��������� ��	�����	��� ��	�����
����� ��	� ���	� 	��	��� ��� ����� ��� ��	� �	��	������
���	���.���� ��
�� ��� �
���	�� ��� ����
"������ �	��� ����
������� ��� ��������	����� ������

���� A��)%� �		�����
�������

���5�6� &� *����� ��� �� ���	���� ���������
����� ��������� ����� ����
	�
	�	��� ��
���	�����������	� ��
�	�����	� ����	
��� ��������� �
��������� ����	��� .�	�	� ����	
�� ���� ��
�� �
��
���
������	��� '�=>'FMG	� $� =A� ��� ���
������	��� ?�=>FGF	� -� ?G� 7��� >8�� ����
���
������	��� N� ������ ��� �
	�������

���5�6� &� *������-%������7����/�� ��� ��,--����
������������� ������	�������� �
	�������	
��
E���"	�����	��������
	�������	
���,--���������$��������
����	�����	��������	�
���	
����
	�������	�	����������	�
����	����		���	�������������	�� ���������������� ��

	������

���� &� *��� ����	�	��� ��� �� ���
� ������� ���������� ����� ����	�� ���� ���������� ����� ��� �	
	�	���	�����	� �� ��	����	� �������� 	��
	������ 7��	� ������������ �%
�������8� ��� �
�	�� !�
������
���	����
�������������%
�������� ����	�	�	���	��	��
	���	���
���	�	������������	
����
���	�����"������
����������������%
������������	�	�	���	����	
�	�	
��	�	������
��� ��	� ����
���	�����"�� ��
� 	�����	�� ��� ��	� ��
� ����	�	��� ��
� 7��@�>%� ��O�'>%� ��--8�

��	� ��������<������	��
	������ ��� ��@�>�� ��	��������������	��
	������ ��� ��O�'>�� ��� ��	
������������ 	��
	������ ��� �Q--�

���� &� *��,%*)� ���
���	
����	�� �	��� ��� ���
���	
�� ����	�� ��	����	
� ����	� �����	� ��� �

�	�����	�

���� .�	�*��	���������	��
	������	��
����	
	���
����	�������	��	���������������������
	
��	�
� ����

�������� ���

���� .�	�"	���
�*���)�����������	����������	����	�������
������������
��������
�
�������
�	��	
�� ��� �� ��
������
� ������

���� &�*��
�����������	�����������	�������������	�����������������������������������	
��

.�	����	���"	�� ����������	� ��
���	� ��������� ��� ���
�� 	�	���������� �����	
���	����� �
�������������.�	��
���	�����
���	���������
���	����������������	�
	��
�����	�������
��	��������������
���	��������������������������������	����	�
	��
������	�	�������	�
��	� ������� �������� ���
	���	� 	�	�������

���� &�*��
�����
����7�
�������
����
�8�����	��	�	�����������	��
����	

	��	���
�
�����
��
��	���

	��� ��������� 7��	�������� �������8� ��� ��	���	����	� ��� ��	� �������������� 7��	
�������������8��/�
���������	��������	�������������������	�������������"�����
	��
��
��� ��	��������� �������������������"�����	�	���������� ��	�����	�	������	
� ��	� ��������
�����

���� &� *��
�����)
��������� �	���� ��	� ������	
� ���	� ������ ����������� ��� ��	� ��������� 2� ���
���	�� ��������������� ��� ���� ������� �	
���D	��
	��	�������	��� ���������� ��	�������	

��������	���
	����		���������������	���
�������.�	���������������������

���	���

�������������	���������������	�	���������	
����	����������	���
�������
����������������

����� ��� ��
������������ �����

���� A��
����� .�)�%� �		� �������� �����������

���� A��
����� �7����)��-� ��� ��	� ,--� ��������� ����� ������� ��� ��� �
	��	� ��
	� ����� ��	
����������������	����	����	�����������������������������������	����	
	��������������
�	������
��	��������������	������	�����������	�������	
�������	����	��������
	����
��������	��	��	���

���� &� -����� �-�	��� ��� ��
	����	
� ����	� ����	� ��� 	�	
���	� ��� ��	� �
��
���	
�� ���
�
		���	���������	����	�
	����	
������������	������
��������)�����!��	��,+E�����
��� ��	�=GN��
�+	������� ��	�'N$���� �	�	
���
	����	
�� �
	��<B�/<B�
<B�)<B� 	�B�)�B� ���/�%
��	� ?F$���� �	�	
���
	����	
�� �
	��<B� /<B�
<B�)<B� 	�B�)�B� ���/��

���� &�-����������������	��
	��������	��	������	������	��������
	����������������$�����
������	
	� ��	��	������	�������	�
	�
�	�	�����	���	�RR����
	������ �
�����	���
	���

���� C��/��� 	
��� 	��
��	�� ��	�����������������
����	��	���	������	����� ��������%� ����
��
����	�� �����	� ���	��	���� ��	� ��� ���� ���������� !�� �����	��
��	�� ��	� ����������� ��
���������� 	���	� �����	� ���� ������

���� .�	� -��/��� ��,	��
� ��� �� ���	� ��
� ��	� �	�� ��� �	�����	
�� ������	� ��� ���� ���������

�������� �� ������ �
����	����	����	��	���� ��	����	��&���� �	�����	
�� ��� ��	� ������
���	����	� ������ �	� ����	� ��	�� �������	�� ��� ����� �	�����	
�� ���� ��������� ����
���	
� ������
� �	�����	
�� 	���	� ��� ���	
� �
��
���	
��

���� &� -��/��� *��
����� ��� �� ��������� ����� ���� ������� ��
��

���� &� -��/��� 7����/�� ��� �� ��
����	� ����� ���� ������� ��
��

���� D��);���
	�	
�������	����������������	���������������	
�$���	���	����������������
6�����	�� �����	� ��	� "	����
�� ��	�������
�� ��� ��	��
���	
�

���� &�.�)�� *��� ��� �� ���	� ����� �������������� ���������	������������I�
�������� ��������

	���
��������D�� ����	������� �	�	
� ���	�� ���	� ��	� 	��	������ ���

���� D<� ��� �� ���
�	�	� ��
����� �	��	������

���� &�.<�)
�,��� ����	
� ����	������ ����		��������� L>#� ��
����� LM#� ��� L�#� ��
����� L�#�

���)�*	��$)
�	��	�+
��
�������,--���������	

���� &�� �)���*��� ��� �� ��	
$	���	� ���	%� ����� ��������� ���	�� ��� ��
����	� ���	�� �
	
�	�����	
���!	�����	
�������������������������"	���
������������������
%���
�	�����	�
���� ������� �
	��	� �� ����������
� �� ��
����	������ ��	����	� ��
�

���� &�� �*� ����	�	��� ��� �� ����	�	��� ����� ����	�� ���� ���������� ����� ��� �	� 	�	���	� ��� ��	
�������� 	��
	������ ��	����	� ��� ��	� ��� ����	�	��� ��� �
�	�

���� &�� �*	���,� 7�
������	� ��� �� ��
	���8� ��� �� ������� ��	� ��
� ������ �
��� �� ���	�

���� 4,��,�������%� �		� ����� ��
������������

���� &���,��,��������*���������������������������������������
	���
�	�������%�������

���� ��� �� ��
������ !�� ����� ���"�� ����	�	�������� ���	�����	� ��	� 	��	������ �����

���� &�� �,���
���
��7�	���� �����	����������
������������	��
��
���	
#��	��������
	(�	���
&���� �		� �%
�����

���� 4�
��)%� �		�4�����	� ����	�	���

���� &����
��)�-���)�������	����������	�����
	�	�����	����	�������	����������
����	���
�����	� ��� ��	� ���	� ���
�	� ��	� ���	���
	� ��������	�

���� .����
�,�������
����	��	���������'������������	��.���������	���	����,--���������
��	� ���
	�	��� ��	
���
��--�

���� &�� ��)<� ������	��
	��������	� ����	�	�����	����������	
����	�	�	����������������

�������	��!�����	�����	�����(��
	��
��"	���7:�;8����
�	�����	�������	�	��
	�������:�-';�
��	� ��	�� ��� ��	� 	��
	������ �-'�

���� &�� ��)<�7����/�� ��� �� ��
����	���	� ������� ��� ��	�� ����� �������� �
� �������	�

���� 4�.�����
������	�	��������������	��������������
	���	�������	
�������������	
��
	�������

	���	��������.�	��	����	���	������� �������	���	��������� 7�
����	���	����	�����8
�����������	���	��
	��������	���	��������������	���	������ 7�
����	���	����	���
	��8
������� !����������"���	���	���	��	
��������������������.�	�	
��	������� ���	
�������
�����	��
�����	����	��������!��	
�����	
��� ��	� ��� ��	� �
���
�� �
����<���� �
������	�� ��� ��(������������
�����������

���� 4�������1�����������	��
��	�������	��������	�������������	����������������
�������!������	
�
������
������������������������	��������!�������<�����������	��������	������
����	��

������ ��� �
	��	����	
	��� �� ��
����	� �����	� ������	� ��� �������� ���	�� ���	��
	��&
����������	�	
����������	�������	������������������������	���������<	���	���������
	��	�

���� 4����������	��
��	������
	����������������	�������	
��
�����	������	���
���&��	
�
�����������	� ���
�	� ��� ������ ��
� �����	� �
��
���� ��� ��	� "	����
�

���� 4�	���
����%� �		�������� �����������

���� &������7���
����
��������8���������	��������������������������	���	�,--��������	�	��������

	(��
	��������������������	�����	��������������������
������������	
������������������

�������

	���,--�������	
����������	����	(�����	������	���	
������
���
���������	�	����
�����	�������	
������
	��������&�'N$����������	
����������D�
����,--�?�'������'N$
���� 7F$���	8� ����� ����� �
	� ��	� ���	� ��<	� ��� ���
���

���� &�����-��7����/�������,--�
	�
	�	�����������������	�����	
��E���"	�����	�������
���	�	
���,--����	�	
�����	��� �����	�
���	����������
�	��	�	�������� ��	�
� ���	��
�		���	�������������	�����
�����
������������������
�	�������.�	����	������������	���	�
����� �����	
	� ��� ���	�	
� ��
����	� ���	�

���� 4��-���� �0�� 2� �		� �������� ���������

�������� ���

���� 4���*�
%� �		� ����� ���������

���� 4���*�
� *��%� �		� ������� �����

���� 4������� ���0,���.�	,%� �		�
��	���
��� ��(���

���� 4&E����������
	����������
�������I���������.����
	�	
�������	��
��	�������	����������
������

����� ��� ���� ��� ��	� ������	
�� �		� ��
��� ��� ���
��� ��
���
	� 	������

���� 4�	���,� ��� ��	����	���� ��	�������� ����� ����� �	���� ��	� ������	
����� ��� ������	� ��	
�������	���
		���	���
	�����
����	����"	������������������	
���
����"	�OO����RR�

���� &����*	����������������������������������	������	+��
	��������������������������������
��	�	
��	���������*	��������
��	
����	� ���������	� ��
������	���������*	���� !��,--�
��*	����������������	
��	������	�����������	������
	������������������	�
����	������	��

���� &�� �	���,� ��� �� ���������	� ��
� ���������
�	�����	������ ������
		���	� ���
	��� ����

	��� ���
���	
�� �
��� ��	� "	����
�

���� &�80;��)� �������
�	���	������	�,--��������	������������������
��!�� ������	������
	���	���������������������������
����	��
�������������	�����������������������"	���
%
��
� 	�����	�� ���� ������� �
	��	� �� ����������
� �� ��
����	������ ��	����	� ��
�

���� &� ��/���0� 7�
� ���
�
�� ����	8� ��������� ��	� ��*	��� ��	� �	�	
��	� �
��� �	�	
��

��
��������������������������
���������	�������������	�
�����	������		����������	�	
��$
��
���	� ����������

���� &���/���0�)	�-��� ������
��
���	
������
	��	�������	�� ��
��

��������
����������

�����	� ����
������ �������������
��
����

���� .�	����8�� ������
��
��������������	������
��������
������������	���(��� ������ ��
���

�
��
���� ������ ����� ���	� �
	�������� �
	��
	� ���	�� ����	� ����������� ��� �
���	� ��
�%��������
�������

���� F��8��-������	��
��	�������
	���������	�	������	��
��
����
�����(����������������������

���� &��������7���� ���������	�������	��#�����	������	������ ����	��
	�
	�	���� ���	��� ����
���	
��� ����	
�� ���	� 	�����	�� �
	� L�#� 7�� ���
� ���	
��� ������� ��	� &�,!!� ����	� ����

	�
	�	���� ��	� �	��	
� ���8� ���A� 7�����	
��� ���	
�������� ��	� ����	� A8�

���� F�
���	
���	��
��	����	�����������������
����	��	���	������������������%��������
����	�

�����	� ���	��	� ����� ��� ��	� ��� ����� ���������

���� &� ��
��� 7����/�� ��� �� ��
����	� ����� ���� ����� ��
��

���� &���-�
���<��		����������	��
	�������������"	�������	�����	��
�	��
�����	�
���	
�����
�����	
�������	�����	�	�����	�������������	��
	�������
	���R���7������������	��
�	
������������
	��	
�����	� ���������� ����	����	
���	8������@@��� 7������������	� �
�	
��� �� ���� ��	� ���	�����	� ��� ��� ��� ����	� ���	
���	8��&���� �		������

���� &� ���-� ��� �� ���	� ��� �������� ��������� ����� ����
	�
	�	��� �� ����	� ����	
�����������
��

	���,--�������	
����������������	��=����	��������
��	������	
	��
	�����
	�
	�	��
������	
����	���	
���	�
���	�$F'=H=G?N=G����F'=H=G?N=H�7�������	8��
���	�
���	�>���
=FM=MNHFMA� 7��� ������	8�

���� &������������	�������	�	����������������������������
����	�����	
�������	��	�	����
������	�����������.�	�����	�	��� ���������
���� ��	�����
���	�����"� �������	��� ����
����
��� ����	�	���� .���� ���"� ���	
�� ��	� ����	� ��� ��
� ����� ����
��� ����	�	����� �		
#����� ��� ���� ��
� 	������

���� &� �����
������� 	���,��� ��� �� ����	�	��� ����� ����
���� ��	� ���������� ����� ��� �� �����

���)�*	��$)
�	��	�+
��
�������,--���������	

���� G�
.���
�)� ��� ��	� ������������ ���������� ������������ ��� ��	� ���� ��	�� ��	�� &

�������� ��� ��(��� ����

���� &�,�
.�����	���
����������	������	������	�������	
��������������!*+������	
��
��

���	� 	�����	�� ��� ��	�	� ��	
������� �
	� �������� ����
�������� �
� ���	
� �
����	���

��	
������%����	
������������	�������	���	
����������������
������������
�������������	

	�	���	��	����&���,--��
��
����������	�����	
�	������������	�����
���������	��
	

��	�� �����	� 	�	���	���� ��	�,+E�

���� &�,�
.��� ���-��-� ���-��,� ��� �� �
��
��� ������	� ���������� ������������

���� &�,�-�
���,/�����������	
�������	���������	�������������
	����������������	�
	��

�����	���	��&������	�	
���
��	�������������	
�����	
������>��'���
����	
��	��$	��	��

����	�� �������	�	���	���� ������ �
� 	��������	��
���	
� �������� ���	
��� ����	�� ����

��� LH#�

���� G���-�� �/H
�%� �		��������)#������ �������
��	���
��� ��(����

���� .�	�,���-�&;��8���)��,�7�����"����������	��	��	���	I�	��	
������8�������	�������

����� ������� ��	� 	��	����	� ���	� ��� ��� ��*	��� ��� �	� 	�	
���	� ���
��� ���	� �������

	(��
������	���	
������	���*	�������	�����	
�	�����������	
���!�������	��������	�	��

��	���
��� ��(���� ��� ,--�

���� &�,�����������������	��	
���������������	������	�����
	��������	�����������
�������

������� ����� �	� ��
����	� �������� �	�	���
���� �
������� ���� ������� ��� ���� ����

5���������
����	
��	����������%�����	�������	�	���	������	�
	����������	�OO���	
���
�

���� &�,,/��*��
�������������������	���	���������������������!�������	�	������	��������

��� ��	� ������������� ��� ��	�
	����� ��
� ��	� �*	����	� ��	��	
��

���� &� ,,/�� ��������1������ <��		���� ��� ��	� �
	�	

	� �	���� ��� ��	�������� ���� �

������� ��������� ��� ��� �	� ��������<	� ��� �� �����������&���� �		� �����������

���� &�,,/�� ��������1������ ��	�� ��	����	������������� ���������� �
	� ��� �	� ��������<	� ��

�������������!�������	���������	�����	��
	�������2������������������� �������������

�������� ������ �%
���������� &���� �		� �����������

���� &�,,/��7����/���������
����	�	���	���������������������!�������	�	������	��������

��� ��	� ������������� ��� ��	�
	����� ��
� ��	� �*	����	� ��	��	
��

���� G,/�;�	�
��0��	������������	�	
�������������������
�����	����
�	���*	��������	

	������������*	����!���	���#��	���	���
������
	������������
�������������
������

��
� �� ��
������
� ������� ��	� ��
��������������� �	
����������� ��	��	��	
���	� �����

���� &�,,��0��))�		� ��� �����(�	�����	
� �	��������� ����
������
� ���	� ���,-.�

���� &�,,��0� .����
.0� ��� ��	� ��
������
� �

���	�	��� ��� ��	� ���	
	��� "���� ��� ���
��	

	���	�� ��� �� ���	�� ������	
�� .�	� ��
���	� ��� ������ ���
��	� 	���	�� ������� ���	
	��

�	
��
����	� ���
���	
������� ��� ��� �
���	� ��	� �	��� ��	
���� �	
��
����	� ��� ��	� ���	��

�����

���� &�,,��0� ��8� ��� �� �
��
������� 	

�
� ��� ������ ��	� �
��
���	
� ��
���� ��� 	�	�	

���	���������������		��������������������	����������	

�
�����	
������������	����	

��	��
��
������	�
�� �����
"���

	�������	�� �	��	�������������	�������	

�
��	����

������
��
������	���
	����������������������	
���	��
��
���
��������
	�������

	����

��
� �� 7��������� ����8� ���	� ��� ��	�� ������ �	����	� ���
���� ���� ��� ��������	��	��
��

�������� ���

���� &�,�)�*�
������<��		���������	���
���������
�����	�	���	�	���	����	
�	�	
��	�	������
��� ��	����������������� !�� ������	����	� ��� ���
	�	������ ����%���������� ���
	�	
� ��� ��	
�	��� 	�	�	��� ��� �������	� �
� �	���
%� �		� ���� ���������� ��
� ��� 	�����	�

���� G�)���	� �������%� �		�S�

���� &�,���.���,/�����������	�	
�����	�
	�
	�	��������	�����	
������������	��		�����
��	��

���� &�����	
��)� ��� ��	$���������� ��� �� �	����

���� &�����7�)�����0�������	�	���	������	�,--��������	����������	������������������

����� �	
�� 7�����8�

���� .�	� �;� �������� ��� ��	� ��� �������	� �	��
�� ��
� ��
����	�� ��� ��	� �	����� �������
����%� ��	�	� �
	�����������
����	������	� ���
��	�
	(��
	�	���� �
	�#�� "����������� ��	

�
��
��� ��� 	�	�������

���� .�	��;�������
���	
������	�,--����
���	
���	����������	���	�	����������	�����	���

���� I��)�	���0�
.���
��%� �		����
�������� ��������

���� &����,,/��*��
����������	����������������	��	
��������
������
��������	����������	�
��������� ������� �	� ��������� �������� ��� �����	
� ������

���� &� �����,��
� 7����/�� ��� �� ��
����	� ����� ��� ���� ��	� ��� ������������� ��"	� �����
��������������
�����
���������������
����	��������
	�
	�	������	����
	��	����	�	����	
����	
�����������	��
��������	
������"�������������	
����
�
��	
#�����	��	�����	
��

/��	������	�	����������	��
	�	

	�������������	
����������	�	���
	��������	������
>���
�����M������	���������	
�����
����	���������	��������%���	�(�	���������������	
��	�������	��/����	�������������	����
�����
�����
��	
#�����	��	�����	
�����
�	�����	%
��	�	�����	
���	
�	����	�������	�����	
����������*�������	���������	��	��	
�������	��
��� ��		� ���	� ��� ��	����

���� &� ����������-�
.���
��� ��� ��	� ��� ����
��� ��	� ��
���� ��� ��
� ������	� �
� �
���	
����
��������
���	
���������
	�
	�	�������
������
��	��	
���������
����	
���	��������
���	
�
.�	� �
��� ��� ��	� ��� ��	���
	� ����
����� ����
������� ���
���	
��

���� &����%7������� ��������������	������ �������	���
	��������	���
�����"	���
�	���	
� ��
��	����������(�	�������
��������	����������������������.�����	�����������	�������	
����
	��	� ��� ������	� ���	� ��	� 	����� �	
����� ��� ��	� ��������� ��� �	� 	�	���	���	�� ��� ��

	�	

	� ��� ���� ������� �����
������� �
������ ����� ���������

���� &����,���
��	���
�����������������������	��
���	�����������	����������
���������
��������<	� ���� ��� ��	��	��	
� ��	��� ��� ��	� ��*	��� �	���� �
	��	�

���� &������/0����������	��������	�����	�>�������������	����������	���	�	�������!��������

/��	� ����� ����� ��� ���� ��	� ���	� ��� ��	� ���
���	
� �>��� ������ ��� �� ��
���� �
������	
���
���	
�������� ��	�&�,!!� ��	�=G�

���� &�������/H
�� ��������*	���������	�7��	����	8�����������	���
���	���� ��� ������	� ����

�� �
	���� ��*	��� ��� ����� ������ �	�� ���� 	������ !�� ��� ���������� ��� �� �����
��������)�	
������� ��	� ��
� �� ����� ��*	��� ��� ��� �� ������� ������ �
��� ��������� �������� ����� ��
������	����
	��
�������*	�����������	���	����	��
��	
��	������������������������
��*	���� ��
� 	�����	�� �� ����� ����"!�	�� ��*	��������� �	� ��	� ��� ������	� ����� ��� ��	�
����� �� ��	����	�E+,� ������� �	� ����� ��� ��	� ���	���
�� ��� �� ���
	�

���)�*	��$)
�	��	�+
��
�������,--���������	

���� &� ����� ������� ��� ��
������� ����� ��	� ����	� >�� .���� ����	� ��� ��
������
��� ����	� ��
������	� ����� �� �����	
� ���#�� ��������� ��� ��������� ��� ��	� ���	���� �	����	� ��� ���	
��	����� �
	���	��� ��� <	
�$����	������	
�� ������ ����� ��	�,--� �������	�

���� &� ����� 	����-� ��� �� ��
���� �
�!� ������������ ��	� ����	� ���

���� &� ��,��
�)�-��� ��� ��	� ��� ��	� ������ >� ��
����� M�

���� &���,��
�7����/�� �������
����	� �����
	�
	�	������(�������� ����������	�	��
	��	���
������	
����	��	
�������	�����	
�7�������������������8��
�������	
���������
��������
��
��7�����������
�������������8���������������	���	��������������������������������
����
������������������������ �
� ���������.�	� ���	�	
� ��
����	� ���	�� ���,--��
	� ���
�
���
�����������������6���������	�	������	���
��	
�������	����������	����������	

�	
�������.�	�����	��	
����������
	�
	�	���������	�����	�����������	�����	��7���>8�
��	
	�����	�������	��	
����������
	�
	�	���������������	�����	��7���>8������
���	
�
	��	
�
���	�� ��� �������	� ����	�� ����� ��	� ��

	�������� ����	� �	
������ ��� .�	
��������$������ ��
����	� ���	�� �
	� ������ ��� ����	�� ������ ���	
� ��� ��	�
�
���	� ��
�
	��������E���"	� ��	� ���	�	
� ��
����	� ���	��� ��	� ��������$������ ���	�� �
	� ���� ���	
����� ����	� ��� ������	� �	
�����%� ���� ��������$������ ��
����	�� ����
	�
	�	��� 	���	

�������	��
��	�����	�����	
������	������>���		�������������������
�	���������
���	���
�
	�������

���� &���/H
���������
����	���������������	��������������
�������
����	��������������	
���.�	
�	�����
���� �����*	��� ���	���	���� ��	���	� ����� ����	�	���� ��	������� ��������� ��	

��*	��� �	���������
� 	�����	�� �� ��
����	� ��� ���	� ��
���� ��� �����*	�������	��	�����
� ��
����
���	� ��� ��	� 	��������� ��� ��	� ��
���� ������

���� E/H
��
�)%� �		�������� ����� .���� �	
�� ��� ��
	���	� ���,--���*	����

���� &���/H
��
�)�,�)��� ��� ��	�
	����� ��� ���������� ��� ��
������������ ����� �������(��
�����&�����	
������*	�����	�����	���
	�������	������
������%��������
�������
.���� �	
�� ��� ��
	���	� ���,--���*	����

���� E/H
�� *��%� �		���(��� ������������ .���� �	
�� ��� ��
	���	� ���,--���(����

���� E/H
�%�����)����-��,,��-��������
����	��	�����������
�����������������
��
������

�
���	�������
	��������(���� ���
	�
	�	��� ��	�	�����	���	��������	���� ��	��
��
���

���	
���������
	���������	�������������������	
����.����������	��������	�������������
������ ��	� �������	� ��� ��	��		����� ��	��
���	�����#
	� �
����� ��� ����	����
�	�����	�
��� �����	
	��
������ ����
�	#�� ���������
��
��� ���,--�� ������������	� ��*	���� ����

	�
	�	��� ��
�	��� ����
��� ����	����� ��
����� ��
��� ��� 	(����	���� ��� ��� ���� 6���� ��
��	�	���*	������������������	��	�����
����
��
���	������	��������
��	
�������
	�
	�	����

!�� �� ��
	� ��	������ �	��	�� ��*	��$�
�	��	� �
��
������� ��� ��	� ��	� ��� ���
���������
������������ ���
��	���
����� ��� �
����<	� �
��
����

���� E**%/0%��� ����%� �		� ����
���� ������

���� &���*	���,� 7�
������	� ��� �� ��
	���8� ��� �� ������� ��	� ��
� ������� ��� �� ���	�

���� &�� ���
�)� ��� ��	� ��
�� ��� ��������� ����������� ����� �	���� ��	� !*+� ����� "��� ��
����
������� ��� ��� ��� ���	���	�� ����� ��	����	�� �� ��������� ��� �	� ��	
��	� ���

���� &���������-�	0	�,�������
��
��������	�����������	������������#����������
�������	
�
!��������	����	����	����	�	�������	�������
	����
���
����
	��			����
������
��
����.�	
��������������	
����������	����
�!��	��,+E�������
	�	����������	���
������������
������	����T�����

�������� ���

���� .�	�"	���
��������� �����	����������	��������	�����������������������	����	�����
,--���	
���
��	��
	������������� �������	� ��	���
������
�
	(��
	�	�����������	�����
���������
�	�����	�����	���	���
������	
��������@���	����	������	�������	
���
�@���
��	����	������	�����������	��
	��
�������
���	
������*����@������������	�������	
��	�
���� ��*	��� ��� �		���� ��� ��	
���
���	�� ��� 	��	���� ��� �	�����	
�

���� &���	���,���������������	���
����
������
�	�����	�������������
		���	����
	�������
�������� ���
���	
�� ��� ��	� ��
		��

���� E������ ��� ��	� �
��	��� ��� �	����� ���� �
��� ��	� ������	
� ��� ��	� �����	���
��� .�	
����� ��������� ��	� 	���������� ��� ������� ��
������ �
��
���� ��� ��	� ��
		��

���� &� �	��	
� ��������� ��� �� 	
��	� ������ ��� ���� ��� �7���)� ��	� ���	� ������ ������

�������� ��� ��	� 	
��	� ������ ��������� ���� ��	� ���	� ���������� 7���	� ��� �
���	��
���	�8��������������	����	��������	��	
�����������.�	�	
��	��������	��	
���������
������	�����	� ����	����� ��	����	��������	��	
� �����������	����	��	��	
� ��������
���
	�	

	�������������*	��������	�	
��	��������&��	��	
���������������	
��	������
����� ��	����	����	����������	
	����������
	� �
��������������	��	
� ��������� ��� ��	
���	��������	��������	

�	� ��	����	��������	��	
� ���������� !���	��� ��� ���	��� ����

���	� �������	��	
� ���������������� ������ ����	
� ���	�����	� ��� ���	��	
� ��������� ��
��	� 	
��	� ������

���� E7����)��-� �� ����������	���� ��� �
	��	� �	�	
��� ��������������� ��	� ���	� ���	� ��
���	
	����
���	����������.�	�������	
���������"���	��������������	�	�	���	����	���

��	��������	��		�� ��	� ��������� ����� ��� ��	� ��������	� �
���	��� ������

���� =�����
��		%� �		� �����������

���� &�������� ���	��	����������	����	�����������	����������.�	���������	
	��	����������
�	��
�� �
	��� ��� ������	�� 7������ ��� ����
	�	
� ��� ���� ��
�� ��� ��
����	8� ��	
	��� �
�����	
� ������� ���� ��� ��������	� ���� ���	�� ��
� 	�����	�� ���
U� 7�
������	� ����

���
�8��	���� ������	
� ��� �� ���
��� .�� ���� ��� ��
����	� ������� ��� ���	��
�� ���������� ��
���������	����	����������������
����	#������	������	��
	���������	��
�������������!�

��	���	���������	��������
����	���� ���	����
U�� ����������	����
U���������������!��������
��� 	��	�������� 	(�����	��� ��� ������� ��� ��������� ��	� �
	��� ��� ��	� ��
��� ���	� ��� ��	� ,
��
������&���� �		�����	�

���� &����0,���.�
��/H
�������,--���(���������	���	��������
�����������������	�������

��	���	
������	���*	��������	���<�
����������	
���.�	���	
��	���������	����"�������
��� ��	� 	������ ��� ��	� ����	�	��������� �����	
	��� ����������	�� ��� ��*	��� ��� ��	� �����	
������	�������7��	�������������8��.������*	����	���������	���	
��������������	��	��
��� ��� ��*	��� ��� �� #������ ������ ������ ��� 	
��	� �
��� ��	� �����	
� ������� &���� �		
�������)#������ ������

���� =��0,���.�	,������	���*�
��
����<�����
������	����,--�����������������������	�	��
�	�	
��� �����	�� ����� ��	� ���	� ���	
���	� ��� ��� �
	��� ��*	���� ��� ���� ��	�	� �����	�� ��
���������	���	
	������	����	��������+�����
�������������
�	�������	������	
��������
������������	����	��������
�����������	
�����������	����	���	�������	
�����	�	
���	

���������	����	���	��	
���������������������	����	�	���������	������"������	�	��������	
�����	���*	�������������
	�	��	�����������������������
������	���+�����
����������	
��	
�
��� ��	�V
		"�
��	���	������ �������� ������
����	������ ���
���� !�� ���	
���
��
��	� ���	��	�����
� ��� ����	�	��	� ������	
	��� ��
���

���)�*	��$)
�	��	�+
��
�������,--���������	

���� .������ ��� ���
	���	� ��	� ���� ����	� �
����� ����"�

���� .�	������
		��� ��� �� ��
�� ��� ��	�,--�������	
� ����� 	��������� ��	� ���
�	� ��	� ��
�� �
��
����	��
	� ��	�
	��� ��� ��	� ������	
� 	�	
� �		�� ����� ���
�	� ��	�

���� &������
		���)��
��7��������������	��������	��
	�
��	���
��������	���	����������
���
�	� ��	� ��� �� ��	���������	
�

���� &������
		���	0,/���������������������	�������
�����������������������"������������
��	� �
	�
��	���
�� ���� ��� ��	�
	��� ��� ��	� ������	
�� .�	�
��	�� ��
� ��������
	�
��	���

���������
	���	����	��������	���
����	
��	�����	
��������������������
�������	��������	
$
���	� �	��	
�� ��� �
	�
��	���
� �������� ��� ����� ��	�� ���� �	�
	����� ����������	� �
��
���	
� �	�����	
��

���� .�	�"	���
����7���������������
������������	��	������������������������	�����
������� ��������� ���������� ���������� ��� ���� ������

���� ,
	���������������������7�����.�����
��	����������	��
	�������������������������	
��������������
	��������*	��������	�	
��	���������������*	��������	����	��������.�������
���������� ����� ��"	������	���������*	����������
��	�	
�������������	�����	
��	������
��*	��������������	��/��	������	��	���7�����	
	
�
	����8������	����	�������������	����	�����	������	������	���
���������
����	���	
��	

������ ��*	���� ,���
���������
����� �����������

���� &����-��,� ������	����� ����
����������	����������	����������������	������
���	���������
����� ��	� ���� ��	� ��� ����	� ����
��������

���� .�	����-��,�
���	��
	��������	��	�������
������
��� �	� 	�	���	�� 0�
���� �� �������� ����� �� ���� ����������� ����	�� ��	� ����	���� ��� ��	
�
��
��������	
������	�����"��.����	����	����	������������������
	��
�������	�������
�������� ��	�� ������	�

���� =��-��,�*�����������	�	���	����������������������������
��
����	�������	���	���
���	�	��.�	�����	�����������
	��	������
��������
�������

	�������������������
��	

��	����������� ��� ��	� �
���	�� ��� �	� ����	�

���� =��-��,�,�������
������	��
��	�������������������

	���������
��
������	�������
	��	
	� �	
���	�

���� =��-��,,��-� �����	��
��������	��	�������������
���	��������	������������
��	�
	 2

'� �����
� ���	��� �� �	�	
��� ��������� ��� �� �	�� ��� �
���	���

F� 6��
	��� ����� ��������� ��� ��� ����
������
� �	�� ��� ����
������

?� .
������	���	�����
����7�8�������	
�����������	��������������������	���"	���������	

�������������	�������������	���	���	����������	
���
�������	�������
���	�������	��	��

/������� 2� .���� 	��������� ���� �	� ���	����� ����	������ ����	� ��� �����	�� ����� ��	
	�	����	��� ��� �� �
��
��� ��� ��
�������
��
� ��� ���	�
�� ����� ���
	�������� .���� ��
"����� ��� ��	� ����	
�������	��� ��� �
��
�������� ����	����	
� ������ ��	
� �����	
����

�����������
	�
���	����
�	������	��
	�������1��	�	
��
	��$���	��
��
��������	��#�
����������
"���������%�
���	
��������
��
�����
	��
���	�����������
	�	������
��	�����
������������ �
	� �����	� ��� 	

�
�� �
	� ����� ��� ��

	��	�

���� .�	�"	���
�����
�)�������������
����������	���
	�	������������������	���������

������������������������������������	�������	��	
���
����	��������������������	�����
�����
���������	
��	���������*	��������	��
	�	���������	���������	
����������������	
��	� ���	� ������

�������� ���

���� .�	�"	���
���/��
� ������������
������� ���������������������� ������������	�����
������� ��������� ���������� ���������� ��� ���� ������

���� ,
	��������������������/��
���.�����
��	����������	��
	�����������	�������	����������

�
	��������*	��������	�	
��	���������������*	��������	����	��������.��������������������
����� ��"	�������	���������*	��� �������
��	�	
������ ���	�����	
��	���������*	��� ��� ���
����	��&������ ��	��������������� ��������� �������������� ��	��� 7��� ��	
	��
	����8� ��
��	����	� ������ �
	� ���	�����	� ��� ��	� �����	���
�� ���� ��	
��	� ������ ��*	��� ����	���
,���
���������
������� �����������

���� =�	.��	���� ��� �� �����	
� ����	� ��� �� ����"�

���� &������������ ����� ��	� �
	��� ��� ��	��	��� ���	� ��� ��	� ������� �
	�� ��� ����������� $

�����������	
	���	��	������	�������	����
	�����	���	�OO�����
��	������������	���
	���

���� J+G� ��� ��� ��
����� ��
� 3����� &��	��� 5	��
��� .���� ��� ��	� ��
"���� ���
��	� ��� �
������	
����	
	����� ����
��
���� �
	� ���
	�����	��	#
	������� ��	��

���� J
��	���� 2� �		� ���������

���� &��*��
� ��� ��� �	�����	
� ����� ����� ��������	
����	� ��
����	����������
����	�
���	

����� ��� ��� ��	�	�	��� ��
����	�� ,�������� ��
	�	
	��	� ��	
	��
	� ���	���� ��	
��

	����������
����	��!����������"���	���	�
	�	
	��	���������
����������
���	������
����������

���� &� �*��
� ��-�,��� ��� �����	
� ���	� ��
� �� ��
����	� �
��� �� ������� ��������
���	

����� ��� ��	�	�	��� ��
����	� ��� ��	� ������ ��������� ,�������� ��
	�	
	��	� �
���	��
��	
	��
	� ���	���� ��	� ��

	�������� ��
����	� ��� ��	� �������� ���������� ,����
	� ����
������ ���������

���� .�	��*��
%
������-��)��,� ������	����������������������	���*	���7��	��
	�	
	��	$
�����	���*	���8�����	����
	�����	�	
������	
���*	����7��	�����	�����*	����8�
���	
�����

	(��
���� �� �	��
��	� ����� ��
� 	���� ��� ��	� ���	��� ��*	����

���� &��-�	��� ��� �� ���
��	��
	�� ����� ������ ��	� ���	��������� ��	�!*+� ���	����+
��
������	

	����	
���������������	���������
	������	��������	%��������
	����	
�������	����	��	
���������	����	��������	��������
�������	�	�������
���	
��������	����������	
����	�
�			� ��� ���	��� ���� ���,-.�

���� J-�		�����	���-��	����
��������������	��
��
�������	
���������	��	
��
	�������
��
"���� �������������� ��� ��������
"����

���� &��-�����,,/��*��
�������������	��	
����������������������������������	����������
���	��
�	�� 2

'�� �����
����
�

F�� 	��
����
�

?�� ��	� �������	��� ��	
���
�� ��	
���
�@�

���� &��������� ����� ���	
���� ����
	����
��	��	
� ���������� �
��� ��������� �����

���� &� ����7��� *��
����� ��� �� ��������� �����
	�
�	�	������ ������������	��		���
	�������

���
	� ��� �� 	����-� *��
����� �
� ��������� �	� �	�	
��	���	�� �			� ��� ���	� ���	

�	���� ����� ��� ������������ ����
���� ��� �� ��
�����

���� &��������))�		� ��� ��	������	������������ ��	��	���������� ����������� �����������
��������� !�� ��� ��	� �
���� 	�	������� ��� �� ������� ���������� ��� �� ������ �������� ��

�
����	
� 	�	����������"� ��� ��	� ��

	��� ����	� ��� ��	� �������� ���������

���)�*	��$)
�	��	�+
��
�������,--���������	

���� &�������	���,��������	������������������������
����	
�	�	����������"������	�������
���������.�	�
	��
������	�	������������ ��	�����������	���� ��	���

	��� ������� �	
�� ��

��	�����	�����������.��������	������	���������	������	����������������������	���	���

��
��	
��������������&��	�����	������
	��
������	�	��� ���
	��
��>%��������
	��
��� ��	
����	�>� ��� ��	� �������� ���������

���� &� ������ �0�� �	���� ��	� ������	
� ����� ��
�� ��� ���� �� ������ ��������
	��
��� ��� ��	
�������� �����������	�� ��	� ������ �������� ������	�� 	�	�������� .�	�
	��
�� ����	� �
��
������������	��������	%���������	���	����	�	
���	���������������������������������"	
�	���

���� &� ������ 7���� ��� ��	� ����	�
	��
�	� �
��� �� ������ �������� ��� ���� ������� ��������

JEG����������
	����������
�,����0��	�.����	��.���������	��	
���	������	
�������
��	
�����������	
����	
	���	��
��
�����			�������
�������	�������	
��
	����
	��&������
����	�����3)5��	���������	���������	������	����	����	
������
�	�������������
���	
�����3&5�

���� J��� ��,��	���� �����	� �� 7�
	�������� ������	8��
��
��� ��� �	���� 	�	���	��

���� .�	����%��,��0���������
����	������	����	��������
����	�������	����	��
��
�������	���
	�	���	�� !�� ��	� �
	�	��	� ���
��	���
������ ����� ���	��������	
� �
��� ��	� ���	�����

������ ��	� ��
����	�����	���
	� ��� ��
���� �����

���� &�	
�����7����/�������������	�����	�7���������	����	8%�������������
���	���������	���

�
� �������	�������� ��������� ������	
� ��� ����	��� 	���� ��������� ���
	�	

	� ��� ��� ���
����%�

���� .�	� 	
��� ��� �� ��
����	� ��� ��	� ��
�� ��� ��	� �
��
��� ��� ������ ��	� ��
����	� ���� �	
���	��	�� .�	� ����	��������������	� �
	� ����	
�	� �
	� ������� �������� ��� �����%� �		
����� ��
��� ������� ��
��� ��� ����� ��
�� ��
���
	� 	������

���� &�	�
�����<��		���� ��� ��	���
����� �� �����������	�	��� ����� ��	����	�����	��
	�����
��	� ��� �	�	��� ��� ���	
�����	� �	������ ��� ��	�

���� &�	�
�����	�����������
���������
�����������	�	������	�����	���7�
����	��8�	�	�	����
��
���	�����	�	�	���� 7��	�������� �����8�������	�� ������	�	��	�	�	�	��� ��������	
��	����
	�	�	����7��	��������������8%���	��	�������	���7�
����	��8�	�	�	��������	���
	��	������	
���	�����	
��.������	
���������
	�	��	���������������	�	�	�������	��
	����	��		�
���	� ��� ��	� ������� �����

���� &� 	.���� ��� �� ���	� ��� �������� ��������� ����� ����
	�
	�	��� ������	� ����	
�����������
��

	���,--�������	
��������
��������	��F����	��������
��	������	
	��
	�����
	�
	�	��
������	
� ��� 	���	
� ��	�
���	� $?FHNG� ���?FHNH� 7��� ����	8��
� ��	�
���	�>� ���NAA?A� 7��
������	8�

���� .�	�	.���%
��
���� 7��������� ���� ���	
��� ��	� 	�	���������� ��	� WW� ��������	
���
��
�		�11� ������ ��
� 	������

���� &�	�)�**
�� �������
	������������������ ��������� ������	
�������	������	�	�	���������
�����������������	
����������
	��
�����������������������
�	�����	���
������������������	
��� �� ��	� 	��	���

���� .�	�	�-���������������������������������������	������	����	��������������������!����	
���	������������� ��������� ��	������� �����������	� ����������	������ ����������
����� ���
�������
	��6�	
�����������������(�	����	�����	���������������
	������������������"	�
����������	�������	���
	��������	�����������������	����	����	��.�����������	��������
������������

�������� ���

���� &� 	�-�)�
.��� ��� �� ���	� ��� �������� ���������� �		� ���
� ��
� 	������

���� &� 	�-�)� ���� ��� �� ���	� ��� �������� ���������� �		� ���� ��
� 	������

���� &� 	�-�)� ���-� ��� �� ���	� ��� �������� ���������� �		� ����� ��
� 	������

���� &� 	�-�)� 	.���� ��� �� ���	� ��� �������� ���������� �		� ���
�� ��
� 	������

���� &�	�-�)�7����/������
	�
	�	���	���	
��	�����	��
��������	�����	����		����
�����
�������
�
� ����� ��
� 	������

���� 2��
��-� ��� ��	���
����� �������	��� ���������
����	����	
��	���������*	��� ��� ������	
��������	���������
����	��.�����	
�������	��	����	�������������������	����������	����	
��������
�������	�	
��	���������*	������������	�����	���	����	
���	����
	������	������

���� 2�*�;���
	�	
�� ��� ��	� ������������ ������	���� ��� �� ������	
�� ��	� ��	�� ���� ������
������� !�� ���� ���� �������� ��� ��� ���
� ��
� ��"�� ��#�� ������
	�� 6�����	�� �����	� �
��
	���		��� ����
��
��	���
�� ��� �� ������	� �
��
���

���� 2���
�
�)�������
��
����������
���������	���
�
	���������
������������������	����

���� 2���
�
�)� *��%� �		� ��
������������ �����

���� 2���
�
�)�,�)��%� �		� ��
������������ �����

���� .�	� 	��
�
.���
��� ��� ��	� ��� ��	����
�������� ��������� 7�
� ���������� ���
���	
�8
����� ����
��� ��	� ��
���� ��� ������	� �
� �
���	� ����
�������

���� 2�
����
��	���
���%��������
����
���	������	�����	�	�������������
��	���
�����(��
��� �
	�	��� ��� �������	� ��������� �
���� �����
������� ��� ����� ��*	���

���� .�	�	K����/��
8�	�����;���
	���	����	�����	��������	��
�����������%���������	�	���
��� ��������� 	�	�	��� ��� ��	� �

��� �
� �	���
��&���� �		� :� ;�

���� &�	��
8������������
����
	���������
���	
�������������
��������	��������
���$���	�����	

���	
��������������������		� ��������	�	
����.�	� ���������	�	�����	���� ��	�����"���
����	������� �	� ��	� ��
��� ��	�
	���	���	���� ������	
��		�� �� �
	�������	%� ������
���
��	� ����� ����	� 	�����	� 7����	8� ����� �� ����"� ��� ��	� ��
��� ����	�
	�
�	�	� 7����	8�

���� .�	�	��
8��������������������������������!�������	����"		���
��"������	��
	��������	
�����
	�	����� ����	� ����	� ��� ��	� ����"�

���� 2���)��)� ��/���0� 2� �		�!''���������� ������	��!� ��������� ������	�

���� &� 	������-� <��		���� ��� ��	���
�� ��� �� ��
� ����	�	��� ����� ��� 	�	���	����	��	��
	� ��	
������������������ ��	� ��
� ����	�	��� ��� ��
���	�	���	�� !�� ������	����	� ��� ��������<	���
����%�������������>�����������	���	����
����	������	���	����
	�	
������	���
���	�	�	��
��� ��� �

��� �
� �	���
�� �		� ���� ���������� ��
� ��� 	�����	�

���� &�	���,�������������	�	���	
��������	
����������	�,--�������	
��6��������	�	��
	�������� �� �	�������� 7%8�

���� &�	����
�,,/��*��
����� ������������ ������������������� ����������	�����	��������

	�	
	��	� ��� ��� ��*	��� ��� ����� ������� ����� �� ���������������� �����
������� ����	� ��� ��
��� 	��
�� ��� ��	
	��
	� �������
	�	
� ��� ��
���� 7���$������8� �	��	
� ��
����	�� ��� ��	
������

���� &� 	����
� ,,/�� 7����/�� ��� ��������� ��������� ��� �� ������ ����� ��� ���
	� ������ ���
��*	���� ��� ����� ������� .���� ��� �������� �
��� ��	� �
	���	��� ��� ��	� ��
���� 7���$������8
�	��	
���
����	�������	��������6������*	���������������������������	�������
�����	��	

��
����	��

���)�*	��$)
�	��	�+
��
�������,--���������	

���� .�	�	����
�	����-�
��		������	������	��������	���
		���������������� ���,--%���
����	�
��� ����� ���
��	��������
	�������	��	��
���
	��	�� ��� ��	��%��������
���������	�
��	��
��
������ ��������.������	������	��	
�����������������������
�������
	���	������	
"	���
� �������

���� 2����
� �0��
.
8��-�
	�	
�� ��� ��	��
�����	���� ��	�"���� ��	���

	�������	������
����	�
������	
	������	���
����������������������
��
���
���	
�������
����	�	��������,--
��	������������	���	�"������		��	
���	�������
���
��	
������������/��	�����������������
��
������
�
	������� ��� ��	� "	���
� �������

���� 2����
� �0���-� �	���� 	�	
������� ��	� 	����� ���	� ��� �� ��
����	� ��	�� ��	� �
��
��� ��
������	��!�������	�	��������������	�����������,--��/��	��������������������
������

	������� ��� ��	�"	���
�����������
� ��� ���	������� ��	����	����������� ���	���	�"������		
�	
�� �	����� ��
� ��
��	
� ����������

���� 	�)���2������	����	������	������
�,--����
�
�����	����	��.�������	����	���������
��	����	�� ��� ���� ��� ��	� ���������� �����
����	��	���
	� ��� ��	� �����
� ���
�
��

���� 2��;�	��*��,��� �����	��
��	������	�	��������������
�����������
���������������
����
�	�� ��������� ��� �
	�������� ��� ������ ��	� ��	��� �
	� ������� ��	� ����������� ��� ��	
�
��
������� �������	������
	������� ����
��	� ���
��
���

���� 2����-%� �������� ��
������	�

���� &� 	����-�
��		� ��� ��	� ���
���	
������ ��� �� ��
����	� ����� 	�	
���	�� ���� �����	�� �
�	��
�� �
	��� ��� ������	� ��� ����� ��
����	�� ,--����� ��
		� ���
��	� �����	�� 2� �������
�����������������+�	��	����	��������	��	
���������������������������������������	

,--��	
����������		��	�����������������
��
���
	� 	������

���� &� 	����-� *��
����� ��� �� ��������� ����� ���
	�� ���� ��
� ���	
�
	�
�	���� ��� �� ���������
��������

���� &�	���,����������	��������7�����	����	����������
	��8��
��	��7�����	����	����������
	��8
���
���	
���.����
		���	� ��
	���� �
	� ��� �������

���� &� 	���,� /�**�� ��� ��	� �
	�� ��� �	��
�� ��	
	� ��	� ���
���	
�� ���� ����� �� ��
	��� �
	
���
	�

���� .�	�	����-�
��		�	���	���� ���	������*	��� �����������������
����������
�%� ��	����
�� ��
�� ��
���������	� �
	��	������	������ ��
���
���	������������	���� !I)����������
�����

���� &� 	����-	���,� ��� �� ���	� ��� ������� ����� 	������ ����� ��� �	��
��
���	
� ����� �	���
������	��������������
��������	���	��!��������	����	���
���
�������������������������

�	� ��
��	
����������	�������� ��	��
��
���

���� .�	�	;��
.� ����	�	��� ��� 	��	����	���	(�����	��� ���������	
���� ��I	��	� ����	�	���� ����

�������� ���	���	
� ���
	������������.�	�"	���
�������� ��� ������	��������������

�%
�������� 7��� ��
	���	�	�8�� ������ ��	����	�� ��� 	��
	������ ����� ��� ��	� ��� �	�	��� ��
���	
�����	��	�����������	��.�	���
��������	
�����	������	������	
	��
	�	�����	���
���	�������
����
��	��������������	��	�	������	��
	�������6�������	
�����	������
"	����
��� ��	� "	���
� ���	� ������	���� ��	� 7��������8� ����	� ��� �	������	� ��� �� ������

���� L,�����0%� �		� ���
����	� ���������

���� &��,�����0�7����/��������������������
	��	������	���
�������
���	��
��������
������

��	
������� ����� ��� �� �������� ���� ����� ��� ��������� ����� ���� ��� �	� ����	
�	� ��� �

���	
	��� ���	�

�������� ���

���� .�	�"	���
��.�	�
	�
	�	��������	���
���	�����������������������	������	�������	

��� 	�	
�� 7���$������8� ������� �������� ������ !��� ����	� �
���� ��	� 	�	������� ��� ���
�	��	
���������������	��
	��������	���������*	�����
���������	��	��	
��������������
������	�

���� .�� �.��;� ����%�
������	���� �������	���� ���	

������� ��� ��	���
���� ���������
�����
���
��
�������������	�������	

�
�����������&��	��	�����������	�����	������������
����	�	��� ��� �� ��������� ������
	������
� ���
	����� ����	� ��	� ��������� ����� ��
	�� ��	
	��	������

���� &���8���������
��������
��
����������	�������	
��
	����������	��
��	�������!�#�����������
��� ����
� ���6������������	� �� ���������� �����
	� ��"	� �� �	��	��	�� ��
� 	�����	�� ��
���
��� �� ��"	��� ��� �
	� 2� 2� ��� 7����	
	��� ��@�A%� ��� �� ����	�	���

���� .�	� "	���
� ���� ��� �� �
		���	� ����	�
	�
	�	������ ��	�
	����� ��� �� ����������
	��
	����������	��������������������	����
�	�����	�� �����	������������	��
	�������
O���� ��� �� ��� �	��� ����� ��� ��	�
	����� ��� ��	� 	��
	����������� �	� �
�	�

���� .�	�"	���
���0������	��������
���������"��
�������������%�
����������	��	�	
��	�
!�� ��� 	��	������ ����
�� �
���� 	�	������� ��� ����� ����"� �
� ���� ���������� ������� ����
����"����	�������������������	�	���������	������	��������	���	�	��	���������������
�������	���	����������������	�����������	�	���������	����������������������������	�����
��� 	��	������

���� .�	� �0�� ��� �����(��� ��� ��	� ������ ��������� ��� �	�������.�	� ���	� ��� ��������� ��������
��� ��	� ��� ��	� �
		���	� ��
����	� ���	�� ��� ,--�� �		� �������� ���������� ���������
����
���������� �������� ��
� 	������ ��� ��	������	� ���	��

���� .�	��0��	0	�,�
	�	
�������	��	�����
��	����	��������	���	�����	��	���������
����	
��� �� ���	�� ���	� ���� �	� 	�����	�� !�� ,--�� ��	�	� 	�	
���������� �
	� ��	� ��� ��	
������	
� 7������ �	
�� ������8��.������"	�� ��� 	���	
� ����
	�	��� ���	� 	

�
�� ����� ��� ��
����������	����	
	����	���	�"���������	��
����	�	���������� ��	��
��
���7�	����
�	
�� ������8�� +�	��	� ���	� ����� ,--� ���� ����� ������� ���	� ��	�"���� ��� �	����

�	
�����.��������������	��	����	���	��	��������	�������������	�����	�����������	�����������
�����	�	�	
���	������
����������	�	�����������	�	��������	���������	����
����	����
���� �	� "����������� ���� �����

���� &������������1)�7����/�������	�����������	�	
��		���	�������"���������	��&��	������

�����	� ����� �� ��
����	� ��� �� �������� 	

�
� ����� ���� ����	� ���
��
��� ��� ���� �	
�� ����

���� &����K����*�)���,� �����
	�	
	��	� ��������������������� ������	��#�� ��	����������
��*	�����	��	��	
���
����	��	������������	���	���	������(������	����	������������

��������� ��	� ��
����� �����	�� ����� ��	� ��*	��� �	� �
	�
	�	

���� ��� ��� ��	� ��*	��� ��

������ ������	��	
� ������������� �		�� ����	�

���� &����	�-�)�
.��� ��� �� ���	� ��� �������� ���������� �		� ���� ��
� 	������

���� &����	�-�)� ���� ��� �� ���	� ��� �������� ���������� �		� ���� ��
� 	������

���� &����	�-�)� ���-� ��� �� ���	� ��� �������� ���������� �		� ����� ��
� 	������

���� &����	�-�)� 	.���� ��� �� ���	� ��� �������� ���������� �		� ������ ��
� 	������

���� &�� ��	�-�)� ��
����	� ��� ��� �������� ��������� �����
	�
	�	���� ����� �������	� ����	�
7���>8�� �		������ ������� ����� ��� ����� ��
� 	������

���)�*	��$)
�	��	�+
��
�������,--���������	

���� .�	��	
���	�������	�	
����	�����������
��
��������.�	��
���
������	������������"
����

��������
���������%����	�	
�� �������������	��� ������	���������� 7��� ��	���
��	
������������������ �	
�8� �
� 	�	�����������

���� &��	�%)*��)�)�����0�������	���������	���	������	���	
��!�����������	������	
��	���
����	��	��������������	���������	�����	��	����	�
���	������
����	����	�������	��������	��
�
� ������	� ���������� .�	� �
���
���	�������� ��
� 	������� �� ��	
$	���	� ���	� ��� ��	
�����

���� &��	��-�)
����������	������	�������	
��������
����	��
���
	����	���
�������
������

���	����	� ����� ��	� ��

	��� ���	����	�� .���� ������� ��	� ��	� ��� ����� ���	���������
������� ��� 	���������� ��	����� ��	����	����	� �
��������� ��	�� ���	�

���� &�7������-�,����������
����	�����������
���
	��	���	�������������	�����	�	�������
!���������������	�����	�������	�����	������	���

	����������������������	����������������
,��������������	��
���	����	���������	���������
����	������	�������������������,����
	
����� ��������� ���������

���� &�7����/��������
��
������������
�����������	�����	
�������
�����,-.����
	�
	�	����
��	������ ��	����������	������ ���"		�� �
��"���� ������
��
�������	�	�����	���
	� ��	
�	����� ��� �� ����"��� �
� ��	�����	
� ��� ��
����� ������"� ��� ��	� ���	���
�� ��� �� ���
	�

���� &�7
����������
���������
����	���	������������������	��
	��	����������������������	
�
���%� 	���� ��� ��	�	� ��
����	�� ��� ����	� ��� ��������� &� �	���
� ���� �� ���	�� *���� ��� �

	����
���
����	��	���������	�	�	�	�����������!���	���	����	�	�	��������������%�����

	�
	�	���� ���� ��������� ��� ��	� �	���
�

���� &�M
� ��� 	������� ��"	� �� �	���
� 	��	��� ����� ��� ��	�"�� ��	� �������� ��� ��	� ��	�� ��� ��
	�	�	��� �	��
	� ��������� ���	��� ��� ����� 	�	�	���

���� 0	���
���� �� ��������� ��� �	� 7������� �	���� ����� ��� ��� �� �	��	
� ��� �� �	�� ��� ���������
���������	����	����������������	����������������	��
	���	����������������.�	�������

�������������	�	�	���	������	�
	�������������	��������������������	�	��	��
���������	�
��� ���������� ����������� 7������ ���
��� ���	8� ���	� ��� ��	� ������� ���	� ��� ��� ��*	��

	�	

	�������������	������������	
�7�
����	�������
	�	
	��	8��.���������	�,--��	����
�	
�����	����������	� ��� ����	�	��� ������
������� ��� ����
���� ��� ��	� ������ �	
���
��	���
����$��
������������������	
	���	�	������������������	�����	������	�	�	
���	
��� ������	� ���	�

���� &�7��)� ������ �0�� 	�
�*��� ��� �� �������� ����������� ������	�� ����� ��	� ��������� ��
(�	�������	������
	��
�� ��������	���	�� ��� ������	�� 	�	�������

���� .�	� �	
��7��/�� ��� ��� ���
	�������� ��
��������� ���������������� ������� !�� �����	
	� ��	
�
	��	��������������	��������������������
������	���������
	����
	%�	�	
����*	����������
������ ��������� ��	� �
	��� ��� ��	� �����	� ��
� ����� ������

���� &�;.��� 	���,��� ��� �� ���
� ������� ���������� ����� ����	�� ���� ���������� ����� ��� �	
	�	���	�����	� �� ��	����	� �������� 	��
	������ ��� �
�	�

���� N��8��
��		� 2� �		�
��	���
��� ��(���

���� &� 0��� ��,/�� ��� ��� ���	�	
� ����	�
	�
	�	������ ��	� ����	
� ��� �	�
�� �	��		�� ���
��	��

���� O��%/�)� ��)<��-�
	�	
�� ��� ��	��
�����	��������	
���� ��	�	�	�	��������������	��

�	���
� ���
����� ��� >�
���	
� �����'�

�������� ���

7�8 &�� ��� ���	�� ��	� ���	� ���,--�� ����� ��	
���
� 7��� ��	� ��

	�������� ��
	��� �����
��	
���
��RR8����	����	
�������������	�	�����
	���	��	��������	��	����	���	�
	���	��	
	�� !#��������
������� ����������� ������������#���	� ������
�
��	� �����
��	������
��� ����� ��	�	� ���	
��	������� ��� �����	
� �	�����"�

7�8 &��������� �� ���
� ���� �	� ��
�	
� ����� G� ������ 1��	�	
�� ��� ���
	(��
	� ��� ��	� ,--
�����
� ��� �	� ��� �	���� G� ������ ��� ��	� ����� ������� ������	
�� ��� ������	�
��		������	� G$���� ���
��

78 !������������
����	������	�	���
	������������"������*�������������������!����������	�
��������	� ��� �
�����	���������	
	� ��� ���	���
	������� ��	�	����� ��	�����"���	
	
��� ��� 	���	�

7�8 X��� ���� �����	���
	� ����� �� ��
����	� ���������	��������� �� ��<	� ��	����	
�

7�8 /��	��������	�������	
��������
	(��
	������	������
������	��������	��������	�	��
��
����������������1��	�	
������������	��������������������	�	���������������������

���

QUESTIONS ASKED IN
TECHNICAL INTERVIEWS

• Explain the Concept of Data Abstraction and Data Encapsulation in Object Oriented
Programming (OOPS) .

• What are classes ? How are they defined ?

• What are objects ? What is common between all objects of a class ?
• State all the class access modifiers and explain each one of them.
• What are Vectors in C++ (Object Oriented Programming) and how are they used ?
• What are containers in C++ and in Object Oriented Programming ? Which objects are

available as containers ?
• What are Iterators in C+ + and Object Oriented Programming ? Explain where we use

them.
• What are the Algorithms namespace used for ?
• What are Enumerations in C++ and Object Oriented Programming ? Explain with an

example?
• What are References in C++ and OOPS ? How are they used ?
• Explain the Rules for using Default Arguments with an example in C++.
• What do you mean by "Pointers to Function" ? What are Function Pointers ?
• What are NameSpaces in C++ ? How do we use namespaces in C++ ?
• What is the Exception Handling mechanism in C++ ? What is Try and Catch in

C++?
• What is Operator Overloading in C++ ?
• What are Friend Functions and Friend Classes in C++ ?
• What are Constructors and Destructors in C++ ?

• What is Inheritance ? How is a Class Inherited in C+ + ?
• What are Virtual Functions ? Why do we need Virtual Functions ? Explain with an

example.

768

�������� ���

� ����� �
	�.	�����	�� ���,--�P�1����
	�.	�����	��	���
	� �����	� P

� ����� ��� +�����
������ P�1��� ��� +�����
����������	�	� ���,--�P

� ����� �
	� ��	������
�6��	������� ���,--�P

� ����� ���5������	� !��	
�����	� ���,--�P�6������������ ��� 	�����	�

� ����� ��� ��	� �����������	� ��� ������9����� 70�������,���8� ���,--�P

� ����� �����
	������ ���,--�P������ �
	� ��	���
	���.��	�� ���,--�P

� 1����
	� ��������������� ��
����	�����	
� ��� �
���	���� ����	�	��	� P

� ����� �
	� ��	������ ��
� ���������� ��
����	� ������� ���,--�P

� 1��� ����	��
�� ����������� ���	�������������	� ���,--�P

� ����� ��� ��,����,����
����
� ���,--�P�V��	� ��� 	�����	�

� ���������������D���������0�������D���������)�*	���)
�	��	�+
��
�������7,--8 P

� ������ �
	� ��	����	
	�������� ��� ��������� ������ ���,--�P

� ����� ��� �
��	�
��� �
��
������� P

� ������ �
	� ��	�0���	
	��� ��
����
	�� ��
� ����
������� ��	��
��
��� ����� P

� ������ �
	� ��	�0���	
	��� ���	�� ��� ,����
����
�� P

� ���� ������ 0	��
����
�� �	� J�
����� P� ����� ��� ��	� �����������	� ��� ������� J�
����
0	��
����
 P

� ����� ��� ���������)�	
������� ���,--�P

� ����� �
	�+����	
�� ���,--� 7)�*	���)
�	��	�+
��
������8� P

� ����� �
	��������	� ��
����	�� P�6�������J������	� ��
����	��

� ����� ��� ��	�0���	
	��	� �	��		��)�	
���	����������� ���)�	

�	������������ P

� ����� �
	� !����	����������� P���	�� �
	� !����	�������������	� P

� ����� �
	�5�����	� ���,����� ���,--�P

� ����� ��� L����#� +����	
� 7��*	��8� ���,--� P

� ����� ��� ����	�3	���������)�	
���
� ���,--�P

� ����� �
	� ��	����
��	�.��	�� ��
�J�
����	�� ���,--�P

� ����� �
	�,�����5	��	
����������� ���,--�P

� 6�������,����������� ���,--������ ��� 	�����	�

� ������������	������ L3	��
�����3	�	
	��	#� ���,--�P

� ����� �
	� �������0���� ����������5	��	
����������� ���,--�P

� ����� ��� ��+�
	�J�
�����5	��	
���������� P

� ����� �
	� +
	�
��	���
�0�
	����	�� P

� ����� ��� �� ������ P

� ����� ��� ��� ��*	��� P

� ����� ��� ��	����	
	��	� �	��		�� ��� ��*	��� ��� �� ������ P

� ����� ��� ��	� ���	
	��	� �	��		�� ������ ��� ��
����
	� P

� ����� ��� �������� �
��	��	�� ����
����	� P

� ����� �
	� ��
����� ���������� P

� ����� ��� �
�	�� ��������� P

���)�*	��$)
�	��	�+
��
�������,--���������	

� ����� ��� �� ����	�
	��������� ��	
���
� P

� ������������	������ ���	
�����	� P

� ����� ��� ����
������� P

� ����� ��� ������
������ P�6������������ ��� 	�����	�

� ����� ��� 	������������� P

� ������� �����	������������� ��� ���� ��� ���������� P

� ����� ��� ��������� ��	
������� �����	
���
� ��	
������� P

� ����� ��� ��
����� ������ ��� �
�	�� ������ P

� ������������	������ �����	� ��������� P

� ������� �����	�������������� �
����	�� �
��	��	� ��� �
�	���� P

� ��	�� ��� ��� ��*	��� �
	��	� �������� ��� ���� ���	���	� P

� ����� �� �����	�������������	� ���	
�����	� ���������	�	�� ���	
�����	� P�0���	
	�����	

�	��		�� ��	��

� 0���	
	��	� �	��		��
	������ 78� ��� �
		� P

� ����� ��� �� �	�����	� P

� ������
	���	���������	
	��	���	��		���
��	�
	��
�	��	��������	�������*	����
�	��	
�������	�� P

� ����� ���3�.�.� !� P

� ����� �
	� �	�	
��� ���������� ��� �	�	
��� �����	�� P

� ����� ��� ���	����	� P

� ����� ��� ��	����	
	��	� �	��		������� ���
	�	
	��	� �������� ��� ����	� P

� �������	���	� ��
����� ���������� P

� ������� �����	��������
	� ��
����� ���������� P

� ����� �
	� ��
����� �����	�� P

� 0�	�� �--� �����
��������	�	�� ����������	� ���	
�����	�� P

� ����� �
	� ��	� �������	�� ��� ���	
�����	� P

� ��	�� ��� ���	��
�� �������	� ��� �� ������ P

� ����� ��� ��	����	
	��	��	��		��	���
������ ���	��������� P

� ����� �
	� ��
����� �����
����
�I	��
����
�� P

� !�� �--� ��	
	� ��� ����� ��
����� 	��
����
��� ��� �����
����
������� P

� ����� ��� ���	� ����� ��������� ����� ��� 	�
�������� ��������� ����� P�0���	
	�����	�

� 1��� ��� 	��	�������������� ��

�	����� ��� �--�P

� ��	������� �� �����
����
� 	�	���	� P

� ����� ���0�������+�����
������ P

� �
��	� �����
�� ��
� ��������� ���	�	
��

���

.�	
	��
	��	���
	���
	�	
	��	�������	��	���������	
	���������
�������������"��������	
��������
	

�	�����	��
	����� �
� ���
	�����

�� :D�
����� 'MM=;� Y���� Y��D�
���� ���T		�3��/��"���� 2�2�������� ����3�����������!''�

&����$�	��	��� 3	������5����� 'MM=�� !�D/� >$F>'$A??M?$N�

�� :D	
���'MMA;���������D	
���5�
������,���	�����5�"	�V�
���2�4�������4���������������

02)566�00�*��(���� ,&,5��J���� ?G�/��� '>��)����	
� 'MMA�

�� :D�����'MM=;�V
���D�����2�0�(���0��������-���	��������7�������D	�*����I,��������

5	���� +�
"�� ,������ 'MM=�� !�D/�>$G>A?$A?=>$F�

�� :D��	��'MMF;�Z	���D��	��Y�����+	

������&��,��3��������2�8����*����������2�������

!��
�������� ������ !''�� +
���� E�6/![� ,--� ,���	
	��	�� +�
������)
	����� &�����

'MMF�

�� :,�� 'MM>;� [?� �	�
	��
����� 2� 2�������� 9� :��� !� 4��������� [?Y''IM>$>'?�� !�)� �����

!�)I!6,� MGMM�� ,�����	
� ��� D����	��� 6(����	��� 5��������
	
�

&����������������������� 0,��E�&�

�� :,--�� 'MMG;� [?� �	�
	��
���� 2� ;������������� 2�������� 9� :��� !''� 4��������� [?Y'N$

'=GGF�� !���
�������.	���������,������� 7/�!.,8��������������0,��E�&�

�� :,����	���'MGH;�3���,����	����	������2�:���7�����������.����
��������0
��������2	�����

+
����E�6/![�,--�,���	
	��	�� ������ �	��/	��5	������/��	��	
� 'MGH�

�� :0�����'MH>;�)$Y��0�����D��5�
���������Z��/����
�2�2;.+4-�!������<����4��������

/�
�	�����,���������,	��	
� �$FF��)�����/�
����� 'MH>�

�� :0����� 'MHF;�)$Y�� 0���� ��� ,�� &�� 3�� 1��
	� 2� 8���������� *������� !����������� ��

2��������� *������������&��	���� +
	����/	��X�
"�� 'MHF�

��� :6������ 'MGM;�5�
��
	��&�� 6����� ���D*�
�	���
����
��� 2�:���-���������!''�,�������

.������&����$�	��	��� 3	������5����� 'MM>�� !�D/� >$F>'$A'=AM$'�

��� :V������'MMA;�6
����V������	������ 2�7������*���������&����$�	��	���3	������5����

'MMA�� !�D/� >$F>'$N??N'$F�

��� :V���	
���'MG?;�&��V���	
�����0��3������ 2�2.-44:-4=�>6�9�:���4������������ ;��

;�
�������������&����$�	��	��� 3	������5����� 'MG?�

���

REFERENCES

���)�*	��$)
�	��	�+
��
�������,--���������	

��� :V
�������'MH>;�3��6��V
�������	������2�:���2�����5�*�����������4���������+
	����	$

1����� 6���	����,�������/	�� Y	
�	��� 'MH>�

��� :V
�������'MG?;�3��6��V
���������5��.��V
������2�:���;!0?�*�����������4��������

+
	����	$1����� 6���	����,�������/	�� Y	
�	��� 'MG?�

��� :1���������'MM?;�V��1�����������+��Z������
��� 2�:���2
�����?������ @�-�.���������

���0�(����� +
���� 'MM?� ����	
�E�6/![�,���	
	��	��E�6/![�

��� :1	�
�������'MMH;�5����1	�
���������6
�"�/�(����� 2� ;����������2��������!''� @�,����

����,��������������� +
	����	$1�����6���	����,�������/	�� Y	
�	���'MMH�� !�D/�>$'?$

'F>MNA$A�

��� :!��������'MHM;�Y	���0��!��������	������2�,�����������������7�������������-7-�*����������

4���������!V+T&/�/����	���J���� '=�/��� N�� Y��	� 'MHM�

��� :Z������� 'MM?;� X��		��� 1�� Z������� 3���� 6�� �������� ��� Y	��� V�� ������ 2� ,��
���

<��������#����0�(���0�������� :�������	��&.�.�.	�������� Y��
�����J���� HF�/��� A�

�	��	��	
I)����	
� 'MM?�

��� :Z	
�������� 'MHG;� D
���� ��� Z	
������� ��� 0	����� 5�� 3�����	� 2� :��� !� *����������

4���������+
	����	$1����� 6���	����,�������/	�� Y	
�	��� 'MHG�

��� :Z	
�������� 'MGG;� D
���� ��� Z	
������� ��� 0	����� 5�� 3�����	� 2� :��� !� *����������

4�������� A2�����3������B��+
	����	$1�����6���	����,�������/	�� Y	
�	���'MGG�� !�D/>$

'?$''>?NF$G�

��� :Z�	�����'MGM;�&�
	��Z�	�������D*�
�	���
����
���2�!''�@�-����������!����
�������

9� ���� ��� ������� .�	�,--�3	��
���J���� '�/��� H�� Y���� 'MGM�

��� :Z�	����� 'MMH;� &�
	�� Z�	���� ��� D�
��
�� 5��� 2� ,����������� ��� !''�� &����

�	��	�� T��������3	������5����� 'MMH�� !�D/� >$F>'$=F??M$'�

��� :Z������ 'MNG;� 0����� Z����� 2� :��� -��� ��� !��
����� *������������ &����$�	��	��

3	������5����

��� :T��"���� 'MHM;� D�
��
�� T��"��� 	�� ���� 2� !��� ,�������� .������� 5!.IT,�I.3$FFA�� 5!.

,���
��	�5����� 'MHM�

��� :5�
����� 'MMA;� 3��	
�� ,��5�
���� 2�7��������� 0�(���0�������� !''� -

��������� +����

����<����.�������+
	����	$1�����6���	����,�������/	��Y	
�	���'MMA��!�D/>$'?$F>?G?H$=�

��� :)
�	���� 'M=M;�V	�
�	�)
�	��� 2�CD>5���	�"	
� �����
��
��� T������ 'M=M�

��� :3����
��� 'MG>;�5�
����3����
�� ���,�����������$��
	�	��� 2�<!*4� 9� :��� 4�������

����;���!��
������,���
��	�E���	
�����+
	����,���
��	��6�������'MG>��!�D/�>AF'

F'MNA$A�

��� :3���	
��'MG=;�T��3���	
�2�:���3������������!�9�*��������E�������&.�.�D	���T���
���
�	�

.	�������� Y��
�����J���� N?�/��� G�� +�
�� F��)����	
� 'MG=�

��� :3�<�	
�� 'MGG;�5�� 3�<�	
�� 	�� ���� 2�!80,+2� 7����������� 0
�������� 2	������� ,��������

����	����J���� '�/��� =�� ����� 'MGG�

��� :�	�����'MG';�3�����	����2�+�������2	���%�����:	
��3%
�������������7������������������
	

+
�����	���6��	
�	��	��J���� ''�� 'MG'�

��� :��	�������'MM=;�&�	���	
���	���������5	���T		� 2�:���2��������:��
�����4�����	�

1+�T����.	��������3	��
��1+T$M=$?=� 73�� '8��&������� 'MM=�

��� :��
����
���� 'MGN;� D*�
�	� ��
����
��� 2� :��� !''� *����������� 4��������� &����$

�	��	��� 3	������5����� 'MGN�� !�D/� >$F>'$'F>HG$[�

��� :��
����
����'MGH;�D*�
�	���
����
������Y�������������
��2�-�2������!�!�����������!��

,������� 2�	��� *������������ +
���� E�6/![� ,--� ,���	
	��	�� ������ �	�� /	��5	�����

/��	��	
� 'MGH�

��� :��
����
����'MM';�D*�
�	���
����
���2�:���!''�*�����������4��������A2�����3������B�

&����$�	��	��� 3	������5����� 'MM'�� !�D/� >$F>'$A?MMF$N�

��� :��
����
���� 'MM=;� D*�
�	� ��
����
��� 2� :��� 7������ ���� 3��������� ��� !''�� &����$

�	��	��� 3	������5����� 'MM=�� !�D/� >$F>'$A=??>$?�

��� :.�
*���� 'MG?;� 3��	
�� 6�� .�
*��� 2�7���� 2��������� ����?��#���� -����������� ����	��� ��

!����
���� ���&����	�5���	�������� +����	������� +	���� 'MG?�� !�D/�>GMGH''GH$G�

��� :E����	��'MMN;�.�	�E����	�,����
�����2�:���+������2���������F�������G�6��&����$

�	��	��0	�	���	
�� +
	���� 3	������5����� 'MMN�� !�D/� >$F>'$=G?=A$M�

��� :E/![�� 'MGA;� +?;H� :����2������� 2	����� @� *���������I�� .������� ,������� F�������

:����� 3��������&.�.�D	��� T���
���
�	���5�

���1�����/	�� Y	
�	��� �	�
��
�� 'MGA�

���

��	�
����� ���

775

Index

Symbol ___________________________
#define, 73

A ________________________________
Abstract class, 17, 491

Abstract data type (ADT), 6, 193

Abstraction, 6

Activation record, 169

Algorithms, 3

Ambiguity, 429

Analysis, 14

AND operator, 55

Analysis model, 13

Argument, 183, 198, 587

Arithmetic operation, 128

Arrays, 129, 221

ASCII, 24, 179

Assignment operator, 58

B ________________________________
Backslash constants, 24

Backward jump, 93

Bad, 603

Binary, 343

Binary operators, 48

Binding, 469

Bits, 62

Bitwise operators, 62

Bool, 127

Boolean values, 51

Bottom testing loop, 109

Bottom-up, 4

Branching, 92

Break, 90

Built-in data types, 39

Built-in pointer, 465

Built-in types, 371

C ________________________________
Call by address, 165

Call by reference, 165

Call by value, 153

Case, 89

Catch block, 644

Catch, 644

Character constants, 24

Cin, 511

Class, 11, 193

Class template, 609, 625

Class type, 371

Comma operator, 72, 368

Command line, 589

Compilation error, 122

Compile time binding, 508

Compile time errors, 643

Compile time polymorphism, 7

Compile time, 129, 470

Compiler, 158

Complement form, 66

Compound operator, 58

776 Object-Oriented Programming C++ Simplified

Conditional operator, 51, 52

Const, 74

Constant member function, 274

Constant pointer, 165

Constants, 23

Constructor, 279, 442, 656

Continue, 99

Copy constructor, 306, 310

Cout, 511

D ________________________________
Data file, 563

Data hiding, 7

Data members, 194

Data source project, 33

Data structure, 297, 302

Data type, 26, 371

Decrement operator, 58

Default argument, 280, 623

Default constructor, 284, 286, 310, 325, 443

Default values, 183

Default, 89

Delete operator, 130, 131

Delim, 515

Derived class, 280, 410

Design model, 13

Destructor, 328, 442

Division operation, 51

Dot operator, 254

Double pointer, 138

Do-while, 94

Dummy code, 399

Dynamic binding, 470

Dynamic constructor, 316

Dynamic initialization, 25, 311

Dynamic memory allocation, 129

Dynamic modeling, 18

Dynamic variables, 131

E ________________________________
Early-binding, 470, 508

Eat white, 544

Else-if ladder, 86

Encapsulation, 5, 6

Enum, 75

Enumeration constants, 75

EOF, 515

Escape sequence, 24

Exception handling, 643

Exception thrown, 644

Exception, 643, 659

Exit controlled loop, 109

Explicit call, 283

Explicit type conversion, 77

Expressions, 54, 367

Extraction operator, 40, 511

F ________________________________
FIFO (First In First Out), 302

File, 574

Floating point constants, 24

For, 94

Formal parameters, 198

Forward jump, 93

Friend function, 254, 310, 358

Front, 302

Fstream, 564

Function call, 8, 370

Function polymorphism/overloading, 470

Function prototype, 150

Function template, 609

Function, 3, 149

Functional modeling, 18

G ________________________________
Garbage value, 38

Generic data, 609

Index 777

Generic programming, 609

Generic types, 617

Getline, 514, 520

Global data, 3

Global variables, 117

Good, 603

Goto, 92

H ________________________________
Header file, 35

Heap, 325

Hex, 540

Hierarchical inheritance, 393

Hybrid inheritance, 393

I _________________________________
Identifiers, 22

Ifstream, 564

Implementation model, 14

Implicit call, 283

Implicit type conversion, 77

Increment operator, 58

Inheritance, 5, 7, 12, 393

Inline functions, 169

Inline, 169

Input stream, 40

Insertion operator, 511

Instructions, 20

IOS class, 512

IOS, 524

IOTA, 291

Istream class, 512

K ________________________________
Keywords, 22

L ________________________________
Late binding, 470

Least Significant Bit (LSB), 67

LIFO, 156, 297

Linked list, 634

Local variable, 166

Logical errors, 643

Logical operators, 54

Long, 27

Loop, 94

Looping, 94

M________________________________
Macro, 170

Main, 154

Malloc, 140

Manipulator, 37, 524

Mask parameter, 534

Mask, 533

Matrix, 231

Member function, 215, 358

Memory, 129

Message passing, 8

Modular programming, 1, 149

Most Significant Bit (MSB), 67

Multilevel inheritance, 393

Multiple inheritance, 393, 395, 424

Multi-way branch, 88

N ________________________________
Namespace, 35

Negation operator, 57

New, 140, 316

Node, 634

NOT, 57

Null character, 232

Null, 634

Numerator, 51

O ________________________________
Object, 11

Object slicing, 498

Object-oriented programming, 5

Ofstream, 564

One’s complement, 66

778 Object-Oriented Programming C++ Simplified

OOAD, 17

Operands, 48

Operator overloading, 334, 470

Ordinary function, 491

OR operator, 56

Overloading binary operator, 336

Overloading, 175, 280

Overridden, 473

P ________________________________
Parameter, 158

Parameterized constructor, 280, 281, 452

Pointer to member decelerator, 140

Pointer to member deference, 140

Pointer, 338, 437

Polymorphism, 5, 7, 12, 175, 470

Pop, 297

Popped, 156

Post increment, 59

Precision, 526

Preincrement, 59

Preprocessor directive, 29

Priority, 343

Private inheritance, 394

Private members, 415

Private mode, 398

Private, 7, 193, 215, 254

Procedural call, 3

Procedural programming, 1, 3

Process modeling, 18

Protected data members, 419

Protected Inheritance, 394

protected, 7, 193, 254

Prototyping, 150

Public inheritance, 394

Public member, 142

Public, 193, 215, 254, 416

Pure virtual function, 485, 486

Push, 297

Pushed, 156

Put method, 518

Putback, 515

Q ________________________________
Qualifiers, 27

Queue, 302

R ________________________________
RAM, 129, 563

Random, 512

Real constants, 24

Rear, 302

Record, 512

Recursion, 154

Reference variable, 122

Reference, 165

Registers, 62

Relational operators, 51

Remainder operator, 49

Requirement model 13

Return type, 149

Return, 165

Reusability, 393

Rule oriented, 16

Run time polymorphism, 7

Run time, 129

Runtime binding, 470

S ________________________________
Scope resolution operator, 116

Scope, 329

Seekg, 581

Seekp, 581

Self-referential classes, 638

Sequential, 512

Setf, 526, 533

Short, 27

Signed, 27

Single character, 24

Single level inheritance, 393, 394

Index 779

Sizeof, 71, 140

Sorting, 223

Shorthand assignment operator, 58

Stack overflow, 154

Stack, 297

Stack-frame, 169

State transition diagrams, 18

Static allocation, 129

Static binding, 470, 508

Static data members, 271

Static variable, 155, 266

Static, 266, 485

Storage area, 563

Strcmp, 619

Stream classes, 512

Stream, 511

Streambuf, 513

Streams, 511

String, 232, 512

Structure, 129

Structured programming, 1

Switch statement, 88

Switch-case statement, 88

Symbolic constant, 33, 73

Syntactic errors, 643

Syntax, 103, 338

System modeling 10

T ________________________________
Tellg, 581

Template, 193, 609

Ternary, 18, 51

Ternary operator, 52

Text model, 14

This pointer, 465

This, 465

Three-pronged, 18

Throw, 661

Thrown, 649

Tokens, 21

Top-down approach, 3

Top-down design model, 1

Top-down programming, 5

Top-down, 4

Try, 644

Type specifies, 122

U ________________________________
Unary operators, 48, 369

Unary type, 18

Unsigned, 27

Unwinding, 157

User-defined functions, 149

V ________________________________
Variable, 25, 129

VDU, 563

Virtual base class, 436, 512

Virtual base, 436

Virtual constructor, 485, 504

Virtual destructor, 485, 504

Virtual function, 470, 471

Virtual keyword, 472

Virtual pointer, 476

Virtual, 280, 330, 470

Visibility mode, 194

Void, 140, 154

Volatile memory, 563

VPTR, 476, 478

VTABLE (virtual table), 476, 478

W _______________________________
While, 94

White space, 234

Width, 524, 526

Winding, 157

X ________________________________
XOR operator, 65

XOR, 161

	Front Cover
	Contents
	CHAPTER 0 : INTRODUCTION TO OOPs
	Structured Programming
	Procedural Programming
	Programming Methodology
	Object-Oriented Programming
	Basic Concepts of OOPs
	Characteristics of OOPs
	Advantages of OOPs
	Object-Oriented Languages
	Object-based Languages
	CHAPTER 1 : INTRODUCTION OF OBJECT-ORIENTED DESIGN
	1.1 Introduction
	1.2 Objects
	1.3 Class and Instance
	1.4 Polymorphism
	1.5 Inheritance
	1.6 Object-Oriented Analysis
	1.7 Finding the Objects
	1.8 Conceptual Modeling
	1.9 Requirements Model
	1.10 Analysis Model
	1.11 The Design Model
	1.12 The Implementation Model
	1.13 Test Model
	1.14 Object-Oriented Analysis and Design
	1.15 The Evolution of Object Model
	1.16 Object-Oriented Programming
	1.17 Object-Oriented Design
	1.18 Object-Oriented Analysis
	1.19 Elements of Object Model
	1.20 The Role of OOAD in the Software Life Cycle
	1.21 OOAD Methodologies
	1.22 Grady Booch Approach
	CHAPTER 2 : STARTING WITH C++
	2.1 C++ Overview
	2.2 C++ Character Set
	2.3 C++ Tokens
	2.4 Variables
	2.5 Counting Tokens
	2.6 Data Types
	2.7 Qualifiers
	2.8 Range of Data Types
	2.9 Your First C++ Program
	2.10 Structure of a C++ Program
	2.11 Styles of Writing C++ Programs
	2.12 Programming Examples
	2.13 Ponderable Points
	Exercise
	CHAPTER 3 : C FEATURES OF C++
	3.1 Introduction
	3.2 Operators and Expressions
	3.3 Declaring Constants
	3.4 Type Conversion
	3.5 Decision Making: An Introduction
	3.6 Unconditional Branching Using Goto
	3.7 Introduction to Looping
	3.8 Points to Ponder
	Exercise
	CHAPTER 4 : OPERATORS AND REFERENCES IN C++
	4.1 Introduction
	4.2 Scope Resolution Operator
	4.3 Reference Variables
	4.4 The Bool Data Type
	4.5 The Operator New and Delete
	4.6 Malloc Vs New
	4.7 Pointer Member Operators
	4.8 Ponderable Points
	Exercise
	CHAPTER 5 : FUNCTION IN C++
	5.1 Introduction
	5.2 Function Declaration/Prototyping
	5.3 The Main Function in C++
	5.4 Recursion
	5.5 Call by Reference
	5.6 Call by Reference Vs Call by Address
	5.7 Return by Reference
	5.8 Inline Function
	5.9 Function Overloading
	5.10 Function with Default Arguments
	5.11 Ponderable Points
	Exercise
	CHAPTER 6 : CLASS AND OBJECTS IN C++
	6.1 Working with Class
	6.2 Programming Examples (Part-1)
	6.3 Structure in C++
	6.4 Accessing Private Data
	6.5 Programming Example (Part-2)
	6.6 Passing and Returning Object
	6.7 Array of Object
	6.8 Friend Function
	6.9 Static Class Members
	6.10 Constant Member Function
	Exercise
	CHAPTER 7 : WORKING WITH CONSTRUCTOR AND DESTRUCTOR
	7.1 Introduction
	7.2 Constructor with Parameters
	7.3 Implicit and Explicit Call to Constructor
	7.4 Copy Constructor
	7.5 Dynamic Initialization of Objects
	7.6 Dynamic Constructor
	7.7 Destructor
	7.8 Ponderable Points
	Exercise
	CHAPTER 8 : WORKING WITH OPERATOR OVERLOADING
	8.1 Introduction
	8.2 Operator Overloading with Binary Operator
	8.3 Overloading Assignment (=) Operator
	8.4 Overloading Unary Operators
	8.5 Overloading Using Friend Function
	8.6 Rules of Operator Overloading
	8.7 Type Conversion
	8.8 Ponderable Points
	Exercise
	CHAPTER 9 : WORKING WITH INHERITANCE IN C++
	9.1 Introduction
	9.2 Types of Inheritance
	9.3 Public, Private and Protected Inheritance
	9.4 Multiple Inheritance
	9.5 Hierarchical Inheritance
	9.6 Virtual Base Class
	9.7 Constructor and Destructor in Inheritance
	9.8 Containership
	9.9 Ponderable Points
	Exercise
	CHAPTER 10 : POINTERS TO OBJECTS AND VIRTUAL FUNCTIONS
	10.1 Pointer to Objects
	10.2 The This Pointer
	10.3 What is Binding in C++ ?
	10.4 Virtual Functions
	10.5 Working of a Virtual Function
	10.6 Rules for Virtual Function
	10.7 Pure Virtual Function and Abstract Class
	10.8 Object Slicing
	10.9 Some Facts about Virtual Function
	10.10 Virtual Destructor
	10.11 Ponderable Points
	Exercise
	CHAPTER 11 : INPUT-OUTPUT AND MANIPULATORS IN C++
	11.1 Introduction
	11.2 C++ Stream Classes
	11.3 Unformatted Input/Output
	11.4 Formatted Input/Output Operations
	11.5 Manipulators
	11.6 Ponderable Points
	Exercise
	CHAPTER 12 : FILE HANDLING IN C++
	12.1 Introduction
	12.2 File Streams
	12.3 Opening and Closing a File
	12.4 File Opening Modes
	12.5 Checking End of File
	12.6 Random Access in File
	12.7 Command Line Arguments
	12.8 Working with Binary Mode
	12.9 Error Handling
	12.10 Ponderable Points
	Exercise
	CHAPTER 13 : TEMPLATE PROGRAMMING
	13.1 Introduction
	13.2 Function Template
	13.3 Class Template
	13.4 Ponderable Points
	Exercise
	CHAPTER 14 : EXCEPTION HANDLING IN C++
	14.1 Introduction
	14.2 Basics of Exception Handling
	14.3 Exception Handling Mechanism
	14.4 Programming Examples
	14.5 Exception Handling with Class
	14.6 Catching all Exceptions
	14.7 Specifying Exception for a Function
	14.8 Ponderable Points
	Exercise
	CHAPTER 15 : OBJECT-ORIENTED PROGRAMMING HAND ON LAB
	Experiment 1 : Program illustrating function overloading feature
	Experiment 2 : Programs illustrating the overloading of various operators. Ex : Binary operators, Unary operators, New and delete operators, etc
	Experiment 3 : Programs illustrating the use of following functions : (a) Friend functions (b) Inline functions (c) Static member functions (d) Functions with default arguments
	Experiment 4 : Programs to create singly and doubly linked lists and perform insertion and deletion Operations. Using self referential classes, new and delete operators
	Experiment 5 : Programs illustrating the use of destructor and the various types of constructors : 1. Constructor with no arguments 2. Constructors with arguments 3. Copy constructor etc
	Experiment 6 : Programs illustrating the various forms of inheritance : 1. Single Inheritance 2. Multiple Inheritances 3. Multilevel Inheritance. 4. Hierarchical inheritance, etc
	Experiment 7 : Write a program illustrating the use of virtual functions
	Experiment 8 : Write a program which illustrates the use of virtual base class
	Experiment 9 : Write a program which uses the following sorting methods for sorting elements in ascending order. Use function templates (a) Bubble sort (b) Selection sort (c) Quick sort
	Experiment 10 : Write programs illustrating file handling operations : (a) Copying a text file (b) Displaying the contents of the file, etc
	Appendix 1 : Key Elements Used in Trouble Free C++
	Appendix 2 : Questions Asked in Technical Interviews
	References
	Index
	Back Cover

		2017-09-08T08:57:06+0000
	Preflight Ticket Signature

