
High-Speed
Networks

Jorge Crichigno
Elie Kfoury
Elias Bou-Harb
Nasir Ghani

Practical Networking

A Tutorial

Practical Networking

Series Editor

Zhi-Li Zhang
Sci & Eng, 4-192 EE/CS Bldg
University of Minnesota, Dept of Comp
Minneapolis, MN, USA

Explosive growth in cloud and mobile computing coupled with new advances in
systems and networking technologies as well as machine learning and artificial
intelligence (AI) have revolutionized how networks and distributed systems are
designed, developed, operated and managed. This is epitomized by data center
networking where it has spurred a wholesale rethinking and re-designs from
network architectures, to physical interconnects to routing, flow management
and network application support. New networking paradigms and technologies
such as software-defined networking, network function virtualization, smart NICs
and software/hardware co-designs have emerged for better designing, operating,
managing and evolving networks, and also enabled new visions such as “self-
driving networks” and AIOps. The Practical Networking Series is centered on
emerging topics in new networking paradigms, architectural designs, algorithms and
mechanisms for primarily wired networks (from data center networks, enterprise
networks to ISP networks), but also touches on “packet core networks” for emerging
5G and beyond cellular and wireless networks. Books in this series address these
topics from both theoretical (e.g., new theoretical foundations, algorithms and
performance analysis) and practical (e.g., new network mechanisms, protocols,
APIs and standards, software frameworks) perspectives. Relatively short books on
a timely and focused topic, research monographs, and textbooks are of interest.
The Editor is seeking well written works by well-established researchers and
practitioners in the networking field around the world, particularly Asia and North
America.
Prospective Authors or Editors:
If you have an idea for a book, we would welcome the opportunity to review your
proposal. Should you wish to discuss any potential project further or receive specific
information regarding our book proposal requirements, please contact Zhi-Li Zhang
or Susan Evans:

Zhi-Li Zhang
Department of Computer Science Department
University of Minnesota
4-192 Keller Hall, 200 Union Street SE
Minneapolis, MN 55455-0159
zhzhang@cs.umn.edu

Susan Evans
Senior Editor
Springer Nature
233 Springe Street
New York, NY 10013 USA
susan.evans@springernature.com

More information about this series at https://link.springer.com/bookseries/16325

zhzhang@cs.umn.edu
susan.evans@springernature.com
https://link.springer.com/bookseries/16325

Jorge Crichigno • Elie Kfoury • Elias Bou-Harb
Nasir Ghani

High-Speed Networks

A Tutorial

Jorge Crichigno
College of Engineering and Computing
University of South Carolina
Columbia, SC, USA

Elie Kfoury
College of Engineering and Computing
University of South Carolina
Columbia, SC, USA

Elias Bou-Harb
Cyber Center for Security and Analytics
University of Texas at San Antonio
San Antonio, TX, USA

Nasir Ghani
Electrical Engineering
University of South Florida
Tampa, FL, USA

ISSN 2662-1703 ISSN 2662-1711 (electronic)
Practical Networking
ISBN 978-3-030-88840-4 ISBN 978-3-030-88841-1 (eBook)
https://doi.org/10.1007/978-3-030-88841-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-88841-1

Preface

Welcome toHigh-Speed Networks: A Tutorial. This book is the result of a journey of
the authors who have been designing and deploying high-speed networks for several
years, in particular Science Demilitarized Zones (Science DMZs). The Science
DMZ is a high-speed network designed to facilitate the transfer of big science data.

As the popularity of high-speed networks and Science DMZs surged, the need
for professionals with the skills to operate such infrastructures has increased. How-
ever, practitioners have been mostly trained to operate general-purpose networks,
which have different characteristics from those of Science DMZs and other high-
performance networks. At the time when the authors started designing and operating
Science DMZs, the available material was limited to workshops organized by ESnet,
the Scientific Networking Division at Lawrence Berkeley National Laboratory in the
United States (U.S.).

This book tries to address the above gap. It provides practical knowledge and
skills on Science DMZs and high-speed networks in general, which are reinforced
with virtual laboratory experiments.

Audience

This book is for industry professionals and for students in computer science,
information technology, and similar programs, who are interested in learning
fundamental concepts related to high-speed networks and corresponding imple-
mentations. The book assumes minimal familiarity with networking, typically
covered in an introductory networking course. It is appropriate for an upper-level
undergraduate course, for a first-year graduate course, and for self-pace learning by
industry professionals.

v

vi Preface

What is Unique About This Book?

The book delves into protocols and devices at different layers, from the physical
infrastructure to application-layer tools and security appliances, that must be
carefully considered for the optimal operation of Science DMZs and high-speed
networks. In contrast to traditional books, the book is accompanied by hands-on
virtual laboratory experiments that are conducted on a virtual platform.

The Virtual Platform and Virtual Laboratory Experiments

The virtual platform enables learners to immediately deploy virtual networks
composed of an equipment pod (routers, switches, servers, firewalls, etc.) needed for
mastering a topic. Experiments help learners to reinforce concepts and to learn how
to optimally configure and manage network devices, based on real measurements
and observations. Access to the platform is available for a fee and includes all
material required to conduct the experiments. The URL of the virtual platform is:
http://highspeednetworks.net/

Organization

The book follows a bottom-up approach. Chapter “Introduction to High-Speed Net-
works and Science DMZ” presents the motivation for Science DMZs and high-speed
networks. Chapter “Network Cyberinfrastructure Aspects for Big Data Transfers”
describes limitations of general-purpose networks when transferring large data
sets across a Wide Area Network (WAN), and explores the cyberinfrastructure
required to support such transfers. It also discusses different options a network
may have to connect to other networks. Chapter “Data-Link and Network Layer
Considerations for Large Data Transfers” describes attributes related to routers and
switches, which have large impact on performance, including router’s buffer size,
maximum transmission unit (MTU), and others. Chapter “Impact of TCP on High-
Speed Networks and Advances in Congestion Control Algorithms” discusses key
features at the transport layer, such as TCP congestion control, pacing, and parallel
connections. Chapter “Application and Security Aspects for Large Flows” presents
application-layer tools used to support large data transfers. Chapter “Security
Aspects” describes security challenges arising in Science DMZs and high-speed
networks, and presents best practices. Chapter “Challenges and Open Research
Issues” discusses challenges and open research issues.

http://highspeednetworks.net/

Preface vii

Relevance of Networking Tools

The book provides a set of virtual laboratory experiments at the end of most
chapters. All equipment pods are implemented with appliances running real protocol
stacks. Examples include iPerf3, the Network Emulator (NETEM), traffic control
(tc), and Zeek intrusion detection system. Recognizing the impact of Mininet on
networking, the authors decided to use this network emulator to create topologies
for the laboratory experiments. All tools are based on open-source software, which
reflects industry trends. Specifically, over the years, the authors observed that open-
source software has been increasingly used to design, build, test, and control
networks. For example, since the original publication of the paper describing
Mininet in 2010, Mininet has gained wide adoption in the industry and academia.
Mininet’s paper has received the ACM Test of Time Award.

Columbia, SC, USA Jorge Crichigno
Columbia, SC, USA Elie Kfoury
San Antonio, TX, USA Elias Bou-Harb
Tampa, FL, USA Nasir Ghani

Acknowledgement

The authors would like to express their gratitude to the U.S. National Science
Foundation (NSF), Office of Advanced Cyberinfrastructure (OAC). This work
would not be possible without NSF support. Part of the material was developed
under the award numbers 1829698 and 1925484. The authors are also thankful to
the Network Development Group (NDG) team who worked with Dr. Crichigno to
deploy the virtual laboratory experiments. NDG’s president, Richard Weeks, has
constantly provided invaluable suggestions.

The first two authors would like to specially thank the members of the Cyberin-
frastructure Laboratory at the University of South Carolina (USC) who helped create
and test laboratory experiments, and the Department of Integrated Information
Technology at USC for the conducive environment for writing this book.

ix

Contents

Introduction to High-Speed Networks and Science DMZ 1

Network Cyberinfrastructure Aspects for Big Data Transfers 41

Data-Link and Network Layer Considerations for Large
Data Transfers . 105

Impact of TCP on High-Speed Networks and Advances in
Congestion Control Algorithms . 215

Application and Security Aspects for Large Flows . 329

Security Aspects . 343

Challenges and Open Research Issues . 455

xi

Abbreviations

ACK Acknowledgement
ACL Access-Control List
AES Advanced Encryption Standard
AMO Atomic, Molecular, and Optical
BBR Bottleneck Bandwidth and Round-Trip Time
BDP Bandwidth-Delay Product
BGP Border Gateway Protocol
BNL Brookhaven National Laboratory (United States)
btlbw Bottleneck Bandwidth
BWCTL Bandwidth Test Controller
BYOD Bring-Your-On-Device
CC* Campus Cyberinfrastructure Program
CDF Cumulative Distribution Function
CENIC Corporation for Education Network Initiatives in California
CPI Client Protocol Interpreter
CPU Central Processing Unit
DMZ Demilitarized Zone
DoS Denial of Service
DTN Data Transfer Node
DTP Data Transfer Process
ESnet Energy Science Network
FCC Federal Communications Commission (United States)
FDT Fast Data Transfer
FIB Forwarding Information Base
FIC File Integrity Check
FQ Fair Queue
FT Forwarding Table
FTP File Transfer Protocol
GB Gigabyte
Gbps Gigabits Per Second
HOL Head-Of-Line

xiii

xiv Abbreviations

HTCP Hamilton Transmission Control Protocol
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDS Intrusion Detection System
IETF Internet Engineering Task Force
IP Internet Protocol
IPFIX IP Flow Information Export
IPS Intrusion Prevention System
IPsec Internet Protocol Security
ISP Internet Service Provider
KB Kilobyte
Kbps Kilobits Per Second
LAN Local Area Network
LBNL Lawrence Berkeley National Laboratory (United States)
LHC Large Hadron Collider
MB Megabyte
Mbps Megabits Per Second
mdtmFTP Multicore-Aware Data Transfer
Middleware File Transfer Protocol
MPLS Multi-Protocol Label Switching
MSS Maximum Segment Size
MTU Maximum Transmission Unit
NAT Network Address Translator
netem Network Emulator
NGIPS Next Generation Intrusion Prevention System
NIC Network Interface Card
NNMC Northern New Mexico College
NP Network Processor
NPAD Network Path and Application Diagnostics
NREN National Research and Education Network
NSF National Science Foundation
NSFnet National Science Foundation Network
NUMA Non-Uniform Memory Access
OS Operating System
OSCARS On-Demand Secure Circuits and Reservation System
OSPF Open Shortest Path First
OWAMP One-Way Active Measurement Protocol
PB Petabyte
POP Point of Presence
RAM Random Access Memory
RDMA Remote Direct Memory Access
REN Research and Education Network
RTT Round-Trip Time
RTTmin Minimum Round-Trip Time

Abbreviations xv

SACK Selective Acknowledgement
SCP Secure Copy Protocol
SDMZ Science Demilitarized Zone
SDN Software Defined Networking
sFlow Sampled Flow
SFTP Secure File Transfer Protocol
SNMP Simple Network Management Protocol
SPAN Switched Port Analyzer
SPI Server Protocol Interpreter
SQL Structured Query Language
SSH Secure Shell
TB Terabyte
Tbps Terabits Per Second
TCP Transmission Control Protocol
UDP User Datagram Protocol
UDT UDP-based Data Transfer Protocol
UMA Uniform Memory Access
UNM University of New Mexico
uRPF Unicast Reverse Path Forwarding
U.S. United States
VLA Very Large Array
VLAN Virtual Local Area Network
VM Virtual Machine
VOQ Virtual Output Queueing
VPLS Virtual Private LAN Service
VPN Virtual Private Network
VXLAN Virtual Extensible Local Area Network
WAN Wide Area Network
WRN Western Regional Network
XML Extensible Markup Language

Introduction to High-Speed Networks
and Science DMZ

This chapter provides a motivation for Science Demilitarized Zones (Science
DMZs) and other high-speed network architectures designed for large data transfers.
The chapter describes limitation of enterprise networks when used for large data
transfers, current applications based on Science DMZs, and access to companion
material and website.

1 Objective and Access to Accompanied Training Material

At present, there is an increasing need to deploy Science DMZs in support of big
science data transfers. However, efforts to prepare researchers and other profession-
als with the right knowledge are limited to dispersed work by the academia and the
industry. Despite the importance of Science DMZs, currently there is no structured
material in the form of a book.

This book addresses this gap in the literature by presenting a comprehensive
tutorial high-speed networks, while focusing on the Science DMZs architecture.
Following a systematic approach through every layer of the protocol stack, this
book integrates information and tools for a better understanding of the issues, key
challenges, best practices, and future research directions related to Science DMZs.

The book is accompanied by hands-on virtual laboratory experiments conducted
in a virtual platform, referred to as the Academic Cloud. Access to the Academic
Cloud is available for a fee (six-month access) and includes all materials needed to
conduct the experiments. The URL is:

http://highspeednetworks.net/

The virtual platform is accessible via a regular browser, as any website. The
platform enables readers to complete hands-on laboratory exercises by creating

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Crichigno et al., High-Speed Networks, Practical Networking,
https://doi.org/10.1007/978-3-030-88841-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88841-1_1&domain=pdf
http://highspeednetworks.net/
https://doi.org/10.1007/978-3-030-88841-1_1

2 Introduction to High-Speed Networks and Science DMZ

Fig. 1 Screen-capture of the website used as a companion platform for the book

virtual equipment pods. A pod is a set of virtual machines needed for the completion
of a lab exercise. The pod can be as simple as a single isolated virtual machine, or
as complex as autonomous systems with live traffic flowing to/from the Internet.
Figure 1 shows a screen-capture of the website.

2 Motivation for Science DMZs

When the United States (U.S.) decided to build the interstate highway system in
the 1950s, the country already had city streets and two-lane highways for daily-life
transportation. While at first this system appeared to be redundant, the interstate
highway system increased the ease of travel for Americans and the ability to
transport goods from east to west, without stoplights [1].

Tracing similarities with the current cyberinfrastructure, today’s general-purpose
networks, also referred to as enterprise networks, are capable of efficiently transport-
ing basic data. These networks support multiple missions, including organizations’
operational services such as email, procurement systems, and web browsing.
However, when transferring terabyte- and petabyte-scale science data, enterprise
networks face many unsolved challenges [2]. Key issues preventing high throughput
include slow processing by CPU-intensive security appliances, inability of routers
and switches to absorb traffic bursts generated by large flows, end devices that
are incapable of sending and receiving data at high rates, lack of data transfer
applications that can exploit the available network bandwidth, and the absence of
end-to-end path monitoring to detect failures.

2 Motivation for Science DMZs 3

Fig. 2 Monthly average traffic volume through ESnet [3]

The need for a suitable cyberinfrastructure for large flows is illustrated in Fig. 2,
which shows the monthly average traffic volume through the Energy Science
network (ESnet) [3]. ESnet is a high-performance network that carries science traffic
for the U.S. Department of Energy. As of 2018, this network is transporting tens of
petabytes (PBs) per month, an increase of several orders of magnitude from some
years ago.

In response to this challenge of transmitting big science data via a cyber-highway
system without stoplights, ESnet developed the concept of Science Demilitarized
Zone (Science DMZ or SDMZ) [4]. The Science DMZ is a network or a portion
of a network designed to facilitate the transfer of big science data across wide area
networks (WANs), typically at rates of 10 Gbps and above. In order to operate at
such rates, this setup integrates the following key elements: (i) end devices, referred
to as data transfer nodes (DTNs), that are built for sending/receiving data at a high
rate over WANs; (ii) high-throughput paths connecting DTNs, instruments, storage
devices, and computing systems. These paths are composed of highly capable
routers and switches and have no devices that may induce packet losses. They
are referred to as friction-free paths; (iii) performance measurement devices that
monitor end-to-end paths over multiple domains; and (iv) security policies and
enforcement mechanisms tailored for high-performance science environments.

4 Introduction to High-Speed Networks and Science DMZ

3 Science DMZs Applications

The Science DMZ architecture is similar to building the interstate highway system,
whereas stoplights are removed to permit the high-speed movement of large flows.
The interconnection of Science DMZs is also analogous to the development of the
National Science Foundation network (NSFnet) in 1985, one of the predecessors of
today’s Internet. NSF, the main government agency in the U.S. supporting research
and education in science and engineering, established the NSFnet to link together
five supercomputer centers that were then deployed across the U.S. [5]. With
Science DMZs, institutions are similarly linked together and have access to a virtual
co-location of data that may rest anywhere in the world through a high-speed data-
sharing architecture. Along these lines, Fig. 3 highlights applications that currently
exploit the Science DMZ architecture to transmit large flows from instruments to
laboratories for data analysis. From very large to portable devices, these instruments
generate a large amount of data in short periods of time.

Fig. 3 Science DMZ data transfer applications. Top left: The Large Hadron Collider (LHC)
produces approximately 30 PBs per year. Data is transmitted to multiple computing centers around
the world. Photo courtesy of The European Organization for Nuclear Research [6]. Top center:
The Very Large Array (VLA) is composed of 27 radio antennas of 25m in diameter each. Daily
data collection comprises several TBs, which are transmitted to research laboratories worldwide.
Photo courtesy of the U.S. National Radio Astronomy Observatory [7]. Top right: Experimental
Advanced Superconducting Tokamak. Data generated by the energy reactor is transmitted for
analysis via a Science DMZ. Photo courtesy of ESnet [8]. Bottom left: magnetic resonance imaging
scanner. Major brain imaging studies such as the Alzheimer’s disease neuroimaging requires
storage and transmission of multiple PBs of data [9]. Medical data can now be transported via
medical Science DMZs [10, 11]. Photo courtesy of General Electric Healthcare [12]. Bottom
center: Atomic, Molecular, and Optical (AMO) instrument. The instrument is used for a variety
of experiments, such as illumination of single molecules. A single experiment can produce 150
to 200 TBs [13]. Photo courtesy of the U.S. SLAC National Accelerator Laboratory [14]. Bottom
right: portable device for DNA and RNA sequencing, which generates tens of GBs of data per
experiment [15]. Photo courtesy of Nanopore Technologies [16]

4 Introduction to Mininet 5

Table 1 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

Chapter 1—Lab 1: Introduction to Mininet

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 1.

This lab provides an introduction to Mininet, a virtual testbed used for testing
network tools and protocols. It demonstrates how to invoke Mininet from the
command-line interface (CLI) utility and how to build and emulate topologies using
a graphical user interface (GUI) application.

Objectives
By the end of this lab, students should be able to:

1. Understand what Mininet is and why it is useful for testing network topologies.
2. Invoke Mininet from the CLI.
3. Construct network topologies using the GUI.
4. Save/load Mininet topologies using the GUI.

Lab Settings
The information in Table 1 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 4: Introduction to Mininet.
2. Section 5: Invoking Mininet using the CLI.
3. Section 6: Building and emulating a network in Mininet using the GUI.

4 Introduction to Mininet

Mininet is a virtual testbed enabling the development and testing of network tools
and protocols. With a single command, Mininet can create a realistic virtual network
on any type of machine (Virtual Machine (VM), cloud-hosted, or native) (Fig. 4).
Therefore, it provides an inexpensive solution and streamlined development running
in line with production networks. Mininet offers the following features:

• Fast prototyping for new networking protocols.
• Simplified testing for complex topologies without the need of buying expensive

hardware.

http://highspeednetworks.net/

6 Introduction to High-Speed Networks and Science DMZ

Fig. 4 Hardware network vs. Mininet emulated network

• Realistic execution as it runs real code on the Unix and Linux kernels.
• Open-source environment backed by a large community contributing extensive

documentation.

Mininet is useful for development, teaching, and research as it is easy to
customize and interact with it through the CLI or the GUI. Mininet was originally
designed to experiment with OpenFlow and Software-Defined Networking (SDN).
This lab, however, only focuses on emulating a simple network environment without
SDN-based devices.

Mininet’s logical nodes can be connected into networks. These nodes are
sometimes called containers, or more accurately, network namespaces. Containers
consume sufficiently few resources that networks of over a thousand nodes have
created, running on a single laptop. A Mininet container is a process (or group
of processes) that no longer has access to all the host system’s native network
interfaces. Containers are then assigned virtual Ethernet interfaces, which are
connected to other containers through a virtual switch. Mininet connects a host and
a switch using a virtual Ethernet (veth) link. The veth link is analogous to a wire
connecting two virtual interfaces, as illustrated below (Fig. 5).

Each container is an independent network namespace, a lightweight virtualiza-
tion feature that provides individual processes with separate network interfaces,
routing tables, and Address Resolution Protocol (ARP) tables.

Mininet provides network emulation opposed to simulation, allowing all network
software at any layer to be simply run as is; i.e., nodes run the native network
software of the physical machine. In a simulator environment on the other hand,
applications and protocol implementations need to be ported to run within the
simulator before they can be used.

5 Invoking Mininet Using the CLI

The first step to start Mininet using the CLI is to start a Linux terminal.

5 Invoking Mininet Using the CLI 7

Fig. 5 Network namespaces and virtual Ethernet links

Fig. 6 Shortcut to open a Linux terminal

5.1 Invoking Mininet Using the Default Topology

Step 1 Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 6).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system for execution.

8 Introduction to High-Speed Networks and Science DMZ

Fig. 7 Starting Mininet using the CLI

Fig. 8 Mininet’s default minimal topology

Step 2 To start a minimal topology, enter the command sudo mn at the CLI.

When prompted for a password, type password and hit enter (Fig. 7). Note that
the password will not be visible as you type it.

The above command starts Mininet with a minimal topology, which consists of
a switch connected to two hosts as shown below (Fig. 8).

When issuing the sudo mn command, Mininet initializes the topology and
launches its command-line interface, which looks like this:

mininet>

Step 3 To display the list of Mininet CLI commands and examples on their usage,
type the command help in the Mininet CLI (Fig. 9):

Step 4 To display the available nodes, type the command nodes : (Fig. 10).

5 Invoking Mininet Using the CLI 9

Fig. 9 Mininet’s help command

Fig. 10 Mininet’s nodes command

The output of this command shows that there are two hosts (host h1 and host h2)
and a switch (s1).

Step 5 It is useful sometimes to display the links between the devices in Mininet
to understand the topology. Issue the command net in the Mininet CLI to see the
available links (Fig. 11).

The output of this command shows that:

1. Host h1 is connected using its network interface h1-eth0 to the switch on
interface s1-eth1

10 Introduction to High-Speed Networks and Science DMZ

Fig. 11 Mininet’s net command

Fig. 12 Output of h1 ifconfig command

2. Host h2 is connected using its network interface h2-eth0 to the switch on
interface s1-eth2

3. Switch s1:

(a) has a loopback interface lo
(b) connects to h1-eth0 through interface s1-eth1
(c) connects to h2-eth0 through interface s1-eth2

Mininet allows you to execute commands at a specific device. To issue a
command for a specific node, you must specify the device first, followed by the
command.

Step 6 Issue the command h1 ifconfig (Fig. 12).

5 Invoking Mininet Using the CLI 11

This command executes the ifconfig Linux command on host h1. The command
shows host h1’s interfaces. The display indicates that host h1 has an interface h1-
eth0 configured with IP address 10.0.0.1, and another interface configured with IP
address 127.0.0.1 (loopback interface).

5.2 Testing Connectivity

Mininet’s default topology assigns the IP addresses 10.0.0.1/8 and 10.0.0.2/8 to
host h1 and host h2, respectively. To test connectivity between them, you can use
the command ping . The ping command operates by sending Internet Control
Message Protocol (ICMP) Echo Request messages to the remote computer and
waiting for a response. Information available includes how many responses are
returned and how long it takes for them to return.

Step 1 On the CLI, type h1 ping 10.0.0.2 . This command tests the connectivity

between host h1 and host h2. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test. Host h1 (10.0.0.1) sends four packets to host
h2 (10.0.0.2) and successfully received the expected responses (Fig. 13).

Step 2 Stop the emulation by typing exit (Fig. 14).

The command sudo mn -c is often used on the Linux terminal (not on theMininet
CLI) to clean a previous instance of Mininet (e.g., after a crash).

Fig. 13 Connectivity test between host h1 and host h2

12 Introduction to High-Speed Networks and Science DMZ

Fig. 14 Stopping the emulation using exit

6 Building and Emulating a Network in Mininet
Using the GUI

In this section, you will use the application MiniEdit to deploy the topology
illustrated below (Fig. 15). MiniEdit is a simple GUI network editor for Mininet.

6.1 Building the Network Topology

Step 1 A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 16). When prompted for a password, type
password .
MiniEdit will start, as illustrated below (Fig. 17).
The main buttons are:

1. Select: allows selection/movement of the devices. Pressing Del on the keyboard
after selecting the device removes it from the topology.

2. Host: allows addition of a new host to the topology. After clicking this button,
click anywhere in the blank canvas to insert a new host.

3. Switch: allows addition of a new switch to the topology. After clicking this
button, click anywhere in the blank canvas to insert the switch.

4. Link: connects devices in the topology (mainly switches and hosts). After
clicking this button, click on a device and drag to the second device to which
the link is to be established.

5. Run: starts the emulation. After designing and configuring the topology, click the
run button.

6. Stop: stops the emulation.

6 Building and Emulating a Network in Mininet Using the GUI 13

s1

s1-eth2

10.0.0.0/8

h1 h2

h2-eth0h1-eth0

s1-eth1
10.0.0.2

Fig. 15 Lab topology

Fig. 16 MiniEdit Desktop shortcut

Fig. 17 MiniEdit Graphical User Interface (GUI)

Step 2 To build the topology of Fig. 15, two hosts and one switch must be deployed.
Deploy these devices in MiniEdit, as shown below (Fig. 18).

Use the buttons described in the previous step to add and connect devices. The
configuration of IP addresses is described in Step 3.

14 Introduction to High-Speed Networks and Science DMZ

Fig. 18 MiniEdit’s topology

Fig. 19 Configuration of a host’s properties

Step 3 Configure the IP addresses at host h1 and host h2. Host h1’s IP address
is 10.0.0.1/8 and host h2’s IP address is 10.0.0.2/8. A host can be configured by
holding the right-click and selecting properties on the device. For example, host h2
is assigned the IP address 10.0.0.2/8 in the figure below (Fig. 19).

6 Building and Emulating a Network in Mininet Using the GUI 15

6.2 Testing Connectivity

Before testing the connection between host h1 and host h2, the emulation must be
started.

Step 1 Click on the Run button to start the emulation (Fig. 20). The emulation will
start and the buttons of the MiniEdit panel will gray out, indicating that they are
currently disabled.

Step 2 Open a terminal on host h1 by holding the right-click on host h1 and
selecting Terminal (Fig. 21). This opens a terminal on host h1 and allows the
execution of commands on the host h1. Repeat the procedure on host h2.

The network and terminals at host h1 and host h2 will be available for testing
(Fig. 22).

Step 3 On host h1’s terminal, type the command ifconfig to display its assigned
IP addresses (Fig. 23). The interface h1-eth0 at host h1 should be configured with
the IP address 10.0.0.1 and subnet mask 255.0.0.0.

Repeat Step 3 on host h2. Its interface h2-eth0 should be configured with IP
address 10.0.0.2 and subnet mask 255.0.0.0.

Step 4 On host h1’s terminal, type the command ping 10.0.0.2 (Fig. 24). This
command tests the connectivity between host h1 and host h2. To stop the test,
press Ctrl+c . The figure below shows a successful connectivity test. Host h1
(10.0.0.1) sent six packets to host h2 (10.0.0.2) and successfully received the
expected responses.

Step 5 Stop the emulation by clicking on the Stop button (Fig. 25).

Fig. 20 Starting the
emulation

16 Introduction to High-Speed Networks and Science DMZ

Fig. 21 Opening a terminal on host h1

Fig. 22 Terminals at host h1 and host h2

6 Building and Emulating a Network in Mininet Using the GUI 17

Fig. 23 Output of ifconfig command on host h1

Fig. 24 Connectivity test using ping command

6.3 Automatic Assignment of IP Addresses

In the previous section, you manually assigned IP addresses to host h1 and host h2.
An alternative is to rely on Mininet for an automatic assignment of IP addresses (by
default, Mininet uses automatic assignment), which is described in this section.

Step 1 Remove the manually assigned IP address from host h1. Hold right-click on
host h1, Properties (Fig. 26). Delete the IP address, leaving it unassigned, and press
the OK button as shown below. Repeat the procedure on host h2.

18 Introduction to High-Speed Networks and Science DMZ

Fig. 25 Stopping the emulation

Fig. 26 Host h1 properties

Step 2 Click on Edit, Preferences button (Fig. 27). The default IP base is 10.0.0.0/8.
Modify this value to 15.0.0.0/8, and then press the OK button.

Step 3 Run the emulation again by clicking on the Run button. The emulation will
start and the buttons of the MiniEdit panel will be disabled.

Step 4 Open a terminal on host h1 by holding the right-click on host h1 and
selecting Terminal (Fig. 28).

6 Building and Emulating a Network in Mininet Using the GUI 19

Fig. 27 Modification of the IP Base (network address and prefix length)

Fig. 28 Opening a terminal on host h1

Step 5 Type the command ifconfig to display the IP addresses assigned to host
h1 (Fig. 29). The interface h1-eth0 at host h1 now has the IP address 15.0.0.1 and
subnet mask 255.0.0.0.

You can also verify the IP address assigned to host h2 by repeating Steps 4 and
5 on host h2’s terminal. The corresponding interface h2-eth0 at host h2 has now the
IP address 15.0.0.2 and subnet mask 255.0.0.0.

Step 6 Stop the emulation by clicking on Stop button.

20 Introduction to High-Speed Networks and Science DMZ

Fig. 29 Output of ifconfig command on host h1

Fig. 30 Saving the topology

6.4 Saving and Loading a Mininet Topology

It is often useful to save the network topology, particularly when its complexity
increases. MiniEdit enables you to save the topology to a file.

Step 1 To save your topology, click on File then Save (Fig. 30). Provide a name for
the topology and save on your machine.

Chapter 1—Lab 2: Introduction to iPerf3 21

Fig. 31 Opening a topology

Step 2 To load the topology, click on File then Open. Locate the topology file and
click on Open (Fig. 31). The topology will be loaded again to MiniEdit.

The upcoming labs’ topologies are already built and stored in the folder
/home/admin/lab_topologies located in the Client’s home directory. The Open
dialog is used to avoid manually rebuilding each lab’s topology.

Chapter 1—Lab 2: Introduction to iPerf3

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 2.

This lab briefly introduces iPerf3 and explains how it can be used to measure
and test network throughput in a designed network topology. It demonstrates how
to invoke both client-side and server-side options from the command-line utility.

Objectives
By the end of this lab, students should be able to:

1. Understand throughput and how it differs from bandwidth in network systems.
2. Create iPerf3 tests with various settings on a designed network topology.
3. Understand and analyze iPerf3’s test output.
4. Visualize iPerf3’s output using a custom plotting script.

Lab Settings
The information in Table 2 provides the credentials of the machine containing
Mininet.

http://highspeednetworks.net/

22 Introduction to High-Speed Networks and Science DMZ

Table 2 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

Fig. 32 Throughput measurement with iPerf3

Lab Roadmap

This lab is organized as follows:

1. Section 7: Introduction to iPerf3.
2. Section 8: Lab topology.
3. Section 9: Using iPerf3 (client and server commands).
4. Section 10: Plotting iPerf3’s results.

7 Introduction to iPerf3

Bandwidth is a physical property of a transmission media that depends on factors
such as the construction and length of wire or fiber. To network engineers,
bandwidth is the maximum data rate of a channel, a quantity measured in bits per
second (bps). Having a high-bandwidth link does not always guarantee high network
performance. In fact, several factors may affect the performance such as latency,
packet loss, jitter, and others.

In the context of a communication session between two end devices along a
network path, throughput is the rate in bps at which the sending process can
deliver bits to the receiving process. Because other sessions will be sharing the
bandwidth along the network path, and because these other sessions will recur, the
available throughput can fluctuate with time. Note, however, that sometimes the
terms throughput and bandwidth are used interchangeably.

iPerf3 is a real-time network throughput measurement tool. It is an open-
source, cross-platform client–server application that can be used to measure the
throughput between the two end devices (Fig. 32). A typical iPerf3 output contains a
timestamped report of the amount of data transferred and the throughput measured.

8 Lab Topology 23

Measuring throughput is particularly useful when experiencing network band-
width issues such as delay, packet loss, etc. iPerf3 can operate on Transmission
Control Protocol (TCP), User Datagram Protocol (UDP), and Stream Control
Transmission Protocol (SCTP).

In iPerf3, the user can set client and server configurations via options and
parameters and can create data flows to measure the throughput between the two
end hosts in a unidirectional or bidirectional way. iPerf3 outputs a timestamped
report of the amount of data transferred and the throughput measured.

8 Lab Topology

Let us get started with creating a simple Mininet topology using MiniEdit. The
topology uses 10.0.0.0/8, which is the default network assigned by Mininet
(Fig. 33).

Step 1 A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 34). When prompted for a password, type
password .

Fig. 33 Mininet’s default minimal topology

Fig. 34 MiniEdit shortcut

24 Introduction to High-Speed Networks and Science DMZ

Fig. 35 MiniEdit’s Open dialog

Fig. 36 Running the emulation

Step 2 On MiniEdit’s menu bar, click on File then Open to load the
lab’s topology. Locate the Lab 2.mn topology file in the default directory,
/home/admin/lab_topologies, and click on Open (Fig. 35).

Step 3 Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 36).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

8 Lab Topology 25

8.1 Starting Host h1 and Host h2

Step 1 Hold the right-click on host h1 and select Terminal (Fig. 37). This opens the
terminal of host h1 and allows the execution of commands on that host.

Step 2 Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 (Fig. 38). This command tests the

connectivity between host h1 and host h2. To stop the test, press Ctrl+c . The
figure below shows a successful connectivity test.

Fig. 37 Opening a terminal on host h1

Fig. 38 Connectivity test using ping command

26 Introduction to High-Speed Networks and Science DMZ

The figure above indicates that there is connectivity between host h1 and host h2.
Thus, we are ready to start the throughput measurement process.

9 Using iPerf3 (Client and Server Commands)

Since the initial setup and configuration are done, it is time to start a simple through-
put measurement. The user interacts with iPerf3 using the iperf3 command. The

basic iperf3 syntax used on both the client and the server is as follows:

iperf3 [-s|-c] [options]

9.1 Starting Client and Server

Step 1 Hold the right-click on host h2 and select Terminal (Fig. 39). This opens the
terminal of host h2 and allows the execution of commands on that host.

Fig. 39 Opening a terminal on host h2

9 Using iPerf3 (Client and Server Commands) 27

Fig. 40 Host h2 running iPerf3 server

Fig. 41 Host h1 running iPerf3 as client

Step 2 To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal as shown in the figure below (Fig. 40):

iperf3 -s

The parameter -s in the command above indicates that the host is configured as
a server. Now, the server is listening on port 5201 waiting for incoming connections.

Step 3 Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2
in host h1’s terminal as shown in the figure below (Fig. 41):

iperf3 -c 10.0.0.2

The parameter -c in command above indicates that host h1 is configured as
a client. The parameter 10.0.0.2 is the server’s (host h2) IP address. Once the

28 Introduction to High-Speed Networks and Science DMZ

test is completed, a summary report on both the client and the server is displayed
containing the following data:

• ID: identification number of the connection.
• Interval: time interval to periodically report throughput. By default, the time

interval is 1 second.
• Transfer: how much data was transferred in each time interval.
• Bitrate: the measured throughput in each time interval.
• Retr: the number of TCP segments retransmitted in each time interval. This

field increases when TCP segments are lost in the network due to congestion
or corruption.

• Cwnd: indicates the congestion windows size in each time interval. TCP uses this
variable to limit the amount of data the TCP client can send before receiving the
acknowledgement of the sent data.

The summarized data, which starts after the last dashed line, shows the total
amount of transferred data is 52.1 Gbyte and the throughput 44.8 Gbps.

Step 4 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too. The summarized data on the
server is similar to that of the client side’s and must be interpreted in the same way.

9.2 Setting Transmitting Time Period

Setting the transmission time period is configured solely on the client. To change
the default transmission time, apply the following steps:

Step 1 Start the iPerf3 server on host h2 (Fig. 42).

iperf3 -s

Step 2 Start the iPerf3 client with the -t option followed by the number of seconds
(Fig. 43).

Fig. 42 Host h2 running iPerf3 as server

9 Using iPerf3 (Client and Server Commands) 29

Fig. 43 Host h1 transmitting for 5 s

iperf3 -c 10.0.0.2 -t 5

The above command starts an iPerf3 client for a 5-s time period transmitting at
an average rate of 44.5 Gbps.

Step 3 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

9.3 Setting Time Interval

In this test, the user will configure the client to perform a throughput test with 2-
seconds reporting time interval on both the client and the server. Note the default
1-second interval period in Fig. 43.

The -i option allows setting the reporting interval time in seconds. In this case
the value should be set to 2 seconds on both the client and the server.

Step 1 Setting the interval value on the server (host h2’s terminal) (Fig. 44):

iperf3 -s -i 2

Step 2 Setting the interval value on the client (host h1’s terminal) (Fig. 45):

iperf3 -c 10.0.0.2 -i 2

Note that the -i option can be specified differently on the client and the server.

For example, if the -i option is specified with the value 3 on the client only, then

30 Introduction to High-Speed Networks and Science DMZ

Fig. 44 Host h2 running iPerf3 as server

Fig. 45 Host h1 and host h2 reporting every 2 s

the client will be reporting every 3 seconds while the server will be reporting every
second (the default -i value).

Step 3 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

9.4 Changing the Number of Bytes to Transmit

In this test, the client is configured to send a specific amount of data by setting
the number of bytes to transmit. By default, iPerf3 performs the throughput
measurement for 10 seconds. However, with this configuration, the client will keep
sending packets until all the bytes specified by the user were sent.

Step 1 Type the following command on host h2’s terminal to start the iPerf3 server
(Fig. 46):

iperf3 -s

9 Using iPerf3 (Client and Server Commands) 31

Fig. 46 Host h2 running iPerf3 as server

Fig. 47 Host h1 sending 16 Gbps of data

Step 2 This configuration is only set on the client (host h1’s terminal) using the
-n option as follows:

iperf3 -c 10.0.0.2 -n 16G

The -n option in the above command indicates the amount of data to transmit:

16 Gbytes. The user can specify other scale values, for example, 16M is used to
send 16 Mbytes (Fig. 47).

Note the total time spent for sending the 16 Gbytes of data is 3.11 s and not the
default transmitting time used by iPerf3 (10 s).

Step 3 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

9.5 Specifying the Transport-Layer Protocol

So far, the throughput measurements were conducted on the TCP protocol, which is
the default configuration protocol. In order to change the protocol to UDP, the user
must invoke the option -u on the client side. Similarly, the option –sctp is used

32 Introduction to High-Speed Networks and Science DMZ

Fig. 48 Host h2 running iPerf3 as server

Fig. 49 Host h1 sending UDP datagrams

for the SCTP protocol. iPerf3 automatically detects the transport-layer protocol on
the server side.

Step 1 Start the iPerf3 server on host h2 (Fig. 48).

iperf3 -s

Step 2 Specify UDP as the transport-layer protocol using the -u option as follows
(Fig. 49):

iperf3 -c 10.0.0.2 -u

Once the test is completed, it will show the following summarized data:

• ID, Interval, Transfer, Bitrate: same as TCP.
• Jitter: the difference in packet delay.
• Lost/Total: indicates the number of lost datagrams over the total number sent to

the server (and percentage).

9 Using iPerf3 (Client and Server Commands) 33

After the dashed lines, the summary is displayed, showing the total amount of
transferred data (1.25 Mbytes) and the maximum achieved bandwidth (1.05Mbps),
over a time period of 10 s. The Jitter, which indicates in milliseconds (ms) the
variance of time delay between data packets over a network, has a value of 0.010ms.
Finally, the lost datagrams value is 0 (zero) and the total datagram that the server
has received was 906, and thus, the loss rate is 0%. These values are reported on the
server as well.

Step 3 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

9.6 Changing Port Number

If the user wishes to measure throughput on a specific port, the -p option is used
to configure both the client and the server to send/receive packets or datagrams on
the specified port.

Step 1 Start the iPerf3 server on host h2. Use the -p option to specify the listening
port (Fig. 50).

iperf3 -s -p 3250

Step 2 Start the iPerf3 client on host h1. Use the -p option to specify the server’s
listening port (Fig. 51).

iperf3 -c 10.0.0.2 -p 3250

Step 3 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

Fig. 50 Host h2 running iPerf3 as server on port 3250

34 Introduction to High-Speed Networks and Science DMZ

Fig. 51 Host h2 running on port 3250

Fig. 52 Host h2 running iPerf3 as server

9.7 Export Results to JSON File

JSON (JavaScript Object Notation) is a lightweight data-interchange format. iPerf3
allows exporting the test results to a JSON file, which makes it easy for other
applications to parse the file and interpret the results (e.g., plot the results).

Step 1 Start the iPerf3 server on host h2 (Fig. 52).

iperf3 -s

Step 2 Start the iPerf3 client on host h1. Specify the -J option to display the
output in JSON format (Fig. 53).

iperf3 -c 10.0.0.2 -J

The -J option outputs JSON text to the screen through standard output (stdout)
after the test is done (10 seconds by default). It is often useful to export the output

9 Using iPerf3 (Client and Server Commands) 35

Fig. 53 Host h1 using -J to output JSON to standard output (stdout)

Fig. 54 Host h1 using -J to output JSON and redirecting stdout to file

Fig. 55 Host h2 running a server with one connection only

to a file that can be parsed later by other programs. This can be done by redirecting
the standard output to a file using the redirection operator in Linux > (Fig. 54).

iperf3 -c 10.0.0.2 -J >test_results.json

After creating the JSON file, the ls command is used to verify that the file is
created. The cat command can be used to display the file’s contents.

Step 3 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

9.8 Handle One Client

By default, an iPerf3 server keeps listening to incoming connections. To allow the
server to handle one client and then stop, the -1 option is added to the server.

Step 1 Start the iPerf3 server on host h2. Use the -1 option to accept only one
client (Fig. 55).

iperf3 -s -1

36 Introduction to High-Speed Networks and Science DMZ

Fig. 56 Host h1 running an iPerf3 client

Fig. 57 Host h2 running iPerf3 as server

Step 2 Start the iPerf3 client on host h1 (Fig. 56).

iperf3 -c 10.0.0.2

After this test is finished, the server stops immediately.

10 Plotting iPerf3 Results

In Sect. 9.7, iPerf3’s result was exported to a JSON file to be processed by other
applications. A script called plot_iperf.sh is installed and configured on the
Client’s machine. It accepts a JSON file as input and generates PDF files plotting
several variables produced by iPerf3.

Step 1 Start the iPerf3 server on host h2 (Fig. 57).

iperf3 -s

10 Plotting iPerf3 Results 37

Fig. 58 Host h1 using -J to output JSON and redirecting stdout to file

Fig. 59 plot_iperf.sh script generating output results

Fig. 60 Listing the current directory’s contents using the ls command

Step 2 Start the iPerf3 client on host h1. Specify the -J option to produce the
output in JSON format and redirect the output to the file test_results.json. Any data
previously stored in this file will be replaced with current output as the > operator
is being used here (Fig. 58).

iperf3 -c 10.0.0.2 -J >test_results.json

Step 3 To generate the output for iPerf3’s JSON file run the following command
(Fig. 59):

plot_iperf.sh test_results.json

This plotting script generates PDF files for the following fields: congestion
window (cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf),
Round-Trip Time variance (RTT_Var.pdf), throughput (throughput.pdf), maximum
transmission unit (MTU.pdf), bytes transferred (bytes.pdf). The plotting script also
generates a CSV file (1.dat), which can be used by other applications. These files
are stored in a directory results created in the same directory where the script was
executed as shown in the figure below (Fig. 60).

Step 4 Navigate to the results folder using the cd command (Fig. 61).

cd results/

38 Introduction to High-Speed Networks and Science DMZ

Fig. 61 Entering the results directory using the cd command

Fig. 62 Opening the throughput.pdf file using xdg-open

Fig. 63 throughput.pdf output

Step 5 To open any of the generated files, use the xdg-open command followed
by the file name. For example, to open the throughput.pdf file, use the following
command (Figs. 62 and 63):

xdg-open throughput.pdf

Step 6 In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

References 39

References

1. D. McNichol, The roads that built America: the incredible story of the U.S. interstate system
(Sterling, 2003)

2. L. Farrell, Science DMZ: The fast path for science data. Sci Node J, May 2016. [Online].
Available: https://sciencenode.org/feature/science-dmz-a-data-highway-system.php

3. The energy science network. [Online]. Available: https://www.es.net
4. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The science DMZ: a network design

pattern for data-intensive science, in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (2013, November)

5. A brief history of NSF and internet, Cyberinfrastructure Special Report, National Science
Foundation. [Online]. Available https://www.nsf.gov/news/special_reports/cyber/internet.jsp

6. European organization for nuclear research. [Online]. Available: https://home.cern/about/
computing

7. National radio astronomy observatory. [Online]. Available online: http://www.vla.nrao.edu/
8. J. Bashor, General atomics remote controls fusion experiments, bridges collaborators using

ESnet-championed technology. ESnet News, Sep. 2015. [Online]. Available: https://es.net/
news-and-publications/esnet-news/2015/science-dmz-fuels-fusion-research/

9. J. Van Horn, A. Toga, Human neuroimaging as a big data science. J. Brain Imaging Behav.
8(2), 323–331 (2014)

10. S. Peisert, E. Dart, W. Barnett, J. Cuff, R. Grossman, E. Balas, A. Berman, A. Shankar,
B. Tierney, The medical science DMZ: a network design pattern for data-intensive medical
science. J. Am. Med. Inform. Assoc. (JAMIA) (2017). [Online]. Available: https://academic.
oup.com/jamia/article/doi/10.1093/jamia/ocx104/4367749/The-medical-science-DMZ-a-
network-design-pattern

11. S. Peisert, W. Barnett, E. Dart, J. Cuff, R. Grossman, E. Balas, A. Berman, A. Shankar, B.
Tierney, The medical science DMZ. J. Am. Med. Inform. Assoc. 23(6), 1199–1201 (2016)

12. General electric health care. [Online]. Available: http://www3.gehealthcare.com/en/global_
gateway

13. G. Roberts, Big data and the X-ray laser, Symmetry Magazine, June 2013. [Online]. Available:
https://www.symmetrymagazine.org/article/june-2013/big-data-and-the-x-ray-laser

14. SLAC national accelerator laboratory. [Online]. Available: https://www6.slac.stanford.edu/
15. E.Waltz, Portable DNA sequencer minion helps build the internet of living things. IEEE Spectr.

Mag., Mar. 2016. [Online]. Available: https://spectrum.ieee.org/the-human-os/biomedical/
devices/portable-dna-sequencer-minion-help-build-the-internet-of-living-things

16. Nanopore technologies. [Online]. Available: https://nanoporetech.com/

https://sciencenode.org/feature/science-dmz-a-data-highway-system.php
https://www.es.net
https://www.nsf.gov/news/special_reports/cyber/internet.jsp
https://home.cern/about/computing
https://home.cern/about/computing
http://www.vla.nrao.edu/
https://es.net/news-and-publications/esnet-news/2015/science-dmz-fuels-fusion-research/
https://es.net/news-and-publications/esnet-news/2015/science-dmz-fuels-fusion-research/
https://academic.oup.com/jamia/article/doi/10.1093/jamia/ocx104/4367749/The-medical-science-DMZ-a-network-design-pattern
https://academic.oup.com/jamia/article/doi/10.1093/jamia/ocx104/4367749/The-medical-science-DMZ-a-network-design-pattern
https://academic.oup.com/jamia/article/doi/10.1093/jamia/ocx104/4367749/The-medical-science-DMZ-a-network-design-pattern
http://www3.gehealthcare.com/en/global_gateway
http://www3.gehealthcare.com/en/global_gateway
https://www.symmetrymagazine.org/article/june-2013/big-data-and-the-x-ray-laser
https://www6.slac.stanford.edu/
https://spectrum.ieee.org/the-human-os/biomedical/devices/portable-dna-sequencer-minion-help-build-the-internet-of-living-things
https://spectrum.ieee.org/the-human-os/biomedical/devices/portable-dna-sequencer-minion-help-build-the-internet-of-living-things
https://nanoporetech.com/

Network Cyberinfrastructure Aspects
for Big Data Transfers

This chapter describes the elements of the cyberinfrastructure supporting Science
DMZs and high-speed networks for large data transfers. They include friction-
free network paths; dedicated, high-performance end devices, referred to as Data
Transfer Nodes (DTNs); end-to-end performance measurement monitoring points;
and security mechanisms suitable for high speed.

1 Limitations of Enterprise Networks and Motivation for
Science DMZs

An enterprise network is composed of one or more interconnected local area
networks (LANs). Common design goals are:

• To serve a large number of users and platforms: desktops, laptops, mobile
devices, supercomputers, tablets, etc.

• To support a variety of applications: email, browsing, voice, video, procurement
systems, and others.

• To provide security against the multiple threats that result from the large number
of applications and platforms.

• To provide a level of Quality of Service (QoS) that satisfies user expectations.

To serve multiple applications and platforms, the network is designed for general
purposes. To provide an adequate security level, the network may use multiple
CPU-intensive appliances. Besides a centrally located firewall, internal firewalls
are often used to add stringent filtering capability to sensitive subnetworks. The
network may only provide a minimum level of QoS, which is often sufficient. The
level of QoS does not need to be strict, as applications can improve on the service
provided by the network. Moderate bandwidth, latency, and loss rates are most of
the time acceptable, as flows have a small size (from few KBs to MBs) and a short

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Crichigno et al., High-Speed Networks, Practical Networking,
https://doi.org/10.1007/978-3-030-88841-1_2

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88841-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-88841-1_2

42 Network Cyberinfrastructure Aspects for Big Data Transfers

duration. Rates of few Kbps to tens of Mbps can satisfy bandwidth requirements.
Furthermore, most applications are elastic and can adapt to the bandwidth provided
by the network. Similarly, packet losses can be repaired with retransmissions and
jitter can be smoothed by buffering packets at the receiver.

Figure 1 shows a typical campus enterprise network. Packets coming from the
WAN are inspected by multiple inline security appliances, including a firewall and
an intrusion prevention system (IPS). Further processing is performed by a network
address translator (NAT). Packets traverse through the network, from core-layer
routers to access-layer switches. Important components of routers and switches,
such as switching fabric, forwarding mechanism, size of memory buffers, etc., are
adequate for small flows only. The devices also use processing techniques that yield
poor performance when processing large flows, such as cut-through forwarding [1].
Additional security inspection by internal firewalls and distribution- and access-
layer switches is common. These switches segregate LANs into virtual LANs
(VLANs), requiring further frame processing and inter-VLAN routing. Further, end
devices do not have the hardware nor software capabilities to send and receive
data at high speed. The bandwidth of the network interface card (NIC) and the
input/output and storage systems are often below 10Gbps. Similarly, software
applications perform poorly on WAN data transfers because of limitations such
as small buffer size, excessive processing overhead, and inadequate flow and
congestion control algorithms.

Fig. 1 A campus enterprise network

1 Limitations of Enterprise Networks and Motivation for Science DMZs 43

Fig. 2 Throughput vs. Round-Trip Time (RTT), for two devices connected via a 10Gbps path.
The performance of two TCP implementations are provided: Reno [3] (blue) and Hamilton TCP [4]
(HTCP) (red). The theoretical performance with packet losses (green) and the measured throughput
without packet losses (purple) are also shown [1]

Packet losses may occur at different locations in the enterprise network, including
routers, switches, firewalls, IPS, etc. As a result of a packet loss, TCP reacts by
drastically decreasing the rate at which packets are sent. The following example
[1] illustrates the impact of a small packet loss rate. Figure 2 shows the TCP
throughput of a data transfer across a 10Gbps path. The packet loss rate is 1/22,000,
or 0.0046%. The purple curve is the throughput in a loss-free environment; the green
curve is the theoretical throughput computed according to the following equation
[2]:

throughput = MSS

RT T · √
L

. (1)

Equation (1) indicates that the throughput of a TCP connection in steady
state is directly proportional to the maximum segment size (MSS) and inversely
proportional to the Round-Trip Time (RTT) and the square root of the packet loss
rate (L). The red and blue curves are real measured throughput of two popular
implementations of TCP: Reno [3] and Hamilton TCP (HTCP) [4]. Because TCP
interprets losses as network congestion, it reacts by decreasing the rate at which
packets are sent. This problem is exacerbated as the latency increases between the
communicating hosts. Beyond LAN transfers, the throughput decreases rapidly to
less than 1Gbps. This is often the case when research collaborators sharing data are
geographically distributed.

44 Network Cyberinfrastructure Aspects for Big Data Transfers

2 Science DMZ Architecture

The Science DMZ is designed to address the limitations of enterprise networks and
is typically deployed near the main enterprise network. It is important to highlight,
however, that the two networks, the Science DMZ and the enterprise network, are
separated either physically or logically. There are important reasons for this choice.
First, the path from the Science DMZ to the WAN must involve as few network
devices as possible, to minimize the possibility of packet losses at intermediate
devices. Second, the Science DMZ can also be considered as a security architecture,
because it limits the application types and corresponding flows supported by end
devices. While flows in enterprise networks are numerous and diverse, those in
Science DMZs are usually well-identified, enabling security policies to be tied to
those flows.

A Science DMZ example is illustrated in Fig. 3. The main characteristics of a
Science DMZ are the deployment of a friction-free path between end devices across
the WAN, the use of DTNs, the active performance measurement and monitoring of
the paths between the Science DMZ and the collaborator networks, and the use of
access-control lists (ACLs) and offline security appliances. Specifically:

• Friction-free network path: DTNs are connected to remote systems, such as
collaborators’ networks, via the WAN. The high-latency path is composed of

Fig. 3 A Science DMZ co-located with an enterprise network. Notice the absence of firewall or
any stateful inline security appliance in the friction-free path

2 Science DMZ Architecture 45

routers and switches, which have large buffer sizes to absorb transitory packet
bursts and prevent losses. The path has no devices that may add excessive delays
or cause the packet to be delivered out of order, e.g., firewall, IPS, NAT. The
rationale for this design choice is to prevent any packet loss or retransmission,
which can trigger a decrease in TCP throughput.

• Dedicated, high-performance DTNs: These devices are typically Linux devices
built and configured for receiving WAN transfers at high speed. They use
optimized data transfer tools such as Globus’ GridFTP [5–7]. General-purpose
applications (e.g., email clients, document editors, media players) are not
installed. Having a narrow and specific set of applications simplifies the design
and enforcement of security policies.

• Performance measurement and monitoring point: Typically, there is a primary
high-capacity path connecting the Science DMZ with the WAN. An essential
aspect is to maintain a healthy path. In particular, identifying and eliminating
soft failures in the network is critical for large data transfers [1]. When soft
failures occur, basic connectivity continues to exist but high throughput can no
longer be achieved. Examples of soft failures include failing components and
routers forwarding packets using the main CPU rather than the forwarding plane.
Additionally, TCP was intentionally designed to hide transmission errors that
may be caused by soft failures. As stated in RFC 793 [8], As long as the TCPs
continue to function properly and the internet system does not become completely
partitioned, no transmission errors will affect the users. The performance
measurement and monitoring point provides an automated mechanism to actively
measure end-to-end metrics such as throughput, latency, and packet loss. The
most used tool is perfSONAR [9, 10].

• ACLs and offline security appliances: The primary method to protect a Science
DMZ is via router’s ACLs. Since ACLs are implemented in the forwarding plane
of a router, they do not compromise the end-to-end throughput. Additional offline
appliances include payload-based and flow-based intrusion detection systems
(IDSs).

In Fig. 3, when data sets are transferred to a DTN from the WAN, they may
be stored locally at the DTN or written into a storage device. DTNs can be dual-
homed, with a second interface connected to the storage device. This approach
allows the DTN to simultaneously receive data from the WAN and transfer the
data to the storage device, avoiding double-copying it. Users located in a laboratory
inside the Science DMZ have friction-free access to the data in the storage device.
On the other hand, users from a laboratory located in the enterprise network are
behind the security appliances protecting that network. These users may achieve
reasonable performance accessing the stored data/Science DMZ. The reason here is
that, because of the very low latency between the Science DMZ and enterprise users,
the retransmissions caused by the security appliances have much less performance
impact. TCP recovers from packet losses quickly at low latencies (discussed in
Section IV), contrasting with the slow recovery observed when packet losses are

46 Network Cyberinfrastructure Aspects for Big Data Transfers

experienced in high-latency WANs. The key is to provide the long-distance TCP
connections with a friction-free service.

2.1 Addressing the Enterprise Network Limitations

The The Science DMZ addresses the limitations encountered in enterprise net-
works by using the coordinated set of resources shown in Fig. 4. At the physical
layer/cyberinfrastructure, the WAN must be capable of handling large traffic
volumes, with a predictable performance. Bit-error rates should be very low and
congestion should not occur. The WAN path between end devices should include as
few devices as possible. These requirements contrast with typical services delivered
by commercial Internet Service Providers (ISPs), used in enterprise networks.
ISPs often minimize operating costs at the expense of performance. For large
data transfers and research purposes, many institutions are connected to regional
or national backbones dedicated to supporting research and education, such as
Internet2 [11].

At the data-link and network layers, the switches and routers must have a
suitable architecture to forward frames/packets at a high speed (10Gbps and
above). Important attributes are the fabric, queueing, and forwarding techniques.
These devices must also have large buffer sizes to absorb transient packet bursts
generated by large flows. These requirements are opposite to those implemented
by devices used in enterprise networks, which are driven by datacenter needs.
The paths interconnecting devices inside a datacenter are characterized by a low
latency. On the other hand, the paths interconnecting DTNs to remote networks are
characterized by a high latency.

At the transport layer, the protocol must transfer a large amount of data between
end devices without errors. TCP is the protocol used by most application-layer tools.

Fig. 4 Features of Science DMZ’s devices

3 WAN Cyberinfrastructure 47

A large amount of memory must be allocated to the TCP buffer, which permits
the sender to continuously send segments to fill up the WAN capacity. Otherwise,
the TCP flow control mechanism leads to a stop-and-wait behavior. The transport
layer should also permit the enabling or disabling of TCP extensions, the use of
large segment sizes, and the selection of the congestion control algorithm. The
segment size depends on the maximum transmission unit (MTU), which is defined
by the layer-2 protocol. The congestion control algorithm must be suitable for high-
throughput high-latency networks, as data transfers are often conducted over WANs.

At the application layer, applications are limited to data transfer tools at the
DTN and perfSONAR at the measurement and monitoring point. The prevalent data
transfer tool is Globus’ GridFTP [5–7]. Globus implements features such as parallel
streams and re-startable data transfer. perfSONAR [9, 10] provides an automated
mechanism to actively measure and report end-to-end performance metrics.

With respect to security, by avoiding general-purpose applications and by
separating the Science DMZ from the enterprise network, specific policies can
be applied to the science traffic. Also, data transfer tools are relatively simple to
monitor and to secure. Security policies are implemented with ACLs and offline
appliances, such as IDSs. Routers and switches also provide functionality for
collecting flow information, such as Netflow [12] and sFlow [13]. Netflow is a
protocol used for collecting and exporting flow information that is increasingly used
for monitoring big data transfers [14]. Similarly, sFlow uses sampling to decrease
the amount of collected information. At high rates, inline security appliances such
as firewalls and IPSs lead to packet losses and thus are not used in Science DMZs.

3 WAN Cyberinfrastructure

The Science DMZ can be treated as the portion of the cyberinfrastructure where
the end devices are located. The second piece of the cyberinfrastructure is the
WAN. In the U.S., there are multiple backbones and regional networks connecting
institutions and corresponding Science DMZs. The primary backbone for science
and engineering is Internet2 [11]. While most of this section focuses on the cyber-
infrastructure needs for large flows using Internet2 as an example, the discussion
is still applicable to other Research and Education Networks (RENs). A REN is
a service provider network dedicated to supporting the needs of the research and
education communities within a region. A particular REN that is deployed by a
country is referred to as a National Research and Education Network (NREN).
Examples of RENs include Internet2 in North America, GEANT [15] in Europe,
UbuntuNet [16] in East and Southern Africa, APAN [17] in the Asia-Pacific region,
and RedCLARA [18] in Latin America. Internet2 and RENs may contrast with
commercial ISPs and Internet in several aspects, as summarized in Table 1.

Internet2 has multiple point of presences (POPs) distributed across the U.S.,
where institutions can connect to the network. While institutions located in the
proximity of a POP can readily access a REN, others remotely located may only

48 Network Cyberinfrastructure Aspects for Big Data Transfers

Table 1 Differences between Internet and Internet2/REN

Feature Internet Internet2/REN

Traffic flows Commercial flows: millions
of small flows.

Research flows: smaller
number of large flows.

Bandwidth Limited, subject to ISP’s
policies/throttling.

Paths of up to 100Gbps.

Network devices Heterogeneous environment,
routers and switches are not
optimized for large flows.

Routers and switches with
large buffer sizes suitable for
accommodating large data
transfers.

Bottlenecks Congestion and outages are
common.

Clear expectations,
predictable WAN
performance in terms of
bandwidth, latency, and
packet loss.

End-to-end path monitoring Difficult to detect and solve
soft failure problems. ISPs do
not typically collaborate in
keeping the internetwork
healthy.

Easier to detect and solve soft
failure problems. Active tools,
such as perfSONAR, are used
in Internet2 and partner
networks.

Routing Routing is achieved
independently by each ISP.
Routing decisions are based
on policies that minimize
operating costs at the expense
of performance.

Routing is optimized for
performance, leading to
high-throughput, shorter
paths.

Frame size The maximum frame size in
routers located in an ISP is
typically 1500 bytes.

Routers within the Internet2
backbone support 9000-byte
frames. Large frame sizes
increase the throughput and
the recovery speed from
losses.

IPv6 Support for IPv6 is not
ubiquitous.

Full IPv6 support.

connect to a REN indirectly. The connection of a Science DMZ to a REN can be
accomplished in different ways, including a direct connection to the REN’s POP, via
a regional network, or via a commercial ISP.

3.1 Connecting a Science DMZ via an Internet2 POP

Many research institutions and universities connect directly to Internet2 via a
direct link between the Science DMZ and an Internet2 POP. This connection
type minimizes the number of devices or hops between the DTN and the WAN.
Additionally, Internet2 is also optimized for throughput by avoiding the use of
appliances that may reduce performance. Sometimes the POP is located in the

3 WAN Cyberinfrastructure 49

institution campus, co-located with the border router. Alternatively, the institution
campus may be located a few miles/kilometers away from the POP.

3.2 Connecting a Science DMZ via a Regional REN

A second option to access a major backbone/Internet2 is via a regional research
network, which in turn is connected to Internet2. A representative example is the
Western Regional Network (WRN) [19]. The WRN is a regional 100Gbps REN in
the western part of the U.S., as shown in Fig. 5. The interconnection with Internet2
is shown in blue. Connections to the Internet are achieved by peering with a tier-1
ISP, Level 3. The WRN is also connected to other research networks such as the
Corporation for Education Network Initiatives in California (CENIC) network [20]
and ESnet [21].

Figure 5 highlights the case of the University of Hawaii (UH), which has a link
to the WRN. The WRN has access to Internet2 at several POPs. Although this
alternative requires that flows traverse across two hierarchical levels (i.e., the WRN
and Internet2), these research networks are typically optimized for performance.

Fig. 5 A Science DMZ connected to a REN, the Western Regional Network (WRN) [19]

50 Network Cyberinfrastructure Aspects for Big Data Transfers

3.3 Connecting a Science DMZ via a Commercial ISP

Most ISPs may have policies/throttling mechanisms that do not favor performance.
Bottlenecks and congestion are common and clear performance expectations that
cannot be established, because of the lack of collaborative monitoring between
ISPs. Furthermore, policy criteria tend to dominate routing decisions rather than
optimization criteria.

Figure 6a shows a use case of a campus enterprise network connected to the
WAN via an ISP service. The lower level of the Internet hierarchy is the access
ISP, whereas a second level provides connectivity to access ISPs, namely the
regional ISP. Sometimes, the regional ISP can also provide connectivity to the end
customer, i.e., the campus network. Each regional ISP then connects to a tier-1 ISP.
Sometimes, the regional ISP can also provide connectivity to the end customer, i.e.,
the campus network. Each regional ISP then connects to a tier-1 ISP.

Figure 6b illustrates the communication between two Science DMZs in the state
of New Mexico, U.S., located at Northern New Mexico College (NNMC) and at
the University of New Mexico (UNM). The geographic distance between the two
institutions is 90 miles (145 kilometers). NNMC is located in Espanola, where
connectivity is provided by a commercial ISP. On the other hand, UNM is located in

Fig. 6 Connecting a Science DMZ via an ISP. (a) A viewpoint of the connection in the Internet
hierarchy. (b) The path between two Science DMZs, one attached to an ISP (NNMC) and another
attached to a REN (UNM). NM, TX, and CO stand for New Mexico, Texas, and Colorado

4 Current State: Science DMZ Deployment in the U.S. 51

Albuquerque and has a direct connection to a REN, namely the WRN. Note the long
path between the two locations, which crosses a local/regional ISP (Windstreams),
two tier-1 ISPs (NTT and Level 3), and a REN (WRN). The resulting RTT is
approximately 60 milliseconds.

The above example illustrates that existing routing policies at ISPs can cause
excessive delays. If instead NNMC was directly connected to a REN or Internet2,
or the traffic was routed more efficiently when it entered Albuquerque, the delay
would only be a few milliseconds.

3.4 Connecting a Science DMZ via a Commercial ISP Circuit

Science DMZs can be connected to Internet2 or a REN via layer-1 or layer-2
services provided by an ISP. A layer-1 service provides a dedicated wavelength on
a fiber channel from the campus location to a POP of Internet2 or regional REN. A
layer-2 service includes pseudowire emulation, virtual private LAN service (VPLS),
and others. The advantage of this approach is that the terms of the service can be
negotiated between the ISP and the institution, including a deterministic path to be
followed by packets from the border router to the POP. Table 2 summarizes the four
alternatives discussed in this section to connect Science DMZs to Internet2.

4 Current State: Science DMZ Deployment in the U.S.

The NSF recognizes the Science DMZ model as a proven operational best practice
for university campuses supporting data-intensive science. This model has also
been identified as eligible for funding through the NSF Campus Cyberinfrastructure
program (CC*) [23]. Established in 2012, this program has funded more than 200
projects for network infrastructure deployment/Science DMZs. The locations of
these institutions are shown in Fig. 7. Since a design goal of the Science DMZ is
the establishment of a high-speed path across a WAN, the impact on improving the
exchange of large data sets is significant. In essence, because of the data-sharing
architecture of the Science DMZ, institutions implementing it have fast access to
virtual co-location of large data that could reside anywhere in the world.

Academic Cloud and Virtual Laboratories
The book is accompanied by hands-on virtual laboratory experiments conducted in
a cloud system, referred to as the Academic Cloud. Access to the Academic Cloud
is available for a fee (6-month access) and includes all material needed to conduct
the experiments. The URL is:

http://highspeednetworks.net/

http://highspeednetworks.net/

52 Network Cyberinfrastructure Aspects for Big Data Transfers

Table 2 Alternative approaches to connect a Science DMZ to Internet2

Connection Advantages Disadvantages

SDMZ to Internet2
via a direct POP link

� Optimal technical
approach; no additional
hops from the Science
DMZ to Internet2.

� Routing is optimized for
performance.

� Internet2 has active perfor-
mance monitoring. Thus, it
is easier to detect soft
failures.

� Based on location and
providers, service may be
more expensive than that of
commercial service
providers.

� Location; POPs to Internet2
may not be accessible to the
client institution.

SDMZ to Internet2
via a regional
research network

� If the regional research net-
work is optimized for per-
formance, there is a min-
imal performance degrada-
tion with respect to a direct
link connection to Internet2
POP.

� Costs may be lower than
that of establishing a direct
link to an Internet2 POP.

� Additional hops are added
to reach Internet2 backbone;
packets must traverse at least
two levels in the network
hierarchy: to the research
network and to Internet2.

SDMZ to Internet2
via commercial ISP
circuit

� Resources are reserved in
advance (bandwidth), and a
more predictable quality of
service is guaranteed (com-
pared to regular commercial
service).

� Additional hops and latency
are added to reach Internet2
backbone; packets traverse
at least two levels in the net-
work.

� Soft failures may not be
easy to detect if they occur
within the network of the
service provider.

SDMZ to Internet2
via a regular
commercial ISP

� Costs are typically lower
than that of connecting the
Science DMZ to a research
network or to an Internet2
POP.

� Performance is
unpredictable due to
congestion, latency,
inadequate equipment for
large flows, and bandwidth
policies.

� End-to-end path monitoring
and detection of soft failures
are difficult.

Chapter 2—Lab 3: Emulating WAN with NETEM Part I—Latency and Jitter 53

Fig. 7 Locations of institutions that have implemented cyberinfrastructure improvements and/or
have deployed Science DMZs with the support of the NSF Campus Cyberinfrastructure program,
as of 2016 [22]

Chapter 2—Lab 3: Emulating WAN with NETEM
Part I—Latency and Jitter

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 3

This lab introduces NETEM and explains how it can be used to emulate real-
world scenarios while having control on parameters that affect the performance
of networks. Network parameters include latency, jitter, packet loss, reordering,
and corruption. Correlation values between network parameters will also be set to
provide a more realistic network environment.

Objectives
By the end of this lab, students should be able to:

1. Understand delay in networks and how to measure it.
2. Understand Linux queuing disciplines (qdisc) architecture.
3. Deploy emulated WANs characterized by large delays using NETEM and

Mininet.
4. Perform measurements after introducing delays to an emulated WAN.
5. Deploy emulated WANs characterized by delays, jitters, and corresponding

correlation values.
6. Modify the delay distribution of an emulated WAN.

http://highspeednetworks.net/

54 Network Cyberinfrastructure Aspects for Big Data Transfers

Table 3 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

Lab Settings
The information in Table 3 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 5: Introduction to network emulators and NETEM.
2. Section 6: Lab topology.
3. Section 7: Adding/changing delay to emulate a WAN.
4. Section 8: Restoring original values (deleting the rules).
5. Section 9: Adding jitter to emulated WAN.
6. Section 10: Adding correlation value for jitter and delay.
7. Section 11: Delay distribution.

5 Introduction to Network Emulators and NETEM

Network emulators play an important role for the research and development of
network protocols and applications. Network emulators provide the ability to
perform tests of realistic scenarios in a controlled manner, which is very difficult
on production networks. This is particularly complex for researchers who develop
and test tools forWide Area Networks (WANs) and for multi-domain environments.

5.1 NETEM

One of the most popular network emulators is NETEM, a Linux network emulator
for testing the performance of real applications over a virtual network. The virtual
network may reproduce long-distance WANs in the lab environment. These scenar-
ios facilitate the test and evaluation of protocols and devices from the application
layer to the data-link layer under a variety of conditions. NETEM allows the user to
modify parameters such as delay, jitter, packet loss, duplication, and re-ordering of
packets.

NETEM is implemented in Linux and consists of two portions: a small kernel
module for a queuing discipline and a command-line utility to configure it. Figure 8
shows the basic architecture of Linux queuing disciplines. The queuing disciplines
exist between the IP protocol output and the network device. The default queuing
discipline is a simple packet first-in first-out (FIFO) queue. A queuing discipline is
a simple object with two interfaces. One interface queues packets to be sent and the

5 Introduction to Network Emulators and NETEM 55

Fig. 8 Linux queueing
discipline Application

TCP

IP

Queueing
discipline

Network device

User
Kernel

other interface releases packets to the network device. The queuing discipline makes
the policy decision of which packets to send, which packets to delay, and which
packets to drop. A classful queueing discipline, such as NETEM, has configurable
internal modules.

5.2 WANs and Delay

In networks, there are several processes and devices that contribute to the end-to-
end delay between a sender node and a destination node. Many times, the end-to-
end delay is dominated by the WAN’s propagation delay. Consider two adjacent
switches A and B connected by a WAN. Once a bit is pushed onto the WAN by
switch A, it needs to propagate to switch B. The time required to propagate from
the beginning of the WAN to switch B is the propagation delay. The bit propagates
at the propagation speed of the WAN’s link. The propagation speed depends on the
physical medium (that is, fiber optics, twisted-pair copper wire, etc.) and is in the
range of 2×108 m/s to 3×108 m/s, which is equal to, or a little less than, the speed
of light. The propagation delay is the distance between two switches divided by the
propagation speed. Once the last bit of the packet propagates to switch B, it and all
the preceding bits of the packet are stored in switch B.

Network tools usually estimate delay for troubleshooting and performance
measurements. For example, an estimate of end-to-end delay is the Round-Trip
Time (RTT), which is the time it takes for a small packet to travel from sender
to receiver and then back to the sender. The RTT includes packet-propagation
delays, packet-queuing delays in intermediate routers and switches, and packet-
processing delays. As mentioned above, if the propagation delay dominates other

56 Network Cyberinfrastructure Aspects for Big Data Transfers

delay components (as in the case of many WANs), then RTT is also an estimate of
the propagation delay.

6 Lab Topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The
topology uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 9).

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 10). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 3.mn topology file and click on Open (Fig. 11).

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 12).

Fig. 9 Lab topology

Fig. 10 MiniEdit shortcut

6 Lab Topology 57

Fig. 11 MiniEdit’s Open dialog

Fig. 12 Running the
emulation

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

6.1 Starting Host h1 and Host h2

Step 1. Hold the right-click on host h1 and select Terminal (Fig. 13). This opens
the terminal of host h1 and allows the execution of commands on host h1.

Step 2. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 (Fig. 14). This command tests the

58 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 13 Opening a terminal on host h1

Fig. 14 Connectivity test using ping command

connectivity between host h1 and host h2. To stop the test, press Ctrl+c . The
figure below shows a successful connectivity test.

The figure above indicates that there is connectivity between host h1 and host h2.
Thus, we are ready to start the throughput measurement process.

7 Adding/Changing Delay to Emulate a WAN 59

7 Adding/Changing Delay to Emulate a WAN

The user invokes NETEM using the command-line utility called tc . With no
additional parameters, NETEM behaves as a basic FIFO queue with no delay, loss,
duplication, or reordering of packets. The basic tc syntax used with NETEM is as
follows:

sudo tc qdisc [add|del|replace|change|show] dev dev
id root netem opts

• sudo : enable the execution of the command with higher security privileges.
• tc : command used to interact with NETEM.

• qdisc : a queue discipline (qdisc) is a set of rules that determine the order in
which packets arriving from the IP protocol output (see Fig. 8) are served. The
queue discipline is applied to a packet queue to decide when to send each packet.

• [add |del |replace |change |show] : this is the operation on qdisc. For example,

to add delay on a specific interface, the operation will be add . To change or

remove delay on the specific interface, the operation will be change or del

• dev_id : this parameter indicates the interface to be subject to emulation.

• opts : this parameter indicates the amount of delay, packet loss, duplication,
corruption, and others.

7.1 Identify Interface of Host h1 and Host h2

According to the previous section, we must identify the interfaces on the connected
hosts.

Step 1. On host h1, type the command ifconfig to display information related to
its network interfaces and their assigned IP addresses (Fig. 15).

The output of the ifconfig command indicates that host h1 has two interfaces:
h1-eth0 and lo. The interface h1-eth0 at host h1 is configured with IP address
10.0.0.1 and subnet mask 255.0.0.0. This interface must be used in tc when
emulating the WAN.

Step 2. In host h2, type the command ifconfig as well (Fig. 16).

The output of the ifconfig command indicates that host h2 has two interfaces:
h2-eth0 and lo. The interface h2-eth0 at host h1 is configured with IP address
10.0.0.2 and subnet mask 255.0.0.0. This interface must be used in tc when
emulating the WAN.

60 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 15 Output of ifconfig command on host h1

Fig. 16 Output of ifconfig command on host h2

7.2 Add Delay to Interface Connecting to WAN

Network emulators emulate delays by introducing them to an interface. For exam-
ple, the delay introduced to a switch A’s interface that is connected to a switch B’s

7 Adding/Changing Delay to Emulate a WAN 61

Fig. 17 Adding 100ms delay to the interface h1-eth0

Fig. 18 Verifying latency after emulating delay using ping

interface may represent the propagation delay of a WAN connecting both switches.
In this section, you will use netem command to insert delay to a network interface.

Step 1. In host h1, type the following command (Fig. 17):

sudo tc qdisc add dev h1-eth0 root netem delay 100ms

This command can be summarized as follows:

• sudo : enable the execution of the command with higher security privileges.
• tc : invoke Linux’s traffic control.

• qdisc : modify the queuing discipline of the network scheduler.

• add : create a new rule.

• dev h1-eth0 : specify the interface on which the rule will be applied.
• netem : use the network emulator.

• delay 100ms : inject delay of 100ms.

The above command adds a delay of 100 milliseconds (ms) to the output
interface, exclusively.

Step 2. The user can verify now that the connection from host h1 to host h2 has a
delay of 100 milliseconds by using the ping command from host h1 (Fig. 18).

ping 10.0.0.2

62 Network Cyberinfrastructure Aspects for Big Data Transfers

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 100.069, 120.180, 200.587, and 40.203 milliseconds,
respectively.

Note that the above scenario emulates 100 milliseconds latency on the interface
of host h1 connecting to the switch. In order to emulate a WAN where the delay is
bidirectional, a delay of 100 milliseconds must also be added to the corresponding
interface on host h2.

Step 3. In host h2’s terminal, type the following command (Fig. 19):

sudo tc qdisc add dev h2-eth0 root netem delay 100ms

Step 4. The user can verify now that the connection between host h1 and host h2
has an RTT of 200 milliseconds (100ms from host h1 to host h2 plus 100ms from
host h2 to host h1) by retyping the ping command on host h’s terminal (Fig. 20).

ping 10.0.0.2

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 200.078, 200.154, 204.447, and 0.511 milliseconds,
respectively.

Fig. 19 Adding 100ms delay to the interface h2-eth0

Fig. 20 Verifying latency after emulating delay on both host h1 and host h2 using ping

7 Adding/Changing Delay to Emulate a WAN 63

7.3 Changing the Delay in Emulated WAN

In this section, the user will change the delay from 100 milliseconds to 50
milliseconds in both sender and receiver. The RTT will be 100 milliseconds now.

Step 1. In host h1’s terminal, type the following command (Fig. 21):

sudo tc qdisc change dev h1-eth0 root netem delay 50ms

The new option added here is change , which changes the previously set delay
to 50 milliseconds.

Step 2. Apply also the above step on host h2’s terminal to change the delay to
50ms (Fig. 22).

sudo tc qdisc change dev h2-eth0 root netem delay 50ms

Step 3. The user can verify now that the connection from host h1 to host h2 has
a delay of 100 milliseconds by using the ping command from host h’s terminal
(Fig. 23).

ping 10.0.0.2

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 100.079, 100.149, 100.411, and 0.131 milliseconds,
respectively.

Fig. 21 Changing delay on the interface h1-eth0

Fig. 22 Changing delay to the interface h2-eth0

64 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 23 Verifying latency after emulating 100ms delay using ping

Fig. 24 Deleting all rules on interface h1-eth0

Fig. 25 Deleting all rules on interface h2-eth0

8 Restoring Original Values (Deleting the Rules)

In this section, the user will restore the default configuration in both sender and
receiver by deleting all the rules applied to the network scheduler of an interface.

Step 1. In host h1’s terminal, type the following command (Fig. 24):

sudo tc qdisc del dev h1-eth0 root netem

The new option added here is del , which deletes the previously set rules on a
given interface. As a result, the tc qdisc will restore its default values of the device
h1-eth0.

Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type
the following command (Fig. 25):

sudo tc qdisc del dev h2-eth0 root netem

9 Adding Jitter to Emulated WAN 65

Fig. 26 Verifying latency after deleting all rules on both devices

As a result, the tc queueing discipline will restore its default values of the device
h2-eth0.

Step 3. The user can now verify that the connection from host h1 to host h2 has no
explicit delay set by using the ping command from host h’s terminal (Fig. 26).

ping 10.0.0.2

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation
of the Round-Trip Time (RTT) were 0.044, 0.121, 0.386, and 0.132 milliseconds,
respectively.

9 Adding Jitter to Emulated WAN

Networks do not exhibit constant delay; the delay may vary based on other traffic
flows contending for the same path. Jitter is the variation of delay time. The delay
parameters are described by the average value (µ), standard deviation (σ), and
correlation. By default, NETEM uses a uniform distribution, so that the delay is
within µ±σ .

9.1 Add Jitter to Interface Connecting to WAN

In this section, the user will add delay of 100 milliseconds with a random variation
of ±10 milliseconds. Before doing so, make sure to restore the default configuration
of the interfaces on host h1 and host h2 by applying the commands of Sect. 8. Then,
apply the commands below:

Step 1. In host h1’s terminal, type the following command (Fig. 27):

66 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 27 Add 100ms delay with ±10 millisecond

Fig. 28 Verifying RTT after adding 100 millisecond delay and 10 millisecond jitter on interface
h1-eth0

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms

The new value added here represents jitter, which defines the delay variation.
Therefore, all packets leaving host h1 via interface h1-eth0 will experience a delay
of 100ms, with a random variation of ±10ms.

Step 2. The user can now verify that the connection from host h1 to host h2 has
100ms delay with±10 millisecond random variation by using the ping command
on host h’s terminal (Fig. 28).

ping 10.0.0.2

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 93.603, 101.386, 109.494, and 6.303 milliseconds,
respectively. Note that we are only adding jitter to the interface of host h1 at this
point.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations (Fig. 29):

sudo tc qdisc del dev h1-eth0 root netem

10 Adding Correlation Value for Jitter and Delay 67

Fig. 29 Deleting all rules on interface h1-eth0

Fig. 30 Adding a correlation value of 25%

10 Adding Correlation Value for Jitter and Delay

The correlation parameter controls the relationship between successive pseudo-
random values. In this section, the user will add a delay of 100 milliseconds with
a variation of ±10 milliseconds while adding a correlation value. Before doing so,
make sure to restore the default configuration of the interfaces on host h1 and host
h2 by applying the commands of Sect. 8. Then, apply the commands below:

Step 1. In host h1 terminal, type the following command (Fig. 30):

sudo tc qdisc add dev h1-eth0 root netem delay 100ms 10ms
25%

The new value added here represents the correlation value for jitter and delay.
Therefore, all packets leaving the device host h1 on the interface h1-eth0 will
experience a 100ms delay time, with a random variation of ±10 millisecond with
the next random packet depending 25% on the previous one.

Step 2. Now, the user can test the connection from host h1 to host h2 by using the
ping command on host h’s terminal (Fig. 31).

ping 10.0.0.2

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 90.891, 101.007, 109.215, and 6.328 milliseconds,
respectively.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations (Fig. 32):

sudo tc qdisc del dev h1-eth0 root netem

68 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 31 Verifying latency after setting the correlation value

Fig. 32 Deleting all rules on interface h1-eth0

11 Delay Distribution

NETEM permits user to specify a distribution that describes how delays vary in
the network. Usually delays are not uniform, so it may be convenient to use a non-
uniform distribution such as normal, pareto, or pareto-normal. For this test, the user
will specify a normal distribution for the delay in the emulated network. Before
doing so, make sure to restore the default configuration of the interfaces on host
h1 and host h2 by applying the commands of Sect. 8. Then, apply the commands
below:

Step 1. In host h1’s terminal, type the following command (Fig. 33):

sudo tc qdisc add dev h1-eth0 root netem delay 100ms
20ms distribution normal

The new option added here (distribution) represents the delay distribution type.
We define the delay to have a normal distribution, which provides a more realistic
emulation of WAN networks. As a result, all packets leaving the host h1 on the
interface h1-eth0 will experience delay time that is normally distributed between
the range of 100ms ±20ms.

Step 2. The user can now verify if the configuration was successfully done in the
previous step (Step 1) by using the ping command on host h’s terminal (Fig. 34)

Chapter 2—Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication,. . . 69

Fig. 33 Adding normal distribution of delay

Fig. 34 Verifying latency after using normal distribution

ping 10.0.0.2

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 66.347, 89.405, 117.906, and 16.749 milliseconds,
respectively.

Chapter 2—Lab 4: Emulating WAN with NETEM II: Packet
Loss, Duplication, Reordering, and Corruption

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 4.

This lab continues the description of NETEM and how to use it to emulate Wide
Area Networks (WANs). Besides delay, this lab focuses on other parameters such as
packet loss, packet duplication, reordering, and packet corruption. These parameters
affect the performance of protocols and networks.

Objectives
By the end of this lab, students should be able to:

1. Deploy emulated WANs characterized by parameters such as delay, packet loss,
packet corruption, packet reordering, and packet duplication.

http://highspeednetworks.net/

70 Network Cyberinfrastructure Aspects for Big Data Transfers

Table 4 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

h2h1

WAN

Delay, Loss, Reordering, Duplication, Corruption

Fig. 35 Parameters affecting throughput in a WAN

2. Measure the performance of WANs characterized by different parameter values.
3. Visualize WAN performance measures.

Lab Settings
The information in Table 4 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 12: Introduction to network emulators and NETEM.
2. Section 13: Lab topology.
3. Section 14: Adding/changing packet loss.
4. Section 15: Adding packet corruption.
5. Section 16: Adding packet reordering.
6. Section 17: Adding packet duplication.

12 Introduction to Network Emulators and NETEM

Part I of Emulating WAN with NETEM described how to use NETEM to emulate
WANs characterized by long delays. Part I also explained how the end-to-end delay
can be dominated by the WAN’s propagation delay and how the Round-Trip Time
(RTT) estimates this delay.

In addition to delay, many WANs and LANs are subject to packet loss,
reordering, corruption, and duplication (Fig. 35).

The above situations are described follows:

1. Packet loss: a condition that occurs when a packet travelling across a network
fails to reach its destination. Packet loss may have a large impact on high-

13 Lab Topology 71

throughput high-latency networks. A common cause of packet loss is the inability
of routers to hold packets arriving at a rate higher than the departure rate. Even in
cases where the high packet arrival rate is only temporary (e.g., short-term traffic
bursts), the router is limited by the amount of buffer memory used to momentarily
store packets. When packet loss occurs, TCP reduces the congestion window and
consequently the throughput by half. Packet loss must be mitigated by using best-
practice network designs, such as Science DMZ.

2. Packet reordering: a condition that occurs when packets are received in a
different order from which they were sent. Packet reordering, also known
as out-of-order packet delivery, is typically the result of packets following
different routes to reach their destination. Packet reordering may deteriorate the
throughput of TCP connections in high-throughput high-latency networks. For
each segment received out of order, a TCP receiver sends an acknowledgement
(ACK) for the last correctly received segment. Once the TCP sender receives
three acknowledgements for the same segment (triple duplicate ACK), the sender
considers that the receiver did not correctly receive the packet following the
packet that is being acknowledged three times. It then proceeds to reduce the
congestion window and throughput by half.

3. Packet corruption: corruption of bits comprising a packet may (mostly) occur
at the physical layer. Two adjacent devices are connected by a physical channel
(e.g., fiber, twisted-pair copper wire, etc.). The physical layer accepts a raw bit
stream and delivers it to the data-link layer. If corruption occurs, some bits may
have different values than those originally sent by the sender node. The receiver
node then simply discards the packet. As a result, the TCP sender process will not
receive an acknowledgement for the corresponding segment and will consider
it as a lost segment. The TCP sender process will subsequently decrease the
congestion window and throughput by half.

4. Packet duplication: a condition where multiple copies of a packet are present
in the network and received by the destination. Packet duplication is the result
of retransmissions, where a sender node retransmits unacknowledged (NACK)
packets.

Packet loss, reordering, and corruption (the last two are interpreted as packet loss
also by the TCP sender) lead to a drastic reduction of throughput. In this lab, we will
use the NETEM tool to emulate these situations affecting end-to-end performance.

13 Lab Topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topol-
ogy uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 36).

72 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 36 Lab topology

Fig. 37 MiniEdit shortcut

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 37). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 4.mn topology file and click on Open (Fig. 38).

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 39).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

13.1 Testing Connectivity Between Two Hosts

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal
of host h1 and allows the execution of commands on host h1 (Fig. 40).

13 Lab Topology 73

Fig. 38 MiniEdit’s Open dialog

Fig. 39 Running the
emulation

Step 2. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 . This command tests the connectivity

between host h1 and host h2. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test (Fig. 41).

The figure above indicates that there is connectivity between host h1 and host h2.
Thus, we are ready to start the throughput measurement process.

74 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 40 Opening a terminal on host h1

Fig. 41 Connectivity test using ping command

14 Adding/Changing Packet Loss

The user invokes NETEM using the command-line utility called tc . With no
additional parameters, NETEM behaves as a basic FIFO queue with no delay, loss,
duplication, or reordering of packets. The basic tc syntax used with NETEM is as
follows:

sudo tc qdisc [add|del|replace|change|show] dev dev_id root
netem opts

14 Adding/Changing Packet Loss 75

• sudo : enable the execution of the command with higher security privileges.
• tc : command used to interact with NETEM.

• qdisc : a queue discipline (qdisc) is a set of rules that determine the order
in which packets arriving from the IP protocol output are served. The queue
discipline is applied to a packet queue to decide when to send each packet.

• black lightgray!30[add |del |replace |change |show]: this is the operation on
qdisc. For example, to add delay on a specific interface, the operation will be
black lightgray!30add. To change or remove delay on the specific interface, the

operation will be change or del .

• dev_id : this parameter indicates the interface to be subject to emulation.

• opts : this parameter indicates the amount of delay, packet loss, duplication,
corruption, and others.

14.1 Identify Interface of Host h1 and Host h2

In this section, we must identify the interfaces on the connected hosts.

Step 1. On host h1, type the command ifconfig to display information related to
its network interfaces and their assigned IP addresses (Fig. 42).

Fig. 42 Output of ifconfig command on host h1

76 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 43 Output of ifconfig command on host h2

The output of the ifconfig command indicates that host h1 has two interfaces:
h1-eth0 and lo. The interface h1-eth0 at host h2 is configured with IP address
10.0.0.1 and subnet mask 255.0.0.0. This interface must be used in tc when
emulating the WAN.

Step 2. In host h2, type the command ifconfig as well (Fig. 43).

The output of the ifconfig command indicates that host h2 has two interfaces:
h2-eth0 and lo. The interface h2-eth0 at host h1 is configured with IP address
10.0.0.2 and subnet mask 255.0.0.0. This interface must be used in tc when
emulating the WAN.

14.2 Add Packet Loss to the Interface Connecting to the WAN

In a network, packets may be lost during transmission due to factors such as bit
errors and network congestion. The rate of packets that are lost is often measured
as a percentage of lost packets with respect to the number of sent packets. In this
section, you will use netem command to insert packet loss on a network interface.

Step 1. In host h1’s terminal, type the following command (Fig. 44):

sudo tc qdisc add dev h1-eth0 root netem loss 10%

14 Adding/Changing Packet Loss 77

Fig. 44 Adding 10% packet loss to host h1’s interface h1-eth0

Fig. 45 ping command after introducing packet loss

The above command adds a 10% packet loss to host h1’s interface h1-eth0.

Step 2. The user can verify now that the connection from host h1 to host h2 has
packet losses by using the ping command from host h1’s terminal (Fig. 45). The

-c option specifies the total number of packets to send.

ping 10.0.0.2 -c 200

In Fig. 45, host h1 sends 200 ping packets to host h2. Note the icmp_seq values
demonstrated in the figure below.

You can see that icmp_seq=2, 6, 10, and 17 are missing due to packet losses.
Resulting packet loss will likely vary in each emulation.

78 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 46 ping summary report showing 10% packet loss

Fig. 47 Adding 10% packet loss to host h2’s interface h2-eth0

Figure 46 shows the summary report of the previous command. By default, ping
reports the percentage of packet loss after finishing the transmission. In our test,
ping reported a packet loss rate of 10%. The measured packet loss rate will tend to
become closer to the configured loss rate as more trials are performed.

Note that the above scenario emulates 10% packet loss on the unidirectional link
from host h1 to host h2. If we want to emulate packet loss on both directions, a
packet loss of 10% must also be added to host h2.

Step 3. In host h2’s terminal, type the following command (Fig. 47):

sudo tc qdisc add dev h2-eth0 root netem loss 10%

Step 4. The user can verify now that the connection between host h1 and host h2
has more packets losses (10% from host h1 + 10% from host h2) by retyping the
ping command on host h1’s terminal (Fig. 48):

ping 10.0.0.2 -c 200

In Fig. 48, host h1 sends 200 ping packets to host h2. Note the icmp_seq values
demonstrated in the figure below.

You can see that icmp_seq=3, 6, 10, 14, 23, and 27 are missing due to packet
losses. Resulting packet loss will likely vary in each emulation.

Figure 49 shows the summary report of the previous command. By default, ping
reports the percentage of packet loss after finishing the transmission. In our test,
ping reported a packet loss rate of 10%. The measured packet loss rate will tend to
become closer to the configured loss rate as more trials are performed.

The result above indicates that 159 out of 200 packets were received successfully
(20.5% packet loss).

14 Adding/Changing Packet Loss 79

Fig. 48 ping command after introducing packet loss

Fig. 49 ping summary report showing 20.5% packet loss

14.3 Restore Default Values

To remove the packet loss added in Sect. 7.2 and restore the default configuration,
you must delete the rules of the interfaces on host h1 and host h2 (Fig. 50).

Step 1. In host h1’s terminal, type the following command (Fig. 23):

sudo tc qdisc del dev h1-eth0 root netem

Step 2. Apply the same steps to remove rules on host h2. In host h2’s terminal, type
the following command (Fig. 51):

80 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 50 Deleting all rules on interface h1-eth0

Fig. 51 Deleting all rules on interface h2-eth0

Fig. 52 Verifying latency after deleting all rules on both devices

sudo tc qdisc del dev h2-eth0 root netem

As a result, the tc queueing discipline will restore its default values of the device
h2-eth0.

Step 3. Now, the user can verify that the connection from host h1 to host h2 has
no explicit packet loss configured by using the ping command from host h1’s

terminal; press Ctrl+c to stop the test (Fig. 52):

ping 10.0.0.2

The result above indicates that all five packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation
of the Round-Trip Time (RTT) were 0.043, 0.112, 0.357, and 0.122 milliseconds,
respectively.

14 Adding/Changing Packet Loss 81

Fig. 53 Emulating packet losses with a correlation value

Fig. 54 ping in progress showing successive packet loss

14.4 Add Correlation Value for Packet Loss to Interface
Connecting to WAN

An optional correlation may be added. Adding correlation causes the random
number generator to be less random and can be used to emulate packet burst losses.

Step 1. In host h1’s terminal, type the following command (Fig. 53):

sudo tc qdisc add dev h1-eth0 root netem loss 50% 50%

The above command introduces a packet loss rate of 50%, and each successive
probability depends 50% on the last one. Note that a packet loss rate this high is
unlikely.

Step 2. The user can verify now that the connection from host h1 to host h2 has
packet losses by using the ping command from host h1’s terminal (Fig. 54).

82 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 55 Deleting all rules on interface h1-eth0

ping 10.0.0.2 -c 50

The result above shows an example where successive packets were dropped: [3,
4, 6, 10,], [13, 14, 16, 17, 20, 21], etc.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations (Fig. 55):

sudo tc qdisc del dev h1-eth0 root netem

15 Adding Packet Corruption

Besides packet loss, packet corruption can be introduced with NETEM.

15.1 Add Packet Corruption to an Interface Connected to the
WAN

Step 1. In host h1’s terminal, type the following command (Fig. 56):

sudo tc qdisc add dev h1-eth0 root netem corrupt 0.01%

The new value added here represents packet corruption percentage (0.01%).

Step 2. The user can now verify the previous configuration by using the iperf3
tool to check the retransmissions. To launch iPerf3 in server mode, run the command
iperf3 -s in host h2’s terminal (Fig. 57).

iperf3 -s

Step 3. To launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2 in
host h1’s terminal (Fig. 58).

15 Adding Packet Corruption 83

Fig. 56 Adding packets corruption (0.01%) to interface h1-eth0

Fig. 57 Host h2 running iPerf3 as server

Fig. 58 Retransmissions after packets corruption

iperf3 -c 10.0.0.2

The figure above shows the retransmission values on each time interval (1 s).
The total number of retransmitted packets, due to packet corruption, is 3710. This
verifies that packet corruption was indeed applied to the interface on host h1.

Step 4. In host h1’s terminal, type the following command to delete previous
configurations (Fig. 59):

84 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 59 Deleting all rules on interface h1-eth0

Fig. 60 Adding packet reordering

sudo tc qdisc del dev h1-eth0 root netem

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too. The summarized data on the
server is similar to that of the client side’s and must be interpreted in the same way.

16 Add Packet Reordering

Packets are sometimes not delivered in the same order they were sent. In order to
emulate reordering in NETEM, the reorder option is used. Proceed with the steps
below:

Step 1. In host h1’s terminal, type the following command (Fig. 60):

sudo tc qdisc add dev h1-eth0 root netem delay 10ms
reorder 25% 50%

In this command, 25% of the packets (with a correlation value of 50%) will be
sent immediately, while the remainder 75% will be delayed by 10ms.

Step 2. The user can verify the effect of packet reorder by using the ping

command on host h1’s terminal; press Ctrl+c to stop the test (Fig. 61):

ping 10.0.0.2

Consider the first four packets of the figure above. The first and second packets
did not experience delay (one out of four, or 25%), while the next three packets
experienced a delay of ~10 milliseconds (three out of four, or 75%). The measured
reordering rate will tend to become closer to the configured reordering rate as more
trials are performed.

17 Add Packet Duplication 85

Fig. 61 ping test illustrating the effect of packet reordering

Fig. 62 Deleting all rules on interface h1-eth0

It is possible that your first packet will experience delay, but this effect will
eventually occur in future tests.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations (Fig. 62):

sudo tc qdisc del dev h1-eth0 root netem

17 Add Packet Duplication

Duplicate packets may be present in networks as a result of retransmissions.
NETEM provides the option duplicate to inject duplicate packets. Before introduc-
ing packet corruption, make sure to restore the default configuration of the interfaces
on host h1 and host h2 by applying the commands of Sect. 14.3. Then, proceed with
the following steps:

Step 1. In host h1’s terminal, type the following command (Fig. 63):

sudo tc qdisc change dev h1-eth0 root netem duplicate 50%

The above command will produce a duplication of 50% (i.e., 50% of the packets
will be received twice at the destination).

86 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 63 Adding packet duplication

Fig. 64 ping test illustrating the effect of packet duplication

Fig. 65 Deleting all rules on interface h1-eth0

Step 2. The user can verify the effect of packet duplication by using the ping

command on host h1’s terminal; press Ctrl+c to stop the test (Fig. 64):

ping 10.0.0.2

The result above indicates that five duplicate packets were received. Duplicate
packets are also marked with (DUP!). The measured rate of duplicate packets will
tend to become closer to the configured rate as more trials are performed.

Step 3. In host h1’s terminal, type the following command to delete previous
configurations (Fig. 65):

sudo tc qdisc del dev h1-eth0 root netem

18 Introduction to Token Bucket Algorithm 87

Table 5 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

Chapter 2—Lab 5: Setting WAN Bandwidth with Token
Bucket Filter (TBF)

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 5.

This lab explains the Token Bucket Filter (TBF) queuing discipline that shapes
incoming/outgoing traffic to limit the bandwidth. Throughput measurements are
also conducted in this lab to verify the bandwidth-limiting configuration with TBF.

Objectives
By the end of this lab, students should be able to:

1. Understand the token bucket algorithm.
2. Use Token Bucket Filter (tbf), which is a Linux implementation of the token

bucket algorithm on network interfaces.
3. Understand how to combine queueing disciplines in Linux Traffic Control (tc).
4. Combine tbf and NETEM.
5. Emulate WAN properties in Mininet.
6. Visualize iPerf3’s output after modifying the network’s parameters.

Lab Settings
The information in Table 5 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 18: Introduction to token bucket algorithm.
2. Section 19: Lab topology.
3. Section 20: Rate limiting on end-hosts.
4. Section 21: Rate limiting on switches.
5. Section 22: Combining NETEM and TBF.

18 Introduction to Token Bucket Algorithm

When simulating a Wide Area Network (WAN), it is sometimes necessary to
limit the bandwidth of devices (end-hosts and networking devices) to observe the
network’s behavior in different conditions.

http://highspeednetworks.net/

88 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 66 Token bucket filter

The Token Bucket is an algorithm used in packet-switching networks to limit the
bandwidth and the burstiness of the traffic. In summary, token bucket consists of
adding tokens (represented as packets or packets’ bytes) at a fixed rate to a fixed-
capacity bucket. When a new packet arrives, the bucket is inspected to check the
number of available tokens; if at least n tokens are available, n tokens are removed
from the bucket, and the packet is sent to the network. Else, no tokens are removed,
and the packet is considered non-conformant. In such case, the packet might be
dropped, enqueued, or transmitted but marked as non-conformant. This algorithm is
illustrated in Fig. 66.

The rate, which is the transmission speed, is determined by the frequency at
which tokens are added to the bucket.

Another important property of the token bucket algorithm is burstiness; when the
bucket becomes completely occupied (i.e., no packets are consuming tokens), new
packets will consume tokens right away, without being limited. Burstiness is defined
as the number of tokens that can fit in the bucket, or the bucket size.

To provide limits and control over the bursts, token bucket implementations often
create another smaller bucket with a size equal to the Maximum Transmission Unit
(MTU), and a rate much faster than the original bucket (the peak rate). Its rate
defines the maximum speed of bursts.

The token bucket algorithm implemented in Linux is the Token Bucket Filter
(tbf), which is a queuing discipline used in conjunction with the Linux Traffic
Control (tc) to shape traffic.

Figure 67 depicts the main parameters used by tbf .

18 Introduction to Token Bucket Algorithm 89

Fig. 67 tbf parameters and architecture

The basic tbf syntax used with tc is as follows:

tc qdisc [add |...] dev [dev_id] root tbf limit [BYTES]
burst [BYTES] rate [BPS] [mtu BYTES] [peakrate BPS]
[latency TIME]

• tc : Linux traffic control tool.

• qdisc : a queue discipline (qdisc) is a set of rules that determine the order
in which packets arriving from the IP protocol output are served. The queue
discipline is applied to a packet queue to decide when to send each packet.

• [add |del |replace |change |show] : this is the operation on qdisc. For example, to

add the token bucket algorithm on a specific interface, the operation will be add .

To change or remove it, the operation will be change or del , respectively.

• dev [dev_id] : this parameter indicates the interface is to be subject to emulation.

• tbf : this parameter specifies the Token Bucket Filter algorithm.

• limit [BYTES] : size of the packet queue in bytes.

• burst [BYTES] : number of bytes that can fit in the bucket.

• rate [BPS] : transmission speed, determined by the frequency at which tokens
are added to the bucket.

• mtu [BYTES] : maximum transmission unit in bytes.

• peak rate [BPS] : the maximum speed of a burst.

• latency [TIME] : the maximum time a packet can wait in the queue.

90 Network Cyberinfrastructure Aspects for Big Data Transfers

In this lab, we will use the tbf queueing discipline to emulate the aforemen-
tioned parameters affecting the network behavior.

19 Lab Topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topol-
ogy uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 68).

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 69). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 5.mn topology file and click on Open (Fig. 70).

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 71).

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Fig. 68 Lab topology

Fig. 69 MiniEdit shortcut

19 Lab Topology 91

Fig. 70 MiniEdit’s Open dialog

Fig. 71 Running the
emulation

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

19.1 Starting Host h1 and Host h2

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host (Fig. 72).

Step 2. Apply the same steps on host h2 and open its Terminal.

92 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 72 Opening a terminal on host h1

Fig. 73 Connectivity test using ping command

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 . This command tests the connectivity

between host h1 and host h2. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test (Fig. 73).

Figure 73 indicates that there is connectivity between host h1 and host h2.

20 Rate Limiting on End-Hosts

The tc command can be applied on the network interface of a device to shape
egress traffic. In this section, the user will limit the sending rate of an end-host using

20 Rate Limiting on End-Hosts 93

the Token Bucket Filter (tbf), which is an implementation of the token bucket
algorithm.

20.1 Identify Interface of Host h1 and Host h2

According to the previous section, we must identify the interfaces on the connected
hosts.

Step 1. On host h1, type the command ifconfig to display information related to
its network interfaces and their assigned IP addresses (Fig. 74).

The output of the ifconfig command indicates that host h1 has two interfaces:
h1-eth0 and lo. The interface h1-eth0 at host h1 is configured with IP address
10.0.0.1 and subnet mask 255.0.0.0. This interface must be used in tc when
emulating the network.

Step 2. In host h2’s command line, type the command ifconfig as well (Fig. 75).

The output of the ifconfig command indicates that host h2 has two interfaces:
h2-eth0 and lo. The interface h2-eth0 at host h1 is configured with IP address
10.0.0.2 and subnet mask 255.0.0.0. This interface must be used in tc when
emulating the network.

Fig. 74 Output of ifconfig command on host h1

94 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 75 Output of ifconfig command on host h2

Fig. 76 Limiting rate with TBF to 10Gbps

20.2 Emulating 10Gbps High-Latency WAN

In this section, you will use tbf command on a network interface to control the
egress rate.

Step 1. Modify the bandwidth of host h1 by typing the command below. This
command sets the bandwidth to 10Gbps on host h1’s h1-eth0 interface (Fig. 76).
The tbf parameters are the following:

• rate : 10gbit

• burst : 5,000,000

• limit : 15,000,000

sudo tc qdisc add dev h1-eth0 root tbf rate 10gbit burst
5000000 limit 15000000

This command can be summarized as follows:

• sudo : enable the execution of the command with higher security privileges.

20 Rate Limiting on End-Hosts 95

• tc : invoke Linux’s traffic control.

• qdisc : modify the queuing discipline of the network scheduler.

• add : create a new rule.

• dev h1-eth0 root : specify the interface on which the rule will be applied.

• tbf : use the token bucket filter algorithm.
• rate : specify the transmission rate (10Gbps).

• burst : number of bytes that can fit in the bucket (5,000,000).

• limit : queue size in bytes (15,000,000).

Burst calculation: tbf requires setting a burst value when limiting the rate. This
value must be high enough to allow your configured rate. Specifically, it must be at
least the specified rate/HZ, where HZ is clock rate, configured as a kernel parameter,
and can be extracted using the command shown below (Fig. 77):

egrep ’^CONFIG_HZ_[0-9]+’ /boot/config-$(uname -r)

The HZ on Client1 is 250. Thus, to calculate the burst, we divide 10Gbps by
250:

10 Gbps = 10,000,000,000 bps
Burst = 10,000,000,000

250 = 40, 000, 000 bits
Burst = 40,000,000 bits = 5,000,000 bytes
The resulting value is to be used in the command as the burst value.

Step 2. The user can now verify the previous configuration by using the iperf3
tool to measure throughput. To launch iPerf3 in server mode, run the command
iperf3 -s in host h2’s terminal as shown in the figure below (Fig. 78):

iperf3 -s

Step 3. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2
in host h1’s terminal as shown below (Fig. 79):

iperf3 -c 10.0.0.2

Fig. 77 Retrieving system’s HZ

96 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 78 Host h2 running iPerf3 as server

Fig. 79 iPerf3’s report after limiting the rate on host h1 to 10Gbps

The figure above shows the iPerf3 report after limiting the rate on host h1 using
tbf . The average achieved throughputs are 9.57Gbps (sender) and 9.53 Gbps
(receiver). Since we executed the command on host h1’s terminal, the rule was
applied to host h1’s network interface. However, it is also possible to limit the rate
on the switch interfaces as explained next.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

21 Rate Limiting on Switches

The previous section explained how to use the token bucket filter on end-hosts’
network interfaces. In this section, we will explain how to apply the filter on switch
interfaces. By limiting the rate on switch S1’s s1-eth2 interface, all communication
sessions between switch S1 and switch S2 will be filtered by the applied rule(s).

In previous tests, we applied the commands on host h1’s terminal; switches,
however, do not have terminals where commands can be set and applied. Recall that

21 Rate Limiting on Switches 97

Fig. 80 Shortcut to open a Linux terminal

we are using Mininet for this emulation, which creates virtual interfaces emulating
the switch functionality. Therefore, these virtual interfaces can be identified using
the ifconfig command, but this time, it should be issued on the client’s terminal
(e.g., the terminal located on the Desktop) and not on end-hosts (host h1 or host h2).

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 80).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system for execution.

Step 2. Type in the terminal the command ifconfig to display information related
to its network interfaces (Fig. 81).

Figure 81 shows the network interfaces of the client:

• s1-eth1 is the interface connecting switch S1 to host h1.
• s1-eth2 is the interface connecting switch S1 to switch S2.
• s2-eth1 is interface connecting switch S2 to host h2.
• s2-eth2 is interface connecting switch S2 to switch S1.

Step 3. Remove the previous configuration on host h1. Write the following
command on host h1’s terminal (Fig. 82):

sudo tc qdisc del dev h1-eth0 root

Step 4. Apply tbf rate limiting rule on switch S1’s interface, which connects it to
switch S2 (s1-eth2). In the Client1’s terminal, type the command below (Fig. 83).
When prompted for a password, type password and hit enter. The tbf parameters
are the following:

98 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 81 Output of ifconfig command on the client’s terminal

21 Rate Limiting on Switches 99

Fig. 82 Deleting all rules on host h1’s network scheduler

Fig. 83 Limiting rate with TBF to 10Gbps on switch S1’s interface

Fig. 84 Host h2 running iPerf3 as server

• rate : 10gbit

• burst : 5,000,000

• limit : 15,000,000

sudo tc qdisc add dev s1-eth2 root tbf rate 10gbit burst
5000000 limit 15000000

Step 5. The user can now verify the previous configuration by using the iperf3
tool to measure throughput. To launch iPerf3 in server mode, run the command
iperf3 -s in host h2’s terminal as shown in Fig. 84:

iperf3 -s

Step 6. Now to launch iPerf3 in client mode, run the command iperf3 -c 10.0.0.2
in host h1’s terminal as shown in the figure below (Fig. 85):

iperf3 -c 10.0.0.2

Again, the reported values match the desired throughput (10Gbps). In practice,
the reported throughput will not achieve the target (10Gbps) but will achieve a
throughput slightly less than the target.

100 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 85 iPerf3’s report after limiting the rate on switch S1 to 10Gbps

Step 7. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

22 Combining NETEM and TBF

NETEM is used to introduce delay, jitter, packet corruption, etc. TBF on the other
hand can be used to limit the rate. However, this is not enough for emulating real
networks, particularly WANs. Therefore, it is also possible to combine multiple
impairments and activate them at the same time.

As shown in Fig. 86, the first qdisc (qdisc1) is attached to the root label. Then,
subsequent qdiscs can be attached to their parents by specifying the correct label. In
this section, we will look at how to combine NETEM and TBF in order to have more
properties emulated in our network. Specifically, we will introduce delay, jitter, and
packet corruption while specifying the rate on switch S1’s interface.

Step 1. In the Client’s terminal, type the following command to remove the
previous configuration on switch S1 (Fig. 87):

sudo tc qdisc del dev s1-eth2 root

22 Combining NETEM and TBF 101

Fig. 86 Chaining qdiscs
hierarchy

Fig. 87 Deleting all rules on switch S1’s s1-eth2

Fig. 88 Adding delay of 10ms to switch S1’s s1-eth2 interface

Step 2. In the client’s terminal, type the command below. When prompted for a
password, type password and hit Enter (Fig. 88):

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay
10ms

The new keyword in this command is handle and its value reflects the number
shown in Fig. 86 each qdisc. This means that our NETEM qdisc is attached to the
root with the handle 1:

Step 3. The user can now verify the previous configuration by using the ping
tool to measure the Round-Trip Time (RTT). On the terminal of host h1, type
ping 10.0.0.2 . To stop the test, press Ctrl+c . The figure below shows a successful

102 Network Cyberinfrastructure Aspects for Big Data Transfers

Fig. 89 Output of ping 10.0.0.2 command

connectivity test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2),
successfully receiving responses back (Fig. 89).

ping 10.0.0.2

The result above indicates that all four packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of
the Round-Trip Time (RTT) were 10.083, 10.210, 10.575, and 0.222 milliseconds,
respectively. Essentially, the standard deviation is an average of how far each ping
RTT is from the average RTT. The higher the standard deviation, the more variable
the RTT is.

Step 4. Now to add the second rule that applies rate limiting using tbf, issue the
command shown below on the client’s terminal (Fig. 90). The tbf parameters are
the following:

• rate : 2gbit

• burst : 1,000,000

• limit : 2,500,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate
2gbit burst 1000000 limit 2500000

Step 5. The user can now verify the previous configuration by using the iperf3
tool to measure throughput. To launch iPerf3 in server mode, run the command
iperf3 -s in host h2’s terminal as shown in Fig. 91:

iperf3 -s

22 Combining NETEM and TBF 103

Fig. 90 Adding a new rule while combining it with the previous

Fig. 91 Host h2 running iPerf3 as server

Fig. 92 iPerf3 throughput test after combining qdiscs

Step 6. Now to launch iPerf3 in client mode again by running the command
iperf3 -c 10.0.0.2 in host h1’s terminal as shown in Fig. 92:

iperf3 -c 10.0.0.2

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 1.86Gbps (sender) and 1.84Gbps (receiver).

104 Network Cyberinfrastructure Aspects for Big Data Transfers

Step 7. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

References

1. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The science DMZ: a network design
pattern for data-intensive science, in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (2013)

2. M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macroscopic behavior of the TCP congestion
avoidance algorithm. ACM Comput. Commun. Rev. 27(3), 67–82 (1997)

3. K. Fall, S. Floyd, Simulation-based comparisons of Tahoe, Reno, and SACK TCP. Comput.
Commun. Rev. 26(3), 5–21 (1996)

4. D. Leith, R. Shorten, Y. Lee, H-TCP: a framework for congestion control in high-speed and
long-distance networks. Hamilton Institute Technical Report (2005). http://www.hamilton.ie/
net/htcp2005.pdf

5. K. Chard, S. Tuecke, I. Foster, Globus: recent enhancements and future plans, in Proceedings
of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale (2016)

6. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, The Globus striped GridFTP framework
and server, in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (2005)

7. B. Radic, V. Kajic, E. Imamagic, Optimization of data transfer for grid using GridFTP, in
Proceedings of the International Conference on Information Technology Interfaces (2008)

8. J. Postel, Transmission control protocol (TCP), in Internet Request for Comments, RFC Editor,
RFC 793 (1981). https://tools.ietf.org/html/rfc793

9. J. Zurawski, S. Balasubramanian, A. Brown, E. Kissel, A. Lake, M. Swany, B. Tierney, M.
Zekauskas, perfSONAR: on-board diagnostics for big data, in Workshop on Big Data and
Science: Infrastructure and Services (2013)

10. A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti, R. Lapacz, D. Swany, J. Zurawski,
S. Trocha, perfSONAR: a service oriented architecture for multi-domain network monitoring,
in Proceedings of the Third international conference on Service-Oriented Computing (2005),
pp. 241–254

11. Internet2. https://www.internet2.edu/
12. B. Claise, Cisco Systems NetFlow Services Export Version 9. Internet Request for Comments,

RFC Editor, RFC 3954 (2004). https://www.ietf.org/rfc/rfc3954.txt
13. K. Miller, DDOS mitigation with sFlow. http://www.rn.psu.edu/2014/07/25/ddos-mitigation-

with-sflow/
14. R. Hofstede, A. Pras, A. Sperotto, G. Rodosek, Flow-based compromise detection: lessons

learned. IEEE Secur. Priv. 16(1), 82–89 (2018)
15. F. Farina, P. Szegedi, J. Sobieski, GEANT world testbed facility: federated and distributed

testbeds as a service facility of GEANT, in International Tele-traffic Congress (2014)
16. UbuntuNet. https://ubuntunet.net/
17. Asia Pacific Advanced Network. https://apan.net/
18. RedCLARA network. https://www.redclara.net/index.php/en/
19. The western regional network. http://nets.ucar.edu/nets/ongoing-activities/wrn/wrnroot/
20. The corporation for education network initiatives in California. http://cenic.org
21. The energy science network. https://www.es.net
22. K. Thompson, Campus cyberinfrastructure, in Principal Investigators Workshop, NSF Cam-

pus Cyberinfrastructure Program (2016). https://www.thequilt.net/wp-content/uploads/CC_
PIMeeting2016_KLT.pdf

23. National science foundation (NSF) campus cyberinfrastructure program, in National Science
Foundation. https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504748

http://www.hamilton.ie/net/htcp2005.pdf
http://www.hamilton.ie/net/htcp2005.pdf
https://tools.ietf.org/html/rfc793
https://www.internet2.edu/
https://www.ietf.org/rfc/rfc3954.txt
http://www.rn.psu.edu/2014/07/25/ddos-mitigation-with-sflow/
http://www.rn.psu.edu/2014/07/25/ddos-mitigation-with-sflow/
https://ubuntunet.net/
https://apan.net/
https://www.redclara.net/index.php/en/
http://nets.ucar.edu/nets/ongoing-activities/wrn/wrnroot/
http://cenic.org
https://www.es.net
https://www.thequilt.net/wp-content/uploads/CC_PIMeeting2016_KLT.pdf
https://www.thequilt.net/wp-content/uploads/CC_PIMeeting2016_KLT.pdf
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504748

Data-Link and Network Layer
Considerations for Large Data Transfers

One of the main functions of routers and switches is forwarding. Forwarding
refers to the switching of a packet from the input port to the appropriate output
port. This chapter reviews the architecture and forwarding-related attributes of
switches and routers. Attributes include forwarding rates, memory for buffering
packets, forwarding methods such as store-and-forward and cut-through, queue
management, and maximum transmission units.

1 Data-Link and Network-Layer Devices

Two essential functions performed by routers are routing and forwarding. Routing
refers to the determination of the route taken by packets. Forwarding refers to the
switching of a packet from the input port to the appropriate output port. The term
switching is also used interchangeably with forwarding.

Traditional routing approaches such as static and dynamic routing (e.g., Open
Shortest Path First (OSPF) [1], BGP [2]) are used in the implementation of Science
DMZs. Routing events, such as routing table updates, occur at the millisecond,
second, or minute timescale, and best practices used in regular enterprise networks
are applicable to Science DMZs. On the other hand, with transmission rates of
10Gbps and above, the forwarding operation occurs at the nanosecond timescale.
Since forwarding functionality is common in both routers and switches, this
section reviews the architecture and forwarding-related attributes of switches. These
attributes are applicable to routers as well; thus, for the remainder of this section,
the terms switch and router are used interchangeably. Switching attributes discussed
in this section are illustrated in Fig. 1.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Crichigno et al., High-Speed Networks, Practical Networking,
https://doi.org/10.1007/978-3-030-88841-1_3

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88841-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-88841-1_3

106 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 1 Switching attributes
requiring consideration in a
Science DMZ

2 Switching Review 107

2 Switching Review

A generic router architecture is shown in Fig. 2. Modern routers may have a network
processor (NP) and a table derived from the routing table in each port, which is
referred to as the forwarding table (FT) or forwarding information base (FIB). The
router in Fig. 2 has two input ports, iP1 and iP2, with their respective queues. iP1
has three packets in its queue, which will be forwarded to output ports oP1 (green
packets) and oP2 (blue packet) by the fabric.

Router queues/buffers absorb traffic fluctuations. Even in the absence of conges-
tion, fluctuations are present, resulting mostly from coincident traffic bursts [3].

Consider an input buffer implemented as a first-in first-out in the router of Fig. 2.
As iP1 and iP2 both have one packet to be forwarded to oP1 at the front of the buffer,
only one of them, say the packet at iP2, will be forwarded to oP1. The consequence
of this is that not only the first packet at iP1 must wait, so too must the second
packet that is queued at iP1 wait, even though there is no contention for oP2. This
phenomenon is known as head-of-line (HOL) blocking [4]. To avoid HOL blocking,
many switches use output buffering, a mixture of internal and output buffering, or
techniques emulating output buffering such as Virtual Output Queueing (VOQ).

Fig. 2 A generic router architecture

108 Data-Link and Network Layer Considerations for Large Data Transfers

3 Switching Considerations for Science DMZs

There are critical switching attributes that must be considered for a well-designed
Science DMZ. These attributes are related to the characteristics of the science traffic
and the role of switches in mitigating packet losses. Key considerations are now
presented.

3.1 Traffic Profile

At a switch, buffer size, forwarding or switching rate, and queues should be selected
based on the traffic profile to be supported by the network. Enterprise networks
and Science DMZs are subject to different traffic profiles, as listed in Table 1. In a
typical enterprise network, a very large number of flows consume a relatively small
amount of bandwidth each. Figure 3 shows an example of a traffic profile at a small
campus enterprise network serving approximately 1000 hosts. The number of flows
observed in a week-long period is approximately 33 million, 81% TCP, 18% UDP,
and 1% other protocols. According to the cumulative distribution function (CDF)
of the flow duration, more than 90% of these flows have a duration of less than
200 s. Similarly, approximately 90% of the flows have a size of 10KBs or less.
This traffic profile is very different from that of a science flow, which may last
several hours and consume the total available bandwidth. For example, transferring
100 TBs at 10Gbps takes over 24 h. In this type of flow, bursts occur occasionally
but are not the norm. When both small and large flows are transported across the
same network, smaller flows do not saturate ports. However, when bursts associated
with a science flow occur, then these events can cause the starvation of the small
flows [5].

Enterprise flows are less sensitive than Science DMZ flows to packet loss
and throughput requirements. Typically, the size of files in enterprise applications

Table 1 Comparison between enterprise network and Science DMZ flows

Feature Enterprise network flow Science DMZ flow

Duration Short Long

Data size KBs, MBs TBs, PBs

Nature of the data Large variety: web, email, media con-
tent, database-related, mobile applications,
streaming

Files

Bursty Yes No

Packet loss Less sensitive Very sensitive

Latency Sensitive Less sensitive

Throughput Less sensitive Very sensitive

Concurrent flows Thousands of flows per second Few flows per second

3 Switching Considerations for Science DMZs 109

Fig. 3 A week-long (Apr. 16-22, 2018) measurement data for a small campus enterprise network.
The total number of observed flows is approximately 33 million; 81% of flows are TCP, 18% UDP,
and 1% other protocols. (a) Cumulative distribution function (CDF) of the flow duration and (b)
the flow size. The flow duration is the time interval between the first and last packets of the flow
observed in the network, whereas the flow size is the aggregate number of bytes contained in the
packets of that flow

is small. Even though packet losses reduce the TCP throughput, from a user
perspective this reduction results in a modest increase of the data transfer time.
On the other hand, Science DMZ applications typically transfer terabyte-scale files.
Hence, even a very small packet loss rate can cause the TCP throughput to collapse
below 1Gbps. As a result, a terabyte-scale data transfer requires many additional
hours or days to complete.

A well-designed Science DMZ is minimally sensitive to latency. One of the
goals of the Science DMZ is to prevent packet loss and thus to sustain high
throughput over high-latency WANs. Hence, the Science DMZ uses dedicated
DTNs and switches capable of absorbing transient bursts. It also avoids inline
security appliances that may cause packets to be dropped or delivered out of order.
By fulfilling these requirements, the achievable throughput can approach the full
network capacity. For example, with no packet losses, the throughput is high. Note
that the throughput is only slightly sensitive to latency.

3.2 Maximum Transmission Unit

The MTU has a prominent impact on TCP throughput. The throughput is directly
proportional to the MSS. Congestion control algorithms perform multiple probes
to see how much the network can handle. With high-speed networks, using half a
dozen or so small probes to see how the network responds wastes a huge amount
of bandwidth. Similarly, when a packet loss is detected, the rate is decreased by a

110 Data-Link and Network Layer Considerations for Large Data Transfers

factor of two. TCP can only recover slowly from this rate reduction. The speed at
which the recovery occurs is proportional to the MTU. Thus, for Science DMZs, it
is recommended to use large frames.

3.3 Buffer Size of Output or Transmission Ports

The buffer size of a router’s output port must be large enough, since packets from
coincident arrivals from different input ports may be forwarded to the same output
port. Additionally, buffers prevent packet losses when traffic bursts occur. A key
question is how large should buffers be to absorb the fluctuations generated by large
flows. The rule of thumb has been that the amount of buffering (in bits) in a router’s
port should equal the RTT (in seconds) multiplied by the capacity C (in bits per
second) of the port [6, 7]:

buffer size = C · RT T . (1)

The above quantity is also known as the bandwidth-delay product (BDP). The
rationale behind this quantity is explained in Fig. 4 [8]. In a TCP connection, a
sender can have at most Wmax in-flight or outstanding bits (or the equivalent in
segments), where Wmax is the TCP buffer size dictated by the receiver. Assume that
the output port of the router is the bottleneck link of the end-to-end connection.
Due to the additive increase behavior of TCP, the sender will keep increasing the
rate. The number of queued packets at the router will also increase, until it becomes
full and a packet is dropped. At that point, TCP decreases the congestion window
to Wmax

2 . In order to maximize the throughput of the connection, the bottleneck link
should always be utilized. With sufficient buffering, the window size is always above
the critical threshold Wmax

2 . Since the buffer size is equal to the height of the TCP
sawtooth [9], then the size needs to be equal to BDP as well. Notice that the buffer
absorbs the changes observed in the TCP window size.

Appenzeller et al. [8] demonstrated that when there is a large number of TCP
flows passing through a link, say N , the amount of buffering can be reduced to:

buffer size ≈ C · RT T√
N

. (2)

This result is observed when there is no dominant flow and the router aggregates
thousands of flows.

Empirical results [10, 11] suggest that the buffer size of a router in a Science
DMZ should equal the bandwidth-delay product. However, a formal proof remains
an open research problem. The main challenge in finding an analytical solution is
the mathematical complexity of queueing systems with complex packet inter-arrival
times. Specifically, the network traffic exhibits high levels of burstiness and self-
similarity. A critical characteristic of self-similar traffic is that there is no natural

3 Switching Considerations for Science DMZs 111

Fig. 4 TCP viewpoint of a connection and its behavior. (a) A simplified TCP interpretation of
the connection. (b) The congestion control behavior characterized by the additive increase and
multiplicative decrease

length of a burst; at every time scale ranging from a few milliseconds to minutes
and hours, similar-looking traffic bursts are present. Thus, the results predicted by
theM/M/1 model from queueing theory (which models packet arrivals as a Poisson
process) deviate from the actual performance [12].

In this context, consider again Fig. 4a. Assume that the router behaves like an
M/M/1 queue, and X is the number of packets in the system. The utilization factor
is defined as:

ρ = packet arrival rate at the input port/s

packet departure rate at the output port
. (3)

Note that ρ can be interpreted as the utilization of the bottleneck link. According
to theM/M/1 model, the expected number of packets in the system is E(X) = ρ

1−ρ
,

and the probability that at least B packets are in the system is given by ρB . For a
link utilization of ρ = 0.8, the expected number of packets in the system is small,
namely E(X) = 4. Thus, with a modest buffer size, say 60 packets, the packet drop

112 Data-Link and Network Layer Considerations for Large Data Transfers

rate would be less than ρ60 = 0.0000015. By contrast, the buffer size of a modern
10Gbps router interface can be over 1,000,000 packets.

Modeling packet arrivals as a Poisson process severely underestimates the traffic
burstiness. Traditional TCP congestion control algorithms typically send as many
packets as possible at once. Hence, a potential approach to reduce the traffic
burstiness (which would permit to reduce the buffer size of a router as predicted
by the M/M/1 model) is to space out or pace packets at sender nodes. The pacing
technique can be accomplished by requiring sender nodes to send packets at a fixed
rate, so that they are spread over an RTT interval. Results by Beheshti et al. [13]
indicate that high throughput can be achieved with small buffer sizes, provided that
short-term bursts are minimized. Notably, the first TCP congestion control algorithm
based upon pacing has been recently proposed, namely the Bottleneck Bandwidth
and Round-Trip Time (BBR) algorithm [3]. Thus, studying the impact of BBR on
routers’ buffer size is a promising open research direction.

3.4 Bufferbloat

While allocating sufficient memory for buffering is desirable, it is also important
to note that the term RTT in Eq. (1) depends upon the use case at hand. Hence,
allocating additional unneeded buffer space may result in more latency. This
undesirable latency phenomenon is known as bufferbloat [14, 15] and can be
mitigated by avoiding the over-allocation of buffers. Controlling excess delay is an
active research area. For example, new active-queue management techniques based
on control theory have been recently proposed in [16].

3.5 Routers and Switches in a Hierarchical Network

Figure 5 illustrates a typical hierarchical network. The access layer represents the
network edge, where traffic enters or exits the network. In Science DMZs, usually
DTNs, supercomputer, and research labs have access to the network through access-
layer switches. The distribution layer interfaces between the access layer and the
core layer, aggregating traffic from the access layer. The core layer is the network
backbone. Core routers forward traffic at very high speeds. In this simplified
topology, the core is also the border router, connecting the network to the WAN.

Access-layer switches must support a range of traffic capacity needs, sometimes
starting as low as 10Mbps and reaching to as much as 100Gbps. This wide mix can
strain the choice of buffers required, particularly on output switch ports connecting
to the distribution layer [17]. Specifically, buffer sizes must be large enough to
absorb bursts from the end devices (DTNs, supercomputer, lab devices).

4 Switches in Enterprise Networks and Science DMZs 113

Fig. 5 Hierarchical network

Distribution- and core-layer switches must have as much buffer space as possible
to handle the bursts coming from the access-layer switches and from the WAN.
Hence, attention must be paid to bandwidth capacity changes (e.g., aggregation of
multiple smaller input ports into a larger output port).

Switches manufactured for datacenters may not be a good choice for Science
DMZs. They often use fabrics based upon shared memory designs. In these designs,
the size of the output buffers may not be tunable, which may become a key
performance limitation during the transfer of large flows.

4 Switches in Enterprise Networks and Science DMZs

Table 2 compares switches for enterprise networks and Science DMZs. In general,
the crossbar switch fabric is suggested for Science DMZs, because of its high
bandwidth. A crossbar switch is also non-blocking; a packet being forwarded to
an output port will not be blocked from reaching the output port as long as no
other packet is currently being forwarded to that output port. The shared memory
technology usually does not allow the allocation of per-port memory for buffering.
In Science DMZs, ideally output ports will be statically allocated enough memory
for buffering, as suggested by Eq. (1). Although the bus technology still provides
sufficient bandwidth for enterprise networks, e.g., Cisco Catalysts 6500 switches

114 Data-Link and Network Layer Considerations for Large Data Transfers

Table 2 Comparison between enterprise network and Science DMZ switches

Feature Enterprise network switch Science DMZ switch

Fabric Crossbar Recommended. Recommended.

Shared memorya Suitable for low-latency
datacenters.

Not recommended;
buffers usually cannot be
allocated on a per-port
basis.

Bus Suitable for small
enterprise networks.

Not recommended; low
switching capacity.

Queues Input queue only Not recommended; it
suffers HOL blocking.

Not recommended; it
suffers HOL blocking.

Input and output
queues

Adequate performance. Adequate performance.

VOQ Adequate, attainable
throughput approximates
100% of total capacity.

Adequate, attainable
throughput approximates
100% of total capacity.

Forwarding Cut-through Preferred for low-latency
enterprise networks.

Not recommended.

Store-and-
forward

Adequate performance. Recommended.

Output buffer size RT T ·C√
N

Adequate for enterprise
flows.

Not sufficient to
accommodate large
flows.

RT T · C Not needed. Recommended; adequate
to absorb large flows’
bursts and changes in
TCP window size.

Buffer allocation Port-based Adequate performance. Recommended.

Dynamic shared
memorya

Adequate performance. Not recommended.

Jumbo frame Minimum impact for
small, short duration
flows.

Recommended.

a A shared memory fabric often implies dynamic shared memory allocation for ports.

[18], its underlying time-sharing operation is not appropriate for Science DMZs.
Consider now buffering; HOL blocking limits the throughput of an input-buffered
switch to 59% of the theoretical maximum (which is the sum of the link bandwidths
for the switch) [19]. While this technology may be acceptable for small enterprise
networks, it should not be used in high-throughput high-latency environments.
Science DMZs should use switches that implement output buffering, a mixture of
input and output buffering, or techniques emulating output buffering such as VOQ
[19].

Forwarding techniques include cut-through and store-and-forward. Cut-through
switches start forwarding a packet before the entire packet has been received,
normally, as soon as the destination address is processed. They are designed to avoid

Chapter 3—Lab 6: Router’s Buffer Size 115

buffering packets and to minimize latency. Store-and-forward switches buffer the
entire packet before it is forwarded to the output port.

Store-and-forward switches provide flexibility to support any mix of speeds.
Consider an incoming packet traveling at 10Gbps that must be forwarded to a
100Gbps output port. The bit time at the input port is 10 times longer than that
at the output port. In a cut-through switch, as incoming bits are processed, they are
transmitted to the output port. As soon as a bit is sent out, the 100Gbps output port
is idle waiting for the next bit, which is still being received by the 10Gbps input
port. Hence, much of the 100Gbps bandwidth would be wasted. Thus, in order to
optimize the use of the available bandwidth, the cut-through switch would have to
change its operation mode to store-and-forward. However, a significant throughput
degradation has been observed when a cut-through switch operates as a store-and-
forward switch [20]. This degradation is partially attributed to the small buffer
size of a typical cut-through switch. On the other hand, a store-and-forward switch
provides automatic buffering of all incoming packets. The forwarding process from
a slower interface to a faster interface is made easier, as the reception process at the
input port and transmission process at the output port are decoupled.

For Science DMZs, port-based buffer allocation is highly recommended. To
absorb transient bursts formed by large flows, or when traffic streams are merged
and multiplexed to the same output port, the amount of memory allocated to that
port is recommended to be equal to the bandwidth-delay product. Many enterprise
networks use switches based on dynamic shared memory. These switches deposit
packets into a common memory that is shared by all ports. With dynamic shared
memory, there is no guarantee that a port will be allocated an appropriate amount of
memory, as this is dynamically allocated.

Academic Cloud and Virtual Laboratories
The book is accompanied by hands-on virtual laboratory experiments conducted in
a cloud system, referred to as the Academic Cloud. Access to the Academic Cloud
is available for a fee (6-month access) and includes all material needed to conduct
the experiments. The URL is

http://highspeednetworks.net/

Chapter 3—Lab 6: Router’s Buffer Size

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 6.

This lab reviews the internal architecture of routers and switches. These devices
are essential in high-speed networks, as they must be capable of absorbing transient
packet bursts generated by large flows and thus avoid packet loss. The lab describes

http://highspeednetworks.net/
http://highspeednetworks.net/

116 Data-Link and Network Layer Considerations for Large Data Transfers

Table 3 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

the buffer requirements to absorb such traffic fluctuations, which are then validated
by experimental results.

Objectives
By the end of this lab, students should be able to:

1. Describe the internal architecture of routers and switches.
2. Understand the importance of buffers of routers and switches to prevent packet

loss.
3. Conduct experiments with routers and switches of variable buffer sizes.
4. Calculate the buffer size required by routers and switches to absorb transient

bursts.
5. Use experimental results to draw conclusions and make appropriate decision

related to routers’ and switches’ buffers.

Lab Settings
The information in Table 3 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 5: Introduction.
2. Section 6: Lab topology.
3. Section 7: Testing throughput with 100*MTU switch’s buffer size.
4. Section 8: Testing throughput with one BDP switch’s buffer size.
5. Section 9: Emulating high-latency WAN with packet loss.

5 Introduction

5.1 Introduction to Switching

Two essential functions performed by routers are routing and forwarding. Routing
refers to the determination of the route taken by packets. Forwarding refers to
the switching of a packet from the input port to the appropriate output port. The
term switching is also used interchangeably with forwarding. Traditional routing
approaches such as static and dynamic routing (e.g., Open Shortest Path First
[OSPF], BGP) are used in the implementation of high-speed networks, e.g., Science
DMZs. Routing events, such as routing table updates, occur at the millisecond,
second, or minute timescale, and best practices used in regular enterprise networks

5 Introduction 117

Fig. 6 A generic router architecture

are applicable to high-speed networks as well. These functions are sometimes
collectively referred to as the control plane and are usually implemented in software
and execute on the routing processor (typically a traditional CPU); see Fig. 6. On the
other hand, with transmission rates of 10Gbps and above, the forwarding operations
related to moving packets from input to output interfaces at very high speed
must occur at the nanosecond timescale. Thus, forwarding operations, collectively
referred to as forwarding or data plane, are executed in specialized hardware and
optimized for performance.

Since forwarding functionality is common in both routers and switches, this
lab reviews the architecture and forwarding-related attributes of switches. These
attributes are applicable to routers as well; thus, for this lab, the terms switch and
router are used interchangeably.

5.2 Router Architecture

Consider the generic router architecture that is shown in Fig. 6. Modern routers may
have a network processor (NP) and a table derived from the routing table in each
port, which is referred to as the forwarding table (FT) or forwarding information
base (FIB). The router in Fig. 6 has two input ports, iP1 and iP2, with their respective
queues. iP1 has three packets in its queue, which will be forwarded to output

118 Data-Link and Network Layer Considerations for Large Data Transfers

ports oP1 (green packets) and oP2 (blue packet) by the fabric. A switch fabric
moves packets from input to output ports. Switch fabric designs are shared memory,
crossbar network, and bus. In shared memory switches, packets are written into
a memory location by an input port and then read from that memory location by
the output port. Crossbar switches implement a matrix of pathways that can be
configured to connect any input port to any output port. Bus switches use a shared
bus to move packets from the input ports to the output ports.

Router queues/buffers absorb traffic fluctuations. Even in the absence of con-
gestion, fluctuations are present, resulting mostly from coincident traffic bursts.
Consider an input buffer implemented as a first-in first-out in the router of Fig. 6. As
iP1 and iP2 both have one packet to be forwarded to oP1 at the front of the buffer,
only one of them, say the packet at iP2, will be forwarded to oP1. The consequence
of this is that not only the first packet must wait at iP1. Also, the second packet
that is queued at iP1 must wait, even though there is no contention for oP2. This
phenomenon is known as Head-Of-Line (HOL) blocking. To avoid HOL blocking,
many switches use output buffering, a mixture of internal and output buffering, or
techniques emulating output buffering such as Virtual Output Queueing (VOQ).

5.3 Where does Packet Loss Occur?

Packet queues may form at both the input ports and the output ports. The location
and extent of queueing (either at the input port queues or the output port queues)
will depend on the traffic load, the relative speed of the switching fabric, and the line
speed. However, in modern switches with large switching rate capability, queues are
commonly formed at output or transmission ports. A main contributing factor is the
coincident arrivals of traffic bursts from different input ports that must be forwarded
to the same output port. If transmission rates of input and output ports are the same,
then packets from coincident arrivals must be momentarily buffered.

Note, however, that buffers will only prevent packet losses in case of transient
traffic bursts. If those were not transient but permanent, such as approximately
constant bit rates from large file transfers, the aggregate rate of input ports will
surpass the rate of the output port. Thus, the output buffer would be permanently
full, and the router would drop packets.

Packet loss occurs when a router drops the packet. It is the queues within a router,
where such packets are dropped and lost.

5.4 Buffer Size

From the above observation, a key question is how large should buffers be to absorb
the fluctuations generated by TCP flows. The rule of thumb has been that the amount

6 Lab Topology 119

of buffering (in bits) in a router’s port should equal the average Round-Trip Time
(RTT) (in seconds) multiplied by the capacity C (in bits per second) of the port.

Router
′
s buffer size = C · RTT [bits] (single/small number of flows)

Note that RTT is the average of individual RTTs. For example, if there are five
TCP flows sharing a router’s link (port), the RTT used in the equation above is the
average value of the five flows, and the capacity C is the router’s port capacity. For
example, for 250 millisecond connections and a 10Gbps port, the router’s buffer
size equals 2.5 Gbits. The above quantity is a conservative value that can be used in
high-throughput high-latency networks.

In 2004, Appenzeller et al. presented a study that suggests that when there is a
large number of TCP flows passing through a link, say N (e.g., hundreds, thousands,
or more), the amount of buffering can be reduced to:

Router
′
s buffer size = C ·RTT√

N
[bits] (large number of flows N)

This result is observed when there is no dominant flow and the router aggregates
hundreds, thousands, or more flows. The observed effect is that the fluctuations
of the sum of congestion windows are smoothed, and the buffer size at an output
port can be reduced to the expression given above. Note that N can be very large for
campus and backbone networks, and the reduction in needed buffer size can become
considerable.

6 Lab Topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The
topology uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 7).

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1

10.0.0.1

h3

h3-eth0

s1-eth2

10.0.0.3

h2

h2-eth0

10.0.0.2

h4

10.0.0.4

s2-eth2

s2-eth3

h4-eth0

Fig. 7 Lab topology

120 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 8 MiniEdit shortcut

Fig. 9 MiniEdit’s Open dialog

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 8). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 11.mn topology file and click on Open (Fig. 9).

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 10).

6 Lab Topology 121

Fig. 10 Running the
emulation

Fig. 11 Opening a terminal on host h1

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

6.1 Starting Host h1, Host h2, Host h3, and Host h4

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal
of host h1 and allows the execution of commands on that host (Fig. 11).

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 . This command tests the connectivity

122 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 12 Connectivity test using ping command

Fig. 13 Connectivity test using ping command

between host h1 and host h2 (Fig. 12). To stop the test, press Ctrl+c . The figure
below shows a successful connectivity test.

Step 4. Test connectivity between the end-hosts using the ping command. On

host h3, type the command ping 10.0.0.4 . This command tests the connectivity

between host h3 and host h4 (Fig. 13). To stop the test, press Ctrl+c . The figure
below shows a successful connectivity test.

6 Lab Topology 123

Fig. 14 Receive window change in sysctl

6.2 Modifying Hosts’ Buffer Size

In the following tests the bandwidth is limited to 10Gbps, and the RTT (delay or
latency) is 20ms.

In order to have enough TCP buffer size, we will set the sending and receiving
buffer to 5 · BDP in all hosts.

BW = 10, 000, 000, 000 bits/second

RTT = 0.02 seconds

BDP =10, 000, 000, 000 · 0.02 = 200, 000, 000 bits

=25, 000, 000 bytes ≈ 25Mbytes

The send and receive buffer sizes should be set to 5 •BDP. We will use the 25
Mbytes value for the BDP instead of 25,000,000 bytes.

1Mbyte = 10242 bytes

BDP = 25Mbytes = 25 · 10242 bytes = 26, 214, 400 bytes

5 · BDP = 5 · 26, 214, 400 bytes = 131, 072, 000 bytes

Step 1. Now, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s
terminal type the command shown below. The values set are: 10,240 (minimum),
87,380 (default), and 131,072,000 (maximum) (Fig. 14).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

The returned values are measured in bytes. 10,240 represents the minimum buffer
size that is used by each TCP socket. 87,380 is the default buffer that is allocated

124 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 15 Send window change in sysctl

Fig. 16 Receive window change in sysctl

Fig. 17 Send window change in sysctl

when applications create a TCP socket. 131,072,000 is the maximum receive buffer
that can be allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following
command on host h1’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 131,072,000 (maximum) (Fig. 15).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Next, the same commands must be configured on host h2, host h3, and host h4.

Step 3. To change the current receiver-window size value(s), use the following
command on host h2’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 131,072,000 (maximum) (Fig. 16).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Step 4. To change the current send-window size value(s), use the following
command on host h2’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 131,072,000 (maximum) (Fig. 17).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

6 Lab Topology 125

Fig. 18 Receive window change in sysctl

Fig. 19 Send window change in sysctl

Fig. 20 Receive window change in sysctl

Step 5. To change the current receiver-window size value(s), use the following
command on host h3’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 131,072,000 (maximum) (Fig. 18).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

Step 6. To change the current send-window size value(s), use the following
command on host h3’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 131,072,000 (maximum) (Fig. 19).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

Step 7. To change the current receiver-window size value(s), use the following
command on host h4’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 131,072,000 (maximum) (Fig. 20).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 131072000’

126 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 21 Send window change in sysctl

Fig. 22 Shortcut to open a Linux terminal

Step 8. To change the current send-window size value(s), use the following
command on host h4’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 131,072,000 (maximum) (Fig. 21).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 131072000’

6.3 Emulating High-Latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay
between switches, setting 10ms delay on switch S1 and 10ms delay on switch S2,
resulting in 20ms of Round-Trip Time (RTT).

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 22).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below.When prompted for a password ,
type password and hit Enter. This command introduces 10ms delay to switch S1’s
s1-eth1 interface (Fig. 23).

6 Lab Topology 127

Fig. 23 Adding delay of 10ms to switch S1’s s1-eth1 interface

Fig. 24 Adding delay of 10ms to switch S2’s s2-eth1 interface

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay
10ms

Step 3. Similarly, repeat again the previous step to set a 10ms delay to switch
S2’s interface. When prompted for a password, type password and hit Enter. This
command introduces 10ms delay on switch S2’s s2-eth1 interface (Fig. 24).

sudo tc qdisc add dev s2-eth1 root handle 1: netem delay
10ms

6.4 Testing Connection

To test connectivity, you can use the command ping .

Step 1. On the terminal of host h1, type ping 10.0.0.2 . To stop the test, press

Ctrl+c . The figure below shows a successful connectivity test. Host h1 (10.0.0.1)
sent four packets to host h2 (10.0.0.2), successfully receiving responses back
(Fig. 25).

The result above indicates that all four packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 20.096, 20.110, 20.135, and
0.101 milliseconds, respectively. The output above verifies that delay was injected
successfully, as the RTT is approximately 20ms.

128 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 25 Output of ping 10.0.0.2 command

Fig. 26 Output of ping 10.0.0.4 command

Step 2. On the terminal of host h3, type ping 10.0.0.4 . The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1
(Fig. 26). To stop the test, press Ctrl+c .

The result above indicates that all four packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 20.094, 20.212, 20.529, and
0.252 milliseconds, respectively. The output above verifies that delay was injected
successfully, as the RTT is approximately 20ms.

7 Testing Throughput with 100 · MTU Switch’s Buffer Size

In this section, you are going to change the switch S1’s buffer size to 100·MTU and
emulate a 10GbpsWide Area Network (WAN) using the Token Bucket Filter (tbf).
Then, you will test the throughput between host h1 and host h2 while there is another

7 Testing Throughput with 100 · MTU Switch’s Buffer Size 129

Fig. 27 Limiting rate to 10Gbps and setting the buffer size to 100·MTU on switch S1’s interface

TCP flow between host h3 and host h4. On each test, you will modify the congestion
control algorithm in host h1, namely cubic, reno, and bbr. The congestion control
algorithm will still be cubic in host h3 for all tests. In this section, the MTU is 1600
bytes; thus, the tbf limit value will be set to 100 ·MTU = 160,000 bytes.

7.1 Setting Switch S1’s Buffer Size to 100 ·MTU

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s
terminal, type the command below (Fig. 27). When prompted for a password, type
password and hit Enter.

• rate : 10gbit

• burst : 5,000,000

• limit : 160,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate
10gbit burst 5000000 limit 160000

7.2 TCP Cubic

The default congestion avoidance algorithm in the following test is cubic; thus,
there is no need to specify it manually.

Step 1. Launch iPerf3 in server mode on host h2’s terminal (Fig. 28).

iperf3 -s

Step 2. Launch iPerf3 in server mode on host h4’s terminal (Fig. 29).

130 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 28 Starting iPerf3 server on host h2

Fig. 29 Starting iPerf3 server on host h4

Fig. 30 Typing iPerf3 client command on host h1

iperf3 -s

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 3. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 30):

iperf3 -c 10.0.0.2 -t 90

Step 4. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 31):

iperf3 -c 10.0.0.2 b-t 90

Step 5. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 32).

7 Testing Throughput with 100 · MTU Switch’s Buffer Size 131

Fig. 31 Typing iPerf3 client command on host h3

Fig. 32 Running iPerf3 client on host h1

The figure above shows the iPerf3 test output report by the last 20 s. The
average achieved throughput is 86.4Mbps (sender) and 86.1Mbps (receiver), and
the number of retransmissions is 994. Host h3’s results are similar to the above;
however, we are just focused on host h1’s results.

Step 6. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

7.3 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno
by typing the following command (Fig. 33):

sysctl -w net.ipv4.tcp_congestion_control=reno

132 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 33 Changing TCP congestion control algorithm to reno in host h1

Fig. 34 Starting iPerf3 server on host h2

Fig. 35 Starting iPerf3 server on host h4

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 34).

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 35).

iperf3 -s

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 36):

iperf3 -c 10.0.0.2 -t 90

7 Testing Throughput with 100 · MTU Switch’s Buffer Size 133

Fig. 36 Typing iPerf3 client command on host h1

Fig. 37 Typing iPerf3 client command on host h3

Fig. 38 Running iPerf3 client on host h1

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 37):

iperf3 -c 10.0.0.2 -t 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 38).

The figure above shows the iPerf3 test output report by the last 20 s. The
average achieved throughput is 78.7Mbps (sender) and 78.3Mbps (receiver), and
the number of retransmissions is 1129. Host h3’s results are similar to the figure
above; however, we are just focused on host h1’s results.

134 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 39 Changing TCP congestion control algorithm to bbr in host h1

Fig. 40 Starting iPerf3 server on host h2

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

7.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR
by typing the following command (Fig. 39):

sysctl -w net.ipv4.tcp_congestion_control=bbr

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 40).

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 41).

iperf3 -s

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 42):

7 Testing Throughput with 100 · MTU Switch’s Buffer Size 135

Fig. 41 Starting iPerf3 server on host h4

Fig. 42 Typing iPerf3 client command on host h1

Fig. 43 Typing iPerf3 client command on host h3

iperf3 -c 10.0.0.2 -t 90

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 43):

iperf3 -c 10.0.0.2 -t 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 44).

The figure above shows the iPerf3 test output report by the last 20 s. The average
achieved throughput is 3.48Gbps (sender) and 3.47Gbps (receiver), and the number
of retransmissions is 75,818. Note that the congestion control algorithm used in host
h1 is bbr and in host h3 is cubic.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

136 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 44 Running iPerf3 client on host h1

8 Testing Throughput with One BDP Switch’s Buffer Size

In this section, you are going to change the switch S1 buffer size to one BDP
(26,214,400) using the Token Bucket Filter (tbf). Then, you will test the through-
put between host h1 and host h2 while there is another TCP flow between host h3
and host h4. On each test, you will modify the congestion control algorithm in host
h1, namely cubic, reno, and bbr. The congestion control algorithm will still be cubic
in host 3 for all tests. In this section, the tbf limit value will be set to one BDP =
26,214,400 bytes.

8.1 Changing Switch S1’s Buffer Size to One BDP

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth1 interface. In the client’s
terminal, type the command below (Fig. 45). When prompted for a password, type
password and hit Enter.

• rate : 10gbit

• burst : 5,000,000

• limit : 26,214,400

8 Testing Throughput with One BDP Switch’s Buffer Size 137

Fig. 45 Changing the buffer size to one BDP on switch S1’s s1-eth1 interface

Fig. 46 Changing TCP congestion control algorithm to cubic in host h1

sudo tc qdisc change dev s1-eth1 parent 1: handle 2: tbf
rate 10gbit burst 5000000 limit 26214400

8.2 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to
Cubic by typing the following command (Fig. 46):

sysctl -w net.ipv4.tcp_congestion_control=cubic

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 47).

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 48).

iperf3 -s

138 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 47 Starting iPerf3 server on host h2

Fig. 48 Starting iPerf3 server on host h4

Fig. 49 Typing iPerf3 client command on host h1

The following two steps should be executed almost
simultaneously; thus, you will type the commands displayed
in Step 3 and Step 4, and then in Step 5 you will execute
them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 49):

iperf3 -c 10.0.0.2 -t 90

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 50):

iperf3 -c 10.0.0.2 -t 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 51).

8 Testing Throughput with One BDP Switch’s Buffer Size 139

Fig. 50 Typing iPerf3 client command on host h3

Fig. 51 Running iPerf3 client on host h1

The figure above shows the iPerf3 test output report by the last 20 s. The average
achieved throughput is 4.57Gbps (sender) and 4.57Gbps (receiver), and the number
of retransmissions is 0. Note that the congestion avoidance algorithm used in host
h1 and host h2 is cubic. Similar results are found in host h3 terminal.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

8.3 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno
by typing the following command (Fig. 52):

sysctl -w net.ipv4.tcp_congestion_control=reno

140 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 52 Changing TCP congestion control algorithm to reno in host h1

Fig. 53 Starting iPerf3 server on host h2

Fig. 54 Starting iPerf3 server on host h4

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 53).

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 54).

iperf3 -s

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 55):

iperf3 -c 10.0.0.2 -t 90

8 Testing Throughput with One BDP Switch’s Buffer Size 141

Fig. 55 Typing iPerf3 client command on host h1

Fig. 56 Typing iPerf3 client command on host h3

Fig. 57 Running iPerf3 client on host h1

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 56):

iperf3 -c 10.0.0.2 -t 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 57).

The figure above shows the iPerf3 test output report by the last 20 s. The average
achieved throughput is 2.74Gbps (sender) and 2.74Gbps (receiver), and the number
of retransmissions is 1982. Note that the congestion avoidance algorithm used in

142 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 58 Changing TCP congestion control algorithm to bbr in host h1

Fig. 59 Starting iPerf3 server on host h2

host h1 is reno and in host h2 is cubic. Host h3’s results are similar to the figure
above; however, we are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

8.4 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR
by typing the following command (Fig. 58):

sysctl -w net.ipv4.tcp_congestion_control=bbr

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 59).

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 60).

iperf3 -s

8 Testing Throughput with One BDP Switch’s Buffer Size 143

Fig. 60 Starting iPerf3server on host h4

Fig. 61 Typing iPerf3 client command on host h1

Fig. 62 Typing iPerf3 client command on host h3

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 61):

iperf3 -c 10.0.0.2 -t 90

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 62):

iperf3 -c 10.0.0.2 -t 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 63).

The figure above shows the iPerf3 test output report by the last 20 s. The average
achieved throughput is 5.64Gbps (sender) and 5.63Gbps (receiver), and the number
of retransmissions is 16,110. Note that the congestion avoidance algorithm used in
host h1 is bbr and in host h3 is cubic. Host h3’s results are similar to the figure
above; however, we are just focused on host h1’s results.

144 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 63 Running iPerf3 client on host h1

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

9 Emulating High-Latency WAN with Packet Loss

This section emulates a high-latency WAN with packet loss. We already have set a
20ms RTT on the switches. Now, you will add 0.01% packet loss on the switch S1.
Note that the switch S1’s buffer size is set to one BDP.

Step 1. In the terminal, type the command below. When prompted for a password,
type password and hit Enter. This command introduces 0.01% packet loss on
switch S1’s s1-eth1 interface (Fig. 64).

sudo tc qdisc change dev s1-eth1 root handle 1: netem delay
10ms loss 0.01%

9 Emulating High-Latency WAN with Packet Loss 145

Fig. 64 Adding delay of 0.01% to switch S1’s s1-eth1 interface

Fig. 65 Changing TCP congestion control algorithm to cubic in host h1

Fig. 66 Starting iPerf3 server on host h2

9.1 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to cubic
by typing the following command (Fig. 65):

sysctl -w net.ipv4.tcp_congestion_control=cubic

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 66).

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 67).

iperf3 -s

146 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 67 Starting iPerf3 server on host h4

Fig. 68 Typing iPerf3 client command on host h1

Fig. 69 Typing iPerf3 client command on host h3

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 68):

iperf3 -c 10.0.0.2 -t 90

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 69):

iperf3 -c 10.0.0.2 -t 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 70).

The figure above shows the iPerf3 test output report by the last 20 s. The average
achieved throughput is 1.02Gbps (sender) and 1.02Gbps (receiver), and the number
of retransmissions is 3088. Note that the congestion control algorithm used in host
h1 and host h2 is cubic. Host h3’s results are similar to the figure above; however,
we are just focused on host h1’s results.

9 Emulating High-Latency WAN with Packet Loss 147

Fig. 70 Running iPerf3 client on host h1

Fig. 71 Changing TCP congestion control algorithm to reno in host h1

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

9.2 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno
by typing the following command (Fig. 71):

sysctl -w net.ipv4.tcp_congestion_control=reno

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 72).

148 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 72 Starting iPerf3 server on host h2

Fig. 73 Starting iPerf3 server on host h4

Fig. 74 Typing iPerf3 client command on host h1

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 73).

iperf3 -s

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 74):

iperf3 -c 10.0.0.2 -t 90

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 75):

iperf3 -c 10.0.0.2 -t 90

9 Emulating High-Latency WAN with Packet Loss 149

Fig. 75 Typing iPerf3 client command on host h3

Fig. 76 Running iPerf3 client on host h1

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 76).

The figure above shows the iPerf3 test output report by the last 20 s. The average
achieved throughput is 726Mbps (sender) and 718Mbps (receiver), and the number
of retransmissions is 19,496. Note that the congestion control algorithm used in host
h1 is reno and in host h2 is cubic. Host h3’s results are similar to the figure above;
however, we are just focused on host h1’s results.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

9.3 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR
by typing the following command (Fig. 77):

150 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 77 Changing TCP congestion control algorithm to bbr in host h1

Fig. 78 Starting iPerf3 server on host h2

Fig. 79 Starting iPerf3 server on host h4

sysctl -w net.ipv4.tcp_congestion_control=bbr

Note that host h3’s congestion control algorithm is cubic by default.

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 78).

iperf3 -s

Step 3. Launch iPerf3 in server mode on host h4’s terminal (Fig. 79).

iperf3 -s

The following two steps should be executed almost simultaneously; thus, you will
type the commands displayed in Step 3 and Step 4, and then in Step 5 you will
execute them.

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it (Fig. 80):

Chapter 3—Lab 7: Router’s Bufferbloat 151

Fig. 80 Typing iPerf3 client command on host h1

Fig. 81 Typing iPerf3 client command on host h3

iperf3 -c 10.0.0.2 -t 90

Step 5. Type the following iPerf3 command in host h3’s terminal without executing
it (Fig. 81):

iperf3 -c 10.0.0.2 -t 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h3 terminal (Fig. 82).

The figure above shows the iPerf3 test output report by the last 20 s. The average
achieved throughput is 8.72Gbps (sender) and 8.71Gbps (receiver), and the number
of retransmissions is 25,740. Note that the congestion avoidance algorithm used in
host h1 is bbr and in host h3 is cubic.

Step 7. In order to stop the server, press Ctrl+c in host h2’s and host h4’s
terminals. The user can see the throughput results in the server side too.

Chapter 3—Lab 7: Router’s Bufferbloat

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 7.

This lab discusses bufferbloat, a condition that occurs when a router or network
device buffers too much data, leading to excessive delays. The lab describes the
steps to conduct throughput tests on switched networks with different buffer sizes.
Note that as the buffering process is similar in routers and switches, both terms are
used interchangeably in this lab.

Objectives
By the end of this lab, students should be able to:

http://highspeednetworks.net/

152 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 82 Running iPerf3 client on host h1

Table 4 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

1. Identify and describe the components of end-to-end delay.
2. Understand the buffering process in a router.
3. Explain the concept of bufferbloat.
4. Visualize queue occupancy in a router.
5. Analyze end-to-end delay and describe how queueing delay affects end-to-end

delay on networks with large routers’ buffer size.
6. Modify routers’ buffer size to solve the bufferbloat problem.

Lab Settings
The information in Table 4 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 10: Introduction to bufferbloat.
2. Section 11: Lab topology.
3. Section 11.4: Testing throughput on a network with a small buffer-size switch.
4. Section 12: Testing throughput on a network with a 1·BDP buffer-size switch.
5. Section 13: Testing throughput on a network with a large buffer-size switch.

10 Introduction to Bufferbloat 153

10 Introduction to Bufferbloat

10.1 1.1 Packet Delays

As a packet travels from a sender to a receiver, it experiences several types of delays
at each node (router/switch) along the path. The most important of these delays are
the processing delay, queuing delay, transmission delay, and propagation delay (see
Fig. 83).

• Processing delay: The time required to examine the packet’s header and deter-
mine where to direct the packet. For high-speed routers, this delay is on the order
of microseconds or less.

• Transmission delay: The time required to put the bits on the wire. It is given
by the packet size (in bits) divided by the bandwidth of the link (in bps). For
example, for a 10Gbps and 1500-byte packet (12,000 bits), the transmission time
is T = 12, 000/10 × 109 = 0.0012 milliseconds or 1.2 microseconds.

• Queueing delay: The time a packet waits for transmission onto the link. The
length of the queuing delay of a packet depends on the number of earlier-arriving
packets that are queued and waiting for transmission onto the link. Queuing
delays can be on the order of microseconds to milliseconds.

• Propagation delay: Once a bit is placed into the link, it needs to propagate to
the other end of the link. The time required to propagate across the link is the
propagation delay. In local area networks (LANs) and datacenter environments,
this delay is small (microseconds to few milliseconds); however, in Wide Area
Networks (WANs)/long-distance connections, the propagation delay can be on
the order of hundreds of milliseconds.

10.2 Bufferbloat

In modern networks composed of high-speed routers and switches, the processing
and transmission delays may be negligible. The propagation delay can be considered

Sender Receiver

Bottleneck bandwidth link (btlbw)Buffer
Router

PropagationTransmission

Queueing (waiting for
transmission)

Processing

Fig. 83 Delay components: processing, queueing, transmission, and propagation delays

154 Data-Link and Network Layer Considerations for Large Data Transfers

as a constant (i.e., it has a fixed value). Finally, the dynamics of the queues in routers
results in varying queueing delays. Ideally, this delay should be minimized.

An important consideration that affects the queuing delay is the router’s buffer
size. While there is no consensus on how large the buffer should be, the rule of
thumb has been that the amount of buffering (in bits) in a router’s port should equal
the average Round-Trip Time (RTT) (in seconds) multiplied by the capacity C (in
bits per second) of the port:

Router
′
s buffer size = C · RTT [bits]

A large enough router’s buffer size is essential for networks transporting big
flows, as it absorbs transitory packet bursts and prevents losses. However, if a buffer
size is excessively large, queues can be formed and substantial queueing delay be
observed. This high latency produced by excess buffering of packets is referred to
as bufferbloat.

The bufferbloat problem is caused by routers with large buffer size and end
devices running TCP congestion control algorithms that constantly probe for addi-
tional bandwidth. Consider Fig. 7, where RTprop refers to the end-to-end propagation
delay from sender to receiver and then back (round-trip), and BDP refers to the
bandwidth-delay product given by the product of the capacity of the bottleneck
link along the path and RTprop. RTprop is a constant that depends on the physical
distance between end devices. In the application limited region, the throughput
increases as the amount of data generated by the application layer increases, while
the RTT remains constant. The pipeline between sender and receiver becomes full
when the inflight number of bits is equal to BDP, at the edge of the bandwidth
limited region. Note that traditional TCP congestion control (e.g., Reno, Cubic,
HTCP) will continue to increase the sending rate (inflight data) beyond the optimal
operating point, as they probe for more bandwidth. This process is known as TCP
additive increase rule. Since no packet loss is noted in the bandwidth limited region
despite the increasing TCP rate (which is absorbed by the router’s buffer), TCP
keeps increasing the sending rate/inflight data, until eventually the router’s buffer is
full and a packet is dropped (the amount of bits in the network is equal to BDP plus
the buffer size of the router). Beyond the application limited region, the increase in
queueing delay causes the bufferbloat problem (Fig. 84).

In this lab, the reader will conduct experiments and measure the throughput and
RTT under different network conditions. By modifying a router’s buffer size, the
bufferbloat problem will be observed.

11 Lab Topology 155

R
TT

Th
ro

ug
hp

ut

Inflight data

btlbw

RTprop

Buffer limitedBandwidth limitedApp. limited

RTprop

btlbw

Optimal operating point
Operating point of traditional congestion control algorithms

BDP = RTprop · btlbw BDP + buffer size

Packet lossBufferbloat starts:
queueing delay increases

at router’s queue

Optimal operating point

Operating point of
traditional algorithms

Fig. 84 Throughput and RTT as a function of inflight data

11 Lab Topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topol-
ogy uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 85).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 86). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 7.mn topology file and click on Open (Fig. 87).

156 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 85 Lab topology

Fig. 86 MiniEdit shortcut

Step 3. Before starting the measurements between end-hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to
start the emulation (Fig. 88).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

11.1 Starting Host h1, Host h2, and Host h3

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host (Fig. 89).

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.3 . This command tests the connectivity

11 Lab Topology 157

Fig. 87 MiniEdit’s Open dialog

Fig. 88 Running the
emulation

between host h1 and host h3. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test (Fig. 90).

11.2 Emulating High-Latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch
S1’s s1-eth2 interface.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 91).

158 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 89 Opening a terminal on host h1

Fig. 90 Connectivity test using ping command

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password,
type password and hit Enter. This command introduces 10ms delay to switch S1’s
s1-eth2 interface (Fig. 92).

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay
20ms

11 Lab Topology 159

Fig. 91 Shortcut to open a Linux terminal

Fig. 92 Adding delay of 10ms to switch S1’s s1-eth2 interface

Fig. 93 Output of ping 10.0.0.3 command

11.3 Testing Connection

To test connectivity, you can use the command ping .

Step 1. On the terminal of host h1, type ping 10.0.0.3 . To stop the test, press

Ctrl+c . The figure below shows a successful connectivity test. Host h1 (10.0.0.1)
sent four packets to host h3 (10.0.0.3), successfully receiving responses back
(Fig. 93).

160 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 94 Output of ping 10.0.0.3 command

The result above indicates that all four packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 20.080, 25.390, 41.266, and
9.166 milliseconds, respectively. The output above verifies that delay was injected
successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.3 . The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1.
To stop the test, press Ctrl+c (Fig. 94).

The result above indicates that all four packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 20.090, 25.257, 40.745, and
8.943 milliseconds, respectively. The output above verifies that delay was injected
successfully, as the RTT is approximately 20ms.

11.4 Testing Throughput on a Network with a Small
Buffer-Size Switch

In this section, you are going to change the switch S1’s buffer size to 100·MTU and
emulate a 1Gbps Wide Area Network (WAN) using the Token Bucket Filter (tbf).
Then, you will test the throughput between host h1 and host h3. In this section, the
MTU is 1600 bytes; thus, the tbf limit value will be set to 100 ·MTU = 160,000
bytes.

11 Lab Topology 161

Fig. 95 Limiting rate to 1Gbps and setting the buffer size to 100·MTU on switch S1’s interface

11.5 Setting Switch S1’s Buffer Size to 100 ·MTU

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s

terminal, type the command below.When prompted for a password, type password
and hit Enter (Fig. 95).

• rate : 1gbit

• burst : 500,000

• limit : 160,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate
1gbit burst 500000 limit 160000

11.6 Bandwidth-Delay Product (BDP) and Hosts’ Buffer Size

In the upcoming tests, the bandwidth is limited to 1Gbps, and the RTT (delay or
latency) is 20ms.

BW = 1, 000, 000, 000 bits/second

RTT = 0.02 seconds

BDP = 1, 000, 000, 000 · 0.02 = 20, 000, 000 bits

= 2, 500, 000 bytes ≈ 2.5Mbytes

1Mbyte = 10242 bytes

BDP = 2.5Mbytes = 2.5 · 10242 bytes = 2, 621, 440 bytes

162 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 96 Receive window change in sysctl

Fig. 97 Send window change in sysctl

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the
maximum buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes,
then no need to tune the buffer sizes on end-hosts. However, in upcoming tests, we
configure the buffer size on the switch to 10·BDP. To ensure that the bottleneck is
not the hosts’ buffers, we configure the buffers to 10·BDP (26,214,400).

Step 1. Now, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s
terminal type the command shown below. The values set are: 10,240 (minimum),
87,380 (default), and 52,428,800 (maximum). The maximum value is doubled
(2·10·BDP) as Linux only allocates half of the assigned value (Fig. 96).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

The returned values are measured in bytes. 10,240 represents the minimum buffer
size that is used by each TCP socket. 87,380 is the default buffer that is allocated
when applications create a TCP socket. 52,428,800 is the maximum receive buffer
that can be allocated for a TCP socket.

Step 2. To change the current send-window size value(s), use the following
command on host h1’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 52,428,800 (maximum). The maximum value is doubled as Linux
allocates only half of the assigned value (Fig. 97).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Step 3. Now, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h3’s
terminal type the command shown below. The values set are: 10,240 (minimum),
87,380 (default), and 52,428,800 (maximum). The maximum value is doubled as
Linux allocates only half of the assigned value (Fig. 98).

11 Lab Topology 163

Fig. 98 Receive window change in sysctl

Fig. 99 Send window change in sysctl

Fig. 100 Starting iPerf3 server on host h3

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Step 4. To change the current send-window size value(s), use the following
command on host h1’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 52,428,800 (maximum). The maximum value is doubled as Linux
allocates only half of the assigned value (Fig. 99).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

The returned values are measured in bytes. 10,240 represents the minimum buffer
size that is used by each TCP socket. 87,380 is the default buffer that is allocated
when applications create a TCP socket. 52,428,800 is the maximum receive buffer
that can be allocated for a TCP socket.

11.7 Throughput Test

Step 1. Launch iPerf3 in server mode on host h3’s terminal (Fig. 100).

iperf3 -s

164 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 101 Running iPerf3 client on host h1

Step 2. Type the following iPerf3 command in host h1’s terminal (Fig. 101):

iperf3 -c 10.0.0.3

The figure above shows the iPerf3 test output report. The average achieved
throughput is 74.1Mbps (sender) and 72.2Mbps (receiver), and the number of
retransmissions is 582. Note that the maximum throughput (1Gbps) was not
achieved. This is due to having a small buffer on the switch (100 ·MTU).

12 Testing Throughput on a Network with a 1 · BDP
Buffer-Size Switch

In this section, you are going to change the switch S1’s buffer size to 1·BDP
and emulate a 1Gbps Wide Area Network (WAN) using the Token Bucket Filter
(tbf). Then, you will test the throughput between host h1 and host h3. The BDP is

2,621,440 bytes; thus, the tbf limit value will be set to 2,621,440.

12 Testing Throughput on a Network with a 1 · BDP Buffer-Size Switch 165

Fig. 102 Limiting rate to 1Gbps and setting the buffer size to 1·BDP on switch S1’s interface

Fig. 103 Starting iPerf3 server on host h3

12.1 Setting Switch S1’s Buffer Size to 1 ·BDP

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s

terminal, type the command below.When prompted for a password, type password
and hit Enter (Fig. 102).

• rate : 1gbit

• burst : 500,000

• limit : 2,621,440

sudo tc qdisc change dev s1-eth2 parent 1: handle 2: tbf
rate 1gbit burst 500000 limit 2621440

12.2 Throughput and Latency Tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal (Fig. 103).

iperf3 -s

Step 2. In the client’s terminal, type the command below to plot the switch’s
queue in real-time. When prompted for a password , type password and hit Enter
(Fig. 104).

166 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 104 Plotting the queue occupancy on switch S1’s s1-eth2 interface

Fig. 105 Queue occupancy on switch S1’s s1-eth2 interface

sudo plot_q.sh s1-eth2

A new window opens that plots the queue occupancy as shown in the figure
below (Fig. 105). Since there are no active flows passing through s1-eth2 interface
on switch S1, the queue occupancy is constantly 0.

Step 3. In host h1, create a directory called 1_BDP and navigate into it using the
following command (Fig. 106):

mkdir 1_BDP && cd 1_BDP

12 Testing Throughput on a Network with a 1 · BDP Buffer-Size Switch 167

Fig. 106 Creating and navigating into directory 1_BDP

Fig. 107 Running iPerf3 client on host h1

Fig. 108 Typing ping command on host h2

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it. The -J option is used to display the output in JSON format. The redirection
operator > is used to store the JSON output into a file (Fig. 107).

iperf3 -c 10.0.0.3 -t 90 -J >out.json

Step 5. Type the following ping command in host h2’s terminal without executing
it (Fig. 108):

ping 10.0.0.3 -c 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h2 terminal. Then, go back to the queue plotting window and observe the queue
occupancy (Fig. 109).

The graph above shows that the queue occupancy peaked at 2.5 · 106, which is
the maximum buffer size we configure on the switch.

Step 7. In the queue plotting window, press the s key on your keyboard to stop
plotting the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command
(Fig. 110):

plot_iperf.sh out.json && cd results

168 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 109 Queue occupancy on switch S1’s s1-eth2 interface

Fig. 110 Generating plotting files and entering the results directory

Fig. 111 Opening the throughput.pdf file

Step 9. Open the throughput file using the command below on host h1 (Fig. 111):

xdg-open throughput.pdf

12 Testing Throughput on a Network with a 1 · BDP Buffer-Size Switch 169

Fig. 112 Measured throughput

Fig. 113 Opening the RTT.pdf file

The figure above (Fig. 112) shows the iPerf3 test output report for the last 90 s.
The average achieved throughput is approximately 900Mbps. We can see now that
the maximum throughput was almost achieved (1Gbps) when we set the switch’s
buffer size to 1BDP.

Step 10. Close the throughput.pdf window and then open the Round-Trip Time
(RTT) file using the command below (Fig. 113):

xdg-open RTT.pdf

The graph above (Fig. 114) shows that the RTT was between 25,000 microsec-
onds (25ms) and 40,000 microseconds (40ms). The output shows that there is no
bufferbloat problem as the average latency is slightly greater than the configured
delay (20ms).

Step 11. Close the RTT.pdf window and then open the congestion window (cwnd)
file using the command below (Fig. 115):

170 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 114 Measured Round-Trip Time

Fig. 115 Opening the cwnd.pdf file

xdg-open cwnd.pdf

The graph above (Fig. 116) shows the evolution of the congestion window, which
peaked at 4.5 Mbytes. In the next test, we see how buffer size on the switch affects
the congestion window evolution.

Step 12. Close the cwnd.pdf window and then go back to h2’s terminal to see the
ping output (Fig. 117).

The result above indicates that all 90 packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 25.630, 32.669, 64.126, and 4.359
milliseconds, respectively. The output also verifies that there is no bufferbloat
problem as the average latency (32.669) is slightly greater than the configured delay
(20ms).

Step 13. To stop iperf3 server in host h3, press Ctrl+c .

13 Testing Throughput on a Network with a Large Buffer-Size Switch 171

Fig. 116 Congestion window evolution

13 Testing Throughput on a Network with a Large
Buffer-Size Switch

In this section, you are going to change the switch S1’s buffer size to 10·BDP
and emulate a 1Gbps Wide Area Network (WAN) using the Token Bucket Filter
(tbf). Then, you will test the throughput between host h1 and host h3. The BDP is

2,621,440 bytes; thus, the tbf limit value will be set to 26,214,400.

13.1 Setting Switch S1’s Buffer Size to 10 ·BDP

Step 1. Apply tbf rate limiting rule on switch S1’s s1-eth2 interface. In the client’s

terminal, type the command below.When prompted for a password, type password
and hit Enter (Fig. 118).

• rate : 1gbit

• burst : 500,000

• limit : 26,214,400

172 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 117 ping test result

Fig. 118 Limiting rate to 1Gbps and setting the buffer size to 10·BDP on switch S1’s interface

sudo tc qdisc change dev s1-eth2 parent 1: handle 2: tbf
rate 1gbit burst 500000 limit 26214400

13.2 Throughput and Latency Tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal (Fig. 119).

13 Testing Throughput on a Network with a Large Buffer-Size Switch 173

Fig. 119 Starting iPerf3 server on host h3

Fig. 120 Plotting the queue occupancy on switch S1’s s1-eth2 interface

iperf3 -s

Step 2. In the client’s terminal, type the command below to plot the switch’s
queue in real-time. When prompted for a password, type password and hit Enter
(Fig. 120).

sudo plot_q.sh s1-eth2

A new window opens that plots the queue occupancy as shown in the figure
below (Fig. 121). Since there are no active flows passing through s1-eth2 interface
on switch S1, the queue occupancy is constantly 0.

Step 3. Exit from 1BDP/results directory, then create a directory 10BDP, and
navigate into it using the following command (Fig. 122):

cd ../../ && mkdir 10BDP && cd 10BDP

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it. The -J option is used to display the output in JSON format. The redirection
operator > is used to store the JSON output into a file (Fig. 123).

iperf3 -c 10.0.0.3 -t 90 -J >out.json

Step 5. Type the following ping command in host h2’s terminal without executing
it (Fig. 124):

174 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 121 Queue occupancy on switch S1’s s1-eth2 interface

Fig. 122 Creating and navigating into directory 1BDP

Fig. 123 Running iPerf3 client on host h1

ping 10.0.0.3 -c 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h2 terminal. Then, go back to the queue plotting window and observe the queue
occupancy (Fig. 125).

13 Testing Throughput on a Network with a Large Buffer-Size Switch 175

Fig. 124 Typing ping command on host h2

Fig. 125 Queue occupancy on switch S1’s s1-eth2 interface

The graph above shows that the queue occupancy peaked at 2.5·107, which is
the maximum buffer size we configure on the switch. Note that the buffer is almost
always fully occupied, which will lead to an increase in the latency as demonstrated
next.

Step 7. In the queue plotting window, press the s key on your keyboard to stop
plotting the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command
(Fig. 126):

plot_iperf.sh out.json && cd results

Step 9. Open the throughput file using the command below on host h1 (Fig. 127):

176 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 126 Generating plotting files and entering the results directory

Fig. 127 Opening the throughput.pdf file

Fig. 128 Measured throughput

xdg-open throughput.pdf

The figure above (Fig. 128) shows the iPerf3 test output report for the last 90 s.
The average achieved throughput is 900Mbps. We can see now that the maximum
throughput is also achieved (1Gbps) when we set the switch’s buffer size to 10·BDP.
Step 10. Close the throughput.pdf window and then open the Round-Trip Time
(RTT) file using the command below (Fig. 129):

13 Testing Throughput on a Network with a Large Buffer-Size Switch 177

Fig. 129 Opening the RTT.pdf file

Fig. 130 Measured Round-Trip Time

xdg-open RTT.pdf

The graph above (Fig. 130) shows that the RTT increased from approximately
50,000 microseconds (50ms) to 230,000 microseconds (230ms). The output above
shows that there is a bufferbloat problem as the average latency is significantly
greater than the configured delay (20ms). Since the buffer on the switch is
accommodating a large congestion window, latency is increased as new incoming
packets have to wait in the highly occupied queue.

Step 11. Close the RTT.pdf window and then open the congestion window (cwnd)
file using the command below (Fig. 131):

xdg-open cwnd.pdf

178 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 131 Opening the cwnd.pdf file

Fig. 132 Congestion window evolution

The graph above (Fig. 132) shows the evolution of the congestion window. Note
how the congestion window peaked at 25.2 Mbytes compared to the previous test
where it peaked at approximately 4.5 Mbytes. Since the queue size was configured
with a large value, TCP continued to increase the congestion window as no packet
losses were inferred.

Step 12. Close the cwnd.pdf window and then go back to h2’s terminal to see the
ping output (Fig. 133).

The result above indicates that all 90 packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 34.239, 167.046, 219.647, and
73.715 milliseconds, respectively. The output also verifies that there is a bufferbloat
problem as the average latency (167.046) is significantly greater than the configured
delay (20ms).

Step 13. To stop iperf3 server in host h3, press Ctrl+c .

Chapter 3—Lab 8: Random Early Detection (RED) 179

Fig. 133 ping test result

Chapter 3—Lab 8: Random Early Detection (RED)

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 8.

This lab explains the Random Early Detection (RED) Active-Queue Manage-
ment (AQM) algorithm. This algorithm aims at mitigating high end-to-end latency
by controlling the average queue length in routers’ buffers. Throughput, latency,
and queue length measurements are conducted in this lab to verify the impact of the
dropping policy provided RED.

Objectives
By the end of this lab, students should be able to:

1. Identify and describe the components of end-to-end latency.
2. Understand the buffering process in a router.
3. Explain the impact of RED handling the queuing policy in a router egress port.

http://highspeednetworks.net/

180 Data-Link and Network Layer Considerations for Large Data Transfers

Table 5 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

4. Visualize queue occupancy in a router.
5. Analyze how RED manages the queue length in order to allow end-hosts to

achieve high throughput and low latency.
6. Modify the network condition in order to evaluate the performance on RED’s

dropping policy.

Lab Settings
The information in Table 5 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 14: Introduction.
2. Section 15: Lab topology.
3. Section 16: Testing throughput on a network using Drop Tail AQM algorithm.
4. Section 17: Configuring RED on switch S2.

14 Introduction

End-to-end-congestion control is widely used in the current Internet to prevent
congestion collapse. However, because data traffic is inherently bursty, routers are
provisioned with large buffers to absorb this burstiness and maintain high link
utilization. The downside of these large buffers is that if traditional drop tail buffer
management is used, there will be high queuing delays at congested routers. Thus,
drop tail buffer management forces network operators to choose between high
utilization (requiring large buffers) and low delay (requiring small buffers).

Random Early Detection (RED) was proposed by Floyd and Van Jacobson to
address network congestion responsively rather than reactively. The main goal of
RED is to provide congestion avoidance by controlling the average queue size. Other
goals are the avoidance of global synchronization and to introduce fairness to reduce
the bias against bursty traffic. TCP global synchronization happens to a TCP flow
during periods of congestion when each sender reduces and then increases their
transmission rate at the same time due to packet loss.

14 Introduction 181

14.1 Random Early Detection Mechanism

Figure 134a illustrates scenario where a router’s buffer is managed by Random
Early Detection. RED uses a low-pass filter with an exponential moving average
to calculate the average queue size. Then, the average queue size is compared to
two thresholds: a minimum threshold and a maximum threshold. Consequently, the
packet drop probability is determined by the function shown in Fig. 134b. When
the average queue size is less than the minimum threshold, no packets are dropped.
When the average queue size is greater than the maximum threshold, every arriving
packet is marked and therefore they are dropped. When the average queue size is
between the minimum and the maximum threshold, each arriving packet is marked
with drop probability. Thus, RED has two separate algorithms. First, the algorithm
for computing the average queue size that determines the degree of burstiness
allowed in the queue. Second, the algorithm for calculating the packet marking
probability, which determines how frequently the gateway marks or drops packets,
given the current level of congestion. The goal is to mark packets at evenly spaced
intervals, in order to avoid biases global synchronization by marking packets to
control the average queue size.

The basic red syntax used with tc is as follows:

tc qdisc [add |...] dev [dev_id] root red limit [BYTES] max
[BYTES] min [BYTES] burst [BYTES] avpkt [BYTES] bandwidth
[BPS] [probability [RATE]|adaptative] ecn

• tc : Linux traffic control tool.

• qdisc : A queue discipline (qdisc) is a set of rules that determine the order
in which packets arriving from the IP protocol output are served. The queue
discipline is applied to a packet queue to decide when to send each packet.

• [add |del |replace |change |show] : This is the operation on qdisc. For example,
to add the token bucket algorithm on a specific interface, the operation will
be add . To change or remove it, the operation will be change or del ,
respectively.

• dev [dev_id] : This parameter indicates the interface is to be subject to emula-
tion.

• red : This parameter specifies the Random Early Detection algorithm.

• limit [BYTES] : Hard limit on the real (not average) queue size in bytes. Further

packets are dropped. Should be set higher than max + burst .

• max [BYTES] : This parameter specifies the maximum average queue size.
After this value, the dropping probability is 100%. It is recommended to set this
value to limit /4.

182 Data-Link and Network Layer Considerations for Large Data Transfers

• min [BYTES] : This parameter specifies the minimum average queue size.
Below this value, no packet is dropped. Above this threshold, the dropping
probability is established by probability or it increases linearly if the parameter

adaptative is set.

• avpkt : Used with burst to determine the time constant for average queue size
calculations. It is suggested 1000 as good value.

• burst [BYTES] : Used for determining how fast the average queue size
is influenced by the real queue size. Larger values make the calculation
slower, allowing longer bursts of traffic before the marking or dropping phase
starts. Empirical evaluations suggest the following guideline to set this value:
(2· min + max)/(3· avpkt).

Fig. 134 Behavior of Random Early Detection AQM. (a) Buffer managed by RED AQM. (b)
RED dropping function

15 Lab Topology 183

• bandwidth [BPS] : This value is optional and used to calculate the average
queue size after any idle time. It should be set to the bandwidth of the interface.
This parameter does not limit the rate. The default value is 10Mbps.

• ecn : This parameter enables RED to notify remote hosts that their rate exceeds
the amount of bandwidth available. Non-ECN capable hosts can only be notified
by dropping a packet.

• probability : This value specifies the dropping probability after the average
queue length surpass the min threshold. It is specified as a floating point from
0.0 to 1.0. Suggested values are 0.01 or 0.02 (1% or 2%, respectively).

• adaptative : This parameter sets a dynamic value to the dropping probability.
This value varies from 1% to 50%.

In this lab, we will use the red AQM algorithm to contain the queue size at the
egress port of a router.

15 Lab Topology

Let’s get started with creating a simple Mininet topology using MiniEdit. The topol-
ogy uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 135).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 136). When prompted for a password, type
password .

Fig. 135 Lab topology

184 Data-Link and Network Layer Considerations for Large Data Transfers

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 8.mn topology file and click on Open (Fig. 137).

Step 3. Before starting the measurements between end-hosts, the network must be
started. Click on the Run button located at the bottom left of MiniEdit’s window to
start the emulation (Fig. 138).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

15.1 Starting Host h1, Host h2, and Host h3

Step 1. Hold right-click on host h1 and select Terminal. This opens the terminal of
host h1 and allows the execution of commands on that host (Fig. 139).

Step 2. Apply the same steps on host h2 and host h3 and open their Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.3 . This command tests the connectivity

between host h1 and host h3 (Fig. 140). To stop the test, press Ctrl+c . The figure
below shows a successful connectivity test.

Fig. 136 MiniEdit shortcut

15 Lab Topology 185

Fig. 137 MiniEdit’s Open dialog

Fig. 138 Running the
emulation

15.2 Emulating High-Latency WAN

This section emulates a high-latency WAN. We will emulate 20ms delay on switch
S1’s s1-eth2 interface.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 141).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system to perform.

186 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 139 Opening a terminal on host h1

Fig. 140 Connectivity test using ping command

Step 2. In the terminal, type the command below. When prompted for a password,
type password and hit Enter. This command introduces 20ms delay to switch S1’s
s1-eth1 interface (Fig. 142).

sudo tc qdisc add dev s1-eth1 root netem delay 20ms

15 Lab Topology 187

Fig. 141 Shortcut to open a Linux terminal

Fig. 142 Adding delay of 20ms to switch S1’s s1-eth1 interface

15.3 Testing Connection

To test connectivity, you can use the command ping .

Step 1. On the terminal of host h1, type ping 10.0.0.3 . To stop the test, press

Ctrl+c . The figure below shows a successful connectivity test. Host h1 (10.0.0.1)
sent four packets to host h3 (10.0.0.3), successfully receiving responses back
(Fig. 143).

The result above indicates that all four packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 20.080, 25.390, 41.266, and
9.166 milliseconds, respectively. The output above verifies that delay was injected
successfully, as the RTT is approximately 20ms.

Step 2. On the terminal of host h2, type ping 10.0.0.3 . The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1
(Fig. 144). To stop the test, press Ctrl+c .

The result above indicates that all four packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 20.090, 25.257, 40.745, and
8.943 milliseconds, respectively. The output above verifies that delay was injected
successfully, as the RTT is approximately 20ms.

188 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 143 Output of ping 10.0.0.3 command

Fig. 144 Output of ping 10.0.0.3 command

16 Testing Throughput on a Network Using Drop Tail AQM
Algorithm

In this section, you are going to change the switch S2’s buffer size to 10 ·BDP
and emulate a 1Gbps Wide Area Network (WAN) using the Token Bucket Filter
(tbf) as well as hosts’ h1 and h3 TCP sending and receiving windows. The AQM
algorithm is Drop Tail, which works by dropping newly arriving packets when the
queue is full; therefore, the parameter that is configured is the queue size, which is
given by the limit value set with the tbf rule. Then, you will test the throughput

between host h1 and host h3. In this section, 10 ·BDP is 25 Mbytes; thus, the tbf
limit value will be set to 10 ·BDP = 26,214,400 bytes.

16 Testing Throughput on a Network Using Drop Tail AQM Algorithm 189

Fig. 145 Receive window change in sysctl

16.1 Bandwidth-Delay Product (BDP) and Hosts’ TCP Buffer
Size

In the upcoming tests, the bandwidth is limited to 1Gbps, and the RTT (delay or
latency) is 20ms.

BW = 1, 000, 000, 000 bits/second

RTT = 0.02 seconds

BDP = 1, 000, 000, 000 · 0.02 = 20, 000, 000 bits

= 2, 500, 000 bytes ≈ 2.5Mbytes

1Mbyte = 10242 bytes

BDP = 2.5Mbytes = 2.5 · 10242 bytes = 2, 621, 440 bytes

The default buffer size in Linux is 16 Mbytes, and only 8 Mbytes (half of the
maximum buffer size) can be allocated. Since 8 Mbytes is greater than 2.5 Mbytes,
then no need to tune the buffer sizes on end-hosts. However, in upcoming tests,
we configure the buffer size on the switch to 10·BDP. In addition, to ensure that
the bottleneck is not the hosts’ TCP buffers, we configure the buffers to 20·BDP
(52,428,800).

Step 1. Now, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h1’s
terminal type the command shown below. The values set are: 10,240 (minimum),
87,380 (default), and 52,428,800 (maximum). The maximum value is doubled
(2·10·BDP) as Linux only allocates half of the assigned value (Fig. 145).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

The returned values are measured in bytes. 10,240 represents the minimum buffer
size that is used by each TCP socket. 87,380 is the default buffer that is allocated
when applications create a TCP socket. 52,428,800 is the maximum receive buffer
that can be allocated for a TCP socket.

190 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 146 Send window change in sysctl

Fig. 147 Receive window change in sysctl

Fig. 148 Send window change in sysctl

Step 2. To change the current send-window size value(s), use the following
command on host h1’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 52,428,800 (maximum). The maximum value is doubled as Linux
allocates only half of the assigned value (Fig. 146).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Step 3. Now, we have calculated the maximum value of the TCP sending and
receiving buffer size. In order to change the receiving buffer size, on host h3’s
terminal type the command shown below. The values set are: 10,240 (minimum),
87,380 (default), and 52,428,800 (maximum). The maximum value is doubled as
Linux allocates only half of the assigned value (Fig. 147).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Step 4. To change the current send-window size value(s), use the following
command on host h1’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 52,428,800 (maximum). The maximum value is doubled as Linux
allocates only half of the assigned value (Fig. 148).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

The returned values are measured in bytes. 10,240 represents the minimum buffer
size that is used by each TCP socket. 87,380 is the default buffer that is allocated

16 Testing Throughput on a Network Using Drop Tail AQM Algorithm 191

Fig. 149 Limiting rate to 1Gbps and setting the buffer size to 10 ·BDP on switch S2’s interface

when applications create a TCP socket. 52,428,800 is the maximum receive buffer
that can be allocated for a TCP socket.

16.2 Setting Switch S2’s Buffer Size to 10 · BDP

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s

terminal, type the command below.When prompted for a password, type password
and hit Enter (Fig. 149).

• rate : 1gbit

• burst : 500,000

• limit : 26,214,400

sudo tc qdisc add dev s2-eth2 root handle 1: tbf rate 1gbit
burst 500000 limit 26214400

16.3 Throughput and Latency Tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal (Fig. 150).

iperf3 -s

Step 2. In the client’s terminal, type the command below to plot the switch’s
queue in real-time. When prompted for a password, type password and hit Enter
(Fig. 151).

sudo plot_q.sh s2-eth2

192 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 150 Starting iPerf3 server on host h3

Fig. 151 Plotting the queue occupancy on switch S2’s s2-eth2 interface

A new window opens that plots the queue occupancy as shown in the figure
below. Since there are no active flows passing through s2-eth2 interface on switch
S2, the queue occupancy is constantly 0 (Fig. 152).

Step 3. In host h1, create a directory called Drop_Tail and navigate into it using the
following command (Fig. 153):

mkdir Drop_Tail && cd Drop_Tail

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it. The -J option is used to display the output in JSON format. The redirection
operator > is used to store the JSON output into a file (Fig. 154).

iperf3 -c 10.0.0.3 -t 90 -J >out.json

Step 5. Type the following ping command in host h2’s terminal without executing
it (Fig. 155):

ping 10.0.0.3 -c 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h2 terminal. Then, go back to the queue plotting window and observe the queue
occupancy (Fig. 156).

The graph above shows that the queue occupancy peaked at 2.5 · 107, which is
the maximum buffer size we configure on the switch.

16 Testing Throughput on a Network Using Drop Tail AQM Algorithm 193

Fig. 152 Queue occupancy on switch S2’s s2-eth2 interface

Fig. 153 Creating and navigating into directory Drop_Tail

Fig. 154 Running iPerf3 client on host h1

Step 7. In the queue plotting window, press the s key on your keyboard to stop
plotting the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command
(Fig. 157):

plot_iperf.sh out.json && cd results

194 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 155 Typing ping command on host h2

Fig. 156 Queue occupancy on switch S2’s s2-eth2 interface

Fig. 157 Generating plotting files and entering the results directory

Step 9. Open the throughput file using the command below on host h1 (Fig. 158):

xdg-open throughput.pdf

The figure above (Fig. 159) shows the iPerf3 test output report for the last 90 s.
The average achieved throughput is approximately 900Mbps. We can see now that

16 Testing Throughput on a Network Using Drop Tail AQM Algorithm 195

Fig. 158 Opening the throughput.pdf file

Fig. 159 Measured throughput

Fig. 160 Opening the RTT.pdf file

the maximum throughput was almost achieved (1Gbps) when we set the switch’s
buffer size to 10 ·BDP.
Step 10. Close the throughput.pdf window and then open the Round-Trip Time
(RTT) file using the command below (Fig. 160):

xdg-open RTT.pdf

The graph above (Fig. 161) shows that the RTT was approximately 200,000
microseconds (200ms) The output shows that there is bufferbloat as the average
latency is at least ten times greater than the configured delay (20ms).

196 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 161 Measured round-trip time

Step 11. Close the RTT.pdf window and then go back to h2’s terminal to see the
ping output (Fig. 162).

The result above indicates that all 90 packets were received successfully (0devi-
ation of the Round-Trip Time (RTT) were 20.083, 192.823, 228.407, and 26.954
milliseconds, respectively. The output also verifies that there is bufferbloat as the
average latency (192.823) is significantly greater than the configured delay (20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below
(Fig. 163):

xdg-open cwnd.pdf

The graph above (Fig. 164) shows the evolution of the congestion window,
which peaked at 2.5 Mbytes. In the next section you will configure Random Early
Detection on switch S2 and observe how the algorithm controls the queue length.

Step 13. To stop iperf3 server in host h3 press Ctrl+c .

17 Configuring RED on Switch S2 197

Fig. 162 ping test result

Fig. 163 Opening the cwnd.pdf file

17 Configuring RED on Switch S2

In this section, you are going to configure Random Early Detection in switch S2.
Then, you will conduct throughput and latency measurements between host h1 and
host h3. Note that the buffer size is set to 10·BDP.

198 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 164 Congestion window evolution

17.1 Setting RED Parameter on Switch S2’s Egress Interface

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s

terminal, type the command below.When prompted for a password, type password
and hit Enter (Fig. 165).

• limit : 26,214,400
• max : 8,738,133

• min : 2,184,533

• burst : 2185

• avpkt : 1000

• bandwidth : 1gbit

• adaptative

sudo tc qdisc add dev s2-eth2 parent 1: handle 2: red limit
26214400 max 8738133 min 2184533 burst 2185 avpkt 1000
bandwidth 1gbit adaptative

17 Configuring RED on Switch S2 199

Fig. 165 Setting RED parameters on switch S2’s s2-eth2 interface

Fig. 166 Starting iPerf3 server on host h3

Fig. 167 Plotting the queue occupancy on switch S2’s s2-eth2 interface

17.2 Throughput and Latency Tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal (Fig. 166).

iperf3 -s

Step 2. In the client’s terminal, type the command below to plot the switch’s
queue in real-time. When prompted for a password, type password and hit Enter
(Fig. 167).

sudo plot_q.sh s2-eth2

A new window opens (Fig. 168) that plots the queue occupancy as shown in the
figure below. Since there are no active flows passing through s2-eth2 interface on
switch S2, the queue occupancy is constantly 0.

Step 3. Exit from Drop_Tail/results directory, then create a directory RED, and
navigate into it using the following command (Fig. 169):

200 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 168 Queue occupancy on switch S2’s s2-eth2 interface

Fig. 169 Creating and navigating into directory RED

cd ../../ && mkdir RED && cd RED

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it. The -J option is used to display the output in JSON format. The redirection
operator > is used to store the JSON output into a file (Fig. 170).

iperf3 -c 10.0.0.3 -t 90 -J >out.json

Step 5. Type the following ping command in host h2’s terminal without executing
it (Fig. 171):

ping 10.0.0.3 -c 90

17 Configuring RED on Switch S2 201

Fig. 170 Running iPerf3 client on host h1

Fig. 171 Typing ping command on host h2

Fig. 172 Queue occupancy on switch S2’s s2-eth2 interface

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h2 terminal. Then, go back to the queue plotting window and observe the queue
occupancy (Fig. 172).

The graph above shows that the queue occupancy peaked around 3.5·106 bytes,
which is closer to a buffer of BDP size.

Step 7. In the queue plotting window, press the s key on your keyboard to stop
plotting the queue.

202 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 173 Generating plotting files and entering the results directory

Fig. 174 Opening the throughput.pdf file

Fig. 175 Measured throughput

Step 8. After the iPerf3 test finishes on host h1, enter the following command
(Fig. 173):

plot_iperf.sh out.json && cd results

Step 9. Open the throughput file using the command below on host h1 (Fig. 174):

xdg-open throughput.pdf

The figure above (Fig. 175) shows the iPerf3 test output report for the last 90 s.
The average achieved throughput is 900Mbps. We can see now that the maximum

17 Configuring RED on Switch S2 203

Fig. 176 Opening the RTT.pdf file

Fig. 177 Measured Round-Trip Time

throughput is also achieved (1Gbps) when we set RED at the egress port of switch
S2.

Step 10. Close the throughput.pdf window and then open the Round-Trip Time
(RTT.pdf) file using the command below (Fig. 176):

xdg-open RTT.pdf

The graph above (Fig. 177) shows that the RTT was contained between 30ms
and 40ms, which is not significantly greater that the configured delay (20ms);
thus, there is no bufferbloat. Bufferbloat is prevented because the AQM algorithm
configured on the switch is applying a dropping policy to prevent unnecessary
delays.

Step 11. Close the RTT.pdf window and then go back to h2’s terminal to see the
ping output (Fig. 178).

The result above indicates that all 90 packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 26.833, 34.048, 38.824, and 3.311
milliseconds, respectively. The output also verifies that there is not bufferbloat as

204 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 178 ping test result

Fig. 179 Opening the cwnd.pdf file

the average latency (34.048) is not significantly greater than the configured delay
(20ms).

Step 12. Open the congestion window (cwnd.pdf) file using the command below
(Fig. 179):

xdg-open cwnd.pdf

The graph above (Fig. 180) shows the evolution of the congestion window,
which peaked around 5 Mbytes. In the next section you will maintain the current
parameters of Random Early Detection on switch S2; however, you will change the
link rate in order to verify if the algorithm performs well if the network condition
changes.

17 Configuring RED on Switch S2 205

Fig. 180 Evolution of the congestion window

Step 13. To stop iperf3 server in host h3, press Ctrl+c .

17.3 Changing the Bandwidth to 100Mbps

This section is aimed to analyze the impact of changing the bandwidth to 100 Mbps
while RED is tuned to work with the previous network condition. The results will
show that RED requires a reconfiguration if the network conditions change (i.e.,
latency, bandwidth, loss rate). First, you will change the bandwidth to 100Mbps,
then you will observe the queue occupancy, RTT, and congestion window in order
to evaluate the performance of RED when the network condition changes.

Step 1. Apply tbf rate limiting rule on switch S2’s s2-eth2 interface. In the client’s
terminal, type the command below (Fig. 181). When prompted for a password, type
password and hit Enter.

• rate : 100mbit

• burst : 50,000

• limit : 26,214,400

206 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 181 Limiting rate to 100Mbps and keeping the buffer size to 10·BDP on switch S2’s interface

Fig. 182 Starting iPerf3 server on host h3

Fig. 183 Plotting the queue occupancy on switch S2’s s2-eth2 interface

sudo tc qdisc change dev s2-eth2 root handle 1: tbf rate
100mbit burst 50000 limit 26214400

17.4 Throughput and Latency Tests

Step 1. Launch iPerf3 in server mode on host h3’s terminal (Fig. 182).

iperf3 -s

Step 2. In the client’s terminal, type the command below to plot the switch’s queue
in real-time (Fig. 183). When prompted for a password, type password and hit
Enter.

sudo plot_q.sh s2-eth2

17 Configuring RED on Switch S2 207

Fig. 184 Queue occupancy on switch S2’s s2-eth2 interface

Fig. 185 Creating and navigating into directory 1BDP

A new window (Fig. 184) opens that plots the queue occupancy as shown in the
figure below. Since there are no active flows passing through s2-eth2 interface on
switch S2, the queue occupancy is constantly 0.

Step 3. Exit from RED/results directory using the following command (Fig. 185):

cd ..

Step 4. Type the following iPerf3 command in host h1’s terminal without executing
it. The -J option is used to display the output in JSON format. The redirection
operator > is used to store the JSON output into a file (Fig. 186).

iperf3 -c 10.0.0.3 -t 90 -J >out.json

208 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 186 Running iPerf3 client on host h1

Fig. 187 Typing ping command on host h2

Fig. 188 Queue occupancy on switch S2’s s2-eth2 interface

Fig. 189 Generating plotting files and entering the results directory

17 Configuring RED on Switch S2 209

Fig. 190 Opening the throughput.pdf file

Fig. 191 Measured throughput

Fig. 192 Opening the RTT.pdf file

Step 5. Type the following ping command in host h2’s terminal without executing
it (Fig. 187):

ping 10.0.0.3 -c 90

Step 6. Press Enter to execute the commands, first in host h1 terminal and then in
host h2 terminal. Then, go back to the queue plotting window and observe the queue
occupancy (Fig. 188).

The graph above shows that the queue occupancy peaked over 2.5·106, which
is around average queue length for a 1Gbps link. However, in this case we set a

210 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 193 Measured round-trip time

100Mbps link when RED is configured to operate for 1Gbps link; therefore, the
point of operation changed. Consequently, bufferbloat is experienced; thus, it is
necessary to reconfigure RED parameters in order to mitigate the excessive queue
length.

Step 7. In the queue plotting window, press the s key on your keyboard to stop
plotting the queue.

Step 8. After the iPerf3 test finishes on host h1, enter the following command
(Fig. 189):

plot_iperf.sh out.json && cd results

Step 9. Open the throughput file using the command below on host h1 (Fig. 190):

xdg-open throughput.pdf

The figure above (Fig. 191) shows the iPerf3 test output report for the last 90 s.
The average achieved throughput is 100Mbps.

Step 10. Close the throughput.pdf window and then open the Round-Trip Time
(RTT) file using the command below (Fig. 192):

xdg-open RTT.pdf

17 Configuring RED on Switch S2 211

Fig. 194 ping test result

Fig. 195 Opening the cwnd.pdf file

The graph above (Fig. 193) shows that the RTT increased from approximately ten
times the default latency (20ms). The output above shows that there is a bufferbloat
problem as the average latency is significantly greater. Since RED is configured to
operate on a 1Gbps link, for this test the point of operation changed; therefore,
unnecessary delay is observed.

Step 11. Close the RTT.pdf window and then go back to h2’s terminal to see the
ping output (Fig. 194).

The result above indicates that all 90 packets were received successfully
(0deviation of the Round-Trip Time (RTT) were 148.914, 186.175, 468.728, and
33.481 milliseconds, respectively. The output also verifies that there is a bufferbloat
problem as the average latency (186.175) is significantly greater than the configured
delay (20ms).

212 Data-Link and Network Layer Considerations for Large Data Transfers

Fig. 196 Evolution of the congestion window

Step 12. Close the RTT.pdf window and then open the congestion window
(cwnd.pdf) file using the command below (Fig. 195):

xdg-open cwnd.pdf

The graph above (Fig. 196) shows the evolution of the congestion window, which
peaked around 2.5 Mbytes.

Step 13. To stop iperf3 server in host h3, press Ctrl+c .

References

1. J. Moy, Open shortest path first (OSPF) Version 2, in Internet Request for Comments, RFC
Editor, RFC 2328 (1998). https://www.ietf.org/rfc/rfc2328.txt

2. Y. Rekhter, T. Li, S. Hares, Border gateway protocol 4, in Internet Request for Comments, RFC
Editor, RFC 4271 (2006). https://tools.ietf.org/html/rfc4271.

3. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, BBR: congestion-based congestion
control. Commun. ACM 60(2), 58–66 (2017)

4. J. Kurose, K. Ross, Computer Networking: A Top-down Approach, 7th edn. (Pearson, London,
2017)

5. Router/switch Buffer Size Issues. https://fasterdata.es.net/network-tuning/router-switch-buffer-
size-issues/

6. C. Villamizar, C. Song, High performance TCP in ansnet. ACMComput. Commun. Rev. 24(5),
45–60 (1994)

https://www.ietf.org/rfc/rfc2328.txt
https://tools.ietf.org/html/rfc4271
https://fasterdata.es.net/network-tuning/router-switch-buffer-size-issues/
https://fasterdata.es.net/network-tuning/router-switch-buffer-size-issues/

References 213

7. R. Bush, D. Meyer, Some internet architectural guidelines and philosophy, in Internet Request
for Comments, RFC Editor, RFC 3439 (2003). https://www.ietf.org/rfc/rfc3439.txt

8. G. Appenzeller, I. Keslassy, N. McKeown, Sizing router buffers, in Proceedings of the
2004 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (2004), pp. 281–292

9. J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP throughput: a simple model and its
empirical validation, in Proceedings of the ACM SIGCOMM ’98 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (1998), pp. 303–314

10. M. Smitasin, B. Tierney, Evaluating network buffer size requirements, in Proceedings
of the 2015 Technology Exchange Workshop (2015). https://meetings.internet2.edu/media/
medialibrary/2015/10/05/20151005-smitasin-buffersize.pdf

11. B. Tierney, Improving performance of 40G/100G data transfer nodes, in Proceedings
of the 2016 Technology Exchange Workshop (2016). https://meetings.internet2.edu/2016-
technology-exchange/detail/10004333/

12. V. Paxson, S. Floyd, Wide area traffic: the failure of poisson modeling. IEEE/ACM Trans.
Networking 3(3), 226–244 (1995)

13. N. Beheshti, E. Burmeister, Y. Ganjali, J. Bowers, D. Blumenthal, N. McKeown, Optical packet
buffers for backbone internet routers. IEEE/ACM Trans. Networking 18(5), 1599–1609 (2010)

14. V. Cerf, Bufferbloat and other internet challenges. IEEE Internet Comput. 18(5), 80–80 (2014)
15. H. Im, C. Joo, T. Lee, S. Bahk, Receiver-side TCP countermeasure to bufferbloat in wireless

access networks. IEEE Trans. Mob. Comput. 15(8), 2080–2093 (2016)
16. K. Nichols, V. Jacobson, A. McGregor, J. Iyengar, Controlled delay active queue management,

in Internet Draft draft-ietf-aqm-codel-10 (2017). https://tools.ietf.org/html/draft-ietf-aqm-
codel-10

17. Linux tuning. https://fasterdata.es.net/host-tuning/linux/
18. Cisco catalyst 6500 supervisor 2T architecture white paper, in Cisco Systems White Paper

(2017). https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-
switches/white_paper_c11-676346.html#_Toc390815326

19. N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand, Achieving 100% throughput in an
input-queued switch. IEEE Trans. Commun. 47(8), 1260–1267 (1999)

20. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The science DMZ: a network design
pattern for data-intensive science, in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (2013)

https://www.ietf.org/rfc/rfc3439.txt
https://meetings.internet2.edu/media/medialibrary/2015/10/05/20151005-smitasin-buffersize.pdf
https://meetings.internet2.edu/media/medialibrary/2015/10/05/20151005-smitasin-buffersize.pdf
https://meetings.internet2.edu/2016-technology-exchange/detail/10004333/
https://meetings.internet2.edu/2016-technology-exchange/detail/10004333/
https://tools.ietf.org/html/draft-ietf-aqm-codel-10
https://tools.ietf.org/html/draft-ietf-aqm-codel-10
https://fasterdata.es.net/host-tuning/linux/
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11-676346.html#_Toc390815326
https://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-switches/white_paper_c11-676346.html#_Toc390815326

Impact of TCP on High-Speed Networks
and Advances in Congestion Control
Algorithms

Applications can transmit a large amount of data between end devices. Many
applications require the data to be correctly delivered from one device to another
(e.g., from an instrument to a DTN). This is one of the services provided by TCP
and a reason why TCP is the protocol used by data transfer tools. There are several
TCP attributes that should be considered when used in high-speed networks and
Science DMZs, including segment size, flow control, and buffer size, selective
acknowledgment, parallel connections, pacing, and congestion control. After a brief
review of TCP, this chapter discusses these attributes.

1 TCP Review

TCP receives data from the application layer and places it in the TCP send buffer,
as shown in Fig. 1a. Data is typically broken into MSS units. The MSS is simply the
MTU minus the combined lengths of the TCP and IP headers (typically 40 bytes).
Ethernet’s normal MTU is 1500 bytes. Thus, the MSS’s typical value is 1460. The
TCP header is shown in Fig. 1b.

TCP implements flow control by requiring the receiver indicate how much spare
room is available in the TCP receive buffer. For a full utilization of the path, the
TCP send and receive buffers must be greater than or equal to the bandwidth-
delay product. This buffer size value is the maximum number of bits that can be
outstanding (inflight) if the sender continuously sends segments.

For reliability, TCP uses two fields of the TCP header: sequence number and
acknowledgment (ACK) number. The sequence number is the byte-stream number
of the first byte in the segment. The acknowledgment number that the receiver puts
in its segment is the sequence number of the next byte the receiver is expecting
from the sender. Figure 2a shows an example of the use of these two fields. If an
acknowledgment for an outstanding segment is not received, TCP retransmits that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Crichigno et al., High-Speed Networks, Practical Networking,
https://doi.org/10.1007/978-3-030-88841-1_4

215

https://doi.org/10.1007/978-3-030-88841-1_4

216 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 1 TCP connection and header. (a) End points of the TCP connection. (b) TCP header. Ctrl,
R, and DO fields stand for control, reserved, and data offset

Fig. 2 TCP operation. (a) Exchange of segments between end devices. (b) Evolution of the
congestion window

segment. Alternatively, the sender can also detect a packet loss by detecting a triple
duplicate ACK.

TCPmaintains a congestion windowwhose size is the number of bytes the sender
may have in the network at any time. The connection throughput is the minimum

2 TCP Considerations for Science DMZs 217

between the flow control and the congestion window, divided by the RTT. Assuming
a large TCP receive buffer, the congestion window is used to adjust the rate at which
the sender sends data.

2 TCP Considerations for Science DMZs

Features such as TCP buffer size and parallel streams are usually overlooked in
enterprise networks, where a slight throughput degradation is often acceptable for
small flows. However, inadequate transport-layer settings may have a high negative
impact for large flows. These features are discussed next.

2.1 Maximum Segment Size

One obvious advantage of using large segments is efficiency in processing because
a 20-byte header overhead can be amortized over more data. Moreover, the recovery
after a packet loss is proportional to the MSS. During the additive increase phase
of the congestion control algorithm, TCP increases the congestion window by
approximately one MSS every RTT. This means that by using a 9000-byte MSS
instead of a 1500-byte MSS, the throughput increases six times faster. Even when
losses are occasional, the performance improvement can be significant.

2.2 Flow Control and TCP Receive Buffer

TCP flow control imposes a limit in the utilization of the channel from the source
to the destination. In order to maximize the utilization of the channel and increase
throughput, the TCP buffer must be at least as large as the BDP, and preferably
larger. By having a large TCP buffer, the sender can keep transmitting at full speed
until the first acknowledgment comes back. Increasing the TCP buffer above BDP,
for example, to a value that equals 2BDP, also adds robustness. Thus, if a sporadic
loss occurs, TCP would decrease the window size to BDP. Therefore, after the
sporadic loss, the sender would still fully utilize the channel.

For applications that use parallel collaborating TCP connections or streams in
the transmission of a data set, the TCP buffer can be reduced. This requires an
application-layer software, such as gridFTP [1–3] to orchestrate the transmission
over multiple connections. Since the full bandwidth is shared by the parallel
connections, the TCP buffer need not to be equal to the BDP. Instead, it can be
reduced in proportion to the number of parallel connections.

218 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

2.3 Selective Acknowledgment

Much of the complexity of TCP is related to inferring which packets have arrived
and which packets have been lost. The cumulative acknowledgment number does
not provide this information. A selective acknowledgment (SACK) lists up to three
ranges of bytes that have been received. With this information, the sender can more
directly decide what segments to retransmit.

The impact of using SACK on large data transfers at 10Gbps is not conclusive.
In paths with small to medium RTT, the use of SACK is encouraged in the literature
[4]. However, in paths with large RTT and bandwidth, using SACK may reduce
performance. For very large BDP paths where the TCP buffer size is in the order of
tens of MBs, there is a large number of inflight segments. For example, for a TCP
receive buffer of 64 MB and a MSS of 1500 bytes, there could be almost 45,000
outstanding segments. When a SACK event occurs, the TCP performance may be
degraded by the process of locating and resending the packets listed in the SACK
lists. This in turn causes TCP to trigger a timeout and to reduce the congestion
window. If such issues are observed, a solution is to disable SACK.

2.4 Parallel TCP Connections

throughput = MSS

RT T · √
L

. (1)

The advent of Science DMZs and the need to combat random packet losses have
recently initiated new research in the use of parallel TCP connections for large
flows [5–7]. Assuming that losses, RTT, and MSS are the same in each connection,
the total throughput is essentially the aggregation of the K single TCP connection
throughputs [8]. Since the throughput of a single TCP connection is given by Eq. (1),
the aggregate throughput of K connections is given by the following equation:

aggregate throughput =
K∑

i=1

MSS

RT T
√

L
= K

MSS

RT T
√

L
. (2)

Thus, an application opening K parallel TCP connections essentially creates a
large virtual MSS on the aggregate connection that is K times the MSS of a single
connection. A larger MSS increases the rate of recovery from a loss event from
one MSS per successful segment transmission to K MSSs per successful segment
transmission. When the aggregate TCP connection begins to create congestion,
any router or switch along the path begins dropping packets and Eq. (2) is no
longer valid. Parallel TCP connections must be implemented and managed by the
application layer. Its use is further discussed in Sect. V.

2 TCP Considerations for Science DMZs 219

2.5 TCP Fair Queue Pacing

Data transmissions can be bursty, resulting in packets being buffered at routers and
switches and dropped at times. End devices can contribute to the problem by sending
a large number of packets in a short period of time. If those packets were transmitted
at a steady pace, the formation of queues could be reduced.

TCP pacing is a technique by which a transmitter evenly spaces or paces packets
at a pre-configured rate. TCP pacing has been applied for years in enterprise
networks [9], with mixed results. However, its recent application to data transfers
in Science DMZs suggests that its use has several advantages [10]. TCP pacing has
also been applied to datacenter environments [11].

The existing TCP congestion control algorithms, with the exception of BBR
[13], indicate how much data is allowed for transmission. Those algorithms do not
provide a time period over which that data should be transmitted and how the data
should be spread to mitigate potential bursts. The rate, however, can be enforced by
a packet scheduler such as a fair queue (FQ). The packet scheduler organizes the
flow of packets of each TCP connection through the network stack to meet policy
objectives. Some Linux distributions such as CentOS [12] implement FQ scheduling
in conjunction with TCP pacing [13, 14].

FQ is intended for locally generated traffic (e.g., a sender DTN). Figure 3
illustrates the operation of FQ pacing. Application 1 generates green packets, and
application 2 generates blue packets. Each application opens a TCP connection.
FQ paces each connection according to the desired rate, evenly spacing out packets
within an application based on the desired rate. The periods T1 and T2 represent the
time-space used for connections 1 and 2, respectively.

TCP pacing reduces the typical TCP sawtooth behavior [15] and is effective when
there are rate mismatches along the path between the sender and the receiver. This is

Fig. 3 TCP pacing. Packets of application 1 and application 2 are evenly spaced by T1 and T2
time units, respectively

220 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

the case, for example, when the ingress port of a router has a capacity of 100Gbps,
and the egress port has a capacity of 10Gbps. Because of the TCP congestion control
mechanism, the sawtooth behavior always emerges. As TCP continues to increase
the size of the congestion window, eventually the bottleneck link becomes full, while
the rest of the links become underutilized. These mismatches produce a continuous
circle of additive increases and multiplicative decreases [15].

2.6 TCP Congestion Control Algorithms

A loss-based signal is still the main mechanism used to adjust the congestion
window and thus the throughput. The key difference among loss-based congestion
control algorithms is the strategy after a packet loss is detected. The rate at which
the congestion window grows after the loss may follow different mathematical
functions. Examples include Reno [16], Cubic [17], and HTCP [18]. Reno uses a
linear rate increase, while Cubic and HTCP use cubic and quadratic functions.

Essentially, the main issue observed in high-speed networks and Science DMZs
is that, after a packet loss, the additive increase is too slow to reach full speed.
Consider Fig. 4a, which shows a TCP’s viewpoint of a connection. At any time,
the connection has exactly one slowest link or bottleneck bandwidth (btlbw) that
determines the location where queues are formed. When the router’s buffer is
large, the loss-based congestion control keeps it full. When the router’s buffer is
small, the loss-based congestion control misinterprets a packet loss as a signal
of congestion, leading to low throughput. The output port queue increases when
the input link arrival rate exceeds btlbw. The throughput of loss-based congestion
control algorithms is less than btlbw because of the frequent packet losses [13].

Figure 4b illustrates the RTT and delivery rate as functions of the amount of
data inflight [13]. RTTmin is the minimum RTT, when no congestion exists. In the
application limited region, the delivery rate/throughput increases as the amount of
data generated by the application layer increases, while the RTT remains constant.
The pipeline between the sender and the receiver becomes full when the inflight
number of bits is equal to BDP, at the edge of the bandwidth limited region. The
queue size starts increasing, resulting in an increase of the RTT. The delivery
rate/throughput remains constant, as the bottleneck link is fully utilized. Finally,
when no buffer is available at the router to store arriving packets (the amount of
inflight bits is equal to BDP plus the buffer size of the router), then packets are
dropped.

BBR, the recently proposed congestion control algorithm [13], is a disruption
of previous algorithms in that the control is based on the rate rather than on the
window. At any one time, BBR sends at a given calculated rate, instead of sending
new data in response to each received acknowledgment. BBR attempts to find the
optimal operating point, shown as a green dot in Fig. 4b, by estimating RTTmin and
btlbw.

2 TCP Considerations for Science DMZs 221

Fig. 4 TCP viewpoint of a connection and relation between throughput and RTT. (a) Simplified
TCP interpretation of the connection. (b) Throughput and RTT, as a function of inflight data [13]

A natural question is how well does BBR, a rate-based congestion control
algorithm, perform with respect to a Science DMZ recommended traditional loss-
based congestion control? Preliminary results indicate that BBR shows better
performance than traditional loss-based congestion control algorithms when packet
losses occur. Of particular interest to Science DMZs is the range of corruption before
the throughput completely collapses. The results, which are presented in Sect. VII,
show that BBR can achieve a better performance than loss-based congestion control
algorithms. Specifically, BBR can tolerate a larger rate of packet losses before the
throughput collapses.

222 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

3 Transport-Layer Issues in Enterprise Networks and
Science DMZs

Table 1 shows a comparison between enterprise networks and Science DMZs,
regarding transport-layer features.

Reliability is required for file and data set transfers, and therefore, Science DMZ
applications use TCP. While TLS [19] and SSL [20] also offer reliable service
and security on top of TCP, they introduce additional overhead and a redundant
service. Globus, a well-known application-layer tool for transferring large files,
offers confidentiality, integrity, and authentication services.

The flow control rate is managed by the TCP buffer size. For Science DMZ
applications, the buffer size must be greater than or equal to the bandwidth-delay
product. With this buffer size, TCP behaves as a pipelined protocol. On the other
hand, general-purpose applications often use a small buffer size, which produces a
stop-and-wait behavior.

The study of congestion control algorithms is an active research area. Although
the traditional window-based loss-based congestion control may not be appropriate
for modern enterprise networks, there were no alternatives until recently, and thus
its use can be labeled as indifferent. However, recent preliminary results, including
those presented in Sect. VII, indicate that BBR performs better than window-based
loss-based algorithms.

If the TCP buffer size at DTNs is smaller than the bandwidth-delay product,
the utilization of the channel is lower than 100%. The sender must constantly wait
for acknowledgment segments before transmitting additional data segments. On the
other hand, if the buffer size is greater than or equal to the bandwidth-delay product,
the path utilization approaches the maximum capacity and many data segments
are allowed to be in transit, while acknowledgment segments are simultaneously
received. For small and short-duration flows, this may not be essential. However, for
large science flows, to achieve full performance, the buffer size must be at least equal
to the bandwidth-delay product. The MSS is perhaps one of the most important
features in high-throughput high-latency networks with packet losses. TCP pacing
is a promising feature. The challenge for its wide adoption is the complexity of
developing a mechanism to discover the bottleneck link and its capacity.

4 Academic Cloud and Virtual Laboratories

The book is accompanied by hands-on virtual laboratory experiments conducted in
a cloud system, referred to as the Academic Cloud. Access to the Academic Cloud
is available for a fee (six-month access) and includes all materials needed to conduct
the experiments. The URL is:

http://highspeednetworks.net/

http://highspeednetworks.net/

4 Academic Cloud and Virtual Laboratories 223

Table 1 Comparison of transport-layer features in enterprise networks and Science DMZs

Feature Enterprise network Science DMZ

Protocol TCP Used in applications requiring
reliability, e.g., email, http

Used for main applications:
data transfers

UDP Used in applications that do
not require reliability, e.g.,
voice and video

Not used

TLS/SSL Used in applications requiring
security, e.g., online banking

Not recommended; it adds an
additional flow control layer

Flow control Pipelined Not necessary; BDP is
typically small

Recommended; data transfers
occur across high-throughput
high-latency networks

Stop-and-
wait
behavior

Not recommended, but
performance is not
dramatically impacted when
RTT is small

Not recommended;
throughput is severely reduced

Use of SACK With large
MSS

Indifferent Results suggest the use of
SACK may reduce
throughput, especially when
RTT is large

With small
MSS

Throughput is slightly
improved, in particular when
RTT is small

Indifferent

Congestion
control

Window-
based

Only alternative until recently Only alternative until recently

Rate-based Performance evaluations of
BBR indicate an increase in
throughput in small flows.
Under severe-loss scenarios,
throughput can be much larger
than that of window-based
algorithms.

Under very low-loss
scenarios, BBR’s performance
is between 2 and 3% lower
than that of window-based. In
lossy scenarios, performance
is superior to that of
window-based

TCP buffer size ≥ BDP Not essential for small RTT. Required for a full utilization
of the end-to-end path

Large MSS Not essential for small RTT. Recommended; it speeds up
the recovery of the congestion
window

TCP pacing Encouraging results when
bottleneck bandwidth is
known or can be estimated.

Encouraging results when
bottleneck bandwidth is
known or can be estimated

Parallel streams Impact in small flows is not
substantial.

Recommended; it minimizes
the impact of packet losses

224 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

5 Chapter 4—Lab 9: Understanding Traditional TCP
Congestion Control (HTCP, Cubic, Reno)

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/, and reserve a pod for Lab 9.

This lab reviews key features and behavior of Transmission Control Protocol
(TCP) that have a large impact on data transfers over high-throughput high-latency
networks. The lab describes the behavior of TCP’s congestion control algorithm,
its impact on throughput, and how to modify the congestion control algorithm in a
Linux machine.

Objectives
By the end of this lab, students should be able to:

1. Describe the basic operation of TCP congestion control algorithm and its impact
on high-throughput networks.

2. Explain the concepts of congestion window, bandwidth probing, and Additive
Increase Multiplicative Decrease (AIMD).

3. Understand TCP throughput calculation.
4. Understand the impact of packet loss on high-latency networks.
5. Deploy emulated WANs in Mininet.
6. Modify the TCP congestion control algorithm in Linux using sysctl tool.
7. Compare TCP Reno, HTCP, and Cubic with injected packet loss.
8. Compare TCP Reno, HTCP, and Cubic with both injected delay and packet loss.

Lab Settings
The information in Table 2 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 6: Introduction to TCP
2. Section 7: Lab topology
3. Section 8: Introduction to sysctl
4. Section 9: Congestion control algorithms and sysctl
5. Section 10: iPerf3 throughput test

Table 2 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

http://highspeednetworks.net/

6 Introduction to TCP 225

6 Introduction to TCP

6.1 TCP Review

Big data applications require the transmission of large amounts of data between end
devices. Data must be correctly delivered from one device to another, e.g., from an
instrument to a data transfer node (DTN). Reliability is one of the services provided
by TCP and a reason why TCP is the protocol used by most data transfer tools.
Thus, understanding the behavior of TCP is essential for the design and operation
of networks used to transmit big data.

TCP receives data from the application layer and places it in the TCP send buffer,
as shown in Fig. 5a. Data is typically broken into maximum segment size (MSS)
units. Note that “segment” here refers to the protocol data unit (PDU) at the transport
layer, and sometimes the terms packet and segment are interchangeably used. The
MSS is simply the maximum transmission unit (MTU) minus the combined lengths
of the TCP and IP headers (typically 40 bytes). Ethernet’s normal MTU is 1500
bytes. Thus, MSS’s typical value is 1460. The TCP header is shown in Fig. 5b.

For reliability, TCP uses two fields of the TCP header to convey information to
the sender: sequence number and acknowledgment (ACK) number. The sequence
number is the byte-stream number of the first byte in the segment. The acknowl-
edgment number that the receiver puts in its segment is the sequence number
of the next byte the receiver is expecting from the sender. In the example of
Fig. 6a, after receiving the first two segments containing sequence number 90 (which
contains bytes 90–99) and 100 (bytes 100–109), the receiver sends a segment with
acknowledgment number 110. This segment is called cumulative acknowledgment.

6.2 TCP Throughput

The TCP rate limitation is defined by the receive buffer shown in Fig. 5a. If this
buffer size is too small, TCP must constantly wait until an acknowledgment arrives

Application

TCP send
buffer

MSS MSS

Source port

20
by

te
s

Destination port

Sequence number

Acknowledgment number

DO R Ctrl bits Window

Checksum Urgent pointer

Application

TCP
receive
buffer

(a) (b)

Options Padding

Segments

Fig. 5 (a) TCP connection. (b) TCP header

226 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Ti
m

e

Seq = 90, 10 bytesSeq = 100, 10 bytes

Ack = 110

Seq = 110, 10 bytesSeq = 120, 10 bytesSeq = 130, 10 bytesSeq = 140, 10 bytes

Ack = 110

Seq = 110, 10 bytes

Sender Receiver

Ack = 110

Ack = 110

Tr
ip

le
du

pl
ic

at
e

A C
K

C
on

ge
st

io
n

W
in

d o
w

Time

Triple duplicate ACK (packet loss)

Additive increase
Multiplicative decrease

(a) (b)

Fig. 6 (a) TCP operation. (b) Adaptation of TCP’s congestion window

before sending more segments. This limitation is removed by setting a large receive
buffer size.

A second limitation is imposed by the congestion control mechanism operating
at the sender side, which keeps track of a variable called congestion window. The
congestion window, referred to as cwnd (in bytes), imposes a constraint on the
rate at which a TCP sender can send traffic. The cwnd value is the amount of
unacknowledged data at the sender. To see this, note that at the beginning of every
Round-Trip Time (RTT), the sender can send cwnd bytes of data into the connection;
at the end of the RTT, the sender receives acknowledgments for the data. Thus, the
sender’s send rate is roughly cwnd/RTT bytes/sec. By adjusting the value of cwnd,
the sender can therefore adjust the rate at which it sends data into the connection.

TCPThroughput ≈ cwnd

RTT
[bytes/second].

6 Introduction to TCP 227

6.3 TCP Packet Loss Event

TCP is a reliable transport protocol that requires each segment to be acknowl-
edged. If an acknowledgment for an outstanding segment is not received, TCP
retransmits that segment. Alternatively, instead of waiting for a timeout-triggered
retransmission, the sender can also detect a packet loss before the timeout by
detecting duplicate ACKs. A duplicate ACK is an ACK that reacknowledges a
segment for which the sender has already received. If the TCP sender receives three
duplicate ACKs for the same segment, TCP interprets this event as packet loss due
to congestion and reduces the congestion window cwnd by half. This congestion
window reduction is known as multiplicative decrease.

In steady state (ignoring the initial TCP period when a connection begins), a
packet loss will be detected by a triple duplicate ACK. After decreasing cwnd by
half, and as long as no other packet loss is detected, TCP will slowly increase
cwnd again by 1 MSS per RTT. This congestion control phase essentially produces
an additive increase in the congestion window. For this reason, TCP congestion
control is referred to as an Additive Increase Multiplicative Decrease (AIMD)
form of congestion control. AIMD gives rise to the “saw tooth” behavior shown
in Fig. 6b, which also illustrates the idea of TCP “probing” for bandwidth—TCP
linearly increases its congestion window size (and hence its transmission rate) until
a triple duplicate-ACK event occurs. It then decreases its congestion window size
by a factor of two but then again begins increasing it linearly, probing to see if there
is additional available bandwidth.

6.4 Impact of Packet Loss in High-Latency Networks

During the additive increase phase, TCP only increases cwnd by 1 MSS every
RTT period. This feature makes TCP very sensitive to packet loss on high-latency
networks, where the RTT is large.

Consider Fig. 7, which shows the TCP throughput of a data transfer across a
10Gbps path. The packet loss rate is 1/22,000 or 0.0046%. The purple curve is the
throughput in a loss-free environment; the green curve is the theoretical throughput
computed according to the equation below, where L is the packet loss rate.

TCPThroughput ≈ MSS

RTT
√

L
[bytes/second]

The equation above indicates that the throughput of a TCP connection in steady
state is directly proportional to the maximum segment size (MSS) and inversely
proportional to the Round-Trip Time (RTT) and the square root of the packet
loss rate (L). The red and blue curves are real throughput measurements of two

228 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 7 Throughput vs. Round-Trip Time (RTT), for two devices connected via a 10Gbps path.
The performance of two TCP implementations is provided: Reno (blue) and Hamilton TCP (HTCP)
(red). The theoretical performance with packet losses (green) and the measured throughput without
packet losses (purple) are also shown

popular implementations of TCP: Reno and Hamilton TCP (HTCP). Because TCP
interprets losses as network congestion, it reacts by decreasing the rate at which
packets are sent. This problem is exacerbated as the latency increases between the
communicating hosts. Beyond LAN transfers, the throughput decreases rapidly to
less than 1Gbps. This is often the case when research collaborators sharing data are
geographically distributed.

TCP Reno is an early congestion control algorithm. TCP Cubic, HTCP, and
BBR are more recent congestion control algorithms, which have demonstrated
improvements with respect to TCP Reno.

7 Lab Topology

Let us get started with creating a simple Mininet topology using MiniEdit. The
topology uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 8).

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 9). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 9.mn topology file and click on Open (Fig. 10).

7 Lab Topology 229

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Fig. 8 Lab topology

Fig. 9 MiniEdit shortcut

Fig. 10 MiniEdit shortcut

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 11).

230 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 11 Running the
emulation

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

7.1 Starting Host h1 and Host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal
of host h1 and allows the execution of commands on host h1 (Fig. 12).

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 . This command tests the connectivity

between host h1 and host h2. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test (Fig. 13).

Figure 13 indicates that there is connectivity between host h1 and host h2. Thus,
we are ready to start the throughput measurement process.

7.2 Emulating 10Gbps High-Latency WAN with Packet Loss

This section emulates a high-latency WAN, which is used to validate the results
observed in Fig. 7. We will first set the bandwidth between host h1 and host h2 to

7 Lab Topology 231

Fig. 12 Opening a terminal on host h1

Fig. 13 Connectivity test using ping command

10Gbps. Then we will emulate packet losses between switch S1 and switch S2 and
measure the throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 14).

The Linux terminal is a program that opens a window and permits you to Interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below (Fig. 15). When prompted for a
password, type password and hit enter.

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss
0.01%

232 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 14 Shortcut to open a Linux terminal

Fig. 15 Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface

Fig. 16 Limiting the bandwidth to 10Gbps on switch S1’s s1-eth2 interface

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2;
on the same terminal, type the command below. This command sets the bandwidth
to 10Gbps on switch S1’s s1-eth2 interface (Fig. 16) The tbf parameters are the
following:

• rate : 10gbit

• burst : 5,000,000

• limit : 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate
10gbit burst 5000000 limit 15000000

8 Introduction to sysctl 233

Fig. 17 Output of ping 10.0.0.2 command

7.3 Testing Connection

To test connectivity, you can use the command ping .

Step 1. On the terminal of host h1, type ping 10.0.0.2 . To stop the test, press

Ctrl+c . The figure below shows a successful connectivity test. Host h1 (10.0.0.1)
sent four packets to host h2 (10.0.0.2), successfully receiving responses back
(Fig. 17).

The result above indicates that all four packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of
the Round-Trip Time (RTT) were 0.064, 0.269, 0.869, and 0.346ms, respectively.
Essentially, the standard deviation is an average of how far each ping RTT is from
the average RTT. The higher the standard deviation the more variable the RTT is.

Step 2. On the terminal of host h2, type ping 10.0.0.1 . The ping output in this test
should be relatively similar to the results of the test initiated by host h1 in Step 1.
To stop the test, press Ctrl+c .

8 Introduction to sysctl

sysctl is a tool for dynamically changing parameters in the Linux operating system.
It allows users to modify kernel parameters dynamically without rebuilding the
Linux kernel.

Step 1. Run the command below on the Client1’s terminal. When prompted for a
password, type password and hit enter (Fig. 18).

sudo sysctl -a

234 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 18 Listing all system parameters in Linux

Fig. 19 Reading the value of a given key

This command produces a large output containing the kernel parameters
and their values. This is represented in a key–value pair. For instance,
net.ipv4.ip_forward = 0 implies that the key net.ipv4.ip_forward has the value

0 .

8.1 Read sysctl Parameters

It is often useful to search for specific keys without having to manually locate the
needed key. This can be achieved using the following command:

sysctl <key>

where <key> is replaced by the needed key. For example, the command
sysctl net.ipv4.ip_forward returns net.ipv4.ip_forward = 0 .

Step 1. Run the following command on the host h1’s terminal (Fig. 19):

sysctl net.ipv4.ip_forward

8 Introduction to sysctl 235

Fig. 20 Modifying a system parameter

8.2 Write sysctl Parameters

It is also very useful to modify kernel parameters on the fly. The -w switch is added
to the sysctl to “write” a value for a specific key.

sysctl -w <key>=<value>

Step 1. For example, if the user decides to enable IP forwarding (i.e., to configure
a device as a router), then the following command is used:

sudo sysctl -w net.ipv4.ip_forward=1

Run the above command on the host h1’s terminal (Fig. 20):
The changes made to a parameter using this command are temporary. Therefore,

a new boot resets the value of a key to its default value. Also, when stopping
MiniEdit’s emulation, the configured parameters are reset.

8.3 Configuring sysctl.conf File

If the user wishes to permanently modify the value of a specific key, then the key–
value pair must be stored within the file /etc/sysctl.conf.

Step 1. In the Linux terminal, open the /etc/sysctl.conf file using your favorite text
editor. Run the following command on the Client1’s terminal. When prompted for a
password, type password and hit enter (Fig. 21).

sudo featherpad /etc/sysctl.conf

This is a text file that can be edited in any text editor (vim , nano , etc.). For

simplicity, we use a Graphical User Interface (GUI)-based text editor (featherpad).

Step 2. Keys and values are appended to this file. Enable IP forwarding perma-
nently on the system by appending net.ipv4.ip_forward=1 to the /etc/sysctl.conf
file and saving it. Once you have saved the file, close the text editor (Fig. 22).

236 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 21 Opening the /etc/sysctl.conf file

net.ipv4.ip_ forward=1

Step 3. To refresh the system with the new parameters, the -p switch is passed to

the sysctl command as follows (Fig. 23):

sudo sysctl -p

When prompted for a password, type password and hit enter.
Now, even after a new system boot (or reboot), the system will have IP

forwarding enabled.

9 Congestion Control Algorithms and sysctl 237

Fig. 22 Appending key+value to the /etc/sysctl.conf file and saving

Fig. 23 Loading new sysctl.conf parameters

9 Congestion Control Algorithms and sysctl

Congestion control algorithms can be inspected and modified using the sysctl
command and the /etc/sysctl.conf file. Specifically, the following operations are
possible:

1. Check the installed congestion control algorithms on the system.
2. Inspect the default congestion control algorithm (i.e., the current algorithm used

by the system).
3. Modify the congestion control algorithm.

238 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 24 Displaying the system’s available congestion control algorithms

9.1 Inspect and Install/Load Congestion Control Algorithms

In Linux, it is possible to check the available TCP congestion control algorithms
installed on the system with the command below.

Step 1. Execute the command below on the Client1’s terminal (Fig. 24).

sysctl net.ipv4.tcp_available_congestion_control

Usually, the default congestion control algorithm is CUBIC or Reno, depending
on the installed operating system. A list of some of the possible output is:

• reno : Traditional TCP used by almost all other operating systems characterized
by slow start, congestion avoidance, and fast retransmission via triple duplicate
ACKs.

• cubic : CUBIC-TCP optimized congestion control algorithm for high-
bandwidth networks with high latency. Operates in a similar but more systematic
fashion than BIC-TCP, in which its congestion window is a cubic function of
time since the last packet loss, with the inflection point set to the window prior
to the congestion event.

• bic : BIC-TCP congestion window utilizes a binary search algorithm to find the
largest congestion window that will last the maximum amount of time.

• htcp : Hamilton TCP A loss-based algorithm using additive increase and
multiplicative decrease to control TCP’s congestion window.

• vegas : TCP Vegas emphasizes packet delay, rather than packet loss, as a signal
to help determine the rate at which to send packets.

• bbr : a new algorithm, discussed in future labs. Measures bottleneck bandwidth
and Round-Trip Propagation (RTP) time in its execution of congestion control.

If the above command does not return a specific congestion control algorithm, it
means that it is not loaded on the distribution.

Step 2. The command used in Step 1 listed three algorithms: reno cubic bbr . To
install a new algorithm, its corresponding kernel module must be loaded. This can be
done using insmod or modprobe commands. For example, to load the BIC-TCP
module, use the following command on the Client1’s terminal (Fig. 25):

9 Congestion Control Algorithms and sysctl 239

Fig. 25 Loading tcp_bic module into the Linux kernel

Fig. 26 Displaying the system’s available congestion control algorithms after loading TCP-BIC

sudo modprobe tcp_bic

modprobe and insmod commands require high sudo privileges to insert

kernel modules. When prompted for a password, type password and hit enter.

Step 3. To verify that the BIC-TCP algorithm is loaded, execute the below
command on the Client1’s terminal (Fig. 26).

sysctl net.ipv4.tcp_available_congestion_control

9.2 Inspect the Default (Current) Congestion Control
Algorithm

To check which TCP congestion control is currently being used by the Linux kernel,
the net.ipv4.tcp_congestion_control sysctl key is read. This key can be read on an
end-host’s terminal (host h1 or host h2) or on the Client1’s terminal.

Step 1. Execute the following command on the Client1’s terminal to determine the
current congestion control algorithm (Fig. 27).

sysctl net.ipv4.tcp_congestion_control

240 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 27 Current TCP congestion control algorithm

Fig. 28 Modifying the congestion control algorithm to reno

The output shows that the default congestion control algorithm is Cubic. Note
that applications can set this value (congestion control algorithm) for individual
connections.

9.3 Modify the Default (Current) Congestion Control
Algorithm

To temporarily change the TCP congestion control algorithm, the sysctl command

is used with the -w switch on the net.ipv4.tcp_congestion_control key.

Step 1. To modify the current algorithm to TCP Reno, the following command is
used. Execute the command below on the Client1’s terminal. When prompted for a
password, type password and hit enter (Fig. 28).

sudo sysctl -w net.ipv4.tcp_congestion_control=reno

If no error occurred in the assignment (e.g., the module is not installed on the
system), the output echoes back the new key–value pair, i.e.,

net.ipv4.tcp_ congestion_control=reno

Step 2. Execute the following command on the Client1’s terminal to determine the
current congestion control algorithm (Fig. 29).

10 iPerf3 Throughput Test 241

Fig. 29 Current TCP congestion control algorithm after modifying to reno

sysctl net.ipv4.tcp_congestion_control

The output shows that the default congestion control algorithm is now Reno
instead of Cubic.

10 iPerf3 Throughput Test

In this section, the throughput between host h1 and host h2 is measured using
different congestion control algorithms, namely Reno, HTCP, and Cubic. Moreover,
the test is repeated using various injected delays to observe the throughput variations
depending on each congestion control algorithm and the selected RTT.

10.1 Throughput Test Without Delay

In this test, we measure the throughput between host h1 and host h2 without
introducing delay on the switch S1’s s1-eth2 interface.

10.2 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno
by typing the following command (Fig. 30):

sysctl -w net.ipv4.tcp_congestion_control=reno

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 31):

iperf3 -s

242 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 30 Changing TCP congestion control algorithm to reno on host h1

Fig. 31 Starting iPerf3 server on host h2

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used
to specify the number of seconds to omit in the resulting report. Note that this option
is a capitalized “O,” not a zero (Fig. 32).

iperf3 -c 10.0.0.2 -t 20 -O 10

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 9.56Gbps (sender) and 9.56Gbps (receiver), and the number of
retransmissions is 1890 (due to the injected packet loss—001%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

10.3 Hamilton TCP (HTCP)

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to
HTCP by typing the following command (Fig. 33):

sysctl -w net.ipv4.tcp_congestion_control=htcp

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 34):

iperf3 -s

10 iPerf3 Throughput Test 243

Fig. 32 Running iPerf3 client on host h1

Fig. 33 Changing TCP congestion control algorithm to htcp on host h1

244 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 34 Starting iPerf3 server on host h2

Step 3. Launch iPerf3 in client mode on host h1’s terminal (Fig. 35):

iperf3 -c 10.0.0.2 -t 20 -O 10

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 9.56Gbps (sender) and 9.56Gbps (receiver), and the number of
retransmissions is 1789 (due to the injected packet loss—0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

10.4 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to
Cubic by typing the following command (Fig. 36):

sysctl -w net.ipv4.tcp_congestion_control=cubic

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 37):

iperf3 -s

Step 3. Launch iPerf3 in client mode on host h1’s terminal (Fig. 38):

iperf3 -c 10.0.0.2 -t 20 -O 10

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 9.56Gbps (sender) and 9.56Gbps (receiver), and the number of
retransmissions is 1845 (due to the injected packet loss—0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

10 iPerf3 Throughput Test 245

Fig. 35 Running iPerf3 client on host h1

Fig. 36 Changing TCP congestion control algorithm to cubic on host h1

Fig. 37 Starting iPerf3 server on host h2

246 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 38 Running iPerf3 client on host h1

10.5 Throughput Test with 30ms Delay

In this test, we measure the throughput between host h1 and host h2 while
introducing 30ms delay on the switch S1’s s1-eth2 interface. Apply the following
steps:

Step 1. On the client’s terminal, run the following command to modify the previous
rule to include 30ms delay. When prompted for a password, type password and
hit enter (Fig. 39).

sudo tc qdisc change dev s1-eth2 root handle 1: netem loss
0.01% delay 30ms

10 iPerf3 Throughput Test 247

Fig. 39 Injecting 30ms delay on switch S1’s s1-eth2 interface

Fig. 40 Modifying the TCP buffer size on host h1

Fig. 41 Modifying the TCP buffer size on host h2

Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl
-w net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained
later in future labs (Fig. 40).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the
following commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’
and sysctl -w net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’ (Fig. 41).

10.6 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno
by typing the following command (Fig. 42):

248 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 42 Changing TCP congestion control algorithm to reno on host h1

Fig. 43 Starting iPerf3 server on host h2

sysctl -w net.ipv4.tcp_congestion_control=reno

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 43):

iperf3 -s

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used
to specify the number of seconds to omit in the resulting report (Fig. 44).

iperf3 -c 10.0.0.2 -t 20 -O 10

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 472Mbps (sender) and 472Mbps (receiver), and the number of
retransmissions is 45.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

10.7 Hamilton TCP (HTCP)

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to
HTCP by typing the following command (Fig. 45):

sysctl -w net.ipv4.tcp_congestion_control=htcp

10 iPerf3 Throughput Test 249

Fig. 44 Running iPerf3 client on host h1

Fig. 45 Changing TCP congestion control algorithm to htcp on host h1

Fig. 46 Starting iPerf3 server on host h2

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 46):

iperf3 -s

Step 3. Launch iPerf3 in client mode on host h1’s terminal (Fig. 47):

250 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 47 Running iPerf3 client on host h1

iperf3 -c 10.0.0.2 -t 20 -O 10

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 344Mbps (sender) and 344Mbps (receiver), and the number of
retransmissions is 93.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

10.8 TCP Cubic

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to
Cubic by typing the following command (Fig. 48):

sysctl -w net.ipv4.tcp_congestion_control=cubic

11 Chapter 4—Lab 10: Understanding Rate-Based TCP Congestion Control. . . 251

Fig. 48 Changing TCP congestion control algorithm to cubic on host h1

Fig. 49 Starting iPerf3 server on host h2

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 49):

iperf3 -s

Step 3. Launch iPerf3 in client mode on host h1’s terminal (Fig. 50):

iperf3 -c 10.0.0.2 -t 20 -O 10

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 938Mbps (sender) and 939Mbps (receiver), and the number of
retransmissions is 180.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

11 Chapter 4—Lab 10: Understanding Rate-Based TCP
Congestion Control (BBR)

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/, and reserve a pod for Lab 10.

This lab describes a new type of TCP congestion control algorithm called
bottleneck bandwidth and Round-Trip Time (BBR). The lab conducts experimental
results using TCP BBR and contrasts these results with those obtained using
traditional congestion control algorithms such as a Reno and HTCP.

http://highspeednetworks.net/

252 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 50 Running iPerf3 client on host h1

Objectives
By the end of this lab, students should be able to:

1. Describe the basic operation of TCP BBR.
2. Describe differences between rate-based congestion control and window-based

loss-based congestion control.
3. Modify the TCP congestion control algorithm in Linux using sysctl tool.
4. Compare the throughput performance of TCP Reno and BBR in high-throughput

high-latency networks.

Lab Settings
The information in Table 3 provides the credentials of the machine containing
Mininet.

12 Introduction to TCP 253

Table 3 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

Lab Roadmap
This lab is organized as follows:

1. Section 12: Introduction to TCP
2. Section 13: Lab topology
3. Section 14: iPerf3 throughput test

12 Introduction to TCP

12.1 Traditional TCP Congestion Control Review

TCP congestion control was introduced in the late 1980s. For many years, the main
algorithm of congestion control was TCP Reno. Subsequently, multiple algorithms
were proposed based on Reno’s enhancements. The goal of congestion control is to
determine how much capacity is available in the network, so that a source knows
how many packets it can safely have in transit (inflight). Once a source has these
packets in transit, it uses the arrival of an acknowledgment (ACK) as a signal that
one of its packets has left the network and that it is therefore safe to insert a new
packet into the network without adding to the level of congestion. By using ACKs
to pace the transmission of packets, TCP is said to be self-clocking.

A major task of the congestion control algorithm is to determine the available
capacity. In steady state, TCP Reno maintains an estimate of the Round-Trip Time
(RTT)—the time to send a packet and receive the corresponding ACK. If the ACK
stream shows that no packets are lost in transit, Reno increases the sending rate
by one additional segment each RTT interval. This period is known as the additive
increase. Note that “segment” here refers to the protocol data unit (PDU) at the
transport layer and that sometimes the terms packet and segment are interchangeably
used. Eventually, the increasing flow rate saturates the bottleneck link at a router,
which drops a packet. The TCP receiver signals the missing packet by sending an
ACK in response to an out-of-order received segment, as illustrated in Fig. 51a.
Once the TCP sender receives three duplicate ACKs for the same out-of-order
segment, it interprets this event as packet loss due to congestion and reduces the
sending rate by half. This reduction is known as multiplicative decrease. Once the
loss is repaired, Reno resumes the additive increase phase. This iteration of additive
increase multiplicative decrease (AIMD) periods is shown in Fig. 51b.

254 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Ti
m

e

Seq = 90, 10 bytesSeq = 100, 10 bytes

Ack = 110

Seq = 110, 10 bytesSeq = 120, 10 bytesSeq = 130, 10 bytesSeq = 140, 10 bytes

Ack = 110

Seq = 110, 10 bytes

Sender Receiver

Ack = 110

Ack = 110

Tr
ip

le
du

pl
ic

at
e

AC
K

C
on

ge
s t

io
n

W
in

do
w

Time

Triple duplicate ACK (packet loss)

Additive increase
Multiplicative decrease

(a) (b)

O
ut

-o
f-o

rd
er

se
gm

en
ts

Fig. 51 (a) TCP operation. (b) Evolution of TCP’s congestion window

12.2 Traditional Congestion Control Limitations

While Reno has proven to perform adequately in the past when the bulk of the
TCP connections carried trivial applications such as web browsing and email, it
faces severe limitations in high-throughput connections that are needed for grid
computing and big science data transfers. Reno’s average TCP throughput can be
approximated by the following equation:

TCP Throughput ≈ MSS

RTT
√

L
[bytes/second]

The equation above indicates that the throughput of a TCP connection in
steady state is directly proportional to the maximum segment size (MSS) and
inversely proportional to the product of Round-Trip Time (RTT) and the square
root of the packet loss rate (L). Essentially, the equation above indicates that
the TCP throughput is very sensitive to packet loss. In such environments Reno
cannot achieve high throughput, especially in high-latency scenarios. Figure 52
validates the above equation. It shows the throughput as a function of RTT, for
two devices connected by a 10Gbps path. The performance of two TCP AIMD-
based implementations is provided: Reno (blue) and Hamilton TCP, better known

12 Introduction to TCP 255

Fig. 52 Throughput vs. Round-Trip Time (RTT) for two devices connected via a 10Gbps path.
The performance of two TCP implementations are provided: Reno (blue) and HTCP (red). The
theoretical performance with packet losses (green) and the measured throughput without packet
losses (purple) are also shown

as HTCP (red). The theoretical performance (using the above equation) with packet
losses (green) and the measured throughput without packet losses (purple) are also
shown.

12.3 TCP BBR

The main issue surrounding traditional congestion control algorithms in high-speed
high-latency networks is that the sender cannot recover from the packet loss and
multiplicative decrease, even when the packet losses are sporadic. When the RTT is
large, increasing the congestion window (and thus the sending rate) by only 1 MSS
every RTT is too slow.

BBR is a new congestion control algorithm that does not adhere to the AIMD rule
and the above equation. BBR is a rate-based algorithm, meaning that at any given
time it sends data at a rate that is independent of current packet losses. Note that this
feature is a drastic departure from traditional congestion control algorithms, which
operate by reducing the sending rate by half each time a packet loss is detected.

The behavior of BBR can be described using Fig. 53, which shows a TCP’s
viewpoint of an end-to-end connection. At any time, the connection has exactly
one slowest link or bottleneck bandwidth (btlbw) that determines the location
where queues are formed. When router buffers are large, traditional congestion
control keeps them full (i.e., they keep increasing the rate during the additive
increase phase). When buffers are small, traditional congestion control misinterprets
a loss as a signal of congestion, leading to low throughput. The output port queue

256 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

R
TT

Th
ro

ug
hp

ut

Inflight data

btlbw

RTTmin

Buffer limitedBandwidth limitedApp. limited

RTTmin

btlbw

Optimal operating point
Operating point of traditional congestion control algorithms

BDP = RTTmin · btlbw BDP + buffer size

Packet lossRTT increases at
router’s queue

Sender Receiver

Bottleneck
(btlbw)

Output port buffer

Router

(a)

(b)

Fig. 53 TCP viewpoint of a connection and relation between throughput and RTT. (a) Simplified
TCP interpretation of the connection. (b) Throughput and RTT, as a function of inflight data

increases when the input link arrival rate exceeds btlbw. The throughput of loss-
based congestion control is less than btlbw because of the frequent packet losses.

Figure 53b illustrates the RTT and throughput with the amount of data inflight.
RTTmin is the propagation time with no queueing component (the network is not
congested). In the application limited region, the delivery rate/throughput increases
as the amount of data generated by the application layer increases, while the RTT
remains constant. The pipeline between sender and receiver becomes full when the
inflight number of bits is equal to the bandwidth multiplied by the RTT. This number

12 Introduction to TCP 257

Fig. 54 The rate used by the
sender is the estimated
bottleneck bandwidth (btlbw).
During the probe period (1
RTT duration), the sender
probes for additional
bandwidth, sending at a rate
of 125% of the bottleneck
bandwidth. During the
subsequent period, drain (1
RTT duration), the sender
reduces the rate to 75% of the
bottleneck bandwidth, thus
allowing any bottleneck
queue to drain

Se
nd

in
g

ra
t e

Time

btlbw

probe

drain

8 RTTs

100
125

75

cycle 2 ...cycle 1

is also called bandwidth-delay product (BDP) and quantifies the number of bits
that can be inflight if the sender continuously sends segments. In the bandwidth
limited region, the queue size at the router of Fig. 53a starts increasing, resulting
in an increase of the RTT. The throughput remains constant, as the bottleneck link
is fully utilized. Finally, when no buffer is available at the router to store arriving
packets (the number of inflight bits is equal to BDP plus the buffer size of the router),
these are dropped.

It is important to understand that packets to be sent are paced at the estimated
bottleneck rate, which is intended to avoid network queuing that would otherwise
be encountered when the network performs rate adaptation at the bottleneck point.
The intended operational model here is that the sender is passing packets into the
network at a rate that is not anticipated to encounter queuing at any point within
the entire path. This is a significant contrast to protocols such as Reno, which tends
to send packet bursts at the epoch of the RTT and relies on the network’s queues
to perform rate adaptation in the interior of the network if the burst sending rate is
higher than the bottleneck capacity.

BBR also periodically probes for additional bandwidth (Fig. 54). It spends one
RTT interval deliberately sending at a rate that is higher than the current estimate
bottleneck bandwidth. Specifically, it sends data at 125% of the bottleneck band-
width. If the available bottleneck bandwidth has not changed, then the increased
sending rate will cause a queue to form at the bottleneck. This will cause the
ACK signaling to reveal an increased RTT, but the bottleneck bandwidth estimate
will be unaltered. If this is the case, then the sender will subsequently send at a
compensating reduced sending rate for an RTT interval. The reduced rate is set to
75% of the bottleneck bandwidth, allowing the bottleneck queue to drain. On the
other hand, if the available bottleneck bandwidth estimate has increased because of
this probe, then the sender will operate according to this new bottleneck bandwidth
estimate. The entire cycle duration lasts eight RTTs and is repeated indefinitely in
steady state.

258 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

13 Lab Topology

Let us get started with creating a simple Mininet topology using MiniEdit. The
topology uses 10.0.0.0/8, which is the default network assigned by Mininet
(Fig. 55).

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 56). When prompted for a password, type
password .

Step 2. OnMiniEdit’s menu bar, click on File, thenOpen to load the lab’s topology.
Locate the Lab 10.mn topology file and click on Open (Fig. 57).

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 58).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

Fig. 55 Lab topology

Fig. 56 MiniEdit shortcut

13 Lab Topology 259

Fig. 57 MiniEdit’s Open dialog

Fig. 58 Running the
emulation

13.1 Starting Host h1 and Host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal
of host h1 and allows the execution of commands on that host (Fig. 59).

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 . This command tests the connectivity

260 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 59 Opening a terminal on host h1

Fig. 60 Connectivity test using ping command

between host h1 and host h2. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test (Fig. 60).

Figure 60 indicates that there is connectivity between host h1 and host h2. Thus,
we are ready to start the throughput measurement process.

13.2 Emulating 1Gbps High-Latency WAN with Packet Loss

This section emulates a high-latency WAN, which is used to validate the results
observed in Fig. 53. We will first set the bandwidth between host h1 and host h2 to

13 Lab Topology 261

Fig. 61 Shortcut to open a Linux terminal

Fig. 62 Adding 0.01% packet loss rate to switch S1’s s1-eth2 interface

1Gbps. Then we will emulate packet losses between switch S1 and switch S2 and
measure the throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 61).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system for execution.

Step 2. In the terminal, type the below command. When prompted for a password,
type password and hit enter. This command basically introduces a 0.01% packet
loss rate on switch S1’s s1-eth2 interface (Fig. 62).

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss
0.01%

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2:
on the same terminal, type the command below (Fig. 17). This command sets the
bandwidth to 1Gbps on switch S1’s s1-eth2 interface. The tbf parameters are the
following (Fig. 63):

• rate : 1gbit

• burst : 500,000

• limit : 2500,000

262 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 63 Limiting the bandwidth to 1Gbps on switch S1’s s1-eth2 interface

Fig. 64 Output of ping 10.0.0.2 command

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate
1gbit burst 500000 limit 2500000

13.3 Testing Connection

To test connectivity, you can use the command ping .

Step 1. On the terminal of host h1, type ping 10.0.0.2 . To stop the test, press

Ctrl+c . The figure below shows a successful connectivity test. Host h1 (10.0.0.1)
sent four packets to host h2 (10.0.0.2), successfully receiving responses back
(Fig. 64).

The result above indicates that all four packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of
the Round-Trip Time (RTT) were 0.064, 0.269, 0.869, and 0.346ms, respectively.
Essentially, the standard deviation is an average of how far each ping RTT is from
the average RTT. The higher the standard deviation the more variable the RTT is.

14 iPerf3 Throughput Test 263

Fig. 65 Changing TCP congestion control algorithm to reno on host h1

Step 2. On the terminal of host h2, type ping 10.0.0.1 . The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To
stop the test, press Ctrl+c .

14 iPerf3 Throughput Test

In this section, the throughput between host h1 and host h2 is measured using two
congestion control algorithms: Reno and BBR. Moreover, the test is repeated using
various injected delays to observe the throughput variations depending on each
congestion control algorithm and the selected RTT.

14.1 Throughput Test Without Delay

In this test, we measure the throughput between host h1 and host h2 without
introducing delay on the switch S1’s s1-eth2 interface.

14.1.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno
by typing the following command (Fig. 65):

sysctl -w net.ipv4.tcp_congestion_control=reno

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 66):

iperf3 -s

Step 3. Launch iPerf3 in client mode on host h1’s terminal. The -O option is used
to specify the number of seconds to omit in the resulting report (Fig. 21).

264 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 66 Starting iPerf3 server on host h2

Fig. 67 Running iPerf3 client on host h1

iperf3 -c 10.0.0.2 -t 20 -O 10

The figure above shows the iPerf3 test output report. The average achieved
throughputs are 956Mbps (sender) and 956Mbps (receiver), and the number of
retransmissions is 161 (due to the injected packet loss—0.01%) (Fig. 67).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

14 iPerf3 Throughput Test 265

Fig. 68 Changing TCP congestion control algorithm to bbr on host h1

Fig. 69 Starting iPerf3 server on host h2

14.1.2 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR
by typing the following command (Fig. 68):

sysctl -w net.ipv4.tcp_congestion_control=bbr

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 69):

iperf3 -s

Step 3. Launch iPerf3 in client mode on host h1’s terminal (Fig. 70):

iperf3 -c 10.0.0.2 -t 20 -O 10

Figure 70 shows the iPerf3 test output report. The average achieved throughputs
are 937Mbps (sender) and 937Mbps (receiver), and the number of retransmissions
is 92 (due to the injected packet loss—0.01%).

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

14.2 Throughput Test with 30ms Delay

In this test, we measure the throughput between host h1 and host h2 while
introducing 30ms delay on the switch S1’s s1-eth2 interface. Apply the following
steps:

266 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 70 Running iPerf3 client on host h1

Fig. 71 Injecting 30ms delay on switch S1’s s1-eth2 interface

Step 1. In order to add delay to the switch 1 or interface s1-eth2, go back to the
client’s terminal, run the following command to modify the previous rule to include
30ms delay (Fig. 71):

sudo tc qdisc change dev s1-eth2 root handle 1: netem loss
0.01% delay 30ms

14 iPerf3 Throughput Test 267

Fig. 72 Modifying the TCP buffer size on host h1

Fig. 73 Modifying the TCP buffer size on host h2

Step 2. In host h1’s terminal, modify the TCP buffer size by typing the following
commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’ and sysctl
-w net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’. This TCP buffer is explained
later in future labs (Fig. 72).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

Step 3. In host h2’s terminal, also modify the TCP buffer size by typing the
following commands: sysctl -w net.ipv4.tcp_rmem=’10,240 87,380 150,000,000’
and sysctl -w net.ipv4.tcp_wmem=’10,240 87,380 150,000,000’ (Fig. 73).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 150000000’

sysctl -w net.ipv4.tcp_wmem=’10240 87380 150000000’

14.2.1 TCP Reno

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to Reno
by typing the following command (Fig. 74):

sysctl -w net.ipv4.tcp_congestion_control=reno

268 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 74 Changing TCP congestion control algorithm to reno on host h1

Fig. 75 Starting iPerf3 server on host h2

Fig. 76 Creating and entering a new directory reno

Fig. 77 Running iPerf3 client on host h1 and redirecting the output to reno.json

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 75):

iperf3 -s

Step 3. Create and enter to a new directory reno on host h1’s terminal (Fig. 76):

mkdir reno && cd reno

Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used
to produce a JSON output and the redirection operator > to send the standard
output to a file (Fig. 77).

iperf3 -c 10.0.0.2 -t 30 -J >reno.json

14 iPerf3 Throughput Test 269

Fig. 78 plot_iperf.sh script generating output results

Fig. 79 Entering the results directory using the cd command

Fig. 80 Opening the throughput.pdf file using xdg-open

Step 5. Once the test is finished, type the following command to generate the output
plots for iPerf3’s JSON file (Fig. 78):

plot_ iperf.sh reno.json

This plotting script generates PDF files for the following fields: congestion
window (cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf),
Round-Trip Time variance (RTT_Var.pdf), throughput (throughput.pdf), maximum
transmission unit (MTU.pdf), and bytes transferred (bytes.pdf). The plotting script
also generates a CSV file (1.dat) to be used by applicable programs. These files
are stored in a directory results created in the same directory where the script was
executed as shown in the figure below.

Step 6. Navigate to the results folder using the cd command (Fig. 79).

cd results/

Step 7. To open any of the generated files, use the xdg-open command followed
by the file name. For example, to open the throughput.pdf file, use the following
command (Figs. 80 and 81):

xdg-open throughput.pdf

270 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 81 Reno’s throughput

Fig. 82 Opening the throughput.pdf file using xdg-open

Step 8. Close the throughput.pdf file and open the cwnd.pdf file using the
following command (Figs. 82 and 83):

xdg-open cwnd.pdf

Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

Step 10. Exit the /reno/results directory by using the following command on host
h1’s terminal (Fig. 84):

cd ../..

14 iPerf3 Throughput Test 271

Fig. 83 Reno’s congestion window

Fig. 84 Exiting the /reno/results directory

Fig. 85 Changing TCP congestion control algorithm to bbr on host h1

14.2.2 TCP BBR

Step 1. In host h1’s terminal, change the TCP congestion control algorithm to BBR
by typing the following command (Fig. 85):

sysctl -w net.ipv4.tcp_congestion_control=bbr

Step 2. Launch iPerf3 in server mode on host h2’s terminal (Fig. 86):

iperf3 -s

272 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 86 Starting iPerf3 server on host h2

Fig. 87 Creating and entering a new directory bbr

Fig. 88 Running iPerf3 client on host h1 and redirecting the output to bbr.json

Fig. 89 plot_iperf.sh script generating output results

Step 3. Create and enter to a new directory bbr host h1’s terminal (Fig. 87):

mkdir bbr && cd bbr

Step 4. Launch iPerf3 in client mode on host h1’s terminal. The -J option is used
to produce a JSON output and the redirection operator > to send the standard
output to a file (Fig. 88).

iperf3 -c 10.0.0.2 -t 30 -J >bbr.json

Step 5. To generate the output plots for iPerf3’s JSON file run the following
command (Fig. 89):

plot_iperf.sh bbr.json

14 iPerf3 Throughput Test 273

Fig. 90 Entering the results directory using the cd command

Fig. 91 Opening the throughput.pdf file using xdg-open

This plotting script generates PDF files for the following fields: congestion
window (cwnd.pdf), retransmits (retransmits.pdf), Round-Trip Time (RTT.pdf),
Round-Trip Time variance (RTT_Var.pdf), throughput (throughput.pdf), maximum
transmission unit (MTU.pdf), and bytes transferred (bytes.pdf). The plotting script
also generates a CSV file (1.dat) to be used by applicable programs. These files
are stored in a directory results created in the same directory where the script was
executed as shown in the figure below.

Step 6. Navigate to the results folder using the cd command (Fig. 90).

cd results/

Step 7. To open any of the generated files, use the xdg-open command followed
by the file name. For example, to open the throughput.pdf file, use the following
command (Fig. 91):

xdg-open throughput.pdf

Step 8. Figure 92 shows that in steady state, BBR has already attained the
maximum throughput, which is over 900Mbps (the bottleneck bandwidth is 1Gbps,
with an observed effective bandwidth of ∼937Gbps). Note also the periodic
(short) drain intervals, where the throughput decreases to ∼75% of the maximum
throughput, as discussed in Sect. 12.3. To proceed, close the throughput.pdf file and
open the cwnd.pdf file using the following command (Figs. 93 and 94):

xdg-open cwnd.pdf

274 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 92 BBR’s throughput

Fig. 93 Opening the cwnd.pdf file using xdg-open

Step 9. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

Step 10. Exit the /bbr/results directory by using the following command on host
h1’s terminal (Fig. 95):

cd ../..

It is clear from the above test that when introducing delay, BBR preforms
significantly better than Reno.

15 Chapter 4—Lab 11: Bandwidth-Delay Product and TCP Buffer Size 275

Fig. 94 BBR’s congestion window

Fig. 95 Exiting the /bbr/results directory

15 Chapter 4—Lab 11: Bandwidth-Delay Product and TCP
Buffer Size

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/, and reserve a pod for Lab 11.

This lab explains the bandwidth-delay product (BDP) and how to modify the
TCP buffer size in Linux systems. Throughput measurements are also conducted to
test and verify TCP buffer configurations based on the BDP.

Objectives
By the end of this lab, students should be able to:

1. Understand BDP.
2. Define and calculate TCP window size.
3. Modify the TCP buffer size with sysctl, based on BDP calculations.
4. Emulate WAN properties in Mininet.
5. Achieve full throughput in WANs by modifying the size of TCP buffers.

http://highspeednetworks.net/

276 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Table 4 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

Lab Settings
The information in Table 4 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 16: Introduction to TCP buffers, BDP, and TCP window
2. Section 17: Lab topology
3. Section 18: BDP and buffer size experiments
4. Section 19: Modifying buffer size and throughput test

16 Introduction to TCP buffers, BDP, and TCP Window

16.1 TCP Buffers

The TCP send and receive buffers may impact the performance of Wide Area
Networks (WAN) data transfers. Consider Fig. 96. At the sender side, TCP receives
data from the application layer and places it in the TCP send buffer. Typically,
TCP fragments the data in the buffer into maximum segment size (MSS) units.
In this example, the MSS is 100 bytes. Each segment carries a sequence number,
which is the byte-stream number of the first byte in the segment. The corresponding
acknowledgment (Ack) carries the number of the next expected byte (e.g., Ack-
101 acknowledges bytes 1–100, carried by the first segment). At the receiver, TCP
receives data from the network layer and places it into the TCP receive buffer. TCP
delivers the data in order to the application, e.g., bytes contained in a segment, say
segment 2 (bytes 101–200), cannot be delivered to the application layer before the
bytes contained in segment 1 (bytes 1–100) are delivered to the application. At any
given time, the TCP receiver indicates the TCP sender how many bytes the latter
can send, based on how much free buffer space is available at the receiver.

16.2 Bandwidth-Delay Product

In many WANs, the Round-Trip Time (RTT) is dominated by the propagation delay.
Long RTTs along and TCP buffer size have throughput implications. Consider a
10Gbps WAN with a 50-ms RTT. Assume that the TCP send and receive buffer
sizes are set to 1 Mbyte (1 Mbyte = 10242 bytes = 1,048576 bytes = 1,048,576 ·

16 Introduction to TCP buffers, BDP, and TCP Window 277

...
1-100

...

From Application

To Network

TCP send buffer

To Application
(in-order delivery)

From Network

101-200201-300

801-900 701-800

301-400

TCP receive buffer

201-300 101-200 1-100

401-500501-600...

Ack-101 Ack-201 ...

Seq. number
(first byte in segment)

Ack number (next expected byte)

Fig. 96 TCP send and receive buffers

8 bits = 8,388,608 bits). With a bandwidth (Bw) of 10Gbps, this number of bits is
approximately transmitted in

Ttx = # bits

Bw
= 8, 388, 608

10 · 109 = 0.84milliseconds.

That is, after 0.84ms the content of the TCP send buffer will be completely sent. At
this point, TCP must wait for the corresponding acknowledgments, which will only
start arriving at t = 50ms. This means that the sender only uses 0.84/50 or 1.68%
of the available bandwidth.

The solution to that above problem lies in allowing the sender to continuously
transmit segments until the corresponding acknowledgments arrive back. Note that
the first acknowledgment arrives after an RTT. The number of bits that can be
transmitted in a RTT period is given by the bandwidth of the channel in bits per
second multiplied by the RTT. This quantity is referred to as the bandwidth-delay
product (BDP). For the above example, the buffer size must be greater than or equal
to the BDP:

TCP buffer size ≥ BDP =
(
10·109

) (
50·10−3

)
= 500,000,000 bits

= 62,500,000 bytes.

The first factor (10 · 109) is the bandwidth; the second factor (50 · 10−3) is the RTT.
For practical purposes, the TCP buffer can also be expressed in Mbytes (1 Mbyte =
10242 bytes) or Gbytes (1 Gbyte = 10243 bytes). The above expression in Mbytes
is

TCP buffer size ≥ 62,500,000 bytes = 59.6Mbytes ≈ 60Mbytes.

278 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

16.3 Practical Observations on Setting TCP Buffer Size

Linux Systems Configuration Linux assumes that half of the send/receive TCP
buffers are used for internal structures. Thus, only half of the buffer size is used to
store segments. This implies that if a TCP connection requires certain buffer size,
then the administrator must configure the buffer size equals to twice that size. For
the previous example, the TCP buffer size must be

TCP buffer size ≥ 2 · 60Mbytes = 120Mbytes.

Packet Loss Scenarios and TCP BBR TCP provides a reliable, in-order delivery
service. Reliability means that bytes successfully received must be acknowledged.
In-order delivery means that the receiver only delivers bytes to the application layer
in sequential order. The memory occupied by those bytes will be deallocated from
the receive buffer after passing the bytes to the application layer. This process has
some performance implications, as illustrated next. Consider Fig. 97, which shows
a TCP receive buffer. Assume that the segment carrying bytes 101–200 is lost.
Although the receiver has successfully received bytes 201–900, it cannot deliver to
the application layer until bytes 101–200 are received. Note that the receive buffer
may become full, which would block the sender from utilizing the channel.

While setting the buffer size equal to the BDP is acceptable when traditional
congestion control algorithms are used (e.g., Reno, Cubic, HTCP), this size may not
allow the full utilization of the channel with BBR. In contrast to other algorithms,
BBR does not reduce the transmission rate after a packet loss. For example,
suppose that a packet sent at t = 0 is lost, as shown in Fig. 98. At t = RTT, the
acknowledgment identifying the packet to retransmit is received. By then, the sender

Fig. 97 TCP receive buffer. Although bytes 301–900 have been received, they cannot be delivered
to the application until the segment carrying bytes 201–300 are received

16 Introduction to TCP buffers, BDP, and TCP Window 279

T=RTT

t=0
BDP

Missing data. Buffered data
can’t be released to
application

Missing data arrives. Ready
for in-order delivery

Data delivered to application.
Buffer is drainedt=2RTT

Sender is blocked (TCP
receive buffer full)

...

Sender resumes
transmission

Sender Receiver

TCP receive buffer
(BDP capacity)

Packet loss
Data segment

Legend:

Ack identifying packet
to retransmit

ACK / SACK
Retransmission

Fig. 98 A scenario where a TCP receive buffer size of BDP cannot prevent throughput degradation

has sent BDP bits, which will be stored in the receive buffer. This data cannot be
delivered yet to the application because of the in-order delivery requirement. Since
the receive buffer has a capacity of BDP only, the sender is temporarily blocked
until the acknowledgment for the retransmitted data is received at t = 2·RTT. Thus,
the throughput over the period t = 0 to t = 2·RTT is reduced by half:

throughput = # bits transmitted

period
=Bw · RTT

2 · RTT =Bw

2
.

With BBR, to fully utilize the available bandwidth, the TCP send and receive
buffers must be large enough to prevent such situation. Figure 99 shows an example
on how a TCP buffer size of 2·BDP mitigates packet loss.

High to moderate packet loss scenarios, using TCP BBR:

TCP send/receive buffer ≥ several BDPs (e.g., 4 · BDP).

Continuing with the example of Sect. 16.2, in a Linux system using TCP BBR,
the send/receive buffers for a BDP of 60 Mbytes in a high to moderate packet loss
scenario should be

TCP buffer size ≥ (2 · 60Mbytes) · 4 = 480Mbytes.

The factor 2 is because of the Linux systems configuration, and the factor 4 is
because of the use of TCP BBR in a high to moderate packet loss scenario.

280 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

t=RTT

t=0

2BDP

Missing data. Still ~BDP
buffer capacity available

Data delivered to application.
Buffer is drained

t=2RTT

...

Sender Receiver

Missing data
arrives. Ready for
in-order delivery

ACK / SACK identifying
packet to retransmit

Fig. 99 A scenario where a TCP buffer size of 2·BDP mitigates packet loss

Fig. 100 Window scaling in Wireshark

16.4 TCP Window Size Calculated Value

The receiver must constantly communicate with the sender to indicate how much
free buffer space is available in the TCP receive buffer. This information is carried
in a TCP header field called window size. The window size has a maximum value of
65,535 bytes, as the header value allocated for the window size is two bytes long (16
bits; 216−1 = 65,535). However, this value is not large enough for high-bandwidth
high-latency networks. Therefore, TCP window scale option was standardized in
RFC 1323. By using this option, the calculated window size may be increased up
to a maximum value of 1,073,725,440 bytes. When advertising its window, a device
also advertises the scale factor (multiplier) that will be used throughout the session.
The TCP window size is calculated as follows:

Scaled TCPWin = TCPWin · Scaling Factor

As an example, consider the following example. For an advertised TCP window
of 2049 and a scale factor of 512, then the final window size is 1,049,088 bytes.
Figure 100 displays a packet inspected in Wireshark protocol analyzer for this
numerical example

17 Lab Topology 281

16.5 Zero Window

When the TCP buffer is full, a window size of zero is advertised to inform the other
end that it cannot receive any more data. When a client sends a TCP window of
zero, the server will pause its data transmission and wait for the client to recover.
Once the client is recovered, it digests data and informs the server to resume the
transmission again by setting again the TCP window.

17 Lab Topology

Let us get started with creating a simpleMininet topology usingMiniedit. The topol-
ogy uses 10.0.0.0/8, which is the default network assigned by Mininet (Fig. 101).

Step 1. A shortcut to Miniedit is located on the machine’s Desktop. Start Miniedit
by clicking on Miniedit’s shortcut (Fig. 102). When prompted for a password, type
password .

Step 2. On Miniedit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 11.mn topology file and click on Open (Fig. 103).

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Fig. 101 Lab topology

Fig. 102 Miniedit shortcut

282 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 103 Miniedit’s Open dialog

Fig. 104 Running the
emulation

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of Miniedit’s
window to start the emulation (Fig. 104).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

17 Lab Topology 283

Fig. 105 Opening a terminal on host h1

Fig. 106 Connectivity test using ping command

17.1 Starting Host h1 and Host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal
of host h1 and allows the execution of commands on that host (Fig. 105).

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 (Fig. 106). This command tests the

connectivity between host h1 and host h2. To stop the test, press Ctrl+c . The
figure below shows a successful connectivity test.

284 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 107 Shortcut to open a Linux terminal

Fig. 108 Adding 20ms delay to switch S1’s s1-eth2 interface

Figure 106 indicates that there is connectivity between host h1 and host h2.

17.2 Emulating 10Gbps High-Latency WAN

This section emulates a high-latency WAN by introducing delays to the network.
We will first set the bandwidth between hosts 1 and 2 to 10Gbps. Then, we will
emulate a 20ms delay and measure the throughput.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 107).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system to perform.

Step 2. In the terminal, type the command below. When prompted for a password,
type password and hit enter. This command introduces 20ms delay on S1’s s1-eth2
interface (Fig. 108).

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay
20ms

17 Lab Topology 285

Fig. 109 Limiting the bandwidth to 10Gbps on switch S1’s s1-eth2 interface

Fig. 110 Output of ping 10.0.0.2 command

Step 3. Modify the bandwidth of the link connecting the switches S1 and S2: on
the same terminal, type the command below. This command sets the bandwidth
to 10Gbps on S1’s s1-eth2 interface (Fig. 109). The tbf parameters are the
following:

• rate : 10gbit

• burst : 5,000,000

• limit : 25,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate
10gbit burst 5000000 limit 25000000

Step 3. On h1’s terminal, type ping 10.0.0.2 . This command tests the connectivity
between host h1 and host h2. The test was initiated by h1 as the command is
executed on h1’s terminal.

To stop the test, press Ctrl+c . The figure below shows a successful connectivity
test. Host h1 (10.0.0.1) sent four packets to host h2 (10.0.0.2), successfully receiving
responses back (Fig. 110).

The result above indicates that all four packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 20.092, 25.353, 41.132, and 9.111ms, respectively.

286 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 111 Host h2 running iperf3 as server

Fig. 112 iPerf3 throughput test

The output above verifies that delay was injected successfully, as the RTT is
approximately 20ms.

Step 4. The user can now verify the rate limit configuration by using the iperf3 tool
to measure throughput. To launch iPerf3 in server mode, run the command iperf3 -s
in H2’s terminal (Fig. 111):

iperf3 -s

Step 5. Now to launch iPerf3 in client mode again by running the command
iperf3 -c 10.0.0.2 in h1’s terminal (Fig. 112):

iperf3 -c 10.0.0.2

18 BDP and Buffer Size 287

Notice the measured throughput now is approximately 3Gbps, which is different
than the value assigned in our tbf rule. Next, we explain why the 10Gbps
maximum theoretical bandwidth is not achieved.

Step 6. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

18 BDP and Buffer Size

In connections that have a small BDP (either because the link has a low bandwidth or
because the latency is small), buffers are usually small. However, in high-bandwidth
high-latency networks, where the BDP is large, a larger buffer is required to achieve
the maximum theoretical bandwidth.

18.1 Window Size in sysctl

The tool sysctl is used for dynamically changing parameters in the Linux operating
system. It allows users to modify kernel parameters dynamically without rebuilding
the Linux kernel.

The sysctl key for the receive window size is net.ipv4.tcp_rmem , and the send

window size is net.ipv4.tcp_wmem .

Step 1. To read the current receiver window size value of host h1, use the following
command on h1’s terminal (Fig. 113):

sysctl net.ipv4.tcp_rmem

Step 2. To read the current send window size value of host h1, use the following
command on h1’s terminal (Fig. 114):

sysctl net.ipv4.tcp_wmem

Fig. 113 Receive window read in sysctl

288 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 114 Send window read in sysctl

Fig. 115 Sample window
size from the previous test

The returned values of both keys (net.ipv4.tcp_rmem and net.ipv4.tcp_wmem)
are measured in bytes. The first number represents the minimum buffer size that
is used by each TCP socket. The middle one is the default buffer that is allocated
when applications create a TCP socket. The last one is the maximum receive buffer
that can be allocated for a TCP socket.

The default values used by Linux are:

• Minimum: 10,240
• Default: 87,380
• Maximum: 16,777,216

In the previous test (10Gbps, 20ms delay), the buffer size was not modified on
end-hosts. The BDP for the above test is

BDP = (
10·109) · (20·10−3) = 200,000,000 bits = 25,000,000 bytes

≈ 25Mbytes.

Note that this value is significantly greater than the maximum buffer size (16
Mbytes), and therefore, the pipe is not getting filled, which leads to network
resources underutilization. Moreover, since Linux systems by default use half of
the send/receive TCP buffers for internal kernel structures (see Sect. 16.3 Linux
systems configuration), only half of the buffer size is used to store TCP segments.
Figure 115 shows the calculated window size of a sample packet of the previous
test—approximately 8 Mbytes. This is 50% of the default buffer size used by Linux
(16 Mbytes).

Note that the observation in Fig. 115 reinforces the best practice described in
Sect. 16.3: in Linux systems, the TCP buffer size must be at least twice the BDP.

19 Modifying Buffer Size and Throughput Test 289

19 Modifying Buffer Size and Throughput Test

This section repeats the throughput test of Sect. 19 after modifying the buffer size
according to the formula described above. This test assumes the same network
parameters introduced in the previous test; therefore, the bandwidth is limited to
1Gbps, and the RTT (delay or latency) is 20ms. The send and receive buffer sizes
should be set to at least 2 •BDP (if BBR is used as the congestion control algorithm,
this should be set to even a larger value, as described in Sect. 19). We will use 25
Mbytes value for the BDP instead of 25,000,000 bytes (1 Mbyte = 10242 bytes)

BDP = 25Mbytes = 25 · 10242 bytes = 26,214,400 bytes

TCP buffer size = 2 · BDP = 2 · 26,214,400 bytes = 52,428,800 bytes.

Step 1. To change the TCP receive window size value(s), use the following
command on h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default),
and 52,428,800 (maximum, calculated by doubling the BDP) (Fig. 116).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

The returned values are measured in bytes. 10,240 represents the minimum buffer
size that is used by each TCP socket. 87,380 is the default buffer that is allocated
when applications create a TCP socket. 52428800 is the maximum receive buffer
that can be allocated for a TCP socket.

Step 2. To change the current send window size value(s), use the following
command on h1’s terminal. The values set are: 10,240 (minimum), 87,380 (default),
and 52,428,800 (maximum, calculated by doubling the BDP) (Fig. 117).

Fig. 116 Receive window change in sysctl

Fig. 117 Send window change in sysctl

290 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 118 Receive window change in sysctl

Fig. 119 Send window change in sysctl

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Next, the same commands must be configured on host h2.

Step 3. To change the current receiver window size value(s), use the following
command on h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default),
and 52,428,800 (maximum, calculated by doubling the BDP) (Fig. 118).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Step 4. To change the current send window size value(s), use the following
command on h2’s terminal. The values set are: 10,240 (minimum), 87,380 (default),
and 52,428,800 (maximum, calculated by doubling the BDP) (Fig. 119).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Step 5. The user can now verify the rate limit configuration by using the iperf3
tool to measure throughput. To launch iPerf3 in server mode, run the command
iperf3 -s in h2’s terminal (Fig. 120):

iperf3 -s

Step 6. Now to launch iPerf3 in client mode again by running the command
iperf3 -c 10.0.0.2 in h1’s terminal (Fig. 121):

20 Chapter 4—Lab 12: Enhancing TCP Throughput with Parallel Streams 291

Fig. 120 Host h2 running iPerf3 as server

DP1

Sender

CP

Receiver

DP2

DP3

DP1

DP2

DP3

Stream 1

Stream 2

Stream 3

Control channelCP
Legend:

CP: Control process
DP: Data process

Data channels

Fig. 121 iPerf3 throughput test

iperf3 -c 10.0.0.2

Note the measured throughput now is approximately 10Gbps, which is close to
the value assigned in our tbf rule (10Gbps).

20 Chapter 4—Lab 12: Enhancing TCP Throughput with
Parallel Streams

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/, and reserve a pod for Lab 12.

http://highspeednetworks.net/

292 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Table 5 Credentials to access Client1 machine. Average throughput ≈ MSS
RTT

√
L bytes per second

Device Account Password

Client1 admin password

This lab introduces TCP parallel streams in Wide Area Networks (WANs) and
explains how they are used to achieve higher throughput. Then, throughput tests
using parallel streams are conducted.

Objectives
By the end of this lab, students should be able to:

1. Understand TCP parallel streams.
2. Describe the advantages of TCP parallel streams.
3. Specify the number of parallel streams in an iPerf3 test.
4. Conduct tests and measure performance of parallel streams on an emulated

WAN.

Lab Settings
The information in Table 5 provides the credentials of the machine containing
Mininet.

Lab Roadmap
This lab is organized as follows:

1. Section 21: Introduction to TCP parallel streams
2. Section 22: Lab topology
3. Section 23: Parallel streams in a high-latency high-bandwidth WAN
4. Section 24: Parallel streams with packet loss

21 Introduction to TCP Parallel Streams

21.1 Parallel Stream Fundamentals

Parallel streams are multiple TCP connections opened by an application to increase
performance and maximize the throughput between communicating hosts. With
parallel streams, data blocks for a single file transmitted from a sender to a receiver
are distributed over the multiple streams. Figure 122 shows the basic model. A
control channel is established between the sender and the receiver to coordinate
the data transfer. The actual transfer occurs over the parallel streams, collectively
referred to as data channels. In this context, the term stream is a synonym of flow
and connection.

21 Introduction to TCP Parallel Streams 293

In
s t

an
ta

ne
ou

s
Th

ro
ug

hp
ut

Time

MSS2 = 6 MSS1

MSS1 = 1 unit
Packet loss (throughput
decreases by half)

Slope proportional
to MSSAdditive increase

Multiplicative
decrease

Fig. 122 Data transfer model with parallel streams

21.2 Advantages of Parallel Streams

Transferring large files over high-latency WANs with parallel streams has multiple
benefits, as described next.

Combat Random Packet Loss Not due Congestion assume that packet loss
occurs randomly rather than due congestion. In steady state, the average throughput
of a single TCP stream is given by

Average throughput ≈ MSS

RTT
√
L

bytes per sound,

where MSS is the maximum segment size and L is the packet loss rate. The above
equation indicates that the throughput is directly proportional to the MSS and
inversely proportional to RTT and the square root of L. When an application uses K
parallel streams and if RTT, packet loss, and MSS are the same in each stream, the
aggregate average throughput is the aggregation of the K single stream throughputs:

Aggregate average throughput ≈
K∑

i=1

MSS

RT T
√

L
=K· MSS

RT T
√

L
bytes per second.

Thus, an application opening K parallel connections essentially creates a large
virtual MSS on the aggregate connection that is K times the MSS of a single
connection.

The TCP throughput follows the additive increase multiplicative decrease
(AIMD) rule: TCP continuously probes for more bandwidth and increases the
throughput of a connection by approximately 1 MSS per RTT as long as no packet
loss occurs (additive increase phase). When a packet loss occurs, the throughput is

294 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

TCP data
in bufferSpare room

TCP receive buffer

To application
layer

From
IP

Receiver

TCP data in
buffer

Spare
room

TCP send buffer

From
application layer

To IP

Sender

Fig. 123 Additive increase multiplicative decrease (AIMD) behavior. The green curve corre-
sponds to the throughput when the MSS is six times that of the red curve

10 Gbps

h1 s1 h2

s1-eth2s1-eth1h1-eth0 h2-eth0

s2

s2-eth2 s2-eth1

10.0.0.1 10.0.0.2

Fig. 124 TCP send and receive buffers

reduced by half (multiplicative decrease event). Figure 123 illustrates the AIMD
behavior for two connections with different MSSs. TheMSS of the green connection
is six times than the MSS of the red connection. Since during the additive increase
phase TCP increases the throughput by one MSS every RTT, the speed at which the
throughput increases is proportional to the MSS (i.e., the larger the MSS the faster
the recovery after a packet loss).

Mitigate TCP Round-Trip Time (RTT) Bias When different flows with different
RTTs share a given bottleneck link, TCP’s throughput is inversely proportional to
the RTT. This is also noted in the equations discussed above. Hence, low-RTT flows
get a higher share of the bandwidth than high-RTT flows. Thus, for transfers across
high-latencyWANs, one approach to combat the higher (unfair) bandwidth allocated
to low-latency connections is by using parallel streams. By doing so, even if each
high-latency stream receives a less amount of bandwidth than low-latency flows, the
aggregate throughput of the parallel streams can be high.

Overcome TCP Buffer Limitation TCP receives data from the application layer
and places it in the TCP buffer, as shown in Fig. 124. TCP implements flow
control by requiring the receiver indicate how much spare room is available in the
TCP receive buffer. For a full utilization of the path, the TCP send and receive
buffers must be greater than or equal to the bandwidth-delay product (BDP).
This buffer size value is the maximum number of bits that can be outstanding
(inflight) if the sender continuously sends segments. If the buffer size is less than the
bandwidth-delay product, then throughput will not be maximized. One solution to
overcome small TCP buffer size situations is by using parallel streams. Essentially,
an application opening K parallel connections creates a large buffer size on the
aggregate connection that is K times the buffer size of a single connection.

22 Lab Topology 295

In this lab, we will explore the use of parallel streams to overcome TCP buffer
limitation and to mitigate random packet loss.

22 Lab Topology

Let us get started with creating a simple Mininet topology using MiniEdit. The
topology uses 10.0.0.0/8, which is the default network assigned by Mininet
(Fig. 125).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

Fig. 125 Lab topology

Fig. 126 MiniEdit shortcut

296 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 127 MiniEdit’s Open
dialog

Fig. 128 Running the
emulation

Step 1. A shortcut to MiniEdit is located on the machine’s desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 126). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 12.mn topology file and click on Open (Fig. 127).

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 128).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

22 Lab Topology 297

Fig. 129 Opening a terminal on host h1

Fig. 130 Connectivity test using ping command

22.1 Starting Host h1 and Host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal
of host h1 and allows the execution of commands on that host (Fig. 129).

Step 2. Apply the same steps on host h2 and open its Terminals.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 . This command tests the connectivity

between host h1 and host h2. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test (Fig. 130).

Figure 130 indicates that there is connectivity between host h1 and host h2. Thus,
we are ready to start the throughput measurement process.

298 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 131 Shortcut to open a Linux terminal

Fig. 132 Adding delay of 20ms to switch S1’s s1-eth2 interface

22.2 Emulating 10Gbps High-Latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay
between switch S1 and switch S2 to measure the throughput. Then, we will set
the bandwidth between host h1 and host h2 to 10Gbps.

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 131).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system for execution.

Step 2. In the terminal, type the command below. When prompted for a password,
type password and hit enter. This command introduces 20ms delay on switch S1’s
s1-eth2 interface (Fig. 132).

sudo tc qdisc add dev s1-eth2 root handle 1: netem delay
20ms

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2:
on the same terminal, type the command below. This command sets the bandwidth
to 10Gbps on switch S1’s s1-eth2 interface (Fig. 133). The tbf parameters are the
following:

• rate : 10gbit

• burst : 5,000,000

• limit : 15,000,000

22 Lab Topology 299

Fig. 133 Limiting the bandwidth to 10Gbps on switch S1’s s1-eth2 interface

Fig. 134 Output of ping 10.0.0.2 command

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate
10gbit burst 5000000 limit 15000000

22.3 Testing Connection

To test connectivity, you can use the command ping .

Step 1. On the terminal of host h1, type ping 10.0.0.2 . To stop the test, press

Ctrl+c . The figure below shows a successful connectivity test. Host h1 (10.0.0.1)
sent four packets to host h2 (10.0.0.2), successfully receiving responses back
(Fig. 134).

The result above indicates that all four packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 20.080, 25.284, 40.883, and 9.006ms, respectively.
The output above verifies that delay was injected successfully, as the RTT is
approximately 20ms.

300 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 135 Starting iPerf3 server on host h2

Fig. 136 Running iPerf3 client on host h1

Step 2. On the terminal of host h2, type ping 10.0.0.1 . The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To
stop the test, press Ctrl+c .

Step 3. Launch iPerf3 in server mode on host h2’s terminal (Fig. 135).

iperf3 -s

Step 4. Launch iPerf3 in client mode on host h1’s terminal. To stop the test, press
Ctrl+c (Fig. 136).

iperf3 -c 10.0.0.2

Although the link was configured to 10Gbps, the test results show that the
achieved throughput is 3.22Gbps. This is because the TCP buffer size is less than

23 Parallel Streams to Overcome TCP Buffer Limitation 301

the bandwidth-delay product. In the upcoming section, we run a throughput test
without modifying the TCP buffer size, but with multiple parallel streams.

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

23 Parallel Streams to Overcome TCP Buffer Limitation

In this section, parallel streams are specified by the client when executing the
throughput test in iPerf3. The iPerf3 server should start as usual, without specifying
any additional options or parameters.

Step 1. To launch iPerf3 in server mode, run the command iperf3 -s in host h2’s
terminal as shown the figure below (Fig. 137):

iperf3 -s

Step 2. Now the iPerf3 client should be launched with the -P option specified
(not to be confused with the -p option that specifies the listening port number).
This option specifies the number of parallel streams. Run the following command
in host h1’s terminal (Fig. 138):

Fig. 137 Host h2 running iPerf3 as server

302 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 138 iPerf3 throughput test with parallel streams

Fig. 139 iPerf3 throughput test with parallel streams summary output

iperf3 -c 10.0.0.2 -P 8

The above command uses 8 parallel streams. Note that 8 sockets are now opened
on different local ports, and their streams are connected to the server, ready for
transmitting data and performing the throughput test (Fig. 139).

Note the measured throughput now is approximately 9.5Gbps, which is close to
the value assigned in the tbf rule (10Gbps).

Step 3. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

24 Parallel Streams to Combat Packet Loss 303

24 Parallel Streams to Combat Packet Loss

Packet loss is inevitable in real-world networks. This section explores the use of
parallel streams to mitigate packet loss not due congestion (i.e., random packet loss)
and compares the performance of single and parallel streams.

24.1 Limit Rate and Add Packet Loss on Switch S1’s s1-eth2
Interface

In this topology, rate limiting is applied on switch S1’s interface that connects it to
switch S2 (s1-eth2) and 1% packet loss is introduced.

Step 1. Before applying any additional configuration, the previous rules assigned
on the switch’s interface must be deleted. To remove these, type the following
command on the Client’s terminal. When prompted for a password, type password
and hit enter (Fig. 140).

sudo tc qdisc del dev s1-eth2 root

Step 2. On the same terminal, type the below command to add 1% packet loss
(Fig. 141).

sudo tc qdisc add dev s1-eth2 root handle 1: netem loss 1%

Fig. 140 Deleting previous rules on switch S1’s s1-eth2 interface

Fig. 141 Adding 1% packet loss to switch S1’s s1-eth2 interface

304 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 142 Limiting the bandwidth to 10Gbps on switch S1’s s1-eth2 interface

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2:
on the same terminal, type the command below. This command sets the bandwidth
to 10Gbps on switch S1’s s1-eth2 interface (Fig. 142). The tbf parameters are the
following:

• rate : 10gbit

• burst : 5,000,000

• limit : 15,000,000

sudo tc qdisc add dev s1-eth2 parent 1: handle 2: tbf rate
10gbit burst 5000000 limit 15000000

Step 3. The user can now verify the rate limit configuration by using the iperf3
tool to measure throughput. To launch iPerf3 in server mode, run the command
iperf3 -s in host h2’s terminal as shown in the figure below (Fig. 143):

iperf3 -s

Step 4. Launch iPerf3 in client mode on host h1’s terminal. To stop the test, press
Ctrl+c (Fig. 144).

iperf3 -c 10.0.0.2

Note the measured throughput now is approximately 7.6Gbps, which is different
than the value assigned in the tbf rule (10Gbps).

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

24 Parallel Streams to Combat Packet Loss 305

Fig. 143 Starting iPerf3 server on host h2

Fig. 144 Running iPerf3 client on host h1

24.2 Test with Parallel Streams

Step 1. Now the test is repeated while using parallel streams. To launch iPerf3 in
server mode, run the command iperf3 -s in host h2’s terminal as shown in Fig. 145:

iperf3 -s

Step 2. Now the iPerf3 client should be launched with the -P option specified
(not to be confused with the -p option that specifies the listening port number).
This option specifies the number of parallel streams. Run the following command
in host h1’s terminal (Fig. 146):

iperf3 -c 10.0.0.2 -P 8

306 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 145 Host h2 running iPerf3 as server

Fig. 146 Host h1 running iPerf3 as client with 8 parallel streams

The above command uses 8 parallel streams. Note that 8 sockets are now opened
on different local ports, and their streams are connected to the server, ready for
transmitting data and performing the throughput test.

25 Chapter 4—Lab 13: Measuring TCP Fairness 307

Bottleneck
RSender

TCP flow 2

Sender
TCP flow 1

Router Router

Fig. 147 iPerf3 throughput test with parallel streams summary output

Figure 147 shows that the measured throughput now is approximately 96Gbps,
which is close to the value assigned in our tbf rule (10Gbps). In conclusion,
parallel streams are beneficial when the packet loss rate is high. As shown in
the previous test, when using parallel streams, the host was able to achieve the
maximum theoretical bandwidth.

25 Chapter 4—Lab 13: Measuring TCP Fairness

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/, and reserve a pod for Lab 13.

This lab introduces TCP fairness in Wide Area Networks (WAN) and explains
how competing TCP connections converge to fairness. The lab describes how to
calculate the TCP fairness index, a metric that quantifies how fair the aggregate con-
nection is divided between active connections. Finally, the lab conducts throughput
tests in an emulated high-latency network and derives the fairness index.

Objectives
By the end of this lab, students should be able to:

1. Define TCP fairness.
2. Calculate TCP fairness index.
3. Emulate a WAN and calculate fairness index among parallel streams.
4. Emulate aWAN and calculate fairness index among competing TCP connections.

Lab Settings
The information in Table 6 provides the credentials of the machine containing
Mininet.

http://highspeednetworks.net/

308 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Table 6 Credentials to
access Client1 machine

Device Account Password

Client1 admin password

Lab Roadmap
This lab is organized as follows:

1. Section 26: Fairness concepts
2. Section 27: Lab topology
3. Section 28: Calculating fairness among parallel flows
4. Section 29: Calculating fairness index with different congestion control algo-

rithms

26 Fairness Concepts

26.1 TCP Bandwidth Allocation

Many networks do not use any bandwidth reservation mechanism for TCP flows
passing through a router. Instead, routers simply make forwarding decisions based
on the destination field of the IP header. As a result, flows may attempt to use
as much bandwidth as possible. In this situation, it is the TCP congestion control
algorithm that allocates bandwidth to the competing flows.

Consider the scenario where two TCP flows share a bottleneck link with band-
width capacity R, as illustrated in Fig. 148. Assume that the two senders are in equal
conditions (Round-Trip Time, maximum segment size, configuration parameters)
and that they use the same congestion control algorithm. Furthermore, assume
that the two flows are in steady state and that the congestion control algorithm
operates according to the additive increase multiplicative decrease (AIMD) rule.
A fair bandwidth allocation would result in a bandwidth partition of R/2 to each
flow.

Figure 149 shows the bandwidth allocation region for the two flows. The
bandwidth allocation to flow 1 is on x-axis and to flow 2 is on the y-axis. If TCP is to
share the bottleneck bandwidth equally between the two flows, then the bandwidth
will fall along the fairness line emanating from the origin. Note that the origin
(0, 0) is a fair but undesirable solution. When the allocations sum to 100% of the
bottleneck capacity, the allocation is efficient. This is shown by the efficiency line.
Note that potential efficient solutions include points A (R, 0) and points B (0, R). On
point A, flow 1 receives 100% of the capacity, and on point B flow 2 receives 100%
of the capacity. Clearly, these solutions are not desirable, as they lead to starvation
and unfairness.

Assume that the sending rates of senders 1 and 2 at a given time are indicated
by point p1. As the amount of aggregate bandwidth jointly consumed by the two

26 Fairness Concepts 309

B (0, R)

A (R, 0)

Opt (R/2, R/2)

Bandwidth Sender 1

Ba
nd

w
id

th
Se

nd
er

2

Fairness line
(equal-shared bandwidth)

Efficiency line
(100% bandwidth utilized)

p1

p2

p3

p4

p5

Start

Additive increase
(up at 45o)

Multiplicative decrease
(line points to origin)

Legend:

Fig. 148 Two TCP flows that share a bottleneck link of capacity R

Bottleneck
9 Gbps

Sender
TCP flow 3

Sender
TCP flow 1

Router Router

Sender
TCP flow 2

5 Gbps

1 Gbps

3 Gbps

Fig. 149 Bandwidth allocation region realized by two competing TCP flows

flows is less than R, no loss will occur, and TCP will gently increase the bandwidth
allocation (this process is called additive increase phase). Eventually, the bandwidth
jointly consumed by the two connections will be greater than R, and a packet loss
will occur at a point, say p2. TCP reacts to a packet loss by aggressively decreasing
the sending rate by half (this operation is called multiplicate decrease). The resulting
bandwidth allocations are realized at point p3. Since the joint bandwidth use is
less than R at point p3, TCP will again increase the allocation to flows 1 and 2.
Eventually, the TCP additive increase phase will lead to the operating point p4,
where a loss will again occur, and the two flows again will see a decrease in the
bandwidth allocation, and so on. The bandwidth realized by the two flows eventually
will fluctuate along the fairness line, near the optimal operating point Opt (R/2, R/2).
Chiu and Jain describe the reasons of why TCP converges to a fair and efficient
allocation. This convergence occurs independently of the starting point.

310 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

26.2 TCP Fairness Index Calculation

A useful index to quantify fairness is Jain’s index. The index has the following
properties:

1. Population size independence: The index is applicable to any number of flows.
2. Scale and metric independence: The index is independent of scale, i.e., the unit

of measurement does not matter.
3. Boundedness: The index is bounded between 0 and 1. A totally fair system has

an index of 1, and a totally unfair system has an index of 0.
4. Continuity: The index is continuous. Any change in allocation is reflected in the

fairness index.

Jain’s fairness index is given by the following equation:

I = (
∑n

i=1 Ti)
2

n
∑n

i=1 T 2
i

,

where

• I is the fairness index, with values between 0 and 1.
• n is the total number of flows.
• T1T2, . . . , Tn are the measured throughput of individual flows.

As an example of fairness index calculation, consider the three flows shown
in Fig. 150. Given the bottleneck capacity of 9Gbps, assume that the bandwidth
allocations for flows 1, 2, and 3 are 5Gbps, 3Gbps, and 1Gbps. The fairness index
for this allocation is

I = (
∑3

i=1 Ti)
2

3
∑3

i=1 T 2
i

=
(
5 · 109 + 3 · 109+ 1 · 109)2

3 ·
(
(5 · 109)2 + (3 · 109)2 + (1 · 109)2

) = 0.77

Note that by property 2 (scale and metric independence), the fairness index of the
above example is the same as that of an allocation of 5Mbps, 3Mbps, and 1Mbps
(or more generally, an allocation of 5, 3, and 1 units). Also, note that an optimal fair
allocation of 3Gbps to each flow would produce a fairness index of 1.

27 Lab Topology

Let us get started with creating a simple Mininet topology using MiniEdit. The
topology uses 10.0.0.0/8, which is the default network assigned by Mininet
(Fig. 151).

27 Lab Topology 311

10 Gbps

h1

s1

s1-eth1

s1-eth3

h1-eth0

s2

s2-eth1

10.0.0.1

h3

h3-eth0

s1-eth2

10.0.0.3

h2

h2-eth0

10.0.0.2

h4

10.0.0.4

s2-eth2

s2-eth3

h4-eth0

Fig. 150 Three TCP flows that share a bottleneck link of capacity 9Gbps

Fig. 151 Lab topology

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

Step 1. A shortcut to MiniEdit is located on the machine’s Desktop. Start MiniEdit
by clicking on MiniEdit’s shortcut (Fig. 152). When prompted for a password, type
password .

Step 2. On MiniEdit’s menu bar, click on File and then Open to load the lab’s
topology. Locate the Lab 13.mn topology file and click on Open (Fig. 153).

Step 3. Before starting the measurements between host h1 and host h2, the network
must be started. Click on the Run button located at the bottom left of MiniEdit’s
window to start the emulation (Fig. 154).

The above topology uses 10.0.0.0/8, which is the default network assigned by
Mininet.

312 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 152 MiniEdit shortcut

Fig. 153 MiniEdit’s Open
dialog

27.1 Starting Host h1 and Host h2

Step 1. Hold the right-click on host h1 and select Terminal. This opens the terminal
of host h1 and allows the execution of commands on that host (Fig. 155).

Step 2. Apply the same steps on host h2 and open its Terminal.

Step 3. Test connectivity between the end-hosts using the ping command. On

host h1, type the command ping 10.0.0.2 . This command tests the connectivity

27 Lab Topology 313

Fig. 154 Running the
emulation

Fig. 155 Opening a terminal on host h1

between host h1 and host h2. To stop the test, press Ctrl+c . The figure below
shows a successful connectivity test (Fig. 156).

Figure 156 indicates that there is connectivity between host h1 and host h2. Thus,
we are ready to start the throughput measurement process.

27.2 Emulating 10Gbps High-Latency WAN

This section emulates a high-latency WAN. We will first emulate 20ms delay
between switch S1 and switch S2 and measure the throughput. Then, we will set
the bandwidth between host h1 and host h2 to 10Gbps.

314 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 156 Connectivity test using ping command

Fig. 157 Shortcut to open a Linux terminal

Fig. 158 Adding delay of 20ms to switch S1’s s1-eth1 interface

Step 1. Launch a Linux terminal by holding the Ctrl+Alt+T keys or by clicking
on the Linux terminal icon (Fig. 157).

The Linux terminal is a program that opens a window and permits you to interact
with a command-line interface (CLI). A CLI is a program that takes commands from
the keyboard and sends them to the operating system for execution.

Step 2. In the terminal, type the command below. When prompted for a password,
type password and hit Enter. This command introduces 20ms delay on switch S1’s
s1-eth1 interface (Fig. 158).

sudo tc qdisc add dev s1-eth1 root handle 1: netem delay
20ms

27 Lab Topology 315

Fig. 159 Limiting the bandwidth to 10Gbps on switch S1’s s1-eth1 interface

Step 3. Modify the bandwidth of the link connecting the switch S1 and switch S2:
on the same terminal, type the command below. This command sets the bandwidth
to 10Gbps on switch S1’s s1-eth2 interface (Fig. 159). The tbf parameters are the
following:

• rate : 10gbit

• burst : 5,000,000

• limit : 15,000,000

sudo tc qdisc add dev s1-eth1 parent 1: handle 2: tbf rate
10gbit burst 5000000 limit 15000000

27.3 Testing Connection

To test connectivity, you can use the command ping .

Step 1. On the terminal of host h1, type ping 10.0.0.2 . To stop the test, press

Ctrl+c . The figure below shows a successful connectivity test. Host h1 (10.0.0.1)
sent four packets to host h2 (10.0.0.2), successfully receiving responses back
(Fig. 160).

The result above indicates that all four packets were received successfully (0%
packet loss) and that the minimum, average, maximum, and standard deviation of the
Round-Trip Time (RTT) were 20.102, 25.325, 40.956, and 9.024ms, respectively.
The output above verifies that delay was injected successfully, as the RTT is
approximately 20ms.

316 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 160 Output of ping 10.0.0.2 command

Fig. 161 Starting iPerf3 server on host h2

Step 2. On the terminal of host h2, type ping 10.0.0.1 . The ping output in this test
should be relatively close to the results of the test initiated by host h1 in Step 1. To
stop the test, press Ctrl+c .

Step 3. Launch iPerf3 in server mode on host h2’s terminal (Fig. 161).

iperf3 -s

Step 4. Launch iPerf3 in client mode on host h1’s terminal (Fig. 162).

iperf3 -c 10.0.0.2

Although the link was configured to 10Gbps, the test results show that the
achieved throughput is 3.20Gbps. This is because the TCP buffer size was not
modified at this point.

27 Lab Topology 317

Fig. 162 Running iPerf3 client on host h1

Fig. 163 Receive window change in sysctl

Step 5. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

Step 6. To change the current receive window size value(s), we calculate the
bandwidth-delay product by performing the following calculation:

BW = 10,000,000,000 bits/second

RTT = 0.02 seconds

BDP = 10,000,000,000 ∗ 0.02 = 200,000,000 bits

= 25,000,000 bytes ≈ 25Mbytes

The send and receive buffer sizes should be set to 2 · BDP. We will use the 25
Mbytes value for the BDP instead of 25,000,000 bytes

1Mbyte = 10242 bytes

BDP = 25Mbytes = 25 ∗ 10242 bytes = 26,214,400 bytes

2 · BDP = 2 · 26,214,400 bytes = 52,428,800 bytes

Now, we have calculated the maximum value of the TCP sending and receiving
buffer size. In order to apply the new values on host h1’s terminal type the command
showed down below. The values set are: 10,240 (minimum), 87,380 (default), and
52,428,800 (maximum, calculated by doubling the BDP) (Fig. 163).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

318 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 164 Send window change in sysctl

Fig. 165 Receive window change in sysctl

Fig. 166 Send window change in sysctl

Step 7. To change the current send window size value(s), use the following
command on host h1’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 52,428,800 (maximum, calculated by doubling the BDP) (Fig. 164).

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

Next, the same commands must be configured on host h2.

Step 8. To change the current receive window size value(s), use the following
command on host h2’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 52,428,800 (maximum, calculated by doubling the BDP) (Fig. 165).

sysctl -w net.ipv4.tcp_rmem=’10240 87380 52428800’

Step 9. To change the current send window size value(s), use the following
command on host h2’s terminal. The values set are: 10,240 (minimum), 87,380
(default), and 52,428,800 (maximum, calculated by doubling the BDP) (Fig. 166)

sysctl -w net.ipv4.tcp_wmem=’10240 87380 52428800’

27 Lab Topology 319

Fig. 167 Host h2 running iPerf3 as server

Fig. 168 iPerf3 throughput test

Step 10. The user can now verify the rate limit configuration by using the iperf3
tool to measure throughput. To launch iPerf3 in server mode, run the command
iperf3 -s in host h2’s terminal (Fig. 167):

iperf3 -s

Step 11. Now to launch iPerf3 in client mode again by running the command
iperf3 -c 10.0.0.2 in host h1’s terminal (Fig. 168):

iperf3 -c 10.0.0.2

Note the measured throughput now is approximately 9.38Gbps, which is close
to the value assigned in our tbf rule (10Gbps).

320 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Step 12. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

28 Calculating Fairness Among Parallel Flows

In this section, an iPerf3 test that includes several parallel streams is conducted,
followed by the calculation of the fairness index.

Step 1. Now a test is conducted using parallel streams. To launch iPerf3 in server
mode, run the command iperf3 -s in host h2’s terminal as shown in Fig. 169:

iperf3 -s

Step 2. Now the iPerf3 client should be launched with the -P option specified to

start parallel streams. The - J option is also specified to indicate that JSON output
is desired, and the redirection operator > to store the output in a file. Run the
following command in host h1’s terminal as shown in Fig. 170:

iperf3 -c 10.0.0.2 -P 8 -J >out.json

Fig. 169 Host h2 running iPerf3 as server

Fig. 170 Host h1 running iPerf3 as client with 8 parallel streams and saving output in file

29 Calculating Fairness Among Several Hosts with the Same Congestion. . . 321

Fig. 171 Calculating the fairness index between the parallel streams

Step 3. The client includes a script called fairness.sh . Basically, this script accepts
as input the JSON file exported by iPerf3 and calculates the fairness index. Run the
following command to calculate the fairness index (Fig. 171):

fairness.sh out.json

In the above test, the fairness index is 0.91395 or 91% fair. Note that this result
may vary according to the result of your emulation test.

Step 4. In order to stop the server, press Ctrl+c in host h2’s terminal. The user
can see the throughput results in the server side too.

29 Calculating Fairness Among Several Hosts with the Same
Congestion Control Algorithm

In the previous section, we calculated the fairness index among several parallel
streams, all initiated by a single host. In this section we calculate the fairness index
among two transmitting devices. Specifically, an iPerf3 client is executed on host h1
and connected to host h2 (iPerf3 server); another iPerf3 client is executed on host
h3 and connected to host h4 (iPerf3 server).

To calculate the fairness index, the transmitting hosts should initiate their
transmissions simultaneously. Since it is difficult to start the clients at the same
time, the client’s machine provides a script that automates this process.

Step 1. Close the terminals of host h1 and host h2.

Step 2. Go to Mininet’s terminal, i.e., the one launched when MiniEdit was started
(Figs. 172 and 173).

Step 3. Issue the following command on Mininet’s terminal as shown in the figure
below (Fig. 174).

source concurrent_same_algo

The above graph (Fig. 175) shows that the throughput of host h1 is close to that
of host h3. Therefore, the fairness index should be close to 1 (100%). Note that this
result may vary according to the result of your emulation test.

322 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 172 Opening Mininet’s terminal

Fig. 173 Mininet’s terminal

29 Calculating Fairness Among Several Hosts with the Same Congestion. . . 323

Fig. 174 Running the tests simultaneously for 120 s. Both host h1 and host h3 are using Reno

Fig. 175 Throughput of host h1 and host h3

324 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 176 Calculated fairness index

Step 4. Close the graph window and go back to Mininet’s terminal. The fairness
index is displayed at the end as shown in the figure below (Fig. 176).

The above figure shows a fairness index of 0.99595. This value indicates that the
bottleneck bandwidth was 99% fairly shared among host h1 and host h3. Note that
this result may vary according to the result of your emulation test.

30 Calculating Fairness Among Hosts with Different
Congestion Control Algorithms

In the previous test, we calculated the fairness index while using the same
congestion control algorithm (Reno). In this section we repeat the test, but with
host h1 using Reno and host h3 using BBR.

Step 1. Go back to Mininet’s terminal, i.e., the one launched when MiniEdit was
started (Fig. 177).

Step 2. Issue the following command on Mininet’s terminal as shown in the figure
below (Fig. 178).

source concurrent_diff_algo

The above graph (Fig. 179) shows that the device configured with BBR has a
larger bandwidth allocation than that configured with Reno. Therefore, the fairness
index will not be close to 1 (100%).

Step 3. Close the graph window and go back to Mininet’s terminal. The fairness
index is displayed at the end as shown in the figure below (Fig. 180).

The above figure shows a fairness index of 0.86036 (∼86%), which is very far
from 100%. This value indicates that the bottleneck bandwidth was 86% fairly
shared among host h1 and host h3. Note that this result may vary according to the
result of your emulation test.

30 Calculating Fairness Among Hosts with Different Congestion Control. . . 325

Fig. 177 Opening Mininet’s terminal

Fig. 178 Running the tests simultaneously for 20 s. Host h1 is using Reno, while host h3 is using
BBR

326 Impact of TCP on High-Speed Networks and Advances in Congestion Control. . .

Fig. 179 Throughput of host h1 and host h3

Fig. 180 Calculated fairness index

References 327

References

1. K. Chard, S. Tuecke, I. Foster, Globus: recent enhancements and future plans, in Proceedings
of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale (2016)

2. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, The globus striped GridFTP framework and
server, in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (2005)

3. G. Vardoyan, R. Kettimuthu, M. Link, S. Tuecke, Characterizing throughput bottlenecks for
secure GridFTP transfers, in IEEE International Conference on Computing, Networking and
Communications (ICNC) (2013)

4. D. Borman, B. Braden, V. Jacobson, R. Scheffenegger, TCP extensions for high performance,
in Internet Request for Comments, RFC 7323 (2014). https://tools.ietf.org/html/rfc7323#
section-4.2

5. Z. Liu, P. Balaprakash, R. Kettimuthu, I. Foster, Explaining wide area data transfer perfor-
mance, in IEEE/ACM International Symposium on High-Performance Distributed Computing
(HPDC) (2017)

6. N. Mills, A. Feltus, W. Ligon III, Maximizing the performance of scientific data transfer by
optimizing the interface between parallel file systems and advanced research networks. J. Fut.
Gener. Comput. Syst. (2017). https://doi.org/10.1016/j.future.2017.04.030

7. F. Feltus, J. Breen, J. Deng, R. Izard, C. Konger, W. Ligon, D. Preuss, K. Ching, The widening
gulf between genomics data generation and consumption: a practical guide to big data transfer
technology. J. Bioinform. Biol. Insights 9(1), BBI-S28988 (2015)

8. T. Hacker, B. Athey, B. Noble, The end-to-end performance effects of parallel TCP sockets on a
lossy wide-area network, in Proceedings of the Parallel and Distributed Processing Symposium
(2001)

9. A. Aggarwal, S. Savage, T. Anderson, Understanding the performance of TCP pacing, in
Proceedings of the International Conference on Computer Communications (INFOCOM)
(2000)

10. B. Tierney, N. Hanford, D. Ghosal, Optimizing data transfer nodes using packet pacing: a
journey of discovery, in Workshop on Innovating the Network for Data-Intensive Science
(2015)

11. M. Ghobadi, Y. Ganjali, TCP pacing in data center networks, in IEEE Annual Symposium on
High-Performance Interconnects (HOTI) (2013)

12. The CentOS Project. https://www.centos.org/
13. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, BBR: congestion-based congestion

control. Commun. ACM 60(2), 58–66 (2017)
14. J. Corbet, TSO sizing and the FQ scheduler. LWN.net Online Mag. (2013). https://lwn.net/

Articles/564978
15. B. Tierney, Improving performance of 40G/100G data transfer nodes, in 2016 Technology

Exchange Workshop (2016). https://meetings.internet2.edu/2016-technology-exchange/detail/
10004333/

16. K. Fall, S. Floyd, Simulation-based comparisons of Tahoe, Reno, and Sack TCP. Comput.
Commun. Rev. 26(3), 5–21 (1996)

17. I. Rhee, L. Xu, CUBIC: a new TCP-friendly high-speed TCP variant. ACM Spec. Interest
Group Oper. Syst. Rev. 42(5), 64–74 (2008)

18. D. Leith, R. Shorten, Y. Lee, H-TCP: a framework for congestion control in high-speed and
long-distance networks. Hamilton Institute Technical Report, 2005. http://www.hamilton.ie/
net/htcp2005.pdf

19. T. Dierks, E. Rescorla, The transport layer security protocol version 1.2. Internet Request for
Comments, RFC 5246 (2008). https://tools.ietf.org/html/rfc5246

20. A. Freier, P. Karlton, P. Kocher, The secure sockets layer protocol version 3.0. Internet Request
for Comments, RFC 6101 (2011). https://tools.ietf.org/html/rfc6101

https://tools.ietf.org/html/rfc7323#section-4.2
https://tools.ietf.org/html/rfc7323#section-4.2
https://doi.org/10.1016/j.future.2017.04.030
https://www.centos.org/
https://lwn.net/Articles/564978
https://lwn.net/Articles/564978
https://meetings.internet2.edu/2016-technology-exchange/detail/10004333/
https://meetings.internet2.edu/2016-technology-exchange/detail/10004333/
http://www.hamilton.ie/net/htcp2005.pdf
http://www.hamilton.ie/net/htcp2005.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6101

Application and Security Aspects for
Large Flows

This chapter provides an overview of two common types of application-layer tools
used in high-speed networks and Science DMZs: file transfer tools and monitoring
application tools. File transfer tools are used by researchers and practitioners to
share data. Historically, applications were built around the File Transport Protocol
(FTP). While FTP-based applications work well in enterprise networks, their per-
formance in high-throughput, high-latency environments is often poor. In relation
to this, monitoring applications tools are essential to identify problems causing poor
performance and address them. The chapter describes perfSONAR, the most widely
deployed monitoring tool for multi-domain environments.

1 Application-Layer Tools

The essential end devices inside a Science DMZ are the DTNs and the performance
monitoring stations. DTNs run a data transfer tool, while monitoring stations
run a performance monitoring application, typically perfSONAR. Other useful
tools at deployment and evaluation times are WAN emulation and throughput
measurement applications. These tools are convenient because they facilitate early
performance evaluation without a need of connecting the Science DMZ to a real
WAN. Additionally, in contrast to enterprise networks, virtualization technologies
have not been adopted in Science DMZs, because of performance limitations.

This section provides an overview of application-layer tools used in Science
DMZs. The section also discusses the performance limitations of virtualization
technologies preventing their adoption in Science DMZs.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Crichigno et al., High-Speed Networks, Practical Networking,
https://doi.org/10.1007/978-3-030-88841-1_5

329

https://doi.org/10.1007/978-3-030-88841-1_5

330 Application and Security Aspects for Large Flows

2 File Transfer Applications

File transfer applications are used by researchers and practitioners to share data.
Historically, applications were built around the File Transport Protocol (FTP) [1].
While FTP-based applications work well in enterprise networks, their performance
in high-throughput, high-latency environments is often poor. Fig.1 presents a
taxonomy for file transfer applications

2.1 Traditional File Transfer Applications

Figure 2a shows the basic FTP model. It uses two TCP connections: a data channel
and a control channel. FTP has several limitations when used in Science DMZs,
including limited negotiation capability of the TCP buffer size, poor throughput
performance in long fat networks, a lack of uniform interfaces between data transfer
processes and sources and sinks (local hard disks, parallel file systems, distributed
data sources, etc.), and a lack of support for partial file transfer and restartable
transfer.

Other file transfer protocols used in enterprise networks include Secure Copy
(SCP) and Secure FTP (SFTP). These protocols are implemented above the Secure
Shell protocol (SSH) [2], which in turn is implemented above TCP. Figure 2b shows
their respective location in the protocol stack. When a file transfer is performed by
SCP or SFTP, an SSH channel is open between the end points. This channel uses a
window-based flow control. Even though this feature works well for enterprise file
transfers, it constitutes another rate limitation for large science flows.

2.2 File Transfer Applications for Science DMZs

The prevalent tool for science data transfers is Globus GridFTP. As of 2017, there
are over 40,000 Globus end points deployed [3]. While the following description
corresponds to Globus, many of its features apply to other applications recom-
mended for Science DMZs.

Fig. 1 Taxonomy for data transfer applications

2 File Transfer Applications 331

Fig. 2 Data transfer models. (a) FTP model. (b) Location of file transfer protocols in the protocol
stack. (c) Globus model. Control information is exchanged between Client Protocol Interpreter
(CPI) and Server Protocol Interpreter (SPI). Data transfer processes (DTPs) exchange actual data

GridFTP is an extension of FTP for high-speed networks. Globus is an imple-
mentation of GridFTP [3, 4], and its architecture is shown in Fig. 2c. Globus has the
following features:

• The control channel is established between the client protocol interpreter (CPI),
a third party located in the cloud, and the server protocol interpreters (SPIs).

• Multiple parallel TCP connections are supported. These connections are referred
to as streams and constitute the data channels. Typical values are between 2 and
8 streams.

• Globus includes support for partial and restartable file transfers [5]. Science
DMZs are used for transferring large data files, which may take hours. If a
disruption occurs momentarily, it is beneficial to transfer just the remaining
portion of a file.

• The maximum size of the TCP buffer can be explicitly adjusted.

332 Application and Security Aspects for Large Flows

Other file transfer applications for big data are Multicore-Aware Data Transfer
Middleware FTP (mdtmFTP) [6] and Fast Data Transport (FDT) [7]. mdtmFTP is
designed to efficiently use the multiple computing cores (multicore CPUs) on a
single chip that are common in modern computer systems. mdtmFTP also improves
the throughput in DTNs that use a non-uniform memory access (NUMA) model.
In the traditional Uniform Memory Access (UMA) model, the access to the RAM
from any CPU or core takes the same amount of time. However, with NUMA,
accessing some parts of memory by a core may take longer than other parts, creating
a performance penalty. FDT is an application optimized for the transfer of a large
number of files [7]. Hence, thousands of files can be sent continuously, without
restarting the network transfer between files. However, FDT and mdtmFTP have
not been widely adopted despite encouraging performance results [6].

Table 1 lists additional data transfer applications and implemented features.
Besides TCP-based applications, three UDP-based applications are listed. Here, a
common feature in UDP-based applications is the use of a single UDP stream, rather
than multiple streams. A key limitation observed in Science DMZs when using a
single UDP stream is CPU-related. Namely, in multicore processor architectures, a
UDP stream is adhered to a single core, which may become saturated. As a result,
the UDP transmission rate can be lower than the available bandwidth. At the same
time, other cores may be idle and underutilized [13]. UDP-based applications do
not use congestion windows for congestion control. Instead, they use rate-based
congestion control, similar to BBR [14]. Here, congestion is signaled by an increase
in the RTT, which triggers a decrease in the transmission rate. ExpeData [10]
and Aspera Fast [8] are two proprietary implementations and some details are not
available. Some specialized applications are used in enterprise environments, but
their performance for big science data transfers is not available.

3 Virtual Machines and Science DMZs

The idea behind a virtual machine is to abstract the hardware of a computer into
several execution environments. As a physical resource, access to a NIC is also
shared. In this context, Fig. 3 shows a sample topology with three hosts. Host 1
contains three virtual machines connected by a virtual switch. One virtual machine
is a DTN. Hosts 2 and 3 are native (non-virtual) DTNs. A virtual switch is
implemented inside the hypervisor. Similar to a physical switch, the virtual switch
constructs its own forwarding table and forwards frames at the data-link layer. The
virtual switch also connects to the external network through a physical NIC.

A virtual machine is connected to the internal network through a virtual NIC.
There are different types of virtual NICs, including the following:

• E1000: An emulated version of the Intel 82545EM Gigabit Ethernet NIC. Older
(Linux and Windows) guest operating systems use this virtual NIC.

3 Virtual Machines and Science DMZs 333

Ta
bl

e
1

Fe
at
ur
es

of
va
ri
ou
s
da
ta
tr
an
sf
er

ap
pl
ic
at
io
ns
.U

in
di
ca
te
s
un
kn
ow

n
Application

Transportprotocol

Adjustablebuffersize

Parallelstreams

Partialfiletransfer

Restartablefiletransfer

Security

Sharingandpublishing

Adoption

SDMZrecommended

FT
P,
SC

P,
SF

T
P
[2
]

T
C
P

N
o

N
o

N
o

N
o

Y
es
;S

C
P,
SF

T
P

N
o

H
ig
h;

en
te
rp
ri
se

ne
tw
or
ks

N
o

G
lo
bu
s
[3
,4

]
T
C
P

Y
es

Y
es

Y
es

Y
es

Y
es
,a
lg
or
ith

m
is

de
te
rm

in
ed

vi
a

op
en
SS

L
,b

as
ed

on
D
T
N
s

ca
pa
bi
lit
y

Y
es

H
ig
h;

un
iv
er
si
tie
s
an
d

re
se
ar
ch

ce
nt
er
s

R
ec
om

m
en
de
d,

hi
gh

ad
op

tio
n
an
d
av
ai
la
bl
e

su
pp
or
t

m
dt
m
FT

P
[6
]

T
C
P

Y
es

Y
es

N
o

N
o

Y
es
,U

N
o

L
ow

A
cc
ep
ta
bl
e;
lim

ite
d

su
pp
or
t

FD
T
[7
]

T
C
P

Y
es

Y
es

N
o

Y
es

N
oa

N
o

L
ow

A
cc
ep
ta
bl
e;
lim

ite
d

su
pp
or
t

A
sp
er
a
Fa
st
[8
]

U
D
P

N
o

Y
es

N
o

N
o

Y
es
;A

dv
an
ce
d

E
nc
ry
pt
io
n

St
an
da
rd

(A
E
S)

12
8

N
o

M
ed
iu
m
;e
nt
er
pr
is
e

ne
tw
or
ks

U
nk
no
w
n
pe
rf
or
m
an
ce

B
B
FT

P
[9
]

T
C
P

Y
es

Y
es

N
o

N
o

N
o

N
o

L
ow

U
nk
no
w
n
pe
rf
or
m
an
ce

E
xp

eD
at
a
[1
0]

U
D
P

U
U

U
U

Y
es
;A

E
S
12
8

N
o

M
ed
iu
m
;e
nt
er
pr
is
e

ne
tw
or
ks

U
nk
no
w
n
pe
rf
or
m
an
ce

U
D
T
[1
1,

12
]

U
D
P

N
o

Y
es

N
o

N
o

N
o

N
o

L
ow

N
o;

a
la
ck

of
pa
ra
lle

l
st
re
am

s

U
:U

nk
no
w
n

a
Se

cu
ri
ty

ca
n
be

in
co
rp
or
at
ed

vi
a
th
ir
d
pa
rt
y
so
ft
w
ar
e
pa
ck
ag
e

334 Application and Security Aspects for Large Flows

Fig. 3 Network topology including a virtual DTN contained in host 1 and two native (non-virtual)
DTNs, host 2 and host 3

• E1000e: This virtual NIC emulates newer models of Intel Gigabit NICs. It is the
default virtual NIC for newer (Windows) guest operating systems.

• VMXNET: This virtual NIC has no physical counterpart. There are two enhanced
versions, VMXNET2 and VMXNET3. The latter is recommended for high-speed
data transfers [15].

While virtual technologies have been widely adopted in enterprise networks,
their use in Science DMZs has been discouraged for several reasons. First, the
hypervisor represents a software layer that adds processing overhead. Second, the
physical NIC is potentially shared among multiple virtual machines. Third, even if
the virtual DTN is the only virtual machine running on a physical server, the CPU
must be shared with the hypervisor and the virtual switch. Moreover, commercial
vendors may not disclose important attributes of the virtual switch, such as buffer
size and switching architecture.

Based on the above limitations, virtualization is not recommended for Science
DMZs operating at speeds above 10 Gbps. For Science DMZs operating at 10
Gbps, preliminary results in Section VII suggest that virtual DTNs may achieve an

4 Monitoring and Performance Applications for Science DMZs 335

acceptable performance, provided the physical server they run on has a high CPU
capacity and the workload is controlled.

4 Monitoring and Performance Applications for Science
DMZs

One of the essential elements of a Science DMZ is the performance measurement
and monitoring point. The monitoring process in Science DMZs focuses on multi-
domain end-to-end performance metrics. On the other hand, the monitoring process
in enterprise networks focuses on single-domain performance metrics. Accordingly,
Fig. 4 presents monitoring applications: perfSONAR [16, 17], Simple Network
Management Protocol (SNMP) [18], Syslog [19], and Netflow [20]. The latter is
also used for security purposes.

4.1 perfSONAR

perfSONAR [16, 17] is an application that helps locate network failures and
maintain optimal end-to-end usage expectations. Each organization deciding to
use this tool is required to install a measurement point in its network, as shown
in Fig. 5a. The service providers 1, 2, and 3 provide connectivity to campus
networks 1 and 2. A measurement point is a Linux machine running the perfSONAR
application. perfSONAR offers several services, including automated bandwidth
tests and diagnostic tools.

One of the main features of perfSONAR is its cooperative nature by which an
institution can measure several metrics (e.g., throughput, latency, packet loss) to
different intermediary domains and to a destination network. Using the example of
Fig. 5a, campus network 1 can measure metrics from itself to campus network 2.
Campus network 1 can also measure metrics to the service providers. Figure 5b

Fig. 4 Monitoring applications

336 Application and Security Aspects for Large Flows

Fig. 5 perfSONAR application. (a) Multi-domain topology. Each network has a perfSONAR
node. (b) Corresponding perfSONAR dashboard

Fig. 6 perfSONAR nodes deployed as of June 2017

shows a sample dashboard view for packet loss rate for the perfSONAR node at
campus network 1.

Given the increasing number of Science DMZs, perfSONAR has seen a steady
increase in deployments. Currently, there are more than 2000 perfSONAR measure-
ment points deployed around the world. In the U.S., most Science DMZs include at
least one perfSONAR node. Figure 6 shows the location of perfSONAR nodes as of
June 2017.

5 Applications in Enterprise Networks and Science DMZs 337

4.2 Comparison of Monitoring Applications in Enterprise
Networks and Science DMZs

The ubiquitous SNMP protocol is also widely used for monitoring purposes.
Accordingly, Table 2 compares SNMP and perfSONAR. Overall, their function-
alities are complementary, and a well-monitored Science DMZ may include both.
SNMP is used to monitor a single administrative domain; thus it lacks ability to
detect failures beyond the local domain. Also SNMP can only infer, to some extent,
a performance metric based on polling of individual network elements. Meanwhile,
perfSONAR includes a set of active testing tools to measure performance via
probing. End-to-end and soft failures can be detected with perfSONAR because
of its multi-domain characteristic, sub-path testing, and end-to-end tools. On the
other hand, some hard failures are easily detected by SNMP, while they may not
be detected quickly by perfSONAR. While reporting applications are available
for both, perfSONAR’s reports include multi-domain results. Regarding security,
SNMPv3 includes confidentiality, integrity, and authentication.

4.3 WAN Emulation and Other Performance Applications

When deploying a Science DMZ, routers, switches, and DTNs should be tested.
Problems associated with routers and switches may not be observed in a testing
environment unless WAN conditions, such as delay and jitter, are introduced. Thus,
inadequate buffer sizes can easily be overlooked. Hence for testing purposes, in
the absence of a WAN, a useful alternative is a network emulator. With such
a tool, applications and devices can be tested over a virtual network. Now, two
applications widely used to emulate a WAN are netem [28] and iPerf [29]. netem
is a Linux application that emulates the properties of a WAN and permits to vary
parameters such as delay, jitter, packet loss, and duplication and reordering of
packets. Meanwhile, iPerf measures memory-to-memory throughput from a client
(sender) to a server (receiver). The client generates dummy application-layer data in
main memory, which is then moved down through the protocol stack and over the
network media. The server receives the data and moves it up through the protocol
stack. The two applications, netem and iPerf, can be used together to emulate data
transfers between DTNs and test TCP parameters (congestion control algorithms,
buffer size, TCP extensions), routers, and switches.

5 Applications in Enterprise Networks and Science DMZs

Table 3 compares data transfer and monitoring applications used in enterprise
networks and Science DMZs. The use of virtualization in both environments is

338 Application and Security Aspects for Large Flows

Table 2 Comparison between SNMP and perfSONAR

Feature SNMP perfSONAR

Main uses Enterprise networks: offices,
campuses, commercial ISPs

Science DMZ, RENs

Scope Single domain Multi-domain

Network
monitoring
under controlled
load

Difficult; SNMP agents can collect
statistics or report events

Easy; perfSONAR is composed of
several active testing tools

Performance
instrumentation

Difficult; SNMP uses polling to track
individual network elements rather
than end-to-end performance

Easy, perfSONAR’s probing tests
measure end-to-end performance

Soft failure
detection

Difficult; failures could be inferred
locally only through polling byte
counters

Easier; multi-domain visibility and
active monitoring from the local
network to any deployed perfSONAR
node

End-to-end
failure detection

Difficult; limited multi-domain
visibility

Easier; a variety of end-to-end tools
for performance and troubleshooting;
e.g., One-Way Active Measurement
Protocol (OWAMP), Bandwidth Test
Controller (BWCTL), Network Path
and Application Diagnostics (NPAD)

Sub-path testing No Yes; perfSONAR’s NPAD tool allows
the testing of portions of paths.

Hard failure Easier; SNMP can report on
asynchronous events via trap
messages

Difficult; perfSONAR does not report
asynchronous events

Measurable
variables

CPU usage, packet counters, dropped
packets, the number of flows

Bandwidth, latency, packet loss, jitter

Schedulable
tests

No Yes; pScheduler

Programmability
in configuration
and task
specification

Commercial products are available,
but custom coding to automatically
configure/test devices may be required

Easier; it supports jq [21], a
command-line JSON [22] processor
for parsing and processing commands

Confidentiality,
integrity, and
authentication

Yes; SNMPv3 No

Reporting Yes; multiple tools for automatic
generation of reports. Usually, reports
are for single domain only

Yes; automatic generation of reports
and dashboards for end-to-end
multi-domain paths; esmond stores
and reports time-series measurements

also compared. Owing to the nature and duration of data transfers, Science DMZ
applications should incorporate features such as partial and restartable transfers.
In addition, features to combat packet losses are important, including the use and
orchestration of parallel streams. On the other hand, data synchronization is a mature
feature already implemented by applications used in enterprise networks.

5 Applications in Enterprise Networks and Science DMZs 339

Table 3 Comparison of data transfer and monitoring applications, and virtualization use in
enterprise networks and Science DMZ

Feature Enterprise network Science DMZ

Data transfer application

Rates Tens of Mbps to few Gbps 10 Gbps and above

Transport protocol UDP, TCP, TSL/SSL TCP

Partial and
restartable transfer

Usually not required Highly desirable

Management of
parallel streams

Not required Required

Parallel file system Typically not used nor required Highly desirable; provides
parallelism opportunities and
higher rates

Sharing and
publishing

Mature tools, high adoption, e.g.,
Google drive, Dropbox

Maturing feature, in developing
phase, e.g., Globus

Security Mature feature, supported with
HTTPS and TLS/SSL

Maturing feature, not fully in
compliance with rules and
regulations yet

Data
synchronization
between repositories

Supported (e.g., Google drive,
Dropbox)

Minimal supported; manual
procedure required

Monitoring application

Monitoring scope Single domain Multi-domain

Soft failure
detection

Desirable but not essential Highly desirable

Sub-path testing Not required; paths in typical
switched LAN environments often
are single hop.

Highly desirable; paths are
typically composed of many hops
in multiple domains

Hard failure
detection

Easy, highly granular, e.g., more than
6000 Syslog events and 90 SNMP
trap notifications in enterprise
devices [23]

Few available features

Monitored network
type

Focus on LANs and/or
interconnected LANs

Focus on inter-networks composed
of LANs and WANs

Virtualization technology

Virtual host High adoption: server consolidation,
multiple execution environments,
mobility

Low adoption, limited need for
consolidation (often data transfer
and perfSONAR applications only);
performance penalty

Virtual switch High adoption; virtual switch used
with VLANs to isolate VMs

Low adoption, unavailability of
buffer capability, and configuration;
performance penalty

Virtual router Medium adoption; new technology
(e.g., NSX [24]), suitable for
east–west traffic routing in
datacenters

Low adoption, not required;
performance penalty

virtual NIC High adoption; E1000e, VMXNET,
VMXNET2, VMXNET3 [15]

Low adoption, e.g., VMXNET3
[15] supports 10 Gbps rates

Protocols for
network
virtualization

Used for LAN management, e.g.,
802.1Q, overlay VXLAN [25]

Used for resource reservation in
WANs, e.g., OSCARS [26], MPLS
[27]

340 Application and Security Aspects for Large Flows

Virtualization has not been adopted for Science DMZ deployments. The main
concern is the performance penalty associated with virtual devices. Additionally,
although products such as NSX [24] perform well in enterprise networks, the
capacity and architecture of virtual routers and switches (switching rate, buffer size,
fabric) are often not available.

In enterprise networks, protocols for network virtualization are mostly used
for LAN management. Examples include 802.1Q and Virtual Extensible LAN
(VXLAN) [25]. In Science DMZs, protocols and platforms such as On-demand
Secure Circuits and Reservation System (OSCARS) [26] and Multi-Protocol Label
Switching (MPLS) [27] are used for resource reservation and creation of virtual
circuits across WANs.

References

1. J. Postel, J. Reynolds, File transfer protocol. Internet Request for Comments, RFC Editor, RFC
959, Oct. 1985. [Online]. Available: https://tools.ietf.org/html/rfc959

2. T. Ylonen, C. Lonvick, The secure shell connection protocol. Internet Request for Comments,
RFC 4254, Jan. 2006. [Online]. Available: https://tools.ietf.org/html/rfc4254

3. K. Chard, S. Tuecke, I. Foster, Globus: recent enhancements and future plans, in Proceedings
of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale (2016)

4. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, The globus striped GridFTP framework and
server, in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (2005)

5. Z. Liu, P. Balaprakash, R. Kettimuthu, I. Foster, Explaining wide area data transfer perfor-
mance, in IEEE/ACM International Symposium on High-Performance Distributed Computing
(HPDC) (2017)

6. L. Zhang, W. Wu, P. DeMar, E. Pouyoul, mdtmFTP and its evaluation on ESNET SDN testbed.
Futur. Gener. Comput. Syst. 79, 199–204 (2018 Feb 1)

7. Fast data transfer (FDT). [Online]. Available: http://monalisa.cern.ch/FDT
8. Ultra high-speed transport technology. Aspera White Paper. [Online]. Available: http://

asperasoft.com/resources/white-papers/ultra-high-speed-transport-technology/
9. High-end computing capability using BBFTP for remote file transfers. [Online]. Available:

https://www.nas.nasa.gov/hecc/support/kb/using-bbftp-for-remote-file-transfers_147.html
10. ExpeData, a multipurpose transaction protocol. ExpeDat White Paper, Jan. 2017. [Online].

Available: http://www.dataexpedition.com/expedat/Docs/
11. Y. Gu, R. Grossman, UDT: UDP-based data transfer for high-speed wide area networks.

Comput. Netw. 51(7), 1777–1799 (2007)
12. D. Bernardo, D. Hoang, Empirical survey: experimentation and implementations of high speed

protocol data transfer for grid, in IEEE International Conference on Advance Information
Networking and Application Workshops (2011)

13. UDP tuning in Science DMZs. [Online]. Available: https://fasterdata.es.net/network-tuning/
udp-tuning/#toc-anchor-1

14. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, BBR: congestion-based congestion
control. Commun. ACM 60(2), 58–66 (2017)

15. Performance evaluation of vmxnet3 virtual network device. VMware Technical Report.
[Online]. Available: https://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

16. J. Zurawski, S. Balasubramanian, A. Brown, E. Kissel, A. Lake, M. Swany, B. Tierney, M.
Zekauskas, perfSONAR: on-board diagnostics for big data, in Workshop on Big Data and
Science: Infrastructure and Services (2013)

https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc4254
http://monalisa.cern.ch/FDT
http://asperasoft.com/resources/white-papers/ultra-high-speed-transport-technology/
http://asperasoft.com/resources/white-papers/ultra-high-speed-transport-technology/
https://www.nas.nasa.gov/hecc/support/kb/using-bbftp-for-remote-file-transfers_147.html
http://www.dataexpedition.com/expedat/Docs/
https://fasterdata.es.net/network-tuning/udp-tuning/#toc-anchor-1
https://fasterdata.es.net/network-tuning/udp-tuning/#toc-anchor-1
https://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

References 341

17. A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti, R. Lapacz, D. Swany, J. Zurawski,
S. Trocha, perfSONAR: a service oriented architecture for multi-domain network monitoring,
in Proceedings of the Third International Conference on Service-Oriented Computing (2005),
pp. 241–254

18. D. Levi, P. Meyer, B. Stewart, Simple network management protocol (SNMP) applications.
Internet Request for Comments, RFC Edit, RFC 3413, Dec. 2002 [Online]. Available: https://
tools.ietf.org/html/rfc3413

19. C. Lonvick, The BSD syslog protocol. Internet Request for Comments, RFC 3164, Aug. 2001.
[Online]. Available: https://www.ietf.org/rfc/rfc3164.txt

20. B. Claise, Cisco Systems NetFlow Services Export Version 9. Internet Request for Comments,
RFC Editor, RFC 3954, Oct. 2004. [Online]. Available: https://www.ietf.org/rfc/rfc3954.txt

21. jq command-line JSON processor. [Online]. Available https://stedolan.github.io/jq/
22. T. Bray, The JavaScript Object Notation Data Interchange Format. Internet Request for

Comments, RFC 7159, Mar. 2014. [Online]. Available: https://tools.ietf.org/html/rfc7159
23. Building scalable syslog management solutions, Cisco White Paper. [Online]. Available:

https://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_
c11-557812.html#wp9000392

24. R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network function
virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 18(1),
236–262 (2016)

25. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, C. Wright,
Virtual eXtensible Local Area Network (VXLAN): a framework for overlaying virtualized
layer 2 networks over layer 3 networks. Internet Request for Comments, RFC 7348, Aug.
(2014)

26. T. Orawiwattanakul, H. Otsuki, E. Kawai, S. Shimojo, Multiple classes of service provisioning
with bandwidth and delay guarantees in dynamic circuit network, in IEEE International
Symposium on Integrated Network Management (2015)

27. E. Rosen, A. Viswanathan, R. Callon, Multiprotocol label switching architecture. Internet
Request for Comments, RFC Edit, RFC 3031, Jan. 2001 [Online]. Available: https://tools.ietf.
org/html/rfc3031.txt

28. S. Hemminger, Network emulation with netem, in Australia’s National Linux Conference
(2005)

29. iperf3. [Online]. Available: http://software.es.net/iperf/

https://tools.ietf.org/html/rfc3413
https://tools.ietf.org/html/rfc3413
https://www.ietf.org/rfc/rfc3164.txt
https://www.ietf.org/rfc/rfc3954.txt
https://stedolan.github.io/jq/
https://tools.ietf.org/html/rfc7159
https://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-557812.html#wp9000392
https://www.cisco.com/c/en/us/products/collateral/services/high-availability/white_paper_c11-557812.html#wp9000392
https://tools.ietf.org/html/rfc3031.txt
https://tools.ietf.org/html/rfc3031.txt
http://software.es.net/iperf/

Security Aspects

This section discusses security aspects in high-speed networks. The section pays
particular attention to operational security, which addresses potential attackers
attempting unauthorized access, introducing malware into devices, and conducting
denial of service (DoS) attacks. The chapter describes router’s access-control,
firewalls, intrusion prevention systems, and intrusion detection systems.

Security is a growing concern in Science DMZs. Hence, associated security
problems can be divided into operational security, confidentiality, integrity, and
authentication:

• Operational security: Attackers can attempt unauthorized access, introduce mal-
ware into devices, and conduct denial of service (DoS) attacks. ACLs, firewalls,
IPSs, and IDSs are commonly used to counter attacks.

• Confidentiality: Only the sender and the intended receiver should understand the
contents of the transmitted message. This requires that the message be encrypted.

• Integrity: The content of the communication between the sender and the intended
receiver must not be altered, maliciously or by accident. Hash functions are used
for integrity control.

• Authentication: The sender and the receiver should confirm the identity of the
other party. Authentication methods typically rely on pre-shared key and digital
signatures.

Of the above four areas, operational security is the most relevant at the time of
designing and deploying a Science DMZ. The remaining three areas (confidentiality,
integrity, and authentication) can be implemented at different layers, including
relying on the application layer for these services.

Table 1 lists security-related differences between enterprise networks and Sci-
ence DMZs. The volume distribution differs substantially, as typically there are few
simultaneous flows in a Science DMZ, whereas there can be thousands or millions of
small flows in an enterprise network. There are a variety of applications in enterprise
networks while there are only a couple in Science DMZs, namely, data transfer

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Crichigno et al., High-Speed Networks, Practical Networking,
https://doi.org/10.1007/978-3-030-88841-1_6

343

https://doi.org/10.1007/978-3-030-88841-1_6

344 Security Aspects

Table 1 Security-related differences between enterprise networks and Science DMZs

Feature Enterprise network Science DMZ

Volume Thousands of concurrent small flows Typically few concurrent large flows

Application type Web, emails, HTML, XML, mobile
applications, media content, SQL, etc.

Data transfers, performance
monitoring

Most used ports 80 (HTTP), 443 (HTTPS) 2811 (Globus control channel),
50,000 to 51,000 (Globus data
channels)

Operations over
data on used
ports

Multimedia, image processing,
games, mobile code execution,
HTML, XML, SQL operations

File operations: open, read, write,
close

Number of
devices

Typically hundreds to thousands Few, it could be even a single DTN

Bring-your-own-
device
policy

Yes No

Operating
systems and
platforms

A variety of OSs and platforms,
including Windows, Linux, MAC,
RIM Blackberry, Android, Windows
Mobile, Oracle, Kindle

Typically only Linux (e.g., CentOS)
for all DTNs and perfSONAR nodes

Application
changes and
updates

Continuous changes in applications
and operating systems updates

Changes are not frequent

and performance monitoring tools. As a result, delivery attack options are abundant
in enterprise networks (e.g., cross-site scripting, SQL injection, XML injection,
etc.). By contrast, Science DMZs only see specific data transfer and performance
monitoring tools, such as Globus and perfSONAR. Hence, the number of open ports
is not an indicator of risk, as a large number of exploits in enterprise networks are
delivered via ports 80 and 443. On the other hand, Globus often requires hundreds
of open ports for data channels. Also, the number of operations executed on data in
a Science DMZ is small. In addition to having hundreds or thousands of servers and
desktops, most enterprise networks adopt a bring-your-on-device (BYOD) policy
[1], which allows users to use their personal mobile device. BYOD represents
additional risks, because mobile devices include a large variety of applications and
operating systems with their respective vulnerabilities.

Inline devices are discouraged in Science DMZs, since they check each packet in
real-time. On the other hand, offline devices operate with copies of packets and
do not interfere with traffic flows. Figure 1 illustrates the typical placement of
security appliances. A taxonomy of security appliances discussed next is shown
in Fig. 2.Security Aspects

Security Aspects 345

Fig. 1 Physical and logical locations of security appliances. (a) Security appliance (ACL, IPS,
IDS, and/or firewall) co-located with the border router. (b) Security appliances in the OSI model

Fig. 2 Operational security appliances and techniques

346 Security Aspects

1 Operational Security for Science DMZs

1.1 Network Segregation

Since traffic characteristics and security policies differ between a Science DMZ
and an enterprise network, their segregation is natural. Hence, when implemented
contiguously, the two networks must either be physically or logically separated.
Figure 3 shows an example of physical separation, where the two networks are
attached to different interfaces at the border router. Note that traffic flowing into the
campus enterprise network is subject to inspection by a firewall and other security
appliances, while traffic flowing into the Science DMZ is subject to a minimal
inspection by the border router only.

An alternative to physical segregation is logical segregation by using VLAN
technology. A VLAN is a logical subgroup within the LAN that is created at
the switch via software rather than physical hardware. The Science DMZ can be
isolated from the campus enterprise network by establishing one or more VLANs
assigned to the Science DMZ. Since a VLAN can have its own IP address scheme,
different access and security policies can be implemented based on IP. However, a
disadvantage of a VLAN-based segregation is that the bandwidth of the interface to
which both the Science DMZ and enterprise network are attached must be shared.
Hence, if there is no mechanism to control the bandwidth allocation to each network,
the enterprise network may starve when DTNs are actively transferring data.
Additionally, switches must be dimensioned based on Science DMZ requirements.

Fig. 3 A Science DMZ co-located with an enterprise network. Notice the absence of firewall or
any stateful inline security appliance in the friction-free path

1 Operational Security for Science DMZs 347

Fig. 4 Implementation and use of ACLs. (a) Diagram of the input and (b) output ports of a router,
and the placement of inbound and outbound ACLs. (c) A Science DMZ protected by an inbound
ACL. Notice the targeted security by which only specific collaborators’ DTNs at 143.10.21.2 and
98.103.6.12 are permitted to connect to the DTN 37.96.87.13

1.2 Access-Control List

ACLs are used to control the access to a Science DMZ. Since ACLs are imple-
mented in the forwarding plane of routers and switches, they do not compromise
performance. Additionally, as collaborators’ IP addresses may be known in advance,
a targeted security policy can be used. Figure 4 shows an example of an ACL
implementation [3]. Figure 4a shows the input pipeline, where a packet arrives at
the input port and the termination line performs physical-layer functions. The parser
engine parses the incoming packets and extracts the fields required for lookup. The
lookup process results in an output port the packet will be forwarded to. At this
moment, the inbound ACL is applied to the packet. The packet is then switched
through the fabric and buffered. The output pipeline, shown in Fig. 4b, follows a
similar scheme.

Figure 4c shows an ACL used to protect a Science DMZ. The DTN with IP
address 37.96.87.13 is located in the protected Science DMZ. The IP addresses of
other DTNs from collaborators’ networks are 143.10.21.2 and 98.103.6.12. The
ACL is applied in the inbound direction at the interface facing the WAN. The
ACL has three rules: the first two rules permit any TCP segment coming from the
collaborators’ addresses and going to the local DTN. The last rule denies any other
packets from entering the Science DMZ. Note that stricter rules can also be applied,
even incorporating port information (e.g., an ACL may only permit TCP segments
from collaborators at the ports used by Globus).

1.3 Firewalls

These devices are capable of processing a large number of small flows characterized
by short durations and low transfer rates. Additionally, firewalls typically have small

348 Security Aspects

Fig. 5 Impact of a firewall on a data transfer. Throughput performance between a DTN at the
University of Colorado in Boulder, Colorado, and a DTN at Brown University in Providence,
Rhode Island. The blue curve is the throughput from the DTN at Brown University to the DTN
at University of Colorado. The green curve is the throughput from the DTN at the University of
Colorado to the DTN at Brown University. (a) Data transfer when a firewall is located in the path
of the two hosts. (b) Data transfer when the firewall is removed from the path. The results of (a)
and (b) are reproduced from [2]. (c) Conceptual 10 Gbps firewall architecture

buffers [4]. Clearly, Science DMZ flows do not match this traffic profile. As a result,
when a large flow crosses a firewall, the throughput of the flow deteriorates rapidly.

Consider Fig. 5, which shows the throughput for data transfers between a DTN
located at Brown University in Providence, Road Island, and a DTN located at the
University of Colorado in Boulder, Colorado [2]. These two DTNs are connected by
a 1 Gbps path. Figure 5a shows the throughput achieved when there is one firewall
located at Brown University. The blue curve is the throughput from the DTN at
Brown University to the DTN at the University of Colorado. This traffic is referred
to as outbound, and the firewall is not intended to inspect this flow. The green curve
is the throughput from the DTN at the University of Colorado to the DTN at Brown
University. This traffic is referred to as inbound, and the firewall inspects each packet
of this flow.

While both curves show that throughput is affected, the inspection impact on the
inbound traffic is critical. For example, the inbound throughput does not even reach
50 Mbps, or 5% of the 1 Gbps path capacity. Figure 5b shows the performance
between the same two DTNs, but for the case where the firewall is removed
from the path. In this instance, the throughput is approximately 900 Mbps, or
90% of the capacity. The reason of this performance difference is related to TCP
retransmissions. Namely, every time that TCP receives a triple duplicate ACK for a
packet that is lost, a fast retransmission is triggered and the congestion window is
reduced by half, thus reducing throughput.

Figure 5c illustrates a generic architecture of a 10 Gbps enterprise firewall.
Internally, load balancing among 20 firewall processors is achieved on a per-flow
basis (each firewall processor has a capacity of 0.5 Gbps). Note that the maximum
throughput is not determined by a single large flow; instead, the maximum
throughput is the aggregate throughput of thousands of small flows. When a flow
with a rate above 0.5 Gbps arrives at the input interface, all packets of the flow are
processed by the same firewall processor. Eventually, incoming packets are dropped
as a consequence of the low capacity of the individual firewall processor.

1 Operational Security for Science DMZs 349

Note that data transfers in LANs may still achieve reasonable performance in
the presence of firewalls. Namely, since the latency is small, the TCP throughput
can increase quickly after a packet loss. Specifically, after reducing the congestion
window by half, TCP increases the congestion window again in a time that is
proportional to the RTT.

1.4 Intrusion Prevention System

One of the main features of an IPS is the database containing attack signatures.
However, the process of matching a signature with the content of the packet in
real-time is time consuming. Even new IPS devices such as the Next Generation
IPS (NGIPS) [5], which advertise throughputs of tens to hundreds of Gbps, are
not suitable for processing large flows. Akin to firewalls, they are designed for
processing thousands of small flows simultaneously. For example, the underlying
technology of the NGIPS is Snort [6], an open-source IPS engine. For an NGIPS
appliance rated at 10 Gbps with 20 internal processors, its maximum throughput is
only achieved by aggregating the individual throughput of these 20 internal Snort
instances. Since each instance has a capacity of 0.5 Gbps and packets belonging
to the same flow are processed by the same Snort instance, inspecting a 10 Gbps
science flow is not feasible here [7].

1.5 Intrusion Detection System

For Science DMZs, IDSs represent a better option than IPSs. These systems can
be classified based on the information used to detect attacks: payload-based IDS
and flow-based IDS [8, 9]. Payload-based IDSs inspect the content of every packet.
For high-speed networks, the main challenge of this approach is the processing
capability. Meanwhile, flow-based IDSs analyze the communication patterns within
the network rather than the contents of individual packets. These devices are
attractive for Science DMZs, because of the substantial processing reduction.

Figure 6a illustrates the deployment of a payload-based IDS. The border router
forwards traffic to a switch. Packets addressed to the protected network are copied
and sent to the IDS. The copy is typically done by a switch with a feature called
Switched Port Analyzer (SPAN). SPAN copies network traffic from a selected
source port in the switch to a selected destination port. The latter is connected to
the IDS.

A popular payload-based IDS is Bro [10]. Bro is well-suited for use in a Science
DMZ for several reasons: (1) flexibility in defining security policies, which can be
granularly customized by using a domain-specific scripting language interpreted by
a policy script interpreter layer; (2) incorporation of hundreds of protocol analyzers
in the event engine, allowing the IDS to detect anomalies carried in practically all

350 Security Aspects

Fig. 6 IDS implementations. (a) Payload-based IDS model. (b) Flow-based IDS model

existent protocols; and (3) scalability. As science flows are characterized at rates
of tens of Gbps or more, the potential traffic volumes surpass the capacity of a
single-instance IDS. Hence, Bro nodes can be organized in clusters, where clusters
of nodes cooperate seamlessly [11]. However, at very high rates, the amount of
processing may become excessive, even for a clustered IDS [12].

Flow-based IDSs track the lifetime of a flow and characterize its behavior [8],
[9]. This characterization may incorporate several attributes such as the time the
exchange of data started, the time it ended, the number of transferred bytes, etc.
Figure 6b shows a Netflow-based IDS protecting a Science DMZ. The Netflow-
enabled router collects statistical information of all incoming flows passing through
the interface facing the WAN. These statistics are collected in hardware by an
interface’ network processor. The router then extracts the packet header from each
packet seen on the monitored interface and marks the header with a timestamp. It

2 Confidentiality, Integrity, and Authentication 351

then proceeds to update a flow entry in the flow cache of the router. Once a flow
record expires (typically seconds or few minutes), it is sent to a flow collector. Note
that the volume of information sent to and stored by the flow collector is several
orders of magnitude lower than the actual traffic.

For campuses operating at 100 Gbps, the sampling flow (sFlow) technique [13] is
a more scalable solution than Netflow. Here, for a given flow, instead of processing
each packet, sFlow can process 1 out of a packets, where a is a configurable
parameter. It should be noted, however, that sampling not only lowers the demands
put on the flow exporter, but also could make the detection of intrusions harder [8].

1.6 Response Plan

In general, at least two actions that can be taken once an anomaly is detected
are black hole routing and ACL blocking. The black hole routing approach drops
packets coming from a suspicious source IP address (e.g., an attacker identified by
an IDS) by installing a particular entry in the routing table. The mechanism used
is called Unicast Reverse Path Forwarding (uRPF) [14]. This information can be
disseminated to other routers via BGP [15]. The ACL blocking technique creates
and installs an ACL in the border router when an offender is identified.

Black hole routing is more effective if the information is disseminated to other
routers, thus the attack is prevented before packets reach the Science DMZ. On the
other hand, ACL blocking is simpler and effective, but the router must still process
each offender packet.

2 Confidentiality, Integrity, and Authentication

Confidentiality, integrity, and authentication services are typically provided by the
application layer, specifically, by the data transfer tool. These security aspects are
required for certain applications. For example, medical Science DMZs [16, 17]
transport medical information that must adhere to security and privacy laws and
regulations.

Globus [18, 19] provides authentication on the control channel by default.
Confidentiality and integrity are both supported on the data channel but are not
enabled by default. Vardoyan et al. [20] showed that by using Globus with multiple
threads, the encryption of the data channel has a minimal performance impact.
Globus also includes a feature called striped configuration, which is illustrated in
Fig. 7a. In this configuration, multiple cooperating DTNs can exchange data with
remote DTNs [19]. The DTNs are coordinated by a server protocol interpreter (SPI),
which implements the control channel. Transfers are then divided over all available
DTNs, thus allowing the combined bandwidth of all DTNs to be used. An advantage

352 Security Aspects

Fig. 7 Configuration options for confidentiality, integrity, and authentication. (a) Cluster-to-
cluster configuration of the Globus striped configuration. The server protocol interpreter (SPI)
implements the control channel and coordinates the load distribution among DTNs. The commu-
nication between SPI and DTNs is via an inter-process communication channel. Data is read/write
from/to a storage device using a parallel file system channel. (b) Site-to-site virtual private network
(VPN) tunnel. Confidentiality, integrity, and authentication are implemented by the routers located
at the points of the tunnel

of this configuration when implementing full encryption is the distribution of
processing load.

Modern symmetric-key algorithms can also efficiently encrypt and decrypt data.
Somemanufacturers, such as Intel and AMD, now offer hardware-based instructions
to improve the encryption and decryption throughput of some algorithms, such as
the Advanced Encryption Standard (AES). Also, block ciphers provide abundant
parallelism’s opportunities. For example, when operating in counter mode, AES can
encrypt and decrypt blocks in parallel, and the throughput can be increased accord-
ing to the amount of parallelism provided by multiple cores. Current encryption
technology is suitable for 10 Gbps rates.

On the other side of encryption is the file integrity check (FIC). To verify
the integrity of a file, the entire file must be received first. Only then can the

Chapter 6—Lab 14: Introduction to the Capabilities of Zeek 353

destination DTN run a cryptographic hash function on the received file. Thus, FIC
may represent a larger performance penalty than encryption and decryption.

For authentication purposes, an industry standard that is increasingly being
adopted is OAuth 2.0 [21]. Consider a client DTN attempting to download a large
file from a server DTN. Here the client DTN is provided with a delegated access to
the file resting at the server DTN without sharing credentials.

Confidentiality, integrity, and authentication can also be implemented via a site-
to-site virtual private network (VPN). Here, the sender router encrypts the traffic
before it enters the WAN. The receiver router then decrypts the traffic upon arrival
to the destination Science DMZ. Figure 7b illustrates this alternative. Now, most
routers implement VPNs based on the IP security (IPsec) architecture [22]. While
IPsec is a well-proven technology, its main disadvantage is the additional processing
overhead at the router.

3 Security Summary

Table 2 summarizes the various security techniques. Clearly, securing a Science
DMZ cannot be done with a single device or technique. ACLs are strongly
recommended for protecting Science DMZ; however, other offline devices, such
as IDSs, should also be implemented to supplement an ACL’s lack of context. Inline
devices must be avoided.

Academic Cloud and Virtual Laboratories

The book is accompanied by hands-on virtual laboratory experiments conducted in
a cloud system, referred to as the Academic Cloud. Access to the Academic Cloud
is available for a fee (six-month access) and includes all material needed to conduct
the experiments. The URL is

http://highspeednetworks.net/

Chapter 6—Lab 14: Introduction to the Capabilities of Zeek

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 14.

This lab introduces Zeek, an open-source network analysis framework primarily
used in security monitoring and traffic analysis. The primary focus of this lab is to
explain Zeek’s layered architecture while demonstrating Zeek’s capabilities toward
performing network traffic analysis.

http://highspeednetworks.net/
http://highspeednetworks.net/

354 Security Aspects

Table 2 Security considerations in Science DMZs

Device/Technique Advantage Disadvantage
SDMZ rec-
ommended

Physical
segregation

Easy bandwidth allocation
for each network; equipment
specifically dimensioned for
each network: enterprise
network and Science DMZ;
easy to apply different
security policies for each
network

More expensive; having two
physical infrastructures may
require higher maintenance and
operation costs

Yes

VLAN
segregation

Only one physical
infrastructure is required;
cheaper

Shared infrastructure between
enterprise network and Science
DMZ; more complex allocation
of resources (bandwidth, buffer,
etc.); potential bandwidth
starvation in enterprise network,
if resources are not adequately
allocated

Acceptable,
if shared
resources
are appro-
priately
allocated

ACL Very scalable; it is
implemented in router’s
forwarding plane; minimal
performance impact; easy to
implement

Decisions are not based on
context; addresses of
collaborators must be identified
in advance; fragmented packets
are unreliably filtered;
susceptible to IP spoofing

Yes

Firewalls Session tracking adds
context to decisions; they are
robust against IP spoofing;
rich data log

Inspection capacity is below
required rates; for science flows,
throughput is severely impacted;
it represents a bottleneck for
Science DMZs and leads to
packet losses and/or out-of-order
delivery

No

Payload-based
IDS

Payload inspection provides
full application-layer
information; state
information is collected
without interference with
flows; no performance
impact on switches or routers

Additional resources for
scalability may be needed (e.g.,
cluster of servers); peak of traffic
inspection may be very large at
times; attacks might only be
stopped from reaching target
after they occur; without large
clusters, monitoring 100 Gbps
links is very difficult

Yes

Flow-based IDS The most scalable IDS
solution; ability to inspect
hundreds of Gbps with a
single CPU (sFlow); state
information is collected
without interference;
minimal performance impact
on routers and switches

Application-layer payload is not
inspected, but only flow
information; flows represent
aggregate information only;
when sampling is used (sFlow),
flow information may be lost;
attacks might only be stopped
from reaching target after they
occur

Yes

(continued)

Chapter 6—Lab 14: Introduction to the Capabilities of Zeek 355

Table 2 (continued)

Device/Technique Advantage Disadvantage
SDMZ rec-
ommended

Confidentiality,
integrity,
authentication at
application layer

Encryption at modern DTNs
can now be achieved at high
rates; scalable alternatives
are available, if needed (e.g.,
Globus’ striped
configuration)

There is a throughput
degradation when file integrity
check is performed; additional
resources (e.g., CPU) may be
needed for scalability

Yes

IPS Inspection of
application-layer payload
provides full information;
attacks can be detected and
stopped immediately

Inspection capacity under single
large flow is well below required
rates; for science flows,
throughput is severely impacted

No

Confidentiality,
integrity,
authentication
with IPsec

Integrity is checked on a
per-packet basis at the router,
avoiding a
resource-expensive file
integrity check at the end of
the transfer; well-known,
proven technology (IPsec)

If router is overloaded, the
additional processing overhead
may lead to packet losses

Not recom-
mended,
but
acceptable
if the router
has
sufficient
CPU
capability

Fig. 8 Lab topology

Objectives
By the end of this lab, students should be able to:

1. Understand Zeek’s layered architecture.
2. Start and manage a Zeek instance using the ZeekControl utility.
3. Use Zeek to process packet captures files.
4. Generate and analyze live network traffic in Zeek.

Lab Topology
Figure 8 shows the lab topology. The topology uses 10.0.0.0/8, which is the default
network assigned by Mininet. The h1 and h2 virtual machines will be used to
generate and collect network traffic.

Lab Settings
The information (case-sensitive) in the table below provides the credentials neces-
sary to access the machines used in this lab (Table 3).

356 Security Aspects

Table 3 Credentials to
access the Client machine

Device Account Password

Client admin password

Fig. 9 Zeek’s architecture

Lab Roadmap
This lab is organized as follows:

1. Section 4: Introduction to Zeek.
2. Section 5: Using ZeekControl to update the status of Zeek.
3. Section 6: Introduction to Zeek’s traffic analysis capabilities.

4 Introduction to Zeek

Zeek is a passive, open-source network traffic analyzer. It is primarily used as a
security monitor that inspects all traffic on a network link for signs of suspicious
activity. It can run on commodity hardware with standard UNIX-based systems and
can be used as a passive network monitoring tool.

Setting Zeek as a node with an assigned IP address on the monitored network
is not mandatory. Figure 9 shows Zeek’s layered architecture. Once Zeek receives
packets, its eventengine converts them into events. The events are then forwarded to
the policy script interpreter, which generates logs, notifications, and/or actions.

Zeek uses the standard libpcap library for capturing packets to be used in
network monitoring and analysis.

4.1 The Zeek Event Engine

The event engine layer performs low-level network packets analysis. It receives
raw packets from the network layer (packet capture), sorts them by connection,

4 Introduction to Zeek 357

reassembles data streams, and decodes application-layer protocols. Whenever it
encounters something potentially relevant to the policy layer, it generates an event.

The event engine consists of several analyzers responsible for well-defined tasks.
Typical tasks include decoding a specific protocol, performing signature-matching,
identifying backdoors, etc. Usually, an analyzer is accompanied by a default script,
which implements some general policy adjustable to the local environment. The
event engine can be divided into four major parts.

4.1.1 State Management

Zeek’s main data structure is a connection, which follows typical flow identification
mechanisms, such as 5-tuple approaches. The 5-tuple structure consists of the source
IP address/port number, destination IP address/port number, and the protocol in use.
For a connection-oriented protocol like TCP, the definition of a connection is more
clear-cut; however, for others such as UDP and ICMP, Zeek implements a flow-like
abstraction to aggregate packets. Each packet belongs to exactly one connection.

4.1.2 Transport-Layer Analyzers

On the transport layer, Zeek analyzes TCP, UDP packets. In TCP, Zeek’s associated
analyzer closely follows the various state changes, keeps track of acknowledgments,
handles retransmissions and much more.

4.1.3 Application-Layer Analyzers

The analysis of the application-layer data of a connection depends on the service.
There are analyzers for a wide variety of different protocols, e.g., HTTP, SMTP, or
DNS, that generally conduct detailed analysis of the data stream.

4.1.4 Infrastructure

The general infrastructure of Zeek includes the event and timer management
components, the script interpreter, and data structures.

358 Security Aspects

4.2 The Zeek Policy Script Interpreter

While the event engine itself is policy-neutral, the top layer of Zeek defines the
environment-specific network security policy. By writing handlers for events that
may be raised by the event engine, the user can precisely define the constraints
within the given network. If a security breach is detected, the policy layer generates
an alert.

New event handlers can be created in Zeek’s own scripting language. While
providing all expected convenience of a powerful scripting language, it has been
designed with network intrusion detection in mind. While it is expected that
additional policy scripts are written by the user, there are nevertheless several default
scripts included with the initial installation of Zeek. These default scripts already
perform a wide range of analyses and are easily customizable.

4.3 Zeek Analyzers

The majority of Zeek’s analyzers are in its event engine with accompanying policy
scripts that can be customized by the user. Sometimes, however, the analyzer is
just a policy script implementing multiple event handlers. The analyzers perform
application-layer decoding, anomaly detection, signature matching, and connection
analysis. Zeek has been designed so that it is easy to add additional analyzers.

4.4 Signatures

Most network intrusion detection systems (NIDS) match a large set of signatures
against the network traffic. Here, a signature is a pattern of bytes that the NIDS tries
to locate in the payload of network packets. As soon as a match is found, the system
generates an alert.

A well-known IDS system is Snort; conversely, Zeek’s general approach to
intrusion detection has a much broader scope than traditional signature-matching,
yet still contains a signature engine providing a functionality that is similar to that
of other systems. Furthermore, while Zeek implements its own flexible signature
language, there exists a converter that directly translates Snort’s signatures into
Zeek’s syntax, as shown below (Fig. 10):

5 Using ZeekControl to Update the Status of Zeek 359

Fig. 10 Example of signature conversion. (a) Snort’s signature. (b) Zeek’s signature

4.5 ZeekControl

ZeekControl, formerly known as BroControl, is an interactive shell for easily
operating and managing Zeek installations on a single system or across multiple
systems in a traffic-monitoring cluster (Fig. 11).

5 Using ZeekControl to Update the Status of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to
enter the Client machine (Fig. 12).

Step 2. The Client machine will now open, and the desktop will be displayed.
On the left side of the screen, double click on the Terminal icon as shown below
(Fig. 13).

Step 3. Using the Terminal, input the following command to enter the ZeekControl
directory (Fig. 14). To type capital letters, it is recommended to hold the Shift key
while typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin/

360 Security Aspects

Fig. 11 ZeekControl scheme

Fig. 12 Opening the Client machine

Fig. 13 Opening the
Terminal

The active directory will change, as seen on the second line of the Terminal. Note
that $ZEEK_INSTALL variable was substituted by its value (/usr/local/zeek) listed
in Table 4.

Step 4. Use the following command to view the contents of the active directory
(Fig. 15):

ls

The directory contents will be displayed. The green file name portrays an
executable file.

5 Using ZeekControl to Update the Status of Zeek 361

Fig. 14 Navigating into the ZeekControl directory

Table 4 Shell variables and their corresponding absolute paths

Variable name Absolute path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/admin/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/admin/zeek/scripts/policy/protocols

Fig. 15 Listing the directory’s files

Fig. 16 Launching the ZeekControl tool

Step 5. Use the following command to launch the ZeekControl tool. When
prompted for a password, type password and hit Enter (Fig. 16).

sudo ./zeekctl

Once active, the ZeekControl prompt will be displayed within the Terminal. The
help command will display additional information regarding ZeekControl.

362 Security Aspects

5.1 Starting a New Instance of Zeek

Step 1. To initialize Zeek, enter the following command into the ZeekControl
prompt (Fig. 17):

start

If you see error messages during the new Zeek instance initializing process, please
ignore it.

Step 2. Use the following command to view the status of the currently active Zeek
instance to ensure that it is active (Fig. 18):

status

The running status indicates that Zeek is currently active and functioning
properly. The output of the status command includes other useful parameters:

• Name : the name of the Zeek instance.

• Type : the type of the instance (standalone in our case).

• Host : the host name (local host).

• Pid : the process ID. This ID can be used with other tools like kill to send a
signal to the process.

• Started : the starting date and time of the instance.

Fig. 17 Initializing and starting Zeek

Fig. 18 Displaying the status of Zeek

5 Using ZeekControl to Update the Status of Zeek 363

5.2 Stopping the Active Instance of Zeek

Step 1. To stop Zeek, enter the following command into the ZeekControl prompt
(Fig. 19):

stop

Step 2. Use the following command to verify the exit status of Zeek (Fig. 20):

status

The stopped status indicates that Zeek is currently stopped.

Step 3. To restart Zeek, enter the following command into the ZeekControl prompt
(Fig. 21):

start

Step 4. Type the following command to check if the Zeek restarted. You will verify
that Zeek is running (Fig. 22).

status

Fig. 19 Stopping Zeek

Fig. 20 Displaying the status of Zeek

Fig. 21 Restarting Zeek

364 Security Aspects

Fig. 22 Displaying the status of Zeek

Fig. 23 Leaving the ZeekControl tool

Fig. 24 Displaying Zeek’s PID

Step 5. To exit from ZeekControl type following command (Fig. 23):

exit

Note that exiting the ZeekControl tool does not stop Zeek. Zeek is only stopped
by explicitly using the stop command in the ZeekControl prompt.

Step 6. To verify that Zeek control is not stopped type the following command
(Fig. 24):

ps aux |grep <PID_number>

where <PID_number>is the number inside the gray box depicted in step 4.

Notice that the <PID_number>may differ than the figure above.

6 Introduction to Zeek’s Traffic Analysis Capabilities

Zeek’s broad range of traffic analysis capabilities makes it an exceptional intrusion
detection system (IDS) and network analysis framework. Zeek is proficient in

6 Introduction to Zeek’s Traffic Analysis Capabilities 365

processing packet capture (pcap) files and logging traffic on a given network
interface.

6.1 Processing Offline Packet Capture Files

Linux-based systems process packet capture (pcap) files using the libpcap library.
In Zeek, it is possible to capture live traffic and analyze trace files. In the following
example, we analyze a pcap file using a premade script that detects brute force
attacks.

6.1.1 Command Format for Processing Packet Capture Files

The general format for initializing offline packet capture analysis is as follows:

zeek -r <pcap_file_location><script_location>

• zeek : command to invoke Zeek.
• -r : option signifies to Zeek that it will be reading from an offline file.

• <pcap_file_location> : indicates the pcap file location.

• <script_location> : indicates the script location.

6.1.2 Leveraging a Script to Detect Brute Force Attacks Present in a pcap
File

Zeek installs a number of default scripts and trace files that can be used for testing
purposes. In this section, we use the bruteforce.pcap as the input packet capture file
and ZeekBruteforceDetection.zeek as the detection script. The packet capture file
contains network traffic of a brute force password attack, while the script defines
the brute forcing event for the Zeek event engine.

Step 1. Enter the lab workspace directory (Fig. 25). To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

cd ~/Zeek-Labs/

Step 2. Initialize Zeek offline packet parsing on the packet capture file (Fig. 26). It
is possible to use the tab key to autocomplete the longer paths.

366 Security Aspects

Fig. 25 Navigating into ~/Zeek-Labs/ directory

Fig. 26 Initializing Zeek’s offline packet parsing on a packet capture file

Fig. 27 Showing the contents of notice.log file

zeek -C -r Sample-PCAP/bruteforce.pcap Lab-
Scripts/ZeekDetectBruteForce.zeek

The -C option is included to prevent Zeek from displaying specific warnings.

Step 3. After running the command, if a brute forcing attack was found, it will be
logged in the notice.log output log file. We will use the cat command to view the
file (Fig. 27).

cat notice.log

6 Introduction to Zeek’s Traffic Analysis Capabilities 367

Examining the proceeding image, a possible brute force attack was detected. The
log file shows that the IP address 192.168.56.1 had 20 or more failed login attempts
on the hosted FTP server.

6.2 Launching Mininet

Mininet is a network emulator that creates a network topology consisting of virtual
hosts, switches, controllers, and links. Within the Zeek lab series, we will be
leveraging Mininet to generate and capture network traffic.

Step 1. From the Client machine’s desktop, on the left side of the screen, double
click on the MiniEdit icon as shown below (Fig. 28). When prompted for a
password, type password and hit Enter . The MiniEdit editor will now launch.

Step 2. The MiniEdit editor will now launch and allow for the creation of new,
virtualized lab topologies. The image below shows the default MiniEdit display
(Fig. 29).

Step 3. A premade topology has already been created for this lab series. To load
the correct topology, begin by clicking the Open button within the File tab on
the top left of the MiniEdit editor (Fig. 30).

Step 4. Select the Lab 14.mn file by double clicking the Lab 14.mn icon, or by
clicking the Open button (Fig. 31).

Step 5. The lab topology will contain two virtual machines—h1 and h2, which are
able to connect and communicate with one another through the s1 switch, as seen in
the image below (Fig. 32).

Fig. 28 Starting MiniEdit

368 Security Aspects

Fig. 29 MiniEdit’s interface

Fig. 30 MiniEdit’s menu

Step 6. To begin running the virtual machines, navigate to the Run button, found
on the bottom left of the Miniedit editor, and select the Run button, as seen in the
image below (Fig. 33).

Step 7. To access either the h1 or h2 terminals for subsequent steps, hold the right
mouse button on the desired machine, which will then display a Terminal button

6 Introduction to Zeek’s Traffic Analysis Capabilities 369

Fig. 31 MiniEdit’s Open dialog

Fig. 32 Lab topology on MiniEdit

Fig. 33 Running the
emulation

370 Security Aspects

Fig. 34 Opening the host’s terminal

(Fig. 34). Drag the cursor to the Terminal button to launch the terminal, as seen in
the image below.

With the Mininet lab topology loaded, we can now begin to generate and analyze
live network traffic capture.

6.3 Generating and Analyzing Live Network Traffic Capture

The tcpdump command utility is a famous network packet analyzing tool that
is used to display TCP/IP and other network packets being transmitted over the
network.

6.4 Leveraging the Tcpdump Command Utility

The general format for tcpdump is the following command:

sudo tcpdump -i <interface_name>-s <num>-w
<pcap_file_location>

• sudo : option to enable higher level privileges.

• tcpdump : program for capturing live network traffic.

• -i : option used to specify a network interface.

• <interface_name> : denotes the interface name.

6 Introduction to Zeek’s Traffic Analysis Capabilities 371

• -s : option used to specify number of packets to capture.
• <num> : denotes the number of packets to capture. 0 equals infinite.
• -w : option used to specify that we will be writing to a new file.

• <pcap_file_location> : indicates the file location.

6.5 Capturing Live Network Traffic

The h2 machine will be used to capture live network traffic, while the h1 machine
will be used to generate live network traffic.

Step 1. Open the h2 Terminal by holding the right mouse button on the desired
machine, which will then display a Terminal button (Fig. 35). Drag the cursor to the
Terminal button to launch the terminal, as seen in the image below.

Step 2. Navigate to the TCP-Traffic directory (Fig. 36). To type capital letters, it is
recommended to hold the Shift key while typing rather than using the Caps key.

cd Zeek-Labs/TCP-Traffic/

Fig. 35 Opening the host’s terminal

Fig. 36 Navigating into Zeek-Labs/TCP-Traffic/ directory

372 Security Aspects

Fig. 37 Navigating into Running live packet capture

Fig. 38 Opening the host’s terminal

Step 3. Use the following command to begin live packet capture (Fig. 37). If the
Terminal session has not been terminated or closed, you may not be prompted to
enter the password. If prompted for a password, type password and hit Enter .
Live packet capture will start on interface h2-eth0.

tcpdump -i h2-eth0 -s -w ntraffic.pcap

Step 4. Minimize the h2 Terminal and open the h1 Terminal (Fig. 38). If necessary,
right click within the Miniedit editor to activate your cursor.

Step 5. Generate traffic by using the ping utility. Ping operates by sending
Internet Control Message Protocol(ICMP) echo request packets to the target host
and waiting for an ICMP echo reply. Issue the following command on the newly
opened h1 Terminal (Fig. 39):

ping -c 3 10.0.0.2

The -c option is used to indicate the number of packets to send—in this
example, 3 packets.

Step 6. Minimize the h1 Terminal and open the h2 Terminal using the navigation
bar at the bottom of the screen (Fig. 40). If necessary, right-click within the Miniedit
editor to activate your cursor.

Step 6. Use the Ctrl+c key combination to stop live traffic capture. Statistics of
the capture session will be displayed (Fig. 41). 10 packets were recorded by the
interface, which were then captured and stored in the new ntraffic.pcap file.

6 Introduction to Zeek’s Traffic Analysis Capabilities 373

Fig. 39 Generating traffic by using the ping utility

Fig. 40 Opening the host’s terminal

Fig. 41 Statistics of the capture session

Fig. 42 Stopping the
emulation

Step 7. Stop the current Mininet session by clicking the Stop button on the bottom
left of the MiniEdit editor and close the MiniEdit editor by clicking the x on the
top right of the editor (Fig. 42).

374 Security Aspects

Fig. 43 Launching the
Terminal

Fig. 44 Navigating into Zeek-Labs/TCP-Traffic/ directory

Fig. 45 Viewing the file contents of the TCP-Traffic directory

We will now return to the Client machine to process and analyze the newly
generated network traffic.

6.5.1 Analyzing the Newly Captured Network Traffic

Step 1. On the left side of the Client desktop, double click on the Terminal icon as
shown below (Fig. 43).

Step 2. Navigate to the TCP-Traffic directory to find the ntraffic.pcap file. To type
capital letters, it is recommended to hold the Shift key while typing rather than using
the Caps key (Fig. 44).

cd Zeek-Labs/TCP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory (Fig. 45).

ls

6 Introduction to Zeek’s Traffic Analysis Capabilities 375

Fig. 46 Initializing Zeek offline packet parsing on the packet capture file

Fig. 47 Listing the newly generated Zeek log files

We can see the ntraffic.pcap file that was generated by the host h2 is now
accessible.

Step 4. Initialize Zeek offline packet parsing on the packet capture file. The -r

option is used to read from a given pcap file, and the -C option is used to disable
checksums validation (Fig. 46).

zeek -C -r ntraffic.pcap

Step 5. View the newly generated Zeek log files (Fig. 47).

ls

The generated log files will contain important information regarding the network
traffic. For instance, the conn.log file will contain connection-based information,
specifically the hosts communicating, their IP addresses, protocols and ports. The
following labs will offer in-depth insight and examples toward understanding these
Zeek log files.

Step 6. Viewing the conn.log connection-based log file with the cat command,
we can see that the IP address 10.0.0.1 was detected to generate the captured traffic,
corresponding to the host h1 (Fig. 48).

cat conn.log

Step 7. Stop Zeek by entering the following command on the terminal (Fig. 49).
If required, type password as the password. If the Terminal session has not been
terminated or closed, you may not be prompted to enter a password. To type capital

376 Security Aspects

Fig. 48 Viewing the conn.log connection-based log file

Fig. 49 Stopping Zeek

letters, it is recommended to hold the Shift key while typing rather than using the
Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

The above command navigates to Zeek’s installation directory and executes the
stop command in zeekctl.

If you see error messages during the new Zeek instance initializing process, please
ignore it.

Chapter 6—Lab 15: An Overview of Zeek Logs 377

Chapter 6—Lab 15: An Overview of Zeek Logs

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 15.

This lab covers Zeek’s logging files. Zeek’s event-based engine will generate log
files based on signatures or events found during network traffic analysis. The focus
in this lab is on explaining each logging file and introducing some basic analytic
functions and tools.

Objectives
By the end of this lab, students should be able to:

1. Generate Zeek log files.
2. Use Linux Terminal tools combined with Zeek’s zeek-cut utility to customize the

output of logs for analysis.

Lab Topology
Figure 50 shows the lab topology. The topology uses 10.0.0.0/8, which is the default
network assigned by Mininet. The h1 and h2 virtual machines will be used to
generate and collect network traffic.

Lab Settings
The information (case-sensitive) in the table below provides the credentials neces-
sary to access the machines used in this lab (Tables 5 and 6).

Lab Roadmap
This lab is organized as follows:

1. Section 7: Introduction to Zeek logs.
2. Section 8: Starting a new instance of Zeek.
3. Section 9: Parsing packet capture files into Zeek log files.
4. Section 10: Analyzing Zeek log files.

Fig. 50 Lab topology

Table 5 Machines
credentials

Device Account Password

Client admin password

http://highspeednetworks.net/

378 Security Aspects

Table 6 Shell variables and their corresponding absolute paths

Variable name Absolute path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/admin/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/admin/scripts/policy/protocols

7 Introduction to Zeek Logs

Zeek’s generated log files include a comprehensive record of every connection
seen on the wire; this includes application-layer protocols and fields (e.g., Hyper-
Text Transfer Protocol (HTTP) sessions, Uniform Resource Locator (URL), key
headers, Multi-Purpose Internet Mail Extensions (MIME) types, server responses,
etc.), Domain Name Server (DNS) requests and responses, Secure Socket Layer
(SSL) certificates, key content of Simple Mail Transfer Protocol (SMTP) sessions,
and others.

7.1 Zeek Logs Generated by Packet Analysis

A Zeek log is a stream of high-level entries that correspond to network activities,
such as a login to SSH or an email sent using SMTP. In Zeek, each event stream has
a dedicated file with its own set of features, fields, or columns.

During capture or analysis, Zeek generates a log determined by the protocol type.
Due to this architecture, a Session Initiation Protocol (SIP) log, for instance, does
not contain any other protocols’ packets information like HTTP. Furthermore, each
log file contains case-relative fields (e.g., from and subject fields in an SMTP log).
Some of these log files are large and contain entries that can be either benign or
malicious, whereas others are smaller and contain more actionable information.

7.2 Zeek Logs Generated by Recurrent Network Analysis

With every session of packet analysis, either through live packet analysis or the
parsing of an offline packet capture file, Zeek generates session-specific log files.
In addition to these session-based log files, Zeek creates network-reliant log files as
well. These network-reliant files are continually generated and updated when a new
session is initialized and started.

The following Zeek log files are updated daily:

• known_hosts.log: Log file containing information for hosts that completed TCP
handshakes.

8 Starting a New Instance of Zeek 379

• known_services.log: Log file containing a list of services running on hosts.
• known_certs.log: Log file containing a list of Secure Socket Layer (SSL)

certificates.
• software.log: Log file containing information about Software being used on the

network.

Additionally, a list of detection-based log files is created during each session. The
log files relevant to this lab are:

• notice.log (Zeek notices): When Zeek detects an anomaly, a corresponding notice
will be raised in this file.

• intel.log (Intelligence data matches): When Zeek detects traffic flagged with
known malicious indicators, a corresponding reference will be logged in this file.

• signatures.log (Signature matches): When Zeek detects traffic flagged with
known malicious or faulty packet signatures, a corresponding reference will be
logged in this file.

7.3 Typical Uses of Zeek Logs

By default, Zeek logs all information into well-structured, tab-separated text files
suitable for postprocessing. Users can also choose from a set of alternative output
formats and backends such as external databases.

The Zeek-native zeek-cut utility can be leveraged to further specify and parse
the information within the generated log files.

8 Starting a New Instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to
enter the Client machine (Fig. 51).

Step 2. The Client machine will now open, and the desktop will be displayed.
On the left side of the screen, double click on the Terminal icon as shown below
(Fig. 52).

Fig. 51 Opening the Client machine

380 Security Aspects

Fig. 52 Opening the
Terminal

Fig. 53 Initializing and starting Zeek

Step 3. Start Zeek by entering the following command on the terminal (Fig. 53).
This command enters Zeek’s default installation directory and invokes Zeekctl

tool to start a new instance. When prompted for a password, type password and

hit Enter . To type capital letters, it is recommended to hold the Shift key while

typing rather than using the Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next
section of the lab.

If you see error messages during the new Zeek instance initializing process, please
ignore it.

9 Parsing Packet Capture Files into Zeek Log Files

In this section we introduce Zeek’s capability of generating and viewing log files.
Packet capture files used in this lab are preloaded onto the Client machine and can
be found with the following path:

~/Zeek-Labs/Sample-PCAP/

9 Parsing Packet Capture Files into Zeek Log Files 381

Fig. 54 Zeek’s options

These packet capture files were downloaded from Tcpreplay’s sample capture
collection. To access the following link, users must have access to an external
computer connected to the Internet, because the Zeek Lab topology does not have
an active Internet connection.

http://tcpreplay.appneta.com/wiki/captures.html

Tcpreplay is a suite of free Open-Source utilities for editing and replaying
previously captured network traffic and can be used to test transmissions and
network health.

9.1 Overview of Zeek Command Options

When using Zeek, the user specifies a running state option. In this lab, three
primarily options are used:

• -C : specifies to ignore checksum warnings, specifically to avoid redundancy
since we are focusing on TCP traffic only.

• -r : specifies offline packet capture file analysis.
• -w : specifies live network capture.

Additional Zeek options can be found by passing the -help option to the zeek
command (Fig. 54):

zeek -help

http://tcpreplay.appneta.com/wiki/captures.html

382 Security Aspects

Fig. 55 Navigating into ~/Zeek-Labs/ TCP-Traffic/ directory

Fig. 56 Processing the smallFlows.pcap

Fig. 57 Listing the generated log files

9.2 Using Zeek to Process Offline Packet Capture Files

In this subsection we will use Zeek to process the existing offline packet capture file
smallFlows.pcap. By specifying the -r option and the directory path to the pcap
file, Zeek can generate the corresponding log files.

Step 1. Navigate to the lab workspace directory (Fig. 55). To type capital letters, it
is recommended to hold the Shift key while typing rather than using the Caps
key.

cd ~/Zeek-Labs/TCP-Traffic/

Step 2. Use the following command to process the smallFlows.pcap file (Fig. 56).
It is possible to use the tab key to autocomplete the longer paths.

zeek -C -r ../Sample-PCAP/smallFlows.pcap

After Zeek finishes processing the packet capture file, it will generate a number
of log files.

Step 3. Use the following command to list the generated log files (Fig. 57):

ls

9 Parsing Packet Capture Files into Zeek Log Files 383

9.3 Understanding Zeek Log Files

Zeek’s generated log files can be summarized as follows:

• conn.log: A file containing information pertaining to all TCP/UDP/ICMP con-
nections; this file contains most of the information gathered from the packet
capture.

• files.log: A file consisting of analytic results of packets’ counts and sessions’
durations.

• packet_filter.log: A file listing the active filters applied to Zeek upon reading the
packet capture file.

• x509.log: A file containing public key certificates used by protocols.
• weird.log: A file containing packet data non-conformant with standard protocols.

It also contains packets with possibly corrupted or damaged packet header fields.
• (protocol).log (dns.log, dhcp.log, http.log, snmp.log): These are files containing

information for packets found in each respective protocol. For instance, dns.log
will only contain information generated by Domain Name Service (DNS)
packets.

More information regarding log files is available in the Zeek official documentation,
which can be viewed online using an external Internet-connected machine through
this link:

https://docs.zeek.org/en/stable/script-reference/log-files.html

9.4 Basic Viewing of Zeek Logs

In this subsection we examine the generated log files and their contents.

Step 1. Use the following command to display the contents of the conn.log file
using the head command (Fig. 58):

head conn.log

The topmost rows within the conn.log file will be displayed in the Terminal;
however, the current formatting wraps around multiple lines, making it unclear and
hard to understand. In the following section we introduce the zeek-cut utility for
enhancing the output of these log files.

https://docs.zeek.org/en/stable/script-reference/log-files.html

384 Security Aspects

Fig. 58 Displaying the contents of the conn.log

10 Analyzing Zeek Log Files

In this section, we review the utilities that help in displaying log files with well-
formatted outputs, as well as saving output to text files.

10.1 Leveraging Zeek-Cut for a More Refined View of Log
Files

Although the produced log file is tab delimited, it is difficult to visualize and parse
information from the terminal. The zeek-cut utility can be used to parse the log
files by specifying which column data to be displayed in a more organized output.

10.1.1 Using Zeek-Cut in Conjunction with Cat and Head Command
Utilities

Generally, the zeek-cut utility is typically coupled with cat using the pipe |

command. In Linux, the pipe command sends the output of one command as input
to another. Essentially, the output of the left command is passed as input to that on
its right, and multiple commands can be chained together.

Step 1. Use the following command to pipe the contents of cat into zeek-cut
(Fig. 59):

cat conn.log |zeek-cut id.orig_h id.orig_p id.resp_h
id.resp_p

10 Analyzing Zeek Log Files 385

Fig. 59 Using zeek-cut utility

Fig. 60 Using zeek-cut utility

The options passed into the zeek-cut utility represent the column headers to be
extracted from the log file:

• id.orig_h : Column containing the source IP address.

• id.orig_p : Column containing the source port.

• id.resp_h : Column containing the destination IP address.

• id.resp_p : Column containing the destination port.

Alternatively, instead of using the cat command, the head command can be used
to display the topmost rows of the log file, which can be very useful to view a large
file’s contents.

Step 2. Use the following command to pipe the contents of head into zeek-cut
(Fig. 60):

head conn.log |zeek-cut id.orig_h id.orig_p id.resp_h
id.resp_p

Notice that only two records are shown. This is caused by the head command
taking the 10 topmost rows of conn.log, regardless of what that entails, and passing
it as input to zeek-cut .

386 Security Aspects

Fig. 61 Using zeek-cut utility

Since the log file contains 8 lines of header padding used for displaying the file’s
format, we will have to specify the first 18 rows of file in order to successfully
display the first 10 packets of the log file.

Step 3. Use the following command to pipe the contents of head into zeek-cut
(Fig. 61):

head -n 18 conn.log |zeek-cut id.orig_h id.orig_p
id.resp_h id.resp_p

The -n option can be passed to the head utility to specify the desired number
of rows.

10.1.2 Printing the Output of Zeek-Cut to a Text File

While the results displayed in the Terminal after using the zeek-cut utility can be
easily viewed for smaller data sets, it is often necessary to save the output into a
separate file. Using the > character, we can send the output to a new file for further
processing by other applications.

Step 1. Use the following command to change the output location of zeek-cut
(Fig. 62):

cat conn.log |zeek-cut id.orig_h id.orig_p id.resp_h
id.resp_p >output.txt

By including the file extension in output.txt, we are choosing to print the output
into a plain text file.

Step 2. We can display the topmost contents of the new output.txt file by using the
head command (Fig. 63).

10 Analyzing Zeek Log Files 387

Fig. 62 Redirecting zeek-cut utility’s output to a text file

Fig. 63 Displaying the contents of the new output.txt file

head output.txt

The output.txt file contains the same tab-delimited format as shown in previous
zeek-cut examples.

10.1.3 Printing the Output of Zeek-Cut to a csv File

In some situations, it is helpful to save the output of zeek-cut in a csv file. In a
csv file, data may be imported into other applications, such as databases or machine
learning classifiers.

Step 1. The exported output file by zeek-cut is tab delimited due to the default

zeek-cut settings (Fig. 64). To export a file with another delimiter, the -F option
is used.

cat conn.log |zeek-cut -F ‘,’ id.orig_h id.orig_p
id.resp_h id.resp_p >output.csv

Step 2. We can now display the topmost contents of the output.csv file (Fig. 65).

head output.csv

388 Security Aspects

Fig. 64 Redirecting zeek-cut utility’s output to a csv file

Fig. 65 Displaying the contents of the output.csv file

As shown in the image, the output.csv file is in a comma-delimited format, rather
than the previous tab-delimited format.

In conclusion, zeek-cut is a flexible tool that can be called to format Zeek log

files depending on the user’s needs. The zeek-cut utility can be utilized with more
advanced commands to further increase customization.

10.2 Closing the Current Instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active
instance of Zeek. Shutting down a computer while an active instance persists will
cause Zeek to shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal (Fig. 66).
If required, type password as the password. If the Terminal session has not been
terminated or closed, you may not be prompted to enter a password. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the
Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Chapter 6—Lab 16: Parsing, Reading, and Organizing Zeek Log Files 389

Fig. 66 Stopping Zeek

Fig. 67 Lab topology

Table 7 Credentials to
access the Client machine

Device Account Password

Client admin password

Chapter 6—Lab 16: Parsing, Reading, and Organizing Zeek
Log Files

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 16.

This lab explains how to format and organize Zeek’s log files by combining zeek-
cut utility with basic Linux shell commands. Utilities and tools introduced in this lab
provide practical examples for logs customization in a real network environment.

Objectives
By the end of this lab, students should be able to:

1. Use Linux tools and commands for text files processing.
2. Practice Linux shell scripts and the AWK scripting language.
3. Incorporate AWK with zeek-cut to provide formatted logs.

Lab Topology
Figure 67 shows the lab topology. The topology uses 10.0.0.0/8, which is the default
network assigned by Mininet.

Lab Settings
The information (case-sensitive) in the table below provides the credentials to access
the machines used in this lab (Tables 7 and 8).

http://highspeednetworks.net/

390 Security Aspects

Table 8 Shell variables and their corresponding absolute paths

Variable name Absolute path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/admin/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/admin/scripts/policy/protocols

Lab Roadmap
This lab is organized as follows:

1. Section 11: Introduction to shell scripts.
2. Section 12: Advanced zeek-cut log file analysis.
3. Section 13: Incorporating the AWK scripting language for log file analysis.

11 Introduction to Shell Scripts

A shell script is a text file containing commands to be executed by the Unix
command-line interpreter. Shell scripts provide a convenient way to manipulate files
and automate programs’ executions. Selection and repetition are incorporated into
scripts to branch control based on conditioning and looping statements. Running
a shell script can immensely save time and prevent manually entering repetitive
commands in recurrent tasks.

11.1 Ubuntu Linux Text Editors

Linux-based distributions include pre-installed text editors like nano , vi , vim ,

gedit , etc. nano is a keyboard-oriented lightweight text editor with a simple

Command-Line Interface (CLI). Other editors such as vi and vim are highly
customizable and extensible, making them attractive for users that demand a large
amount of control and flexibility over their text editing environment. Alternatively,
the Graphical User Interface (GUI) text editor gedit can be used to visually work
outside of the terminal. More information on these text editors can be found on
the Ubuntu help pages. To access the following links, users must have access to an
external computer connected to the Internet, because the Zeek Lab topology does
not have an active Internet connection.

• Nano – https://help.ubuntu.com/community/Nano

• Vim – https://help.ubuntu.com/community/VimHowto

• Gedit – https://help.ubuntu.com/community/gedit

https://help.ubuntu.com/community/Nano
https://help.ubuntu.com/community/VimHowto
https://help.ubuntu.com/community/gedit

11 Introduction to Shell Scripts 391

Fig. 68 Opening the Client machine

Fig. 69 Opening the
Terminal

For simplicity, in this lab we use nano text editor to view, create, and edit text files.

11.2 Creating a Shell Script

Shell scripts are effective in executing repetitive terminal commands. Unlike
executing commands manually in the terminal, scripts can be saved and executed
whenever needed simple by invoking their names. We will begin this lab by writing
some basic shell scripts.

Step 1. From the top of the screen, click on the Client button as shown below to
enter the Client machine (Fig. 68).

Step 2. The Client machine will now open, and the desktop will be displayed. On
the left side of the screen, click on the Terminal icon as shown below (Fig. 69).

A new instance of Zeek is now active, and we are ready to proceed to the next
section of the lab.

Step 3. In the Linux terminal, navigate to the lab workspace directory by typing
the following command (Fig. 70):

cd Zeek-Labs/

Step 4. Use the nano text editor to create the lab16script.sh file (Fig. 71).

sudo nano lab16script.sh

392 Security Aspects

Fig. 70 Navigating into Zeek-Labs/ directory

Fig. 71 Opening the lab16script.sh file

Fig. 72 Editing the lab16script.sh file

Step 5. Edit the lab16script.sh file contents (Fig. 72).
Once the text editor has opened, we will be able to enter the following commands.

Each new line will denote a new Terminal command being passed. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the

Caps key.

cd $ZEEK_INSTALL/bin
sudo ./zeekctl start
cd ~/Zeek-Labs/TCP-Traffic/
zeek -C -r ../Sample-PCAP/smallFlows.pcap

The file’s content is explained as follows:

• Line 1: changes the current directory to the Zeek’s installation directory.
• Line 2: starts a new instance of Zeek through zeekctl .
• Line 3: changes the current directory to the lab workspace.

11 Introduction to Shell Scripts 393

Fig. 73 Making the script executable

Fig. 74 Executing the script

• Line 4: invokes the zeek command with the -r option to begin processing the
smallFlows.pcap capture file located in the Sample-PCAP directory.

Step 6. When using nano , the following keyboard shortcuts are used to save a file
and then exit the workspace:

• CTRL + o —save the file

• CTRL + x —save and exit the file, return to terminal

After completing Step 6 and adding the correct commands with proper formatting,
we will save and exit the text editor. Press CTRL + o and hit Enter to save the

file’s contents, then CTRL + x to exit nano and return to the terminal.

Step 7. Use the following command to modify the permissions of the script file to
make it executable. When prompted for a password, type password and hit Enter
(Fig. 73).

sudo chmod +x lab16script.sh

Step 8. Execute the lab16script.sh shell script by typing the following command
(Fig. 74):

./lab16script.sh

In case there is an error message, please ignore it. Note that this error does not
affect the lab functionality.

394 Security Aspects

Fig. 75 Navigating into the ~/Zeek-Labs/TCP-Traffic/ directory

Fig. 76 Listing the contents of the ~/Zeek-Labs/TCP-Traffic/ directory

Step 9. Navigate to the lab workspace directory (Fig. 75).

cd ~/Zeek-Labs/TCP-Traffic/

Step 10. Verify that the smallFlows.pcap file was processed successfully (Fig. 76).

ls

The above output shows the list of log files generated by Zeek’s processing,
verifying that the script executed without errors.

12 Advanced Zeek-Cut Log File Analysis

This section introduces more advanced zeek-cut functionality to analyze packet
capture statistics. These statistics can be used for planning and anomaly analysis.
For instance, if a single port has been targeted and received a large number of
network traffic, it may highlight a possible vulnerability. We can use the zeek-cut
utility to determine if a host sends an abnormal number of packets to a specific
destination and further analyze this event.

12 Advanced Zeek-Cut Log File Analysis 395

Fig. 77 Opening the lab16script.sh script

Fig. 78 Editing the lab16script.sh script

12.1 Example 1

Example 1 Show the 10 source IP addresses that generated the most network traffic,
organized in descending order.

To solve this example, we will be looking at the id.orig_h column because it
contains the source IP addresses from the packet capture file.

Step 1. Open the lab16script.sh file with nano text editor (Fig. 77).

sudo nano ~/Zeek-Labs/lab16script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type
the following command (Fig. 78):

cd TCP-Traffic/
zeek-cut id.orig_h <conn.log |sort |uniq -c |sort -rn |
head -n 10

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x
to exit nano and return to the terminal. The above command is explained as
follows:

• zeek-cut id.orig_h <conn.log : selects the id.orig_h column from the conn.log
file.

• |sort : uses the sort command to organize the rows in alphabetical order.

• |uniq -c : uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

396 Security Aspects

Fig. 79 Navigating into ~/Zeek-Labs/ directory

Fig. 80 Executing the script

• |sort -rn : uses the sort command with the -rn option to organize the rows in
reverse numerical order.

• |head –n 10 : uses the head command with the -n option to display the 10
topmost values.

Step 3. Navigate into Zeek-Labs folder by issuing the following command
(Fig. 79):

cd ~/Zeek-Labs

Step 4. Execute the modified shell script (Fig. 80).

./lab16script.sh

The number of duplicates is seen in the left column, while the matching source IP
address is seen in the right column. Only 8 unique source addresses were found, and
each was returned. From this output, we can conclude that the majority of network
traffic was generated by the top 3 source IP addresses.

12 Advanced Zeek-Cut Log File Analysis 397

Fig. 81 Opening the lab16script.sh script

Fig. 82 Editing the lab16script.sh script

12.2 Example 2

Example 2 Show the 10 destination ports that received the most network traffic,
organized in descending order.

To solve this example, we will be looking at the id.resp_p column because it
contains the destination ports from the packet capture file.

Step 1. Open the lab16script.sh file with nano text editor (Fig. 81).

sudo nano lab16script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type
the following command (Fig. 82):

cd TCP-Traffic/
zeek-cut id.resp_p <conn.log |sort |uniq -c |sort -rn |
head -n 10

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x
to exit nano and return to the terminal. The above command is explained as
follows:

• zeek-cut id.resp_p <conn.log : selects the id.resp_p column from the conn.log
file.

• |sort : uses the sort command to organize the rows in alphabetical order.

• |uniq -c : uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

398 Security Aspects

Fig. 83 Executing the lab16script.sh script

• |sort -rn : uses the sort command with the -rn option to organize the rows in
reverse numerical order.

• |head –n 10 : uses the head command with the -n option to display the 10
topmost values.

Step 3. Execute the modified shell script (Fig. 83).

./lab16script.sh

The number of duplicates is seen in the left column, while the matching
destination port is seen in the right column. More than 10 unique destination ports
were found, so only the top 10 were returned. From this output we can conclude that
port 80 received the most traffic.

12.3 Example 3

Example 3 Show the number of connections per protocol service.
To solve this example, we will be looking at the service column because it

contains the destination ports from the packet capture file.

Step 1. Open the lab16script.sh file with nano text editor (Fig. 84).

sudo nano lab16script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type
the following command (Fig. 85):

12 Advanced Zeek-Cut Log File Analysis 399

Fig. 84 Opening the lab16script.sh script

Fig. 85 Editing the lab16script.sh script

cd TCP-Traffic/
zeek-cut service <conn.log |sort |uniq -c |sort -n

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x
to exit nano and return to the terminal. The above command is explained as
follows:

• zeek-cut service <conn.log : selects the service column from the conn.log file.

• |sort : uses the sort command to organize the rows in alphabetical order.

• |uniq -c : uses the uniq command with the -c option to remove duplicates
while returning unique instances and their counts.

• |sort -n : uses the sort command with the -n option to organize the rows in
numerical order.

Step 3. Execute the modified shell script (Fig. 86).

./lab16script.sh

The number of duplicates is seen in the left column, while the matching
destination port is seen in the right column. From this output we can see that
331 packets did not have a marked protocol. This can be caused by a number of
anomalies and is an example of how you can use the zeek-cut utility to return
anomalies that require further identification.

400 Security Aspects

Fig. 86 Executing the lab16script.sh script

Fig. 87 Opening the lab16script.sh script

12.4 Example 4

Example 4 Print the distinct browsers used by the hosts in this packet capture file
to a separate file.

To solve this example, we will be looking at the user_agent column because
it contains the browser and connection-related information from the packet capture
file.

Step 1. Open the lab16script.sh file with nano text editor (Fig. 87).

sudo nano lab16script.sh

Step 2. Modify the script file’s contents (Fig. 88).

cd TCP-Traffic/
zeek-cut user_agent <http.log |sort -u >browser.txt

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x
to exit nano and return to the terminal. The above command is explained as
follows:

• zeek-cut user_agent <http.log selects the user_agent column from the http.log
file.

12 Advanced Zeek-Cut Log File Analysis 401

Fig. 88 Editing the lab16script.sh script

Fig. 89 Executing the lab16script.sh script

Fig. 90 Opening the TCP-Traffic/browser.txt

• |sort -u >browser.txt uses the sort command to sort the lines in the file and the

-u option checks for strict ordering. The output is then saved into the browser.txt
file.

Step 3. Execute the modified shell script (Fig. 89).

./lab16script.sh

Step 4. Use a text editor to view the contents of the browser.txt file (Fig. 90).

nano TCP-Traffic/browser.txt

Step 5. View the distinct browser information (Fig. 91).
Each browser found within the packet capture file is printed with related

information extracted from the traffic by Zeek.

402 Security Aspects

Fig. 91 Displaying the contents of TCP-Traffic/browser.txt

13 Incorporating the AWK Scripting Language for Log File
Analysis

AWK is a terminal scripting language used to parse, filter, and modify text files.
AWK is specifically useful when processing rows and columns found in a Comma
Separated Value (CSV) file. Additionally, AWK’s integrated string manipulation
functions allow for the searching and modifying of specific output.

Like cat and head commands, AWK output can be piped into the zeek-cut
utility, allowing more advanced parsing and formatting options. AWK reads each
column in a file through its position. The first input column is accessed using $1
while the second column is accessed using $2 and so on. AWK also allows creating
simple variables to store and read script values. AWK reads the input data as a loop,
starting from the top of the file and finishing at the end of the file. Each row is
considered an instance within the script.

13.1 Example 5

Example 5 Find the source and destination IP address of all UDP and TCP
connections that lasted more than one minute.

Step 1. Open the lab16script.sh file with nano text editor (Fig. 92).

sudo nano lab16script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type
the following command (Fig. 93):

cd TCP-Traffic/
awk ‘$9 >60’ conn.log |zeek-cut id.orig_h id.resp_h

13 Incorporating the AWK Scripting Language for Log File Analysis 403

Fig. 92 Opening the lab16script.sh script

Fig. 93 Editing the lab16script.sh script

Fig. 94 Executing the lab16script.sh script

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x
to exit nano and return to the terminal. The above command is explained as
follows:

• awk ‘$9 >60’ conn.log selects the rows that have their ninth column value
greater than 60 from the conn.log file. The ninth field represents the connection
duration, and we are checking if the value is greater than 60 s (or 1min).

• |zeek-cut id.orig_h id.resp_h returns the source and destination IP addresses.

Step 3. Execute the modified shell script (Fig. 94).

./lab16script.sh

404 Security Aspects

Fig. 95 Displaying the contents of the Lab-Scripts/lab16_sec3-2.awk

The source IP address is seen in the left column, while the matching destination
IP address is seen in the right column. The pairs will only be displayed if the
connection lasted at least one minute.

13.2 Example 6

Example 6 Show the top source host addresses in terms of total traffic (in bytes)
sent in descending order.

The Lab-Scripts directory contains an AWK script named lab16_sec3-2.awk that
can be viewed with the following command (Fig. 95):

nl Lab-Scripts/lab16_sec3-2.awk

The script is explained as follows. Each number represents the respective line
number:

1. The { character is used to begin nested statements. This instance is the main
functionality of the script.

2. The host variable, which will be used to store the source IP addresses found in
the first column ($1), is checked against the current data entry in the column.
If it is not equal, we will enter the next statement. Because we only want one
instance of each source IP address, but the summed value of bytes sent, we will
use this check to prevent duplicate entries.

3. This line contains a check to make sure the current packet is not empty and
does contain a payload. If the current packet contains a payload of more than 0
bytes, we will proceed to line 4.

13 Incorporating the AWK Scripting Language for Log File Analysis 405

Fig. 96 Using the zeek-cut utility

4. The current source IP address and its byte payload will be printed or returned
to the next statements.

5. Now that we know the current source IP address is not yet stored in the host
variable, we will create a new entry into the variable.

6. The size variable is reset back to zero
7. The } character is used to end nested statements. Therefore, the first case of a

source IP address not being contained in host is complete.
8. If the host variable contains the current data entry, we will proceed to line 9.
9. Here we will sum the unique source IP address’ total bytes by adding the

payload from the second column ($2).
10. The } character is used to end nested statements. This is the ending of the

main functionality of the script.
11. The END statement denotes what the script will do once it has reached the

end of the file, and there are no more input data rows to be read.
12. If a source IP address contains a total payload of more than 0 bytes, we will

proceed to line 13.
13. AWK will return the source IP address found in the first column, as well as the

size variable, containing the total payload in relation to that source IP address.

Step 1. Input the following command (Fig. 96):

zeek-cut id.orig_h orig_bytes <TCP-Traffic/conn.log |sort
|awk -f Lab-Scripts/lab16_sec3-2.awk |sort -k 2 |head -n
10

• zeek-cut id.orig_h orig_bytes <conn.log : selects the id.orig_h and orig_bytes
columns from the conn.log file.

• |sort : uses the sort command to organize the rows in alphabetical order.

• |awk -f lab16_sec3-2.awk : will execute awk with the -f option to denote using
the script found within the lab16_sec3-2.awk file.

• |sort -k 2 : uses the sort command with the -k option to organize the rows
based on the values found in the second column—the total number of bytes.

406 Security Aspects

Fig. 97 Opening the lab16script.sh script

• |head –n 10 : uses the head command with the -n option to display the 10
topmost values.

The left column contains the source IP address, while the right column contains the
number of bytes produced by the paired source IP address.

13.3 Example 7

Example 7 Are there any web servers operating on non-standardized ports?
To solve this example, we will be looking at the service column to view the

packets using the Hyper Text Transport Protocol (HTTP) protocol. The standard
ports for the HTTP protocol are 80 and 8080, so we will be searching for the network
traffic that does not reach those ports.

Step 1. Open the lab16script.sh file with nano text editor (Fig. 97).

sudo nano lab16script.sh

Step 2. Modify the script file’s contents. Delete all the previous content and type
the following command (Fig. 98):

cd TCP-Traffic/
zeek-cut service id.resp_p id.resp_h <conn.log

\
|awk ‘$1 == “http” && ! ($2 == 80 ||$2 == 8080)

{print $3}’ \
|sort -u

Press CTRL + o and hit Enter to save the file’s contents, then CTRL + x
to exit nano and return to the terminal. The above command is explained as
follows:

• zeek-cut service id.resp_p id.resp_h <conn.log : selects the service , id.resp_p

and id.resp_h columns from the conn.log file.

13 Incorporating the AWK Scripting Language for Log File Analysis 407

Fig. 98 Editing the lab16script.sh script

Fig. 99 Executing the lab16script.sh script

• |awk : passes the input into the following AWK command:

◦ $1 == “http” : performs a check on the first column to make sure the active
data entry is running on the http service.

◦ && ! ($2 == 80 ||$2 == 8080) : performs a second check if the first check
is successfully passed. The ports will be checked and if they are not equal to
either of the standard http ports (80 and 8080), they will be passed to the print
statement.

◦ {print $3} : prints the destination IP address of any host that passes both of
the previous checks.

• |sort -u : uses the sort command to sort the lines in the file and the -u option
checks for strict ordering.

Step 3. Execute the modified shell script (Fig. 99).

./lab16script.sh

The destination IP addresses that received traffic on non-standardized ports are
displayed.

http
http
http

408 Security Aspects

Fig. 100 Stopping Zeek

13.4 Closing the Current Instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active
instance of Zeek. Shutting down a computer while an active instance persists will
cause Zeek to shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal (Fig. 100).
If required, type password as the password. If the Terminal session has not been
terminated or closed, you may not be prompted to enter a password. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the

Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Chapter 6—Lab 17: Generating, Capturing, and Analyzing
DoS and DDoS-Centric Network Traffic

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 17.

This lab covers Denial of Service (DoS)-based network traffic. The lab introduces
the generation of DoS-based traffic for testing purposes and uses Zeek to process the
collected traffic.

Objective
By the end of this lab, students should be able to:

1. Generate real-time DoS and DDoS traffic.
2. Experiment with the Low Orbit Ion Canon (LOIC) software.
3. Analyze collected DDoS traffic.

Lab Topology
Figure 101 shows the lab workspace topology. This lab primarily uses the host h1
to generate DoS-based traffic, and the host h2 to perform live network capture.

http://highspeednetworks.net/

14 Introduction to DoS and DDoS Activity 409

Fig. 101 Lab topology

Table 9 Credentials to
access the Client machine

Device Account Password

Client admin password

Table 10 Shell variables and their corresponding absolute paths

Variable name Absolute path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/admin/zeek/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/admin/zeek/scripts/policy/protocols

Lab Settings
The information (case-sensitive) in the table below provides the credentials neces-
sary to access the machines used in this lab (Tables 9 and 10).

Lab Roadmap
This lab is organized as follows:

1. Section 14: Introduction to DoS and DDoS activity.
2. Section 15: Generating real-time DoS traffic.
3. Section 16: Analyzing collected network traffic.

14 Introduction to DoS and DDoS Activity

Denial-of-Service (DoS) is an attack launched by a malicious user to render a
target machine or network resource unavailable to its intended users. Distributed
Denial-of-Service (DDoS) is an attack originated from different sources to flood the
victim’s resources. A DDoS attack is more effective than a normal DoS and is harder
to mitigate since unlike DoS, it is impossible to stop the attack simply by blocking
a single source.

The different types of DoS attacks can be grouped by the traffic they generate, the
bandwidth they consume, the services they disrupt, etc. Traffic-based DoS attacks
aim at flooding the target with a large volume unsolicited traffic. Bandwidth-based
DoS attacks involve transmitting a massive amount of junk data to overload the
victim and render its network equipment congested.

410 Security Aspects

14.1 DoS Attack Characteristics

DoS attacks generally involve flooding a targeted victim with network traffic to
cause a crash and make it unavailable to benign users. In this lab we explore two
common DoS attacks:

• SYN flood : an attacker attempts to overwhelm the server machine by sending
a constant stream of TCP connection requests, forcing the server to allocate
resources for each new connection until all resources are exhausted.

• ICMP flood : the attacker abuses ICMP Ping and floods the victim computer
with Echo Request messages. When a computer receives an ICMP Echo Request
message it responds with an ICMP Echo Reply message.

14.2 DDoS Attack Characteristics

DDoS attacks involve using a large number of devices to flood a victim. With an
increased number of exploited machines, the amount of resources available to the
attacker is far higher. Some relevant DDoS attacks are:

• HTTP flood : simple attack but requires a large number of resources. An
attacker who controls several devices (botnet) can continually flood a server with
HTTP requests until the server becomes unavailable and unable to respond to
additional incoming requests.

• SYN flood : similar to the DoS SYN flood, a botnet initiates several sessions
without completing a TCP handshake, causing the victim to consume its available
resources.

• Amplification attack : attackers abuse UDP-based network protocols to launch
DDoS attacks that exceed hundreds of Gbps in traffic volume. This is achieved
via reflective DDoS attacks where an attacker does not directly send traffic to
the victim but sends spoofed network packets to a large number of systems that
reflect the traffic to the victim. Domain Name System (DNS) and Network Time
Protocol (NTP) are examples of application-layer protocols that act as potential
amplification attack vectors.

DoS and DDoS attacks can cause catastrophic fallout and monetary losses to a
victim.

15 Generating Real-Time DoS Traffic

This lab uses the Low Orbit Ion Canon (LOIC), open-source network stress testing
and DoS attack generator. LOIC can be found in the following Github repository. To
access the following link, users must have access to an external computer connected

15 Generating Real-Time DoS Traffic 411

to the Internet, because the Zeek Lab topology does not have an active Internet
connection.

https://github.com/NewEraCracker/LOIC

Similar to the nmap utility, LOIC can be used to replicate DoS or DDoS

activity for testing purposes. LOIC has a Graphical User Interface (GUI), which
facilitates the attack’s customization.

In this lab, Zeek’s default packet capture processing will generate log files
containing organized network traffic statistics. In this section, zeek2 virtual machine
is used for live capture and zeek1 virtual machine is used to generate DoS-related
traffic.

15.1 Starting a New Instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to
enter the Client machine (Fig. 102).

Step 2. The Client machine will now open, and the desktop will be displayed. On
the left side of the screen, click on the Terminal icon as shown below (Fig. 103).

Step 3. Start Zeek by entering the following command on the terminal (Fig. 104).
This command enters Zeek’s default installation directory and invokes Zeekctl tool

to start a new instance. To type capital letters, it is recommended to hold the Shift

Fig. 102 Opening the Client machine

Fig. 103 Opening the
Terminal

https://github.com/NewEraCracker/LOIC

412 Security Aspects

Fig. 104 Starting Zeek

Fig. 105 Launching
MiniEdit

key while typing rather than using the Caps key. When prompted for a password,

type password and hit Enter .

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next
section of the lab.

If you see error messages during the new Zeek instance initializing process, please
ignore it.

15.2 Launching Mininet

Step 1. From the Client machine’s desktop, on the left side of the screen, click on
the MiniEdit icon as shown below (Fig. 105). When prompted for a password, type
password and hit Enter . The MiniEdit editor will now launch.

15 Generating Real-Time DoS Traffic 413

Fig. 106 MiniEdit’s menu

Fig. 107 MiniEdit’s Open dialog

Step 2. The MiniEdit editor will now launch and allow for the creation of new,
virtualized lab topologies. Load the correct topology by clicking the Open button

within the File tab on the top left of the MiniEdit editor (Fig. 106).

Step 3. Select the Lab17.mn file by double clicking the Lab17.mn icon, or by
clicking the Open button (Fig. 107).

414 Security Aspects

Fig. 108 Running the
emulation

Fig. 109 Opening the host’s terminal

Step 4. To begin running the virtual machines, navigate to the Run button, found

on the bottom left of the Miniedit editor, and select the Run button, as seen in the
image below (Fig. 108).

15.3 Setting Up the Zeek2 Machine for Live Network Capture

Step 1. Launch the host h2 terminal by holding the right mouse button on the
desired machine and clicking the Terminal button (Fig. 109).

Step 2. From the h2 terminal, navigate to the TCP-Traffic directory (Fig. 110).

15 Generating Real-Time DoS Traffic 415

Fig. 110 Navigating into Zeek-Labs/TCP-Traffic/ directory

Fig. 111 Running live packet capture

cd Zeek-Labs/TCP-Traffic/

Step 3. Start live packet capture on interface h2-eth0 and save the output to a file
named tcptraffic.pcap (Fig. 111).

tcpdump -i h2-eth0 -s -w tcptraffic.pcap

The h2 virtual machine is now ready to begin collecting live network traffic.
Next, we will use the h1 machine to generate scan-based network traffic.

15.4 Launching LOIC

Step 1. Minimize the host h2 Terminal and open the host h1 Terminal by following
the previous steps (Fig. 112). If necessary, right-click within the Miniedit editor to
activate your cursor.

Step 2. Execute the loic.sh shell script by entering the following command in the
terminal (Fig. 113):

./loic.sh run

Step 3. View the LOIC GUI. If necessary, scale the GUI to a smaller size to fit on
the display (Fig. 114).

The figure above shows the LOIC interface. Important features highlighted with
colored boxes are explained as follows:

1. Red Box : target IP address. After entering an IP address, clicking the Lock on
button will select the IP as the target destination address.

416 Security Aspects

Fig. 112 Opening the host’s terminal

Fig. 113 Running LOIC tool

Fig. 114 LOIC’s interface

15 Generating Real-Time DoS Traffic 417

2. Green Box : target port. Can be changed depending on which method is used to
launch the DoS attack.

3. Yellow Box : target method. Can be changed to define which protocol is used to
launch the DoS attack.

4. Blue Box : number of threads. Indicates the amount of resources LOIC will
allocate on the host machine.

5. Purple Box : number of sockets per thread. Increasing the number of sockets
per thread will exponentially increase the speed of the DoS attack; however, it
also requires more resources on the host machine.

6. Brown Box : packet payload. Used to define what each packet will contain as
payload.

7. Orange Box : start button. After customizing a desired attack, this button is used
to launch the attack.

15.5 Using the Zeek1 Virtual Machine to Launch a TCP-Based
DoS Attack

Step 1. Customize the DoS attack by entering the following values in their
respective input boxes (Fig. 115):

IP: 10.0.0.2
Port: 80
Method: TCP
Threads: 20
Sockets: 25
Payload: TCP TEST

Fig. 115 Customizing the DoS attack on LOIC

418 Security Aspects

Fig. 116 Maximizing host h2’s terminal

Fig. 117 Stopping the live traffic capture

Step 2. Click the Lock on button to save the current configurations. Click the Start
(IMMA CHARGIN MAH LAZER) button to begin the DoS attack. Wait roughly 10
seconds and click the Stop (Stop flooding) button to stop the DoS attack.

Step 3. Minimize the host h1 Terminal and open the host h2 Terminal using the
navigation bar at the bottom of the screen (Fig. 116). If necessary, right-click within
the Miniedit editor to activate your cursor.

Step 4. Use the Ctrl+c key combination to stop live traffic capture. Statistics of
the capture session will be displayed with network packets being stored in the new
tcptraffic.pcap file (Fig. 117).

Within the 10 s timeframe, 1,395,162 packets were generated and collected. This
number of packets verifies that DoS attacks generate an immense amount of network
traffic and can be compared against the much smaller number of packets generated
during the previous scan events.

15.6 Using the Zeek1 Virtual Machine to Launch a
UDP-Based DoS Attack

Step 1. Using the zeek2 virtual machine, navigate to the lab workspace directory
and enter the UDP-Traffic directory (Fig. 118).

cd ~/Zeek-Labs/UDP-Traffic/

15 Generating Real-Time DoS Traffic 419

Fig. 118 Navigating into ~/Zeek-Labs/UDP-Traffic/ directory

Fig. 119 Running live packet capture

Fig. 120 Maximizing LOIC’s interface

Step 2. Start live packet capture on interface h2-eth0 and save the output to a file
named udptraffic.pcap (Fig. 119).

tcpdump -i h2-eth0 -s -w udptraffic.pcap

Step 3. Minimize the h2 Terminal and open the LOIC GUI using the navigation
bar at the bottom of the screen. If necessary, right-click within the Miniedit editor
to activate your cursor (Fig. 120).

Step 4. Customize the DoS attack by entering the following values in their
respective input boxes (Fig. 121).

IP: 10.0.0.2
Port: 20
Method: UDP
Threads: 20
Sockets: 25
Payload: UDP TEST (Must be changed before updating Method
feature)

Step 5. Click the Lock on button to save the current configurations. Click the
Start (IMMA CHARGIN MAH LAZER) button to begin the DoS attack. Wait for
10 seconds and click the Stop (Stop flooding) button to stop the DoS attack.

Step 6. Minimize the host h1 Terminal and open the host h2 Terminal using the
navigation bar at the bottom of the screen (Fig. 122). If necessary, right-click within
the Miniedit editor to activate your cursor.

420 Security Aspects

Fig. 121 Customizing the DoS attack on LOIC

Fig. 122 Maximizing host h2’s terminal

Fig. 123 Stopping the live traffic capture

Step 7. Use the Ctrl+c key combination to stop live traffic capture. Statistics
of the capture session will be displayed. 154,032 packets were recorded by the
interface, which were then captured and stored in the new udptraffic.pcap file
(Fig. 123).

While the UDP-based DoS attack did not generate as much network traffic as
the TCP-based DoS attack, heavy amounts of traffic were generated by a single
machine. Scaled to a large-scale attack, DoS attacks are extremely debilitating.

16 Analyzing Collected Network Traffic 421

Fig. 124 Stopping the
emulation

Step 8. Stop the current Mininet session by clicking the Stop button on the bottom
left of the MiniEdit editor (Fig. 124) and close the MiniEdit editor by clicking the
x on the top right of the editor.
We will now return to the Client machine to process and analyze the newly

generated network traffic.

16 Analyzing Collected Network Traffic

After successfully conducting both a TCP-based and UDP-based DoS attack, we
can begin to analyze the collected network traffic using Zeek and the zeek-cut
utility commands to display the capture traffic.

16.1 Analyzing TCP-Based Traffic

Step 1. On the left side of the Client desktop, click on the Terminal icon as shown
below (Fig. 125).

Step 2. Navigate to the TCP-Traffic directory to find the tcptraffic.pcap file
(Fig. 126).

cd Zeek-Labs/TCP-Traffic/

Step 3. View the file contents of the TCP-Traffic directory to ensure that the
tcptraffic.pcap file was successfully saved (Fig. 127).

ls

422 Security Aspects

Fig. 125 Starting a terminal

Fig. 126 Navigating into Zeek-Labs/TCP-Traffic/ ’s directory

Fig. 127 Listing the contents of the current directory

Fig. 128 Processing the packet capture file using Zeek

Step 4. Use the following Zeek command to process the packet capture file
(Fig. 128):

zeek -C -r tcptraffic.pcap

16 Analyzing Collected Network Traffic 423

Fig. 129 Using the zeek-cut tool

Fig. 130 Using the zeek-cut tool

16.1.1 TCP Example Query 1

Example 8 Show the source IP addresses that generated the most network traffic,
organized in descending order (Fig. 129).

zeek-cut id.resp_h <conn.log |sort |uniq -c |sort -rn
|head -n 10

The host h2 received 657,579 TCP packets. This command, or a similar one, can
be useful in real-world environments to detect vulnerable hosts within a network—
allowing for the process of securing and mitigating possible threats.

16.1.2 TCP Example Query 2

Example 9 Show the destination ports that received the most traffic, organized in
descending order (Fig. 130).

zeek-cut id.resp_p <conn.log |sort |uniq -c |sort -rn
|head -n 10

We can see that 697,579 packets were received by the host h2 on port 80,
which is the port we specified for the host h1 to target. Additional ports may be
discovered during processing, slightly variable due to LOIC attempting to establish
connections; however, it is clear the most targeted port is the one we specified in the
DoS attack.

424 Security Aspects

Fig. 131 Navigating into ~/Zeek-Labs/UDP-Traffic/ ’s directory

Fig. 132 Listing the contents of the current directory

Fig. 133 Processing the packet capture file using Zeek

16.2 Analyzing UDP-Based Traffic

Step 1. Navigate to the UDP-Traffic directory to find the udptraffic.pcap file
(Fig. 131).

cd ~/Zeek-Labs/UDP-Traffic/

Step 2. View the file contents of the TCP-Traffic directory to ensure that the
udptraffic.pcap file was successfully saved (Fig. 132).

ls

Step 3. Use the following Zeek command to process the packet capture file
(Fig. 133):

zeek -C -r udptraffic.pcap

16 Analyzing Collected Network Traffic 425

Fig. 134 Using the zeek-cut tool

Step 4. Show the list of ports that received network traffic (Fig. 134).

cat conn.log |zeek-cut id.resp_p

We can see that despite the large number of packets collected, very few were
recorded by Zeek’s event-based engine. We specified port 20 as the targeted port
during our DoS attack; however, the number of identified packets is significantly
lower than expected.

The primary cause of the decreased packet count is due to the number of UDP
packets being dropped. Primarily due to firewalls, UDP packets may be traced on
the interface, but may not reach the target destination. Furthermore, the default Zeek
customization is primarily focused on TCP traffic, and is not designed to handle
UDP traffic in such an in-depth manner, requiring additional scripts and policies
that will be introduced in later labs.

16.3 Closing the Current Instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active
instance of Zeek. Shutting down a computer while an active instance persists will
cause Zeek to shut down improperly and may cause errors in future instances.

426 Security Aspects

Fig. 135 Stopping Zeek

Step 1. Stop Zeek by entering the following command on the terminal (Fig. 135).
If required, type password as the password. If the Terminal session has not been
terminated or closed, you may not be prompted to enter a password. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the

Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

Chapter 6—Lab 18: Zeek Scripting

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 18.

This lab covers Zeek’s scripting language. It introduces the major keywords and
components required in a Zeek script. The lab then uses these scripts to analyze
processed log files.

Objectives
By the end of this lab, students should be able to:

1. Develop scripts using Zeek’s scripting language.
2. Analyze processed log files using Zeek scripts.
3. Modify log streams for creating additional events and notices.

Lab Topology
Figure 136 shows the lab topology. The topology uses 10.0.0.0/8, which is the
default network assigned by Mininet. The h1 and h2 virtual machines will be used
to generate and collect network traffic.

Lab Settings
The information (case-sensitive) in the table below provides the credentials neces-
sary to access the machines used in this lab (Tables 11 and 12).

http://highspeednetworks.net/

17 Introduction to Scripting with Zeek 427

Fig. 136 Lab topology

Table 11 Credentials to
access the Client machine

Device Account Password

Client admin password

Table 12 Shell variables and their corresponding absolute paths

Variable name Absolute path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/admin/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/admin/scripts/policy/protocols

Lab Roadmap
This lab is organized as follows:

1. Section 17: Introduction to scripting with Zeek.
2. Section 18: Log file analysis using Zeek scripts.
3. Section 19: Modifying Zeek log streams.

17 Introduction to Scripting with Zeek

Zeek includes its own event-driven scripting language, which provides the primary
means for an organization to extend and customize Zeek’s functionality. By
modifying Zeek’s log streams, a more in-depth analysis can be performed on
network events.

Since Zeek’s scripting language is event-driven, we define which events we need
Zeek to respond to when encountered during network traffic analysis.

17.1 Zeek Script Events

The script below shows events that will be explored during this lab. When
developing a Zeek script, the script’s functionalities are wrapped within respective
events.

• zeek_init event: activated when Zeek is first initialized.

• zeek_done event: activated before Zeek is terminated.

428 Security Aspects

• tcp_packet event: activated when a packet containing a TCP header is pro-
cessed.

• udp_request event: activated when a packet containing a UDP request header
is processed.

• udp_reply event: activated when a packet containing a UDP reply header is
processed.

Additional events and their required parameters are outlined and explained in Zeek’s
official documentation. To access the following link, users must have access to an
external computer connected to the Internet, because the Zeek Lab topology does
not have an active Internet connection.

https://docs.zeek.org/en/current/examples/scripting/

17.2 Zeek Module Workspace

The script below uses the module keyword that assigns the script to a namespace.
Codes from other scripts can be accessed by including a matching module. The
export keyword is used to export the code entered in its block with the module
workspace.

• module ZeekScript : changes the module workspace to ZeekScript.

• export block : code entered here will be exported with the module workspace.

Exporting code with a module workspace allows more advanced scripts to be built
on top of other scripts.

https://docs.zeek.org/en/current/examples/scripting/

18 Log File Analysis Using Zeek Scripts 429

17.3 Zeek Log Streams

The script below shows the log stream functionality. When developing a Zeek script,
all processed outputs will be sent to a specific log stream. These log streams will
contain the format of the corresponding log file output. We can create new streams,
modify original streams or append additional parameters to existing streams.

• connection_established event: activated when a host makes a connection to a
receiver.

• Log::create_stream : creates a new log stream, with a name, format structure,
and path.

• Log::write : writes included data to the specified log stream.

Additional log stream commands are explained in detail in Zeek’s official documen-
tation.

18 Log File Analysis Using Zeek Scripts

With Zeek’s event-driven scripting language, we can create specific event-based
filters to be applied during packet capture analysis. This section shows example
scripts for network analysis.

18.1 Starting a New Instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to
enter the Client machine (Fig. 137).

Step 2. The Client machine will now open, and the desktop will be displayed. On
the left side of the screen, click on the Terminal icon as shown below (Fig. 138).

Step 3. Start Zeek by entering the following command on the terminal (Fig. 139).
This command enters Zeek’s default installation directory and invokes Zeekctl tool
to start a new instance. To type capital letters, it is recommended to hold the Shift

430 Security Aspects

Fig. 137 Opening the Client machine

Fig. 138 Opening the
Terminal

Fig. 139 Starting Zeek

key while typing rather than using the Caps key. When prompted for a password,
type password and hit Enter.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next
section of the lab.

18.2 Executing a UDP Zeek Script

This lab series includes a Lab-Scripts directory, containing all of the relevant Zeek
scripts that will be used during the labs.

Step 1. Navigate to the Lab-Scripts directory (Fig. 140).

cd ~/Zeek-Labs/Lab-Scripts/

Within this directory, all lab scripts can be accessed, viewed, and modified.

18 Log File Analysis Using Zeek Scripts 431

Fig. 140 Navigating into Zeek-Labs/TCP-Traffic/ directory

Fig. 141 Displaying the contents of the script lab18_sec2-2.zeek

Step 2. Display the content of the lab18_sec2-2.zeek Zeek script using nl

command. nl shows the line numbers in the file (Fig. 141).

nl lab18_sec2-2.zeek

The script is explained as follows. Each number represents the respective line
number:

1. Event udp_request is activated when a packet containing a UDP Request header
is processed. The related packet header information is stored in the connection
data structure passed to the function through the u variable.

2. Prints the specified string. %s is a format specifier for strings with fmt . It
indicates the position of the corresponding variable’s information in the string.
uidresp_h retrieves the destination IP address from the UDP packet.

3. End of the udp_request event.

4. Event udp_reply activated when a packet containing a UDP Reply header is
processed. The related packet header information is stored in the connection data
structure passed to the function through the u variable.

5. Prints the specified string. uidresp_h retrieves the destination IP address from
the UDP packet.

6. End of the udp_reply event.

432 Security Aspects

Fig. 142 Navigating into Zeek-Labs/UDP-Traffic/ directory

Fig. 143 Processing a packet capture file using Zeek

Step 3. Navigate to the UDP-Traffic workspace directory (Fig. 142).

cd ~/Zeek-Labs/UDP-Traffic/

Step 4. Process a packet capture file using the Zeek script. It is possible to use the
tab key to autocomplete the longer paths (Fig. 143).

zeek -C -r ../Sample-PCAP/smallFlows.pcap ../Lab-
Scripts/lab18_sec2-2.zeek

The packet capture file is processed into output log files. Since we did not
create a new log stream, the script’s output is displayed on the standard output
(the screen). When udp_request or udp_reply events are triggered, the resulting
packet information is displayed.

18.3 Executing a TCP Zeek Script

Step 1. Display the content of the lab18_sec2-3.zeek Zeek script using nl

command (Fig. 144). nl shows the line numbers in the file. It is possible to use

the tab key to autocomplete the longer paths.

18 Log File Analysis Using Zeek Scripts 433

Fig. 144 Displaying the contents of the script lab18_sec2-3.zeek

Fig. 145 Processing a packet capture file using Zeek

nl ../Lab-Scripts/lab18_sec2-3.zeek

The script is explained as follows. Each number represents the respective line
number:

1. Event tcp_packet is activated when a packet containing a TCP header is
processed. The related packet header information is stored in the connection data
structure passed to the function through the u variable. Additional TCP-related
information is passed in a similar manner.

2. Prints the specified string. %s is a format specifier for strings with fmt . It
indicates the position of the corresponding variable’s information in the string.
uidresp_h retrieves the destination IP address from the TCP packet.

3. End of the tcp_packet event.

Step 2. Process a packet capture file using the Zeek script (Fig. 145). It is possible
to use the tab key to autocomplete the longer paths.

zeek -C -r ../Sample-PCAP/smallFlows.pcap ../Lab-
Scripts/lab18_sec2-3.zeek

The following output is produced (Fig. 146):
When the tcp_packet event is triggered, the resulting packet information is

displayed. Highlighted is an example of Port 8443 and Port 80 traffic.
These examples highlight Zeek’s capabilities of tracking specific traffic. For

instance, a script can be designed to collect all Port 80 traffic daily and to export
it to a log file. In the following section we introduce log streams.

434 Security Aspects

Fig. 146 Output of Zeek’s processing

Fig. 147 Displaying the contents of the script ../Lab-Scripts/lab_clean.sh

19 Modifying Zeek Log Streams

Zeek log streams determine where an event’s output will be returned, as well as
how it is formatted. It is possible to append new streams, modify default streams, or
remove streams.

Before continuing, we must clear the lab workspace directory.

Step 1. Display the contents of the lab_clean.sh shell script using nl command
(Fig. 147).

nl ../Lab-Scripts/lab_clean.sh

The shell script removes a list of files expected to be generated by Zeek’s
processing using default log streams. Executing this shell script will clear the
directory of log files generated previously. Output messages from running this script
are not displayed in the Terminal, instead the code >/dev/null 2>&1 will set errors
and notices to be sent to a null folder, effectively eliminating them.

19 Modifying Zeek Log Streams 435

Fig. 148 Executing the script ../Lab-Scripts/lab_clean.sh

Fig. 149 Displaying the contents of the script ../Lab-Scripts/ lab18_ sec3-1.zeek

Step 2. Execute the lab_clean.sh shell script (Fig. 148). It is possible to use the
tab key to autocomplete the longer paths. If required, type password as the
password.

./../Lab-Scripts/lab_clean.sh

With the workspace directory cleared, we can move to the next section.

19.1 Renaming the conn.log Stream

In this example, we will rename the conn.log file to beUpdatedConn.log. Renaming
log streams can help with files organization, especially if a log file has been modified
from its original functionality.

Step 1. Display the contents of the lab18_sec3-1.zeek Zeek script using the nl

command (Fig. 149). It is possible to use the tab key to autocomplete the longer
paths.

nl ../Lab-Scripts/lab18_sec3-1.zeek

The script is explained as follows. Each number represents the respective line
number:

436 Security Aspects

Fig. 150 Processing a packet capture file using Zeek

Fig. 151 Listing the contents of the current directory

1. Event zeek_init is activated when Zeek is first initialized.

3. Creates a local variable update initialized to the default Conn::LOG filter.

4. Sets the update variable’s path to UpdatedConn.log.
5. Appends the new filter to the active log streams.
6. End of the zeek_init event.

Step 2. Process a packet capture file using the Zeek script (Fig. 150). It is possible
to use the tab key to autocomplete the longer paths.

zeek -C -r ../Sample-PCAP/smallFlows.pcap ../Lab-
Scripts/lab18_sec3-1.zeek

Step 3. List the generated log files in the current directory (Fig. 151).

ls

Note theUpdatedConn.log, highlighted by the gray box. Since we did not change
any formatting, it is an exact replica of the original conn.log file.

19.2 Updating the conn.log Stream

In this example, we modify the conn.log file to generate an additional conn- http.log
file. This modification will split the conn.log contents between two log files, which
is useful when organizing specific events—such as splitting UDP traffic from TCP
traffic, or reply messages from requests.

http.log

19 Modifying Zeek Log Streams 437

Fig. 152 Executing the script ../Lab-Scripts/lab_clean.sh

Fig. 153 Displaying the contents of the script ../Lab-Scripts/ lab18_ sec3-2.zeek

Step 1. Execute the included lab_clean.sh shell script (Fig. 152). If required, type
password as the password. It is possible to use the tab key to autocomplete the
longer paths.

./../Lab-Scripts/lab_clean.sh

Step 2. Display the contents of lab18_sec3-2.zeek Zeek script using the nl
command (Fig. 153).

nl ../Lab-Scripts/lab18_sec3-2.zeek

The script is explained as follows. Each number represents the respective line
number:

1. Boolean function that has the parameter rec , an instance of Conn::Info.
3. Returns True if the service stored in rec is the HTTP protocol.
4. End of the function.
5. Event zeek_init is activated when Zeek is first initialized.
6. Creates a local filter with http related naming and pathing.
7. Appends the new filter to the active log streams.
8. End of the zeek_init event.

438 Security Aspects

Fig. 154 Processing a packet capture file using Zeek

Fig. 155 Listing the contents of the current directory

Step 3. Process a packet capture file using the Zeek script (Fig. 154). It is possible
to use the tab key to autocomplete the longer paths.

zeek -C -r ../Sample-PCAP/smallFlows.pcap ../Lab-
Scripts/lab18_sec3-2.zeek

Step 4. List the generated log files in the current directory (Fig. 155).

ls

Note the conn-http.log file in the first column. This file will have the same
formatting as the conn.log file; however, it will only contain HTTP traffic. These
files are highlighted by the orange box in the proceeding image.

19.3 Closing the Current Instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active
instance of Zeek. Shutting down a computer while an active instance persists will
cause Zeek to shut down improperly and may cause errors in future instances.

Step 1. Stop Zeek by entering the following command on the terminal (Fig. 156).
If required, type password as the password. If the Terminal session has not been
terminated or closed, you may not be prompted to enter a password. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the

Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

http.log

Chapter 6—Lab 19: Zeek Signatures 439

Fig. 156 Stopping Zeek

Fig. 157 Lab topology

Chapter 6—Lab 19: Zeek Signatures

Overview
To conduct the experiment described in this section, please login into the Academic
Cloud at http://highspeednetworks.net/ and reserve a pod for Lab 19.

This lab covers Zeek’s signature framework language. It introduces what network
traffic signatures are and how they are matched to identify specific network events.
This lab then reviews premade signature files and provides example usage for
analysis.

Objectives
By the end of this lab, students should be able to:

1. Develop signatures using Zeek’s signature framework.
2. Analyze processed log files using Zeek signatures.
3. Modify log streams for creating additional events and notices based on signa-

tures.

Lab Topology
Figure 157 shows the lab topology. The topology uses 10.0.0.0/8, which is the
default network assigned by Mininet. The hosts h1 and h2 will be used to generate
and collect network traffic.

Lab Settings
The information (case-sensitive) in the table below provides the credentials neces-
sary to access the machines used in this lab (Tables 13 and 14).

Lab Roadmap
This lab is organized as follows:

http://highspeednetworks.net/

440 Security Aspects

Table 13 Credentials to
access the Client machine

Device Account Password

Client admin password

Table 14 Shell variables and their corresponding absolute paths

Variable name Absolute path

$ZEEK_INSTALL /usr/local/zeek

$ZEEK_TESTING_TRACES /home/zeek/admin/testing/btest/Traces

$ZEEK_PROTOCOLS_SCRIPT /home/zeek/admin/scripts/policy/protocols

1. Section 20: Introduction to Zeek signatures.
2. Section 21: Log file analysis using Zeek signatures.
3. Section 22: Modifying Zeek signatures for advanced pattern matching.

20 Introduction to Zeek Signatures

Following the introduction of developing and implementing basic Zeek scripts, we
can now begin generating Zeek signatures. Introduced in the beginning of this lab
series, the Zeek event-based engine is the primary architecture for running Zeek as
an efficient intrusion detection system. The Zeek event-based engine predominantly
utilizes the extensive scripting language to develop policies in order to define the
steps and notifications necessary to handle anomalies and exceptions.

However, oftentimes it is simpler to create a predetermined string, known as
a signature, and parse packet capture files for the specific signature. Because
signatures are used for low-level pattern matching, the Zeek signature framework
does not provide the same in-depth functionality as the Zeek scripting language
for its event-based engine. Zeek signatures are used to quickly aggregate related
network packets through signature matching before analysts can perform further,
in-depth analysis on such traffic.

It is important to understand and be familiar with signatures due to their
widespread usage across many related Intrusion Detection Systems and application-
level firewalls. Separate from Zeek, many alternative IDS, such as the popular Snort,
rely on signature-based pattern matching for anomaly and malicious event detection.
Therefore, in operational cybersecurity environments that analyze network traffic to
mitigate and prevent malicious events, understanding Zeek’s signature framework
adds an additional tool for developing a comprehensive IDS.

This lab will begin by introducing Zeek signatures, detailing their unique file
type, how to load them into the Zeek event-based engine, and include a number of
examples of leveraging signature matching for log file analysis.

20 Introduction to Zeek Signatures 441

20.1 Zeek Signature Format

The signature below depicts a basic network traffic signature. Depending on
their usage, signatures can either include stricter requirements, or be more lax to
encompass a larger portion of the processed data.

1. This line defines a new signature object, with the name HTTP-sig.
2. Defines the desired match’s transport protocol to be TCP.
3. Defines the desired match’s destination port to be 80.
4. Defines the desired match’s payload to contain the regular expression equivalent

to “POST.”
5. Defines an event if the match is found. Currently, the event will post a “HTTP

Packet Found!” message; however, these events can be developed with a more
complex functionality if the need arises.

This signature can be loaded into the Zeek signature framework during network
traffic analysis, in which Zeek will attempt to match packets with the signature’s
details. While each individual packet can only be matched one time, multiple
signatures can be applied to any arbitrary data.

Additional signatures and their included variables are outlined and explained in
Zeek’s official documentation. To access the following link, users must have access

442 Security Aspects

to an external computer connected to the Internet, because the Zeek Lab topology
does not have an active Internet connection.
https://docs.zeek.org/en/current/frameworks/signatures.html

20.2 Creating and Using Zeek Signatures

Similar to Zeek’s policy scripting framework, Zeek signatures are saved in separate
files denoted by the .sig file extension. There are three ways to initialize Zeek for
network traffic analysis while leveraging the Zeek signature framework:

1. When initializing Zeek from the terminal, include the additional –s option:

zeek -r <pcap_file_location>-s <signature_file_location>

• zeek : command to invoke Zeek.
• -r : option signifies to Zeek that it will be reading from an offline file.

• <pcap_file_location> : indicates the pcap file location.

• -s : option signifies to Zeek that the next file contains signatures.

• <script_location> : indicates the script location.

2. When creating a Zeek policy script, include the @load-sigs directive:

3. When creating a Zeek policy script, extend the Zeek global signature_files
variable by appending the + = operator followed by the signature file:

20.3 Zeek’s Default Signature Framework

This section introduces the default Zeek signature file that is compiled and included
after Zeek has been installed.

While this default Zeek script includes scan-based detection, it will not correctly
identify every unique anomaly that may be encountered. However, it does provide a
comprehensive starter code that can be reviewed and customized to understand the
Zeek signature framework.

The default Zeek signature file is named main.zeek. More information on this
script can be found in Zeek’s documentation pages. To access the following link,
users must have access to an external computer connected to the Internet, because
the Zeek Lab topology does not have an active Internet connection.

https://docs.zeek.org/en/current/scripts/base/frameworks/si
gnatures/main.zeek.html

https://docs.zeek.org/en/current/frameworks/signatures.html
https://docs.zeek.org/en/current/scripts/base/frameworks/si

20 Introduction to Zeek Signatures 443

The file has been copied into the Zeek lab workspace directory and renamed to
ZeekSignatureFramework.zeek for ease of access and name-reference clarity.

The figure above shows the options for signature match events within the
ZeekSignatureFramework.zeek file. The options are explained as follows. Each
number represents the respective line number:

4. SIG_IGNORE : if a signature is matched, do not write to the logging stream.

8. SIG_QUIET : if a signature is matched, process the included events but do not
write to the logging stream.

10. SIG_LOG : if a signature is matched, generate a notice.

13. SIG_FILE_BUT_NO_SCAN : if a signature is matched and does not meet
scan thresholds, write to the logging stream.

15. SIG_ALARM : if a signature is matched, generate a notice and set an alarm.

17. SIG_ALARM_PER_ORIG : if a signature is matched, generate a notice and
set an alarm once per host that triggered the match.

19. SIG_ALARM_ONCE : if a signature is matched, generate a notice and set an
alarm only one time, no matter the number of matches.

444 Security Aspects

Fig. 158 Opening the Client machine

23. SIG_COUNT_PER_RESP : if a signature is matched, create a running count
per responder host to compare against developed thresholds to identify and
exclude scan traffic.

23. SIG_SUMMARY : generate a summary of all matched signatures based on
the unique hosts that triggered a signature match.

Additional options and signature-specific events can be created using the Zeek
scripting framework. Furthermore, Lab 8 of this series will enumerate upon the
aforementioned scan thresholds and how Zeek determines if a host is probing a
network.

The figure above shows the variables that store signature-specific packet infor-
mation accessed in the ZeekSignatureFramework.zeek file. These variables can
be accessed to extract the stored information for notifications and warnings.
Furthermore, each variable can be printed to the logging stream, following the
Zeek log file format reviewed in previous labs. Each variable is explained by its
proceeding comments, denoted by the # character.

21 Log File Analysis Using Zeek Signatures

With Zeek’s signature framework, we can create specific pattern-based signature
filters to be applied during packet capture analysis. This section shows example
signatures and their usage for network analysis.

21.1 Starting a New Instance of Zeek

Step 1. From the top of the screen, click on the Client button as shown below to
enter the Client machine (Fig. 158).

Step 2. The Client machine will now open, and the desktop will be displayed
(Fig. 159). On the left side of the screen, click on the Terminal icon as shown below.

Step 3. Start Zeek by entering the following command on the terminal (Fig. 160).
This command enters Zeek’s default installation directory and invokes Zeekctl tool

to start a new instance. To type capital letters, it is recommended to hold the Shift

21 Log File Analysis Using Zeek Signatures 445

Fig. 159 Opening the
Terminal

Fig. 160 Starting Zeek

Fig. 161 Navigating into Zeek-Labs/Lab- Scripts/ directory

key while typing rather than using the Caps key. When prompted for a password,

type password and hit Enter .

cd $ZEEK_INSTALL/bin && sudo ./zeekctl start

A new instance of Zeek is now active, and we are ready to proceed to the next
section of the lab.

21.2 Viewing a Premade Zeek Signature File

Step 1. Navigate to the Lab-Scripts directory (Fig. 161).

cd ~/Zeek-Labs/Lab-Scripts/

446 Security Aspects

Fig. 162 Displaying the contents of the script lab19_sec2-2.zeek

Step 2. Display the contents of the lab19_sec2-2.sig file using nl (Fig. 162).

nl lab19_sec2-2.sig

This signature file contains two signatures to be matched during network traffic
analysis and is explained as follows. Each number represents the respective line
number:

1. This line defines a new signature object, with the name HTTP-POST-sig.
2. Defines the desired match’s transport protocol to be TCP.
3. Defines the desired match’s destination port to be 80.
4. Defines the desired match’s payload to contain the regular expression equivalent

to “POST.”
5. Defines an event if the match is found. Currently, the event will post a “Found

HTTP Post” message.
7. This line defines a new signature object, with the name HTTP-GET-sig.
8. Defines the desired match’s transport protocol to be TCP.
9. Defines the desired match’s destination port to be 80.

10. Defines the desired match’s payload to contain the regular expression equivalent
to “GET.”

11. Defines an event if the match is found. Currently, the event will post a “Found
HTTP Request” message.

21.3 Executing the Premade Zeek Signature File

Step 1. Navigate to the TCP-Traffic directory (Fig. 163).

21 Log File Analysis Using Zeek Signatures 447

Fig. 163 Navigating into ../TCP-Traffic/ directory

Fig. 164 Processing a packet capture file using Zeek

Fig. 165 Listing the contents of the current directory

cd ../TCP-Traffic/

Step 2. Process the smallFlows.pcap packet capture file using the signature file
lab19_sec2-2.sig (Fig. 164). It is possible to use the tab key to autocomplete the
longer paths.

zeek -r ../Sample-PCAP/smallFlows.pcap -s ../Lab-
Scripts/lab19_sec2-2.sig

Step 3. List the generated log files in the current directory (Fig. 165).

ls

A new log file that has not been previously introduced is now displayed: signa-
tures.log. This log file will contain all signature matches and their corresponding
events and notices.

Step 4. View the contents of the signatures.log file using the featherpad text editor
(Figs. 166 and 167).

448 Security Aspects

Fig. 166 Opening the signatures.log file

Fig. 167 The signatures.log file

featherpad signatures.log

The file is explained as follows:

• The red box indicates the name of the signature that was matched.
• The orange box indicates the event or message that was included when defining

the signature.
• The blue box indicates the packet payload that was matched against the input

signatures.

Step 5. Click the x mark to close the featherpad window. Clear the contents of
the TCP-Traffic directory (Fig. 168).

./../Lab-Scripts/lab_clean.sh

22 Executing Zeek Signature Matching for Network Traffic Analysis 449

Fig. 168 Executing the script ./../Lab-Scripts/lab_clean.sh

Fig. 169 Displaying the contents of the script ../Lab-Scripts/ lab19_ sec3-1.zeek

22 Executing Zeek Signature Matching for Network Traffic
Analysis

This section modifies the existing signature file to generate additional signature
events and notices. We will be modifying the previous signatures from TCP-based
HTTP messages to UDP-based SNMP and DNS messages.

22.1 Modifying the Premade Zeek Signature File

Step 1. View the contents of the lab19_sec3-1.sig file using nl (Fig. 169).

nl ../Lab-Scripts/lab19_sec3-1.sig

Step 2. Open the lab19_sec3-1.sig file with the featherpad text editor (Fig. 170).

featherpad ../Lab-Scripts/lab19_sec3-1.sig

450 Security Aspects

Fig. 170 Opening the ../Lab-Scripts/ lab19_sec3-1.sig file

Fig. 171 The ../Lab-Scripts/ lab19_sec3-1.sig file

Step 3. Update the lab19_sec3-1.sig file to include the following signatures. Then,
close out the featherpad once finish editing (Fig. 171).

signature SNMP-REQUEST-sig{
ip-proto == udp
dst-port == 161
event “Found SNMP Request”

}
signature SNMP-RESPONSE-sig{

ip-proto == udp
dst-port == 52400
event “Found SNMP Response”

}
signature DNS-REQUEST-sig{

ip-proto == udp
dst-port == 53
event “Found DNS Request”

}

22 Executing Zeek Signature Matching for Network Traffic Analysis 451

Fig. 172 Processing a packet capture file using Zeek

Fig. 173 Listing the contents of the current directory

22.2 Executing the Updated Zeek Signature File

Step 1. Process the smallFlows.pcap packet capture file using the signature file
lab19_sec3-1.sig (Fig. 172). It is possible to use the tab key to autocomplete the
longer paths.

zeek -r ../Sample-PCAP/smallFlows.pcap -s ../Lab-
Scripts/lab19_sec3-1.sig

Step 2. List the generated log files in the current directory (Fig. 173).

ls

The signatures.log file has been recreated and will contain the newly updated
signature matches.

Step 3. View the contents of the signatures.log file using the featherpad text editor
(Figs. 174 and 175). Then, close out the featherpad once finish examining the new
file content.

featherpad signatures.log

The file is explained as follows:

• The red box indicates the DNS-REQUEST-sig signature match as well as the
triggered IP address and event message.

• The orange box indicates the SNMP-REQUEST-sig signature match as well as
the triggered IP address and event message.

452 Security Aspects

Fig. 174 Opening the signatures.log file

Fig. 175 The signatures.log file

Fig. 176 Stopping Zeek

• The blue box indicates the SNMP-RESPONSE-sig signature match as well as
the triggered IP address and event message.

22.3 Closing the Current Instance of Zeek

After you have finished the lab, it is necessary to terminate the currently active
instance of Zeek. Shutting down a computer while an active instance persists will
cause Zeek to shut down improperly and may cause errors in future instances.

References 453

Step 1. Stop Zeek by entering the following command on the terminal (Fig. 176).
If required, type password as the password. If the Terminal session has not been
terminated or closed, you may not be prompted to enter a password. To type capital
letters, it is recommended to hold the Shift key while typing rather than using the

Caps key.

cd $ZEEK_INSTALL/bin && sudo ./zeekctl stop

References

1. K. Johnson, T. DeLaGrange, SANS survey on mobility/BYOD security policies and prac-
tices, SANS whitepaper, Oct. 2012. [Online]. Available: https://www.sans.org/reading-room/
whitepapers/analyst/survey-mobility-byod-security-policies-practices-35175

2. Brown university (firewall) example. [Online]. Available: https://fasterdata.es.net/
performance-testing/perfsonar/perfsonar-success-stories/brown-university-example/

3. Cisco nexus 3100 platform switch architecture, Cisco Systems White Paper, Oct. 2013.
[Online]. Available: https://people.ucsc.edu/\simwarner/Bufs/cisco-3100-arch.pdf

4. E. Dart, L. Rotman, B. Tierney, M. Hester, J. Zurawski, The science DMZ: a network design
pattern for data-intensive science, in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (2013)

5. Cisco firepower NGIPS, Cisco Systems Data Sheet. [Online]. Available: https://www.cisco.
com/c/en/us/products/collateral/security/ngips/datasheet-c78-738196.html

6. Snort open source intrusion prevention system. [Online]. Available: https://www.snort.org/
7. Processing of single stream large session (elephant flow) by the firepower services, Cisco

Systems White Paper, Jan. 2017. [Online]. Available: https://www.cisco.com/c/en/us/support/
docs/security/firepower-management-center/200420-Processing-of-Single-Stream-Large-
Sessio.pdf

8. A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, B. Stiller, An overview of IP flow-
based intrusion detection. IEEE Commun. Surv. Tutorials 12(3), 343–356 (2010)

9. R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, A. Pras, Flow monitoring
explained: from packet capture to data analysis with NetFlow and IPFIX. IEEE Commun.
Tutorials 16(4) (2014)

10. The bro network security monitor. [Online]. Available: http://www.broids.org
11. V. Stoffer, A. Sharma, J. Krous, 100G intrusion detection, Lawrence Berkeley National

Laboratory Technical Report, Aug. 2015. [Online]. Available: https://www.cspi.com/wp-
content/uploads/2016/09/Berkeley-100GIntrusionDetection.pdf

12. A. Gonzalez, J. Leigh, S. Peisert, B. Tierney, A. Lee, J. Schopf, Monitoring big data transfers
over international research network connections, in Proceedings of the IEEE International
Congress on Big Data (2017)

13. K. Miller, DDOS mitigation with sFlow. [Online]. Available: http://www.rn.psu.edu/2014/07/
25/ddos-mitigation-with-sflow/

14. W. Kumari, D. McPherson, Remote triggered black hole filtering with unicast reverse path
forwarding, Internet Request for Comments, RFC Editor, RFC 5635, Aug. 2009. [Online].
Available: https://tools.ietf.org/html/rfc5635

15. Y. Rekhter, T. Li, S. Hares, Border gateway protocol 4, Internet Request for Comments, RFC
Editor, RFC 4271, Jan. 2006. [Online]. Available: https://tools.ietf.org/html/rfc4271

16. S. Peisert, W. Barnett, E. Dart, J. Cuff, R. Grossman, E. Balas, A. Berman, A. Shankar, B.
Tierney, The medical science DMZ. J. Am. Med. Inform. Assoc. 23(6), 1199–1201 (2016)

https://www.sans.org/reading-room/whitepapers/analyst/survey-mobility-byod-security-policies-practices-35175
https://www.sans.org/reading-room/whitepapers/analyst/survey-mobility-byod-security-policies-practices-35175
https://fasterdata.es.net/performance-testing/perfsonar/perfsonar-success-stories/brown-university-example/
https://fasterdata.es.net/performance-testing/perfsonar/perfsonar-success-stories/brown-university-example/
https://people.ucsc.edu/$sim $warner/Bufs/cisco-3100-arch.pdf
https://www.cisco.com/c/en/us/products/collateral/security/ngips/datasheet-c78-738196.html
https://www.cisco.com/c/en/us/products/collateral/security/ngips/datasheet-c78-738196.html
https://www.snort.org/
https://www.cisco.com/c/en/us/support/docs/security/firepower-management-center/200420-Processing-of-Single-Stream-Large-Sessio.pdf
https://www.cisco.com/c/en/us/support/docs/security/firepower-management-center/200420-Processing-of-Single-Stream-Large-Sessio.pdf
https://www.cisco.com/c/en/us/support/docs/security/firepower-management-center/200420-Processing-of-Single-Stream-Large-Sessio.pdf
http://www.broids.org
https://www.cspi.com/wp-content/uploads/2016/09/Berkeley-100GIntrusionDetection.pdf
https://www.cspi.com/wp-content/uploads/2016/09/Berkeley-100GIntrusionDetection.pdf
http://www.rn.psu.edu/2014/07/25/ddos-mitigation-with-sflow/
http://www.rn.psu.edu/2014/07/25/ddos-mitigation-with-sflow/
https://tools.ietf.org/html/rfc5635
https://tools.ietf.org/html/rfc4271

454 Security Aspects

17. N. Pho, D. Magri, F. Redigolo, B. Kim, T. Feeney, H. Morgan, C. Patel, C. Botkaand T.
Carvalho, Data transfer in a science DMZ using SDN with applications for precision medicine
in cloud and high-performance computing, in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC15) (2015)

18. K. Chard, S. Tuecke, I. Foster, Globus: recent enhancements and future plans, in Proceedings
of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale (2016)

19. W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, The globus striped GridFTP framework and
server, in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (2005)

20. G. Vardoyan, R. Kettimuthu, M. Link, S. Tuecke, Characterizing throughput bottlenecks for
secure GridFTP transfers, in IEEE International Conference on Computing, Networking and
Communications (ICNC) (2013)

21. D. Hardt, The OAuth 2.0 authorization framework, Internet Request for Comments, RFC 6749,
Oct. 2012. [Online]. Available: https://tools.ietf.org/html/rfc6749

22. S. Kent, S. Seo, Security architecture for the internet protocol, Internet Request for Comments,
RFC Editor, RFC 4301, Dec. 2005. [Online]. Available: https://tools.ietf.org/html/rfc4301

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc4301

Challenges and Open Research Issues

Owing to its proven efficiency to move large data sets, the number of deployed
Science DMZs has been rapidly increasing in the last few years. However, there are
still many challenges and open research issues that must be addressed.

1 Connectivity to the WAN

1.1 Cyberinfrastructure

The deployment cost of high-speed connections is still an unresolved problem
in developing countries and many areas of developed countries. In the U.S.,
this is observed in areas such as remote Native lands, where there is a lack of
cyberinfrastructure for WAN connectivity at Gbps rates. The deployment of fiber
connections and access to POPs from such remote locations have prohibitive costs.
As an example, in 2010, the U.S. Federal Communications Commission (FCC)
released the National Broadband Plan, an effort to narrow the digital divide between
urban and rural areas. Some key problems that must be addressed include:

• Terrain. Historically, service providers have dismissed the prospect of installing
cables in areas located in remote, mountainous regions with extreme variations in
elevation. The process of digging and laying underground fiber in these terrains is
arduous, time-consuming, and expensive. Typically these areas are also far away
from regional networks, exchange points, RENs and Internet2.

• Regulations pose a unique set of challenges. Many developing countries have
only recently opened up to market forces, from a totally centralized scheme. Sim-
ilarly, sovereign tribal nations in the U.S. require telecommunications providers
to meet certain criteria to protect the land and culture, and most carriers are not
interested in complying with additional rules on top of the regular bureaucracy.
In developing countries and tribal nations, if a service provider is interested

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Crichigno et al., High-Speed Networks, Practical Networking,
https://doi.org/10.1007/978-3-030-88841-1_7

455

https://doi.org/10.1007/978-3-030-88841-1_7

456 Challenges and Open Research Issues

in laying fiber, it could see significant hurdles and consultations with local
government. The provider would also have to perform environmental protection
and historic preservation studies [1, 2].

• Cost. In rural areas with a limited potential subscriber base, RENs and service
providers in particular see no possibility for any return on investment.

1.2 Connection-Oriented Networks

Since the early days of the Internet, there have been two camps regarding the service
provided by the network layer: connectionless and connection-oriented. The first
one has adopted the end-to-end argument [3] that shaped the Internet. However,
many parts of the Internet and RENs are evolving to connection-oriented services
as QoS becomes more important. For large data transfers and as a means to connect
Science DMZs, a connection-oriented service provides bandwidth guarantee, a
key advantage. An example of a connection-oriented service is the On-demand
Secure Circuits and Reservation System (OSCARS) [4, 5], which connects WAN
layer-2 circuits directly to the DTNs and provides bandwidth reservation and
traffic engineering capabilities. Similarly, MPLS is used by large service providers,
RENs, and Internet2 to provide QoS and establish long-term connections. Other
connection-oriented schemes for bandwidth and delay guarantees have been also
proposed [6, 7]. The adoption of connection-oriented technology to connect Science
DMZs is expected to continue. Moreover, the wider adoption of this paradigm
may encourage further development of upper-layer protocols. For example, given
a guaranteed bandwidth, congestion control schemes based on pacing would be
simpler to implement than current TCP congestion control schemes.

2 Data-Link and Network Layer Devices

2.1 Features for Large Flows

Typically, datacenter devices are designed for low-latency networks. These devices
have a small amount of memory for buffering and use cut-through and fabric
designs that are only suitable for small flows. Additionally, even when a device
has sufficient memory to accommodate large flows, default configurations result
in buffer underutilization. Since the technical expertise of cyberinfrastructure
engineers mostly focuses on enterprise networks, suboptimal configurations are not
uncommon. Fortunately, the market has recently noticed the need for Science DMZ-
capable devices. Hence, many manufacturers such as Cisco [8], Brocade [9], and
Ciena [10] are now providing features amenable for large flows, such as adequate
buffer allocation and application-programming interfaces to automate processes and

3 TCP Optimization 457

enforce preset policies (e.g., bypassing a firewall according to traffic type or trust
level).

2.2 Maximum Transmission Unit

The maximum segment size has notable performance impact in high-throughput,
high-latency networks, in particular under random-loss regimes. Unfortunately,
supporting end-to-end jumbo frames is still an open challenge. Foremost, all
hosts in a single broadcast domain must use the same MTU, and this can be
difficult and error-prone. Additionally, Ethernet has no mechanism of detecting
an MTU mismatch. A device that receives a frame larger than its MTU simply
drops it silently. Secondly, since different administrative domains (ISPs, RENs)
are independently operated, packets are routed through devices that either do not
support jumbo frames or at best have different MTUs. Hence, there is a need to
establish a standard for jumbo frames, so there is a reasonable guarantee that if
vendors comply with the specifications, then there would be no interoperability
problems.

3 TCP Optimization

3.1 Congestion Control

buffer size = C · RT T . (1)

Most TCP algorithms for congestion control use packet loss as a signal of
congestion. According to Eq. (1), in order to achieve a throughput of 10 Gbps,
TCP can only tolerate one segment loss for every 6,944,000,000 segments, which
is incredibly small. The use of alternative congestion control mechanisms where
packet loss is not a signal of congestion is a promising direction. The recently
proposed BBR algorithm [11] has shown preliminary throughput improvement
in medium- and high-loss packet regimes. Note that using TCP pacing to adjust
the bit rate at an estimated bottleneck bandwidth is a departure from the tradi-
tional window-based congestion control mechanism. Additionally, since rate-based
congestion control does not require constant congestion window updates, this
approach avoids the long delays inherent in the receiver sending the congestion
window. Moreover, the promising performance results of BBR may lead to the
development of other congestion control algorithms. The use of parameters for
detecting congestion and random losses that have stronger correlation to congestion
than packet losses also needs to be explored.

458 Challenges and Open Research Issues

3.2 Pacing

TCP FQ pacing has shown promising results in long fat networks. However, the
main concern with this technique is finding the bottleneck link along the path
between the end devices. Once the bottleneck link is identified, pacing packets at
the bottleneck link’s capacity mitigates the TCP sawtooth behavior and produces
stable throughput. Pacing can also be easier in connection-oriented networks, as
packets can be paced at the guaranteed bandwidth allocated to the connection.

3.3 TCP Extensions

Many TCP extensions have been proposed over the years, including selective
acknowledgement, timestamp, window scale, and RTT measurement [12]. As most
of these extensions were targeted to mitigate issues observed in the Internet’s
best-effort service model, they may not be suitable for large data transfers over
well-conditioned networks such as Internet2 and other RENs. Hence, investigating
the use of TCP extensions in Science DMZ environments is required.

4 Optimization in the Protocol Stack

As routers and switches are optimized for Science DMZs [8, 10], the protocol stack
at DTNs may become the bottleneck for many implementations. Reducing DTN
processing overheads is desirable to increase throughput.

Software techniques can help optimize the TCP performance on 10 Gbps WANs
and above. However, optimizing a DTN to operate at 100 Gbps is currently a
persistent challenge. Most TCP implementations have a considerable overhead and
produce a very high CPU utilization, which raises questions about the viability
of TCP as the network bandwidth continues to grow [13]. UDP-based tools such
as Aspera FAST [14] and UDT [15] may suffer a performance penalty due to
context switching and the process of copying data to user-space buffers. Kissel
et al. [13] have recently proposed a new protocol called wide-area Remote Direct
Memory Access (RDMA). RDMA decreases TCP processing overheads by using
optimization techniques such as zero-copy and splice. Zero-copy is a procedure
that relieves the CPU of copying data from one memory area to another (e.g., from
lower-level layers to the TCP buffer). This technique saves CPU cycles and memory
bandwidth when transmitting a file over a WAN. Similarly, splice is a system call
used to move data between two file descriptors. Splice minimizes the movement of
data between kernel space and user space.

Overall, zero-copy and splice are two techniques that can minimize the move-
ment of data within a DTN. Similar cross-layer optimization techniques can further

5 Applications 459

reduce processing overheads. For example, TCP and IP are usually implemented
together, so that there is no need to copy the layer-3 payload when moving it from
the network process to the transport process. This idea can be extended to the upper
layers, i.e., from transport to application.

5 Applications

5.1 Data Transfer Tools

As the main applications used in Science DMZs, data transfer tools must be
designed for high-throughput, high-latency networks. Namely, these tools should
implement features such as parallel streams, large buffer sizes, and partial and
restartable file transfers. At present, engineers rely on rule of thumbs to configure
many of these features. For example, there is no formal solution to the problem of
selecting the number of parallel TCP streams that should be open for a data transfer.
Globus suggests that the number of streams should be between 2 and 8. Moreover,
the optimal value may depend on the RTT, bandwidth, congestion control algorithm,
etc.

Data transfer tools should minimize the time spent in input/output operations
(which are expensive) and exploit the multicore capability of modern DTNs. For
example, FDT [16] uses independent threads to read and write on physical devices
in parallel. Data transfer tools should also avoid copying data multiple times
within the DTN. Improvements may involve several layers, including transport and
application.

The adoption of UDP-based data transfer applications has been minimal. Tests
conducted in 10 Gbps networks indicate that the throughput is limited by the high
CPU utilization [17]. Also, current UDP-based applications do not use parallel
streams. Instead, they only open one stream per data transfer. Typically, the stream’s
process is tied to one core while other cores are idle. With this approach, UDP-
based applications may only achieve higher rates by increasing the CPU’s clock
rate. However, increasing the CPU rate is a challenge. Instead, during the last
decade, the throughput has been increased by using multicore CPUs. Thus, an open
research issue includes the use of UDP-based applications using multiple streams,
in particular when parallelism opportunities exist [4, 6].

5.2 Monitoring Applications

The effectiveness of perfSONAR in measuring end-to-end metrics and in detect-
ing soft failures relies on its deployment across multiple domains [18]. While
perfSONAR has been extensively deployed on RENs (e.g., ESnet [19], Internet2

460 Challenges and Open Research Issues

[20], GEANT [21], CESNET [22], etc.), its deployment by ISPs is still lacking. A
contributing factor here is the lack of familiarity of engineers who are more familiar
with single-domain tools used in enterprise networks, such as SNMP, Syslog, and
Netflow. Thus, there is a need to outreach to the networking community to widen
the adoption of collaborative multi-domain tools without compromising the privacy
and commercial interests of ISPs.

Integrating and correlating data collected from different applications is an
immediate research direction. For example, SNMP and perfSONAR complement
each other. The former can detect intra-domain hard failures while the latter can
detect inter-domain soft failures. In this context, Gonzales et al. [23] describe
a monitoring application integrating perfSONAR, SNMP, and other tools. The
proposed platform also integrates data visualization and analytics modules. With the
advent of SDN, this type of integration and the addition of network programmability
are expected to continue.

5.3 Virtualization

The research community has been reluctant to adopt virtual components into
Science DMZs, mainly because of the performance degradation of virtual DTNs.
However, in small institutions where resources are often limited, using virtual DTNs
is a cost-efficient alternative. Preliminary results suggest that virtual DTNs may be
adequate for 10 Gbps Science DMZs, provided the physical server they run on has
sufficient CPU capacity and the workload is minimal. However, when packet losses
occur and DTNs require more processing capability for handling retransmissions,
the performance degradation can be significant. Additionally, virtual components
are unable to perform at 40/100 Gbps. Thus, research on minimizing processing
overheads on virtual devices (virtual switch, virtual NIC, hypervisor) is still
required.

6 Security

In general, not having web, email, and other general-purpose applications running
on DTNs mitigates the delivery of malicious payloads via XML, SQL, cross-
site injection, and other methods. However, since transfer rates are high, the data
inspection in Science DMZs may be minimal. For example, the typical inspection
rate of a payload-based IDS protecting a 100 Gbps Science DMZ connected to
ESnet is between 2 and 4 Gbps [24], which is less than 5% of the total network
input. While the reported number of malware attacks in current Science DMZs has
been minimal, there is a trade-off between performance and security that should
be carefully analyzed when deploying this type of IDS, in particular for 40/100
Gbps Science DMZs. A specific approach that can be explored for high rates may

References 461

combine both flow-based and payload-based IDSs. A first layer of detection may
preselect suspicious flows using a flow-based IDS, while a second layer may scan
packets of the preselected flows using a payload-based IDS.

Confidentiality, integrity, and authentication are usually implemented at the
application layer. Although current encryption algorithms are capable of performing
at or near 10 Gbps, Globus’ file integrity checks may introduce a penalty of up to
10%. Encryption rates of 40 and 100 Gbps are still uncommon in DTN deployments.
However, recent development of specialized hardware indicates that a rate of 100
Gbps is achievable for in-transit encryption [25]. The use of medical Science DMZs
[26, 27] and the need to comply with regulations [28, 29] are expected to accelerate
these developments. Finally, preventing DoS and scanning attacks is also an ongoing
research direction, as these attack types are continuously evolving.

References

1. J. Tveten, On American Indian reservations, challenges perpetuate the digital divide, ARS
Technica, Jan. (2016). [Online]. Available: https://arstechnica.com/information-technology/
2016/01/on-american-indian-reservations-challenges-perpetuate-the-digital-divide/

2. N. Sambuli, Challenges and opportunities for advancing Internet access in developing countries
while upholding net neutrality. J. Cyber Policy 1(1), 61 (2016)

3. J. Saltzer, D. Reed, D. Clark, End-to-end argument in system design. ACM Trans. Comput.
Syst. 2(4), 277–288 (1984)

4. J. Plante, D. Davis, V. Vokkarane, Parallel circuit provisioning in esnet’s OSCARS, in IEEE
International Conference on Advanced Networks and Telecommunications Systems (ANTS)
(2014)

5. I. Monga, C. Guok, W.E. Johnston, B. Tierney, Hybrid networks: lessons learned and future
challenges based on ESnet4 experience. IEEE Commun. Mag. 49(5), 114 (2011)

6. T. Orawiwattanakul, H. Otsuki, E. Kawai, S. Shimojo, Multiple classes of service provisioning
with bandwidth and delay guarantees in dynamic circuit network, in IEEE International
Symposium on Integrated Network Management, May (2015)

7. A. Gumaste, T. Das, K. Khandwala, I. Monga, Network hardware virtualization for application
provisioning in core networks. IEEE Commun. Mag. 55(2), 152 (2017)

8. Event-based software-defined networking: build a secure science DMZ, Cisco Systems
White Paper, 2015. [Online]. Available: https://www.cisco.com/c/en/us/products/collateral/
cloud-systems-management/open-sdn-controller/white-paper-c11-735868.html

9. Software-driven science DMZ networks, Brocade White Paper, 2016. [Online]. Available:
https://www.brocade.com/content/dam/common/documents/content-types/solution-brief/
brocade-software-driven-science-dmz-networks-sb.pdf

10. Transform large-scale science collaboration, Ciena White Paper. [Online]. Available: http://
media.ciena.com/documents/Science+DMZ+AN.pdf

11. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson, BBR: congestion-based congestion
control. Commun. ACM 60(2), 58–66 (2017)

12. D. Borman, B. Braden, V. Jacobson, R. Scheffenegger, TCP extensions for high performance,
Internet Request for Comments, RFC 7323, Sep. 2014. [Online]. Available https://tools.ietf.
org/html/rfc7323#section-4.2

13. E. Kissel, M. Swany, B. Tierney, E. Pouyoul, Efficient wide area data transfer protocols for 100
Gbps networks and beyond, in Proceedings of the Third International Workshop on Network-
Aware Data Management (2013)

https://arstechnica.com/information-technology/2016/01/on-american-indian-reservations-challenges-perpetuate-the-digital-divide/
https://arstechnica.com/information-technology/2016/01/on-american-indian-reservations-challenges-perpetuate-the-digital-divide/
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/open-sdn-controller/white-paper-c11-735868.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/open-sdn-controller/white-paper-c11-735868.html
https://www.brocade.com/content/dam/common/documents/content-types/solution-brief/brocade-software-driven-science-dmz-networks-sb.pdf
https://www.brocade.com/content/dam/common/documents/content-types/solution-brief/brocade-software-driven-science-dmz-networks-sb.pdf
http://media.ciena.com/documents/Science+DMZ+AN.pdf
http://media.ciena.com/documents/Science+DMZ+AN.pdf
https://tools.ietf.org/html/rfc7323#section-4.2
https://tools.ietf.org/html/rfc7323#section-4.2

462 Challenges and Open Research Issues

14. Ultra high-speed transport technology, Aspera White Paper. [Online]. Available: http://
asperasoft.com/resources/white-papers/ultra-high-speed-transport-technology/

15. Y. Gu, R. Grossman, Udt: UDP-based data transfer for high-speed wide area networks.
Comput. Netw. 51(7), 1777–1799 (2007)

16. Fast data transfer (FDT). [Online]. Available: http://monalisa.cern.ch/FDT
17. UDP tuning in science DMZs. [Online]. Available: https://fasterdata.es.net/network-tuning/

udp-tuning/#toc-anchor-1
18. J. Zurawski, S. Balasubramanian, A. Brown, E. Kissel, A. Lake, M. Swany, B. Tierney, M.

Zekauskas, perfSONAR: on-board diagnostics for big data, in Workshop on Big Data and
Science: Infrastructure and Services (2013)

19. The energy science network. [Online]. Available: https://www.es.net
20. Internet2. [Online]. Available: https://www.internet2.edu/
21. F. Farina, P. Szegedi, J. Sobieski, GEANT world testbed facility: federated and distributed

testbeds as a service facility of GEANT, in International Tele-traffic Congress (2014)
22. K. Slavicek, V. Novak, J. Ledvinka, CESNET fiber optics transport network, in IEEE

International Conference on Networks (2009)
23. A. Gonzalez, J. Leigh, S. Peisert, B. Tierney, A. Lee, J. Schopf, Monitoring big data transfers

over international research network connections, in Proceedings of the IEEE International
Congress on Big Data (2017)

24. V. Stoffer, A. Sharma, J. Krous, 100G intrusion detection, Lawrence Berkeley National
Laboratory Technical Report, Aug. 2015. [Online]. Available: https://www.cspi.com/wp-
content/uploads/2016/09/Berkeley-100GIntrusionDetection.pdf

25. Transpacific encryption success at 100Gbps, Ericsson Press Releases, Sep. 2017. [Online].
Available: https://www.ericsson.com/en/press-releases/2017/9/transpacific-encryption-
success-at-100gbps

26. S. Peisert, E. Dart, W. Barnett, J. Cuff, R. Grossman, E. Balas, A. Berman,
A. Shankar, B. Tierney, The medical science DMZ: a network design pattern
for data-intensive medical science. J. Am. Med. Inform. Assoc. (JAMIA), Oct.
2017. [Online]. Available: https://academic.oup.com/jamia/article/doi/10.1093/jamia/ocx104/
4367749/The-medical-science-DMZ-a-network-design-pattern

27. S. Peisert, W. Barnett, E. Dart, J. Cuff, R. Grossman, E. Balas, A. Berman, A. Shankar, B.
Tierney, The medical science DMZ. J. Am. Med. Inform. Assoc. 23(6), 1199–1201 (2016)

28. W. Lee, C. Lee, A cryptographic key management solution for HIPAA privacy/security
regulations. IEEE Trans. Inform. Technol. Biomed. 12(1), 34–41 (2008)

29. M. Alyami, Y. Song, Removing barriers in using personal health record systems, in IEEE
International Conference on Computer and Information Science (ICIS) (2016)

http://asperasoft.com/resources/white-papers/ultra-high-speed-transport-technology/
http://asperasoft.com/resources/white-papers/ultra-high-speed-transport-technology/
http://monalisa.cern.ch/FDT
https://fasterdata.es.net/network-tuning/udp-tuning/#toc-anchor-1
https://fasterdata.es.net/network-tuning/udp-tuning/#toc-anchor-1
https://www.es.net
https://www.internet2.edu/
https://www.cspi.com/wp-content/uploads/2016/09/Berkeley-100GIntrusionDetection.pdf
https://www.cspi.com/wp-content/uploads/2016/09/Berkeley-100GIntrusionDetection.pdf
https://www.ericsson.com/en/press-releases/2017/9/transpacific-encryption-success-at-100gbps
https://www.ericsson.com/en/press-releases/2017/9/transpacific-encryption-success-at-100gbps
https://academic.oup.com/jamia/article/doi/10.1093/jamia/ocx104/4367749/The-medical-science-DMZ-a-network-design-pattern
https://academic.oup.com/jamia/article/doi/10.1093/jamia/ocx104/4367749/The-medical-science-DMZ-a-network-design-pattern

	Preface
	Audience
	What is Unique About This Book?
	The Virtual Platform and Virtual Laboratory Experiments
	Organization
	Relevance of Networking Tools

	Acknowledgement
	Contents
	Abbreviations
	Introduction to High-Speed Networks and Science DMZ
	1 Objective and Access to Accompanied Training Material
	2 Motivation for Science DMZs
	3 Science DMZs Applications
	Chapter 1—Lab 1: Introduction to Mininet
	4 Introduction to Mininet
	5 Invoking Mininet Using the CLI
	5.1 Invoking Mininet Using the Default Topology
	5.2 Testing Connectivity

	6 Building and Emulating a Network in Mininet Using the GUI
	6.1 Building the Network Topology
	6.2 Testing Connectivity
	6.3 Automatic Assignment of IP Addresses
	6.4 Saving and Loading a Mininet Topology

	Chapter 1—Lab 2: Introduction to iPerf3
	Lab Roadmap
	7 Introduction to iPerf3
	8 Lab Topology
	8.1 Starting Host h1 and Host h2

	9 Using iPerf3 (Client and Server Commands)
	9.1 Starting Client and Server
	9.2 Setting Transmitting Time Period
	9.3 Setting Time Interval
	9.4 Changing the Number of Bytes to Transmit
	9.5 Specifying the Transport-Layer Protocol
	9.6 Changing Port Number
	9.7 Export Results to JSON File
	9.8 Handle One Client

	10 Plotting iPerf3 Results
	References

	Network Cyberinfrastructure Aspects for Big Data Transfers
	1 Limitations of Enterprise Networks and Motivation for Science DMZs
	2 Science DMZ Architecture
	2.1 Addressing the Enterprise Network Limitations

	3 WAN Cyberinfrastructure
	3.1 Connecting a Science DMZ via an Internet2 POP
	3.2 Connecting a Science DMZ via a Regional REN
	3.3 Connecting a Science DMZ via a Commercial ISP
	3.4 Connecting a Science DMZ via a Commercial ISP Circuit

	4 Current State: Science DMZ Deployment in the U.S.
	Chapter 2—Lab 3: Emulating WAN with NETEM Part I—Latency and Jitter
	5 Introduction to Network Emulators and NETEM
	5.1 NETEM
	5.2 WANs and Delay

	6 Lab Topology
	6.1 Starting Host h1 and Host h2

	7 Adding/Changing Delay to Emulate a WAN
	7.1 Identify Interface of Host h1 and Host h2
	7.2 Add Delay to Interface Connecting to WAN
	7.3 Changing the Delay in Emulated WAN

	8 Restoring Original Values (Deleting the Rules)
	9 Adding Jitter to Emulated WAN
	9.1 Add Jitter to Interface Connecting to WAN

	10 Adding Correlation Value for Jitter and Delay
	11 Delay Distribution
	Chapter 2—Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption
	12 Introduction to Network Emulators and NETEM
	13 Lab Topology
	13.1 Testing Connectivity Between Two Hosts

	14 Adding/Changing Packet Loss
	14.1 Identify Interface of Host h1 and Host h2
	14.2 Add Packet Loss to the Interface Connecting to the WAN
	14.3 Restore Default Values
	14.4 Add Correlation Value for Packet Loss to Interface Connecting to WAN

	15 Adding Packet Corruption
	15.1 Add Packet Corruption to an Interface Connected to the WAN

	16 Add Packet Reordering
	17 Add Packet Duplication
	Chapter 2—Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF)
	18 Introduction to Token Bucket Algorithm
	19 Lab Topology
	19.1 Starting Host h1 and Host h2

	20 Rate Limiting on End-Hosts
	20.1 Identify Interface of Host h1 and Host h2
	20.2 Emulating 10Gbps High-Latency WAN

	21 Rate Limiting on Switches
	22 Combining NETEM and TBF
	References

	Data-Link and Network Layer Considerations for LargeData Transfers
	1 Data-Link and Network-Layer Devices
	2 Switching Review
	3 Switching Considerations for Science DMZs
	3.1 Traffic Profile
	3.2 Maximum Transmission Unit
	3.3 Buffer Size of Output or Transmission Ports
	3.4 Bufferbloat
	3.5 Routers and Switches in a Hierarchical Network

	4 Switches in Enterprise Networks and Science DMZs
	Chapter 3—Lab 6: Router's Buffer Size
	5 Introduction
	5.1 Introduction to Switching
	5.2 Router Architecture
	5.3 Where does Packet Loss Occur?
	5.4 Buffer Size

	6 Lab Topology
	6.1 Starting Host h1, Host h2, Host h3, and Host h4
	6.2 Modifying Hosts' Buffer Size
	6.3 Emulating High-Latency WAN
	6.4 Testing Connection

	7 Testing Throughput with 100 · MTU Switch's Buffer Size
	7.1 Setting Switch S1's Buffer Size to 100 · MTU
	7.2 TCP Cubic
	7.3 TCP Reno
	7.4 TCP BBR

	8 Testing Throughput with One BDP Switch's Buffer Size
	8.1 Changing Switch S1's Buffer Size to One BDP
	8.2 TCP Cubic
	8.3 TCP Reno
	8.4 TCP BBR

	9 Emulating High-Latency WAN with Packet Loss
	9.1 TCP Cubic
	9.2 TCP Reno
	9.3 TCP BBR

	Chapter 3—Lab 7: Router's Bufferbloat
	10 Introduction to Bufferbloat
	10.1 1.1 Packet Delays
	10.2 Bufferbloat

	11 Lab Topology
	11.1 Starting Host h1, Host h2, and Host h3
	11.2 Emulating High-Latency WAN
	11.3 Testing Connection
	11.4 Testing Throughput on a Network with a Small Buffer-Size Switch
	11.5 Setting Switch S1's Buffer Size to 100 · MTU
	11.6 Bandwidth-Delay Product (BDP) and Hosts' Buffer Size
	11.7 Throughput Test

	12 Testing Throughput on a Network with a 1 · BDP Buffer-Size Switch
	12.1 Setting Switch S1's Buffer Size to 1 · BDP
	12.2 Throughput and Latency Tests

	13 Testing Throughput on a Network with a Large Buffer-Size Switch
	13.1 Setting Switch S1's Buffer Size to 10 · BDP
	13.2 Throughput and Latency Tests

	Chapter 3—Lab 8: Random Early Detection (RED)
	14 Introduction
	14.1 Random Early Detection Mechanism

	15 Lab Topology
	15.1 Starting Host h1, Host h2, and Host h3
	15.2 Emulating High-Latency WAN
	15.3 Testing Connection

	16 Testing Throughput on a Network Using Drop Tail AQM Algorithm
	16.1 Bandwidth-Delay Product (BDP) and Hosts' TCP Buffer Size
	16.2 Setting Switch S2's Buffer Size to 10 · BDP
	16.3 Throughput and Latency Tests

	17 Configuring RED on Switch S2
	17.1 Setting RED Parameter on Switch S2's Egress Interface
	17.2 Throughput and Latency Tests
	17.3 Changing the Bandwidth to 100Mbps
	17.4 Throughput and Latency Tests

	References

	Impact of TCP on High-Speed Networks and Advances in Congestion Control Algorithms
	1 TCP Review
	2 TCP Considerations for Science DMZs
	2.1 Maximum Segment Size
	2.2 Flow Control and TCP Receive Buffer
	2.3 Selective Acknowledgment
	2.4 Parallel TCP Connections
	2.5 TCP Fair Queue Pacing
	2.6 TCP Congestion Control Algorithms

	3 Transport-Layer Issues in Enterprise Networks and Science DMZs
	4 Academic Cloud and Virtual Laboratories
	5 Chapter 4—Lab 9: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno)
	6 Introduction to TCP
	6.1 TCP Review
	6.2 TCP Throughput
	6.3 TCP Packet Loss Event
	6.4 Impact of Packet Loss in High-Latency Networks

	7 Lab Topology
	7.1 Starting Host h1 and Host h2
	7.2 Emulating 10Gbps High-Latency WAN with Packet Loss
	7.3 Testing Connection

	8 Introduction to sysctl
	8.1 Read sysctl Parameters
	8.2 Write sysctl Parameters
	8.3 Configuring sysctl.conf File

	9 Congestion Control Algorithms and sysctl
	9.1 Inspect and Install/Load Congestion Control Algorithms
	9.2 Inspect the Default (Current) Congestion Control Algorithm
	9.3 Modify the Default (Current) Congestion Control Algorithm

	10 iPerf3 Throughput Test
	10.1 Throughput Test Without Delay
	10.2 TCP Reno
	10.3 Hamilton TCP (HTCP)
	10.4 TCP Cubic
	10.5 Throughput Test with 30ms Delay
	10.6 TCP Reno
	10.7 Hamilton TCP (HTCP)
	10.8 TCP Cubic

	11 Chapter 4—Lab 10: Understanding Rate-Based TCP Congestion Control (BBR)
	12 Introduction to TCP
	12.1 Traditional TCP Congestion Control Review
	12.2 Traditional Congestion Control Limitations
	12.3 TCP BBR

	13 Lab Topology
	13.1 Starting Host h1 and Host h2
	13.2 Emulating 1Gbps High-Latency WAN with Packet Loss
	13.3 Testing Connection

	14 iPerf3 Throughput Test
	14.1 Throughput Test Without Delay
	14.1.1 TCP Reno
	14.1.2 TCP BBR

	14.2 Throughput Test with 30ms Delay
	14.2.1 TCP Reno
	14.2.2 TCP BBR

	15 Chapter 4—Lab 11: Bandwidth-Delay Product and TCP Buffer Size
	16 Introduction to TCP buffers, BDP, and TCP Window
	16.1 TCP Buffers
	16.2 Bandwidth-Delay Product
	16.3 Practical Observations on Setting TCP Buffer Size
	16.4 TCP Window Size Calculated Value
	16.5 Zero Window

	17 Lab Topology
	17.1 Starting Host h1 and Host h2
	17.2 Emulating 10Gbps High-Latency WAN

	18 BDP and Buffer Size
	18.1 Window Size in sysctl

	19 Modifying Buffer Size and Throughput Test
	20 Chapter 4—Lab 12: Enhancing TCP Throughput with Parallel Streams
	21 Introduction to TCP Parallel Streams
	21.1 Parallel Stream Fundamentals
	21.2 Advantages of Parallel Streams

	22 Lab Topology
	22.1 Starting Host h1 and Host h2
	22.2 Emulating 10Gbps High-Latency WAN
	22.3 Testing Connection

	23 Parallel Streams to Overcome TCP Buffer Limitation
	24 Parallel Streams to Combat Packet Loss
	24.1 Limit Rate and Add Packet Loss on Switch S1's s1-eth2 Interface
	24.2 Test with Parallel Streams

	25 Chapter 4—Lab 13: Measuring TCP Fairness
	26 Fairness Concepts
	26.1 TCP Bandwidth Allocation
	26.2 TCP Fairness Index Calculation

	27 Lab Topology
	27.1 Starting Host h1 and Host h2
	27.2 Emulating 10Gbps High-Latency WAN
	27.3 Testing Connection

	28 Calculating Fairness Among Parallel Flows
	29 Calculating Fairness Among Several Hosts with the Same Congestion Control Algorithm
	30 Calculating Fairness Among Hosts with Different Congestion Control Algorithms
	References

	Application and Security Aspects for Large Flows
	1 Application-Layer Tools
	2 File Transfer Applications
	2.1 Traditional File Transfer Applications
	2.2 File Transfer Applications for Science DMZs

	3 Virtual Machines and Science DMZs
	4 Monitoring and Performance Applications for Science DMZs
	4.1 perfSONAR
	4.2 Comparison of Monitoring Applications in Enterprise Networks and Science DMZs
	4.3 WAN Emulation and Other Performance Applications

	5 Applications in Enterprise Networks and Science DMZs
	References

	Security Aspects
	1 Operational Security for Science DMZs
	1.1 Network Segregation
	1.2 Access-Control List
	1.3 Firewalls
	1.4 Intrusion Prevention System
	1.5 Intrusion Detection System
	1.6 Response Plan

	2 Confidentiality, Integrity, and Authentication
	3 Security Summary
	Academic Cloud and Virtual Laboratories
	Chapter 6—Lab 14: Introduction to the Capabilities of Zeek
	4 Introduction to Zeek
	4.1 The Zeek Event Engine
	4.1.1 State Management
	4.1.2 Transport-Layer Analyzers
	4.1.3 Application-Layer Analyzers
	4.1.4 Infrastructure

	4.2 The Zeek Policy Script Interpreter
	4.3 Zeek Analyzers
	4.4 Signatures
	4.5 ZeekControl

	5 Using ZeekControl to Update the Status of Zeek
	5.1 Starting a New Instance of Zeek
	5.2 Stopping the Active Instance of Zeek

	6 Introduction to Zeek's Traffic Analysis Capabilities
	6.1 Processing Offline Packet Capture Files
	6.1.1 Command Format for Processing Packet Capture Files
	6.1.2 Leveraging a Script to Detect Brute Force Attacks Present in a pcap File

	6.2 Launching Mininet
	6.3 Generating and Analyzing Live Network Traffic Capture
	6.4 Leveraging the Tcpdump Command Utility
	6.5 Capturing Live Network Traffic
	6.5.1 Analyzing the Newly Captured Network Traffic

	Chapter 6—Lab 15: An Overview of Zeek Logs
	7 Introduction to Zeek Logs
	7.1 Zeek Logs Generated by Packet Analysis
	7.2 Zeek Logs Generated by Recurrent Network Analysis
	7.3 Typical Uses of Zeek Logs

	8 Starting a New Instance of Zeek
	9 Parsing Packet Capture Files into Zeek Log Files
	9.1 Overview of Zeek Command Options
	9.2 Using Zeek to Process Offline Packet Capture Files
	9.3 Understanding Zeek Log Files
	9.4 Basic Viewing of Zeek Logs

	10 Analyzing Zeek Log Files
	10.1 Leveraging Zeek-Cut for a More Refined View of Log Files
	10.1.1 Using Zeek-Cut in Conjunction with Cat and Head Command Utilities
	10.1.2 Printing the Output of Zeek-Cut to a Text File
	10.1.3 Printing the Output of Zeek-Cut to a csv File

	10.2 Closing the Current Instance of Zeek

	Chapter 6—Lab 16: Parsing, Reading, and Organizing Zeek Log Files
	11 Introduction to Shell Scripts
	11.1 Ubuntu Linux Text Editors
	11.2 Creating a Shell Script

	12 Advanced Zeek-Cut Log File Analysis
	12.1 Example 1
	12.2 Example 2
	12.3 Example 3
	12.4 Example 4

	13 Incorporating the AWK Scripting Language for Log File Analysis
	13.1 Example 5
	13.2 Example 6
	13.3 Example 7
	13.4 Closing the Current Instance of Zeek

	Chapter 6—Lab 17: Generating, Capturing, and Analyzing DoS and DDoS-Centric Network Traffic
	14 Introduction to DoS and DDoS Activity
	14.1 DoS Attack Characteristics
	14.2 DDoS Attack Characteristics

	15 Generating Real-Time DoS Traffic
	15.1 Starting a New Instance of Zeek
	15.2 Launching Mininet
	15.3 Setting Up the Zeek2 Machine for Live Network Capture
	15.4 Launching LOIC
	15.5 Using the Zeek1 Virtual Machine to Launch a TCP-Based DoS Attack
	15.6 Using the Zeek1 Virtual Machine to Launch a UDP-Based DoS Attack

	16 Analyzing Collected Network Traffic
	16.1 Analyzing TCP-Based Traffic
	16.1.1 TCP Example Query 1
	16.1.2 TCP Example Query 2

	16.2 Analyzing UDP-Based Traffic
	16.3 Closing the Current Instance of Zeek

	Chapter 6—Lab 18: Zeek Scripting
	17 Introduction to Scripting with Zeek
	17.1 Zeek Script Events
	17.2 Zeek Module Workspace
	17.3 Zeek Log Streams

	18 Log File Analysis Using Zeek Scripts
	18.1 Starting a New Instance of Zeek
	18.2 Executing a UDP Zeek Script
	18.3 Executing a TCP Zeek Script

	19 Modifying Zeek Log Streams
	19.1 Renaming the conn.log Stream
	19.2 Updating the conn.log Stream
	19.3 Closing the Current Instance of Zeek

	Chapter 6—Lab 19: Zeek Signatures
	20 Introduction to Zeek Signatures
	20.1 Zeek Signature Format
	20.2 Creating and Using Zeek Signatures
	20.3 Zeek's Default Signature Framework

	21 Log File Analysis Using Zeek Signatures
	21.1 Starting a New Instance of Zeek
	21.2 Viewing a Premade Zeek Signature File
	21.3 Executing the Premade Zeek Signature File

	22 Executing Zeek Signature Matching for Network Traffic Analysis
	22.1 Modifying the Premade Zeek Signature File
	22.2 Executing the Updated Zeek Signature File
	22.3 Closing the Current Instance of Zeek

	References

	Challenges and Open Research Issues
	1 Connectivity to the WAN
	1.1 Cyberinfrastructure
	1.2 Connection-Oriented Networks

	2 Data-Link and Network Layer Devices
	2.1 Features for Large Flows
	2.2 Maximum Transmission Unit

	3 TCP Optimization
	3.1 Congestion Control
	3.2 Pacing
	3.3 TCP Extensions

	4 Optimization in the Protocol Stack
	5 Applications
	5.1 Data Transfer Tools
	5.2 Monitoring Applications
	5.3 Virtualization

	6 Security
	References

