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Abstract

The utilization of biomedical data for various applications, such as disease diagnosis,

drug discovery, and treatment optimization, has become increasingly prevalent in recent

years. In this context, the selection of relevant features from large-scale biomedical

datasets plays a pivotal role in enhancing the accuracy and efficiency of data analysis

and modelling. This thesis explores the significance of feature selection in biomedical

data analysis and introduces a novel hybrid meta-heuristic algorithm tailored to address

this critical issue.

The research begins by highlighting the challenges posed by the complexity and dimen-

sionality of biomedical data, emphasising the need for effective feature selection methods

to alleviate the curse of dimensionality and improve the interpretability of machine learn-

ing models. A comprehensive review of existing feature selection techniques and their

limitations serves as a foundation for the development of an innovative hybrid meta-

heuristic algorithm that combines the strengths of multiple optimization techniques to

efficiently identify and select the most informative features from biomedical datasets. A

combination of the Chimp Optimization Algorithm (ChOA) and Sine-Cosine Algorithm

(SCA) is developed. This hybrid approach aims to strike a balance between exploration

and exploitation, ensuring the discovery of relevant features while maintaining compu-

tational efficiency. To evaluate the efficacy of the developed algorithm, a comparative

analysis is conducted with existing feature selection methods, including Particle Swarm

Optimization (PSO), Grey Wolf Optimization (GWO), Whale Optimization Algorithm

(WOA), Genetic Algorithm (GA), and Chimp Optimization Algorithm (ChOA). The

research focuses on the algorithm’s ability to improve classification accuracy and re-

duce the dimensionality of biomedical data, ultimately enhancing the interpretability

of machine learning models. To assess the algorithm’s real-world applicability, a series

of experiments are conducted using eight distinct datasets taken from the University

of California, Irvine (UCI) Machine Learning repository and the Mendely Data: Data

for Gene Selection repository. These datasets represent a range of large multi-modal

biomedical data, reflecting the diversity and complexity of real-world healthcare sce-

narios. The experiments employ popular classification techniques, including k-Nearest

Neighbours (KNN) and Random Forest (RF), to rigorously test the algorithm’s perfor-

mance across different biomedical data domains. The findings of this thesis contribute
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to the advancement of feature selection methodologies in biomedical data analysis, of-

fering a promising solution to the challenges posed by high-dimensional datasets. The

results of the comparative analysis demonstrate the superiority of the proposed hybrid

meta-heuristic algorithm in terms of feature selection efficacy, showcasing its potential

to significantly enhance the accuracy and interpretability of machine learning models

for biomedical applications.
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Chapter 1

Introduction

1.1 Background

In today’s interconnected world, the proliferation of digital gadgets, internet platforms,

and technical breakthroughs has resulted in an unparalleled explosion of data generation.

Large volumes of data have been generated in industries such as healthcare, banking, and

social media making it difficult to store, analyze, and efficiently predict outcomes from

data with such variable and complex structures. Data generated by online transactions,

emails, social media interactions, sensors, and mobile phone applications is becoming

increasingly challenging to store and manage using traditional database systems. Every

day, roughly 2.5 Quintilian bytes of data are created in cyberspace as a result of the tran-

sition of manual operations into automated solutions [1]. To conduct a comprehensive

analysis on a large scale, it is necessary to collect varied data from numerous sources.

Smartphones, cameras, and wearable devices, for example, can collect data on location,

movement, and activity (the data is usually connected in space and time, such as traffic

sensors located on the same stretch of road), whereas Internet of Things (IoT) devices,

such as smart thermostats and security cameras, can collect data pertaining to environ-

mental conditions and activities in homes and buildings. Storing every piece of data

from every source is effectively redundant because the same segment of data is being

stored but from various sources [2]. Furthermore, the data acquired is typically not in

any predefined format, making analysis of such unstructured data impossible. Moreover,

the introduction of cloud computing has made it simple and cost-effective to store and

handle enormous volumes of data. The social media platforms Facebook, Twitter, and

1
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Instagram create massive volumes of data about their users’ interests, preferences, and

interactions. Online platforms such as Netflix, Amazon, YouTube, and Spotify collect

information about their users’ purchases, viewing and listening habits, and preferences.

Additionally, the rise of e-commerce and online marketplaces has resulted in massive

volumes of data being created about customer behaviours and preferences.

1.2 Big Data

The collection of enormous amounts of data and the huge benefits seen from its us-

age gave rise to the phenomenon known as ”Big Data”. In recent times the utilization

of big data has emerged as a pivotal force driving innovation, efficiency, and informed

decision-making across a multitude of sectors. With the exponential growth of inter-

connected devices, online interactions, and data-generating systems, the potential of big

data to unveil insights and patterns hidden within immense information repositories has

become increasingly evident [3]. From personalised marketing strategies and predictive

maintenance in industries to healthcare diagnostics and urban planning, the strategic

application of big data analytics is revolutionising the way organizations and individ-

uals harness information to address challenges and seize opportunities in our complex

and dynamic world. However, simply collecting a huge volume of data alone would not

improve systems; it is not only the quantity of data but also its quality that influences

a system’s output [4]. Poor-quality data can have a negative impact on decision-making

and business operations since it can lead to erroneous and unreliable results. Such ef-

fects can have a substantial impact on the effectiveness and success of the organization.

As a result, improving data quality is critical in order to avoid risks and make sound

decisions based on reliable information [5].

1.3 Machine Learning

The advancements in machine learning (ML) and artificial intelligence (AI) have led to

increased data gathering and examination. ML models need a substantial amount of

data to be trained and enhanced, and with the increasing accessibility of data storage

and processing, it is easier to collect, store, and analyse large amounts of data. Further-

more, businesses are using data analytics to gain insights into consumer behaviour and
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preferences, leading to further increased data storage. The need to examine a signifi-

cant amount of data has led to the development of more sophisticated and accurate ML

models, which in turn leads to more data being generated. The symbiotic relationship

between big data and advances in ML has brought about a new era of unimaginable

possibilities in the field of modern technology. ML approaches have risen to the chal-

lenge of extracting useful patterns and insights from this information flood as the volume

and diversity of data created continue to grow [6]. The fusion of big data and ML has

paved the way for predictive analytics, natural language processing (NLP), image recog-

nition, and personalised recommendations. From classic algorithms like decision trees

and linear regression to cutting-edge methods like deep learning and neural networks.

This synergy has not only transformed industries, but has also enabled researchers and

practitioners to unravel complicated intricacies, allowing previously unthinkable feats of

automation, optimization, and cognitive computing to be realised [7].

Contradictory to the above, defective sensors and missing data points warrant a regular

small-scale data update and are also critical issues for big data analytics. A fraudulent

credit card, for example, must be warned and retained for future transactions. An-

other challenge for real-time analysis is data privacy and ownership, because there are

rigorous regulations restricting the use of sensitive data, limiting the applications and

methodologies that can be studied. As a result, the emergence of machine learning,

which is expected to minimise processing time and data storage, has certain negative

consequences in terms of data analysis.

One problem associated with managing mixed big data is automatically creating suf-

ficient metadata to characterise the recorded information. Knowing how much data

to save and how to use it is critical since only actionable and relevant data should be

saved. A primary focus for data science engineers is the subset dataset stored from a big

data platform that can be used later to reconstitute the original data. Materials used

in semiconductor-based storage systems have become scarce as natural resources have

depleted. To avoid the problems caused by the expanding amount of data, academics

have concentrated their efforts on creating and keeping only valuable data. This is ac-

complished through the use of multiple effective incremental ingestion approaches for

feature selection.
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1.4 Feature Selection in Machine Learning

ML approaches can be used to turn vast, unstructured datasets into smaller, more valu-

able ones. Dimensionality reduction strategies simplify the model and eliminate issues

like noise accumulation, misleading correlations, and unintentional homogeneity, which

can lead to decreased processing costs [8]. While collecting raw data subsets, combining

the human experience with automatic feature extraction provides for a quicker modelling

approach. For example, in an Artificial Neural Network (ANN), the buried layer nodes

generate internal representations that are equivalent to built features. Even though the

hidden layers in an ANN network can be automated, the hyper-parameter values, such

as the number of hidden layer neurons, are often adjusted by a human because each

data set has a different ANN model. Feature selection algorithms (FSAs’) are becoming

increasingly important in a wide range of applications such as computer vision, object

identification, computer vision, voice and speech recognition, data analysis, information

processing, and machine learning, in bio-informatics. In the pursuit of extracting mean-

ingful insights and enhancing the performance of machine learning models, the strategic

selection of relevant features from a vast dataset has become a cornerstone of success.

FS techniques, ranging from classical methods to advanced algorithms, play a pivotal

role in identifying the most informative attributes that drive predictive accuracy and

reduce dimensionality [9].

Figure 1.1: Process Diagram for Feature Selection Process

Principal Component Analysis (PCA) [10], a powerful dimensionality reduction tech-

nique, aims to capture the maximum variance within data by transforming it into a

new set of uncorrelated features. Linear Discriminant Analysis (LDA) is a statisti-

cal technique that projects high-dimensional data onto a lower-dimensional space while

maximising the separation between different classes, making it a powerful tool for clas-

sification and dimensionality reduction tasks [11]. Alongside these cornerstones, a mul-

titude of classical techniques such as Recursive Feature Elimination (RFE), Chi-Square,
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and Information Gain work cohesively to curate feature subsets that not only enhance

model interpretability but also mitigate the risk of over-fitting, ultimately yielding mod-

els that are both efficient and effective in tackling real-world challenges. A new field

of algorithms in this respect is meta-heuristic algorithms. A literature survey indicates

numerous feature selection strategies, each having merits and demerits.

1.5 Meta-Heuristic Algorithms

Meta-heuristic algorithms (MHAs’) are a form of modern algorithms that have been

utilised to tackle a range of optimization problems, including feature selection. These

algorithms are very effective for handling computationally intensive problems, as they

can identify near-optimal solutions by exploring the search space with heuristics and

stochastic processes [12]. One of the primary benefits of utilising MHAs’ for feature

selection is their ability to handle complex datasets. This is because MHAs’ can explore

a huge number of possible solutions efficiently, allowing them to discover salient features

even when working with high-dimensional data [13]. MHAs’ for feature selection are

mainly classified into three types: filter-based algorithms, embedded algorithms, and

wrapper-based algorithms.

1.5.1 Filter Based Algorithms

A widely used feature selection technique is filter-based algorithms, in which each fea-

ture’s significance or relevance is evaluated independently of the classification model

based on a criterion [14]. Mutual information (MI), Information Gain (IG), and Correlation-

based Feature Selection (CFS) are examples of often employed criteria. The MI criteria

assess the connection between a feature and a class label. The concept is that a trait

that is strongly related to the class label is thought to be more informative. MI is a

non-parametric measure that may be used for any feature and class label [15].

IG is a mutual information variant used in decision tree algorithms. It calculates the

reduction in entropy of the class label after using the feature to partition the data [16].

CFS is a filter-based method that measures the correlation between a class and a feature.

The correlation coefficient, which assesses the linear relationship between two variables,

is the foundation of CFS. It is a well-known method that is used in a wide array of



Introduction 6

applications, including bio-informatics and text classification. It is a simple method

that may be applied to both discrete and continuous data. While these strategies are

easy to implement and efficient, they may not always be effective. As an example, the

CFS method only considers the relevance of each individual feature to the class label,

and cannot find complex relationships between multiple classes and class labels [17].

Furthermore, these methods do not consider the specific learning algorithm that will be

employed and may not be optimised for the performance of that algorithm. Another

concern with filter-based feature selection is that it is sensitive to criterion selection,

which can result in variable outcomes depending on the criterion chosen. For example,

reciprocal information and information gain are two alternative criteria that can be

used to assess the importance of a feature, but they may yield different outcomes [18].

Furthermore, these approaches can be sensitive to outliers, leading to a bias towards

specific traits [19].

1.5.2 Embedded Methods

Embedded methods (EM) are another class of FSAs’ based on the optimization criterion

embedded in the classifier’s training process [20]. These methods optimise the criterion

by modifying the classifier parameters, such as feature weights in linear classifiers or

split parameters in decision trees [21]. LASSO [22] and Random Forest (RF) [23] are

some of the commonly used methods. These strategies necessitate greater computing

power than the filter and wrapper approaches, but they can produce better outcomes

by taking into account the link between the features and the class label [24]. One of

the main problems with EM-based FSA is that they necessitate the use of a specific

classifier or algorithm, which might result in inefficient feature selection if the classifier

or algorithm is not well suited to the dataset. Additionally, EM-based FSAs’ fail to

account for data distribution, resulting in insufficient feature selection due to outliers,

perhaps resulting in a bias towards specific features [25].

1.5.3 Wrapper Based Algorithms

Wrapper-based algorithms are another powerful class for feature selection. The afore-

mentioned methods assess the efficacy of a classifier by employing various subsets of

features. The wrapper approach is a search strategy that employs an iterative process
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of selecting or removing features based on the performance of the classifier [26]. The

two wrapping approaches that are commonly used in practice are Sequential Forward

Selection (SFS) and Sequential Backward Selection (SBS) [27]. The wrapper strategy

necessitates a higher allocation of processing resources compared to the filter method.

However, it has the potential to yield enhanced outcomes by considering the interplay

between features and the class label. One of the issues associated with this particular as-

pect of feature selection pertains to computational costs, as it necessitates the repeated

training of a classifier or algorithm using various subsets of data. The management

of massive datasets and high-dimensional data can be a substantial challenge. Further-

more, the requirement for a designated algorithm imposes constraints on its adaptability

to diverse datasets and tasks [28].

In addition, there are also methods that are based on the use of clustering techniques

for feature selection [29]. Such techniques originated from the idea of grouping similar

features together and selecting the most representative features from each group [30].

Commonly used clustering-based feature selection methods include k-means and hierar-

chical clustering [31]. These methods can achieve better performance by considering the

relationships between features and the class label, and by identifying the most relevant

features in each group. There are other statistical test-based feature selection approaches

[32]. These approaches evaluate each feature’s statistical significance in regard to the

class label [33]. The chi-squared test, t-test, and ANOVA are examples of commonly

used statistical-based feature selection procedures. These methods can outperform oth-

ers by taking into account the links between features and class labels and identifying

the most relevant features based on statistical significance.

1.6 Thesis Contributions

This thesis presents feature selection approaches that employ metaheuristic algorithms

to reduce the dimensionality of datasets with various sizes. The primary objective of this

thesis is to investigate the effectiveness of combining two algorithms, namely the Binary

Chimp Optimization Algorithm (BChOA) and the Sine Cosine Algorithm (SCA). This

research is motivated by the notable achievements reported in the existing literature on

hybrid metaheuristic implementation [34–38]. The performance of the proposed tech-

nique addressed the constraints of the BChOA in effectively solving high-dimensional
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feature selection. This study proposes a hybrid adaptation of the Binary Chimp Opti-

mization metaheuristic approach, which is combined with the SCA. The effectiveness of

the BChOA technique in locating global minima is boosted by the optimization of its

ability to navigate the solution search space of the underlying issue landscape, resulting

in improved outcomes. The algorithm under consideration is referred to as the Hybrid

Sine Cosine – Chimp Optimization Algorithm (BSChOA). The proposed methodology

involves the utilization of the SCA as a subordinate component, working in conjunction

with the BChOA to enhance the efficiency of global solution exploration by reducing

the time frame required. The domain of metaheuristic algorithms is undergoing ongoing

development as scholars increasingly acknowledge the necessity for a broad spectrum

of methodologies. The continual pursuit of new and novel metaheuristic optimization

algorithms persists in accordance with the No Free Lunch (NFL) principle, which asserts

that no single approach can universally solve all optimization problems. The continuous

endeavour is motivated by the recognition that innovative algorithms are essential for

effectively tackling the distinct challenges presented by diverse optimization tasks. The

key contributions of this thesis in this regard are as follows:

1. A FS model is developed with the objective of generating a subset feature dataset.

The primary goals of this model are to minimise the storage requirements of ex-

tensive data, eliminate redundant features, and improve the accuracy of the clas-

sification model.

2. A novel hybrid MH model, referred to as BSChOA, has been devised by integrating

the ChOA and the high-performing SCA. This integration aims to harness the

exploration and exploitation capabilities of both algorithms, thereby improving the

overall search performance and yielding superior outcomes for the feature selection

problem.

3. The search technique employed by the ChOA is improved with the incorporation

of the SCA within the mathematical model framework.

4. The performance of the proposed feature selection technique is assessed by employ-

ing KNN and RF-based classifiers on a total of 8 datasets. These datasets consist of

multi-class unbalanced high-dimensional biomedical datasets taken from UCI and

Mendeley datasets for Gene Selection repositories. Furthermore, a comprehensive
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comparative analysis is conducted to assess the performance of the aforementioned

algorithm in comparison to conventional approaches.

1.7 Thesis Outline

This chapter provides a concise examination of the underlying rationale for utilising FS

based dimensionality reduction strategies in addressing the challenges associated with

the analysis of large-scale datasets. Chapter 2, examines previous studies on feature

selection methods that rely on deep learning models. It also explores the associated

difficulties and the application of metaheuristic algorithms in the process of feature

selection. Furthermore, the thesis also provides an in-depth analysis of several imple-

mentations of metaheuristic algorithms. Chapter 3 introduces the mathematical model

of the BS-ChOA, taking into account the cost/fitness function, system update policy,

and computational complexity. In addition, this chapter provides an explanation of the

unique strategy for feature selection using variance-based methods, as well as the artifi-

cial neural network model that is based on the BS-ChOA algorithm. In Chapter 4, the

method is evaluated against contemporary metaheuristic algorithms using multiple bio-

medical datasets. The evaluation is conducted based on several performance metrics,

including accuracy, precision, F1-score and time complexity. A comprehensive analy-

sis of the obtained outcomes, demonstrating the superiority of the proposed BSChOA

and the variance-based feature selection strategy over conventional methodologies is also

presented in this chapter. Chapter 5 concludes the study by providing a comprehen-

sive overview of the research conducted and presents valuable perspectives on potential

future avenues for exploration.



Chapter 2

Literature Review

2.1 Deep Learning (DL) Based Feature Selection

The utilization of deep learning techniques has gained significant traction within the

machine learning domain, particularly in the context of FS, as seen by their growing

popularity in recent years. The use of deep neural networks (DNN) to find and pick

the most pertinent and informative features for a given dataset is a novel approach

known as Deep Learning based Feature Selection (DLFS). According to [18], FS methods

based on DL can acquire intricate data representations. This ability enables them to

discern characteristics that hold significance for a given task or classifier. Furthermore,

it has been observed that DL-based techniques for FS possess the capability to take into

account the intricate relationships and interactions among features. This characteristic

has the potential to enhance the precision and accuracy of the feature selection process

[39].

One of the primary benefits associated with DLFS techniques is its capability to effec-

tively manage high-dimensional datasets and large-scale data collections. The rationale

behind this is that deep learning-based methods for feature selection can acquire knowl-

edge about the underlying structure of the data, enabling them to discern pertinent

features even in scenarios involving data with a large number of dimensions. Moreover,

it has been shown that DLFS techniques possess the capability to consider the underlying

data distribution, resulting in enhanced accuracy in the process of feature selection [25].

10
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Auto-encoders (AE) are widely recognised as one of the prevailing approaches for fea-

ture selection in deep learning. AE are a type of neural network that undergoes training

to recreate the input data by utilising a representation of reduced dimensionality. The

concealed layers of the auto-encoder can be perceived as a condensed depiction of the

input data, serving as a method for selecting features. The utilization of the AE-based

feature selection technique has been observed in diverse fields, such as medical diagnosis

[40], text classification [41], and image recognition [42]. Xu et al. in [43] introduced

an AE- based approach for feature selection in the context of drug response prediction.

The approach employed a hybridization of the random forest technique and the Boruta

algorithm to demonstrate the efficacy of the proposed model.

The Deep Belief Networks (DBNs) are another robust method for feature selection in

the context of deep learning. DBNs are a type of hierarchical generative model that

acquires a layered representation of the input data. These networks consist of many

Restricted Boltzmann Machines (RBMs) arranged in a stacked manner. DBNs have

demonstrated successful applications in diverse domains, including speech recognition

[44] and drug development [45]. DBN-based feature selection algorithms have been

widely employed in the domain of bio-informatics for gene expression data analysis and

bio-marker development [46, 47]. An illustrative instance may be seen in the study

conducted by Ding et al. [48], whereby deep neural networks were effectively employed

to identify pertinent traits and categorise medications into therapeutic classes using their

transcriptional profiles. Convolutional Neural Networks (CNN) and Recurrent Neural

Networks (RNN) are widely employed deep learning architectures for feature selection

across many domains. CNNs have demonstrated a high level of effectiveness in the

field of image analysis and have gained significant popularity for their ability to extract

features and perform classification in many computer vision applications. Furthermore,

CNNs have demonstrated their efficacy not only in the realm of image classification but

also in the field of feature selection across several domains, including natural language

processing and speech recognition. In [49] a multi-modal CNN was devised to extract and

choose pertinent characteristics from both image and text data to identify counterfeit

news.

RNNs conversely, are specifically engineered to effectively analyse sequential data and

are frequently employed in various domains such as natural language processing, speech

recognition, and time series analysis. RNNs possess the capability to acquire knowledge
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of temporal dependencies present within the data, enabling them to discern significant

aspects that hold relevance in the prediction of forthcoming values. In a recent study

conducted by [50], the researchers introduced a cost-sensitive deep active learning ap-

proach that utilises a double-deep neural network (double-DNN) incorporating three

fundamental neural network architectures (1D CNNs, LSTM, and GRU). The objective

of this approach is to enhance the detection of epileptic seizures while minimising the

need for extensive sample labelling. The suggested methodology demonstrates a reduc-

tion in the number of labelled samples by a maximum of 33% and 80% when compared

to uncertainty sampling and random sampling, respectively. Both CNN and RNN have

been integrated with other deep learning architectures to enhance the performance of

feature selection. In a recent work by [51], the researchers devised a hybrid CNN-RNN

model to discern pertinent elements from electroencephalogram (EEG) data to forecast

the commencement of seizures. The model demonstrated superior accuracy compared

to conventional feature selection techniques, although employing a reduced number of

features. Although DL/ML-based feature selection algorithms have demonstrated ef-

fectiveness, they are not without their accompanying problems. One of the primary

obstacles lies in the necessity for a considerable volume of data to effectively train deep

neural networks, a predicament that can become problematic when confronted with

limited datasets. Moreover, it is worth noting that feature selection approaches based

on deep learning might impose a significant computational burden due to the necessity

of training extensive neural networks. To address the challenges stemming from these

limits, the academic literature offers an alternative category of algorithms that employ

randomised movement as a fundamental approach to achieving optimal solutions within

much-reduced timeframes. These algorithms are within the category of metaheuristic

algorithms.

2.2 Meta-heuristic Algorithms

MHAs are a class of approximation optimization approaches that employ probabilistic

techniques for solving problems. In essence, meta-heuristics provide domain-specific

expertise through the utilization of a high-level strategy that facilitates the sharing of

solutions among multiple nodes executed in parallel. The algorithm functions are divided

into two distinct phases, namely the exploration phase and the exploitation phase. The
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exploration phase is characterised by the search for a global solution within the search

space through unpredictable movements. On the other hand, the exploitation phase

aims to converge towards the global solution of the current iteration. The efficient search

process is heavily influenced by the trade-off between the two phases, which is determined

by the hyper-parameters specified for the algorithm. From a motivational perspective,

metaheuristic algorithms can be categorised into four distinct groups: biology-based,

mathematics-based, physics-based, and human-social interaction-based [52–55].

2.2.1 Physics Based Algorithms

Physics-based algorithms are derived from the fundamental rules of physics, encompass-

ing principles from several domains such as physics, chemistry, music, dynamic systems,

and metallurgical processes. The authors of the study [37] introduced a novel approach

for dimensionality reduction in the context of speech emotion recognition, specifically,

they recommended the utilization of the golden ratio-based equilibrium optimization

method. Simulated Annealing (SA) and Gravitational Search Algorithm (GSA) are

some well-known physics-based MHAs.

2.2.1.1 Simulated Annealing (SA)

Simulated Annealing (SA) is an optimization algorithm that draws inspiration from the

annealing process observed in metallurgy. The SA algorithm, first presented in [56],

has gained significant popularity in addressing intricate optimization issues that pose

challenges for conventional optimization methods. The algorithm emulates the process of

gradual cooling and crystallization observed in materials to explore the global optimum

within a specified search space.

SA operates on the notion of probabilistic acceptance, which enables it to successfully

explore the search space and avoid being trapped in local optima. The algorithm com-

mences by initialising a solution and afterwards proceeds to iteratively perturb it through

the introduction of minor random modifications. Subsequently, the quality of the newly

proposed solution is assessed using an objective function, and a decision is made about

its acceptance or rejection. This decision is influenced by a probability that is defined by

the temperature at the current state and the disparity between the objective function
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values of the new solution and the current solution. As the algorithm advances, there

is a steady drop in temperature, resulting in a heightened concentration of the search

around potential solutions that show promise. The mathematical formulation of sim-

ulated annealing encompasses the utilization of a temperature schedule and a cooling

function.

2.2.2 Human-Social Interaction Based Algorithms

2.2.2.1 Group Teaching Optimization Algorithm (GTOA)

GTOA is a metaheuristic optimization algorithm that draws inspiration from the in-

structional methods employed in classroom settings. It was first proposed by Zhang et

al. [57] as a method to effectively explore and find the best solution for intricate optimiza-

tion issues by simulating the collaborative interaction between students and professors.

The algorithm employs a combination of exploration and exploitation tactics to attain

a harmonious equilibrium between global and local search.

In the context of GTOA, the population of candidate solutions is metaphorically rep-

resented as a collective of pupils, while the optimal solution is analogously regarded as

the most proficient instructor. The method commences by initialising the placements

of the student group within the search space through a random generation process.

Each student thereafter modifies their position by taking into account the impact of the

highest-performing student within the group, the influence of the most accomplished

teacher, and the historically optimal position. This procedure facilitates the examina-

tion of various regions within the search space, while simultaneously capitalising on the

knowledge gained from the most optimal solutions discovered thus far. The efficacy of

GTOA can be influenced by many parameter choices, including the group size (i.e., the

number of students in the group) and the influence coefficients utilised in the position

update equation. Precise parameter calibration is crucial to guarantee the attainment

of optimal performance across various problem areas.

2.2.2.2 Tabu Search (TS)

TS algorithm, which was proposed by Fred W. Glover in his 1998 work [58], is a meta-

heuristic optimization technique. The inspiration for this notion stems from the idea
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of utilising memory and leveraging past search experiences to enhance the effectiveness

of the search process. Tabu search (TS) is well-suited for addressing combinatorial op-

timization issues characterised by the presence of a vast search space and a multitude

of local optima, making the identification of the global optimum particularly problem-

atic. Within the context of TS, the algorithm effectively manages a transient memory

component referred to as the Tabu list. This list serves the purpose of monitoring and

recording solutions that have been recently explored. The presence of this memory

effectively inhibits the algorithm from re-examining previously explored solutions or ex-

ecuting actions that result in known unsatisfactory regions. The implementation of a

Tabu list in TS restricts some moves, hence encouraging the investigation of unexplored

locations and facilitating the diversity of the search process. The algorithm employs an

iterative approach to systematically investigate the search space by executing succes-

sive neighbourhood moves from the current solution. The evaluation of each move is

conducted through the utilization of an objective function, and thereafter, the optimal

move is selected based on its ability to enhance the objective value. Nevertheless, TS

also permits the consideration of moves that result in a deterioration of the objective

value to avoid being stuck in local optima. This acceptance of sub-optimal motions is

typically determined by aspiration criteria or strategic oscillation tactics.

2.2.3 Biology Based Algorithms

Algorithms falling under the category of biology-based algorithms draw inspiration from

the social behaviour exhibited by avian, pis-cine, and mammalian species, as well as

the biological mechanisms governing evolutionary processes. The Particle Swarm Opti-

mization (PSO) algorithm and Genetic Algorithm (GA) are the most notable examples

within this category.

2.2.3.1 Particle Swarm Optimization (PSO)

The PSO method is widely recognised as a prominent metaheuristic approach that draws

inspiration from the collective behaviour observed in bird flocking or fish schooling. It

was initially proposed by Kennedy and Eberhart in 1995 [59], and has gained signifi-

cant popularity in the field of optimization due to its straightforwardness and effective-

ness. The method emulates the combined intellectual capacity of a group of organisms,
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wherein particles symbolising various solutions traverse the search space to locate the

most effective solution. Every particle updates its position by considering both its own

best solution and the best solution discovered by the entire swarm. The aforementioned

iterative procedure persists until an acceptable solution is attained. PSO algorithm can

be formally expressed in the following manner:

Every individual particle i within the swarm possesses a location vector denoted as Xi

and a velocity vector denoted as Vi. The position and velocity are iteratively updated

using the formulae provided below:

Xn(k + 1) = Xn(k) + Vn(k + 1), (2.1)

Vn(k) = w.Vn(k) + c1.r1(Pn −Xn(k)) + c2r2(G−Xn(k)), (2.2)

Here, Xn(k+1) represents the updated position of particle n at iteration k+1. Similarly,

Vn(k + 1) denotes the updated velocity of the particle. The variable w corresponds to

the inertia weight, while c1 and c2 represent the acceleration coefficients. The values r1

and r2 are random numbers ranging from 0 to 1. The term Pn denotes the personal best

position of particle n, and G represents the global best position among all particles in

the swarm.

Numerous research studies have provided evidence of the efficacy of PSO in addressing

diverse optimization challenges. For example, in [60] the author employed PSO to tune

the parameters of Support Vector Machines (SVMs) for classification tasks. Their study

showed that PSO outperformed other optimization approaches in terms of achieving

greater performance.

In a separate inquiry conducted by Zhang et al. (2019) [61], the utilization of PSO was

employed to enhance the arrangement of wind turbines within a wind farm, leading

to notable enhancements in power generation efficiency. The aforementioned examples

serve to demonstrate the adaptability and wide-ranging applicability of PSO in various

fields. In [62] Luo et al.introduced a PSO-based approach for feature selection in the

analysis of gene expression data with high dimensionality. The algorithm employed a

process of gene selection, identifying a subset of genes that had the highest discriminatory

power in discriminating between various types of cancer. This resulted in a notable

enhancement in the accuracy of cancer classification.
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Although PSO has demonstrated usefulness, it is important to acknowledge that it

also possesses certain limits. One of the primary obstacles encountered in swarm op-

timization is the phenomenon known as premature convergence, wherein the collective

fails to sufficiently explore the entirety of the search space and becomes trapped in a

poor solution. Several strategies have been proposed to address this problem, includ-

ing adaptive inertia weights and velocity clamping. Another constraint that should be

considered is the susceptibility of PSO to the selection of control parameters, such as

inertia weight and acceleration coefficients, which necessitate meticulous calibration for

varying issue scenarios. Furthermore, the issue of scalability arises in the context of

PSO when confronted with optimization problems of significant magnitude, mostly due

to the substantial computational expenses involved.

2.2.3.2 Genetic Algorithm (GA)

Genetic Algorithm (GA) belongs to a category of optimization algorithms that draw

inspiration from the ideas of natural selection and genetics. GA was first proposed

by Holland in the 1970s [63]. Since then, they have become widely recognised and

utilised for their remarkable ability to efficiently solve intricate optimization problems.

The algorithm emulates the phenomenon of evolution by upholding a population of

prospective solutions and iteratively implementing genetic operators, such as selection,

crossover, and mutation, to produce new progeny. By use of an iterative procedure,

GA aims to locate an ideal solution by progressively enhancing the population across

successive generations.

GA can be formally stated in the following manner: The representation of a popula-

tion of individuals is in the form of a collection of chromosomes. These chromosomes

consist of strings of binary or real-valued genes that encode potential solutions. The

algorithm progresses iteratively over a sequence of generations. Within each successive

cohort, individuals undergo assessment and scrutiny depending on their level of fitness,

which serves as a measure of the excellence and efficacy of their proposed solutions.

The utilization of selection operators, such as roulette wheel selection or tournament

selection, is a common practice in evolutionary algorithms to determine the individuals

with superior fitness levels who will be chosen as parents for the subsequent generation.

Crossover operators are utilised to merge the genetic material of two parents, resulting
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in the creation of kids. Conversely, mutation operators introduce random alterations to

the genetic makeup of the offspring’s genes. The aforementioned procedure is iterated

over multiple generations until an acceptable resolution is achieved.

A plethora of studies have provided evidence about the efficacy of GA across several

disciplines. Li et al. (2019) in [64] employed a GA to optimise the deployment of wireless

sensor networks, resulting in enhanced coverage and energy efficiency when compared

to alternative approaches. In a separate investigation conducted by Babatunde, et al.

[65], GA was utilised to perform feature selection in the context of picture recognition.

This approach led to a reduction in the dimensionality of the feature space and an

improvement in the accuracy of classification. The aforementioned examples underscore

the multifaceted nature of GA in effectively addressing optimization challenges within

several domains.

One of the primary obstacles faced by GA is computing complexity, particularly when

dealing with large-scale optimization problems. This arises from the necessity of eval-

uating the fitness of an entire population in each generation as a fundamental step of

the algorithm. Several strategies, including parallelization and fitness approximation,

have been suggested as potential solutions to address this problem. GA suffers from

premature convergence, a phenomenon in which the algorithm becomes ensnared in a

sub-optimal solution, impeding its ability to thoroughly explore the entirety of the search

space. To tackle this issue, scholars have put up sophisticated operators and procedures

for maintaining diversity. Furthermore, the selection of parameter values, such as the

size of the population and the rate of mutation, can have a substantial influence on the

effectiveness of GA and frequently necessitate meticulous calibration.

2.2.3.3 Grey Wolf Optimization (GWO)

GWO algorithm is a distinctive and robust metaheuristic algorithm that draws inspi-

ration from the hunting behaviour of grey wolves in the natural world. The GWO

algorithm, as presented by Mirjalili et al. [66], has garnered significant interest within

the optimization community owing to its straightforwardness and effectiveness in ad-

dressing intricate optimization challenges. The algorithm simulates the social structure

and cooperative hunting tactics observed in grey wolves, employing an iterative approach

to systematically explore and identify the most efficient option. A collective group of
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wolves in the context of GWO symbolically represents a population of potential solu-

tions. The process commences by randomly initialising the positions of the alpha, beta,

and delta wolves, which serve as representations of the most optimal solutions discovered

thus far. Subsequently, every individual wolf within the pack proceeds to modify its po-

sition by the positions held by the alpha, beta, and delta wolves, while also taking into

consideration its capacities for exploration and exploitation. The programme iteratively

advances, enabling the wolves to adjust and optimise their placements until a desirable

result is achieved.

The usefulness of GWO has been proven in a variety of optimization challenges. Liu

et al. (2021) in [67] utilised the GWO to optimise the parameters of an SVM clas-

sifier. Their study demonstrated that the application of GWO resulted in enhanced

classification accuracy when compared to alternative optimization algorithms. In a sep-

arate investigation conducted by Guezgouz et al., [68], GWO was employed to optimise

the allocation of renewable energy resources within a power system. This optimization

approach resulted in improved overall system efficiency and cost reduction. The afore-

mentioned examples demonstrate the multifaceted nature and wide-ranging utility of

GWO in several fields.

Although GWO has demonstrated encouraging outcomes, it is important to acknowledge

its inherent limits. One constraint that should be considered is the model’s susceptibility

to parameter adjustment, namely the hunting intensity coefficients and the beginning

placements of the alpha, beta, and delta wolves. The efficacy of GWO is contingent upon

the values assigned to its parameters, necessitating meticulous calibration to cater to di-

verse optimization challenges. One additional constraint is the possibility of premature

convergence, wherein the search procedure becomes stagnant prematurely, thereby im-

peding any further investigation of the search domain. To address this concern, scholars

have put forth potential approaches, including the implementation of dynamic popula-

tion size and the utilization of adaptive parameter control.

2.2.3.4 Whale Optimization Algorithm (WOA)

WOA is a novel optimization method inspired by nature that was proposed by Mirjalili

et al. in their work, work, [69]. The exploration and exploitation technique employed

by WOA, which draws inspiration from the hunting behaviour of humpback whales,
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has demonstrated significant potential for effectively addressing a range of optimiza-

tion challenges. The algorithm emulates the bubble-net hunting behaviour observed in

whales, wherein a group of potential solutions, represented as whale positions, undergoes

repeated searching to find the most effective solution.

Within the framework of WOA, the algorithm effectively manages a population of

cetaceans and systematically adjusts their spatial coordinates through the use of two

primary methodologies: exploration and exploitation. The process of exploration in-

volves the use of a random search equation to update the position of each whale, thereby

facilitating a wide exploration of the search space. In contrast, exploitation is accom-

plished through the manipulation of the optimal solution’s position by using a spiral

equation, enhancing its effectiveness. The integration of these two tactics in the WOA

methodology facilitates efficient exploration of the search space while simultaneously

converging towards the most ideal solution.

WOA has also been used for the purpose of FS in [70], the study covers a wide array

of benchmark datasets and compares the performance of this algorithm with GA, PSO,

GWO and Ant Lion Optimizer (ALO). The results indicated the performance WOA is

better than conventional algorithms, however, the algorithm suffers greatly when dealing

with high dimensional datasets and there is still room for improvement.

2.2.3.5 Chimp Optimization Algorithm (ChOA)

ChOA is a novel technique proposed by Khishe et al. in [71], this NIA is based on

the hunting and sexual behaviours of chimpanzees (sometimes referred to as chimps)

as shown in Figure 2.1. Chimps live in the form of fission-fusion groups merging and

collapsing while covering a wide range of areas. Among these groups, the chimps are

further divided into different groups namely the divers, chasers, barriers and attack-

ers defending their territory against other groups. By modelling and simulating the

hunting behaviour and learning strategies of chimps in the wild, it was proposed as a

metaheuristic algorithm for optimization tasks in engineering, science, and other fields.

ChOA proposed by Khishe et al. in [71] gains inspiration from the hunting preferences

of chimps in a natural setting. The hunting behaviour of chimps can be categorised into

two distinct phases: exploration and exploitation. The process of exploration involves
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the act of attacking, blocking, and chasing the prey, which in turn leads to the discov-

ery of a broader region inside the search space on a global scale. On the other hand,

exploitation involves the act of attacking the prey, which provides possibilities for local

search within the promising areas that were identified during the exploration phase.

Figure 2.1: Attacking Strategy of Chimps[71]

To execute the sequential actions involved in hunting, a division of labour is observed

among chimpanzees, consisting of four distinct roles: the driver, chaser, barrier, and

attacker. Every chimp within the population serves as a candidate solution within

the search space. The chimpanzees categorised as attacker, barrier, chaser, and driver

represent the most optimal, second most optimal, third most optimal, and fourth most

optimal solutions, respectively. At each iteration, the rest of the chimps are forced to

update their position based on the location of the attacker (XA), barrier (XB), chaser

(XC) and diver (XD) chimps. The updated position of chimps can be calculated as.

XA(k + 1) = XA(k)−A1.D
n
A,

XB(k + 1) = XB(k)−A2.D
n
B,

XC(k + 1) = XC(k)−A3.D
n
C ,

XD(k + 1) = XD(k)−A4.D
n
D,

(2.3)

Xn(k + 1) =
XA(k + 1) +XB(k + 1) +XC(k + 1) +XD(k + 1)

4
, (2.4)
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Here XA(k),XB(k),XC(k),XD(k) show the current position of the chimps in the search

space, while XA(k + 1),XB(k + 1),XC(k + 1),XD(k + 1) show their next approximate

move, the next position of the nth chimp Xn(k) for k
th iteration is calculated using (2.4).

Dn
A, Dn

B, Dn
C and Dn

D are the distance of the attacker, barrier, chaser and diver from

the nth chimp for kth iteration and A1, A2, A3 and A4 are random vectors. The values

of Dn
A, Dn

B, Dn
C and Dn

D can be calculated as follows.

Dn
A = |C1.Xn −M.XA(k)|,

Dn
B = |C2.Xn −M.XB(k)|,

Dn
C = |C3.Xn −M.XC(k)|,

Dn
D = |C4.Xn −M.XD(k)|,

(2.5)

A1, A2, A3, A4, and C1, C2, C3, C4 are the random coefficient vectors calculated by

using the following equations.

A1 = (2r11 − 1)f,

A2 = (2r12 − 1)f,

A3 = (2r13 − 1)f,

A4 = (2r14 − 1)f,

(2.6)

C1 = 2r21,

C2 = 2r22,

C3 = 2r23,

C4 = 2r24,

(2.7)

M = chaotic value, (2.8)

Here, rij (i, j = [1, 2, 3, 4]) are random values in the range [0, 1] based on uniform distri-

bution and f decreases non-linearly form 2.5−0 throughout the process. M is a random

chaotic value and could be generated from Gaussian or Bernoulli distribution. The com-

plete position update rule for each chimp n for the kth iteration is given by (2.9). The

variable M represents the impact of sexual incentives on the behaviour of chimpanzees

during the concluding phases of hunting. This motivation leads to unpredictable be-

haviour, wherein the chimps relinquish their hunting duties and make desperate efforts

to get prey. To update the position of the chimpanzees during the optimization pro-

cess, a probability of 50% is employed to randomly choose between the chaotic model

and the conventional part updating procedure. The subsequent equation represents the
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theoretical framework:

Xn(k) =


XA+XB+XC+XD

4 , if ϕ < 0.5

M, if ϕ > 0.5
(2.9)

The procedure is initialised by randomly generating a population, then calculating the

fitness value for these populations and equating the top four chimps as the attacker

(XA), barrier (XB), chaser (XC), and driver (XD). The algorithm iterates through

the following steps until it satisfies a specified termination requirement. Initially, the

fitness function is employed to assess each solution inside the population. Afterwards,

the system proceeds to update the positions and scores of the attacker, barrier, chaser,

and driver. Next, the method proceeds to update the values of the F, rij , and M

coefficients. Thirdly, the determination of the primary coefficients of A and C is achieved

by employing the values of the rij , and F parameters, as specified in equations (2.6) and

(2.7). The chimps’ positions are updated using equations (2.3), (2.7), and (2.9) in the

last step. Consequently, the optimal resolution, specifically the location of the prey, is

retrieved. Algorithm 1 describes the pseudo-code for the ChOA. ChOA has been used

for FS process; In [72] a binary chimp optimization algorithm (BChOA) is developed,

which uses the ChOA to address the task of feature selection. This work examines the

use of two transfer functions, namely the S-shaped and V-shaped functions, to convert

the continuous form of ChOA into a binary representation. The technique that has been

created is subsequently subjected to a comparative analysis with established algorithms

such as GA, PSO, BA, and ACO.

The algorithm, however, is accompanied by some obstacles and restrictions that impede

its effectiveness when used for large datasets. The agent’s ability to explore the search

space is constrained by the mobility restrictions imposed by the Gaussian randomization

process. Furthermore, as a result of the intricate nature of the algorithm, the agents

become trapped in local optima and are unable to adequately traverse the search space.

Consequently, this leads to inferior solutions when dealing with diverse situations. In

addition to these problems, the chimp update rule as shown by (2.4) shows that the new

chump location is updated using a simple average that could lead to divergent behaviour

as XA is the chimp with the best fitness while the others have a lower fitness value, hence

there is room for improvement in this regard. Considering these problems, the ChOA

exhibits increased vulnerability to premature convergence and the local minima problem,

which leaves room for improvement.
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Algorithm 1 Steps for ChOA

Initialise population size N , dimension d, max iterations kmax.

Set k = 0, and generate random population Xn(n = 1, 2...N).

Initialise fitness values for population.

while k <= kmax do

for n = 1 : N do

Define the group strategy.

Update agents using group strategy.

end for

for j = 1 : d do

if j < 1 then

Update current position.

else if j > 1 then

Select random chimp.

end if

end for

Update Attacker, Barrier, Driver and Chaser.

k = k + 1.

end while

return Global Best

2.2.4 Mathematics Based Algorithms

MHAs that are based on mathematics employ mathematical models and methodologies

to address intricate optimization problems, which encompass the task of feature selec-

tion. The Arithmetic Optimization Algorithm (AOA) and the Sine Cosine Algorithm

(SCA) are two often employed metaheuristic algorithms in the field of mathematics [73].

The article by Sindhu [74] assessed the efficacy of SCA as a method for feature selection

in face recognition and handwritten digit recognition data sets.

2.2.4.1 Sine-Cosine Algorithm (SCA)

SCA is a stochastic optimization technique that utilises sine and cosine mathematical

functions. It is designed to solve optimization issues in a population-based manner.

The search process in SCA is initiated by employing a random population. In each

subsequent generation, this agent set is modified using mathematical expressions that

rely on sine and cosine functions. The position of each individual is evaluated by the
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formulae shown below [75].

ζk+1
i =


ζkn + (r1 ∗ sin r2 ∗ |xkn − r3ζ

k
n|), if r4 < 0.5

ζkn + (r1 ∗ cos r2 ∗ |xkn − r3ζ
k
n|), if r4 >= 0.5

(2.10)

The variable ζkn represents the nth agent’s position for kth iteration while ζk+1
n shows

the next position of this agent. Additionally, r1 is a deterministic parameter, while

r2, r3, r4 are evenly distributed random numbers that influence the exploitation and

exploration of the search space. Lastly, xkn denotes the position of the best agent in the

nth dimension after kth iterations.

The deterministic variable r1 determines the magnitude of each step and can be in the

space between the current and best solution or outside this space as shown in Figure 2.2.

The value of r1 is determined by the following equation. The variable r2 is a random

number on the range [0, 2π] and determines the direction and margin of movement. r3

is a weight determined randomly to find the best solution. r3 is defined by r3 = a ∗ w

where a is a constant number and w is a random number in the range [0, 1].

r1 = f − f(
k

kmax
), (2.11)

where f is a constant k is the current iteration and kmax is the total number of iterations.

Figure 2.2: Particle Movement in SCA [75]

Finally, the variable r4 is a Gaussian distributed random number which switches the

algorithm between sine and cosine functions. The variables r1, r2, r3 and r4 are modified

at each iteration to enhance the diversity of the solutions. By modifying the ranges of the

sine and cosine functions, the agents can explore regions outside the interval between
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their respective targets. Furthermore, this prompts an investigation into the search

space. Figure 2.2 illustrates how the aforementioned equation delineates the spatial

relationship between two individuals inside the search space. Algorithm 2 describes the

pseudo-code of SCA.

Algorithm 2 Steps for SCA

Initiate population N , max iterations kmax.

Set k = 0, ρ = 0.

while k ≤ kmax do

Evaluate parameter ρ.

for each agent do

Update and search using Sine and Cosine functions.

end for

Update position of current agents.

k = k + 1.

end while

2.2.5 Variants for Metaheuristic Algorithms

This part of the literature review demonstrates a wide range of applications in which

hybrid, enhanced, and multi-objective variations of metaheuristic algorithms have been

implemented.

2.2.5.1 Hybrid MHAs

The FSAs proposed by Yu et al. utilise a hybrid approach that combines PSO and

GA in [34]. The PSO technique is employed to build an initial population of solu-

tions, whereas the GA is utilised to execute the selection and crossover procedures. The

technique underwent testing on multiple benchmark datasets and showed superior per-

formance compared to various other feature selection methods. A comparable dataset

was also introduced in Stephan et al. in [35], where a hybrid method combining the

Artificial Bee Colony (ABC) Optimization algorithm and the WOA was employed. In

the study conducted by Wan et al. [76], two models were introduced that combined

the techniques of Ant Colony Optimization (ACO) and Genetic Algorithm (GA). These

models were then evaluated against the current state-of-the-art methods using various

datasets derived from the UCI repository. A hybridised approach combining the GA

and Cuckoo search techniques was proposed in a study conducted by Jona et al. [77].
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This approach utilised a hybridised wrapper-based method for addressing the feature

selection task. The authors Moradi et al. [78] introduced a local exploration model in

their study, which aimed to assist PSO in the selection of marginal deducts based on

their correlation data. The authors of the study investigated the utilization of robotic

manipulators. They enhanced a modified PSO algorithm by using Differential Evolution

(DE) techniques. The objective of this research was to present a comprehensive analysis

of various types of manipulators, including serial and parallel manipulators, as well as

the 10-DOF hybrid redundant serial-parallel robots. The work was documented by Mao

et al. [36] in 2017. The reactive power problem was addressed by Lenin et al. [38] by the

utilization of a hybrid approach that included TS and SA algorithms. The approach was

also utilised to solve a symmetrical instance of the travelling salesman issue. Mafarja et

al. [79] introduced a hybrid feature selection strategy that combines the use of SA and

GA in their study. The algorithm has shown favourable performance when evaluated

on the UCI dataset, specifically in terms of the number of selected attributes, when

compared to existing state-of-the-art methodologies.

2.2.5.2 Improved MHAs

The literature shows various methods for enhancing MHAs, to mitigate the issue of

premature convergence. One potential approach is to dynamically modify the random

step size or search range in response to the algorithm’s progress. The utilization of this

adaptive mechanism guarantees the preservation of a balanced exploration-exploitation

equilibrium during the entirety of the optimization process. The paper by Stützle and

Hoos [80] presents the MAX-MIN Ant System (MMAS), an ACO algorithm that is

derived from the Ant System. This algorithm demonstrates improved performance com-

pared to its predecessor on well-established benchmark problems, including the Travel-

ling Salesman Problem and the Quadratic Assignment Problem. In their study, Cai et al.

[81] introduced an Adaptive Particle Swarm Optimization (APSO) algorithm. This algo-

rithm incorporates a stability criterion to dynamically adjust the parameters of the PSO

algorithm. The aim is to achieve optimal convergence while avoiding premature con-

vergence. Through simulations conducted on established problems, the authors demon-

strate the superior performance of APSO compared to the conventional PSO algorithm.

The techniques for addressing challenging problems using Fuzzy Adaptive Simulated

Annealing (Fuzzy ASA) and regular ASA are presented by the author in [82]. These
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algorithms are advanced global optimization methods that are rooted in the simulated

annealing paradigm. The author provides comprehensive illustrations of their practi-

cal implementation and emphasises their minimal mathematical prerequisites. The re-

search conducted by Cheung et al. [83] introduced an adaptive firefly algorithm (AdaFa)

that integrates three methodologies for parameter selection and adaptation. The paper

showcases the enhanced performance of AdaFa on benchmark functions and a real-

world scenario. The article by Mahdavi et al. [84] introduces an enhanced harmony

search algorithm that incorporates a novel approach for generating solution vectors and

a strategy for modifying its parameters. The authors demonstrate the algorithm’s effi-

cacy by successfully addressing a range of benchmarking and conventional engineering

optimization tasks. Deterministic chaos maps, such as the Logistic map, Chebyshev

map, and Tent map, are mathematical functions that generate a succession of seemingly

random integers. The generation of unique and unpredictable patterns in these maps is

contingent upon a starting state. The utilization of non-periodic, non-converging, and

random-like outcomes makes them a viable alternative to random sequence generators

within MHAs. The rising popularity of chaos-based meta-heuristics can be attributed

to its notable convergence rate and heightened level of randomness. The methodology

presented in the work by Hefny et al. [85] introduces a novel approach that integrates

chaotic agents with PSO to improve the effectiveness and accuracy of search algorithms.

This approach specifically aims to overcome the limitations of premature convergence

and parameter sensitivity that are inherent in PSO. In the study [86] a GA is proposed

that incorporates a chaotic optimization operation. This approach employs the logistic

function as a crossover operator, resulting in enhanced computational efficiency when

compared to conventional genetic algorithms for the optimization of multimodal func-

tions. [87] puts forth six distinct algorithms for chaotic league championship (LCA) and

conducts an analysis of their efficacy in intricate benchmark functions. The findings

of this investigation demonstrate encouraging outcomes, indicating that the integration

of LCA with chaotic maps has the potential to enhance optimization quality in select

problem domains.

The Gaussian distribution is commonly employed as a refining tool in a variety of al-

gorithms. In addition, certain methodologies involve the utilization of sampling from

a Gaussian distribution as a substitute for conventional solution updating techniques.
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In the study conducted by [88], an investigation is carried out to analyse the under-

lying characteristics that contribute to the effectiveness of the PSO. This is achieved

by removing certain conventional components and modifying the algorithm through the

elimination of the velocity formula. Consequently, the study reveals the algorithm’s re-

semblance to other problem-solving methods based on stochastic population dynamics,

thereby proposing novel directions for further research [88]. In their study, Wang et

al. [89] introduces Gaussian bare-bones differential evolution (GBDE), an optimization

algorithm that requires minimal parameter tuning. They also present a modified ver-

sion of GBDE, referred to as MGBDE. The authors demonstrate that both GBDE and

MGBDE exhibit superior or comparable performance to existing state-of-the-art dif-

ferential evolution (DE) variants when applied to benchmark functions and real-world

problems. In a scholarly publication by Zou et al. a novel iteration of the teaching-

learning-based optimization algorithm named Bare Bones Teaching Learning Based Op-

timization (BBTLBO) was introduced [90]. This variant integrates the learning approach

of a teacher, Gaussian sampling, and neighbourhood search. The study evaluates the

efficacy of BBTLBO in comparison to TLBO and other rudimentary algorithms using

both benchmark functions and real-world problems.

2.2.5.3 Multi-objective Algorithms

Single-objective meta-heuristics are not well-suited for addressing optimization situa-

tions characterised by numerous conflicting objectives. Hence, the emergence of the

notion of multi-objective optimization has occurred, to identify a collection of potential

solutions that do not exhibit dominance over one another. The methodology com-

monly known as ”Pareto optimization” or ”vector optimization” is frequently employed

to optimise many criteria concurrently while adhering to a predetermined set of re-

strictions. Numerous academics have put forth novel solution representations to tackle

multi-objective optimization issues by employing selection processes based on Pareto

dominance. In their study, Guo et al. [91] proposed a chromosome-based approach to

address a multi-objective order scheduling problem. In the proposed methodology, it

is established that every gene present on the chromosome corresponds to a specific or-

der group. The value assigned to each gene indicates the plant that is responsible for

processing the respective group. In their study, Xiao et al. [92] proposed a hybrid en-

coding technique that integrates both indirect and direct representations to enhance the
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optimization of air traffic network flow. In their methodology, the authors utilised a

direct encoding strategy for representing departure time slots and an indirect encoding

approach for representing aircraft routes. Wang and Ma [93] proposed a chromosomal

representation based on sets to tackle a multi-objective problem related to placement

and allocation. The provided depiction successfully encompasses pertinent details about

both the decision-making process for facility location and the various types of facilities

involved.

Particle updating and population reproduction are essential elements of search algo-

rithms based on PSO. Several researchers, such as Zhang et al. [94], have put forward

multiple modifications aimed at improving the performance of PSO in a range of opti-

mization tasks. An instance of a modified PSO algorithm was introduced, specifically

designed to effectively address complex nonlinear resource allocation problems (RAPs).

The proposed modification integrates a particle updating mechanism that does not re-

quire any parameters with an adaptive grid-based approach to efficiently update the

global particle leaders. In a separate study conducted by Zhang et al. [95], a sorting

method for scheduling problems was suggested. This mechanism involves the selection

of solutions from personal optimal solutions to construct the global optimal solution set

during each iteration. In addition, the researchers devised a dual population evolution

mechanism and implemented a crowding entropy-based hierarchical elitism preservation

approach within the PSO algorithm. These modifications were aimed at attaining a

diverse and evenly distributed collection of Pareto optimal solutions. These novel adap-

tations have demonstrated the potential for enhancing the overall efficacy of PSO in

addressing diverse optimization issues.

The research conducted by Qian et al. [96] introduces HDE, a hybrid algorithm that

combines differential evolution with a largest-order-value rule to transform continuous

values into job permutations. Additionally, the algorithm incorporates problem-specific

local search techniques to prioritise exploitation. The objective of this algorithm is to

address the multi-objective permutation flow shop scheduling problem, taking into ac-

count the presence of limited buffers. In their study, Burke et al. introduce a memetic

approach to enhance the robustness objectives of airline schedules through the concur-

rent optimization of flight re-timing and aircraft rerouting. This approach is applied to

actual schedules obtained from KLM Royal Dutch Airlines, leading to notable enhance-

ments in the targeted objectives [97]. In the study conducted by Khalili et al. [98] a
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novel approach is presented that combines a multi-objective electromagnetism algorithm

(MOEM) with simulated annealing. The purpose of this approach is to address a chal-

lenging bi-objective flow-shop scheduling problem that involves transportation times.

The authors demonstrate the efficacy of their suggested method through the use of

experimental examples and performance measurements.

2.2.6 Limitations of MHAs

MHAs have become increasingly prominent in the realm of optimization, particularly

in the context of feature selection within the field of machine learning. Nevertheless,

despite their achievements, these algorithms possess certain constraints that can impact

their efficacy. One limitation is that the efficacy of metaheuristic algorithms is contingent

upon the initial solution and stopping condition, hence impeding the comparability of

outcomes across various metaheuristic algorithms. In addition, it is worth noting that

the efficacy of metaheuristic algorithms can be influenced by the calibre of the initial

solution, potentially resulting in outcomes that are less than optimal.

The selection of a stopping criterion holds significant importance in metaheuristic al-

gorithms due to its impact on the efficiency and convergence of the algorithm [99].

Nevertheless, it is important to note that there is no universally optimal stopping cri-

terion applicable to all situations. The selection of a stopping criterion can have a

substantial impact on the algorithm’s performance. One commonly employed strategy

involves setting a maximum number of iterations or a threshold for the fitness func-

tion. Nevertheless, this approach may not always yield satisfactory results, especially

in intricate issues characterised by an expansive search area. One further constraint

of metaheuristic algorithms pertains to the challenge of ascertaining the most optimal

parameters for the algorithm [100]. In the context of the GA, pertinent parameters en-

compass the population size, mutation rate, crossover rate, and selection operator. The

selection of these parameters has a substantial impact on the algorithm’s performance,

and determining the most suitable values for these parameters can pose a considerable

challenge. Hence, it is crucial to optimise the parameters to attain optimal performance

of the algorithm. Nevertheless, the selection of suitable parameter values for metaheuris-

tic algorithms poses a formidable challenge, necessitating a profound understanding of

the domain and a comprehensive process of trial-and-error testing.
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The efficacy of metaheuristic algorithms can also be influenced by the intricacy of the

task at hand. As the complexity of the problem rises, the search space expands, hence

posing a greater challenge for the algorithm to identify the most effective solution [101].

This phenomenon can result in increased execution duration and an elevated likelihood

of becoming trapped in local optima. In the context of feature selection problems, it

is worth noting that the number of potential feature subsets might exhibit exponential

growth, resulting in a search space that is both extensive and intricate. In addition, the

efficacy of metaheuristic algorithms might be influenced by the existence of noise within

the dataset [102]. In the context of feature selection challenges, the inclusion of noisy

features has the potential to diminish the accuracy of the algorithm and compromise the

overall quality of the selected features. This phenomenon occurs due to the algorithm’s

tendency to perceive noisy features as significant and include them in the selection

process, hence resulting in less-than-ideal outcomes.

Premature convergence represents an additional obstacle encountered in the realm of

metaheuristic algorithms. Premature convergence is a phenomenon that arises when

an algorithm reaches a sub-optimal solution prematurely, hence impeding its ability

to explore alternative regions within the search space. This phenomenon may arise in

situations where the population size is quite small or when the search operator lacks suf-

ficient diversity. Numerous scholarly investigations have put forth various approaches

to address this constraint, including the integration of a diversity measure within the

algorithm or the use of multiple beginning points. One further constraint is the scal-

ability of metaheuristic algorithms. According to Liu et al. [103], when the problem’s

dimensionality increases, the search space experiences exponential growth, hence posing

greater challenges for the algorithm in locating the ideal solution. This phenomenon

can result in increased execution duration, perhaps rendering the algorithm incapable

of identifying an optimal solution within a feasible time frame. Hence, the development

of efficient algorithms capable of effectively addressing high-dimensional issues holds

significant importance. The selection of the goal function can have an impact on the

efficacy of metaheuristic algorithms. The quality of the solution and the performance

of the algorithm can be considerably influenced by the objective function. Nevertheless,

the task of choosing a suitable objective function might pose difficulties, especially when

dealing with intricate situations [104]. Hence, it is crucial to meticulously select the

objective function and assess its influence on the algorithm’s performance.
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2.3 Research Gap

This literature survey indicates several key areas where the conventional and hybrid

MHAs performance have room for improvement particularly when dealing with unbal-

anced high dimensional datasets. Typically bio-medical datasets are of such nature and

considering the importance of these datasets this area is of particular importance. The

algorithms discussed in the literature survey namely the ChOA, GWO and WOA have

been used for FS, however their are some aspects that have not been examined. GWO

has not been tested for bio-medical datasets, while WOA suffers from pre-mature con-

vergence and local minimal problems. PSO on the other hand has a sluggish response

when used for high-dimensional datasets. ChOA has improved performance when com-

pared to PSO, GWO and WOA, however, it suffers from premature convergence. There

is room for improvement in terms of accuracy and reduction ratio of selected features.

2.4 Problem Statement

The significance of feature selection in the biomedical domain becomes apparent due

to its crucial role in improving the efficacy and comprehensibility of predictive mod-

els, decreasing computational intricacy, and facilitating the identification of significant

biomarkers. Nevertheless, the primary obstacle involves developing an optimization

methodology that proficiently directs the choice of pertinent characteristics from biomed-

ical datasets with a large number of dimensions. This methodology must guarantee that

the chosen characteristics substantially enhance model accuracy, comprehensibility, and

the detection of crucial biological understandings. Additionally, it should tackle chal-

lenges such as overfitting, computational load, and ethical concerns about data privacy

and patient confidentiality. This research investigates the efficacy of employing hybrid

variants of MHAs for the purpose of feature selection, aiming to decrease the dimen-

sionality of large-scale datasets by eliminating unnecessary data. The project aims to

review several FSAs’ for dimensionality reduction, investigate the capabilities of meta-

heuristic algorithms, and evaluate their applicability in solving the feature selection

problem across datasets with different sizes and multiple classes. The objective of the

proposed solution is to surpass the performance of traditional, conventional, and en-

hanced versions of metaheuristic techniques. This will be accomplished by employing a
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novel hybrid approach and a technique for minimising dataset variance. The ultimate

goal is to achieve a globally optimal solution within a shorter time frame, while also

preserving the relationship between the attributes and the output classes in the dataset.

2.5 Thesis Objectives

The key objectives of this thesis are listed below:

1. The optimization of storage and processing of large data by the reduction and

elimination of redundant information.

2. Develop a hybrid metaheuristic strategy as a means to overcome the limitations

associated with conventional feature selection methods.

3. Develop a mathematical model for the hybrid algorithm that successfully incorpo-

rates the exploration and exploitation phases of metaheuristic algorithms.

4. Conduct an in-depth study of feature selection techniques to identify suitable

benchmarks and do comparative analysis.

2.6 Research Methodology

As discussed in the section 2.4, the objective of this work is to develop a novel hybrid

meta-heuristic algorithm that combines the strengths of the SCA and BChOA methods.

To achieve the intended objective, a mathematical model is formulated to represent

the novel technique. The proposed algorithm, referred to as the Binary Sine-Cosine

Chimp Optimization Algorithm (BSChOA), is then evaluated using high dimensional

and unbalanced bio-medical datasets, as well as other benchmark datasets from the UCI

repository. The study evaluates the efficacy of the suggested technique in improving

the performance of Feature Selection (FS) algorithms. The comparison is conducted

against several existing algorithms, namely BChOA, BGWO, WOA, GA, PSO, and

SCA. The evaluation is based on various metrics such as accuracy, precision, F1-score,

train time, and the number of selected features to determine the effectiveness of the

proposed algorithm for the purpose of FS.
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Binary Sine-Cosine Chimp

Optimization Algorithm

(BS-ChOA)

In this section, we discuss the mathematical model for the proposed hybrid MHA. The

proposed BS-ChOA is developed from the ChOA hybridized with the mathematics-

based SCA to make use of the best abilities of both algorithms during the exploration

and exploitation phases. The base model is derived from the ChOA, as discussed in

Section 2.2.3.5, during the exploration phase, we make use of the SCA. The algorithm

uses the sine and cosine functions to circle its way towards an optimum solution.

To begin, an initial chimp population matrix (Ch) is established, consisting of randomly

assigned values inside a defined search space. This matrix represents the initial positional

vectors of all chimps and the prey.

Ch =


Ch1

Ch2
...

ChN

 =


Ch11 Ch21 . . . Chd1

Ch12 Ch22 . . . Chd2
...

... . . .
...

Ch1N Ch1N . . . ChdN

 (3.1)

Here Chn (n = 1, 2, 3 . . . N) represents N candidate solutions in the search space with

d dimensions. The chimps Chn are initialised randomly and then evaluated using a de-

fined cost function. They are then categorised with the best four solutions categorised

35
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as attacker, barrier, chaser and diver and the rest of the chimp population is updated

during the iterative process. After each iteration, the chimps are re-categorised and the

best four are selected accordingly. The graphical representation of the initial search area

is depicted in Figure 3.1. The chimps initiate their hunting behaviour by strategically

placing the barriers and the chasers to ensnare their prey, Figure 3.2 shows the move-

ment matrix of each chimp within the search space. The algorithm is implemented for

a predetermined number of iterations, as specified by the user at the beginning. During

each iteration, the chimp position update technique is performed about the goal fitness

function. To augment the exploitation capabilities of the ChOA, a more targeted strat-

egy is employed by integrating a revised SCA into the ChOA framework. The following

steps are used for the mathematical formulation of the proposed algorithm.

1. Initialization: A random population Xi with n samples and i dimensions is

initialised.

2. Evaluation: Each vector of the population is evaluated using a predefined fitness

function and the results are arranged from best to least, with the top four vectors

being categorised as the attacker, barrier, chaser and diver.

3. Exploration: In this scenario, chimps modify their location in order to locate

the closest possible position of their next prey. With the assistance of this update,

chimps may potentially become trapped in optimal solutions inside the complex

space, at least over multiple iterations.

XA(k + 1) =


XA(k)− cos(r2) ∗A1 ∗Dn

A, if r3 < 0.5

XA(k)− sin(r2) ∗A1 ∗Dn
A, if r3 >= 0.5

(3.2)

XB(k + 1) =


XB(k)− cos(r2) ∗A1 ∗Dn

B, if r3 < 0.5

XB(k)− sin(r2) ∗A1 ∗Dn
B, if r3 >= 0.5

(3.3)

XC(k + 1) =


XC(k)− cos(r2) ∗A1 ∗Dn

C , if r3 < 0.5

XC(k)− sin(r2) ∗A1 ∗Dn
C , if r3 >= 0.5

(3.4)

XD(k + 1) =


XD(k)− cos(r2) ∗A1 ∗Dn

D, if r3 < 0.5

XD(k)− sin(r2) ∗A1 ∗Dn
D, if r3 >= 0.5

(3.5)
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Figure 3.1: Chimp Movement in the search space

Here r2 = (2π) ∗ rand() and lies in the range [0, 2π], the variables XA(k), XB(k),

XC(k) and XD(k) shows the current position of the top four chimps. Dn
A, D

n
B, D

n
C

and Dn
D show the distance of the nth chimp from the attacker, barrier, chaser and

diver calculated using (2.5). XA(k+1), XB(k+1), XC(k+1) and XD(k+1) shows

the updated position of these chimps with respect to the nth chimp. A1, A2, A3

and A4, and C1, C2, C3 and C4 are the random coefficient vectors calculated by

using (2.6) and (2.7). Traditionally the update rule of chimp position involves a

simple average as shown in (2.4) in Section 2.2.3.5, however, this would mean that

all four top-ranking chimps have an equal pull on the chimp to be updated.

Figure 3.2: a) 2D Movement matrix of Chimps b) 3D Movement matrix of Chimps
[71].
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To solve this issue a weighted average is suggested to update the position and

leverage the update in favour of the chimp with the best fitness namely the attacker

in this case as shown by (3.6).

Xn(k+1) = b1 ∗XA(k+1)+b2 ∗XB(k+1)+b3 ∗XC(k+1)+b4 ∗XD(k+1), (3.6)

Σ4
i=1bi = 1, (3.7)

The variable Xn(i = 1, 2, 3...N) shows the chimp population and bi (i = 1, 2, 3, 4)

are coefficients for the weighted average and are determined during the experiment

keeping in mind (3.7).

4. Stopping Condition: Subsequently, stop criteria were set up to govern the search

process inside the search domain, with the objective of attaining the most ideal

value. The aforementioned criteria were employed to ascertain the selection pro-

cedure for all community search agents and thereafter assign them positions based

on the performance of the most efficient search agent.

The process is iterative and is repeated until it satisfies the specified stopping condition,

such as reaching the maximum allowable number of iterations or achieving an expedited

solution. The pseudo-code for the BS-ChOA is shown in 3.

Algorithm 3 Steps for ChOA

Initialise population size N , dimension d, kmax.

Set k = 0, and generate random population Xn(n = 1, 2...N).

Initialise fitness values for population.

while k <= kmax do

for n = 1 to N do

Define the group strategy.

for j = 1 to d do

Calculate distance from XA(k), XB(k), XC(k), XD(k).

Evaluate the next position of chimps w.r.t attacker, barrier, chaser, diver.

Update chimp position.

end for

Update Attacker, Barrier, Driver and Chaser.

end for

k = k + 1.

end while

return Global best
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3.1 Feature Selection Using BS-ChOA

Feature selection is a complex optimization problem. In order to determine an optimally

reduced feature set a binary version of the proposed MHA is obtained by using complex

transformation functions. For the purpose of this research, two functions have been used,

namely the s- and v-functions [71]. Equations (3.8) and (3.9) show the mathematical

representation of the transformation function.

TFs(n, j) =
2

1 + e−2∗X[n,j]
− 1, (3.8)

TFv(n, j) =
X[n, j]√

1 +X[n, j]2
− 1, (3.9)

Here X[n, j] represents the distance of a jth feature point for a nth chimp from the

prey location as determined by (3.6). At each iteration, this distance is evaluated, and

a transformation rule is applied to determine whether to select a particular feature or

mask its value. At any point, a random mutation can also occur based on a random value

that can alter the state of the feature point. Figure 3.3 shows a graphical representation

of the BS-ChOA for the purpose of feature selection. The following steps are followed

to execute the FS process using BS-ChOA:

• Step 1: The initial dataset is employed to generate a population of chimps. Each

individual chimpanzee inside the collective is considered a potential candidate for

a feature subset.

• Step 2: The BS-ChOA is executed and the population is assessed by the utilization

of a fitness function by utilising a classifier.

• Step 3: Following the assignment of fitness values to each solution, the population

undergoes a selection process where the four solutions with the highest fitness

values are chosen.

• Step 4: The algorithm will update the primary coefficients f, m, C, A, and D. Sub-

sequently, the other chimps adjust their respective positions based on the optimal

position of the leading chimp.

• Step 5: Transformation Functions (TFs) are employed to assess the likelihood

of modifying the components of position vectors and constraining their range of

motion within the interval of 0 to 1.

• Step 6: The algorithm is repeated until a set stopping condition is met and a

reduced FV is returned.
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Figure 3.3: Flow Diagram: Feature Selection Using BS-ChOA

Traditionally the fitness function J for variance-based feature selection is evaluated using

(3.10).

J = α ∗ acc(Xn) + (1− α) ∗ D −M

D
, (3.10)

where Xn is the reduced feature set and α is a set coefficient in the range [0, 1] D is the

total number of features, and M is the number of selected features. A trade-off is set

between the selection of hyper-parameter α between the accuracy of the desired result

and the reduction ratio of the FV. When dealing with high-dimensional datasets the

value D−M
D does not have much impact on the fitness value as this fraction would be

very small. For this purpose, a new objective function is also proposed for such large

datasets.

J = α ∗Acc(Pi) + (1− α) ∗ lnD − lnM

lnD
, (3.11)

Using the ln function, the size of the reduced dataset can have a useful impact on the

fitness value calculated for each chimp thereby effectively improving the performance of

the proposed algorithm for large datasets.
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3.2 Complexity Analysis

The temporal complexity of the BS-ChOA initialization is O(N ∗d), where N represents

the population size and d represents the dimension of the test function used to modify

the solutions within the boundary. In the subsequent phase, the fitness evaluation of

each search agent requires a temporal complexity of O(kmax ∗N ∗ d), where kmax is the

upper limit on the number of iterations required to replicate the proposed BS-ChOA

method. The overall time complexity of the BS-ChOA algorithm can be expressed as

O(tmax ∗N ∗ d).



Chapter 4

Results and Discussions

In this section, we present the experimental evaluation of the technique proposed in

our study. The comprehensive assessment of existing literature indicates that MHAs

demonstrate appropriate and well-balanced characteristics in addressing situations that

do not have exact solutions. Due to this rationale, our study employed the utilization

of distinctive algorithms. In order to accomplish this goal, it is imperative to provide

a comprehensive and accurate depiction of the situation. While MHAs do not offer a

guarantee of attaining optimal solutions, their objective is to generate solutions that

closely approximate the optimal answer, while simultaneously minimising the computer

resources needed. Every metaheuristic technique that has been suggested in the existing

body of literature possesses its own distinct set of merits and drawbacks. The objective

of this study is to enhance the strategy by using a wider array of parameters to achieve a

more comprehensive and precise approach. The incorporation of a substantial quantity

of datasets facilitates a thorough examination, whereas the use of multidimensional

datasets and problems involving several classes showcases the algorithm’s efficacy and

exactitude over a wide range of scenarios.

The findings presented in this section demonstrate that our suggested approach, which

prioritises a broader range of parameters, successfully and efficiently addresses the multi-

objective optimization problem across different dataset sizes. The findings indicate that

our method exhibited superior performance compared to the baseline techniques, as it

successfully identified options that were more closely aligned with the best solution.

42
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4.1 Dataset Preprocessing

In this study, the proposed technique for feature selection is applied to a total of

eight high-dimensional biomedical datasets. These datasets consist of publicly avail-

able datasets from the University of California Irvine (UCI) database and the Mendeley

dataset for Gene Selection and Classification. The specifics of each dataset, including at-

tributes, instances, and the number of classes, are presented in Table 4.1. The datasets

consist of a combination of category and numerical data, and certain features within

them do not contribute to the overall classification of the dataset. In addition, the num-

ber of instances within the dataset has an impact on the computing time required for

performing feature selection. Each dataset is preprocessed using min-max normalization

to scale input features to a uniform range, ranging from 0 to 1. This is done to ensure

that each feature contributes equally to the training of the model, thereby preventing

the dominance of features with high scaling. Data was oversampled in order to overcome

problems due to unbalanced datasets.

4.2 Experimental Setup

The proposed algorithm is developed and tested on Python 3.7 on a Windows system

using a core i3-8th Gen Laptop with 16GB RAM and datasets taken from University

of California, Irvine Machine Learning Repository (UCI), https://jundongl.github.

io/scikit-feature/datasets.html and Mendley Data for Gene Selection, https://

data.mendeley.com/datasets/fhx5zgx2zj/1.

Table 4.1: Dataset Details

S.No. Datasets [105] # of Instances # of Attributes Classes

1 DLBCL 76 5469 2

2 Prostate Tumour 102 10509 2

3 Arcene 100 10000 2

4 Leukaemia 72 6114 5

5 Brain Tumour 1 90 5920 5

6 Brain Tumour 2 50 10367 4

7 BLDCL 60 5723 9

8 11 Tumours 202 1035 11

https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
https://data.mendeley.com/datasets/fhx5zgx2zj/1
https://data.mendeley.com/datasets/fhx5zgx2zj/1
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The algorithm is compared with its modern counterparts namely the ChOA, GWO,

WOA, PSO, GA and SCA. The experimental setup is as follows.

• Each dataset is run using the KNN and RF-based FS methods, with a maximum

iteration size of 100 and a population size of 30 to attain a balanced result on

metrics. Each algorithm is run 20 times, each with a different train test split to

provide a well-rounded average and the best results for all datasets.

• Each dataset is run with kNN and RF classifiers with both s and v functions.

• Convergence curves with a ln based update rule and simple average are also

recorded.

• Selected features and time complexity for each algorithm are recorded for each

iteration.

• Hyper-parameters are kept consistent as suggested by the original authors in their

respective papers.

4.3 Results

The study employs two commonly used classifiers to test the performance of BS-ChOA

with other algorithms. The results recorded exhibit that the BS-ChOA performs better

than its counterparts for most datasets in terms of average accuracy, precision, f1-score

and number of selected features. The results also indicate that there is an obvious trade-

off in terms of train time for the BS-ChOA when compared with GA and in a number of

selected features when compared with BWOA, however it is evident from the recorded

average metrics that the trade-off rules in favour of the proposed BS-ChOA when overall

performance is considered.

4.3.1 Average and Best Metrics

The average and best metrics (accuracy, precision, f1-score, number of selected features)

for each dataset were recorded during the experiment and are discussed in this section.

Table 4.2 shows the average and best accuracy with v-function and RF classifier. Using

the hybrid BS-ChOA a 2-8% increase in average accuracy is observed with the Brain



Results and Discussion 45

Tumour 1 dataset recording the highest increase of 8%. Figure 4.1 and 4.2 show the

average and best accuracy for all data sets. It is observed that the BS-ChOA performs

better than other candidate algorithms for most datasets when comparing average accu-

racy, a similar pattern is observed when comparing the average and best precision and

f1-score.

Table 4.3 shows the mean and best precision recorded for 20 iterations and Figure 4.3

and 4.4 show bar graphs for the achieved precision in the experiment. Table 4.4 shows

the mean and best F1-score, while Figure 4.8 and 4.9 show the mean and best F1-score.

As the data is unbalanced, the F1-score proves to be a better metric when testing the

performance, particularly for bio-medical datasets where the datasets are more likely to

have multi-class unbalanced high-dimension datasets. The hybridization of ChOA with

SCA has proven to be effective when comparing the average metrics as this enhances

both the exploration and exploitation characteristics resulting in an overall increase in

average metrics for the selected datasets.

Figure 4.10 and 4.11 show bar graphs of the recorded data of the number of selected

features for each dataset, here the number of selected features, shown on the vertical

axis are taken on a logarithmic scale to better represent the output. Figure 4.12 shows

the average, metrics recorded for each individual dataset, these graphs indicate that

BS-ChOA has shown the best average metrics throughout the iteration process.

(a) DLBCL Accuracy (b) Arcene Accuracy

(c) Leukaemia Accuracy (d) Brain Tumour Accuracy

Figure 4.1: Average and Best Accuracy
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(a) Brain Tumour 2 Accuracy

(b) 11 Tumour Accuracy

(c) BLDCL Accuracy

(d) Prostate Tumour Accuracy

Figure 4.2: Average and Best Accuracy
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Table 4.2: Mean and Best Accuracy

Dataset Classifier ALL GA WOA BChOA PSO GWO SCA BS-ChOA

Brain Tumour RF Mean Accuracy 61.74% 65.84% 51.69% 65.22% 63.56% 61.87% 61.64% 75.65%

Best Accuracy 70.00% 80.00% 75.00% 75.00% 72.73% 75.00% 84.55% 86.20%

KNN Mean Accuracy 60.74% 64.84% 51.69% 65.22% 62.56% 61.87% 61.64% 76.65%

Best Accuracy 69.00% 80.00% 74.00% 76.00% 71.73% 74.00% 83.55% 87.20%

BLDCL RF Mean Accuracy 80.37% 81.53% 74.97% 81.49% 74.27% 76.79% 79.30% 83.87%

Best Accuracy 85.00% 90.00% 85.00% 95.00% 85.19% 84.62% 90.00% 92.59%

KNN Mean Accuracy 79.37% 81.53% 75.97% 80.49% 75.27% 77.79% 78.30% 82.87%

Best Accuracy 84.00% 89.00% 84.00% 96.00% 84.19% 83.62% 89.00% 92.59%

Prostate Tumour RF Mean Accuracy 96.52% 95.09% 77.31% 96.57% 94.98% 86.40% 92.41% 98.03%

Best Accuracy 100.00% 100.00% 93.75% 100.00% 100.00% 100.00% 100.00% 100.00%

KNN Mean Accuracy 96.52% 96.09% 78.31% 96.57% 94.98% 86.40% 93.41% 99.03%

Best Accuracy 100.00% 100.00% 94.75% 100.00% 99.00% 99.00% 100.00% 100.00%

11 Tumour RF Mean Accuracy 95.15% 85.33% 89.80% 92.96% 94.67% 93.52% 85.00% 94.86%

Best Accuracy 96.67% 96.67% 96.67% 95.35% 96.67% 96.67% 93.33% 96.67%

KNN Mean Accuracy 95.15% 84.33% 90.80% 92.96% 94.67% 93.52% 84.00% 93.86%

Best Accuracy 95.67% 97.67% 95.67% 96.35% 96.67% 95.67% 93.33% 95.67%

Leukaemia RF Mean Accuracy 97.14% 96.26% 79.84% 95.80% 92.75% 87.79% 90.69% 96.25%

Best Accuracy 100.00% 100.00% 93.75% 100.00% 100.00% 100.00% 100.00% 100.00%

KNN Mean Accuracy 96.14% 95.26% 78.84% 94.80% 91.75% 86.79% 91.69% 96.25%

Best Accuracy 100.00% 99.00% 92.75% 99.00% 100.00% 100.00% 100.00% 100.00%

DLBCL RF Mean Accuracy 81.38% 77.70% 79.35% 82.49% 81.61% 79.06% 75.97% 87.89%

Best Accuracy 88.89% 88.89% 94.44% 88.89% 94.44% 88.89% 84.44% 94.44%

KNN Mean Accuracy 81.38% 77.70% 78.35% 83.49% 82.61% 78.06% 75.97% 88.89%

Best Accuracy 88.89% 87.89% 95.44% 87.89% 93.44% 89.89% 83.44% 95.23%

Brain Tumour RF Mean Accuracy 81.38% 77.70% 79.35% 82.49% 81.61% 79.06% 75.97% 87.89%

Best Accuracy 88.89% 88.89% 94.44% 88.89% 94.44% 88.89% 84.44% 94.44%

KNN Mean Accuracy 81.38% 77.70% 80.35% 81.49% 81.61% 79.06% 76.97% 88.89%

Best Accuracy 88.89% 88.89% 93.44% 88.89% 94.44% 88.89% 83.44% 94.95%

Arcene RF Mean Accuracy 80.37% 81.53% 74.97% 81.49% 74.27% 76.79% 79.30% 83.87%

Best Accuracy 85.00% 90.00% 85.00% 96.25% 85.19% 84.62% 90.00% 92.59%

KNN Mean Accuracy 81.37% 80.53% 73.97% 82.49% 75.27% 76.79% 79.30% 82.87%

Best Accuracy 84.00% 90.00% 85.00% 95.50% 84.19% 85.62% 91.00% 92.59%
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(a) DLBCL Precision

(b) Arcene Precision

(c) Leukaemia Precision

(d) Brain Tumour Precision

Figure 4.3: Average and Best Precision



Results and Discussion 49

(a) Brain Tumour 2 Precision

(b) 11 Tumour Precision

(c) BLDCL Precision

(d) Prostate Tumour Precision

Figure 4.4: Average and Best Precision
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(a) ALL (b) GWO

(c) WOA (d) SCA

(e) ChOA (f) BS-ChOA

Figure 4.5: Confusion Matrix 11 Tumour Dataset

In the case of selected features, we observe that the BS-ChOA is better than most of its

contemporaries. WOA is an exception in this case however, the poor accuracy, precision

and F1-score of WOA indicate that the algorithm suffers from pre-mature convergence

and over-fitting during the training process. Table 4.5 shows the number of selected

genes for each algorithm, taking this information in conjunction with other metrics, it is

evident that the BS-ChOA has better convergence characteristics than other algorithms.



Results and Discussion 51

(a) ALL (b) GWO

(c) WOA (d) SCA

(e) ChOA (f) BS-ChOA

Figure 4.6: Confusion Matrix Prostate Tumour Dataset

The recorded data shows that for Brain Tumour, Brain Tumour2, Arcene and DLBCL

datasets there is a 5-7% gain in the mean precision and 6-9% increase in the mean

F1-score. The increase in the F1-score is an important factor in this re grad as bio-

medical datasets are heavily unbalanced and accuracy and precision are not termed as

good metrics to measure the efficacy of optimization algorithms.To further strengthen

the results Figure 4.5 - 4.7 provide a graphical representation of the confusion matrix

obtained during this experiment. These results show that the BS-ChOA has better

metrics when compared with other algorithms for multi-modal datasets.
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(a) ALL (b) GWO

(c) WOA (d) SCA

(e) ChOA (f) BS-ChOA

Figure 4.7: Confusion Matrix Prostate Cancer Dataset

Figure 4.12 and 4.13 show the average metrics for all datasets, we can see that the

proposed BS-ChOA algorithm provides a much-balanced output in terms of high ac-

curacy, precision, f1-score and low no. of selected features when compared with other

algorithms.
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Table 4.3: Average and Best Precision

Dataset Classifier ALL GA WOA BChOA PSO GWO SCA BS-ChOA

Brain Tumour RF Mean Precision 68.59% 75.47% 62.29% 69.71% 74.23% 76.49% 67.76% 75.42%

Best Precision 87.88% 89.09% 84.55% 87.88% 93.18% 85.91% 92.50% 85.91%

KNN Mean Precision 67.59% 74.47% 61.29% 68.71% 75.23% 77.49% 67.76% 78.55%

Best Precision 87.88% 88.09% 84.55% 88.88% 89.98% 84.91% 90.92% 91.25%

BLDCL RF Mean Precision 83.58% 82.47% 74.50% 78.47% 77.78% 79.27% 81.73% 89.10%

Best Precision 88.50% 90.00% 85.00% 88.85% 86.20% 88.85% 92.00% 94.00%

KNN Mean Precision 84.58% 83.47% 74.50% 78.47% 78.78% 78.27% 80.73% 88.10%

Best Precision 89.50% 90.00% 85.00% 89.85% 87.20% 87.85% 93.00% 94.00%

Prostate Tumour RF Mean Precision 97.42% 96.33% 74.95% 97.08% 96.51% 84.59% 94.67% 98.52%

Best Precision 88.50% 100.00% 93.75% 100.00% 100.00% 100.00% 100.00% 100.00%

KNN Mean Precision 98.42% 95.33% 75.95% 98.08% 96.51% 83.59% 95.67% 97.52%

Best Precision 100.00% 100.00% 92.75% 99.00% 100.00% 100.00% 100.00% 100.00%

11 Tumour RF Mean Precision 96.18% 88.98% 90.15% 93.12% 95.10% 95.61% 88.76% 96.42%

Best Precision 97.50% 97.50% 97.50% 96.71% 97.50% 98.33% 95.28% 98.33%

KNN Mean Precision 97.18% 89.98% 90.15% 94.12% 95.10% 94.61% 88.76% 95.42%

Best Precision 98.50% 98.50% 98.50% 95.71% 98.50% 98.33% 95.28% 98.33

Leukaemia RF Mean Precision 97.78% 96.68% 79.10% 95.10% 94.06% 87.91% 92.30% 96.35%

Best Precision 100.00% 100.00% 93.75% 100.00% 100.00% 100.00% 100.00% 100.00%

KNN Mean Precision 97.78% 95.68% 80.10% 95.10% 93.06% 88.91% 93.30% 95.35%

Best Precision 100.00% 99.00% 94.75% 99.00% 100.00% 99.00% 99.00% 100.00%

DLBCL RF Mean Precision 79.76% 75.91% 75.18% 80.50% 77.01% 75.30% 73.37% 84.06%

Best Precision 87.18% 88.89% 94.44% 88.89% 94.44% 88.89% 84.44% 94.44%

KNN Mean Precision 78.76% 75.91% 76.18% 81.50% 76.01% 74.30% 74.37% 84.06%

Best Precision 86.18% 87.89% 94.44% 88.89% 95.44% 88.89% 83.44% 93.44%

Brain Tumour 2 RF Mean Precision 79.76% 75.91% 75.18% 80.50% 77.01% 75.30% 73.37% 84.06%

Best Precision 87.18% 84.92% 89.29% 86.30% 89.29% 91.67% 89.26% 89.32%

KNN Mean Precision 79.76% 76.91% 76.18% 79.50% 77.01% 75.30% 74.37% 83.06%

Best Precision 86.18% 84.92% 89.29% 86.30% 88.29% 90.67% 88.26% 88.32%

Arcene RF Mean Precision 83.58% 82.47% 74.50% 78.47% 77.78% 79.27% 81.73% 89.10%

Best Precision 88.50% 90.00% 85.00% 88.85% 86.20% 88.85% 92.00% 94.00%

KNN Mean Precision 84.58% 83.47% 73.50% 77.47% 76.78% 79.27% 82.73% 89.10%

Best Precision 89.50% 89.00% 84.00% 87.85% 85.20% 88.85% 91.00% 93.00%
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(a) DLBCL F1-Score

(b) Arcene F1-Score

(c) Leukaemia F1-Score

(d) Brain Tumour F1-Score

Figure 4.8: Average and Best F1-Score
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(a) Brain Tumour 2 F1-Score

(b) 11 Tumour F1-Score

(c) BLDCL F1-Score

(d) Prostate Tumour F1-Score

Figure 4.9: Average and Best F1-Score
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Table 4.4: Average and Best F1-Score

Dataset Classifier ALL GA WOA BChOA PSO GWO SCA BS-ChOA

Brain Tumour RF Mean F1-Score 58.74% 64.66% 53.00% 61.99% 61.20% 60.25% 60.33% 71.74%

Best F1-Score 66.98% 77.50% 76.11% 74.21% 75.06% 74.21% 79.71% 77.50%

KNN Mean F1-Score 58.74% 63.66% 53.00% 60.99% 61.20% 59.45% 59.33% 72.74%

Best F1-Score 65.98% 76.50% 76.11% 74.21% 76.06% 73.21% 80.71% 78.50%

BLDCL RF Mean F1-Score 83.58% 82.47% 74.50% 78.47% 77.78% 79.27% 81.73% 89.10%

Best F1-Score 85.70% 90.00% 85.70% 95.00% 83.80% 85.70% 90.00% 92.30%

KNN Mean F1-Score 82.58% 82.47% 74.50% 77.47% 76.78% 78.27% 81.73% 89.10%

Best F1-Score 84.70% 91.00% 84.70% 95.00% 82.80% 85.70% 91.00% 91.30%

Prostate Tumour RF Mean F1-Score 95.90% 93.79% 73.45% 96.54% 93.32% 82.92% 89.32% 97.46%

Best F1-Score 100.00% 100.00% 90.86% 100.00% 100.00% 100.00% 100.00% 100.00%

KNN Mean F1-Score 96.90% 92.79% 73.45% 96.54% 93.32% 83.92% 89.32% 97.46%

Best F1-Score 99.00% 100.00% 89.86% 100.00% 99.00% 100.00% 100.00% 100.00%

11 Tumour RF Mean F1-Score 95.58% 85.09% 89.58% 88.55% 94.92% 94.62% 84.87% 95.55%

Best F1-Score 97.50% 96.35% 96.35% 95.28% 97.50% 97.22% 94.17% 96.89%

KNN Mean F1-Score 94.58% 84.09% 88.58% 88.55% 94.92% 93.62% 83.87% 94.55%

Best F1-Score 98.50% 96.35% 97.35% 95.28% 96.50% 96.22% 93.17% 95.89%

Leukaemia RF Mean F1-Score 97.08% 95.75% 77.32% 95.63% 91.64% 85.69% 88.62% 96.07%

Best F1-Score 100.00% 100.00% 92.10% 100.00% 100.00% 100.00% 100.00% 100.00%

KNN Mean F1-Score 98.08% 94.50% 76.32% 94.63% 91.64% 86.69% 87.62% 95.07%

Best F1-Score 100.00% 99.50% 92.10% 100.00% 100.00% 100.00% 98.75% 100.00%

DLBCL RF Mean F1-Score 78.52% 73.83% 74.95% 80.07% 79.10% 76.64% 74.47% 86.22%

Best F1-Score 85.98% 85.98% 91.77% 85.98% 91.77% 92.59% 91.76% 91.78%

KNN Mean F1-Score 77.52% 74.83% 75.95% 79.07% 79.10% 75.64% 73.47% 87.22%

Best F1-Score 86.98% 86.98% 91.77% 86.98% 91.77% 93.59% 90.76% 91.78%

Brain Tumour 2 RF Mean F1-Score 78.52% 73.83% 74.95% 80.07% 79.10% 76.64% 74.47% 86.22%

Best F1-Score 85.98% 85.98% 91.77% 85.98% 91.77% 92.59% 91.76% 93.50%

KNN Mean F1-Score 78.52% 74.83% 73.95% 80.07% 80.10% 77.64% 74.47% 85.22%

Best F1-Score 84.98% 84.98% 90.77% 85.98% 91.77% 91.59% 92.76% 94.50%

Arcene RF Mean F1-Score 79.28% 81.96% 74.37% 81.38% 72.22% 76.98% 78.10% 87.88%

Best F1-Score 85.70% 90.00% 85.70% 95.00% 83.80% 85.70% 90.00% 96.00%

KNN Mean F1-Score 78.28% 82.96% 74.37% 81.38% 71.22% 77.98% 78.10% 88.88%

Best F1-Score 86.70% 91.00% 84.70% 94.00% 83.80% 85.70% 91.00% 91.30%
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(a) DLBCL

(b) Arcene

(c) Leukaemia

(d) Brain Tumour

Figure 4.10: Average and Best Number of Selected features
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(a) Brain Tumour 2

(b) 11 Tumour

(c) BLDCL

(d) Prostate Tumour

Figure 4.11: Average and Best Number of selected features



Results and Discussion 59

Table 4.5: Average and Best Selected Features

Dataset Classifier ALL GA WOA BChOA PSO GWO SCA BS-ChOA

Brain Tumor RF Mean 10368 3869 33 226 1048 538 340 204

Best 2730 22 165 910 436 283 188

KNN Mean 3869 37 213 943 538 340 183

Best 2438 26 185 927 488 319 165

BLDCL RF Mean 10000 4569 88 357 918 363 546 313

Best 3359 44 245 78 148 441 238

KNN Mean 4569 86 353 1010 399 546 313

Best 4448 46 299 916 372 516 282

Prostate Tumor RF Mean 6448 2198 93 182 205 197 237 125

Best 1680 36 100 125 152 103 100

KNN Mean 2417 84 163 226 265 336 125

Best 2210 46 112 213 211 236 112

11 Tumor RF Mean 12534 49 15 16 359 145 943 15

Best 36 11 10 273 64 570 10

KNN Mean 44 13 13 395 159 848 15

Best 36 10 9 368 125 795 10

Leukemia RF Mean 7129 3171 40 140 259 218 286 125

Best 2297 25 75 125 177 103 65

KNN Mean 3171 54 168 233 196 315 138

Best 2883 36 144 218 195 290 133

DLBCL RF Mean 5921 2070 36 46 2215 64 52 30

Best 1882 16 22 2115 34 18 20

KNN Mean 2070 32 57 2215 64 58 42

Best 1911 17 36 2109 62 46 26

Brain Tumor 2 RF Mean 5921 2070 180 44 2215 64 52 30

Best 1882 45 18 2115 34 18 11

KNN Mean 1863 162 47 1994 57 52 33

Best 1727 148 25 1881 57 50 25

Arcene RF Mean 10000 4569 88 355 918 363 546 313

Best 3359 46 260 78 148 441 238

KNN Mean 4569 79 358 1010 327 491 344

Best 3460 66 300 968 297 489 275
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(a) DLBCL

(b) Arcene

(c) Leukaemia

(d) Brain Tumour

Figure 4.12: Average Metrics for All datasets
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(a) Brain Tumour 2

(b) 11 Tumour

(c) BLDCL

(d) Prostate Tumour

Figure 4.13: Average Metrics for All datasets
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4.3.2 Transformation Functions

For the purpose of this experiment two transformation functions namely the s- and v-

function were used. Figure 4.15 shows the average metrics comparison chart between

the s and v functions. When comparing the average metrics both s- and v- functions

show good results. Figure 4.14 shows the average number of features selected when

using each TF, from the comparison chart we can see that the s-function tends to give

a smaller dataset when compared to the v-function.

This is owed to the fact that the v-function equation (3.9) depends on the size of datasets,

since we are dealing with very large datasets the v-function output will not vary much

with small changes. This is not the case with the s-function hence it performs better

when comparing the number of features selected for high dimensional datasets.

Figure 4.14: Average number of features selected using s and v TF
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Figure 4.15: Average Metrics for s and v TF

4.3.3 Convergence Curve

As discussed in the previous chapter the update rule for the ChOA used simple averages

to update the position of each chimp. As we can see in Figure 4.16 this method leads to

non-ideal convergence characteristics as a population other than the best candidate also

pulls the chimps with the same weight as the best solution. To mitigate this problem a

weighted average update rule is introduced.

(a) BLDCL Dataset (b) 11 Tumour Dataset (c) Brain Tumour1 Dataset

Figure 4.16: Convergence curve for BS-ChOA with simple average for 10 iterations

(a) BLDCL Dataset (b) 11 Tumour Dataset (c) Brain Tumour1 Dataset

Figure 4.17: Convergence curve for BS-ChOA with weight average for 10 iterations

For the purpose of this experiment the coefficients bi (i = 1, 2, 3, 4) as discussed in (3.6)

are set as b1 = 0.5, b2 = 0.3, b3 = 0.15 and b4 = 0.05. As shown in Figure 4.17
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by changing the update rule the convergence curve has improved and hence a better

solution is achieved.

4.4 Discussion

The datasets used in the experiment provide a fair comparison for analysing the pro-

posed method for high-dimensional datasets, the selected 8 datasets have the necessary

variation in the number of classes and data unbalance required to carefully estimate the

efficacy of BS-ChOA. Section 4.3 provides thorough details of the experiments conducted

to validate the performance of the proposed algorithm and the necessary changes made

to improve the performance of the base algorithms. The hybridization of ChOA with

SCA, the change in update rule for standard ChOA and the use of ln based fitness func-

tion evaluation have proven to improve the performance and convergence characteristics

to effectively solve FS problems for complex datasets. The results shown in Section 4.3.1

show a considerable improvement in the average and best metrics of the proposed algo-

rithm when compared with its contemporaries. Section 4.3.3 provides valuable insights

regarding the impact of using a weighted average-based update rule in comparison with

simple average and shows that the convergence curves with weighted average are much

improved than the conventional algorithm. Furthermore, Table 4.5 shows that the BS-

ChOA has improved the FS process as well and decreased the number of features by a

margin of 3-5% more than the other algorithms whilst maintaining good precision, accu-

racy and F1-score. In light of these results, the BS-ChOA has proved to be better than

the other algorithms when comparing the accuracy, precision and f1-score, however, this

algorithm has its limitations. The use of sin and cos functions during the exploration

phase causes an increase in the computational expense which increases the train time.

The algorithm performs well for unbalanced datasets providing a considerable increase

in average accuracy, however, this increased computational compromises its effectiveness

when used for simple balanced classes.



Chapter 5

Conclusion

Given the essential nature and profound importance of feature selection, along with the

intrinsic intricacy of the problem, there is an increasing emphasis on the investigation

and implementation of feature selection approaches based on metaheuristics. The ef-

ficacy of machine learning algorithms is influenced by the existence of superfluous or

inconsequential data. The findings of our research demonstrate that metaheuristics ex-

hibit significant efficacy as optimization techniques, enabling them to attain optimal

performance across feature selection challenges of varying dimensions, including low-

dimensional, medium-dimensional, and high-dimensional scenarios. The objective of

this study was to perform a comparative analysis of different recent MHAs for high

dimensional bio-medical datasets and present an innovative solution to overcome the

problems faced by these algorithms. The proposed algorithm has proven to be effec-

tive in dealing with multi-modal datasets and showed improved and consistent results

when compared with its counterparts. Consequently, a new methodology named the

Binary Sine Cosine-Chimp Optimization Algorithm (BS-ChOA) was developed. The

performance of the BS-ChOA was enhanced through the integration of the SCA, which

leveraged its expertise in determining ideal feasible regions, resulting in benefits for

the ChOA. The efficacy of the proposed BS-ChOA technique was assessed by employing

benchmark datasets sourced from the University of California Irvine (UCI) and Mendeley

Data for Gene Selection and juxtaposing it against alternative competitive algorithms.

The experimental findings provided evidence of the superior efficacy of the Hybrid BS-

ChOA method in comparison to various established metaheuristic algorithms, such as

the original ChOA and SCA, as well as GA, BGWO, BPSO, and BWOA. Our findings

65
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indicate that in lower-dimensional problems, the impact of feature selection on the chal-

lenges associated with big data and its storage is minimal. As the complexity of issues

grows, the importance of metaheuristics in the process of feature selection becomes in-

creasingly evident, and the variations in performance between different metaheuristics

become significant. The importance of carefully choosing a suitable metaheuristic ap-

proach for feature selection in practical scenarios is underscored, as the selection of a

metaheuristic method can have a substantial influence on the efficacy and efficiency of

the feature selection procedure.

5.1 Future Work and Limitations

In future works, it is recommended to evaluate the efficacy of the proposed BSChOA in

numerous problem domains. These domains encompass solving a wide range of multi-

objective problems, optimising engineering constraints, optimising hyperparameters in

machine learning, and performing multilevel threshold segmentation. The assessment of

BSChOA’s performance in various scenarios will offer valuable insights into its adapt-

ability and efficacy in tackling diverse optimization difficulties. Furthermore, as the

proposed method has shown its effectiveness when dealing with bio-medical datasets, a

use case for the development of ANN/DNN techniques using FS can be made for the

purpose of federated learning, as this would not only optimise the use of transmission

bandwidth but also save storage and training time for the ANN models to be used.

Although the BS-ChOA technique has shown promising results in feature selection, it

is important to recognise certain limitations. Initially, it should be noted that the

proposed methodology may not universally align with all datasets and problems, since

distinct datasets may necessitate diverse feature selection methodologies. Additionally,

due to the iterative nature of the approach, datasets containing millions of entries may

require a longer processing time to identify pertinent features.
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