

Intelligent Technical Systems

Lecture Notes in Electrical Engineering
Volume 38

For further volumes:
http://www.springer.com/series/7818

Natividad Martı́nez Madrid · Ralf E.D. Seepold
Editors

Intelligent Technical Systems

123

Editors
Prof. Dr. Natividad Martı́nez Madrid
Universidad Carlos III Madrid
Depto. Ingenieria
Avenida Universidad, 30
28911 Leganes
Spain
nati@it.uc3m.es

Prof. Dr. Ralf E.D. Seepold
Universidad Carlos III Madrid
Depto. Ingenieria
Avenida Universidad, 30
28911 Leganes
Spain
ralf@it.uc3m.es

ISBN 978-1-4020-9822-2 e-ISBN 978-1-4020-9823-9

DOI 10.1007/978-1-4020-9823-9

Library of Congress Control Number: 2009920106

c© Springer Science+Business Media B.V. 2009
No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Intelligent Technical Systems are electronic devices in which one or more
networked components are located. Nowadays, the sectors of automotive,
medical/e-Health or multimedia show interesting developments. Other well-
known sectors like home or building automation also introduce new
concepts in this area.

Intelligent Technical Systems are characterized by a strong interaction
with their environment. Several of these systems require mobility support.
For example, systems with ubiquitous computing capabilities require a
complex design of different interfaces. The integration of human-machine
interfaces needs to be considered in special purpose systems, like devices for
dependent people with specific needs.

The book Intelligent Technical Systems provides an overview on several
related fields of applied research, like multimedia systems, embedded
programming, middleware platforms, sensor networks/autonomous systems
and applications for intelligent engineering. Each area is covered by a
separate part of the book.

This book supports application engineers and researchers to get
introduced into the topic of Intelligent Technical Systems with the help of
concrete examples covering the design and implementation phase.

Madrid, Spain Natividad Martínez Madrid
December 2008 Ralf E.D. Seepold

v

Contents

vii

I. Multimedia Systems 1

1. Smart Wireless Image Sensors for Video Surveillance 3
Massimo Conti and Simone Orcioni

2. Policy Management Architecture for Multimedia
Services in a Multi-Provider Scenario 17

 Mario Ibáñez, Natividad Martínez Madrid and Ralf Seepold

3. Embedding Multi-Task Address-Event-Representation
Computation 31

 Carlos Luján-Martínez, Alejandro Linares-Barranco,
Gabriel Jiménez and Antón Civit

4. End to End UPnP AudioVisual Service Provisioning
and Management 45

 Javier Martínez, Natividad Martínez Madrid and
Ralf Seepold

5. Virtual Development Environment for Embedded
Systems Using ARMulator and SystemC Models 59

 Sang-Young Cho and Jeong-Bae Lee

II. Embedded Programming 73

6. Rule-Set-Extraction from C-Code 75
 Franz Wotawa and Willibald Krenn

7. Real Time Implementation of Fuzz-Face Electric Guitar Effect 89
 Massimo Conti, Simone Orcioni, Marco Caldari and Franco Ripa

viii Contents

8. Providing Standardized Fixed-Point Arithmetics for

Embedded C Programs 101
 Wilfried Elmenreich, Andreas Wolf and Maximilian Rosenblattl

III. Middleware Platforms 115

9. A Home E-Health System for Dependent People Based on
OSGi 117

 Jaime Martín, Ralf Seepold, Natividad Martínez Madrid,
Juan Antonio Álvarez, Alejandro Fernández-Montes and
Juan Antonio Ortega

10. Transparent IP Cores Integration Based on the Distributed
Object Paradigm 131

 Fernando Rincón, Jesús Barba, Francisco Moya,
Félix J. Villanueva, David Villa, Julio Dondo and
Juan Carlos López

11. Platform Modeling in Safety-Critical Embedded Systems 145
 Bernhard Huber and Roman Obermaisser

12. Service Platform for E-Safety Automotive Intelligent System 159
 Jesús Sáez, Alvaro Reina, Ralf Seepold,

Natividad Martínez Madrid, Alberto Los Santos,
Pilar Sanz, Imran Sabir and Henk Aarts

IV. Sensor Networks and Autonomous Systems 173

13. Intelligent, Fault Adaptive Control of Autonomous Systems 175
 Willibald Krenn and Franz Wotawa

14. Digital Open-Loop Control of a Piezoelectric Valve for
Household Appliances 189

 Daniele Petraccini, Massimo Conti, Fortunato Nocera,
Lorenzo Morbidelli and Fabrizio Concettoni

15. Coming Quantitative and Qualitative Models with Active
Oberservations to Improve Diagnosis of Complex Systems 203

 Gerald Steinbauer and Franz Wotawa

ix

V. Intelligent Engineering 217

16. Object Memory Management for Constrained Devices with
Heterogeneous Memories 219

 Kevin Marquet and Gilles Grimaud

17. Efficient Computation of Min and Max Sensor Values
in Multihop Networks 233

 Nuno Pereira, Björn Andersson, Eduardo Tovar and
Paulo Carvalho

18. A Low-Cost FPGA-Based Embedded Fingerprint Verification
and Matching System 247

 Maitane Barrenechea, Jon Altuna, Mikel Mendicute and
Javier Del Ser

19. FPGA-Rootkits 261
 Markus Kucera and Michael Vetter

20. Bridging the Requirements to Design Traceability Gap 275
 Bernhard Turban, Markus Kucera, Athanassios Tsakpinis and

Christian Wolff

Contents

Contributors

Henk Aarts
Jon Altuna
Juan Antonio Álvarez
Björn Andersson
Jesús Barba
Maitane Barrenechea
Marco Caldari
Paulo Carvalho
Antón Civit
Fabrizio Concettoni
Massimo Conti
Javier Del Ser
Julio Dondo
Wilfried Elmenreich
Alejandro Fernández-Montes
Gilles Grimaud
Bernhard Huber
Mario Ibáñez
Willibald Krenn
Markus Kucera
Gabriel Jiménez
Jeong-Bae Lee
Alejandro Linares-Barranco
Juan Carlos López
Alberto Los Santos
Carlos Luján-Martínez
Kevin Marquet
Jaime Martín
Javier Martínez

Natividad Martínez Madrid
Mikel Mendicute
Lorenzo Morbidelli
Francisco Moya
Fortunato Nocera
Roman Obermaisser
Simone Orcioni
Juan Antonio Ortega
Nuno Pereira
Daniele Petraccini
Alvaro Reina
Fernando Rincón
Franco Ripa
Maximilian Rosenblattl
Imran Sabir
Jesús Sáez
Pilar Sanz
Ralf Seepold
Gerald Steinbauer
Eduardo Tovar
Athanassios Tsakpinis
Bernhard Turban
Michael Vetter
David Villa
Félix J. Villanueva
Andreas Wolf
Christian Wolff
Franz Wotawa
Sang-Young Cho

xi

Reviewers

Massimo Conti
Università Politecnica delle Marche, Ancona, Italy

Wilfried Elmenreich
University of Klagenfurt, Austria

Natividad Martínez Madrid
Universidad Carlos III de Madrid, Spain

Ralf E.D. Seepold
Universidad Carlos III de Madrid, Spain

xiii

Part I

Multimedia Systems

Chapter 1

Smart Wireless Image Sensors for Video
Surveillance

Massimo Conti and Simone Orcioni

Abstract This chapter presents an analysis of image processing performance analysis of
wireless image sensors networks for video surveillance. The dependence of
image quality, network throughput and channel noise sensitivity with image
enhancement algorithms, image compression and wireless protocols have been
investigated. The objective of the work is to give useful guidelines in the
design of image wireless networks over low cost, low power, low rate
Bluetooth and Zigbee wireless protocols.

Keywords Image processing, Video surveillance, Wireless network, Bluetooth, Zigbee.

1.1 Introduction

Nowadays image sensors based on CMOS technology are very common in
portable devices. They present many useful characteristics offering low-
power and low-cost features as well as high quality. The problem of
improving the quality of images acquired in critical illumination conditions
is interesting for consumer video, photo camera applications and for video
surveillance applications. As a consequence, there is a growing interest on
efficient and low complexity implementations of nonlinear algorithms for
image enhancement [1].

Research on sensor networks was originally motivated by military
applications; however the availability of low-cost sensors and
communication networks has resulted in the development of many other
potential applications, like Infrastructure Security, Environment and Habitat
Monitoring, Health Monitoring, Industrial Sensing and Traffic Control [2,3].

 3 N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_1,
© Springer Science+Business Media B.V. 2009

DIBET, Università Politecnica delle Marche, Ancona, Italy, m.conti@univpm.it

4 M. Conti and S. Orcioni

This contribution focuses on the analysis of image processing algorithms
for wireless networks of smart low power image sensors for video
surveillance.

A sensor network design is influenced by many factors, which include
fault tolerance, scalability, production costs, operating environment,
hardware constraints and power consumption [4–6]. These factors are
important because they serve as a guideline to design the protocol, the
network topology, the processing performed by each sensor, the data to be
transmitted, the application layer, the hardware/software implementation of
the transmitter and receiver and of the image processing.

Video surveillance recently is becoming one of the promising
applications for wireless networks [7–18]. Hengstler [16] presented a tool

pment of applications for wireless
sensor networks.

In Hengstler et al. [17], a smart camera architecture is presented for local
processing, with the aim of facilitating distributed intelligent surveillance.
The paper focuses mainly on the efficient data link layer utilizing IEEE
802.15.4 MAC for enabling data exchange between smart cameras.

The IBM smart surveillance system [18] is able to monitor, manage
surveillance data, detect, track and classify objects, with the possibility to
manage in real time the surveillance system on the Web. But the aspect of
low power for implementation on battery supplied wireless cameras is not
addressed in the system.

The wireless sensor node can usually be equipped with a limited power
source. Sensor node lifetime, therefore, shows a strong dependence on
battery lifetime. The switching off of few nodes in a sensor network can
cause significant topological changes and might require a re-organization of
the network. Hence, power management requires additional importance. For
these reasons researchers are currently focusing on the design of power-
aware protocols and algorithms for sensor networks.

The main task of a sensor node in a sensor field is to detect events,
perform quick local data processing, and then transmit the data. Power
consumption can hence be divided into three domains: sensing,
communication, and data processing.

Sensing power varies with the nature of applications. Sporadic sensing
might consume less power than constant event monitoring. The complexity
of event detection also plays a crucial role in determining energy dissipation.

The main specifications to be considered in the design of image sensor
wireless networks are the quality of the image to be transmitted, the number
of images per second that can be transmitted, the power dissipated for image
processing and transmission and the insensitivity with noise in the channel.

based on Matlab for investigation and develo

1 Smart Wireless Image Sensors for Video Surveillance 5

Image processing algorithms, image compression algorithms, sensor
node architecture, wireless protocol from application layer to physical layer,
network topology must be analyzed and all parameters should be tuned in a
system level simulation of the complete sensor network in order to optimize
the performances of the complete system.

Image compression in the sensor reduces data to be transmitted, but this
causes a reduction in image quality and a greater sensitivity to noise.
Conversely, image processing can be performed to improve quality before
compression in the sensor, but the processing will increase the power
dissipated by the sensor itself and the compression ratio will be reduced with
a consequent increment in the transmission power and sensitivity to noise.
Image processing on the receiver side, after applying compression, does not
allow the same quality, but it reduces power dissipation on the sensor node.

This work presents an analysis of the dependence of image quality,
network throughput, and channel noise sensitivity with image enhancement
algorithms, JPEG image compression parameters and wireless protocols.
In particular ZigBee and Bluetooth wireless standard will be considered.

In Section 1.2 the architecture of the smart wireless sensor node is
presented, and some results obtained with Matlab simulations are shown.
Section 1.3 briefly presents the ZigBee and Bluetooth wireless standards and
shows an analysis of the performance of a wireless sensor network obtained
with Matlab and SystemC.

1.2 Smart Wireless Image Sensor

The processing flow of a Smart Wireless Image Sensor is reported in
Fig. 1.1. Before JPEG compression, the image is processed by an image
enhancement algorithm, then the data are coded following the wireless
protocol, and noise in the channel can be added. Image enhancement is
applied to improve the quality of the image for successive image recognition
on the central control station.

In video surveillance a key aspect is the improvement in image quality in
bad illumination conditions. For example, it is extremely important to
identify details in a not illuminated part of the image, when another part of
the image is extremely illuminated. A lot of work is devoted to this kind of
problem which takes inspiration from the retinex algorithm of Land [19].
Following the retinex approach the image I(x,y) is considered as the product
of two terms: the illumination L(x, y) and the reflectance R(x, y). The retinex
algorithm requires the calculus of very complex functions, such as
logarithm, exponential function and division, functions that are very
expensive in terms of power dissipation and hardware complexity.

6

Fig. 1.1 Signal processing flow in the smart wireless image sensor

Recently a simplified version of the retinex algorithm has been
developed [20] with a strong reduction in the complexity, but acceptable
quality in image processing. The low complexity and low power dissipation
of this simplified algorithm, that we will call “nonlinear stretching” in the
rest of the paper, allow the implementation of image processing in the
sensor.

The quality of the image can be improved with nonlinear stretching
algorithm, even in case of image compression, if image processing is
performed before compression.

Widely used image compression algorithms are JPEG and JPEG2000.
The effect on the image quality with JPEG and JPEG2000 compression over
a ZigBee network has been investigated [21], with the conclusion that
JPEG2000 reaches better quality, but with the cost of much higher
complexity. JPEG should be preferred, if the key aspects are the low cost
and low power of the sensor node, as it is in our goal.

In this work we will compare retinex [19] and nonlinear stretching [20]
image enhancement algorithms for different values of quality JPEG
compression in presence of errors in the data stream due to noise in the
channel. The measure used for the quality of image processing is the PSNR:

2

10
210 log

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

k

PSNR
MSE

 (1.1)

where k is the number of bits representing each pixel, and MSE is the
mean square error defined as

()2
1 2

1 1

1 (,) (,)
= =

= −
⋅ ∑ ∑

n m

i j
MSE I i j I i j

n m
 (1.2)

where n and m are the dimensions of the images and I1 and I2 are the
images to be compared. Many black and white images have been used to
verify the quality of the algorithm. The simulations have been performed in
MATLAB.

Figure 1.2a reports an original black and white image in windows bitmap
(bmp) format (320×240, black and white, 8 bit resolution, 76.800 bytes), that
can be a good test for critical illumination conditions in video surveillance.
Figure 1.2b reports the original image after a JPEG compression with 20%
quality. Figure 1.2c reports the image after a jpeg compression with 20%
quality, successive to the nonlinear stretching. Figure 1.2d reports the image

jpeg
encoder

wireless
protocol

bmp
image

image
enhancement +

noiseSmart Wireless Image Sensor Central Control Station

wireless
protocol

jpeg
decoder

bmp
image

 M. Conti and S. Orcioni

p
t
t

Smart Wire

after a jpeg
processing, th
the contrast is
the cases the
enhancement

(a) original im

(c) JPEG Q20

(e) nonlinear

F

eless Image S

g compressio
he improvem
s higher if co
e effect of t
t does not red

mage in bmp fo

0 after nonline

stretching afte

Fig. 1.2 Image a

Sensors for Vi

on with 20%
ment in the qu

mpared to the
the strong JP
uce¡ the quali

ormat

ear stretching

er JPEG Q20

fter different pro

ideo Surveilla

% quality s
uality of the d
e nonlinear st
PEG compres
ity of the ima

(b) original

(d) JPEG Q2

(f) retinex a

ocessing and com

ance

successive to
dark areas is
tretching algo
ssion (Q20)
age in an evid

image in JPEG

20after retinex

fter JPEG Q20

mpression tasks

7

o a retinex
evident and

orithm. In all
after image

dent way.

G Q20;

x;

0.

1

8

Image enhancement (low complexity nonlinear stretching or retinex)
must be performed to recognize the details of the image, indispensable for
video surveillance. To verify the possibility to implement the image
enhancement not in the sensor but in the receiver that has no energy
limitations, we implemented the enhancement after JPEG compression,
indispensable for reducing data rate and transmission power.

Figure 1.2e reports effects of nonlinear stretching applied to the image
after a JPEG compression with 20% quality; and in Figure 1.2f retinex is
applied to the image after a JPEG compression with 20% quality. The details
of the image are no more visible. This means that the image enhancement
must be performed in the image sensor before JPEG compression.

Figure 1.3 reports the compression ratio achieved applying JPEG to the
original bmp image and after nonlinear stretching or retinex algorithms are
applied, for different values of JPEG compression. The image enhancement,
increasing the details, reduces the JPEG compression, as expected. But in the
nonlinear stretching case, the compression is still very high.

Figure 1.4 reports the PSNR in dB for different values of the quality of
JPEG compression and for the original, after nonlinear stretching or after
retinex algorithms are applied. As an example the difference between the
original (Figure 1.2a) and compressed image (Figure 1.2b) expressed in
PSNR is 36 dB, while the PSNR between the retinex transformed image and
compressed of retinex transformed image (Figure 1.2d) is 23 dB. This means
that the image enhancement algorithm makes the JPEG compression critical.

Statistical simulation has been performed inserting in a random position
errors in the images and the PSNR has been calculated. Figure 1.4 reports
the average values over 1000 simulations of the PSNR when an error of only
1 bit is inserted in each image, for different values of the quality of JPEG
compression.

Figure 1.5 reports the decrement in the PSNR (ΔPSNR) as a function of
the number of bits of error inserted in each image. The dots represent the
numerical simulations with different values of JPEG compressions. The
dependence of ΔPSNR with JPEG quality is not relevant, as can be seen
from Figs. 1.4 and 1.5. The statistical simulation shows that the degradation
of the quality of the image does not strongly depend on the JPEG
compression quality or on the size of the image but on the number of bits of
error inserted. The image quality is still acceptable for video surveillance
applications for a PSNR higher than 20dB corresponding to about 5 bits of
error inserted in the image. From the simulations the following model of
ΔPSN has been derived as a function of the en number of bits of error
inserted in the image

 M. Conti and S. Orcioni

Smart Wireless Image Sensors for Video Surveillance 9

ln()ePSNR a b nΔ = + (1.3)
The model is shown in Fig. 1.5, the parameters a and b are obtained

fitting the experimental data.

Fig. 1.3 Compression ratio with respect to the original bmp image

Fig. 1.4 PSNR in dB for different values of the JPEG quality, for the original, after nonlinear

stretching or after retinex are applied, with an error of 1 bit and without errors

Fig. 1.5 Decrement in PSNR in dB for different values of errors in the image

0%

20%

40%

60%

Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90
Jpeg Quality

Compression ratio

retinex

nonlinear
stretching

original

10

20

30

40

50

Q 10 Q 20 Q 30 Q 40 Q 50 Q 60 Q 70 Q 80 Q 90
Jpeg Quality

PSNR

original

BER=0

nonlinear stretching

retinex

1 error

0

10

20

30

40

0 10 20 30 40 50 60

original nonlinear stretching model model

number of error bits

Δ PSNR

1

10

1.3 Wireless Image Sensor Network Performance Analysis

A great number of standards have been defined for wireless
communications, each one for different applications and with different
characteristics.

Between them, widely used are the WiFi, Bluetooth, Home-RF, ZigBee,
Wireless USB and Certified Wireless USB. In this work we will study the
performance of Bluetooth [22] and ZigBee [23–25] for video surveillance
applications, the topology considered is a star connection, as shown in
Fig. 1.6 with images transmitted from the sensors to the central control
station.

Bluetooth (IEEE 802.15.1) is mainly used for devices that have regular
charge (e.g. mobile phones) and in applications like: hands-free audio, file
transfer. The data rate is 1 Mb/s using a 1-MHz channel with an effective
maximum bandwidth of 721kb/s. Bluetooth operates under a Time Division
Duplex (TDD) polling scheme with a Frequency Hopping Spread Spectrum
(FHSS) technique, with Gaussian Frequency Shift Keying (GFSK)
modulation. Bluetooth allows many degrees of freedom to the designer, such
as the choice of the different type of packets (DH1, DH3, DH5, DM1, DM3,
DM5).

The ZigBee (IEEE 802.15.4) standard has been developed specifically
for remote monitoring and control. ZigBee networks are designed to save the
power of the slave nodes. For most of the time, a slave device is in deep-
sleep mode and wakes up only for a fraction of time to confirm its presence
in the network. The targets of ZigBee are low cost applications where the
battery cannot be changed (battery life time of 1–2 years) with limited
requirements of bandwidth. The maximum packet size is 133 bytes, but only
102 bytes can be used for data transmission. The supported nominal data
rates are 250 kb/s, and the effective maximum date rate is about 190 kb/s.
The ZigBee MAC layer uses the CSMA-CA algorithm to access the channel:
each device tries to use the channel after a random delay. This algorithm
yields high throughput and low latency for low duty cycle devices, like
sensors and controls. Unfortunately the CSMA-CA algorithm reduces the
effective maximum information rate to about 125 kbps in case of a single
node that uses the channel. ZigBee is preferable for a network infrequently
used and passing small data packets.

The Lower layers of Bluetooth and ZigBee have been implemented in
SystemC [26–28]. Figure 1.7 shows the maximum network throughput as a
function of the BER for Zigbee and Bluetooth, for different number of
sensors (from 1 to 6) and for different types of Bluetooth packets. The data
have been obtained with SystemC simulations [26, 27] and similar data are
reported for the Bluetooth standard [29]. We considered a star topology with

 M. Conti and S. Orcioni

Smart Wireless Image Sensors for Video Surveillance 11

1 master and n slaves, continuously transmitting images to the master. In a
Bluetooth network the maximum throughput is independent of the number of
slaves, therefore in Fig. 1.7 only one line can be seen for each type of
Bluetooth packet.

Fig. 1.6 Smart wireless sensor network topology

Fig. 1.7 Effective network throughput of Bluetooth and Zigbee as a function of the BER

Fig. 1.8 BER as a function of signal to noise ratio for Bluetooth and Zigbee

In a Zigbee network the maximum throughput increases lightly with the
number of sensors due to the CSMA-CA algorithm, therefore 6 curves are
visible in Fig. 1.7 for the Zigbee network: the lower one corresponds to the
network with 1 coordinator and 1 sensor, the upper one corresponds to the
network with 1 coordinator and 6 sensors. The throughput of the Zigbee

Smart Wireless
Image Sensor

Central Control Station

Smart Wireless
Image Sensor

Smart Wireless
Image SensorSmart Wireless

Image Sensor

0

100

200

300

400

500

600

700

0,00001 0,0001 0,001 0,01 0,1

Th
ro

ug
hp

ut
(k

bi
t/

 s
)

Bluetooth DH5
DH3

DH1

DM5

DM3

DM1

Zigbee

BER

1,E-09

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00

-10 -5 0 5 10 15
S/N (dB)

B
E

R ZigBee

Bluetooth

1

12

network is, in general, lower than Bluetooth throughput: the best type of
Bluetooth packet depends on the BER.

The DM packets use 10/15 FEC with CRC allowing a correction of one
bit of error for each 10 bit of data with the cost of reduction of throughput
without errors; conversely the effective throughput is higher for DM packets
with respect to DH packets for high values of BER. Bluetooth gives higher
bandwidth, but the cost and the power dissipation for transmission and for
the protocol processing is higher with respect to Zigbee.

Figure 1.8 shows the BER as a function of the signal to noise ratio for
Bluetooth and Zigbee obtained from the 802.15.4 specifications [24,25], and

Bluetooth.
The number of images per second that can be transmitted by each sensor

in the network depends on the size of the image, on the protocol, on the
noise and on the number of devices in the network. As an example we
consider the transmission of the image shown in Fig. 1.2c, that is the after
nonlinear stretching and JPEG Q20 compression with a size of 25216 bits. In
previous section, in particular in Figs. 1.3 and 1.4, it has been evidenced that
nonlinear stretching with JPEG Q20 is a good compromise allowing good
quality of image for video surveillance purposes, strong size reduction with
respect to the 614400 bits of the original bmp image, and reduced decrement
of PSNR in presence of noise.

Fig. 1.9 Number of images per second that can be transmitted by each sensor as a function of

the number of sensors in the network, for a Zigbee network and a Bluetooth network with
different type of packets

Figure 1.9 shows the number of images (25216 bit size) per second that
can be transmitted in absence of noise in the channel by each sensor as a
function of the number of sensors in the network, for a Zigbee network and a
Bluetooth network with different types of packets. In a Bluetooth network
the throughput from each sensor to the master is simply the throughput
achievable in the case of a network with only one sensor divided by the

0

10

20

30

1 2 3 4 5 6
n. of devices

Im
ag

es
/ s

ec

Bluetooth DH5

DH3

DH1

DM5

DM3

DM1

Zigbee

it shows that Zigbee coding is more robust in presence of noise with respect to

 M. Conti and S. Orcioni

Smart Wireless Image Sensors for Video Surveillance 13

number of sensors. In a Zigbee network, due to the randomness of the
CSMA-CA channel access algorithm, the throughput from each sensor is
higher than the throughput achievable in the case of a network with only one
sensor divided by the number of sensors.
An analysis of the images sent in the networks in presence of noise can be
obtained combining the analysis shown in Figs. 1.3 and 1.4 that considers
the image enhancement algorithms and JPEG compression factor, with the
analysis shown in Figs. 1.7 and 1.8, that considers the network throughput in
presence of noise.

The BER in the transmission of a JPEG image degrades the quality of the
image. In many cases the image cannot be recovered. This means that the
image should be retransmitted. Figure 1.10 shows the number of images per
second that can be send to the coordinator of a Zigbee network with 6
sensors as a function of the signal to noise ratio for the original bmp image
not compressed, for the original image with JPEG Q20 and Q90
compression, for the image processed by retinex and successively
compressed with JPEG Q20 and Q90, and finally for the image processed by
nonlinear stretching and successively compressed with JPEG Q20 and Q90.

The number of images not compressed with JPEG (bmp in Fig. 1.10) per
second is extremely low. The choice of a suitable image enhancement
algorithm and the JPEG compression factor is important not only for the
image quality but also for the image rate, and consequently for the power
dissipation. The image rate can be improved 70 times with respect to bmp
image, allowing the use of Zigbee for video surveillance applications. The
Zigbee coding is efficient even in presence of noise, as shown in Fig. 1.8,
therefore the image rate is degraded only with high values of noise.

Figures 1.11 and 1.12 show the same results of Fig. 1.10 but for a
Bluetooth Network using DM1 and DH5 packets, respectively. The DM1
packets give the lower data rate with respect to the other Bluetooth packets;
therefore the performances are worse than Zigbee even with low values of
noise. Conversely the data rate of DH5 packets is strongly dependent on
noise. Good results are evidenced using DH5 packets with low values of
noise but the Zigbee performances are much more insensitive to noise.

1.4 Conclusions

Many simulations have been performed to investigate the effect on PSNR
and on ZigBee and Bluetooth data rate of the parameters of JPEG
compression for different image enhancement algorithms and in presence of
noise in the channel.

1

14

In conclusion the retinex algorithm is more sensitive to the noise with
respect to the nonlinear stretching that gives good image enhancement even
with JPEG compression and in presence of noise.

Both ZigBee and Bluetooth protocols are suitable for video surveillance
applications; Zigbee seems to be more robust to noise with respect to
Bluetooth. Conversely the frequency hopping technique used by Bluetooth
makes the network more insensitive to the interference with other 2.4GHz
networks.

Fig. 1.10 Images / s that can be send to the coordinator of a Zigbee network with 6 sensors as

a function of S/N for different image processing in the sensor

Fig. 1.11 Images / s that can be send to the master of a Bluetooth network using DM1 packets

as a function of S/N for different image processing in the sensor

Fig. 1.12 Images / s that can be send to the master of a Bluetooth network using DH5 packets

as a function of S/N for different image processing in the sensor

0,1

1

10

100

-2 0 2 4 6 8 10 12 14
S/N (dB)

original Jpeg Q20

Im
ag

es
/ s

ec

nonlinear stretching
retinex Jpeg Q90

ZigBee

bmp

0,1

1

10

100

-2 0 2 4 6 8 10 12 14
S/N (dB)

original

Jpeg Q20

Im
ag

es
/ s

ec

nonlinear stretching
retinex Jpeg Q90

Bluetooth DM1

bmp

0,1

1

10

100

-2 0 2 4 6 8 10 12 14
S/N (dB)

original

Jpeg Q20

Im
ag

es
/ s

ec

nonlinear stretching
retinex

Jpeg Q90

Bluetooth DH5

bmp

 M. Conti and S. Orcioni

Smart Wireless Image Sensors for Video Surveillance 15

References

1. L.-W. Lai, C.-H. Lai, Y.-C. King, “A Novel Logarithmic Response CMOS Image Sensor
with High Output Voltage Swing and In-Pixel Fixed-Pattern Noise Reduction”, IEEE
Sensors Journal, 4(1), 122–126, Feb. 2004.

2. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Capirci, “Wireless Sensor Networks:
A Survey”, Computer Networks 38, 393–422, 2002.

3. C.-Y. Chong; S.P. Kumar, “Sensor networks: evolution, opportunities, and challenges”,
Proceedings of the IEEE, 91(8), Aug. 2003.

4. A.P. Chandrakasan, R. Min, M. Bhardwaj, S.H. Cho, A. Wang, Power Aware Wireless
Microsensor Systems, keynote Paper ESSCIRC, Florence, Italy, September 2002.

5. K. Sohrabi, J. Gao, V. Ailawadhi, G.J. Pottie, Protocols for Self-Organization of a
Wireless Sensor Network, IEEE Personal Communications, Vol. 7, No. 5, Oct. 2000.

6. W. Ye, J. Heidemann, D. Estrin, An Energy-Efficient MAC Protocol for Wireless Sensor
Networks, In Proceedings of the 21st International Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2002), New York, NY, USA,
June, 2002.

7. L. Hampapur, J. Brown, A. Connell, N. Ekin, M. Haas, H. Lu, S. Merkl, S. Pankanti,
“Smart Video Surveillance: Exploring the Concept of Multiscale Spatiotemporal
Tracking,” IEEE Signal Processing Mag., 22(2), 38–51, Mar. 2005.

8. G.L. Foresti, C. Micheloni, L. Snidaro, P. Remagnino, T. Ellis, “Active Video-Based
Surveillance System: The Low-Level Image and Video Processing Techniques Needed
for Implementation,” IEEE Signal Processing Mag., vol. 22, no. 2, pp. 25–37, Mar.
2005.

9. R. Kleihorst, A. Abbo, V. Choudhary, B. Schueler, “Design Challenges for Power
Consumption in Mobile Smart Cameras,” in Proc. COGnitive Systems with Interactive
Sensors (COGIS 2006), Mar. 2006.

10. M. Rahimi, R. Baer, O.I. Iroezi, J.C. Garcia, J. Warrior, D. Estrin, M. Srivastava,
“Cyclops: In Situ Image Sensing and Interpretation in Wireless Sensor Networks,” in
Proc. 3rd International Conference on Embedded Networked Sensor Systems (SenSys
2005), Nov. 2005, pp. 192–204.

11. F. Dias Real de Oliveira, P. Chalimbaud, F. Berry, J. Serot, F. Marmoiton, “Embedded
Early Vision Systems: Implementation Proposal and Hardware Architecture,” in Proc.
COGnitive systems with Interactive Sensors (COGIS 2006), Mar. 2006.

12. I. Downes, L. Baghaei Rad, H. Aghajan, “Development of a Mote for Wireless Image
Sensor Networks,” in Proc. COGnitive Systems with Interactive Sensors (COGIS 2006),
Mar. 2006.

13. Z.-Y. Cao, Z.-Z. Ji, M.-Z. Hu, “An Image Sensor Node for Wireless Sensor Networks,”
in Proc. International Conference on Information Technology: Coding and Computing
(ITCC 2005), 2, 740–745, Apr. 2005.

14. R. Kleihorst, B. Schueler, A. Danilin, M. Heijligers, “Smart Camera Mote with High
Performance Vision System,” ACM SenSys 2006 Workshop on Distributed Smart
Cameras (DSC 2006), Oct. 2006.

15. M. Bramberger, A. Doblander, A. Maier, B. Rinner, H. Schwabach, “Distributed
Embedded Smart Cameras for Surveillance Applications,” in IEEE Computer Mag.,
39(2), 68–75, Feb. 2006.

16. S. Hengstler and H. Aghajan, “WiSNAP: A Wireless Image Sensor Network Application
Platform”, 2nd Int. Conf. on Testbeds and Research Infrastructures for the Development
of Networks and Communities (TridentCom), March 2006.

1

16

17. S. Hengstler, D. Prashanth, S. Fong, H. Aghajan, “MeshEye: A Hybrid-Resolution Smart
Camera Mote for Applications in Distributed Intelligent Surveillance”, Information
Processing in Sensor Networks (IPSN-SPOTS), April 2007.

18. L. Brown, J. Connell, A. Hampapur, M. Lu, A. Senior, C.-F. Shu, Y. Tian, “IBM Smart
Surveillance System (S3): A Open And Extensible Framework For Event
BasedSurveillance”, Proc. of the Int. Conf. on Advanced Video- and Signal-based
Surveillance September 2005.

19. E.H. Land, “Recent Advances in Retinex Theory”, Vision Research, 26(1), 7–21, 1986.
20. T. Balercia, A. Zitti, H. Francesconi, S. Orcioni, M. Conti, “FPGA implementations of a

simplified Retinex image processing algorithm”, Proc. of IEEE ICECS ’06 Int. Conf. on
Electronics, Circuits and Systems, Nice, France, pp.176–9, December 10–13 2006.

21. G. Pekhteryev, Z. Sahinoglu,P. Orlik, G. Bhatti, “Image transmission over IEEE
802.15.4 and ZigBee Networks”, Proc. of IEEE ISCAS 2005, Kobe, Japan. pp.3539–
3542.

22. Bluetooth SIG, “Specification of the Bluetooth system version 1.1,” Feb 2001.
23. “ZigBee White Paper” and “ZigBee Specifications” in www.zigbee.org
24. IEEE 802.15.4TMStd.– 2003 – Wireless Medium Access Control and Physical Layer

Specifications for Low-Rate Personal Area Networks (WPANs).
25. IEEE 802.15.4TM Std.–2006– Revision of IEEE 802.15.4TM Std. – 2003.
26. M. Caldari, M. Conti, P. Crippa, G. Marozzi, F. Di Gennaro, S. Orcioni, C. Turchetti,

“SystemC Modeling of a Bluetooth Transceiver: Dynamic Management of Packet Type
in a Noisy Channel” Proc of DATE 2003, Munchen, pp.214–219.

27. M. Conti, D. Moretti, “System Level Analysis of the Bluetooth Standard”, Proc of
DATE 2005, München, 3, 118–123.

28. A. Mignogna, M. Conti, M. D’Angelo, M. Baleani, A. Ferrari, “Transaction Level
Modeling and Performance Analysis in SystemC of IEEE 802.15.4 Wireless Standard”
DSD’2008, Proc. of Euromicro Conf. on Digital System Design, 3–5 September, 2008,
Parma, Italy.

29. T.Y. Chui, F. Thaler, W.G. Scanlon, “A Novel Channel Modeling Technique for
Performance Analysis of Bluetooth Baseband Packets”, ICC 2002. IEEE International
Conf. on Communications 2002, 1, 308–312, 28 April-2 May 2002.

 M. Conti and S. Orcioni

Chapter 2

Policy Management Architecture for Multimedia
Services in a Multi-Provider Scenario

Mario Ibáñez, Natividad Martínez Madrid and Ralf Seepold
Universidad Carlos III de Madrid, 28911 Leganés (Madrid), Spain,

17 N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_2,
© Springer Science+Business Media B.V. 2009

Abstract The management of multimedia services integrated into a service platform has
been taken as a starting point for the development of a new model that
supports virtualization of the platform concept. The virtualization of provider
dependent configuration frameworks is introduced to isolate different service
providers during the installation and maintenance of new services contracted
by the end user. In addition, the virtualization has to be enhanced with a
system that provides a management of common resources and the way of
accessing to them. That is made with a set of policy management rules and
procedures that are described in this paper. The model has been evaluated in a
multi-provider case study with focus on multimedia data management.

Keywords Service platforms, Residential gateways, Policy management.

2.1 Introduction

Multimedia services are arriving to our homes. Each month, new offers of
Video on Demand, TV over IP, etc. are being including in the service
catalogue of the telecom operators. It is important to enable a proper
infrastructure to the deployment of these services in the home. Therefore,
this infrastructure needs also to take into account that multiple multimedia
services arrive concurrently to the home network and it is needed to maintain
a certain Quality of Service (QoS).

The coexistence of multiple services demands a platform that is
dynamically managing the life cycle of all services. The OSGi platform

mario.ibanez@uc3m.es, natividad.martínez@uc3m.es, ralf.seepold@uc3m.es

18 M. Ibáñez et al.

provides a framework for the execution and management of services a. This
service platform allows installing and uninstalling different services in the
same device, the Residential Gateway (RGW). The RGW is placed at the
border of the home network and manages data flows that enter or leave the
home environment. Those flows correspond among others to multimedia
services that are managed by the applications installed in the OSGi platform.

In an open market, all services that the user has contracted can be served
by more than one service provider. This fact draws a different scenario in
which different administrators have to manage the RGW. Shared
management of a system is a complex task, with several consequences for
security. Different solutions decide to avoid or prohibit by definition more
than one user management of the RGW, limiting in this way the business
models and functionality. On the contrary, this chapter presents a solution
that allows to provide this kind of behavior. The solution consists in the
creation of new virtual platforms placed over the service platform to provide
isolation to the management of each administrator. That means that every
administrator of the service platform can modify its applications in the RGW
without the intervention of any other administrator.

In Section 2.2, the state of the art is presented and the OSGi technology
is introduced. In Section 2.3, the working scenario is presented and roles are
described in detail. Section 2.4 presents the software architecture of the
solution and Section 2.5 summarizes the results obtained. Finally, Sections
2.6 and 2.7 summarize the chapter and future work is presented.

2.2 State of the Art

The proposed management architecture is based on the OSGi service
platform which is used to manage services and hosts the management and
the virtualization systems of the platform. The next sections present an
analysis of related research work and a summary the relevant characteristics
of OSGi.

2.2.1 Related Work

The work presented in this paper concentrates on the development of a
service platform for a RGW oriented to multimedia services. A basic model
of a service platform has been presented by Hofrichter [1] and Waring [2]; a

a http://www.osgi.org

2 Policy Management Architecture for Multimedia Services 19

more complete and also updated definition is given by the Home Gateway
Initiative (HGI) [3]. Since service provisioning is relevant also for a multi-
provider scenario, a simple scenario based on OSGi is presented by Dueñas
[4]. It describes a scenario with different users involved in the management
and deployment of services in the RGW. Furthermore, two main users are
defined; the operator and the service provider. The operator is in charge of
managing the RGW and the service provider is in charge of providing
services. However, the service provider cannot manage services in the
RGW. This approach lacks support for multiple users managing the platform
at the same time but it presents a first approach to the management of RGW.

A different management approach is presented by Cho [5]. In this model,
the management of services is tackled as a policy access problem and it is
solved using the Role-Based Access Control (RBAC) model. This model
defines users, sessions, roles, permission and the associations between those
entities. Surrounding this model, an infrastructure and a protocol is created
to provide permission to service providers for managing services in the
RGW. The model includes an access provider who defines access rights for
the different service providers. The end users contract services, the model
notifies changes and enables the required permissions. This model is also
based on the assumption that only one of the different types of users has the
full control and thus takes the final decisions about the RGW configuration.
Again, this is not a multi-manager approach.

Finally, there is another relevant approach [6] that proposes different
users being members of the RGW management at the same time. In addition,
this paper proposes a concept of virtual platforms. Isolation is the basic
mechanism to separate different users and thus to avoid interaction. There
are only two different managers of the RGW, the operator controlling the
service platform and authorizes the service providers, while the service
providers actuate as users that can manage the virtual platforms. This
approach does not support an end user managing own bundles.

The solution shown in this chapter is based on the concept of
virtualization as the way of isolating different managers (access providers,
service providers, end users and system vendors). These managers can
simultaneously access to the RGW and configure its behavior modifying the
basic parameters of the router or installing new services. This is possible due
to the design of a new virtualization bundle installed in the OSGi platform.
This bundle provides the needed abstraction over the router and OSGi
platforms while providing isolation to the different virtual platforms. This
model is based on classical virtualization techniques.

20 M. Ibáñez et al.

2.2.2 The Open Service Gateway Initiative

OSGi [7] has been selected as the platform for the services in the RGW. The
OSGi specifications define a standardized, component oriented, computing
environment for networked services. Adding an OSGi Service Platform to a
networked device (embedded as well as servers) enables the capability to
manage the life cycle of the software components in the device from
anywhere in the network.

Software components can be installed, updated, or removed on the fly
without having to disrupt the operation of the device. The software
components or applications are called bundles. When activated, bundles may
register services to provide services to other bundles in the framework

OSGi specifications also define a way for the remote management of the
platform based on two components: the Remote Manager (in the mangers
side) and the Management Agent (in the RGW). There is no communication
protocol predefined.

The Remote Manager is a tool provided for the operator to control the
service platform. By using it, the operator can access all the functions
determined in the remote management interface. However, this manager is
not clearly defined in the standard, leaving a concrete implementations open,
i.e. to adapt to the specific properties of the management protocols used.

The Management Agent is the system’s entry point for the Remote
Manager. The Management Agent is a bundle that is called a Management
Bundle. It owns permission for the administration of the platform, so it can
manage the life cycle of the bundles in the RGW. The platform can have
more than one Management Agent, each one communicating with a different
remote manager and using different management protocols.

2.2.3 Virtualization

A solution based on virtualization has been developed to isolate the different
management agents of each service provider. As a result, each virtual
platform is managed by only one service provider. As the RGW can host
several virtual platforms, it will have several service providers. In the
following, the basics of virtualization are commented by Smith [8].

In general, virtualization is based in the concept of a machine being
constructed over different abstractions and interfaces. An abstraction is used
to ignore or simplify the lower level using a well defined interface.
Virtualization is a way of relaxing the constraints and increasing the
flexibility. It also constructs and isomorphism that maps a virtual system on

Policy Management Architecture for Multimedia Services 21

an underlying system and differs from an abstraction because the
virtualization does not necessarily hide details.

The products of the virtualization are the Virtual Machines (VM) that are
layers of software on top of the real machine to support the desired virtual
machine’s architecture. The VM can be used to replicate systems, providing
independency and isolation between each replication, or to emulate the
support of cross platform software, as well as to describe architectures that
do not correspond to a real machine.

A first action to be done in the design of the virtualization system is to
identify the interface for the virtual machine. Once the interface has been
indentified, two steps have to be taken to construct a virtual machine: Firstly,
a research about how to map resources of the underlying machine, and
secondly, the development of the actions which allow the communication
between the real machine and the virtual machine.

2.3 Working Environment

To understand the work presented, it is necessary to know the environment
in which this work has been carried out. Then, the device and networks
involved will be defined. After that, the different roles that the user of the
RGW can take will be presented, and finally, a business model is sketched
out.

2.3.1 Scenario Description

Figure 2.1 shows the key role of the RGW because it is located between the
Home Network and the Access Network. Therefore, it is an ideal place to
install a service platform that manages home services like for example
multimedia services. Moreover, the RGW provides router functionality that
connects to different networks.

As mentioned before, the OSGi framework, provides and execution
environment to host application services. Due to the different services and
data flows that the RGW must handle, it is necessary to install a
management service allowing an easy access to the configuration data of the
device. The management service provides access to the RGW configuration,
like for example the data flow definition in the router or the access to the life
cycle of services using OSGi.

The Home Network is full of different equipment for different issues
some of them are related to multimedia like TVs. These devices capable of
playing or serving multimedia content require an infrastructure to share

2

22 M. Ibáñez et al.

multimedia content which sometimes will arrive from outside home. The
management of those multimedia flows can be implemented with different
protocols, for example with UPnP installed as a service in the RGW.

The access network is managed by the access provider. This network is
in charge of providing multimedia content with QoS, like it is provided by
the service providers. The access network is also the entrance point for flows
from Internet.

Fig. 2.1 RGW environment

In a basic scenario, the management of the access networks as well as the
management of the RGWs of the end users is done by the access provider.
But in a more complex scenario the service providers can manage directly
the RGWs according to the services offered, while the access provider only
manage the traffic in the network to maintain the QoS.

2.3.2 Manager Roles

Four different managers, required for the setup of the scenario, are presented
in Fig. 2.2. The access provider is in charge of ensuring the QoS in the
access network. It also provides a way of connecting an end user to a service
provider. So, in relation with the RGW, it can adapt the configuration of the
QoS in the RGW to the needs in the network, and thus manage their
applications in the platform. Basically, this application will be the one in
charge of the management of the QoS.

The service provider will provide services to the end users. That means
that it will be necessary to modify the QoS parameters for its own services
and of course to manage its own services installed in the RGW. The service

Policy Management Architecture for Multimedia Services 23

provider is not present in the initial configuration of the RGW but this role is
added in the moment when a service is enabled in the RGW.

Fig. 2.2 Roles in the RGW

The system vendor is in charge of providing a service for updating the

firmware of the machine. Also this role needs to access to the management
of that service.

Finally, there is the end user. This role is mainly in charge of contracting
new services which are later installed by the services provider in the RGW.
Therefore, it needs to access to, at least, a basic configuration of its
applications. In a more broad sense, it is possible to find different end users
with different objectives and applications that can be managed
independently. For example a leisure user that hires video on demand
services and a professional user that hires bandwidth to make
videoconferences with a certain QoS. This differentiation of roles forces an
establishing of a user profiling configuration to define how the RGW will
behave.

All data related to the configuration of QoS or profiles will be managed
by a service which determines the policy to be followed by the RGW.

2.3.3 Business Model

Once the scenario has been setup and the different users have been
presented, a model is required that defines how relationships between them
are established.

2

24 M. Ibáñez et al.

We assume that the end user buys a RGW from a manufacturer or from
an access provider. In case the RGW has been bought from a manufacturer it
may cover a maintenance contract. The manufacturer needs to have a bundle
to update the basic installation of the device. In the second case, the
maintenance of the firmware can be done by the provider. In both cases, the
access provider needs permission to manage the RGW.

In case other relationships are created between the end user and the
access provider, the access provider has to install a bundle in the service
platform to manage the QoS parameters.

A third relationship is established between service and access providers:
Both agree that the service provider can use the access network to deliver
services. This relation includes an agreement to maintain the QoS in the
network.

The last relation is established between the end user and the service
provider in order to have a service in the home. This relation also implies the
installation of services in the RGW and the management of them by service
providers.

2.4 Policy Management Architecture

The management has evolved from the management of one operator to
multiple managers. Next two sections present the evolution from the mono-
provider management to the multi-provider management with virtualization.
Finally, details for this specific policy management are presented

2.4.1 Mono-Provider Management

The mono-provider management scenario (cf. Fig. 2.3) presents three main
devices in the access network; the RGW, the Auto-Configuration Server
(ACS) and the Service Aggregator. The ACS stores the data for configuring
the different services and installs them in the RGW as they are needed. The
service aggregator provides a unique place from where it is possible to
deploy services, although, they are owned by different service providers.

The solution implemented for the remote and automatic configuration of
the RGW is based on TR-069 protocol [9] from DSL. This protocol defines a
set of parameters to be exchanged between an (ACS) and the RGW to
provide the configuration. Moreover, the solution is modular and compound
of three bundles that provide the configuration which are briefly described in
Ibáñez [10].

Policy Management Architecture for Multimedia Services 25

Fig. 2.3 Access Network in a mono-provider scenario

2.4.2 Multi-Provider Management

The objective of virtualization is to add mechanisms to the OSGi platform
that allow having different instances of the platform that can be managed
independently. However, having all virtualizations inside the same OSGi
platform allows the use of common services as presented in Fig. 2.4.

Fig. 2.4 Virtualization use case

This figure shows a scenario where two service providers want to

manage the service platform. Both users of the RGW will manage the
lifecycle of the bundles installed that means since there is not root in the
gateway, one provider can uninstall bundles of the other provider. The new
model solves this problem providing a kind of virtualization. Each virtual

2

26 M. Ibáñez et al.

platform created presents to the user an interface to manage the/his whole
system as it would be the only authorized user.

The objective of virtualization is to add mechanisms to the OSGi
platform that allow having different instances of the platform that can be
managed independently.

 Fig. 2.5 Multi-provider functional block diagram in the RGW

The “Virtualization service” is a set of bundles that manages all virtual
platforms. It is in charge of creating new virtual platforms, managing the
registration of local and global services (Virtual Platform Manager),
monitoring (Bundle Monitor) the use of resources by bundles and providing
a generic access agent (Access Manager Bundle) to allow external entities to
create new virtual platforms. Permissions for creating virtual platforms and
installed services are checked and managed dynamically in the “Policy
Manager Bundle”. This bundle is usually managed by the access provider.

In addition to the infrastructure for virtualization there are virtual
platforms. Each one has its own bundles and services and its own manager
agent. In case of Fig. 2.5 there are two virtual platforms, one of them

Policy Management Architecture for Multimedia Services 27

corresponds to the one presented in the mono-provider approach and uses
two different Management Agents: “Network Configurator Bundle” and
“Virtual Platform Manager Bundle”. The Virtual Platform A is used to
manage the router automatically with TR-069 protocol. The Virtual Platform
M platform contains only one Management Agent, the “Management Servlet
Bundle” which is a servlet for manual management of both, router and
services. I.e. the bundles and services of the virtual platform and those
which are not in the virtual platform but which have been installed by the
provider.

This architecture implies four different kinds of users with different
roles: One is the end user who will be enclosed in a virtual platform via a
user interface. Furthermore, there is the system vendor user who will access
to the RGW in order to upgrade the firmware. A third user is the access
provider who defines the policies to access the RGW. Finally, the service
providers only access to their virtual platform to manage their own services.

2.4.3 Policy Management

Not all aspects of the management of the RGW by multiple users are
covered by virtualization as is the case of the access to the services of a user
by another user. In this case it is needed to establish a way of manage this
issues out of the virtualization. Like other configuration issues it must have
dynamic character due to dynamically added and deleted services and
service provider. There are different aspects to be considered as management
policies as the creation of virtual platforms.

When a service provider or an end user needs to create a virtual platform
they have to be entitled to create it. In case of end users, a preconfigured
virtual platform is provided by the RGW. This virtual platform owns bundles
which provides and interface for the management of the RGW by the user.
The task that this interface allows to do includes the creation of new end
users and new virtual platforms for those users; it has the role of an
administrator. In the case of service providers, the access provider has to
allow the creation of the virtual platform as is shown in Fig. 2.6. The user
hires a service from a service provider, then, this one sends a request for
access to the access provider because he wants to configure the RGW and to
allow the service provider to create a virtual platform. After that, the service
provider can create a virtual platform installing his management. Via his
management bundle he will install the service and he can configure the
router.

2

28 M. Ibáñez et al.

Fig. 2.6 Sequence diagram for creating a virtual platform for a service provider

The control of consuming resources is another issue required and thus

policies are needed. The bundle monitor checks the use of resources of the
different bundles with the possibility of grouping it into virtual platform. It is
possible to limit CPU resources, memory or bandwidth per virtual platform
or bundle so if this limit is exceeded, a corrective action can be performed.
These actions are: stop the bundle that is abusing of the resource, stop one of
the bundles of a virtual platform or do nothing if the use the resources are
not in a critical situation. The manger of the virtual platform is in charge of
defining which bundle is candidate to be stopped in case the virtual platform
exceeds the limit. The access provider rules the limits for the bandwidth. The
end user defines all limits for the use of CPU or memory although these
limits should be default ones.

A final issue to be managed by the Policy Manager Bundle is profiles of
different end users and their rights to install services. This is configured by
the end user root.

2.5 Results

A demo scenario has been developed to check the viability of the proposed
model. The RGW has been implemented in an embedded PC with a CPU
VIA C3 533MHz. The PC is running under Linux Ubuntu 6.06. J2SE 1.5 has
been selected for the installation and development of the bundles. For the
OSGi installation the distribution Oscar 1.5 [11] has been used and the

Policy Management Architecture for Multimedia Services 29

version 1.5 of the Click [12] software router has been selected. Also, two
multimedia servers have been created to simulate different service providers.

The demo scenario has been implemented with all devices described. The
access network has been simulated over an Ethernet network with injected
traffic. In the home network scenario two laptops have been used as players
of the multimedia content.

The complete functionality has been tested in a small case study. The
results obtained confirm the functionality of the model and the
implementation. It was possible to manage data flows and to change the QoS
for the simulated multimedia services.

2.6 Conclusions

This chapter presents a model for the management of a RGW in a multi-
provider scenario. It is based on the virtualization of the service platform
that runs in the RGW. This virtualization is enhanced by a management of
policies and aspects as common resources management and access policies.

It provides service and device integration independently from any
technology, and furthermore, it interconnects the home network to the access
network. The model proved to provide the mentioned capabilities without
imposing a restriction on the number of remote management units or service
providers. The feature to provide policy management of the different
resources has been realized via new services that have been added to the
RGW platform. These services are sharing several infrastructural framework
parts in order to keep the overall overhead low.

2.7 Future Work

One aspect of the future work will be dedicated to further modularize the
virtual platform architecture and thus to provide a pool of features for a
multi-provider concept derived from the current needs. A second part of the
work is to integrate the virtual platform prototype into a gateway provided
by network operators. It is assumed that several services can be omitted
since not each RGW will need to provide the full set of functionalities
contained in the proposed model. Finally, as a more ambitious way, it is
planned to provide the needed functionality for a device connected to
different access networks.

2

30 M. Ibáñez et al.

Acknowledgment This work has been partly supported by the Multi Service
Access Everywhere (IST-Program; MUSE-IST 026442) [13] project that is
an Information Society Technologies (IST) priority of The Sixth Framework
Program (FP6) of the European research activities and by the PLANETS
project [14] (MEDEA+ A306 funded by the Spanish Ministry of Industry;
FIT-330220-2005-111), and finally, by the MEC I+D project InCare-
FAMENET. Ref: TSI2006-13390-C02-02.

References

1. K. Hofrichter, “The Residential Gateway as Service Platform”. ICCE, International
Conference on Consumer Electronics. Jun. 2001. ISBN: 0-7803-6622-0

2. D. Waring, “Residential Gateway Architecture and Network Operations,” International
Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC) document: JTC 1/SC 25/WG 1 N 848, May 1999

3. Home Gateway Initiative,http://www.homegatewayinitiative.com, June 2008
4. J.C. Dueñas, J.L. Ruiz and M. Santillán, “An End-to-End Service Provisioning Scenario

for the Residential Environment”, IEEE Communications Magazine, vol. 43, no. 9. Sep.
2005

5. E. Cho, C. Moon, D. Park and D Baik, “An Effective Policy Management Framework
Using RBAC model for Service Platform based on Components”, Software Engineering
Research, Management and Applications, 2006. Fourth International Conference on,
(09–11), 281–288. Aug. 2006. ISBN: 0-76952-656-X

6. Y. Royon, S. Frénot and F. Le Mouel, “Virtualization of Service Gateways in Multi-
provider Environments”, 9th International SIGSOFT Symposium on Component-Based
Software Engineering (CBSE06), Stockholm (Sweden), Jun. 2006

7. Open Service Gateway Initiative (OSGi) Alliance. Jun. 2007. http://www.osgi.org
8. J.E. Smith and R. Nair, “Virtual Machines: versatile platforms for systems and

processes”, Elsevier, June 2005. ISBN: 1-55860-910-5
9. DSL Forum, “TR-069: CPE WAN Management Protocol”, May 2004.

http://www.dslforum.org/aboutdsl/Technical_Reports/TR-069.pdf
10. M. Ibañez, N. Martínez Madrid and R. Seepold, “An OSGI-based Model for Remote

Management of Residential Gateways”, LNCS: 10th Asia-Pacific Network Operations
and Management Symposium, APNOMS 2007, Vol. 4773, Springer LNCS, ISSN: 0302-
9743, 2007

11. Oscar OSGi platform, Jun. 2007. http://forge.objectweb.org/projects/oscar/
12. The Click router, Jun. 2007. http://www.pdos.lcs.mit.edu/click/
13. Multi Service Access Everywhere (MUSE) European Project, MUSE-IST 026442. Jun.

2008. http://www.ist-muse.org/
14. Platforms for Networked Service Delivery (PLANETS), MEDEA+ project A-121,

mostly financed by the Spanish Ministry of Industry under project Num. FIT-330220-
2005-111, Jun. 2008. http://www.medeaplus.org

Chapter 3

Embedding Multi-Task Address-Event-
Representation Computation

Carlos Luján-Martínez, Alejandro Linares-Barranco, Gabriel Jiménez and
Antón Civit
Depatment Arquitectura y Tecnología de Computadores, Universidad de Sevilla, Sevilla,
SPAIN, cdlujan@atc.us.es, alinares@atc.us.es, gaji@atc.us.es, civit@atc.us.es

Abstract Address-Event-Representation, AER, is a communication protocol that is
intended to transfer neuronal spikes between bioinspired chips. There are
several AER tools to help to develop and test AER based systems, which may
consist of a hierarchical structure with several chips that transmit spikes
among them in real-time, while performing some processing. Although these
tools reach very high bandwidth at the AER communication level, they require
the use of a personal computer to allow the higher level processing of the
event information. We propose the use of an embedded platform based on a
multi-task operating system to allow both, the AER communication and
processing without the requirement of either a laptop or a computer. In this
paper, we present and study the performance of an embedded multi-task AER
tool, connecting and programming it for processing Address-Event
information from a spiking generator.

Keywords Address-Event-Representation, AER tool, embedded AER computation.

3.1 Introduction

Living creatures are able to realize tasks that are not easily done by
traditional computation systems. We can receive a huge amount of visual
information, distinguish an object in motion, infer its future position and act
on our muscles to take it in the order of milliseconds. Neuro-informatics
aims to emulate how living beings process data. Efforts are being made in
recent years by the research community [1] to develop VLSI chips that
perform bio-inspired computation.

31N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_3,
© Springer Science+Business Media B.V. 2009

32 C. Luján-Martínez et al.

Address-Event-Representation, AER, was proposed by the Mead lab in
1991 for communicating between neuromorphic chips with spikes [2]. There
is a growing community of AER protocol users for bioinspired applications
in vision, audition systems and robot control, as demonstrated by the success
in the last years of the AER group at the Neuromorphic Engineering
Workshop series [3]. The goal of this community is to build large multi-chip
and multi-layer hierarchically structured systems capable of performing
massively-parallel data-driven processing in real-time [4]. A deeper
presentation of AER will take place in Section 3.2. These complex systems
require interfaces to interconnect them and to connect them to PCs for
debugging and/or high level processing. There is a set of AER tools based on
reconfigurable hardware that can be connected to a computer. They achieve
these purposes with a very high AER bandwidth but with the need of a PC
for the higher level processing. A new philosophy was born at the last
Workshop on Neuromorphic Engineering (Telluride, 2006) to improve this,
which is based in the use of an embedded GNU/Linux system running
over an embedded powerful microprocessor with network connectivity. This
will let neuromorphic engineers to use AER standalone platforms for high
level event processing when developing or building AER systems, to use it
as a first test platform for hardware implementation of new algorithms and to
implement complex algorithms of neuroinspired models which are not
always easily portable to pure hardware solution, as learning algorithms,
development of connectivity, etc.

We present in this chapter a microprocessor based solution, where the
AER bus is connected directly to it by using its general purpose I/O ports,
GPIO, as a first approach and in order to study the advisability of its use
within AER based systems. We will solve the image reconstruction and edge
extraction from event streams problems for this purpose, which requires a
high AER bandwidth when no preprocessing is done and will let evaluate the
performance of the embedded system. Also, we have compared the proposed
solution with other hardware solutions and other multi-task approaches.

3.2 Address-Event-Representation

Figure 3.1 shows the principle behind the AER. Each time a cell on a sender
device generates a spike, it communicates with the array periphery. A digital
word representing a code or address for that cell is placed then on the
external inter-chip digital bus, the AER bus. This word is called event.
Additional handshaking lines, Acknowledge and Request, are used for
completing the asynchronous communication. In the receiver chip, the
spikes or events are guided to the cells whose code or address appeared on

3 Embedding Multi-Task Address-Event-Representation 33

the bus. In this way, cells with the same address in the emitter and receiver
chips are virtually connected by streams of spikes. These spikes can be used
to communicate analog information using a rate code, by relating the analog
information to the time between two spikes that correspond to the same
neuron, although this is not a requirement. More active cells access the bus
more frequently than those that are less active. The use of arbitration circuits
usually ensures that cells do not access the bus simultaneously. These AER
circuits are generally built using self-timed asynchronous logic [5].

Fig. 3.1 Rate-coded AER inter-chip communication scheme

In general, AER is useful for multistage processing systems, in which as

events are generated at the front end they travel and are processed down the
whole chain (without waiting to finish processing each frame). Also, in
multistage systems, information is reduced after each stage, thus reducing
the event traffic. A design of a neuromorphic vision system totally based on
AER has taken place under the European IST project CAVIAR,
“Convolution Address-Event-Representation (AER) Vision Architecture for
Real-Time” (IST- 2001-34124) [1]. This chain is composed by a 64×64
retina that spikes with temporal and contrast changes [9], two convolution
chips to detect a ball at different distances from the retina [6], an object chip
to filter the convolution activity [7] and a learning stage composed by two
chips: delay line and learning [8]. The maximum throughput rate takes place
at the output of the silicon retina. Although it is able to emit 4Mevents/s, real
applications, such as someone walking along a corridor or even the beat of
an insect wing, vary from 8 to 150 Kevents/s [9], respectively. These values
will be used further for comparing the results with real applications (cf.
Table 3.1).

Table 3.1 Event Rate for some previous AER-tools. The communication to or from the PC is
done by the PCI bus or the USB protocol. They achieve a very high AER bandwidth but with
the need of a PC for the higher level processing
AER-tool name Event rate AER-tool name Event rate
Rome PCI-AER 1 Mevents/s CAVIAR PCI-AER 8 Mevents/s
USB-AER 25 Mevents/s USB2AER 5 Mevents/s
mini USB-AER 300 Kevents/s

34 C. Luján-Martínez et al.

The research community is also working on applying these systems to
different actuators [10–13], from translating AER information into actuator
control information (e.g. PWM and PFM) to developing hybrid systems,
bioinspired sensors for acquiring preprocessed data and classical
computation for decision and control. This hybrid scheme is successfully
being applied to other fields, such as sensor networks [14,15].

3.3 Spike Processing Over Multi-Task

Generally, buffers of event streams are prepared on the PC [16], and sent via
these AER-tools to the AER bus or an obtained event stream is sent to a PC
and a high level processing is done then, such as learning algorithms for the
VLSI neuronal network, development of connectivity, models of orientation
selectivity, which are not always easily portable to pure hardware solutions
[17,18]. Let us present two significant approaches/examples of multi-task
spike processing and highlight aspects to bear in mind when translating to an
embedded platform.

The first one is interesting because it covers PCI connection and high
level spike processing over a GNU/Linux operating system. A
hardware/software framework for real-time spiking systems was proposed
in [17]. Rome PCI-AER [3] is connected to a Pentium IV at 2.4 GHz
running a GNU/Linux 2.4.26 desktop distribution. The software architecture
consists on kernel code, module, for controlling this AER hardware
interface, an UDP server of event buffers, called monitor, and one or more
clients for high level spike processing, called agents. The monitor is
implemented in C++ and agents could be implemented in other languages,
such as Matlab. It presents a maximum event rate of 310 Kevents/s without
high level spike processing.

This second approach covers USB connection to the PC and actuator
control at a hybrid processing system under Microsoft Windows XP
operating system. Delbruck [13] presents a hybrid system for fast motor
control. A single-axis arm acts as goalkeeper and is able to block 80–90% of
balls that are shot with >150 ms time to impact. A silicon retina, bioinspired,
acts as visual sensor [19]. Spikes are collected by a USB2AER board [20]
and sent to a PC, a 2.1 GHz Pentium M laptop, over USB. Data is processed,
procedural computation, by a Java application over Microsoft Windows XP
operating system and the result is sent over USB full-speed to a motor
control board based on C8051F320 MCU, which acts on the single-axis arm.
There are three threads: high priority one for reading events from USB,
highest priority one for writing motor control decision information to the
USB motor control board and one for visualizing the scene and GUI. Each

Embedding Multi-Task Address-Event-Representation 35

ball generates 30 Kevents/s as mean value, which means an USB Bulk
transfer of 128 events every 4 ms.

On both approaches, powerful PCs are used, so it is not possible to
implement their systems as embedded standalone ones. Also, complex and
efficient processor architectures are used. Embedded systems do not have so
resources. On the first approach, there is a data and time overhead from the
UDP/IP protocol architecture, even if loop-back network interface is used. It
would be desirable to avoid it due to the resource limitations of embedded
systems. The second approach runs on JVM which introduces instruction
overhead and reduces the performance. Although only some part of the
application is running purely on it, byte codes have to interpreted and
corresponding processor instructions have to be executed, garbage collector
may execute periodically, etc. Once more, the use of JVM should be avoided
to get a better performance on an embedded system.

3.4 Embedding Multi-Task Spike Processing

We propose the use of Intel XScale PXA255 processor running an
embedded GNU/Linux 2.6 system using uClibc and double-buffering
signaled exchange scheme for receiving and processing AER information.

3.4.1 Hardware Architecture

The Intel XScale core [21] is an ARM V5TE compliant microprocessor and
provides the ARM V5E DSP extensions, although it does not provide
hardware support for floating point instructions. It is a 7-stage integer/8-stage
memory super-pipelined core. The core presents a Multiply/Accumulate
unit, MAC unit, that supports early termination of multiplies/accumulates in
two cycles and can sustain a throughput of a MAC operation every cycle.
Also, it offers 32 KB of data cache, 32 KB of instructions cache and an
MMU. The ability to continue instruction execution even while the data
cache is retrieving data from external memory, a write buffer, write-back
caching, various data cache allocation policies which can be configured
different for each application and cache locking improve the efficiency of
the memory bus external to the core. In addition, a Branch Target Buffer is
present, that holds 128 entries with a miss predicted branch latency penalty
of 4 core cycles and 0 when predicted correctly. The processor has 84 GPIOs
that can be programmed to work as function units to manage serial ports,
I2C, PWM, LCD, USB client 1.1, etc. In addition, platform will need RAM,
Flash memory and network connectivity.

3

36 C. Luján-Martínez et al.

3.4.2 System Software Architecture

uClibc is a lightweight and widely used library for developing embedded
Linux systems, which supports shared libraries and threading. This lets the
application’s binaries to be lighter and allows running on tiny hardware
systems. GNU/Linux is a multi-task general purpose operating system, so it
is designed for obtaining a good mean performance. So, it needs to be
adapted for AER computing.

AER was developed for multiplexing in time the spike response of a set
of neuro-inspired VLSI cells. Neuro-inspired cells are not synchronized.
They send a spike or event when they need to send it and the AER periphery
is responsible to send it into AER format with the minimum possible delay,
and therefore, the AER scheme is asynchronous. Although handshaking
lines guarantee the delivery of an event, if the receptor stalled the AER
communication it can cause to process information from the past and not the
up-to-date one. Therefore, it is desirable the shortest response time. A more
fine-grained resolution system can be achieved by rising the frequency value
of the timer interrupts, which not only implies a shortest process response
time but a quicker turnover of scheduler’s processes queue. On the other
hand, an extra instruction overhead has to be paid due to a higher number of
timer interrupts. This implies context switches from process to interrupt
handler and from this last to the first, the handler execution, and possible
cache and TLB pollution, which may result in an impoverishment of the
system performance. This value is set before the Linux kernel compilation
process.

The scheduling policy determines how the processes will be executed in
a multi-task operating system. The Linux kernel 2.6 version presents several
ones. The kernel offers system calls to let the processes to choose the
scheduling policy that will rule their execution. A dynamic priority based on
execution time scheduling policy, a real-time fixed priority FIFO one and a
real-time fixed priority round robin one are offered by the kernel. The first
one is the common policy on UNIX systems. Basically, a base priority is
initially assigned to the process based on the frequency value of the timer
interrupts. Its new priority is calculated by the scheduler when this last is
executed using the execution time associated to the process. This priority
will determine when the process will be executed again. The other two
scheduling policies differ from each other in how processes with the same
priority are reorganized to take the microprocessor again, using a FIFO
criterion or a round robin one, respectively. A process whose execution is
managed by one of these two policies is, obviously, not influenced by the
first of all. Even more, preference will be given, of course, to a process in
these scheduling situations than the managed by the first policy ones. The

Embedding Multi-Task Address-Event-Representation 37

real-time scheduling policies try to ensure a short response time for a ruled
by them running process, which is desirable when development an AER
device. Also, no lower-priority processes should block its execution but this
situation actually happens. The kernel code is not always assumed to be pre-
emptive because it has to be compiled with this option and it is only
supported in 2.6 versions. So a system call from a lower-priority process
may block the execution of higher-priority one until it has finished.
Therefore, the support for real-time applications is weak although the
processes response time is improved referred to the common scheduling
policy. Every process in a Linux system is normally ruled by the first one.
Therefore, a process running continuously cannot be set to be ruled by one
of the offered real-time policies without making the whole rest of the system
unresponsive. If other processes e.g., network,... are needed, a combination
of the scheduling policies at runtime based on the application state, receiving
events or waiting for them, could increase the performance of the system
with no degradation on the multi-task environment response.

3.4.3 User Software Architecture

High level spike processing is not applied individually to one event but a set
of them. So, we propose a double-buffering scheme for the AER
communication and this high level event processing on this system, splitting
up both into two concurrent tasks, trying to make the most of the time
between event arrivals for spike processing. Also, this separation makes the
development of this kind of applications easier. Only special spike
processing has to be developed due to the AER communication is obviously
always the same.

Special care must be taken when defining the buffer size in events unit. If
it is too big, it will represent data for a big period of time and the
information that is being processed may differ a lot from the current output
of the emitter, which may cause to take a not valid decision for the current
state of the whole AER application/system. Time continuity must be
guaranteed at the virtual parallelism level. In addition, event arrival
timestamps are collected when each is received. Linux provides 64 bit
integer variable, called jiffies that are incremented on each timer interrupt.
Inter-Spike-Interval, ISI, may be two or three orders lower, so we will use a
processor 32 bit timestamp counter [21]. It is incremented on each core
cycle, so ns resolution is provided. It can only be accessed by privileged
instructions, so a kernel privileges is need. A Linux module will be
responsible for obtaining the event timestamp. Although Linux 2.6 system
calls are not always preemptive, as mentioned before, obtaining the value of

3

38 C. Luján-Martínez et al.

the time-stamp counter is an atomic processor instruction and it is
guaranteed the ending of its execution (cf. Fig. 3.2).

As the event arrival is asynchronous, the event buffer filling is also
asynchronous. We propose the use of signals, which are asynchronous too,
for notifying the double-buffering buffer exchange. When a process receives
a signal, it processes the signal immediately, without finishing the current
function or even the current line of code. The operating system stops its
execution and assigns the processor to the signal handler that has been
registered for that signal. A signal handler should perform the minimum
work necessary to respond the signal and return control to the main program
then. So, we suggest a buffer references exchange to the appropriate buffer
depending on the received signal as the signal handler. In this way, up-to-
date data is quickly able to be processed. Therefore, both approaches
described in Section 3.3 present an extra overhead with regard to our
proposal. In the first one, context switches for the kernel code of the module
for the AER hardware interface, the monitor and agents, demanding many
resources when implemented on high level languages such as Matlab, and
the UDP/IP protocol architecture overhead should be considered. In the
second one, USB Bulk transfers of 128 events are used. Microsoft Windows
XP USB controller checks USB interrupts each 1ms. Interrupt service and
transferring data from kernel to user space should be also considered. Events
can be received each 1 μs [19], so the buffer will be ready at the USB2AER
in 128μs and will be ready to be processed after more than 1ms. During this
time more than 872 events can be received at the USB2AER board.

Fig. 3.2 Software architecture for high level spiking processing over a multi-task system
when receiving events from the AER bus

High level spike processing will be applied to a set of events, so it will be

done when a buffer has been filled. There are three possibilities based on the

Embedding Multi-Task Address-Event-Representation 39

signal communication and the task latencies. If filling the buffer, either at
AER communication level or computing them, lasts more than consuming it,
every event will be treated. If not, the consuming task will work with the last
updated events and, together with the rate-coded AER’s feature of “losing
some events does not necessary mean losing information”, it does not
implies to be always an undesirable situation. Finally, a returned signal from
the task that consumes the buffer could be added to the scheme, as a “ready
signal”, ensuring the processing or the reception-emission of every event,
independently of the latencies of both tasks.

The processor offers a mechanism to detect any level change at any of its
GPIO ports, generating hardware interrupt when it occurs with a minimum
pulse width duration to guarantee this detection is 1 μs [21]. It is necessary
to detect the two Request signal levels to implement the AER hand-shake
protocol. In addition, over 0.17 μs are needed to set a bit on a GPIO in this
processor. Two sets have to be done for generating the AER Acknowledge
signal. Therefore, the minimum time between events would be, at least,
2.34 μs. It should be greater considering the time penalty due to the
interrupts handlers execution, context changes. . . which implies a event rate
fewer than 427 Kevents/s only for the AER communication task. AER
communication is asynchronous, so either the number of consecutive events
or the time between two of them cannot be supposed. Free spikes or bursts
of them can appear in the bus. Although hardware interrupts release the
processor for computation tasks until data is ready at I/O, if spikes are
presented as bursts of events the event rate will be reduced. Also, if there is
no event traffic at the AER bus for a period of time enough long, there is no
high level spike processing to do and so, there is no need to release the
processor. Therefore this option may be ruled out, and polled I/O may be
used.

From a computational point of view, both, filling a buffer from the AER
bus or sending to it, makes the AER communication to be a worst-case linear
time algorithm. The proposed double buffering buffer exchange is a worst-
case constant time algorithm. Therefore, this software architecture presents
worst case linear time complexity, whose worsening may only take place at
the high level spike processing task.

3.5 Image Reconstruction and Edge Detection

We will use two tasks for testing the system: (1) reconstructing a frame from
an event stream and (2) edge detection. This last is done by applying
convolutions with a common 3×3 kernel matrix for this purpose, so is a

3

40 C. Luján-Martínez et al.

worst-case polynomial time algorithm, of complexity O(n3). This will let the
system performance to be tested with a more complex algorithm.

In artificial vision systems based in AER, it is widely used the rate-coded
AER. In this scheme, each cell corresponds to a pixel and its activity is
transformed into pixel event frequency. This scheme may be inefficient for
conventional image transmission: Monochrome VGA resolution (480×640
pixel frames, at 25 frames per second, with 8 bits per pixel) yields a peak
rate of (480×640 pixels/frame) × (256 spikes/pixel) × (25 frames/s) × (19
bit/spike) = 37 Gbit/s. So preprocessed images are usually transmitted
instead of raw images, such as edges or contrast [22], and therefore, previous
full VGA peak rate is reduced in two or three orders of magnitude. Another
one or two orders can be added in this reduction due to the use of image
resolutions between 64×64 and 128×128 pixels at the most. Even then,
image reconstruction from rate-coded AER presents a very high demanding
through-output. That is why we choose it for testing the performance of the
system, although this is not a multimedia protocol. It is a visual information
processing scheme. Going from asynchronous AER to synchronous frame
based representation video is more or less straightforward. If Tframe is the
duration of a single frame, a 2-D video frame memory is reset at every time
t=n×Tframe, where n∈[0, ∞), called the integration time. Then, for each event
address, the memory position for this address (x, y), is incremented by 1.
Finally, the content of the 2-D memory is transferred to the computer screen
and reset again at t=(n+1)×Tframe. This is more or less how state-of-the-art
AER hardware engineers visualize their AER vision systems outputs on
computers [23].

We have developed a processes and a threads implementation for the
tasks mentioned before. We use IPC Shared Memory method in the first one
and global variables in the second one for the shared data, which makes both
implementations equivalent from the access to memory point of view. For
both implementations, we propose an AER-communication driven execution
policy with no “ready” like signal, which will decide the execution rate. So,
events will be continuously collected and put into a buffer, “aer2buf”. When
this buffer is full, a signal will be sent to the high level processing task and
new received events will be put into the other buffer. The spike processing
task, “buf2img”, will be generating the frame into memory from a buffer or
waiting to receive a signal, so it will only consume processor execution
when it is needed. Therefore, it is also a worst-case linear time algorithm
which let to continuously generate the frame or wait until a buffer is ready
for its treatment. For the edge detection implementation, kernel convolution
will be applied once the frame is constructed. Finally, buffer size has been
set to 200 events.

Embedding Multi-Task Address-Event-Representation 41

3.6 Results

We will use a small factor size (80×20×5.9 mm) Intel PXA255 400 MHz
board running GNU/Linux 2.6 using uClibc, Gumstix Connex-400
motherboard. It also offers 64 MB of RAM and 16 MB of Flash Memory.
Gumstix Wifistix board will provide IEEE 802.11 connectivity. An
USBAER [24] board will play the role of the AER emitter. It will be
responsible to transform a binary representation of a frame into the
corresponding events and to send them using the exhaustive synthetic AER
generation method [25]. These will be sent to the platform via the AER bus,
whose pins will be directly connected to the processor’s GPIO ports. The
frame is downloaded to the USB-AER from the PC, no preprocessing is
done, such as referred in Section 1, and it will continuously be sending the
same frame translated into event streams. This board is able to achieve an
event rate up to 25 Mevents/s. Having this event rate will let us to evaluate
the performance of the embedded computer, which should be the bottle-
neck. An oscilloscope probe will be clipped to the Request signal pin and it
will be used to measure the event rate, due to each cycle at this signal
implies an event communication. The usual mechanisms to compute the
execution time of a task and its duration, either provided by the hardware or
the operating system, would interfere on the obtained value by incrementing
it. So the need of including this kind of instructions is avoided by using the
oscilloscope. The event rate will be the frequency of the Request signal,
which will be calculated by it. The time during the process is ready to run
and waiting to take the processor for its execution is also considered in this
value. This makes it a real measure of the mean even rate for AER
communication and spike processing. Finally, another process will be used
for debugging purposes, independently of the double buffering
implementation. This process will be waiting to receive a signal that will be
periodically sent by the operating system. Then, it will wake up and put the
frame in memory into a BMP file. This last can be viewed by connecting to
the HTTP server on the platform. Also, these processes will be used to test
the implementations under situations with other ones running.

We have executed both implementations, processes and threads, for
image reconstruction and edge detection and studied their evolution over the
time. The threads implementation achieves an event rate, ER, of
770 Kevents/s, while the processes one reaches 540 Kevents/s. These values
are reached even if there are other processes running on the system and are
mainly maintained over the time. Both implementations present a
momentary reduction of the ER. When no other process is running, these
worst event rates, WER, are 620 Kevents/s for the threads implementation
and 450Kevents/s for the other one. These oscillating values define event

3

42 C. Luján-Martínez et al.

rate intervals that are relatively small but WER evolves sometimes to a harsh
value of 259 Kevents/s and 200 Kevents/s for each implementation,
respectively, when there are other processes running on the system.
Although these last WER values appear momentarily, they suppose a main
degradation of the spike processing performance.

We have increased the frequency of the timer interrupts from 100 Hz, the
default one for the ARM architecture, to 1000 Hz. At this one, the event rate
is not affected by the fact of other processes running on the system. The ER
is 775 Kevents/s and WER is 660 Kevents/s for the threads implementation
and 500 Kevents/s and 430 Kevents/s, respectively, for the other one. So, it
has been achieved that the influence of other processes on the event rate is
transparent for a frequency value of the timer interrupts of 1000 Hz.

We have set our threads implementation to be ruled by the real-time
fixed priority round robin scheduling policy, achieving an event rate of 840
KEvents/s continuously maintained over the time. Therefore, the time
between two consecutive events is 1.19 μs. This value is near the best one,
but as we have explained before, and so expected, the system was
unresponsive for other tasks.

We have also measured the exact time between events for the system
using the oscilloscope, which is 1.16 μs. Therefore, the system presents an
event rate of 862 Kevents/s without either the spike processing task or other
processes running on the system. The threads implementation presents 770
KEvents/s, which implies that it performs the event acquisition and the event
treatment with a mean time between events of 1.29 μs, approximately.
Therefore, it offers a multi-task environment useful for other simultaneous
tasks with an 11% deviation from the maximum that can be achieved with
the system. Under the real-time round robin scheduling policy, the mean
time between events is 1.19 μs, so spike processing implies a 2.5% from the
maximum. In Section 3.2, a neuromorphic vision system totally based on
AER has been presented. The maximum throughput rate takes place at the
output of the silicon retina and varies from 8 to 150 Kevents/s for real

time between events of 6.66 μs. The time of the reception of an event of our
system is 1.16 μs. So, there is a mean time of 5.5 μs for any kind of high
level spike processing, which means up to 2200 instructions on this 32-bit
processor at 400 MHz.

3.7 Conclusion

We have presented an embedded multi-task architecture that allows spike
processing at 840 KEvents/s. Its reduced size, the possibility to have other

applications [9]. The higher demanding value, 150 Kevents/s, implies a mean

Embedding Multi-Task Address-Event-Representation 43

services running simultaneously (network communication) and its PWM
outputs for motor control makes it very suitable for standalone hybrid AER
systems. The proposed software architecture exploits the platform
performance and lets neuromorphic designers to quickly and easily develop
new applications.

Acknowledgments We would like to thank the NSF sponsored Telluride
Neuromorphic Engineering Workshop, where this idea was born in a
discussion group participated by Daniel Fasnacht, Giacomo Indiveri,
Alejandro Linares-Barranco and Francisco Gómez-Rodríguez. This work
was supported by Spanish grant TEC2006-11730-C03-02 (SAMANTA 2).

References

1. R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, et al., “AER building blocks for
multi-layer multi-chip neuromorphic vision systems”. Neural Information Processing
Systems Conference, 2005.

2. M. Sivilotti,, “Wiring considerations in analog VLSI systems, with application to field
programmable networks”. PhD thesis, California Institute of Technology Pasadena, CA,
USA, 1991.

3. A. Cohen, R. Douglas, C. Koch, et al., Report to the National Science Foundation:
Workshop on Neuromorphic Engineering, 2001.

4. M. Mahowald, “VLSI analogs of neuronal visual processing: a synthesis of form and
function”. PhD thesis, California Institute of Technology, 1992.

5. K. Boahen, “Communicating neuronal ensembles between neuromorphic chips”,
Neuromorphic Systems Engineering, 1998.

6. R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jimenez, and B. Linares-
Barranco, “An arbitrary kernel convolution AER-transceiver chip for real-time image
filtering. Circuits and Systems”, ISCAS 2006. Proceedings. 2006.

7. M. Oster, and Liu, “A winner-take-all spiking network with spiking inputs”, IEEE
Conference Electronics, Circuits and Systems, pp. 203–206, 2004.

8. H. Riis, and P. Hafliger, “Spike based learning with weak multi-level static memory.
Circuits and Systems”, 2004. ISCAS’04, 2004.

9. P. Lichtsteiner, and T. Delbruck, “64×64 Event-driven logarithmic temporal derivative
silicon retina”. IEEE Workshop on Charge-Coupled Devices and Advanced Image
Sensors, pp. 157–160, 2005.

10. A. Linares-Barranco, F. Gómez-Rodríguez, A. Jiménez-Fernández, et al., “Using FPGA
for visuo-motor control with a silicon retina and a humanoid robot”, IEEE International
Symposium on Circuits and Systems, pp. 1192–1195, 2007.

11. A. Linares-Barranco, A. Jimenez-Fernandez, R. Paz-Vicente, et al., “An AER-based
actuator interface for controlling an anthropomorphic robotic hand”, LNCS, 4528:479,
2007.

12. A. Jimenez-Fernandez, R. Paz-Vicente, M. Rivas, et al., “AER-based robotic closed-loop
control system”, IEEE International Symposium on Circuits and Systems, pp. 1044–1047,
2008.

3

44 C. Luján-Martínez et al.

13. T. Delbruck, and P. Lichtsteiner, “Fast sensory motor control based on event-based
hybrid neuromorphic-procedural system”, IEEE International Symposium on Circuits
and Systems, pp. 845–848, 2007.

14. T. Teixeira, E. Culurciello, J. Park, et al., “Address-event imagers for sensor networks:
evaluation and modeling”, International conference on Information processing in sensor
networks, pp. 458–466, 2006.

15. D. Bauer, A. Belbachir, N. Donath, et al., “Embedded vehicle speed estimation system
using an asynchronous temporal contrast vision sensor”, EURASIP Journal on
Embedded Systems, 2007(1):34–34.

16. A. Linares-Barranco, G. Jimenez-Moreno, B. Linares-Barranco, and A. Civit-Balcells,
“On algorithmic rate-coded AER generation”, IEEE Transactions on Networks,
17(3):771–788, 2006.

17. M. Oster, A. Whatley, et al., “A hardware/software framework for real-time spiking
systems”, Int. Conf. on Artificial Neural Networks, 3696:161–166, 2005.

18. E. Chicca, A.M. Whatley, P. Lichtsteiner, et al., “A multichip pulse-based neuromorphic
infrastructure and its application to a model of orientation selectivity”, IEEE
Transactions on Circuits and Systems, 54(5):981–993, 2007.

19. P. Lichtsteiner, C. Posch, T. Delbruck, “A 128 X 128 120db 30mw asynchronous vision
sensor that responds to relative intensity change. Solid-State Circuits”, IEEE
International Conference Digest of Technical Papers, pp. 2060–2069, 2006.

20. R. Berner, T. Delbruck, A. Civit-Balcells, and A. Linares-Barranco, “A 5 Meps $100
USB 2.0 address-event monitor-sequencer interface”, IEEE International Symposium on
Circuits and Systems, 2007.

21. Intel-Press, Intel PXA255 Processor Developer’s Manual, volume 278693-002. Intel-
Press, 2004.

22. K. Boahen, and A. Andreou, “A contrast sensitive silicon retina with reciprocal
synapses”, Advances in Neural Information Processing Systems, 4:764–772, 1992.

23. E. Culurciello, R. Etienne-Cummings and K. Boahen, “A biomorphic digital image
sensor”. IEEE Journal of Solid-State Circuits, 38(2):281–294, 2003.

24. R. Paz, F. Gomez-Rodriguez, M. Rodriguez, et al., “Test infrastructure for address-
event-representation communications”, Work-Conference on Artificial Neural Networks
(IWANN’2005). LNCS, pp. 518–526, 2005.

25. F. Gomez-Rodriguez, R. Paz, L. Miro, et al., “Two hardware implementations of the
exhaustive synthetic AER generation method”. Computational Intelligence and
Bioinspired Systems. LNCS, 3512:534–540, 2005.

Chapter 4

End to End UPnP AudioVisual Service
Provisioning and Management

Javier Martínez, Natividad Martínez Madrid and Ralf Seepold
Universidad Carlos III de Madrid, 28911 Leganés (Madrid), Spain,

Abstract The Universal Plug and Play (UPnP) technology is widespread among many
multimedia consumer electronic devices and applications, but its usage is
typically restricted to home (local) networks. The objective of this work is on
one hand to extend the use of UPnP beyond home networks with the help of
the Session Initiation Protocol (SIP) technology and on the other hand the
remote management of the Media Servers through OSGi technology. The
proposed architecture allows the distribution of devices and services, keeping
the same application functionality and usability. Thus, it is possible to
transparently discover and invoke services in devices from two different home
networks, creating end to end connections. The development has been
implemented over IPv6; explaining all required changes in firmware and
software, while keeping compatibility with IPv4 so that future changes are
transparent for the user.

Keywords Middleware, Service provisioning, Remote Management, OSGI, UPnP.

4.1 Introduction

Protocols like SIP [1] or UPnP [2] allow detecting and accessing different
elements in a network independently of their localization. UPnP Media
Architecture [3] and SIP permit to access and exchange multimedia content
like sound or video.

However these protocols solve the localization and access problem in
completely different ways. In SIP a unique identifier is needed to find the
destination and is centered in any kind of communication sessions. On the
other hand UPnP (Audio Video part) is based in the use of broadcast
messages to discover the different services available in the local network and

45 N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_4,
© Springer Science+Business Media B.V. 2009

javier.martínez@uc3m.es, natividad.martínez@uc3m.es, ralf.seepold@uc3m.es

46 J. Martínez et al.

in transmission of multimedia content using mainly unidirectional
(streaming) communications.

Interoperability can be established between both protocols to solve the
different access problems of each one. The main idea is to encapsulate an
UPnP service so that it can be offered to the system as an identifiable service
and easily localizable using SIP.

This way the UPnP devices can be delocalized. The impossibility of
using this protocol to provide an end to end solution can be solved using
SIP.

The idea of working with protocols using IPv6 [4] comes from two
different needs. The first one is the imminent migration to IPv6 where there
is no clear support at hardware and software level. This way the
development is already adapted to use this protocol. The other is the growing
use of personal devices at home where the use of IPv4 creates problems like
the use of NAT where IPv6 does not.

Apart of this, but with total relation, is to get the modularity of all parts.
In this case, it is possible to manage remotely all components like Media
Servers, SIP Modules, etc. And this is a great advantage to the user because
it supports the idea of delocalization of SIP. This is one of the reasons
because all modules are programmed under OSGi platform.

The next section introduces the state of the art with a brief description of
the used technologies and some studies in this area. Then it will be described
the environment in which this work has been developed and tested. Then the
whole end to end process will be described. This paper finalizes with
conclusions and a description of possible future works.

4.2 State of Art

Several studies like Vallejo [5] foresee the status of IPv6 and the need for its
implementation.

There are some works that try to provide end to end service using UPnP.
Nikolaidis [6] tries to combine UPnP with other technology like CWMP, but
in this case the work is based in remote management made by the service
provider but does not deals with end to end between different users.

Another end to end example is the one proposed by Ditze [7]. Although
in this case an extension to the Quality-of-Service (QoS) part of the UPnP
standard is proposed to allow end to end connections. But no solution is
given to provide services from a residential network to another.

Vilei [8] uses both UPnP and SIP to create a videoconference system, but
the objective if far from providing services from a home to another. On the
same line Yukikazu [9] uses SIP again with some UPnP functionalities to

4 End to End UPnP AudioVisual Service Provisioning 47

discover devices, but more as a way to implement the UPnP protocol using
SIP.

Without a doubt mobility and delocalization are the main advantages of
SIP as shown by Brown [10]. Although he uses devices with the OSGi
Framwork [11] and uses SIP for delocalization.

In the other hand, the integration of networks for discovery of devices
and services in residential networks with the support of OSGi platforms have
been published in 2002 [12]. Currently, there is an implementation
independent UPnP distribution for OSGi devices available (Domoware
[13]). Bundles of the OSCAR framework for OSGi are integrated in this
repository. Also Kang [14] published a work for integration of the audio-
visual architecture UPnP AV in an OSGi platform.

4.3 Technologies Overview

Therefore, four basic technologies are used to extend the current situation
and to support the integration of services: Firstly, the universal plug and play
(UPnP) protocol standard is presented briefly. In this paper we focus in the
share of multimedia content and in this way there is a specific standard of
UPnP focus in multimedia the UPnP AV Architecture. Here, a brief
introduction is given. Secondly, the platform is developed in IPv6, so is
needed to explain the current state about IPv6 and how is the current
implementation of this protocol, and finally we introduce some concepts of
SIP and OSGi.

4.3.1 UPnP

One of the objectives is to access multimedia content in LANs. The UPnP
AV architecture provides a control mechanism to support sharing
multimedia content in different types of devices, formats of content or
transfer protocols.

The UPnP technology, developed by the UPnP forum, allows devices to
form communities and to share services without an increase in complexity of
configuration or demanding for human intervention. In an UPnP network, a
device automatically discovers other devices.

The UPnP AV architecture (version 2) defines interactions between an
UPnP control point and multimedia devices. In general, all the interactions
between the devices involved are controlled through control points. The
multimedia communication setup is controlled through control point, but the

48 J. Martínez et al.

transfer of content is directly transmitted from devices servers to the
reproducers, as it is shown in Fig. 4.1.

The UPnP MediaServer and the UPnP MediaRender [15] are two UPnP
standard devices. The control point, is not standardized by UPnP since it
itself does not offer any interface.

Fig. 4.1 Interaction model of UPnP AV devices

4.3.2 OSGi

The OSGi specification provides a platform for the development of
applications and services widely supported by companies of different
sectors. The core of the specification defines a framework that provides an
environment for downloading and execution of software that offers services.
Based on Java, this solution guarantees the independence of the hardware
platform and operating system, with few software requirements.

OSGi provides an execution environment that facilitates the
interoperability of devices. It offers a mechanism for the definition of
services in a standard and modular form, so that they can be used like
component blocks for other services. The OSGi Framework allows the
dynamic installation of new services, as well as starting, shutdown, remove
and update.

These services are independent of their hardware platform and
applications or the underlying operating system since they are executed on a
Java virtual machine. The packages with the code are modules called
bundles. A service can consist of only one bundle, or can be compound of
any number of them. Bundles communicate with each other one and offer
their services to others bundles, creating therefore a chain of dependencies.
Fig. 4.2 shows this architecture.

End to End UPnP AudioVisual Service Provisioning 49

4.3.3 IPv6

IPv4 protocol is getting older since several years ago. This represents a
problem when new services are to be implemented in the internet, like end to
end connections. The lack of IPv4 addresses for all the devices connected to
the internet and the need to use NAT (Network Address Translation) with
local (private) addresses breaks these end to end connections.

The possibility to offer an IPv6 address for every device connected to the
internet, including devices in a home network, makes IPv6 one of the better
and most suitable solutions for end to end connections implementations.

IPv6 provides three kinds of addresses. Link-local addresses are to be
used only at link level. But site-local and global addresses can be routed and
so can be used normally by applications. Site-local addresses are designed to
be used only at a site level, substituting the use of private IPv4 addresses.
Global IPv6 addresses are to be globally routed in internet. Even device in
home networks can make use of a global address, allowing end to end
connections.

Multicast is part of the base specifications in IPv6, unlike IPv4, where it
was introduced later. The use of broadcast and link-local addresses is the
default way to work for UPnP in local networks with IPv6. The solution
proposed in this work is not based on multicast or broadcast through internet
but in then use SIP to connect two different Control Points in different
networks using a global unicast address. The IPv6 implementation on
internet and home networks is on the way so adapting application protocols
and networks is mandatory to support future services.

4.3.4 SIP

SIP is a signaling protocol developed to initialize, modify and terminate a
user interactive sessions characterized by the intervention of multimedia
elements like video, voice, instant messaging, on-line games and virtual
reality.

This protocol offers personal and terminal mobility over WANs, so that
any device that incorporates a sip agent can be located and connected
wherever it is. In addition, this protocol solves problems related to the
devices handover and multihoming.

In the other hand, SIP protocol will offer extended features related to
authentication, encryption and quality of service control that supplies the
capabilities to establish an external communication between two different
sub domains.

4

50 J. Martínez et al.

Other SIP parallel technologies at the mobility management point of
view are DDNS [16] and MOBIKE [17]. In one hand, DDNS is based on
the use of dynamic DNS’s that are updated their content. In contrast, this
technology doesn’t support such as handover as multihoming. In the other
hand, MOBIKE (IKEv2 Mobility and Multihoming) is based on the use of
the signaling protocol that integrates IPsec, IKEv2. This protocol is based on
the Security Associations that are created by the devices IPs. This one
provides handover and multihoming support, but this technology does not
provide the ability to locate a specific device into different domains. Given
that, both technologies were discarded, finally selecting the SIP protocol.

4.3.5 Related Work: Available UPnP AV Developments

There are few implementations available that provide UPnP AV support, and
furthermore, these implementations have several incompatibilities. A study
has been performed in order to check the available open source tools, since
one objective of the work is to reduce costs for the applications connected to
the residential gateway and to be able to modify parameters in case it is
required. A modification may be required in case of integration.

The following list summarizes some results obtained:
• CyberMediaGate (version 1.2): Is an implementation of a Media

Server and is available in Java and in C++, both as open source, and
at this moment is the reference implementation for most of the
present developments [18]. This Java implementation has been
selected for the developments presented in this paper.

• Intel (version 1.0.1768): Provides a Media Server as well a Media
Renderer, both of them are open source [19]. The Software includes
addition several tools like a sniffer to monitor UPnP
communications in the network. Intel also provides a version for
Pocket PC (tests have been made in a HP IPAQ 5450).

• Cidero (version 1.5): This is an open source implementation of the
UPnP AV Control Point. Cidero uses the code of the
CyberMediaGate, the interface is more user-friendly, and it has
some additional functions that allow the visualization the available
Media Servers and Media Renders. The additional features have
been very useful for the demo setup. Although Cidero [20] does not
have an own reproducer, it supplies a control for the Media Server
and the Render, the reproduction can be controlled from the Control
Point. The implementation of Cidero is available for both platforms,
Linux and Windows.

End to End UPnP AudioVisual Service Provisioning 51

• Nokia Media Streamer (version 1.2–12): It is an implementation of
Nokia for the Nokia 770 device that provides a Control Point and in
a Media Render. This implementation is based on the
implementation of S. Konno (Cidero) in C++. The implementation
allows to convert the mobile device into a Control Point and it
extends its possibilities to be used like Remote Control, for example
in case of a Media Server or a Media Render that are available as
UPnP devices [21].

• Windows Media Player (version 11): The current version of the
player of Windows [22] has the functionality of the Windows Media
Connect integrated. The Media Server is serving the multimedia
contents within the network UPnP.

• GmediaRender (version 0.0.3): On the Linux platform, there is the
only one Media Render available. The installation turned out in a
complex task. It does not have graphical interface; the
implementation is developed in C. Ongoing development of other
projects will add UPnP support. The GmediaRender distribution can
be found through Web [23].

• Other new devices: Windows Vista and the Xbox 360 provide
Media Server capabilities. Nokia also extends the UPnP AV
technology in its new generation N of mobile phones.

4.4 Model for Remote Audiovisual System

The model representing the architecture is shown in Fig. 4.2. Both
residences are represented. Every residence has its own residential gateway
and UPnP devices. The Residential Gateway use to include the AV Control
Point and the SIP Agent. This SIP Agent permits to register the Control
Point in a SIP Proxy server to exchange SIP messages. With this SIP
connection the information about UPnP Devices can be exchanged between
Control Points. Once the Control Point has the global IPv6 address of the
remote device this device can be accessed directly. UPnP Devices from
different residences are the extremes of the end to end connection.

The model implementation has been made using IPv6 from the
beginning, keeping compatibility with IPv4. This is due to the need for the
residential Gateway to be ready for the Next Generation Networks and be
compatible with then in the future.

It represented an extra effort in the development of this work to find the
needed tools to work with IPv6 address at any level.

4

52 J. Martínez et al.

Fig. 4.2 System Architecture

For the implementation of the prototype, the following components had
been selected: Control Point of Cidero and the Media Server
Cybermediagate, because the developments are open source and both are
available for Windows and Linux.

In principle, the Control Point of Cidero and the CyberMediaGate Media
Server work like independent applications. This means that, among other
things, although initially they can make use of the same UPnP libraries,
these libraries are duplicated at the same time of their installation in the
machine and in memory at the execution time.

In order to start, an integration of the control point and the server into the
OSGi platform has been done: the Control Point developed by Cidero has
been transformed in a Control Point Bundle and the Media Server into a
Media Server Bundle.

When creating a bundle of an application, the functionality of the
application must be encapsulated. This is required due to the requirement to
control the bundle by a class that is called BundleActivator. This class
includes the methods start and stop to the service when they are invoked.
When implementing an application as a bundle, the functionality will be
offered like a service, so that this service can be invoked and controlled by
others local or remote bundles without using the graphical interface.

The libraries are shared that were previously duplicated in both
applications. Therefore, the Control Point and the Media Server use the
resources of the residential gateway in a more efficient way.

End to End UPnP AudioVisual Service Provisioning 53

It has to be noted that there is no Media Renderer implemented for PC,
and no one of the implemented supports IPv6. So a Mini Renderer has been
developed in Java with minimum functionality working with IPv4 and IPv6.

• The following parts have been used to develop this Renderer:
• The Cyberlink UPnP stack modified to work correctly with IPv6.
• Parts of the libraries included in the Cidero Control Point that

simplify the implementation of UPnP services like AVTransport,
Connection Manager and Rendering Control.

• Java Media Freamework (JMF) [24] which allows reproducing
audio and video using different codecs. A Sun codec released later
to reproduce specifically MP3 audio format [25] was included too.

4.5 Scenario

In this section it is described the proposed use case and how all the work has
been realized. The use case is as follows.

Two different users want to share media content over internet while
every user is at a different home. One of the users will share this content
using Cyber Garage Media Server so that the other user can see this content
in its own residence user a Media Renderer.

Now the whole process will be described to achieve this desired result.

4.5.1 Device Discovery

The first to be done is to lunch both bundles Control Points so that they can
detect local devices in their respective networks.

This detection is transparent for the user as it is the way UPnP is
designed to work. Every user will see the devices found in its respective
Control Point applications. The first user may see how the CyberGarage
Media Server bundle is found in the network (see Fig. 4.3).

4

m

t

54

Fig. 4.3 Lo

The secon

media conten

Fig. 4.4 Lo

4.5.2 Vi

The problem
other residen

To see se
those devices
in both reside

ocal detection of

nd user will se
nt server (see

ocal detection of

irtual Devi

m with the act
ces.

ervices from o
s to be registe
ences could b

f UPnP AV devic

ee how its Co
Fig. 4.4).

f UPnP AV devi

ces Transf

tual state of U

other residen
ered in the loc
e controlled f

ces by the cidero

ontrol Point d

ces by the cidero

fer

UPnP is how

nces localy, li
cal Control Po
from only one

J. Ma

o control point a

etects the ren

o control point a

w to access to

ike media ser
oint. This way
e residence.

Martínez et al.

at home A

nderer but no

at home B

o devices in

rvers, to get
y all devices

End to End UPnP AudioVisual Service Provisioning 55

In case of following only the UPnP standard, the following problems
would be found:

1. UPnP devices announcements are made using broadcast but these
announcements will not go across the residence router or gateway:
provider will not permit broadcast packets to flood internet. The
solution to this problem is to send the public addresses of the
devices to the other control points using SIP.

2. In case of using IPv4 this wouldn’t solve the problem because the
used addresses are private and useless in the other home network.
The solution to this problem could be using NAT, assigning a public
IP and port to a local private address in the residential gateway and
then sending the public IP and port to the other control point using
the SIP solution. With this solution the router configuration must be
modified constantly, representing an expensive (in resources) and
dangerous solution.

3. IPv6 addresses availability makes possible to use a global address
for every device in the home network. This IPv6 address can be sent
to other control points in remote networks without the need to create
redirections in the residential gateways.

Using SIP and IPv6 the devices from a residence will be seen in the

Control Point of the other one because they have a public address accessible
from any other residence.

The first step to make SIP work is to have a SIP Proxy working. This
proxy is needed so that Control Points can register themselves and be
localizable and exchange devices. The SIP Proxy used in this work is a
modified version of the Open Source Java implementation of the National
Institute of Standard and Technologies (NIST) SIP Project [26].

Following the SIP way to work both Control Points must be registered to
the SIP Proxy as seen in Fig. 4.5. Once the Control Points are registered the
Home A user sends the devices to Home B user so that he can use the locally
the Media Server (see Fig. 4.6).

Once the UPnP devices are sent the user at Home B has all the needed
devices render content from the remote network: the own renderer and the
media server of the other home, as seen in Fig. 4.7.

When the Home B Control Point has the Home A Media Server the user
can the wished play content from that server.

4

56

Fig

Fig. 4.7

g. 4.5 The home

Fig. 4.6 Home

7 Home B: contr

A user registers

A: user sends d

rol point with re

the control poin

evices using the

emote media serv

J. Ma

nt in the SIP prox

 control point

ver and local ren

Martínez et al.

xy

nderer

End to End UPnP AudioVisual Service Provisioning 57

4.6 Conclusion

In this work it has been shown how, with the combination of SIP and UPnP,
a delocalized use of media content can be easily done under a OSGi
framework getting the management aspect. It is crucial since it maintains the
whole life cycle of services for the user.

The use of UPnP end to end opens the possibility to delocalize specific
content while the only important issue is where it is going to be reproduced.

The migration to IPv6 should arrive in 2010 as several reports [27]
suggest since time ago. But configuring a stable environment for the
scenario required a bigger effort than the expected. It didn’t only require the
modification of Software applications like Cidero, Cyberlink and
MediaGate, but also de modification of the firmware in the hardware used
like routers for them to properly work in IPv6.

However the big quantity of devices with high technical capabilities like
network connection and multimedia functionality makes delocalization of
services mandatory. The use of IPv4 not only complicates the problem (i.e.
using NAT). It supposes a great delay to provide solutions for a technology
to be substituted relatively soon, something that happens with most of the
actual developments. This work has been done multiplatform to get the
needed versatility and keep transparency for the user.

As last it hast to be mentioned that the end to end model in media content
sharing opens new possibilities not only to user level but also to service
providers who could provide a new business model offering content to a
delocalized client.

Acknowledgments This work has been partly developed inside the
PLANETS project (MEDEA+ A-306), financed by the Spanish Ministry of
Industry under project number FIT-330220-2005-111.

References

1. Session Initiation Protocol (SIP) Forum, April 2008. URL: http://www.sipforum.org
2. Universal Plug and Play (UPnP) Forum, April 2008.URL: www.upnp.org
3. Universal Plug and Play (UPnP) UPnP AV Architecture:1, June 2002 URL:

www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020622.pdf
4. Internet Protocol Version 6, IPv6, April 2008. URL: http://www.ipv6.org/
5. A. Vallejo, J. Ruiz, J. Abella, A. Zaballos, J.M. Selga “State of the Art of IPv6

Conformance and Interoperability Testing”, IEEE Communications, October 2007.

4

58 J. Martínez et al.

6. A.E. Nikolaidis, S. Papastefanos, G.A. Doumenis, G.I. Stassinopoulos, M.P.K. Drakos,
“Local and Remote Management Integration for Flexible Service Provisioning to the
Home”, IEEE Communications Magazine, October 2007.

7. M. Ditze, I. Jahnich, “Towards End-to-End QoS in Service Oriented Architectures” in
Industrial Informatics INDIN, 2005.

8. A. Vilei, G. Convertino, F. Crudo, “A New UPnP Architecture for Distributed Video
Voice over IP”, in Proceedings of the 5th International Conference on Mobile and
Ubiquitous Multimedia MUM’06. December 2006.

9. Y. Nakamoto, N. Kuri, “Siphnos – Redesigning a Home Networking System with SIP”,
in Proceedings of the 6th IEEE International Conference on Computer and Information
Technology, 2006.

10. A. Brown, M. Kolberg, D. Bushmitch, G. Lomako, M. Ma, “A SIP-based OSGi Device
Communication Service for Mobile Personal Area Networks”, in IEEE CCNC 2006
proceedings.

11. Open Service Gateway Initiative (OSGi) Alliance, 2008, URL: http://www.osgi.org
12. P. Dobrev, D. Famolari, C. Kurzkey B.A. Miller, “Device and Service Discovery in

Home Networks with OSGi”, en IEEE Communications Magazine, August 2002.
13. Domoware, UPnP Bundles for OSGi. WWW, 2006. URL: https://sourceforge.net/

project/showfiles.php?group_id =118919id=118919
14. D.-O. Kang, K. Kang, S.-G. Choi, J. Lee, “UPnP AV Architectural Multimedia System

with a Home Gateway Powered by the OSGi Platform”, in Proceedings of the IEEE
International Conference in Consumer Electronics, January 2005.

15. Universal Plug and Play (UPnP) Forum, MediaServer V 2.0 and MediaRenderer V 2.0,
March 2006. URL: http://www.upnp.org/specs/av/

16. Dinamic Dns, DynDNS, April 2008.URL: http://www.dyndns.com/
17. P. Eronen, IKEv2 Mobility and Multihoming Protocol (MOBIKE), Internet Engineering

Task Force, RFC 4555 (Proposed Standard) (June 2006)
18. Personal domain of Satoshi konno, , 2007. URL: http://www.cybergarage.org
19. UPnP Intel Implementation. WWW, 2007. URL :http://www.intel.com/cd/ids/

developer/asmo-na/eng/downloads/upnp/overview/index.htm
20. Cidero Software Solutions for the Digital Home, WWW, 2007. http://www.cidero.com
21. Media Streamer for Nokia 770 Internet Tablet, WWW, 2007.

http://www.nseries.com/770experience_2/hacks_streamer.htm
22. Microsoft, Windows Media Player 11, 2007. http://www.microsoft.com/windows/

windowsmedia/es/player/11/default.aspx
23. UPnP Media Render implementation for Linux. WWW, 2007. http://soggie.soti.org/

gmediarender/
24. Java Media Framework, April 2008, URL:http://java.sun.com/products/java-media/jmf/
25. Jmf Mp3 Plugin, April 2008, URL: http://java.sun.com/products/java-media/jmf/mp3/

download.html
26. Jain-SIP-Presence-Proxy, April 2008, URL:https://jain-sip-presence-proxy.dev.java.net/
27. The great IP crunch in 2010,Mark Frauenfelder, September 21 1999,

http://www.cnn.com/TECH/computing/9909/21/ip.crunch.idg/index.html

Chapter 5

Virtual Development Environment for Embedded
Systems Using ARMulator and SystemC Models

Sang-Young Cho1 2
1Computer Science & Information Communications Engineering Division, Hankuk University
of Foreign Studies, Yongin, Kyeonggi, Korea; 2Computer Information Department, Sunmoon

Abstract Virtual development environment increases efficiency of embedded system
development because it enables developers to develop, execute, and verify an
embedded system without real target hardware. This chapter deals with an
implementation of a virtual development environment for ARM core-based
embedded systems. The environment is based on ARM’s ARMulator
simulation environment and extended to use SystemC models by attaching a
SystemC simulation engine to the ARMulator. Therefore, the environment can
flexibly use both ARMulator-based and SystemC-based hardware models. We
developed some hardware IP modules and user interface programs to enrich
the environment for hand-held devices or general application development. In
addition, a real-time operating system μC/OS-II is ported on the environment
so that it can be used to develop multi-thread applications. Compared to other
environments, its construction cost is very low and the environment can be
easily modified according to an engineer’s needs.

Keywords Virtual development environment, ARMulator, SystemC, Embedded system
Development, Simulation.

5.1 Introduction

On-time delivering of an embedded system solution to market with the
complete required functionality is very crucial because the market is highly
competitive and the demands of consumers rapidly change. Most embedded
systems are made up of a variety of Intellectual Property (IP) including
hardware IP’s (the processors and peripherals) as well as software IP’s

59

 and Jeong-Bae Lee

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_5,
© Springer Science+Business Media B.V. 2009

University, Asan, Chungnam, Korea, sycho@hufs.ac.kr

60 S.-Y. Cho and J.-B. Lee

(operating systems, device drivers and middleware like protocol stack). In
the traditional development flow, application software design does not start
until after these IP’s are integrated or nearly integrated. Thus, the resulting
development cycle is too long for the competitive market. The ideal solution
must permit the software development team to perform its tasks before the
hardware or a physical prototype is available so that the critical time-to-
market requirements could be satisfied. Virtual Development Environment
(VDE) is virtually built inside a computer, and it provides the same
appearance as real one and simulates various peripherals attached outside of
the board and functions of them as well [1].

Virtual Development Environment is used to verify a hardware
prototype, develop software without the real hardware, or be used for co-
design of hardware and software for embedded systems. This environment
usually provides a hardware simulation model, simulation engine, and other
tools that are useful in software development. Thus it increases the
efficiency of the embedded system development [2,3,4]. Though it does not
provide with the same appearance of the target system, application software
could be developed and fully verified using hardware or software IP models.

Virtual Platform [2] is Synopsys’s commercial virtual development
environment. It supports many different types of processors such as ARM,
X-Scale, and MIPS that are usually used in embedded systems. Virtual
Platform supports to develop software for target systems. RealView Soc
Designer [3] is comprehensive SystemC-based SoC development
environment provided by ARM. It consists of fast and easy modeling and
simulation, and debugging tools. Additionally, it enables a system or
hardware developer to compose the most suitable architecture quickly and
accurately, and software developers to develop software before the actual
hardware comes out by providing VDE. Visual Elite [4], made by Mentor
Graphics, is a set of ‘Fast ISS’ models and ‘platform-based packages’, which
are composed of TLM-based busses, memory, and peripheral device models.
According to its setting, it can comprise and run many different abstract-
level systems, and debug-related software and firmware. Also, it can create a
virtual environment for fast software development. The commercial VDE’s
described above are tightly integrating the hardware simulation tools and
software development tools. Therefore, it limits the flexible use of various
software tools and hardware simulation tools from different companies or
organizations.

In this chapter, we describe the design and implementation of a virtual
development environment for developing embedded systems that use ARM
processor cores. We construct a virtual development environment based on
ARMulator that is an ARM core instruction set simulator of ARM
cooperation. The ARMulator environment uses a specific hardware

5 Virtual Development Environment for Embedded Systems 61

modeling method. We modeled the ASB bus that is an in-chip bus scheme
developed by ARM and we extended the environment by attaching several
hardware IP’s. Also, the developed environment is extended to use SystemC
hardware IP’s by attaching a SystemC simulation engine to the modeled
ASB bus. Therefore, the environment can use both ARMulator-based
hardware models and SystemC-based hardware models. Especially, the
environment is constructed with ARM920T core that equips with cache,
MMU, ASB interface, etc. We built the virtual target hardware environment
that is composed of various ARMulator or SystemC hardware models such
as Memory controller, LCD controller, Interrupt controller, 1-ch DMA,
UART, 2-ch Timer, Watchdog Timer, and GPIO Ports.

Actually, a software development can be accelerated by various behavior
viewers of hardware IP’s rather than by a real appearance of a target system.
We implemented several graphical user interfaces such as LCD panel, Timer
viewer, UART interface, and LED display. The implemented VDE can be
used to develop an LCD-based hand-held equipment. And, a real-time
operating system μC/OS-II is ported on the virtual environment. Thus it can
be also used to develop μC/OS-II-based applications.

The rest of the chapter is organized as follows. In Section 5.2, we
describe the ARMulator environment and SystemC that are necessary for
developing the environment. In Section 5.3, we explain the design and
implementation of our virtual development environment for mixed model
and multi-threaded application development environment. Section 5.4
describes the verification methods and results of the hardware IP modules
and μC/OS-II operations. Finally, Section 5.5 concludes the chapter with
final remarks.

5.2 Related Studies

5.2.1 ARMulator Environment

For the processor vehicle of a virtual software development environment,
ARM920T core is selected due to its popularity. The most of hand-held
terminal equipments are adopting ARM cores as their main control
processors [5]. We also choose the ARMulator environment as the base one
of our virtual software development environment because it is too time-
consuming to build our own various ARM processor core simulators and to
manage to follow up the rapidly-announced ARM core series. Furthermore,
most of software developers for ARM systems have an ARM’s software
development environment such as ADS (ARM Developer Suite) and RVDS
(Realview Developer Suite) series and ARMulator is one of components of

62 S.-Y. Cho and J.-B. Lee

the ADS or RVDS series [6,7]. An ARMulator-based virtual software
development environment may enable developers to have a virtual
environment with a minimum cost.

ARMulator is a virtual board model that stands on the basis of cycle-
based instruction set simulator of ARM processor cores. As it has a simple
memory model and a standard hardware IP, the performance of hardware
and software can be estimated before the actual implementation of the
product by using the software’s profiling function even if no tangible board
exists [8,9]. Figure 5.1 shows the ARMulator framework.

Fig. 5.1 ARMulator DLL structure

Fig. 5.2 Basic ARMulator environment

ARMulator consists of simulation kernel and extension modules.
Simulation kernel is in charge of core simulation and external interface with
RDI debuggers or extension modules. Extension modules include basic
peripherals such as timer, watchdog timer, time tick, and interrupt controller.
Even though software development is possible with those peripherals as well
as core simulator in the ARMulator virtual environment, it is far from a real

Virtual Development Environment for Embedded Systems 63

environment where various peripherals are working. ARMulator is open to
expand peripherals with the extension interface of memory system. Figure 5.2
shows basic virtual software development environment of ARMulator.

5.2.2 SystemC

SystemC is a system modeling language that can model and operate
hardware at system-level. SystemC can easily express a complex SoC core at
a high level while having all the merits of the hardware description
languages. It was developed using C++ classes. Hence, SystemC can
effectively be used for simulation environment in checking not only
hardware but also software operations. Also it supports TLM(Transaction-
Level Modeling) [10,11].

We implemented a virtual development environment using SystemC
version 2.0.1. Version 2.0.1 provides not only register-level transmission
modeling, but also algorithm-and-function-level modeling. SystemC class
libraries provide essential classes for modeling system structure. They
support hardware timing, concurrency, and reaction, which are not included
in standard C++. SystemC allows developers to describe hardware and
software, and their interface under the C++ environment. Main parts of
SystemC are composed as follows.

• Module: A container class that can include other modules or processes.
• Process: Used for modeling functionality and defined within a module.
• Ports and Signals: Signals connect modules through ports. (Modules have

ports, through which they are connected to other modules.)
• Clock: SystemC’s special signal. (act as a system clock during

simulation.)
• Cycle-based simulation: Supports an untimed model and includes a high-

level function model to RTL-level, which has clock cycle accuracy.

Figure 5.3 shows an example of a system modeling in SystemC. A

module can include processes or other modules due to its hierarchical
structure. Processes run concurrently and do a function modeling. Thus, they
cannot have a hierarchical structure. Processes can communicate with each
other through channels. Signals are modeled in the simplest form of the
channels.

5

64 S.-Y. Cho and J.-B. Lee

Fig 5 3 A system modeling of SystemC

5.3 Design and Implementation

5.3.1 Extension of ARMulator Environment

ARMulator can be extended by adding any hardware that is modeled in C
language as a DLL file. The developed environment also can be extended
with SystemC hardware models. Figure 5.4 shows the target system
hardware modules to be added to form a virtual development environment.

Fig. 5.4 Target system modules

The target system modules are designed and implemented by referencing

to S3C2410 hardware IPs. S3C2410 made by Samsung electronics is an SoC
chip for hand-held devices and general applications [12]. The ARM920T IIS
simulator of ARMulator is used as the CPU core of the target system. The

. .

Virtual Development Environment for Embedded Systems 65

ARM920T implements MMU, AMBA BUS, and Harvard cache architecture
with separate 16 KB instruction and 16KB data caches, each with an 8-word
line length. The other modules include Memory controller, LCD controller,
Interrupt controller, 1-ch DMA, UART, 2-ch Timer, Watchdog Timer, and
GPIO Ports. We modified SystemC engine module to be connected with the
designed ASB Bus interface.

Via the SystemC engine module, an arbitrary SystemC hardware model
can be easily connected into the virtual environment. Currently, an LCD
controller and an interrupt controller are implemented in our environment.
The other hardware IP modules are developed by using the ARMulator’s
module development APIs. The operation of modules is similar to that of
hardware IPs of S3C2410. Most chips from Samsung use the same hardware
IP of S3C2410. Therefore, the constructed virtual environment has many
benefits for developing software with Samsung chips. ASB and APB buses
are used to interconnect modules and there is a bridge block between two
buses. The two buses are implemented to ensure functionality and transfer
time rather than an actual transfer protocol. A priority-based arbiter is
implemented because there are three masters connected on the ASB bus.

5.3.2 SystemC Extension

To use SystemC hardware models in the ARMulator environment, we
connected a simulation engine of SystemC version 2.0.1 to the Armul_bus
module in Flat Memory of ARMulator. The original Armul_bus in the
ARMulator environment enables various hardware IP’s to be accessed by the
processor core. We modified the Armul_bus to be capable of ASB
operations. Figure 5.5 shows the overall structure of the developed SystemC
connection environment.

If we set AxD (Debug controller) [6] to connect the implemented VDE,
system functions related to a connection are called and finally Armul_bus
initializes SystemC modules via Csimul class. SystemC generally uses
SystemC.lib for modeling and simulation. Therefore, to connect Armul_bus,
we analyzed the internal procedure of SystemC.lib and modified it according
to our needs. To do this, we removed main() from the SystemC.lib, which
starts a simulation, and re-built the SystemC.lib. Then we connected the
starting function, sc_main(), of the SystemC.lib with the InitializeModule()
of the Armul_bus. Thus, the simulation can be controlled by
InitializeModule(). The class Csimul is implemented for the connection of
the Armul_bus and the SystemC simulation modules.

5

66 S.-Y. Cho and J.-B. Lee

Fig. 5.5 The overall structure of the SystemC connection

The behavior of class CSimul is as follows:

1. Make sc_signal for input/output wires of modules.
2. Connect signals after a main module in SystemC is made.
3. Create functions necessary for reading and writing a state of the

connected modules.
4. During simulation, a callback function is called by Armul_bus.
5. Allow results of simulation to be reported to Armul_bus.

After initialization is set up, a SystemC run environment is created and

Armul_bus recognizes SystemC-based IP modules according to its setting. A
simulation can start when all the necessary modules are created and the
connection between signals and modules are validated. Armul_bus calls
CSimul’s method, CSimul.init(), to control a starting of a simulation. This
initialization process is to start the most top module of a simulation, and an
actual simulation starts when sc_start() is called from the most top phase.
The function sc_first() can have a double-type parameter and various time
units as its value. If we want to run a simulation without a time limit, we can
put a negative number to the parameter. All these functions run while the
clock signal ticks for an assigned amount of units. When the time unit is all
spent, a SystemC scheduler is called.

A simulation can be terminated at any time when sc_stop() is called with
no parameters. But it is difficult to understand all the details above and to
implement exact operations of each bus cycle step that the Armul_bus
requires. To solve this problem, we used sc_initialize() function that starts a

Virtual Development Environment for Embedded Systems 67

clock and controls a simulation, rather than using sc_start(), which SystemC
provides.

We initialize the SystemC scheduler using the sc_initialize() function
when the Armul_bus InitializeModule() function is called. Then, we will be
able to write values on the signals and simulate results of the set values. This
function takes a double-type parameter and can call the SystemC scheduler.
To implement one-step operation, we used the sc_cycle() function and in this
way SystemC modules are synchronized with the ASB operation clock.

5.3.3 Peripheral Features of the Implemented Environment

For a virtual development environment for ARM-based equipments, some
peripheral features are implemented to verify functions and behaviors of
extended modules. An independent Windows application is programmed to
mimic an LCD panel and LED dispaly. Actually, the software development
process can be accelerated by various behavior viewers of hardware IPs
rather than the real appearance of a target system. A SystemC model LCD
controller is virtually connected via Windows IPC (Inter-Process
Communication) with the LCD panel that displays image data from the LCD
controller modules. Some GPIO ports are virtually connected with 4 LED’s
and the on-off control of GPIO ports are captured on the LED graphics of
the program. UART modules use device control Windows APIs so that a
real COM port can be used to verify UART module’s behavior. If the UART
module of a virtual target system is programmed to send or receive data, it
will appear at a real serial port and it can communicate with other real hard
serial ports. The implemented timer can be programmed to generate PWM
(Pulse Width Modulation) signal. For now, the trajectory of the generated
PWM signal is stored in a log file to be verified later. Figure 5.6 shows the
constructed virtual development environment.

To run a program in the virtual environment, an execution image created
by the ARM software development tool should be downloaded to memory,
and debugged by ARM’s debugger. An LCD-based application can be easily
developed in the environment because it has sufficient hardware modules for
LCD operations. To run an LCD-based program, the LCD controller needs
to be programmed appropriately according to the LCD panel type, color
representation format, image buffer location in memory. After the LCD
controller starts, the image buffer for the LCD panel should be filled with
pixel data so that the LCD controller DMA transfers the pixel data to the
LCD panel periodically. As the environment contains hardware IP modules
that are used frequently, a single threaded application can be easily run on
the virtual environment. The developed environment can be easily expanded

5

68 S.-Y. Cho and J.-B. Lee

or changed by adding or replacing ARMulator-based or SystemC-based
hardware IPs.

Fig. 5.6 The developed virtual development environment

5.3.4 Porting μC/OS-II on the Virtual Environment

Embedded applications can be classified into two categories: single-threaded
application or multi-threaded application. Usually, a deeply embedded
application that performs a simple monitoring and a dedicated control is
constructed as a single-threaded application. When a system should perform
a lot of tasks concurrently, a system is built as a multi-threaded system with
the help of an embedded operating system. We expanded the implemented
virtual development environment to be used as a multi-threaded application
development platform by porting μC/OS-II on it. The real-time kernel
μC/OS-II is a portable, ROMable, scalable, preemptive real time and
multitasking kernel for microprocessors and microcontrollers [13]. μC/OS-II
can manage up to 63 application tasks and provide the following services:
semaphores, event flags, mutual exclusion semaphores to reduce priority
inversions, message mailboxes, message queues, task management, fixed
sized memory block management, and time management. Due to its simple
and compact features, μC/OS-II is used for many commercial and
educational purposes. μC/OS-II is layered into hardware-dependent part,
hardware-independent part, and application-dependent part. Among three
parts, the hardware-dependent part is the most considerable when porting
takes place. A processor core, a timer and an interrupt controller are essential
hardware IP’s when files in hardware-dependent part are modified for

Virtual Development Environment for Embedded Systems 69

porting. The files (OS_CPU.H, OS_CPU_A.S, and OS_CPU.C) in
hardware-dependent parts are modified according to hardware control
features of the implemented target system modules. Figure 5.7 shows the
μC/OS-II ported on the virtual environment structure.

Fig. 5.7 OS-based virtual environment structure

In this environment, we can develop not only a single-threaded
application but also a multi-threaded application that use the μC/OS-II APIs.

5.4 Verification of the Implemented Environment

5.4.1 Verification of Hardware IP Models

To verify the implemented virtual development environment, some test
programs for hardware IP’s are programmed. A simple digital clock program
is programmed to verify functions of Timer, Interrupt controller, LCD panel,
and LED display. The program displays the changes of time/minute/second
using the operation of Timer and Interrupt controller and shows the On-Off
behavior of LEDs. UART is verified with a program that sends character
strings to an external computer connected with the host computer of the
implemented virtual development environment through a COM port. Also, a
program is written to control Timer model to generate various PWM waves
and the changes are logged in a log data file. The viewer displays the PWM
wave from the log data file.

5

70 S.-Y. Cho and J.-B. Lee

5.4.2 Verification of μC/OS-II Operations

A simple three-task application was programmed to verify the ported
μC/OS-II operations. The most important function of an operating system is
task scheduling and correct operations of timer and interrupt controller are
required to implement the function.

During the test application running, three tasks with different priorities
were created to test a scheduling. The main function creates a task (TASK1),
and TASK1 creates two tasks (TASK2 and TASK3). Each task draws its
own position on the LCD panel by writing its image data to image buffer in
the main memory. The position of each task is moving side-to-side one pixel
at a time with different delay values in an infinite loop. TASK1 has 100
Ticks delay, TASK2 has 200 Ticks and pends a semaphore, and TASK3 has
400 Ticks and posts a semaphore. The program runs without any error on the
multi-threaded environment.

The operation of the program confirms that of the LCD controller and the
LCD panel. And it also verifies the scheduling function of μC/OS-II that
uses timer and interrupt controller.

5.5 Conclusion

A virtual development environment based on ARMulator is designed and
implemented to support a development team to perform hardware/software
tasks before a target hardware or a physical prototype is available. A virtual
development environment reduces the cost of developing an embedded
system by enabling engineers to write embedded software without real
hardware. The implemented environment supports not only ARMulator but
also SystemC hardware models. To achieve this, we attached a SystemC
simulation engine to the designed ASB bus. We minimized a modification of
SystemC simulation engine so that the environment can be easily changed or
extended with various SystemC models.

The environment provides a virtual hardware platform that is equipped
with ARM920T processor core, hardware IP modules, and graphical
peripheral user interfaces. The current processor core can be easily changed
with the other supported core of ARMulator. The ARM processor cores are
the most commonly used core in commercial business [5].

The hardware IP modules are designed and developed referring to
Samsung’s hardware IPs. The graphical user interfaces for peripherals such
as an LCD panel and LED’s can help developers to verify their program
behavior. The UART IP module is implemented so that it can communicate
with real terminal equipments. With this environment, a developer can

Virtual Development Environment for Embedded Systems 71

design, program, and verify a single-threaded application as like he/she
works on a real hardware-based prototype. Using the popular software
development tool such as ADS or RVDS series, the environment can be
constructed with a minimum cost. We expanded the implemented virtual
software development environment to be used as a multi-threaded
application development platform by porting μC/OS-II on the virtual
environment. A simple three-task application was programmed to verify the
operation of the implemented virtual hardware IPs of the target system and
the ported μC/OS-II operations. Software design and development for
embedded system using LCD can benefit from the implemented
environment, and μC/OS-II-based application program can be developed and
run on the virtual environment. The developed virtual development
environment can be used in many phases of embedded software
development such as developing a device driver, porting an OS, and
developing an application.

For further works, more hardware IP modules related to sounds, serial
communication, etc. should be supplemented. Individual hardware IP
modules should be able to be reconstructed to support various embedded
system development environment. Moreover, various graphical user
interface modules should be implemented to enable developers to develop
software in a convenient virtual software development environment.

Acknowledgments This research was supported by the MKE (Ministry of
Knowledge Economy), Korea, under the ITRC (Information Technology
Research Center) Support program supervised by the IITA(Institute of
Information Technology Advancement) (IITA-2008-C1090-0801-0020).

References

1. T. Anderson, R. Schutten, and F. Thoen, Virtual Prototypes Cut software Bottleneck,
Wireless System Design, http://www.wsdmag.com/Articles/ArticleID/9821/
9821.html, February 2005.

2. Synopsis Corp., VPDA295 Virtual Platform, http://www.virtop.com/products/
page/0,2573,33,00.html, 2008.

3. ARM Corp., Virtual Prototyping Solution, http://www.arm.com/products/DevTools/
RealViewSystemDevelopment.html, 2008.

4. Mentor Grpahics Corp., Platform based Solutions, http://www.mentor.com/
products/esl/system_integration/visual_elite/index.cfm, 2008.

5. W. East, ARM Holdings plc Morgan Stanley-7th Annual TMT Conference, November
2007.

6. ARM Cop., ARM Developer Suite 1.2 Debug Target Guide, November 2001.
7. ARM Cop., Realview ARMulator ISS User Guide, January 2004.

5

72 S.-Y. Cho and J.-B. Lee

8. S. Furber, ARM System on chip Architecture 2/E, ISBN 0-201-67519-6, Addison
Wesley, 2000.

9. ARM Cop., ARM DAI0032E Application Note32: The ARMulator, Sep., 2003.
10. T. Grotker, System Design With SystemC, Kluwer Academic Publishers, 2002.
11. F. Ghenassia, Transaction Level Modeling With SystemC, Springer Verlag, 2006.
12. Samsung Electronics, S3C2410A User’s Manual Revison 1.0, March 2004.
13. J.J. Labrosse, MicroC/OS-II Real Time Kernel 2/E, ISBN 1-578-20103-9, R&D

Technical Books, 2002.

Part II

Embedded Programming

Chapter 6

Rule-Set Extraction from C-Code

Franz Wotawa and Willibald Krenn
Institute for Software Technology, Technische Universität Graz, Inffeldgasse 16b/2, A-8010

Abstract We present an approach for extracting knowledge from C source code of
control programs. The extracted knowledge is intended to be used in our smart
control engine which takes a rule set and decides which rules to use based on
the internal and environmental conditions. The extraction of rules is based on
the control-flow graph of the supplied C program: Basically, our method
extracts rules that correspond to paths to given high-level function calls. The
advantage of this method is to get a first knowledge-base from available
source code which makes using a smart control engine more applicable for
industry. We use an industrial control program as example within the paper in
order to justify the usefulness of our approach.

Keywords Control Flow Graph; Conversion Problem; Abstraction; Program
Transformation

6.1 Introduction

Autonomous and mobile devices have special needs with respect to
reliability and the capability to react and adapt on changed environmental
and internal conditions. For example, a device which is attached to a
container for the purpose of sending position information of the container
during a travel from one location to another should be capable to deal with
faults like missing mobile connections or running out of power. Even in
cases where the whole functionality cannot be ensured anymore, basic
capabilities which are important to fulfill a certain mission should be
retained as long as possible.

In order to implement such smart behavior there are two possibilities
available. First, someone might create a control program where all future

75

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_6,
© Springer Science+Business Media B.V. 2009

Graz, Austria, wkrenn@ist.tugraz.at

76 F. Wotawa and W. Krenn

interactions have been foreseen in advance which is very unlikely especially
for more complex systems and the environments they are interacting with.
Second, we enable the device to reason about its capabilities. This requires
us to come up with a knowledge base that captures possible behaviors and
let the device autonomously select the one that is best in a certain situation.
In addition, preference criterions for behaviors can be used to control the
selection of the behavior to some degree.

In this chapter, we assume that we have a smart control engine [1] which
relies on a knowledge base for controlling the device behavior. In particular
we assume that the knowledge base comprises rules which are selected and
executed based on external events and the internal state. In case of faults the
selection of the rules is adapted accordingly. In this adaptation process
someone might use a heuristics which ensures that those rules which are
more likely to be executed without any problems are more often used
without preventing rules to be never executed. The focus of this paper is not
on the smart control engine but on the extraction of the required knowledge
from available control programs. Two observations motivated us for the
research behind the paper:

• People in industry are very experienced in writing control programs
but less experienced in developing knowledge bases.

• Control programs are available and have usually a very similar
structure.

Hence, by offering a technology for extracting high-level rules, that form
our knowledge base, from control programs, we are building a transition
path from conventional to intelligent systems that respects and re-uses
existing investments, including existing knowledge. In fact the main purpose
of the presented approach is to extend existing control programs: We aim at
the re-use of existing low-level parts of the code, while replacing high-level
parts with the smart control engine.

It follows that the behavior of the original control program and the
behavior of the smart control engine using the extracted knowledge base
have to be as similar as possible. Similarity in this context means that the
extracted knowledge together with the smart runtime should compute the
same output as the original program using the same input values.

We do not expect the extraction process to be perfect in a sense that no
manual changes to the extracted knowledge base are necessary. Hence, after
extracting knowledge from the program we allow for a process which
changes the obtained rule set in order to optimize the behavior of the smart
control engine.

The proposed conversion of control programs into their rule based
representation assumes that the control program implements some sort of
finite automaton. In such an implementation an infinite control loop

6 Rule-Set Extraction from C-Code 777

comprises conditional statements which implement the state changes of the
corresponding automaton. The underlying idea of the conversion is to extract
rules which correspond to execution paths within the infinite control loop.
Such execution paths are equivalent to the paths from the start state of the
automaton to a state which is connected with the start state.

The paper is organized as follows. In the next section we describe the
problem in detail. For this purpose we use a simple control program and
discuss our underlying smart control engine. Afterwards we formalize the
basic conversion process and apply it to the control program. Next, we
present results gained from a tool that implements the presented approach
and discuss limitations of our approach. Before finally concluding the paper,
we give an overview of related research.

6.2 Basic Idea

In this section we introduce the problem of extracting knowledge from C
programs and our proposed solution. For this purpose we use a running
example which is partially given in Fig. 6.1. The whole program controls a
mobile device which tracks its position and periodically sends it to a server
using a GSM communication line. The device also allows for receiving
messages from the server. One idea represented in the code is only to send
the position if it has changed. This idea is implemented in lines 17-24 using
the signal quality of the GSM connection as indicator for movement.

When extracting knowledge from such a program we are interested in
identifying parts of the program which should remain unchanged because
they provide a behavior which maps from a high level function to low level
software which is directly connected with the underlying hardware. Hence,
we have to have knowledge about the high level functionality we want to
extract. In our case we are interested in extracting rules which correspond to
the conditionals occurring within the control loop (lines 4–6) which are
basically constructed from conditions and functions called. Since, functions
or procedures might call other functions and procedures we have to know
when to stop the conversion. We do this by assuming that we know
functions or procedures which are seen as being atomic components for the
conversion. We are not going to look inside such components for the
purpose of knowledge representation.

In our example we are interested in gaining knowledge which
corresponds to the functions makePassiveCall and makeActiveCall. Using
this information we extract the execution paths leading to the execution of
the given functions.

78 F. Wotawa and W. Krenn

Fig. 6.1 Excerpt from a control program written in C

These execution paths can be represented by the conditions which have
to be evaluated to true (or the negations of the conditions to evaluate to true)
so that makePassiveCall or makeActiveCall is called. In our example, we
know that gsm_ev_ring()==1 has to evaluate to true in order to reach the
function call makePassiveCall(). We now represent this information as a rule
of the form lpassiveCalcond →1 where 1cond stands for
gsm_ev_ring()==1 and lpassiveCal for the statements in line 12 and 13.
The semantics behind such a rule is that if 1cond is true, lpassiveCal is
true which leads to the execution of statements 12 and 13. Hence,

lpassiveCal can be seen as a function that is going to be executed
whenever 1cond evaluates to true.

In order to get a rule for makeActiveCall() in line 25 we use an extension
to the idea already discussed. The problem here is that statements of line
17–24 have an influence on the execution of line 25. Depending on the
evaluation of new==old in line 23 makeActiveCall() is executed or not.
However, both variables new and old are local variable. Hence, their
values have only local influence. The conditional expression used in the

 79

other if-then-else statements does not use local variables which makes the
transformation into rules much easier. A solution to the problem of local
variables in the conditional is to generate a new function doCheck() which
comprises the code of lines 18–24. This function returns true if line 23
evaluates to true and false, otherwise. This change preserves the behavior of
the program.

int doCheck() {
 char old, new;
 old = getSignalQuality();
 gsm_act_readdb();
 m2m_wait(3);
 new = getSignalQuality();
 if (new == old)
 return 1;
 else
 return 0;
}

Using this function, lines 17 to 25 can be re-written as follows:

if (getGPSState() == 'S')
 if (doCheck() == 1)
 return;
makeActiveCall();

Hence, finally we are able to extract a rule
activeCallcondcondcond →¬∨¬∧)(432 where 2cond corresponds to

getM2MReportTimer() == 0, 3cond to getGPSState() == 'S', and 4cond to
doCheck() == 1. The two rules together with their corresponding low-level
code now can be used to control the device. Before they can be loaded into
our smart control engine, some small additions have to be made: We need to
insert a rule that tells the execution engine that it is good for the system to
execute one of the extracted rules. This is done by adding a goal that says
that it is desirable to run any of the two rules. In case a rule can be executed,
the corresponding low-level functions that were preserved by importing the
original source code will be called by the smart control engine.

In the following section we introduce a way of automatically extracting a
rule set from the source code.

6 Rule-Set Extraction from C-Code

80 F. Wotawa and W. Krenn

Fig. 6.2 Control Flow Graph of runM2M

6.3 Conversion Process

Starting from the underlying idea behind the conversion which has been
explained in the previous section, we now are going to formalize the whole
process. The formalization of our solution is based on the concept of the
well-known control flow graph (CFG) which captures the flow of the control
through a program. Based on the CFG we define functions for extracting the

 81

required information and for changing the CFG whenever appropriate for
extraction.

Definition 1 (Control Flow Graph) A control flow graph (CFG) is
a tuple),(AV where V is the set of vertices where each vertex represents
a basic block, i.e. a straight-line piece of code without any statements
dealing with conditions or a conditional statement, and A is a set of
directed arcs. Vertices 1v and 2v are said to be connected if there is a
direct control flow in the program between the corresponding statements for

1v and 2v . Moreover, we assume the designated vertices ENTRY and EXIT
to be element of V . ENTRY represents the beginning of the control flow and
EXIT the end of it. If a vertex Vx∈ is a conditional, then all arcs

Ayx ∈),(are labeled with true or false which corresponds to control flow
of the program.

The CFG of the runM2M() procedure is depicted in Fig. 6.2. Formally,
the problem of converting programs into rules that express the possible
behavior can be stated as follows.

Definition 2 (Conversion problem) The conversion problem is
specified by),(FΠ where Π is a control program (written in C) and F
is a set of procedures or functions of interest.

A solution to the conversion problem is a set of rules which represents
possible execution sequences of the program in order to execute the
functions specified in F . We assume that a control program basically
comprises an infinite loop where the procedures given in F are executed
depending on certain conditions. Hence, only the loop-free part of the
program has to be considered. In cases where procedures of interest are
called in a procedure call of the body of the infinite loop it is easy to compile
such a program into one where this is not the case. This might be done by
replacing the procedure call with the body of the procedure.

Since we are interested in the executions of the procedures or functions
in F , we have to get the information regarding conditions under which such
a function is guaranteed to be executed. When having a look at the CFG in
Fig. 6.2, we see that this information corresponds to the possible paths from
the ENTRY vertex to the vertex where a function call to a Ff ∈ is given
in the corresponding source code.

Definition 3 (Solution) Given a conversion problem),(FΠ . A
solution of),(FΠ is a set of rules of the form fcc n →∧∧K1 where

ncc ,,1 K are logical literals (conditional expressions used in the program
or their negation) which have to be valid in order to execute Ff ∈ .

As already discussed we want conditionals used in the rule not to
reference local variables. Hence, we restrict solutions to rules comprising
conditional expressions not using local variables.

6 Rule-Set Extraction from C-Code

82 F. Wotawa and W. Krenn

Definition 4 (Restricted solutions) A solution of a conversion
problem),(FΠ is said to be restricted if no conditional expression of any
rule references a local variable.

The reason for this restriction is that we want to replace the control
program by a set of rules where each part of the rule corresponds to a
function that can be executed. The following algorithm computes restricted
solutions.

6.3.1 Algorithm ComputeRules

Input: A program Π and a set of procedures or functions of interest F .
Output: A set of rules.

(1) Let Π′ be the program where all local variables used in conditional
expression of Π have been eliminated by using behavior preserving
transformations.

(2) Construct a CFG for Π′ .
(3) Let R be the empty set. In R we are storing the extracted rules.
(4) For all Ff ∈ do:

(a) For all vertices v where f is called in the corresponding source
code do:
(i) Extract the path(s)),,,,(1 vvvENTRY kK from ENTRY to the

vertex v .
(ii) Apply the transformation function l to the path(s) which is

defined as follows:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

¬

==∈

=

false is y)(x, arc theof label the
and path theinx ofsuccessor immediate theis y if

 trueis y)(x, arc theof label the
and path theinx ofsuccessor immediate theis y if
lconditionaa not isx or ENTRYx or vx if

)(

x

xxl

Let),,(1 kll K be the path after applying the function l .

(iii) Generate rule(s) fll k →∧∧K1 and add it to the set of rules
R .

(5) Minimize the set of rules R and return them as result.

 83

It is obvious that computeRules terminates because the CFG is finite and
contains no loops, there are only a finite number of paths and the set F is
also finite. Because we are searching for all paths computeRules is in the
worst case exponential in the number of conditions. Further improvements
which should consider the structure of the CFG are left for future research.
Note that for step 5 standard rules of propositional calculus, such as Modus
Ponens, can be used. In the rest of this section we focus on step 1 of
algorithm computeRules.

6.3.2 Program Transformation

For the rule computation part of computeRules it is necessary that all
conditions must not use local variables in order to ensure these programs can
be transformed. Transforming a program by hand is always possible because
this only requires introducing global variables instead of local ones. In cases
of name conflicts new names have to be introduced. However, we are more
interested in an automatic transformation which is based on the idea of
encapsulating program parts that form a semantic entity. In our running
example, lines 18–23 form such an entity. All statements of this part
contribute to the detection of a position change using GSM data. But how
can this transformation be done automatically? We do not give a general
answer in this article but we want to state a case where this behavior
preserving transformation can be obtained from static analysis.

The idea behind this transformation is as follows. Consider the CFG of
our running example. Here statements 18–22 are represented by a vertex v
of the CFG and line 23 by another vertex v ′ which is the immediate
successor of v . When analyzing the data dependencies in the program, e.g.,
using methods from slicing [2,3], we know that the local variables referenced
in line 23 (and vertex v ′) are neither defined nor used in another part of the
program. In this case the situation is much easier because of the fact that the
scope of the variables new and old is restricted to the sub-block. Hence, we
are able to generate a new function which comprises the statements of
vertices v and v ′ and replace them by a respective function call.

In general transformations can be represented by a rule of the form
〉〈〉−〈 tiontransformaconditionpre : . Whenever the pre-condition is

fulfilled the transformation can be applied. In our specialized case we have
the following transformation rule:
Pre-condition Given the vertices v and v ′ where v ′ is the immediate

successor of v . v ′ has to be a conditional vertex where the
corresponding referenced variables are defined in v and are referenced
only in v or v ′ .

6 Rule-Set Extraction from C-Code

84 F. Wotawa and W. Krenn

Transformation
(a) Use static analysis to determine variables V that are not global,

defined neither in v or v ′ but used in either v or v ′ . For all Vx∈
generate a parameter list AS separated by ‘,’ where every element is
of the form ‘)(xtype x ’. In addition generate a similar string VS for
stating all parameters of the function call where each element is of the
form ‘ x ’.

(b) Generate the body of the function. Add the source code of v to B .
Add the condition ‘if C return true else return false’ to B where C
is the corresponding condition of v ′ .

(c) Introduce an unused procedure name id and generate the function
definition int id (AS) { B }.

(d) Remove the code corresponding to v from the original program.
Replace the conditions of v ′ with the condition ‘ id (VS)’.

This concludes the discussion of the conversion algorithm. In the

subsequent sections, we focus on experiences gained when working with an
implementation of the presented approach.

6.4 Case Study and Discussion

We have implemented the presented approach and used it for extracting
rules from the control program we already presented excerpts from. The tool
expects a configuration file that specifies the source files to look at, a set of
atomic functions, a set of target functions, and the name of a function that
serves as starting point for the extraction process.

Until now, we have assumed to start our extraction process from the main
function only. Often times, however, control programs have more than one
entry point, as interrupt service routines usually serve as program entry point
too. Because our tool can be configured to use an arbitrary function as
starting point, we are able to look at interrupt service routines for the
purpose of knowledge extraction.

The set of target functions the tool expects corresponds to the functions
of interest as defined earlier. Internally, the tool treats the set merely as a
sequence, doing rule extraction for one function of interest at a time.

As building up the control flow graph and extracting all paths of how to
reach a certain function of interest may get quite costly, it is possible to
specify a set of atomic functions. Specifying a function as atomic has the
effect that the tool does not try to look inside the function but only includes
the calls of the function in the control flow graph. Effectively this
optimization leads to shorter (in terms of included statements) paths when

 85

traversing the control flow graph for rule extraction. Of course, by declaring
a function atomic, we may also miss paths to the function of interest, which
later on means that the function of interest may also be called from low-level
code.

After processing the source files, the tool outputs a list of conditions that
need to be fulfilled in order to reach the function of interest. It also provides
the necessary C-code for these conditions. Taking our running example and
extracting rules for makeActiveCall leads to following result:

makeActiveCall <- do1, do2, do5, check6, do7, !check8

makeActiveCall <- do1, do2, do5, check6, do7, check8,
do9, !check10

In the above rules, the comma denotes a logical and (∧), doX stands for
some action, i.e. C-code, that is executed after all conditions evaluate to true
and the rule is “run”, checkX for conditions that have to be checked before a
rule can be selected and “run”, and “!” represents logical negation (¬).
Ignoring the actions for the moment, and joining the two rules into one, we
derive

)1086(
)86(

checkcheckcheck
checkcheckCallmakeActive

¬∧∧
∨¬∧←

Simplifying the expression yields

)108(6 checkcheckcheckCallmakeActive ¬∨¬∧←

which is equivalent to the manually calculated result when substituting
2cond for check6, 3cond for check8, and 4cond for check10. Next we show

that this substitution is valid by looking at the extracted C-code.
When looking at the code generated for do1, we notice that this is

initialization code taken from the main function. Because we’re not
interested in one-time initialization code, do1 can be ignored. The same
argument holds for do2. The next action, do5, is different:

int do5() {
 if (getGSMEvent (GSM_EVENT_RING)) {
 makePassiveCall () ;
 m2mReportTimer = REPORT_TIMEOUT ; }
 return (1 == 1); }

6 Rule-Set Extraction from C-Code

86 F. Wotawa and W. Krenn

This action hides the call to makePassiveCall: Because we’ve only
looked for rules regarding makeActiveCall and the behavior of the generated
rule-set should closely match the behavior of the original C code, this action
is included. Of course, when also extracting rules for makePassiveCall, do5
can be ignored. Next, the algorithm has extracted a first condition, namely
check6. This condition returns return (! getM2MReportTimer()), which is
what we expect. The action do7 is only meaningful when the rule is run and
sets a new value to the m2mReportTimer. Check8 returns the result of
getGPSState() == 'S'), while do9 is again some internal action. Most
interesting is check10, as the condition is derived from

if (old == new) return;

Instead of old == new, the tool returns a condition check10 defined as

int __checkCondition10__() {
 char old , new ;
 old = getSignalQuality () ;
 sendGSMCommand_CSQ () ;
 waitM2MSeconds (3) ;
 new = getSignalQuality () ;
 return (old == new); }

which is exactly what we need. From the given example it is obvious that
the output of the tool still needs to be checked manually. For example, the
extracted conditions and actions lack meaningful names which force the
developer to revise the extracted rule set. That said the tool helps the
developer to get a quick understanding of the code – in particular how
complex the rules will be, when no simplification is performed.

Besides these technical issues, there are some more fundamental
limitations that have to be kept in mind when working with our tool: Given
an atomic function c that sets global variables i and j to ji = . Given
further following program fragment:

if (i != j) {
 if(a) c;
 if (i==j) return;
 if (!a) c;
}

Due to the side effect, line four is never looked at when running the
program and ‘a’ is true. In this case, line four is dead code. Our algorithm,
using static analysis only, will extract following rules: :1R caji →∧<>

 87

and :2R caji →∧!<> which simplifies into following minimal rule set:
cji →<> . Clearly, this is not the intended behavior. One might think that

a non-minimal rule set indicates that the program has been incorrectly
converted and the behavior of the rule based system does not match the one
generated by the C-Code version. This is, of course, not the case as a correct
(with respect to some specification) C program can be given that does the
same operation in both branches of an “if” statement. Thus, the extracted
rule set will not be minimal. Minimality of the extracted rule base, however,
does not guarantee correctness either. This quickly can be seen by
exchanging the last call to c in the presented program fragment by some
call of d . The extracted rule set will now be minimal, but won’t match the
behavior of the C program. Other difficulties that require manual review are
the usual suspects, such as interrupt handling, loops, and the fact that by
extracting rules we’ve applied abstraction to the control program and
therefore might not replicate the original behavior, also demonstrated in the
previous example.

6.5 Related Research

To the best of our knowledge, however, none of these techniques aim for a
replacement of high-level program parts while, at the same time, linking
with unchanged low-level parts of the same program. Tools like BLAST [4],
SLAM [5] and CMBC [6] are used to check safety properties in software
and return a set of conditions under which the safety property is hurt. In
difference to our algorithm, these tools only supply one trace of how to reach
a certain function while we require all paths to be known.

Tools like DAIKON [7], or DySy [8] can detect program invariants but
need to run the program in order to analyze it. Besides the nontrivial issue of
running and analyzing embedded firmware within a simulator, the detected
program invariants require manual check. Even if these issues are solved, we
still need to transform the original C-program to work with the findings.

C-Wolf [9], for example extracts an abstract labeled transition system of
C-code. In a sense this work is similar, because our rule set also specifies
possible transitions in the system. That said we do not want to replace the
original control program but only high-level parts, which is more related to
specification mining [10], which, in turn, has its own requirements.

Finally, the L* algorithm, introduced by Angluin [11], creates a minimal
DFA for an unknown regular language it has learned. The structure of the
DFA is inferred by asking a teacher who knows the language membership
and equivalence queries. As our working hypothesis is that the original
control program implements a DFA, it seems reasonable to use L* and the

6 Rule-Set Extraction from C-Code

88 F. Wotawa and W. Krenn

developer in order to extract rules. While this seems promising, we still have
to problem of code reuse.

6.6 Conclusion

In this chapter we present results regarding the extraction of rule-based
knowledge directly from control programs written in C. The underlying idea
relies on the special structural properties of control programs which basically
comprise a loop statement and conditional statements. The extraction
process takes as input a set of function or procedures which are assumed to
capture the required high-level knowledge. The main advantage of the
approach is the extraction of high-level rules (when do what) that can
seamlessly interact with original low-level C-Code. This guarantees a
maximum amount of code re-use when switching to a smart runtime driven
hardware design and is the main motivation for the presented approach.

References

1. W. Krenn and F. Wotawa, Gradient-based diagnosis, In Proceedings of the International
Workshop on Principles of Diagnosis, pages 314–321, 2007.

2. M. Weiser, Programmers Use Slices when Debugging, Communications of the ACM,
25(7):446–452, 1982.

3. M. Weiser, Program Slicing, IEEE Transactions on Software Engineering, 10(4):352–
357, 1984.

4. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, Software verification with Blast,
Proceedings of the Tenth International Workshop on Model Checking of Software
(SPIN), Lecture Notes in Computer Science 2648, Springer-Verlag 2003.

5. T. Ball and S. K. Rajamani, The SLAM project: debugging system software via static
analysis, Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–3, Jan. 2002.

6. C. Edmund, D. Kroening, and F. Lerda, Flavio, A Tool for Checking ANSI-C Programs,
Tools and Algorithms for the Construction and Analysis of System, 2004.

7. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C.
Xiao, The Daikon system for dynamic detection of likely invariants, Science of
Computer Programming, 2007.

8. C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: Dynamic Symbolic Execution for
Invariant Inference. In Robby, editor, ICSE, pages 281–290, ACM, 2008.

9. D. Du Varney and S. Purushothaman Iyer, C Wolf – A Toolset for Extracting Models
from C Programs, Formal Techniques for Networked and Distributed Sytems, 2002.

10. S. Shoham, E. Yahav, S. Fink, and M. Pistoia, Static Specification Mining Using
Automata-Based Abstractions, ISSTA, 2007.

11. D. Angluin, Learning regular sets from queries and counterexamples, Information and
Computation, 75(2):87–106, 1987.

Chapter 7

Real Time Implementation of Fuzz-Face
Electric Guitar Effect

Massimo Conti1, Simone Orcioni1, Marco Caldari2 and Franco Ripa2
1

2Korg Italy, Osimo, Italy

Abstract Physical models are widely used for sound synthesis and transformation. This
chapter presents a general methodology for the integration of physical
modeling of sounds in a system level design environment using SystemC. The
methodology has been applied in particular for physical modeling of electric
guitar effects, derived from the well known fuzz-face circuit. The
implementation in real time systems of physical models requires very high
performance processors and dedicated hardware. The implementation on low
cost embedded systems implies a further simplification of the algorithms. This
paper presents the implementation of electric guitar effects in an embedded
system board based on the ARM7 processor.

Keywords Physical models, SystemC, Electric guitar effects, Fuzz-face, Embedded
system

7.1 Introduction

Many techniques used nowadays for the electronic generation and
processing of sounds trays to generate directly the output waves, for example
the Frequency Modulation, additive or subtractive synthesis, wavetable
synthesis based on the storage of samples of sounds of real musical
instruments [1–5]. In spite of the simplicity of their implementation, the
sound quality cannot meet the requirements of the most demanding users.

An alternative technique, called physical modeling, tries to identify the
physical mechanism that generates sounds, starting from the physical laws
that are on the basis of the instrument. In the field of musical instruments

89

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_7,
© Springer Science+Business Media B.V. 2009

D.I.B.E.T., Università Politecnica delle Marche, Ancona, Italy, m.conti@univpm.it

90 M. Conti et al.

this technique is used to define algorithms for the synthesis or
transformation of sounds.

Physical modeling allows good sounds and gives a natural and intuitive
interaction between the player and sound generator since the model focuses
on the sound production mechanism rather than on the sound itself. A
physical model starts from the mechanical or fluidodynamical reference
model that is represented by differential equations.

The most commonly used physical modeling technique is called Wave
Digital Filter (WDF) [6–9]. The WDF algorithm starts from the wave
equation of musical strings and implements the solution of the equation on a
discrete-time system.

Many applications of the WDF technique have been developed, for
example for the synthesis of a cello [10], hammer string interaction in an
acoustic piano [11], string [12], human singing [13].

Physical models sometimes lead to computational expensive algorithms.
With the increasing computation capabilities of DSPs, this is no more a
problem for real time applications. Recent works present the implementation
of WDF on FPGA in order to accelerate the numerical methods to allow
real-time production of sounds for musical applications [14,15].

Actually a unique design framework allowing the simulation of the
mechanical physical model, the simulation of the simplified equivalent
electric physical model, the design and simulation of the digital discrete time
algorithm and the design, simulation and optimization of the implementation
on DSP and/or FPGA is not available.

This design environment requires the cosimulation of systems of
different nature: mechanical, analog electronic, digital discrete time
electronic systems. SystemC is a consolidated design language and
environment based on C++ used for a system level description of System on
Chip [16]. The extension of SystemC to mixed-signal is under development.
The aim of this extension is the codesign and cosimulation of mechanical
and electronic analog and electronic digital parts. Application examples are
systems in which the analog RF part is integrated in the same chip with the
digital part, or a digital control of the injection system in the automotive
field. The SystemC-AMS working group inside OSCI is working in the
development of a new library to be integrated in SystemC for the description
of mixed-signal systems [17–20].

Recently the SystemC-WMS (Wave Mixed Signal) library has been
presented [21,22], allowing a simple SystemC extension to mixed-signal
using the concept of incident and reflected waves. SystemC-WMS allows a
simple simulation environment of WDF for sound synthesis. The SystemC-
WMS model [23] of an electric guitar effect has been presented.

7 Real Time Implementation of Fuzz-Face Electric Guitar Effect 91

This chapter presents a SystemC description of the well known fuzz-face
electric guitar distortion effect. The algorithm has been simplified in order to
allow the implementation in an embedded system on a board based on the
ARM7 processor.

Section 7.2 describes the fuzz-face circuit implementing the electric
guitar effect. Section 7.3 shows the design methodology used. In Section 7.4
an accurate SystemC model is reported, while a simplified implementation
for the ARM7 is reported in Section 7.5.

7.2 The Fuzz-Face Electric Guitar Effect

This work presents a distortion effect for electric guitar derived from the
analog distortion circuit, reported in Fig. 7.1, called Fuzz-Face [24],
produced by Dallas Arbiter in 1966 and famous in the 1960 and 1970 and
used by Jimi Hendrix, David Gilmour, Carlos Santana, Eric Clapton, and
widely used up to now.

The circuit saturates for some values of the input signal, giving the effect
of distorting a sinusoid into an almost square waveform introducing new
harmonic components.

Fig. 7.1 Fuzz-Face circuit for electric guitar effect

The original and the actual analog circuital implementations use two

coupled germanium transistors, which are preferred due to their better
“sound performances” to the cheaper silicon transistors. The germanium
transistors suffer from strong dependence on temperature and humidity, high
variability of the parameters, high probability of breaking during soldering,
high cost due to the fact that germanium is an obsolete technology. The
advantage of a discrete time digital implementation could be the cost
reduction, easy tuning of the parameters by the player himself due the

AC128

Q2

R2

R4

R1 R3

- VCC

AC128

Q1

Ve2

Vc2

Vc1

C3

3

1

2

R5b

R5

R7C2

C1 R6

L CVin Vx

Vy
Vout

92 M. Conti et al.

physical model nature of the algorithm, easy integration in a digital sound
generation and processing.

7.3 Design Methodology

The design flow applied in this work is reported in Fig. 7.2; it is applied for a
sound transformation system, but it can be applied for sound generation
system as well.

The design starts from the analysis of the real analog fuzz-face circuit. In
a second step, a spice model of the electric guitar effects generator is
derived, and the coefficients of the model have been tuned in order to fit the
experimental data.

Fig. 7.2 Design flow for physical modeling

The next step consists in the creation of a discrete time Signal Flow
Graph model in SystemC. Further model simplification and architecture
refinement must be performed in order to allow the implementation on an
embedded system, in this case the ARM7 microprocessor chosen for the real
time implementation.

The final step is the definition of the resolution of the variables, and the
definition of the architecture. The translation from the SystemC description
in the C code for the ARM7 is very easy.

SPICE
circuital model

SystemC
discrete time model

SystemC
model semplification

analog hardware

real time
implementation

Real Time Implementation of Fuzz-Face Electric Guitar Effect 93

The design methodology allows a simple system level reuse and
integration with existing hardware or other sound processing or generation
algorithms already developed.

The model developed at different levels of abstraction can be tested in
real time.

Fig. 7.3 Real time implementations of the fuzz-face distortion

Figure 7.3 shows the different real time implementations developed:
• the original sound of the electric guitar.
• the analog fuzz-face circuit.
• the SystemC discrete time model applied in real time to the electric

guitar through an input and output adaptor to the PC. A real time
implementation is possible if the complexity of the model is not high
compared to the computational performances of the hosting PC, as
in the case presented in this work.

• the embedded digital system based on an ARM7 processor.
A real time test is fundamental to speed up the optimization and to verify

the quality of the sound in a real environment.

adaptor guitar
amplifier

guitar
amplifier

guitar
amplifier

original not distorted sound

analog Fuzz-Face

real time PC emulated Fuzz-Face

guitar
amplifier

real time embedded on ARM7 Fuzz-Face

preamplifier ARM7

7

94 M. Conti et al.

7.4 Systemc Discrete Time Model

The simplified model implemented in SystemC using a discrete time model
consists in three modules, as reported in Fig. 7.4. The main simplifications
with respect to the original circuit reported Fig. 7.1 are:

• the current absorbed by the output modules have been neglected, in
this way the system can be represented in by a signal flow graph,
enabling a simple representation using SystemC modules;

• discretization of the differential equation using the forward Eulero
formulae;

• solution of the nonlinear equations of the Fuzz-Face module using
the Newton-Rapson iteration scheme.

The differential equations describing the pickup module, in Fig. 7.4, are
the following

x
in x c

c
x

dvLv v v
R dt

dvv RC
dt

− − =

=

 (7.1)

A constant resistance R has been used to model the nonlinear load of the
fuzz-face of Fig. 7.1. The differential equation representing the output
filter module is the following

2
6 7

1
6

()

z out out out

y zz out

v v v dvC
R R dt

d v vv v C
R dt

−
− =

−−
=

 (7.2)

Fig. 7.4 SystemC discrete time signal flow graph model of the fuzz-face

The differential equations (7.1) and (7.2) have been discretized using the
Eulero formula as indicated in equation (7.3) and considering as time step

AC128

Q2

R2

R4

R1 R3

- VCC

AC128

Q1

Vc2

Ve2

Vc1

R5

L C

RVin Vx Vy Vout

Pickup
Module Fuzz-Face Module

Filter
Module

Vin Vx

Vx

Vy

Vy Vout

R7C2

R6C1

Vz

Real Time Implementation of Fuzz-Face Electric Guitar Effect 95

h the sampling time of 22.6 μs, corresponding to the 44.1 kHz sampling
rate normally used for audio signals.

dyx
dt

= () () () ()
2

x t x t h y t y t h
h

+ − − −
= (7.3)

The Fuzz-Face distortion module is described by the nonlinear equations
reported in equations (7.4), obtained using the Kirchoff laws and considering
the variables 1cv (the collector voltage of Q1) 2cv and 2ev (the collector and
emitter voltages of Q2).

(7.4)

The Newton-Rapson iteration scheme has been used to solve equations
(7.4). The equations (7.4) can be written as follows

1 1 2 3

2 1 2 3

3 1 2 3

(, ,) 0
(, ,) 0
(, ,) 0

f x x x
f x x x
f x x x

=

=

=

 (7.5)

or in a more compact way
() 0F X = (7.6)

Where
1 2 3 1 2 2(, ,) (, ,)T T

c c eX x x x v v v= = (7.7)
The Newton-Rapson algorithm can be written as follows

() (1) 1 (1) (1)() ()n n n nX X J X F X− − − −= − (7.8)

where J is the jacobian matrix

 (7.9)

7

96 M. Conti et al.

Equation (7.8) has been implemented in the SystemC module. Once vc2
is obtained, vout is derived using equation (7.10)

2
2 3

2 3 2 3out c CC
R Rv v V

R R R R
= −

+ +
 (7.10)

The discrete time SystemC model has been integrated with other
libraries allowing audio real time simulations.

The input waveform can be taken from a file or directly from the guitar
connected through an adapter to the PC, and the output can be stored into a
file or directed to audio output of the PC, as shown in Fig. 7.3. Physical
modeling allowed the definition of parameters of the model that are
directly related to the physical mechanism that generated the distortion.
These parameters can be changed in real time while the artist is playing his
guitar.

This allows real time verification by the sound experts of the quality of
the sound effects, giving a feedback to the electronic designer from the
first step of the design refinement. The CPU usage of the portable PC used
is about 30%.

The response of the circuit to an input sinusoid from Spice simulations
and SystemC simulations with a discrete time description are reported in
Fig. 7.5. The comparison between the simulations allows us to tune the
parameters of the SystemC model and verify the agreement of the discrete
time physical model with the real circuit.

Fig. 7.5 SPICE and SystemC (using a discrete time description) simulations of the Fuzz-Face

circuit with a sinusoidal input

-0,2

-0,1

0

0,1

0,2

0 1 2 3 4 5

SystemC SPICE

time (ms)

Vout (V)

Real Time Implementation of Fuzz-Face Electric Guitar Effect 97

The real time simulation environment has been tested with a real electric
guitar. Figure 7.6 shows the waveforms of the electric guitar without
distortion (original), the signal after the distortion of the Fuzz-Face
implemented in hardware with germanium transistors (real Fuzz-Face) and
the signal after the distortion obtained in real time with software developed
(virtual Fuzz-Face).

Fig. 7.6 Waveforms of the electric guitar without distortion (original), after the distortion

of the hardware Fuzz-Face (real Fuzz-Face) and the distortion obtained with software
developed (virtual Fuzz-Face)

7.5 Implementation on Embedded Systems

The embedded system chosen to implement the fuzz-face is the
microcontroller LPC2148 of NXP, based on a 16-bit/32-bit ARM7TDMI-S
CPU 60 MHz maximum CPU clock, shown in Fig. 7.7. Various 32-bit
timers, one 10-bit DAC, PWM channels are provided. Two 10-bit ADCs
provide a total of 14 analog inputs, with conversion times up to 2.44 us per
channel.

In spite of the simplification of the discrete time SystemC model the real
time implementation on an embedded system is not possible.

Equations (4.10) require the calculus of exponential functions,
multiplications and divisions that are complex functions to be
implemented.

The first solution we tried is the implementation equations (4.10) using a
32 bit fixed point representation. The fixed point solution gives accurate
solution but the CPU time required for an implementation on a portable PC

samples
10000 10500 11000 11500 12000

original

real Fuzz-Face

virtual Fuzz-Face

7

98 M. Conti et al.

with a Pentium M processor is still too expensive: for example the
processing of a sound 12 s long takes about 9 s. Therefore the real time
implementation of the floating point or fixed point algorithm on an
embedded ARM7 processor with a 60MHz clock frequency is not possible.

Preamplifier ARM7

Fig. 7.7 The electronic board and its main modules

The distortion algorithm represented in Fig. 7.4 has been simplified

approximating the nonlinear static relationship of the complete fuzz-face
block with a look up table, as shown in f Fig. 7.8. The pickup and filter
modules are the same as the ones in Fig. 7.4. A 32 bit fixed point
representation has been used. The ARM7 performs an elaboration on each
input sample with a sampling time of 22.6 μs (44.1 kHz), the calculus
requires 5.33 μs, therefore a real time implementation is possible.

The same elaboration on the ARM7 using a floating point representation
requires about 32 μs, that not allows a real time implementation.

The sinusoidal input and the distorted output of the embedded system
board are reported in Fig. 7.9.

7.6 Conclusions

This paper presents a design flow for the design of sound digital
processing circuits based on physical models. The real time simulation of
the algorithmic description allows a simple verification of the quality of
the sound effect by the designer and by the guitar player. Following the
presented methodology, the digital model of the Fuzz-Face has been
implemented in real time on the embedded system LPC2148 of NXP,
based on a 16-bit/32-bit ARM7. Future work will be devoted in the
refinement of the algorithm to improve the quality of the sound.

Real Time Implementation of Fuzz-Face Electric Guitar Effect 99

Fig. 7.8 SystemC simplified model

Fig. 7.9 Sinusoidal input and distorted output of the ARM7 real time implemenation

References

1. B. L. Vercoe, W. G. Gardner and E. D. Scheirer, “Structured audio: Creation,
transmission, and rendering of parametric sound representations”, Proceedings of the
IEEE, VOL. 86, NO. 5, MAY 1998, pp. 922–940.

2. H.G. Alles, “Music sysnthesis using real time digital techniques”, Proc. Of IEEE,
Vol.68, No. 4, april 1980, pp. 436–449.

3. E. Holsinger, “How Music and Computers Work”, Chicago, IL: Ziff- Davis Press, 1994.
4. S. Pellman, “An Introduction to the Creation of Electroacoustic Music”, Belmont, CA:

Wadsworth, 1994.
5. J.M. Chowning, “The synthesis of complex audio spectra by means of frequency

modulation,” J. Audio Eng. Soc., vol. 21, no. 7, pp. 526–534,1973.
6. J.O. Smith, “Physical Modeling using Digital Waveguides”, Comput. Music J., special

issue on Physical Modeling of Musical Instruments, Part I, Volume 16, No. 4, p. 74,
1992.

7. J.O. Smith, “Music application of digital waveguide,” Stanford Univ., CCRMA Tech.
Rep. STAN-M-67.

8. S. A. Van Duyne and J. O. Smith, “Physical modeling with the 2-D digital wave guide
mesh,” in Proc. Int. Computer Music Conf., Tokyo, Japan, 1993, pp. 40–47.

second order
band bass

filter

in x y out

nonlinear function

second order
low pass

filter
f(x)

7

100 M. Conti et al.

9. S. Petrausch, J. Escolano and R. Rabenstein, “A general approach to block”-based
physical modeling with mixed modeling strategies for digital sound synthesis”, Proc. of
ICASSP ‘05, Volume 3, 18–23 March 2005, pp. 21–24, Vol 3.

10. Sheng-Fu Liang, Alvin W. Y. Su and Chin-Teng Lin, “Model-based synthesis of plucked
string instruments by using a class of scattering recurrent networks”, IEEE Trans. On
Neural Networks, Vol. 11, No. 1, Jan 2000, pp. 171–185.

11. Pedersini, F., Sarti, A. and Tubaro, S., “Block-wise physical model synthesis for
musical acoustics”, Electr. Lett., Vol. 35, No. 17, 19 Aug. 1999 Page(s):1418–9.

12. J. Escolano and J.-J. Lopez, “On the adaptation of the linear bicharacteristic scheme to
block-based physical modeling for digital sound synthesis of string instruments”, Proc of
ICASSP 2006, pp.V-161–164.

13. C. Cooper, D. Murphy, D. Howard and A. Tyrrell, “Singing synthesis with an evolved
physical model”, IEEE Trans. on Audio, Speech and Language Processing, Vol. 14,
No. 4, July 2006, pp. 1454–1461.

14. E. Motuk, R. Woods and S. Bilbao, “FPGA-based hardware for physical modeling
sound synthesis by finite difference schemes”, Proceedings. 2005 IEEE International
Conference on Field-Programmable Technology, 2005, 11–14 Dec. 2005, pp. 103–110.

15. J.A. Gibbons, D.M. Howard and A.M. Tyrrell, “FPGA implementation of 1D wave
equation for real-time audio synthesis”, IEEE Proc. of Computers and Digital
Techniques, Volume 152, Issue 5, 9 Sept. 2005, pp. 619–631.

16. SystemC, www.systemc.org, 2008.
17. A. Vachoux, C. Grimm and K. Einwich, “SystemC-AMS requirements, design

objectives and rationale”, Design, Automation and Test in Europe Conference, 2003, pp.
388–393.

18. A. Vachoux, C. Grimm and K. Einwich, “Towards analog and mixed-signal SOC design
with systemC-AMS”, Workshop on Electronic Design, Test and Applications, 2004.
DELTA 2004, pp. 97–102.

19. OSCI Analog/Mixed-signal Working Group (AMSWG), www.systemc.org/projects/
ams-wg/

20. SystemC-AMS, http://www.systemc-ams.org/, 2008.
21. S. Orcioni, G. Biagetti and M. Conti, “SystemC-WMS: Mixed Signal Simulation based

on Wave exchanges”, in the book “Advances in design and specification languages for
SOCS”, Alain Vachoux (Editor.), Kluwer Academic 2006.

22. M. Conti, M. Caldari, S. Orcioni and G. Biagetti, “Analog circuit modeling in SystemC”,
in the book “Languages for System Specification and Verification” CHDL Series,
Christoph Grimm (Editor.), Kluwer Academic 2004, pp. 229–242.

23. F. Gambini, M. Conti, S. Orcioni, F. Ripa and M. Caldari, “Physical modelling in
SystemC-WMS and real time synthesis of electric guitar effects”, Proc. of the WISES07,
pp. 87–100, Madrid, Spain, June 21–22, 2007.

24. R.G. Keen. “The technology of the Fuzz-Face”, www.geofex.com/Article_Folders/
fuzzface/fffram.htm, 2008.

Chapter 8

Providing Standardized Fixed-Point Arithmetics
for Embedded C Programs

Wilfried Elmenreich1, Andreas Wolf 2 2
1Lakeside Labs, Mobile Systems Group, Institute of Networked and Embedded Systems,

Abstract The ISO/IEC Standard TR 18037 defines the syntax and semantics for fixed-
point operations for programming embedded hardware in C. However, there
are currently only few compilers available that support this standard.
Therefore, we have implemented a stand-alone library according to the
standard that can be compiled with standard C compilers. The library is
available as open source and written in plain C, thus can be used in various
target architectures as long as a C compiler is available. This book chapter
presents a brief description of the ISO/IEC standard and the library
implementation followed by an evaluation of code size and performance of the
fixed-point operations on the Atmel AVR architecture. A comparison with the
standard floating-point library (which is machine code-optimized to the target
architecture) shows that simple fixed-point functions such as addition,
subtraction and multiplication are more efficient, while more complicate
functions can only compete in the worst case behavior. The fixed-point
approach provides a smaller memory foot print, for typical applications where
only a small subset of functions is used. This is especially of interest for the
big market of embedded microcontrollers with only a few Kbytes of program
memory.

Keywords Fixed-point arithmetic, C Programming language, Embedded C, CORDIC

8.1 Introduction

The C language standard [1] specifies two data types for expressing
fractional numbers, the float and the double data type. Both data types are in

101

 and Maximilian Rosenblattl

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_8,
© Springer Science+Business Media B.V. 2009

University of Klagenfurt, 9020 Klagenfurt, Austria, wilfried.elmenreich@uni-klu.ac.at
 2Vienna University of Technology, 1040 Vienna, Austria

102 W. Elmenreich et al.

a floating-point format consisting of sign, exponent and mantissa according
to the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) [2].

Since the regular integration of the floating-point coprocessor in the
processors for personal computers (in the x86 world, this became reality
when the 486DX replaced the 486SX in 1992), floating-point arithmetic was
available with high performance and became a ubiquitous feature for
computer programs.

On systems without a dedicated hardware module for floating-point
operations, these have to be emulated by a series of integer operations in
software. This is typically the case for embedded microcontrollers, which in
most cases do not come with a floating-point module since die size and,
therefore, the cost of a microcontroller is strongly increased when a floating-
point unit has to be added in hardware. Also, many embedded applications
do well without hardware floating-point support. The NIOS II soft core
processor [3], for instance, requires around 700 Logic Elements when
synthesized as a 32 bit integer processor onto an FPGA (Field-
Programmable Gate Array). When adding a floating-point unit, the final
design requires around thrice the size of the plain integer design.

Without compiler support, a programmer either has to code the
operations manually, use one of the many libraries available for fixed-point
operations or use tools like Matlab [4] that are able to generate C code that
simulates fixed-point arithmetic.

Existing solutions for fixed-point libraries suffer from one of the
following deficiencies: (i) the data types are not standardized, thus it is not
possible to reuse code with a different library, (ii) not all required functions
are supported, e.g., missing support for trigonometric functions, (iii) if the
library is rather complete, the overhead on linking the library to the final
program creates a large memory footprint, and (iv) the library is not written
in C but in C++ or an architecture-specific assembly language.

Unfortunately, until recently, there was not much compiler support for
fixed-point data types and no standard for implementing fixed-point data
types. In 2008, ISO issued a standard that is describing the syntax and the
data types for fixed-point arithmetic as an extension to the programming
language C [5]. However, for particular embedded target systems there is
still a lack of compilers that support this standard. Therefore, we have
implemented the data types and functions of this standard as a software
library that can be used with any standard C compiler.

It is the purpose of this chapter to describe a high-level language
implementation of the main parts of the ISO/IEC Standard TR 18037 and
evaluate the results by comparison to the standard software floating-point
library of the avr-gcc compiler, a compiler for the embedded AVR 8-bit
microcontroller series. Our intention is to provide a very generic

8 Providing Standardized Fixed-Point Arithmetics 103

implementation that can act as a transitional solution for systems where
compiler support for the new standard is not yet available as well as a
solution for applications with moderate performance requirements.
Moreover, the timing behavior of the functions in our library has been
thoroughly analyzed on the AVR architecture so that these data supports
static Worst Case Execution Time analysis methods [6] for real-time systems
on that hardware.

The rest of the chapter is structured as follows:
Section 8.2 reviews some basic properties of fixed-point and floating-

point arithmetic. Section 8.3 gives a short introduction to the ISO/IEC 18037
standard. Section 8.4 describes our implementation of a library. Section 8.5
depicts the evaluation results for our library on the AVR architecture.
Section 8.6 compares the results to floating-point operation. Section 8.7
concludes the chapter.

8.2 A Closer Look on Fixed-Point Arithmetics

Most programming languages offer only floating-point arithmetic in order to
express fractional numbers. Being noticeable exceptions, ADA and COBOL
are one of a few programming languages that also natively support fixed-
point data types. The reason for this is that floating-point arithmetic comes
with the following advantages over fixed-point numbers:
• They approximate real numbers over a relatively wide data range. For

example, the float data type in C allows to express numbers between
1.175·10–38 and 3.403·1038. The double data type even supports numbers
between 2.225·10–308 and 1.798·10308.

• They provide, except for special situations, like for example very small
numbers near zero, a constant relative precision for approximating a real
number. The float data type has a precision of 2–24 = 5.960·10–8, the
double data type has a precision of 2–53 = 1.110·10–16.

• The number format is standardized by IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754) to four different precisions: single,
double, single-extended, and double-extended. Typically, programming
languages and most floating-point hardware support single and double
precision [7]. There exists another standard, IEEE 854 [8] that also
supports specifying floating-point numbers on the basis 10, which is
aligned to representation of numbers by humans. However, unlike IEEE
754, IEEE 854 does not specify how a binary format of a number should
look like so that is less applicable in computer programming.

104 W. Elmenreich et al.

Therefore, most applications will do well in using floating-point
numbers. However, there are some points in favor of fixed-point numbers:
• Operations on fixed-point numbers are less complicated than floating-

point numbers. This argument is especially of weight, if the target
hardware has no special support for floating-point calculations, which is
often the case for embedded hardware. Therefore, using fixed-point
arithmetic can yield a performance benefit.

• When the numbers to be operated with are in an a priori known order of
magnitude, a fixed-point data type that has the radix in an appropriate
position can store a number more efficiently than the floating-point data
type, since the latter has also to store the flexible exponent. Again, this is
an issue for embedded systems with a limited amount of RAM memory.

• Due to the reduced complexity of the fixed-point operations, the resulting
code size is by a few kbytes smaller when using fixed-point instead of
floating-point numbers. Accordingly to the previous argument, this is an
issue for embedded systems with a limited amount of program memory.
If an application requires floating-point arithmetic or does better with

fixed-point depends mainly on the data set the application has to deal with.
Frantz and Simar [9] discuss this on the example of video and audio
processing: While discrete cosine transformations and quantization
operations as they appear in video signal processing can be effectively
handled using integer operations while audio processing typically uses
cascaded filters where each filtering state propagates the error of previous
stages. Furthermore, audio signals must retain accuracy even if the signal
approaches zero due to the sensitivity of the human ear, which makes audio
applications less suitable for fixed-point arithmetic.

Therefore, the employment of fixed-point arithmetic can be advantageous
for some embedded applications where fractional numbers are required, but
floating-point operations would be too expensive in terms of hardware cost
or processing time.

8.3 Floating-Point Extensions According to ISO/IEC TR
18037:2008

Because fixed-point operations are commonly used for microcontrollers, the
ISO/IEC has summarized some guidelines and suggestions in a technical
report named “Extensions for the programming language C to support
embedded processors” [5], which defines some guidelines for including
fixed-point data type support into C compilers. This includes data types,

Providing Standardized Fixed-Point Arithmetics 105

#pragma directives, constants, function names, and some mathematical
conventions.

Although the standard is intended to describe fixed-point extensions for
C compilers, we have decided to use those guidelines for the implementation
of an external C library.

Having the real time and code size limitations in mind, we decided to
implement a reasonable subset of the data types defined by the standard. The
overall set of data types and the implemented types are shown in Table 8.1.
The numbers indicate the bits that are available for representing the integer
part and the fractional part. Note that the definition of our implementation
exceeds the number of specified bits, which is still in conformance with the
standard, since the given values specify the minimum number of bits for the
data types.

Table 8.1 Fractional data types according to ISO/IEC TR 18037
ISO/IEC Definition Implemented

signed short _Fract s.7
signed _Fract s.15
signed long _Fract s.23
signed short _Accum s4.7 _sAccum s7.8
signed _Accum s4.15 _Accum s15.16
signed long _Accum s4.23 _lAccum s7.24

FX_ACCUM_OVERFLOW defines the overflow behavior of the Accum

data types. When set to SAT, saturation is enabled; this means that when an
overflow occurs, the result is either the minimal or the maximal possible
value of the data type. This behavior often means a significant loss of speed
and further increases code size, so the #pragma is normally set to
DEFAULT, which is the other possible value. Since we cannot implement
#pragmas in a library, this behavior can be set with a #define
FX_ACCUM_OVERFLOW before the library header file is included.

FX_FRACT_OVERFLOW is the same for the Fract data types. Since we
have none of them implemented, this #pragma is not used in our library.

FX_FULL_PRECISION forces the implementation to gain maximum
precision, by allowing a maximum error of one ULP (Unit in the Last Place)
of the result. However, for particular problems, a precision of 2 ULPs on
multiplication and division operations is sufficient, which enables
optimizations towards execution speed and code size. For our
implementation the FX_FULL_PRECISION switch is not implemented,
instead the precision has been predicted separately for each function.

Almost any meaningful data type handling and some low level arithmetic
functions are defined through naming conventions and behavior
descriptions. There is one version for each data type respectively several for

8

106 W. Elmenreich et al.

conversion and mixed type functions. Except for their parameters they differ
also by some trailing and/or leading characters which describe the type of
the parameters respectively the result.

8.4 Library Implementation

The primary goal of this work was to provide a fixed-point library especially
for use with Atmel 8 bit processors in combination with real time
applications. So, performance and performance predictability were strong
requirements for the design. Also flash memory was very limited, therefore
small code size was desired.

To optimize code for size and speed, every function was implemented as
accurate as possible, trying to keep it mathematically fast and simple (thus
reducing code size). Apart from optimizing the overall code size of the
library, each function has been compiled into a separated object file that is
only linked to the final program if the function was used.

A main decision that was made refers to the data types. The ISO/IEC
paper recommends both the _Fract and the _Accum type. The difference
between those two types is only the lack of integral bits in the _Fract type
while not increasing the number of fractional bits, so we decided to
implement the _Accum type. To further limit the complexity of the
implementation, we only implemented two subtypes of the _Accum type.
Although the two data types should be named _Accum and long _Accum,
there is a problem with the name of the second type. As we use typedef to
define the type, the name of the data type must not have blanks in it. So we
decided to call it _lAccum, which should be kept in mind when comparing
AVRfix with the ISO/IEC specification.

Both types are signed and held in a 32 bit container (signed long). While
_Accum has 15 integral and 16 fractional bits, _lAccum has only 7 integral
bits but therefore 24 fractional bits. Because we use the long data type as
container, addition and subtraction are working implicitly by using integer
arithmetic as long as _Accum and _lAccum are not mixed. Therefore,
addition and subtraction require no additional function in the library.

Overloading of operators is not supported in ANSI-C, so for example a
multiplication needs to be done by a function call or a macro. While function
calls produce some overhead on runtime, the use of macros increases code
size. Most operations except conversion functions are implemented as
functions. Comparison functions are working as long as the data types are
the same; casting has no effect for _Accum and _lAccum. If a comparison
between a long and an _Accum is needed, one (or both) of the variables

Providing Standardized Fixed-Point Arithmetics 107

needs to be converted before the comparison can be done. The same
approach is needed for assignments.

To meet requirements of code size and execution speed, the
FX_FULL_PRECISION switch has not been implemented. Instead, the
expected precision has been evaluated and documented separately for each
function in the project documentation [10]. This evaluation includes also
sophisticated math functions such as trigonometric functions and square
root. The library is completely written in C and has been tested and
evaluated with the established compilers avr-gcc 3.3.2 and the Microsoft
Visual Studio IDE 6.0.

In reference to the ISO/IEC report, the naming conventions are used
accordingly whenever possible, meaning that for _Accum a k, for _lAccum
lk and for _sAccum sk is used as suffix to the function name to indicate the
type of the parameters. The type of the return value is indicated by a letter
before the function name. No letter suggests _Accum, an l means that the
return value is of type _lAccum, and an s refers to _sAccum.

For example, the multiplication function that multiplies two _Accum
values and returns an _Accum value, is named mulk. The multiplication
function that multiplies two _lAccum values and returns an _lAccum value,
is named lmullk.

The ISO/IEC paper specifies the FX_ACCUM_OVERFLOW flag, which
defines the behavior if an overflow occurs. If it is set to saturation (SAT), the
value will be either the maximum or minimum possible value if an overflow
occurs. By default, an overflow will give an undefined result. While in the
ISO/IEC paper this flag is defined as a #pragma directive, we needed to use
a #define for the FX_ACCUM_OVERFLOW flag. Independent from this
flag the behavior can be achieved by calling the respective version of the
function directly. If a function provides both behaviors, there exist two
functions which have either S for saturation or D for default behavior as
trailing character after the function name. So one can attach an S to a
function name to force saturation behavior or a D to force the default
behavior (resulting in e.g. mulkD or mulkS for the two versions of mulk) if
the function provides two different behaviors.

Apart from the four arithmetic basic operations, the library support also
operations such as square root, logarithmic and trigonometric functions. For
the latter we have decided to use the CORDIC approximation [11] instead of
a Taylor series, because it saves considerable program memory when
requiring sine and cosine (or, consequently, tangens) in the same program
while achieving almost the performance of the Taylor version.

8

108 W. Elmenreich et al.

8.5 Evaluation

For tests and benchmarks we used an evaluation board equipped with an
Atmel ATMEGA 16, providing 16 MHz clock, 16 Kb flash memory and 2
Kb SRAM. For evaluating the correctness of the calculations done by the
library, we tried to cover all meaningful calculations. To speed up this brute
force approach, we mainly did this on a PC and compared the result with
either results from 64 bit integer calculations or precalculated reference
results. The reference results have been created with the statistical
computing environment R for a meaningful range. For example, the
meaningful range for sine and cosine is from zero to two times Pi, meaning
for an _Accum parameter, that 411774 calculations and comparisons had to
be done. For functions that have no fixed execution time, the execution time
over parameter is recorded and visualized via gnuplot.

8.5.1 Evaluation on the Microcontroller

To measure execution time and verify the calculation results, we wrote a
small microcontroller program. To measure execution speed, we use the 16
bit timer. The counter is reset to zero, the function is called and the counter
value is fetched afterwards. The execution time, parameters and result is
then transmitted via UART. To speed up transmission, a high bit rate is used
and the data is sent binary, so a conversion was needed to plot the data in
gnuplot.

8.5.2 Accuracy Test

To test the accuracy of the implemented functions, we compared the output
values with precise 64-bit calculations for the _Accum and _lAccum data
type (respectively with precise 64-bit calculations for the _sAccum data
type) for addition/subtraction, multiplication and division. For higher
mathematical operation pre-calculated reference values have been used. The
accuracy test was done on a PC as we use regular C code and the execution
is much faster as on the microcontroller. We assumed equality of the output
after some calculations done on both, the PC and the microcontroller. The
established Microsoft Visual C++ 98 environment was used as the reference
compiler.

Providing Standardized Fixed-Point Arithmetics 109

8.5.2.1 Multiplication and Division

To test multiplication and division, we simply treated the _Accum and
_lAccum values as signed 64-bit integer values, repeated the calculations
with 64-bit accuracy and compared the results. Testing has been done
completely for the _sAccum type. For the other data types, extensive testing
including the critical value pairs has been performed.

For a multiplication x · y, all values |x| > (2^i+f - 1) · 2-f / y will lead to an
overflow for y > 1, with i being the number of integral bits an f being the
number of fractional bits of the data type. For a division x/y, all values
x > (2i+f - 1) · 2-f · y will lead to an overflow. According to the data type, this
is only a limitation for x if y < 1.

Extensive testing of the functions showed the following results:
• The _sAccum functions have a maximum error of 0 for multiplication

and division, both tested with default and saturation behavior.
• The _Accum functions have a maximum error of 2–16 for multiplication

and well-defined division calculations, both tested with default and
saturation behavior.

• The _lAccum functions have a maximum error of 2–24 for multiplication
and well-defined division calculations with default behavior. For
saturation behavior, the maximum error was 2–23.

8.5.2.2 Extended and Trigonometric Functions

For extended and trigonometric functions (e.g. sine/cosine, logarithm etc.),
the comparison values were provided by R from the R Foundation, a
statistical calculation environment. Most sophisticated functions have an
error behavior that strongly depends on the input. Thus regarding the error
over the whole input range makes sense. For example, Figure 8.1 depicts the
error function for the _Accum square root function. An exhaustive
evaluation of all functions can be found in the project documentation10.

8.5.3 Performance Testing

Our first attempt to test performance of our implementation was to use the
destination device, an Atmel ATMEGA 16, but as its maximum speed is 16
MHz and the serial port is a very slow transmission system, we decided to
go a different way. We implemented a very simple simulator to test the
performance on a PC.

8

110 W. Elmenreich et al.

8.5.3.1 The Disassembler & Simulator Creator (DsimC

The Disassembler & Simulator Creator (DsimC) is a little Java Application
that disassembles an .srec-file for an Atmel ATMEGA16 and transforms
each instruction into a piece of C code. This code can be compiled and
executed on a PC instead of downloading and executing the original code on
the microcontroller.

This was possible, because the ATMEGA16 has no caches or other
elements that make code execution times indeterministic, but only a two-
stage pipeline with very low effect on execution time. So each hardware
instruction is expanded to a group of C code instructions which performs an
equivalent operation, maintains the virtual status register flags and
increments a tick counter which furthermore can be used to determine the
performance of the library functions. In addition, every write to the UART
Data Register (UDR) results in a file output operation, which gives us a very
high speed up. As assumed, the maintenance of the status register flags
turned out to be most expensive, resulting in a simulation speed of only
about 25–30 times faster than on the ATMEGA16 when using a Pentium-M
with 2 GHz. This seems to be a good speedup, but most of it comes from the
serial port implementation.

When we compared the performance values calculated by our
simulations with values we determined on the microcontroller, we noticed a
slight drift. It turned out that the simulator counts too many ticks under
certain conditions, resulting in a few ticks more per function call, if ever. But
when we tried to isolate the operations causing this drift, it turned out to be
very tricky because of lack of an in-circuit debugger for the microcontroller
we would have to flash the target many times to reduce the code range in
which the drift appears. In our analysis we have noticed that the drift is only
in one direction, if ever. Fortunately, the simulator never gives fewer ticks
than it would take on the microcontroller, so this is sufficient to get
guaranteed worst case execution time values. However, by taking the
discrepancies between simulator and real hardware into account, tighter
WCET values would be possible.

8.6 Comparison

The traditional way for fractional computing is the usage of floating-point
operations, for which a various number of libraries exist. We compared our
fixed-point library with the floating-point library (libm) that comes with the
avr-gcc bundle.

A

t

t

_
t

W

Providing

8.6.1 Ac

All data type
a 32-bit cont
container for
the whole co
So, within th
the _Accum a
expressed m
_sAccum dat
types since it

8.6.2 Ad

The fixed-po
as normal int
addition and

8.6.3 M

Compared to
lmullkS the a
WCET of the

Standardized

ccuracy

s compared h
tainer. But th

r exponent an
ontainer for th
he fixed-point
and _lAccum

matches the fi
ta type has cl
t resides in a 1

Fig.

ddition and

int addition a
teger operatio
subtraction (a

ultiplicatio

o the multip
average perfor
e fixed-point m

d Fixed-Point

here (float, do
he floating-p

nd mantissa, w
he sign bit, th
t range (231-1)

m types are mo
ixed-point ra
early a lower
16-bit contain

 8.1 Accuracy d

d Subtracti

and subtractio
ons, so they re
as shown in T

on

plication func
rmance of the
multiplication

Arithmetics

ouble, _Accum
point data typ
while the fix
he integral bit
) · 2–16 and (2
ore accurate a
ange in its o
r accuracy tha
ner only.

istribution for sq

ion

on operations
eally make th

Table 8.2).

ctions mulkD
e double oper
n functions is

m and _lAccu
pes have to s
ed-point data
ts and the fra
231-1) · 2–24, r
as long as the

order of mag
an the floatin

qrk

use the same
he cut over fl

D, mulkS, lm
ration is highe
s better. This

111

um) reside in
separate the
a types have
actional bits.
respectively,
e value to be
gnitude. The
ng-point data

instructions
oating-point

mullkD and
er, while the
is due to the

8

112 W. Elmenreich et al.

fact that the double data type is only implemented in 32 bit by the avr-gcc,
thus a double multiplication involves a 23 bit multiplication of the mantissa
and an addition of the exponent. In addition, the floating-point library has
been optimized at assembly code level for average performance, which
explains the results (cf. Table 8.3).

Table 8.2 Performance comparison for addition operations
Data type Execution time in ticks
Double 74–80
_sAccum 14
_Accum and _lAccum 23

Table 8.3 Performance comparison of multiplication operations
 Execution time in ticks
Data type Default Saturated
double 53–2851 -
_sAccum 79–82 92–95
_Accum 337–350 215–359
_lAccum 594–596 198–742

8.6.4 Division

Compared to the division functions divkD, divkS, ldivlkD and ldivlkS the
minimum, average and maximum performance of the double operation is in
general better, which can be seen in the overview given in Table 8.4. As a
consequence, if possible, fixed-point divisions should be avoided for
performance reasons.

Table 8.4 Performance comparison of division operations
 Execution time in ticks
Data type Default Saturated
double 66–1385 -
_sAccum 634–711 650–727
_Accum 820–1291 853–1386
_lAccum 876–1405 862–1416

8.6.5 Floating-Point Code Size

We have measured the code size for using the floating-point functions
provided by the compiler. Using a simple addition, for example adds about
1740 bytes in code size. To cover the basic arithmetic operations about 3k of
Flash ROM are needed. In contrast, when using AVRFix and the datatype
_Accum with default behavior, only 758 bytes are needed. For _lAccum 848

Providing Standardized Fixed-Point Arithmetics 113

bytes and for _sAccum only 260 bytes are needed. Thus, AVRFix has a clear
advantage in code size compared to floating-point operations.

8.7 Conclusion

The contributions in this chapter are the implementation and evaluation of a
generic fixed-point library based on the ISO/IEC Standard TR 18037. The
documentation [10] and the source code is available as open source.

The fixed-point library contains not only basic mathematical functions
and conversions but also more sophisticated operations such as square root,
logarithmic and trigonometric functions. The linking model allows having
only the used functions in the final assembler code, which saves
considerable program memory over monolithic libraries.

We have performed exact performance measurements for a specific
target architecture, the Atmel AVR with avr-gcc compiler. The results from
this analysis can be used for static WCET analysis and optimization of
execution time and code size, which is of special interest for embedded
application on low-cost microcontrollers with few resources.

Addition and subtraction are generally by a factor of 3–5 faster than
floating-point operations. The fixed-point multiplication and division have
worse average performance, but a better WCET than the floating-point
operations for most data types. Moreover, since the library has been written
in C, there is also room for hardware-specific optimizations of the library,
e.g., by using inline assembler functions for time-critical parts. Regarding
code size the fixed-point operations are clearly in favor.

If only addition, subtraction and multiplication is needed or a small data
type like _sAccum is sufficient, the use of fixed-point operations can clearly
be favored from the viewpoints of speed, WCET, and code size.
Sophisticated functions like trigonometric and exponential functions are
slower than the fixed-point versions, but require less program memory,
which makes the fixed-point implementation attractive for projects on small
embedded microcontrollers where program memory becomes the main
limiting factor. The optional saturation behavior is a nice feature which
cannot easily be reproduced by floating-point calculations and small code
size may be a decisive advantage.

In the future, we expect the fixed point standard to be supported by
embedded compilers. The current version of gcc v4.3.1 supports the fixed
point extensions only for the MIPS target. Being integrated into the
compiler, we expect an increase in performance for compiler-supported
fixed point arithmetic in comparison to our library. Until there is sufficient

8

114 W. Elmenreich et al.

compiler support, our library can be a transitional solution that allows
developers to use fixed-point arithmetic.

Acknowledgement This work was supported in part by the Austrian FWF
project TTCAR under contract No. P18060-N04.

References

1. ISO/IEC, Programming Languages – C, approved by ANSI Accredited Standards
Committee, ISO/IEC 9899:1999, December, 1999.

2. IEEE, Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985; IEC-
60559:1989, 1985.

3. Altera Corporation, USA. Nios II Processor Reference Handbook Version 7.0, 2007
4. D.P. Magee, Matlab extensions for the development, testing and verification of real-time

DSP software, In Proceedings of the 42nd Annual Conference on Design Automation,
pages 603–606, San Diego, CA, USA, 2005.

5. ISO/IEC, Programming languages – C – Extensions to support embedded processors,
ISO/IEC TR 18037:2008, JTC 1/SC 22, 2008.

6. P. Puschner, Worst-case execution time analysis at low cost, Control Engineering
Practice, 6:129–135, January 1998.

7. D. Goldberg, What every computer scientist should know about floating-point
arithmetic, ACM Computing Surveys, 23(1):5–48, March, 1991.

8. IEEE, Standard for Radix-independent Floating-point Arithmetic, ANSI/IEEE Std 854-
1987, October 1987.

9. G. Frantz and R. Simar, Comparing fixed- and floating-point DSPs. Texas Instruments,
Dallas, TX, USA, 2004. White paper available at http://ocus.ti.com/lit/ml
/spry061/spry061.pdf.

10. M. Rosenblattl and A. Wolf, Fixed-point library according to ISO/IEC standard DTR
18037 for Atmel AVR processors, Bachelor’s thesis, Vienna University of Technology,
Vienna, Austria, 2007. http://sourceforge.net/projects/avrfix.

11. J.E. Volder, The CORDIC trigonometric computing technique. IRE Transactions on
Electronic Computers, EC-8(3), 9, 1959.

Part III

Middleware Platforms

Chapter 9

A Home E-Health System for Dependent
People Based on OSGI

Jaime Martín1, Ralf Seepold1, Natividad Martínez Madrid1, Juan Antonio
Álvarez2, Alejandro Fernández-Montes2 and Juan Antonio Ortega2
1Universidad Carlos III de Madrid, Spain;
2Universidad de Sevilla, Spain

Abstract This chapter presents a e-health system for dependent people installed in a
home environment. After reviewing the state of art in e-health applications and
technologies several limitations have been detected because many solutions
are proprietary and lack interoperability. The developed home e-health system
provides an architecture capable to integrate different telecare services in a
smart home gateway hardware independent from the application layer. We
propose a rule system to define users’ behavior and monitor relevant events.
Two example systems have been implemented to monitor patients. A data
model for the e-health platform is described as well.

Keywords e-health, telemedicine, telecare, dependent people, orientation, home
automation, OSGi, HL7.

9.1 Introduction

The World Health Organization defines the term e-health as the relations
between institutions, public health, e-learning, remote monitoring, telephone
assistance, domiciliary care and any other system of remote medicine care.
Telecare is the part of e-health that offers remote care of dependent (elderly
or disabled people), providing the care and reassurance needed to allow them
to live in their own homes.

Integration of healthcare key actors is required to offer quality in service
but e-health systems often lack adequate interoperability or integration of
social aspects; the results is a slow down in acceptance and usage of these

117

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_9,
© Springer Science+Business Media B.V. 2009

natividad.martínez@uc3m.es, ralf.seepold@uc3m.es, jortega@us.es, alejandro.fdez@gmail.com,
jaalvarez@us.es

118 J. Martín et al.

systems. Integrating Information and Communication Technologies (ICT)
(like for example telehomecare) in care, living and wellness is a citizens
demand that it should be provide at affordable cost [1].

An example of e-health services integration challenge is to achieve
communicate to dependent people with relatives and medical people,
integrating movement monitorization and orientation together with
electronic medical record transmission. Consequently, multimedia
communication and tracking people technologies should be seamlessly
integrated in the e-health service. Residential Gateways (RGW) enable
telecom companies to provide applications in a home environment via a
platform to manage several services remotely. The OSGi (formerly known
as the Open Services Gateway initiative, www.osgi.org) specification
provides an architecture for remote control of a platform. OSGi also includes
support for the whole life-cycle of services (e.g. start, stop, etc.). This
chapter proposes a platform for a home e-health system based in OSGi that
provides capabilities to integrate different telecare, telemedicine and
orientation support services for dependent people in the same RGW.

In Section 9.2, the state of the art of telemedicine, telecare and electronic
health record standards is reviewed. Section 9.3 presents the new proposal
by describing two patient monitorization examples, a production system, use
cases and the data model. Finally, Section 9.4 sums up the results so far and
describes some future work.

9.2 State of Art

9.2.1 Related Research on Telecare and Telemedicine

Several residential telecare and telemedicine platforms approaches are
presented in literature. Bobbie [2] describes an electronic-prescription
system for home-based telemedicine using the OSGi framework. This article
describes a health-prescription application running on a smart card that
communicates with a Personal Digital Assistant (PDA). It uses OSGi as a
central coordinating point between different devices. The OSGi environment
is aimed to allow intercommunication between the card reader, the patient’s
PDA application and other devices. However, it lacks a detailed description
about how the system is implemented and how security needs are reflected
in the application implementation that are specific in a medical environment.

The Service-Oriented Agent Architecture described in another approach
[3] enables healthcare services providers to support telecardiology services
on demand. It proposes a runtime unit of telemedicine agents to permit

9 A Home E-Health System for Dependent People Based on OSGi 119

services to be managed remotely. The system consists of an agent unit,
which includes a vital signals acquisition module; it can acquire ECG
(electrocardiogram) data and forward ECG data to a medical service center.
It uses Web Services to communicate to all services via XML in multiple
platforms but it does not mention any EHR standard.

Some Spanish research projects have presented a generic architecture to
e-health system based on middleware components [4]. The goal is to provide
a service platform for any kind of e-health application. These generic
architectures should allow a quick development of new services using the
existing infrastructure. Currently, the HL7 standard is ruled out because it
lacks interoperability with other systems and EN 13606 is proposed to
represent and to transmit clinic information. Currently, a proposal of an
IEEE 11073 platform for healthcare tele-monitoring has been published [5].
This work identifies a set of use cases relevant for a personal monitoring
scenario and it identifies related features and functionalities.

9.2.2 E-Health Technologies

Health patient data must be transmitted and saved in a standard format
supported by all involved systems. An electronic health record (EHR) refers
to an individual patient’s medical record in digital format. An EHR
standards comparative study [6] describes HL7 and EN 13606 standards. To
transmit medical information between devices IEEE 11073 has been
developed. A brief overview of these technologies is presented in the
following three sub-sections.

9.2.2.1 HL7

Health Level Seven (HL7) [7,8] is a widely applied protocol to exchange
clinical data. Several versions are been developed by the HL7 organization,
part of American National Standard Institution and founded in 1987. Version
3 is beyond the scope of this chapter because it is a complex standard and
there is no a stable version available [9].

The HL7 refers to seventh OSI layer (application) although it also
specifies a layer 6 presentation protocol made up of its own abstract message
format and encoding rules. Concerning the lower layers, like session and
transport services, it is rather vague because the HL7 authors’ intention was
to support a wide variety of systems. The underlying HL7 operational model
is a client-server system. For example, when a patient is admitted to a
hospital, the admission system will propagate HL7 admission messages to an
appropriate subsystem. An HL7 message always contains all the information

120 J. Martín et al.

required to complete a transaction and it is encoded in HL7 rules.
Essentially, all information is transmitted in ASCII plain text. The standard
allows defining site-specific extensions segments, like message extensions to
exchange data with an appointment system. However, the use of these
extensions can prompt serious interoperability problems. Moreover, HL7
lacks a specific methodology to generate messages and it is not clear how
the structural relations between fields are defined.

9.2.2.2 EN 13606

Health informatics – Electronic Health Record Communication standard (EN
13606) is a European official standard of CEN (European Committee for
Standardization) and an approved ISO standard. The overall goal is define a
rigorous and stable information architecture for communicating part or all of
the EHR of a patient. It is based on the HL7 RIM (Reference Information
Model) from HL7 v3, a set of data type definitions harmonized between
HL7 and CEN, the EHR Domain Information Model (DMIM) and a bunch
of RMIMs dedicated to certain structures and functionalities.

EN 13606 is flexible to represent the information structures transmitted
thanks to the archetypes, a knowledge representation of the clinic
information domain. Moreover, it is robust with respect to changes in the
specifications because changes in the archetypes do not provoke a change in
the underlying system.

The openEHR framework (www.openehr.org) is compliant to the EN
13606 and it is used in commercial systems throughout the world.

9.2.2.3 ISO/IEEE 11073

A brief description of novel standards ISO/IEEE 11073, often also referred
to Medical Information Bus (MIB), or x73 standards, for personal
telemedicine systems interoperability can be found in [10]. The goal is to
enable medical devices to interconnect and interoperate with other medical
devices. These standards cover the upper OSI layers and use well-known
IEEE standards like Bluetooth (802.15.1) or WLAN (802.11) in lower
layers. Part of x73 standards focus on point-of-care medical devices
communication which are mainly designed for acute monitoring and
treatment application in a particular diagnostic, bed or treatment area in the
hospital domain like Intensive Care Unit (ICU). Several of x73 standards
series are currently drafts and new projects are under development; first
prototype implementations are available in industry.

A Home E-Health System for Dependent People Based on OSGi 121

The standard is based on an object-oriented system management
paradigm. A numeric code set identifies every item that is communicating.
This is more efficient than HL7 because it uses binary instead of plain text
data. The key objectives for clinical domain applications addressed by the
standard are real-time plug & play interoperability and frequent network
reconfiguration. Special attention has been paid to reduce implementation
complexity and computational burden of devices. For wireless devices,
transmission power and transmission time could be reduced.

9.3 E-Health Service Proposal for Dependent People

9.3.1 Overview

Our proposal attempts to integrate several smart home services to provide a
scalable and interoperability e-health solution. The system is divided into
three basic subsystems: domotic, multimedia and e-health subsystem. In the
domotic subsystem different devices can co-exist in each subsystem
connected by wire or wireless to a residential gateway (RGW) based on an
embedded OSGi framework. Blood-pressure monitor and a pair of scales are
examples of integrated devices in the medical network.

A domotic environment based on a Lonworka network typically includes
sensors and actuators, for example light sensors or blind motor. A Lonworks
platform provides a reliable and open protocol accepted as a standard for
control networking. As we see in data model, a RGW can obtain some useful
environment variables from automation home network so when a relevant
event occurs, an alert or alarm is reported in the RGW. This event can be
sent to relatives or medical people. The multimedia network typically
includes a television, an IP camera or a webcam with microphone, necessary
for dependent person to communicate. The RGW is able to physically
interconnect all required networks and devices, and to host different services
which can be managed remotely by the e-health or access provider.
Multimedia services, like SIP audio/videoconference are provided to
communicate during the medical tele-visit (cf. Fig. 9.1).

a http://en.wikipedia.org/wiki/LonWorks

9

m

p
t

t
r
F

122

Fig. 9.1 Sm

9.3.2 M

In this sectio
monitors outd

The first u
provide infor
this informati
is the trackin
system, a use
day for 30 da
trips. Then th
routes (only
Froehlich and
supervised le
from one use

mart Home over

ovement M

on we propos
doors trips an
uses an infere
rmation abou
ion is learned

ng of frequen
er carried a G
ays. GPS dat
he GPS trips
spatial infor

d Krumm at
earning with
r.

rview, with auto

Monitorizat

se two system
nd the second
ence engine th
ut the start or
d from users’
nt trips of the
GPS logger w
ta was filtere
 with spatial

rmation) usin
Microsoft [1
new trips. F

mation, multime

tion and O

ms to monito
one indoor ac

hat does not r
end points o
past behavior
monitored u

with him con
d and segme
and tempora

ng a dendrogr
11]. The rout
Figure 9.2 sh

J. M

edia and medical

rientation

or patients. T
ctivity.
require users
of their journ
r. The initial

users. In orde
ntinuously for

nted to obtai
al data were
ram clusterin
tes were used

hows the rout

Martín et al.

l devices

The first one

to explicitly
neys; instead
requirement
r to test our
r 24 hours a
in the user’s
clustered in

ng tested by
d to make a
tes obtained

t
r

r

p

A Home E-

Using sim
trip and the e
route and the

The traine
routes, allow
areas.

Fig

When a se
of the securi
prevent dang

• If th
smart
gener
locat
the S
the c
not, t

-Health Syste

milarities that
existing routes
 user’s goal w
ed model cor

wing the dete

g. 9.2 A example

et of GPS loc
ity area of th
erous situatio

he user is a
tphone are l
rated SMS se
ion of the use

SMS is an ad
close address
the text is onl

em for Depend

t measure poi
s and a very e
when the trip
rrectly identif

ection of lost

e of GPS trackin

cations are re
he routes, di

ons:
a dependent
ow, the first

end to previou
er. If an Intern
ddress obtaine
to a latitude-

ly the latitude

dent People B

int to point d
early classific
is beginning.
fies more com
t or disorient

ng

ceived and al
ifferent polici

person or h
t option is to
usly selected p
net connectio
ed from a W
-longitude pai
e-longitude pa

Based on OSG

distances betw
cation was don

mmon places
tation situatio

ll of them are
ies could be

his abilities
o send an au
people showi

on is available
Web Service th

ir (reverse ge
air.

Gi 123

ween a new
ne about the

s and whole
ons in open

e located out
selected to

handling a
utomatically
ing the exact
e, the text of
hat provides
eocoding). If

9

n

H

m
w

h
m

124

• Anot
the c
frequ
comm
reorie
famil
and t
kind
and t
but th

Due to th

not complete
system has b
Heart Monito
acceleromete
mm), and op
wireless (48 h
is that two liq
high quality E
monitoring.

The ECG
The accelero
classify the
down) and o
sudden stop a

ther policy is
closest point
uent place (h
mon ones). In
entation app
lies that allow
the difficultie
of people in

the potential
he users’ audi

he fact that us
to monitor a

been designed
or [15] (cf.

er. The weig
perating live
hours) make i
quid gel elect
ECG signal. T

G data helps to
ometer data d
activities of

other risky pa
and a body ch

a reorientatio
from a freq

he could ch
n a previous
lication to A

w a relative th
es to manage
n a crisis situ

users. In [14
ience was dif

sers usually a
nd help them
d using the sm
Fig. 9.3) co

ght (55gr wit
without chan
it perfect to b
trodes must b
This is norma

Fig. 9.3 Hea

o detects pot
depending on

the user (ru
atterns like fa
hange of orien

on service tha
quent route an
oose one fro
work [13] w

Alzheimer p
hat suffers tha
a device like
ation make u

4] a similar ap
fferent (mild c

are indoors, t
m. To improve

martphone an
omposed by
th battery), m
nge the batte
be worn by th
be placed on t
ally bothering

alth monitor

ential heart i
n the position
unning, walki
alls (a big ac
ntation).

J. M

at helps the u
nd then guid
om photogra

we attempted
atients but t
at disease to g
e the HTC P3
us change the
pplication wa
cognitive disa

the system pr
e the usefulne
nd a device c
an ECG and

measurements
ery and sendi
he user. The o
the user’s che
g the user for

llness and th
n of the devi
ing, standing
celeration fol

Martín et al.

user to reach
de him to a
aphs of the
to design a

the lack of
go out alone
3300 by this
e interaction
as explained
abilities).

roposed was
ess, a second
called Alive
d a tri-axial
 (90×40×16
ing the data
nly problem
est to obtain
a long term

e heart rate.
ice helps to

g up, sitting
llowed by a

A Home E-Health System for Dependent People Based on OSGi 125

A rule-alert system was designed to send automatically a SMS to the
relatives; an OSGi-Server stores vital constants to be queried by authorized
users.

9.3.3 Production System

A rule-based system to control and monitorize the user’s behavior is
presented here. This is a production system formed by a facts base and rules
base as showed in Fig. 9.4. This has been implemented as a rule engine and
scripting environmentb written in Java language by Jess.

Fig. 9.4 Production System for e-Health system

In Table 9.1 we show an example of Rules Base for our e-Health
platform with health and automatic rules based on a health monitor and other
sensors.

Table 9.1 Example of rules base for e-health system
Condition Action
High Blood Pressure Rate Call to health professionals
High Blood Pressure Rate Call to relatives
Low Light Level Rise up blind

In certain cases, we need a priority range for these rules because it is

possible that several rules apply at the same time. Priority and urgency

b http://herzberg.ca.sandia.gov

Patient Medical Data

Environment Data Facts Base

Rule System

Jess (Java Rule Engine)

Production System

Bundle Services

9

h

p

W

t

b

t
p

r

126

issues for a
actions shoul
or very critic
has a lot of p
The assistant
patient.

9.3.4 Us

We can iden
administrator
administrator
to configure
administratio
by a device
admin. User
assistants or
them accordi
person can s
during the pe

Telecare
another use c

This is o
relatives and
contact first o

mobile care
ld have a prio
cal and they n
pain he can c
t can then de

se Cases

ntify some i
r controls th
rs for each su
e-health dev

on by virtuali
is part of a s

rs without ad
dependent pe

ing to their pr
et the hours

eriodic blood p
with assistan

case, like it is

often organiz
d friends. Th
of all his rela

system are t
ority level bec
need a faster
contact the as
ecided if an

important us
e RGW but

ubsystem like
vices only. A
zation is des
scene, i.e. a s
dministration
erson can dir
references. F
that a blind
pressure chec

nt people of
shown in Fig

Fig. 9.5 Telec

zed without
he problem is
atives and frie

treated in [16
cause some si
response. Fo

ssistant befor
ambulance i

se case of th
can appear

e an e-health
A solution to

cribed in [17
set of pre-est

n permission,
rectly custom
or example, a
is open to al

ck.
the patient/d

g. 9.5.

care use case

considering
s that the pa
ends if they n

J. M

6]. Alert mec
ituations coul
or example, if
re relatives ar
is required to

he platform.
that there a

admin, which
separate diff

7]. Every serv
tablished serv
, like relativ

mize the devic
a relative of
llow illumina

dependent per

a communi
atient usually

need anything

Martín et al.

chanisms in
ld be critical
f the patient
re informed.
o attend the

 A general
are different
h is allowed
ferent RGW
vice offered
vices by the
ves, friends,
ces to adapt
a dependent

ate the room

rson can be

ication with
y prefers to
g. According

A Home E-Health System for Dependent People Based on OSGi 127

to several studies, dependent people are reluctant to use many health care
services because they do not personally know the operator or the contact
person in the service centre. So an objective of this work is to integrate
relatives and friends into the healthcare service provision, and thus increase
the usability of the system. For example, in this use case the assistant
initiates a SIP video call with the patient and with a relative. He checks
remotely the vital statistics like weight or blood pressure thanks to health
care devices at the patient home. The wireless devices are connected via x73
standards (or proprietary protocols) to RGW which recovers the medical
information, processes data and saves them in HL7 format. Then, the data
can be processed by the medical information system and displayed to the
doctor in his computer.

9.3.5 Data Model

The data model designed is divided into the user management on one side
and the device management on the other side. An overview of data model is
shown in Fig. 9.6.

A generic User entity saves basic data, like name, surname, address, etc.
Defined attributes in this schema should be compatible with HL7 PID
(Patient Identifier Segment) fields. For example, Spanish second surname
must be matched in Mother’s Maiden Name (XPN) following the HL7 Spain
recommendations (www.hl7spain.org). Relative, Assistant, Doctor and
Administrator are entities which have different attributes and different roles
according to their permissions. A role defines a permission to access to data
or devices. In this manner, the user type definition is separated from
privilege definition. The administrator user has total control over the full
system in case he is the RGW admin or only partially in case he is member
of another admin type, like the e-health admin. Automation, multimedia and
medical devices have a link address and/or IP address, status, service list and
several configuration variables. The RGW can save some parameters of a
Lonworks node like for example its ID or its network variables to monitor
the status of patient and his environment.

The doctor is allowed to access basic and medical data of the assigned
patients. The assistant entity can represent a nurse or a social assistant.
Information about medical visits, like diagnostic, reason and date, is saved in
Visit entity. If a doctor orders a treatment, important dates and status are
saved in Treatment. There is medicine administration sometimes, so
frequency, medicine name and comments can be annotated in Medicine. A
user (doctor, assistant or patient) can add remainders associated to a
treatment, like exercises or medical administration remainders.

9

A

m
p

t

128

9.4 Con

A new e-heal
all relevant m
medical perso
platform. Eac
enhance the q
goal, the tech
technical dev

nclusions a

lth system arc
members into
onal and rela
ch entity has i
quality of life
hnical infrastr
vices. Existing

Fig. 9.6 Platform

and Future

chitecture has
o a common
atives (or frien
individual du
e for the depe
ructure has be
g but also ex

m Data Model

e Work

s been presen
scenario. Th

nds) are integ
uties following
endent person
een develope
tended versio

J. M

nted that tries
he dependent
grated as mem
g the general
n. Besides th

ed to seamless
ons of standar

Martín et al.

 to integrate
person, the

mbers of the
objective to
is important
sly integrate
rds are used

A Home E-Health System for Dependent People Based on OSGi 129

and proposed in order to increase efficiency and usability in realistic
scenarios. Future work will provide a basic implementation and test of use
cases..

Acknowledgements This research is supported by the MEC I+D project
InCare-FAMENET. Ref: TSI2006-13390-C02-02.

References

1. EHTEL Force. Sustainable Telemedicine Task. Sustainable Telemedicine: paradigms for
future-proof healthcare. A brief Paper. European Health Telematics Association
(EHTEL), 2008.

2. P.O. Bobbie, S.H. Ramisetty, A. Yussiff, and S. Pujari. Designing an Embedded
Electronic-Prescription Application for Home-Based Telemedicine Using OSGi
Framework. In Embedded Systems and Applications, H.R. Arabnia and L.T. Yang, eds.,
16–21, CSREA Press, 2003.

3. Y. Chen, and C. Huang. A Service-Oriented Agent Architecture to Support
Telecardiology Services on Demand. Journal of Medical and Biological Engineering
25(2), 2005.

4. P. de Toledo, A. Muñoz, J.A. Maldonado, E. Hernando, R. Somolinos, P. Crespo,
E. Gómez, F. del Pozo, M. Robles, and J.A. Fragua, Arquitectura genérica para sistemas
de e-salud basada en componentes middleware. In Libro de Actas del XXIII Congreso
Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB’05), 29–32, 2005.

5. M. Galarraga, I. Martinez, L. Serrano, P. de Toledo, J. Escayolan, J. Fernandez,
S. Jimenez-Fernandez, S. Led, M. Martinez-Espronceda, E. Viruete, and J. Garcia.
Proposal of an ISO/IEEE11073 Platform for Healthcare Telemonitoring: Plug-and-Play
Solution with new Use Cases. In Engineering in Medicine and Biology Society, 2007.
EMBS 2007. 29th Annual International Conference of the IEEE, 6709–6712, 2007.

6. B. Blobel, and P. Pharow. EHR Standards-A Comparative Study. In Medical And Care
Compunetics 3, ed. Lodewijk Bos, L. Roa, K. Yogesan, et al. IOS Press, 2006.

7. W. Hammond. Health Level 7: A protocol for the interchange of healthcare data. In
Progress in Standardization, In Health Care Informatics, Georges J.E. De Moor,
C. McDonald, and J.N. Van Goor, eds., Amsterdam: IOS Press, 1993.

8. A. Hutchison, M. Kaiserswerth, M. Moser and A. Schade., Electronic data interchange
for health care. Communications Magazine, IEEE 34: 28–34, 1996.

9. B. Smith, and W. Ceusters. HL7 RIM: An Incoherent Standard. En Studies in Health
Technology and Informatics. Ubiquity: Technologies for Better Health, In Aging
Societies – Proceedings of MIE2006, A. Hasman, R. Haux, J. van der Lei, and
F.H. Roger France, eds., 124:133–138. Amsterdam: IOS Press, 2006.

10. L. Schmitt, L. Schmitt, T. Falck, T. Falck, F. Wartena, and D. Simons. Novel ISO/IEEE
11073 Standards for Personal Telehealth Systems Interoperability. In High Confidence
Medical Devices, Software, and Systems and Medical Device Plug-and-Play
Interoperability, 2007. HCMDSS-MDPnP. Joint Workshop on, 146–148, 2007.

11. I. Martinez Ruiz, M. Galarraga, L. Serrano, P. de Toledo, S. Jiménez-Fernández,
J. Escayola, E.A. Viruete, J. Fernández, and J. García. Enhanced Solutions for

9

130 J. Martín et al.

Healthcare Telemonitoring in Ambient Assisted Living based on ISO/IEEE11073
standard. Methods of Information in Medicine Special Topic Issue: Smart Homes and
Ambient Assisted Living in an Aging Society. pp. pte (ISSN: 0026-1270. IF2005:
1.235), 2007.

12. J. Froehlich, and J. Krumm. Route Prediction from Trip Observations, In Society of
Automotive Engineers (SAE) 2008 World Congress, 2008.

13. A. Fernández-Montes, J.A. Álvarez, J.A. Ortega, N. Martínez Madrid, and R. Seepold.
An Orientation Service for Dependent People Based on an Open Service Architecture,
HCI and Usability for Medicine and Health Care, Springer LNCS, Volume 4799, ISSN
0302-9743, 2007.

14. D. Patterson, and L. Liao. 2004. Opportunity Knocks: A system to provide cognitive
assistance with transportation services. Proceedings of Ubicomp 2004.

15. Alive Technologies, http://www.alivetec.com ,2008.
16. R. Lee, K. Chen, C. Hsiao, and C. Tseng. A Mobile Care System With Alert Mechanism.

Information Technology in Biomedicine. In IEEE Transactions on 11(5), (September):
507–517. doi:10.1109/TITB.2006.888701, 2007.

17. M. Ibañez, N. Martínez Madrid, and R. Seepold. Virtualization of Residential Gateways.
In Proceedings of the Fifth International Workshop on Intelligent Solutions in Embedded
Systems (WISES07, ed. Ralf Seepold, Natividad Martínez Madrid and Markus Kucera,
115–126. Leganés (Spain): Universidad Carlos III de Madrid, 2007.

Chapter 10

Transparent IP Cores Integration Based
on the Distributed Object Paradigm

Fernando Rincón, Jesús Barba, Francisco Moya, Félix J. Villanueva, David
Villa, Julio Dondo and Juan Carlos López

Abstract Heterogeneous system architectures are currently the main platform on which
an ever increasing number of innovative applications (i.e. smart home or
ambient intelligence applications) rely. When designing these complex
systems, one of the most time-consuming tasks is the definition of the
communication interfaces between the different components through a number
of scattered heterogeneous processing nodes. That is not only a complex task,
but also very specific for a particular implementation, which may limit the
flexibility of the system, and makes the solutions difficult to reuse. In this
chapter, we describe how to provide a unified abstraction for both hardware
and software components that have to cooperate with each other,
independently of their implementation and their location. Based on this
abstraction, we define a low-overhead system-wide communication
architecture that offers total communication transparency between any kind of
components. Since the architecture is highly compatible with standard object-
oriented distributed software systems, it also enables seamless interaction with
any other kind of external network.

Keywords System-on-Chip, IP CORE, Distribuited Object, HW/SW codesign

10.1 Introduction

Latest consumer applications (e.g. multimedia processing or 3D games)
demand complex designs to meet their real-time requirements while respecting
other design constraints, such as low-power or short time-to-market. In this

131

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_10,
© Springer Science+Business Media B.V. 2009

University of Castilla-La Mancha, Ciudad Real, Spain, cdlujan@atc.us.es

132 F. Rincón et al.

context, Systems-on-Chips (MPSoCs) have been proposed as a promising
solution. Nevertheless, one major challenge in such systems is the
integration in the platform of the multiple Application Programming
Interfaces (API) that each component (e.g. memory, buses, cores, etc.) is
designed for. Moreover, another important problem in SoC design is the
knowledge of the position of each component in the final system to be able
to efficiently communicate with it (e.g. local, remote), which makes the
correct design of a SoC even more complex. Thus, new methods that allow
designers to get unified inter-communication methods on SoCs architectures
in the system integration flow are in great need.

Some concepts taken from distributed object platforms such as CORBA
or Java RMI have already been applied to SoC design in order to get a
unified view of HW and SW modules. In this paper we present an
approach which inherits most of these previous achievements enriched with
a strong focus on location transparency and network transparency. The
resulting architecture provides a unified view of the whole system and also
enables the designer to seamless develop multi-SoC systems with different
network technologies.

This paper is organized as follows. In Section 10.2 we present a
motivational example that will serve to guide us through our proposed
approach to homogeneous hardware and software modeling. In section 3 we
present the overall hardware SoC architecture of a system level middleware.
In section 4 we revisit the motivational example under the distributed object
approach described in Section 10.3. In Section 10.5 we show some
experimental results. In Section 10.6 we overview some related work.
Finally, Section 10.7, summarizes the contributions of the paper and presents
possible future research directions.

10.2 Motivational Example

Let’s consider the design of a System on Chip for applications with some
cryptographic requirements. For such purpose, the system will include a
third party DES IP core that is able to provide encryption an decryption of
certain blocks of data. We consider three different usage scenarios of the
DES core. In the following paragraphs we will first describe each of the
situations and the problems found in typical approaches, while in the next
section we will analyze an alternative solution.

For the example we will use one of the DES cores provided by
Opencores [1], that will also be used to illustrate the experimental results in
Section 10.5.

10 Transparent IP Cores Integration 133

10.2.1 HW-HW Integration

The first scenario will be the use of the DES IP core from another hardware
component. The DES core obtained from Opencores has a very simple
interface with an encrypt and decrypt signal, a bus for providing the key, and
the input and output data buffers.

Let’s suppose that the SoC uses an OCP [2] bus for cores and processors
interconnection. The first task would be to adapt it to that concrete bus. For
such purpose we could use the CoreCreator tools from the OCP suite, and
automatically generate the OCP wrapper out of a simple description of the
DES interface. However, there is still some work to do, since we need to
serialize the reception of the key and data input block, and the transmission
of the data output block, since they do not fit in the bus word size.

On the other side, for the core using the DES, we should follow a similar
but inverse procedure. Once known the bus interface, and the transaction-
level protocol for providing the data and obtaining the results, we could
write the functionality of the client core, next include some logic for the
serialization of the transmission, and wrap it automatically to the OCP bus.
This is a very normal procedure for IP integration, where both components
are attached to the bus through some bus adapters (wrappers).

One of the advantages of using bus standards such as OCP is that they
ease reusability of previous designs. However, interoperability at the level of
operations is not guaranteed by the standard. The definition of a certain
order of the key and data arguments is hardcoded inside the wrapper. Also
the way arguments are divided into bus-size words is completely
implementation dependent. That is the reason why cores with the same
interface may not be interoperable.

All those problems are due to the loose coupling between functionality
and communication. Therefore, any change in the component designed will
also affect all of its clients, and may also imply their redesign.

10.2.2 HW-SW Integration

As a second scenario, we will consider how the DES could be used from a
software client. To do so, in the classical approach we would need some
kind of driver or API interface. These APIs are very dependent on the
concrete core, and not easy to generate automatically. Even one minor
change such as the modification of the address of the target component, or
the order in which arguments are transmitted would require major
modifications in the code.

134 F. Rincón et al.

Moreover, the APIs can be influenced by the specific transport
architecture. For example, we could consider to add to the DES core the
possibility to receive a set of words for batch processing with the same key.
Transmissions from the CPU are performed word by word, and therefore can
not take advantage of high-performance facilities such as bursting. Even,
since a hardware client will probably transfer the block as a burst, it may be
necessary to provide two different interfaces for both hardware and software
clients.

10.2.3 Remote Communication

The third scenario will correspond to the request of the cyphering from
outside the SoC. This may be the case for a pervasive computing application
that needs some cyphering, for example. This interaction may be carried out
though a wireless interface, for example.

This scenario is not very common, mainly due to the difficulty of
multiplexing the ethernet between several components plus the
microprocessors, which normally act as the masters of the device. Even, it is
not clear how to translate network packets into the required bus transactions
for the arguments and results of the operations. It would, however, be very
useful to have remote communication to and from external clients, to make
special computational resources accesible, for debugging purposes, for
remote configuration, or even for remote reconfiguration of the SoC.

10.3 The System-Level Middleware

Most of the problems that SoC designers face nowadays are recurrent, and
they have been tackled for decades in heterogeneous distributed computer
networks environments. Since the 90’s, the use of a system middleware has
been the satisfactory solution in this field. Although it can be established a
correlation between the existing problems in computer networks and SoCs,
the extension to the latter is not straightforward since they have their own
special requirements, such as low power consumption, or low execution
overhead, for example.

A middleware is an abstraction layer whose main objective is to provide
an homogeneous communication mechanism between the components of a
distributed system. Generally, a middleware bases its functionality on: (a) a
client-server model of communication, (b) a common data type system and a
set of data coding/encoding rules, and (c) a simple protocol defining the set

 Transparent IP Cores Integration 135

of messages client and server exchange. The objective is to provide
orthogonalization between behavior and communication.

Applications using the middleware are usually based on the object-
oriented programming model. Objects also rely on a simple communication
model: method invocation. This same mechanism is used for remote
communication (Remote Method Invocation or RMI), where invocations are
translated into synchronous messages passed though a certain
communication infrastructure. The main advantage of RMI is that it provides
a neat separation between functionality and communication. That makes
Distributed Object Systems specially suited to deal with heterogeneity and
scalability of applications.

In RMI any method invocation must take place between certain adapters,
a Proxy (the client adapter) and a Skeleton (the server adapter). From the
client’s point of view, the proxy is the requested object itself, since it
provides exactly the same physical interface. On the other hand, server
objects do not need to care about the location of client objects. They just
provide an object interface which is exported through a skeleton. Thus,
proxies and skeletons completely hide the real communication process. Also,
in most standard software middlewares, the approach described above relies
on the automatic generation of the proper proxies and skeletons depending
on the kind of communication that must be established between objects.

We could consider the SoC just as another type of distributed system.
Like such systems, a SoC is composed of a set of heterogeneous computing
and storage resources linked through some interconnection infrastructure,
and suffers the same kind of problems: scalability, heterogeneity, different
communication technologies, etc. Hence, it seems reasonable to apply the
same kind of solutions, and concepts, although not necessarily the same
implementation.

In the following paragraphs we briefly describe the main components of
the system middleware (Object Oriented Communication Engine – OOCE).

10.3.1 The Communication Broker

This layer of the middleware distributes remote invocations from the clients
to the servers. In software systems it is normally a layer built on top of the
operating system.

One of the main differences in OOCE with respect to the communication
broker is that all components in the system share a physical communication
infrastructure, which can be a bus or an on-chip network. The bus (or
network) is already able to route the messages from one object to another, so
there is no need of an extra layer for such purpose. Even for software

10

136 F. Rincón et al.

objects, there is no extra layer, but remote invocation is a communication
primitive. Thus there is no need of an operating system to provide remote
communication.

10.3.2 Proxies and Skeletons

Proxies and skeletons provide transparency, in 3 different aspects:
1. In the location of the target, which is normally coded in the proxy, and

not hardcoded in the object (the functionality)
2. In the implementation technology of the objects. SW or HW proxies will

generate exactly the same transactions in the bus. That makes it
impossible to know if the invocation came from a HW or SW object, as it
also happens with the response.

3. In the communication technology employed. This relates to how
addresses for bus transactions are built from the target object and the
operation requested; how the arguments are ordered, so all requests for
the same operation are always performed the same way, with
independence of the source; and how data types are serialized for their
transmission through the bus.
Finally, we should highlight that proxies and skeletons can be generated

automatically from the object interface description, so objects can be reused
under any other different context (another bus protocol, for example) just
regenerating the corresponding adapters.

10.3.3 Hardware Cores

A hardware core in the SoC will be the combination of three parts: (1) the
hardware object, which contains pure functionality; (2) one skeleton, as an
adapter for those operations that the object is able to serve; (3) as many
proxies as the object uses as a client.

From all three parts, only the object is meant to be reusable, while
skeletons and proxies should be efficiently generated depending on each
particular case.

But even cores not been designed with this approach in mind may be
used in the system middleware. For example, any RAM memory can be seen
as an object providing read and write operation for bytes, words, double
words, or even larger data blocks. The only thing required is a proxy that
translates such operations into the proper transactions (DMA access for a
block transfer, for example).

 Transparent IP Cores Integration 137

10.3.4 CPU Adapter

The main difference between hardware and software objects (in the OOCE
context) is that software objects share a common processing element, while
hardware objects execute in their own. This makes it necessary some
multiplexing mechanism for SW clients to have access to the bus. This
multiplexer is called the Object Adapter, and consist in a set of SW routines
with a standard API that must be linked with the object code of the SW
clients. For every object to be able to have access to the bus, first it must be
registered in an Object Adapter.

Another problem with HW to SW invocations is that objects inside the
CPU are not visible out of it. CPUs are usually just masters of the bus, and
are not addressable. Here the solution adopted has been to insert a bus
interface between the CPU and the bus. In SW to HW invocations, the
interface simply buffers the invocation and translates it into a bus
transaction. In HW to SW invocations, the interface holds a translation table
with bus addresses and object identities. If any of these addresses is detected
in the bus, the interface buffers the transaction and notifies the Object
Adapter in the CPU through an interruption. The OA then routes the
invocation to the proper object, and the response back to the interface, if
there is one. The interface then provides the server capabilities to the objects
inside the CPU.

10.3.5 Remote Bridge

The aim of the remote bridge is to translate internal (to the SoC) invocations
to external ones through some kind of network interface. The information
that must be transmitted on both sides of the communication has already
been serialized, so the main task of the bridge is to pack it into the messages
for a certain network transport protocol.

On the SoC bus side the bridge listens for transactions addressed to
external objects. Those are recognized through an internal translation table,
where some internal addresses are mapped to the network addresses of the
referred objects.

On the network interface it performs the opposite task. In any case,
messages coming in and out of the interface have always exactly the same
format as internal interactions.

10

138 F. Rincón et al.

10.4 The DES Example Revisited

The distributed object paradigm establishes a clear separation between the
programming model and the arquitecture supporting it. Also, the OOCE
platform allows the transparent integration of either hardware or software
components. Thus, we can distinguish three different roles during the
implementation of the system. On one side the typical hardware and
software engineer roles. On the other side an integration specialist is
required for the design and integration of the communication platform, as the
backbone of the subsystems.

Fig. 10.1 System Design Flow

Figure 10.1 shows the relationship between the three roles, as well as the
flow for the automatic generation of the architecture, that once integrated
with the rest of hardware and software entities becomes the final system.
This system is not limited to one chip, but can also include components
deployed on other types of computation nodes linked through a
communication network.

module slice_example {
 [“hw:bus:plb”, “hw:bus:args:64”]
 interface DES {
 long int encrypt(long int key, long int data_in);
 long int decrypt(long int key, long int data_in);
 };
};

Fig. 10.2 Slice definition file for the DES core

 Transparent IP Cores Integration 139

The starting point of the flow is the interface specification file. This file
includes the description of the interfaces for each object in the system. They
are specified using an interface definition language (IDL) which is
implementation neutral. Since OOCE is inspired in the ICE [3] middleware,
the IDL is expressed using the Slice language. Figure 10.2 shows the slice
interface definition for the DES example.

Fig. 10.3 DES Hardware Component. a) DES legacy IP core. b) DES object + adapter

Although the interface description is implementation neutral, and since
the platform must be generated from this file, it may include some metadata
to guide the synthesis tools. It may provide extra information such as the
implementation technology (hw or sw), the bus protocol (OPB, PLB, OCP ...),
the communication type (asynchronous or synchronous, blocking or non-
blocking ...), etc. This is in fact one of the tasks of the system integrator, to
annotate the interface definition file, generally through iterative refinement
to provide the platform that best suits a certain system.

The Slice file is parsed by different code generators. Each of them,
depending on the metadata, will generate specialized adapters for every
object and context. The VHDL code generator (slice2vhdl), for example,
will write synthesizable vhdl models for the adapters that will be appended
to the clients or servers developed by the hardware engineers, obtaining the
different cores of the system.

In case reusing cores are not designed with the distributed object
approach, some extra logic is required to adapt their legacy interface to the
one derived from the slice method signatures (Fig. 10.3b). The overhead for
the DES core is almost negligible due to the simplicity of the normalized
interface proposed. However, writing the hardware object from scratch will
not incur in such overhead. The object will only include the functional code

10

140 F. Rincón et al.

for implementing the operations, and will leave the communication
responsibilities to the generated adapters.

From the same slice definition, the slice2cpp generator will produce the
equivalent adapters (proxies and skeletons). Those adapters are based on a
function library which implements the link between the CPU and the
coprocessor for the communication. A device driver is no longer a collection
of low-level reads and writes to a register bank interface. Now, the
programmers deal with software objects that are instances of the proxies to
the hardware models.

 class DES {
 public:
 long int encrypt(long int key, long int data_in) {
 // the object identity and operation identity are mapped onto an address
 putfsl(OBJ_ID<<16 + ENC_ID);
 // the bus interface needs to know the number of arguments
 putfsl(NON_VOID|ENC_ARGS);
 // arguments and return values are serialized as two 32 bit words
 putfsl(key & 0xFFFFFFFF);
 putfsl(key >> 32);
 putfsl(data_in & 0xFFFFFFFF);
 putfsl(data_in >> 32);
 getfsl(data_out_low);
 getfsl(data_out_high);
 return data_out_high << 32 + data_out_low;
 }
}

Fig. 10.4 C++ code for the DES SW client

Figure 10.4 shows how the distributed object model eases the task of the
software developer. Here the use of the DES core is concerned with the
invocation of the methods provided in the proxy, which completely hides all
the implementation details of the communication. The proxy behavior with
respect to the blocking or not of the executing thread may be configured in
the slice definition file, providing a high degree of control to the
programmer. This is completely orthogonal to the way communication is
implemented through the bus.

The final task for the system integrator is the combination of the different
adapters with hardware and software objects to build the hardware cores and
software components, and the inclusion of the rest of components of the
OOCE engine.

 Transparent IP Cores Integration 141

To illustrate the robustness of the approach, let’s suppose that the target
platform is modified and the bus protocol and the bus size are now different.
Those changes will not affect either the program using the DES component,
or the adaptation of the DES core to the normalized interface. No
modification will also be required to any of the other hardware clients
(hardware components using the DES). It will only be a question of
automatically regenerating the corresponding adapters.

In the proposed approach, remote communication does not imply nothing
but a special bridge connected to the ethernet adapter. As it happens with
SW to HW communication, interoperation is guaranteed by the use of the
same bus transactions for the same operation requests. Thus, once a network
packet coming from the outside reaches the bridge, it is injected in the SoC
bus just if it was generated locally. The target core will recognize the address
and perform the required operation putting back the results in the bus. These
results are translated in the bridge back into network packages, and sent back
to the remote client.

It is also possible to execute operations from remote servers from both
hardware and software clients. They simply need the corresponding adapter
(with the target server interface) that will translate operation requests into
bus transactions. However, this transactions will not correspond to any
address in the SoC address space, but will be mapped to the bridge. So the
bridge will pack them into network packets, after a translation of the local
SoC address to a network address (protocol and port), and will route them
through the ethernet device.

10.5 Experimental Results

As a proof of concept, the OOCE has been fully prototyped on the Xilinx
XUP-V2Pro platform. We have performed a set of experiments, where we
have considered all the different communication mechanisms, and tested all
possible interactions between components. We have also characterized the
results in terms of latency (Table 10.1) and area (Table 10.2). The types of
interfaces refer to: (I) simple synchronous and blocking read and write
operations (without bursts), (II) simple asynchronous and non-blocking read
and write operations, and (III) same as II using bursts.

Also a completely SW version of the DES algorithm was implemented
on the Microblaze 32 bit processor, to use it as the software reference model.
Next, all the middleware infrastructure was generated for a SoC with HW,
SW and remote clients for the DES model from Opencores.

10

142 F. Rincón et al.

Table 10.1 Communication latency for all types of OOCE interations

Iface Invocation type Latency (cycles)
write/read

Type I Hw −> Hw 3 / 2
 Sw −> Hw N.A. / 10
 Hw −> Sw N.A. / 11
 Sw −> Sw 50 / 21
Type II Hw −> Hw 4 / 2
 Sw −> Hw 21 / 10
 Hw −> Sw 21 / 11
 Sw −> Sw 42 / 21
Type III Hw −> Hw 19 / 17
 Sw −> Hw 56 / 27
 Hw −> Sw 56 / 29
 Sw −> Sw 108 / 56

Table 10.2 Area cost for the hardware adapters
Interface type Resource Area
Simple R/W Hw proxy 4 FFs

7 LUTs
Simple R/W Hw skeleton 2FFs

153 LUTs
Async R/W + burst support Hw proxy 102 FFs

208 LUTs
Async R/W + burst support Hw skeleton 102 FFs

208 LUTs

Results measured for the DES encryption of a 2KB data block with a 55-

bit key where the following: 102 microseconds for the fully SW version, 7
microseconds for the encryption using the DES core and a software client,
and 5 for the completely hardware solution.

Also communication times for an off-chip invocation through an ethernet
interface were measured. The reception of the packet took 218 cycles. The
remote bridge translated the message into a bus transaction in 76 cycles. The
execution of the invocation took 16 cycles. Finally, the result was packed
into an Ethernet frame in 72 cycles and transmitted back in 218 additional
cycles.

10.6 Related Work

The ideas presented in this paper complement previous work on system-level
abstractions. Orthogonalization of concerns in system-level design as
proposed by Keutzer [4], and more recently by Cesario [5] and Gertslauer
[6], provide an object model similar to what this paper assumes, but most

 Transparent IP Cores Integration 143

actual implementations focus on a structural view of the system and do not
care about location transparency. In Mignolet [7] a uniform communication
mechanism for HW and SW resources is proposed, based on a central HW-
SW Operating System and a HW abstraction layer to provide task
abstractions for HW components. Previous works by Paulin et al. [8] already
apply concepts from distributed object middlewares to SoCs but they do not
even consider one of the key features, location transparency. Some early
ideas on how reconfigurable computing may benefit from these concepts are
found in Hetch [9]. Previous results on automated generation of
communication infrastructure for SoC design [10,11] are also applicable to
adapters generation.

Object-based and object-oriented approaches [12,13] have also been used
extensively to reduce the effort of translating some software components
into hardware components or to improve the co-simulation of the system.
Our hardware objects require a subset of what is provided by these
extensions. Therefore we remain compatible with their approaches and we
also keep full compatibility with standard IP based methodologies.

10.7 Conclusions

The communication architecture presented in this paper extends the
distributed object paradigm to SoC platforms. The proxy and skeleton
abstractions plus RMI semantics, provide a simple way to decouple
component functionality from communication implementation. From the
designer perspective, this provides an homogeneous view of the system as a
collection of communicating objects. From the implementation point of
view, the model presented provides communication and location
transparency for any kind of local interaction between hardware and
software components, blurring the hardware and software interface barrier.
But it also provides the possibility of remote (may be off-chip) interaction
with other objects.

Moreover, all the services and components that are part of the
middleware can automatically be generated based on a few descriptions on
the interfaces of the objects. This enhances the possibility of future reuse and
eases design space exploration tasks. And, as the experimental results show,
the communication architecture does not incur in high overheads.

Acknowledgments This work has been funded by the Spanish National and
the Castilla-La Mancha Regional Goverments under grants TIN2005-08719
and PAI 08-0234-8083, respectively.

10

144 F. Rincón et al.

References

1. Opencores; http://www.opencores.org; last visited June, 27, 2008.
2. Open Core Protocol (OCP); http://www.ocpip.org, last visited June, 27, 2008.
3. Internet Communication Engine (ICE); http://zeroc.com, las t visited June, 27, 2008.
4. Keutzer, K., Newton, A.R., Rabaey, J.M., and Sangiovanni-Vincentelli, A. System-level

design: orthogonalization of concerns and platform-based design. IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, 19, 12 (Dec. 2000).

5. W. Cesario, L. Gauthier, D. Lyonnard, G. Nicolescu, and A.A. Jerraya. Object-based
hardware/software component interconnection model for interface design in system-on-
a-chip circuits. The Journal of Systems and Software, 70, 2004.

6. A. Gerstlauer, D. Shin, R. Dmer, and D. D. Gajski. System-level communication
modeling for network-on-chip synthesis. In Proceedings of theASP-DAC, 2004.

7. J-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins.
Infrastructure for design and management of relocatable tasks in a heterogeneous
reconfigurable system-on-chip. In Proceedings of the DATE ’03 Conference, 2003.

8. P.G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, O. Benny, D. Lyonnard, B.
Lavigueur, and D. Lo. Distributed object models for multi-processor SoC’s, with
application to low-power multimedia wireless systems. In Proceedings of the DATE ’06
Conference, Munich, Germany, 2006.

9. R. Hecht, S. Kubish, H. Michelsen, E. Zeeb, and D. Timmermann. A distributed object
system approach for dynamic reconfiguration. In Reconfigurable Architectures
Workshop (RAW 06), Rhodos, Greece, April 2006.

10. V. D’silva, S. Ramesh, and A. Sowmya. Bridge over troubled wrappers: Automated
interface synthesis. In Proceedings of the Intl. Conf. on VLSI Design, 2004.

11. A. Gerstlauer. Communication abstractions for system-level design and synthesis.
Technical Report CECS-TR-03-30, UC Irvine, 2003.

12. Grimpe, E., and Oppenheimer, F. Extending the SystemC Synthesis Subset by Object-
Oriented Features. In Proceedings of CODES+ISSS, Oct. 2003.

13. Schulz-Key, C., Winterholer, M., Schweizer, T., Kuhn, T., and Rosenstiel, W. Object-
Oriented Modeling and Synthesis of SystemC Specifications. In Proceedings of theASP-
DAC, 2004.

Chapter 11

Platform Modeling in Safety-Critical
Embedded Systems

Bernhard Huber and Roman Obermaisser
Institute of Computer Engineering, Vienna University of Technology, Austria,

Abstract This paper describes a model-based development process for safety-critical
embedded real-time systems that are based on the DECOS integrated
architecture. The DECOS architecture guides system engineers in the
development of complex embedded real-time systems by providing a
framework for integrating multiple application systems within a single
distributed computer system. This integration is supported by a model-based
development process which enables the reuse of application software on
different instantiations of the DECOS platform, performing validation
activities earlier in the development phase, and a reduced time-to-market in
spite of increasing system functionality. For this purpose, model-based
development in DECOS distinguishes between the capturing of the application
functionality in a platform-independent model and the specification of the
characteristics of the execution platform in the platform model. In this paper,
we focus on the modeling of the execution platform and present a novel
graphical model editor based on GME for specifying the DECOS execution
platform. A platform meta-model expressed using UML and OCL constrains
developers in such a way that the ensuing system becomes more dependable,
maintainable and supports composability.

Keywords Model-based design; Integrated architectures; Embedded real-time systems

11.1 Introduction

Over the past two decades, the world of embedded systems has substantially
changed. Mainly driven by competitive pressure and market forces of
designers to introduce new products that set themselves apart from
competitors, the functionality of embedded systems as well as the number of

145

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_11,
© Springer Science+Business Media B.V. 2009

huberb@vmars.tuwien.ac.at

146 B. Huber and R. Obermaisser

interacting components has steadily increased. For instance in the
automotive industry, the replacement of many hydraulic control systems has
risen the number of micro controllers per vehicle from an average of 20 to
40-60 between the year 2000 and 2003 [1]. Thus, the key challenge faced by
embedded system developers has become to manage the ever increasing
complexity of such distributed real-time systems. The management of this
complexity is aggravated by the inadequate abstraction level of today’s
programming languages. Many present-day embedded systems are defect
intolerant, in the sense that even the smallest defects can cause major and
expensive failures [2]. This observation is based on the insight that a
semantic gap exists between the means of expression in programming
languages and real-world problems. Therefore, it is thus suggested to raise
the level of abstraction of program specification to a level that is closer to
the problem domain [2].

Following this line of reasoning, the present paper describes a
contribution towards a model-based development process for integrated
systems. Integrated computer systems such as DECOS [3] contain a
multitude of application subsystems (e.g., power-train, comfort, multimedia,
safety in a car) which share a common distributed real-time system. The
presented model-based development process starts with two models at a high
level of abstraction, namely a platform-independent model that specifies the
application services and a model of the execution platform. Using these two
models, embedded system developers can specify the relevant properties at
the application and platform-level in a form that is close to their problem
domain. The models are used as an input for a tool-chain, which creates a
platform-specific model in which the application services have been mapped
to the available resources of the execution platform (e.g., computational
resources of node computers, communication resources of networks).

The present paper contributes to an essential part of the model-based
design process of DECOS—the modeling of the execution platform. It
argues for the separation of resource modeling into two phases, which
mainly facilitates re-use and hierarchical composition of platform models.
Furthermore, the paper shows a prototypical implementation of a graphical
editor that fits to the DECOS tool-chain. This tool is based on the Generic
Modeling Environment (GME) and provides an intuitive and convenient
front-end for modeling the execution platform. It expedites the modeling
activities via generic templates for all constituting parts of the execution
platform. Furthermore, by enforcing consistency checks and structural
constraints, the majority of design faults are ruled out right from the
beginning.

The chapter is structured as follows. Section 11.2 gives a short overview
on related work. The model-based development process is outlined in

11 Platform Modeling in Safety-Critical Embedded Systems 147

Section 11.3. Section 11.4 describes the devised platform model editor based

d in Section 11.5. The paper con-

11.2 Related Work

This section exemplarily describes important related work on model-based
design for embedded systems and elaborates on the contributions of the
proposed framework compared to those existing solutions.

11.2.1 Marte

MARTE [4] (Modeling and Analysis of Real-Time and Embedded Systems)
is a UML profile that offers a unified modeling language for real-time
embedded systems. MARTE was developed to enable tool interoperability
and facilitate training of system and software engineers through a common
language for real-time embedded systems. UML does not provide concepts
for fully capturing real-time systems, such as time, resource, scheduling.
Therefore, MARTE introduced time and resource models, support for
modeling non functional properties, and platform modeling. In analogy to
the work presented in this paper, MARTE distinguishes between logical and
physical views and is compatible to the Model Driven Architecture (MDA)
[5]. MARTE also addresses the allocation of applications to platforms.

The major difference to the presented work is that MARTE does not
constraint an implementation concerning a specific architecture. As stated by
Rioux (p.17) [6], MARTE is simply a language and “MARTE does not tell
you how to design your real-time and embedded systems”.

In contrast, the framework presented in this paper constrains developers
in such a way that the ensuing system becomes more dependable,
maintainable, and supports composability. Technically, this is achieved
using the UML meta-model in conjunction with Object Constraint Language
(OCL) constrains. For example, constraints regarding the allocation of
computational resources ensure that safety-critical and non safety-critical
application subsystems are assigned dedicated hardware resources. This is a
key for the cost effective realization of mixed criticality systems with fault
isolation and support for modular certification. Likewise, constraints for the
allocation of the communication resources facilitate the correct use of the
network interfaces (e.g., limitations concerning topologies).

on GME, which is employed for modeling an exemplary DECOS platform.
The results of this case study are describe
cludes with a discussion in Section 11.6.

148 B. Huber and R. Obermaisser

11.2.2 SysML

SysML (Systems Modeling Language) [7] is a graphical modeling language
for systems engineers based on a subset of UML2.0 with extensions such as
new diagrams (e.g., parametric diagram) and modified diagrams (e.g.,
activity diagram). SysML supports the specification, analysis, design and
validation of systems. It has been motivated by the missing standard notation
and semantic of UML.

The newly introduced requirements diagram supports the specification of
relationships between requirements using stereotypes (e.g., satisfy, derive,
verify). The use case diagrams elaborate the interactions between external
users and the system. They are expressed either from the point of view of the
users or from the point of view of the system. Block definition diagrams
describe the structure of a system in a hierarchical, tree-like fashion. In order
to describe behavior, sequence diagrams, state machines, and activity
diagrams can be used. The parametrics diagram is a new diagram that
explains relationships between parameters (e.g., dependencies between
variables).

The differences of SysML to the solution presented in this paper are
similar to the ones for MARTE. SysML provides a language and does not
constraint an implementation concerning a specific architecture.

11.2.3 Architecture Analysis & Design Language

The Architecture Analysis & Design Language (AADL) is an approved
industry standard that has been developed under the guidance of the Society
for Automotive Engineers (SAE) [8]. Its core focus is modeling and model-
based analysis of real-time embedded systems. Systems are modeled in
terms of components and their interactions, for which AADL distinguishes
two classes of components: software components and execution platform
components. Software components describe the software structure including
the sequence of execution in the final system using threads, processes,
subprograms, and data. The hardware of embedded systems is expressed in
terms of execution platform components such as processors (execution of
threads), memories (storage of code and data), busses (access among
components), and devices (interaction with the environment). For specifying
interactions between components AADL provides ports (data, event, and
event data port), which enable the directional exchange of data or events.
Moreover, specialized connectors describing the access to a common shared
resource such as a bus as well as for the interaction between subprograms
are defined in the AADL standard.

 Platform Modeling in Safety-Critical Embedded Systems 149

In contrast to other modeling languages, e.g. such as UML, AADL
specifies semantics for the standardized types, components and their
interactions. This way, different tools have a common interpretation of
AADL models, which eases the comparability of analysis results of different
tools. AADL supports model interchange and tool chaining based on a
standard XML/XMI definition.

Fig. 11.1 Development Methodology in DECOS

However, as explained for the MARTE UML profile, AADL provides
the means for modeling and analysis of embedded systems but does not
guide the system engineer in way to design embedded systems. To our
knowledge, AADL provides no mechanism to define meta-models for
AADL that define what a valid model of an execution platform for a
particular type of systems – such as DECOS – should look like.

11.3 Model-Based Design in Decos

The DECOS integrated architecture [3] offers a framework for the
development of distributed embedded real-time systems integrating multiple
application subsystems with different levels of criticality and different
requirements concerning the underlying platform. The DECOS development
methodology adapts the distinction between platform-independent and
platform-specific viewpoints as introduced by the Model Driven
Architecture (MDA) [5]. For the description of the structure of distributed
computer systems, the MDA introduces models with various levels of detail
and focus such as the Platform Independent Model (PIM) and the Platform
Specific Model (PSM) – and defines their role in the design of a system.

11.3.1 Adapted MDA for DECOS

By adhering to the distinction between PIM and PSM as introduced in the
MDA, we separate modeling of the application from modeling of the
execution platform. As depicted in Fig. 11.1 we start with the modeling of
the PIM and the construction of the platform model. The DECOS PIM [9]
decomposes the overall system (e.g., the electronics of an entire car) into a

11

150 B. Huber and R. Obermaisser

set of nearly-independent application subsystems. Each application
subsystem provides an application services that is meaningful in the given
application context (e.g. in the context of an in-vehicle electronic system
such subsystems are the comfort, power-train, or infotainment application
subsystem). Moreover, application subsystems are further subdivided into a
set of jobs, which interact exclusively by the exchange of messages via
virtual networks [10]. Additionally, the DECOS PIM enables the specification
of dependability and performance characteristics for each application
subsystem and the establishment of links to specifications of the behavior of
the individual jobs, which are expressed in DECOS using SCADE [11].

The platform model specifies the physical building blocks of the
execution platform, the node computers, with the available communication
resources (e.g. network interfaces) and computational resources (e.g.
memory, processors). The formal foundation for modeling the execution
platform is established by the platform meta-model [12], which is outlined in
the following subsection.

Using the specifications of the PIM and the execution platform, a tool-
supported transformation towards the DECOS PSM is initiated, which
performs the mapping of the logic system structure described in the PIM to
the physical system structure captured in the platform model. The PSM of an
application subsystem is a refinement of the PIM where the jobs have been
assigned to node computers and communication resources for virtual
networks are reserved on the physical network. Besides resource constraints
of node computers (e.g. the memory requirements of a job must not exceed
the available memory on a particular node computer) and the physical
network (e.g. the available bandwidth of the physical network determines the
number of simultaneous virtual networks), the transformation of the PIM to
the PSM is constrained by dependability requirements. For instance, in order
to increase the system reliability by means of Triple Modular Redundancy
(TMR) replicated jobs have to be assigned to independent fault-containment
regions (e.g. on different node computers).

In the DECOS architecture the PSM forms the input for code generation
tools, which automatically produce executable code for the application and
the platform. For this purpose, a DECOS PIM to SCADE gateway [13] has
been developed which directly imports the building blocks of the PIM into
SCADE, which enables the use of the qualified code generator KCG of
SCADE for generating executable code. Also, automatic code generators for
the architectural services (e.g., middleware for virtual networks [10] and
virtual gateways [14]) have been devised. The generated source code
together with the PSM forms the input to a deployment step in which the
final executables for a specific instance of the DECOS execution platform
are created.

 Platform Modeling in Safety-Critical Embedded Systems 151

11.3.2 Execution Platform Modeling

Modeling the characteristics of the execution platform is a time-intensive
and error-prone engineering task. It is therefore our objective to simplify and
reduce the effort for this modeling task by developing the Platform Model
Editor (PME). The formal foundation of this tool is established by the
platform meta-model, which primarily aims at facilitating re-use and
hierarchical composition of platform models [12]. For this purpose, the
modeling process is separated into two phases: the resource capturing phase
and the platform composition phase.

11.3.2.1 Resource Capturing Phase

This phase addresses the specification of reusable hardware entities of an
instantiation of the DECOS architecture, so-called resource primitives.
Resource primitives form the lowest level of the platform description. They
are the atomic hardware units of an execution platform that are identified in
the modeling process. The platform meta-model defines a set of common
resource primitive types, which can be used across different instantiations of
the DECOS architecture. These primitive types are Processor, Memory,
Communication Interface, Communication Controller, and Connector. For
each of them, a set of hardware properties is predefined (e.g. clock
frequency for a processor resource primitive).

Moreover, for each resource primitive further hardware properties can be
specified in concrete instantiations of an execution platform. In order to
support the modeling of evolving types of resource primitives, the platform
meta-model provides generic model entities, whose semantics and hardware
properties can be freely defined. For establishing a common interpretation of
newly defined resource primitives, the concept of technical dictionaries [15]
is applied. A technical dictionary is a reference base, containing all relevant
products/parts of a particular application field, where for each product/part a
detailed description and a list of its properties is given. By assigning to each
generic resource primitive a unique identifier of a technical dictionary, a
common interpretation of the resource primitive among different developers
of the model is ensured.

11.3.2.2 Platform Composition Phase

The second phase is concerned with the composition of the entire platform
model out of the previously modeled resource primitives. The output of the
composition is the description of a DECOS cluster with its internal structure
and the network infrastructure (e.g., the time-triggered core network between

11

152 B. Huber and R. Obermaisser

nodes, external networks like field buses, etc). A cluster is a distributed
computer system that consists of a set of node computers interconnected by a
network. A node computer is a self-contained computational element with its
own hardware (processor, memory, communication interface, and interface
to the controlled object) and software (application programs, operating
system), which interacts with its environment by exchanging messages.
According to the DECOS model [3], a node computer is vertically structured
into two subsystem. The safety-critical subsystem is an encapsulated
execution environment for ultra-dependable applications, while the non
safety-critical subsystem offers an environment for those applications having
less stringent dependability requirements. Within the subsystems, connector
units control the access of jobs to the shared time-triggered core network. A
third connector unit, denoted as basic connector unit performs the primary
allocation of physical network resources, as required for the separation of
safety-critical and non safety-critical subsystems of a node.

The platform composition phase is structured into three different steps:
(a) Hardware Element Composition. As a first step in the composition

phase, individual resource primitives are composed to a larger physical
hardware unit (e.g., a single board computer) that is capable of realizing
(parts of) a DECOS node. In the platform meta-model, these hardware
units are denoted as hardware elements [12]. A collection of these
hardware elements form a resource library, which provides the building
blocks for the subsequent steps in the platform composition phase.

(b) Node Composition. The platform meta-model constrains the
composition of possibly heterogeneous hardware elements to DECOS
nodes. In this node composition step, the available resources for the
safety-critical and the non safety-critical subsystems (including the
resources for the execution of jobs as well as for the execution of the
architectural services realizing the connector units) are specified.

(c) Cluster Composition. As a final step in the platform composition
cluster composition – the interconnection of nodes forming

specified.

11.4 Platform Model Editor

The main motivation for a tool-based modeling environment is to keep the
modeling process focused on its essential challenge – the description of the
available hardware resources. The user of the tool, who usually has
knowledge of the setup and internals of the execution platform, should be
able to describe the essential characteristics of the platform without being

phase – the
a cluster, which represents an instance of the DECOS architecture, is

 Platform Modeling in Safety-Critical Embedded Systems 153

forced to extensively study meta-models and tools; thus, speeding up the
modeling process.

The implementation of the platform model editor (PME) is based on
GME, which is a configurable, graphical framework for creating modeling
environments [16]. GME has been configured with a formal modeling
paradigm, which contains all the syntactic, semantic, and presentation
information regarding the targeted domain. The DECOS-specific modeling
paradigm is derived from the platform meta-model. According to the
previously described phases of the platform modeling process, the modeling
paradigm comprises three different viewpoints:
(a) Hardware Element Viewpoint. The hardware element viewpoint is

related to the resource capturing phase and determines the modeling
entities for specifying the physical building blocks of the platform. It
contains separate model entities for the entire set of resource primitives
as well as for hardware elements. Further on, valid compositions of
those model entities are defined by using containment relationships
between the hardware element and the resource primitives.

(b) Node Viewpoint. The node viewpoint describes the structuring of a
DECOS node in safety-critical and non safety-critical subsystems. It is
expressed by a containment relationship between the model elements
Node and ConnectorUnit (which represents the execution environment
of the DECOS architectural services) and ApplicationComputer (which
represent the execution environment of jobs), respectively, which are
associated to HardwareElement model elements.

(c) Cluster Viewpoint. The purpose of this viewpoint is to specify the
required entities for modeling the cluster setup including the association
of nodes to the time-triggered core network as well as to additional
physical networks (e.g., field buses).

In addition to the specification of the model entities and the associations
between them, each viewpoint of the modeling paradigm comprises a set of
Object Constraint Language (OCL) constraints. OCL [17] is a formal
language for describing constraints on models. OCL can be used to specify
invariants that must hold for the modeled system during the whole lifetime
or in particular system states. Consider for instance the following simple
constraint expressed in natural language: A node consists of a safety-critical
and/or a non safety-critical subsystem, but at least of one of them. Just
specifying an association with a multiplicity constraint (e.g., “0..1”) from
node to both types of subsystems does not correctly represent this constraint,
because it is still possible to model a node without any subsystem at all. This
lack of information is easily added by an OCL constraint that specifies an
invariant stating that the total number of subsystems must be greater than
zero and less than or equal to two. Further constraints are deployed to restrict

11

154 B. Huber and R. Obermaisser

entities depending on their actual role in the model. For instance, a connector
unit instantiated as basic connector unit, requires a mandatory additional
interface to the core network.

11.5 Decos Execution Platform

We have applied the PME to describe a real instance of the integrated
DECOS architecture – a prototypical execution platform [18] that has been
developed in the course of the DECOS project. The prototype consists of a
cluster of five nodes using TTP/C [19] as time-triggered core communication
network. Each node hosts a safety-critical and a non safety-critical
subsystem with multiple jobs of different application subsystems. Each node
of the cluster comprises three distinct single board computers for realizing
the basic connector unit and the safety-critical and non safety-critical
subsystems.

11.5.1 Hardware Element Viewpoint

The hardware element viewpoint is used to specify the characteristics of the
hardware elements, i.e. the building blocks for the composition of the
execution platform. In our prototype exist two such hardware elements: the
TTTech monitoring nodea and the Soekris Engineering net4521 boardb. The
model of the Soekris board is depicted in Fig. 11.2. It specifies only those
characteristics of the single board computer that are important for the
DECOS development process. Thus, it describes the processor, volatile and
non volatile memory for program and data storage, as well as,
communication interfaces and I/O ports. All of these entities represent
resource primitives of the platform meta-model.

Figure 11.2 also exemplary shows the specification of detailed
information on resource primitives. Two detailed properties of the
ElanSC520 CPU are exemplified here: the clock frequency and the
instructions per second. It further shows the usage of technical dictionaries.
In the IEC 61360 standardc the property AAF224 is defined as the clock

a http://www.tttech.com
b http://www.soekris.com
c Standard data element types with associated classification scheme for electric components –

available at http://dom2.iec.ch/iec61360/iec/61360.nsf/

 Platform Modeling in Safety-Critical Embedded Systems 155

frequency for micro processors enabling an unambiguous interpretation of
this property for the ElanSC520 CPU.

Fig. 11.2 Screenshot of models of the internal setup of soekris net4521 boards

11.5.2 Node Level Viewpoint

The node level viewpoint describes the internal configuration of a DECOS
node. For the nodes of the prototype cluster we employ distinct hardware
elements for the basic connector unit (cf. MonNode0 in the left model of
Fig. 11.3), the safety-critical subsystem, and the non safety-critical
subsystem (i.e., one node computer for each connector unit and respective
applications; cf. SoeNode0_0 and SoeNode0_1 in Fig. 11.3).

Those connector units are interconnected by a time-triggered Ethernet
network (ConnectorNetwork0), which is a standard Ethernet connection
using Time Division Multiple Access (TDMA) for the arbitration of the
communication medium. The physical interfaces to this network are
modeled by bcuCN0, scuCN0, and xcuSC0 respectively. The basic connector
unit possesses an additional interface – CoreInterface – with which the time-
triggered core network is accessed. For the non safety-critical subsystem, an
additional communication interface to a field bus network is specified.

Furthermore, it is specified whether the node provides separate
encapsulated execution environments for safety-critical and for non safety-
critical applications and by which hardware elements they are realized. The
model on the left in Fig. 11.3 depicts a configuration in which the
architectural services and the applications of one subsystem share a single
hardware element.

11

156 B. Huber and R. Obermaisser

Fig. 11.3 Screenshots of node level viewpoint (left) and cluster level viewpoint (right)

11.5.3 Cluster Level Viewpoint

It is the purpose of this viewpoint to describe the nodes connected to the core
network as well as properties of the core network and additional networks
like field buses. The specification includes performance properties and
temporal characteristics (e.g., maximum bandwidth, guaranteed latency) as
well as physical characteristics like redundancy, topology, or the used
physical layer. In Fig. 11.3 the cluster level viewpoint of our prototypical
DECOS execution platform is depicted. It consists of five nodes,
interconnected by a TTP/C network in star topology. In addition, two nodes
are locally connected to a CAN [20] network while a third one accesses a
LIN [21] field bus. Across all viewpoints the PME provides assistance to the
user in modeling the execution platform, since the tool ensures that only
models are created that comply with the DECOS modeling paradigm.
Therefore, the tool prevents the creation of associations which are not
specified in the modeling paradigm (e.g., in the node level viewpoint a
hardware element cannot be directly connected to the network, since an
interface in between is mandatory) and monitors the multiplicities of
associations (e.g. it is not possible to connect communication interface
resource primitives to more than one network). Finally, violations of the
meta-model such as missing mandatory parts of the model (e.g., at least one
subsystem has to be specified in the node) are reported to the user.

 Platform Modeling in Safety-Critical Embedded Systems 157

11.6 Conclusion

The development methodology of DECOS offers a model-based design
process for distributed embedded real-time systems. Due to comprehensive
tool support, embedded system engineers can rapidly capture the essential
properties of applications and execution platforms and can perform
successive model transformations down to the physical target system.

An essential part of the tool chain is the resource modeling editor. This
editor enables a precise formal specification of the available communication
and computational resources, while providing a user-friendly and intuitive
interface to the application designer. Using a set of entities well-known in
the domain of embedded systems (e.g., networks, processors, connector
units, field buses), the modeling process is close to the problem domain of
typical embedded system engineers. This reduces the mental effort for both,
the person who creates the model and the person who is in charge of its
interpretation.

Additionally, the resource modeling editor performs a pre-selection of
the visible model entities to those parts that are appropriate in a given
context. For instance the detailed representation of resource primitives is
only visible when creating new elements of a resource library, but masked in
the node or cluster viewpoint.

A further strength of the proposed modeling editor is the reduction of
design faults. It is automatically checked, whether a particular relationship
between two entities is permitted or not. These decisions are based on the
specified DECOS modeling paradigm. Thus, violations of the underlying
meta-model are directly reported to the user. Furthermore, the modeling
paradigm of the execution platform model comprises various constraints
specified using OCL, which further restrict entities, attributes and
relationships of the modeling environment.

Finally, the presented framework supports the reuse of resource
specifications through the import and export of (parts of) the platform
model. Therefore, re-use of resource descriptions in different models can be
simply performed by drag and drop operations. Moreover, the PME checks
if the insertion of the model element at the specified position complies with
the meta-model.

Acknowledgments This work has been supported in part by the European
IST project ARTIST2 under project No. IST-004527 and the European IST
project DECOS under project No. IST-511764.

11

158 B. Huber and R. Obermaisser

References

1. C.J. Murray. Auto group seeks universal software. EE Times, 2003.
2. B. Selic. Model-driven development: its essence and opportunities. In Proc. of the 9th

IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, page 7, April 2006.

3. R. Obermaisser, P. Peti, B. Huber, and C. El Salloum. DECOS: An integrated time-
triggered architecture. E&I Journal, 3:83.95, March 2006.

4. OMG. A UML Profile for MARTE, Beta 1. OMG adopted specification. 2007.
5. OMG. Model Driven Architecture (MDA). Technical Report document number

ormsc/2001-07-01, Object Management Group, July 2001.
6. L. Rioux. MARTE: A new OMG standard for Modeling and Analysis of Real-Time

Embedded Systems. Thales Research & Technology, France. September 2007.
7. OMG. Systems Modeling Language (OMG SysML), V1.0 Specification., 2007.
8. SAE. Architecture Analysis & Design Language (AADL). AS5506., 2004.
9. DECOS. Dependable Embedded Components and Systems. Project deliverable D1.1.1.

Report about decision on meta-model and tools for PIM specification. December 2004.
10. R. Obermaisser and B. Huber. Model-based design of the communication system in an

integrated architecture. In Proc. of the 18th Intern. Conference on Parallel and
Distributed Computing and Systems (PDCS 2006), pages 96–107, November 2006.

11. Esterel Technologies. SCADE Suite Technical and User Manuals, Version 5.0.1, 2005.
12. B. Huber, R. Obermaisser, and P. Peti. MDA-Based Development in the DECOS

Integrated Architecture – Modeling the Hardware Platform. Proc.of the 9th IEEE
International Symposium on Object and component-oriented Real-time distributed
Computing (ISORC’06), April 2006.

13. W. Herzner, B. Huber, A. Balogh, and P. Csertan. The DECOS Tool-Chain: Model-
Based Development of Distributed Embedded Safety-Critical Real-time Systems.
DECOS/ERCIM Workshop on Dependable Embedded Systems, September 2006.

14. DECOS. Dependable Embedded Components and Systems. Project deliverable D2.2.3.
Virtual communication links and gateways – Implementation of design tools and
middleware services. December 2005.

15. M. Sundaram and S.S.Y. Shim. Infrastructure for B2B exchanges with RosettaNet. In
Third Int. Workshop on Advanced Issues of E-Commerce and Web-Based Information
Systems, WECWIS 2001, pages 110.119, 2001.

16. A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garret, C. Thomason, G. Nordstrom, J.
Sprinkle, and P. Volgyesi. The generic modeling environment. In Proc. of Workshop on
Intelligent Signal Processing, May 2001.

17. OMG. UML 2.0 OCL specification, OMG final adopted specification. Technical Report
OMG Document No. ptc/03-10-14, Object Management Group, 2003.

18. B. Huber, P. Peti, R. Obermaisser, and C. El Salloum. Using RTAI/LXRT for
partitioning in a prototype implementation of the DECOS architecture. In Proc. of the
Third Int. Workshop on Intelligent Solutions in Embedded Systems, May 2005.

19. H. Kopetz and G. Grünsteidl. TTP – A protocol for fault-tolerant real-time systems.
Computer, 27(1):14.23, January 1994.

20. Robert Bosch Gmbh, Stuttgart, Germany. CAN Specification, Version 2.0, 1991.
21. LIN Consortium. LIN Specification Package Revision 2.0, September 2003.

Chapter 12

Service Platform for E-Safety Automotive
Intelligent System

Jesús Sáez1, Alvaro Reina1, Ralf Seepold1, Natividad Martínez Madrid1,
Alberto Los Santos2, Pilar Sanz2, Imran Sabir3 and Henk Aarts3
1Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain;
2Telefonia I+D, Emilio Vargas 6, 28043 Madrid, Spain;
3Philips Apptech, High Tech Campus 5, 5636 AE, Eindhoven, Netherlands,

Abstract Thousands of people die due to road accidents every year. This alarming
situation has generated lots of public and private initiatives addressing the car
safety improvement. This chpater aims at the definition of an intelligent
system focused on taking care of the driver, passengers and vehicle conditions,
so that it can be possible to prevent risky situations as well as to mitigate the
damage when a critical situation has happened. To complete this target, an
open service platform, characterized by a high integration level of data
provided by on-board sensors and nomadic devices, has been developed, the
car gateway. It allows deploying an intelligent environment for carrying out
the appropriate e-safety tasks inside the vehicle. Additionally, a standalone
nomadic device, the smart infant seat, has been proposed. It is in charge of
taking care about the child’s status. Such device will provide added-value
information and functions, which will extend the e-safety routines the car
gateway implements.

Keywords Automotive, Car gateway, Added-value services, Car-PC, Intelligent
Environment, OSGI, Software platform, Smart infant seat, UPnP, VANET

12.1 Introduction

Several researches show that the human errors cause over 90% of the road
accidents. Many of them can be prevented if the driver is aware of his
physical condition and makes an effort to focus his attention or even to stop
the vehicle. Furthermore, some studies have proved that the quick assistance

159

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_12,
© Springer Science+Business Media B.V. 2009

jesus.saez@uc3m.es, natividad.martinez@uc3m.es, ralf.seepold@uc3m.es

b
t

w

p

w
t
v
w

p

u

w

160

of the emerge
save lives. B
based on dev
this approach
intelligent e-s
wellness in an

This syst
platform emb
offers a set
establishmen
and wellness
which allows
to the wired
vehicle envir
with the ext
cellular teleph

The dev
protocols. T
generation s
functionality.
smart infant
standalone pl
using the ava

In the nex
architectures
organized as
work on the

ency services
eside the auto

veloping servi
h, the purpos
safety system
n open autom
tem (see Fig
bedded within
t of safety
t, vehicle and
s guarantee.
s to manage th
and wireless
ronment, and
ternal world
hony technol

veloped platf
This feature
system that
. Under the s

seat, has a
latform that i

ailable techno
xt sections, bo

and implem
follows: Sec
same lines.

 in a car accid
omotive indu
ices that help
e of the prop

m able to incr
motive environ

. 12.1) is ba
n the vehicle i

applications
d occupants s
It implement
he heterogene
vehicular per
offers the ca
(e.g. emerge

ogies.

Fig. 12.1 Gener

form implem
allows supp
provides the
scope of this
lso been dev
improves the
logy.
oth systems a

mentations. In
ction 12.2 de
The Section

dent scene in
ustrial advanc

us in the driv
posal in this
rease the car
nment.
ased on a m
into a car-PC
s that cover
status testing,
ts an extend
eity of the po
rsonal area ne
apability of e
ency service

ral architecture

ments stand
porting the i
e final platf
s research, on
veloped. It c

e quality of c

are described
n this way, t
escribes some
s 12.3 and 1

J

creases the pr
es, further re
ving task. Co
chapter is to
safety and its

modular softw
. The car gate
rs the emer
, risk situation
ed communi

ossible device
etwork deplo
establishing a
s or ambula

dardized com
integration o
form with a
ne of these s
can be cons
care from par

in detail as w
the rest of th
e of the initia
12.4 show an

J. Sáez et al.

robability to
searches are

onforming to
 develop an
s occupant’s

ware service
eway, which
rgency call
ns inference
cation node

es connected
oyed into the
a connection
ances) using

mmunication
of any new
added value
systems, the
idered as a
rent to child

well as their
he article is
atives which
n exhaustive

12 Service Platform for E-Safety Automotive Intelligent System 161

description of the car gateway and smart infant seat platforms. Finally,
Section 12.5 describes the currently implemented prototype and Section 12.6
summarizes and exposes the contribution of this article.

12.2 State of the Art

The i2010 program, eSafety and eCall, as well as some specific lines in the
FP6 and FP7 European programs, are some of the initiatives channeled into
improving the vehicular safety. Among them, several research lines are
focused on developing embedded systems oriented to achieve this challenge.
Regarding this kind of platforms, ADASE (Advanced Driver Assistance
Systems in Europe) [1], APROSYS (Advanced Protection Systems) [2] and
PReVENT (Preventive and Active Safety Applications) [3] are some of the
most important integrated projects. The first one is a cluster of 30 smaller
projects that works on several aspects of driver assistance, including
autonomous and cooperative driving, sensors, collision avoidance, human
machine interfaces and multimedia maps. By its side, APROSYS works on
passive safety mechanisms, so that the technologies studied in this project
are mostly based on intelligent crash and injury mitigation. Finally,
PReVENT is a broad scope project, which works on several systems to
detect danger situations, monitor the driver and avoid collisions. However,
all these initiatives are based on non-extensible systems, which cannot
accept any update based on advanced sensor and software technology.

Additionally, there exist initiatives that are in the line of the optimization
of such vehicular safety platforms. Among the more interesting ones are:
AIDE (Adaptive Integrated Driver-vehicle Interface) [4], EFCD (Enhanced
Floating Car Data) [5] and HUMANIST (HUMAN centered design for
Information Society Technologies) [6]. AIDE is an FP6 Integrated Project
that addresses behavior modeling, concentrating mostly on the human
machine interface for advanced driver assistance systems. As far as EFCD is
concerned, it is a subproject of the Global System for Telematics (GST)
Integrated Project that deals specifically with the collection of sensorial data
and the communication with this data to external service centers. Finally,
HUMANIST is a Network of Excellence that targets the human factor in e-
safety, whose activities include cognitive driver modeling, usability analysis,
user centered design and driver training and education.

To conclude, it is necessary to highlight some of the most relevant
projects regarding the vehicle communications issue. Among them, there are
some initiatives that are aimed at improving the integration of sensorial and
control systems in the car, as iEASIS (Electronic Architecture and System
Engineering for Integrated Safety Systems) [7]. In the same way, there also

r

N

w

t

t

t
t

162

exist several
related to c
(Movilidad y
(Cooperative
Information
Networks and

The initia
whose design
situations inf
the user-frien
other similar
the scalabilit
devices. Furt
architecture t

12.3 Car

The car gatew
intelligent ap
the emergenc
the wellness
on the Open
implements a
can be develo
car gateway
dividing it int

Bottom-up
implementing
abstract them

initiatives wh
communicatio
y Automoción
 Vehicle-Infr
and Applic

d Telematics
ative proposed
n covers issu
ference, dama
ndly features

initiatives, th
ty and comp
thermore, thi
that allows it t

r Gateway

way is the v
pplications. T
cy services wh
of the car occ
n Services G
a dynamic co
oped individu
architecture
to three comp

Fig

p, a first
g and provid
mselves from

hose objectiv
ons among v
n en Redes d

frastructure S
cations for
Infrastructure

d within this c
ues related to
age mitigation

of the huma
he main depl
patibility wit
is open syste
to be complet

ehicular emb
his unit is fo
hen a critical
cupants. The

Gateway initi
omponent mo
ually and easil
has been des

plementary la

g. 12.2 Car Gate

layer (Conn
ing the servi
m any com

ve is to promo
vehicles, as
de Transporte

Systems) [9]
securing M

e).
chapter devel
the vehicle

n after an ac
an-machine in
loyment guid
th both curre
em is based
ted by additio

bedded unit in
ocused on the

situation has
underlying so
iative (OSGi
odel, where a
ly integrated
signed in the

ayers (see Fig.

eway Architectur

nectivity Lay
ces which al

mmunication

J

ote the resear
for exampl

e Avanzadas
and Diaman
obility using

lops a multim
communicati
cident occurs
nterface. Con

delines in this
ent and futu
on a dynam

onal software

ntended to su
e next two tas

occurred and
oftware platfo
) [10]. This

any componen
into the platf

e OSGi platfo
. 12.2).

re

yer) is in
lows the upp
routines. Ov

J. Sáez et al.

rch of issues
le MARTA
) [8], CVIS

nt (Dynamic
g Adaptive

modal system
ions, critical
s, as well as
ntrary to the
s system are
ure nomadic
mic modular

modules.

upport some
sks: to warn
d to improve
orm is based

framework
nt (bundles)

form. So, the
form context

charge of
per levels to
ver this, a

 Service Platform for E-Safety Automotive Intelligent System 163

middleware layer provides a set of high complexity services that support the
upper layers. Finally, intelligent functionality resides at the top layer
(Application Layer).

In the next sections this architecture is explained in more detail.
Therefore, Section 12.3.1 is focused on explaining the connectivity layer.
Section 12.3.2 exposes the architecture and functionality of the middleware
layer. At last, the top layer is described in Section 12.3.3, defining the
applications that compose the intelligent in-car environment.

12.3.1 Connectivity Architecture

This layer is focused on solving both local and remote connectivity
requirements. Since the communication engine needs to be flexible and the
environment is no longer static, this layer must solve the dynamic
configuration, the mobility adaptation, the automatic service discovery
mechanism, the compatibility with the devices heterogeneity and some
security issues. It is aimed to provide an abstraction layer for vehicle
applications, managing communication for multiple concurrent sessions, and
spanning all communications modes and all methods of transmission.

This layer architecture is based on four modules (see Fig. 12.2) that are
detailed in the next subsections.

12.3.1.1 Communication Module

This module defines the communication infrastructure of the car gateway. It
constitutes an access point towards the external and personal area networks,
supporting both wired and wireless technologies.

Depending on the device typology and localization, the communications
can be grouped into three categories: in-car communications, external
communications and sensor communications. Each one of these categories is
going to be managed by one of the dedicated sub-modules which compose
this entity. These are:
• In-Car Communication Manager: Inside the vehicle, a personal area

network is deployed to communicate the internal wireless devices
(nomadic devices, smart infant seat, etc.) with the car gateway. This
network supports Bluetooth, WiFi and Zigbee technologies, deploying
different access points suitable for such communication technology.

• External Communication Manager: The goal is to allow seamless
mobility of data between the car and external nodes. To solve the short
range communications an 802.11b/g access point, configured in ad-hoc
mode, has been developed. It allows to create a VANET (Vehicular

12

164 J. Sáez et al.

Ad-hoc Network) among nearby vehicles and between vehicles and
roadside equipment, using the AODV (Ad-hoc On-demand Distance
Vector) [11] technology as routing algorithm.
The long range communications will be provided by means of
GPRS/UMTS adaptors, managed by this component. Both interfaces will
be working concurrently but the Transparent Connectivity module will
decide.

• Sensor Manager: This sub-module acts as a new wireless sensors
concentrator. It is in charge of defining the interfaces towards any
sensor, using the IEEE 1451 smart transducer standards [12]. To do this,
it implements the IEEE 1451.5 standard in order to deploy an access
point that allows establishing the link towards the transducers. This
specification covers the 802.15.1 (Bluetooth) and 802.15.4 (ZigBee)
wireless communication protocol.
On the other hand, it uses the IEEE 1451.0 standard in order to provide
the upper layers with a uniform set of commands used to access any
sensors in the 1451-based networks.

12.3.1.2 Transparent Connectivity Module

This module is in charge of managing the communication with any device
located inside or outside of the vehicle. It is based on the TCP/IP stack, and
the networking process adaptation to the vehicular environment. This
module tries to adopt the CALM (Continuous Air Interface for Long and
Medium range) [13] proposal, taking its standardized architecture as a
reference. Therefore, its architecture is based on the next three sub-modules:
Interface selection, Addressing and Negotiation.

Firstly, the Interface selection sub-module is in charge of monitoring the
quality of all available links to a given destination at any moment. Based on
this monitoring, and taking into account the service requirements, this
system decides dynamically which link is the best to use and routes the
information through it, following the ‘Always Best Connected’ philosophy.

Secondly, the Addressing sub-module is in charge of detecting any new
device that wants to register into the car gateway, authenticating it,
addressing it (DHCP functionality) and performing the registration at the
network level. An AAA (authentication, authorization and accounting)
protocol is employed for this task, currently using AAA servers that
communicate using the RADIUS protocol.

Finally, the Negotiation sub-module provides high-level interfaces for the
applications to request and setup connections with certain constraints (delay,
bandwidth, etc).

 Service Platform for E-Safety Automotive Intelligent System 165

12.3.1.3 Data Exchange and Service Access Module

The system consists of nomadic devices connected to the car gateway that
can be disconnected and connected again by the user without prior notice
(e.g. infant seat). To achieve this goal, UPnP [14] technology has been used,
providing the car gateway the capacity to discover and configure
automatically every device connected to the car. This protocol has been
extended because the local nature of this technology, mainly due to the
broadcast messages sent in the auto-discovery stage. To do this, a ‘Search’
routine has been included which enables to discover devices located into an
external network, sending unicast SSDP discovery messages routed to its
well-known IP address.

This module architecture has been implemented by a cooperative
architecture of OSGi bundles, whose core is constituted by the extended
UPnP protocol stack. The OSGi bundles are categorized into three branches:
platform services, conversion engine, and peripheral services.

The platform services branch is based on two bundles that implement
both an UPnP virtual device and an UPnP control point.

The conversion engine branch is composed by two bundles, the Device
and service access and the Event and notification manager. The first one is
in charge of the UPnP Service to OSGi Services transformation. The Event
and notification manager bundle is in charge of managing the UPnP events
registered by the UPnP client, translating them into java events, so it can be
possible to notify it to any bundle installed over the OSGI framework.

The peripheral services branch is composed of a set of bundles which
extend the UPnP client functionality. Among them the AV subsystem bundle,
based on the UPnP AV Architecture [15]; it provides capabilities to
negotiate AV connections between multimedia devices. Through the
interface it may initiate a multimedia connection. The resources reservation
for high quality connections is the goal of the QoS Subsystem bundle, which
is based on the UPnP QoS Architecture [16].

12.3.1.4 CAN Bus Communication Module

This component acts as listener module into the car gateway, retrieving
information from the Body B-CAN (Dual Wire Fault Tolerant low speed
CAN), where the messages related to the comfort/safety management is
transmitted. Due to security and confidentiality reasons, this module only
acts in a read mode, making it impossible to introduce any message into it.

This module is formed by a stack of three specialized sub-modules. At
the bottom, the CAN interface which is based on the ISO 11898-5

12

166 J. Sáez et al.

specification. It defines the physical layer of this module that provides the
car gateway with connection towards the B-CAN.

Over it, the CAN driver provides a hardware abstraction layer for
accessing the data transmitted via the B-CAN. This is based on the
commercial driver obtained from the selected hardware solution provider.
This driver solves the listening ports configuration, CAN messages reading
and errors treatment.

Finally, at the top of the stack, the Listener module is installed. It is in
charge of configuring the CAN port, managing any arriving message, and
generating the corresponding events. Furthermore, it publishes an OSGi
interface so that any upper module can access the CAN sensors data.

12.3.2 Platform Middleware

The car gateway middleware is designed as an open, modular, reusable
architecture, which settles its bases in the OSGi framework. On this
middleware the infrastructure supporting the e-safety applications is
deployed, defining a set of high-level services (see Fig. 12.2). Among this
middleware services, developed and offered to the application layer, are:
• Event Manager: This module registers, classifies and dispatches

asynchronous Java events, acting as a notifications concentrator.
• HMI Manager: This component provides the applications with the

presentation level and the access to the input data. The physical devices
of the HMI consist of one touch screen (input-output channel), one
microphone (input channel) and some speakers (output channel).

• Connection Manager: This OSGi bundle is responsible of managing
some basic functions provided by the GSM/GPRS phone device attached
to the car gateway.

• AV Server & Render: This module implements a Media Renderer and a
Media Server according to the UPnP AV Architecture. These modules
will deploy the terminal components of a videoconference or multimedia
component transmission.

• Location and Positioning: This bundle implements a GPS/Galileo
device driver. Through its OSGi interface the position (longitude and
latitude), altitude (meters) and speed (km/h) can be retrieved if a GPS
device is connected to the car gateway.

 Service Platform for E-Safety Automotive Intelligent System 167

12.3.3 Application Layer

This layer, located at the top of the architecture (see Fig. 12.2), provides the
car with the applications that watches over the car occupants safety
(Emergency Call) and wellness (Wellness Monitoring). Such applications
deploy the intelligent environment in charge of improving the security inside
the vehicle.

12.3.3.1 Emergency Call

This application is in charge of carrying out both an automatic detection of
an accident and the enriched emergency call towards the emergency
services. Depending on the available communication resources, either a
normal voice communication or a videoconference to the emergency center
will be established. Additionally, this call is enriched by a data connection
towards the emergency services that will send added value information.
Among the enriched data transmitted are: vehicle identifier, time, location,
personal sensors data and vehicular sensors data. Armed with such crucial
data, rescue services can reach the accident scene quickly and be well
prepared for the situation.

To achieve these challenges, this application is based on three bundles.
Firstly, the Environment Monitoring is in charge of retrieving the raw data
provided by the sensor network and the peripheral devices. It also supplies
the other components with this information. To do this, this bundle is
subscribed to the Event manager service from the middleware, receiving all
this information of the vehicle status and its occupants in an asynchronous
way. Over this module, the Data Enrichment Engine bundle infers when a
critical situation has occurred based on the information retrieved from the
environment monitoring.

At the top, the ECall bundle is in charge of establishing either the phone
call or the videoconference with the emergency services as well as
transmitting them the enriched information about what is happening in the
car. This module is based on the inference process made by the previous
module in order to launch the emergency call. Additionally, it uses the
services provided by the Connection manager and the AV server & render
modules from the middleware in order to complete this task.

12.3.3.2 Wellness Monitoring

This application monitors the driving conditions taking measurements from
both the vehicle occupants and environment, in order to warn the driver and

12

168 J. Sáez et al.

validate that the car configuration is suitable for safe and comfortable
driving.

This application is implemented by a modular architecture defined by
two bundles. Firstly, at the bottom, the Wellness Inference Engine that is in
charge of reasoning whether the driver conditions are suitable to drive or
not. To retrieve all the data needed to make this reasoning, it is registered by
the Event Manager in order to receive the data of all the wellness sensors.
With all the information retrieved, it can infer the wellness state of the
driver, so that whenever this service detects that the driver’s state is not
suitable for driving, the service triggers the Wellness Recommendation
Engine module to communicate it with the user.

The Wellness Recommendation Engine bundle defines the top level of
this application. This engine continuously receives the current state from the
previous module and is triggered by it when the driver’s state is not
appropriate. In the same way, it will use de services offered by the HMI
manager in order to advise the driver about its state and give him a
recommendation that could help the driver to take care of himself.

12.4 Smart Infant Seat

In the scope of this chapter, the platform is considered as a nomadic device
of a new generation, formed by a sensor network located in the baby seat,
and which is in charge of sensing and informing about the child’s health at
any moment. This disposes of communication capabilities which allow it to
connect to the car gateway, providing this one with added value information
that it uses in order to extend its functionality. This cooperation will enable
the driver to be aware of the child status for means of the HMI system, as
well as providing enriched information for the car gateway to extend both
wellness and emergency call applications.

The platform architecture consists of multiple modules (see Fig. 12.1),
each one specialized in a specific responsibility. At the bottom, a complete
sub-system called Infant Seat Gateway has been developed in charge of
managing all this platform communication.

Over the previous communication layer, this system deploys a
middleware framework based on the OSGi specification. Simultaneously,
the UPnP specification has been implemented in this device, in order to
provide it with the plug and play characteristics of this technology. Inside
this framework three modules in charge of implementing the complete
functionality of this device are deployed. These are: Resource Manager
Module, Sensor Data Manager and Application Repository. All of them,
together with the Infant Seat Gateway are described in the next subsections.

 Service Platform for E-Safety Automotive Intelligent System 169

12.4.1 Infant Seat Gateway

It is equipped with short range RF interfaces (Wi-Fi, Bluetooth and ZigBee)
as well as wired ones (USB) which allow building ad-hoc networks with car-
PC or any other nomadic devices. While Wi-Fi connection has been chosen
primarily for the home environment, Bluetooth technology has been selected
to implement the communications within the vehicle environment. IP
support added to the Bluetooth connection as many (AV) communication
and services mechanisms nowadays are based upon IP-connection.

As far as ZigBee and USB are concerned, they are used to communicate
the seat gateway with the sensors deployed into its environment. Such
sensors are hardware nodes specifically deployed for monitoring determinate
actions (Buckle sensor, AV camera) or the child status (ECG Sensor).

12.4.2 Resource Manager Module

The role of the context manager is to acquire information from different
sources such as sensors and user activities (inputs), to subsequently combine
the information to predict about the context, and adapt the system to such
context. Every context is related to certain situation where the services
appear and disappear (enabling or disabling bundles), and interacts in a
loosely and ad-hoc fashion. Furthermore, The power consumption will be
managed by this module, adapting it to each situation, so that once there is
no communication or no baby in the seat, it just goes into a stand-by mode
and also informs the car gateway of its state.

12.4.3 Sensor Data Manager

This is responsible of collecting the raw data from sensors and if required, to
apply data mining process to take out relevant information. This mining
process monitors the sensor reading to be within the required
threshold/frequency etc. If sensor data modules find values beyond
threshold, it notifies its corresponding OSGi bundle to take further actions to
notify the user. Initially, OSGi uses the PULL mechanism to activate the
sensors. After that it becomes the PUSH mechanism so that data coming
from the sensors is interpreted and in case of a volatile situation, it notifies
its OSGi bundle to take further actions. Using the PUSH mechanism saves
valuable power in mobile devices.

12

170 J. Sáez et al.

12.4.4 Application Repository

At the top of the architecture, an application layer is deployed. The software
bundles that compose this layer implement the services in charge of acting
when the previous module demands it. Also a more complex application is
developed so that the child and seat status can be inferred using the raw data
provided by such module.

Furthermore, these same modules define the UPnP interface oriented to
provide any UPnP client (e.g. car gateway) with the processed information.
Such interface will be characterized by a synchronous communication
mechanism, based on UPnP services that allow the UPnP client to do the
child status requests on demand, and an asynchronous communication
mechanism based on UPnP events in charge of inform about this status when
a relevant situation is happening. Among the information transmitted by
these events are both informing messages (e.g. child and seat detection, child
vital parameters) and warning messages (e.g. seat is not well restrained).

12.5 Prototype

To ensure the vehicular model works correctly a prototype of the exposed
system has been developed. Such prototype includes both the service
platform embedded into the vehicle and the smart infant seat as an example
of a nomadic device. In this section, the details of the resources needed for
such prototypes are going to be analyzed.

The on-board unit prototype consists of an extensible and flexible car-PC
set that supports the car gateway deployment. This set will contain a central
processing unit, the HMI interfaces and the communication interfaces. The
central computing unit is composed of a motherboard (VIA-EPIA CN-1300
mini-ITX with 1.0 GHz VIA C7 processor, 1 GB DDR2 RAM and 80 GB
hard disk), a rugged aluminum Voom-PC2 enclosure, and a M2-ATX Smart
Automotive power supply (140W). This system is going to be embedded
within the car. Finally, to develop the HMI system, it has been included
audio and video (MPEG-2) hardware support for the GUI and a voice
interface as well as a touch screen monitor (7” Xenarc), a microphone and
several speakers and a microphone for the voice HMI.

Regarding the smart infant seat, the initial demonstrator platform has
been chosen based on low-power characteristics as well as early progress.
For this a low-power micro laptop has been chosen.

On the subject of the software components, a Linux kernel version 2.6
runs on both platforms. In the same way, the BlueZ PAN module [17] has
been enabled for getting IP over Bluetooth compliance. On the OS, JDK 1.6

 Service Platform for E-Safety Automotive Intelligent System 171

has been installed. This JVM supports the Equinox 3.2.2 framework which is
the OSGi implementation selected for both prototypes. This distribution is a
free implementation of the OSGi specification release 4.

The technology underlying the platform’s storage mechanisms is the
SQLite version 3.5.6. This database manager balances a satisfactory
throughput and a small footprint. This will make it easier to embed the
system into any resource-limited device. Regarding the UPnP technology,
the UPnP protocol stack developed by Cyberlink [18] release 1.7 has been
used. This stack has been properly modified according to platform
requirements in order to solve the registration of remote UPnP services.

12.6 Conclusion

The main goal of this chapter is to describe and embedded system that will
increase car safety enabling wellness and extended emergency call
applications in an automotive environment. To achieve this, an open
automotive infrastructure has been defined that will be constituted by a
centralized system called car gateway in cooperation with sensors and
nomadic devices personal area networks.

The platform proposed defines an embedded open and scalable system
that allows registering and configuring in an automatic way any kind of
sensors and UPnP devices. Furthermore, its software architecture, based on a
modular system, allows extending the final system functioning by adding
additional functional modules, or by updating the existing ones.

 Among the scope of this article a new generation nomadic device has
been also developed, the smart infant seat. It has been implemented as a plug
and play device in charge of taking care of the child’s status at any moment,
informing about it to the car gateway.

The combination of both have enabled the implementation of a complete
system able to deploy an intelligent environment, focused on managing
critical situations inside a vehicle and helping to prevent from danger
situations and improve the wellness of its occupants.

Acknowledgments The platform under study in this chapter has been partly
developed inside the MEDEA+ CARING CARS [19] project, financed by
the Spanish Ministry of Industry (FIT-330215-2007-1) and the InCare
project, financed by the Spanish Ministry of Education and Science
(TSI2006-13390-C02-01).

12

172 J. Sáez et al.

References

1. Alkim, T., G. Bootsma, E. Berghout, G. Ostyn, and P. Gendre, “ADASE 2 Expert
Workshop on effects of ADA systems on safety, throughput and comfort”, ADASE 2
Deliverable D8E, contract number IST-2000-28010, 1 July 2004.

2. IP APROSYS Sub-Project 6, available at : http://www.aprosys.com/
3. M. Schulze, G. Nocker, and K. Bohm, “PReVENT: A European program to improve

active safety”, IEEE Transactions on Intelligent Transportation Systems
Telecommunications, pp. 322–331, ISSN: 1524-9050, 2005.

4. A. Amditis, L. Andreone, A. Polychronopoulos, and J. Engstrom, “Design and
development of an adaptive integrated driver-vehicle interface: Overview of the AIDE
project”, Proceedings of the IFAC conference, Prague, July 2005.

5. S. Messelodi, C. M. Modena, M. Zanin, F. De Natale, F. Granelli, E. Betterle, and
A. Guarise, “Intelligent extended floating car data collection”, Expert Systems with
Applications , ISSN: 0957-4174, Elsevier, 2008.

6. A. Pauzié, “Network of Excellence HUMANIST – Human Centred Design for
Information Society Technologies INRETS & ERT”, Advanced Microsystems for
Automotive Applications 2006.

7. EASIS Project, available at : http://www.easis-online.org/
8. MARTA project, available at: http://www.cenitmarta.org
9. E. Koenders and J. Vreeswijk, “Cooperative Infrastructure”, IEEE Intelligent Vehicles

Symposium, ISSN: 1931-0587, 2008.
10. OSGi Alliance, “OSGiTM – the dynamic module system for JavaTM”, URL:

www.osgi.org, September 2008.
11. AODV, Ad hoc On-Demand Distance Vector (AODV) Routing, Internet Engineering

Task Force (IETF), Network Working Group RFC: 3561, 2003, URL:
http://www.ietf.org/rfc/rfc3561.txt

12. K. Lee, “IEEE 1451: A standard in support of smart transducer networking”, IEEE
Instrumentation and Measurement Technology Conference, Vol. 2, pp. 523–28, 2000.

13. ISO TC 204 Working Group, “CALM project,” URL: www.calm.hu, September 2008.
14. Universal Plug and Play (UPnP) Forum, URL: www.upnp.org, September 2008.
15. Universal Plug and Play (UPnP) UPnP AV Architecture V1.0, URL:

www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1-20020622.pdf, June 2002.
16. Universal Plug and Play (UPnP) UPnP QoS Architecture V2.0, URL:

http://www.upnp.org/specs/qos/UPnP-qos-Architecture-v2-20061016.pdf, June 2002
17. BlueZ, Official Linux Bluetooth protocol stack, URL: http://www.bluez.org, September

2008.
18. S. Konno, Tokyo, Japan, URL: www.cybergarage.org, September 2008.
19. Caring Cars, MEDEA+ project 2A-403, available at: http://www.medeaplus.org

Part IV

Sensor Networks and Autonomous Systems

Chapter 13

Intelligent, Fault Adaptive Control
of Autonomous Systems

Willibald Krenn and Franz Wotawa
Institute for Software Technology, Graz University of Technology, Inffeldgasse 16B/II, 8010

Abstract We present a methodology for intelligent control of an autonomous and
resource constrained embedded system. Geared towards mastering permanent
and transient faults by dynamic reconfiguration, our approach uses rules for
describing device functionality, valid environmental interactions, and goals the
system has to reach. Besides rules, we use functions that characterize a goal’s
activity. These functions control the frequency our system uses to reach the
goal. In this chapter we present the system model, discuss properties of the
rule selection mechanism, and show results gained from running the approach
on an embedded device.

Keywords Rules; Weight model; Activity factor; Damping factor

13.1 Introduction

Autonomous systems always have to deal with the unexpected. Due to
unforeseen environmental interactions and/or internal faults autonomously
acting systems need to know about different ways to reach a specific goal.
The problem of the on-board control algorithm then is to figure out which
way to choose. The presented approach uses information gathered by
observing the system’s actions in order to answer this question.

Somewhat in contrast to the emphasized redundancy, devices designed
for autonomous and mobile use are often optimized for low energy
consumption. A side effect of this optimization is low processing power,
little on-board memory, and little redundant functionality. While these

175

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_13,
© Springer Science+Business Media B.V. 2009

Graz, Austria, wkrenn@ist.tugraz.at

176 W. Krenn and F. Wotawa

conditions limit intelligent control, the presented approach was designed
with these limitations in mind.

In our approach all possible ways of reaching goals are encoded in a rule
set that also carries additional – developer supplied – information about the
intended selection frequency (“desirability”) of rules. Using this information
and other factors, that are learned during executions of rules, we compute
one weight for each rule. Based on this weight, our algorithm explores the
search space for ways to reach goals. Similar to the presented approach,
Saffiotti et al. [5] use multi-valued logic to control intelligent agents and
decide based on weights between alternatives: Degrees of truth of formulae
describing contextual (environmental) conditions are used to weight the
preferences of different coordinated activities, e.g., following a corridor. The
authors also introduce behaviors and goals and “relate behaviors to goals by
defining the notion of goodness of a behavior for a goal”. Behaviors are
coordinated activities combined with contextual conditions and object
descriptors. They can be combined and, thus, standard planning techniques
can be used to generate combinations of behaviors to satisfy given goals.
The biggest difference to our approach is that we create a behavior (seen
from outside) by combining the effects of running all stored (independent)
goals from the rule set. Furthermore, in difference to desirability functions of
Saffiotti et al. [5], our “desirability” is given by the system developer and
only switched in special cases. Having said that, the final weight of a rule in
our approach is influenced by experiences learned in past. This can be seen
to some extend as a measure for desirability as in the work of Saffiotti et al. [5]
but the difference lies in the fact that we do not care about the current system
state but infer this factor from the past.

Based on the idea of combining simple reactive behaviors, which we also
draw upon, different versions of behavioral systems have been published:
Among them are the subsumption architecture from Brooks [1], and the
command fusion architecture from Rosenblatt and Payton [4]. Our approach
is best compared to TR-programs [3]: The biggest difference of our
approach to TR-programs lies in action selection and real-time capability.
We allow dynamic updates of the rule’s selection frequency, rely on discrete
time steps, and do not guarantee real-time capabilities. TR-programs
(consisting of TR-sequences) have a fixed priority order and real-time,
circuit semantics. TR-programs also feature durative actions while our
approach is based on finite actions that we use in order to simplify repair.
TR-programs always evaluate all conditions. This is different to our
approach, as we have discrete evaluation points. It is possible to
hierarchically compose TR-sequences.

We use the example of a mobile remote sensing platform throughout the
chapter for illustration purposes: The device consists of a GPS receiver, a

13 Intelligent, Fault Adaptive Control 177

GSM modem, a NF module which provides medium range inter-device
communication capabilities, and other hardware mostly dedicated to energy
management. The device has to provide tracking services: It has to acquire
the current geographical position and send it to some receiving station even
if transient or permanent faults are present. Furthermore we assume that the
developer has specified a preferred behavior of the system and that it only
has a limited set of observations of the environment.

The remainder of this chapter is organized as follows. In the next section
we present the main idea. In principle, we take a rule-based system,
introduce the notion of goals, assign to each goal a function that describes
how often it should be reached (max-value of function) and how important it
is to reach the goal (slope of function), a damping factor that covers lessons
learned from the past, and an activity factor that indicates how often a goal
has been reached. After discussing further details of rule-weight calculation,
we present a case study and conclude the presented work.

13.2 Basic Methodology

Fig. 13.1 Architecture and layering

In this section, we present the basic idea and the operational semantics that is
behind our approach. Figure 13.1 shows the main parts of our control
system. The rule execution engine, also called Runtime, is responsible for
controlling the device. It comprises a rule set, main memory that stores the
world state (a set of propositions), and a reasoning engine that is responsible
for rule selection and world state update. External to the runtime are the
driver/actuator layer and the world. We do not characterize any of the
external layers any further but concentrate on the runtime instead.

178 W. Krenn and F. Wotawa

We present a refined version of our system model [6] that is more
explicit and has an easier to understand semantic meaning. Basis to our
model are propositions that hold the current believe state of the system.
Observations of the outside world are mapped by setting propositions true or
false at fixed times. Besides these propositions, rules are a central element to
our algorithm: Rules interconnect different propositions and also describe
valid action sequences the system can trigger in order to move the system to
a valid goal state. Goals, thereby, are simply specially treated rules.
Whenever there are several rules that “turn on” a proposition, we use a
weight function to determine the precedence.

13.2.1 Rules

We need to give a few definitions in order to present the semantics of the
proposed rule-based system. We start by defining the sets the system
operates on:
• P nsPropositio
• PM ⊆Memory
• L Labels
• R Rules
• A Actions

P contains all possible propositions. If a proposition is believed to hold
in the current world state then it is element of the memory, hence M is a
subset of (or equal to) P . Next, we give a definition of a rule.

Definition (Rule). We define a rule as n-tuple:

,:(= Rule Lllabelr ∈ ,: Ppguard i
ip

∈∧ ,: Aaaction i
ia

∈∧

 ,{:
)(1

Pppostcond i
ipop

∈∧ 11,onceonly occur Opsoppi ∈

 }, 22
)(2

OpsopLli
ilop

∈∈∧ ,

 [0,1]: ∈activityfactoractivity ,
 [0,1]: ∈dampingfactordamping , [0,1]: ∈wweight ,
 [0,1]: ∈mmax , [0,1])[0,1]:: aαprofile

Note that we restrict ourselves to post-conditions that only have one add
operation as defined below. A rule may have assigned external actions (A∈)
that are treated as special predicates. If the guard holds and there is no
failure running the actions, the system guarantees the state described by the

 Intelligent, Fault Adaptive Control 179

post-condition. The activity factor (activity) is a number representing how
frequently the rule was chosen. The damping factor (damping) indicates
how frequently action predicates failed, when the guard was satisfied. Note
that this situation should never happen. If it does, the runtime system will
run a repair action that has to report success. The activity profile function α
is used for mapping the activity value activity of a rule to some value in the
interval [0,1]. The max value may be obtained from α : In that case it
represents the input value which causes α to return a maximum value.

Definition (Operations). 21,opop denote an operation from the
following sets:

,:)({=1 MMPpaddOps a∈
 }:)(MMPpremove a∈

[0,1][0,1]:)({=2 aLlincweightOps ∈
 [0,1]}[0,1]:)(aLldecweight ∈

Definition (Activity Maximum). As already said, max can be
calculated from α , in which case we introduce a function

[0,1][0,1])([0,1]: aaMax

that takes α and returns the input value where α becomes maximal. We
need max for weight calculation, as this can be seen in the next definition.

Definition (Weight Function). Each rule gets assigned a weight which is

calculated by some function

[0,1][0,1])([0,1][0,1][0,1][0,1]: aa×××γ

 that calculates the weight as follows:

=),,,(αγ maxdampingactivity
)(1)()(dampingactivitymaxAbsactivity −⋅−⋅′α

We assume)(= αMaxmax . Before we discuss the weight model in
detail, we state the definition of the interpretation of a rule.

Definition (Interpretation). A rule r is run by some function

MRMI a×: defined as MRrMI ′∈ =),(with

13

180 W. Krenn and F. Wotawa

⎪
⎪
⎩

⎪⎪
⎨

⎧

∧
⊆

∈
∈∪

⊆/

=
)(
)(if

)}()(|{
\)}()(|{

)(if

'
raction

Mrguard
rpostcondpremovep

rpostcondpaddpM
MrguardM

M

and))(,,)(),((=)(rprofilemaxrdampingractivityrweight γ′
and :,,)(=)(LlRxcxweightxweight ∈∈∀+′
))()(==)((rpostcondlincweightlxlabel ∈∧
and :,,)(=)(LlRxcxweightxweight ∈∈∀−′
))()(==)((rpostcondldecweightlxlabel ∈∧

Note that activity and damping factors, as outlined in the next section, get
updated by the system too. The constant c stands for a user defined
increment/decrement step. When an action fails, M depends on the repair
action function not discussed here and commonly provided by the developer.
It is reasonable to assume MM =′ for the time being.

The power set of all rules RulesPaths 2= , if ordered and understood as
set of sequences, gives all possible paths through the rule set. One path is a
sequence of rules),...,,(21 nrrr . Running such a rule sequence means
successive evaluation of each rule and, hence, a stepwise system-state
modification:

}),...,{),,((=}),...,,{,(2121 nn rrrMIIrrrMI with MMI ={}),(

Conceptually, our reasoning engine constantly loops through a list of all
goals, sorted by weight, and searches for a sequence of rules that transforms
the current system state into the goal state, as specified by the guard of the
goal. Whenever the system has to decide between two different rules that
add the requested proposition to the memory, it uses a local-best strategy and
tries the rule with the higher weight first.

13.2.2 Weight Model

In the preceding subsection we presented the semantic model of the runtime
excluding details of weight calculation. We now address this shortcoming.
Weight calculation naturally is based on a quantitative model taking past
experiences, activity, and user’s preferences into account. Thereby
weight is calculated by some function)(Lγ and defined over the
interval [0...1] with a saturating behavior. The following parameters are
needed by γ for weight calculation: (A) The current activity (activity)

 Intelligent, Fault Adaptive Control 181

of a rule, (B) experiences learned from past runs of the rule (damping),
(C) some max-activity point (max) and (D) some user-supplied function

)(activityα that takes the current activity of the rule as input parameter. As
already mentioned in the previous section, we define:

=),,,(αγ maxdampingactivity
)(1)()(dampingactivitymaxAbsactivity −⋅−⋅′α

where)(activityα′ is the first derivative of some function)(activityα .
α must not have arbitrary slope as)()(activitymaxactivity −⋅′α has to be
smaller than or equal to one in order for γ to stay within bounds.

)(activitymaxAbs − returns the distance to the user-defined maximum
activity in a linear way. Finally, the last part of γ deals with experiences
gained from past runs of the rule. It uses a damping factor (damping)
which is a counter of failed attempts to execute the rule after the guard of the
rule was determined to be true. As already indicated, damping is defined in
the range [0...1] and we say damping−1 to be the desirability.

Both, the damping- and the activity factor of a rule are determined by the
system during runtime in a predefined way. Function α and the maximum
activity max of a rule have to be provided by the rule designer and serve for
the purpose of influencing rule selection in two different ways: The
maximum value max is used to specify how often a rule should be selected
over a given time frame whereas the slope of α is used to change, i.e. boost,
the weight over a specified (user-selected) activity range. In this way α
helps deciding between different rules reaching the same goal in case max
of both rules has the same value. (α allows the developer to change the
slope of activitymax − over a certain range.) We do not especially demand
for α to have its maximum at the place of max but we demand a slope

1>= until the specified max . As already mentioned, the additional
requirement is that 1<=)()(activitymaxactivity −⋅′α in order for ()γ to
stay within bounds. As we also stated that γ is saturated, place-wise breach
of this requirement won’t harm.

After we have shown how to calculate the weight of a rule, we give the
rationale behind. We assume that all rules stored within the rule set help the
system advance to a good state. In other words, if the guard of a rule is
satisfied it is beneficial for the system to choose the rule and run it.
Whenever the guard of a rule is satisfied, we assume that all actions attached
to the rule will execute without error. Of course the system monitors action
execution and will increase the damping factor if it encounters an
unexpected error while executing the selected rule. (No error means
decreasing the damping factor if it is greater than zero.) This way transient- and

13

182 W. Krenn and F. Wotawa

permanent faults are masked from occurring too often. In our opinion, the
developer will have different levels of activity in mind for different rules. In
our system we use user supplied max values to implement this behavior:
Depending where the user puts the maximum, the system will run the
associated rule with a given frequency. We want to emphasize that no rule
can be totally blocked from execution in order to prevent the system to run
out of run-able rules.

This methodology was inspired by biological systems, like cells, that
decode DNA sequences to build up useful proteins at different rates all the
time when some part of the DNA is ‘activated’. In cells there exist multiple
ways of influencing the rate in which the DNA gets transcribed and because
of this flexibility cells can react in very complex ways to external influences.
In our rule-based system, we also want to have the flexibility to change
frequency patterns at runtime. The most natural way of providing this
functionality is by allowing rules to interact with the weight calculation
function γ in defined ways. As a first step, we allow special rules to change
the weight of other rules. This can be extended to changing user supplied
parameters, like max and α . Rules that have this capability are called
“Meta-Rules”.

After presenting the basic idea behind the system’s design, we give
further mathematical properties of our system in the following section.

13.3 Additional Properties of the Weight Model

We have shown that the total weight of a rule depends on four factors:
(A) Activity Factor, (B) Damping Factor, (C))(activityα , and (D) a
maximum of activity (normally taken from α). Because most of these
factors are somehow dependent on the activity, we start describing further
mathematical properties of the system by discussing the activity factor. After
presenting details on activity factor calculation, we continue presenting
mathematical properties of the system by discussing the damping factor. We
will answer the question how different damping factors relate to each other
in terms of cross-over point. We do not include the proofs of the properties
in this chapter. Interested readers find these in our technical report [2].

13.3.1 Properties of the Activity Factor

As already said, the system increments the activity factor when a rule has
been chosen. It is, however, obvious that the activity factor cannot be
increased endlessly: We need an aging operation that guarantees that the

 Intelligent, Fault Adaptive Control 183

activity factor stays within bounds. Because division by two is a shift in
binary digit based systems, we chose to age the activity factor periodically
by dividing it by two. So the activity of a rule at iteration number n can be
calculated as follows:

22
1= 1−+⋅ n

nn
activitychosenactivity

where chosen is either 1 or 0 depending on whether the rule was
chosen or not and n is the iteration number. As we would like to run the
system forever, ∞→n . From the series representation of the formula
above, it follows that the activity factor can at most be one. This is the case
when the system runs forever and the rule is always selected.

Because the main idea behind the presented approach is to specify the
frequency of how often a given rule or goal should be run over a particular
time frame, i.e., the running time of the system, we have to answer the
question of where to put the maximum of)(activityα . Putting the
maximum at the right position will guarantee that the rule is selected with
the chosen frequency. In the following, the natural number frq defines the
length of an interval the total number of iterations is divided by. In other
words, frq says that the rule is selected every frqth iteration. For example,
when set to one, the rule is always selected. If frq is set to two, the rule is
selected only every second time.

Let Nfrq ∈ and 0>frq be the length of the interval defining how
often a rule is chosen. If the system runs forever (∞→n), the maximum
value of the activity factor can be calculated as follows.

1)(22
2=)(

−⋅ frq

frq

Max frqactivity

Given this result, we want to know how many steps n are needed in
order to be close to the limit. It can be shown that in order to get ε/1

)0> (ε close to the maximum, one needs n steps, with n given by (frq>0)

)
12

(=
−frqldn ε

Because the activity value gets a boost when the rule is selected and is
aged afterward, there exists a minimum value of the activity factor too. The
minimal activity value for a given selection pattern frq can be calculated as
follows

13

184 W. Krenn and F. Wotawa

12
1=)(

−frqMin frqactivity

The difference between maximum and minimum activity is given by the
bandwidth:

1)(22
1

2
1=)(

−⋅
− frqfrqactivityδ

The bandwidth is dependent on frq and becomes 1/2 if ∞→frq and
0 when 1=frq . Consequently, if one knows the maximum and minimum
activity values, one can use this knowledge to calculate the desired value of
frq:

2)
)(
)((= ⋅

frqactivity
frqactivityldfrq

Min

Max

We know that the lower limit of activityMax (∞→frq) is 1/2 and the
upper limit is equal to one. We also know that a small value of frq results in
an activity maximum near one, whereas for big values of frq the activity
maximum settles near 1/2. Given this lower limit, we are interested in the
maximum value of frq we can still represent with a given number of decimal
places: With a given precision of ε/1 we can represent all activity
maximum values of a given number frq up to

0>2 and)
2

2(++≤ eldfrq ε

This means that with a precision of 5 digits (100000=ε), we find that
we can use all frq-values below 15. After discussing the activity factor, we
now turn our attention to the damping factor.

13.3.2 Properties of the Damping Factor

Given two functions)(),(21 xx αα with maxima zMMM +121 =,
(+∈Rz) that are mutually exclusive, i.e.,)(),(21 xx aa αα represent two
alternate rules achieving the same goal, we want to know at which point

Δ−1= Mq the weights are equal, in other words,)(=)(21 qq γγ . This is
the point at which the system will switch from using one rule to the other
one. The weight of rule one is calculated as follows:

 Intelligent, Fault Adaptive Control 185

1111)()('=)(dxMxx a ⋅−⋅αγ

with
1,= γnactivityx and

11 1= γdampingd −

Weight calculation for the second rule is done equally. As we want to
find the equilibrium of the weights, we set equal

212111)()('=)()(' dxzMxdxMx aa ⋅−+⋅⋅−⋅ αα

With Δ−1= Mx and in the special case of '=' 21 aa αα we derive

Δ
Δ+z

d
d =

2

1

Most of the time, however, we are interested in the number of failed
attempts to run one rule before the system will switch to the alternative one.
If we assume ii SM ⋅=1 then iii SfMSfddamping ⋅−⋅−−)(=1==1
where f represents the number of times a rule failed and iS

 factor. From

ii

ii

SfM
SfM

d
d

⋅−
⋅−

)(
)(=

2

1

2

1 it follows that)(= 2
2

1
1 fM

d
dMf ii −⋅−

Of course the damping factor relates to the probability that all actions
within a rule can be carried out: If we use Pf for the probability of the actions
to fail and Po = 1 – Pf as probability for action completion, we can show that
damping = f Si (Pf – Po). If we assume a stationary fault we can
distinguish between two different modes of behavior: If (Pf – Po) > 0 then
the damping factor will increase over time (∞→n) until its saturation
value 1. In principle this means that if a rule’s actions fail more often
than they succeed, the rule is (mostly) blended out over time. Otherwise
(Pf – Po ≤ 0), the damping factor will – in sum – be decremented to zero.

13.4 Results

We have implemented the presented approach on a hardware prototype of
our remote sensing platform. The device uses a Microchip PIC 18F
controller that provides 128 kBytes program memory and about 4 kBytes

 is an increment

13

186 W. Krenn and F. Wotawa

random access memory. Because of these restrictions and the need to include
firmware for the driver layer, our implementation works with a fixed α
function: Only the max values of the rules can be set by the developer.

Table 13.1 Permanent Faults. “G1” sends acquired position data by GSM, while “G2” sends
the information by some near-field communications link. An attached “x” means the goal was
selected but failed. Besides using GPS, the system can also acquire position information by
using information provided by a compass module. “GP” is the power-save goal

 Scenario A Scenario B Scenario C
Iteration Goals Sim. Faults Goals Sim. Faults Goals Sim. Faults

1 G0, G1 – G0, G1 – G0, G1 –
2 G2, G0 – G2, G0 – xG2, G0 GPS
3 G1, G0 – G1, G0 – xG1, G0 GPS
4 G2, G0 GSM xG2, G0 GPS G0, xG2 GPS,GSM
5 xG1, G0 GSM xG1, G0 GPS G0, xG1 GPS,GSM
6 G2, G0 GSM G0, xG2 GPS G0, xG1 GPS,GSM
7 G2, G0 GSM G0, xG1 GPS G0, G2 GPS,GSM
8 G2, G0 GSM G0, xG1 GPS G0, G2 GPS,GSM
9 G2, G0 GSM G0, G2 GPS G0, G2 GPS,GSM

10 G2, G0 GSM G0, G2 GPS GP, G0, G2 GPS,GSM,
LowBatt

Tables 13.1 and 13.2 present a case study and illustrate the capability of

the system to adapt to changing environments. The rule set used during this
experiment is quite simple and includes two goals (G1, G2) for sending
position information. Note that these two goals are mutually exclusive,
meaning the system will either select G1 or G2. Further goals are included
for switching into power save mode (GP), leaving power save mode, and for
shutting down the system in case of low energy conditions. The results of
Table 13.1 are interesting to compare because they demonstrate the system is
quicker in adapting to a single fault than to multiple ones that tend to cause
fuzzy responses. Please note that our example implementation had a policy
of sticking to GPS as long as possible and to ignore a certain amount of
failures of this module. Therefore the system needs more time to adapt to the
non functional GPS module than it needs when adapting to a faulty GSM
module. Table 13.2 shows a more complex set of induced faults. Note again
that the system has a policy of using GPS for a certain amount of time, even
if it seems faulty. In general the experiment shows three parts. The first part
includes iterations one to five. This part simulates transient, changing faults
with multiple influences on goals.

 Intelligent, Fault Adaptive Control 187

Table 13.2 Transient Faults. “G1” sends acquired position data by GSM, while “G2” sends
the information by some near-field communications link. An attached “x” means the system
fails to reach the goal. Also see Table 13.1

 Scenario A Scenario B
Iteration Goals Sim. Faults Goals Sim. Faults

1 G0, xG1 GSM G0, xG1 GSM
2 xG2, G0 NF xG2, G0 NF
3 G0, xG2 NF, GPS G0, xG2 NF, GPS
4 G0, G1 NF G0, G1 NF
5 G0, G1 G0, G1
6 G0, G1 G0, xG1 GPS, GSM
7 G0, xG1 GPS G0, xG2 GPS, GSM
8 G0, xG2 GPS G0, xG1 GPS
9 G0, xG1 GPS, GSM G0, xG1 GPS
10 G0, xG1

(pos w. GPS)
GSM G0, xG2 GPS, GSM

11 G0, G2 G0, xG1
(pos wo. GPS)

GSM

12 G0, G2 G0, G2
13 G0, xG2 NF G0, xG2

(pos. wo. GPS)
NF

14 G0, G1 NF G0, G1 NF
15 G0, G2 G0, xG2

(pos wo. GPS)
NF

16 G0, G1 G0, G1 NF, GPS
17 G0, G2 Compass G0, xG1

(pos wo. GPS)
NF, Compass,

GSM
18 G0, G1 G0, G1

(pos w. GPS)
NF, Compass

19 G0, G2 G0, xG2 NF
20 G0, G1 G0, G1 NF

The second part of the experiment is a sequence of GPS faults. As we

know that the system has the policy of strongly preferring GPS over its
backup it comes as no surprise that the system can’t reach a few goals in
sequence. As the system does not infer why it was unable to reach the goals,
it keeps switching alternatives. This part of the experiment therefore
recommends including techniques to reason about a fault. However, our
prototype system (and the main field of application) is geared toward small
devices and low energy consumption which is in contrast to our wish of
expanding the presented approach significantly. The last part of the
experiment finally shows how our system adapts to a persistent fault of the
NF component. Note that the experiment was carried out in a way that the
activity factor is only increased when the goal is reached. If the activity
factor is increased whenever the system tries to reach a goal, the device is
more successful and chooses seven out of nine cases correctly, as further

13

188 W. Krenn and F. Wotawa

experiments have shown. Before concluding, we want to add that the
frequency specified by α has been set to “always” for all goals. Therefore
the system tries to reach either G1 or G2 in all iterations. G0 is a goal for
house-keeping functionality: It assures that the system is in on-state.

13.5 Conclusion

The presented methodology provides ways to specify preferred and backup
behavior, and uses damping factors to discriminate between permanent and
transient faults. The approach has the ability to automatically switch back to
the preferred behavior, and can be implemented on resource constrained
devices. In this chapter, we discussed the principal architecture and the
semantic of our rule-based approach.

Acknowledgements This work has been supported by the FIT-IT research
project SEPIAS. The first author is currently funded by MOGENTES, a
Specific Targeted Research Project (STREP) in the 7th EU Framework
Programme.

References

1. R. A. Brooks. Intelligence Without Reason. In J. Myopoulos and R. Reiter, editors,
Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-
91), pages 569--595, Sydney, Australia, 1991. Morgan Kaufmann publishers Inc.: San
Mateo, CA, USA

2. W. Krenn, F. Wotawa. The SEPIAS Embedded Runtime – Single System Semantics.
Technical Report SEPIAS-TR-2008-01, Graz University, 2008.

3. N. J. Nilsson. Teleo-Reactive Programs for Agent Control. Journal of Artificial
Intelligence Research, 1:139–158, 1994. AAAI Press

4. J. K. Rosenblatt and D. W. Payton. A fine-grained alternative to the subsumption
architecture for mobile robot control. Proceedings of the IEEE International Conference
on Neural Networks, pages 317–324, 1989. IEEE Press

5. A. Saffiotti, K. Konolige, and E. H. Ruspini. A multivalued-logic approach to integrating
planning and control. Artificial Intelligence, 76(1–2):481–526, 1995.

6. W. Krenn and F. Wotawa. Configuring collaboration of software modules at runtime. In
Configuration – Papers from the 2007 AAAI Workshop, pages 19–24, Vancouver,
Canada, 2007. AAAI Press

Chapter 14

Digital Open-Loop Control of a Piezoelectric
Valve for Household Appliances

Daniele Petraccini1, Massimo Conti1, Fortunato Nocera2,
Lorenzo Morbidelli2 and Fabrizio Concettoni 2
1D.I.B.E.T., Università Politecnica delle Marche, Ancona, Italy;
2

Abstract Piezoelectric materials are widely used as sensors and actuators in many
applications. They allow efficient digital control of mechanical systems, but
suffer from nonlinearity and hysteresis. This chapter presents a new digital
open-loop control of piezoelectric bender for real-time applications in
domestic appliances, for which strong specifications are good accuracy and
low cost. The control algorithm, implemented in a microcontroller, solves the
problems of nonlinearity and hysteresis. The chapter presents experimental
results of the prototype that has been realized in the Indesit Company
laboratories for future applications on domestic appliances.

Keywords Piezoelectric actuator; Hysteresis; Open-loop control

14.1 Introduction

Since the discovery of piezoelectric effect in 1880 by Pierre and Jacques
Curie, scientific knowledge and technology of piezoelectric materials have
dramatically improved so that nowadays they are used in a huge number of
applications, working as sensors, transducers, and actuators.

In particular, piezoelectric devices are applied in embedded systems in
several different areas: automotive (fuel injectors), consumer electronics
(auto-focus in reflex cameras), computer accessories (ink-jet printers), music
(pickups for electrically amplified guitars, electronic drum pads, and
loudspeakers), medical (ultrasonic transducers for medical imaging), optics,
and so on.

189

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_14,
© Springer Science+Business Media B.V. 2009

Indesit Company S.p.A., Fabriano, Italy, m.conti@univpm.it

190 D. Petraccini et al.

In the field of domestic appliances, piezoelectric materials are used as
well, mainly as sensors. For example a touch interface can be realized that is
based on direct piezoelectricity: when the finger applies a slight pressure on
the sensor, a voltage is generated. Such technology is integrated into the user
interface of a model of Ariston electric oven that is currently on the market
(see also Ariston web-site [1]).

This chapter investigates the possibility of using piezoelectric actuators
in domestic appliances as an alternative to classical actuators. Most of
actuators currently used in household appliances are mechanically related to
the action performed by the user. Examples are: thermostat of cooling
appliances, knob of cooking appliances. An electro-mechanical piezoelectric
device would allow placing the real actuator in a location which differs from
the interface on the outside, where the user performs a command.

Our work focuses on a bender piezoelectric actuator, which is a
cantilever beam made up by two layers (one ceramic layer and one
supporting layer) that bend when a voltage is applied: this happens because
under the action of the electric field, piezoelectric layer shrinks and forces a
deflection of the whole bender. The piezoelectric bender that we used allows
deflection in one direction only; two directions bender can be realized by
adding a second piezoelectric layer on the other side of the supporting layer.

Notice that the bending element can be used in a variety of ways
according to the mechanical system that is connected to the cantilever.

We chose to experiment with open-loop control of piezo bender, in order
to reduce complexity and cost, so as to make it more feasible to be applied.
Moreover, in some cases a closed-loop control cannot be implemented at all
since the required sensor should prove too costly or difficult to be put into
action.

Unfortunately, piezoelectric materials suffer from hysteresis, a form of
nonlinearity containing memory of history. This major limitation makes
them more difficult to be controlled and requires some form of
compensation to be implemented.

Some open-loop techniques based on models proposed in the literature
were tested with the actual piezo bender, but the results achieved did not
completely satisfy authors. For these reasons, we developed a novel
empirical technique which proved to be effective in the case of stepwise
variables.

The general problem of hysteresis in piezo actuators is discussed in
Section 14.2. Then, Section 14.3 describes the main components of our
prototype. Two open-loop techniques are outlined in Section 14.4, and in
Section 14.5 experimental results are provided, followed by conclusions.

14 Digital Open-Loop Control 191

Fig. 14.1 Typical displacement-voltage characteristic of a piezoelectric actuator

14.2 Hysteresis in Piezoelectric Actuators

A piezoelectric actuator is an electrically controllable device which works on
the basis of the piezoelectric effect: when subjected to an externally applied
voltage (input), the material changes shape by a small amount and this
deformation can be used in a variety of ways. The main advantages of
piezoelectric actuators are their high stiffness, fast frequency response, and
high resolution – properties that give reason for their vast application.

Unfortunately, they suffer from hysteresis: the entity of the deformation
(output) of a piezo actuator does not depend uniquely upon the present value
of the input voltage, but is influenced by the history of input, in particular by
the sequence of past voltage extrema.

Figure 14.1 shows the typical hysteretic characteristic of a piezoelectric
actuator. The curve is obtained by driving the actuator with a voltage starting
from 0 (null exitation) and continuously increasing up to 300 V: the
corresponding displacement follows the lower branch of the hysteresis loop.
When the input voltage is decreased from 300V down to 0, the displacement
follows the upper branch of the hysteresis loop. This behaviour is obviously
undesirable since the displacement resulting from a voltage input signal V(t),
showing a series of local minima or maxima, becomes in general
unpredictable.

Several approaches have been proposed in the literature to compensate
for such an unwanted effect, and they can be classified into the following
categories [2].
1. Electric charge control. As Newcomb and Flinn suggested [3], the

linearity of piezoceramic actuators can be significantly improved if an
electric charge – instead of a voltage – is applied and varied to control
the deformation. Nevertheless, electric charge control needs specially

Upper branch
decreasing input

D
is

pl
ac

em
en

t(
μm

)
Lower branch
increasing input

Input voltage (V)
100 200 300

30

20

10

192 D. Petraccini et al.

designed charge amplifier, and good linearity cannot be guaranteed in a
wide frequency range.

2. Closed-loop displacement control. Typically, strain gauges are used as
feedback sensors. Examples of this kind of approaches can be found in
[4], where a linear control technique is used after linearization of the
hysteresis; in [5], where adaptive control with an approximate model of
hysteresis is used; in [6], where a neural network is used to learn the
nonlinearity. Anyway, such a strategy requires an additional cost on the
device and this may be undesirable since the cost of each piece of the
machine is crucial in the world of consumer electronic appliances.

3. Linear control with feed forward inverse hysteresis model (open-loop
control). In this approach the idea is to find a proper model of the
hysteretic behaviour of the piezo actuator and use its mathematical
inverse in the control chain. Examples of such approach can be found in
[7,8], where the inverse Preisach model is applied for hysteresis
cancellation; in [9] where the realization of an inverse feedforward
controller for the linearization of a piezoelectric device is formulated.

We tried to perform an open-loop control of the piezoelectric bender, which
required the hysteretic behaviour of the device to be well-characterized.

14.3 Prototype Description

A significative example of a piezoelectric actuator, suitable for domestic
appliance can be presented by valves for fluids control. Figure 14.2 provides
a schematic illustration of the prototype of piezoelectric valve used in
laboratory.

The valve, devised for controlling a fluid, comprises a hollow body
having a fluid inlet duct and a fluid outlet duct. The cavity of body is divided
by a rigid separator into an upper outlet cavity and a lower inlet cavity.
Separator has an aperture (a flared hole) allowing the fluid to flow from
lower cavity to upper cavity. Shutter is adapted to shut aperture of separator
by perfectly coupling thereto, thus ensuring tightness. Body of the valve has
a hole in its upper portion which allows the stem to slide without any
substantial fluid leakage from chamber.

The piezoelectric bender acts on the regulating device, composed by the
shutter and the stem, rigidly joined together. The actuator receives an
electric signal through two electric leads; actuator is so conceived that, when
a direct electric voltage is applied, it will curve downwards and the
regulating device will move downwards accordingly; the greater the
amplitude of the voltage signal, the more actuator will curve.

193

Fig. 14.2 Schematic representation of the piezoelectric valve

When the input signal has a null voltage value (or a value below the
minimum design voltage value), the valve is “fully closed” because shutter is
shutting aperture; this is the idle or inoperative condition of the valve. When
the input signal has the maximum design voltage value, the valve is
considered to be “fully open” because shutter is far below aperture and
therefore cannot prevent the fluid from flowing from lower chamber to
upper chamber. An elastic element, in particular a spring, is provided in
order to obtain or facilitate the return of the valve to its idle or inoperative
condition.

The test prototype, realized in Indesit Company laboratories, consists of
the piezoelectric valve, the electronic control system, the meter used to
measure the flow and an interface with a PC used to program the electronic
control system and to monitor the results. The desired regulations of the
valve are provided by the user through a software program running on a PC.
The generated input pattern is transmitted to the electronic board, which
includes all the circuitry needed to elaborate the input signal and to supply
the piezoelectric actuator with the proper voltage. From the circuit point of
view, the piezo actuator can be thought of as a capacitor, whose applied
voltage determines the entity of the mechanical deformation.

The piezo actuator carries out a mechanical action on the valve. The
meter block represents a gauge that provides the measure of the flow to the
acquisition system.
The electronic board, in Fig. 14.3, comprises three main functional blocks:
• the power supply module, consisting of a switch mode power supply,

generating the 5V dc power supply for microcontroller and the 300V dc
power supply needed to synthesize the piezo control voltage.

• the control module, consisting of a microcontroller which implements the
following: the hysteresis compensation technique described later in
details; the communication with the user interface based on a standard
RS-232 serial line with an Indesit proprietary communication protocol;
the decoding of the input pattern and the conversion into the

piezoelectric actuator

stem

electric
leads

shutterinlet duct

outlet duct

elastic element

upper cavity

lower cavity

rigid separator

 Digital Open-Loop Control

corresponding voltage pattern to be generated; the generation of the
control signal for the piezo actuator interface.

14

194 D. Petraccini et al.

Fig. 14.3 The electronic board and its main modules

Fig. 14.4 The electronic board applied to the control of a test gas cooking hob

195

Fig. 14.5 Future application of piezoelectric valve to gas cooking hobs

Such control signal is a Pulse Width Modulated signal whose duty-cycle
determines the piezo driving voltage. In order to generate the required
voltage, a closed-loop control system is used: the microcontroller
measures the actual voltage applied to the piezo and varies the duty cycle
of the PWM signal according to a PID control algorithm. The PID has
been tuned in order to satisfy the required response time and noise
rejection. The PID approach was chosen in order to have a versatile tool
to adapt the piezo behaviour to different application requirements.

• the piezo actuator interface is a circuitry that adapts the 0–5V PWM
signal from the microcontroller to the 0–285 V range and, by means of a
low-pass filtering, generates a continuous voltage in the range up to
285 V dc. The voltage applied to the piezo is provided, with an
appropriate scaling factor, to the microcontroller as a feedback signal.

The electric control board has been applied to the control of a gas cooking
hob, as shown in Fig. 14.4, for future application on commercial gas cooking
hob of the type shown in Fig. 14.5.
The output signal of our system, the gas flow, is acquired while the input
voltage is gradually increased from 0 V up to 285 V and then gradually
decreased down to 0 V. The hysteretic behaviour of the piezo is reflected to
the characteristic of the whole cooking hob.

In a typical operating condition of the valve, the input voltage changes
according to the input pattern provided by the user. As a result of the
memory inherent in the piezoelectric device, the value of the output at a
given time is difficult to be predicted, since it depends on the sequence of
past input values.

In general, the operating point in the input-output diagram at a given time
lies inside the major hysteresis loop, but its exact location is unknown if we
assume that the output is not observable. Hence the area enclosed in the
major hysteresis loop gives a measure of the degree of uncertainty associated
to the system.

Obviously, this highly nonlinear behaviour makes the actuator difficult to
be driven in an open-loop scheme, and requires a proper compensation
technique to be applied.

 Digital Open-Loop Control 14

196 D. Petraccini et al.

14.4 Hysteresis Compensation Technique

With reference to the schemes for hysteresis compensation described in
Section 14.2, we decided to use a feed forward inverse hysteresis model
(open-loop control). In particular, from the literature we borrowed the classical
Preisach model [7,8] and the more recent model of Prandtle-Ishlinskii [10,2].

Fig. 14.6 Non linear hysteresis model

Fig. 14.7 Hysteresis cancellation with inverse model

Preisach model cannot be applied in our case since the wiping-out and
congruency properties are not verified, hence necessary and sufficient
conditions for the representation of the actual hysteresis nonlinearity are not
satisfied. As regards the model based on Prandtle-Ishlinskii operator, we
found out that it doesn’t work as well: indeed, a correct identification of the
hysteresis curve cannot be accomplished due to the strong nonlinearity of the
characteristic and the concavity of both the upper and lower branches of the
main loop.

Hysteresis compensation with a non linear hysteresis model

We modified the Prandtle model introducing a piecewise nonlinearity at
the output of the hysteresis model, as shown in Fig. 14.6. In this way
complex shapes of the hysteresis systems can be modelled. This nonlinear
hysteresis model is, in our knowledge, original and never proposed by other
researchers. We defined and algorithm to estimate the coefficients of both

Prandtl model

input output

non linear model

input

x x

Non linear
hysteresis model

x
ou

tp
ut

input

ou
tp

ut

inverse
hysteresys

model

input outputhysteresys
system

compensated
input

input

ou
tp

ut

197

models by fitting the experimental data. The non linear hysteresis model can
be used to identify the inverse model. The compensated input signal applied
to the hysteresis system for hysteresis cancellation will generate the desired
linear input-output relationship, as shown in Fig. 14.7.

Fig. 14.8 Experimental hysteresis and Prandel best fitting model

Fig. 14.9 Experimental hysteresis and nonlinear hysteresis best fitting model

Fig. 14.10 Hysteresis cancellation with inverse nonlinear hysteresis model

Experimental data

Prandtl model
N

or
m

al
iz

ed
ga

s
flo

w

Normanized input voltage
0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

Experimental data

non linear hysteresis model

N
or

m
al

iz
ed

ga
s

flo
w

Normanized input voltage
0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

Desired ideal characteristic

Compensation with inverse
non linear hysteresys model

N
or

m
al

iz
ed

G
as

 fl
ow

Normanized input voltage
0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

 Digital Open-Loop Control 14

198 D. Petraccini et al.

Figure 14.8 shows the experimental data and the best fitting obtained by
the Prandtle model of order n=20, while Fig. 14.9 shows the best fitting
obtained by the nonlinear hysteresis model with a Prandtle model of order
n=20 and the piecewise linear curve of order m=15. The improvement is
evident.

The hysteresis cancellation obtained with the inverse nonlinear hysteresis
model with a Prandtle model of order n=20 and the piecewise linear curve of
order m=15 is shown in Fig. 14.10.

Upper branch control technique

The nonlinear hysteresis compensation technique previously described
requires the implementation of the inverse model of the nonlinear hysteresis
in the microcontroller, the complexity of the model forces the designer to
high performances and high cost microcontrollers. For industrial high
volume applications, the statistical variations of the piezo characteristics
must be carefully considered; a tuning of the inverse model could be
necessary for each product. These considerations limit the real applicability
of the nonlinear hysteresis compensation technique. To overcome these
problems, we have developed an empirical technique which proved to be
effective in the case of stepwise variables, that is when the desired time
behaviour of the output is a series of levels or steps.

Our technique exploits the fact that the piezoelectric actuator has a fast
frequency response and can be driven by the electronics very rapidly, being
such electronics embedded in the whole appliance system. In particular, our
developed circuitry can make the piezo to go from the minimum up to the
maximum voltage level in about 50 ms. At the same time, the driven system
(fluid dynamic, in this case) can be seen as a dynamical system with an
upper cut frequency that is certainly lower than the frequency at which a
piezo device can be made to operate.

We can take advantage from this fact by biasing the actuator to the upper
branch of the hysteresis curve, hence making it to work in a well defined
path. This can be achieved by applying a transformation to the stepwise
input signal as follows:
• Every step-down transition (VH → VL) of input signal is left unchanged;
• Every step-up transition of input signal (VL → VH) is converted to a

combined transition (VL → VMAX → VH), where the value VMAX is the
maximum applicable voltage (e.g. 285V in our case) and it is kept for a
time interval as small as possible (e.g. 50 ms).
In the latter condition, the apparatus driven by the piezo can’t react to the

rapid transitions VL → VMAX → VH, due to its inertia, and behaves like if just
the VL → VH transition is happening.

199

In such a manner, the stable operating points of the piezo actuator lie in
the upper branch of the hysteresis curve, resulting in a nonlinear hysteresis-
free behaviour. The remaining nonlinearity – which is memory-less – can
easily be compensated, for example by means of a look-up table in the final
control algorithm.

The foregoing technique has been implemented in a 64-pin
microcontroller operating at 8 MHz; the complete application – voltage
control and algorithm implementation – required more than four Kbytes of
assembly code.

The details of the modifications needed to the input signals and the
effectiveness of the resulting approach on the output signal are better
illustrated in the following section, where an experimental case is described.

According to the explained principle, a compensation of hysteresis could
be obtained by making the piezo to operate in the lower branch of the
hysteresis curve: in this case every step-down transition would require an
additional intermediate step down to a voltage that causes the piezo to turn
back to the no-deflection state, that corresponds to a null output. Anyway it
is preferable not to pass through the null output, since it could have a
negative impact on the valve behaviour, as we experienced with an
alternative version of our prototype.

14.5 Experimental Results

This section discusses a representative experiment conducted with our
developed prototype, whose main parts are illustrated in Section 14.3.

Figure 14.11 depicts the pattern used as input in our test. Seven different
levels were employed, and the input sequence was conceived so as to set a
given level several times during the test and through different transitions.
Every step lasted 5 min, and a succession of 24 steps was used, for a total
duration of 2 hours.

This sequence of levels was elaborated by the microcontroller, giving rise
to the voltage signal depicted in Fig. 14.12. Notice the 285V spikes
generated at each step-up transition of input pattern, according to the
compensation technique described in Section 14.4.

The voltage signal generated by the electronic board was applied to the
piezoelectric actuator. The resulting bender deformation produced a
variation in the flow. The normalized output measured by the flow meter is
plotted versus time in Fig. 14.13 (thick line).

Observe that throughout the test, the measured output levels are in very
good agreement with the desired levels (horizontal dashed lines in the
diagram).

 Digital Open-Loop Control 14

200 D. Petraccini et al.

In order to provide an idea of the improvements achievable with our
technique, the values of the raw output without compensation are shown as
well for each step (small diamonds): if the compensation algorithm is not
applied, the resulting output level is not univocally associated to the input
level, due to the large nonlinearity introduced by hysteresis.

Based on the time history of input and output signals, scatter diagrams
can be constructed for the uncompensated and compensated cases, as shown
in Figs. 14.11 and 14.12, respectively.

By comparing the input-output relationships in Figs. 14.14 and 14.15, the
advantages of the proposed technique are clear: the compensation algorithm
dramatically reduces hysteresis nonlinearity. In particular, the maximum
error reduces from 9 to 2.8 % and the average error from 5.3 to 1.3%.

Such improvement in the overall system performances makes the open-
loop control of piezo actuators promising for future application on the field
of domestic appliances.

Fig. 14.11 Input pattern used in the test

Fig. 14.12 Input signal provided by the controller

201

Fig. 14.13 Normalized output with compensation and without compensation

 Digital Open-Loop Control

Fig. 14.14 Scatter diagram without compensation

Fig. 14.15 Scatter diagram with compensation

14

202 D. Petraccini et al.

6. S.-S. Ku, U. Pinsopon, S. Cetinkunt, and S. Nakjima. Design, Fabrication, and Real-time

Neural Network of a Three-Degrees-of-Freedon Nanopositioner. IEEE/ASME Trans.
Mechatronics, Vol. 5, No. 3, pages 273–280, September 2000.

7. Y. Lv and Y. Wei. Study on open-loop precision positioning control of a
micropositioning platform using a piezoelectric actuator. Fifth World Congress on
Intelligent Control and Automation, 2004, Vol. 2, pages 1255–1259, June 2004.

8. G. Song, J. Zhao, X. Zhou and J.A. De Abreu-Garcia. Tracking control of a
piezoceramic actuator with hysteresis compensation using inverse Preisach model.
IEEE/ASME Transactions on Mechatronics, Vol. 10, Issue 2, pages 198–209, April
2005.

9. C.-H. Ru, L. Sun, and M.-X. Kong. Adaptive inverse control for piezoelectric actuator
based on hysteresis model. In Proceedings of 2005 International Conference on Machine
Learning and Cybernetics, Vol. 5, pages 3189–3193, August 2005.

10. R. Changhai, S. Lining, R. Weibin, and C. Liguo. Adaptive inverse control for
piezoelectric actuator with dominant hysteresis. In Proceedings of the 2004 IEEE Int.
Conf. on Control Applications, Vol. 2, pages 973–976, September 2004.

Indesit Company laboratories show the effectiveness of the proposed
technique, which allows for a good hysteresis compensation; a sufficient
precision seems to be gained in the investigated application, hence allowing
the removal of direct feedback on the physical quantity to be regulated.

The illustrated technique is suitable to be directly implemented in the
same microcontroller already present on currently marketed appliances.

The presence of piezoelectric actuators aimed at replacing traditional
mechanical actuators, together with a more pervasive presence of embedded
intelligence, enables the implementation of new functionalities, making it
interesting for future applications on domestic appliances.

References

1. http://www.ariston.it/ariston/productsheet.do?productId=39354IT
2. Wei Tech Ang, F.A. Garmon, P.K. Khosla, C.N. Riviere. Modeling rate-dependent

hysteresis in piezoelectric actuators. In Proceedings of the 2003 IEEE/RSJ, International
Conference on Intelligent Robots and Systems, Vol. 2, 1975–1980, October 2003.

3. C.V. Newcomb and I. Flinn. Improving the linearity of piezoelectric ceramic actuators.
Electronics Letters, Vol. 18, No. 11, pages 442–444, May 1982.

4. C. Jan and C-L. Hwang, Robust Control Design for a Piezoelectric Actuator System with
Dominant Hysteresis. In Proc. 26th Conf. of the IEEE IECON2000, Vo1.3, pp. 1515–20.

5. G. Tao and P. V. Kokotovic. Adaptive Control of Plants with Unknown Hystereses.
IEEE Tran. Auto. & Control, Vo1. 40, No. 2, pages 200–212, February 1995.

14.6 Conclusions

This chapter presented a new digital open-loop control of piezoelectric
bender for real-time applications in domestic appliances, where low cost is a
fundamental requirement. Experimental results for the prototype realized in

Chapter 15

Comining Quantitative and Qualitative Models
with Active Observtions to Improve Diagnosis

of Complex Systems

Gerald Steinbauer and Franz Wotawa
Institute for Software Technology, Graz University of Technology, Inffeldgasse 16b/2, A-8010

Abstract Quantitative and qualitative models and reasoning methods for diagnosis are
able to cover a wide range of different properties of a system. Both groups of
methods have advantages and drawbacks in respect to fault diagnosis. In this
chapter we propose a framework which combines methods of both groups to a
combined diagnosis engine in order to improve the overall quality of
diagnosis. Moreover, we present the different methods based on a running
example of an autonomous mobile robot. Furthermore, we discuss the
problems and research topics which arise from such a fusion of diverse
methods. Finally, we explain how actively gathered observation are able to
further improve the quality of diagnosis of complex systems.

Keywords Model-based diagnosis, Robustness, Fault-tolerance, Embedded systems

15.1 Introduction

Model-based diagnosis has been successfully applied to automated fault
detection and localization in a wide range of different domains. Basically,
diagnosis represents methods which are capable to detect a wrong behavior
of a system and to find the root cause for that behavior. Applications for
diagnosis comprise digital circuits, mobile robots, software development,
automotive industry and space-probes [1–6].

From its beginning model-based diagnosis has been developed in several
directions. These developments have been driven by the different
characteristics of the application areas and their corresponding definition and
use of models. A coarse partitioning of model is to distinguish qualitative

203

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_15,
© Springer Science+Business Media B.V. 2009

Graz, Austria, steinbauer@ist.tugraz.at

204 G. Steinbauer and F. Wotawa

and quantitative models. Qualitative models are models that relate variables
with finite value domains. Such models are based on an abstract logical
description of the desired behavior of the system. The diagnosis process
itself is done by logical reasoning [7] Examples for the use of qualitative
models for diagnosis can be found in [8]. Quantitative models, on the other
side, capture physical entities of a system in terms of real valued variables
and the models relate them through differential-, difference- and algebraic
equations. Continuous filtering of observed values [9–10] and the so called
fault detection and identification (FDI) methods [11–12] solve the diagnosis
task for this model class.

Both groups of methods cover different aspects of a system and have
their advantages and drawbacks. Furthermore, the different methods provide
diagnosis on a wide range of temporal, semantic and spatial granularity. This
means that these diagnosis methods provide diagnosis at different frame-
rates, as quantitative or qualitative information or about different parts of the
system.

In general, diagnosis methods try to find an explanation for the current
behavior of a system based on observations and models of the system. The
behavior can be either nominal or faulty. Usually, the diagnosis process
reports all diagnoses (explanations) that are consistent with the observations
and the models. It is possible that this set of diagnoses contains misleading
diagnoses or diagnoses that only roughly explain the observations of a faulty
behavior.

Usually quantitative and qualitative models cover different aspects of the
system. We believe that a combination of the outcome of these different
models will improve the quality of the overall diagnosis. Moreover, it will
reduce the number of diagnoses that are too general to be useful or that are
simply wrong. In this chapter we propose a framework which combines the
output of a number of qualitative and quantitative models in order to
improve the quality of the overall diagnosis. The fusion of such different
information is far away from being trivial and raises a number of interesting
research questions.

Moreover, in general all these diagnosis methods use the observations the
system provides during execution. There are no active methods in order to
gather additional information which can help to improve the quality of the
diagnosis. Therefore, we discuss the issue of active observations where the
diagnosis system actively tries to gather additional useful observations.
Obviously, such active observations require appropriate reasoning and
planning capabilities.

In the remainder of this chapter we will first present some related work
and will introduce a running example. An autonomous delivery robot will
serve as an example for a complex system throughout the chapter. Using this

15 Coming Quantitaive and Qualitative Models 205

example we will present the properties of quantitative and qualitative models
in more details. In a following section we will present the proposed
combined diagnosis framework and will discuss open questions that are
raised by the framework. Moreover, we will briefly present and discuss the
idea of active observations. Finally, will draw some conclusions about the
ideas presented in this chapter.

15.2 Related Research

The Livingstone architecture proposed by Muscettola and colleagues [6] was
used by the space probe Deep Space One to detect failures in its hardware
and to recover from them. The fault detection and recovery are based on
model-based reasoning.

In work Dearden and Clancy [13] and Verma et al. [14] particle filter
techniques were used to estimate the state of the robot and its environment.
These estimations together with a model of the robot were used to detect
faults. The most probable state is derived from unreliable measurements.
The advantage of this approach is that it is able to handle non-Gaussian
uncertainties of the robot’s sensing and acting as well as uncertainties in its
environment. Other approaches which are based on Kalman-filter are only
able to account Gaussian uncertainties.

Model-based diagnosis also has been successfully applied for fault
detection and localization in digital circuits, in car electronics and for
software debugging of VHDL programs [1].

Struss presented an approach for knowledge compilation for a diagnosis
system [5]. The model and the reasoning process for the diagnosis of parts of
the electronics of a car were condensed to a decision tree. This reduction of
the demand for resources allowed them to apply the diagnosis system in an
ordinary control unit for cars.

Roos described an algorithm which allows a group of diagnosis agents to
negotiate a decision about a global diagnosis [15]. The agents had only a
local view of the system. The main issue of this work was to minimize the
communication overhead needed for a global diagnosis.

In the work of de Kleer a method was presented which is able to decide
which measurement should be done next in order to gather maximum
information for the diagnosis [16]. The development of this method was
mainly driven by the fact that not all measurement contains the same useful
information all the time. Furthermore, some measurements are more costly
or harder to obtain than others. Therefore, one likes to minimize the use of
such measurements if possible.

206 G. Steinbauer and F. Wotawa

15.3 Running Example

Figure 15.1 shows the autonomous delivery robot Wonko. The robot
comprises a differential-drive robot platform, a laser range-finder, a GPS
receiver, an inertial measurement unit (IMU) and an Intel-based central PC
running Linux. The robot is able to autonomously navigate around the
campus of the university in order to deliver goods.

Fig. 15.1 The autonomous delivery robot Wonko

The central PC runs a three-layer control software. It comprises a
hardware layer, a continuous layer and an abstract layer. The hardware layer
is responsible for the interface to all hardware components. The continuous
layer performs any continuous information processing like processing of the
sensor inputs or reactive control. The abstract layer hosts the deliberative
control in form of planning and reasoning module. The continuous layer is
able to provide two different kinds of observations about the robot itself and
its environment. The layer either provides processed information like the
global position and orientation of the robot and the position of recognized
objects or it provides unprocessed sensor data like the acceleration or turning
rate measured by the IMU.

The presented robot platform will serve as an example for the diagnosis
throughout the remainder of the chapter.

 Coming Quantitaive and Qualitative Models 207

15.4 Quantitative Modeling

Figure 15.2 shows the arrangement of one axis of the drive of our robot. It
comprises a wheel, a gearbox, a dc-motor and a wheel-encoder. Further-
more, it shows the inputs, e.g., commanded velocity, and the outputs,
e.g., drawn current and actual angular velocity, we are able to observe.

Fig. 15.2 The arrangement, the inputs and outputs of a single axis of the robot drive

In order to be able to detect and localize a fault in such an electro-
mechanical system we have to model the desired behavior of the system. In
general, an abstract qualitative model is not sufficient to model all aspects of
such systems which are able to provide useful information for diagnosis.
Therefore, we have to model the behavior of the system in all nominal and
faulty operation modes which we want to detect. An approved method to
model the behavior of such systems is a probabilistic hybrid automata. A
detailed overview on this technique can be found in work of Hofbaur [17]. A
probabilistic hybrid automata is an automata which comprises all nominal
and faulty operation modes of the system as discrete states. Also a node is
added to cover all the unknown operation modes which are not modeled
exactly. Moreover, the automata comprises transitions between the modes
and probabilities for their occurrence. Furthermore, a model of its dynamics
is attached to each discrete state, i.e., difference or differential equations.
This model describes how the continuous state vector of the system evolves
in that particular mode. Figure 15.3 depicts a simple probabilistic hybrid
automata which models the drive of the example robot comprising two of the
axis depict in F Fig. 15.2. The figure shows the automata with the five nodes
for nominal, faulty and unknown modes and their transitions. The
probabilities for each transition were omitted for readability.

15

208 G. Steinbauer and F. Wotawa

Fig. 15.3 A simple hybrid automata modeling the drive of the delivery robot

Equation (15.1) shows the differential equation for the nominal mode.
Equation (15.2) shows the differential equation for the mode where the
right motor fails. The equations of the unknown mode are empty.

W
u
u

l

r

l

r

l

r +⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

10
01

10

01

ω
ω

ω
ω

τ
τ

&
& (15.1)

W
u
u

l

r

l

r

l

r +⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

10
00

10

01

ω
ω

ω
ω

τ
τ

&
& (15.2)

The task of detection and localization of a fault in this case is equivalent
to find the most probable operation mode based on observations of the
system. The state estimation can be performed by multi-hypothesis tracking.
The approach tracks all possible mode sequences over time and estimates
how likely these sequences are with respect to the observed input and output
sequence. That mode sequence with the highest likelihood captures most
probable the true mode sequence.

15.5 Qualitative Modeling

In contrast to the quantitative modeling schema, qualitative models use an
abstract logic-based model of the behavior of a system in order to be able to
detect and localize faults. One advantage of this technique is that only the
correct behavior of the system has to be modeled. The principles were
originally developed by Reiter [7]. The basic idea is to use an abstract
model, i.e., horn clauses for efficiency reasons, of the correct behavior of the
system and some current observations, i.e., literals, of the system. If the
prediction of the model differs from the observation a contradiction occurred
and we have detected a fault. The check for such contradictions can be

 Coming Quantitaive and Qualitative Models 209

performed easily by logical inference. So far we only know that a fault
occurred but we do not know the root cause of a fault. In general it is not
obvious which faulty component is responsible for the observation of a
faulty behavior. In order to solve this problem efficiently Reiter proposed the
hitting-set algorithm. The idea is to systematically take back assumptions
about functioning components until the contradiction is removed. Therefore,
the removed assumptions about correct components are an explanation for
the faulty behavior. These explanations are called a diagnosis. More details
about model-based diagnosis can be found in book of Hamscher [8].

In the work of Friedrich et al. [1] a more convincing modeling schema
was presented. The schema eases the modeling of larger systems. The idea is
that in a first step only the correct behavior of smaller components is
modeled, e.g., gates in integrated circuits. In a second step a structural
description of the connections and interactions of the components is
provided. The advantage is that the behavioral description of the components
can be easily reused for other systems and only the structural description has
to be adapted to the new system. In the remainder of the chapter we follow
this schema for the qualitative modeling. We continue with an example
which depicts the quantitative modeling.

The behavior of the differential-drive of the robot of Fig. 15.1 can be
qualitatively modeled with the following simple clauses:

1. ¬AB(MOTOR_1) ⋀¬AB(ENCODER_1) ⋀turn(MOTOR_1)→ ok(TICKS_MOTOR_1)
2. ¬AB(MOTOR_2) ⋀¬AB(ENCODER_2) ⋀turn(MOTOR_2)→ok(TICKS_MOTOR_2)
3. ¬AB(MOTOR_1) ⋀turn(MOTOR_1)→ok(CURRENT_MOTOR_1)
4. ¬AB(MOTOR_2) ⋀turn(MOTOR_2)→ok(CURRENT_MOTOR_2)

Line 1 specifies that if the encoder and the motor of axis 1 works correct
and we order the motor to turn we are able to observe encoder increments
from axis 1. The predicate ¬AB(C) denotes that a component C is not
abnormal meaning that C works as expected. ok(o) denotes that the correct
observation o has been made. Line 3 specifies that if the motor works correct
and we order the motor to turn we can observe that the motor draws current.

Now we assume that the encoder of the motor of axis 1 fails and does not
provide any encoder ticks anymore even if the motor turns correct. This
observation can be expressed as follows:
turn(MOTOR_1) ⋀turn(MOTOR_2) ⋀¬ok(TICKS_MOTOR_1) ⋀ok(TICKS_MOTOR_2)

If we assume that all components work correct, expressed by the clause

¬AB(MOTOR_1) ⋀¬AB(ENCODER_1) ⋀¬AB(MOTOR_2) ⋀¬AB(ENCODER_2) we have
a contradiction between the outcome of the model and the observation. We
can derive ok(TICKS_MOTOR_1) and ¬ok(TICKS_MOTOR_1) at the same time.

15

210 G. Steinbauer and F. Wotawa

This means that we have detected a fault. If we systematically remove
assumptions about working components, i.e., change ¬AB(C) to AB(C), we
are able to find one or more sets of removed assumptions which resolve the
contradiction. These sets are the diagnosis of the system and describe the
root cause of the detected fault. It has to be noted that the set comprising all
components always forms a diagnosis. In the example the set
{AB(ENCODER_1)} resolves the contradiction and is the true root cause of
the fault. In general we are interested in diagnosis with minimal cardinality.
Because of the fact that this approach tries to maintain consistency the
technique is also called consistency-based.

15.6 Combine Quantitative and Qualitative Models

We presented in the previous sections different modeling and diagnosis
paradigms. They differ mainly in the used modeling method (qualitative,
quantitative or hybrid) and in their reasoning process (probabilistic state
estimation, rule-based systems or logical inference). Furthermore, diagnosis
methods can differ in their temporal and diagnosis granularity. Some models
may deliver rough diagnosis on a fine temporal granularity for the whole
system like there is a general fault in the control software. Other models may
be capable to provide a much more specific diagnosis about a limited area of
the system like the maximum possible angular velocity of a motor is
suddenly limited to some value.

This shows that the different methods are capable to cope with different
aspects of the system with different qualities. Moreover, in general diagnosis
methods provide all explanation which are consistent with the model and the
observations or which have a probability above a particular threshold. But all
these explanations do not necessarily comprising the real root cause of the
fault. It is similar to the situation when one brings its car to the garage
because the motor makes a strange noise. The mechanic often provides the
explanation that some components cause the noise. In general the true
explanation is in the set but further investigation is necessary. Reconsider the
example of the failed motor in Section 15.4. If we are unable to measure the
drawn current both diagnosis {AB(ENCODER_1)} and {AB(MOTOR_1)}
explain the observed behavior. But if we use a measurement of acceleration
of the robot together with a quantitative model of the kinematics of the robot
for all modes then we are able to reduce the number of diagnosis the correct
one again.

In order to use the advantages of the different diagnosis methods while
avoiding the drawbacks we propose to combine the different methods to
improve the overall performance of the diagnosis. We believe that beside the

 Coming Quantitaive and Qualitative Models 211

better quality of the diagnosis with that approach we are able to handle much
more complex systems comprising hardware and software.

Fig. 15.4 The figure shows the framework for combining qualitative and
quantitative models and diagnosis in order to improve the overall diagnosis Δ

Figure 15.4 depicts an overview of an architecture which combines
different models for the diagnosis process. M denoted the qualitative and
quantitative models and reasoning modules. O denotes the different
observations of the system used as inputs for the different diagnosis
processes. The observations may origin from different parts of the system
and depict various aspects of the system like continue valued measurements
or abstract literals.

δ denotes the outcome of these local diagnosis processes. The temporal
and diagnosis granularity of these diagnoses can be very different. While one
model may deliver a full set of components that may have caused the fault
another module may just deliver an estimation about the operation mode of a
component. Moreover, the diagnosis output of one model can be used as an
input for another model. For instance a quantitative model may provide an
input predicate for a qualitative model. All the different diagnoses δ
represent a different view on different parts of the system. Moreover, they
comprise different knowledge and opinions about the state of the system.
Obviously, these different parts of knowledge will be sometime inconsistent
and will provide different explanations for an observed faulty situation.

In order to increase the overall quality of the diagnosis we propose to
combine the different local diagnosis results to a global one. Δ in Fig. 15.4
denoted the combined improved overall diagnosis of the system. The

15

212 G. Steinbauer and F. Wotawa

combination of such different models and reasoning methods will increase
the quality of the resulting quality of the diagnosis but raises a number of
open questions:
• Different Temporal Granularity The different models may use

observations that come at a very wide range of frame-rates. A hearth-beat
message from a component may be received at a frame-rate of about one
Hz while other sensors may provide data at a frame-rate up to several
hundreds of Hz. Due to this factor also the different reasoning engines
may provide their results on such a wide range of frame-rates. Moreover,
extensive logical reasoning or the temporal integration of data in the
filtering and tracking methods may cause further delays of the diagnosis
with respects to the time the observations were made. Therefore,
appropriate methods are required in order to synchronize the local
diagnosis to avoid contradictions or inconsistencies. There are very good
approaches in sensor fusion which addresses the fusion of (uncertain)
information provided at different frame-rates and sampling times [18].

• Different Diagnosis Granularity As described in the previous sections
the different models and reasoning methods provides diagnosis on a wide
range of semantic granularity. On one hand very general abstract
diagnoses are provided. In general they are derived by logical inference
from an abstract logic-based model. On the other hand filtering and
tracking methods are able to provide information about a system in very
fine resolution such as estimations about the continuous state vector of a
system. The fusion of information on an abstract symbolic level is much
easier. In order to be able to fuse continuous valued information at that
level we have to perform symbol grounding for those values. Symbol
grounding can be done in the easiest case by a simple threshold. The
disadvantage of such methods is that one probably throws away useful
information obtained by quantitative models. Therefore, methods for a
direct fusion of quantitative and/or qualitative methods are needed.

• Spatial Distribution Another important issue is that different models
may provide diagnosis about different parts of the system. One model
may provide a diagnosis about the drive hardware of a robot while
another model may provide a diagnosis about the control system of the
robot. Due to the fact that often a fault in one component also causes a
depending fault in an interacting component sometimes false alarms are
raised. In order to improve the quality of the diagnosis we have to
combine the output of different models. Therefore, the development of
meta-models is necessary in order be able to do this information fusion.
There exists work about distributed diagnosis but they use in general the
same semantics in the output of the models. Therefore, new more general
meta-models have to be developed.

 Coming Quantitaive and Qualitative Models 213

• Performance Issues In general the presented diagnosis methods are
expensive in terms of computational power and memory. This is a
limiting factor if such intelligent methods should be deployed in small
embedded systems. Anyway, subsets of these methods have already been
deployed to embedded systems in cars for instance [5]. These
applications loose some level of flexibility of the methods and compile
their knowledge into simpler structures like decision trees. In the future
models with less demand on computational resource have to be
developed.

Despite the fact that qualitative and quantitative models for debugging

make use of different modeling techniques both are used for identifying the
root causes of a detected misbehavior. The root cause is either a state a
system has to be in order to explain the observed behavior or a set of
components that behave in an unexpected way in order to resolve the
contradiction between the observed and the deduced behavior. Both
representations have in common that they assign a mode, e.g. faulty or
stuck-at, to a component. Although, the granularity of diagnosis components
might be different in different models in practice it should be possible to
come up with a mapping that allows for comparing the diagnosis outcome.

For the following procedure for combining different models we assume
the existence of such a mapping. In particular we assume that we have 2
different models M1 and M2 where M1 is a more abstract representation of the
system’s behavior than model M2. For both models we assume that we have
diagnosis components COMP1 and COMP2 respectively, which might be
different. Furthermore, we assume the existence of a function Γ: COMP2↦
COMP1, which maps a component of the more precise model to the more
abstract one. Note that Γ needs not to be a bijective function and more than
one component of M2 is mapped to the same abstract component of M1.

The combination of such models would improve diagnosis time if the
diagnosis output of one model can be used to focus the diagnosis
computation using the other model. Formally, the diagnosis problem is a
tuple (SD,OBS,COMP) and we assume a procedure DIAGS, which returns
the set of minimal diagnoses for the given diagnosis problem. SD is the
system description which represents the behavior of the different
components and it connections. OBS is the set of actual observations of the
system. COMP is the set of the components of the system. Given these basic
definitions, we can solve the problem of combining diagnosis model using
the following algorithm where we assume two sets of observations OBS1
and OBS2 that can be used together with the two models in order to compute
diagnoses:

15

214 G. Steinbauer and F. Wotawa

1. Compute the set of diagnoses D = DIAGS(SD1,OBS1,COMP1) using the
more abstract model M1.

2. Compute the set of components that are used in at least one diagnosis, i.e.
COMP’={ C | C ∈ Δ, Δ ∈ D }

3. Compute the focus set for model M2 such as follows:
COMP’’ = UC ∈ COMP’ Γ –1(C).

4. Compute the set of diagnoses D’ = DIAGS(SD2,OBS2,COMP’’) and
return D’ as result.

The algorithm allows for a direct integration of two models. If COMP’’

is a subset of COMP2, then the algorithm allows for focusing on those
components that pass the first diagnosis step. Hence, diagnosis time can be
improved especially in cases where the second model would require a lot of
computational resources when checking all components. The algorithm can
be further improved when assuming that DIAGS only gives back the most
probable diagnosis candidates.

Note that this algorithm cannot be used if the underlying assumptions do
not hold. It is especially important that a mapping function Γ exists.
Moreover, there might be further improvements when not only considering
mappings between components but between fault models, which are usually
handled by introducing fault modes together with an assigned fault behavior.
In this case the component together with the fault modes has to be reduced
using the outcome of a more abstract model.

15.7 Active Observations

In general the observations of the systems are caused by the ordinary
operation of the system. The system is performing its task and provides
observations about itself. Usually, the diagnosis module has no control about
which actions the system is performing and therefore what observations are
available at that moment. Furthermore, it might happen that exactly these
observations do not contain the necessary information which is needed to do
the best possible diagnosis.

We assume the following situation. During the movement along a given
path some component in the robot drive fails. Usually, the robot continues it
started action until it takes another decision. The diagnosis modules only can
rely on the observation produced by that current action. In some case these
observations might be not sufficient in order to locate the failed component.
Therefore, in some situations it will be desirable that the diagnosis and
monitoring system is able initiate actions in order to gather more useful
information. In the above example such an action can be a special motion

 Coming Quantitaive and Qualitative Models 215

pattern or profile for the motors. Such additional observation can help to
reject not plausible diagnosis.

The application of such active observation request for additional planning
and reasoning capabilities because the diagnosis module has to derive which
additional information is useful in order to improve the diagnosis and which
action will provide the required information. Furthermore, the system has to
take care that these additional actions do not endanger the system or the
environment even in the case of an occurred fault. For this purpose
additional models and planning strategies have to be developed.

15.8 Conclusion

In this chapter we proposed the combination of quantitative and qualitative
models and reasoning methods in order to improve the diagnosis capabilities
for complex systems comprising hardware and software. Moreover, we
presented the properties of quantitative and qualitative diagnosis methods.
Based on a running example of an autonomous mobile robot we motivate
that such a combination is valuable and how it can be realized. Moreover,
we pointed out potential problems and research topics related to the
combined diagnosis. These problems mainly concern the useful fusion of
temporal, semantic and spatial different information. Furthermore, we
introduce the idea of active observations which are a way to actively gather
additional information for the improvement of the quality of diagnosis. We
believe that the proposed framework will influence the achievable quality of
supervision. Our future work will be focused in a first step on the fusion of
the different diagnosis information.

References

1. Friedrich G., Stumptner M., and Wotawa F., Model-based diagnosis of hardware
designs. Artificial Intelligence, 111(2):3–39 (1999).

2. Hofbaur M., Köb J., Steinbauer G., and Wotawa F., Improving robustness of mobile
robots using model-based reasoning. Journal of Intelligence and Robotic Systems,
48(1):37–54 (2007).

3. Steinbauer G. and Wotawa F., Detecting and locating faults in the control software of
autonomous mobile robots. In 19th International Joint Conference on Artificial
Intelligence (IJCAI-05), pp. 1742–1743 (2005).

4. Köb D. and Wotawa F., Introducing alias information into model-based debugging. In
Ramon Lopez de Mantaras and Lorenza Saitta, editors, Proceedings of the 16th
Eureopean Conference on Artificial Intelligence, ECAI’2004, pp. 833–837 (2004). IOS
Press.

15

216 G. Steinbauer and F. Wotawa

5. Struss P. and Price C., Model-based systems in the automotive industry. AI Magazine,
24(4):17–34 (2004).

6. Muscettola N., Nayak P., Pell B., and Williams B., Remote agent: To boldly go where no
AI system has gone before. Artificial Intelligence, 103(1–2):5–48 (1998).

7. Reiter R., A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–95
(1987).

8. Hamscher W., Console L., and de Kleer J., Readings in Model-Based Diagnosis. Morgan
Kaufmann, San Mate. (1992).

9. Kalman R., A new approach to linear filtering and prediction problems. ASME
Transactions, Journal of Basic Engineering, 82:35–50 (1960).

10. Anderson B. and Moore J., Optimal Filtering. Information and System Sciences Series.
Prentice Hall, Englewood Cliffs (1979).

11. Isermann R., Supervision, fault-detection and fault-diagnosis methods - an introduction.
Control Engineering Practice, 5(5):639–652 (1997).

12. Chen J. and Patton R., Robust Model-Based Fault Diagnosis for Dynamic Systems.
Kluwer, Dordrecht (1999).

13. Dearden R. and Clancy D., Particle filters for real-time fault detection in planetary
rovers. In Proceedings of the 13th International Workshop on Principles of Diagnosis,
pages 1 – 6 (2002).

14. Verma V., Gordon G., Simmons R., and Thrun S., Real-time fault diagnosis. IEEE
Robotics & Automation Magazine, 11(2):56 – 66 (2004).

15. Roos N., ten Teije A., Bos A., and Witteveen C., Multi-agent diagnosis with spatially
distributed knowledge. In Proceedings of the Belgium-Netherlands Artificial Intelligence
Conference (BNAIC), pp 275–282 (2002).

16. de Kleer J., Getting the probabilities right for measurement selection. In 17th
InternationalWorkshop on Principles of Diagnosis (DX-06), pp 141–146 (2006).

17. Hofbaur M., Hybrid Estimation of Complex Systems, volume 319 of Lecture Notes in
Control and Information Sciences. Springer Verlag, New York (2005).

18. Drolet L., Michaud F., and Cote J., Adaptable sensor fusion using multiple kalman
filters. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). (2000).

Part V

Intelligent Engineering

Chapter 16

Object Memory Management for Constrained
Devices with Heterogeneous Memories

Kevin Marquet and Gilles Grimaud

Abstract Small devices have a specific hardware configuration. In particular, they usu-

ally include several types of memories (typically internal and external RAM,
EEPROM, Flash), different in quantities and properties. For instance, their
access times can be very different. This is an issue for object-oriented
solutions such as Java virtual machines which have to perform automatic data
reclamation. In this paper, we firstly present results showing that the memory
manager (especially the garbage collector) must be adapted to the type of
memory it is in charge of. Then, we propose a flexible memory management
solution that addresses this issue by assigning a different memory manager to
each memory. Each manager can use the allocation and garbage collection
strategy adapted to the physical properties of the memory it is in charge of. In
order to handle interactions between memory managers during allocations and
garbage collections, we use special components in charge of synchronizing
managers. Thereby, our solution brings the benefits of automatic data
reclamation to devices with heterogeneous memory spaces.

Keywords Memory management, Garbage collection, Operating systems, Virtual
machines

16.1 Introduction

In order to obtain a compromise between their different physical
capabilities‚ reading and writing speeds, density (bits�mm � of silicium)
persistence and security of data‚ small devices include several types of
physical memories. Typically, several types of EEPROM and RAM can be
included in addition to the read-only memory. Thus, systems embedded on
such devices need to manage several memory spaces and to deal with their

219

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_16,
© Springer Science+Business Media B.V. 2009

CNRS/INRIA/Univ. Lille 1, France, Kevin.Marquet@lifl.fr

220 K. Marquet and G. Grimaud

physical properties. Moreover, memories are present in uncommon propor-
tions. A device of the range of a smart cards usually include few kilobytes of
RAM, dozens of kilobytes of EEPROM and/or Flash memory, and hundreds
of kilobytes of ROM. These characteristics imply the use of a memory man-
agement model able to manage several memories, to put data in those
memories efficiently, and flexible enough to be usable on various types of
devices. Actually, many embedded systems require applications
programmers to choose memory in which allocating data and to release
unused resources. Such solutions prevent the portability and the reuse of
applications because the memory configuration is not the same on different
devices, in capacity as well as in physical properties. Moreover, application
programmers must manage the memory themselves, and are therefore
required to have deep knowledge of the hardware functioning. The use of
object-oriented solutions is an effort to increase the portability of
applications for smart devices, in particular thanks to the use of garbage
collectors. In this context, we propose a memory management model in
which each memory space is handled by a particular memory manager. Our
solution provides several benefits:

• the use of automatic data reclamation algorithms provide a certain
safety; we intend to bring this safety to devices with several memory
spaces;

• associating one specific manager to a memory space allows to
manage differently each memory according to its properties;

• the programmer of applications must not necessarily define the
location of objects.

This chapter is organized as follows. Section 16.2 presents past research
works on both memory-management in embedded systems and solutions to
manage several memories. Section 16.3 details our solution to allow garbage
collection on devices with different memories. Section 16.4 gives
experimental results. At last, conclusions and perspectives on this work are
given in Section 16.5.

16.2 Multiple Memories Management

Some automatic data collection algorithms are particularly well-suited for
embedded use. This section firstly describes these types of garbage
collectors; this will ease the comprehension of the solution proposed in
Section 16.3. Then, remaining problems are presented.

16 Object Memory Management for Constrained Devices 221

16.2.1 Garbage Collectors for Embedded Systems

Previous works have shown the effectiveness of certain types of garbage
collectors. These garbage collectors have different functionning and proper-
ties. Although a large number of collectors exists, we consider and describe
only a few of them which are particularly well-suited for embedded use.

Since it does not move objects during collection, the mark and sweep col-
lector (M&S) [1] performs few memory writings. Thereby, it is a good
means to collect data in memories slow in writing, like EEPROM. This
collector only performs two phases: mark live objects, and collect unused
data

Semi-space copying collectors [2] are fast, typically operating as follows.
First, it traces live objects, move them to the unused semi-space. Second, it
scans memory and updates references.

The cldc Hotspot virtual machine uses a 2-generational copying collector
[5], which performs minor collections during which live objects are copied
from the nursery to the bottom part of the heap:

Mark: traces all live objects of the nursery and marks them as such.
Collect: copies all live objects of the nursery in the bottom of the heap.
Update: updates all references to match the new location of objects
previously located in the nursery.

Compacting collectors [3] have small memory overhead and low power
consumption [4]. They typically operate as follows: Mark: traverses all live
objects and mark them as such. Prepare: scans memory, computes the new
location of objects, which is stored into an extra word of the object. Modify:
scans the memory, replaces all references with the new addresses. Collect:
moves each live object to its new location. As for semi-space collectors, only
live objects are moved, thereby collecting others implicitly.

Several versions of this algorithm exist. It is possible to build a table, in
order to store only references of live objects and obtain good cache effects:
Mark: traverses all live objects and marks them as such. Prepare: scans
memory and stores the address of each live objects into a table of references
(addresses increasingly ordered). Version 1: each entry of the table contains
one word. Version 2: the address is stored in the first word of a two-word
entry. Modify: (Version 1) dereferences all references towards the table.
Collect: moves each live object to its new location. Version 1: this new
address erases the old location in the table. Version 2: this new address is
stored in the second word of the entry.

Update: update each reference in memory to point to the new location.
Version 1: this new location is the one pointed by the reference in the

table. Version 2: this reference is found in the second word of the entry.

222 K. Marquet and G. Grimaud

16.2.2 Problems with Several Memories

Many garbage collection techniques have been developed along the past
decades [6]. A recent work [4] presents garbage collectors operating well on
small devices. All these techniques focus on optimizing garbage collectors
but give no means to manage together all memories of a given device.

The different memories of a small device can be seen as different
regions. Managing memory with regions has been the focus of a number of
works. A number of these works requires regions to be explicitly named at
allocation and removal [7]. Others [8] use annotations. We are not concerned
by these solutions as we want memory to be reclaimed automatically. Other
work proposes a partitioning of the memory based on a static analysis of
data type [9]. These models suppose that the size of regions can be changed.
In our case, it is not possible since regions are physical memories.

Generational garbage collection techniques [10,11] store objects in regions
on the basis of the age of objects. This criterion is accurate for traditional
virtual machines but cannot be the only one in embedded systems. Indeed, if
the memory space used for old objects is not efficient (for instance the
amount of available EEPROM or Flash memory is greater than other
memories), an old object often modified will slow down the execution.

The Java Card [12] memory management scheme is to allocate all objects
in EEPROM. The programmer can use a special library to allocate in RAM.
Several problems arise with this solution. Firstly, it is not portable because it
only makes sense with one specific hardware architecture (the smart cards
one). This solution is not applicable to devices that use different types and/or
sizes of memories. Secondly, the use of libraries, which is mandatory in
most cases, is problematic: as libraries can be used in different manners,
objects allocated in those libraries will not be accurate for all applications.

Each type of physical memory has its own properties, in terms of
security, life time, size and cost (RAM is expensive and takes an important
place on the device). Most of all, reading and writing access times can be
very different. For instance, writing in EEPROM is thousands times slower
than reading it. Such differences require managing each memory in an
adapted way. In order to illustrate the impact of the type of memory, we
measured [13] the time spent in memory access of different applications
using different collectors. Results showed that the best collector for a given
application is not always the same, regarding to the access speed of the
underlying memory.

In order to address these issues, we propose a solution that makes it
possible to specialize the memories management regarding to the device and
the applications.

 Object Memory Management for Constrained Devices 223

16.3 Proposal

Our proposal is based on these two ideas:
• memories have different properties; thereby, let each one be man-

aged by a specific memory manager;
• the placement of data in memories is a transversal concern.

Our solution is to assign one type of memory manager (including a spe-

cific type of collector) to each memory, in order to manage efficiently their
properties. This is illustrated by Fig. 16.1: instead of designing a memory
management system dedicated to specific hardware architecture, we have
designed a framework allowing each memory space to be managed by a
memory manager.

Fig. 16.1 Comparison of traditional solutions with our approach

16.3.1 Overview

Basically, two actions can be performed on a memory space: allocations in
the memory space, and collection of the space. These tasks are performed by
the memory managers and can thereby be different for each memory.

However, some tasks cannot be performed by a specific manager. First,
the choice of placing objects in one memory or another. Secondly, the mark-
ing of objects (as this task is transverse), it cannot be performed by one
specific manager. At last, references can point from one memory to another.
As objects can move (compacting collectors for instance), updating
references must be considered.

That is why two special components are responsible for handling those
tasks. The Placer is responsible for choosing the location of data. The
Collector is responsible for collection phases. It performs marking phases,
and initiates the collection phases so that references. These components are
the only parts of the code managing memories visible from the rest of the

16

224 K. Marquet and G. Grimaud

system. More specifically, the Placer provides an allocator, and the Collector
provides a collection function. These two components use services provided
by memory managers, accessible through a dedicated API. We show in the
following that any automatic memory management system can be
implemented through this API. Figure 16.2 shows the general architecture of
this system. It is detailed in the following.

Fig. 16.2 General architecture.

16.3.2 A Distributed Marking Algorithm

The marking phase is a problem in the case of multi-heaps management.
Indeed, during this phase, writings can be performed in the different memory
spaces, and inter-partitions references must be followed. However, we want
each manager to be responsible for writings in its partition. Therefore, it is
necessary to use a marking algorithm that takes into account this constraint.
To this goal, we inspired from so-called distributed algorithms [14], initially
invented to collect data in multiprocessor environment. Different types of
distributed algorithms exist, based on Dijsktra [15] or Ali [16] works.
However, they all require additional memory space, which we do not want.
In addition, they generally require data heap organization to be either the
same in all heaps, or well known (for centralized solutions).

The standard, efficient and simple way to mark live objects is to use a
stack [14]. Roots references are pushed; then, while the stack is not empty, a
reference is unstacked and the pointed-to object is scanned. If they are not
marked, its children are marked and their references pushed on the stack. In
this manner, all live objects are marked at the end of the phase.

 Object Memory Management for Constrained Devices 225

On this basis, we designed a distributed algorithm able to mark objects in
different heaps. It uses services provided by memory managers so that writ-
ings are performed by them. This algorithm allows marking live objects in
different heaps; in addition, it allows each manager to mark objects in its
specific manner. Figure 16.3b shows the standard algorithm as well as the
distributed algorithm we invented. The principle is therefore similar but the
covering loop has changed: iterations are done on the managers while at
least one of them has marked a new object (whose children must be scanned
to eventually be marked). At each iteration, the current manager is notified
(call to mark_heap()) that it has to handle marked objects of its heap (but
whose childs have not been reached). When an object is reached, the
manager of the partition in which it is stored is asked to mark it (call to
mark_object()).

Figure 16.3b shows a typical implementation of mark_heap() and
mark_object() functions, with the use of a marking stack. In the case of a
semi-space copying collector, a simple implementation would be to mark
each object and move it to the unused semi-space.

16.3.3 Allocation Management

When an allocation must be performed (i.e. execution of a new‚ byte code),
the allocator of the Placer is called. This allocator is responsible for
determining in which region the new object should be allocated. Once the
selection of the region is made, the allocator of the memory manager in
charge of the selected memory space is called. This requires that each mem-
ory manager provides an allocator. Managing the placement of objects
directly at their creation allows to avoid the useless displacement of objects
and can avoid to fill up too quickly a memory present in little quantity.
Moreover, it allows allocating judiciously certain objects. For instance, an
execution stack should be allocated in a high speed memory as it is often
read and modified. The placement of data is detailed in Section 16.3.5.

16.3.4 Garbage Collection

From the typical types of collector presented in Section 16.2, it is possible to
retrieve common points for the functioning of garbage collectors. Firstly, all
these collectors require live objects to be marked. Then, they all perform a
collection phase. For compacting and copying collectors, this phase consists
in moving all live objects whereas, for the mark-sweep collector, it consists
in reclaiming unused memory. At last, collectors that move objects need to
update the references contained within objects. In order to perform this

16

226 K. Marquet and G. Grimaud

phase, the table-based version of the compacting collector needs to perform
a phase where all references are updated to point to an indirection table.

Fig. 16.3 Comparison of standard and distributed algorithms

16.3.4.1 Interactions Between Memory Managers

When a collection is performed, objects can move, leading to invalid refer-
ences in other memory spaces. As a consequence, references in all memory
spaces have to be updated. Two solutions can be used. Firstly, to implement
write or read barriers [17] using a card marking mechanism [18]. Secondly,
to scan spaces when needed in order to update the references they contain.
Both the solutions are applicable with our proposal. Since write barriers (and
a fortiori read barriers) are costly in time or in space, we choose the second
one.

We think that moving objects from one region to another is a capability
that must be provided, either to move objects in a more adapted region (see
Section 16.3.5), or to free a memory space. This capability is used by
generational garbage collectors. However, the location of objects during
garbage collection cannot be evaluated by the memory managers since they
have no knowledge concerning other spaces, other managers and their
properties. Our Placer is responsible for finding the right location of an
object. Given the role of different memory managers, Placer and Collector,
we have defined a way to make them cooperate. When a manager needs to

 Object Memory Management for Constrained Devices 227

collect data in its memory space, it notifies the Collector. The latter triggers
several phases successively which will allow to collect data and handle side
effects of the collection. From our observations concerning existing garbage
collectors (Section 16.2.1), the collection of a space (whose manager
denoted by M) consists in four phases:

Prepare: During this phase, M performs preliminary operations. For
example, compacting collectors build a references table if they need so.

Modify: In each memory space, references are modified if needed. For
instance, the compacting collector variant makes all references of all regions
to point to an indirection table during this step.

Collect: The collection of objects is made during this phase. For each
live object, the memory-manager task the Placer whether the object must
move.

Update: In each memory space, the references are updated if needed (if
the collector has moved objects).

Fig. 16.4 Components of the overall system and links between services

Each memory manager must provide the four functions that perform
these steps. These functions are part of the API that a manager must
implement in order to be part of the framework we have defined. When a
garbage collection of a region is needed, the Collector successively calls
these functions, in order to complete the collection. Steps 1 and 3 are only
performed by the manager that needs to collect its data, whereas steps 2 and
4 allow all managers to keep references up-to-date. These steps are initiated
by the Collector; this ensures a good synchronization between the managers.

16

228 K. Marquet and G. Grimaud

Figure 16.4 presents all components involved in our proposal and the links
between the different services. The services are provided in our
implementation through C function pointers.

Figure 16.5 illustrates the proposal. In this scenario, three memory
managers exist (mm1, mm2, mm3). mm1 is a semi-space collector that
performs a separated marking phase. After the marking phase, the Collector
notifies mm1 to collect. Then, it asks successively mm2, mm3, and mm1 to
update references.

Fig. 16.5 A scenario where mm1 performs a collection

16.3.5 Placing Objects

It is the role of the Placer to place objects at allocation. The placement
scheme can be defined according to the specifics of the memories as well as
those of the applications. A generational model can easily be set up as it is
enough to move, during a collection, all live objects from the nursery to the
main memory space. The Placer for Java Card is very simple: it allocates in
EEPROM or RAM. However, with the new generations of Java Card, more
types of memory will be addressable (several types of Flash memory), and in
larger amount. Our solution only requires changing the Placer to work with
this new design. This reasoning is valid with any other memory
configuration.

 Object Memory Management for Constrained Devices 229

Thus, another part of our work aims at replacing the C code of the Placer
with a language dedicated to the aspect placement of objects. We have
designed a Domain-Specific Language which can be used to write placement
policies. Such a policy uses some placement criteria (e.g. size, object type,
allocation site, etc.) to express the placement of objects. The policy is com-
piled to generate the part of the Placer in charge of the placement decision.

16.4 Experimental Results

In order to estimate the proposed solution, we measured the execution speed,
the sizes of code and data, and the flexibility of the architecture.

16.4.1 Efficiency

We performed measurements on the following benchmarks: dhrystone
(evaluate general performances of processors); check (test properties of the
virtual machine); raytracer (compute a 3D scene rendering); crypt (encrypt
and decrypt a file); moldyn (simulate interactions between molecules). In
order to evaluate the cost of our proposal, we now compare execution
times of the managers within and outside the proposed architecture. For each
type of collector, we measured the cost of the architecture, in percentage of
the execution time outside the model. In this execution of reference, no func-
tion pointers are used, and variables are accessed directly rather than through
C structures. Table 16.1 presents the cost of using our distributed marking
algorithm.

For each collector, the average cost as well as the maximum and
minimum costs is given. These measurements were obtained on an Intel
Pentium 4, 3 GHz, 2MB cache, with a Linux system. However, marking is
only a part of the problem, and Table 16.2 presents results for the total time
spent performing collections.

The same experiments were conducted on a system corresponding to
targeted platforms: processor ARM 9 200 MHz, 8 KB cache. Results are
given in Table 16.3 and corroborate previous experiments. This shows that
results illustrate algorithmic characteristics and not hardware specifics.

Experiments show that the impact of the proposal on performances is
about +5% for the total collection time. This number is not neglect able but
is low in reference with the time spent by a system collecting data. Indeed,
the time spent in data collection is below 15% for reasonable memory needs
and/ or collector choice [19,20]. In this case, a rise of 5% of the time spent in
data collection means an overall slowdown of less than 1%. By the way, the

16

230 K. Marquet and G. Grimaud

flexibility of our solution allows improving performances by adapting
memory management to applications, hardware, and software partitioning.

Table 16.1 Cost of the distributed marking algorithm

 Copying Compacting Compacting v1 Mark and sweep

Average +9.1% +7.7% +8.7% +8.8%

Max +10.1% +8% +13.3% +10.8%

Min +7% +7.4% +6.1% +7.8%

Table 16.2 Cost of the proposal on collection time

 Copying Compacting Compacting v1 Mark and sweep
Average +3.8% +5.4% +1.7% +5.6%

Max +4.9% +5.7% +3.1% +9.8%

Min +2.7% +4.6% +0.7% +3.5%

Table 16.3 Performance impact on collection time and marking time (ARM9)

 Copying Compacting Compacting v1 Mark and sweep
Marking +8.9%

(max 9.1%)
+9.3%
(max +9.8%)

+9.6%
(max +10.2%)

+8.1%
(+11.2%)

Collection +4.8%
(max 5%)

+3.3%
(max 4.1%)

+2.8%
(max 2.8%)

+3.9%
(max 4.1%)

16.4.2 Sizes of Code and Data

These measurements show that the proposed architecture can be embedded
in constrained devices: Marking (7.4 kB), Placer (0.2 kB), Collector (0.2 kB),
Other tools (2.3 kB), Copying collector (2.6 kB), Compacting collector
(2.8 kB), Mark and sweep collector (2.8 kB), Compacting collector (version 1)
(2.8 kB), Compacting collector (version 2) (3.5 kB). Between 2.5 and 3.5 kB
per manager must be added. The 10 kB of tools are mainly due to marking
management. Therefore, about 19 kB are required to embed three different
memory managers, including a great part dedicated to marking management
that has nothing to do with our proposal.

To these sizes, we add the space needed to store the structures describing
memory managers: 12 read-only pointers, plus 4 writable pointers, leading to
an overall 64 bytes if pointers are stored on four bytes.

 Object Memory Management for Constrained Devices 231

16.4.3 Flexibility of the Architecture

The six memory management systems (allocator + collector) detailed in
Section 16.2.1 has been implemented. They all work within the proposed
framework, simply respecting the defined APIs. In addition, Salagnac [21]
was able to insert its own memory manager in the framework. In fact,
besides the references counting collector, which is anyway a problem
(requires write barriers, does not detect cycles), we did not find any collector
that could not work within the model. This shows that our solution is
accurate and low restrictive.

16.5 Conclusion and Future Works

We have presented an innovative way to manage different memories on
object-oriented systems. This solution allows managing differently the
physical memories, in a way adapted to its properties. In this model, the
placement of objects is a transverse preoccupation, which allows managing
it more accurately by adapting it to the running application. We have briefly
presented an implementation of this model. In this implementation, the
memory manager of each memory space implements a set of functions
allowing them to be part of a framework of managers. The managers of this
framework are able to cooperate in order to allocate and collect data. Special
components are used to choose the placement and synchronize them during a
collection.

We intend to evaluate different placement schema, and see which ones
are most efficient. It would also be interesting to be able to change the
placement rules dynamically, for instance with the loading of new
applications.

References

1. J. L. McCarthy. Recursive functions of symbolic expressions and their computation by
machine. Commun. ACM, 3(4), 1960.

2. J. Cheney. A non recursive list compacting algorithm. Communications of the ACM,
13(11), 1970.

3. J. Cohen and A. Nicolau. Comparison of compacting algorithms for garbage collection.
ACM Trans. Program. Lang. Syst., 5(4), 1983.

4. D. F. Bacon, P. Cheng, and D. Grove. Garbage collection for embedded systems. In
EMSOFT Proceedings of the fourth ACM international conference on Embedded
software, 2004.

16

232 K. Marquet and G. Grimaud

 P. R. Wilson. Uniprocessor garbage collection techniques. In IWMM ‚Äô92 : Pro-
ceedings of the International Workshop on Memory Management, 1992.

 D. Gay and A. Aiken. Memory management with explicit regions. In PLDI ‚Äô98 :
Proceedings of the ACM SIGPLAN 1998 conference on Programming language design
and implementation. 1998.

 D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based
memory management in cyclone. In PLDI ‚Äô02 : Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation. 2002.

 T. Harris. Early storage reclamation in a tracing garbage collector. SIGPLAN Not.,
34(4), 1999.

 H. Lieberman and C. E. Hewitt. A real-time garbage collector based on the lifetimes of
objects. Commun. ACM, 26(6), 1983.

11. D. Ungar. Generation scavenging: A non-disruptive high performance storage recla-
mation algorithm. In Proceedings of the first ACM SIGSOFT/SIGPLAN software
engineering symposium on Practical software development environments. 1984.

12. Sun Microsystems Inc. Java Card API 2.1 Specification.
13. K. Marquet and G. Grimaud. Garbage collection for tiny devices: A complexity study. In

Proc. International Conference on Sensor Technologies and Applications
(SENSORCOMM 2007), Valencia, Spain, 2007.

14. R. E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Man-
agement. Wiley, Chichester, July 1996.

15. E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. On-the-
fly garbage collection: An exercise in cooperation. Commun. ACM, 21(11), 1978.

16. K. A. Mohammed-Ali. Object-Oriented Storage Management and Garbage Collection in
Distributed Processing Systems. PhD thesis, Royal Institute of Technology, Dept. of
Computer Systems, Stockholm, Sweden, 1984.

17. B. Zorn. Barrier methods for garbage collection. Technical Report CU-CS-494-90,
University of Colorado, Boulder, 1990.

18. A. L. Hosking and R. L. Hudson. Remembered sets can also play cards. In ACM
OOPSLA‚Äô93 Workshop on Memory Management and Garbage Collection, Wash-
ington, DC, 1993.

19. D. Tarditi. Compact garbage collection tables. In Tony Hosking, editor, ISMM 2000
Proceedings of the Second International Symposium on Memory Management, volume
36(1) of ACM SIGPLAN Notices, Minneapolis, MN, October 2000.

 K. Marquet and G. Grimaud. A DSL approach for object memory management of small
devices. PPPJ 2007: Proc. International Conference on Principles and Practices of
Programming in Java, Lisboa, Portugal, 2007.

21. G. Salagnac, C. Rippert, and S. Yovine. Semi-automatic region-based memory man-
agement for real-time java embedded systems. In RTCSA ‚Äô07 : Proceedings of the
13th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, Washington, DC, USA, 2007.

6.

7.

8.

9.

10.

20.

Sun Microsystems Inc. The cldc hotspot implementation virtual machine. 2008. 5.

Chapter 17

Efficient Computation of Min and Max Sensor
Values in Multihop Networks

Nuno Pereira1, Björn Andersson1, Eduardo Tovar1 and Paulo Carvalho2
1IPP-HURRAY Research Group, CISTER/ISEP, Polytechnic Institute of Porto, Porto, Portugal
2

Abstract Consider a wireless sensor network (WSN) where a broadcast from a sensor
node does not reach all sensor nodes in the network; such networks are often
called multihop networks. Sensor nodes take individual sensor readings,
however, in many cases, it is relevant to compute aggregated quantities of
these readings. In fact, the minimum and maximum of all sensor readings at an
instant are often interesting because they indicate abnormal behavior, for
example if the maximum temperature is very high then it may be that a fire has
broken out. In this context, we propose an algorithm for computing the min or
max of sensor readings in a multihop network. This algorithm has the
particularly interesting property of having a time complexity that does not
depend on the number of sensor nodes; only the network diameter and the
range of the value domain of sensor readings matter.

Keywords Transducers, Data processing, Large-scale sensor networks, MAC protocol

17.1 Introduction

Wireless sensor networks (WSN) often take many sensor readings of the
same type (for example, temperature readings), and instead of knowing each
individual reading it is more significant to know aggregated quantities of
these sensor readings. For example, each sensor node senses the temperature
at its location, and the goal is to know the maximum temperature among all
nodes at a given moment.

Several solutions for data aggregation have been proposed for multihop
networks. Typically, nodes self-organize into a convergecast tree with a base
station at the root [1,2]. Leaf nodes broadcast their data. All other nodes wait

233

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_17,
© Springer Science+Business Media B.V. 2009

Department of Informatics, University of Minho, Braga, Portugal, bandersson@dei.isep.ipp.pt

234 N. Pereira et al.

until they have received a broadcast from all of their children; a node
aggregates the data from its children and makes a single broadcast.
Techniques have been proposed for computing useful aggregated quantities
such as minimum and maximum values, the number of nodes and the
median among a set of sensor nodes. They offer good performance because
they exploit the opportunities for parallel transmission, and the processing
enroute makes the transmitted packet typically smaller than the sum of the
size of the incoming packets.

Despite these optimizations, the performance is still inhibited by the fact
that in a single broadcast domain, at most one packet can be sent and hence
the time-complexity still depends on the number of sensor nodes. This is
particularly problematic for dense networks, where even a small broadcast
domain (covering an area <10 m2) may contain several tens to a few hundred
sensor nodes. In order to improve performance to another level, it is
necessary to design distributed algorithms that circumvent this limitation.

In this paper, we propose an algorithm for computing the min or max of
sensor readings in a multihop network. This algorithm has the particularly
interesting property of having a time complexity that does not depend on the
number of sensor nodes; only the network diameter and the range of the
value domain of sensor readings matter.

We consider this result to be significant because: (i) a significant number
of sensor networks are designed for large scale, dense networks and it is
exactly for such scenarios that our algorithms excel and (ii) the techniques
that we use depend on the availability of a prioritized MAC protocol that
supports a very large range of priority levels and is collision-free assuming
that priorities are unique, and such a protocol has recently been proposed,
implemented and tested on a sensor network platform [3].

The remainder of this paper is structured as follows. Section 17.2 starts
by providing an introduction on wireless bit dominance and an application
background introducing the main idea of how a prioritized MAC protocol
can be used, focusing on a single broadcast domain. The final subsection of
Section 17.2 discusses some related work. Section 17.3 presents the new
algorithm which offers a time-complexity that is independent of the number
of sensor nodes. Finally, Section 17.4 draws the conclusions.

17 Efficient Computation of Min and Max Sensor 235

17.2 Preliminaries and Motivation

17.2.1 The Wireless Bit Dominance Approach

The basic premise for this work is the use of a prioritized MAC protocol for
wireless medium. This implies that the MAC protocol assures that of all
nodes contending for the medium at a given moment, the ones with the
highest priority gain access to it. As a result of the contention for the
medium, all participating nodes will have knowledge of the winner’s
priority. This is inspired by Dominance/Binary-Countdown protocols [4],
implemented for wired networks in the widely used CAN bus [5].

In our prioritized MAC protocol for wireless medium, lower values mean
higher priority, which is also similar to Dominance/Binary-Countdown
protocols. However, such protocols assume that priorities are unique. We do
not make that assumption.

The prioritized MAC protocol (inspired by Dominance/Binary-
Countdown protocols) proposed [3] exhibits this behavior for wireless
channels. In this protocol, the nodes start by agreeing on an instant when the
contention resolution phase, named tournament, starts. Then nodes transmit
the priority bits starting with the most significant bit. A bit is assigned a time
interval. A node contends with a dominant bit (“0”), then a carrier wave is
transmitted in this time interval; if the node contends with a recessive bit
(“1”), it does not transmit but listens. At the beginning of the tournament, all
nodes have the potential to win, but if a node contends with a recessive bit
and perceives a dominant bit then it withdraws from the tournament and
cannot win. If a node has lost the tournament then it continues to listen in
order to know the priority of the winner. When a node finishes sending all
priority bits without hearing a dominant bit when it transmitted a recessive
bit, then it has won the tournament and clearly knows the priority of the
winner. Hence, lower numbers represent higher priorities. The work
developed [3] includes the precise definition of the protocol timing
parameters and accounts for real-world non-idealities such as clock
inaccuracies, time of flight, time for detection of carrier pulses or processing
delays, and also presents an implementation of the protocol in real-world
platforms. Although the proof-off-concept implementation of this prioritized
MAC protocol for wireless networks introduces a significant amount of
overhead, this overhead is, to a large extent, due to the transition time
between transmission and reception, which is essentially a technological
parameter, as witnessed by the fact that the Hiperlan standard [6] required a
switching time of 2 μs.

p

p
w

w

m

n

236

17.2.2 M

The focus of
described in t
protocol enab
in WSN.

The probl
domain can
sensor readin
compute the
domain with
case of WSN
premise, the
waste.

Let us con
where a node
among its nei
medium befo
a request to
from them. A
orderly acce
fashion, and
Then N1 can
Clearly, with
neighbor nod

F

otivating S

f this paper w
the previous
bles efficient

lem of comp
be solved w

ng. Hence all
aggregated q
m nodes, at

N designed fo
naïve approa

nsider the sim
e (node N1) n
ighbors. Let u

ore this node.
all its neighb

As a simplific
ss the mediu
that the initi
compute a w

h this approac
des (m).

Fig. 17.1 Compu

Scenario

will be on exp
subsection. W
distributed c

puting aggreg
with a naïve a

nodes know
quantity. This
t least m broa
for large scal
ach is ineffici

mple applicat
needs to kno
us assume tha
A naïve app

bors and then
cation, assum
um in a tim
iator node kn
aiting timeou
ch, the execu

uting min and ma

ploiting a prio
We show that
computations

gated quantiti
algorithm: ev
all sensor rea
 has the draw
adcasts are r
e, dense netw
ent, causing

tion scenario
ow the minim
at no other no
roach would
n waits for th

me that nodes
me division m

nows the num
ut for replies b
ution time de

ax in a single bro

N. P

oritized MAC
the availabili
of aggregate

ies in a singl
very node br
adings and th

wback that in
equired. We
works [7,8].
a large delay

depicted in F
mum temperat
ode attempts t
imply that N
he correspon
have set up

multiple acces
mber of neig
based on this

epends on the

oadcast domain

Pereira et al.

C protocol as
ity of such a
ed quantities

le broadcast
roadcasts its
hen they can

a broadcast
address the
Under such

y and energy

Fig. 17.1(a),
ture reading
to access the

N1 broadcasts
nding replies
a scheme to
ss (TDMA)

ghbor nodes.
knowledge.

e number of

237

Consider now that a prioritized MAC protocol such as the one described
in the beginning of this section is available. This alternative would allow an
approach as depicted in Fig. 17.1(b). Assume that the range of the analog to
digital converters (ADC) on the sensor nodes is known, and that the MAC
protocol can, at least, represent as many priority levels. Now, to compute the
minimum temperature among its neighbors, node N1 needs to perform a
broadcast request that will trigger all its neighbors to contend for the
medium using the prioritized MAC protocol. If neighbors access the medium
using the value of their temperature reading as the priority, the priority
winning the contention for the medium will be the minimum temperature
reading. (The different lengths of the gray bars inside the boxes depicting the
contention in Fig. 17.1(b) represent the amount of time that the node actively
participated in the medium contention). With this scheme, more than one
node can win the contention for the medium. But considering that as a result
of the contention, nodes will know the priority of the winner, no more
information needs to be transmitted by the winning node.

In this scenario, the time to compute the minimum only depends on the
time to perform the contention for the medium, not on m.

A similar approach can be used to compute the maximum temperature
reading. Instead of directly coding the priority with the temperature reading,
nodes will use the bitwise negation (change every bit of the temperature
reading to its opposite value) of the temperature reading as the priority.
Upon completion of the medium access contention, given the winning
priority, nodes perform bitwise negation to know the maximum temperature.

17.2.3 Previous Work

A prioritized MAC protocol is useful to schedule real-time traffic [3] and it
can support data dissemination when topology is unknown [9]. In this paper
we will discuss how to efficiently compute aggregated quantities using a
prioritized MAC protocol. Distributed calculations have been performed in
previous research. It has been observed [10,11] that nodes often detect an
event and then need to spread the knowledge of this event to their neighbors
[10]. This is called one-to-k communication [10] because only k neighbors
need to receive the message. After that, the neighbor nodes perform local
computations and report back to the node that made the request for 1-to-k
communication. This reporting back is called k-to-1 communication.
Algorithms for both 1-to-k and k-to-1 communication are shown to be faster
than a naïve algorithm but, unfortunately, the time-complexity increases as k
increases. On a single broadcast domain, our algorithms compute a function
f and take parameters from different nodes, making the result available to all

 Efficient Computation of Min and Max Sensor 17

238 N. Pereira et al.

nodes. In this respect, it is similar to the average calculations in [12].
However, our algorithms are different from others [10–12] as our algorithms
have a time-complexity independent of the number of nodes.

One way to use these algorithms is to encapsulate them in a query
processor for database queries. Query processors for sensor networks have
been studied in previous work [2,13] but they are different in that they do
not compute aggregated quantities as efficiently as our approach. They
assume one single sink node and that the other nodes should report an
aggregate quantity to this sink node. The sink node floods its interest in the
data it wants into the network and this also causes nodes to discover the
topology. When a node has new data, it broadcasts this data; other nodes
hear it, then it is routed and combined so that the sink node receives the
aggregated. These works exploit the broadcast characteristics of the wireless
medium but they do not make any assumption on the MAC protocol (and
hence they do not take advantage of the MAC protocol). One important
aspect of these protocols is to create a spanning tree. It is known that
computing an optimal spanning tree for the case when only a subset of nodes
can generate data is equivalent to finding a Steiner-tree, a problem known to
be NP-hard (the decision problem is NP-complete, see page 208 in [14]). For
this reason, approximation algorithms have been proposed [15,16].
However, in the average case, very simple randomized algorithms perform
well [17]. Since a node will forward its data to the sink using a path which is
not necessarily the shortest path to the sink, these protocols cause an extra
delay. Hence, there is a trade-off between delay and energy-efficiency. To
make this trade-off, a framework based on feedback was developed for
computing aggregated quantities [18]. Techniques to aggregate data in the
network such that the user at the base station can detect whether one node
gives faked data has been addressed as well [19].

Common to these previous works is that the time-complexity increases
with the number of sensor nodes. It is clearly desired to create an algorithm
which can compute certain quantities, such as MIN and MAX. We have
already seen an idea (in Section 17.2.2) how such computations can be
performed. But it is desired to do so also in networks with multiple broadcast
domains. We will do so in the next section.

17.3 The New Algorithm

It should be clear that the algorithms for computing min and max in a single
broadcast domain (presented in Section 17.2) do not work in a multihop
network. In this section, we will extend them.

239

We assume that nodes are statically placed in a physical location, and
that the communication range (Rco) is the maximum range at which two
nodes Ni and Nj can communicate reliably and the interference range (Rit) is
the maximum range between nodes Nj and Nk such that simultaneous
transmissions to Nj will collide with Nk. We assume that Rit ≤ 2Rco. We also
assume that time is slotted such that all nodes know the time when a timeslot
begins and they also know the identifier of the timeslot. One way to
implement that is to use a sensor node platform that is equipped with an
Amplitude Modulation (AM) receiver that detects signals from an atomic
clock. Such AM receivers are used in the FireFly sensor platform [20] and it
receives time-sync signals with a continental wide coverage. Two of them
are located in Europe; one of them [21] is located in USA. It is assumed that
the duration of the timeslot is equal to the time it takes to run a tournament
in the MAC protocol. In order to simplify the discussion, we focus on the
computation of min of sensor readings; the max of sensor readings can be
designed analogously.

It is also assumed that all sensor nodes know when the computation
should start, and do it periodically (for example, let all nodes start this
computation at the beginning of a timeslot such that the identifier of the
timeslot is divisible by 100). This is sensible for applications that
continuously detect fire. But in a multi-tiered architecture, where some
nodes have a longer communication range, it is preferable to allow more
high-powered sensor nodes to initiate a computation; this assumes that those
high powered sensor nodes have a communication range that covers the
entire network.

The algorithm is composed of two main steps. At setup time, a topology
discovery algorithm is executed to partition the network such that all nodes
in each partition are in the same broadcast domain. Then, during runtime,
nodes find the minimum sensor reading in all partitions and communicate
these values to the leader.

17.3.1 Setup

The setup procedure must partition the network such that (i) each partition
forms a single broadcast domain, (ii) a partition leader for each partition is
selected, (iii) the partition leaders form a connected distributed set and (iv)
to each partition is given a timeslot ensuring that no interfering partitions are
active at the same time.

We start this procedure by selecting the partition leaders. To do this we
select a Minimum Virtual Dominating Set (MVDS) as introduced in [22]. A
Dominating Set (DS) is a subset of nodes where each node (of the entire

 Efficient Computation of Min and Max Sensor 17

240 N. Pereira et al.

graph) is either in the dominating set or is a neighbor to a node in the
dominating set. If the set has the minimum cardinality, then it is said to be a
Minimum Set. To guarantee that all nodes in a partition are in the same
broadcast domain, we use a virtual range, and thus we construct a MVDS
that is the minimum set of nodes required to perform the data aggregation,
observing the restrictions (i) to (iii) above.

Fig. 17.2 Illustration of the MVDS construction algorithm

The details of the algorithm to construct the MVDS can be found in [22].
It is a distributed algorithm with a propagation phase that forms the
partitions and colors the nodes according to their functionality (black if the
node is a partition leader or red if it is a slave member of a partition), and a
response phase, where the topology information is delivered to the leader
node. In the beginning of the algorithm, all nodes are white. The node
starting the algorithm (the leader) colors itself black and broadcasts a
message with its color. Nodes within the virtual range of the black node
become red and nodes that receive the broadcast but are outside the virtual
range become blue 1. After a time interval that is inversely proportional to
the distance from the black node, both red and blue nodes forward the
message, if they have not done so. Upon being colored, all blue nodes start a
timer to become black. This algorithm approximates the solution for a
MVDS(r) composed of the nodes colored black, where r is the virtual range
used. It is important to note that, in this work, we select r as a function of the

1 We assume that distances can be approximated; this can be done, for example, using the
signal strength in the received packets.

b) Virtual Ranges of Partition Leadersa) Network Example and Partitions Formed

241

communication range such that all nodes in each partition are in the same
broadcast domain. Based on our assumptions about the communication
range, we can define r = Rco/2.

A possible selection made by the algorithm is illustrated in Fig. 17.2.
Figure 17.2(a) presents the positions and connectivity of the network. The
different partitions formed are also depicted in Fig. 17.2(a) by representing
the nodes in the same partition similarly. Figure 17.2(b) depicts the partition
leaders selected by the algorithm and their respective virtual ranges.

After running the propagation phase of the MVDS construction
algorithm, the nodes selected as partition leaders report back to the leader
the information about the topology of the network. This topology
information is used by the leader to assign a timeslot to each partition such
that the timeslot is unique from any 1 or 2-hop neighbors.

Algorithm 1 Computing MIN

1. Each sensor nodes Ni takes a sensor reading. Let vi denote this sensor
reading.

2. Each node Ni in PARTj waits until the time slot SLOT(PARTj) and then it
sends an empty packet with the priority given by vi. After the tournament,
the partition leader knows the minimum vi. Let winnerprioi denote this value.

3. Communicate the results winnerprioi from partition leaders to the leader.
4. The leader takes the min of all winnerprioi that it receives. This minimum is

the minimum of all sensor readings.

Fig. 17.3 Partitioning and Partition Leaders for an Example Network

17.3.2 Runtime

At runtime, nodes have to find the minimum value within each partition, and
then the partition leaders deliver these minimum values to the leader.

0

0

15
15

0

15

15

18

18

15

15

150

18

39

15

39

0

18

29

15
21

1515

29

51

29

29

39
29

39 29

33

33

15

29

29

33

15

39

39

29

29

43

0

15
39

39

48

6029

51

15

67

39

51

39

91

15 59

60

0

67

74

67

43

51

67

15

39

59

71

29

51

74

97

97

97

29

39

67

97

67

97

29

93

15

67

29

74

29

91

97

93

29 60

91

9797

60

 Efficient Computation of Min and Max Sensor 17

242 N. Pereira et al.

Algorithm 1 provides the sequence of steps the nodes take during
runtime.

While the minimum values are routed to the leader, partition leaders can
perform simple processing and avoid forwarding min or max values that are
higher or lower than values previously transmitted.

Fig. 17.4 Timeslots assigned to
partitions

Fig. 17.6 Each sensor node and the
original sensor reading

Fig. 17.5 Result After Timeslot 1

Fig. 17.7 Result after timeslot 11

1

1

2
2

1

2

2

3

3

2

2

21

3

7

2

7

1

3

5

2
4

22

5

9

5

5

7
5

7 5

6

6

2

5

5

6

2

7

7

5

5

1

1

2
7

7

8

105

9

2

3

7

9

7

1

2 7

10

1

3

9

3

1

9

3

2

7

7

2

5

9

9

11

11

11

5

7

3

11

3

11

5

1

2

3

5

9

5

1

11

1

5 10

1

1111

10

13

13

15
17

14

17

13

17

11

14

14

1011

9

18

5

19

9

10

12

16
17

1212

13

10

18

17

6
10

6 14

5

10

17

19

16

7

18

18

19

12

16

17

11

12
16

15

6

1514

13

7

13

19

16

12

6

11 12

8

7

16

16

11

8

13

7

5

9

14

7

14

8

14

10

19

18

15

11

10

14

11

18

15

6

5

19

15

14

15

7

8

10

6 16

9

1410

9

7

7

15
17

7

17

13

17

11

14

14

107

9

18

5

19

7

10

12

16
17

1212

13

10

18

17

6
10

6 14

5

10

17

19

16

7

18

18

19

12

16

8

7

12
16

15

6

1514

13

7

13

19

16

12

6

11 12

8

7

16

16

11

8

13

7

5

9

14

7

14

8

14

10

19

18

15

11

10

14

11

18

15

6

5

19

15

14

15

6

8

6

6 16

6

1410

9

7

7

5
5

7

5

5

9

9

5

5

57

9

6

5

6

7

9

6

5
17

55

6

8

6

6

6
6

6 6

5

5

5

6

6

5

5

6

6

6

6

8

7

5
6

6

6

86

8

5

7

6

8

6

6

5 12

8

7

7

14

7

8

8

7

5

6

12

7

6

8

14

8

8

8

6

6

7

8

7

8

6

6

5

7

6

14

6

6

8

6

6 8

6

88

8

17.3.3 Running an Example

We will illustrate the algorithm with a simple example. Figure 17.3 shows a
sensor network consisting of 100 nodes.

 Let us consider the algorithm that is run when the sensor network is
deployed (as described in Section 17.3.1). The algorithm partitions the
network and selects the corresponding partition leaders. Figure 17.3 depicts
the partition leaders with a solid grey circle, the numbers in each node are
the partition-ids to which the node belongs (partition-ids are assigned
according to the partition leader address).

Then timeslots are assigned to each partition such that if two sensor
nodes, in different partitions but in the same timeslot, broadcast
simultaneously, then there is no collision. Figure 17.4 shows the timeslot
assigned to each node. As illustrated, there are 11 different timeslots.

Let us consider the algorithm that is executed at runtime. Figure 17.5
shows the temperature readings in all nodes. Nodes compete for the channel
using their temperature readings as the priority and nodes do this in their
assigned timeslot. After this competition, all nodes know the minimum of
temperature in the partition. Figure 17.6 shows the result after the first
timeslot. Observe that the nodes depicted in solid grey circles have all the
same value within the corresponding partitions. This is because these nodes
were assigned timeslot 1 and the values depicted are the minimum values in
each partition, spread to all sensor nodes in the same partition. After 11
timeslots, all nodes have broadcasted their temperature reading. Figure 17.7
shows the result after the 11:th timeslot. Now, every leader of a partition
knows the minimum temperature in the partition. Finally, nodes perform
convergecast to the leader of the entire network. Observe that, due to the
setup phase, nodes are organized in partitions where member nodes know
their partition leaders and partition leaders known the other parent partition
leaders who can forward message towards the leader node. Thus performing
convergecast is trivial. After the convergecast, the leader knows that the
minimum temperature in the entire network is 5.

To further illustrate why the algorithm is fast, a randomly generated
network with 1000 nodes is depicted in Figure 17.8. In this figure, the 77
partition leaders are depicted with solid circles, slightly bigger than the other
nodes. In this network 17 unique timeslots are needed. By this example, we
can observe that our scheme scales well.

243 Efficient Computation of Min and Max Sensor 17

244 N. Pereira et al.

So far we have assumed that all transceivers can only transmit in a pre-
specified channel. But many wireless standards, such as 802.11, allow a
transceiver to transmit on any channel. This feature can be used
advantageously by assigning each partition its own channel (instead of
assigning a timeslot to a partition) and this reduces the time required to
perform step 2 in Algorithm 1.

Fig. 17.8 Large-scale network example

17.4 Conclusions

We have shown how to use and take advantage of a prioritized MAC
protocol to compute aggregated quantities efficiently. The algorithms
designed to exploit such MAC protocol have a time-complexity that is
independent of the number of sensor nodes. This is clearly important for
WSN applications that operate under real-time constraints. As the lower time
taken to perform computations allows nodes to be awake for shorter periods
(longer sleeping times), and thus energy consumption is also reduced,
providing nodes a longer life-time.

For future research, some questions remain open: (i) Can other methods
for partitioning the network make this technique perform better? (ii) Can a
similar technique be used to compute more complex aggregated quantities
(such as COUNT, MEDIAN and interpolation)? (iii) Is the technique
sufficiently reliable for large-scale systems?

245

Acknowledgement This work was partially funded by CONET, the
Cooperating Objects Network of Excellence, funded by the European
Commission under FP7 with contract number FP7-2007-2-224053, the
ARTIST2 Network of Excellence on Embedded Systems Design and by the
Portuguese Science and Technology Foundation (Fundação para Ciência e
Tecnologia - FCT).

References

1. J. Gehrke and S. Madden, “Query Processing for Sensor Networks,” IEEE Pervasive
Computing, Vol. 3, pp. 46–55, January–March 2004.

2. S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a Tiny AGgregation
service for ad-hoc sensor networks,” in 5th symposium on Operating systems design and
implementation (OSDI '02), 2002, pp. 131–146

3. N. Pereira, B. Andersson, and E. Tovar, “WiDom: A Dominance Protocol for Wireless
Medium Access,” IEEE Transactions on Industrial Informatics, Vol. 3, May 2007.

4. A. K. Mok and S. Ward, “Distributed Broadcast Channel Access,” Computer Networks,
Vol. 3, pp. 327–335, 1979.

5. Bosch, “CAN Specification, ver. 2.0, Robert Bosch GmbH, Stuttgart,” 1991.
6. ETSI, “ TS 101 475 V1.3.1:,” Broadband Radio Access Networks (BRAN);HIPERLAN

Type 2; Physical (PHY) layer.
7. A. Arora, “ExScal: Elements of an Extreme Scale Wireless Sensor Network,” in

Proceedings of the 11th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA'05), Washington, DC, USA, 2005, pp.
102–108.

8. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient
Communication Protocol for Wireless Microsensor Networks,” in Proceedings of the
33rd Hawaii International Conference on System Sciences (HICSS'00), Maui, U.S.A.,
2000, pp. 3005–3014.

9. B. Andersson, N. Pereira, and E. Tovar, “Disseminating Data Using Broadcast when
Topology is Unknown,” in 26th IEEE Real-Time Systems Symposium (RTSS'05),
Work-in-Progress Session, 2005, pp. 61–64.

10. R. Zheng and L. Sha, “MAC Layer Support for Group Communication in Wireless
Sensor Networks,” Department of Computer Science, University of Houston UH-CS-05-
14, July 21 2005.

11. K. Jamieson, H. Balakrishnan, and Y. C. Tay, “Sift: a MAC Protocol for Event-Driven
Wireless Sensor Networks,” in Third European Workshop on Wireless Sensor Networks
(EWSN), Zurich, Switzerland, 2006.

12. D. S. Scherber and H. C. Papadopoulos, “Distributed computation of averages over ad
hoc networks,” IEEE Journal on Selected Areas in Communications, Vol. 23, pp.
776–787, April 2005.

13. Y. Yao and J. Gehrke, “Query processing in sensor networks,” in Proceedings of the 1st
Biennial Conference on Innovative Data Systems Research (CIDR'03), 2003.

14. W. Jianping, M. McDonald, M. Brackstone, L. Yangying, and G. Jingjun, “Vehicle to
vehicle communication based convoy driving and potential applications of GPS,” in

 Efficient Computation of Min and Max Sensor 17

246 N. Pereira et al.

Proceedings of the 2nd International Workshop on Autonomous Decentralized Systems,
2002, pp. 212–217.

15. B. Krishnamachari, D. Estrin, and S. B. Wicker, “The Impact of Data Aggregation in
Wireless Sensor Networks,” in Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS'02), 2002, pp. 575–578.

16. C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, in Proceedings of the
22nd International Conference on Distributed Computing Systems (ICDCS'02),
Washington, DC, USA, 2002, p. 457.

17. E. M., G. A., G. R., and M. R., “Scale-free Aggregation in Sensor Networks,”
Theoretical Computer Science, Vol. 344, pp. 15–29, 2005.

18. T. Abdelzaher, T. He, and J. A. Stankovic, “Feedback Control of Data Aggregation in
Sensor Networks,” in Proceedings of the 43rd IEEE Conference on Decision and Control
(CDC'04), 2004, Vol.2, pp. 1490–1495.

19. B. Przydatek, D. Song, and A. Perrig, “{SIA}: Secure information aggregation in sensor
networks,” in Proceedings of the 1st ACM International Conference on Embedded
Networked Sensor Systems (SenSys'03), 2003, pp. 255–265.

20. R. Mangharam, A. Rowe, and R. Rajkumar, “FireFly: A Cross-Layer Platform for
Wireless Sensor Networks,” Real Time Systems Journal, Special Issue on Real-Time
Wireless Sensor Networks, Vol. 37, pp. 183–231, 2007.

21. NIST Radio Station WWVB,” http://tf.nist.gov/stations/wwvb.htm.
22. B. Deb, S. Bhatnagar, and B. Nath, “Multi-resolution state retrieval in sensor networks,”

in Sensor Network Protocols and Applications, 2003. Proceedings of the First IEEE.
2003 IEEE International Workshop on, 2003, pp. 19–29.

Chapter 18

A Low-Cost FPGA-Based Embedded Fingerprint
Verification and Matching System

Maitane Barrenechea, Jon Altuna, Mikel Mendicute and Javier Del Ser
University of Mondragon, Loramendi 4, 20500 Arrasate-Mondragon, Spain
mbarrenetxea@eps.mondragon.edu, jaltuna@eps.mondragon.edu,

Abstract The development of a fingerprint verification system on a low-cost embedded
platform still remains an open issue in nowadays biometrics. In order to shed
light on this field, the contribution shown in this manuscript describes a low-
cost fingerprint minutiae extraction and matching system based on a Spartan3
field-programmable gate array (FPGA) with an embedded Leon2 open core
processor. The proposed system architecture incorporates a floating point unit
(FPU) and a discrete Fourier transform (DFT) coprocessor which accelerates
the minutiae extraction process. The verification algorithm is based on the
NFIS (NIST Fingerprint Image Software) version 2 open source software
developed by the National Institute of Standards and Technology (NIST). A
software enhancement algorithm has also been included to further accelerate
the minutiae extraction process. The results on execution time reduction and
FPGA occupation for different system configurations show that the proposed
architecture improves substantially the performance of the baseline system

Keywords Fingerprint, Biometric, FPGA, Embedded processor, Leon2.

18.1 Introduction

In nowadays society identity verification is becoming a crucial issue in
several business sectors such as access or border control. Due to this fact, a
new field known as biometrics has emerged, which uses some unique
physiological or behavioral characteristics, not shared by any other
individual, to positively identify a person. Examples of physical
characteristics include fingerprints, hand measurements, facial patterns, eye
retinas and irises, whereas examples of mostly behavioral characteristics

247

mmendikute@eps.mondragon.edu, jdelser@eps.mondragon.edu

N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_18,
© Springer Science+Business Media B.V. 2009

248 M. Barrenechea et al.

include signature, gait and typing patterns. In this context, fingerprint based
verification is one of the most used biometric systems due to its easiness of
acquisition, high distinctiveness, persistence and acceptance by the public [1].

A comparison of different biometric systems is show in Table 18.1. The
comparison is made by evaluating seven different factors [2]: (a) universality,
(b) uniqueness, (c) permanence, (d) collectability, (e) performance,
(f) acceptability and (g) circumvention.

Table 18.1 Comparison of several biometric systems (H=high, M=medium, L=low)

 a b c d e f g

Fingerprint M H H M H M H

Retina H H M L H L H

Iris H H H M H L H

Face H L M H L H L

Facial thermogram H H L H M H H

Hand Geometry M M M H M M M

Hand Vein M M M M M M H

Signature L L L H L H L

Keystroke dynamics L L L M L M M

Furthermore, fingerprint biometric systems can be split into two different

approaches: pattern classification and minutiae detection. The former associ-
ates a type of ridge structure, such as loop, tented arch or whorl, and its
particular features to each fingerprint, whereas the latter approach extracts
the minutiae from a given fingerprint image. Minutiae are points of interest
in a fingerprint, such as ridge endings or bifurcations. For the work
described in this article the minutiae detection approach has been selected
due to its superior resistance to physical degradations and the high speed of
the matching algorithms associated to this kind of fingerprint-based
verification system.

This document describes the design flow and implementation results of a
low-cost embedded system for fingerprint verification. The proposed system
consists of a 32-bit SPARC Leon2 processor, a fingerprint image sensor, a
signal processing hardware accelerator and an FPU. It is worth remarking
that the minutiae extraction module is open to work with any fingerprint
sensor, so a change in the image capture driver is enough for any new
fingerprint acquisition device.

18 A Low-Cost FPGA-Based Embedded Fingerprint 249

Similar FPGA-based fingerprint verification systems have been developed
and proposed in the literature [3–5]. From the system architecture point of
view, the Thumbpod project [3] is probably the most important reference
due to its similarities to the platform presented in this paper. Both systems
have been built upon the Leon2 soft-processor, although for our system
implementation we have selected a low-cost Spartan3 FPGA as the core of
the design, while a more expensive Virtex II device was chosen in the
Thumbpod project. Moreover, a hardware FPU coprocessor enables our
system to accurately perform high speed floating point operations in contrast
with the fixed-point refinement required in the Thumbpod project.
Regarding software development issues, both projects are based on the NFIS
open source software. Nevertheless, the verification system proposed in this
paper has its roots in the enhanced version 2 (NFIS2) of this algorithm and
uses the specified input fingerprint image format (500 pixels per inch (ppi)
and 256 greyscale images) for its optimum performance. On the other hand,
the Thumbpod project algorithm employs low quality images (3 bits per
pixel) as an input pattern to execute the NFIS version 1 minutiae extraction
flow. The proposed system is also open to most fingerprint sensors in
contrast to other platforms which have been customized for a specific
fingerprint sensor. As for the matching algorithm is concerned, the
BOZORTH3 algorithm has been implemented [6].

This article is organized as follows: In Section 18.2, the software
architecture for the minutiae extraction and matching algorithm targeted to a
Leon2 based platform is described. Section 18.3 details the proposed HW
architecture of the design, emphasizing the floating point operation
acceleration achieved by means of an FPU and a DFT co-processing engine.
Section 18.4 deals with the proposed optimization approaches. Section 18.5
shows the main timing and complexity results for different system
configurations and finally, Section 18.6 provides some concluding remarks.

18.2 Software Architecture

The fingerprint authentication algorithms developed for the target system are
based on some routines of the NFIS2 collection. Specifically, custom ver-
sions of the MINDTCT and BOZORTH3 packages have been developed for
the minutiae acquisition and matching, respectively.

The algorithm and the implemented software parameters have been
designed and set for an optimum performance with 256 grayscale and
500 ppi scanned images. These input image features match perfectly with
those provided by the most relevant fingerprint sensors, such as the Fujitsu
MBF200, which has been chosen for this research work.

250 M. Barrenechea et al.

18.2.1 Software Implementation on a Leon2 Platform

The original software was designed and tested to be run on a Linux operat-
ing system and compiled with gcc. A bare-C cross-compiler and the
GRMON debug monitor from Gaisler Research have been used in this
project. Dynamically allocated data arrays have been used to store
intermediate results depending on the application requirements.

On the other hand, although the original software only accepts input
image files in ANSI/NIST, WSQ, JPEGB, JPEGL and IHEAD formats, the
selected fingerprint sensors provide images in RAW format, for which the
algorithm has been modified and adapted so that only this type of image files
are accepted.

18.2.2 Minutiae Extraction Algorithm

The MINDTCT software has been designed in a modular fashion, and as a
result, each step in the algorithm is mainly executed in a subroutine. Only
those strictly necessary modules for XYT (position, direction and quality)
formatted output minutiae list generation have been selected from the
original algorithm. The functional steps executed in the minutiae extraction
algorithm are the following:

• Input: Fingerprint RAW image.

a. Generation of image maps.
b. Binarization.
c. Minutiae detection.
d. False minutiae removal.
e. Minutiae quality assessment.

• Output: Minutiae in XYT format.

Degraded fingerprint areas, which are prone to give as a result erroneous
minutiae, are identified in the image map generation phase. To this end,
unreliable image zones are detected by means of three image maps which are
depicted in Fig. 18.1:

• Low contrast map (LCM): Marks low contrast areas which mainly
correspond with the background of the image or smudges in the fin-
gerprint.

• Low ridge flow map (LFM): Identifies those image areas where the
dominant ridge flow could not be determined initially.

251

• High curvature map (HCM): Flags high curvature areas in the
image, such as the fingerprint core or possible delta regions.

Fig. 18.1 Generated image maps by the MINDTCT algorithm from left to right: low contrast
map, low ridge flow map and high curvature map

As a combination of these three features a quality map is derived, which
is depicted in Fig. 18.2. This map assigns one of five possible quality levels,
ranging from 0 to 4 in increasing order of quality, to each of the blocks in
the image

In this phase of the algorithm one of the fundamental maps for the minu-
tiae extraction process is also derived: the directional ridge flow map. For
the acquisition of this map, the original image is divided into 8×8 size pixel
blocks. A window of 24×24 pixels is defined for each of the image blocks,
conformed by the block itself and other surrounding pixels. The window is
rotated incrementally in the 16 orientations defined in the algorithm (each of
them 11.25 degrees apart) and a DFT is executed at each position. In every
orientation, the pixels along each rotated row of the window are summed up
to form 16 vectors of row sums. Each one of these vectors is then convolved
with eight waveforms of different frequency (two waveforms, sine and
cosine, per each of the four ridge widths). The spatial frequency of each
waveform discretely represents the width of different ridges and valleys, in
such a way that widths of 12, 6, 3 and 1.5 pixels are covered in the
algorithm. To determine the dominant ridge flow within a block, the
resonance coefficient obtained from the convolution is evaluated. The result
for this module of the algorithm is shown in Fig. 18.3.

Once the image maps have been acquired, it is necessary to binarize the
fingerprint image so that the minutiae can be extracted. To carry out this pro-
cess, the previously computed directional ridge flow map is used to
determine the binary value assigned to each pixel. After the binarization
(Fig. 18.3) the minutiae detection module analyses the binarized image
looking for candidate minutiae (ridge ending or bifurcation). However, not

18 A Low-Cost FPGA-Based Embedded Fingerprint

252 M. Barrenechea et al.

all the ridge patterns selected after this procedure correspond to true
minutiae, therefore, a false minutiae removing process is carried out. Even
after this process, false minutiae may potentially remain in the candidate list.
To counteract this fact, a reliability measure is assigned to each minutia
based on the quality map and other pixel intensity statistics. The resulting
minutiae for the template image are shown in Fig. 18.3.

Fig. 18.2 Quality map generated by the MINDTCT algorithm representing the reliability
of the areas in the image

Fig. 18.3 Resulting images of the minutiae extraction process from left to right: Ridge
direction map, binarized image and the extracted minutiae

18.2.3 Matching Algorithm

The BOZORTH3 matching algorithm, included in the second distribution of
NFIS, computes a match score that reflects the similarity degree between a
fingerprint minutiae and a template minutiae set, both of them in XYT
format. One of the most remarkable features of this algorithm is its
invariance to both rotation and translation.

253

The first step in the algorithm is to construct a comparison table for each
one of the input minutiae sets. Relative measures between a minutia and the
rest of the minutiae in the same fingerprint are computed and stored in a
comparison table. This is what provides the algorithm translation and
rotation invariance.

The next step is to look for compatible entries between the two tables.
The results of this analysis are stored in a new compatibility table which
consists of a list of associations between two possible corresponding
minutiae. Each one of these associations represents single links in the
compatibility graph.

In the final phase of the matching software flow, the compatibility graph
is traversed and clusters are created by linking table entries. Once the
traversals are complete, compatible clusters are combined and a match score
is computed by accumulation of the linked table entries across the combined
clusters.

Generally, a match score greater than forty indicates that both fingerprint
and template minutiae belong to the same finger, and so, to the same
individual.

18.3 Hardware Architecture

18.3.1 Initial System Architecture

The initial hardware architecture is composed of a 50 MHz fixed-point
Leon2 soft-processor with 8 KB of cache memory for data and instructions,
all embedded in a GRXC3S1500 board. This processor has been chosen for
this application not only because of its high performance and usability, but
also due to the fact that it can be obtained under Lesser General Public
license (LGPL). According to a report on synthesizable CPU cores [7],
where Leon2, MicroBlaze and OpenRISC 1200 where tested under three
different hardware configurations and three different benchmarks, Leon2
yielded the best performance per clock cycle for all the scenarios. Moreover,
according to the aforementioned report, Leon2 is the processor with the
highest usability among the tested CPU cores. This may be due to the VHDL
code availability and the TCL/Tk based configuration tool, which facilitates
the design of a custom Leon2 based system. The fingerprint image
acquisition is performed using a custom-made intellectual property (IP)
module connected to the MBF200 fingerprint sensor. This module is
attached to the AMBA peripheral bus (APB) and provides the processor with
the input fingerprint image. The operation of the sensor is controlled by

18 A Low-Cost FPGA-Based Embedded Fingerprint

254 M. Barrenechea et al.

means of three on-chip registers (control, data and status) generated in the
address range allocated for the APB bridge.

18.3.1.1 Running the Application on the Initial System

The original minutiae extraction and matching algorithm was implemented
using floating point arithmetic whereas the Leon2 soft-processor is fixed-
point. In order to run the program on the target platform the floating-point
emulation must be set in the compiler options. This option forces all
floating-point operations to be done in software with integer arithmetic.

The execution of the algorithm is successful as for the matching results is
concerned but not in terms of execution time. The required computation time
for the minutiae extraction is 157 s while the matching process, which is
evaluated against a 55 template set, for a one-to-one comparison is carried
out in 5–51 s. Even when the results for the extracted minutiae and match
score are correct, the program execution delay is unacceptable for a
biometric verification system. The excessive execution time is mainly due to
the MINDTCT algorithm, and thus, the analysis of the reduction of the time
required for minutiae extraction becomes one of the main objectives of this
article.

A great amount of floating-point data is used in the MINDTCT module.
The emulation of this data format introduces a prohibitive delay in the
execution of the program. Hence, an FPU is required to accelerate this
process.

The Leon2 processor provides an interface to different FPU blocks,
including the Gaisler Reseach FPU (GRFPU), the Meiko FPU by Sun
Microsystems, as well as the incomplete LTH FPU [8]. GRFPU has been
chosen for the acceleration of the floating point processes because of its
high-performance and compliance with the IEEE-754 standard.

The insertion of an FPU in the embedded system leads to a considerable
increase in the amount of logic inside the FPGA. This is the reason why a
reduction in the processor clock and/or a cutback in the cache memory
amount is required. The performance of the biometric verification system
has been analyzed for three different system configurations: 31 MHz and
8KB cache memory, 37 MHz and 8KB cache memory and 40 MHz and 4KB
cache memory. The rationale for the selection of these three system settings
was to test the performance of the system under different clock frequencies
and cache memory sizes. The FPGA utilization is almost complete for the
Spartan-3 1500 and very similar for the three analyzed hardware
configurations, being the 99% of the slices and 53% of the 18 × 18
multipliers occupied for all the tested settings. A 56% of the RAMB16
blocks are allocated for all the system configurations except for the 37 MHz

255

and 8 KB cache memory setting, in which case the occupation is 68%. The
results of the aforementioned study are summarized and extended in Section
18.5.

18.3.2 Introducing the GRFPU in the Design

Tests on IEEE-754 compliance drew positive results for the Gaisler
Research floating point core, and therefore this module was included in the
hardware design. Results for computation time have improved substantially
after the FPU insertion, mainly in the execution time required for the MIND-
TCT process completion. A 94.14% time reduction has been achieved for
the case of 40 MHz and 4 KB cache memory configuration. The execution
time for the matching algorithm had a slight improvement.

The timing results for the different system configurations are shown in
Table 18.3.

18.4 Performance Optimization

Even if the computation time for the minutiae extraction algorithm has been
reduced in a 94.14%, the program completion delay is yet excessive for its
implementation in a real commercial system. Therefore, hardware and
software optimization approaches are suggested in this section to enhance
the efficiency of the minutiae extraction process.

Several timing analyses show that the 75% of the computation time is
occupied by the low contrast map, direction map and low flow map genera-
tion process. The 92% of the time dedicated to image map computation is
needed to generate the directional ridge flow map, as shown in Fig. 18.4 In
light of these results, the acceleration of the direction map computation has
been the first target in the optimization process.

18.4.1 Hardware Optimization

The process of extracting the direction map begins by dividing the image
into 24 × 24 pixel blocks. Every image block is then rotated in the 16 direc-
tions defined in the algorithm. The pixels of each row are summed up at
each orientation generating 16 row sums per block, which are later
convolved with four waveforms of increasing frequency, each of which
represents a different ridge width. The result of these computations is a
4 × 16 matrix comprised of the resonance coefficients for the four ridge

18 A Low-Cost FPGA-Based Embedded Fingerprint

256 M. Barrenechea et al.

widths and the 16 directions defined in the algorithm. The direction that
generates a higher resonance coefficient is the one to be selected for that
image block.

Fig. 18.4 Profiling of the execution time for the different modules of the
MINDTCT algorithm

Thorough timing analyses show that the process of multiplying the row
sums of the image with the waveforms during the computation of the DFT is
the most time-consuming task. All the calculations implied in this process
are executed in a sequential fashion which entails a high delay in the
acquisition of results from the algorithm. By exploiting the parallelism and
pipelining of resources in the FPGA this process can be accelerated to a
great extent.

Fig. 18.5 System generator model for one of the eight branches of the hardware accelerator

Taking this into account, a new IP module has been designed using
Xilinx System Generator for DSP to perform the multiply and accumulation
(MAC) operations in parallel. The input and output ports of the hardware

257

acceleration IP have been designed to interface the APB bus. Figure 18.5
depicts the System Generator model of one of the eight parallel branches of
the proposed hardware acceleration IP.

The performance of the new module has been assessed by means of a
testbed developed in Matlab/Simulink using System Generator for DSP. The
results show that the computation of the direction map of the image could be
carried out in 1.29 s for the sample fingerprint image. Once this result is
known, the calculation of the time required for the minutiae extraction pro-
cess is straightforward, showing its reduction from 9.2 s to 4.142 seconds
(Table 18.3, configuration E).

The proposed system architecture is depicted in Fig. 18.5.

18.4.2 Software Optimization

As stated in Section 18.2.2, the original algorithm designed by NIST
performs the calculation of the ridge direction flow for each block in the
image in an independent fashion. As a consequence, it is necessary to
perform 16 DFTs in each of the image blocks, which leads to a high number
of DFT computations. For example, 16384 DFT calculations should be
carried out for a 256×256 image according to the original algorithm.

However, the ridge structure in a fingerprint has a continuous nature, and
therefore, adjacent image blocks tend to have similar ridge directions. A
software optimization method for the computation of the direction map has
been designed based on the approach defined in the Thumbpod proyect [9].

The coefficients for all the 16 directions are computed for the first block
in the image. When computing the next block in the row, the directions A-1,
A and A+1 will be calculated first, being A the result of the ridge flow
direction in the previous image block. If the DFT coefficient for direction A
is greater than the other values, in other words a peak value is detected, and
a control threshold is exceeded, then a solution has been found. However, if
the maximum is found in either of the directions A–1 or A+1, then the DFT
value for the adjacent direction is calculated. For instance, if the maximum
value was found in the direction A–1, the next direction to be computed
would be A–2. This process is repeated until a peak with a greater value than
the threshold is found. If after 16 DFT computations no value exceeds the
threshold, then the maximum value is selected as the result for that block.

The value of the control threshold has a great impact on the precision of
the results as well as on the degree of computational reduction. The effect of
several threshold values on the derivation of the direction map is depicted on
Fig. 18.6.

18 A Low-Cost FPGA-Based Embedded Fingerprint

258 M. Barrenechea et al.

For high threshold values, the direction maps derived are very accurate
but the acceleration of the process is scarce, and vice versa. The degree of
computational reduction, that stems from calculation only a partial subset of
all the possible DFT computations, and the loss in accuracy, which refers to
the amount of wrong direction blocks in the image, for several threshold
values are shown in Table 1.2.

Fig. 18.6 Proposed system architecture based on a Leon2 soft-processor core

Fig. 18.7 Effect of the value of threshold on the computation and accuracy of the ridge
direction map. From left to right: 500×106, 60×106 and 10×106 threshold

The value of the threshold has been set to 60×106, due to the good accu-
racy of the results and the high computational reduction implied. Applying
the software acceleration routines to the system, the minutiae extraction
process can be further reduced to 3.36 s.

259

Table 18.2 Effect of the value of threshold on the computational reduction and the accuracy
of the direction map

 Threshold 500×106 200×106 100×106 60×106 10×106 5×106

Computational reduction 0.0015% 59‚69% 68.26% 72.55% 76.37% 78.42%

Loss in accuracy 0% 3.02% 7.41% 11.11% 37.31% 82.17%

18.5 Results

Table 18.2 shows the timing results for several system configurations and
different degrees of optimization: (a) 50 MHz clock frequency with 8KB
cache memory, (b) 31 MHz clock frequency with 8KB cache memory and
FPU, (c) 37 MHz clock frequency with 8KB cache memory and FPU, (d) 40
MHz clock frequency with 4KB cache memory and FPU, (e) 40 MHz clock
frequency with 4KB cache memory, FPU and HW optimization, and (f) 40
MHz clock frequency with 4KB cache memory, FPU, HW optimization and
SW optimization. Note that the results for the last two configurations are
estimated timings only.

Table 18.3 Execution time results for different Leon2-based system configurations (* in
respect to configuration a)

 a b c d e f

Execution time (s) 157 12.7 9.5 9.2 4.14 3.36

Time reduction* – 91.9% 93.9% 94.1% 97.3% 97.8%

18.6 Conclusions

This paper describes the implementation of a fingerprint minutiae extraction
and matching algorithm running on a Spartan3 FPGA-based system with an
embedded Leon2 soft-processor. The original application developed by
NIST has been modified and ported to the target platform. Several tests have
been carried out to analyze the performance of the software algorithms with
different Leon2 and GRFPU configurations. After the insertion of a floating-
point unit, the results on execution time of the algorithm have been reduced
in a 94.14% for a 40 MHz and 4 KB cache memory configuration. Further
hardware and software optimizations have been proposed to reduce the
computation time of the minutia extraction process in a 97.85%.

18 A Low-Cost FPGA-Based Embedded Fingerprint

260 M. Barrenechea et al.

Acknowledgements This work was supported by the BIOSEG PROFIT
Project funded by the Spanish Ministry of Science and Technology. The
authors would also like to thank Jiri Gaisler and Richard Pender for their
support in setting up the system architecture.

References

1. A.K. Jain, Biometric recognition: How do I know who you are?, in Proceedings of the
12th IEEE Signal Processing and Communications Applications Conference, 3–5,
(2004).

2. A.K. Jain, A. Ross and S. Prabhakar, An introduction to biometric recognition, IEEE
Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004).

3. S. Yang, K. Sakiyama and I. Verbauwhede, A compact and efficient fingerprint
verification system for secure embedded devices, in Proceedings of the Asilomar
Conference on Signals, Systems and Computers, 2058–2062, (2003).

4. A. Lindoso, L. Entrena and J. Izquierdo, FPGA-based acceleration of fingerprint
minutiae matching, in Proceedings of the 3rd Southern Conference on Programmable
Logic, 81–83, (2007).

5. M. Lopez Garcia and E. F. C. Navarro, FPGA implementation of a ridge extraction
fingerprint algorithm based on a MicroBlaze and hardware coprocessor, in Proceedings
of the International Conference on Field Programmable Logic and Applications, 1–5,
(2006).

6. C.I. Watson, M.D. Garris, E. Tabassi, et al., User’s guide to NIST fingerprint image
software 2 (NFIS2), National Institute of Standards and Technology (NIST), 2004.

7. D. Mattson and M. Christensson, Evaluation of synthesizable CPU cores, Master‚Äôs
Thesis, Chalmers University of technology, Gothenburg, Sweden, 2004.

8. M. Kasprzyk., Floating Point Unit, Digital IC Project 2001, 2002.
9. S. Yang and I. Verbauwhede, A realtime, memory efficient fingerprint verification

system, in Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, V-189-V-192 (2004).

Chapter 19

FPGA-Rootkits

Markus Kucera and Michael Vetter
University of Applied Sciences Regensburg, Regensburg, Germany

Abstract This paper describes the security implications of FPGAs to the Trusted
Computing Base of Embedded Systems. It gives an overview of different
FPGA architectures and discusses the security measures and shortcoming of
modern FPGAs. Furthermore, it shows how an attacker can exploit these
shortcomings and integrate rootkit-like code inside the FPGA. After a
discussion on possible countermeasures, a description on the different ways a
rootkit can be deployed into the FPGA is given.

Keywords Security, FPGA, Rootkits, Trusted computing

19.1 Introduction

The use of FPGAs is on the rise. “In Stant” reports in May 2006 that the
market for FPGAs will rise from 2005 1.95 Bn $ to 2.75 Bn $ in 2010 [1].

In many of the new applications security is of high importance.
An obvious example is a FPGA based Cryptographic Coprocessor for

either symmetric and/or asymmetric encryption [2].
Another, more exotic, example is the usage of FPGAs to analyze IP

packets for an Intrusion Detection System [3].
Good reasons exist to use FPGAs for these applications. FPGAs can

perform massive parallel computation at a very high granularity.
Furthermore, modern FPGAs can hold more than 1 Million Gates,

therefore multiple tasks can be integrated into one chip, simplifying
production and board design.

Moreover, FPGAs can be upgraded/repaired after the production and
deployment of a product. When a critical error occurs a new configuration is
created and shipped to the costumer.

261 N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_19,
© Springer Science+Business Media B.V. 2009

markus.kucera@informatik.fh-regensburg.de

262 M. Kucera and M. Vetter

Finally, partial runtime reconfiguration increases the efficiency of the
FPGA by changing the device configuration on demand.

However, the growing flexibility of FPGAs raises questions about the
security implications for the whole system.

This paper gives an overview over Rootkits in general and discusses
security measures and shortcoming of modern FPGAs. Furthermore, it
shows how an attacker can exploit these shortcomings to integrate Rootkit-
like code in the FPGA. To the authors’ knowledge no previous work about
Rootkits in FPGA exists.

19.2 Rootkit Basics

Nowadays, rootkits are a common tool for hackers. They are used to hide
attacks from system administrators or antivirus software, and to get further
control over the computer. Unlike other forms of malicious code, rootkits
hide inside the system to avoid detection and to gain maximal control over
the system by becoming a part of the Trusted Computing Base. In the
following section we provide an overview about the Trusted Computing
Base and rootkits in general.

19.2.1 Trusted Computing Base vs. Trustworthy Computing

The term Trusted Computing Base or TCB is used to describe

“the set of components (i.e. hardware, software, user) whose correct
functioning is sufficient to ensure that the security policy is enforced, or
more vividly whose failure could cause a breach of the security policy.”

([4], page 243)

However, having a TCB is not sufficient to provide system security; in
addition, the TCB has to be “trustworthy”.

For example, if the FPGA is encrypting sensitive data, it is part of the
trusted computing base. If the FPGA fails to fulfill this task securely it is still
part of the trusted system, but it isn’t trustworthy.

The term Trusted Computing has become known to a wider audience
through the Trusted Computing Group [5] and their Trusted Platform
Module (TPM). The TPM is a chip that implements cryptographic functions
like symmetric and asymmetric ciphers, hashing algorithm, random number
generators and a secure memory for keys. The TPM is the trusted Platform
for security relevant application and as it is implemented in hardware it is

19 FPGA-Rootkits 263

harder to attack with respect to software functions. Today the term Trusted
Computing is often used as a synonym of a TPM (or a TPM like hardware
module).

19.2.2 Modern Rootkits

The most powerful rootkits today are injected into the privileged mode of the
processor (Ring 0 in Intel CPU) and, thereby, they have full access to the
operating system and the hardware. Common features of today’s rootkits
include the hiding of processes and files, key logging and hidden data
transfers via network. The (almost) total control over the system makes
rootkit-detection difficult, even though there is a growing number of
antirookit tools available. To avoid detection, some rootkits hide themselves
not only in the RAM or on the harddrive but also in the Flash memory of
peripheral devices like ACPI-BIOS [6] or PCIcards [7].This makes the
detection and the analysis harder. Furthermore, if the system is infected a
simple clean-up of the hard disk won’t remove the rootkit. A further
discussion on that topic can be found in e.g. [8] and [9]. Hoglund also
suggested the integration of a rootkit in the CPU microcode, taking rookit
development to new level.

19.2.3 Applications of Rootkits in Embedded Systems

While today’s rootkits are limited to workstations and servers it is possible
that the methods behind them can be use to subvert the Trusted Computing
Base of Embedded System

As an example let us consider the following scenario.
Securing the Mediastream in HDTV is a much debated and crucial issue

for the success of this technology. Past experience with Pay-TV have shown
that securing the content is a hard task. Attackers have found many ways to
circumvent the security measures of the TV-stations, forcing them to issue
new smart cards or new decoders, eventually leading to a new round of
attacks.

Let us assume a company ACME Multimedia Cooperation (AMC)
selling multimedia content to end-users via IP.

To protect its valuable content from theft, AMC is using a state of the art
crypto protocol, including encryption, authentication and key management.
Costumers of AMC can use this content only over a propriety set top box.
This box contains among other devices an FPGA responsible for all
cryptographic operations.

264 M. Kucera and M. Vetter

After some years and many sold boxes, attackers find a vulnerability in
the cipher that allows them to decode the multimedia stream.

In a pure hardware implementation of the Cryptosystem it would be
almost impossible for the system to recover from this attack. The supplier
couldn’t implement new cipher algorithm in software because of the
required throughput and a change in the Hardware would require a callback
of all boxes. As mentioned above, FPGA provides the required computing
power for the encryption plus upgrading capabilities to recover from a
security breach.

However, a hacker could abuse the FPGA for his own purposes. Such an
attack could take place as follows. First the Attacker captures the
configuration of the FPGA. In the second step he has to decompile it, then a
further analysis is necessary to identify the Achilles heel of the system. The
next step is to exploit it by adding or removing functions from the existing
configuration. In the last step the modified version of the configuration file
is generated and installed at the system.

Eventually the FPGA could transfer the unsecured data stream to a media
device, he could bypass the authentication chip card or gather private data
about the customer.

The FPGA is still a part of the trusted system at this point, but would not
be trustworthy any more.

19.3 Overview of Security Measures in FPGAS

FPGA security research is put on the protection against unauthorized usage
of Intellectual Property [10] in the configuration. To prevent this
unauthorized usage, several security architectures exist, most of them based
on the symmetric encryption of the configuration file in the flash ram and its
decryption in the FPGA.

Others prevent the cloning of the configuration file by binding the design
to the FPGA using a unique identifier. This identifier can be stored inside a
special flash chip with a unique identifier [11,12]. But the flash chip could
be replaced by another device. This problem is solved by making the
identifier a part of the FPGA, as in case of Spartan 3A with its Device
DNA [13]. Packaging the flash memory and the FPGA together (like the
Spartan 3AN) is another solution.

A different approach makes use of a non-volatile CPLD to protect the
volatile content of the FPGA from cloning [14].

The complexity of the (binary) configuration file and its proprietary (and
somewhat secret) format is also seen as a security feature.

 FPGA-Rootkits 265

19.3.1 Shortcomings of Existing Security Features

Some shortcomings of the existing security architectures are discussed in the
following.

19.3.1.1 Data/Configuration Stream Encryption

High end FPGAs like the Virtex series of Xilinx support symmetrical
encrypted configurations [17,18]. The encrypted bitstream is stored inside
the flash, and decrypted inside the FPGA, making eavesdropping impossible.
Cloning is effectively prevented if the key is at least unique to each design.
Otherwise an attacker might capture the bitstream of the premium device,
and replays it into the low cost version. But there are several problems with
the encryption. First of all, only the premium lines (like Xilinx Virtex or
Altera Stratix II) offer this option, low cost FPGAs don't have this feature at
the moment. Second, as the memory of the FPGA is volatile some designs
need a special battery for the key. If the attacker has physical access to the
device this might lead to the possibility of a Denial-of-Service attack. Altera
overcomes that problem by saving the key in a nonvolatile memory inside
the Stratix II [19].

References [18] and [19] describe the used cipher as AES. Since there is
no detailed information available beyond this point it is not possible to make
further investigation for a wider audience. For example if AES is used in
cipher block chaining mode (CBC), the security of the encryption depends
strongly on the randomness of the initialization vector (IV). If e.g. a simple
counter is used as IV the overall security of the encryption is dramatically
reduced.

Further security problems exist for other modes and many times the
encryption failed not because of an insecure cipher but an incorrect
application of the cipher, as described in [20].

19.3.1.2 Authentication of the Datastream Before Programming

The existing architectures have no strong authentication method for the
bitstream, therefore the FPGA cannot determine if the configuration file is
valid or not. An attacker can change the configuration stream and thereby
change the functionality inside the FPGA. The complex and proprietary
structure of the FPGA makes it hard to change the right part of the bitstream.
But an attacker might only need to change a couple of bits, with devastating
effects to the systems behavior. In [21] the authors described that only 2 bits
were sufficient to remove the security control of the Windows NT-Kernel.
The attack started with 4 Bytes, as described in [22], and was later reduced

19

266 M. Kucera and M. Vetter

to the 2 bits mentioned above. Since FPGA configuration files are at least as
complex as i386 machine code it can’t be expected that FPGA designs are
more robust than the Windows NT machine code.

A solution to this problem is the usage of a strong Message
Authentication Code (MAC) for the bit stream. This solution requires an
additional secret key to detain an attacker from generating a MAC.

A strong authentication scheme to solve this problem was proposed in
[23]. The author recommends the usage of cipher-based MAC (CMAC) with
AES as cipher for both encryption and authentication. This approach allows
sharing one AES for bit stream encryption and authentication.

19.3.1.3 Authentication of the FPGA Configuration at Runtime

To ensure the integrity of Server-Systems the hashcodes of all important
binaries are created after the system is installed or updated. Later on the
same procedure is repeated and the new hashcodes are compared to the
previously created. A change in the hashcodes indicates that the system has
been tampered. At the moment there is no generic solution to check the
integrity of the FPGA after the programming. Most FPGAs have a read back
functionality that allows a complete dump of the FPGA configuration.
However, activating this option offers an attacker the opportunity to obtain
sensitive data from the dump. Therefore there is no secure way for the user
to verify the integrity of the FPGA because it would invalidate the
confidentiality of the system.

A possible solution would be an integrity check that is integrated inside
the FPGA and that indicates the system that the configuration is valid or not.

Another solution would be to depend on hardware security only, as
described in [4].

19.3.1.4 Configuration/Bitstream Freshness

Replay attacks are very common in computer networks. The attacker is using
an old recording of the transmission, for example a successful authentication
and retransmits it to the target system. This method could be used to deploy
a deprecated and faulty configuration to the FPGA. This security flaw could
then be exploited. To carry out this attack, it is necessary to record the
communication between the programming device and the FPGA. Later on,
this prerecorded communication is transported to the configuration port of
the FPGA, bypassing the configuration file inside the flash. This attack
works even if the bit stream is encrypted, as the FPGA cannot discriminate
between replayed and fresh transmissions. To prevent this kind of attack the
FPGA has to ensure that the configuration messages sent are “fresh”. This

 FPGA-Rootkits 267

can be done using a nonce (Number once used) that is used for only one
transfer. If a replayed attack takes place it will be detected by the FPGA by
means of the nonce. The FPGA can then take further steps to protect its
integrity e.g. rejection of the bit stream, emergency lockdown, or memory
erase.

19.3.1.5 Authorization of the Programming Device

The FPGA input path for programming is a potential security leak itself.
Since, the FPGA cannot verify the authorization of the Programming device
(Flash, JTAG, or another function), an attacker might replace the original
flash ram with a tampered configuration.

FLASH

One possible countermeasure is the usage of flash rams with a unique
identifier verified by the FPGA (similar to the solution described in [11]). If
the configuration comes from a known and thereby trustworthy flash, it is
accepted, otherwise it will be rejected.

JTAG

For the JTAG there is no accepted standard for secure programming and
debugging.

Xilinx [24] recommends monitoring the boundary scan communication in
the design. In this way the FPGA can detect suspicious commands. The
FPGA can either reject/ignore them or can take further steps (e.g. erasing of
memory content) to protect the system.

Implementing this security features is totally in the hand of the designer,
leaving the risk of incomplete design and faulty implementations.

Microcontroller

When using a microcontroller to program the FPGA the main protection
line is the security of the microcontroller itself. If malicious code is deployed
into the microcontroller it could, e.g. force a reconfiguration of the FPGA.
Since the FPGA cannot discriminate between legal and illegal configuration,
it cannot prevent this kind of attack. A white list of valid configurations
inside the FPGA would help to minimize this risk by rejecting untrusted
configurations.

19.3.1.6 Access Control

Partial Reconfiguration allows the designer to change the configuration [25]
of FPGA-components without a complete reprogramming.

19

268 M. Kucera and M. Vetter

There are two flavors of Partial Reconfiguration:
• differential based reconfiguration allows the update of small module

parts, and is comparable to a software patch.
• modular reconfiguration allows the swapping of complete modules at

runtime.
Some FPGAs allow Designers to control the dynamic reconfiguration by the
FPGA itself, using a special on chip component like Xilinxs ICAP (Internal
Configuration Access Point) [26,27].

However, existing FPGAs have no hardware solutions to protect
important chip areas from reconfiguration. If reconfiguration is enabled the
whole configuration can be changed.

Several access control paradigm (as described in [28] and [4]) could be
adapted [29] for FPGAs to add defense in depth:

Multilevel Security

For simple applications the LaBella Padula Model (PBPM [4]) could be
used to improve the security of the overall system. PBPM works by
grouping modules into different security levels. Data exchange takes only
place in one direction from lower privileged modules up to modules with
higher privileges.

Access Control Matrix

Access Control Matrices store the access privilege of each module to
each resource. Therefore, they are only useful for small projects with a
limited number of required FPGA resources and HDL modules accessing
them. However such an Access Control Matrix could be used to restrict the
access to certain, predefined parts of the FPGA fabric. Such a simplified
access control could be implemented in hardware and would provide similar
security as the protected mode for x86 compatible CPUs.

Role Based Access Control (RBAC)

RBAC [28] is the weapon of choice for most complex software systems
today. A RBAC based solution for FPGAs works as follows:

Each HDL-module has one or more roles assigned (e.g.
SymetricCipherRole or ProcessorRole). These roles have access privileges
(read, write, utilize) to the resources. The advantage of this approach is that
roles can be shared among modules, reducing the overhead and enabling the
developer to define a clear and stringent security policy from the design
process to post mortem analysis of the hardware (by comparing the resource
utilization with predefined rules).

 FPGA-Rootkits 269

19.3.1.7 Security Through Obscurity – Analysis
of the Bitstream Format

As mentioned above, the complexity of the bitstream format has been seen
as a security feature itself. With modern FPGAs holding more than 1 Million
gates, and a programming format kept secret by the vendors, reverse
engineering seemed to be a small problem. However this has changed during
the last years.

In 2005 the programming format of the ATMEL Atmel AT40k/94k
family was posted in the usenet group com.arch.fpga [30]. Based on this
work Adam Megacz [31] created a bits a platform for bit stream
manipulation and partial reconfiguration.

In 2007 a group of researchers presented a detailed analysis of the
configuration format for Xilinx FPGA. They also created a program for
analyzing and visualizing compiled bit streams. In [32] they stated that

“Given a few assumption about the bitstream format … bitstream
decompilation becomes both very simple and very fast”

As [33] have shown, cryptographic algorithms can be easily identified in
integrated circuits. While to the authors knowledge no such work exist
today, for FPGAs future, progresses in this field are highly plausible.
Versatile patter recognition tools could analyze the structure of the FPGA,
looking for shift registers and other typical sub circuits used. Further
information could be gathered from power analysis and other side channel
attacks, giving an attacker valuable hints about the location of the wanted
circuits. Therefore future synthesize tools might contain netlist obfuscator to
hinder such attacks.

19.3.1.8 Power Analysis Attacks Against FPGAs

Power analysis [15] attacks are a based on the observation

“that the instantaneous power consumption of cryptographic device
depends on the data it processes and the operation it performs. [34]”

First Experiments with Power Analysis [16] have shown that FPGAs have
no sufficient protection against this kind of attack.

A possible solution to this problem could lie in power analysis aware
synthesis tool. These tools might create configurations with constant power
consumption, making FPGAs more resistant against power analysis attacks,
at the cost of higher resource utilization.

19

270 M. Kucera and M. Vetter

19.4 Rootkits in FPGAS

The security problems mentioned above can be abused to deploy and hide
rootkit-like features into an FPGA.

19.4.1 Security Threats Trough Rootkits

The hiding of malicious code (or configuration) inside an FPGA offers an
attacker several options to subvert the security of the system.

19.4.1.1 Eavesdropping of Messages

This attack allows listening to confidential messages. Conventional rootkits
often have a key logging functionality to listen to passwords, pins and other
private information. To obtain such information, a rootkit normally
intercepts the communication between the keyboard and the operating
system. In FPGA development, wire tapping is a common technique for
Designers. Tools like Chipscope pro [35] allow Designers to follow the
internal communication of the FPGA. For this purpose a rootkit could use a
similar approach to get sensitive system internal information, e.g.
unencrypted data streams.

19.4.1.2 Changing of Messages/Leaking of Information

This attack is an extension of the previous one. Here, an attacker does not
only listen to the code, but actively changes the messages. This attack is not
limited to the content of the message only. The rootkit might change, e.g.
timing behavior, power consumption or the electromagnetically emanation
of the design to transmit compromising data to the outside world.

19.4.1.3 Replacement/Bypassing of Existing Code-Blocks

If the FPGA is part of the trusted computing base, the outside world relies on
the capabilities of the FPGA to enforce its security policy. If an attacker
replaces the existing security blocks with, e.g. useless code (either in the
memory or in the FPGA itself), it is not able to fulfill the task any more.

19.4.1.4 Denial of service (DoS) / Physical Destruction

As demonstrated in [36] a maliciously crafted bitstream can even destroy a
FPGA physically. This could be achieved by:

 FPGA-Rootkits 271

• connecting an output pin of the FPGA with the output pin of an external
device;

• increasing the internal current beyond an acceptable limit, e.g. by
combining internal logic blocks.

19.4.2 Deployment of the Rootkit

The three different phases of the life cycle where a rootkit can be deployed
are discussed in the following

19.4.2.1 Development Phase

While it seems to be unlikely that a developer would integrate a security
related flaw in to the code he writes, it is nonetheless possible, as trusted
people don’t have to be trustworthy. Other ways a rootkit can be installed are
discussed in the following.

Hacking of the Manufacturer’s Source-Repository

The intention here is not only to steal the code, but to insert a rootkit into
the design. Due to the complexity of Register Transfer Logic Code (e.g.
VHDL), the chances are good that this attack would remain unnoticed by the
developers. Consequently the rootkit would find its way into the product.
Furthermore, auditing of C code for security flaws is more common than,
e.g. VHDL or Verilog-audits.

Abusing Hidden Features Inside the Configuration

 Sometimes the security flaw is not a bug, but a feature [37]. Vendors
could be interested to gather sensitive information too, e.g. for marketing
research and integrate hidden functions in the FPGA. Other risks are leftover
debug circuits that could be abused by an attacker.

Attacking the Design and Synthesis Tool Itself

 A “modified” synthesis tool could insert additional code into the design
or alter the netlist, e.g. to allow side-channel attacks. Such kind of attacks
would only be noticed by means of a detailed netlist audit. Ken Thompson
has stated in “Reflections on trusting Trust” [38]:

“You can’t trust code that you did not totally create yourself. ... No
amount of source-level verification or scrutiny will protect you from
using untrusted code.”

19

272 M. Kucera and M. Vetter

19.4.2.2 Manufacturing Phase

Even modern low cost FPGAs like Xilinx Spartan3E, and S3A, support
multiple configuration files. In such systems the rootkit could “sleep”
parallel to the normal configuration. An attacker could later force the FPGA
to use the “alternative” configuration.

19.4.2.3 “In the Field” Phase

After the system is deployed in the field, an attacker could easily obtain
(physical) control over the system. Four different misuse scenarios are
presented in the following:
• Change the configuration in the memory followed by a reboot of the

system. This could be done by re-flashing the memory or by a physical
replacement of the chip (in some cases this “chip” is the flash memory of
a compact flash or SD-Card)

• Deploy the rootkit via an onboard JTAG port. This attack would abuse
the partial reconfiguration feature of FPGAs described above.

• Abuse the ICAP interface as described above. An attacker could insert
his own (assembler) code into the embedded processor using, e.g. a
buffer overflow inside a web application [39]. That code could force a
partial reconfiguration of the FPGA via ICAP, deploying the rootkit right
into the FPGA. E.g. in Embedded Linux [40] the ICAP port is accessible
as any other device using the /dev/icap primitive, making an attack at
hardware level to a simple cat malicous.bit > /dev/icap after the hacker
has reached root privilege.

• A similar attack could be carried out against conventional
microcontroller connected with the configuration port of the FPGA.

19.5 Resume and Future Work

Several shortcomings of existing FPGA security architecture where given
and possible solutions are proposed. Furthermore we have shown that these
security flaws could lead to serious consequences for the overall security of
an embedded system.

The injection of a rootkit could happen at any stage of the FPGA
lifecycle. Therefore, future work will concentrate on the development of a
secure design and development process for FPGAs.

 FPGA-Rootkits 273

References

1. Instat, FPGA shipments to reach $2.75 bln by 2010, 2006, http://www.instat.com/
press.asp?Sku=IN0603187SI&ID=1674. (09.10.2008)

2. T. Wollinger and C. Paar, How secure Are FPGAs in cryptographic applications? (long
version),FPL 2004: Proceedings Field Programmable Logic and Applications, 2004, pp.
707–711.

3. J.W. Lockwood et al., An Extensible, System-On-Programmable- Chip Content-Aware
Internet Firewall, Field Programmable Logic and Applications (FPL), 2003.

4. R.J. Anderson, Security engineering (Wiley, Indianapolis, 2008).
5. Trusted Computing Group, https://www.trustedcomputinggroup.org/home (accessed

09.10.2008).
6. J. Heasman, “Implementing and Detecting an ACPI Rootkit,”, www.blackhat.com/

presentations/bh-europe-06/bh-eu-06-Heasman.pdf (09.10.2008).
7. J. Heasman, Implementing and Detecting a PCI Rootkit, www.ngssoftware.com/

research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf (accessed
09.10.2008).

8. G. Hoglund and J. Butler, Rootkits (Addison-Wesley, Upper Saddle River, 2006).
9. rootkit.com, http://www.rootkit.com/ (accessed 09.10.2008).
10. T. Kean, Cryptographic rights management of FPGA intellectual property cores, FPGA

'02: Proceedings of the 2002 ACM/SIGDA tenth international symposium on Field-
programmable gate arrays, ACM Press, 2002, pp. 113–118.

11. K. Chapman, Low Cost Design Authentication for Spartan-3E FPGAs, Xilinx Inc..
12. C. Baetoniu and S. Sheth, “XAPP780: FPGA IFF copy protection using Dallas

Semiconductor/Maxim DS2432 Secure EEPROM,” Xilinx Inc., 2005.
13. K. Chapman, Reading Spartan-3A Device DNA,Xilinx Inc.
14. Altera Corp, FPGA design security solution using MAX II devices, Altera Corp., 2004.
15. S.B. Ors, E. Oswald and B. Preneel, Power-analysis attacks on an FPGA – first

experimental results, Cryptographic Hardware and Embedded Systems Workshop 2003.
16. S. Mangard, E. Oswald and T. Popp, Power Analysis Attacks (Springer

Science+Business Media, LLC, 2007).
17. C.W. Tseng, Lock Your Designs with the Virtex-4 SecuritySolution, XCell Journal, vol. 52
18. Xilinx,Virtex-5 FPGA Configuration User Guide, Xilinx.
19. Altera Corp., Protecting Intellectual Property through FPGA Design Security,

http://www.altera.com/literature/ads/fpgadesignsecurity.pdf (accessed 09.10.2008).
20. H.Wu,The Misuse of RC4 in Microsoft Word and Excel”,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.5446 (09.10.2008).
21. G. Hoglund and G. McGraw, Exploiting software (Addison-Wesley, Boston, 2004).
22. G. Hoglund, A *REAL* NT Rootkit, patching the NT Kernel, www.phrack.com/

issues.html?issue=55&id=5 (accessed 09.10.2008).
23. S. Drimer, Authentication of FPGA Bitstreams: Why and How, Applied Reconfigurable

Computing, Springer, 2007, pp. 73–84.
24. G. Crow, Advanced Security Schemes for Spartan-3A/3AN/3A DSP FPGAs,

www.xilinx.com/support/documentation/white_papers/wp267.pdf, (09.10.2008).
25. C. Kao, Benefits of Partial Reconfiguration; XCell Journal, vol. 55, 2005.
26. M. Hübner and J. Becker, “Tutorial on Macro Design for Dynamic and Partially

Reconfigurable Systems”,RC-Education 2006, 2006.
27. Xilinx Inc.Spartan-3 Generation Configuration User Guide, 2006.

19

274 M. Kucera and M. Vetter

28. M. Schumacher, Security patterns (Wiley, Chichester,2006).
 M. Kucera and M. Vetter, A Generic Framework to Enforce Access Control in FPGAs

with Dynamic Reconfiguration, Software Engineering and Applications, ActaPress,
2007.

30. W.S.G. Gosset, “Atmel AT40k/94k Configuration Format Documentation,”2005, http://
groups.google.com/group/comp.arch.fpga/msg/a90fca82aafe8e2b (accessed 09.10.2008).

31. A. Megacz, “A library and platform for FPGA bitstream Manipulation,” Field-
Programmable Custom Computing Machines Symposium, 2007, pp. 45–54.

32. J. Note and E. Rannaud, From the bitstream to the netlist, Departement d`informatique
Ecole Normale Superieure, 2007.

33. K. Nohl, D. Evans and H. Plötz, Reverse-Engineering a Cryptographic RFID Tag,
USENIX Security Symposium, 2008.

34. S. Mangard, E. Oswald and T. Popp, Power analysis attacks,(Springer, Boston,2007).
35. Xilinx Inc, Chipscope pro, http://www.xilinx.com/ise/optional_prod/cspro.htm (accessed

09.10.2008).
36. I. Hadizc, S. Udani and M.S. Smith, FPGA Viruses, Lecture Notes in Computer Science,

vol. 1673, 1999, pp. 291–300.
 R. Lemos, “World of Warcraft hackers using Sony BMG rootkit,” 2005,

http://www.securityfocus.com/brief/34 (accessed 09.10.2008).
 K. Thompson, Reflections on Trusting Trust, Communications of the. ACM, vol. 27, no.

8, 1984, pp. 761–763.
 A. One, Smashing The Stack For Fun And Profit, Phrack, vol. 7, no. 49, 1996,

http://insecure.org/stf/smashstack.html (accessed 09.10.2008).
40. J. Williams and N. Bergmann, Embedded Linux as a platform for dynamically self-

reconfiguring systems-on-chip, (09.10.2008), URL: www.linuxdevices.com/articles/
AT7708331794.html.

29.

37.

38.

39.

Chapter 20

Bridging the Requirements to Design
Traceability Gap

Bernhard Turban1, Markus Kucera2, Athanassios Tsakpinis2

and Christian Wolff3
1Electronic Systems Engineering, MBtech Group, Neutraubling, Germany,

2Competence Center SE, University of Applied Sciences, Regensburg, Germany,
markus.kucera@informatik.fh-regensburg.de,

3Media Computing, University of Regensbur

Abstract Requirement traceability ensures that software products meet their
requirements and additionally makes the estimation of the consequences of
requirement changes possible. In this article a case study analyses symptoms
of this problem in the process model of ISO 12207, the foundation of SPICE
(ISO 15504), and CMMi. Our analysis is directed at deriving a concept for the
integrated extension of current traceability models with the aspect of
documented design decisions. This integrated decision model is presented
along with an additional case study which illustrates the advantages of this
approach for traceability.

Keywords Requirements engineering, Traceability, Design, Rationale management,
Decision, Embedded systems, SPICE, ISO15504, ISO 12207, CMMi

20.1 Introduction

In the development of safety-critical embedded real-time systems, safety and
reliability are of major importance [1] (cf. ISO 61508). Therefore, control
and improvement of software processes (cf. ISO 15504 SPICE) are of high
significance. In these processes, traceable and consistent elaboration of
requirements throughout all development cycles (especially the design
phases) is mandatory. However, today’s document-heavy approaches face
problems with redundancy and synchronization of different stakeholders’

275 N. Martínez Madrid, R.E.D. Seepold (eds.), Intelligent Technical Systems, Lecture Notes
in Electrical Engineering 38, DOI 978-1-4020-9823-9_20,
© Springer Science+Business Media B.V. 2009

Bernhard.Turban@micron-ag.com

athanassios.tsakpinis@informatik.fh-regensburg.de
g, Germany, christian.wolff@computer.org

276 B. Turban et al.

views. To handle these issues, we propose an approach that concentrates on
maintaining one consistent view of all requirements between all
stakeholders. In the following design phases, the stakeholders and artifacts
of the different engineering disciplines (Systems engineering, hardware
(HW) and software (SW)) shall be connected by a lightweight model and
tool-based traceability approach.

The core of this approach is a decision model which links requirements,
design problems and design together. As a result, new constraints on the
solution space can be identified and used in a similar way as requirements.
Whereas former traceability approaches regarded decisions as valuable side
information, in our model decisions get directly integrated in the classical
traceability information forming traceable chains of decisions through the
design process. As a side effect, the approach addresses several problems in
rationale management and encourages direct communication between the
stakeholders. This decision model has been integrated into a software
development tool which acts as a bridge between requirements tools like
DOORS and design-oriented tools like Matlab Simulink or Artisan Realtime
Studio.

We start in Section 20.2 with describing the state of the art in traceability
research and continue in Section 20.3 to analyze problems in establishing
traceability information in current process models. This builds ground for
Section 20.4 which introduces our integrated decision model that helps to
improve currently used traceability models. A case study shows how the
model can be applied in a practical setting. Section 20.5 gives hints on the
model’s further support potential for designers while Section 20.6 draws a
short conclusion.

20.2 Requirement Traceability to Design

Requirements management, i.e. the activity of organizing, administrating and
supervising requirements during the whole development process, and
Traceability are mandatory actions to fulfill exigencies imposed by software
engineering standards like SPICE1 (Software Process Improvement and
Capability determination [2]) or CMMi (Capability Maturity Model
Integration [3]). Traceability means “comprehensible documentation of
requirements, decisions and their interdependencies to all produced
information/artifacts from project start to project end” [4 (p. 407)]. Between

1 In the following, we concentrate on SPICE, but our claims are equally valid for CMMi, as
both process models are based on the process model of ISO 12207.

20 Bridging the Requirements to Design Traceability Gap 277

artifacts or respectively models of different development processes emerging
structural interruptions and semantic gaps [5,6,7 (p. 138f)] endanger a
project’s consistency and the common understanding of its stakeholders.
Traceability relationships are intended to close these gaps. Paech et al. [8]
indicate that traceability in relation to the design of artifacts is typically seen
as a set of bidirectional relationships between requirements and their
fulfilling design entities [9].

Research on traceability has proposed various approaches for
establishing or retrieving traceability dependencies. Rochimah et al. present
an evaluation of current state of the art traceability approaches concerned
with SW evolution [10]. Research has shown that manual creation and
maintenance of traceability relations requires enormous effort and includes
substantial complexity [11,9,12]. The study of Rochimah et al. further shows
that current research on traceability focuses on automating traceability link
generation [10(Table 4)]. Some automation approaches still depend on
manually established links that are then enriched by supporting automation
mechanisms while others are fully automated. We have analyzed the scope
of automation of these approaches and identified two major areas of
automation:
• Finding interdependencies between different requirements artifacts (e.g.

textual documents, use case descriptions, feature-models or analysis
models) concerned with requirements.

• Finding interdependencies between design and code artifacts.

Only the approach suggested by Spanoudakis [13,14] tries to establish
automated trace links from requirements to models, focusing on analysis
models, though.

It is striking that current automated link generation approaches do not
concentrate on establishing links between the requirements world and the
design world. We believe this can be explained by the “name mapping” or
“name referencing” phenomenon: Instead of creating explicit links between
items, the same names are used [15 (p. 224)].

If no automatic code generation is available for a design tool and code
must be typed manually, traceability must also be established between
design and code. As design is (and should be) a more abstract view on the
problem modeled, traceability can also be established by naming
corresponding elements in design and code identically. This is an explicit
heuristic. In addition, another heuristic significantly reinforces this effect in
an implicit way: It is very important to achieve a common understanding of
the project for all different stakeholders. This can only be achieved, if the
project develops a common vocabulary for its used terms. Therefore, in the

278 B. Turban et al.

field of requirements specification, using precise terminology and
establishing adequate terminology management is a central principle.

However, concerning traces from requirements to design, Paech et al. [8]
point out that these relationships can be of a more complex nature (cf.
Fig. 20.1 below). In principle, non-functional requirements (NFR) restrain
functional requirements (FR) and architectural decisions (AD). On the other
hand, NFRs are realized by FRs and ADs, whereas FRs are realized and
restrained by ADs. Egyed et al. discuss similar observations [11] where they
map FRs to nonfunctional aspects (or software attributes) where they
identify conflicting and supporting situations. It becomes clear that such
dependencies are highly dependent on the design context (e.g. the potential
conflict can also be nonexistent, if a FR and a nonfunctional aspect are
realized in different components).

Fig. 20.1 Relationships between non-functional (NFR), functional requirements (FR)
and architectural decisions (AD) according to Paech et al. [8]

Tracing requirements from the original requirements specification to
design by simple bidirectional links is inaccurate as this would assume the
transition from requirements to design to be a fairly linear and one-
dimensional process. We rather believe that this transition is a creative and
complex mental transfer process performed by designers when gradually
transforming the problem space into a solution space (so called Wicked
Problems [16]). Thus we assume a substantial gap between the world of
requirements and design (resp. code), since requirements represent the
problem world, whereas design forms the solution world. Accordingly, we
believe that (automatic) traceability link generation can be a valuable
support mechanism to find dependencies between within each sphere (e.g.,
finding all references of a variable used in source code is a simple and state-
of-the-art feature), but it faces high barriers when trying to bridge both
worlds. It can be agreed with Egyed et al. that “while some automation
exists, capturing traces remains a largely manual process” [17 (p. 115)] and
such links degrade over time and must be continuously maintained. Further,
the type of usage of the link information must be considered: Egyed et al.
[17] distinguish between short-term utilization (are all requirements
considered?) and long-term utilization (assessing a particular change years
later). Short-term utilization is more or less covered by the simple link

 Bridging the Requirements to Design Traceability Gap 279

concept usually applied by today’s traceability understanding, whereas for
mid- and long-term utilization of more complex relations additional
information such as decisions and their rationale must be considered.

20.3 Shortcomings of Current Process Artifact Models

The SPICE process model uses the standardized process model of ISO
12207 [2]. This process model demands the following artifacts:
• A system requirement specification (SYS-RS) collects all requirements

retrieved from the user by the user requirements specification.
• The SYS-RS builds the basis for a high-level system design model with

the prior emphasis on HW-SW-partitioning.
• A HW requirements specification (HW-RS) for the HW and a SW

requirements specification (SW-RS) are derived from the SYS-RS and
the system design model.

• The HW-RS and SW-RS are the basis for the corresponding HW and SW
design models.
We present a detailed analysis of the problems encountered applying

traceability to this kind of process model in [18]. In embedded development,
requirements concerning the system, SW and HW are strongly interwoven
and thus a clear separation between requirements and design artifacts leads
to high redundancy and cluttered information. The following example will
demonstrate this (a detailed discussion can be found in [18]).

The example has a system requirements specification (SYS-RS) with
three requirements causing a problem encountered in our practice context:
• Req.1: An external watchdog component must monitor the system.
• Req.2: Parametric data must be changeable by the customer during

operation.
• Req.3: Parametric data must be stored in Electrically Erasable

Programmable Read Only Memory (EEPROM).
In current practice, the system design determines that the system will

include a microcontroller, an external watchdog component and an external
EEPROM (cf. Fig. 20.2). The HW requirements specification (HW-RS)
derived from the SYS-RS and system design again contains Req.1 and Req.3
linking back (fat upward arrows in Fig. 20.2) to the SYS-RS. The detailed
HW design determines that watchdog and EEPROM will share the
connection pins to the controller by a Serial Peripheral Interface (SPI) –
communication interface, because other connected components have already
used up all remaining pins of the controller. Req.1 gets linked to the
watchdog symbol and Req.3 to the EEPROM symbol in the HW design.

20

280 B. Turban et al.

The SW requirements specification (SW-RS) contains Req.1, Req.2 and
Req.3 linking back to the SYS-RS. During SW design, the architect
discovers the potential resource conflict in the shared usage of one SPI for
EEPROM and watchdog. Since driving the EEPROM is very time intensive
and triggering the watchdog is time critical, the architect rates this
combination as a risk, but changes of the HW are rejected due to potentially
higher costs. The solution for this conflict, the EEPROM and watchdog
drivers must be “artificially” coupled to implement a cooperative handshake

solution (Fig. 20.2: association in SW design model marked “!!!”). The
solution implies that the planned original standard drivers of a supplier must
be adapted internally. In the further progress of the project, these adaptations
cause extra efforts not traceable to its background.

Fig. 20.2 An example following previous approaches

20.4 An Integrated Decision Model

The above example illustrates two central problems: First, the requirements
in HW_RS and SW_RS are copies of the requirements in the SYS_RS,
leading to high redundancy. In many cases, SW or HW functionality is
already clearly demanded for in the user requirements specification. Thus a
clear separation of those requirements must be taken over into the SYS_RS
and SW_RS respectively HW_RS causing additional effort and

 Bridging the Requirements to Design Traceability Gap 281

redundancies. To avoid this, we propose to use a single central requirements
specification containing one consistent view on all aspects of the system to
be developed. When a current state of the art requirements management
tools like DOORS® is used, a HW-SW-partitioning of requirements is also
viable using attributes (proposed values: System, HW, SW, construction,
management). Thus, HW-RS as well as SW-RS can be derived as views with
a filter on the specific attribute value.

Second, design activities concerning one design artifact (in our example
HW design) can have serious implications for other requirement or design
artifacts (in our example SW design). This fact is partially considered in the
process model of SPICE: System design has high impact on its SW design
by raising new “requirements” in addition to the original requirements of the
stakeholders. Thus, the idea behind a SW_RS is to collect the SW-related
requirements from the SYS_RS and derive new requirements from the
System design together. However especially in the automotive sector, SW-
design must be subordinated under constraints of extremely cost-optimized
HW components. At the moment, SPICE neglects these critical connections
between HW and SW.

20.4.1 Introducing the Integrated Model

Another issue in SW requirements which might benefit from more intensive
discussion is their negotiability. “Real requirements” are part of the
contractual basis between the stakeholders in a project. Changes of such
“real” or “contractual” requirements must typically be harmonized with the
customer via a Change Control Board (CCB) or a similar body used in
project management. For requirements resulting from design decisions
(modeled as DesignConstraints here, see below), it is possible to search for a
project internal solution first, before escalating the issue to the CCB is
considered. Thus, both kinds of requirements should be strictly separated in
their notation.

For this, we propose to use the following taxonomy (Fig. 13.3) to
support a more explicit distinction:
• Requirements are directly allocated to the SYS-RS, since they concern

the legal agreement between customer and contractor.
• “Requirements” derived from requirements or designs are called

DesignConstraints.
• Requirements and DesignConstraints have similar qualities and structure.

Thus, we use the term RequirementalItem (RI) for both items.
Requirements have to refer to their origin [7,4]. This relation should

apply to all RIs. The origin of DesignConstraints lies in previously made

20

282 B. Turban et al.

design decisions solving the conflicts/forces between RIs and/or architectural
items constraining the broader more abstract solution space to a more
concrete one. These considerations lead to our idea of directly integrating a
decision model into traceability information (cf. Fig. 20.4) helping to
document the origin of new DesignConstraints (this especially helps to make
the HW' s influence on SW more transparent [19(p. 415)]) in a lightweight
and need-oriented way. Figure 20.4 shows this concept extending today’s
traceability models [8] by an explicit decision model. The diagram sketches a
concrete situation, where a conflict between two requirements (Req_1,
Req_2) and two UML model elements (Class1, Class2) is resolved by a
design decision resulting in two new DesignConstraints (DesConstraint1,
DesConstraint2).

Fig. 20.3 Requiremental items taxonomy

The conventional scheme of relating requirements to realizing model
elements is extended by a dialog allowing the capturing of documented
decisions. In this dialog, elements of the requirement model and the design
model which are conflicting or which cause a problem can be chosen.
Equally, diagrams describing aspects of the conflicting situation can be
attached as additional information (<<documenting diagrams>>).

Furthermore, the decision can be specified on demand via a text
component. The text component accepts unstructured text, but may also
provide adequate description templates to support the decision
documentation. A possible way for structuring this text is shown in Fig.
20.4 with the decision’s attributes assumptions, rationales and solution
specification.

The decision model presented here is strongly connected to the research
area called rationale management (RM, cf. [20] for an overview). In
[18 (Chapter 5)], we provide a detailed description of the dependencies and
implications of research in RM on our decision model.

 Bridging the Requirements to Design Traceability Gap 283

20.4.2 Applying the Decision Model

The following example illustrates how the same situation as in the example
given above is solved by our proposed approach. The system design is done
just as proposed in Chapter 3.1 (Fig. 20.5). The SYS-RS contains an
attribute that allows a SW-HW partitioning. Req.1 and Req.3 are marked as
relevant for HW and SW, Req.2 only for SW. The HW-RS is not directly
applied, since the relevant HW requirements are marked in the SYS-RS. The
HW design is done similar to Chapter 3.1 and linked to the Req.1 and Req.3
in the SYS-RS. The SW-RS is not applied, since the relevant SW
requirements are marked in the SYS-RS. The SW design will be developed
from the SYS-RS and the system design model. The architect discovers the
same problem concerning watchdog and EEPROM. He opens a decision
wizard and marks Req.1 and Req.3 as conflicting and links to the HW-
design diagram that documents the conflict. As a further rationale, the
architect textually documents “synchronization conflict at SPI between time
intensive EEPROM application and time critical watchdog application”. A
further click helps the architect to put the conflict into the risk list. In the
resulting DesignConstraint, the architect sketches the cooperative handshake
and links the DesignConstraint to the EEPROM and watchdog design
elements in the SW design.

Fig. 20.4 Documented decisions bridge the gap between requirements, design elements
and resulting design constraints

This decision model is currently being implemented in a traceability tool.
In the further project progress necessary changes are detected early by
impact analyses and the additional costs can be compared to the cost savings
of the rejected HW change.

The artifacts HW-RS and SW-RS not realized can be generated out of
the model, on demand by summing up all requirements related to the
corresponding design (HW design model for the HW-RS, SW design
model for the SW-RS).

20

284 B. Turban et al.

The idea of including decisions into the traceability models is not new
(e.g. cf. the recently introduced approach by Tang et al. [21]). In contrast to
other approaches that record decisions (rationale) as additional information,
our decision model directly integrates into the traceability schema by the
following key characteristics:
• Conflicts between RequirementalItems (and design elements) can be

modeled.
• Decisions do not directly influence dedicated design objects, but they

bear DesignConstraints that can be the treated as new “requirements”
(called RequirementalItems here).

• These RequirementalItems are part of all subsequent traceability
processes.
For a detailed analysis on the differences to other approaches of

documenting rationale in design, we recommend reading [18].

Fig. 20.5 An example following our proposed approach

20.5 How the New Decision Model Provides Additional
Support to Designers

In the following, we will discuss additional connections and advantages of
the proposed decision model in relation to design-related issues.

 Bridging the Requirements to Design Traceability Gap 285

20.5.1 Patterns

“Patterns, as used in software engineering, constitute one of the most heavily
used approaches for organizing reusable knowledge” [22 (p. 19)]. Patterns
define the abstract core of a solution for a continuously recurring problem
thus allowing to reapply the solution tailored to the concrete problem [23].
Patterns are described using a structure template. Even though different
authors use slightly different templates, the description of the problem (often
referred as forces), the solution and its consequences are part of all pattern
templates. Our decision model can be described in terms of such a pattern
template (see also [24 (Table 1)]): The conflict situation corresponds to the
problem description part, whereas the description of consequences in a
pattern description could be modeled by resulting new DesignConstraints.
Due to this analogy, we believe our approach can provide valuable support
in selecting design patterns (e.g. the conflict situation of a decision can
indicate the usage of a specific pattern). At the same time, it can help
knowledge engineers in identifying interesting solutions as new patterns (on
the relationship between design decisions and patterns also refer to [24,25
(p. 209)]). A pattern library for decisions in modeling embedded systems
could be the ultimate goal of such an effort.

18.5 Ensuring Adequate Realization of Design
and Decisions

As Posch et al. [25 (p. 38)] underline, architects also have to ensure that their
design settings are adequately considered and realized by other designers or
coders. Using our model, designers can model the consequences of a
decision as DesignConstraint and relate the DesignConstraints as new
“requirements” (in our terminology: RequirementalItem (RI)) for design
elements. Besides usage in further design or coding processes, the list of
assigned RIs to a design item can also be used as basis for reviews on design
and implementation of the item.

20.5.3 Support for Architecture Evaluation

Our approach can also provide valuable support at maintenance and
evaluating architectures [26]. As Moro [27 (p. 321)] points out the usage of
patterns and other decisions must be documented for later maintenance and
architecture evaluation issues.

20

286 B. Turban et al.

20.6 Summary and Outlook

This article shows the interdependencies between the SPICE-layered process
model, requirements, traceability, designs and decisions with special
attention on low redundancy in the traceability information. We suggest a
strict separation between contractual mandatory requirements (“real
requirements”) and requirements resulting from former design decisions
(design constraints). Design decisions are interpreted as links between
requirements, designs and derived DesignConstraints. This closely connects
and synchronizes approaches in requirement traceability and rationale
management. In accordance with the literature [28,6,8,29,12], it can be
argued that the influence of requirements on design processes – and vice
versa – is only insufficiently modeled by bidirectional linkages.

In the course of a cooperation project between MBtech Group (formerly
with the Micron Electronic Devices AG, since June 2008 part of MBtech),
the Competence Center for Software Engineering of the University of
Applied Sciences Regensburg and the Media Computing Group of the
University of Regensburg a prototype system is being implemented which
includes the decision model presented here. Customer workshops at MBtech
have shown promising acceptance by designers. At the moment, the tool
environment faces first practical applications in real world projects.

Acknowledgements This research has been funded by the Bavarian
Ministry of Economic Development (Grant Nr. IUK229). Furthermore, we
want to thank all partners that contributed to our research.

References

1. O. Benediktsson, R. Hunter and A.D. McGettrick. Processes for Software in Safety
Critical Systems. In: Software Process: Improvement and Practice 6 (1), 47–62 (2001).

2. K. Hörmann, L. Dittmann, B. Hindel and M. Müller. SPICE in der Praxis,
Interpretationshilfe für Anwender und Assessoren, dpunkt Verlag, Heidelberg (2006).

3. R. Kneuper. CMMI. Verbesserung von Softwareprozessen mit Capability Maturity
Model Integration. Volume 2, dpunkt Verlag, Heidelberg (2006).

4. Ch. Rupp. Requirements-Engineering und –Management, Volume 2, Hanser, München
(2002).

5. M. Lindvall. A study of traceability in object-oriented systems development. Licenciate
thesis, Linköping University, Institute of Technology, Sweden (1994).

6. A. von Knethen. Change-Oriented Requirements Traceability. Support for Evolution of
Embedded Systems, Fraunhofer IRB Verlag, Stuttgart (2001).

7. Ch. Ebert. Systematisches Requirements Management, dpunkt, Heidelberg (2005).

 Bridging the Requirements to Design Traceability Gap 287

8. B. Paech, A. Dutoit, D. Kerkow and A. von Knethen. Functional requirements, non-
functional requirements, and architecture should not be separated – A position paper,
REFSQ Essen (2002).

9. O. Gotel, O. and A. Finkelstein. An Analysis of the Requirements Traceability Problem.
Proceedings First International Conference on Requirements Engineering 1994, pp. 94–
101 (1994).

10. S. Rochimah, W. Wan Kadir and A. Abdullah. An Evaluation of Traceability
Approaches to Support Software Evolution. International Conference on Software
Engineering Advances (ICSEA) (2007).

11. A. Egyed and P. Grünbacher. Indentifying Requirements Conflicts and Cooperation:
How Quality Attributes and Automated Traceability Can Help. IEEE SW
November/December (2004).

12. B. Ramesh and M. Jarke. Toward Reference Models for Requirements Traceability.
IEEE Transactions on Software Engineering, 27(1) (2001).

13. G. Spanoudakis, A. Zisman, E. Perez-Minana and P. Krause. Rule-Based Generation of
Requirements Traceability Relations, Journal of Systems and Software, 105–227 (2004).

14. G. Spanoudakis, “Plausible and Adaptive Requirement Traceability Structures,” in Proc.
14th International Conf. Software Eng. and Knowledge Eng. (2002).

15. M. Müller, K. Hörmann, L. Dittmann and J. Zimmer. Automotive SPICE in der Praxis:
Interpretationshilfe für Anwender und Assessoren. Dpunkt 1. Auflage, Heidelberg
(2007).

16. W. Kunz and H. Rittel. Issues as elements of information systems. Working Paper 131,
Center for Urban and Regional Development, University of California, Berkeley (1970).

17. A. Egyed, P. Grünbacher, M. Heindl and S. Biffl, Value-Based Requirements
Traceability: Lessons Learned. 15th IEEE International Requirements Engineering
Conference (2007).

18. B. Turban, M. Kucera, A. Tsakpinis and Ch. Wolff, An Integrated Decision Model For
Efficient Requirement Traceability in SPICE Compliant Development, Fifth Workshop
on Intelligent Solutions in Embedded Systems (WISES), Madrid (2007).

19. P. Liggesmeyer and D. Rombach (Eds.): Software Engineering eingebetteter Systeme
Grundlagen – Methodik – Anwendungen. Volume 1., Elsevier, München (2005).

20. A. Dutoit, A., R. McCall, I. Mistrik and B. Paech (Eds.). Rationale Management in
Software Engineering. Springer, Berlin (2006).

21. A. Tang, Y. Jin and J. Han, A rationale-based architecture model for design traceability
and reasoning. Journals of Systems and Software Volume 80(6) 918–934. (2007).

22. A. Dutoit, R. McCall, I. Mistrik and B. Paech. Rationale Management in Software
Engineering: Concepts and Techniques. In [20 (p.1–48)] (2006).

23. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA (1995).

24. N.B. Harrison, P. Avgerion and U. Zdun, Using Patterns to Capture Architectural
Decisions. IEEE Software 38–45 July/August (2007).

25. T. Posch, K. Birken and M. Gerdom, Basiswissen Softwarearchitektur- Verstehen,
entwerfen, bewerten und dokumentieren. dpunkt, Heidelberg (2004).

26. P. Clements, R. Kazman and M. Klein, Evaluating Software Architectures – Methods
and case studies. Addison-Wesley, New York (2002).

27. M. Moro, Modellbasierte Qualitätsbewertung von Softwaresystemen, Books on Demand
GmbH, 1. Auflage (2004).

20

288 B. Turban et al.

28. A. von Knethen, A Trace Model for System Requirements Changes on Embedded
Systems, In Proc. of 4th International Workshop on Principles of SW Evolution, Sept.
(2001).

29. R. Pettit, Lessons Learned Applying UML in Embedded Software Systems Design,
Second IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous
Systems, Wien (2004).

