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Abstract

This research has provided a comprehensive understanding of water-basedWilliam-

son hybrid nanofluid flow, considering various physical parameters. The investi-

gation is focused on a two-dimensional steady boundary layer flow over a stretch-

ing sheet. The governing equations are modelled and analyzed, incorporating

Cattaneo-Christov heat flux, magnetic field effects, diffusion, Forchheimer flow,

and chemical reaction parameter. Numerical techniques; the shooting method,

effectively solved the converted coupled system of ordinary differential equations.

Notably, the study identifies the significant role of Cattaneo-Christov heat flux

and magnetic field effects in enhancing heat transfer efficiency, thereby improving

thermal diffusion within the system. Furthermore, the inclusion of diffusion and

Forchheimer flow led to noticeably effect the velocity, temperature and concen-

tration profiles and their rates of change. The study also reveals initial uncertain

behavior observed in nanoparticle concentration before reaching stable values for

certain parameter combinations. This transient behavior is crucial to understand

the dynamics of nanofluid flow and its practical implications in engineering appli-

cations.
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ũ, ṽ Velocity components

µ̃ Viscosity

ν̃ Kinematic viscosity

ρ̃ Density

B̃o Magnetic field strenght

¥̃ Temperature of nanoparticles

K̃ Thermal conductivity

ρ̃ c̃p Heat capacity

¥̃f Wall constant temperature

¥̃∞ Ambient temperature of fluid

C̃ Concentration

C̃f Nanoparticles concentration at the stretching surface

C̃∞ Ambient concentration

q̃r Radiative heat flux

λT Relaxiation time constant

B̃o Magnatic field constant

σ̃∗ Stefan Boltzmann constant

k̃∗ Absorption coefficient

ζ Similarity variable

f(ζ) Dimensionless velocity

θ(ζ) Dimensionless temperature

ϕ(ζ) Dimensionless concentration

Γ Fluid relaxation time

Q̃o Heat source

xv



xvi

h̃f Cofficient of heat transfer

we Non-Newtonian Williamson parameter

M Magnetic field parameter

Kp Porosity medium parameter

Pr Prandtl number

Ec Eckert number

Q Heat source

Fr Forchheimer number

D̃B Brownian motion

D̃¥ Thermophoresis motion

Nb Brownian motion parameter

Nt Thermophoresis motion parameter

Le Lewis number

γ Chemical reaction parameter

Re Reynolds number

Rex Local Reynolds number

Shx Local Sherwood number

Nu Nusselt number

Nux Local Nusselt number

Cf Skin fraction coefficient

Subscripts

p Nanoparticle

nf Nanofluid

hnf Hybrid nanofluid



Chapter 1

Introduction

1.1 Background

The Williamson fluid flow model is a non-Newtonian fluid model that was in-

troduced by Williamson in 1929 [1]. This model describes the behavior of certain

viscoelastic fluids. It defines the stress tensor as a combination of the rate of strain

tensor and the relaxation time tensor, making it suitable for studying viscoelastic

fluids that exhibit both elastic and viscous behavior. Since its introduction, the

Williamson fluid flow model has been extensively studied and applied in various

fields of engineering and science.

Bouslimi et al. [2] conducted a numerical investigation of the magnetohydro-

dynamic flow of a Williamson nanofluid over a stretching sheet within a porous

medium. Their study comprehensively considered significant physical effects, en-

compassing Joule heating, nonlinear thermal radiation, and chemical reaction.

Meanwhile, Jalili et al. [3] employed the semi-analytical Akbari-Ganji Method

(AGM) to explore the thermal analysis of Williamson fluid flow, elucidating the

impact of the Lorentz force and variable viscosity on a stretching plate. Guedri et

al. [4] meticulously examined the behavior of a two-phase dusty thermally devel-

oped Marangoni forced convective flow of Williamson material, leveraging a novel

finite difference scheme for their numerical simulation. In addition, Kumar et al.

1



Introduction 2

[5] performed a numerical investigation of the flow and heat transfer character-

istics of a Williamson fluid over a permeable stretching cylinder using the bvp4c

solver in MATLAB. A number of researchers have also conducted comprehensive

reviews on the Williamson fluid, including works by Shaheen et al. [6], Jangid et

al. [7], and Taj and Salahuddin [8].

Nanofluids, which encompass nanoparticles uniformly suspended within a base

fluid, have garnered considerable research attention due to their heightened ther-

mophysical attributes in contrast to the conventional heat transfer fluids. The

inception of nanofluid studies can be attributed to Choi and Eastmam [9]. Buon-

giorno [10] introduced a non-homogeneous equilibrium model, elucidating the

role of Brownian motion and thermophoretic diffusion in augmenting heat trans-

fer. Khan and Pop [11] conducted an inquiry into the boundary-layer flow of

nanofluids over a stretching sheet, delving into the effects of Brownian motion and

thermophoresis to unravel their behavior near the sheet, employing an implicit

finite-difference method. Nadeem et al. [12] delved into the flow characteristics

of non-Newtonian Williamson fluid over a stretching sheet, utilizing the Homo-

topy Analysis Method (HAM). Bhatti and Rashidi [13] explored the impact of

thermo-diffusion and thermal radiation on nanofluid flow over a porous stretching

sheet, employing the combined approaches of the Successive Linearization Method

(SLM) and Chebyshev Spectral Collocation Method (CSC). Krishnamurthy et al.

[14] harnessed numerical techniques, employing the Runge-Kutta-Fehlberg fifth-

order method coupled with the shooting technique, to investigate the effects of a

chemical reaction on the magnetohydrodynamics (MHD) boundary layer flow and

melting heat transfer of the Williamson nanofluid within a porous medium. Hayat

et al. [15] probed the mixed convective three-dimensional flow of the Williamson

nanofluid, considering the influence of a chemical reaction and employing the Opti-

mal Homotopy Analysis Method (OHAM). Furthermore, Zhu et al. [16] conducted

a comprehensive numerical investigation to analyze the heat and mass transfer at-

tributes of the Williamson nanofluid over a stretching/shrinking sheet. This study

was conducted through the combined application of the Successive Over Relax-

ation (SOR) Method and Finite Difference Method (FDM).

Hybrid nanofluids, have emerged as modern and innovative solutions for heat and
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mass transfer, finding applications in heat exchangers, cooling systems, automotive

engine cooling, solar thermal systems, and refrigeration. Yahya et al. [17] con-

ducted a study on the thermal characteristics of a Williamson hybrid nanofluid

MoS2+ZnO mixed with engine oil flowing over a stretched sheet. They employed

the Runge-Kutta method with a shooting technique for their analysis. In a similar

vein, Jamshed et al. [18] employed the Keller box numerical technique to investi-

gate the flow of a Williamson hybrid nanofluid Ag-Cu/EO over a stretching surface.

Amjad et al. [19] presented a numerical solution using the MATLAB function

bvp4c for the analysis of magnetized Williamson nanofluid flow over an expo-

nentially stretching permeable surface. Their study accounted for temperature-

dependent viscosity and thermal conductivity. Furthermore, Alhowaity et al. [20]

adopted a numerically computational approach, specifically the parametric contin-

uation method, to perform a heat transfer analysis of hybrid nanofluid flow with

thermal radiation. Ongoing research continues to explore the diverse applications

and behavior of hybrid nanofluids [21–25].

Heat and mass transfer are crucial in various applications, including space cooling,

renewable energy production, aerospace engineering, and medical therapies like

magnetic drug targeting [26]. While Fourier’s law of thermal conduction has been

extensively used for studying heat transfer, it has limitations, such as predicting

an infinite speed of heat propagation. To address this, Cattaneo [27] proposed a

generalized form of Fourier’s law by introducing the relaxation time. Later, Chris-

tov [28] modified the Cattaneo model using Oldroyd’s upper convected derivative

to maintain frame-indifferent formulations.

Recently, researchers have explored the applications of the Cattaneo-Christov

model in different fluid flow scenarios. Ashraf et al. [29] investigated the magne-

tohydrodynamic flow of Jeffrey nanofluid with modified Cattaneo-Christov fluxes.

Algehyne et al. [30] studied the behavior of magnetized hybrid nanomaterial flow

near a stretching wall. Salmi et al. [31] investigated heat generation in chem-

ically reactive flow of Prandtl liquid, considering Ohmic heating. Overall, the

Cattaneo-Christov flux model provides a valuable framework for understanding

and analyzing heat and mass transfer phenomena in various fluid flow scenarios.
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Several other researchers have also contributed to the exploration of this model in

different contexts, as referenced in the mentioned articles [32–35].

Magnetohydrodynamics (MHD) stands as an interdisciplinary realm, blending the

core principles of classical electromagnetism with the intricacies of fluid dynam-

ics. Its purview encompasses the behavior of electrically conductive fluids when

subjected to magnetic fields. Hussaini et al. [36] embarked on an exploration

of convective MHD nanofluid flow. Their study unfurled over an impermeable

stretching surface, considering the interplay of Soret diffusivity. This investigation

harnessed the potency of the Runge-Kutta-Fehlberg method, augmented by the

precision of the shooting technique. Likewise, Jalili et al. [37] navigated the MHD

nanofluid landscape employing the finite element method. Their investigation ex-

tended beyond fluid flow and encompassed the intricate interplay of heat transfer

within a circular porous medium. Within this realm, the dominant influences of

Lorentz and buoyancy forces took precedence, and they ingeniously incorporated

a cassini oval cavity into the framework governed by Darcy’s law. Venturing fur-

ther, Hussaini and Abdulkadir [38] embarked on a discourse that dissected the

tangible impacts of diverse factors on MHD nanofluid flow. Here, the trinity of

heat generation/absorption, magnetic fields, and solar radiation converged upon a

stretching surface. This intricate interplay was meticulously deciphered using the

Runge-Kutta-Fehlberg method in tandem with the deft precision of the shooting

approach. On a different trajectory, Sarala et al. [39] steered their efforts towards

the investigation of MHD nanofluid flow dynamics. An oscillating plate entered

the narrative, further emboldened by chemical reactions and radiation. The an-

alytical arsenal of Laplace transformation was summoned to tackle this intricate

choreography of the phenomenon. As the symphony of research continued, Sadighi

et al. [40] crafted an analytical melody resonating with the nuances of MHD heat

and mass transfer nanofluid flow. This composition involved a porous cylinder

graced with the presence of an inclined magnetic field, curvature, concentration

power-law exponent, chemical reactions, and the interplay of viscous dissipation

effects. The harmonious notes of the Forbenius method orchestrated the unrav-

eling of this intricate composition. Meanwhile, Dawar et al. [41] unfurled an

innovative canvas portraying a non-homogeneous convective nanofluid flow within
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the embrace of MHD. This model resonated with the dynamism of rotating inclined

thin layers, basking in the embrace of incident solar energy. The homotopy analysis

method emerged as the guiding maestro in this creative endeavor. Further afield,

Sivasankaran et al. [42] embarked on a journey that resonated with the echoes

of chemical reactions. Their exploration wove through the intricate labyrinth of

double diffusive unsteady incompressible MHD squeezing copper-water nanofluid

flow between parallel plates. A systematic approach, known as the Differential

Transformation Method (DTM), was enlisted in conjunction with the rhythmic

cadence of the Runge-Kutta-Fehlberg method. In a parallel pursuit, Raghunath

[43] charted an investigation into the symphony of unsteady MHD nanofluid flow.

This endeavor unfolded past a vertical porous plate, with chemical reactions, ra-

diation, and Soret effects orchestrating the intricate dynamics. The cadence of

the perturbation technique served as the guiding rhythm, unraveling the intricate

tapestry of the phenomenon. Since those seminal endeavors, the field of MHD

mass and heat transfer has unfurled its wings, extending its reach to encompass

various fluid types and an array of diverse physical properties [44–47].

In the context of existing research, notable gaps beckon for a deeper exploration

of non-Newtonian Williamson nanofluid behavior. While previous studies have

probed specific aspects of fluid dynamics, a comprehensive framework integrating

diverse factors remains lacking. Against this backdrop, this research emerges with

the aim to bridge these gaps by harmonizing various elements, forming a unified

understanding of fluid dynamics. At its core is the investigation of a complex

hybrid nanofluid, namely MoS2+GO/H2O, introducing a novel layer of complexity.

To unravel this intricate interplay, sophisticated numerical techniques take center

stage, employing the shooting method in conjunction with fourth-order Runge-

Kutta numerical integration. This combination provides a potent toolkit to dis-

sect the behaviors of the hybrid nanofluid. In doing so, this research not only

illuminates new facets of fluid dynamics but also elevates the stature of numeri-

cal methodologies within the discipline. In essence, by addressing these research

gaps and embarking on a multifaceted exploration, this study not only reshapes

our understanding of fluid behavior but also charts a path towards innovative

applications in engineering and science.
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1.2 Thesis Structure

Chapter 2 serves as an introduction to the thesis and provides essential definitions

and terminologies that are crucial for understanding the concepts discussed in

subsequent chapters. This chapter aims to establish a foundational understanding

of the key terms and concepts that will be used throughout the thesis.

InChapter 3, we present a comprehensive numerical study of the flow of Williams-

on HNF MoS2+ZnO/EO over a stretched sheet in the Cartesian coordinate system.

The proposed numerical model incorporates heat and mass transfer phenomena

across the stretched sheet. To obtain the numerical outcomes of the governing

flow equations, the shooting technique is utilized. This chapter explores the flow

characteristics and heat transfer performance of the Williamson hybrid nanofluid

under various operating conditions.

Building upon the model discussed in Chapter 3, Chapter 4 extends the investi-

gation to a water-based hybrid nanofluid (MoS2+GO). In this chapter, we introduce

the impact of Forchheimer flow in the momentum equation along with other ad-

ditional effects, such as Cattaneo-Christov heat flux, thermal radiation, magnetic

field, thermophoresis diffusion, and Brownian diffusion, into the energy equation

of the proposed model. Additionally, we include the concentration equation of

the hybrid nanofluid in the proposed model, considering chemical reactions and

diffusion effects. The use of similarity transformation is employed to convert the

partial differential equations into a system of ordinary differential equations, which

are subsequently solved using the numerical technique.

Chapter 5 presents the concluding remarks and highlights the significant findings

obtained from the research conducted in this thesis. This chapter aims to provide

a comprehensive summary of the main outcomes and contributions of the study.

The Bibliography section includes a comprehensive list of all the references and

sources used in the thesis. It acknowledges the contributions of prior research

and ensures the academic integrity of the work by properly crediting the original

authors and sources.



Chapter 2

Preliminaries

In this chapter, we will elucidate fundamental definitions, essential laws, terminolo-

gies, and key concepts necessary for the analysis of nonlinear partial differential

equations. These foundational elements are crucial for comprehending the subse-

quent chapters of this thesis and will provide a solid framework for the development

of a comprehensive understanding.

2.1 Foundational Concepts

2.1.1 Fluid

“A substance in the liquid or gas phase is referred to as a fluid. Distinction

between a solid and a fluid is made on the basis of the substances ability to resist

an applied shear (or tangential) stress that to change its shape. A solid can resist

an applied shear stress by deforming, whereas a fluid deforms continuously under

the influence of shear stress no matter how small.” [48]

2.1.2 Fluid Mechanics

“Fluid mechanics is that branch of science which deals with the behavior of the

fluid (liquids or gases) at rest as well as in motion.” [49]

7
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2.1.3 Fluid Dynamics

“Fluid dynamics is the study of the motion of liquids, gases and plasma from one

place to another.” [49]

2.1.4 Viscosity

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layers of fluid over another adjacent layer of the fluid. When two layers

of a fluid, a distance ‘dy’ apart, move one over the other at different velocities,

say u and u + du as shown in the viscosity together with relative velocity causes

a shear stress acting between the fluid layers.”

Figure 2.1: Velocity variation near a solid surface.

“The top layer causes a shear stress on the adjacent lower layer while the lower layer

causes a shear stress on the adjacent top layer. This shear stress is proportional to

the rate of change of velocity with respect to y. it is denoted by symbol τ called

Tau. Mathematically,

τ ∝ du

dy

⇒ τ = µ
du

dy

⇒ µ =
τ
∂u
∂y

(2.1)

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient or rate of shear strain.” [49]
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2.1.5 Kinematic Viscosity

“Kinematic viscosity is defined as the ratio between the dynamic viscosity and

density of fluid. It is denoted by the Greek symbol ν, thus mathematically,

ν =
Viscosity

Density
=

µ

ρ

where the unit of kinematic viscosity is m2/sec .” [49]

2.1.6 Magnetohydrodynamics

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct- ing

fluids in the presence of magnetic fields, either externally applied or generated within

the fluid by inductive action.”

2.2 Classification of Fluid

2.2.1 Ideal Fluid

”A fluid which is incompressible and is having no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some viscosity.”

[49]

2.2.2 Real Fluid

“A fluid, which possesses viscosity, is known as a real fluid. All the fluids, in actual

practice, are real fluids.” [49]

2.2.3 Newtonian Fluid

“A real fluid, in which shear stress is directly, proportional to the rate of shear strain

(or velocity gradient), is known as a Newtonian fluid.” [49]
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2.2.4 Non-Newtonian Fluid

“A real fluid, in which the shear stress is not proportional to the rate of shear strain (or

velocity gradient), is known as a Non-Newtonian fluid.” [49]

2.2.5 Ideal Plastic Fluid

“A fluid, in which shear stress is more than the yield value and shear stress is proportional

to the rate of shear strain (or velocity gradient), is known as ideal plastic fluid.” [49]

2.3 Modes of Heat Transfer

2.3.1 Conduction

“The mechanism of heat transfer due to a temperature gradient in a stationary medium

is called conduction. The medium may solid or a fluid. A very popular example of

conduction heat transfer is that when one end of metallic spoon is dipped into a cup

of hot tea, the other end becomes gradually hot. In solids, the conduction of heat is

attributed to two effects:

(i) the flow of free electrons and

(ii) the lattice vibrational waves caused by the vibrational motions of the molecules at

relatively fixed positions called a lattice.” [50]

Figure 2.2: Example of conduction

As shown in above Figure ?? the simple example of conduction is when you hold one

end of an iron rod while the other end is in direct contact with a flame. When a flame is

placed at one end of the rod, the atoms at the heated end vibrate faster. The vibrating
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atoms at the heated end then force nearby atoms to vibrate as well, creating a chain

reaction. The process will continue until the atoms where your hand is placed also

vibrate. This is the nature of heat transfer by conduction. This is the transfer of energy

from atom to atom or from molecule to molecule.

2.3.2 Convection

“The mode by which heat is transferred between a solid surface and the adjacent fluid in

motion when there is a temperature difference between the two is known as convection

heat transfer. The temperature of the fluid stream refers either to its bulk or free stream

temperature.”[50]

Consider a tea kettle which is subjected to heat for boiling water. Here, The water

molecules adjacent to the kettle surface get warmer first and then all move upward or

relatively cooler portion to carry the heat. In this case, the boiling of water is an example

of convection. The heating process of kettle surface is conduction after that the heat is

radiated to the air through radiation.

Figure 2.3: Example of convection

2.3.3 Forced Convection

“In forced convection, the fluid is forced to flow over a solid surface by external means

such as fan, pump or atmospheric wind.” [50]
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2.3.4 Free Convection

“When the fluid motion is caused by the buoyancy forces that are induced by density

differences due to the variation in temperature or species concentration (in case of mul-

ticomponent systems) in the fluid, the convection is called natural (or free) convection.”

[50]

2.3.5 Radiation

“Any substance at a finite temperature emits energy in the form of electromagnetic

waves in all directions and at all wavelengths (from a very low one to a very high

one). The energy emitted within a specific band of wavelength (0.1–100 µm) is termed

thermal radiation. The exchange of such radiant energy between two bodies at different

temperatures is defined as heat transfer between the bodies by radiation. We have seen

earlier that the heat transfer by conduction or convection requires the presence of a

medium. But the radiation heat transfer does not necessarily require a medium, rather

it occurs most efficiently in a vacuum.” [50]

One of the most important sources of energy is the Sun. Cosmic radiation emitted

by the Sun is a mixture of electromagnetic waves; from infrared to ultraviolet. In

addition, it also emits visible light. Most of the solar radiation emitted is absorbed by

the atmosphere. However, the portion not absorbed by the atmosphere will reach the

earth. Humans are exposed to this part of the radiation almost all times.

Figure 2.4: Example of radiation
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2.4 Different Flow Classifications

2.4.1 Steady and Unsteady Flows

“Steady flow is defined as that type of flow in which the fluid characteristics like veloc-

ity, pressure, density, etc., at a point do not change with time. Thus for steady flow,

mathematically, we have

(
∂V

∂t

)
xo,yo,zo

= 0,

(
∂p

∂t

)
xo,yo,zo

= 0,

(
∂ρ

∂t

)
xo,yo,zo

= 0

where (xo, yo, zo) is fixed point in fluid field.” [49]

“ Unsteady flow is that type of flow, in which the velocity, pressure or density at a point

changes with respect to time. thus, mathematically, for unsteady flow(
∂V

∂t

)
xo,yo,zo

̸= 0,

(
∂p

∂t

)
xo,yo,zo

̸= 0 etc.” [49]

2.4.2 Uniform and Non-uniform Flow

“Uniform flow is defined as the type of flow in which the velocity at any given time does

not change with respect to space (i.e., length of direction of the flow). Mathematically,

for uniform flow (
∂V

∂s

)
r=constant

= 0

where ∂V= Change of velocity

∂s= Length of flow in the direction S.

Non-uniform flow is the type of flow in which the velocity at any given time changes

with respect to space. Thus, mathematically, for non-uniform flow

(
∂V

∂s

)
r=constant

̸= 0.” [49]

2.4.3 Laminar and Turbulent Flows

“Laminar flow is defined as that type of flow in which the fluid particles move along

well-defined paths or stream line and all the stream-lines are straight and parallel. Thus

the particles move in lamines or layers gliding smoothly over the adjacent layer. This
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type of flow is also called stream-line flow or viscus flow.” [49]

“Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way.

due to the movement of fluid particles in a zig-zag way, the eddies formulation takes

place which are responsible for high energy loss.” [49]

2.4.4 Compressible and Incompressible Flows

“Compressible flow is that type of flow in which the density for the fluid changes from

point to point or in other words the density (ρ) is not constant for the fluid. Thus,

mathematically, for compressible flow

ρ ̸= constant

Incompressible flow is that type of flow in which the density is constant for the fluid flow.

Liquids are generally incompressible while gases are compressible. Mathematically, for

incompressible flow

ρ = constant.” [49]

2.4.5 Rotational and Irrotational Flows

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis. And if the fluid particles while flowing

along stream-lines, do not rotate about their own axis then that type of flow is called

irrotational flow.” [49]

2.4.6 Inviscous Flow

“A flow in which viscosity of the fluid is equal to zero is known as inviscous (inviscid)

flow.”

2.5 Porous Material

“A solid containing holes or voids, either connected or non-connected, dispersed within
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it in either a regular or random manner known as porous material provided that holes

occur relatively frequently within the solid”[51].

“Pores are either interconnected or non-interconnected. A fluid can flow through a

porous material only if at least some of the pores are interconnected”[51]. Some natural

porous materials are beach sand, limestone, sandstone, wood, loaf of bread and human

lung etc.

2.5.1 Porosity

“The porosity of a porous material is the fraction of the bulk volume of the material

occupied by voids. The symbol usually employed for this parameter is ϕ. Thus

ϕ =
VP

VB
=

Volume of pores

Bulk volume

Bulk volume, which is a dimensionless quantity. Since that portion of the bulk volume

not occupied by pores is occupied by the solid grains or matrix of the material, it follows

that

1− ϕ =
VS

VB
=

Volume of solids

Bulk volume
.”[51]

2.5.2 Permeability

“Permeability is the property of a porous material which characterizes the ease with

which a fluid may be made to ow through the material by an applied pressure gradient.

Permeability is the fluid conductivity of the porous material”.

“If horizontal linear ow of an incompressible fluid is established through a sample of

porous material of length L in the direction of flow, and cross sectional area A, then the

permeability K of the material is defined as

K =
qµ

A
(
δP
L

)
Here q is the fluid flow rate in volume per unit time, µ is the viscosity of the fluid and

δP is the applied pressure difference across the length of the specimen”[51].
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2.6 Conservation Laws

2.6.1 Law of Conservation of Mass

“The principle of conservation of mass can be stated as the time rate of change of

mass in a fixed volume is equal to the net rate of ow of mass across the surface. The

mathematical statement of the principle results in the following equation, known as the

continuity (of mass) equation
∂ρ

∂t
+ δ. (ρV ) , (2.2)

where ρ is the density (kg/m3) of the medium, V the velocity vector (ms−1), and δ is the nabla

or del operator. The continuity equation in (2.2) is in conservation (or divergence) form since

it can be derived directly from an integral statement of mass conservation. By introducing the

material derivative or Eulerian derivative operator D
Dt

D

Dt
=

∂

∂t
+ V.δ, (2.3)

the continuity equation (2.2) can be expressed in the alternate, non-conservation (or advective)

form
∂ρ

∂t
+ V.δρ+ ρδ.V =

Dρ

Dt
+ ρδ.V (2.4)

For steady-state conditions the continuity equation becomes

δ. (ρV ) = 0. (2.5)

When the density changes following a fluid particle are negligible, the continuum is termed

incompressible and we have Dρ
Dt . The continuity equation (2.4) the becomes

δ.V = 0, (2.6)

which is often referred to as the incompressibility condition or incompressibility con-

straint” [52].

2.6.2 Equation of Momentum

“The principle of conservation of linear momentum (or Newton’s Second Law of motion)

states that the time rate of change of linear momentum of a given set of particles is equal

to the vector sum of all the external forces acting on the particles of the set, provided
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Newton’s Third Law of action and reaction governs the internal forces. Newton’s Second

Law can be written as

∂

∂t
(ρV ) + δ. (ρV ⊗ V ) = δ.σ + ρf, (2.7)

where ⊗ is the tensor (or dyadic) product of two vectors, σ is the Cauchy stress tensor

(N/m2) and f is the body force vector, measured per unit mass and normally taken

to be the gravity vector. Equation (2.7) describes the motion of a continuous medium,

and in fluid mechanics they are also known as the Navier equations. The form of the

momentum equation shown in (2.7) is the conservation (divergence) form that is most

often utilized for compressible flows. This equation may be simplified to a form more

commonly used with incompressible flows. Expanding the

first two derivatives and collecting terms

ρ

(
∂V

∂t
+ V δ.V

)
+ V

(
∂ρ

∂t
+ δ.ρV

)
= δ.σ + ρf (2.8)

The second term in parentheses is the continuity equation (2.2) and neglecting this term

allows (2.8) to reduce to the non-conservation (advective) form

ρ

(
DV

Dt

)
= δ.σ + ρf (2.9)

where the material derivative (2.3) has been employed.

The principle of conservation of angular momentum can be stated as the time rate of

change of the total moment of momentum of a given set of particles is equal to the

vector sum of the moments of the external forces acting on the system. In the absence

of distributed couples, the principle leads to the symmetry of the stress tensor:

σ = (σ)T (2.10)

where the superscript T denotes the transpose of the enclosed quantity” [52].

2.6.3 Law of Conservation of Energy

“The law of conservation of energy (or the First Law of Thermodynamics) states that

the time rate of change of the total energy is equal to the sum of the rate of work done
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by applied forces and the change of heat content per unit time. In the general case, the

First Law of Thermodynamics can be expressed in conservation form as

∂ρet

∂t
+ δ.ρvet = −δ.q + δ. (σ.v) +Q+ ρf.v, (2.11)

where et = e + 1/2v.v is the total energy (J/m3), e is the internal energy, q is he heat

flux vector (W/m2) and Q is the internal heat generation (W/m3)” [52].

2.6.4 Newton’s Law of Viscosity

“It states that the shear stress (τ ) on a fluid element layer is proportional to the

rate of shear strain. The constant of proportionally is called coefficient of viscosity.

Mathematically, it is expressed as

τ = µ
∂u

∂y
.”

2.7 Dimensionless Parameters

2.7.1 Reynolds Number (Re)

“It is the most significant dimensionless number which is used to identify the different

flow behaviors like laminar or turbulent flow. Mathematically, it is expressed as

Re =
LU

ν

where U denotes the free stream velocity, L is the characteristic length and ν stands for

kinematic viscosity.” [53]

2.7.2 Nusselt Number (Nu)

“It is the relationship between the convective to the conductive heat transfer through

the boundary of the surface. Mathematically, it is defined as
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Nu =
hL

k

where h stands for convective heat transfer, L stands for characteristic length and k

stands for thermal conductivity.” [53]

2.7.3 Prandtl Number (Pr)

“The ratio of kinematic diffusivity to heat the diffusivity is said to be Prandtl number.

It is denoted by Pr. Mathematically, it can be written as

Pr =
ν

α

⇒ =
µcp
ρk

where µ and α denote the momentum diffusivity or kinetic diffusivity and thermal dif-

fusivity respectively.” [53]

2.7.4 Skin Friction Coefficient (Cfx )

“The skin friction coefficient is typically defined as

Cf =
2τw
ρU2

w

where τw is the local wall shear stress, ρ is the fluid density and Uw is the free stream

velocity (usually taken outside the boundary layer or at the inlet).” [53]

2.7.5 Sherwood Number (Shx)

“It is a non-dimensional quantity which describes the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically,

Sh =
kL

D
,
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here L is characteristics length, D is the mass diffusivity and k is the mass transfer

coefficient.” [53]

2.7.6 Thermophoresis Parameter

“In a temperature gradient, small particles are pushed towards the lower temper- ature

because of the asymmetry of molecular impacts.” [53]

2.7.7 Eckert Number

“It is a dimensionless number used in continuum mechanics. It describes the relation

between flows and the boundary layer enthalpy difference and it is used for characterized

heat dissipation. Mathematically,

Ec =
u2

cpδT
.”[53]

2.8 Shooting Method

To elaborate the shooting method, take into account the subsequent nonlinear boundary

value problem.

h′′(ζ)− h(ζ) + h2(ζ) = 0

h′(0) = 0, h(b) = 0.

 (2.12)

To reduce the order of the above BVP, introduce the following notations:

h(ζ) = l1, h′(ζ) = l′1 = l2. (2.13)

The system of first order ODEs that results form the conversion of (2.12) is as follows:

l′1 = l2, l1(0) = 0. (2.14)

l′2 = l21 − l1, l2(0) = k. (2.15)
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Where k is the initial condition which will be guessed. The RK−4 method will be used

to numerically solve the above IVP. Choose missing condition k in such a way that

l1 (b, k) = 0. (2.16)

The above equation can be solved by using Newton’s method with the following iterative

scheme:

k(m+1) = k(m) − l1 (b, k)
(m)(

∂ l1(b,k)
∂k

)(m)
(2.17)

To find

(
∂ l1(b,k)

∂k

)(m)

, introduced the following notations:

∂l1
∂k

= l3,
∂l2
∂k

= l4. (2.18)

As a result of these new notations the Newton’s iterative scheme, will then get the form

k(m+1) = k(m) − l1 (b, k)
(m)

l3 (b, k)
(m)

. (2.19)

Now differentiating the system of two first order ODEs (2.14) and (2.15) with respect

to k, we get another system f ODEs, as follows:

l′3 = l4, l3(0) = 0. (2.20)

l′4 = 2l1l3 − l3, l4(0) = 1. (2.21)

Writing all the four ODEs (2.14), (2.15), (2.20) and (2.21) together, following IVP is obtained.

l′1 = l2, l1(0) = 0.

l′2 = l21 − l1, l2(0) = k.

l′3 = l4, l3(0) = 0.

l′4 = 2l1l3 − l3, l4(0) = 1.

The above system together will be solved numericaly br RK − 4 method. The stopping criteria

for the Newton’s technique is set as

|l1(b, k)| < ϵ,

where ϵ > 0 is an arbitrary small positive number.



Chapter 3

Thermal Characteristics of a

Williamson Hybrid Nanofluid

Based with Engine Oil Over a

Stretched Sheet

3.1 Introduction

In this chapter, we delve into the numerical analysis of the flow of a Williamson hybrid

nanofluid (MoS2 + ZnO) over a stretching sheet. This sheet is placed within a porous

medium and subjected to both a magnetic field and thermal radiation. To tackle this, we

transform the governing nonlinear partial differential equations into a set of dimension-

less ordinary differential equations using suitable transformations. These equations are

then addressed using the shooting technique in MATLAB. Our focus lies in discussing

the numerical solutions for various parameters, notably the velocity profile f ′(ζ) and

the temperature profile θ(ζ). This chapter provides a thorough exploration of the work

previously undertaken by Yahya et al [17].

22
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3.2 Physical Model

We investigate the flow characteristics of a hybrid nanofluid over a stretching sheet,

focusing on a two-dimensional and steady boundary layer flow. The coordinate axis

along the stretched sheet is denoted by x̃ and that perpendicular to the sheet is ỹ.

Notably, the wall is considered incompressible (ṽw = 0), as depicted in figure 3.1 The

steady flow of the hybrid nanofluid is governed by the following equations (3.1)-(3.3)

along with the boundary conditions (3.4).

Figure 3.1: Flow Pattern Illustration.

Mass conservation equation:

∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0. (3.1)

Momentum equation:

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
+

σ̃hnf
ρ̃hnf

B̃2
o ũ+

µ̃hnf

ρ̃hnf

ũ

k∗
=

µ̃hnf

ρ̃hnf

∂2ũ

∂ỹ2
+
√
2Γν̃f

∂ũ

∂ỹ

∂2ũ

∂ỹ2
. (3.2)

Energy equation of hybrid nanofluid:

ũ
∂¥̃
∂x̃

+ ṽ
∂¥̃
∂ỹ

=
k̃hnf

(ρ̃c̃p)hnf

∂2¥̃
∂ỹ2

+
µ̃hnf

(ρ̃c̃p)hnf

(
∂ũ

∂ỹ

)2

+
Qo

(ρ̃c̃p)hnf

(
¥̃ − ¥̃∞

)
. (3.3)
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Boundary condition:

ũ = Ũw = ãx̃, ṽ = ṽw, −k̃hnf
∂¥̃
∂ỹ

= h̃f
(
¥̃ − ¥̃f

)
, as ỹ = 0,

ũ −→ 0, ¥̃ −→ ¥̃∞, as ỹ −→ ∞.

 (3.4)

3.3 Similarity Transformation and Non- Dimen-

sionalization of Mathematical Model

In this section, we present the process of non-dimensionalization for the mathematical

model governing the behavior of our hybrid nanofluid. The procedure requires introduc-

ing the dimensionless variables and parameters to transform the original equations into

a simpler form. By using dimensionless quantities, we gain a deeper insights into the

physical phenomena and make the analysis more tractable. The mathematical model

will be transformed into a system ODEs using the following similarity transformation:

ζ =

√
ã

ν̃f
ỹ, ũ = ãx̃f ′(ζ), ṽ = −

√
ãν̃ff(ζ), θ(ζ) =

¥̃ − ¥̃∞

¥̃f − ¥̃∞
. (3.5)

The mathematical model equations (3.1) - (3.3) and boundary condition (3.4) were

transformed into a dimensionless form through a similarity transformation. The follow-

ing derivative are required to satisfied the mass conservation equation (3.1).

ũ = ãx̃f ′(ζ)

⇒ ∂ũ

∂x̃
= ãf ′(ζ). (3.6)

ṽ = −
√
ãν̃ff(ζ)

⇒ ∂ṽ

∂ỹ
= −

√
ãν̃ff

′(ζ).
∂ζ

∂ỹ

= −
√

ãν̃ff
′(ζ).

∂

∂ỹ

(√
ã

ν̃f
ỹ

) (
using (3.5)

)

= −
√

ãν̃ff
′(ζ)

(√
ã

ν̃f

)

= ãf ′(ζ). (3.7)
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Finally, using equations (3.6) and (3.7) in (3.1), we obtain

ãf ′(ζ)− ãf ′(ζ) = 0.

Hance equation (3.1) is identically satisfied.

The basic thermo-physical characteristics of nanofluids are obtained from the above

literature review. The thermo-physical properties are presented in Table 3.1.

Table 3.1: Thermo-physical properties of water base fluid and nanoparticles.
[54]

Nanofluid Hybrid Nanofluid

µ̃nf =
µ̃f

(1−Φ)2.5
µ̃nf =

µ̃f

(1−Φ1)2.5(1−Φ2)2.5

ρ̃nf = ρ̃f (1− Φ) + Φ( ρ̃s

ρ̃f
) ρ̃hnf = ρ̃f (1− Φ2)

(
(1− Φ1) + Φ1(

ρ̃s1

ρ̃f
)
)
+Φ2ρ̃s2

(ρ̃c̃p)nf = (ρ̃c̃p)f (1− Φ) + Φ
(ρ̃c̃p)s
(ρ̃c̃p)f

(ρ̃c̃p)hnf

(ρ̃c̃p)f
= (1− Φ2)

(
(1− Φ1) + Φ1

(ρ̃c̃p)s1
(ρ̃c̃p)f

)
+Φ2

(ρ̃c̃p)s2
(ρ̃c̃p)f

K̃nf

K̃f
=

K̃s+(sf−1)K̃f−(sf−1)Φ(K̃f−Ks)

K̃s+(sf−1)K̃f+Φ(K̃f−K̃s)

K̃hnf

K̃bf
=

K̃s2+(sf−1)K̃bf−(sf−1)Φ2(K̃bf−K̃s2 )

K̃s2
+(sf−1)K̃nf+Φ2(K̃bf−K̃s2

)

K̃nf

K̃f
=

K̃s1
+(sf−1)K̃f−(sf−1)Φ1(K̃f−K̃s1

)

K̃s1
+(sf−1)K̃f+Φ1(K̃f−K̃s1

)

σ̃nf = σ̃f

[
1 + 3(σ−1)Φ

(σ+2)−(σ−1)Φ

]
σ̃hnf = σ̃bf

[
σ̃s2 (1+2Φ2)+2σ̃bf (1−Φ2)

σ̃s2 (1−Φ2)+σ̃bf (2+Φ2)

]
with σ̃bf = σ̃f

[
σ̃s1 (1+2Φ1)+2σ̃f (1−Φ1)

σ̃s1 (1−Φ1)+σ̃f (2+Φ1)

]

Some expression involving the above thermo-physical properties, denoted by Ãi (i = 1, 2, 3, 4) ,

have been defined below. These notations will simplify the dimensionless model to be

achieved in the upcoming sections. [17]

Ã1 = (1− ϕ1)
2.5 (1− ϕ2)

2.5

[
(1− ϕ2)

{
(1− ϕ1) + ϕ1

ρ̃s1
ρ̃f

}
+ ϕ2

ρ̃s2
ρ̃f

]
,

Ã2 = (1− ϕ2)

{
(1− ϕ1) + ϕ1

ρ̃s1
ρ̃f

+ ϕ2
ρ̃s2
ρ̃f

}
,

Ã3 = (1− ϕ2)

(1− ϕ1) +

(
ρ̃C̃p

)
s1(

ρ̃C̃p

)
f

ϕ1

+

(
ρ̃C̃p

)
s2(

ρ̃C̃p

)
f

ϕ2,

Ã4 = (1− ϕ1)
2.5 (1− ϕ2)

2.5 .

Ã5 =

[
σ̃s2 (1 + 2Φ2) + 2σ̃bf (1− Φ2)

σ̃s2 (1− Φ2) + σ̃bf (2 + Φ2)

] [
σ̃s1 (1 + 2Φ1) + 2σ̃f (1− Φ1)

σ̃s1 (1− Φ1) + σ̃f (2 + Φ1)

]
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3.3.1 Non-Dimensionalization of Momentum Equation

For the momentum equation (3.2), the following derivatives are needed:

∂ũ

∂ỹ
=

∂

∂ỹ

(
ãx̃f ′(ζ)

)

= ãx̃f ′′(ζ)

√
ã

ν̃f
. (3.8)

⇒ ∂2ũ

∂ỹ2
= ãx̃

√
ã

ν̃f
f ′′′(ζ).

∂ζ

∂ỹ

=
ã2x̃

ν̃f
f ′′′(ζ). (3.9)

Now, we substitute the values of all the partial derivatives (3.6) , (3.8) and (3.9) and

velocity components (3.5) into the equation (3.2) to get the following:

[(
ãx̃f ′(ζ)

)(
ãf ′(ζ)

)]
+

[(
−
√
ãν̃ff(ζ)

)(
ãx̃f ′′(ζ)

√
ã

ν̃f

)]

+

[
σ̃f Ã5

ρ̃f Ã2

B̃2
o

(
ãx̃f ′(ζ)

)]
+

[
µ̃f

ρ̃f Ã2Ã4

ãx̃f ′(ζ)

k∗

]
=

[
µ̃f

ρ̃f Ã2Ã4

ã2x̃

ν̃f
f ′′′(ζ)

]

+

[
√
2Γν̃f

(
ãx̃f ′′(ζ)

√
ã

ν̃f

)(
ã2x̃

ν̃f
f ′′′(ζ)

)]
.

⇒ ã2x̃
(
f ′(ζ)

)2 − ã2x̃f(ζ)f ′′(ζ) +
σ̃f B̃

2
oÃ5

ρ̃f Ã2

ãx̃f ′(ζ) +
ν̃f ãx̃

k∗Ã2Ã4

=
ã2x̃

Ã2Ã4

f ′′′(ζ) +
√
2Γ

ã2x̃2ã
3
2

ν̃
1
2
f

f ′′(ζ)f ′′′(ζ).

⇒
(
f ′(ζ)

)2 − f(ζ)f ′′(ζ) +
σ̃f B̃

2
o

ρ̃f ã

Ã5

Ã2

f ′(ζ) +
ν̃f
ãk∗

1

Ã2Ã4

f ′(ζ)

=
1

Ã2Ã4

f ′′′(ζ) +
√
2x̃Γ

ã
3
2

ν̃
1
2
f

f ′′(ζ)f ′′′(ζ).

⇒
(
f ′(ζ)

)2 − f(ζ)f ′′(ζ) +M
Ã5

Ã2

f ′(ζ) +
Kp

Ã2Ã4

f ′(ζ) =
1

Ã2Ã4

f ′′′(ζ) + wef
′′(ζ)f ′′′(ζ).

⇒ Ã2Ã4

((
f ′(ζ)2

)
− f(ζ)f ′′(ζ)

)
+MÃ5Ã4f

′(ζ) +Kpf
′(ζ)

= f ′′′(ζ) + Ã2Ã4wef
′′(ζ)f ′′′(ζ).

⇒
(
1 + weÃ1f

′′(ζ)

)
f ′′′(ζ)− Ã1

((
f ′(ζ)

)2 − f(ζ)f ′′(ζ)

)
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−
(
MÃ4Ã5 +Kp

)
f ′(ζ) = 0. (3.10)

3.3.2 Non-Dimensionalization of Energy Equation

In this section, we discuss the non-dimensionalization process of the energy equation

(3.3) for our hybrid nanofluid model.

θ(ζ) =
¥̃ − ¥̃∞

¥̃f − ¥̃∞

⇒ ¥̃ =
(
¥̃f − ¥̃∞

)
θ(ζ) + ¥̃∞. (3.11)

⇒ ∂¥̃
∂x̃

= 0. (3.12)

⇒ ∂2¥̃
∂x̃2

= 0. (3.13)

Now, differentiating equation (3.11) w.r.t ỹ, we obtain

∂¥̃
∂ỹ

=
(
¥̃f − ¥̃∞

)
θ′(ζ).

∂ζ

∂ỹ

⇒ ∂¥̃
∂ỹ

=
(
¥̃f − ¥̃∞

)√ ã

ν̃f
θ′(ζ). (3.14)

⇒ ∂2¥̃
∂ỹ2

=
ã

ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ). (3.15)

Now, we substitute the partial derivatives (3.8) , (3.11), (3.12) and (3.15) and velocity

components ũ and ṽ from (3.5) into the equation (3.3).

[(
−
√
ãν̃ff(ζ)

)(
¥̃f − ¥̃∞

)√ ã

ν̃f
θ′(ζ)

]
=

k̃hnf

(ρ̃c̃p)f Ã3

(
ã

ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ)

)

+
µ̃f

(ρ̃c̃p)f

1

Ã3Ã4

(
ã2x̃2

(
f ′′(ζ)

)2 ã

ν̃f

)
+

Q̃o

(ρ̃c̃p)f Ã3

[(
¥̃f − ¥̃∞

)
θ(η)

]
.

⇒ − ã
(
¥̃f − ¥̃∞

)
f(ζ)θ′(ζ) =

k̃hnf(
ρ̃c̃p
)
f
Ã3

ã

ν̃f
θ′′(ζ)

ã(
ρ̃c̃p
)
f
Ã3Ã4

(
ã2x̃2

(
f ′′(ζ)

)2 ã

ν̃f

)

+
Q̃o(

ρ̃c̃p
)
f
Ã3

(
¥̃f − ¥̃∞

)
θ(ζ).
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⇒ f(ζ)θ′(ζ) =
k̃hnf

Ã3k̃f

k̃f(
ρ̃c̃p
)
f
ν̃f

θ′′(ζ) +
ã2x̃2(

c̃p
)
f
(
¥̃f − ¥̃∞

) 1

Ã3Ã4

(
f ′′(ζ)

)2
+

Q̃o

Ã3ã
(
ρ̃c̃p
)
f

θ(ζ).

⇒ − f(ζ)θ′(ζ) =
k̃hnf

Ã3k̃fPr
θ′′(ζ) +

Ec

Ã3Ã4

(
f ′′(ζ)

)2
+

Q

Ã3

θ(ζ).

⇒ θ′′(ζ)+
k̃f

k̃hnf
Pr

[
Ã3

(
f(ζ)θ′(ζ)+

Ec

Ã4

(
f ′′(ζ)

)2
+Qθ(ζ)

]
= 0. (3.16)

3.3.3 Non-Dimensionalization of Boundary Condition

The corresponding BCs are transformed into non-dimensional form through the follow-

ing procedure.

• ũ = Ũw(x̃), at ỹ = 0.

⇒ ãxf ′(ζ) = ãx̃, at ζ = 0.

⇒ f ′(ζ) = 1, at ζ = 0.

• ṽ = ṽw, at y = 0.

⇒ −
√
ãν̃ff(ζ) = −

√
ãν̃fS, at ζ = 0.

⇒ f(ζ) = S, at ζ = 0.

• − k̃hnf
∂¥̃
∂ỹ

= h̃f
(
¥̃ − ¥̃f

)
, at ỹ = 0.

⇒ −k̃hnf

[(
¥̃f − ¥̃∞

)√ ã

ν̃f
θ′(ζ)

]
= h̃f

[
¥̃∞ +

(
¥̃f − ¥̃∞

)
θ(ζ)− ¥̃f

]
, at ζ = 0.

⇒ k̃hnf

[(
¥̃f − ¥̃∞

)√ ã

ν̃f
θ′(ζ)

]
= h̃f

[(
¥̃f − ¥̃∞

)
−
(
¥̃f − ¥̃∞

)
θ(ζ)

]
, at ζ = 0.

⇒
k̃hnf

k̃f
θ′(ζ) =

h̃f

k̃f

√
ν̃f
ã

(
1− θ(ζ)

)
, at ζ = 0.

⇒
k̃hnf

k̃f
θ′(ζ) = Bi

(
1− θ(ζ)

)
, at ζ = 0.

• ũ −→ 0, as ỹ −→ ∞.

⇒ ãx̃f ′(ζ) −→ 0, as ζ −→ ∞.
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⇒ f ′(ζ) −→ 0, as ζ −→ ∞.

• ¥̃ −→ ¥̃∞, as ỹ −→ ∞.

⇒ ¥̃∞ +
(
¥̃f − ¥̃∞

)
θ(ζ) −→ ¥̃∞, as ζ −→ ∞.

⇒
(
¥̃f − ¥̃∞

)
θ(ζ) −→ 0, as ζ −→ ∞.

⇒ θ(ζ) −→ 0, as ζ −→ ∞.

3.3.4 Non-Dimensionalization of Physical Quantities

The dimensionless physical quantities section of this thesis focuses on two important

parameters: the skin fraction and the Nusselt number. This section provides an intro-

duction to these dimensionless quantities and their mathematical calculation.

Skin fraction:

Cf =
τ̃w

ρ̃f Ũ2
w

,

(
τ̃w = µ̃hnf

[
∂ũ

∂ỹ
+

Γ√
2

(
∂ũ

∂ỹ

)2]
, µ̃hnf =

µ̃f

Ã4

)

=

µ̃f

Ã4

[
ãx̃f ′′(ζ)

√
ã
ν̃f

+ Γ√
2
ã3x̃2

ν̃f

(
f ′′(ζ)

)2]
ρ̃f ã2x̃2

,

=
ν̃f ãx̃

[
f ′′(ζ)

√
ã
ν̃f

+ Γ√
2
ã2x̃
ν̃f

(
f ′′(ζ)

)2]
Ã4ã2x̃2

=
ν̃f

[
f ′′(ζ)

√
ã
ν̃f

+ Γ
√
2√

2
√
2
x̃ã2

√
ã

ãν̃f

]
Ã4ãx̃

=

ν̃f
√

ã
ν̃f

[
f ′′(ζ) + Γ

√
2x̃ã

3
2

2ν̃
1
2
f

(
f ′′(ζ)

)2
]

Ã4ãx̃

=

√
ν̃f ã

[
f ′′(ζ) + we

2

(
f ′′(ζ)

)2]
Ã4ãx̃

.

⇒
(
Re

) 1
2Cf =

[
f ′′(0) + we

2

(
f ′′(0)

)2]
Ã4

, (3.17)

where the Reynolds number (Re) is defined as
(
Re
) 1

2 =
√

ã
ν̃f
x̃.

Nusslt number:

Nu =
x̃q̃w

k̃f

(
¥̃f − ¥̃∞

)
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=
x̃K̃hnf

∂¥̃
∂ỹ

k̃f

(
¥̃f − ¥̃∞

) , (
q̃w = K̃hnf

∂¥̃
∂ỹ

)

=
K̃hnf x̃

√
ã
ν̃f

(
¥̃f − ¥̃∞

)
θ′(ζ)

K̃f

(
¥̃f − ¥̃∞

)
=

√
ã

ν̃f
x̃

(
K̃hnf

K̃f

θ′(ζ)

)
.

⇒ Re−1/2Nux̃ =
K̃hnf

K̃f

θ′(ζ). (3.18)

3.4 Solution Framework

In order to solve the ODE (3.10), the shooting method has been used. The following

notation has been considered.

f(ζ) = Ỹ1, f ′(ζ) = Ỹ ′
1 = Ỹ2, f ′′(ζ) = Ỹ ′

2 = Ỹ3.

The following system of first order ODEs is created for the momentum equation:

Ỹ ′
1 = Ỹ2, Ỹ1(0) = S,

Ỹ ′
2 = Ỹ3, Ỹ2(0) = 1,

Ỹ ′
3 =

[
Ã1

(
(Ỹ2)

2 − Ỹ1Ỹ3

)
+
(
MÃ4Ã5 +Kp

)
Ỹ2

]
(
1 + weÃ1Ỹ3

) , Ỹ3(0) = l.

To utilize the Runge-Kutta 4th order (RK4) method for the numerical solution of the

above IVP, the missing condition l within the system of equations need to be carefully

chosen. The missing condition l is to be chosen such that

Ỹ2
(
ζ∞, l

)
= 0.

Newton’s method will be used to find l. This method has the following iterative scheme:

l(n+1) = l(n) −
Ỹ2
(
ζ∞, l(n)

)(
∂
∂s̃ Ỹ2

(
ζ∞, l

))(n) .
We further introduce the following notations:
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∂Ỹ1
∂l

= Ỹ4,
∂Ỹ2
∂l

= Ỹ5,
∂Ỹ3
∂l

= Ỹ6.

As a result these new notations, the Newton’s iterative scheme gets the form:

l(n+1) = l(n) −
Ỹ2
(
ζ∞, l(n)

)
Ỹ5
(
ζ∞, l(n)

) .
Now differentiating the most recently presented system of three first order ODEs with

respect to l, we get another system of ODEs, as follows:

Ỹ ′
4 = Ỹ5, Ỹ1(0) = 0,

Ỹ ′
5 = Ỹ6, Ỹ2(0) = 0,

Ỹ ′
6 =

[
Ã1

(
2Ỹ2Ỹ5 − Ỹ4Ỹ3 − Ỹ1Ỹ6

)
+
(
MÃ4Ã5 +Kp

)
Ỹ5

]
(
1 +WeÃ1Ỹ3

)
−

[
WeÃ1Ỹ6(

1 +WeÃ1Ỹ3
)] Ỹ ′

3 , Ỹ6(0) = 1.

The stopping criteria for the Newton’s techniques is set as.

∣∣∣Ỹ2(ζ∞, l
)∣∣∣ < ϵ,

where ϵ > 0 is an arbitrarily small positive number. From now onward, ϵ has been taken

as 10−6.

Now, to solve the energy equation numerically by using shooting method, f and f ′′ will

be taken as a known functions. The notations below are used for the implementation of

the shooting method.

θ = Z̃1, θ′ = Z̃ ′
1 = Z̃ ′

2.

The energy equation can be formulated as the following system of first-order coupled

ODEs:

Z̃ ′
1 = Z̃2, Z̃1(0) = m,

Z̃ ′
2 =

k̃f

k̃hnf
Pr

[
Ã3fZ̃2 +

Ec

Ã4

(f ′′)2 +QZ̃1

]
, Z̃2(0) =

k̃f

k̃hnf
Bi (1−m) .

To utilize the Runge-Kutta 4th order (RK4) method for numerical solution of the above-

mentioned initial value problem, the condition m within the system of equations needs

to be carefully chosen. The missing condition m is to be chosen such that:
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Z̃1

(
ζ∞,m

)
= 0.

Newton’s method will be used to find m with the following iterative scheme:

m(n+1) = m(n) −
Z̃1

(
ζ∞,m(n)

)(
∂
∂m̃ Z̃1

(
ζ∞,m

))(n) .
We further introduce the following notations.

∂Z̃1

∂m
= Z̃3,

∂Z̃2

∂m
= Z̃4.

As a result of these new notations, the Newton’s iterative scheme gets the form:

m(n+1) = m(n) −
Z̃1

(
ζ∞,m(n)

)
Z̃3

(
ζ∞,m(n)

) .
Now differentiating the system of two first order ODEs with respect to m, we get another

system of ODEs, as follows:

Z̃ ′
3 = Z̃4, Z̃3(0) = 1,

Z̃ ′
4 =

k̃f

k̃hnf
Pr

[
Ã3fZ̃4 +QZ̃3

]
, Z̃4(0) = −

k̃f

k̃hnf
Bi.

The stopping criteria for the Newton’s technique is set as:

∣∣∣Z̃1

(
ζ∞,m

)∣∣∣ < ϵ,

where ϵ > 0 is an arbitrarily small positive number. From now onward, ϵ has been taken

as 10−6.

3.5 Result Interpretation

This section aims to evaluate the physical characteristics of velocity and energy profiles

concerning the variations in several significant physical constants, such as magnetic field

strength (M), porosity parameter (Kp), Weissenberg number (We), Prandtl number

(Pr), Eckert number (Ec), heat source (Q), Biot number (Bi), and suction parameter
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(S). The evaluation is conducted by utilizing graphical representations of velocity pro-

files and temperature profiles. Furthermore, by modifying the values of dimensionless

parameters, the effects of these parameters on physical quantities such as skin friction

and Nusselt number are examined and presented in tabular form.

The graphical representations of velocity and temperature profiles provide visual insights

into the behavior of the system as the physical constants vary. By observing the trends in

these profiles, a better understanding of the system’s physical characteristics and energy

distribution can be obtained. The graphical representations allow for the analysis of how

changes in M , Kp, We, Pr, Ec, Q, Bi, and S affect the velocity and energy profiles.

3.5.1 Analysis of Computational Results

Table 3.2 presents the results of the skin friction coefficient and local Nusselt number

for the ZnO +MoS2 / Engine oil hybrid nanofluid, considering different inputs of M ,

Kp, We, and S. The findings reveal that an increase in the values of M and Kp

leads to higher absolute values of local skin friction coefficients, indicating a decrease

in the fluid velocity. This decrease is a consequence of the opposing forces arising from

electro-magnetic interaction and the porosity of the medium. Conversely, the magnitude

of skin friction coefficient decreases as the Williamson fluid parameter (We) and mass

transpiration parameter (S) increase.

Table 3.2: The result of the skin friction coefficients Cf

√
Rex and the local

Nusselt number Nux√
Rex

for values of M , Kp, We and S parameters when Pr = 20,

Ec = 0.1, Q = 0.01 and Bi = 0.5.

M Kp We S Cf

√
Rex

Nux√
Rex

0.2 0.5 0.2 0.5 -1.738269 -0.449249
0.5 -1.846976 -0.442512
0.8 -1.947539 -0.436031
1.2 -2.071454 -0.427692

0.1 -1.579986 -0.458581
0.3 -1.661680 -0.453834
0.5 -1.738269 -0.449249
0.7 -1.810506 -0.444802

0.1 -1.773112 -0.454571
0.2 -1.738269 -0.449249
0.3 -1.709905 -0.440248

0.2 -1.535328 -0.437185
0.5 -1.738269 -0.449249
0.7 -1.886997 -0.453356
1.0 -2.130804 -0.456621
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Moreover, Table 3.3 provides details on the absolute value of the Nusselt number as it

relates to the Prandtl number (Pr). The results indicate that Nusselt number increases

with higher values of Pr, reflecting enhanced heat transfer. Furthermore, it is observed

that Nusselt number decreases reciprocally with the Eckert number (Ec) and the heat

source parameter (Q).

Table 3.3: The result of the local Nusselt number Nux√
Rex

for values of Pr, Q,

Ec and Bi parameters when M = 0.2,Kp = 0.5, We = 0.2 and S = 0.5.

Pr Q Ec Bi
Nux√
Rex

20 0.01 0.1 0.5 0.437577

30 0.441587

40 0.437577

50 0.435096

0.02 0.448963

0.05 0.448091

0.07 0.447496

1.00 0.399591

0.2 0.376089

0.3 0.302929

0.4 0.229769

0.5 0.156609

0.3 0.264802

0.5 0.449249

0.7 0.640429

0.9 0.838718

3.5.2 Velocity Profile

Figures 3.2 to 3.6 provide insights into the nature of the velocity profile, denoted as f ′(ζ),

with respect to various physical parameters. Specifically, Figure 3.2 and 3.3 illustrate

the effects of the magnetic force (M) and porosity parameter (Kp) on the dimensionless

velocity f ′(ζ). It is evident that both the nanofluids, namely MoS2/Engine oil and
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MoS2 +ZnO/Engine oil, experience a significant decrease in flow velocity as the values

of these two parameters (M and Kp) increase.
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Figure 3.2: Influence of M on velocity profile f ′(ζ)
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Figure 3.3: The velocity profile f ′(ζ) for different value of kp

Physically, a higher value of the parameter M indicates a larger Lorentz force, which

acts in opposition to the flow. Similarly, an increase in the value of Kp corresponds to

a decrease in porosity and an increase in flow resistance within the medium.

Figures 3.4 and 3.5 illustrate significant findings regarding the impact of the Weis-

senberg number (We) and suction parameter (S) on the velocity profile f’(ζ). The



Computational Study on the Williamson Fluid Flow Model 36

analysis reveals that variations in both We and S result in a reduction in fluid velocity.

The Weissenberg number, which represents the ratio of relaxation time to the specific

process time, plays a crucial role in shaping the velocity profile. Higher We values corre-

spond to shorter specific process times, leading to decreased flow velocity and boundary

layer thickness. Elevated We values introduce additional resistance, hampering the flow

velocity.
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The suction parameter (S) also holds a key role in influencing fluid flow characteristics.

Increasing suction (S > 0) leads to a more pronounced reduction in flow speed. This

effect is attributed to mass transfer phenomena occurring at the suction area of the

wall. Suction generates flow motion counteracting the primary flow, resulting in an

overall decrease in velocity throughout the system. Figure 3.6 presents an important

finding that highlights the relationship between the volume fraction ϕ1 and fluid velocity.

The results indicate a significant enhancement in fluid velocity as the volume fraction

ϕ1 of nanoparticles increases. When nanoparticles are added to the base fluid, their

presence reduces the overall average heat absorbing capacity. As a result, the velocity

profile of the fluid rises due to this alteration in heat absorption characteristics.
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Figure 3.6: Effects of ϕ1 on velocity profile f ′(ζ)

3.5.3 Temperature Profile

Figures 3.7 to 3.11 present the characteristics of the energy profile θ(ζ) with respect to

various parameters, including the Prandtl number (Pr), heat source (Q), Eckert num-

ber (Ec), Biot number (Bi), and volume fraction (ϕ1). Figure 3.7 and 3.8 illustrate the

temperature fluctuations of the fluid (both nano-and hybrid nanofluids) with varying

values of Pr and Q. It is observed that the fluid temperature decreases with increasing

Pr, which can be attributed to a decrease in the thermal diffusivity as Pr increases.

Additionally, it is noted that the presence of a higher heat source (Q > 0) leads to an
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increase in the fluid temperature.

Figures 3.9 and 3.10 depict the relationship between the temperature of the fluid and the

Eckert number (Ec) and Biot number (Bi). A higher Ec value represents the conversion

of mechanical energy to heat energy through thermal dissipation. It is evident that an

increase in Ec results in an increment in fluid temperature. Similarly, the Biot number

shows a direct proportionality to temperature, with higher Bi values corresponding to

greater convective heating along the sheet, leading to an increased temperature gradi-

ent. As a result, the thickness of the boundary layer and the temperature exhibit an

increasing trend with the Bi. Furthermore, it is observed that the temperature of hybrid

nanofluid is higher as compared to that of nanofluid. This can be attributed to the en-

hanced thermal conductivities exhibited by hybrid nanofluid. These observations further

support the hypothesis that hybrid nanofluid possess superior thermal efficiency in terms

of heat transport. The findings from Figure 3.11 indicate a positive correlation between

the temperature and the volume fraction ϕ1 of MoS2 in the hybrid nanofluid. This

relationship can be attributed to the enhanced thermal conductivity resulting from the

higher volume fraction. Consequently, the increased thermal conductivity contributes

to a rise on temperature within the nanofluid.
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Chapter 4

A Hybrid Williamson Nanofluid

Flow: An Investigation Involving

Cattaneo-Christov Model,

Magnetic Field, Diffusion,

Forchheimer Flow, and Chemical

Reaction.

4.1 Introduction

In this chapter, the Williamson fluid model, discussed in Chapter 3 [17] , has been mod-

ified by incorporating Cattaneo-Christov heat flux, magnetic field, thermal radiation,

and diffusion, in the energy equation. In addition, the Forchheimer flow in the mo-

mentum equation has been incorporated. Further a concentration equation for a new

water-based hybrid nanofluid (MoS2 +GO), has been incorporated. The consideration

of these multiple effects allows us to explore their collective influence on the Williamson

fluid flow over a stretching sheet. Through comprehensive numerical simulations and

analysis, the intricate interplay of these effects and their combined impact on the overall

41
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flow behavior has been investigated. The results of this study offer valuable insights

into the behavior of the Williamson fluid under various physical conditions, providing a

deeper understanding of the considered fluid flow.

4.2 Mathematical Modeling

This investigation focuses on the flow characteristics of a Williamson hybrid nano-fluid

over a stretching sheet, assuming a two-dimensional and steady boundary layer flow.

The coordinate axis along the stretched sheet is denoted by x̃ and that perpendicular

to the sheet is ỹ. Notably, the wall is considered incompressible

Figure 4.1: Flow Diagram

(ṽw = 0), as depicted in figure 4.1. To observe mass diffusion and heat transfer, the

interface of the applied magnetization field with dynamic viscosity and a porous medium

are used. The flow phenomenon has been assumed to occur with some crucial assump-

tions like the Brownian diffusion, thermophysical diffusion, Cattaneo-Christov heat flux,

heat generation/absorption and Forchheimer flow with a surface velocity of Ũw(x) = ãx

(ã > 0, constant). A uniform transverse magnetic field of strength B̃o is applied parallel

to y-axis. The temperature and concentration near the surface are ¥̃f and C̃f , while the

constant ambient temperature and concentration of the hybrid nanofluid are ¥̃∞ and

C̃∞, respectively.
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The continuity, momentum, energy and concentration equations governing the above

stated problem under the usual boundary layer approximations are expressed through

the upcoming equations [2, 17, 20].

Mass conservation:
∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0. (4.1)

Momentum Equation:

ũ
∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
+

σ̃hnf
ρ̃hnf

B2
o ũ+

µ̃hnf

ρ̃hnf

ũ

k∗
+

Cb

x̃
√
K

ũ2 =
µ̃hnf

ρ̃hnf

∂2ũ

∂ỹ2
+
√
2Γν̃f

∂ũ

∂ỹ

∂2ũ

∂ỹ2
. (4.2)

Energy Equation:

ũ
∂¥̃
∂x̃

+ ṽ
∂¥̃
∂ỹ

+
1

(ρ̃ c̃p)hnf

∂q̃r
∂ỹ

+ λT

[
ũ
∂ũ

∂x̃
+ ṽ

∂ṽ

∂ỹ

∂¥̃
∂ỹ

+ 2ũṽ
∂2¥̃
∂x̃∂ỹ

+ ũ
∂ṽ

∂x̃

∂¥̃
∂ỹ

+ ṽ
∂ũ

∂ỹ

∂¥̃
∂x̃

+ ũ2
∂2¥̃
∂x̃2

+ ṽ2
∂2¥̃
∂ỹ2

]
=

K̃hnf

(ρ̃ c̃p)hnf

∂2¥̃
∂ỹ2

+
µ̃hnf

(ρ̃ c̃p)hnf

(
∂ũ

∂ỹ

)2

+
Qo

(ρ̃ c̃p)hnf
+

σ̃hnfB
2
o

(ρcp)hnf
ũ2 +

(ρ̃ c̃p)p
(ρ̃ c̃p)hnf

 D̃¥̃

¥̃∞

(
∂¥̃
∂ỹ

)2

+ D̃B

(
∂C̃

∂ỹ

∂¥̃
∂ỹ

) .

(4.3)

Concentration Equation:

ũ
∂C̃

∂x̃
+ ṽ

∂C̃

∂ỹ
+R∗(C̃ − C̃∞

)
=

D̃¥̃

¥̃∞

∂2¥̃
∂ỹ2

+ D̃B
∂2C̃

∂ỹ2
. (4.4)

Boundary Conditions:

The boundary conditions corresponding to the current fluidic problem are as follows [2]:

ũ = Ũw = ãx, ṽ = 0, ¥̃ = ¥̃∞, D̃B
∂C̃

∂ỹ
+

D̃¥̃

¥̃∞

∂¥̃
∂ỹ

= 0, at ỹ = 0,

ũ −→ 0, ¥̃ −→ ¥̃∞, C̃ −→ C̃∞ as ỹ −→ ∞.

 (4.5)

The radiation heat flux q̃r can be expressed as:

q̃r = −4σ̃∗

3k̃∗
∂¥̃

4

∂ỹ
. (4.6)

The Stefan-Boltzman constant is denoted by σ̃∗, and the absorption coefficient is repre-

sented by k̃∗. In the case of a small temperature difference, the Taylor series expansion

can be utilized to express the temperature ¥̃
4
around ¥̃∞, as follows

¥̃
4
= ¥̃

4

∞ + 4¥̃
3

∞
(
¥̃ − ¥̃∞

)
+ 6¥̃

2

∞
(
¥̃ − ¥̃∞

)2
+ ...
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The higher-order terms are neglected, resulting in the following expression:

¥̃
4
= ¥̃

4

∞ + 4¥̃
3

∞
(
¥̃ − ¥̃∞

)
= ¥̃

4

∞ + 4¥̃
3

∞¥̃ − 4¥̃
4

∞

= 4¥̃
3

∞¥̃ − 3¥̃
4

∞.

Substituting the above expression into equation (4.6), we obtain

q̃r = −4σ̃∗

3k̃∗
∂

∂ỹ

(
4¥̃

3

∞¥̃ − 3¥̃
4

∞
)

= −16σ̃∗¥̃
3

∞

3k̃∗
∂¥̃
∂ỹ

. (4.7)

4.2.1 Formulation and Thermo-physical Characteristics

To provide a clear comparison, the valuable thermo-physical characteristics of both the

HNF and the NF are presented in Table 4.1.

Table 4.1: Thermo-physical characteristics related to present model [54]

.

Physical Properties MoS2 GO H2O

ρ̃
(
kg.m−3

)
5060 1800 997.1

c̃p
(
J(kg.ok)

)
397.21 717 4179

k̃
(
W (m.ok)

)
904.4 5000 0.613

σ̃
(
Ω.m

)
2.09× 104 6.30× 107 0.005

Pr 6.2

The formulation of different thermo-physical properties for both nanofluid and hybrid

nanofluid are articulated in Table 3.1.
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Figure 4.2: Mathematical model’s flow structure

4.3 Similarity Transformation and Non- Dimen-

sionalization of Mathematical Model

In this section, we present the process of non-dimensionalization for the mathematical

model governing the behavior of our hybrid nanofluid. The procedure required intro-

ducing the dimensionless variables and parameters to transform the original equations

into a simpler form. By using dimensionless quantities, we gain a deeper insight into the

physical phenomena and make the analysis more tractable. The mathematical model

will be transformed into a system of ordinary differential equations (ODEs) using the

following similarity transformation (Figure 4.2):
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ζ =

√
ã

ν̃f
ỹ, ũ = ãx̃f ′(ζ), ṽ = −

√
ãν̃ff(ζ),

θ(ζ) =
¥̃ − ¥̃∞

¥̃f − ¥̃∞
, ϕ(ζ) =

C̃ − C̃∞

C̃f − C̃∞
.

 (4.8)

The symbol ζ represents the similarity variable. The velocity components in the x and

y directions are denoted by ũ and ṽ, respectively, while θ(ζ) and ϕ(ζ) stand for the

dimensionless temperature and concentration profiles. Different parameters used in the

upcoming ODEs and their BCs, have been listed in TABLE 4.2.

Table 4.2: Different Dimensionless parameters used in governing ODEs

Symbols Name Appearance

M Magnetic field M =
σ̃f B̃

2
o

ρ̃f ã

Kp Porosity medium Kp =
ν̃f
ãk∗

We Non-Newtonian Williamson We = x
√
2Γ ã3/2

ν̃
1/2
f

Pr Prandtl number Pr =
ν̃f

(
ρ̃c̃p

)
f

K̃f

Ec Eckert number Ec = ã2x̃2(
c̃p

)
f

(
¥̃f−¥̃∞

)
Q Heat source Q = Qo

ã
(
ρ̃c̃p

)
f

Ω Time Relaxation Ω = ãλT

R Non-linear thermal radiation R = 16σ̃∗¥̃
3
∞

3K̃f K̃∗

Nb Brownian motion parameter Nb =

(
ρ̃ c̃p

)
p
D̃B

(
C̃f−C̃∞

)
ν̃f

(
ρ̃c̃p

)
f

Nt Thermophoresis parameter Nt =

(
ρ̃ c̃p

)
p
D̃¥̃(¥̃f−¥̃∞)(

ρ̃ c̃p

)
f
ν̃f ¥̃∞

Le Lewis number Le =
ν̃f

D̃B

γ Chemical reaction γ = R∗

ã

4.3.1 Non-Dimensionalization of Momentum Equation

In this subsection, we transform the governing momentum equation (4.2) into a non-

dimensional form. For this purpose, we substitute all the partial derivatives (3.6) , (3.8)

and (3.9) and velocity components from expression (3.5) into the equation (4.2) to get

the following:
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[(
ãx̃f ′′(ζ)

)(
ãf ′(ζ)

)]
+

[(
−
√

ãν̃ff(ζ)

)(
ãx̃f ′′(ζ)

√
ã

ν̃f

)]

+

[
σ̃f Ã5

ρ̃f Ã2

B̃2
o

(
ãx̃f ′(ζ)

)]
+

[
µ̃f

ρ̃f Ã2Ã4

ãx̃f ′′(ζ)

k∗

]
+

[
Cb

x
√
K

ã2x̃2
(
f ′(ζ)

)2]

=

[
µ̃f

ρ̃f Ã2Ã4

ã2x̃

ν̃f
f ′′′(ζ)

]
+

[
√
2Γν̃f

(
ãx̃f ′′(ζ)

√
ã

ν̃f

)(
ã2x̃

ν̃f
f ′′′(ζ)

)]
.

⇒ ã2x
(
f ′(ζ)

)2 − ã2xf(ζ)f ′′(ζ) +
σ̃fB

2
oÃ5

ρ̃f Ã2

ãx̃f ′′(ζ) +
ν̃f ãx̃

k∗Ã2Ã4

+
Cb√
K

ã2x̃
(
f ′(ζ)

)2
=

ã2x

Ã2Ã4

f ′′′(ζ) +
√
2Γ

ã2x̃2ã
3
2

ν̃
1
2
f

f ′′(ζ)f ′′′(ζ).

⇒
(
f ′(ζ)

)2 − f(ζ)f ′′(ζ) +
σ̃fB

2
o

ρ̃f ã

Ã5

Ã2

f ′(ζ) +
ν̃f
ãk∗

1

Ã2Ã4

f ′(ζ) +
Cb√
K

(f ′(ζ))2

=
1

Ã2Ã4

f ′′′(ζ) +
√
2x̃Γ

ã
3
2

ν̃
1
2
f

f ′′(ζ)f ′′′(ζ).

⇒
(
f ′(ζ)

)2 − f(ζ)f ′′(ζ) +M
Ã5

Ã2

f ′(ζ) +
Kp

Ã2Ã4

f ′(ζ) + Fr

(
f ′(ζ)

)2
=

1

Ã2Ã4

f ′′′(ζ) + wef
′′(ζ)f ′′′(ζ).

⇒ Ã2Ã4

((
f ′(ζ)2

)
− f(ζ)f ′′(ζ)

)
+MÃ5Ã4f

′(ζ) +Kpf
′(ζ) + Ã2Ã4Fr

(
f ′(ζ)

)2
= f ′′′(ζ) + Ã2Ã4wef

′′(ζ)f ′′′(ζ).

⇒
(
1 + weÃ1f

′′(ζ)

)
f ′′′(ζ)− Ã1

((
f ′(ζ)

)2 − f(ζ)f ′′(ζ) + Fr

(
f ′(ζ)

)2)
−
(
MÃ4Ã5 +Kp

)
f ′(ζ) = 0.

(4.9)

4.3.2 Non-Dimensionalization of Energy Equation

In this section, we discuss the non-dimensionalization process of the energy equation

(4.3) for our hybrid nanofluid model. For this equation, the following derivatives are

also required.

∂2¥̃
∂x̃∂ỹ

= 0. (using (3.12)) (4.10)
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q̃r = −16σ̃∗¥̃
3

∞

3k̃∗
∂¥̃
∂ỹ

.

⇒ ∂q̃r
∂ỹ

= −16σ̃∗¥̃
3

∞

3k̃∗
∂2¥̃
∂ỹ2

= −16σ̃∗¥̃
3

∞

3k̃∗

ã

ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ). (4.11)

ϕ(ζ) =
C̃ − C̃∞

C̃f − C̃∞
.

⇒ C̃ =
(
C̃f − C̃∞

)
ϕ(ζ) + C̃∞. (4.12)

⇒ ∂C̃

∂ỹ
=
(
C̃f − C̃∞

)
ϕ′(ζ)

∂ζ

∂ỹ

=
(
C̃f − C̃∞

)√ ã

ν̃f
ϕ′(ζ). (4.13)

Substituting (3.5) - (3.15) and (4.11)- (4.13), the dimensionless governing equation for

energy (4.3), can be expressed as:

[(
−
√
ãν̃f
)(
¥̃f − ¥̃∞

)√ ã

ν̃f
θ′(ζ)

]
+

[
1(

ρ̃ c̃p
)
f
Ã3

(
−16σ∗¥̃

3

∞
3k∗

)(
ã

ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ)

)]

+ λT

[(
(−cf ′(ζ))

(
−
√
ãν̃ff(ζ)

)(
¥̃f − ¥̃∞

)√ ã

ν̃f
θ′(ζ)

)

+

(
ãν̃f
(
f(ζ)

)2)( ã

ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ)

)]
=

K̃hnf

(ρ̃c̃p)f Ã3

(
ã

ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ)

)
+

µ̃f

(ρ̃ c̃p)f Ã3Ã4

(
ã2x̃2

(
f ′′(ζ)

)2 ã

ν̃f

)

+
Qo

(ρ̃ c̃p)f Ã3

[(
¥̃f − ¥̃∞

)]
+

σ̃f Ã5B
2
o

(ρ̃c̃p)f Ã3

ã2x2
(
f ′(ζ)

)2
+

(ρ̃c̃p)p

(ρ̃c̃p)f Ã3

[
D̃¥̃

¥̃∞

(
¥̃f − ¥̃∞

)2 ã

ν̃f(
θ′(ζ)

)2
+ D̃B

ã

ν̃f

(
C̃f − C̃∞

)(
¥̃f − ¥̃∞

)
ϕ′(ζ)θ′(ζ)

]
.

⇒ −ã
(
¥̃f − ¥̃∞

)
f(ζ)θ′(ζ)− 16σ∗¥̃

3

∞

3 (ρcp)f k
∗Ã3ν̃f

ã
(
¥̃f − ¥̃∞

)
θ′′(ζ)

+ λT

[
ã2
(
¥̃f − ¥̃∞

)
f(ζ)f ′(ζ)θ′(ζ) + ã2

(
¥̃f − ¥̃∞

) (
f(ζ)

)2
θ′′(ζ)

]
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=
K̃hnf(
ρ̃ c̃p
)
f
Ã3

ã

ν̃f
θ′′(ζ)

ã(
ρcp
)
f
Ã3Ã4

(
ã2x2

(
f ′′(ζ)

)2 ã

ν̃f

)
+

Qo(
ρ̃ c̃p
)
f
Ã3

(
¥̃f − ¥̃∞

)
θ(ζ)

+
σ̃fB

2
oÃ5(

ρ̃ c̃p
)
f
Ã3

ã2x2
(
f ′(ζ)

)2
+

1

Ã3

[ (
ρ̃ c̃p
)
p
D̃¥̃(

ρ̃ c̃p
)
f
¥̃∞ν̃f

ã
(
¥̃f − ¥̃∞

)2
+

(
ρ̃ c̃p
)
p(

ρ̃ c̃p
)
f

D̃B

ν̃f

(
C̃f − C̃∞

)
ã
(
¥̃f − ¥̃∞

)
θ′(ζ)ϕ′(ζ)

]
.

⇒ −f(ζ)θ′(ζ)− 16σ̃∗¥̃
3

∞

Ã33K̃f

K̃f

ν̃f
(
ρ̃ c̃p
)
f

θ′′(ζ) + ãλT

[
f(ζ)f ′(ζ)θ′(ζ) +

(
f(ζ)

)2
θ′′(ζ)

]

=
K̃hnf

Ã3K̃f

K̃f(
ρ̃ c̃p
)
f
ν̃f

θ′′(ζ) +
ã2x2(

c̃p
)
f

(
¥̃f − ¥̃∞

) 1

Ã3Ã4

(
f ′′(ζ)

)2
+

Qo

Ã3ã
(
ρcp
)
f

θ(ζ)

+
Ã5σ̃fB

2
o

Ã3ρ̃f ã

ã2x2(
cp
)
f

(
¥̃f − ¥̃∞

)(f ′(ζ)
)2

+
1

Ã3

[(ρ̃ c̃p)pD̃¥̃

(
¥̃f − ¥̃∞

)(
ρ̃ c̃p
)
f
ν̃f ¥̃∞

(
θ′(ζ)

)2
+

(
ρ̃ c̃p
)
p
D̃B

(
C̃f − C̃∞

)(
ρ̃ c̃p
)
f
ν̃f

θ′(ζ)ϕ′(ζ)

]
.

⇒ −f(ζ)θ′(ζ)− R

Ã3Pr
θ′′(ζ) + Ω

[
f(ζ)f ′(ζ)θ′(ζ) +

(
f(ζ)

)2
θ′′(ζ)

]
=

K̃hnf

Ã3K̃fPr
θ′′(ζ) +

Ec

Ã3Ã4

(
f ′′(ζ)

)2
+

Q

Ã3

θ(ζ) +
Ã5

Ã3

MEc
(
f ′(ζ)

)2
+

1

Ã3

[
Nt
(
θ′(ζ)

)2
+Nbθ′(ζ)ϕ′(ζ)

]
.

⇒
(
K̃hnf

K̃f

+R+ΩÃ3Pr
(
f(ζ)

)2)
θ′′(ζ) + Pr

[
Ã3

(
f(ζ)θ′(ζ)− Ωf(ζ)f ′(ζ)θ′(ζ)

)
+

Ec

Ã4

(
f ′′(ζ)

)2
+Qθ(ζ) +MEcÃ5

(
f ′(ζ)

)2
+Nt

(
θ′(ζ)

)2
+Nbθ′(ζ)ϕ′(ζ)

]
= 0.

(4.14)

4.3.3 Non-Dimensionalization of Concentration Equation

Here, we focus on the non-dimensionalization process specifically applied to the concen-

tration equation (4.4) in our hybrid nanofluid model. For this purpose, the following

derivatives are also required.

∂2C̃

∂ỹ2
=
(
C̃f − C̃∞

) ã

ν̃f
. (using (4.13)) (4.15)

∂C̃

∂x̃
= 0. (using (4.12)) (4.16)
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Substituting equation (3.15) , (4.13),(4.15) and (4.16) into concentration equation (4.4),

it gets the following form :

((
C̃f − C̃∞

)√ ã

ν̃f
ϕ′(ζ)

)(
−
√
C̃ν̃ff(ζ)

)
+R∗

(
C̃∞ +

(
C̃f − C̃∞

)
ϕ(ζ)− C̃∞

)

=
D̃¥̃

¥̃∞

(
ã

ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ)

)
+ D̃B

((
C̃f − C̃∞

)
ϕ′′(ζ)

ã

ν̃f

)
.

⇒ −
(
C̃f − C̃∞

)
ãf(ζ)ϕ′(ζ) +R∗(C̃f − C̃∞

)
ϕ(ζ)

=

(
ρ̃ c̃p
)
p

(
ρ̃ c̃p
)
f(

ρ̃ c̃p
)
p

(
ρ̃ c̃p
)
f

D̃¥̃ã

¥̃∞ν̃f

(
¥̃f − ¥̃∞

)
θ′′(ζ) +

D̃B

(
C̃f − C̃∞

)
ã

ν̃f
ϕ′′(ζ).

⇒ − f(ζ)ϕ′(ζ) + γϕ(ζ) =

(
Nt

Nb

)
1

Le
θ′′(ζ) +

1

Le
ϕ′′(ζ).

⇒ ϕ′′(ζ) + Lef(ζ)ϕ′(ζ)− Leγϕ(ζ)−
(
Nt

Nb

)
θ′′(ζ) = 0. (4.17)

4.3.4 Dimensionless form of Boundary Conditions

The corresponding BCs are transformed into the non-dimensional form through the

following procedure:

• ũ = Uw(x̃), at ỹ = 0.

⇒ ãx̃f ′(ζ) = ãx, at ζ = 0.

⇒ ãx̃f ′(ζ) = ãx, at ζ = 0,

⇒ f ′(ζ) = 1, at ζ = 0.

• ṽ = 0, at ỹ = 0.

⇒ −
√
ãν̃ff(ζ) = 0, at ζ = 0.

⇒ f(ζ) = 0, at ζ = 0.

• D̃B
∂C̃

∂ỹ
+

D̃¥̃

¥̃∞

∂¥̃
∂ỹ

= 0 at ỹ = 0.

⇒ D̃B
ã

ν̃f

(
C̃f − C̃∞

)
ϕ′(ζ) +

D̃¥̃

¥̃∞

(
¥̃f − ¥̃∞

) ã

ν̃f
ϕ′(ζ) = 0, at ζ = 0.
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⇒ D̃B

(
C̃f − C̃∞

)
ϕ′(ζ) +

D̃¥̃

¥̃∞

(
¥̃f − ¥̃∞

)
ϕ′(ζ) = 0, at ζ = 0.

⇒ Nbϕ′(ζ) +Ntθ′(ζ) = 0, at ζ = 0.

• ũ −→ 0, as ỹ −→ ∞.

⇒ ãx̃f ′(ζ) −→ 0, as ζ −→ ∞.

⇒ f ′(ζ) −→ 0, as ζ −→ ∞.

• ¥̃ −→ ¥̃∞, as ỹ −→ ∞.

⇒ ¥̃∞ +
(
¥̃f − ¥̃∞

)
θ(ζ) −→ ¥̃∞, as ζ −→ ∞.

⇒
(
¥̃f − ¥̃∞

)
θ(ζ) −→ 0, as ζ −→ ∞.

⇒ θ(ζ) −→ 0, as ζ −→ ∞.

• C̃ −→ C̃∞, as ỹ −→ ∞.

⇒
(
C̃f − C̃∞

)
ϕ′(ζ) + C̃∞ −→ C̃∞, as ζ −→ ∞.

⇒
(
C̃f − C̃∞

)
ϕ′(ζ) −→ C̃∞, as ζ −→ ∞.

⇒ ϕ′(ζ) −→ 0, as ζ −→ ∞.

4.4 Solution Framework

The numerical solutions are computed using the shooting method, which involves the

utilization of the fourth-order Runge-Kutta technique. The computational procedure of

the shooting method, is elaborated and depicted in Figure 4.3. In order to solve the

ODE (4.9), the following notations have been considered, as an initial step:

f(ζ) = Ỹ1, f ′(ζ) = Ỹ ′
1 = Ỹ2, f ′′(ζ) = Ỹ ′

2 = Ỹ3.

The following system of first order ODEs has been obtained to replace the momentum

equation:
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Ỹ ′
1 = Ỹ2, Ỹ1(0) = 0,

Ỹ ′
2 = Ỹ3, Ỹ2(0) = 1,

Ỹ ′
3 =

[
Ã1

( (
Ỹ2

)2
− Ỹ1Ỹ3 + Fr

(
Ỹ2

)2 )
+
(
MÃ4Ã5 +Kp

)
Ỹ2

]
(
1 + weÃ1Ỹ3

) , Ỹ3(0) = s1.

To utilize the Runge-Kutta 4th order (RK4) method for the numerical solution of the

mentioned initial value problem, the condition s1 within the system of equations need

to be carefully chosen. The missing condition s1 is to be chosen such that

Ỹ2
(
ζ∞, s1

)
= 0.

Newton’s method will be used to further refine the selection of s1. This method has the

following iterative scheme:

s1
(m+1) = s

(m)
1 −

Ỹ2
(
ζ∞, s

(m)
1

)(
∂

∂s1
Ỹ2
(
ζ∞, s1

))(m)
.

We further introduce the following notations:

∂Ỹ1
∂s1

= Ỹ4,
∂Ỹ2
∂s1

= Ỹ5,
∂Ỹ3
∂s1

= Ỹ6.

As a result these of new notations, the Newton’s iterative scheme gets the form:

s1
(m+1) = s

(m)
1 −

Ỹ2
(
ζ∞, s

(m)
1

)
Ỹ5
(
ζ∞, s1

) .

Now differentiating the above system of three first order ODEs with respect to s1, we

get another system of ODEs, as follows:

Ỹ ′
4 = Ỹ5, Ỹ4(0) = 0,

Ỹ ′
5 = Ỹ6, Ỹ5(0) = 0,

Ỹ ′
6 =

Ã1

(
2Ỹ2Ỹ5 − Ỹ1Ỹ6 − Ỹ4Ỹ3 − 2Ỹ2Ỹ5Fr

)
+
(
MÃ4Ã5 +Kp

)
Ỹ5(

1 +WeÃ1Ỹ3

) ,

− WeÃ1Ỹ6(
1 +WeÃ1Ỹ3

) Ỹ ′
3 , Ỹ6(0) = 1.
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The stopping criteria for the Newton’s technique is set as:

∣∣∣Ỹ2 (ζ∞, s1)
∣∣∣ < ϵ,

where ϵ > 0 is an arbitrarily small positive number. From now onward, ϵ has been taken

as 10−6.

Now, to solve equations (4.14) and (4.17) numerically by using shooting method, as-

sume f , f ′ and f ′′ as known functions. The notations below have been used for the

implementation of the shooting method:

θ′(ζ) = Z̃1, θ′(ζ) = Z̃ ′
1 = Z̃2, ϕ(ζ) = Z̃3, ϕ′(ζ) = Z̃ ′

3 = Z̃4.

and

b1 =

[
K̃hnf

K̃f

+R− ΩÃ3Pr
(
f(ζ)

)2]
.

The system of equations (4.14) and (4.17), can be represented in the form of the following

first-order coupled ODEs:

Z̃ ′
1 = Z̃2, Z̃1(0) = 1,

Z̃ ′
2 =

−Pr

b1

[
Ã3

(
f(ζ)Z̃2 − Ωff ′Z̃2

)
+

Ec

Ã4

(
f ′′)2 +MEcÃ5

(
f ′)2

+QZ̃1 +Nt
(
Z̃2

)2
+NbZ̃2Z̃4

]
, Z̃2(0) = p̃,

Z̃ ′
3 = Z̃4, Z̃3(0) = q̃,

Z̃ ′
4 = LeγZ̃3 − LefZ̃4 −

(
Nt

Nb

)
Z̃ ′
2, Z̃4(0) = −Nt

Nb
p̃.

To utilize the Runge-Kutta 4th order method for numerical solution of the above men-

tioned initial value problem, the conditions p̃ and q̃ within the system of equations need

to be carefully chosen. The missing conditions p̃ and q̃ in the above system of equations

must be selected in such a way, that

Z̃1

(
ζ∞, p̃, q̃

)
= 0, Z̃3

(
ζ∞, p̃, q̃

)
= 0.

To solve the aforementioned system of algebraic equations, we employ Newton’s method,

which follows the following scheme.
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p̃
q̃

(n+1)

=

p̃
q̃

(n)

−

∂Z̃1
∂p̃

∂Z̃1
∂q̃

∂Z̃3
∂p̃

∂Z̃3
∂q̃

−1 Z̃1

Z̃3


(n)

.

To proceed further the following new notations, have been introduced:

∂Z̃1

∂p̃
= Z̃5,

∂Z̃2

∂p̃
= Z̃6,

∂Z̃3

∂p̃
= Z̃7,

∂Z̃4

∂p̃
= Z̃8,

∂Z̃1

∂q̃
= Z̃9,

∂Z̃2

∂q̃
= Z̃10,

∂Z̃3

∂q̃
= Z̃11,

∂Z̃4

∂q̃
= Z̃12.

As a result of these new notations, the Newton’s iterative scheme takes the following

form: p̃
q̃

(n+1)

=

p̃
q̃

(n)

−

Z̃5 Z̃9

Z̃7 Z̃11

−1 Z̃1

Z̃3


(n)

. (4.18)

Now differentiating the system of four first order ODEs with respect to p̃ and q̃ we obtain

another system of ODEs as follows.

Z̃ ′
5 = Z̃6, Z̃5(0) = 0,

Z̃ ′
6 = −Pr

b1

[
Ã3

(
fZ̃6 − Ωff ′Z̃6

)
+QZ̃5 + 2NtZ̃2Z̃6,

+NbZ̃2Z̃8 ++NbZ̃6Z̃4

]
, Z̃6(0) = 1,

Z̃ ′
7 = Z̃8, Z̃7(0) = 0,

Z̃ ′
8 = LeγZ̃7 − LefZ̃8 −

(
Nt

Nb

)
Z̃ ′
6, Z̃8(0) = −Nt

Nb
,

Z̃ ′
9 = Z̃10, Z̃9(0) = 0,

Z̃ ′
10 = −Pr

b1

[
Ã3

(
fZ̃10 − Ωff ′Z̃10

)
+QZ̃9 + 2NtZ̃2Z̃10,

+NbZ̃2Z̃12 +NbZ̃10Z̃4

]
, Z̃10(0) = 0,

Z̃ ′
11 = Z̃12, Z̃11(0) = 1,

Z̃ ′
12 = LeγZ̃11 − LefZ̃12 −

(
Nt

Nb

)
Z̃ ′
10, Z̃12(0) = 0.

The set stopping criteria for Newton’s technique are as follows.

max

{∣∣∣Z̃1

(
ζ∞, p̃, q̃

)∣∣∣ , ∣∣∣∣Z̃3

(
ζ∞, p̃, q̃

)∣∣∣∣} < ϵ.
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Figure 4.3: The shooting method’s methodological framework

4.5 Result Interpretation

After transforming the governing PDEs describing the fluid flow into a system of ODEs,

several crucial parameters emerge. The impact of these physical parameters on the

velocity f ′(ζ), temperature θ(ζ), and concentration of nanoparticle ϕ(ζ) distributions is

thoroughly investigated through the use of graphical representations. The significance

and interpretations the impact of each parameter in this study are discussed in detail,

and the study’s results are comprehensively presented.

4.5.1 Analysis of Computational Result

Here an investigation is carried out to highlight the impact of various physical param-

eters on the coefficient of skin friction, the local Nusselt number and local Sherwood

number. An increment in the magnetic field coefficient, Forchheimer number and Darcy



Multi effect modeling of Williamson hybrid fluid 56

number reduces the coefficient of skin friction, while the local Nusselt number decreases

with higher values of the nonlinear thermal radiation parameter, heat generation/ab-

sorption parameter, and temperature ratio parameter. The skin friction is observed to

vary prominently for the magnetic field coefficient, Darcy number, and non-Newtonian

Williamson and Forchheimer parameter.

Table 4.3: The numerical result of the physical quantities like skin frac-

tion
(
Cf

√
Rex

)
,local Nusselt number

(
Re

−1/2
x Nux

)
and Sherwood number(

Re
−1/2
x Shx

)
for values of M , Kp, We and S parameters when Pr = 6.2,

Q = −0.1, Nb = Ec = 0.2, Nt = 0.5, Le = 2, γ = 0.4 and Ω = 0.3.

M Kp We Fr −f ′′(0) Re1/2Cfx −θ′(0) Re
−1/2
x Nux Re

−1/2
x Shx

0.2 0.5 0.2 0.4 1.512624 -1.617169 0.532864 0.693639 -1.332159

0.4 1.605807 -1.697944 0.457554 0.595607 -1.143886

0.6 1.695904 -1.773963 0.387058 0.503841 -0.967645

0.8 1.783426 -1.845852 0.320672 0.417425 -0.801680

0.1 1.320918 -1.444111 0.617194 0.803414 -1.542986

0.3 1.418916 -1.533733 0.573801 0.746928 -1.434504

0.5 1.512624 -1.617169 0.532864 0.693639 -1.332159

0.7 1.602826 -1.695393 0.494040 0.643101 -1.235080

0.1 1.430725 -1.673294 0.554481 0.721778 -1.386202

0.2 1.512624 -1.617169 0.532864 0.693639 -1.332160

0.3 1.629234 -1.550726 0.506087 0.658783 -1.265218

0.4 1.835800 -1.463424 0.469708 0.611427 -1.174269

0.2 1.456906 -1.567825 0.548996 0.714639 -1.372490

0.4 1.512624 -1.617169 0.532864 0.693639 -1.332159

0.6 1.567228 -1.664768 0.517126 0.673153 -1.292816

0.8 1.620827 -1.710759 0.501756 0.653145 -1.254389
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Table 4.4: The numerical result of embedded parameters on local Nusselt and
Sherwood number, respectively. when M = We = 0.2, Fr = 0.4 and Kp = 0.5.

R Nb Nt Pr Le Q Ec γ Ω −θ′(0) Re
−1/2
x Nux Re

−1/2
x Shx

1.2 0.2 0.5 6.2 2 -0.1 0.2 0.4 0.3 0.532864 0.693638 -1.332159

0.1 0.610153 0.794247 -1.525381

0.5 0.5812802 0.756663 -1.453201

0.9 0.5527918 0.719580 -1.381980

0.1 0.532864 0.693639 -2.664318

0.3 0.532864 0.693639 -0.888106

0.5 0.532864 0.693639 -0.532864

0.7 0.532864 0.693639 -0.380617

0.1 0.661177 0.860666 -0.330588

0.3 0.596069 0.775949 -0.894144

0.5 0.532864 0.693639 -1.332159

0.7 0.472089 0.614527 -1.652312

5 0.497208 0.647225 -1.243020

6 0.527576 0.686755 -1.318939

7 0.551825 0.718321 -1.379563

8 0.573121 0.743680 -1.428303

1 0.586778 0.763820 -1.466944

2 0.532864 0.693639 -1.332159

3 0.498335 0.648693 -1.245839

4 0.474025 0.616047 -1.185061

-0.3 0.794713 1.034493 -1.986782

-0.1 0.532864 0.693639 -1.332159

0.1 0.173135 0.225372 -0.432836

0.2 -0.103405 -0.134605 0.258513

0.1 0.732032 0.952900 -1.830081

0.2 0.532864 0.693639 -1.332159

0.3 0.333015 0.433492 -0.832537

0.4 0.132476 0.172446 -0.331189

0.3 0.5411360 0.704406 -1.352839

0.4 0.532864 0.963639 -1.33259

0.5 0.524898 0.683269 -1.312244

0.6 0.517344 0.673437 -1.293361

0.1 0.522487 0.680131 -1.306217

0.2 0.527516 0.686677 -1.318789

0.3 0.532864 0.693639 -1.332159

0.4 0.538565 0.701060 -1.346413
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4.5.2 Velocity Profile

Understanding the velocity distributions is essential for a deeper view of the fluid flow

and its related characteristics. The external forces acting upon the flowing fluids, are

expected to affect fluid’s motion. One such external force is the magnetic field.

In Figure 4.4, the impact of the magnetic field parameter (M) on the velocity pro-

file f ′(ζ) is depicted. The results show a negative effect for both fluids, indicating

an inverse relationship between the magnetic field strength and the velocity distribu-

tion. As the magnetic parameter values increase, the velocity of both fluids decreases.

This phenomenon occurs because when a moving fluid, whether it is a MoS2/H2O or

MoS2 + GO/H2O fluid, is influenced by the magnetic field, the fluid particles experi-

ence stimulation, resulting in a counter force that hinders and reduces the fluid’s motion.

This counter force, known as the Lorentz force, acts perpendicular to both the velocity

vector and the magnetic field vector, leading to a resistance in the flow.
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Figure 4.4: Effect of M on f ′(ζ)

The results from Figure 4.5 clearly reveal a similar trend for both fluids. As the value of

the non-Newtonian Williamson parameter We increases, a significant decrement in the

velocity f ′(ζ) can be seen.

This behavior can be attributed to the non-Newtonian characteristics of fluid, where

the influence of the Williamson parameter We on their flow behavior becomes evident.
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With an increasing Williamson parameter, the resistance to flow within each fluid in-

tensifies, leading to a higher internal friction and deformation. Consequently, the fluid

particles experience a greater hindrance, resulting in a reduction in their respective veloc-

ities. Physically, this response can be explained by the non-linear relationship between

shear stress and velocity gradient of the non-Newtonian fluids. The non-Newtonian

Williamson parameter governs the extent of this non-linearity, and its elevation leads to

more constrained flow, subsequently decreasing the velocity of both the fluids.
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Figure 4.5: Effect of We on f ′(ζ)

In Figure 4.6, the impact of the Forchheimer parameter (Fr) on the velocity distribution

is depicted. The findings demonstrate that as the value of Fr increases, the fluid’s veloc-

ity profiles are significantly reduced. This behavior arises due to the direct relationship

between the inertia coefficient and the drag coefficient. Higher Fr values lead to an

increase in the drag coefficient, resulting in an elevated resistive force within the fluid.

As a consequence, the fluid experiences greater hindrance to its movement, leading to

a decline in the velocity. The influence of increasing Fr values is particularly notable

in relation to the thermal boundary layer. As Fr increases, the thermal boundary layer

thickens, effectively impeding the fluid’s passage. This phenomenon restricts the fluid

flow, making it less facile.
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Figure 4.6: Effect of Fr on f ′(ζ)

To investigate the impact of the porosity parameter Kp on the velocity distribution,

we refer to Figure 4.7. The results from Figure 4.7 clearly demonstrate that the veloc-

ity distribution experiences a depressive trend when influenced by higher values of the

porosity parameter. The physical explanation lies in the nature of a porous medium,

which contains a network of small voids or pores that impede the fluid’s motion as it

flows through the medium. The porosity parameter is directly related to the fluid’s

permeability through the porous medium. As the porosity parameter increases, the re-

sistance offered by the porous medium to the fluid’s movement becomes greater. As a

consequence, with larger values of the porosity parameter, the fluid experiences a higher

resistance both from the porous medium and its inherent viscosity. This combined ef-

fect results in a notable decrease in the fluid’s velocity within the porous medium. The

impact of the volume fraction ϕ1 of MoS2 on the velocity profile f ′(ζ) is illustrated in

Figure 4.8. Here, it becomes evident that as ϕ1 increases, the velocity of the fluid de-

creases. This phenomenon can be attributed to the corresponding increase in viscosity

with rising ϕ1. Consequently, heightened viscosity exerts a decelerating effect on the

flow.
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Figure 4.7: Effect of Kp on f ′(ζ)
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Figure 4.8: Effect of ϕ1 on f ′(ζ)

4.5.3 Temperature Profile

Here we examine the influence of several physical parameters on the temperature dis-

tribution, denoted as θ(ζ), for two different fluids. In Figures 4.9 and 4.10, we study

the effect of the magnetic field coefficient (M) and the porosity parameter (Kp) on the

temperature distribution for both fluids.
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For both fluids, an augmentation in the porosity parameter (Kp) leads to elevate the

temperature and the boundary layer. The higher resistance of the porous medium im-

pedes fluid flow, intensifying the internal friction and heat generation, leading to a higher

temperatures. Similarly, an increase in the magnetic field coefficient (M) leads to elevate

fluid temperature. The intensified magnetic forces restrict fluid movement, increasing

internal friction and heat generation, resulting in a higher temperature.
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Figure 4.9: Effect of Kp on profile θ(ζ)
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Figure 4.10: Effect of Kp on profile θ(ζ)
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Figure 4.11 illustrates the relationship between the non-Newtonian Williamson parame-

terWe and the fluid’s temperature distribution θ(ζ). Notably, an increase inWe leads to

a rise in the fluid’s temperature for both fluids. This can be attributed to the intensified

resistance and deformation experienced by non-Newtonian fluids as the We parameter

increases, resulting in a greater heat generation within the fluid and subsequently a

higher temperatures.
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Figure 4.11: Effect of We on profile θ(ζ)

In Figure 4.12, we observe a correlation between the Forchheimer parameter Fr and

the temperature distribution for both fluids. The results clearly demonstrate that as

Fr increases, the temperature of the fluid also rises. This effect is attributed to the

increased drag coefficient and resistance force experienced by the fluid with larger Fr

values, leading to heighten the heat generation and higher fluid temperature.

Figure 4.13 presents the effect of the nonlinear thermal radiation parameter R on the

temperature distribution. Remarkably, higher values of this parameter lead to an en-

hancement in the heat transfer within the fluids, stimulating their thermal behavior.

Physically, the positive effect of the nonlinear thermal radiation parameter on the fluid’s

temperature is based on three key factors. Firstly, it promotes heat transfer across the

boundary layer, resulting in a systematic temperature rise. Secondly, it facilitates the

absorption of thermal energy by nanoparticles in the fluid, thus improving the thermal

diffusion due to the nanoparticles enhanced thermal conductivity. Thirdly, it augments
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the thermal transfer mechanisms within the fluids, encompassing both conduction and

heat transfer by load.
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Figure 4.12: Effect of Fr on profile θ(ζ)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

M = 0.2

Kp = 0.5

We = 0.2

Fr = 0.4

 = 0.3

Q = - 0.1

Pr = 6.2

Ec = 0.2 

Nt = 0.5

Nb = 0.2

 = 0.4

Le = 2

1
 = 0.03

2
 = 0.06

R = 0.5, 1.0, 1.5, 2.0

_ _ _ _ _ _ _  _ MoS
2
 + GO / H

2
O

MoS
2
 / H

2
O____________

Figure 4.13: Effect of R on profile θ(ζ)

Moving forward, Figure 4.14 depicts the impact of the heat generation/absorption pa-

rameterQ on the temperature distribution for both fluids. The results reveal a significant

enhancement in the temperature distribution with increasing values of this parameter.

In case of heat generation (S > 0), there is an overall improvement in the heat trans-

fer and thermal distribution, leading to increase the fluid temperature and a thicker
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boundary layer. Conversely, in case of heat absorption (S < 0), an opposite effect is

experienced. Notably, transitioning from heat absorption to heat generation enhances

the thermal diffusion and the thickness of the boundary layer.
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Figure 4.14: Effect of Q on profile θ(ζ)

Figure 4.15 explores the relationship between the Prandtl number Pr and the tempera-

ture distribution for both fluids. Larger Prandtl number values (Pr > 1) indicate that

momentum diffusion prevails over thermal diffusion, resulting in a fall in the fluid’s tem-

perature and the thickness of the boundary layer.

In Figure 4.16, we observe that increasing the Eckert number (Ec) leads to higher fluid

temperatures for both the nanofluid and the hybrid nanofluid. Physically, the effect of

the Eckert number on the temperature distribution can be understood through the fluid’s

energy conversion. With higher Ec values, the fluid’s kinetic energy dominates, and the

excessive kinetic energy is converted into thermal energy. This process leads to increase

the heat generation within the fluid, subsequently raising the fluid’s temperature.
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Figure 4.15: Effect of Pr on profile θ(ζ)
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Figure 4.16: Effect of Ec on profile θ(ζ)

The impact of the thermophoresis parameter Nt on the temperature distribution has

been noticed through figure 4.17. An increase in Nt values directly enhances the fluid’s

temperature distribution. This effect is attributed to the process of thermal potential

difference, where fluid particles absorb heat energy, leading to their movement from hot-

ter to colder regions and enhancing the convection mechanism. This process effectively

raises the fluid’s temperature and increases the thickness of its boundary layer.
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Figure 4.17: Effect of Nt on profile θ(ζ)

Figure 4.18 explores the impact of the time relaxation parameter Ω on the temperature

distribution. Interestingly, an increase in Ω results in a decrease in the temperature of

both the fluids. This can be explained by the fluid’s longer response time to changes in

external forces with larger Ω values, leading to slower adjustments in temperature and

subsequently lower overall temperatures.
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Figure 4.18: Effect of Ω on profile θ(ζ)

In Figures 4.19 and 4.20, we observe that increasing the chemical reaction parameter (γ)

and the Lewis number (Le) leads to rise the fluid’s temperatures for both the fluids. The
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rise in γ intensifies the heat generation through chemical reactions, while an increase in

Le enhances thermal diffusion within the fluid, resulting in elevated temperatures.
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Figure 4.19: Effect of γ on profile θ(ζ)
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Figure 4.20: Effect of Le on profile θ(ζ)

Figure 4.21 delves into the influence of ϕ1 on the temperature profile. In this case,

as ϕ1 increases, the temperature of the fluid rises. This temperature elevation can be
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attributed to the concurrent increase in thermal conductivity associated with higher

ϕ1 values. As a result, the augmented thermal conductivity leads to an increase in

temperature within the fluid.
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Figure 4.21: Effect of ϕ1 on profile θ(ζ)

In conclusion, the investigation of the fluid temperature distribution reveals significant

effects of various physical parameters on both the nanofluid and the hybrid nanofluid.

Understanding these influences is vital for practical applications and provides valuable

insights into fluid’s behavior within different conditions and environments.

4.5.4 Analysis of the Concentration Profile

The concentration of nanoparticles within a fluid plays a significant role in determining

various properties and applications of the fluid. For instance, the thermal and electri-

cal conductivity of a nanofluid is directly related to the concentration of nanoparticles

present in it. In this context, Figures 4.22 and 4.23 provide valuable insights into the

effect of both the magnetic field parameter (M) and the porosity parameter (Kp) on

the distribution of the nanoparticle concentration ϕ(ζ).

Initially, as the magnetic field parameter (M) and the porosity parameter (Kp) increase,

the fluid’s movement is slowed down, which leads to an accumulation of nanoparticles

and subsequently a higher nanoparticle concentration. The reduced fluid flow under the

influence of the magnetic field causes nanoparticles to gather in specific regions, leading
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to an initial rise in concentration.

However, as the concentration of nanoparticles increases, the interaction between the

nanoparticles themselves and their surroundings becomes more significant. This inter-

action can result in particle aggregation, clustering and hindered movement, especially

in regions with higher nanoparticles’ concentration. As a consequence, there is a tem-

porary decrease in the concentration profile due to these localized effects, counteracting

an initial increase.

Subsequently, as the nanoparticle concentration reaches a certain critical point, the

cumulative effect of nanoparticle-pore collisions in the porous medium become more

pronounced. This contributes to a consistent rise in nanoparticle concentration beyond

the initial fluctuations, resulting in a long-term increasing trend.

The fluctuating behavior is more pronounced in the hybrid nanofluid due to the pres-

ence of graphene oxide (GO) nanoparticles, which introduces additional complexities

to the system. The GO nanoparticles can exhibit unique interactions with the other

nanoparticles and the surrounding fluid, leading to more variations in concentration

profiles.
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Figure 4.22: Effect of M on profile ϕ(ζ)
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Figure 4.23: Effect of Kp on profile ϕ(ζ)

In Figures 4.24 and 4.25, we investigate the impact of two essential parameters, the

non-Newtonian Williamson parameter (We) and the Forchheimer number (Fr), on the

distribution of nanoparticle concentration ϕ(ζ) within the fluid.
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Figure 4.24: Effect of We on profile ϕ(ζ)

As the non-Newtonian Williamson parameter (We) and the Forchheimer number (Fr)

increase, the nanoparticle concentration initially rises due to a reduction in the fluid

movement caused by these parameters. The slowing fluid flow allows nanoparticles to ac-

cumulate in specific regions, leading to hike concentration. However, as the nanoparticle
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concentration reaches a certain level, localized effects such as nanoparticle aggregation

or hindered movement can lead to a temporary decrease in the concentration. Following

this temporary dip, the nanoparticle concentration continues to rise steadily for both flu-

ids. This continued increase is attributed to the cumulative impact of nanoparticle-pore

collisions and the overall interactions among the nanoparticles within the fluid.
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Figure 4.25: Effect of Fr on profile ϕ(ζ)

Figures 4.26 and 4.27 explore the impact of the nonlinear thermal radiation parameter

(R) and the heat generation/absorption parameter (Q) on the distribution of nanopar-

ticle concentration.

In Figure 4.26, as the nonlinear thermal radiation parameter increases, it results in

stronger nanoparticle temperatures and thickening of the fluid’s boundary layer, lead-

ing to an enhanced temperature distribution throughout both fluids. This increment

initially stimulates nanoparticles’ movement and accumulation, causing an initial rise in

nanoparticles’ concentration for both the nanofluid and the hybrid nanofluid. However,

after reaching a certain critical point, localized effects, such as nanoparticle aggregation

or hindered movement, cause a temporary decrease in the concentration profile for both

fluids. Subsequently, beyond this critical point, the nanoparticle concentration resumes

its upward trend in both fluids, driven by cumulative nanoparticle-pore collisions and

fluid interactions.

In Figure 4.27, the effect of the heat generation/absorption parameter (Q) on nanoparti-

cle concentration ϕ(ζ) is evident for both fluids. Increasing the heat generation enhances
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fluid’s temperature and concentration, while heat absorption results in the opposite ef-

fect, as depicted in the figure. Similar to Figure 4.27, an initial rise in nanoparticles’

concentration is observed for both fluids as the heat generation parameter increases.

However, after reaching a bit away from the surface, the concentration profile tem-

porarily decreases for both fluids due to localized effects. Beyond this critical point,

the concentration of nanoparticles’s consistently increase, influenced by the cumulative

nanoparticle-pore collisions.

Indeed, the same situation can also be seen in the case of the effect of Eckert number

(Ec) on nanoparticle concentration distribution, as shown in figure 4.28.

As the Eckert number (Ec) increases, convective heat transfer intensifies, initially raising

nanoparticle concentration in both fluids. However, a temporary dip occurs beyond a

specific height above the wall, likely due to localized effects. Subsequently, nanoparticle

concentration continues to rise steadily for both the nanofluid and hybrid nanofluid,

driven by cumulative nanoparticle-pore interactions.
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Figure 4.26: Effect of R on profile ϕ(ζ)
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Figure 4.27: Effect of Q on profile ϕ(ζ)
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Figure 4.28: Effect of Ec on profile ϕ(ζ)

For both the fluids, Figures 4.29 and 4.30 demonstrate the negative impact of the Prandtl

number (Pr) and the time relaxation parameter (Ω) on nanoparticle concentration. The

observed scenario of initial decrease, followed by an increase and then a subsequent

decrease in the concentration for both the Prandtl number and the time relaxation

parameter (Ω) can be understood through the physical interactions within the fluids.
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When the Prandtl number increases, the dominance of momentum diffusion over ther-

mal diffusion results in reduction in the concentration. This happens because the fluid’s

momentum carries more energy and affects the nanoparticles movement, leading to a

localized drop in the concentration. However, as the Prandtl number further increases,

the thermal diffusion eventually catches up, leading to a temporary increase in nanopar-

ticle concentration. At this point, the energy transfer from the fluid’s momentum to

the nanoparticles becomes more balanced, causing a transient rise in the concentration.

Subsequently, after a particular height above the wall, the momentum diffusion begins

to overpower the thermal diffusion significantly, resulting in a decline in the concentra-

tion again. The dominance of momentum diffusion leads to a decrease in the localized

nanoparticle accumulation, causing the concentration to revert to its original decreasing

pattern.
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Figure 4.29: Effect of Pr on profile ϕ(ζ)

Similarly, for the time relaxation parameter (Ω), an initial decrease in the nanoparticle

concentration is noticed owing to the effect of fluid movement on the nanoparticles. As

Ω increases, the fluid’s relaxation time becomes more significant, affecting the nanopar-

ticles’ behavior and leading to a temporary reduction in the concentration. However, as

the relaxation effect stabilizes, a temporary increase in the nanoparticle concentration

is observed. This occurs because the relaxation mechanism allows nanoparticles to ac-

cumulate in certain regions for a shorter period. Yet the overall influence of the fluid
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momentum starts to dominate again, leading to a decrease in the concentration profile

as before.
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Figure 4.30: Effect of Ω on profile ϕ(ζ)

Figure 4.31 demonstrates the effect of the Brownian motion parameter (Nb) on the

distribution of nanoparticle concentration within the fluid. Increasing this parameter

leads to a reduction in the concentration of nanoparticles. Physically, Brownian motion

refers to the random movement of nanoparticles within the fluid. When the Brownian

motion parameter is enhanced, nanoparticles move more freely in all directions. This

initially results in an increase in the nanoparticle-concentration as they spread uniformly

throughout the fluid. However, as thermal diffusion effects become more significant due

to factors like thermal radiation and thermophoresis, the enhanced Brownian motion

becomes limited. This leads to a decrease in nanoparticle concentration after reached

to the specific height above the wall.

Moreover, Figure 4.32 illustrates the impact of the thermophoresis parameter Nt on the

distribution of concentration ϕ(ζ). As this parameter increases, there is a subsequent in-

crease in ϕ(ζ). However, it is noteworthy that at the beginning, the concentration of ϕ(ζ)

initially exhibits a decreasing behavior. Physically, thermophoresis refers to the motion

of nanoparticles due to temperature gradients in the fluid. When the thermophoresis

parameter is enhanced, nanoparticles experience enhanced motion from hot to cold re-

gions. This leads to an initial reduction in nanoparticle concentration in certain areas as
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they migrate towards colder regions. However, as the thermophoresis effect intensifies

further, nanoparticles accumulate more in regions with favorable temperature gradients,

leading to a collective augmentation in the concentration of nanoparticles ϕ(ζ) within

the fluids.
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Figure 4.32: Effect of Nt on profile ϕ(ζ)

Figure 4.33 illustrates the influence of the Lewis number (Le) on the concentration

(ϕ(ζ)). As the Lewis number increases, there is an inverse relationship, resulting in a
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decrease in the nanoparticle-concentration. However, it is important to note that ini-

tially, there is an increasing behavior in the distribution of nanoparticle concentration.

Physically, the Lewis number indicates the ratio of thermal diffusivity to mass diffusiv-

ity within the fluid. When the Lewis number is increased, the dominant effect shifts

towards mass diffusion, which tends to disperse the nanoparticles and decrease their

concentration.

However, at the initial stage, other factors might temporarily influence the concentra-

tion, leading to the observed increase. These factors could include localized fluid flow

patterns or initial variations in temperature gradients.
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Figure 4.33: Effect of Le on profile ϕ(ζ)

Figure 4.34 illustrates the effect of the chemical reaction parameter (γ) on ϕ(ζ). As

the value of the chemical reaction parameter increases, there is an inverse relationship,

resulting in a decrease in the nanoparticle-concentration. However, it is noteworthy that

initially, the concentration of nanoparticles shows an uncertain behavior. Physically, the

chemical reaction parameter represents the rate of chemical reactions within the fluid

that may influence the behavior of nanoparticles. When the chemical reaction parameter

is allowed to vary, a change in the concentration profile is naturally expected.

Figure 4.35 explores the impact of ϕ1, which represents the volume fraction of MoS2,

on the concentration profile. As ϕ1 increases, the concentration profile initially rises.

However, at a specific height along the wall, the concentration profile starts to decrease

before eventually returning to its normal increasing behavior beyond that height. This
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behavior suggests a complex interaction between ϕ1 and the distribution of concentration

in the fluid, leading to this unique concentration profile pattern.
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Figure 4.34: Effect of γ on profile ϕ(ζ)
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4.5.5 Graphically Behavior of Physical Quantities

Figure 4.36 illustrates the variation in the coefficient of skin friction concerning the non-

Newtonian Williamson parameter (We) and the Forchheimer number (Fr). Evidently,

the coefficient of skin friction increases with higher values of We.

In Figure 4.37, we examine Re
1/2
x Cfx for different values of M and Kp. It is evident that

the coefficient of skin friction decreases with increasing values of these parameters. This

suggests that elevated M and Kp lead to a more rapid fluid velocity gradient. Figure

4.38 explores the influence of the (R) and (Pr) on the Re
−1/2
x Nux. Here, an increase in

the values of R and Pr leads to a decrease in the local Nusselt number. This implies a

reduction in convective heat transfer relative to conductive heat transfer at a boundary

within the fluid. Figure 4.39 demonstrates the fluctuation in Re
−1/2
x Nux due to changes

in Pr and Ω for both the fluids. Increasing values of Pr and Ω result in an enhancement

of Re
−1/2
x Nux for both fluids, with this enhancement being more pronounced for the

hybrid nanofluid when compared with the nanofluid. Finally, Figure 4.40 reveals that

the Sherwood number increases with higher values of the nonlinear thermal radiation

parameter and decrease for higher values of Pr. Conversely, in Figure 4.41, the local

Sherwood number decreases with increasing values of the Pr and Omega.
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4.6 Verification of Code

The acquired results were verified by comparing them with the findings from existing

literature sources [2, 17, 55]. A comprehensive comparison of the consistencies observed

in various studies is summarized in Table 4.5, 4.6 and 4.7. It is worth noting that the

present result reflected a convincing agreement with the some of the reported result in

the literature. It should be noted that in table 4.5, ‘↑’ stands for the increasing behavior

whereas ‘↓’ means the other way round.

Table 4.5: Comparing the current numerical outcomes with those were previ-
ously reported of skin fraction when Fr = Ω = ϕ1 = ϕ2 = 0,Nb = Nt = Kp =
0.5, Le = 2,Q = −0.1, Ec = 0.4 andPr = 5

We = 0.2 M = 0.5

M Bouslimi [2] Present Result We Bouslimi [2] Present Result

0 -1.16631 -1.16633 0.1 -1.37752 -1.37752

0.5 -1.33621 -1.33621 0.2 -1.16631 -1.16633

1.0 -1.48296 -1.48296 0.3 -1.28774 -1.28774
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Table 4.6: Comparison of the accuracy of the present result with the previous
result

Increase

parameter

Yahya et al. [17] Bouslimi et al. [2] Present result

f ′(ζ) θ(ζ) f ′(ζ) θ(ζ) ϕ(ζ) f ′(ζ) θ(ζ) ϕ(ζ)

M ↓ ↓ ↑ ↑ ↓ ↑ ↑
Kp ↓ ↓ ↑ ↑ ↓ ↑ ↑
We ↓ ↓ ↓
Ec ↑ ↑ ↑ ↑ ↑
Q ↑ ↑ ↑ ↑ ↑
Pr ↓ ↓ ↓ ↓ ↓
Le ↑ ↑
γ ↓ ↓
R ↑ ↑ ↑ ↑
Nt ↑ ↑ ↑ ↑
Nb ↓ ↓

Table 4.7: Comparison of −f ′′(0) with variation of magnetic parameter M
when We = Kp = Fr = ϕ1 = ϕ2 = 0

M Ali et al. [56] Asjad et al. [55] Present outcomes

0.0 1.00000 1.00000 1.00048

0.2 1.09545 1.09545 1.09559

0.5 1.22474 1.22474 1.22477

1.0 1.41421 1.41421 1.41423

1.2 1.48324 1.48324 1.48325

1.5 1.58114 1.58114 1.58114



Chapter 5

Conclusions

In this research thesis, we conducted a comprehensive investigation into the impact of

various physical parameters on the velocity, temperature, and concentration profiles of

nanoparticles within two different fluids, namely nanofluid (MoS2/H2O) and hybrid

nanofluid (MoS2 + GO/H2O) based on the Williamson fluid model. The parameters

examined included non-Newtonian Williamson parameter (We), Forchheimer number

(Fr), porosity parameter (Kp), nonlinear thermal radiation parameter, time relaxation

parameter (Ω), Prandtl number (Pr), thermophoresis parameter (Nt), Brownian motion

parameter (Nb), chemical reaction parameter (γ), Lewis number (Le), Eckert number

(Ec), and magnetic field coefficient (M).

� Non-Newtonian Williamson parameter (We) and Forchheimer number (Fr) in-

versely affected fluid velocity, leading to reduced flow rates. Magnetic field pa-

rameter (M) caused a decrease in fluid velocity due to Lorentz force.

� Cattaneo-Christov heat flux and heat generation/absorption parameter (Q) posi-

tively impacted fluid temperature, enhancing heat transfer and thermal diffusion.

� Prandtl number (Pr) negatively affected fluid temperature due to dominance of

momentum diffusion over thermal diffusion.

� The concentration profile is influenced by the thermophoresis parameter (Nt) and

Lewis number (Le), resulting in an augmentation in the concentration.
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� Brownian motion parameter (Nb) and chemical reaction parameter (γ) led to a

decrease in nanoparticle concentration. Time relaxation parameter (Ω) shaped

transient behavior within the fluid.

� Regarding certain parameters, a variable behavior in nanoparticle concentration

is noted within a specific interval above the wall. Understanding parameter effects

crucial for optimizing nanofluid systems in various engineering applications.

� The investigation led to observe an enhancement in thermal and electrical prop-

erties, paving the way for nanofluid technology advancements.
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